
HAL Id: tel-01677896
https://theses.hal.science/tel-01677896

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Next-generation SDN based virtualized networks
Myriana Rifai

To cite this version:
Myriana Rifai. Next-generation SDN based virtualized networks. Other [cs.OH]. COMUE Université
Côte d’Azur (2015 - 2019), 2017. English. �NNT : 2017AZUR4072�. �tel-01677896�

https://theses.hal.science/tel-01677896
https://hal.archives-ouvertes.fr

Ecole doctorale EDSTIC
Research Team: SIS-SigNet

PhD Thesis
to obtain the title of

Docteur en Informatique
de l’Université de Côte d’Azur

by
Myriana RIFAI

Next-Generation SDN Based Virtualized
Networks

Directed by: Guillaume URVOY-KELLER
Co-supervised by: Dino LOPEZ-PACHECO

Defended on 25 September 2017
Jury Members:

Dino Lopez-Pacheco Maître de Conférences, Université de Côte d’Azur, France Co-supervisor
Guillaume Urvoy-Keller Professor, Université de Côte d’Azur, France Thesis Director
Laurent Mathy Professor, Université de Liège, Belgium Reporter
Mathieu Bouet Research Team Leader, Thales Communications & Security, France Examinator
Pietro Michiardi Professor, Eurecom, France Reporter
Thierry Turletti Researcher, INRIA Sophia Antipolis, France Examinator
Yin Zhang Staff Software Engineer, Facebook, USA Examinator

Abstract

Software Defined Networking (SDN) was created to provide network programmability and ease
complex configuration. Though SDN enhances network performance, it still faces multiple lim-
itations. In this thesis, we build solutions that form a first step towards creating next-generation
SDN based networks.

In the first part, we present MINNIE to scale the number of rules of SDN switches far beyond
the few thousand rules commonly available in Ternary Content Addressable Memory (TCAM),
which permits to handle typical data center traffic at very fine grain. To do so MINNIE dynamically
compresses the routing rules installed in the TCAM, increasing the number of rules that can be
installed.

In the second part, we tackle the degraded performance of short flows and present our coarse
grained scheduling prototype that leverages Software Defined Networking (SDN) switch statistics
to decrease their end-to-end delay. Then, we aim at decreasing the 50ms failure protection interval
which is not adapted anymore to current broadband speeds and can lead to degraded Quality of
Experience (QoE). Our solution, PRoPHYS, leverages the switch statistics in hybrid networks to
anticipate link failures drastically decreasing the number of packets lost.

Finally, we tackle the greening problem where often energy efficiency comes at the cost of
performance degradation. We present SENAtoR, our solution that leverages SDN nodes in hybrid
networks to turn off network devices without hindering the network performance. Finally, we
present SEaMLESS that converts idle virtual machine (VM) into virtual network function (VNF)
to enable the administrator to further consolidate the data center by turning off more physical
server and reuse resources (e.g. RAM) that are otherwise monopolized.

Keywords: SDN, TCAM, Scalability, Hybrid Networks, Performance, Scheduling, Resilience,
Energy Efficiency, Service Availability

iii

iv

Résumé

Les réseaux logiciels "Software Defined Networking (SDN)" permettent la programmation du
réseau et facilitent sa configuration. Bien que SDN puisse améliorer les performances, il reste
confronté à de multiples défis. Dans cette thèse, nous avons développé des solutions qui con-
stituent un premier pas vers les réseaux SDN de prochaine génération.

D’abord, nous présentons MINNIE qui permet la scalabilité des commutateurs SDN, qui ne
supportent que quelques milliers de règles dans leur coûteuse mémoire TCAM. MINNIE com-
prime dynamiquement les règles de routage installées dans le TCAM, augmentant ainsi le nombre
de règles pouvant être installées.

Ensuite, nous abordons le problème de la dégradation de performance des flux courts avec
un prototype d’ordonnancement qui exploite les statistiques des commutateurs pour diminuer leur
délai de bout-en-bout. Puis, nous visons à diminuer l’intervalle de protection de 50ms qui n’est
plus adapté aux applications modernes et réduit leur qualité d’expérience. Notre solution PRo-
PHYS s’appuie sur les statistiques des commutateurs dans les réseaux hybrides pour découvrir les
pannes de liens plus vite que les solutions existantes.

Enfin, nous abordons le problème de l’efficacité énergétique qui souvent mène à une dégrada-
tion de performance. Nous présentons SENAtoR, qui exploite les nœuds SDN en réseaux hybrides
pour éteindre les noeuds réseau sans entraver la performance. Également, nous présentons SEaM-
LESS qui convertit le service fourni par une machine virtuelle inactive en une fonction de réseau
virtuelles pour permettre à l’administrateur d’utiliser les ressources bloquées tout en maintenant
la disponibilité du service.

Mots clés: SDN, TCAM, Scalabilité, Réseaux Hybrides, Performance, Ordonnancement,
Résilience, Efficacité Énergétique, Disponibilité des Services

v

vi

Acknowledgments

First, I want to thank my supervisors Prof. Guillaume Urvoy-Keller and Mr. Dino Pacheco Lopez
for believing in me and for all the help, guidance, support and encouragement that they have
offered me during my stay at I3S lab. Working with my professors was a real pleasure, as they
were constantly supporting me and they have managed to provide a friendly environment which
allowed me to prosper and develop my skills, as well as bypass my flaws.

I also sincerely thank all my friends and colleagues in the SIS team for their support and the
nourishing friendly environment that they have provided in I3S lab. It was very nice working with
you.

Moreover, I thank the members of the COATI team Joanna Moulierac, Frederic Giroire, Nico-
las Huin and Christelle Caillouet and Signet team Engineer Quentin Jacquemart for their cooper-
ation, help and support during the projects that we conducted together.

And, I deeply thank prof. Yusheng Ji for hosting me in her lab at the National Institute of
Informatics and for guiding me and providing me with everything I needed during my internship
in Tokyo, Japan.

I also thank my parents, grandparents and brother for their help during all the previous years.
I would not have been here if it was not for their financial help, their encouragement to develop,
prosper, and follow my dreams.

Finally, I dedicate this thesis to my fiancée Majdi Kharroubi and thank him for all his support
and encouragement during my PhD years. In particular, I want to thank him for the inspiration
that he provided me which allowed me to solve the complex problems that I was faced with during
my PhD years, and for his patience when I had to work all day long non-stop.

vii

Résumé Étendu

Les réseaux, tels que les réseaux des centres de données (en anglais Data Center "DC") et les
fournisseurs d’accès Internet (en anglais Internet Service Provider "ISP"), sont généralement com-
posés de multiples périphériques réseau hétérogènes comme les commutateurs, les routeurs, les
pare-feux, etc. Dans les centres de données, les périphériques réseau sont généralement situés dans
la même zone géographique et fourni multiples services. D’autre part, les périphériques réseau
dans les réseaux ISP, également appelés réseaux backbone, sont dispersés géographiquement au-
tour d’un pays ou d’un continent et génèrent une énorme quantité de trafic. Dans les réseaux
traditionnels, ces périphériques réseau doivent être configurés individuellement par les adminis-
trateurs réseau utilisant l’interface de ligne de commande (en anglais Command Line Interface
"CLI") pour fournir la configuration requise pour appliquer la politique définie. Ce processus est
très difficile à gérer, puisque les politiques de réseau sont de plus en plus complexes et parfois
restreints par le fournisseur de périphérique réseau [BAM09]. De plus, la complexité de la con-
figuration, l’augmentation de la variabilité du trafic et de la dynamique du réseau a poussé vers
la nécessité d’avoir des réseaux programmables qui permettront aux administrateurs de program-
mer les périphériques pour leur permettre de prendre des mesures automatiquement sur certains
événements [NMN+14]. Afin de résoudre tous les problèmes mentionnés auparavant, les réseaux
définis par les logiciels (en anglais appelé Software Defined Network "SDN") ont été créés.

SDN est une nouvelle architecture de réseau prometteuse et hautement flexible qui surmonte
les limites des mécanismes d’acheminement des réseaux basés sur le protocole Internet (abrégé en
IP) existants. En effet, les réseaux SDN peuvent non seulement utiliser l’adresse de destination IP
pour prendre des décisions d’acheminement, comme les réseaux IP traditionnelles, mais peuvent
également utiliser plusieurs autres informations de l’en-tête de paquets niveau couche de liaison
de données, réseau et transport [MAB+08]. Les technologies SDN font également une séparation
nette entre le plan de commande et le plan de données où les deux plans sont physiquement séparés.
Le plan de données est matérialisé par les commutateurs, et le plan de commande est déplacé vers
une entité centralisée, le contrôleur (Figure 0.2). Dans les réseaux SDN, les commutateurs SDN
sont considérés comme des périphériques qui ne suivent que les politiques de transfert dictées
par une entité programmable externe: le contrôleur, qui implémente le plan de contrôle (Figure
0.1). Ainsi, il n’est plus nécessaire d’avoir plusieurs périphériques réseau en boîte noire avec des
fonctions de réseau spécifiques telles que les commutateurs, les routeurs, les pare-feux, etc. De
plus, il n’est plus nécessaire d’exécuter une commande pour configurer des périphériques réseau

ix

Figure 0.1: Traitement des paquets dans un réseau SDN.

Figure 0.2: Structure de réseau basé sur SDN [KREV+15]

x

et de répéter ces opérations pour chaque appareil concerné. Dans les réseaux SDN, toute modi-
fication nécessaire dans les politiques d’acheminement est codée dans le contrôleur, et ce dernier
propagera les règles d’acheminement à tous les équipements SDN [HPO13].

La création de SDN qui permet la centralisation du plan de contrôle, la vue globale du réseau
et la programmabilité du réseau offre la possibilité de créer de nouveaux services qui permettent
d’améliorer les performances des réseaux traditionnels et de contourner leurs limites et restric-
tions. Cependant, SDN est une nouvelle architecture de réseau évolutive qui en est encore à ses
balbutiements. Pour permettre sa maturité et le déploiement complet des réseaux SDN, plusieurs
sujets de recherche, y compris la conception, la scalabilité et la résilience des commutateurs et des
contrôleurs, sont encore en cours d’étude [KREV+15].

Dans cette thèse, nous abordons d’abord le problème de scalabilité des commutateurs SDN.
Le principal problème qui se pose ici, c’est que les commutateurs SDN utilisent la mémoire ter-
naire adressable par contenu (en anglais Ternary Content-Addressable Memory "TCAM") pour en-
registrer les règles de transfert et fournir les meilleures performances. Cependant, cette mémoire
est à la fois coûteuse et consomme trop d’énergie. Pour résoudre ce problème, nous avons créé une
solution appelée MINNIE. MINNIE est une solution construite en tant que module du contrôleur
Beacon qui maximise l’utilisation de l’espace TCAM. Lorsque la limite TCAM est atteinte sur
un nœud SDN, MINNIE comprime automatiquement du côté du contrôleur la table d’envoi du
périphérique SDN concerné, en fonction des adresses IP source ou destination. Ensuite, MINNIE
transmet la nouvelle table de routage compressée au périphérique SDN pour remplacer l’ancienne
table de routage qui a utilisé l’espace SDN complet. À l’aide d’expérimentations, nous prouvons
que MINNIE fourni un taux de compression entre 71% et 97% quelle que soit la topologie DC
(Figure 0.3) et n’a pas d’impact négatif sur les performances du réseau. Nous avons également
prouvé numériquement, que la durée de compression de MINNIE est de l’ordre de quelques mil-
lisecondes. MINNIE peut compressé des millions des règles et la plupart des topologies de réseau
peuvent installer toutes leurs règles avec un espace TCAM de 1000 règles.

Ensuite, dans la deuxième partie de cette thèse, nous utilisons des dispositifs SDN pour
améliorer la performance des flux. Dans cette partie, nous tirons parti de la centralité du contrôleur
et de la programmation du réseau, et créons d’abord un nouveau prototype d’ordonnancement qui
peut détecter dynamiquement les flux longs dans le réseau et les deprioritiser sans modifier les
hôtes finaux ou les périphériques réseau. Ensuite, nous créons une deuxième solution nommée
PRoPHYS: Providing Resilient Path in HYbrid Sdn qui vise à fournir un chemin résilient dans un
réseau SDN hybride. PRoPHYS insère des périphériques SDN dans les réseaux traditionnelles
pour créer des réseaux hybrides afin d’améliorer la résilience des flux en détectant les défaillances
de liens qui sont connectées à des nœuds SDN ou des routeurs traditionnels avant qu’ils ne soient
déclarés comme tels par le périphérique voisin. Cette méthodologie permet ainsi de diminuer le
nombre de paquets et connexions perdus lors du reroutage du flux avant que les pannes de liaison
ne soient déclarées.

L’ordonnanceur demande les statistiques de renvoi des dispositifs SDN pour détecter les

xi

0 500 1000 1500 2000 2500 3000
of servers

0.5

0.6

0.7

0.8

0.9

1.0

C
o
m

p
re

ss
io

n
 r

a
ti

o

BCube (l=3)
BCube (l=2)
BCube (l=1)
Dcell (l=2)

Dcell (l=1)
Fat tree
VL2

Figure 0.3: Taux de compression de MINNIE.

grands flux. Notre prototype comporte deux ordonnanceurs: (i) à état et (ii) sans état. L’ordonnanceur
à état détecte des gros flux en extrayant les statistiques de chaque flux des périphériques SDN.
D’autre part, l’ordonnanceur sans état surveille d’abord l’utilisation de la bande passante du client.
Ensuite, lorsque l’utilisation du trafic client est supérieure à son seuil de bande passante prédéfini,
l’ordonnanceur zoome dans le trafic du client et utilise l’ordonnanceur à état pour détecter les
grands flux (Figure 0.4). Les grands flux sont détectés en surveillant le nombre de paquets trans-
mis de chaque flux. Tout flux qui a transmis plus que le seuil de paquets défini par l’administrateur
(par exemple 100 paquets) est considéré comme un flux grand. Après avoir détecté les gros flux, ce
prototype - dans les deux variantes - change la priorité des grands flux (passe de la file d’attente de
priorité la plus élevée à la file d’attente de priorité la plus basse) afin de permettre aux flux courts
de se terminer rapidement. Les résultats des tests ont montré que cette solution était efficace sur
les petites topologies linéaires, où tous les flux courts ont réussi à se terminer rapidement. Cepen-
dant, ces ordonnanceurs ont offerts de moins bonnes performances sur les topologies de l’arbre et
des VL2 (Figure 0.5). Pour cette raison, nous avons abandonné cette piste d’étude et nous avons
capitalisé sur le savoir acquis dans cette étude pour l’étude suivante qui porte sur la résilience des
réseaux SDN hybrides.

En effet après avoir exploité la centralité du contrôleur pour améliorer la performance du
réseau, nous l’avons exploité pour améliorer la résilience du réseau. Pour fournir de la résilience,
notre solution PRoPHYS, dispose de deux méthodes pour améliorer la résilience du réseau en
diminuant le temps de détection de la défaillance de la liaison dans les réseaux hybrides SDN.
La première méthodologie estime le dysfonctionnement d’une liaison en détectant les divergences
entre les statistiques des ports transmis et reçus du même ensemble de flux sur les nœuds SDN.
Cette méthodologie construit d’abord une matrice de ports communicants. On surveille ensuite
les statistiques transmises et reçues de cet ensemble de ports au niveau du contrôleur. Une fois

xii

(a) Étape 1

(b) Étape 2

Figure 0.4: Ordonnanceur à état.

Figure 0.5: Réseau VL2.

Intermediate

Aggregation

ToR

xiii

Figure 0.6: Transmission d’un paquet sonde de suivi du chemin issu du contrôleur.

Figure 0.7: Réseau de testde PRoPHYS.

xiv

que cette méthode détecte que les statistiques transmise sont inférieures aux statistiques reçues sur
un segment de réseau, cela suppose l’existence d’une panne de lien ou de nœud dans ce segment
de réseau. Cette méthodologie a permis de réduire l’intervalle de détection de défaillance de
liaison/nœud réseau de 50%. La deuxième méthodologie utilisée par PRoPHYS dépend de la
transmission d’un paquet sonde de suivi du chemin issu du contrôleur (Figure 0.6), au lieu des
commutateurs, ce qui diminue la surcharge des processeurs généraux (non dédiés au transfert
de paquets entre interface) dans les commutateurs. Cette méthodologie est plus rapide que les
méthodes traditionnelles de détection de panne telles que la détection de transfert bidirectionnel
(en anglais Bidirectional Forwarding Detection "BFD") car elle détecte une défaillance de lien ou
de segment une fois que le paquet n’est pas reçu après un délai d’attente moyen dynamique calculé
en fonction du délai réel entre les nœuds au lieu d’un délai d’attente fixe. Nos simulations utisant
la topologie dans Figure 0.7 prouvent que cette méthodologie a également permis de réduire de
50% le nombre de pertes de paquets par rapport aux méthodes classiques de détection des pannes.
Les deux méthodologies (envoi de paquets sondes et suivi des statistiques) ont permis de maintenir
les connexions vivantes malgré les pannes introduises.

La dernière partie de cette thèse est consacrée à résoudre le problème de l’efficacité én-
ergétique des réseaux actuels, où l’efficacité énergétique vient habituellement au détriment de
la performance du réseau. La première solution que nous proposons est appelée SENAtoR (en
anglais Smooth ENergy Aware Routing). SENAtoR utilise les nœuds SDN pour désactiver les pé-
riphériques réseau sans perdre des paquets lors de la désactivation des liens, des pannes de liens
ou lorsque des pics de trafic se produisent. La deuxième solution que nous proposons dans cette
section s’appelle SEaMLESS. SEaMLESS transforme les services des machines virtuelles VMs
inactifs en fonctions virtuelles des réseaux (en anglais Virtual Network Functions "VNFs") dans le
but de maintenir les services disponibles tout le temps, permettre une meilleure consolidation de
serveur (c’est à dire augmenter le nombre de machines virtuelles hébergées par serveur physique),
et la libération de mémoire utilisée par la machine virtuelle– puisque la mémoire est la ressource
rare dans les centres de données et les nuages d’entreprise (private cloud).

SENAtoR est une solution éconergétique pour les réseaux hybrides de backbone développés
conjointement avec l’équipe COATI. Comme pour les algorithmes de routage compatibles avec
l’énergie, SENAtoR éteint/allume les périphériques SDN en fonction du trafic. SENAtoR à permet
en plus de préserver les performances du réseau et d’éviter les pertes de paquets lorsque des pannes
soudaines ou des pics de trafic se produisent (Figure ??). Tout d’abord, pour éviter les pertes
de paquets lors de l’arrêt des périphériques réseau, SENAtoR demande au contrôleur d’arrêter
d’envoyer des paquets OSPF hello du commutateur SDN à ses périphériques OSPF voisins, une
fois que le commutateur SDN doit être éteint ou mis en mode veille. Après, une durée supérieure
à la période de détection et de convergence des pannes en OSPF, le contrôleur met le commu-
tateur SDN correspondant en mode veille qui permet d’économiser de l’énergie sans perdre les
règles d’acheminement précédemment installées dans la mémoire vive (TCAM en l’occurrence).
Deuxièmement, SENAtoR surveille le trafic réseau pour détecter les éventuelles défaillances de la
liaison ou les pointes de trafic soudaines lorsque les nœuds SDN sont désactivés. Si des défail-

xv

Figure 0.8: Numéro des liens/nœuds éteint en fonction du numéro des paquets envoyé pour
atlanta.

lances de liaison/nœud sont découvertes ou si des pics de trafic apparaissent, SENAtoR sort de
leurs état de veille tous nœuds SDN précédemment désactivés pour empêcher la déconnexion du
réseau ou la perte des paquets de données. Troisièmement, SENAtoR utilise des tunnels pour ren-
voyer le trafic des voisins des nœuds SDN vers la destination correcte pour empêcher les boucles
de routage en raison des différences dans la table de routage des nœuds OSPF (en anglais Open
Shortest Path First) et SDN.

SEaMLESS est une solution créée par l’équipe Signet à laquelle j’ai participé qui résout le
problème des VMs inactives dans les datacenters actuels et les nuages d’entreprise. Le prob-
lème consiste principalement à libérer toutes les ressources utilisées (par exemple, la mémoire et
l’énergie) tout en maintenant la disponibilité du service fourni. Afin de libérer la mémoire utilisée
par ces machines virtuelles et de permettre une consolidation optimisée des serveurs, SEaMLESS
migre le processus passerelle des VMs inactives vers un fonction de réseau virtuel (VNF) qui
permet d’éteindre la machine virtuelle VM tout en maintenant ses services accessibles (Figure
0.9). Lorsque les utilisateurs essaient de se connecter à ce service, la VNF établit la connexion
en premier, puis, en cas d’une tentative d’accès aux données du VM, le contrôleur de SEaMLESS
redémarre la VM inactive et la VNF fait migrer la session vers la VM pour qu’elle soit traitée.
Cela permet ainsi une disponibilité de 100% des services VM dans les data centers et les nuages
d’entreprise tout en optimisant l’utilisation de la mémoire et des ressources énergétiques. Nos
résultats montrent que la suspension de la VM inactive, même sans la reconsolidation du serveur,
permet d’économiser entre 5 % et 10 % d’énergie. De plus, des dizaines de VNF peuvent être
déployés dans 1 Go de mémoire vive (appelé en anglais Random Access Memory "RAM") au lieu
de 1 ou 2 machines virtuelles selon les pratiques habituelles de dimensionnement dans les serveurs
virtualisés.

À la fin de cette thèse, nous analysons les limites de chaque solution et leurs extensions
possibles. Nous indiquons principalement la nécessité de tester toutes les solutions fournies dans
un véritable scénario de réseau à grande échelle pour tester l’efficacité de chaque solution. De

xvi

Orchestrator

Cloud server pool Cloud networking infrastructure

Sink Server

Sink VNF 2

Sink VNF 1

Sink VNF 3

Server

VM 2

VM 1

VM 3
Step 1
Step 5
Step 6

Step 2
Step 3

Step 4
Step 5

Step 4

Figure 0.9: Procédure de migration d’une machine virtuelles a un Sink Server

plus, nous conseillons de développer une extension du schéma de routage couche 3 du SDN aux
périphériques existants pour permettre la même vue réseau sur SDN et les périphériques existants
dans des réseaux hybrides.

Enfin, nos études ont montré que SDN peut être utilisé pour améliorer les performances
actuelles des ISP, du centre de données et du cloud et de l’efficacité énergétique. SDN pour-
rait aller plus loin avec l’analyse de réseau temps réel et la modification dynamique à l’aide de
techniques d’intelligence artificielle.

xvii

xviii

Contents

Abstract iii

Résumé v

Acknowledgments vii

Résumé Étendue ix

Contents xix

List of Figures xxiii

List of Tables xxvii

1 Introduction 1
1.1 Software Defined Networking . 2

1.1.1 Mode of Action . 2
1.1.2 Main Components . 3

1.1.2.1 SDN Forwarding devices . 3
1.1.2.2 Southbound Interface . 4
1.1.2.3 Controller Server . 5

1.1.3 Migration from Legacy to SDN Networks 6
1.2 Contributions . 7
1.3 Roadmap . 8
1.4 List of Publications . 10

2 State of the Art 11
2.1 Attempts to Overcome SDN Challenges . 12

2.1.1 Control Plane Scalability . 13
2.1.2 Resilience . 14
2.1.3 Multiple Switch Designs Interactivity 15
2.1.4 Flow Table Capacity . 15
2.1.5 Switch Performance . 16

2.2 Attempts to Enhance Network Performance using SDN 17

xix

Contents

2.2.1 SDN in hybrid networks . 17
2.2.2 Traffic Engineering and Energy Efficiency 18
2.2.3 Resilience . 19
2.2.4 Network Virtualization and Management 20

2.3 Conclusion . 20

3 Flow Scalability: Minnie 23
3.1 Related work . 25
3.2 Motivation: Software vs. hardware rules . 26
3.3 Description of MINNIE algorithm . 27

3.3.1 MINNIE: compression module . 30
3.3.2 MINNIE: routing module . 31

3.4 Implementation: MINNIE in SDN controller 35
3.5 Experimental results using an SDN testbed . 36

3.5.1 TestBed description . 36
3.5.2 The need of level-0 OvS . 37
3.5.3 Number of clients chosen for the experimentations 38
3.5.4 Experimental scenarios . 39

3.5.4.1 Traffic pattern . 40
3.5.5 Experimental results . 41

3.5.5.1 Scenario 1: Compression with LLS 41
3.5.5.2 Scenario 2: compression with HLS 49

3.6 Simulations scalability results . 52
3.6.1 Simulation settings . 53

3.6.1.1 Scenarios . 53
3.6.1.2 Data center architectures . 53

3.6.2 Simulation results . 56
3.6.2.1 Efficiency of the compression module 56
3.6.2.2 Efficiency of MINNIE . 57
3.6.2.3 Comparison of MINNIE effect on topologies with 1000 servers 60
3.6.2.4 Comparison with XPath . 61

3.7 Discussion . 62
3.8 Conclusion . 65
3.9 Publications . 65

4 Performance 67
4.1 Control Plane Centrality . 68
4.2 Coarse-grained Scheduling . 68

4.2.1 Related Work . 69
4.2.2 Scheduling Methodologies . 71
4.2.3 Results . 72
4.2.4 Scheduler Limited Scope . 76

xx

Contents

4.3 PRoPHYS: Enhancing Network Resilience using SDN 77

4.3.1 Related Work . 79

4.3.1.1 Hybrid SDN Networks . 79

4.3.1.2 Total Downtime and Rerouting 79

4.3.2 Passive Probing Failure Detection Methodology 80

4.3.2.1 Matrix of Communicating SDN Ports 81

4.3.2.2 SDN Ports Monitoring . 81

4.3.2.3 Failure Detection Module . 82

4.3.3 Active Probing Failure Detection Methodology 83

4.3.4 Rerouting . 84

4.3.5 Performance Evaluation . 85

4.3.5.1 Impact on Network Traffic 87

4.3.5.2 Impact of the Segment Delay on PortStats 90

4.3.6 Discussion . 91

4.4 Conclusion . 92

4.5 Publications . 94

5 Energy Efficiency 95
5.1 Related Work . 97

5.1.1 Backbone Networks . 97

5.1.2 Data Center . 98

5.2 SENAtoR: Reducing Energy Consumption in Backbone Networks 99

5.2.1 Energy Aware Routing for Hybrid Networks 100

5.2.1.1 Heuristic Algorithm (SENAtoR) 102

5.2.2 OSPF-SDN interaction and traffic spikes/link failures 104

5.2.2.1 Lossless link turn-off. 104

5.2.2.2 Traffic bursts mitigation. 104

5.2.2.3 Link failure mitigation. 105

5.2.3 Experimentations . 105

5.2.3.1 Testbed . 105

5.2.3.2 Results . 106

5.2.4 Numerical evaluation . 108

5.2.4.1 Simulations on larger networks 109

5.3 SEaMLESS: Reducing Energy Consumption in DataCenters 115

5.3.1 Migrating from the VM to the Sink Server 116

5.3.2 Migrating from the Sink Server to the VM 117

5.3.3 Addressing Routing Issues . 118

5.3.4 Detecting User Activity . 119

5.3.5 Energy Saving Strategies . 120

5.3.5.1 Servers in Standby Mode . 120

5.3.5.2 Powered-Off Servers . 121

xxi

Contents

5.3.6 Performance Evaluation . 121
5.3.6.1 Impact on the Quality of Experience 121
5.3.6.2 Scalability and Energy Consumption of the Sink Server 122

5.4 Conclusion . 124
5.5 Publications . 125

6 Conclusion 127
6.1 Scalability . 127
6.2 Performance . 128
6.3 Energy Efficiency . 130
6.4 Final Remarks . 132

Glossary 133

Bibliography 137

xxii

List of Figures

0.1 Traitement des paquets dans un réseau SDN. x

0.2 Structure de réseau basé sur SDN [KREV+15] x

0.3 Taux de compression de MINNIE. xii

0.4 Ordonnanceur à état. xiii

0.5 Réseau VL2. xiii

0.6 Transmission d’un paquet sonde de suivi du chemin issu du contrôleur. xiv

0.7 Réseau de testde PRoPHYS. xiv

0.8 Numéro des liens/nœuds éteint en fonction du numéro des paquets envoyé pour
atlanta. xvi

0.9 Procédure de migration d’une machine virtuelles a un Sink Server xvii

1.1 SDN data packet treatment process. 3

1.2 SDN network structure. [KREV+15] . 5

2.1 SDN main research topics discussed in this thesis. 12

3.1 Packet delay boxplot . 27

3.2 Our k=4 Fat-Tree architecture with 16 OvS switches, 8 level 1, 8 level 2, and 4
level 3 switches. 37

3.3 Total number of rules installed as a function of the number of servers, in a k = 4
Fat-Tree configuration. 39

3.4 Total number of rules installed in the whole network 43

3.5 Average duration of compression period. 43

3.6 Scatter plot of the time to compress a routing table of a k = 12 Fat-Tree. 44

3.7 Network traffic between the switches and the controller. 45

3.8 First packet delay boxplot . 46

3.9 First packet average delay with low load . 48

3.10 Average packet’s delay boxplot for packets 2 to 5 49

3.11 Average packet delay of pkts 2 to 5 with low load 50

3.12 Packet delay boxplot under high load . 51

3.13 Total number of rules installed in the network under high load 51

3.14 High load and hardware rules: Delay of packets 2 to 5 - Compression at 20 entries 52

3.15 Example of topologies studied. 54

xxiii

List of Figures

3.16 Compression ratio for the different topologies in Scenario 2. 57

3.17 Number of compression executed for different topologies 58

3.18 Maximum number of rules on a forwarding device as a function of the number of
servers for different data center architectures. 59

4.1 State-full scheduler mode of action. 71

4.2 Scalable scheduler mode of action. 73

4.3 Experimental set-up . 74

4.4 Flow completion time CDF for long and short flows 75

4.5 Switch response time. 76

4.6 Flow completion time with respect to bandwidth transmitted. 76

4.7 Example topology for PRoPHYS. 78

4.8 Flows passing through the network. 81

4.9 Packet_out transmission over the network. 84

4.10 The SDN testing network topology in Mininet. 86

4.11 Packets loss of connections using the failing link. 88

4.12 Number of false positive detections of segment failures with PortStats. 89

4.13 Number of packets retransmitted by TCP. 90

4.14 Packet loss and false positive variation with the variation of delay on the failed
island using PRoPHYS PortStats 50% methodology 91

4.15 Flowcharts of combination of methodologies in PRoPHYS. 92

4.16 Total number of events triggered per second over every switch in the network. . . 93

5.1 3 PoPs interconnected in a hybrid network. 101

5.2 Senator impact on atlanta topology using sinusoidal traffic flow. 107

5.3 Traffic spike experiment with the atlanta topology 107

5.4 Link failure experiment with the atlanta topology 108

5.5 Daily traffic in multi-period . 109

5.6 Daily energy savings over the day for the (a) atlanta, (b) germany50, (c)
zib54 and (d) ta2 networks. with 10, 25, 50 and 100% SDN nodes deployment.
Top plots: power model of the HP switch. Bottom plots: power model of an ideal
energy efficient SDN switch. 111

5.7 Number of average tunnels installed per node on the (a) atlanta, (b) germany50,
(c) zib54, and (d) ta2 networks . 112

5.8 Stretch ratio for four different levels of SDN deployment on (a) atlanta (b)
germany50, (c) zib54, and (d) ta2 networks. The box represents the first and
third quartiles and whiskers the first and ninth deciles. 113

5.9 Delays for the demands in the (a) atlanta (b) germany50, (c) zib54, and
(d) ta2 networks. 114

5.10 Energy gain when turning off idle virtual machines on a physical server. 115

5.11 Components and architecture of SEaMLESS 116

5.12 Migration procedure from a working virtual machine to a Sink Server 117

xxiv

List of Figures

5.13 Migration procedure from a Sink Server to a working virtual machine 118
5.14 RAM and CPU used as a function of number of deployed Apache 2 with PHP

module VNF . 123
5.15 Energy consumption of the sink server with VNFs compared to the same server

with VMs. 124

xxv

List of Figures

xxvi

List of Tables

3.1 Examples of routing tables: (a) without compression, (b) compression by the
source, (c) compression by the destination, (d) default rule only. Rules’ reading
order: from top to bottom. 28

3.2 Average number of SDN rules installed in a virtual switch at each level 41
3.3 Average percentage of SDN rules savings at each level 42
3.4 Total number of compressions and packet loss rate. 46
3.5 Average percentage of SDN rules savings at each level under high load 51
3.6 Comparison of the behavior of MINNIE for different families of topologies with

around 1000 servers each. For the Fat-Tree topologies, we tweak the number of
clients per server to obtain 1024 "servers". 61

3.7 Comparison of the maximum number of rules on a switch between XPath and
MINNIE (between servers or ToRs). 62

4.1 SDN ports communication matrix Mports as built within the SDN controller for
the flows depicted in Figure 4.8. 81

4.2 Bandwidth and time of transmission of 1000 MByte of data from a client to a server. 85
4.3 Maximum number of packets lost. 87

5.1 Size of the archived (tar.lzo) image of real-world applications. 122
5.2 Maximum number of VNFs that can be configured in a Sink VM with 1 CPU and

1GB of RAM. 123

xxvii

List of Tables

xxviii

Chapter 1

Introduction

Contents
1.1 Software Defined Networking . 2

1.1.1 Mode of Action . 2

1.1.2 Main Components . 3

1.1.3 Migration from Legacy to SDN Networks 6

1.2 Contributions . 7

1.3 Roadmap . 8

1.4 List of Publications . 10

Networks such as Data Centers (DC) networks and Internet Service Providers (ISP) networks
are usually composed of multiple heterogeneous network devices such as switches, routers, fire-
walls etc. In DC, the network devices are generally located in the same geographic area and host
multiple services. On the other hand, the network devices in ISP networks, also called backbone
networks, are geographically dispersed around a country or a continent and host huge amount of
traffic. In legacy networks, these network devices should be configured individually by network
administrators using Command Line Interface (CLI) to provide the required configuration to apply
the defined policy which is very hard to manage, as network policies are getting more complex
and are sometimes restrained by the network device provider [BAM09]. In addition to config-
uration complexity, the increase in traffic variability and network dynamics pushed towards the
need for programmable networks that will allow network administrators to program network
devices to allow them to take actions on certain events [NMN+14]. Active networks (AN) were
proposed as a first attempt to program the network. AN allow network devices to do complex com-
putations based on the received packet’s contents, and then based on the computation result one
might change the packet’s contents [TSS+97]. The Software Defined Networking (SDN) inherits
from the AN, where SDN networks also perform complex computation on the received packet’s
content. However, the computation is done on a centralized entity called the controller and the
context has changed where, nowadays, flexibility is not an option anymore as exemplified by the
wide industrial support (HP, AWS, etc.) behind SDN.

1

1. Introduction

SDN is a new highly flexible promising network architecture, which overcomes the limits of
forwarding mechanisms of legacy IP networks. Indeed, SDN-based networks (or SDN networks,
as we will call it in the remaining of this document) might not only use the IP destination address to
make forwarding decisions, like legacy IP networks do, but can also use several other information
from the MAC, Network and Transport header of packets [The12]. SDN technologies make also a
clear separation between the control plane and the data plane where the two planes are physically
separated where the forwarding devices only have the data plane and the control plane is moved
to a centralized entity, the controller. In SDN, the forwarding devices (or switches) are considered
as dummy devices that only follow the forwarding policies dictated by an external programmable
entity: the controller, which implements the control plane (Figure 1.1). Thus, there is no more
need to have multiple black-box network devices with specific network functions such as switches,
routers, firewalls, etc. Moreover, there is no need anymore to run a CLI to configure network
devices, and repeat such operations for every concerned device. In SDN networks, any needed
change in the forwarding policies is coded only once in the controller, and the latter will propagate
the forwarding rules to all the SDN equipments [HPO13].

1.1 Software Defined Networking

As explained before, an SDN network is composed of four basic components: (i) the controller
that implements the control plane, (ii) the forwarding devices/switches which feature the data
plane, (ii) the southbound interface, e.g. OpenFlow [The12], which is the communication channel
between the controller and the forwarding devices and (iv) the northbound interface which allows
the controller to communicate with the user-defined networking applications. In this section, we
will first describe in general how SDN networks deal with user’s data traffic, and then we will
explain in brief SDN network’s main components.

1.1.1 Mode of Action

Pure SDN networks are composed of SDN switches that are connected to the controller (Figure
1.1). When a packet arrives at an SDN switch, see Figure 1.1 step 1, the switch will first check
its list of pre-installed forwarding rules (e.g. Rule: incoming packets from port 1 source A to
destination B should be sent at port port 2). If the packet header information do not match any
previously installed rule, i.e. packet miss, the switch will then forward the packet to the controller
using the default SDN rule (step 2). Upon reception of the data packet on the controller, the
network applications in the controller will analyze the packet headers and decide the list of actions
to be taken when matching packets arrive at the SDN switches (step 3) e.g. modify the packet
header information, forward to port B, flood, drop, etc. Afterwards, the controller will transmit
this packet back to the switch and implement the actions directly to it (step 4). In addition to that,
the controller will transmit a flow_mod event to the switch which contains the list of forwarding
rules that need to be installed in the switch (step 5) so that next upcoming matching packets can

2

1. Introduction

Figure 1.1: SDN data packet treatment process.

be treated directly on the the switch without the need to forward them to the controller.

1.1.2 Main Components

1.1.2.1 SDN Forwarding devices

As explained earlier, SDN forwarding devices also called SDN switches do not have any built
intelligence that allows them to analyze the packets. When SDN devices are integrated in an SDN
network, they first notify the controller of their existence, their basic configuration and state of
their components (ports, directly connected links, tunnels etc). These switches then rely on the
controller to give them a set of rules to know how to treat incoming packets. These rules, also
called forwarding rules, are then saved in the switch physical memory. SDN switches mainly
use the TCAM to store the flow. TCAM allows rapid matching of packets as it is able to search
all of its entries in parallel [ZHLL06]. However, TCAM memory is both expensive and power
hungry [COS], hence most physical switches provide small TCAM memory supporting around a
couple of thousands to no more than 25 thousands flows [SCF+12a]. When the TCAM is full, the
SDN rules are then placed in the software memory. However, installing rules in software (that is
classical RAM) degrades the performance as packet matching will then require to use the Central
Processing Unit (CPU) of the switch which will increase the delay, a.k.a the slow path.

Two types of SDN switches exist: (i) hardware switches such as Pica8 [PIC], HP 5412zl [hp5]
etc and (ii) software switches such as OpenvSwitch (OvS) [PPK+15]. Only hardware switches
install the forwarding rules (flows) in the TCAM. Software switches such as OvS can however
benefit from the memory cache to boost performance. The functionality of the forwarding de-
vice, depends on the forwarding rules installed, it can act for example as standard switch, router,
firewall, load balancer all together.

3

1. Introduction

1.1.2.2 Southbound Interface

The southbound interface allows the exchange of control messages between the controller and the
SDN forwarding devices. This interface dictates the format of the control messages exchanged
between the controller and the forwarding devices in the network protocol. Multiple southbound
interfaces exist such as OpenFlow [The12], ForCES [DDW+10], and POF [Son13]. ForCES
southbound interface requires the presence of the ForCES architectural framework in the legacy
networking node, e.g. router. The ForCES architectural framework logically separates the control
elements (i.e. operating system) from the forwarding elements (i.e. ASIC) inside the legacy
node. In this architecture, the ForCES protocol allows to define logical functions on the control
elements. These functions are then sent to the forwarding elements without the need to: (i) insert a
centralized controller entity or (ii) change the legacy network architecture. Thus, ForCES requires
the control plane to be managed by a third-party firmware and lacks centralization of the control
plane. On the other hand, POF southbound interface allows– similarly to OpenFlow– the total
physical separation of the control and the data plane which leads to a total change in the legacy
network architecture to enable the use of controllers and forwarding devices. However, unlike
OpenFlow, POF does not dissect the packet header on the switch to match incoming packets, it
rather uses a generic flow instruction set (FIS) generic key that the switch uses to perform packet
matching on the forwarding devices.

In our work, we used the OpenFlow SDN architecture which uses the OpenFlow protocol as
the southbound interface as it is the most deployed SDN protocol southbound interface [MOS].
Multiple OpenFlow protocol versions exist especially (v1.0, 1.3, 1.5). During this thesis, we used
the most stable releases of OpenFlow at the time (v1.0 and v1.3). In OpenFlow, an SDN forwarding
rule- also called a flow entry- is composed of three parts:

1. Match fields: packet header values to match the incoming packets in addition to the ingress
port- to match any value of a specific field a wildcard is used.

2. Actions: set of instructions to apply to the matching packet such as forward to port B, flood,
drop, send to controller or modify packet headers.

3. Counters: used to collect statistics of packet and byte count match for each flow in addition
to the idle and hard timers information.

All OpenFlow protocol versions use the same structure of SDN rules, with some action and match-
ing field additions in each version. The basic flow rule in v1.0 matched 12 packet header fields.
This increased to 15 fields in v1.3. The usage of multiple field matching instead of destination
based matching in the switches allows thus to unite multiple legacy network device functionali-
ties in a single rule. However, the forwarding rule complexity comes at the price of increase in
memory space used per rule.

4

1. Introduction

Figure 1.2: SDN network structure. [KREV+15]

1.1.2.3 Controller Server

In SDN, the controller server is responsible for managing the control plane of all the network. The
controller server is composed of (Figure 1.2):

• Network Operating System (NOS)

• Northbound interface

• Network applications

The SDN controller runs on the NOS, where the NOS is the main software platform1 that runs on
any-purpose server and allows the access to the server resources, such as the network interface,
and basic services such as input/output services. The NOS allows the applications on the controller
server to communicate with the SDN network devices, and creates the global topology view of the
network. The NOS is also able to monitor the state (e.g. connected or disconnected) of all the
network forwarding elements regularly. The NOS, then, informs the network applications of the
network states using the northbound interface such as the REST API. Then, the network applica-
tions manage and implement policies in the network devices using the northbound interface.

Based on the network configuration requirements and specific needs, the administrator can
program new network applications (new network functionalities) in standard programming lan-
guages such as Java, C++ or Python. This gives the administrator full control over the network
topology and allows the infrastructure to be reactive to network and traffic dynamics.

1the software platform is usually called the controller

5

1. Introduction

Two types of SDN controllers exist:

• Centralized controller

• Distributed controller

The centralized controller provides a centralized global view of the network which allows online
reactivity to spurious changes in network states and simplifies the development of sophisticated
functions. These controllers are usually designed to handle small to medium-sized datacenters
and enterprise networks flow throughput. However, the centralized controllers fail to handle large-
networks throughput. Moreover, the centralization of the control plane in a single node reduces
network resilience as the centralized controller represents a single point of failure in the network.
Multiple centralized SDN controllers exist such as POX [POX15], NOX [Int12], Ryu [Ryu17],
Beacon [Eri13] and Floodlight [Iza15]. In 2013, more than 30 different OpenFlow controller
existed that were created by different vendors or research groups [SZZ+13]. These controllers
use different programming languages and different runtime multi-threading techniques. The POX
controller is mainly used for prototyping [SZZ+13]. The NOX controller is not supported any-
more. As for the remaining most known controllers (e.g. Ryu, Beacon and Floodlight), the study
in [SZZ+13] shows that Beacon has the best performance, i.e. it features the highest throughput
and lowest latency. Thus, in this thesis, we used the Beacon controller. However, when the Beacon
controller was not maintained anymore we used Floodlight v2.0 which is a fork of Beacon.

A distributed controller can be either a physically distributed set of controllers, or a central-
ized cluster of controller nodes. A distributed controller provides fault tolerance, but requires
an additional overhead to maintain the network state consistent across all the controllers. Hence,
when the network state changes there will always be an inconsistency period of time. Multiple dis-
tributed controllers exist, e.g. OpenDaylight [Opeb] and ONOS [Ono]. Both OpenDaylight and
ONOS provide similar functionalities with similarities in performance. However, while ONOS
focuses more on meeting the needs of service providers, OpenDayLight focuses on providing all
of the detailed network functions that one needs to be able to integrate any functionality required.
OpenDaylight is thus said to be the "Linux of networking " [Lin15].

1.1.3 Migration from Legacy to SDN Networks

Since migrating legacy networks to SDN networks comes at a high cost and management complex-
ity, different scenarios may be envisioned [VVB14]. The most realistic one is using progressive
migration, where the administrators replace legacy devices by SDN devices incrementally i.e. en-
abling hybrid networks. In hybrid networks, SDN and legacy devices coexist and interact with
each other. Nowadays, SDN hybrid devices exist, such as HP5412zl, where a switch device can be
configured to have some ports in SDN mode and others in legacy mode. Moreover, SDN hybrid
devices can act either as legacy devices by communicating using legacy routing protocols or as
pure SDN devices. Hence, the migration from legacy to pure SDN network is cost efficient.

6

1. Introduction

Multiple big companies have started integrating SDN in their networks, e.g. Google has de-
ployed software defined network to interconnect its datacenters [JKM+13]. Based on [JKM+13]
the integration of SDN in their production network helped improve operational efficiency and
reduce network cost.

Several types of hybrid topologies exist such as topology-based, service-based, class-based
and integrated hybrid SDN topologies [KREV+15]. In topology-based hybrid SDN networks, the
network is divided into different zones, and in each zone all the nodes are either legacy nodes
or SDN nodes. In service-based hybrid SDN networks, some network services are provided by
legacy devices (e.g. forwarding) while other services (e.g. traffic shaping) is provided by SDN. In
class-based hybrid SDN nodes, the traffic is separated into classes, where depending on the class
of the traffic and the network administrator configuration, the traffic would be managed either by
SDN or by legacy protocols. As for the last type, i.e. integrated hybrid SDN networks, SDN is
responsible to provide all the required networking services and then it uses the legacy protocol as
an interface to the forwarding base (e.g. OSPF). Several controllers such as OpenDaylight [Opeb]
and OpenContrail [Opea] integrate non-SDN technologies such as BGP, SNMP and NETCONF2

[EBBS11] to enable hybrid networks.

In this thesis, in addition to using pure SDN networks, we also used a mix of topology based
and integrated based hybrid SDN networks. We constructed hybrid SDN networks that: (i) contain
a mixture of SDN and legacy nodes (topology-based) and (ii) use the legacy routing protocols to
communicate with the legacy devices and with the forwarding information base (integrated hybrid
SDN).

1.2 Contributions

The creation of SDN which allows the centralization of the control plane, global network view
and network programmability, gives the opportunity to create new services that allow to enhance
legacy network performance and bypass their limitations and restrictions. However, Software
Defined Networking is a new evolving network architecture that is still in its infancy. To enable
its maturity and full SDN networks deployment, multiple research topics including switch and
controllers design, scalability, and resiliency are still under study [KREV+15].

At the beginning of this thesis, we tackled one of the basic problems that SDN devices have,
that prevents SDN network’s scalability while maintaining the same level of network performance,
which is namely their TCAM limited size [RHC+15, RHC+17]. Then, we aimed at using SDN
in order to enhance current network flow performance [RLPUK15, MR17] and decrease the net-
work’s energy consumption [HRG+17, DLP17]. In collaboration with the COATI team [COA] at
INRIA and with my colleagues in SigNet team [SIG], we developed the following solutions:

• In collaboration with the COATI team, we addressed the problem of limited hardware mem-

2NETCONF is a protocol that allows to manage and configure network devices remotely.

7

1. Introduction

ory (TCAM) used by the hardware SDN forwarding devices (Chapter 3). Their small size
limits the number of SDN flow rules that can be installed in the hardware memory as SDN
rules are complex and long. Thus, when the hardware memory is full, new rules will be
installed in software which highly degrades the flow performance as we will see in Section
3.2. To allow network scalability while optimizing the usage of the TCAM memory, we cre-
ated a solution called MINNIE that dynamically compresses the routing rules in an SDN
node to maximize the number of flows that can use the TCAM memory.

• We leveraged the benefits of the centralized control plane at the SDN controller, and its
capability to have a general view of the topology to enhance the flow performance in the
network. We proposed two solutions:

– A prototype that provides dynamic scheduling in the datacenter based on the flow
and port statistics feedback at the controller. This approach is innovative as it tries to
extend SDN to alter the data plane of the switch (here the scheduling policy). Unfor-
tunately, this solution was effective only on small-size datacenters.

– A solution named PRoPHYS that allows to provision network link failure or link dis-
ruption in hybrid ISP networks. This solution monitors the flow paths in the network,
and leverages the received information to estimate whether a network failure has oc-
curred. Then, after detecting a possible failure, PRoPHYS reroutes the traffic that uses
the assumed down network segment to minimize the amount of traffic that could be
lost in case of network failures.

• Then we focused on the energy problem in datacenters and SDN hybrid ISP networks.

– To enhance energy efficiency in ISP networks we created a solution called SENAtoR
(in collaboration with the COATI team) that inserts SDN nodes in legacy networks to
avoid packet loss when network devices are turned off to save energy.

– To tackle the energy problem in the datacenter in the SigNet team, we started working
on the SEaMLESS project which helps decrease the energy consumption of enterprise
cloud networks. SEaMLESS migrates an idle VM service (e.g. idle Web server) to
a lightweight virtual network function (VNF) service. This enables to turn off idle
virtual machines (VMs) while maintaining the connectivity to the network services
provided by the virtual machine (VM).

1.3 Roadmap

In this chapter, we listed the added benefits of SDN over legacy networks, and defined the main
concept and components of SDN networks and their mode of actions. We then introduced the
concept of hybrid networks and their importance in the migration from legacy to SDN networks.
Finally, we summarized in brief the main problems that we tackled during this thesis and our main

8

1. Introduction

contributions. We provide below a brief outline of the rest of the manuscript.

Chapter 2 introduces the main challenging research topics of SDN networks. It then states
in general the major contributions that the research community have already provided to enhance
SDN networks.

Chapter 3 introduces our solution called MINNIE that was developed in collaboration with
the COATI team. In this chapter, we first define the problem that MINNIE solves and then we
explain the theoretical basis of this solution. Afterwards, we provide experimental testing results
to validate the efficiency of this solution and its impact on the network traffic and network devices
functionality. Then, we provide our numerical evaluation results that prove the scalability of this
solution. At last, we sum up our findings along with a discussion of the possible extensions of this
work, its adaptability to network traffic, and its impact on multiple domain such as security.

In chapter 4, we introduce our SDN solutions to manipulate the data plane of SDN switches to
improve the resilience and performance of SDN networks. Both solutions leverage the centrality
of the control plane at the controller, capability to maintain a general network topology view at
the controller and capability to prompt the switches for statistics. In the first section, we describe
our coarse grained scheduling solution for datacenter networks that aims at decreasing the flow
completion time of small flows. We start by explaining the basic idea of our solution, then we
provide some basic experimental results that show the efficiency and the limitation of our solution.
Then, in the second part of this chapter, we extend our coarse grained scheduling solution and we
develop a new solution called PRoPHYS for hybrid ISP networks that aims at enhancing flow
resilience against unexpected failures in a hybrid network. We first describe the technique and the
algorithm used to detect failures across non-SDN network segments in a hybrid network. Then,
we provide our results that show the efficiency, performance and scalability of our solution. At
the end of this chapter, we conclude with a summary of the results as well as the limitations and
possible extensions of the solutions presented in this chapter.

In the last technical chapter of this thesis, Chapter 5, we tackle the energy efficiency problem
in data center and ISP networks. We introduce our solution called SENAtoR that was developed in
collaboration with the COATI team in INRIA and describe in brief the recently started project in
SigNet team called SEaMLESS. For the case of SENAtoR, we describe the heuristic that computes
the set of devices to turn off (nodes or links), and the basic technologies that this solution uses in
order to keep near zero packet loss rate even when sudden traffic peaks occur. Then, we provide
some testing results that prove the efficiency and practicality of our energy efficient solution SEN-
AtoR which allows almost zero packet loss. Afterwards, in the second part of this chapter, we
describe SEaMLESS where the SigNet team proposes to save energy by turning off idle VMs by
keeping their service connectivity up and running by migrating the front end of the service from
its hosting VM to a VNF. We describe first how does the migration mechanism works when mi-
grating from VM to VNF and vice versa while preserving network state and connectivity. Then,
we provide some basic testing results that show the efficiency of SEaMLESS and its impact on
user’s traffic and energy consumption.

9

1. Introduction

We conclude this document in Chapter 6, where we sum up all of our contributions and
describe in details the future work that can take place to enhance our work and extend its imple-
mentation use cases.

1.4 List of Publications

• Journal

– Rifai, M., Huin, N., Caillouet, C., Giroire, F., Moulierac, J., Pacheco, D. L., & Urvoy-
Keller, G. (2017). Minnie: An SDN world with few compressed forwarding rules.
Computer Networks, 121, 185-207.

• International Conferences

– N.Huin, M.Rifai, F.Giroire, D.Lopez Pacheco, G.Urvoy-Keller, J.Moulierac , "Bring-
ing Energy Aware Routing closer to Reality with SDN Hybrid Networks", IEEE Globe-
com 2017.

– M.Rifai, N.Huin, C.Caillouet, F.Giroire, D.Lopez, J.Moulierac ,G.Urvoy-Keller "Too
many SDN rules? Compress them with Minnie", IEEE Globecom 2015.

• National Conferences

– Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, Joanna Moulierac,
et al.. MINNIE : enfin un monde SDN sans (trop de) règles. ALGOTEL 2016 - 18èmes
Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications,
May 2016, Bayonne, France.

• Poster

– D. Lopez Pacheco, Q. Jacquemart, M. Rifai, A. Segalini, M. Dione, G. Urvoy-Keller
"SEaMLESS: a lightweight SErvice Migration cLoud architecture for Energy Saving
capabilitieS", ACM SoCC 2017.

– Myriana Rifai, Dino Lopez, Guillaume Urvoy-Keller,"Coarse-grained Scheduling with
Software-Defined Networking Switches", ACM Sigcomm 2015.

• Research Report

– Myriana Rifai, Dino Lopez, Quentin Jacquemart, Guillaume Urvoy-Keller "PRoPHYS:
Providing Resilient Path in Hybrid Software Defined Networks".

10

Chapter 2

State of the Art

Contents
2.1 Attempts to Overcome SDN Challenges . 12

2.1.1 Control Plane Scalability . 13

2.1.2 Resilience . 14

2.1.3 Multiple Switch Designs Interactivity 15

2.1.4 Flow Table Capacity . 15

2.1.5 Switch Performance . 16

2.2 Attempts to Enhance Network Performance using SDN 17

2.2.1 SDN in hybrid networks . 17

2.2.2 Traffic Engineering and Energy Efficiency 18

2.2.3 Resilience . 19

2.2.4 Network Virtualization and Management 20

2.3 Conclusion . 20

During the last years, Software Defined Networking has been developing rapidly and a lot of
researchers have been working on migrating legacy networks to full SDN to benefit from network
programmability, control plane centrality, and global network view that SDN technology features
(Figure 2.1). However, the full migration to full SDN is blocked by the centrality of the controller
which features a single point of failure, lack of standardization of SDN protocols and switch
design, and the limited scalability and performance of SDN controllers and hardware switches
[KREV+15]. However, even-though SDN is still under development, multiple research domains
benefited already from its development where SDN is being deployed in current networks such
as Facebook [dep15] and Google B4 network [JKM+13]. Legacy networks, traffic engineering,
energy efficiency, network virtualization and network management domains have all leveraged
the centrality of the control plane, programmability and the global network view of the whole
topology at the SDN controller.

11

2. State of the Art

Figure 2.1: SDN main research topics discussed in this thesis.

In the first section of this chapter, we present a non-exhaustive list of the main solutions that
address the main challenges of SDN. Then, in the second section, we provide a list of solutions
that solve existing problems or limitations in current SDN or legacy networks and enhance the
overall network performance and programmability.

2.1 Attempts to Overcome SDN Challenges

The basic idea behind Software Defined Networking is the physical separation of the control plane
from the data plane and the centralization of the control plane at the controller. Though the central-
ization of the control plane at the controller provides a global view of the network, and provides
administrators with the capability to dynamically control and program the network, it is accompa-
nied by multiple challenges. First, the separation of the control plane from the data plane would
require a communication channel between both layers to transmit control messages. This commu-
nication channel becomes the bottleneck when a large number of control messages are transmitted
between the controller and the SDN switches. Second, the fact that the control plane is totally sep-
arated from the data plane decreases network resilience and fault tolerance. In SDN, the network
undergoes the risk of loosing data when a network failure prevents the communication between the
data plane and the control plane. Moreover, the centralization of the control plane might constitute
a single point of failure.

In addition to the two main challenges stated above, recent studies proved that SDN switches
(data plane) have pointed out other potential weaknesses of SDN. Due to the lack of standardiza-
tion of SDN switch design and southbound interface, multiple SDN switches exist each featuring
its own set of actions and communication protocol. Some switches use OpenFlow protocol (v1.0
or v1.3 till v1.5 etc), while others use POF. Hence, a new mechanism should be elaborated to
either enable the communication between all the switches or standardize the switch design and
southbound interface. Moreover, as we will see in this thesis, SDN devices have limited flow table
capacity and limited network performance which prevents network scalability. In this section, we
detail the challenges stated above and we discuss some works that were designed to address them.

12

2. State of the Art

2.1.1 Control Plane Scalability

As stated before, the separation of the control plane from the data plane hinders the scalability of
the network as the communication channel between the controller and the data plane could become
the bottleneck. The centralized controller could also be the bottleneck as all the SDN switches
in the network will ask the centralized controller for decisions to analyze and route the traffic
in the network, increasing the control traffic, the processing load on the controller and the flow
installation and processing delays [TGG+12]. The data plane (SDN switch) could also become
the bottleneck for the same reasons stated above. The lack of scalability in any of these three
components (SDN switch, controller and the channel between them) will hinder the scalability of
the whole network increasing the flow delay and possibly causing flow loss degrading the Quality
of Service (QoS).

To enhance control plane scalability researchers attempted to enhance the performance of the
controllers by: (i) building distributed controllers [Ono, Opeb, KCG+10, DHM+14, KCGJ14],
(ii) dynamically deploying controllers based on network traffic demand (elastic control plane)
[BRC+13, TG10] and (iii) enhancing the performance of a single controller [Eri13, NCC10,
TGG+12] by using the new developments in parallelism and multi-threading. Distributed con-
trollers such as ONOS and OpenDaylight [Ono, Opeb] distribute the control plane on a group of
controllers which allows the controllers to manage bursts of network traffic. ElastiCon [DHM+14]
is also a distributed controller with an additional elasticity feature that supports the addition and
deletion of controllers based on traffic demands. However, the drawback of distributed controllers
is their need to exchange information among each other to preserve a consistent view of the net-
work topology which increases the control traffic, could increase the processing delay and can
result in network inconsistencies. On the other hand, a centralized controller manages the whole
network topology and will thus always have a global centralized view of the network. Thus in
[BRC+13], the authors suggested to deploy centralized controllers dynamically in the network
based on traffic demand to preserve scalability. Hyperflow [TG10], provides scalability while
maintaining a centralized control plane. It features a logically centralized but physically distributed
controller which allows to centralize decision procedures but distributes SDN switch events among
the control nodes. Nonetheless, the centralization of the control plane could lead to a single point
of failure.

In addition to enhancing the performance and scalability of the controller, some researchers
enhanced the scalability of the control plane channel (channel between the controller and the
SDN switches) [CMT+11, YRFW10, HSM12]. In [CMT+11], the authors propose DevoFlow
which modifies the OpenFlow model by allowing only significant flows to contact the controller
and uses wildcards aggressively in the flow table to decrease the number of control messages
transfered between the controller and the switch. Difane [YRFW10], similarly to DevoFlow, tends
to decrease the number of flows– that require the controller intervention– to be installed by using
intermediate switches in which the controller stores some necessary rules to be used by the end
switches. Though these solutions can decrease the load on the control channel, they can not be

13

2. State of the Art

deployed in networks where complex policies are implemented or flow rules are created due to
network dynamics. In addition to decreasing the number of events arriving at the controller, some
researchers studied the placement of the controllers in the network to decrease the traffic load
on the links connecting the switches to the controllers [HSM12, JCPG14] to avoid traffic loss.
Unfortunately, so far, these placement solutions can not decrease the control load on the links,
maintain the minimum delay between the switch and the controller, and be resilient to link failures
all together.

Finally, to enhance the scalability of SDN switches, some researchers aimed at decreasing
the processing delay on SDN switches by migrating the counters from the hardware memory
Application-Specific Integrated Circuit (ASIC) to the software memory such as Software-Defined
Counters (SDC) [MC12], in addition to enhancing the SDN switch performance (see Section 2.1.5)
and increasing the switch flow table size (see Section 2.1.4).

2.1.2 Resilience

The centralization of the control plane at the controller degrades the resilience of SDN networks.
In such networks, the controller becomes a single point of failure. The loss of connectivity be-
tween the controller and the SDN devices would lead to the loss of network control, and thus
data traffic could be lost. Multiple researchers tried to enhance the resiliency of the control plane
(i.e. the controller) [BBRF14] by trying to build distributed controllers such that if one of the
controllers fails the remaining controllers can take over its nodes [Ono, Opeb]. But, as stated
before these controllers need to constantly exchange network topology information and may re-
sult in inconsistent views of the network. In addition to building a fault tolerant controller, some
researchers aimed at studying the placement of the controller taking into consideration the fault
tolerance ratio and probability of link failure of the links connecting the data plane to the control
plane [GB13, HHG+13, HWG+13, LGZ+15]. However, as stated before, to our knowledge there
is no placement algorithm that can provide scalability, resilience and performance altogether.

Others studied additional architectures or methodologies that enable the switch itself to over-
come failures without disrupting the controller state machines [KZFR15, BBRF14]. In [KZFR15,
BBRF14], the authors introduce a platform where the switches and the controller maintain a state
machine (stored in a shared database or independently) to know whether the data traffic has been
treated correctly. In case of failure, the switch can manage the data traffic using the state ma-
chine database information and then informs the controller once the connection is re-established.
Notwithstanding, storing the state machine in a shared database would increase the controller
analysis delay, which degrades the controller’s performance.

Moreover, to maintain network resilience, the authors of [WWW+14], suggested a simplistic
solution that pre-installs backup routes in the switches. These backup routes are then used quickly
as "fast-fail-over" actions where the switch monitors its port and upon the failure of one port, the
switch uses the set of backup rules related to the port failure. However, these solutions require the

14

2. State of the Art

installation of additional forwarding rules on the switch decreasing the available memory space
for main forwarding rules.

2.1.3 Multiple Switch Designs Interactivity

After the development of SDN architecture, many researchers and industrial companies (e.g. HP,
Juniper, Brocode) developed SDN switches and southbound interfaces. However, the lack of
standardization, lead to the creation of diverse SDN switches, each one having a unique flow table
structure, set of actions to be applied to incoming traffic, and different versions of supported south-
bound interfaces, such as POF and OpenFlow v1.0, v1.3, etc. The diversity of SDN switches and
southbound interface design increased the complexity of managing the communication between
the controller and the SDN switch. To accommodate the heterogeneity of the data plane devices
and the heterogeneity of the southbound interface multiple solutions such as NOSIX, tinyNBI, and
libfluid [YWR14, CSS14, VRV14] arose.

Both libfluid [VRV14] and tinyNBI [CSS14] attempted to create an API capable of supporting
the heterogeneity of OpenFlow. TinyNBI API supports the heterogeneity of all OpenFlow versions
between 1.0 and 1.4 while libfluid API supports only versions 1.0 and 1.3. NOSIX [YWR14] on
the other hand, was developed as an API that supports the heterogeneity of the SDN switch flow
table features. NOSIX creates a single format of virtual flow table on all types of SDN switches,
then it translates this virtual table to the actual switch forwarding table. Though NOSIX, tinyNBI,
and libfluid were provided to allow the existence of multiple types of SDN protocols and SDN
switch designs in the network, they still do not cover the full diversity of SDN devices and SDN
protocols and they add processing delay to decrypt the messages and encode them in the correct
protocol version or forwarding table design.

Finally in [HYG+15], the authors propose a new all programmable SDN dataplane switch,
called ONetSwitch, that can cope with all SDN platforms while maintaining a high performance,
flexibility, small size and low power consumption. ONetSwitch can be both reprogrammed and
hardware restructured to cope with the different physical requirements and inner functionalities
required so that it can cope with all current SDN protocols. Nonetheless, this switch is still a
prototype and have not been fully implemented or tested in real networks.

2.1.4 Flow Table Capacity

Current SDN hardware switches use TCAM hardware memory to store their forwarding tables.
Though this memory is both expensive, small, and power hungry [COS], it is used in current SDN
network devices due to its very high lookup speed (around 133MHz [KB13b], i.e. 133 million
lookups per second). Thus, a lot of research has been conducted to maximize the number of SDN
rules in the TCAM memory. Some researchers, among many others, aimed at decreasing the total
number of rules such as [RSV87, ACJ+07, MLT10, MLT12] while others tried to decrease the size

15

2. State of the Art

of the forwarding entries e.g. [HCW+15, ADRC14] (a more exhaustive list is detailed in Chapter
3). In [RSV87] the authors of the Espresso heuristic suggest to compress the wildcard rules.
[MLT10] aimed at minimizing the number of rules necessary to apply a certain policy. In addition,
some researchers aimed at maximizing the number of rules installed in the TCAM by decreasing
the number of bits that describe an SDN rule (i.e. compressing the rule) by inserting a small tag
in the packet header [KB13a, BK14] or by inserting some data fields in the packets such as a
shadow MAC [ADRC14] which uses label switching instead of packet switching. Nevertheless,
these solutions require modifying the protocol stack, modifying the packet header which requires
to pass by the central CPU a.k.a slow path or adding additional delay (see Chapter 3 for additional
details).

To increase the flow table capacity, researchers did not only focus on optimizing the us-
age of the TCAM memory space, but they also searched for other memories and/or proces-
sors that can replace or be deployed in parallel with the TCAM memory to enhance the SDN
switch performance. In brief, we give here a short list of technologies that are being studied
for SDN: Static Random-Access Memory (SRAM), reduced latency Dynamic Random-Access
Memory (DRAM), Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA),
network processors among other specialized network processors [EFSM+11, NEC+08, MVL+13,
LCMO09, RJK+12, PMK13]. Out of all of these technologies, the GPU processor appears to be
very efficient and could become a direct competitor of the TCAM memory. Based on the study in
[MVL+13], GPUs can process data at around 20Gbps speed with flow tables of 1 million match
entries.

In addition to the software and hardware solutions, multiple solutions exist at the switch
design level [LZH+14, KARW14, YXX+14]. For example, in [LZH+14, KARW14] the authors
provide new design solutions that perform parallel lookup for fast response time and use cache-
like Openflow switch arrangements to enable the scalability of the flow table. In [YXX+14]
CAching in Buckets (CAB), the authors propose to change the switch design. In such case, the
switch will use a geometric representation of the rule set and divide it into small logical structures
called buckets and install the information in separate buckets. These solutions, however, require
to change the whole switch design which is problematic for hardware switches.

2.1.5 Switch Performance

Multiple research studies like [HKGJ+15, RSKK16, BD14, SCF+12b, KPK14] were performed
to study the performance of SDN switches. In [HKGJ+15], researchers studied the impact of
separating the control plane from the data plane. In [BD14, SCF+12b], the authors show that
while the TCAM memory of hardware SDN switches can provide 133MHz processing speed,
SDN switches (both software and hardware) can perform a a maximum between 38 and 1000
flow rule modification per second. This low maximum flow modification throughput limits the
number of flows that can be modified (installed, deleted or changed) on the switch. Hence, current
SDN devices cannot deal with a huge burst of new flows in a second without degrading their

16

2. State of the Art

performance. In addition to that, in [HKGJ+15], the authors show that the inter-existence of
flow modification events and data traffic increases the delay of both flow modification event and
data plane traffic as they are both limited by the bus connecting the CPU and the ASIC hardware
memory. Moreover, as explained in [RSKK16], the SDN switch performance decreases from 940
to 14Mbps when the rules are installed in software instead of hardware.

The deployments of commercial hardware OpenFlow-based switches [KSP+14] have pointed
out that the embedded CPU is the performance limiting factor. Therefore, researchers suggested
to: (i) add multiple powerful CPUs [MC12], or (ii) change/enhance the CPU currently in use
[Int11, Dpd14, SWSB13]. Since the rise of the SDN technology, microchip companies have
been studying new general-purpose technologies that have flexible SDN capabilities. In [Dpd14],
the authors propose a CPU which includes a Data Plane Development Kit (DPDK) which al-
lows high level programming of packet processing procedure in the network interface cards.
Their CPU prototype in SDN, have proved so far its capability of providing high performance in
SDN switches [PMK13]. In addition to DPDK integrated CPUs, FPGA and especially NETwork
Field Programmable Gate Array (NETFPGA) have been proposed to augment switch performance
[SWSB13]. Moreover, a recent study [ZJP14] shows that System-On-Chip (SoC) platforms, can
be used in OpenFlow devices and are capable of providing up to 88 Gbps throughput for 1000
flow with dynamic updates.

Other researchers, however, suggested the redistribution of the actions between the controller
and the SDN switch to decrease SDN switch CPU consumption [CMT+11] i.e. to reconsider the
structure of the southbound interface [Cha13, BGK+13a].

However, all of these solutions require to change the physical structure of the hardware
switches or the southbound interface, which would not solve the performance problem of existing
deployed SDN hardware devices.

2.2 Attempts to Enhance Network Performance using SDN

In the previous section, we investigated the main challenges that SDN devices face and we stated
briefly some of the current solutions or prototypes that were proposed to enhance SDN network
performance. In this section, we introduce some SDN architectures or methodologies that allow to
propagate SDN functionalities from SDN devices to legacy network devices in hybrid networks.
We also show how SDN can enhance current network performance by enhancing and providing
new solutions for traffic engineering, energy efficiency, resilience and network virtualization.

2.2.1 SDN in hybrid networks

Multiple studies leveraged SDN nodes in legacy networks to enhance the performance of current
networks [CXLC15, AKL13]. For example, in [CXLC15] the authors leverage SDN nodes to

17

2. State of the Art

provide 100% reachability under any single link failure by using SDN nodes to help them identify
congestion and properly choose backup paths using tunneling. In [AKL13], the authors use the
information collected by the SDN controller (traffic pattern, load, etc.) to choose the routes in
such a way to enhance traffic engineering performance. The authors of [VVC+17] have used the
SDN nodes to adapt the traffic when network forwarding anomalies are detected during rule setup
to avoid policy violations.

Moreover, to allow full network programmability, some propositions try to propagate SDN
functionalities from SDN to legacy nodes in hybrid networks, such as [LCS+14, JLX+15]. The
authors of Panopticon [LCS+14], tried to propagate the enhanced functionality of the SDN nodes
to the legacy nodes. They managed to decrease the failure detection interval to a minimum of 1s
as they depend on the Spanning Tree Protocol (STP) to detect a failure. In Telekinesis [JLX+15],
the authors leveraged the SDN controller to force legacy L2 switches to use the same forwarding
tree as SDN nodes. In addition to these solutions that leverage SDN in hybrid networks, many are
still to be explored to enable the full migration of SDN functionalities to the legacy devices (e.g.
enable the controller to control layer 3 (i.e. routing) of the legacy routers).

2.2.2 Traffic Engineering and Energy Efficiency

The separation of the control plane from the data plane, and the localization of the control plane
at a centralized entity i.e. the controller, permits the existence of a global network view on the
controller. The SDN architecture, allowed the creation of new solutions that dynamically change
the routing scheme based on the current load of the links and the global network traffic to provide
an enhanced traffic engineering scheme e.g. [AFRR+10, CKY11, BAAZ11, SK14, SSD+14] or
to decrease the energy consumption of the networks e.g. [HSM+10a, BBDL15, RRJ+15].

To enhance the Quality of Service, and manage the flows in the SDN networks, the authors
of [AFRR+10] propose Hedera. Hedera is a traffic engineering methodology which leverages the
controller to detect and estimate the demand of large flows at the edge switches in the network and
assign them to paths that can manage their estimated load. Hedera, however, can only enhance
the performance when multiple paths exist between the source and the destination as it does not
enhance scheduling schemes within a link. Similarly, [CKY11] manages the traffic demand by de-
tecting the large flows. Their solution, Mahout, detects the large flows by monitoring the end hosts
socket buffer. On the other hand, MicroTE [BAAZ11] leverages the short term traffic information
and the partial predictability of the traffic matrix to adapt traffic scheduling schemes. Nonetheless,
Mahout and MicroTE require to insert modifications at the end host.

SDN also allows to envision new traffic engineering mechanisms for home broadband access
networks, based on the MAC layer [SK14] or TCP layer, such as FlowQoS [SSD+14], to enhance
the performance of certain applications or machines.

In [TAG16], the authors survey multiple energy efficient solutions that leverage SDN capa-
bilities to provide a tradeoff between energy efficiency and QoS [HSM+10a, BBDL15, RRJ+15].

18

2. State of the Art

The authors of [HSM+10a] propose to route the traffic with the help of the OpenFlow controller
such that they minimize the number of used components to decrease the energy consumption of
the network. In [BBDL15], the authors propose a new routing methodology where the controller
takes the topology resources, and traffic demands as input. Then, the controller calculates the
energy consumption of each network entity based on the flow demand and optimize the choice be-
tween network performance and energy efficiency by using control policies defined in the Green
Abstract Layer energy efficiency approach [BBD+13]. Similarly in [RRJ+15], the authors present
GreenSDN which integrates three different methodologies that work on the chip, node and net-
work level (Adaptive Link Rate [GC06], Synchronized Coalescing [MC11] and Sustainable Aware
Network Management System [CAJ+12] respectively) to optimize the utilization of devices and
energy efficiency in the network while maintaining an efficient traffic engineering. All the same,
these solutions do not take into consideration the possible data loss that occurs when turning off
network resources or when sudden traffic spikes occur when network devices are turned off.

2.2.3 Resilience

SDN networks can enhance the network resiliency and decrease the amount of traffic loss by lever-
aging the programmability and the full view of the network topology. For example, SlickFlow uses
the SDN controller to insert the backup route information in the packet header to allow switches
to reroute packets quickly through the backup route once they discover a failure across the main
path [RMR13]. Similarly, INFLEX [ALCP14] alters the packet IP header Explicit Congestion
Notification (ECN) field and insert a routing tag to identify the path used, this routing tag then
changes when a failure is detected in the main path. Altering the packet header, however, degrades
the performance as the data packets pass through the slow path (CPU).

In addition to modifying the packet header to enhance flow resiliency, some researchers de-
pend on the usage of backup routing rules that are pre-installed in the switches such as [SGC+13,
SO14], and then they define new methodologies to fast reroute between the main and the backup
rules. In [SGC+13], the authors propose OSP which introduces backup rules in the SDN switches
with different priorities, and tries to maintain the main and the backup rules in the switch by
sending a renew packet which prevents the backup rules from expiring as long as the main rules
exist. OSP also depends on the concept of auto-reject where a switch rejects to use a rule that will
output the traffic to a failed link or port. To fast reroute between the main rule and the backup
rule in [SO14] when link failures or congestion are detected, the authors monitor the flow expiry
counters and then they modify the flow timers to expire immediately once the main path fails or
is congested which allows to decrease the switch buffers, packet loss and end-to-end latency. On
the other hand, installing backup routes in the SDN switch would decrease the TCAM remaining
space which could hinders network flow scalability and performance.

19

2. State of the Art

2.2.4 Network Virtualization and Management

The introduction of SDN in datacenter, ISP and cloud networks enabled an improvement in net-
work management where the network administrators can use SDN alongside Network Function
Virtualization (NFV) to help virtualize all network services and functions [BBK15, BRL+14,
Opea] and optimize the placement of network functions in the network [BRL+14, CRS+13].
Moreover, SDN helped the creation of virtual networks as it allowed the development of mul-
tiple solutions to solve the hanging problems of network and/or VM migration [WNS12, RLL12,
LLJ15, KGCR12].

SDN allows the programmability of the network and the centralization of the control plane
at the controller. This allows SDN to virtualize and program all network functions in the con-
troller [BBK15]. It also allows the creation of any user defined network function which permits
the creation of fine-grained network functions [BRL+14]. For instance, HyperFlex [BBK15] is an
SDN hypervisor that uses the SDN technology to virtualize data plane functionalities in SDN net-
works. Moreover, the combination of SDN with NFV allows to provide optimized service chaining
e.g. [Opea]. OpenContrail [Opea], for example, combines both SDN and NFV. It virtualizes all
network functionalities using an SDN virtual network controller, and provides service chaining.
Furthermore, network function virtualization using SDN allows virtual network isolation, dynamic
resource control and placement of the middleboxes [CRS+13, JKM+13].

In addition to providing network function virtualization, and service chaining, SDN allows to
optimize the placement and migration of network resources, virtual networks, and virtual machines
based on user traffic and physical network dynamics. In [RLL12], the authors propose a novel
algorithm that is network aware and dynamically computes the placement of VMs based on real
time network monitoring. In [LLJ15], the authors leverage SDN technology to optimize VM
migration across datacenters by using the controller to select the best path and devices that enable
the fastest and most resilient transfer of the migration traffic and they also use it to update the
network resources. LIME [KGCR12], uses the SDN controller to perform live migration of a full
network (VMs, network and their management system) without disrupting the network resources
by cloning the data plane states to a new set of virtualized forwarding devices.

2.3 Conclusion

In this chapter, we identified the main performance and scalability challenges that SDN devices
face. We also showed that the numerous proposed solutions require to modify the SDN switch and
southbound interface design, or require to change the hardware used by the SDN switches which
is very intrusive. Moreover, in this chapter, we have stated various solutions that use the SDN
technology to enhance the network performance, resilience and energy efficiency. Energy efficient
solutions focus only on optimizing the energy consumption of the networks without taking into
consideration the possible degradation in network performance or data loss. As for the proposed

20

2. State of the Art

solutions that use SDN to enhance the network performance, they require either to change the
packet header which causes the packets to be processed by the central CPU which increases the
processing delay, or they require modifications at the end host which is also intrusive.

In the following chapters, we present our solutions that enhance the scalability at the SDN
switch level by optimizing the usage of the flow table. We also present our solutions that leverage
the switches statistics to enhance the network performance and resilience. We then present our
energy efficient solutions that mainly focus on maintaining the network performance while turning
off network devices. All our solutions are built as controller application modules, and do not
require the modification of the data packet header or the end hosts.

21

2. State of the Art

22

Chapter 3

Flow Scalability: Minnie

Contents
3.1 Related work . 25

3.2 Motivation: Software vs. hardware rules 26

3.3 Description of MINNIE algorithm . 27

3.3.1 MINNIE: compression module . 30

3.3.2 MINNIE: routing module . 31

3.4 Implementation: MINNIE in SDN controller 35

3.5 Experimental results using an SDN testbed 36

3.5.1 TestBed description . 36

3.5.2 The need of level-0 OvS . 37

3.5.3 Number of clients chosen for the experimentations 38

3.5.4 Experimental scenarios . 39

3.5.5 Experimental results . 41

3.6 Simulations scalability results . 52

3.6.1 Simulation settings . 53

3.6.2 Simulation results . 56

3.7 Discussion . 62

3.8 Conclusion . 65

3.9 Publications . 65

Nowadays, the number of connected devices and connected services to the network, is in-
creasing, hence the number and the variety of flows is increasing [Cis12]. Moreover, the increase
in the variety of services provided, leads to the increase in the complexity of the traffic manage-
ment to be provided. This increase in the number of flows and their variety naturally leads to the
increase in the number of forwarding rules to be installed in the SDN forwarding devices when
fine grained flow routing is performed. In this chapter, we present a solution called MINNIE that

23

3. Flow Scalability: Minnie

allows flow scalability in SDN networks, while providing the best switch performance for all the
flows installed on the device.

SDN forwarding devices aim at applying flow-based forwarding rules instead of destination-
based rules (as in legacy routers) to provide a finer control of the network traffic. For instance, in
OpenFlow 1.01, forwarding decisions can be made taking into account from zero up to a maxi-
mum of 12 packet header fields (IP, TCP, ICMP and UDP etc.), in addition to the incoming port
field. When any of these fields should be ignored when forwarding a packet, such a field is set
to “don’t care bits". Due to the complexity of SDN forwarding rules, SDN forwarding devices
need Ternary Content Addressable Memory (TCAM) to store their routing table as they allow to
store “don’t care bits" and can perform parallel lookups (classical CAM can only perform binary
operations). However, TCAMs are more power hungry, expensive and physically bigger than bi-
nary CAMs available in legacy routers. Consequently, the available TCAM memory in routers is
limited. Indeed, a typical switch supports between around a couple of thousands to no more than
25 thousands of 12-tuples forwarding rules, as reported in [SCF+12a].

Undoubtedly, emerging switches will support larger forwarding tables [BGK+13b], but TCAM
still introduces a fundamental trade-off between forwarding table size and other concerns like cost
and power. The maximum size of routing tables is thus limited, and represents an important
concern for the deployment of SDN technologies. This problem has been addressed in previous
works, as we will discuss in Section 3.1, using different strategies, such as routing table compres-
sion [GMP14, HCW+15], or distribution of forwarding rules [CLENR14].

In this work, we examine a more general framework in which table compression using wild-
card rules is possible. Compression of SDN rules was previously a work conducted by the COATI
team and discussed in [GMP14]. They proposed algorithms to reduce the size of the tables, but
only by using a default rule. In collaboration with them, we developed a stronger compression
methodology in which any packet header field may be compressed. Considering multiple field ag-
gregation is an important improvement as it allows a more efficient compression of routing tables,
leaving more space in the TCAM to apply advanced routing policies, like load-balancing and/or
to implement quality of service policies. In the following, we focus on compression of rules based
on sources and destinations using our solution called MINNIE.

Our testbed results demonstrate that even with a small number of clients, the limit in terms
of number of rules is reached if no compression is performed, increasing the delay of new incom-
ing flows. Our experimental and simulation results show that MINNIE allows scalability where it
allows to save an average of 80% of the TCAM space without negatively affecting the network
traffic (no packet loss nor detectable extra delays if routing lookups are done in the ASIC). More-
over, we show here that both simulations and experimental results suggest that MINNIE can be
safely deployed in real networks, providing compression ratios between 70% and 99%.

In this chapter, we explain the existing work that enables to optimize the usage of the flow
1https://www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.0.0.pdf

24

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

3. Flow Scalability: Minnie

table and their disadvantages (Section 3.1) and we prove the need to install all the rules in the
TCAM to provide the best performance (Section 3.2). We describe in detail our MINNIE solution
in Section 3.3 and 3.4. And we present, our experimental and simulation results (Section 3.5.5 and
3.6) that proves the efficiency, scalability and adaptability to network dynamics of MINNIE. Then,
in Section 3.7 we discuss possible extensions to our solution.

3.1 Related work

To support a vast range of network applications, SDN has been designed to apply flow-based rules,
which are more complex than destination-based rules in traditional IP routers. As explained be-
fore, the complexity of the forwarding rules are well supported by TCAMs. However, as TCAMs
are expensive and power-hungry, the on-chip TCAM size is typically limited.

Many existing studies in the literature have addressed this limited rule space problem. For
instance, the authors in [KB13a] and [BK14] try to compact the rules by reducing the number of
bits describing a flow within the switch by inserting a small tag in the packet header. This solution
is complementary to ours, however, it requires a change in: (i) packet headers and (ii) in the way
the SDN tables are populated. Also, adding an identifier to each incoming packet is hard to be
done in the ASIC since this is not a standard operation, causing the packets to be processed by
the central CPU of the router (a.k.a. the slow-path) strongly penalizing the performance and the
traffic rate. Another approach is to compress policies on a single switch. For example, the authors
in [ACJ+07, MLT10, MLT12] have proposed algorithms to reduce the number of rules required to
realize policies on a single switch.

Several works have proposed solutions to distribute forwarding policies while managing
rule-space constraints at each switch [CLENR14, KHK13, KLRW13, NSBT15, KARW16]. In
[CLENR14] the authors model the problem by setting constraints on the nodes that limit the max-
imum size of routing table. The rules are spread between the switches to avoid QoS degradation
in case of full forwarding tables. For the case of [KHK13], we note that the replacement of a
routing policy, to follow the dynamicity of the network, can be hard since it implies to rebuild
the forwarding table in (potentially) several switches. However, no compression mechanisms are
added to those solutions. In [NSBT15], the authors propose OFFICER. OFFICER creates a de-
fault path for all communications, and later, some deviations are introduced from this path using
different policies to reach the destination. According to the authors, the Edge First (EF) strategy,
where the deviation is performed to minimize the number of hops between the default path and
the target path, offers the best trade-off between the required Quality of Service and forwarding
table size. Note however, that applying this algorithm could unnecessarily penalize the QoS of
flows when the routers’ forwarding tables are rarely full. In [KARW16], the authors propose
CacheFlow which introduces a CacheMaster module and a shared section of software switches
per TCAM (available in hardware switches only). The CacheMaster constructs the dependency
tree of the rules to be installed and then distributes the rules between the TCAM and the software

25

3. Flow Scalability: Minnie

switches, placing the most popular rules in the hardware switch, thus enabling fast forwarding for
the biggest possible amount of traffic. When a packet needs a forwarding rule not available in the
TCAM, such a packet is forwarded to the software switches, which send back the packet to the
hardware switch in a predetermined input port, to be resent at a specific output port. If the software
switches do not have a matching rule, the SDN controller is called. The weaknesses of CacheFlow
relies in its inherent architecture, as this solution requires the installation of a software switch for
every hardware switch, which might need a reorganization of the network cabling and additional
resources to host software switches. Secondly, the optimal number of needed software switches
can be difficult to determine, due to the fact that for performance reasons, software switches must
only keep forwarding rules (whose number depends on the traffic characteristics) in the kernel
memory space, which is limited. Lastly, the two-layer architecture of CacheFlow (i.e. software
switches over a hardware switch) increases the delay to contact the controller and install missing
rules.

To the best of our knowledge, the closest papers to our work are [HCW+15, BM14, GMP14].
In [HCW+15] the authors introduce XPath which identifies end-to-end paths using path ID and
then compresses all the rules and pre-install the necessary rules into the TCAM. We compare our
results with the ones of XPath in Section 3.6.2.4. MINNIE uses fewer rules even in the case of an
all-to-all traffic as XPath codes the routes for all shortest paths between sources and destinations.
This is at the cost of less path redundancy which is useful for load-balancing and fault tolerance.
Network operators should consider this trade-off when choosing which method to use. In [BM14]
the authors suggest SDN rule compression by following the concept of longest prefix matching
with priorities using the Espresso [TNW96] heuristics and show that their algorithm leads to 17%
savings only. We succeed in reaching better compression ratios using MINNIE.

MINNIE is an extension of the previous work of the COATI team, [GMP14] which addressed
the problem of compressing routing tables using default rule only in case of Energy-Aware Rout-
ing.

3.2 Motivation: Software vs. hardware rules

As mentioned before, SDN forwarding devices can install the SDN rules in hardware or software.
However, as explained before the TCAM memory is usually small as it is expensive and power
hungry. Hence, in current SDN networks, most of the flow rules are installed in software and only
the minority of the flows are installed in the hardware memory. Thus, one question naturally rises
at this point: What is the real impact of the slow path on the switch performance? Do we really
need to compress the routing table to enable the installation of all the rules in TCAM?

To answer this question, we have devised an experimental testing scenario using our SDN
hardware switch (HP 5412zl) switch. Our SDN switch can support up to 65535 rules installed in
hardware and software all-together, with only 3000 rules that can be installed in hardware. We
have emulated in this switch a full k=4 Fat-Tree topology (see Figure 3.2) with one client per

26

3. Flow Scalability: Minnie

access switch, and each client sends one flow to every other client in the network. A flow in this
testing experiment is composed of a train of 5 ICMP request / reply packets, which is the default
behavior of the ping command. To understand the difference in the performance of the hardware
and software memories, we have devised two testing scenarios :

1. All rules are installed in hardware

2. All rules are forced to be installed in software

With this configuration, we can observe in Figure 3.1a that installing rules in software in-
creases the first packet delay by a factor of 20 from a median of 1 ms to 20 ms as compared to
hardware rules. Moreover, the average matching delay of the remaining packets (Figure 3.1b)
features a 6-fold increase in software as compared to hardware (3 ms compared to 0.5 ms).

These results thus justify the necessity of using only TCAM. Thus, we developed MINNIE

which is a solution that allows to compress the SDN rules to allow all flows to use the hardware
memory and thus benefit of the increase in network performance.

0

5

10

15

20

25

30

35

40

Software Hardware

D
ur

at
io

n
(m

s)

(a) First packet’s delay

0

0.5

1

1.5

2

2.5

3

3.5

4

Software Hardware

D
ur

at
io

n
(m

s)

(b) Remaining packet’s delay

Figure 3.1: Packet delay boxplot

3.3 Description of MINNIE algorithm

MINNIE aims at reducing the number of routing entries that are installed on every node while
respecting the link and node capacities (i.e. number of hardware rules installed). Hence, in
collaboration with the COATI team, the MINNIE problem was formally defined as follows:

• Given a set of flows D, the problem we consider is to find sets of routing rules (aggregated
or not) such that each flow is well routed from its source to its destination while respecting
the link capacity constraints and the table size constraints.

To solve this problem we represent the network as a directed graph G = (V,A). A vertex
is a router and an arc represents a link between two routers. Each router u has a maximum rule

27

3. Flow Scalability: Minnie

Flow Output port

(0, 4) Port-4
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 5) Port-4
(1, 6) Port-6
(2, 4) Port-4
(2, 5) Port-5
(2, 6) Port-6

(a) Without Compres-
sion

Flow Output port

(0, 4) Port-4
(1, 5) Port-4
(2, 4) Port-4
(2, 5) Port-5
(0, ∗) Port-5
(∗, ∗) Port-6

(b) MINNIE: Source ta-
ble

Flow Output port

(1, 4) Port-6
(1, 5) Port-4
(0, 6) Port-5
(∗, 4) Port-4
(∗, 5) Port-5
(∗, ∗) Port-6

(c) MINNIE: Destination
table

Flow Output port

(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 6) Port-6
(2, 5) Port-5
(2, 6) Port-6
(∗, ∗) Port-4

(d) MINNIE: Default
only

Table 3.1: Examples of routing tables: (a) without compression, (b) compression by the source,
(c) compression by the destination, (d) default rule only. Rules’ reading order: from top to bottom.

space capacity Su given by the size of its routing table and expressed in number of rules. Each
link (u, v) ∈ A has a maximum capacity Cuv. A flow is identified as a triplet (s, t, d), in which
s ∈ V is the source of the flow, t ∈ V its destination, and d ∈ R+, its load.

Then, we define a routing rule as a triplet (s, t, p) where s is the source of the flow, t its des-
tination and p the outgoing port of the router for this flow. To aggregate the different rules, we use
wildcard rules that can merge rules by source (i.e., (s, ∗, p)), by destination (i.e., (∗, t, p)) or both
(i.e., (∗, ∗, p), the default rule). Table 3.1 shows an example of a routing table and its compressed
versions using different strategies. Table 3.1(a) gives the routing table without compression and
Table 3.1(d) the table using default port compression.

To solve the problem, we propose an algorithm called MINNIE. MINNIE is composed of
two modules: the compression module which compresses the routing tables using wildcard rules,
and the routing module which finds paths (and routing rules) for the flows using a shortest-path
algorithm with adaptive metrics to spread flows over the network and to avoid overloading a link
or a table.

MINNIE, presented in Algorithm 1, works as follows: For every flow to be routed, MINNIE

iteratively finds a path using the routing module described in Algorithm 3 (Algo 1, line 4). For
every node in the path, it then adds a forwarding rule if no matching wildcard rule already exists.
When any switch routing table reaches its rule space capacity, MINNIE calls the compression
module, described in Algorithm 2, on (Algo 1, line 10). We refer to this table compression as a
compression event. The total load of flows on each link of the path is then updated to account for
the new flow (Algo 1, line 12). We now provide more details about the compression and routing
modules.

28

3. Flow Scalability: Minnie

Algorithm 1 MINNIE Algorithm

Input:
a digraph G = (V,A)
link capacity Cuv, ∀(u, v) ∈ A
rule space capacity Su, ∀u ∈ V
a set of flows D

Output:
a path (with the corresponding rules) for all flows in D

1: flow Fuv = 0,∀(u, v) ∈ A
2: set of rules Ru = ∅,∀u ∈ V
3: for each (s, t, d) ∈ D do
4: Find path Pst between s and t using Algorithm 3
5: for each (u, v) ∈ Pst do
6: if (∗, t, pv), (s, ∗, pv), (∗, ∗, pv) /∈ Ru then
7: add (s, t, pv) at the top of Ru
8: end if
9: if |Ru| == Su then

10: Compress Ru using Algorithm 2
11: end if
12: Fuv = Fuv + d

13: end for
14: end for

29

3. Flow Scalability: Minnie

3.3.1 MINNIE: compression module

Based on the COATI’s study [GHM15], the compression of a single table is NP-Hard, hence,
we use the following greedy algorithm (Algorithm 2). The theoretical basis of this algorithm
was studied by the COATI team in [GHM15] and was proven to be efficient, as it provides a
3-approximation of the compression problem. We show here that it is also efficient in practice.

The algorithm first computes three compressed routing tables: (i) aggregation by source , (ii)
by destination and (iii) by the default rule and then chooses the smallest one, as explained in more
details below.

Given a routing table such as the one given in Table 3.1(a), the algorithm first considers
an aggregation by source (Table 3.1(b)) using (s, ∗, p∗s) rules (Algorithm 2 line 1-24). We first
consider the sources one by one and choose (one of) the most occurring port(s) in the rules with this
source. It corresponds to the port allowing to compress the most rules using a rule of aggregation
by source. Then, we use the default rule to reduce the number of aggregated rules.

The main principle is simple, but there is a small technicality to break ties when there are
several most occurring ports. As a matter of fact, the choice taken of aggregation ports for each
source affects the default port chosen. We thus postpone the choice of the source aggregation port
in case of ties in order to choose the default port compressing the largest number of aggregation
rules, as explained in details below.

For each source s, we need to find the port p∗s such that we can aggregate using the rule
(s, ∗, p∗s), and the port p∗ to aggregate with the default rule (∗, ∗, p∗). First, we compute the set of
most occurring ports for each source s, noted P∗s . The default port p∗ is thus the most occurring
port in all sets P∗s . If multiple ports can be chosen, one is selected at random. Then, for each
source s, the port p∗s is equal to p∗ if p∗ ∈ P∗s . Otherwise we choose at random among P∗s . Once
the ports for the aggregated rules are chosen, we build the compressed table. First, we add rules
that cannot be aggregated (line 16), i.e., (s, t, p 6= p∗s). Then, we add all the aggregation rules by
source that do not use the default port p∗ (line 21), i.e., (s, ∗, p∗s 6= p∗). Finally, we add the default
rule (∗, ∗, p∗) (line 24). The order of insertion in the routing gives the order for the matching, i.e.,
non aggregated rules, then source aggregation rules and then default rule.

For example, the sets of the most occurring ports of sources 0, 1, and 2 in Table 3.1(a) are
{Port-5}, {Port-6}, {Port-4, Port-5, Port-6}, respectively. Since Port-5 and Port-6 appear two
times each, we choose at random Port-6 to be the default port. The ports used for the aggregation
by source for 0, 1, 2 are then Port-5, Port-6, Port-6, respectively. Port-6 is chosen for the source
2, because it is the default port. We can now build the compressed table by adding all rules that
have ports different than their corresponding aggregate rules: (0, 4, 4), (1, 5, 4), (2, 4, 4), (2, 5, 5).
Then, we add all aggregate rules with a port different from the default port: (0, ∗, 5). Finally, we
add the default rule (∗, ∗, 5). This gives us the compressed table in Table 3.1(b).

For the second compressed routing table (Table 3.1(c)), we do the same compression consid-

30

3. Flow Scalability: Minnie

ering the aggregation by destination with (∗, t, p∗t) rules (Algorithm 2 line 25-46). As for the third
table (Table 3.1(d)) a single aggregation using the best default port is performed (Algorithm 2 line
47-55), i.e., one of the most occurring port in the routing table becomes the default port (tie broken
uniformly at random). We then choose the smallest routing table among the three computed ones.

In the current version of MINNIE, when the algorithm can no longer compress a table, it uses
the default action to forward the new traffic to the controller. This could be enhanced to evict the
least recently used rule from the table. It should be noted that based on our simulation results
(Section 3.6.2) all flows can be forwarded using a rule space capacity of 1000 rules. Thus, using
advanced eviction rules seem unnecessary.

3.3.2 MINNIE: routing module

We propose an efficient routing heuristics using a weighted shortest-path algorithm with an adap-
tive metrics. When several routes are possible for a flow, we select the one using the less loaded
equipments, links and routers, as measured by our metrics. The intuition is two-fold: (i) we want
to avoid sending new flows to a router with a very loaded routing table, if there exists an alternative
path using routers with less loaded routing tables (ii) load balancing the traffic over the multiple
possible paths is currently done in data centers to avoid overloading links.

For every flow (s, t, d), we first build a weighted directed graph (digraph) Gst = (V,Ast, w),
where, for every (u, v) ∈ Ast, wuv is the weight of link (u, v). Gst represents the residual network
after having routed the previously routed flows:

- Gst is a subgraph of G where an arc (u, v) is removed if its capacity is less than d or if the
flow table of the router u is full and does not contain any wildcard rule for (s, t, pv) (where
pv represents the output port of u towards v). Note that, when a table is full and compressed,
a node u has only one outgoing arc (to the node v), corresponding to the first existing rule
of the form (s, ∗, pv), (∗, t, pv) or to the default rule (∗, ∗, pv). As more tables get full, the
number of nodes with only one outgoing arc increases, reducing the size of the graph.

- The weight wuv of a link depends on the overall flow load on the link and the table’s usage
of router u. We note wcuv the weight corresponding to the link capacity and wruv the weight
corresponding to the rule capacity. They are defined as follows:

wcuv = Fuv
Cuv

where Cuv is the capacity of the link (u, v) and Fuv the total flow load on (u, v). The
more the link is used, the heavier the weight is, which favors the use of lower loaded links
allowing load-balancing. And

wruv =

|Ru|
Su

if 6 ∃ wildcard rule for (s, t, v)

0 otherwise

31

3. Flow Scalability: Minnie

Algorithm 2 Compressing a table
Input:

Set of rules R
Output:

Compressed rules
1: Compression by source

2: list of rules Cr {order of insertion = order of matching}
3: for each s ∈ V do
4: P∗

s , set of most occurring ports p in {(s, t, p) | ∀t ∈ V }
5: end for
6: p∗ = most occurring port in all P∗

s {ties are broken at random}
7: for each s ∈ V do
8: if p∗ ∈ P∗

s then
9: p∗

s = p∗

10: else
11: p∗

s = most occurring port in P∗
s {ties are broken at random}

12: end if
13: end for
14: for each (s, t, p) ∈ R do
15: if p 6= p∗

s then
16: add (s, t, p) to Cr

17: end if
18: end for
19: for each s ∈ V do
20: if p∗

s 6= p∗ then
21: add (s, ∗, p∗

s) to Cr

22: end if
23: end for
24: add (∗, ∗, p) to Cr

25: Compression by destination

26: list of rules Cc {order of insertion = order of matching}
27: P∗

t , set of most occurring ports p in {(s, t, p) | ∀t ∈ V }, ∀s ∈ V
28: p∗ = most occurring port in P∗

t {ties are broken at random}
29: for each t ∈ V do
30: if d ∈ P∗

t then
31: p∗

t = p∗

32: else
33: p∗

t = most occurring port in P∗
t {ties are broke at random}

34: end if
35: end for
36: for each (s, t, p) ∈ R do
37: if p 6= p∗

t then
38: add (s, t, p) to Cc

39: end if
40: end for

32

3. Flow Scalability: Minnie

41: for each t ∈ V do
42: if p∗t 6= p∗ then
43: add (s, ∗, p∗t) to Cc
44: end if
45: end for
46: add (∗, ∗, d) to Cc
47: Default port compression

48: list of rules Cd
49: p∗ = most occurring port in R {ties are broke at random}
50: for each (s, t, p) ∈ R do
51: if p 6= p∗ then
52: add (s, t, p) to Cd
53: end if
54: end for
55: add {(∗, ∗, p∗)} to Cd
56: return smallest set of rules between Cr, Cc, and Cd

where Ru is the current set of rules for router u. Recall that Su is the maximum number of
rules which can be installed in the routing table of router u. The weight is proportional to the
usage of the table. Note that wcuv ∈ [0, 1] and wruv ∈ [0, 1]. They measure the percentages
of usage of link uv and the routing table of router u.

The weight wuv of a link (u, v) is then given by:

wuv = 1 + 0.5 wcuv + 0.5 wruv.

The additive term 1 is used to provide the shortest path in terms of number of hops when
links and routers are not used (i.e., when wcuv = 0 and wruv = 0 for all (u, v) ∈ Ast).
This term could be replaced by the delay to traverse link (u, v) to obtain the shortest paths
in terms of delay. When the links and routers are used, we take into account their usage.
Moreover, we wanted to give the same importance to network link load and table load. Thus,
we choose an equal weight of 0.5 for wcuv and wruv. Note that wuv ≤ 2. This ensures that
l(p) ≤ 2 × l(p∗), where p is the path found by the routing module, p∗ is the unweighted
shortest path and l(p) the number of hops of path p (indeed, l(p) ≤ w(p) as wuv ≥ 1,
w(p) ≤ w(p∗) as p was selected, and w(p∗) ≤ 2 l(p∗), where w(p) is the sum of the
weights of the links of path p). This means that no path longer than twice the current
available shortest path is selected.

When (Gst, w) is built, we compute a route for the flow by finding a shortest path between s and
t in the digraph minimizing the weight w.

33

3. Flow Scalability: Minnie

Algorithm 3 Finding a path for a flow

Input:
A flow (s, t, d)
a digraph G = (V,A)
rule space capacity Su ∀u ∈ N
set of rules Ru ∀u ∈ N
link capacity Cuv ∀a ∈ A
flow Fuv,∀a ∈ A

Output:
A path for (s, t, d)

1: Create a weighted digraph Gst = (V,Ast = ∅,W)
2: for each (u, v) ∈ A do
3: if Cuv −Fuv ≥ d then
4: if ∃ wildcard rule for (s, t, pv) then
5: add edge (u, v) to Gst
6: wruv = 0
7: wcuv = Fuv/Cuv
8: Wuv = 1 + 0.5wruv + 0.5wcuv
9: else if |Ru| < Su then

10: add edge (u, v) to Gst
11: wruv = |Su|/Ru
12: wcuv = Fuv/Cuv
13: Wuv = 1 + 0.5wruv + 0.5wcuv
14: end if
15: end if
16: end for
17: return weighted shortest path between s and t in Gst = (V,A′,W)

34

3. Flow Scalability: Minnie

3.4 Implementation: MINNIE in SDN controller

When the controller compresses a table, the MINNIE SDN application2 will first execute the rout-
ing phase and then the compression phase. Hence, in a dynamic setting, when a new flow must be
routed with a new entry in the router, and when the threshold of X rule will be reached, the Xth

entry is first pushed to the switch (to allow the new flow to travel to the destination), and right after
that, the compression is executed. Once the compression module is launched at the controller, a
single OpenFlow command is used to remove the entire routing table from the switch. Then the
new routes are sent immediately to limit the downtime period, that we define as the period between
the removal of all old rules and the installation of all new compressed rules. When two or more
switches need to be compressed at the same time, the compression is executed sequentially.

After MINNIE compresses an SDN switch rules, the controller must install all the SDN rules
in the switch in the order specified by MINNIE. When implementing this action in the controller
two problems need to be considered: (i) How to make sure that the SDN device is following the
rule order given by MINNIE? (ii) How to install the rules in the SDN switch quickly?

As stated in Section 3.3, the order given by the MINNIE algorithm is the order that should be
used to match a packet. We leverage the usage of SDN rule priority to enforce the exact rule order
given by MINNIE. SDN rules have a 16 bit priority field that enables 65535 priority numbers.
When a packet matches multiple rules which have different priorities, the switch will forward the
packet based on the highest priority rule.

In its current version, MINNIE compresses the table based on the source only or destination
only. MINNIE routing table will thus end up with 3 types of rules: (i) Normal forwarding rules
which match on source and destination (ii) Aggregated forwarding rules that match either on
source or on destination (iii) Default rule. It should be noted here that the final routing table can
not have at the same time aggregated forwarding rules by source and by destination. Hence, with
all these constraints in mind, we need to use 3 priorities when installing compressed rule tables.

In order to minimize the downtime when compressing and pushing its compressed table to an
SDN device, we decided to delete all the rules and install the new rules instead of updating existing
rules. This decision was motivated by the fact that updating the SDN rules in TCAM is time
consuming and an update operation is considered as two operations (delete + insert) [KPK14].
Our methodology leads to a single delete action for the whole table and then a batch of rule
insertions. These rules are going to be inserted without waiting for the barrier reply message in
order not to provoke high delay (see [KPK14] for details). In case one rule was not installed in the
SDN switch, the controller will be notified of this problem and it will then reinstall the required
rule. As we will see in a later section, this strategy did not have any negative impact on the network
traffic delay or packet loss (Section 3.5.5).

2Available at: https://sites.google.com/site/nextgenerationsdndatacenters/our-project/minnie

35

3. Flow Scalability: Minnie

3.5 Experimental results using an SDN testbed

In this section, we demonstrate the effectiveness of MINNIE using an SDN testbed. The charac-
teristics of our experimental network is described in Section 3.5.1. More specifically, we explain
how with a single hardware switch and OvS switches we deploy a full k=4 Fat-Tree topology with
enough clients to exceed the routing table size of the hardware switch (Section 3.5.3), as well as
a simple traffic pattern that fits the needs of our cases of study. The obtained results are shown in
Section 3.5.5, where we discuss the impact of MINNIE over the traffic delay and the loss rate.

3.5.1 TestBed description

Our testbed consists of an HP 5412zl SDN capable switch (K15.15) with 4 modules installed,
each with 24 GigaEthernet ports, and 4 DELL servers. Each server has 6 quad-core processors,
32 GB of RAM and 12 GigaEthernet ports. On each server, we deployed 4 VMs with 8 network
interfaces each. Hence, we provide up to 32 different IP addresses per physical machine. Each
VM is connected to a dedicated OvS switch. Each OvS switch is further connected using one
physical port (of the server’s 12 ports) to the HP access switch.

The topology of our data center network is a full k=4 Fat-Tree topology (see Figure 3.2),
which consists of 20 SDN hardware switches. To emulate those 20 SDN hardware switches,
we configured 20 Virtual Local Area Network (VLAN)s on the physical switch (referred to as
Vswitches). Since each VLAN possesses an independent OpenFlow instance, each VLAN behaves
as an independent SDN-based switch with its proper isolated set of ports and MAC addresses. The
VLAN configuration and the consequently port isolation prevents the physical switch from routing
traffic among VLANs through the backplane. The Vswitches are then interconnected on the HP
switch using Ethernet cables.

Each access switch (Figure 3.2) interconnects a single IP subnet with 16 clients, the latter
emulated by two VMs, featuring up to 8 Ethernet ports each one. We detail in subsection 3.5.3 the
reason for choosing 16 clients per subnet. Hence, in this network architecture, there is in total 8
subnets, with 16 different IP addresses (i.e. clients) per subnet.

The HP SDN switch can support a maximum of 65536 (software + hardware) rules to be
shared among the 20 emulated SDN switches. Software rules are handled in the RAM and pro-
cessed by the general-purpose CPU (slow path) while hardware rules are stored in the TCAM (fast
path) of the switch. The number of hardware rules that can be stored per module in our switch
being equal to 750, the total switch capacity is equal to 3000 hardware rules maximum. Those
65536 (software + hardware) available entries are not equally distributed among the 20 switches
as the concept of first flow arrived-first served policy is used where the SDN rules are going to be
installed on the HP switch in the order of arrival.

In one of the physical servers, we also deployed an additional VM hosting a Beacon [Eri13]

36

3. Flow Scalability: Minnie

Figure 3.2: Our k=4 Fat-Tree architecture with 16 OvS switches, 8 level 1, 8 level 2, and 4 level
3 switches.

controller to manage all the switches (HP Vswitches or OvS switches) in the data center. Accord-
ing to [SZZ+13], Beacon features high performance in terms of throughput and ensures a high
level of reliability and security. To prevent the controller from becoming the bottleneck during our
experiments, we configured it with 15 vCPUs (i.e., 15 cores) and 16 GB of RAM.

In the following, we justify our choice of 16 clients per access (level 1) switch and why we
have decided to add virtual OvS switches between clients and level 1 switches.

3.5.2 The need of level-0 OvS

OvS switches are used to make the controller aware of every new flow arriving in the fabric. Their
routing tables are never compressed.

Without those switches, compressing at access switches with MINNIE may lead to possibly
wrong routes. This phenomenon can be explained by considering the case where clients would
be directly connected to access switches and MINNIE would be used at those switches. Suppose
that a correct routing imposes at one of the access switches that to reach destinations d1 and d2,
packets must be forwarded to port p1 while for destination d3, they should flow through port p3.
Without compression, we have three rules. Now suppose that MINNIE imposes compression when
the rules for destination d1 and d2 are present but the one for d3 has not been installed yet. This
leads to entries (s1, d1, p1) and (s1, d2, p1) being replaced by (s1, ∗, p1). When packets from s1 to
d3 are sent later, they will match the compressed forwarding rule and will reach d3 using a longer
path (or no path at all), as they will be forwarded to port p1 instead of p3. In order to avoid this
behavior, the controller should be contacted for every new flow to take the best routing decision
for this flow.

This is the role of the OpenFlow enabled OvS switches that we introduced. They enable the
controller to perform compression with an exact knowledge of the set of active flows. The net

37

3. Flow Scalability: Minnie

result of using those OvS switches is to enable us to perform compression starting from the access
switches, giving us more opportunity to use hardware rules at these switches. In the first version
of this work, we did not use level-0 OvS switches, and dealt with this problem by not compressing
at access switches, leading to lower compression ratios, and overloading of these switches.

Here, one could think that we just migrated the problem from the edge devices to the physical
server. We believe however, that this architecture represents an important step towards the solution
of limited TCAM space because of the following reasons:

1. While for physical SDN-capable devices, the TCAM size is a real problem, placing one
OvS switch per server, even without compressing the flow table, should not introduce major
performance problems. Indeed, the number of rules to be processed by each OvS switch
should remain modest3 while an OvS switch can handle 1000 rules in the kernel space, and
up to a maximum of 200,000 rules [PPK+15].

2. Virtualization is a common service in modern data centers. Hence, virtual switches are
routinely used to provide network access to the virtual machines. OpenvSwitch is natively
supported by Xen 4.3 and newer releases. VMware offers support to OpenvSwitch through
the NSX service for Multi-Hypervisor, which is the natural choice for large data centers.
KVM, due to its native integration in Linux environments, can easily be deployed using
OvS switches.

3.5.3 Number of clients chosen for the experimentations

In our Fat-Tree architecture, we can easily deduce the number of rules corresponding to a valid
routing assuming that each VM talks to all other VMs not in its IP subnet. Considering no com-
pression at all, one rule is needed for every flow passing through each switch along the path from
a source to a destination. The set of flows that a switch “sees" depends on its level in the Fat-Tree.
Note that here, a flow is identified by the couple IP source and IP destination addresses. Hence,
for every pair of nodes A and B there are two unidirectional flows: A → B and B → A, i.e. two
rules per switch on the path from A to B.

For any flow between two servers, the path goes first through the access switches to which
the servers are connected. Assuming n servers per access switch (n = 2 in Figure 3.2), then each
of the n servers connected to an access switch communicates with the other 7× n servers in other
subnets via outgoing and incoming flows. Overall, this represents 14n2 flows going through any
access switch.

Using the same argument to find the number of flows for switches at the higher levels, we

3As reported in [CMT+11], a typical rack of 40 servers generates around 1300 flows per second. Therefore, each
server is generating on average around 32.5 flows per second. Assuming a worst case where every per flow rule is
unique and that the expiration interval for unused rules is the default value of 10 seconds of inactivity, then, an OvS
switch in a single server will need to store 325 forwarding rules roughly (plus the default route to reach the local VM).
This value is pretty small as compared to the 1000 rules in the fast path of an OvS switch.

38

3. Flow Scalability: Minnie

0 50 100 150 200 250 300 350 400
of servers

0

100000

200000

300000

400000

500000

600000

700000

#
 o

f
ru

le
s

16 clients

Switch limit

No compression

Comprestion at the end

MINNIE

Figure 3.3: Total number of rules installed as a function of the number of servers, in a k = 4
Fat-Tree configuration.

have a total of 13n2 flows at each aggregation switch and 12n2 flows for a core switch. In total,
264n2 rules are needed for the entire network.

In Figure 3.3, we compare the total number of rules with no compression at all, and with
compression (obtained via simulation) on all switches. Without compression, only 15 clients per
subnet can be deployed without running out of space in the forwarding table of our entire data
center (65536 entries), while up to 36 clients can be deployed with the compression at the end.
Therefore, Figure 3.3 explains our choice of installing 16 clients per subnet. Indeed, it is the first
value for which the number of rules exceeds our total limit of number of rules (67584 rules) when
no compression is achieved.

3.5.4 Experimental scenarios

We aim at assessing the performance of MINNIE with a high number of rules and with a high
load. Those two objectives are contradictory in our testbed. Indeed, stressing the SDN switch in
terms of rules, i.e., getting close to the limit of 65536 entries, imposes to have software rules. As
software rules are handled, by definition, by the general purpose CPU of the switch (the so-called
slow path), a safety mechanism has been implemented by HP to limit the processing speed to
only 10000 pps (packets per second) per VLAN. Assuming an MTU of 1500 bytes, we could not
go beyond 120 Mbps, shared between all ports in a VLAN. This is why we designed a second
scenario where only hardware rules are used. In this scenario, we can fully use the 1 Gbps link
but we are limited to the 3000 hardware rules that have to be shared among the 20 switches. We
thus built two scenarios to assess the performance and the feasibility of deploying MINNIE in real
networks:

• Scenario 1: Low Load with (large number of) software rules (LLS). This scenario
enables to test the behavior of the switch when the flow table is full.

39

3. Flow Scalability: Minnie

• Scenario 2: High Load with (small number of) hardware rules (HLS). This scenario
enables us to demonstrate that the impact of MINNIE remains negligible even when the
switch transfers a load close to the line rate.

For each scenario, we consider three compression cases:

• Case 1: No compression. We fill up the routing tables of the switches and we never com-
press them. This test provides the baseline against which we compare results obtained with
MINNIE.

• Case 2: Compression at the end (after installing the whole set of forwarding rules or when
the forwarding table is full). This scenario illustrates the worst case and provides insights
about the maximum stress introduced by MINNIE in the network. Indeed, in this case, we
have the highest number of rules to be removed and installed after the compression executed
by MINNIE which should be done as fast as possible.

• Case 3: MINNIE (Dynamic compression at a fixed threshold). We set a threshold to the
table size and compress whenever we reach this value. We extend the third scenario of the
simulations by considering three thresholds values for LLS , namely 500, 1000 and 2000
entries, and also three values for HLS: 15, 20 and 30 entries.

While LLS allows to test the scalability of MINNIE in terms of number of rules in real SDN
equipments, this scenario might introduce, by default, an important jitter in the network because
of the usage of the general-purpose CPU to process the traffic. HLS helps to better understand the
impact of the compression and forwarding table replacement over the traffic. Since the traffic rate
fills up to 75% of the access links, which is not enough to introduce congestion, and packets are
processed by the ASIC, we expect to have a low jitter. Hence, any sudden increase of this last
will immediately suggest an important impact of the compression mechanisms over the network
stability.

3.5.4.1 Traffic pattern

We detail in the following how the two scenarios introduced in the previous section are actually
implemented in our testbed.

Low Load with software rules Scenario - LLS In this scenario, the traffic is generated as
follows: each client pings all other clients in every other subnet. This means that for each access
switch, each of the 16 clients pings 112 other clients. There are no pings between hosts in the same
subnet as we focus on the compression of classical IP-centric forwarding rules, which is used to
route packets between different subnets, and not MAC-centric forwarding rules, as in legacy L2
switches.

We start with an initial client transmitting 5 ping packets to one other client. This train of 5

40

3. Flow Scalability: Minnie

Level No Comp Comp 500 Comp 1000 Comp 2000 Comp full

access 3452 752 761 790 802

aggregation 3233 618 649 672 717

core 3014 97 97 97 97

total 65535 11346 11667 12087 12542

Table 3.2: Average number of SDN rules installed in a virtual switch at each level

ICMP requests forms a single flow from the SDN viewpoint. We wait for this ping to terminate
before sending 5 other different ping packets to another client, and so on, until all the 112 clients
are pinged. When the first client finishes its pings series, a second client (hosted in the same VM)
starts the same ping operation. Hence, the traffic is generated during all the experiment in a round-
robin manner, among the 8 clients of each VM. Moreover, VMs do not start injecting traffic at the
same time. We impose an inter-arrival period of 10 minutes between them. Hence, VM 1 starts
sending traffic at time zero, while VM 2 starts at minute 10, VM 3 at minute 20, and so on. This
smooth arrival of traffic in the testbed is motivated by the fact that we do not wish to overload the
physical switch with OpenFlow events. Indeed, as stated in [KREV+15], commercial OpenFlow
switches can handle up to 200 events/s. Since in our testbed we have 20 virtual switches emulated
in th same physical openflow switch, each virtual switch handling its own flow_mod (message for
sending rules), packet_out (message with packet to be sent) and other events, the critical number
of events can be easily reached.

The experiment of this scenario ran for almost 3.5 hours. All the rules are installed in the first
2 hours and 45 minutes.

High Load with hardware rules Scenario - HLS In this scenario, we used 1 client per VM
so that the total number of rules installed (1056 total rules) is less than the hardware limit (3000
rules). Each VM starts a 50 Mbps ICMP traffic with the other clients in a round robin manner.
After starting the first client machine, we wait for 75s and then start the outgoing connections for
the second VM and so on, until all the machines establish connections with one other client. In
this scenario, we have chosen 50 Mbps per connection in order to have a maximum of 800 Mbps
load on a 1 Gbps link when all connections are established.

Each experiment of this scenario ran for 1 hour and all the rules are installed in the first 20
min. As mentioned earlier, all the rules were installed in hardware in order to reach high loads.

3.5.5 Experimental results

3.5.5.1 Scenario 1: Compression with LLS

41

3. Flow Scalability: Minnie

Level Comp 500 Comp 1000 Comp 2000 Comp full

access (8 switches) 79% 78.75% 77.95% 77.61%

aggregation (8 switches) 81.43% 80.51% 82.14% 78.45%

core (4 switches) 96.84% 96.84% 96.84% 96.83%

total (20 switches) 83.21% 82.19 % 81.55 % 81.44%

Table 3.3: Average percentage of SDN rules savings at each level

Number of rules with/without compression As explained in Section 3.5.3, in this scenario
and without compression, the limit of 65536 entries in our HP switch is reached. On the other
hand, compressing the table with MINNIE allows to install all the required rules without reaching
the limit when compressing at a given threshold (500, 1000 or 2000 entries) or when the flow table
is full. Indeed, as shown in Table 3.2, the total number of installed rules does not exceed 13000
in all compression cases. This represents a total saving higher than 80% of the total forwarding
table capacity (Table 3.3) with a saving larger than 96% at the third level and a minimal saving
over 76%. We also notice that the percentage of savings decreases as we go from level 1 (access)
to level 3 (core), this is mainly due to the number of routing path options to reach a destination
that exist on a node. In a fat tree, using only Dijktsra’s algorithm the number of routing variations
decrease by k/2 as we move from one level to the other, the routing variation between level 2 and
level 1 is k/2 and between level 1 and level 3 it is k/4. Hence, as the number of routing variation
decrease the rule saving percentage increases.

Figure 3.4 depicts how the number of rules evolves over time with and without compression.
Please, note that this figure takes into account the total number of forwarding rules in the network,
including both OvS and the HP switch. The number of rules increases at the same pace in all
3 scenarios during the first 30 minutes. When the compression is triggered, the number of rules
decreases. Later, for compression at 500, 1000, and 2000 entries, the number of rules increases
at a lower pace than in the non compression case. This is because (i) the controller has installed
some wildcard rules and so no new rules at level 1, 2 or 3 need to be installed for new flows, and
(ii) other compression events are triggered. We further notice here that the presence of wildcard
rules influences the routing scheme as the new incoming flows will follow these paths (i.e. cor-
responding wildcard rules path) in priority which explains the difference between the results of
compression when the forwarding table is full and compression with fixed thresholds as can be
observed in Figure 3.4.

Compression time Figure 3.5 shows the compression duration seen by the controller, which
consists of: (i) the computation time of compressed rules that can be seen in Figure 3.6, (ii)
the removal of the current forwarding table, (iii) the formatting of the compressed rules to the
OpenFlow standards, and (iv) the injection of the new rules to the switch.

We notice that the compression time per switch remains in the order of a few milliseconds.
Indeed, compression takes about 5 ms (resp. 7 ms) for compression at 500 and 1000 entries (resp.

42

3. Flow Scalability: Minnie

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

To
ta

l n
um

be
r

of
 r

ul
es

 in
st

al
le

d

time

HP limit reached

No Comp
Comp 500

Comp 1000

Comp 2000
Comp Full

Figure 3.4: Total number of rules installed in the whole network

0

5

10

15

20

25

30

Com
p

50
0

Com
p

10
00

Com
p

20
00

Com
p

fu
ll

D
ur

at
io

n
(m

s)

Figure 3.5: Average duration of compression period.

43

3. Flow Scalability: Minnie

first compression

second compression

Figure 3.6: Scatter plot of the time to compress a routing table of a k = 12 Fat-Tree.

2000 entries). Even the worst case – compressing when the table is full – represents less than
18 ms for most of the switches with a median at 9 ms. Moreover, in this latter case, sequentially
compressing all switches requires no more than 152 ms. For any switch, the first compression is
done when reaching 1000 flows corresponding to 1000 forwarding rules (as aggregation rules are
only introduced at the first compression). We then see that the second compression for a switch is
done for around 2500 flows followed by compression when reaching 3000 to 4000 flows. These
compression results show that previous compressions were efficient and that a large number of
new flows are routed via aggregated rules.

This compression period is mainly due to the time needed to delete all the routing table using
one delete request and install all the new rules in the switch. Indeed, as we can see in Figure
3.6, even for a larger scale k = 12 Fat-Tree with 432 servers with an all-to-all traffic, the average
compression computation time is 1.29 ms.

Our total compression time results are inline with the results shown in [KPK14] (Figure 3).
The reason why we have smaller delays is the fact that, as stated before, we do not wait for the
barrier reply before sending the next flow insertion rule (hence we ignore the time it takes to
receive the barrier reply message); moreover, we delete all the rules using a single action instead
of deleting each rule one by one.

SDN control path In the SDN paradigm, the controller-to-switch link is a sensitive component
as the switch is CPU bounded and cannot handle events at a too high rate. Figure 3.7 represents
the network traffic between the switch and the controller in the different scenarios. We can observe
that the load increases highly when the switch limit in terms of number of software+hardware rules
is reached and we do not compress the routing tables. After time t=2:30h, the limit is reached and
for every packet of every new flow, each switch along the path has to ask the controller for the
output port. These traffic peaks vanish when we compress the routing tables for the 1000 and

44

3. Flow Scalability: Minnie

100
200
300
400
500
600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

lo
ad

(p
kt

s/
s)

No Comp time

100
200
300
400
500
600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

lo
ad

(p
kt

s/
s)

Comp 500 time

100
200
300
400
500
600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

lo
ad

(p
kt

s/
s)

Comp 1000 time

100
200
300
400
500
600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

lo
ad

(p
kt

s/
s)

Comp 2000 time

100
200
300
400
500
600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

lo
ad

(p
kt

s/
s)

Comp Full time

Figure 3.7: Network traffic between the switches and the controller.

2000 limits or for the case of compression when full. As for the compression at 500 scenario, we
notice the occurrence of high peaks after the first hour. They result from successive compression
events (over 16000 in our experiments as can be seen in Table 3.4) that are triggered by any new
packet arrival. Indeed, in this scenario, most of the switches will perform a compression for every
new flow, since the total number of rules after compression remains higher than the threshold.

To understand the impact of the control plane on the data plane, we have to look at three key
metrics that we detail in the following sections: (i) the loss rate for all scenarios; (ii) the delay
of the first packet of new flows that should be higher when there is no compression (at least after
t=2:30h) or during compression at 500 and (iii) the delay of subsequent packets (packets 2 to 5)
that should be larger for the case of no compression when the table is full. We ruled out a precise
study of the loss rate as the load in this set of experiments (LLS) is low. We report in Table 3.4 the
loss rates observed for all scenarios. Though there exist some significant differences between the
different scenarios, the absolute values are fairly small. We therefore focus on delays hereafter.

45

3. Flow Scalability: Minnie

Threshold No Comp Comp 500 Comp 1000 Comp 2000 Comp full

of compressions NA 16594 95 28 20

% pkt loss 6.25× 10−6 0.003 5.65× 10−4 2.83× 10−5 3.7× 10−4

Table 3.4: Total number of compressions and packet loss rate.

0

200

400

600

800

1000

1200

1400

1600

No
Com

p

Com
p

50
0

Com
p

10
00

Com
p

20
00

Com
p

Full

D
ur

at
io

n
(m

s)

(a) First packet delay boxplot with compres-
sion 500

0

10

20

30

40

50

60

70

No
Com

p

Com
p

10
00

Com
p

20
00

Com
p

Full

D
ur

at
io

n
(m

s)

(b) First packet delay boxplot without com-
pression 500

Figure 3.8: First packet delay boxplot

New rules installations: Impact on first packet delay The first packet delay provides insights
on the time needed to contact the controller and install the rules when a new flow arrives. Indeed,
the round trip delay seen by the first packet of a new flow includes the network propagation delay,
the queuing delay, and the time needed by a switch to obtain a new rule.

We observe in Figure 3.8 that for the scenarios with compression at 1000 rules and compres-
sion at 2000 rules, the first packet delay ranges from 25 ms to 35 ms. This increase as compared
to subsequent packets of the same flow- which can reach a factor of 10 as we will see in the next
section- highlights the price to pay to obtain and install a forwarding rule in software. The results
can be significantly worse if the controller is frequently modifying the forwarding rule, like in
the compression at 500 rules case. Indeed, for that special case, the third quantile reaches up to
600 ms for the first packet delay.

Surprisingly, the cases without compression and compression at the table limit lead to similar
results. Compressing when the table is full should intuitively lead to better performance as in a
number of cases, a limited number of new rules are needed and can be installed as compared to
the no compression case. However, in our tests, the table becomes full after 2 hours and 30 min
of experiment (out of 3 hours). Hence the similarity of results in Figure 3.8. In fact, when the
table is full, the impact is striking, as can be seen in the time series of Figure 3.9a, which shows
the evolution of the first packet delay per new flow when no compression is executed. Indeed,
after 2:30 hours - when the table is full- we can observe a jump in the delay for no compression
while when compressing at the table limit the trend is the opposite and the delay decreases (Figure

46

3. Flow Scalability: Minnie

3.9e) after compression. As for the case of compression at 500, the first packet delay features
a chaotic behavior (Figure 3.9b) due to its high compression frequency as expected. Regarding
the scenarios of compression at 1000 (Figure 3.9c) and compression at 2000 (Figure 3.9d), the
benefits of compressing periodically are stricking: the first packet delay shows a constant trend
during the whole experiment.

Eventually, note that the results obtained here are impacted by the fact that we use software
rules, which increase the delay to install rules.

Subsequent packets delay As explained previously, we expect to observe higher delays for
subsequent packets for the case of no compression (when the table is full) and also possibly for
the case of compression at 500 as the switches have to reinstall new rules at a high frequency.

In our experiments, the delay seen by packets 2 to 5 of each flow is shorter than 4 ms most
of the time for scenarios without compression, compression at 1000, compression at 2000 and
compression at the forwarding table size limit, as we can see in Figure 3.10. Compression at 500
is slightly different (the third quartile reaches up to 5 ms), highlighting the negative impact of the
high frequency of compression events on the data path of the switches.

Figure 3.10 aggregates all the results together and we have again to resort on the time series
to observe specific effects. When all needed forwarding rules are successfully installed and the
compression frequency is low (which is the case for compression at the limit, compression at 1000
and compression at 2000), the delay of packets 2 to 5 is consistently comprised between 2 ms and
6 ms (Figures 3.11d, 3.11e and 3.11f).

Without compression, while most of the packets experience a delay between 2 ms and 6 ms
before the table limit is reached, all new incoming packets will see a delay equal or higher than
40 ms afterwards (Figure 3.11b). As for the case of compression with small table limit (500 rules),
we remark in Figure 3.11c a time interval between 1:45 hour and 2:15 hour, where the delay
increases suddenly from 2 ms to 100 ms. This is because some switches are unable to reach a
forwarding table smaller than 500 rules even after compression, and hence, the controller executes
a compression after every new flow arrival. After 2:15 hours, the frequency of new incoming flows
that need to be installed decreases (Figure 3.9b), leading to a stabilization of the delay.

From all the results shown above, we notice that putting a low table limit (e.g. 500) has
a bad impact over the traffic passing through the network, whereas setting it to 1000 and 2000
provided enhances performance for network traffic. This is due to the fact that in our scenarios,
the compressed table had a size larger than 500 while it was always less than 1000. Hence, in order
to leverage always the benefit of MINNIE we advise to set a dynamic threshold that will change
based on the compressed table size - see Section 3.7.

47

3. Flow Scalability: Minnie

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(a) Without compression

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(b) Compression 500

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(c) Compression 1000

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(d) Compression 2000

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(e) Compression when full

Figure 3.9: First packet average delay with low load

48

3. Flow Scalability: Minnie

0

2

4

6

8

10

No
Com

p

Com
p

50
0

Com
p

10
00

Com
p

20
00

Com
p

Full

D
ur

at
io

n
(m

s)

Figure 3.10: Average packet’s delay boxplot for packets 2 to 5

3.5.5.2 Scenario 2: compression with HLS

We have so far investigated the behavior of MINNIE in an environment where the flow table can
be full. The latter scenario involves the use of software rules and thus the slow path of our HP
switch.

We now turn our attention to the case where the load on the data plane is as high as 80%.
This entails using hardware rules only and we are limited to 3000 such rules with our HP switch,
shared among the 20 switches of our k=4 Fat-Tree topology. The experiments in this section are
consequently performed with 1 client per access switch (16 clients in total) and an all-to-all traffic
pattern with 50Mb/s per flow.

As expected, the first packet round trip delay decreases to around 1 ms, while packets 2 to 5
experience a round trip delay of around 0.55 ms4. The compression duration, in all scenarios, is
equal to 1 ms only, which is understandable given the small total number of flows. More impor-
tantly, we noticed no packet losses and no drastic effects on delay even during compression
events, which proves that MINNIE is a viable and realistic solution. Indeed, the maximum
variation of delay between the delays of no compression and all compression scenarios is less than
0.1 ms, a value which might be observed even in non-SDN networks (see Figure 3.12).

The compression ratio in Table 3.5 demonstrates that even with a low number of rules, MIN-
NIE can achieve a high compression ratio, over 70%. Figure 3.13 which represents the evolution
of the forwarding table size for all cases – no compression, compression at 15, 20, 30 and when
full (after installing all the needed rules)– highlights that MINNIE maintains a similar low number
of rules in all compression scenarios.

A last question that we aim at investigating is the impact of compression on TCP connections.

4A direct comparison between these delays and the one for the low load and software rules scenario is not straight-
forward. Section 3.2 will present a fair comparison of these two modes.

49

3. Flow Scalability: Minnie

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(a) Without compression 7 IPs

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(b) Without compression 8 IPs

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(c) Compression 500

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(d) Compression 1000

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(e) Compression 2000

1

10

100

1000

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

av
er

ag
e

de
la

y
(m

s)

time

limit reached

between pods
inside pod

(f) Compression when full

Figure 3.11: Average packet delay of pkts 2 to 5 with low load

50

3. Flow Scalability: Minnie

(a) First packet’s delay (b) Average packet’s delay except first packet

Figure 3.12: Packet delay boxplot under high load

Level Comp 15 Comp 20 Comp 30 Comp full

level 1 (8 switches) 76.56% 75.66% 75% 72.76 %

level 2 (8 switches) 75.48% 73.31% 71.87% 69.71 %

level 3 (4 switches) 76.04% 76.56% 74.47% 73.95 %

total (20 switches) 76.04% 74.9 % 73.67 % 71.78 %

Table 3.5: Average percentage of SDN rules savings at each level under high load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

00 02 04 06 08 10 12 14 16 18 20

T
ot

al
 n

um
be

r
of

 r
ul

es
 in

st
al

le
d

time

No Comp
Comp 15
Comp 20
Comp 30

Comp Full

Figure 3.13: Total number of rules installed in the network under high load

51

3. Flow Scalability: Minnie

0.1

1

10

00 10 20 30 40 50 00

av
er

ag
e

de
la

y
(m

s)

time

between pods
within pod

Figure 3.14: High load and hardware rules: Delay of packets 2 to 5 - Compression at 20 entries

The high load scenario is especially relevant as data centers are in general operated at high loads.
The variation of the round trip delay of most of the packets is less than 0.1 ms (Figure 3.12) for
compression at 20 entries with the highest variability. For compression at 20 entries and during the
first 20 minutes of the experiment (compression events occur during that period), the minimum
and maximum round trip delays between servers in the same pod is around 0.4 ms and 0.6 ms
respectively, while the minimum and maximum round trip delays between servers in different
pods is around 0.55 ms and 0.8 ms respectively (see Figure 3.14). Those observed delays will not
produce any problem to TCP connections. Indeed, the minimum RTO value (the time needed to
trigger a TCP timeout and retransmit a non Acked packet), is equal to 200 ms in Linux systems
(and defined to be 1 second in the RFC 2988 [PA00]), which is far from our observed delays
(lower than a millisecond). A recent draft submitted to the TCPM Working Group [BEBJ15]
appeals for a decrease of the minimum RTO value to 10 ms. Once again, the maximum delay
observed during the compression events is still far from that proposed minimum RTO. Hence,
compression operations should not lead to any spurious TCP time out. Note eventually that results
obtained in the simulations on the computational time (last column of Table 3.6 of Section 3.6.2)
confirm that the impact of MINNIE on the delay experienced by the packets of the flow should be
limited in general.

3.6 Simulations scalability results

In order to assess the scalability of MINNIE, we study its behavior through simulations for a wide
variety of data center architectures. We first present the different scenarios, performance metrics
and data center architectures in Section 3.6.1. We then demonstrate that MINNIE works well for
topologies of different sizes and structures in Section 3.6.2.

52

3. Flow Scalability: Minnie

3.6.1 Simulation settings

We present in this section the different scenarios studied via simulations, the traffic patterns and
metrics that will be evaluated. All simulations were carried out on a computer equipped with a 3.2
GHz 8 Core Intel Xeon CPU and 64 GB of RAM.

3.6.1.1 Scenarios

We ran simulations under the same different cases as in the experimental section (i.e. No compres-
sion, Compression at the end of the simulation and MINNIE). And for all scenarios, we consider
an all-to-all traffic in which every single server establishes a connection to all other servers. Each
flow is constantly sending traffic. We consider this situation to test MINNIE in the most extreme
scenario in terms of number of flows, and thus, in terms of number of rules. Each flow is repre-
sented by a unique source-destination pair.

3.6.1.2 Data center architectures

To test the efficiency of MINNIE, we considered state-of-the-art data center architectures: Fat-
Tree [AFLV08], VL2 [GHJ+09], BCube [GLL+09] and DCell [GWT+08]. For each family of
architecture, we considered topologies of different sizes hosting from few units to about 3000
end points. These end points can be either servers or IP subnets, grouping hundreds of different
machines. In the following, for simplicity, we often use the term server for both cases. The number
of flows routed in the topologies can thus reach a few millions.

The architectures considered during these simulations can be classified into two different groups:

• Group 1, in which servers only act as end hosts includes Fat-Tree and VL2.

• Group 2, in which servers also act as forwarding devices (similarly to switches) includes
BCube and DCell.

We detail below how we chose the different set of parameters to build these topologies like the
number of switches or level of recursion.

Fat-Tree. The Fat-Tree is one of the most well-known architectures. The switches are divided
into three categories: core, aggregation and access (or ToR for Top of the Rack) switches. A k

Fat-Tree is composed of k pods of k switches and k2/4 core switches. Every switch possesses k
ports. Inside a pod, aggregation and edge switches form a complete bipartite graph. Each core
switch is connected to every pod via one of the k/2 aggregation switches. Every ToR switch has
a rack composed of k/2 servers. A k = 4 Fat-Tree is shown as example in Figure 3.15a.

For our simulations, to build Fat-Trees with up to 3000 servers, we considered k values

53

3. Flow Scalability: Minnie

Core

Aggregation

Access

(a) Group 1: A Fat-Tree with k = 4 pods

Intermediate

Aggregation

ToR

(b) Group 1: A VL2 network with Di = 6-ports
intermediate switches, Da = 6-ports aggregation
switches and T = 2 servers per ToR

Dcell(2, 0)[0]

Dcell(2, 0)[1]Dcell(2, 0)[2]

(c) Group 2: A DCell(2, 1), com-
posed of 3 DCell(2,0)

BCube(3, 0)[0] BCube(3, 0)[1] BCube(3, 0)[2]

(d) Group 2: A BCube(3, 1), composed of 3 BCube(3, 0)

Figure 3.15: Example of topologies studied.

54

3. Flow Scalability: Minnie

between 4 and 22.

VL2. The VL2 architecture is also composed of three layers of switches: intermediate, aggre-
gation and ToR switches. The intermediate and aggregation switches are connected together to
form a complete bipartite graph. Each ToR is connected to two different aggregation switches.
Three parameters control the number of switches of each layer and the number of servers of the
architecture: Da represents the number of ports of an aggregation switch, Di the number of ports
of an intermediate switch and T the number of servers in the rack of a ToR switch. Figure 3.15b
shows a V L2(Da = 6, Di = 6, T = 2). The topology has Da/2 (3 in the example) aggregation
switches, Di (6 in the example) intermediate switches, DaDi/4 (9 in the example) ToR switches
and TDaDi/4 (18 in the example) servers.

For our simulations, we chose the parameters of the topologies to ensure that every switch
has the same number of ports, that is VL2(2k, 2k, 2k − 2) for k between 2 and 11.

DCell. The DCell architecture is a topology in which both servers and switches act as forward-
ing devices. The topology is built recursively. The basic block is the level-0 DCell, DCell(n, 0),
where n servers are connected to a unique switch. From aDCell(n, l−1), composed of s(n, l−1)
servers, a DCell(n, l) can be build by connecting each server of a DCell(n, l − 1) to a different
DCell(n, l−1). This builds aDCell(n, l) containing (s(n, l)+1)DCell(n, l−1). For example,
a DCell(2, 0) is composed of 2 servers (s(n, 0) = n) and to create a DCell(2, 1), as shown in
Figure 3.15c, 3 DCell(2, 0) are interconnected.

In our simulations, we compare topologies with one level of recursion (referenced asDCell(l =
1)), with n between 1 and 54, and topologies with two levels of recursion (referenced asDCell(l =
2)), with n between 1 and 7.

BCube. BCube is another architecture in which the servers also act as forwarding devices.
Again, it is a recursive construction. The building block is a BCube(n, 0), composed of n servers
connected to a single switch. The level l being composed from multiple l− 1 levels. Unlike in the
construction of DCell, in which the recursion connect servers together, the construction of BCube
is done by connecting the servers via new switches. The number of switches added to make a
BCube of level l is equal to the number of servers in a BCube of level l − 1. Each switch is then
connected to one server of every BCube of level l− 1 and each servers to l+ 1 switches – see the
BCube(3, 1) in Figure 3.15d.

Like for DCell topologies, the same number of servers can be obtained with different levels
of recursion. We consider up to 3 levels of recursion.

55

3. Flow Scalability: Minnie

3.6.2 Simulation results

In this Section, we validate the scalability of MINNIE through simulations over the set of topolo-
gies described above. We demonstrate here that MINNIE works well for different topologies and
different sizes of data centers. We first analyze the compression rates that can be obtained by
compressing large tables. Then, we show that if tables are compressed all along the simulation as
soon as the limit is reached, then the compression module is much more efficient and the compres-
sion ratio reaches 90% for some topologies. We then investigate the efficiency of MINNIE when
considering around 1000 servers in multiple topologies. We show the efficiency of our method by
comparing the results of MINNIE with XPath [HCW+15].

Metrics To assess the efficiency of MINNIE, we measure the following metrics:

- Average compression ratio of compressed tables:

compression ratio = 1− number of rules of a switch
number of flows passing through the switch

Note that the compression ratio measures the efficiency of the compression algorithm. We
thus, do not consider tables on which no compression event was performed (in particular
empty tables), when we compute the average compression ratio.

- Number of compression events performed by a switch during the simulation.

- Number of flows passing through a switch (maximum and average over all switches).

- Number of rules per switch (maximum and average over all switches).

- Computation time for compressing a table and for routing a flow.

- Maximum number of servers which can be installed on a data center topology without going
beyond a forwarding table size of 1000 rules.

For each family of topologies, we present the results for the three scenarios described in
Section 3.6.1.1, referenced respectively as No compression, Compression at the end and MINNIE.

3.6.2.1 Efficiency of the compression module

The efficiency of the compression module of MINNIE can be assessed from Figure 3.16 where we
look at the average compression ratios of the Compression at the end scenarios. In this figure we
observe that DCell, BCube and VL2 topologies follow a similar phenomenon. They all feature
a sharp increase of the compression ratio when the number of servers is between 0 and 100: for
example, the ratio raises from 62% to 84% for DCell(l=2). Then, for larger number of servers, the
compression ratio levels off. On the other hand, Fat-Tree topologies have a different behavior and
do not experience the increase phase; the curve is almost flat all along the simulation. The higher
ratio shown on DCell topologies is explained by the aggregation of flows on the few switches

56

3. Flow Scalability: Minnie

0 500 1000 1500 2000 2500 3000
of servers

0.5

0.6

0.7

0.8

0.9

1.0

C
o
m

p
re

ss
io

n
 r

a
ti

o

BCube (l=3)
BCube (l=2)
BCube (l=1)
Dcell (l=2)

Dcell (l=1)
Fat tree
VL2

Figure 3.16: Compression ratio for the different topologies in Scenario 2.

available in the topology. Combined with a few number of outgoing ports, the compression module
can attain a very high compression ratio.

In the flat phase, compression ratios are between 60% and 80% for the three families BCube,
VL2 and Fat-Tree, and even reach values between 85% and 99.9% for DCell. In summary, the
compression module of MINNIE features a minimum of 60% savings in memory.

Compression event frequency. In Figure 3.17, we observe the total number of compression
events executed for the different topologies. Group 1 topologies reach a maximum of 516 com-
pressions for the k = 18 Fat-Tree (and 301 for VL2(20, 20, 18)). This represents an average of
about 1 compression event per switch for the Fat-Tree topology and less than 6 compression events
for VL2. However, Group 2 shows a higher number of compression events, with a maximum of
almost 6000 compression events for a BCube(53, 1) (in average, 54 compression events per for-
warding device). This difference is due to the near saturation of most of the switches in Group 2
topologies. In these nearly saturated tables, the compression leaves a table that is close to the 1000
limit and thus, the table is compressed only after few new flows are added.

3.6.2.2 Efficiency of MINNIE

MINNIE is composed of a routing and a compression module. When the number of rules reaches
the 1000 limit, MINNIE triggers the compression module. This dynamic behavior allows to ef-
ficiently route traffic without overloading the routing tables on topologies where the number of
servers increases. Figure 3.18 presents the maximum number of rules on a device (a router or a
server depending on the family of topology) as a function of the number of servers for the different
families of topologies. We remark that the curve for MINNIE first follows the No compression one

57

3. Flow Scalability: Minnie

0 500 1000 1500 2000 2500 3000
of servers

0

1000

2000

3000

4000

5000

6000

#
 o

f
co

m
p
re

ss
io

n

BCube (l=3)
BCube (l=2)
BCube (l=1)
Dcell (l=2)
Dcell (l=1)
Fat tree
VL2

Figure 3.17: Number of compression executed for different topologies

until reaching the 1000 limit. Indeed, during this first phase, MINNIE performs no compression at
all as the limit is not attained. Then, MINNIE triggers compression regularly and manages to keep
all routers’ table below the limit of 1000. When performing compression, MINNIE has introduced
wildcard rules in the routing tables, and the new incoming flows will follow these paths in priority.
Therefore, MINNIE deals with the same number of flows as No Compression with less than 1000
entries while No Compression needs between 104 and 106 entries. Note that some points for MIN-
NIE are not depicted. Indeed, in Figure 3.18, we present only the results in which all the flows are
routed without overloading the routing tables. As soon as one request cannot be routed and when
the routing tables cannot be further compressed, the simulations are stopped.

This phenomenon can be clearly seen for DCell(l=1) topologies in Figures 3.18a. Without
compression, only 72 servers can be deployed in a DCell(8,1) without overloading tables while
MINNIE allows to deploy 1056 servers with a DCell(32,1).

This represents a 15 fold increase compared to No compression. The number of servers which
can be deployed with DCell topologies having two levels of recursion (Figure 3.18b) is similar:
930 with a DCell(5, 2) when running MINNIE and less than 200 with No compression.

Another key observation is that MINNIE can reach or even outperform Compression at
the end without exceeding the limit of number of rules. Indeed, if we consider for example Fat-
Tree topologies in Figure 3.18c, without compression, the largest Fat-Tree which can be deployed
with a rule limit of 1000 is a k = 8 Fat-Tree with 128 servers and 992 rules. With compression at
the end, the number of servers which can be deployed would be around 256. However, we see that
MINNIE succeeds in deploying a k = 18 Fat-Tree with 1458 servers without having overloading
issues. This is a 6 fold increase compared to Compression at the end. This is due to the fact
that by compressing online, i.e., when flows are introduced, MINNIE impacts the routing of

58

3. Flow Scalability: Minnie

0 500 1000 1500 2000 2500 3000
of servers

100

101

102

103

104

105

106

#
 o

f
ru

le
s 72 servers 1056 servers

Switch limit

No compression

Comprestion at the end

MINNIE

(a) DCell Topologies (l=1) (b) DCell Topologies (l=2)

0 500 1000 1500 2000 2500 3000
of servers

101

102

103

104

105

#
 o

f
ru

le
s

Switch limit

No compression

Comprestion at the end

MINNIE

(c) Fat-Tree topologies (d) BCube Topologies (l=1)

(e) BCube Topologies (l=2) (f) BCube Topologies (l=3)

0 500 1000 1500 2000 2500 3000
of servers

100

101

102

103

104

105

106

#
 o

f
ru

le
s

Switch limit

No compression

Comprestion at the end

MINNIE

(g) VL2 Topologies

Figure 3.18: Maximum number of rules on a forwarding device as a function of the number of
servers for different data center architectures.

59

3. Flow Scalability: Minnie

the following flows. Because of the metrics used in the routing module, the algorithm will prefer
to select shortest paths using wildcards as they do not increase the number of rules. This allows
better compression ratios.

The phenomenon also appears for BCube topologies (Figures 3.18d, 3.18e, 3.18f) and with
a striking intensity for VL2 topologies (Figure 3.18g). When compressing at the end, up to 96
servers can be deployed without reaching the table size limit (and only 36 without compression).
With MINNIE, this number can be pushed up to 1800 servers which represents 36 fold increase.

Difference of behavior inside a family of topologies. We notice in Figure 3.16 and 3.18 a
difference of behavior inside a family of topologies. For a given family of data centers, different
topologies can host a similar number of servers. For example, DCell(32,1) and DCell(5,2) host
around 1000 servers, as well as BCube(32,1), BCube(10,2) and BCube(6,3). But the behavior of
these topologies is significantly different: for example, the average number of rules is 113 for a
DCell(32,1) compared to 642 for a DCell(5,2). We see that the compression ratio of the family
DCell(l=1) is higher (more than 95% when the number of servers is greater than 200) than the one
of DCell(l=2) (more than 85% when the number of servers is greater than 200). Hence, the choice
of the best set of parameters for a given family of topologies is very important. In order to
answer this question, we study in the following all these topologies with similar number of servers
(around 1000).

3.6.2.3 Comparison of MINNIE effect on topologies with 1000 servers

Table 3.6 sums up the effect of MINNIE on the different topologies with a similar number of
servers (around 1000), hence a similar number of flows to route. We detail below the different
parts of the table, highlighting the key conclusions to draw.

Topology characteristics. The first part of the table provides basic information about the topolo-
gies. Even with a similar number of servers, the topologies are very different in terms of
number of switches (between 20 and 903), links (between 1056 and 5184) and average number of
ports per switch (between 2.9 and 54.4).

Flows in the network. The second part of the table reports the number of flows introduced in
the network during the simulation. These topologies behave very differently in terms of number
of flows per device: the average number of rules ranges from 3734 to 216000 and the maximum
number of rules ranges from 7800 to 650000. Two explanations can be given for these differences.
First, the topologies have very different numbers of switches (from 20 to 864). Secondly, in the
topologies of Group 2, servers also act as switches, and thus also host some rules, leading to a
lower average number per device.

60

3. Flow Scalability: Minnie

Topology servers # switches # links # Avg ports #
flow Rule w/ comp # Average Computation time

per switch Comp. in average (ms)
Max Average Max Average Ratio Paths Comp.

Group 1

k = 4 Fat-Tree (64) 1024 20 1056 54.4 454244 216268 999 446 ∼ 99.60 0.17 13
k = 8 Fat-Tree (8) 1024 80 1280 19.2 649044 61030 999 323 ∼ 99.61 0.21 7
k = 16 Fat-Tree (1) 1024 320 3072 16 630998 15897 999 303 ∼ 98.42 0.30 5

VL2(16, 16, 14) 896 88 384 16 261266 42906 1000 673 ∼ 97.90 0.15 4
VL2(8, 8, 64) 1024 28 612 ∼ 41.1 423752 161499 1000 799 ∼ 99.45 0.19 11

VL2(16, 16, 16) 1024 88 1152 ∼ 17.5 276575 56040 1000 648 ∼ 98.39 0.18 4

Group 2

DCell(32, 1) 1056 33 1584 ∼ 2.91 63787 4893 1000 113 ∼ 97.23 0.09 2
DCell(5, 2) 930 186 1860 ∼ 3.33 11995 5716 994 642 ∼ 87.84 0.19 2

BCube(32, 1) 1024 64 2048 ∼ 3.77 377 3734 999 329 ∼ 86.04 0.19 2
BCube(10, 2) 1000 300 3000 ∼ 4.62 10683 4153 998 653 ∼ 80.85 0.25 2
BCube(6, 3) 1296 864 5184 4.8 7852 5184 991 831 ∼ 83.18 0.49 4

Table 3.6: Comparison of the behavior of MINNIE for different families of topologies with around
1000 servers each. For the Fat-Tree topologies, we tweak the number of clients per server to obtain
1024 "servers".

Compressing with MINNIE. The third part of the table represents the effect of using MINNIE

on the number of rules, average compression ratio and computation time. MINNIE succeeds to
route the traffic on all the topologies without exceeding the limit of 1000 rules per device
(maximum number of rules between 989 and 1000).

We also observe that with 1000 servers MINNIE allows to attain an average compression
ratio higher than 80%. This shows that considering the state of the forwarding table when routing
increases the compression done by the wildcard rules. Compared with the Compression at the end
scenario, we see a ratio increase between 20% and 30% for the Fat-Tree and VL2 topologies, and
a smaller increase between 5 and 10% for BCube. This difference comes from the smaller amount
of shortest path available in BCube compared to the Group 1 topologies. DCell topologies display
close to no differences since flows were already highly aggregated in the other scenario.

As for the computation time we notice that MINNIE dynamically computes the route
with a sub-millisecond delays as the maximum average routing computation time is 0.49 ms
for BCube(6,3). And finally, we can observe that compressing the rules with MINNIE will cost
less than 13 ms delay in all topologies.

3.6.2.4 Comparison with XPath

We compare MINNIE with another compression method of the literature, XPath [HCW+15].
XPath combines re-labeling and aggregation of paths. Each path is assigned an ID. Two paths
can share the same ID if they are either convergent or disjoint but not if they are divergent. The
assignment of IDs is then based on prefix aggregation. This method requires that, for every request
in the data center, an application contacts the controller to acquire the corresponding ID of the path
to its destination.

61

3. Flow Scalability: Minnie

DCNs
Number of rules

XPath MINNIE

BCube(4, 2) 108 56
BCube(8, 2) 522 443

(a) Comparison with MINNIE for
paths between servers

DCNs
Number of rules

ToR to ToR Server to Server
XPath MINNIE MINNIE

k = 8 Fat-Tree 116 27 272
k = 16 Fat-Tree 968 116 6351
k = 32 Fat-Tree 7952 482 113040
k = 64 Fat-Tree 64544 1925 -

VL2(20, 8, 40) 310 135 138354
VL2(40, 16, 60) 2820 1252 -
VL2(80, 64, 80) 49640 22957 -

(b) Comparison with MINNIE: for paths between servers and
paths between level 1 switches

Table 3.7: Comparison of the maximum number of rules on a switch between XPath and MINNIE

(between servers or ToRs).

In Table 3.7, we compare the maximum number of rules installed on a forwarding device
between XPath and MINNIE for a larger variety of topologies. Numbers reported in the table for
XPath are directly extracted from [HCW+15]. In MINNIE, we consider all the flows between
servers even if they act only as end hosts but in XPath, only the path between ToRs are considered
for the standard architecture (VL2, Fat-Tree). So for an accurate comparison, we apply the same
principle to MINNIE by only considering flows between ToRs. Since in [HCW+15], they also
consider a bigger table size of 144000 entries, the limit is set to 144000 for MINNIE too. MINNIE

requires a lower number of rules to be installed than XPath on every architecture while both dealing
with all possible (source, destination) flows. This can be explained by the fact that XPath installs
rules for all possible paths for every source/destination pair before compressing while MINNIE

only considers one path per flow.

3.7 Discussion

The results obtained in sections 3.5.5 and 3.6.2 via experimentation and simulation respectively
demonstrate the feasibility, efficiency, and scalability of MINNIE. We discuss here several practical
points and possible extensions of our algorithm.

62

3. Flow Scalability: Minnie

Dealing with different workloads. We have used an all-to-all traffic pattern, which constitutes a
worst case in terms of traffic workload that an application could possibly generate in the network.
This was however achieved with 16 IPs per server in the experimentation part and 1 IP per server
in the simulation part, which might seem fairly limited. However, in an operational network
deployment, it is reasonable to admit that SDN rules are mainly installed on an IP subnet basis,
while flow-based rules (created with the matching of all or several fields of the OpenFlow standard)
might be rarely employed. Our results can thus be interpreted as routing all-to-all traffic between
several IP subnets per server, as one expects to observe in a typical data center where virtualization
is used. This means that MINNIE is able to deal with a worst case traffic scenario involving a large
number of end hosts.

Rule deletion. All scenarios studied in this work considered flows with unlimited lifetime in
order to obtain a worst case scenario regarding the total number of rules involved. However, in
practice, flows are active for a limited amount of time as they come and go. We discuss here a
possible extension of MINNIE that would handle the departure of flows.

OpenFlow enables the use of idle or hard timeouts to remove rules if no more packets are
seen (idle) or after a fixed time interval (hard). Timeouts could be set on the level-0 switches,
allowing the detection of inactive flows by MINNIE. Hard timeouts enable the controller to know
the exact state of each level-0 switch without any feedback from the switch. With idle timeouts,
the controller can specify (in OpenFlow) when a rule is inserted, that the switch must notify
the controller when the rule expires. With the exact information of the currently active rules,
MINNIE, which keeps an uncompressed version of all the rules in all switches, can delete any
unused aggregated rules. As more and more rules are removed, the compression module could
also be called to produce a smaller table to insert in place of the current one.

Impact of compression on rule update. We discussed the impact of rule compression on the
performance of rule update in several parts of the paper. We summarize here the findings. We
have 3 cases of rule update in the compressed tables:

- Addition of a new simple rule (assuming the table sizes are below the compression thresh-
old). This event is due to the arrival of a new flow. In this case, there is no impact of
compression on rule update. Note that, thanks to aggregated rules, a new flow arrival will
require a new entry at the level-0 OVS switches, but might require no new entries at the
access switches or higher switch levels, if the new flow is routed by already existing aggre-
gated rules. In this case, we do not have to update the routing table.

- Deletion of a rule. This is done in particular when a flow finishes. This operation is dis-
cussed above and was not tested yet. However, the controller knows which flow uses which
rule (simple or aggregated), and thus may easily know which rule to delete (or not) when an
entry expires at the level-0 OVS switches, which is a quick operation.

63

3. Flow Scalability: Minnie

- Compression event. If a table is full, we compress the table totally and we send the new
compressed table to the corresponding switch. We then update the switch table by doing,
first a delete operation to remove the old table, and then, we send the new rules to be in-
serted in the fewest number of packets5. We measured experimentally the duration of these
operations and tested its impact on delay and packets losses. We first evaluated the time
needed to carry out a compression event (compression duration, time duration to send a new
table to the switch, and updates duration). We show that this time period is in the order of
a few ms, as presented in Figure 3.5. Recall that, if a compression event is needed when a
new flow arrives, we first send the forwarding rules for the new flow, and then we compress
the routing table. Thus avoiding additional delay for a new flow due to a compression event.
We also evaluated the impact of rule compression on the network thanks to our experiments.
We report packet delay and loss rates in our experiments and compare scenarios with com-
pression and without compression. We show that even with high load (1 Gbps) for the High
Load Scenario (HLS), the loss rate and the delay are not impacted, see e.g. Figure 3.14.

Dynamic compression limit. Early compression helps maintaining the routing tables small.
However, the threshold should not be set smaller than the actual compressed table size, as ex-
emplified by the case of compressing at 500 entries in the experimentation part. To work around
this potential issue and reap the full benefit of compression we advise to set a dynamic compres-
sion limit. We can start for example from a low limit (for example 100 rules) and once a certain
percentage of our limit is reached (for example 80%), to trigger MINNIE to compress the routing
table. This compression limit is then increased whenever the resulting compressed table is higher
than the actual limit, e.g., to 150% of the current compressed table size.

Dealing with burstiness of traffic. A dimension that we have not explored during our tests is
the burstiness of arrival of flows that could lead to stress the switch-controller communication,
and hit the limit of a few hundreds events/s that the switch is able to sustain. This could be
the case of an application that generates a lot of requests towards a large set of servers at high
rate. In this situation, MINNIE could help alleviating the load on the controller. Indeed, the
sooner one compresses the flow table, the more likely we are to install rules that will prevent the
switch from querying the controller for a rule for every new connection. One could argue that
compressing entails complete modification of the flow table at the switch, i.e. a large number of
events (deletion, insertion) related to the management of the table. However, in OpenFlow, those
events can be grouped together: all insertions can be sent at once to the switch. In summary,
MINNIE should also help alleviating the stress of the switch-controller channel in case of
flash-crowds of new connections.

Security. Eventually, note that MINNIE does not alter the security level of the SDN network.
Indeed, rules are not compressed in the level-0 switches that connect the VMs to the network.

5We have observed that several flow_mod operations are encapsulated in only a few TCP packets

64

3. Flow Scalability: Minnie

This means that there is no possibility for a packet that belongs to one tenant to be seen or to be
inserted in the network of another tenant, provided that the SDN rules at the edge are correctly
written. Compressing at the edge could indeed give the opportunity to the traffic of one tenant
to enter another tenant’s network thanks to some wildcard effect. Note however, that we do not
compress at the edge not because of any security concern, but to prevent any misbehavior in the
routing process.

3.8 Conclusion

In this chapter, we introduced our solution MINNIE, which aims at providing SDN device’s flow
scalability by compressing the routing tables. MINNIE routes flows while respecting link and
SDN routing table capacity constraints, it also compresses the routing table using table compres-
sion with aggregation by source, destination and by default rule. We validated the functionality of
MINNIE using an experimental testbed and proved that it can provide an average of 80% of table
compression ratio with no negative impact on the end-user traffic. We then showed, through sim-
ulation, the efficiency and the scalability of our solution. At the end of this chapter, we discussed
the possible extensions of this work and its adaptability to various traffic patterns.

3.9 Publications

• International Conferences

– M.Rifai, N.Huin, C.Caillouet, F.Giroire, D.Lopez, J.Moulierac ,G.Urvoy-Keller "Too
many SDN rules? Compress them with Minnie", IEEE Globecom 2015.

• National Conferences

– Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, Joanna Moulierac,
et al.. MINNIE : enfin un monde SDN sans (trop de) règles. ALGOTEL 2016 - 18èmes
Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications,
May 2016, Bayonne, France.

• Journal

– Rifai, M., Huin, N., Caillouet, C., Giroire, F., Moulierac, J., Pacheco, D. L., & Urvoy-
Keller, G. (2017). Minnie: An SDN world with few compressed forwarding rules.
Computer Networks, 121, 185-207.

65

3. Flow Scalability: Minnie

66

Chapter 4

Performance

Contents
4.1 Control Plane Centrality . 68

4.2 Coarse-grained Scheduling . 68

4.2.1 Related Work . 69

4.2.2 Scheduling Methodologies . 71

4.2.3 Results . 72

4.2.4 Scheduler Limited Scope . 76

4.3 PRoPHYS: Enhancing Network Resilience using SDN 77

4.3.1 Related Work . 79

4.3.2 Passive Probing Failure Detection Methodology 80

4.3.3 Active Probing Failure Detection Methodology 83

4.3.4 Rerouting . 84

4.3.5 Performance Evaluation . 85

4.3.6 Discussion . 91

4.4 Conclusion . 92

4.5 Publications . 94

In the previous chapter, we tackled the problem of flow scalability in SDN devices. In this
chapter, we move on to enhance the flow performance in the network using SDN technology by
decreasing the end-to-end delay of flows, and the number of packets or connections lost when link
failures occur. In this chapter, we leverage the centrality of the controller explained in Section 4.1
to enhance the flow performance and the link failure resilience. We first focus on enhancing the
end-to-end delay of short flows in the network by providing coarse grained-scheduling solutions
that leverage the controller centrality and the switch flow statistics information to distinguish long
flows from short flows in the network and then prioritize short flows. We propose in Section 4.2
two main scheduling methodologies: (i) a state-full and (ii) a scalable scheduler. We then study
their efficiency, scalability and limitations.

67

4. Performance

In Section 4.3, we benefit from the lessons learnt when creating coarse grained scheduling
solutions, and aim at decreasing the number of packets lost when a network failure occur in a non-
SDN network segment. Our solution, called Providing Resilient Path in Hybrid SDN Networks
(PRoPHYS), leverages the same characteristics as the coarse grained scheduling solutions: (i)
the port statistics information of the SDN nodes, (ii) the centralization of the control plane at
the controller and (iii) its capability of building a fully centralized network topology. PRoPHYS
tries to detect network failures in less than 25ms. PRoPHYS, then, reroutes the network traffic
according to the predicted failed network segment to decrease the number of packets lost.

4.1 Control Plane Centrality

Both coarse-grained scheduling and PRoPHYS solutions leverage the centrality of the control
plane, its characteristics, and its capabilities to enhance the end-to-end delay of flows and decrease
the link failure detection interval. In SDN, the controller communicates with all of the SDN nodes
and can request the switch features, state and statistics. Based on the controller statistics request
message, the switch can provide statistics information per port, flow table, flow or queue. Based
on Openflow and OvS documentation [The12, PPK+15], statistics information pulling interval can
be set to any value, nonetheless, the advised value for flow statistics information is 1s. However,
the coarse grained scheduler tests have proved that pulling flow statistics below 1s pulling interval
results in inaccurate statistics information and can increase the CPU overhead. Thus, first in our
coarse-grained scheduling solution we leveraged the flow statistics. Then, we leveraged the port
statistics information in both coarse-grained scheduling scalable solution and PRoPHYS.

In both solutions explained below, we set the statistics pulling interval– or monitoring interval
as we will call it in the rest of this chapter– to a minimum of 10ms. The proposed 10ms minimum
pulling threshold reflects the fact that, generally, SDN nodes support 200 events/s. Hence with
this threshold, fetching port statistics requires max(100) events/s, which is feasible [KREV+15]
as the controller transmits a single statistics request event per switch.

After receiving the statistics information, in both solutions, the controller compares the trans-
mitted and received statistics across ports to detect congestion or link failures. Then, to apply the
new scheduling scheme or reroute the traffic, the controller transmits flow_mod event containing
the new flow rule to be installed in the switch.

4.2 Coarse-grained Scheduling

In current networks, short flows (mice) constitute the majority of the network flows; however,
they are hindered by the minority of long flows (elephants) that tend to use most of the network
resources, degrading short flows’ end-to-end performance [ETHG05]. Indeed, while various vari-
ants of TCP, e.g. Cubic [HRX08], have been devised to improve the performance of long flows

68

4. Performance

in typical high bandwidth-delay product environments like data centers, short TCP flows remain
vulnerable and likely to time-out.

Our objective in this work is to demonstrate that despite the limited toolbox offered by SDN
to directly manipulate the data plane, one can however implement some form of coarse grained
scheduling with legacy SDN equipments. Our focus is on size-based scheduling [AABN04,
RBU05], where priority is given to flows in their early stage. This approach is valuable in back-
bone and data centers networks where the bulk of traffic is carried by TCP, and consists of a
majority of short flows.

Our approach takes advantage of the feedback loop offered in SDN where a switch exposes
to the controller per rule statistics. The latter enables us to identify long flows and separate them
from short flows using multiple queues per port that serve to implement 802.1p QoS mechanisms.
Our objective is to minimize flow completion of the majority of flows.

We demonstrate the feasibility of building an SDN size-based scheduler using OvS switches
with Beacon controller. We further propose a scalable version of our scheduler to avoid continuous
monitoring of each active flow by the switch and the controller.

4.2.1 Related Work

Multiple research efforts have been conducted in order to decrease short flows delay with a lim-
ited impact on long flows performance such as [MQU+13, AKE+12, GYG12, JAG+14, XBNJ13,
HCG12, ZIA+15, HUKDB10]. These efforts consist mainly of creating new protocols, archi-
tectures, algorithms, changing the host or the network devices. For example, the authors of
[MQU+13, HCG12] propose to use new scheduling protocols mainly created to enhance flow
completion time in data centers. The authors of [MQU+13] propose a new data center transport
protocol called L2DCT that decreases the flow completion time by 50% for DCTCP and 90% for
TCP by approximating the Least Attained Service (LAS) scheduling discipline. In [HCG12], the
authors propose to use Preemptive Distributed Quick (PDQ) flow scheduling protocol that uses a
similar algorithm to shortest job first algorithm where short flows are prioritized, however, PDQ
pauses large flows. On the other hand, in [AKE+12] the authors propose to use High bandwidth
and Ultra-Low Latency (HULL) architecture that enforces a utilization less than link capacity by
provoking phantom queues signal that allow to sacrifice almost 10% of bandwidth utilization at
the sake of a factor of 10 to 40 decrease in average and tail latency. In [JAG+14], the authors
propose to use tiny packet programs to provide low latency and increase network visibility for the
end user.

Other solutions resolved to enhance the short flow network delay in data center but only
for TCP flows such as [GYG12, ZIA+15]. The authors in [GYG12] propose to improve the
performance of TCP in SDN networks, albeit at the cost of modifying the end-hosts protocol
stack. As for [ZIA+15], the authors propose FastLane, a solution which provides an in-network
drop notification mechanism to force end hosts to decrease their traffic transmission bandwidth

69

4. Performance

and hence throttle transmission rates. Fastlane thus decreases the flow completion time of short
flows by 81%. However, FastLane requires in-network devices to communicate with the end hosts
to notify them of packet drops which limits the solution prospect to TCP flows only that can
retransmit lost packets.

As for SDN, a lot of efforts have been conducted to enhance the network performance by
leveraging the control plane. In contrast, the data plane remains opaque and cannot be directly
influenced by the controller. Few works have addressed the extension of SDN to the data-plane
with scheduling in mind. A noticeable exception is [SWSB13], where the authors first advocate the
need to use different scheduling or buffer management solutions in different scenarios as there is
no one-fit-all solution. They exemplify the problem with different workload scenarios mixing bulk
and interactive traffic for cellular or wired access network scenarios, showing that each scenario
requires a different combination of buffer management/scheduling solution, e.g., FQ with Codel
[THJ16] or FIFO with drop tail. They propose next an extension of Openflow with data plane
primitives that they implement via a programmable FPGA.

To decrease network delay in SDN networks, most studies aimed at using the centrality fea-
ture of the controller and the capability to monitor the network traffic. For instance, in [THW+13],
the authors advise to divert some flows on longer rarely used paths to decrease completion time.
However, this solution might cause packet reordering problems at the end hosts. In [BCW+15],
the authors rely on the capacity of (non SDN) commodity switches to offer several queues with
a tagging process performed at the end hosts, complemented with Explicit Congestion Notifica-
tion (ECN) in the network. However, tagging the packets could lead to packet processing using
the slow path in multiple flow tables as tagging requires to use the CPU. The authors of [TP13]
present a flow scheduling algorithm called Baatdaat that depends on the forwarding device reports
of network utilization and then uses the spare data center network capacity to mitigate performance
degradation of heavily used links. Their algorithm provides a decrease of link utilization by 18%
while also decreasing flow completion time by 41%. In [CKY11], the authors propose Mahout
where hosts will observe their socket buffers and will then try to detect the elephant flows. Upon
detection of elephant flows, the end hosts will transmit this information to the Openflow controller
using an in-band message. This solution, however, requires to insert modifications at the end host.

All of the previously stated solutions require the modification of either the network architec-
ture, protocols or end hosts. In contrast, our solution is a purely network centric approach, that
does not require any modification of the end-hosts. It schedules network traffic independently of
the transport protocol used and is suitable for SDN networks. Similar to Baatdaat, our solution
leverages SDN capability to monitor the network. However, our solution aims at scheduling flows
within a link in case backup links are not available– or they are also highly utilized– and hence
link utilization can not be reduced.

70

4. Performance

Figure 4.1: State-full scheduler mode of action.

4.2.2 Scheduling Methodologies

As explained in Section 4.1, our solution, leverages this centrality feature of the controller and its
capability to perform online network traffic monitoring and adapt the network flow actions accord-
ingly. To provide enhanced flow completion time, our solution attempts to use SDN forwarding
devices queues to segregate the flows within the data traffic in it. While in legacy switches, the
SDN packets are scheduled according to the Type of Service (ToS) field available in the IP header,
in our solution, we queue packets per flow based on their source and destination addresses (MAC,
IP or TCP/UDP port number).

Our solution requires a minimum of two queues per port (802.1p mandates 8 queues per
port) the highest priority queue is for short and new flows, while the lower priority queue is for
long flows. Both, hardware switches (e.g., HP, Pica8, CISCO) and software switches (e.g., OvS)
typically propose several queue management schemes like priority queuing or some sort of token
bucket. Since our basic scheduler consists of only two queues, we assume that those queues are
managed with a strict priority scheduler where the high priority queue is served as long as it has
packets– the other queue is served when the first one is empty. In this case, the short flows’ packets
are always prioritized over long flows’ packets. In our proposition, all packets of new flows are
treated as high priority traffic. Then, when the size of a flow reaches a given threshold, its packets
are processed with a low priority policy.

Our first approach to decrease short flows completion time consisted of creating the state-full
scheduler. This scheduler is a networking module that runs on the controller and communicates
with the forwarding devices. It will first allow all new network flows to use the high priority queue
(e.g. Priority 1 in Figure 4.1). Then, it will monitor the flows on the SDN switches or forwarding
devices every Tmonitor interval. If a flow has exceeded Tthreshold_pkts of transmitted packets, the
scheduler will then require to modify the queue used by this flow from the highest priority queue
to the lowest priority queue (e.g. Priority 1 to Priority 2 in Figure 4.1). This solution allows to
detect and react rapidly when a long flow appears. However, with the increase in the number of
flows traversing a data center, this solution will not scale as it requires to monitor all the flows and
could hence impact negatively the SDN switch performance.

Hence, we devised the scalable scheduler as continuous monitoring of each active flow is

71

4. Performance

resource consuming, and installing per-flow rules could quickly overload the forwarding table
of SDN devices. Also, when the load on the port is low, say lower than 50%, all schedulers
typically offer the same performance as queues do not build up. There is thus no need to monitor
the individual flows continuously. To address these concerns, we propose the scalable scheduler
where the controller initially sets up one default rule for a set of flows (the default rule could
aggregate a client’s traffic or a specific service traffic)– see Figure 4.2. In this solution, we assume
that in a data center the administrator usually specifies a certain percentage of resource utilization
allowed per client or service etc, in order to provide traffic engineering.

Based on this, the scalable scheduler will work as follows. Similar to the state-full scheduler
all new flows are considered as high priority traffic. Then, the scalable scheduler, will monitor
the general routing rules (i.e. client/service forwarding rule) of the switches and for every switch
it will calculate the total bandwidth used per client/service based on the amount of traffic sent
during the last period of monitoring interval. If the bandwidth used for this client/service exceeds
a certain threshold (Tthreshold_utilization = X% × LinkCapacity) of allowed link utilization of the
service, the scheduler zooms in the client/service traffic to identify the large flows (Figure 4.2a).
Assuming that large flows are responsible for load increase is a reasonable assumption in typical
backbone and data center traffic. To zoom in the client/service traffic, the scheduler uninstalls
the client/service forwarding rule triggering the state-full scheduler mechanism and installs per
flow rule on traffic demand of the client/service. Afterwards, the scalable scheduler adopts the
behavior of the state-full scheduler for this client/service and will monitor every Tmonitor the flow
size. If it is more than Tthreshold_pkts packets it will modify the queue used by the flow to the lower
priority queue. After a few Tmonitor cycles, large flows are isolated and the general forwarding rule
is reinstalled with a high priority (Figure 4.2b) while the long flow uses the lower priority queue.
The scalable scheduler allows scalability regarding the number of flows to monitor, and reduces
the number of events the scheduler requires from the forwarding devices. However, this comes at
the cost of increased long flow detection delay.

4.2.3 Results

To illustrate our approach, we have developed a prototype and considered a basic experimental
set-up described in Figure 4.3. We have ten clients and one server that acts as a sink for traffic
and an OvS switch connected to a Beacon controller. The traffic workload is generated using Impt
[IMP] and consists of bulk TCP transfers. The distribution of flow size follows a bounded Zipf
distribution with a flow size between 15 KB (10 packets) and 10 MB. The average flow size is
around 100 packets, in line with typical average flow size in the Internet. The Zipf distribution is
the discrete equivalent of a Pareto distribution, which is known as a reasonable model of Internet
flow size [BAAZ10]. The load is controlled by tuning the flow inter-arrival time, which follows a
Poisson process.

For both schedulers, we monitor the switch flows every Tmonitor = 10ms which is equal to
the minimum statistics pulling interval advised in Section 4.1, and we set the threshold of short

72

4. Performance

(a) Step 1

(b) Step 2

Figure 4.2: Scalable scheduler mode of action.

73

4. Performance

Figure 4.3: Experimental set-up

flows to Tthreshold_pkts = 100 packets which is the average flow size in the Internet [Dav]. For
the scalable scheduler, we set the threshold utilization per client to Tthreshold_utilization = 10% ×
LinkCapacity.

Flow Completion Time We present in Figure 4.4 results obtained out of 10 experiments for
a load of about 90%. We distinguish between small flows and large flows, where small flows
are defined as flows smaller than the 90-th quantile of the flow size distribution. For the Zipf
distribution we consider, the 90-th quantile that corresponds to about 95 packets, i.e. close to
Tthreshold_pkts used by the scheduler. It is important to note here that small flows represent about
15% of the load.

We observe in Figure 4.4 that the state-full scheduler offers the best response time for small
flows and for the majority of large flows as their 100 first packets will take advantage of the
scheduling mechanism. Only a minority of the largest flows suffer in the state-full scheduler. As
for the scalable scheduler, it offers intermediate results between the state-full scheduler and the
absence of scheduler as it needs an additional Tmonitor to detect large flows and then convert to the
state-full scheduler. As we cannot simultaneously obtain better response times for all flows, one
can observe the longer tails of response times for the two schedulers as compared to the case with
no scheduler. We also notice here, that without a size-based scheduler, most of the short flows
experience longer completion time than some of the long flows. However, with the addition of
the scheduler (scalable or state-full), we notice that more than 90% of the flows have a shorter
response time than any long flow. We believe that the remaining 10% of the flows that have almost
the same response time as 3% to 4% of the flows have close flow size (100 packets ±10 packets).
It should be noted here that these results are impacted by the Round Trip Time (RTT) between the
controller and the SDN switches, in our case RTT = 2ms.

74

4. Performance

50 200 500 2000 10000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Flow Completion Time (ms)

C
D

F

small scalable scheduler
small state−full scheduler
small no scheduler
large scalable scheduler
large state−full scheduler
large no scheduler

Figure 4.4: Flow completion time CDF for long and short flows

Switch Response Time Both of our schedulers (state-full and scalable) depend on the switch
statistics information to detect long flows and change their priority dynamically. Hence, based on
the schedulers description, the scheduler reactivity time depends on the monitoring interval set by
the administrator and the reactivity of the switch to statistics requests. To study the reactivity of
the scheduler we studied the reactivity duration of SDN hardware switches where the slow path
might constitute the bottleneck when collecting network statistics (as compared to a virtual switch
like the OvS switches in our testbed). We present here results collected, while I was visiting NII in
early 2016, of 12 Pica8 hardware switches connected together to form the Sinet4 topology [Top]
composed of 74 nodes and 76 edges . We generated an all-to-all network traffic between the end
hosts connected to the access switches. We conducted two tests: (i) all-to-all TCP traffic with an
aggregated throughput of 1Gbps traffic at the access ports and (ii) all-to-all UDP traffic with an
aggregated throughput of 10Mbps at the access ports.

Our results, in Figure 4.5, show that the switch response time for both TCP and UDP traffic
remains below 5ms (Figure 4.5a). This response time is even below 2ms for UDP traffic with a
10Mbps access port throughput (Figure 4.5b). This shows that, the request-reply delay is low and
though it can be impacted by the network variations its variability remains in the order of 5ms.

Scalability After studying the performance of both the state-full and scalable schedulers we put
the scalable scheduler under test in Mininet [Min] using both star and fat tree topologies with
different link bandwidth and link capacity used (100Mbps, 200Mbps up to 500Mbps)- results
are reported in Figure 4.6. We notice in Figure 4.6 that the scalable scheduler provides a lower
completion time for short flows than for long flows for all bandwidth (i.e. all throughput) used.

75

4. Performance

(a) TCP traffic with 1Gbps access port (b) UDP traffic with 10Mbps access port

Figure 4.5: Switch response time.

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Flow Completion Time (ms)

C
D

F

small 100
large 100
small 150
large 150
small 200
large 200
small 500
large 500

(a) Star topology 1 node 10 hosts.

0 10000 30000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Flow Completion Time (ms)

C
D

F

small 100
large 100
small 150
large 150
small 200
large 200
small 500
large 500

(b) Fat tree topology k=4.

Figure 4.6: Flow completion time with respect to bandwidth transmitted.

However, the scalable scheduler fails the promise to provide a short flow completion time for short
flows in the fat tree topology. We suspect that the failure might be either due to: (i) the simula-
tion environment when the memory utilization increases due to the increase in the total number
of packets queued on all SDN switches in the hosting machine increases or (ii) the scheduling
methodology does not take into consideration network heterogeneity and global network utiliza-
tion. However, this study, was not completed and was interrupted due to my visit to NII lab in
Japan where I started working on network resilience.

4.2.4 Scheduler Limited Scope

Though our primary results were promising on star and linear topologies, the results on other
topologies, such as fat tree and VL2, would need to be confirmed either with a more powerful

76

4. Performance

testbed than Mininet. Note that we could not use the Minnie platform as our HP switch did not
support OF rules specifying output link queues. A more worrisome problem is that, in our tests,
we noticed that the flow statistics openflow database update threshold for some software switches–
such as OvS in our case– is limited to 1 second (i.e. the advised value by the manufacturers).
Going below this threshold (based on our tests) hindered the performance of the SDN switch and
increased its response time. Thus, in this case, our solution is limited to the minimal statistics
pulling interval the SDN switch can support without hindering its reactivity. Moreover, as stated
in Section 4.1, current SDN switches have a limitation of 200 events/sec, even though, we believe
that with the increase development of the SDN forwarding device capabilities, future forwarding
device will be able to treat thousands of events/sec and would be able to support higher statistics
polling interval. In the next section, we introduce our solution called PRoPHYS that also leverages
the centrality of the control plane. However, in PRoPHYS, we leverage the lessons acquired from
our work on the schedulers and build a solution capable of estimating link or network segments
failure in hybrid SDN networks before the failure is declared by neighboring nodes, using online
monitoring without negatively impacting the performance of the SDN switches.

4.3 PRoPHYS: Enhancing Network Resilience using SDN

In the previous section, we presented our coarse grained scheduling solutions that aim at decreas-
ing the short flow completion time leveraging the centrality of the control plane. In this section,
we leverage the centrality of the control plane to enhance flow resiliency in hybrid SDN networks,
and hence, decrease the protection interval to reduce the number of packets lost when a failure
occurs in a network using our solution called PRoPHYS: Providing Resilient Path in Hybrid
Software-Defined Networks.

Nowadays, a 50ms protection interval is the norm for service providers [BBU+09] since most
applications support the resulting loss with limited impact on the end-user’s Quality of Experience
(QoE). However, following the increase of required broadband speed per application [Cis16]
especially for time-critical applications (such as video streaming, voice over IP, and virtual reality)
the amount of packets lost during those 50ms will also increase, leading to disruptions in the buffer
playout process, negatively impacting the QoE. In order to guarantee a good QoE for the end-user,
it is essential to improve fault tolerance mechanisms so as to protect these network flows against
large-scale packet loss and decrease the total downtime (detection and rerouting time) below the
currently acceptable 50ms.

Existing fault detection techniques rely on link failure detection, which is achieved by detect-
ing missing session packets. In OSPF, the session packets are called HELLO packets [Moy98],
and the failure detection process takes a few seconds. The equivalent for SDN networks are Link
Layer Discovery Protocol (LLDP) packets [Con02], and the failure detection process takes, by de-
fault, 100ms. The main difference between legacy and SDN networks is that in SDN networks, the
controller has a global view of the network topology, and communicates with every SDN node.

77

4. Performance

Thus, the controller can change the routes of all nodes directly, without any delay needed for
routing information propagation and convergence. With the help of additional services, such as
Multi-protocol Label Switching (MPLS) [BBU+09], Bidirectional Forwarding Detection (BFD)
[KW15], or Fast Rerouting (FRR) [SB10] explained in the following section (Section 4.3.1), the
link failure detection time can be decreased to around 50ms for both legacy and SDN networks.

Since SDN networks do not need to reconverge upon changes in the control plane, the pro-
grammability of the SDN control plane is extremely help-full to methodologies that decrease the
failure detection time. Unfortunately, the migration from an existing legacy network infrastructure
to a full SDN infrastructure is known to be expensive and cumbersome [Bri14]. In the meantime,
so-called hybrid networks, where SDN nodes are incrementally introduced in legacy networks, are
the most likely scenario.

In this context, we propose PRoPHYS. PRoPHYS leverages the capabilities of the SDN con-
troller in a hybrid network to detect network failure and reroute traffic. It features two modes
of action: (i) the passive monitoring of the transmitted and received traffic of SDN nodes (Sec-
tion 4.3.2), or (ii) the active probing of the paths connecting SDN nodes (Section 4.3.3). These
two modes of actions can be deployed independently or together to provide the lowest detection
time interval of both methods. Ideally, SDN nodes should be placed such that they can commu-
nicate using two disjoint paths. In our work, we focused on the necessary criteria and steps to
ensure efficient flow protection between two SDN nodes. However, the placement of SDN nodes
in a hybrid network to create disjoint paths is out of the scope of our study, it has been studied in
e.g. [HMBM16].

Figure 4.7: Example topology for PRoPHYS.

In its simplest form, using Figure 4.7 for illustration, upon detection of a segment failure
within ISLAND 1, PRoPHYS reroutes traffic through the second-best shortest path (ISLAND
2), effectively decreasing the loss rate (Section 4.3.4). Our results (Section 4.3.5), show that the
two varieties of failure detection module of PRoPHYS provide a minimal decrease of 50% in
total network traffic loss compared to the standard 50ms protection interval while respecting the
maximum number of events supported by SDN nodes.

78

4. Performance

4.3.1 Related Work

4.3.1.1 Hybrid SDN Networks

To allow full network programmability, some studies try to propagate SDN functionalities from
within SDN to legacy nodes in hybrid networks. Panopticon [LCS+14] extend the benefits of SDN
node in a hybrid network by forcing all the traffic transmitted from any source to any destination
to pass through at least a single SDN node to have an abstraction of a logical SDN in a partially
upgraded legacy network. However, even with the introduction of SDN nodes in the network,
their system is only able to achieve failure detection in a minimum of 1s, as it depends on the
Spanning Tree Protocol to detect a failure. Telekinesis [JLX+15] leverages the SDN controller
to force legacy L2 switches to use the forwarding tree of the SDN nodes. Both [LCS+14] and
[JLX+15] aim at extending SDN programmability to legacy devices, but they do not really tackle
the problem of sub-50ms link failure detection, or of rerouting in hybrid L3 networks.

4.3.1.2 Total Downtime and Rerouting

Multiple works were conducted to decrease the failure detection time, such as [FFEB05, KW15,
Ham15, KW10]. To detect a network failure, they mostly rely on active probing where a lega-
cy/SDN node transmits a state packet to its neighbors to check the viability of the common link
[Moy98, KW15, KW10] or the viability of the path between the nodes [KW10]. When this state
packet is not received from the neighbor for more than a predefined, fixed timeout duration, the
link or path connecting the node to its neighbor is declared down. By default, legacy routing
protocols, such as OSPF [Moy98], detect failures after 40 seconds. SDN nodes that use LLDP
are able to detect link failures and transmit the information to the controller after around 110
ms. To decrease the default link or path failure detection time, Bidirectional Forwarding Detec-
tion (BFD) [KW15] and BFD-multihop [KW10] were proposed. Both of these methodologies
also depend on the active link/path probing, and a session is established between the neighboring
nodes across a physical link, tunnel or path. BFD allows the detection of link failure in around
40ms [SSC+13]. However, as stated in [Hew16], BFD packets are generated by the forwarding
devices themselves, i.e. the legacy nodes and SDN switches. Add to this that the minimal in-
terval between two consecutive BFD transmission on SDN hardware are manufacturer dependent
where some switches can support a minimal of 1s minimum interval [Hew16]. Indeed, very low
BFD transmission interval increases the CPU overhead of the hardware SDN switch [Hew16]. In
PRoPHYS, we provide a maximum of 25ms downtime using active or passive probing without in-
creasing the CPU of the forwarding devices or being limited to the features provided by the SDN
switch vendor.

Link failure prediction based on opportunistic scheduling and power signal measurements
has been proposed in [Ham15]. The authors mainly measure the electric signal on every port,
and then, based on the disruptions of this electrical signal, estimate the probability that a network

79

4. Performance

failure occurred. This method, however, is limited to the failure detection of directly connected
links.

To decrease the rerouting time, two main methodologies exist: passive rerouting and active
rerouting. Passive rerouting pre-installs backup routes or rules in the network, such as [YLS+14,
CXLC15], and provides the shortest rerouting time. In this case, once the link failure has been
detected, legacy nodes can use the backup route. For example, the MPLS-FRR [ASP05] exten-
sion of Resource Reservation Protocol (RSVP)-Traffic Engineering (TE) for Label Switched Path
(LSP) tunnels labels the traffic, and reroutes it using pre-established MPLS tunnels. OpenFlow
nodes can use backup rules through the notion of FAST-FAILOVER group rules. The authors of
[YLS+14] showed that they can obtain a minimum of 99.7% resilience where 99.7% of the all-to-
all connections can be established with k independent link failures. This methodology however,
cannot scale for large networks, as it would require the installation of hundreds, or even thousands
of backup routes or rules in the limited (and expensive) TCAM memory. Following the same
concept, to avoid losses in the case of link failures in hybrid networks, [CXLC15] introduced
pre-setup backup tunnels from legacy routers towards SDN routers, and SDN nodes reroute traffic
through non damaged paths.

As for active rerouting, the router/controller recomputes the route needed to reach the desti-
nation based on the information received from the update messages such as [MLP+16]. RSDN
of Recursive SDN [MLP+16] leverages the recursiveness of ISP networks, to create a set of ag-
gregate routers called Logical Crossbars (LXBs). Route computation are done on LXBs for each
level, and a summary of the results are sent to the parent LXBs. When a node fails (e.g., node
b) on a path (e.g., the path a-b-c-d), the LXBs controller hierarchy will be able to virtualize b’s
routing table in a. RSDN will then compute recursively the paths to destinations. In SEaMLESS
we use active rerouting, with previously-installed tunnels that could be used, but we only instruct
the switch to use them when necessary. We chose this technique because passive rerouting cannot
scale in ISP networks, due to the enormous number of routes that should be installed to cover all
combinations of link failures, which prohibits scalability.

4.3.2 Passive Probing Failure Detection Methodology

The first methodology that PRoPHYS employs to detect the failure of a segment– either a link
failure within a legacy island, or a link failure between an SDN router and the legacy island– is a
passive monitoring of the network traffic at the set of transmitting and receiving SDN nodes. After
receiving SDN ports statistics, it searches for discrepancies between the inbound and outbound
traffic. Hence, the Passive Probing Failure Detection Methodology follows the following steps:

1. create the matrix of the communicating SDN ports;

2. monitor the ports;

3. upon reception of ports statistics, trigger the failure detection module.

80

4. Performance

We now detail each step successively in the remainder of this Section.

4.3.2.1 Matrix of Communicating SDN Ports

In SDN, when a new flow arrives in the network, the controller sets up the ad-hoc rules on every
SDN switch used by the flow. Thus, the controller has a global view of all the segments used by
the flows, and of the pairs of communicating SDN ports. In other words, the controller is capable
of building a communication matrix Mports, indicating whether an SDN switch port is sending
traffic to his neighboring SDN port, or not. For example, for the two flows depicted in Figure 4.8,
the controller builds the matrix illustrated in Table 4.1. A value of 1 indicates a direct traffic
transmission between two ports, a value of 0 indicates no transmission.

Figure 4.8: Flows passing through the network.

RECEIVERS

s0 p1 s1 p1 s2 p1 s2 p2 s3 p1 s4 p1

S
E

N
D

E
R

S

s0 p1 0 0 1 0 0 0
s1 p1 0 0 1 0 0 0
s2 p1 0 0 0 1 0 0
s2 p2 0 0 0 0 1 1
s3 p1 0 0 0 0 0 0
s4 p1 0 0 0 0 0 0

Table 4.1: SDN ports communication matrix Mports as built within the SDN controller for the
flows depicted in Figure 4.8.

4.3.2.2 SDN Ports Monitoring

To detect traffic loss, ports statistics are fetched from the SDN nodes every few milliseconds.
The polling interval could be set to a static value defined by the administrator, or it could be
equal to the estimated one-way delay between two SDN nodes. We propose to use the value
max(10ms, estimated delay) for the scalability and performance reasons explained in Section 4.1.
It should be noted that the SDN controller sends only one statistic request per SDN node to get

81

4. Performance

the statistics for all ports at once. Hence, the number of required events does not increase with the
number of ports, allowing scalability.

Even though the granularity of port statistics is larger than the granularity of flow statistics,
we chose to monitor ports because (i) monitoring the ports instead of flows enables to scale, and
(ii) SDN switches update the flow counters of their OpenFlow database only once every second
[HSS+]. Going below this 1s flow counter update threshold increases the CPU consumption of
the switch, and the results returned to the controller will be delayed and inaccurate.

4.3.2.3 Failure Detection Module

After receiving the port statistics from all the switches, the failure detection module checks if the
outbound traffic on transmitting ports was received on their corresponding receiving ports. For
example, if we take the matrix defined in Table 4.1 for the topology in Figure 4.8, the failure
detection module will compare T ts0p1 + T ts1p1 to Rt+δts2p1 and T ts2p2 to Rt+δts3p1 + Rt+δts4p1 , where T ti is
the traffic sent by port i at a given time t, and Rt+δtj is the traffic received by port j after δt. δt
is equal to the maximum delay required by the transmitted packets to arrive to the receiving port
e.g. δt = max(RTTs0p1−s2p1

2 ,
RTTs1p1−s2p1

2) where RTTs0p1−s2p1
2 is the average time needed for

transmitted packets from port s0p1 to reach port s2p1.

However, directly comparing the value of the transmitted traffic and the value of the received
traffic δt later (e.g. T ts0p1 +T ts1p1 = Rt+δts2p1) might lead to a large number of false positives since the
network link delays vary and taking the maximum delay between the transmitting and receiving
delay allows additional packets to arrive to the destination before the maximum delay is reached.
Moreover, δt uses the average RTT value, and RTTs could vary when the network is highly loaded
i.e. congestion or buffering delay. Thus, in PRoPHYS, we suppose that it is possible that some
transmitted traffic could not be received δt later without being lost. We represent this percentage
of delayed network traffic as a fraction θ of transmitted packets (e.g. θ ∗ (T ts0p1 + T ts1p1)).

With all these ideas in mind, to check if all the transmitted traffic from s0p1 and s1p1 was
received by s2p1 taking into consideration network jitter, the failure detection module does the
comparison represented in Equation 4.1. If the given equation is not validated by the port statistics
result, PRoPHYS detects a possible network failure between the transmitting and the receiving
ports.

(1− θ) ∗ (T ts0p1 + T ts1p1) ≤ Rt+δts2p1 (4.1)

However, to declare a failure and reroute the traffic, PRoPHYS makes sure that the distur-
bance of network traffic is not due to possibly moderate to high congestion rates or possible pack-
ets loss in large ISP Autonomous Systems (AS) networks. Thus, PRoPHYS checks the validity
of Equation 4.1 each time the required statistics are received, and if Equation 4.1 is not fulfilled
for the same set of ports thresh_count consecutively, PRoPHYS declares a failure in the segment

82

4. Performance

between these ports. The introduction of the thresh_count variable should be set in a conserva-
tive yet not intrusive way such that it allows to decrease the number of false positives while trying
not to lose a huge amount of data traffic when the network failure is actually detected. It should
be noted here that using this methodology high congestion periods that would cause a lot of losses
frequently could be considered as link failures. However, we believe that mistaking high conges-
tion rates that lead to huge packet losses is acceptable as the traffic would be routed to different
segments, reducing congestion and enhancing the performance of the network.

4.3.3 Active Probing Failure Detection Methodology

The second methodology that PRoPHYS leverages to detect a segment failure is a variation to
the classical active probing methodology which injects messages in the network. However, a key
difference between classical methodologies and our active probing methodology lies in the fact
that PRoPHYS detects link failure when the probing is lost after a timeout that depends on the link
or segment delay.

Basically, the SDN controller transmits a probing packet to the SDN switches with the highest
IP Precedence to provide highest priority, the switches then flood the probe to their SDN neighbors
across the connected OSPF island. To achieve this, the controller generates a Segment Discrepancy
Detection (SDDP) packet for each SDN node. This packet will be transmitted from the controller,
flooded through the SDN network segments, and back to the controller (see Figure 4.9). SDDP
packet is coined with LLDP packets [SSC+13]. However, SDDP can be transmitted over network
segments instead of being limited to the directly connected link. SDDP is also an enhancement
compared to LLDP- which features a slow failure detection time of over 100ms- as it uses a dy-
namic timeout which depends on link/segment delay. Once the SDDP message is sent on the
network interface, the controller starts a timeout timer that is set dynamically based on the esti-
mated delay of the link/segment in addition to the communication delay between the controller
and the SDN nodes.

To calculate the SDDP timeout threshold for every link/segment, we use an exponential
moving average approach. Before the reception of the first SDDP packet, the delay is set to
1s. Then we use equations similar to TCP’s Round-Trip Time’s [SCPA11] to calculate SDDP
timeout. The estimated delay of the link/segment, dl, is updated as depicted in Equation 4.2 where
α is set to 0.125. The variation of the link/segment, varl, is computed following Equation 4.3, and
we set the timeout threshold to Equation 4.4 with K=4 (α and K are set to the same values used
in TCP timeout).

dl[i] = (1− α) dl[i− 1] + α new_dl (4.2)

varl[i] = (1− β) varl[i− 1] + β |dl[i− 1]− new_dl| (4.3)

SDDP_timeout = dl +K varl (4.4)

83

4. Performance

Then, similarly to other link failure detection active probing methods, if the message is not
received back (by the controller) before the timer expires, the controller declares segment dis-
crepancies. If the message is received after the timer has expired, the controller learns that the
particular network segment is congested and modifies the timeout value.

Figure 4.9: Packet_out transmission over the network.

The closest work to our SDDP packet is BFD Multipath [KW10]. Nonetheless, SDDP differs
from BFD Multipath because it does not need a session for every link and does not depend on the
architecture of the SDN switch. Indeed, the performance of BFD depends on the manufacturer.
For example, the HP5412 switch provides a minimum of 1 second detection interval [Hew16].
Moreover, the use of BFD negatively impacts the performance of routers, because the creation of
the transmitted packets and their processing must be done at the general purpose CPU of SDN
switches, which has limited capacities in comparison to the CPU capacities of servers [Sch]. Our
methodology solely relies on the controller to take decisions, it is manufacturer independent, and
it allows to decrease the CPU overhead on the switch.

4.3.4 Rerouting

After detecting a failure in the network, PRoPHYS reroutes the traffic away from the lossy link, to
other paths of the network. To select the best path to use, PRoPHYS computes a virtual topology
graph by removing all lossy segments Gvirtual = Greal \ {lossy_segment} from the initial topology
Greal. Then, the controller selects the shortest path in the virtual topology, and sends the new rules
to be installed on the SDN switches.

However, since we consider hybrid networks, we should also account for the fact that legacy
routers, in-between SDN nodes, will keep their outdated view of the routing topology, since their
time to detect the failure is longer. Hence, the conflicting views, between the SDN controller
and the OSPF nodes, could cause routing loops and denial of service. For example, if we take
a topology similar to Figure 4.7, and assume that the number of hops on Island 1 is 3, while the
number of hops on Island 2 is 6, the first OSPF node on Island 2 (R1) will send traffic destined to
Network 2 through SDN1 (shortest path). Once SDN1 detects failures on Island 1, and PRoPHYS

84

4. Performance

Bandwidth(Mbps) Time(ms)

ovs_bridge (SDN link) 943 8.9

ovs_stt (SDN tunnel) 934 9.1

ovs_gre (SDN tunnel) 919 9.1

Table 4.2: Bandwidth and time of transmission of 1000 MByte of data from a client to a server.

decides to reroute traffic through Island 2, R1 still has its (old) routing table since it did not
detect any network updates. It will thus retransmit the traffic back to SDN1, or drop it altogether.
Consequently, PRoPHYS will not be able to route the traffic from SDN1 to SDN2 via Island 2.
To force OSPF routers to route traffic via the (new) path selected by PRoPHYS, instead of the
old lossy path, we use tunnels to route traffic between SDN nodes and the first OSPF/SDN node
that has the appropriate routing that allows it to reach the destination (in our example we use the
tunnel between SDN1 and R2 in Island2). To know which nodes can route the traffic properly to
the destination without any tunnels, we listen to OSPF update packets at the SDN nodes to rebuild
the topology structure at the controller.

Using tunnels to reroute traffic has been suggested in [CXLC15] to handle single link failures,
and avoid the failure detection period. In PRoPHYS, we leverage this solution and reroute traffic
through tunnels, until reaching the closest node with the correct routing to the destination, where
the traffic is decapsulated and transmitted to reach the end host.

However, it should be noted that routing data through tunnels can decrease the end-to-end
bandwidth attainable by the client application. For instance, Table 4.2 reports the maximum at-
tained throughput, and the delay required to route 1GB of traffic between two machines, through
a tunnel active on these machines using either Generic Routing Encapsulation (GRE) [FHMT00],
or Stateless Transport Tunneling (STT) [BDG12] deployed over OpenVSwitches-based routers.

The end hosts are connected using 1Gbps Ethernet links. We observe that the bandwidth
decreases, and that the delay of transmission increases, once we use tunnels (ovs_gre and ovs_stt)
compared to no tunnels (ovs_bridge). Moreover, the choice of the tunneling protocol impacts the
results: GRE obtains a lower bandwidth than STT, 919Mbps instead of 934Mbps. Hence, in
SEaMLESS we use STT tunnels to reroute the traffic through OSPF islands.

4.3.5 Performance Evaluation

To test the performance and the impact of PRoPHYS on network traffic, we conducted a series
of tests using a Floodlight v2 controller [Iza15] connected remotely to a Mininet [Min] network.
The test network, depicted in Figure 4.10, consists of 5 SDN switches connected through OSPF
islands. We set the delay between the network nodes and between SDN nodes and the controller
to 2ms. The 2ms delay was motivated by the average link delay between nodes in a medium
sized ISP topology in SNDlib [Zus] such as germany50. The delay was calculated based on the

85

4. Performance

geographical coordinates of the links provided taking into consideration fiber optic connections.
In this network, h0 communicates with h1 and with h3; and h2 communicates with h3. The traffic
is generated by iperf3 and is either bidirectional Constant Bit Rate (CBR) UDP traffic or TCP
traffic. Five seconds after starting iperf3 on the hosts, we simulate a link failure in the OSPF
island connecting the nodes s0 and s1 and observe the impact of PRoPHYS. We repeat each
experience 100 times to obtain statistical significance.

Figure 4.10: The SDN testing network topology in Mininet.

In all of these experiments, we set the segment monitoring interval to 10ms which is equal to
the minimal monitoring interval, as discussed in Section 4.3.2. We run two versions of PRoPHYS
that differ based on the failure detection technique they use, either Passive Probing (Section 4.3.2)
or Active Probing (Section 4.3.3).

For the Passive Probing, we declare segment failure when the following two conditions apply:

• the number of packets lost or not yet arrived (θ) is higher than X% of the traffic transmitted
in the last iteration, where X ∈ {25%, 50%, 75%, 90%}.

• the previous condition should be valid thresh_count = 2 consecutive intervals.

For the Active Probing methodology, we declare a failure when the delay between transmit-
ting and receiving the packet on the other interface of the controller is higher than the SDDP time-
out delay introduced in Section 4.3.3. For the sake of briefness, in the remainder of this Section,
we refer to the Passive Probing methodology as PortStats, and to the Active Probing methodology
as PktOut.

86

4. Performance

BANDWIDTH

1Mbps 10Mbps 20Mbps 40Mbps

M
E

T
H

O
D

O
L

O
G

Y

50ms threshold 5 42 84 168
PktOut 2 16 30 63

PortStats 25% 3 20 35 71
PortStats 50% 5 23 35 83
PortStats 75% 3 32 35 79
PortStats 90% 2 22 43 84

Table 4.3: Maximum number of packets lost.

4.3.5.1 Impact on Network Traffic

UDP experiments We assess the performance of PRoPHYS variants first by comparing them
with the reference case of 50ms. Specifically, we look at the maximum number of packets lost
per connection (over the 100 experiments) for different connections bandwidths. The results are
shown in Table 4.3, where we notice that the maximum number of packets lost using PRoPHYS,
for all speeds, and for both detection methodologies, is 50% less than the reference case, which
can be translated by a maximum downtime of 25ms.

In Figure 4.11, we go beyond the maximum value and plot the Cumulative Distribution Func-
tion (CDF)s of the number of packets lost with PRoPHYS, for both detection methods, and each
bandwidth. We notice first that as the connection bandwidth increases, PortStats provides better
results than PktOut. For example, for 1Mbps (Figure 4.11b), only 10% of the connections ob-
tained less packet lost using PortStats than PktOut. However, as the bandwidth speed increases
from 1Mbps to 40Mbps, (see Figures 4.11b-4.11d), PortStats tends to have better performance
than PktOut. Specifically, for 40Mbps, 60% of the connections using the PortStats 50%, PortStats
75%, and PortStats 90%, as well as up to 90% of the connections using PortStats 25% feature less
lost packets than PktOut. These results are in line with intuition. Indeed, the higher the rate, the
less likely PortStats is to make errors. In contrast, the higher the traffic rate, the larger the average
delay in Equation 4.2 (and also the variance in Equation 4.3, even if here it has less impact with
CBR traffic) computed by PktOut, which increases its detection time.

We also notice in Figure 4.11, that the exact value of thresh (i.e., the tolerable percentage
of packets lost or not received that ranges between 25 and 90%) for PortStats has little impact
on the number of packets lost. This is because even if a lower thresh might lead to detect a
failure quicker (potentially doing a false positive), it is counterbalanced by the fact that two such
consecutive observations must be made (thresh_count = 2).

In Figure 4.11, we also notice that, using PortStats, we can obtain 0% packet loss. This
is due to false positives detections. Indeed, as shown in Figure 4.12, PortStats tends to have
between 1 and 5 false positives in our tests. Some of these false positives can occur before the
actual link failure, hence all the traffic would have been rerouted from the original path before the

87

4. Performance

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

cd
f(

pk
tlo

ss
)

packets lost

PktOut
PortStats 25%
PortStats 50%
PortStats 75%
PortStats 90%

(a) 1Mbps bandwidth

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

cd
f(

pk
tlo

ss
)

packets lost

PktOut
PortStats 25%
PortStats 50%
PortStats 75%
PortStats 90%

(b) 10Mbps bandwidth

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

cd
f(

pk
tlo

ss
)

packets lost

PktOut
PortStats 25%
PortStats 50%
PortStats 75%
PortStats 90%

(c) 20Mbps bandwidth

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

cd
f(

pk
tlo

ss
)

packets lost

PktOut
PortStats 25%
PortStats 50%
PortStats 75%
PortStats 90%

(d) 40Mbps bandwidth

Figure 4.11: Packets loss of connections using the failing link.

88

4. Performance

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

cd
f(

fa
ls

e
po

si
tiv

e)

False Positives

40Mbps
20Mbps
10Mbps

5Mbps
1Mbps

(a) Threshold=25%

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

cd
f(

fa
ls

e
po

si
tiv

e)

False Positives

40Mbps
20Mbps
10Mbps

5Mbps
1Mbps

(b) Threshold=50%

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

cd
f(

fa
ls

e
po

si
tiv

e)

False Positives

40Mbps
20Mbps
10Mbps

5Mbps
1Mbps

(c) Threshold=75%

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

cd
f(

fa
ls

e
po

si
tiv

e)

False Positives

40Mbps
20Mbps
10Mbps

5Mbps
1Mbps

(d) Threshold=90%

Figure 4.12: Number of false positive detections of segment failures with PortStats.

segment actually fails, leading to 0% loss rates. In contrast, in all of our tests PktOut had zero false
positives, which proves its stability. From these results, we conclude that PktOut is more stable
than PortStats, however, PortStats shows better results as the bandwidth increases.

As a final note on our UDP experiments, it is important to point out that the variability ob-
served in all figures is due to the OvS switches and the PRoPHYS implementation (within Flood-
light), rather than in iperf3 or Mininet, since the UDP sources emit CBR traffic and the network is
well provisioned and the server on which Mininet is running is far from saturation.

TCP Experiments After studying the impact of PRoPHYS using CBR traffic and having proven
its effectiveness in that context, we study the impact of PRoPHYS on TCP traffic. We thus repeat
the experiments with the PktOut method, and with the PortStats 50% method for TCP connec-
tions as PortStats varieties gave similar results with thresh_count = 2. One UDP connection is
replaced by one TCP connection, with an average speed of 10Mbps.

Without PRoPHYS, TCP connections loose connectivity, as they time out before OSPF re-
converges. With PRoPHYS, all connections were able to survive the link failure, and the number

89

4. Performance

of retransmissions was low, as seen in Figure 4.13. In this figure, we see that the number of
retransmissions reached a maximum of 25 packets for PortStats 50%, and of 20 packets for PktOut.
These values are far below the 42 packets lost that a 50ms recovery time would generate (see Table
4.3).

We observe that in a few percentage of cases, both methods achieve a 0% retransmission rate.
This means that both methods do false positives, i.e., traffic was rerouted before the failure actually
occurs. Still, the rate of false positives of PktOut remains below the one of PortStats, in line with
the observations made for UDP traffic. We however observed that the false positives of PktOut
are made in the warm up phase of the tests, when the TCP window opens widely and delay is the
most difficult to track. We can expect that with real ISP traffic where the level of multiplexing is
high and delay variations smoother, the false positive rate of PktOut should remains small. This
observation of false positives for both methods hints towards combining them to minimize the
false positive rate. We discuss this option in Section 4.3.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

cd
f(

re
tr

an
sm

it)

Retransmitted Pkts

Basis
PktOut

PortStats 50%

Figure 4.13: Number of packets retransmitted by TCP.

4.3.5.2 Impact of the Segment Delay on PortStats

In order to study the impact of the segment delay on the 10ms monitoring interval that we have
set for the previous experiments, we repeat the PortStats 50% UDP experiment with a 10Mbps
bandwidth, while varying the segment delay. We set the delays to 5ms, 10ms, 15ms and 20ms.
Figure 4.14a shows that the number of packets lost is the lowest when the segment delay is 20ms
and thresh=50%. This is due to the fact that, with a 20ms segment delay, we tend to receive,
after 10ms, exactly 50% of the transmitted traffic. However, the number of packets lost increases
slightly as the segment delay decreases. Hence we advise to set the monitoring interval, and the
variable thresh based on the delay obtained on the segments connecting the SDN nodes. We
further discuss this notion in Section 4.3.6.

90

4. Performance

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

cd
f(

pk
tlo

ss
)

Packet Loss

5ms
10ms
15ms
20ms

(a) CDF of packets lost

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

cd
f(

fa
ls

e
po

si
tiv

e)

False Positives

5ms
10ms
15ms
20ms

(b) CDF of false Positives

Figure 4.14: Packet loss and false positive variation with the variation of delay on the failed island
using PRoPHYS PortStats 50% methodology

4.3.6 Discussion

From the results obtained in the previous section, we notice that the passive PortStats method
outperforms the PktOut method when the connection speed increases, but at the cost of exhibiting
false positives. On the other hand, PktOut outperforms PortStats for low connection speeds, and
maintains a stable performance. Another difference that we observed between the two methods
is that the SDDP packet sent by the controller across a network segment connecting two SDN
nodes only enables the measurement of the performance of one shortest path between the two
SDN nodes. If multiple shortest paths exist between the two nodes (e.g., in the case of load
balancing), PktOut will not be able to test the viability of all existing paths simultaneously, which
could increase the detection delay. However, PortStats enables to test all paths used by real traffic
simultaneously, i.e., the passive approach measures a wider variety of paths across the legacy
islands.

It thus sounds natural to use a combination of both methods. In order to decrease the number
of false positives, we can use 3 possible combinations of PortStats and PktOut:

(i) PortStats and PktOut in parallel. In this scenario both methods are running in parallel
and whenever a method detects failures, it validates/rejects its results by comparing them with the
results of the other method. (Figure 4.15a)

(ii) PortStats then PktOut. PortStats is used, and when it detects a segment failure, it
launches PktOut to validate/refute the result. (Figure 4.15b)

(iii) PktOut then PortStats. PktOut is used, and when it detects a segment failure, it
launches PortStats to validate/refute the result. (Figure 4.15b)

The parallel approach (case (i)) would allow to validate the detection of segments failure

91

4. Performance

(a) Method A and B. (b) Method A then B.

Figure 4.15: Flowcharts of combination of methodologies in PRoPHYS.

with the minimum detection interval. Moreover, it allows to adapt thresh, thresh_count,
and the monitoring interval variables of PortStats based on the estimated delay information that
are obtained by PktOut. The main advantage of one method followed by the other (cases (ii) and
(iii)), is the limited number of events sent at the same time by the controller to the switch. Indeed,
with a monitoring interval of 10ms, the parallel method induces a higher pressure on the SDN
control plane as illustrated in Figure 4.16, where we observe that the parallel approach reaches the
200 event/s limit that a typical hardware SDN can sustain.

4.4 Conclusion

In this chapter, we described in details our solutions to enhance flow performance in SDN and
hybrid networks. We first presented our coarse grained scheduling algorithms that leverage the
centrality of the control plane and the online trafic monitoring to detect large flows in the network.

We proposed two schedulers, the state-full and the scalable schedulers, which detect large

92

4. Performance

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

E

ve
nt

s

Time (s)

Parallel
PktOut

PortStats

PktThenPort
PortThenPkt

Figure 4.16: Total number of events triggered per second over every switch in the network.

flows and modify their queue to use the lowest priority queue so as to allow short flows to finish
quickly. The state-full scheduler monitors all the flows in the network to detect large flows quickly,
however, this scheduler does not scale. On the other hand, the scalable scheduler monitor the ports
of the switches and then zooms in the port traffic once the port utilization bypasses the predefined
threshold. Our primary results, showed that both schedulers enhance the end-to-end delays of
short flows in small networks. However, they failed to maintain similar results in fat-tree and VL2
networks.

In the second part of this chapter, we explained in details our solution called PRoPHYS that
detects network failures in non-SDN networks and reroutes the traffic away from these non-SDN
segments once the failure is detected. PRoPHYS solution can decrease the downtime from 50ms
to 25ms in hybrid SDN/OSPF networks. This is achieved by using the SDN switches to quickly
detect failures within the SDN and non SDN part (OSPF islands) of the network and also by
carefully interacting with OSPF routers during their re-convergence period using tunnels.

We proposed two techniques to detect failures for PRoPHYS, PortStat and PktOut, and evalu-
ated their relative merits in terms of detection time and false positive rate for key scenarios involv-
ing UDP or TCP traffic. We also discussed various options to combine these methods. We further
highlighted their potential impact on the control plane of OpenFlow, which is the bottleneck of
OpenFlow as control messages between SDN switches and the controller are handled in the slow
path of the SDN switches.

In the following chapter, we will discuss how SDN nodes can be leveraged in order to increase
network’s energy efficiency while keeping the network performance intact (i.e. no packet loss
resulting from turning off links or nodes).

93

4. Performance

4.5 Publications

• Poster

– Myriana Rifai, Dino Lopez, Guillaume Urvoy-Keller,"Coarse-grained Scheduling with
Software-Defined Networking Switches", ACM Sigcomm 2015.

• Research Report

– Myriana Rifai, Dino Lopez, Quentin Jacquemart, Guillaume Urvoy-Keller "PRoPHYS:
Providing Resilient Path in Hybrid Software Defined Networks".

94

Chapter 5

Energy Efficiency

Contents
5.1 Related Work . 97

5.1.1 Backbone Networks . 97

5.1.2 Data Center . 98

5.2 SENAtoR: Reducing Energy Consumption in Backbone Networks 99

5.2.1 Energy Aware Routing for Hybrid Networks 100

5.2.2 OSPF-SDN interaction and traffic spikes/link failures 104

5.2.3 Experimentations . 105

5.2.4 Numerical evaluation . 108

5.3 SEaMLESS: Reducing Energy Consumption in DataCenters 115

5.3.1 Migrating from the VM to the Sink Server 116

5.3.2 Migrating from the Sink Server to the VM 117

5.3.3 Addressing Routing Issues . 118

5.3.4 Detecting User Activity . 119

5.3.5 Energy Saving Strategies . 120

5.3.6 Performance Evaluation . 121

5.4 Conclusion . 124

5.5 Publications . 125

Due to the high increase of energy consumption and its negative impact on the global carbon
footprint and the environment, in 2016, the European Union decided to cut its energy consumption
by 20% by 2020 [Eur]. In 2013, the worldwide energy consumption of Information and Commu-
nication Technologies (ICT) was around 1,253 Twh which amounts to 10% of the world’s energy
consumption [SW]. This energy consumption is increasing yearly and is expected to almost double
by 2020 [EA15] due to the increase in Internet traffic, network services and number of connected
devices.

95

5. Energy Efficiency

As most of the power hungry ICT can be found in the backbone and data center networks,
multiple solutions were created to decrease the energy consumption of the: (i) backbone net-
works notably using energy aware routing where some network devices are put in sleep mode
e.g. [CMN12], or the network device speed and link capacity is adapted to the traffic load to
decrease energy consumption e.g. [CMN09] and (ii) the data centers by applying energy aware
routing solutions to decrease the energy consumption of the network, server and network virtual-
ization [ENE], VMs energy aware placement algorithms e.g. [KGB13], server consolidation e.g.
[SKZ08, BB10a] to minimize the number of running servers at any time, or even cooling strategies
such as free cooling [KRA12] that uses the external air temperature to cool the air that circulates
in the data center. In this thesis, we mainly focused on the limitations of current energy aware
routing and server consolidation solutions.

Energy aware routing decreases the energy consumption of the network by forwarding traf-
fic so as to maximize the number of unused network devices that can be shutdown. It can also
require a dynamic adaptation of network resources to the network load. However, in legacy net-
works, operators are reluctant to change network configurations as they are frequently manually
set which makes dynamic changes to routing configurations almost impossible. On the other
hand, by placing the control plane in a central programmable controller, the SDN paradigm al-
lows the dynamic control of a network. SDN, thus bears the promise of enabling those energy
efficient solutions. The problem with existing energy aware routing solutions for backbone net-
works [CMN12, CMN09, CEL+12] is that energy efficiency comes at the cost of performance
degradation especially when sudden traffic peaks or link failures occur.

Server consolidation mainly aims at maximizing the number of virtual instances running
on the least possible number of physical hosts, thereby lowering the required number of run-
ning servers, and enabling to power off a part of the data center. However, when VMs are
idle, even though the least possible number of physical servers are used, the power they con-
sume is not necessarily used to do any useful work. Instead, it might be used to maintain the
background services of a large number of idle VMs afloat. Unfortunately, these solutions e.g.
[dSdF16, PLBMAL15, BAB12] offer limited benefits when active VMs exhibit frequent idle pe-
riods.

In this chapter, we present an energy efficient solution called Smooth ENergy Aware Routing
(SENAtoR) for hybrid ISP networks (Section 5.2). Then, we represent an energy efficient enter-
prise data center/cloud architecture SEaMLESS (Section 5.3). SENAtoR is an energy efficient
solution that uses SDN nodes to turn off network devices without incurring data loss at any mo-
ment even when traffic peaks or network failures occur. SENAtoR leverages three main features
to ensure zero traffic loss: (i) tunneling for fast rerouting, (ii) smooth node disabling and (iii)
detection of both traffic spikes and link failures. SEaMLESS is an energy efficient architecture,
that is still in its infancy but with promising result, which migrates idle virtual machine (VM) to
lightweight virtual network function (VNF) so as to empty the RAM and allow enhanced server
consolidation.

96

5. Energy Efficiency

5.1 Related Work

Reducing the energy consumption in data center and backbone networks has been widely stud-
ied. In backbone networks, researchers aimed at using energy efficient devices that can adapt
their energy consumption based on the traffic load [CMN09], or using energy aware routing
algorithms that can turn off or put in sleep mode unused network devices [CMN12]. As for
data centers, researchers opted to obtain energy efficiency by virtualizing networks and servers
[ENE], using renewable energy power sources [ZWW11] or cooling strategies such as free cool-
ing [KRA12], using VM energy aware placement algorithms [KGB13], and server consolidation
[dSdF16, PLBMAL15, BAB12].

5.1.1 Backbone Networks

Backbone network energy efficiency consists mainly of using energy aware routing, e.g. [CMN09,
SLX10, LLW+11], or traffic engineering and power aware network protocols, which in some
cases might leverage the benefits of SDN [HSM+10b, HJW+11, HSM+10a, WZV+14, JP12,
XSLW13].

Energy aware routing has been studied for several years, see for example [CMN09] for back-
bone networks, [SLX10] for data center networks, or [DRGF12] for wireless networks. The pro-
posed algorithms allow to save from 30% to 50% of the network energy consumption. However,
as stated earlier, they imply to do on the fly routing changes.

After SDN was introduced into the networking community, multiple works proposed and
investigated SDN solutions to implement energy aware routing. For instance, in [GMP14], the
authors propose algorithms to minimize the energy consumption of routing by shutting down
links while taking into account constraints of SDN hardware such as the size of TCAM memory.
Authors in [HSM+10b] implemented and analyzed ElasticTree, an energy aware routing solution
for data center networks. They showed that saving up to 50% can be achieved while still managing
traffic spikes. However, these solutions require a complete migration of the network to the SDN
paradigm and are not adapted for ISP hybrid networks.

The most realistic scenario for the introduction of the SDN paradigm is a progressive mi-
gration using hybrid networks. As explained in Chapter 1, in hybrid networks, legacy and SDN
hardware stand alongside and the difficulty is to make different protocols coexist. Opportunities
and research challenges of Hybrid SDN networks are discussed in [VVB14]. Routing efficiently
in hybrid networks has been studied in [AKL13] where the authors show how to leverage SDN
to improve link utilization, reduce packet losses and delays. We extend this work by considering
energy efficiency.

However, turning off SDN devices in hybrid SDN networks, can be interpreted as link or
node failures by legacy network devices and might decrease the network ability to drain sudden,

97

5. Energy Efficiency

yet not malicious, traffic surges (due, for instance, to exceptional events such as earthquakes).
Consequently, our energy-aware solution SENAtoR implements some features to correctly cope
with link failures and flash crowds. The network community has addressed such problems, with
the help of SDN, as follows:

• Link Failure Detection and Mitigation. As in legacy devices, SDN devices can rely on
the legacy BFD to detect link failures [KW15]. Once the link failure has been detected,
OpenFlow already offers a link failure mitigation through the notion of FAST-FAILOVER
group rules, where several rules per flow can be installed. Protection of the link and control
channel of OpenFlow requires however more complex solutions, as the one proposed in
[SSC+16]. To avoid losses in case of link failures in hybrid networks, [CXLC15] proposes
to introduce pre-set tunnels from a legacy router towards an SDN router, which form backup
paths. Later, SDN nodes reroute traffic through non damaged paths. We borrow this idea
and propose to use pre-set tunnels, which are used when a node is turned down. This is
an adaptation and a generalization of the solution proposed in [CXLC15] to handle a link
failure. Indeed, we use it for energy efficiency when multiple links are turned off. We also
allow tunnels to be set between any (OSPF or SDN) pair of nodes and we carry out practical
experimentations to validate the method.

• Detecting Traffic Variations in SDN Networks. Traffic variations of backbone networks
are usually smooth as the network traffic is an aggregation of multiple flows [RGK+02,
IDGM01]. However, abrupt variations happen in case of link failures or flash crowds
[LCD04]. Methods have been proposed to detect them in legacy networks, see for example
[LCD05, AHM+03]. Netfuse [WZS+13] has been proposed in SDN-based data centers to
mitigate the effect of traffic variations where it detects traffic surges and adapt the traffic
flow and load to prevent traffic overload. In SENAtoR, we propose a method to detect such
abrupt variations in a hybrid SDN network.

5.1.2 Data Center

A data center is composed of three major components: (i) the servers, (ii) the network, and (iii)
the cooling systems. Thus, decreasing the energy consumption of any of the three components or
all of the components all-together decreases the energy consumption of the data center.

To decrease the energy consumption of the servers, some researchers suggest to use new
electronic components to quickly enter a power saving mode when the device is underutilized
[CRN+10, VSZ+11, CSB+08, D-L09, GTB+14]. Others suggested to use virtualization tech-
niques such as virtual machine (VM) and containers, and migrate existing servers to VMs or
containers using KVM [KVM], Qemu [Qem], Xen [Xen] or Docker [Doc] to allow server consol-
idation, energy efficient VM placement and relocation.

Server consolidation and energy efficient VM placement and relocation methods allow to
decrease or minimize the number of servers used at any time to host all of the needed services as in

98

5. Energy Efficiency

average 30% of the servers are unused at a single time [UR10]. Multiple server consolidation and
VM placement solutions exist such as [BB10b, dSdF16, PLBMAL15, BAB12]. These solutions
take into consideration, in general, the memory, number of CPU used, and disk space of the VM
limitations when relocating or placing the VM. They also take into account the rate of changes of
the memory pages of the VM to be migrated. However, when the VM is idle these solutions turn
off or suspend the VM disconnecting its services which causes performance degradation when the
service needs to be always available such as in enterprise data canter networks e.g. a consulting
company or a ski resort website.

To decrease the energy consumption resulting from running machines hosting idle services,
the authors of [DPP+10] propose to save energy from idle desktop machines without any service
disruption by live migrating the user’s desktop environment from the personal computer to a server
VM in a remote data center. This strategy indeed saves energy of the personal computer, however,
on the side of the data center, energy is wasted to keep idle VMs on.

To decrease the energy consumption of the data center network, energy aware routing and
energy efficient networking devices are used such as [SLX10], in addition to traffic engineering
and power aware network protocols, which in some cases might leverage the benefits of SDN
[HSM+10b, HJW+11, HSM+10a, WZV+14, JP12, XSLW13]. Moreover, to decrease the energy
consumption of data center networks, researchers suggest to leverage network virtualization tech-
niques [ENE] such as VLANs and VNF techniques to virtualize full network and network devices
decreasing the number of physical network components required to host the network.

In addition to decreasing the energy consumption of the data center servers and networks,
energy consumption can be reduced by using renewable energy resources [ZWW11] or cooling
strategies such as free cooling [KRA12]. Multiple researchers have studied methodologies to inte-
grate the renewable energy resources such as the solar panels in the data centers without negatively
impacting the performance of the latter [LCB+12]. Some others suggested free cooling [KRA12]
which uses the external natural air to cool down the temperature of the air circulating in the data
center.

5.2 SENAtoR: Reducing Energy Consumption in Backbone Networks

In this work, we consider the problem of energy aware routing in a hybrid SDN network. To
provide energy optimization in hybrid networks, we introduce SENAtoR - Smooth ENergy Aware
Routing which turns off network devices with no negative impact on data traffic. Since in real
life, turning off network equipments is a delicate task as it can lead to packet losses, SENAtoR
provides several features to safely enable energy saving services: (i) tunneling for fast rerouting,
(ii) smooth node disabling and (iii) detection of both traffic spikes and link failures.

In SENAtoR, the controller first chooses the set of routes that minimizes the number of used
network equipments for the current traffic, and then we put SDN nodes in sleep mode (a.k.a by

99

5. Energy Efficiency

putting them in power save mode) which turns off its network interfaces and some inner network-
ing modules. We consider a typical dynamic traffic of an operator, and hence, our solution adapts
the numbers of active and inactive network equipments during the day.

To maintain the network performance while saving energy, traffic has to be rerouted dynami-
cally and automatically when the SDN nodes are put in sleep mode and their links are turned off.
It is thus impossible to wait for the convergence of the legacy protocols (e.g. OSPF). Moreover,
if ISP network traffic usually shows smooth variations of throughput, it also experiences sudden
changes which may correspond to (link or node) failures or to flash crowds [RGK+02]. In these
cases, the energy efficient solution should be able to react very quickly and switch on previously
turned off devices– in this chapter, we use the terms turn off and sleep mode interchangeably. We
thus propose three mechanisms (detailed below):

• First, we use pre-set tunnels as backup routes in case of link failure or turned off devices.

• Second, we use the SDN controller to suppress any incoming OSPF packet to simulate a link
disconnection on the network interface to be disabled– this forces OSPF nodes to converge
to different Shortest Path Tree (SPT)s.

• Last, we use SDN monitoring capabilities to detect quickly large unexpected traffic peaks
or link failures.

Using preset tunnels is inspired by the solution proposed in [CXLC15] to handle single link
failure. The goal was to avoid waiting for the convergence of legacy routing protocols by using
tunnels from a node with a failing link to an SDN node which can reach an alternative OSPF
shortest path in one hop. We reused this idea to reroute from any node, with a turned off link, to
any other node with a direct path towards the destination which does not include a disabled link.

5.2.1 Energy Aware Routing for Hybrid Networks

Routing in a Hybrid Network. We consider that a network is modeled as a directed graph
D = (V,A) where a node represents a Point of Presence (PoP) and an arc represents a link between
two PoPs. A PoP consists of several routers linked together [GNTD03]. Each link (u, v) ∈ A is
connected to a specific router in PoP u and in PoP v, see Figure 5.1. A link (u, v) has a maximum
capacity Cuv.

We consider hybrid networks in which SDN capable equipments are deployed alongside
legacy routers. We consider a scenario in which PoPs do not contain heterogeneous equipments,
i.e, all routers are either SDN capable (in this case, we use the term SDN switch) or legacy. Legacy
routers follow a legacy routing protocol, such as OSPF. We denote the next hop to the destination
t on a legacy router u by nt(u). SDN switches are controlled by one or several central controllers
and can be configured, dynamically, to route to any of its neighbors.

Power Model and Energy Aware Mechanism. To model the power consumption of a link,

100

5. Energy Efficiency

PoP v

PoP u

PoP w

SDN PoP
Legacy PoP

ru1

ru2
ru3

rw2

rw1
rw3

rv2

rv3
rv1

Figure 5.1: 3 PoPs interconnected in a hybrid network.

we use a hybrid model comprised of a baseline cost, representing the power used when the link
is active, and a linear cost depending on its throughput. This allows, depending on the value of
the parameters, to express the different power models (between ON-OFF and energy proportional)
found in the literature, see [ICC+16] for a discussion. The power usage of a link is expressed as
follows

Pl(u, v) = xuv ∗ (Uuv + FuvLuv)

where xuv represents the state of the link (ON or OFF), Uuv is the baseline power consumption of
an active link, Fuv the total amount of bandwidth on the link, and Luv the power coefficient of the
link.
Routers have two power states: active or sleep, and their total consumption Pn(r) is given by

Pn(u) = Bu +Au +
∑

v∈N+(u)
Pl(u, v)

where Bu is the sleep state power usage and Au the additional power used when the equipment is
active.

To save energy, links must be powered down and routers put to sleep. Only SDN switches can
be put into sleep mode without negative impact on the network (this is discussed in more details
in Section 5.2.2). As it should be done dynamically according to the network traffic, the decision
is taken by the SDN controller. Thus, only links with an SDN switch as one of their end point can
be shutdown. Since PoPs are interconnected using dedicated routers inside their infrastructure, if
a link between two SDNs is shutdown, then each router of the link can be shutdown, if it is SDN
capable. For example, in Figure 5.1, shutting down the link between PoP u and PoP v will set
router ru3 to sleep mode, as it is an SDN switch, but rv3 will remain active. Shutting down the
link between PoP u and PoP w will put ru1 and rw2 to sleep.

When an SDN node has to be put in sleep mode and links have to be shutdown, the mechanism
is the following: (i) the SDN controller first reroutes the traffic so that no flows are passing through

101

5. Energy Efficiency

this node or link (this is discussed in details in Section 5.2.2), then (ii) the SDN controller sends
the order to the SDN switch to enter into sleep mode or to disable the interface corresponding to
the link. Since no more data packets are using the link, the interface of the legacy router can auto-
matically enter into sleep, using for instance IEEE 802.3az Energy-Efficient Ethernet [CRN+10].

Tunneling. To avoid loosing packets during the re-convergence phase, we use pre-set tunnel
backup paths to redirect traffic that would otherwise be lost after a link or node is down. The
idea is to reroute the traffic that would use this down link or node to an intermediate node whose
shortest path to destination does not use down links. We now consider the following problem.

Hybrid Energy Aware Routing (hEAR) with tunnels Problem. We consider an SDN budget
k, i.e., a number of PoPs which can be transitioned to SDN equipments. The hEAR problem is:

• to deploy k SDN PoPs in the network

• to route a set of demands D

• to choose a set of tunnels

while

• minimizing the total power consumption of the network

• respecting the link capacities

• ensuring that the traffic can be rerouted quickly through tunnels when network equipments
are turned off

5.2.1.1 Heuristic Algorithm (SENAtoR)

Along with the COATI team, we propose here SENAtoR (Smooth ENergy Aware Routing) which
can be used to solve the hEAR problem. The problem can be naturally divided into three subprob-
lems: (i) first, SDN node placement, to define the subset of SDN nodes in the network (ii) then,
path assignment, to find a path for every demand inD, (iii) and last, off link selection, to select the
links/nodes we power off and reroute the affected traffic.

SDN node placement The SDN node placement is multi-criteria. Indeed, SDN nodes have
several functionalities. First, they allow a better control of the routing as the next hop of a flow
passing through an SDN node can be chosen dynamically by the controller. Thus, it is important
to select SDN nodes which are central and route a large amount of traffic. A way to do this is for
example to choose nodes according to their centrality, e.g., betweenness centrality or closeness
centrality. Second, recall that only links adjacent to an SDN node can be turned off. Thus, to
be able to reduce efficiently the network energy consumption, we want to cover the maximum
number of links with the available budget of k SDN nodes. If we consider this second criterion
independently, we can optimize it by solving a MAX k-VERTEX COVER. This problem is known

102

5. Energy Efficiency

to be NP-hard. However, it can be solved optimally for the topology sizes considered, using for
example a simple ILP and CPLEX.

The COATI team tested different methods to select the SDN nodes and choose a simple
criterion to express the importance of a node (centrality and covering): the node degree. The
resulting heuristics is: first sort all nodes according to their degree; second, choose the k first
nodes. This method gives similar results to the other ones and has the advantages of being simple
and to allow a good incremental upgrade to SDN hardware (on the contrary to solving MAX k-
VERTEX COVER).

Path Assignment To assign a path to a demand, we build a weighted residual graph Hst =
(V,A′) and then search for the shortest path between s and t in Hst. We build Hst using the
following method:

Nodes in Hst are the ones of D and correspond to network routers. For links, we only
consider links and tunnels which (i) have enough residual capacities to satisfy the demand Dst (ii)
can be used by a feasible routing of the demand between s and t. For Condition (ii), we consider
each node u and construct its set of out-neighbors as follows:

If u is a legacy node, the routing is done by the legacy routing protocol towards the next
hop nt(u) if the link to nt(u) is active. In this case, the only neighbor of u in Hst is nt(u).
Otherwise, if the link to nt(u) is inactive, the routing is done through a tunnel. We have several
cases: (i) If a tunnel is already defined for the destination t, the end of the tunnel is the only
neighbor of u. (ii) If no tunnel is defined, the next step depends on the variant of the problem.
For hEAR-with-tunnel-preset, tunnels are already selected. Thus, u has no neighbor in Hst. In
the hEAR-with-tunnel-selection variant, we have to set a tunnel in this case. We thus add all
the potential tunnels by adding any node that can reach the destination t, using direct forwarding
(OSPF or OpenFlow) or existing tunnels. The decision of which tunnel will be really selected is
done later when we compute the shortest path in the residual graph.

If u is an SDN node, the routing is done by OpenFlow rules installed by the controller. We
have two cases: if no OpenFlow rule is set for the demand in node u, any neighbor can be the next
hop. The neighbors of u in Hst are the same as in the original digraph D. Otherwise, we only add
as neighbor of u in Hst the node designed as the next hop by OpenFlow. As for a legacy node, if
the link to the next hop given by OpenFlow is inactive, we also consider tunnels in the same way.
The decision of installing or not a new OpenFlow rule in u is done later by the algorithm when the
shortest path in the residual graph is computed. The same applies for the selected tunnel.

When the residual graph Hst is built, we select the shortest path from s to t to route the
demand. If this path uses new tunnels or new OpenFlow rules, we add them to the current solution.

Off Link Selection Once all demands have been assigned a path, we try to power off links to
save energy. We consider SDN links one by one, i.e., links with at least one SDN endpoint. We

103

5. Energy Efficiency

select the active link with the smallest amount of traffic on both arcs. We then try to reroute
all the demands flowing through that link. If no valid routing can be found, the link is set as
non-removable and the previous routing is restored. If a valid routing is found, the link is set as
inactive and powered off. We then consider the remaining active links. The heuristics stops when
all SDN links are either powered off or non-removable.

5.2.2 OSPF-SDN interaction and traffic spikes/link failures

In SENAtoR we consider a hybrid ISP network that is composed of multiple PoPs that are con-
nected together (see Figure 5.1). The SDN nodes communicate with the OSPF nodes using the
OSPF protocol control packets. To prevent data loss when we enable the energy efficient solutions,
we created several methodologies that will:

• Allow the smooth shutdown of the network devices without loosing data.

• React dynamically to link failures and traffic bursts.

5.2.2.1 Lossless link turn-off.

Before putting an SDN PoP switch in powersave mode which turns off its interfaces, the Flood-
light controller demands the switch to stop sending any OSPF packet to its neighbors. This allows
neighboring OSPF routers to converge to a network view excluding this node. Indeed, in OSPF
protocol, the nodes transmit a Hello packet every hello_interval to maintain the connec-
tion with its neighbors. If a node does not receive a Hello packet from its neighbor after the
default dead_interval of 3 × hello_interval, an OSPF router declares its neighbor as
dead and stops using the link. However, until the end of the dead_interval, the link is consid-
ered to be active and traffic flows over this link. Thus, after the dead_interval , plus a safety
margin of 10 additional seconds, and if no traffic is received through its links (that we define as the
OSPF expected convergence period), the SDN PoP switch is put in powersave mode. To avoid any
losses when a node should be put in powersave mode, SENAtoR thus stops sending Hello pack-
ets during the expected convergence time, before actually putting the node in powersave mode.

5.2.2.2 Traffic bursts mitigation.

Sudden traffic spikes are relatively rare due to the high statistical multiplexing in the backbone
of ISPs. However, exceptional events (such as earthquakes) can lead to flash crowds [RGK+02].
Therefore, we complement SENAtoR with a safeguard mechanism that aims at reactivating inac-
tive SDN PoP switches in case of a sudden traffic spike. The latter event is defined on a per link
basis as follows: the controller is collecting the traffic load on each interface of every SDN active
switch at a small time scale (in our experiments, once per minute). We then compare the real traffic
level received at interface i,Ei(t), to the estimated rate,EESi (t). In case the real traffic rate is 50%

104

5. Energy Efficiency

higher than the estimated rate, Ei(t) ≥ 1.5×EESi (t), for any interface i, all inactive SDN routers
are re-enabled to prevent the over-congestion of existing links. The value of 50% was chosen in
a conservative manner, since, in general, ISP networks are over-provisioned. There is thus little
need taking actions unless the rate fluctuation is severe. After the OSPF expected convergence
period, the controller reruns the SENAtoR solution to obtain a new green architecture if possible.

5.2.2.3 Link failure mitigation.

We employ a mechanism similar to the traffic spike mitigation mechanism in case of link failures
where SENAtoR undoes any previous action, i.e., it turns on again any inactive SDN node when
a link failure is detected. A link failure is discovered by the SDN nodes instantaneously if the
link is directly connected to an SDN node. However, if the failed link is between two OSPF PoP
nodes, SDN nodes detect it by observing a decrease of the rate of one interface as compared to
what the traffic matrix predicts Ei(t) ≤ 0.5 × EESi (t). We benefit from the fact that in typical
ISP networks, traffic is all-to-all, i.e., from one PoP to any other PoP. Hence, any SDN router
in the network is likely to detect the link loss, as a fraction of the traffic it handles is affected
by the failure. Again we use a conservative threshold of 50%, i.e., an SDN switch must detect a
decrease of 50% of any of its links’ load to trigger the link failure mitigation mechanism. After
link failure detection, packets are rerouted through a different path if possible (including the pre-
set tunnels). Once again, after the OSPF convergence expected period, the controller reuses the
SENAtoR solution to obtain a new green architecture if possible.

5.2.3 Experimentations

In this section, we present results obtained on a Mininet testbed with the SENAtoR solution. Our
objective in this section is twofold. First, we aim at demonstrating that SENAtoR can indeed
turned off links and put SDN switches in power save mode without loosing packets thanks to a
smooth integration with OSPF to anticipate link shutdown. Second, we evaluate our link failure
and traffic spike detection algorithm that enable SENAtoR to cope with those small time scale
events, as compared to energy saving, which is performed at a larger time scale.

5.2.3.1 Testbed

We built a hybrid SDN testbed using Mininet [Min] and a Floodlight controller. OSPF routers are
materialized as host nodes in Mininet and run the Quagga software [Qua] while OvS switches act
as SDN switches. Our Floodlight controller is able to parse and respond to OSPF Hello packets
received and forwarded by the SDN OvS switches (through adequate Openflow rules installed in
the SDN switches) ; hence ensuring the correct functioning of the adjacent OSPF routers. The very
same code implementing the heuristics proposed in Section 5.2.1 and 5.2.4 respectively, is used
by the Floodlight controller. Tunnels are implemented as simple GRE tunnels and the interplay

105

5. Energy Efficiency

between the tunnel interface and the regular interfaces is controlled by tuning the administrative
distance so that regular interfaces have a higher priority. When SENAtoR notifies to put into
sleep mode an SDN PoP switch, we turn off all of its interfaces and disconnect it from the rest of
the network. We believe this is a fair simulation of powersaving mode, as our tests done on our
HP5412zl switch revealed that putting an SDN switch in powersave mode (inactive SDN switch)
is equivalent to shutting down all of the network interface modules and background modules, that
are not used anymore, and to decrease the energy consumption of the fan, while keeping the set
of rules previously installed by the controller. Keeping the previously installed rules in memory
enables a quick recovery from powersave mode to normal active mode.

We consider in this section the Atlanta topology (15 PoP nodes, 22 links between PoPs) of
SNDlib with 50% SDN deployment. As stated in Section 5.2.1, a PoP is composed of several
routers. Each router connects the PoP X to another PoP Y , and the routers in a PoP are connected
together using a central node such that they form a star topology.

For a given traffic matrix, each source-destination pair corresponds to one CBR UDP connec-
tion in our experiments.

5.2.3.2 Results

Lossless link turn-off. In Figure 5.2a we vary the traffic over time (continuous black curve), so
that we have a factor of 6 in between the minimal and the maximal total traffic in the network.
This is achieved by taking one traffic matrix and scaling it using a sinusoidal function to impose
smooth variations on the average rate, similarly to what is expected in a typical ISP network. The
bars in the figure correspond to the number of links that are turned off and the number of nodes
that are put in powersave mode by the SENAtoR algorithm.

The experiment enables to highlight that the interplay between SDN and OSPF is effective,
i.e., that our smooth link shutdown approach effectively avoids data losses. Figure 5.2b portrays
the time series of packet loss with pure OSPF (OSPF operates the complete network and no link
is turned off in this case), SENAtoR and ENAtoR (SENAtoR without the smooth link shutdown).
The figure shows the importance of anticipating the link shutdown (resulting from putting SDN
switch in sleep mode) as is done in SENAtoR as losses explode to 104 packets when this feature
is disabled (ENAtoR). In this case, the high loss rate of ENATOR is proportional to the amount
of time it takes for OSPF to declare the link down multiplied by the traffic intensity. In contrast,
SENAtoR manages to maintain the same packet loss as a full OSPF network without any links
shutdown, with negligible loss rates (10−4%), even though it is using less links and nodes in the
network.

Traffic spikes To illustrate the traffic spike mitigation mechanism, we consider a fixed traffic
matrix (no scaling) and we induce a traffic spike either at an OSPF node directly connected to an
SDN switch (Figure 5.3a) or between OSPF nodes (Figure 5.3b). We report the CDF of loss rates

106

5. Energy Efficiency

(a) Number of turned off links (b) Packet loss

Figure 5.2: Senator impact on atlanta topology using sinusoidal traffic flow.

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

Loss rate in %

C
D

F

OSPF

SENAtoR

(a) In an SDN-OSPF link

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

Loss rate in %

C
D

F

OSPF

SENAtoR

(b) In an OSPF-OSPF link

Figure 5.3: Traffic spike experiment with the atlanta topology

of all connections (source-destination pairs). Clearly, the spike detection algorithm of SENAtoR
allows it to outperform OSPF, even though it is using less active links and nodes. One of the
reasons of such a phenomenon is that regular OSPF nodes have no mechanisms to automatically
load balance packets in case of traffic spikes.

Link failure We consider again a fixed traffic matrix (no scaling) and we induce a link failure
either between an SDN switch and an OSPF router or in between two OSPF routers. We present
in Figures 5.4a and 5.4b the loss rates for the former and latter case respectively. We compare
here three protocols: (i) the legacy OSPF scenario, in which the link failure is handled by the
OSPF protocol (with a long convergence time), (ii) the SENAtoR solution using OSPF Link State
(LS) Updates only to detect network changes; and (iii) the SENAtoR solution with its link failure
detection and mitigation mechanism.

107

5. Energy Efficiency

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

Loss rate in %

C
D

F

OSPF
SENAtoR w/ LS−update only
SENAtoR

(a) On an SDN-OSPF link

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

Loss rate in %

C
D

F

OSPF
SENAtoR w/ LS−update only
SENAtoR

(b) On an OSPF-OSPF link

Figure 5.4: Link failure experiment with the atlanta topology

We first observe that even without link failure mitigation, SENAtoR does not experience
higher loss rates than the legacy OSPF protocol (and significantly lowers loss rates in the OSPF-
OSPF case), even though some of the switches and links were down at the time of the failure, and
had to be switched on. The explanation is that SDN switches do not need to wait for the OSPF
convergence before rerouting traffic through the pre-established set of tunnels. The link failure
mitigation mechanism further improves the situation.

We further observe a counter intuitive result, which is that the loss rates using SENAtoR
are smaller when the failure occurs on an OSPF-OSPF link rather than an SDN-OSPF link. Two
factors contribute to this result. First, SDN nodes are placed at key locations in the network such
that they convey more traffic. Hence, a failure at these nodes induces higher loss rates. Second,
as soon as a downstream SDN node detects a link failure in an OSPF-OSPF link, SENAtoR limits
the traffic flowing on this link, which it can do by instructing upstream SDN nodes to reroute their
traffic. So, while OSPF convergence time is slow, this is mitigated by the fact that less traffic is
sent over the lossy link as soon as SENAtoR detects the failure.

5.2.4 Numerical evaluation

In this section, we evaluate numerically the solutions proposed on different ISP topologies. This
allows us to solve the hEAR problem on larger networks of SNDLib than the Mininet testbed used
previously. We show that energy savings up to 35% can be obtained for different levels of SDN
hardware installation.

For the parameters of the power model, we considered the cases of two different hardware:
our HP5412zl SDN switch and an ideal energy efficient SDN switch as discussed in [VLQ+14].
In the first case, we measured the power consumption using a wattmeter:

The switch uses 95W when in sleep mode and 150W if it is active (Bu = 95, Au = 55).

108

5. Energy Efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
af

fic
 [n

or
m

ali
ze

d]

Daily time (h)

D1

D2

D3

D2

D4 D4

D5

D3

D3

0.3

0.4

0

0.6

0.8

1.0

0 5 10 15 20 24

Figure 5.5: Daily traffic in multi-period

According to Cisco specifications [Cis], links are using 30W as a baseline and go up to 40W when
at full capacity (Uuv = 30, Luv = 10). In the second case, we consider an ideal energy efficient
switch. In order to have a fast recovery from sleep mode, the TCAM must remain powered on to
preserve the forwarding rule. According to [CMFA14], TCAM represents 30% of the consumption
of a high end router, and considering results from [VLQ+14], we can safely assume that an ideal
energy efficient switch could save up to 60% of energy in sleep mode.

5.2.4.1 Simulations on larger networks

We first look at the performance of the heuristics on atlanta and on larger networks such as
germany50 (50 nodes and 88 links), zib54 (54 nodes and 81 links) and ta2 (65 nodes and
108 links).

Traffic Model In this work, we assume that an ISP is able to estimate the traffic matrix of its
network using (sampled) netflow measurements [B. 04] or, in the case of hybrid networks, by
combining SDN and OSPF-TE data [AKL13]. Estimation errors can be handled by our traffic
variation detection algorithms (Section 5.2.2). Since ISP traffic is roughly stable over time with
clear daily patterns, a few traffic matrices would be enough to cover a whole day period. Conse-
quently, a relatively small number of routing reconfigurations allows operators to obtain most of
the energy savings [ICC+16] and avoid making frequent reconfigurations.

Indeed, as exemplified by the daily variations for a typical link in the Orange ISP network,
see Figure 5.5, five traffic matrices (labeled D1 – D5) are enough to represent the daily variations.
Inspired from this observation, we select these 5 different traffic matrices as baseline for our
simulations and experiments.

We next compute the best hybrid energy aware routing for them. Whenever SENAtoR de-
tects that the amount of traffic has changed, it relaunches its routing heuristic. We rely on the
mechanisms discussed in Section 5.2.2 to do this operation without loss.

109

5. Energy Efficiency

Daily savings In Figure 5.6, we compare the energy savings during the day for the four topolo-
gies. The top figures represent the savings with HP switches and the bottom ones the savings with
ideal energy efficient switches. We look at 4 different levels of SDN deployment: 10%, 25%, 50%
and 100% of upgraded nodes in the network. For each period, we compare the energy used to the
one of a legacy network at the same period.

On a full SDN network, the difference between night and day energy savings is between
2% and 7% (3.5% and 9% with ideal switches). With HP switches, we can save up to 19% on
atlanta, 22% on germany50, 17% on zib54 and 21% on ta2 with a full SDN networks.
With ideal switches, we obtain higher savings, between 25% and 35%.

Number of tunnels We look at the number of tunnels used in Figure 5.7. For small SDN budgets
(up to 30% of the network for atlanta, 20% for larger networks), the average number of tunnels
greatly increases with the number of SDN nodes. The reason is that more network links may be
turned off, and thus, more backup tunnels are needed. The number of tunnels then levels off and
decreases. Indeed, with a large penetration of SDN in the network, SDN nodes can dynamically
forward the traffic regardless of OSPF and the traffic can be rerouted before arriving to the turned
off link. Thus, less backup tunnels are needed. The maximum average number of tunnels needed
per node is proportional to the size of the network (3 for atlanta, 8 for germany50, 9 for
zib54 and 15 for ta2). Finally, while the number of tunnels needed may seem high, we see in
the next section that the impact of this overhead on the network performance (packet loss or delay)
is not noticeable.

Stretch and delay By nature, Energy Aware Routing has an impact on the length of the route in
the network. As we turn off links, we remove shortest paths. Moreover, tunnels can also increase
the path length. In Figure 5.8, we show the stretch ratio of the paths for four levels of SDN
deployment. We only show the stretch for the period with the lowest amount of traffic, as it is the
period with the largest number of turned off links and thus the one with the largest stretch.

Most of the demands are barely affected by SENAtoR. The median stays around a ratio of
1 with a maximum of 1.25 for atlanta at 100% deployment, 1.25 for germany50 at 50%
deployment, 1.33 for zib54 at 10%, and 1.25 for ta2 at 25%. 90% of the paths have at most
a ratio less than or equal 3. The stretch of the paths follows the same behavior as the number
of tunnels needed for a valid hEAR. Below a 50% deployment, we need an increased number of
tunnels to forward the traffic, and thus, we also increase the length of the paths. On a full SDN
network, we only see the stretch due to powered off links.

Even though some paths reach a stretch ratio of 14 on germany50 and 9 on zib54, we
can see in Figure 5.9 that the delay on the network stays relatively low. Indeed, the paths with
a big stretch are mostly one-hop paths that used to be on currently inactive links. To compute
the delays, as the delay is proportional to the distance in an optical network [CMZ+07], we use

110

5. Energy Efficiency

0

10

20

30

0 4 8 12 16 20 24

Hours of the day

0

10

20

30

E
n

e
rg

y
u

se
d

 (
%

)

1 nodes

3 nodes

7 nodes

15 nodes

(a) atlanta

0

10

20

30

0 4 8 12 16 20 24

Hours of the day

0

10

20

30

E
n

e
rg

y
u

se
d

 (
%

)

5 nodes

12 nodes

25 nodes

50 nodes

(b) germany50

0

10

20

30

0 4 8 12 16 20 24

Hours of the day

0

10

20

30

E
n

e
rg

y
u

se
d

 (
%

)

5 nodes

13 nodes

27 nodes

54 nodes

(c) zib54

0

10

20

30

0 4 8 12 16 20 24

Hours of the day

0

10

20

30

E
n

e
rg

y
u

se
d

 (
%

)

6 nodes

16 nodes

32 nodes

65 nodes

(d) ta2

Figure 5.6: Daily energy savings over the day for the (a) atlanta, (b) germany50, (c) zib54
and (d) ta2 networks. with 10, 25, 50 and 100% SDN nodes deployment. Top plots: power
model of the HP switch. Bottom plots: power model of an ideal energy efficient SDN switch.

111

5. Energy Efficiency

0 2 4 6 8 10 12 14

of SDN nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
#

 o
f

tu
n

n
e
ls

(a) atlanta

0 10 20 30 40 50

of SDN nodes

0

1

2

3

4

5

6

7

8

9

#
 o

f
tu

n
n

e
ls

(b) germany50

0 10 20 30 40 50

of SDN nodes

0

2

4

6

8

10

#
 o

f
tu

n
n

e
ls

(c) zib54

0 10 20 30 40 50 60

of SDN nodes

0

2

4

6

8

10

12

14

16

#
 o

f
tu

n
n

e
ls

(d) ta2

Figure 5.7: Number of average tunnels installed per node on the (a) atlanta, (b) germany50,
(c) zib54, and (d) ta2 networks

the distances given by the geographical coordinates in SNDlib for the germany50 network. We
got an average value of 1.8 ms per link. Since the coordinates are not given for the other two
topologies, we used the same average value for atlanta, zib54 and ta2. The median delay
rarely goes above 10 ms for all four networks. The zib54 network experiences the worst delay
with a half SDN deployment, with almost 35ms of delay. The bottom line is that using SENAtoR,
we stay below a delay of 50ms. This is important, as this value is often chosen by Service Level
Agreements (SLAs) as the maximum allowed delay for a route in a network [FDA+04] Thus, even
if new routes computed by our algorithms may experience sometimes a high value of stretch, this
will not be a problem for network operators.

As explained above SENAtoR saves energy by turning off SDN nodes network interfaces
or putting the nodes into sleep mode. Turning off only SDN nodes in a hybrid environment that
contains 50% of SDN nodes can provide between 5% to 35% of energy savings. Though this
energy saving percentage might seam low, it can be aggregated with other energy aware routing
techniques (e.g. [RPUK14]) for non-SDN nodes to increase energy savings. In addition, SENAtoR
saves energy while preserving network performance, by using lossless link/node turn-off, spikes,
and traffic failure detection services.

112

5. Energy Efficiency

10% 25% 50% 100%

% of SDN nodes

0

1

2

3

4

5

6

7

8

S
tr

e
tc

h

(a) atlanta

10% 25% 50% 100%

% of SDN nodes

0

2

4

6

8

10

12

14

S
tr

e
tc

h

(b) germany50

10% 25% 50% 100%

% of SDN nodes

0

1

2

3

4

5

6

7

8

9

S
tr

e
tc

h

(c) zib54

10% 25% 50% 100%

% of SDN nodes

0

1

2

3

4

5

6

7

8

9

S
tr

e
tc

h

(d) ta2

Figure 5.8: Stretch ratio for four different levels of SDN deployment on (a) atlanta (b)
germany50, (c) zib54, and (d) ta2 networks. The box represents the first and third quar-
tiles and whiskers the first and ninth deciles.

113

5. Energy Efficiency

0% 10% 25% 50% 100%

% of SDN nodes

0

2

4

6

8

10

12

14

16

18

D
e
la

y
(m

s)

(a) atlanta

0% 10% 25% 50% 100%

% of SDN nodes

0

5

10

15

20

25

30

35

D
e
la

y
(m

s)

(b) germany50

//

0% 10% 25% 50% 100%

% of SDN nodes

0

5

10

15

20

25

30

D
e
la

y
(m

s)

(c) zib54

0% 10% 25% 50% 100%

% of SDN nodes

0

5

10

15

20

25

30

D
e
la

y
(m

s)

(d) ta2

Figure 5.9: Delays for the demands in the (a) atlanta (b) germany50, (c) zib54, and (d)
ta2 networks.

114

5. Energy Efficiency

5.3 SEaMLESS: Reducing Energy Consumption in DataCenters

In the previous section, we presented an energy aware routing solution that allows to improve
the energy efficiency of ISP networks while preserving network performance, by using lossless
link/node turn-off alongside spikes and traffic failure detection services. In this section, we move
on to enhance the energy efficiency of data centers.

As we stated previously in the introduction of this chapter, the power consumption of Data
Centers (DC) is one of the major problems of ICT. Almost 50% of the power consumption used
by the datacenters is used by the physical servers that host the VMs that provide the services
(e.g. Web server, SQL server, etc). To limit this energy consumption, algorithms for power-aware
placement of VMs aim at minimizing the number of active physical servers. However, these
solutions do not consider the state of the virtual machine (active or idle), which could definitely
lead to an optimized solution that minimizes the number of physical servers needed to host active
VMs. Moreover, as we can see in Figure 5.10 which shows the energy gain when turning off idle
VMs, idle virtual machines increase the power consumption of the physical server even though
they are not doing any action. Based on the results of Figure 5.10, we notice that the energy gain
increases as the number of idle VM hosted in the physical server increase, and as the load of the
running VM increase to attain a maximum of 20%.

0

5

10

15

20

25

30

5 10 15 20

E
ne

rg
y

G
ai

n
(%

)

Running VMs (out of 20)

25%
50%
75%
90%

Figure 5.10: Energy gain when turning off idle virtual machines on a physical server.

Hence, in Signet Team we started working on SEaMLESS, a solution that tackles the problem
of idle virtual machines in data centers, in particular, for private enterprise clouds. SEaMLESS
is a novel strategy that migrates an idling service from within a VM to an external Sink Server.
SEaMLESS solution was developed for data centers where the VMs enter frequently short or long
idle periods e.g. during breaks or outside office hours etc. However, those VMs services need to be
always available due to possible user remote connection at any time [ZLC+16]. Our work is based
on the general assumption that a service e.g. a web server in the VM, which we call the Gateway
Process, is actively listening to one or multiple port numbers, waiting for incoming connections

115

5. Energy Efficiency

or requests.

To enable VM suspension while maintaining Gateway Process availability, SEaMLESS mi-
grates the Gateway Process from the original hosting VM to a lightweight virtual network function
(VNF) in Sink Server (Section 5.3.1) and then it suspends the original VM. Next, when the Sink
Server detects user activity on the VNF service (Section 5.3.4), the original VM will be resumed,
and the Gateway Process will migrate from the VNF to the VM (Section 5.3.2) and continue its
execution in its original environment, in a transparent manner for cloud users, i.e. SEaMLESS-ly.

Sink Server

Sink Container

Gateway
Process

No
external
ressource

Idle VM

Gateway
Process

Disk
Devices
Libraries
...

Orchestrator

c7f2d
c428dbf
7a333bc
f685deb

Figure 5.11: Components and architecture of SEaMLESS

In more details, using Figure 5.11 as illustration, a virtual machine runs many processes,
including the Gateway Process, which accesses several resources. Once the virtual machine has
been detected as idle, the SEaMLESS Orchestrator – an agent responsible for the synchronization
of the migration – will create a lightweight version of the Gateway Process and transfer it to the
Sink Server, effectively turning the Gateway Process into a VNF. At this point, the VNF form
of the Gateway Process does not have access to its external resources anymore. This peculiarity
enables the VNF to run as a much more lightweight environment, hence the Sink Server can host
hundreds to thousands of Gateway Process VNFs, avoiding the need for additional energy to host
the corresponding idle VMs across multiple physical servers. In this section, we present in brief
the main working blocks of SEaMLESS.

Our analysis and experiments show that SEaMLESS, combined with server re-consolidation
solutions, provides a way to put physical servers in standby while introducing little impact on the
quality of experience. We even show a way to power off physical servers in cases where VMs are
expected to remain idle for a long period of time.

5.3.1 Migrating from the VM to the Sink Server

When a virtual machine is known to be idle, or is planned to be idle for a long period of time, the
Orchestrator triggers the Gateway Process migration to the Sink Server. The complete procedure
for a process migration from the VM to the Sink Server shall be done as follows. Note that these
steps must be executed sequentially. When a single step requires the execution of several actions,
these actions should be parallelized. The complete process migration procedure between the VM

116

5. Energy Efficiency

and the Sink Server is graphically depicted in Figure 5.12.

Orchestrator

Cloud server pool Cloud networking infrastructure

Sink Server

Sink VNF 2

Sink VNF 1

Sink VNF 3

Server

VM 2

VM 1

VM 3
Step 1
Step 5
Step 6

Step 2
Step 3

Step 4
Step 5

Step 4

Figure 5.12: Migration procedure from a working virtual machine to a Sink Server

Step #1: The Orchestrator asks the working VM to dump the Gateway Process to a file. It
keeps the process running, which allows the VM to detect any user activity. Should any user ac-
tivity be detected, the VM sends an abort message to the Orchestrator to cancel the migration,
without any message loss. Step #2: Once the process image has been generated, the working VM
sends the process image file to the Sink Server. Step #3: The Sink Server deploys the Gateway
Process. Step #4: Once the Sink Server has deployed the Gateway Process, the Sink Server sends
a ready message to the Orchestrator. The Orchestrator then modifies the networking devices to
forward a copy of any incoming packet destined to the VM to the Sink Server. This packet dupli-
cation is useful to avoid splitting possible train of packets with a user’s requests, in the case that
some of such packets would reach the VM when the rerouting mechanisms occurs. Step #5: After
a few milliseconds (which ensures that no packet has been received by the VM during either, the
setting up Sink Container period, or the network reconfiguration period), the networking devices
are modified to forward packets to the Sink Container exclusively. At the same time, the Orches-
trator asks the working VM to kill the Gateway Process. Step #6: The Orchestrator freezes the
working VM.

Note that any user activity detected during process migration will result in a roll-back mech-
anism that is completely transparent from the user perspective.

5.3.2 Migrating from the Sink Server to the VM

The procedure to move the Gateway Process back from the Sink Server to the VM is close to the
reverse procedure, described earlier in Section 5.3.1, except that when a process is moved from the
Sink Server to the VM, it is because the user already issued a request to the cloud service. Hence,
a TCP connection is most likely already set up and packets can flow at any time.

SEaMLESS provides a simple, fast, but still powerful solution to avoid packet losses during

117

5. Energy Efficiency

the restoring service period. Like before, steps must be executed sequentially, and multiple actions
in a single step can be parallelized. This procedure is depicted in Figure 5.13.

������������

����������������� �������������������������������

�����������

����������

����������

����������

������

����

����

����

������ ������ ������

������

������

������

������

������

Figure 5.13: Migration procedure from a Sink Server to a working virtual machine

Step #1: Upon detection of user activity on the Sink Server, the Sink Server notifies the
Orchestrator that the corresponding VM must be waken up. Step #2: The Orchestrator deploys a
buffer where any incoming packet destined to the Gateway Process (identified by the IP destination
address and port destination number) are delayed. At the same time, the routing tables are modified
to send any packet to the VM instead of the Sink Container. The buffering of packets is to ensure
that no packet will be lost before having a completely deployed Gateway Process at the VM.
Step #3: The Gateway Process at the Sink Server is dumped. The VM is resumed. Step #4: Once
the VM is on, the process image is sent from the Sink Server to the VM. Step #5: The process is
deployed at the VM. Step #6: Buffered packets are unblocked, and the buffer is destroyed. The
communication is now handled by the VM.

5.3.3 Addressing Routing Issues

To properly reroute packets to the Gateway Process VNF when the Gateway Process is available
inside a Sink Container, SEaMLESS entirely relies on SDN forwarding devices. Hence, when
packets must be duplicated or only rerouted to the Sink Server (as detailed in Sections 5.3.1 and
5.3.2), the Orchestrator asks the SDN controller to inject the ad-hoc rules into the SDN switches.

In modern data centers, where SDN hardware devices are available, the forwarding table of
the needed SDN switch(es) will be modified by the SDN controller. In this case, the veth interface
of the Sink Container should either be configured with the MAC address of the working VM, or
the SDN switch should replace the destination MAC address of any packet destined to the VM by
the MAC address of the Sink Container.

In the case where no SDN hardware is available in the data center, multi-tenancy and IaaS is
frequently provided with the deployment of a Networking as a Service (NaaS), such as Neutron

118

5. Energy Efficiency

[Neu] in OpenStack, where a full virtual SDN network is deployed by means of software switches,
like OvS [PPK+15]. This way, even in presence of legacy network infrastructure, IaaS providers
offer migration and server reconsolidation capabilities. In such a case, SEaMLESS will need to
only interact with the virtual network devices to replace a fully-fledged VM by a Sink Container
and inversely.

5.3.4 Detecting User Activity

Once the Gateway Process VNF is deployed, the VNF is responsible of processing incoming
packets and initiating the communication with the remote peer. Then, after processing the packets
and if user activity is detected, the VNF should hand back the connection to the VM. However, it
should be noted here that not all incoming packets carry user data as some packets can be processed
at the kernel level (e.g. ICMP or ARP requests) without requiring the VM intervention, hence the
VNF must reply to such packets. However, data packets must be handed back to the VM as the
VNF does not have the external data resources of the Gateway Process.

Packets which correspond to user activity (i.e. data packets) have a different fingerprint de-
pending on the type of Gateway Process: (i) stateless Gateway Process such as HTTP request-
and-response protocol or (ii) stateful Gateway Process such as SSH protocol where a session is
established between the server and a client, and the communication channel remains open (using
keep-alive packets) until either party decides to tear it down.

Our strategy to detect user activity relies on tracking syscalls made by the Gateway Process
VNF inside the Sink Container. For a stateless Gateway Process, when a request is triggered by a
client and a TCP socket is open, an accept() syscall is raised by the server. SEaMLESS will
track this accept() syscall in order to detect user activity.

The same principle applies to stateful gateway processes, but the user activity detection is
more complex. With stateful gateway processes, peers are already connected and, from time to
time, it is possible to receive TCP keep-alive messages, which are directly replied to by the kernel.
However, application-level keep-alives, like the ones used by SSH clients to keep a connection
open, involve some code execution within the Gateway Process, but require no (external) resource
access. Therefore, it is better to allow the Gateway Process VNF to directly reply to such requests.
To implement the keep-alive-reply feature without resuming the VM, SEaMLESS relies on the
numbers of the file descriptors that the Gateway Process wants to access in the following way.
When a new message is received, a recvfrom(), or a similar syscall (e.g. read()) is raised,
the number of the invoked file descriptor is recorded as the message may either be a keep-alive
or a user command. If the received message is a keep-alive, the Gateway Process will raise a
write() or a similar syscall (e.g. a writev() syscall). When entering these syscalls, SEaM-
LESS compares the number of the file descriptor where the write will occur to the number of the
file descriptor from which the message was received. If the number of the file descriptors are the
same, it means that the message was a keep-alive, and the Gateway Process has been able to build

119

5. Energy Efficiency

an appropriate reply. Conversely, if the file descriptor numbers are different, it means that the
message is sent to an external resource, which is not available within the Sink Container. In this
case, the Gateway Process must be restored within the working VM, and the communication with
the end user can no longer be handled by the Gateway Process VNF.

A key advantage of the above approaches is that they are generic, i.e., agnostic to the details
of the application hosted in the sink.

5.3.5 Energy Saving Strategies

In this Section, we discuss how to deploy SEaMLESS to provide energy savings, while simulta-
neously meeting the required QoS for the data center.

To increase the energy savings when multiple idle VMs are replaced by sink containers,
physical servers should enter deeper sleep modes than a purely operating system based idle state.
By relying on external cloud manager plugins that execute server re-consolidation and migrate all
active VMs in the least possible number of physical servers, such as the BtrPlace project [The],
SEaMLESS can allow important energy saving. We propose two strategies to save energy, by
making the physical servers hosting idle VMs go into deep idle modes. The first one places the
servers in standby mode while the second one enables to shut them down.

5.3.5.1 Servers in Standby Mode

Most physical servers in data centers are designed to enter into either S1 or S2 power states. In
power state S1, the processor clock is off and bus clocks are stopped. In power state S2, the
processor is not powered and the CPU context and contents are lost. Data centers servers can
save a few tens of Watts when entering one of these states. We measured an immediate gain of
10W when entering the S1 modes on a Dell PowerEdge R730, and 18.8W on a Dell PowerEdge
R410. These correspond to a relative gain of 10% and 16.3%, respectively, over the total energy
consumption of a server.

This approach also introduces very little impact on the perceived QoS, as seen by virtual
machine users. Indeed, a physical server is capable of resuming from S1 or S2 within a few
seconds (we measured an average of 3 seconds with our servers), which implies that the delay
between the reception of a user request, and the user’s VM response will be a total of around
4 seconds. Indeed, our experiments with the modules of SEaMLESS show that the amount of
time necessary to migrate and deploy a Gateway Process from the Sink Container back to the VM
is, in the worst case, below one second– see Section 5.3.6. The idle VM is still available when
the physical server is woken up, and the server wake up process occurs in parallel to the check-
pointing process of the Gateway Process. Consequently, the total migration time is the sum of the
transmission time, deployment time of the Gateway Process image and the server wake-up delay.

120

5. Energy Efficiency

Note that according to [CFY04], for applications with very short expected response delay
(no more than 2 seconds, like in Telnet), this strategy can still negatively impact the user QoS.
However, for applications where a response delay between 2 to 5 seconds is expected by the user
(e.g. Web browsing), this strategy will have only limited impact on the perceived QoS. This
solution is therefore suitable in working environments where the VMs must be resumed as soon
as possible e.g. during working office periods.

5.3.5.2 Powered-Off Servers

When VMs are expected to remain idle for long periods of time (e.g. outside working hours), they
can be suspended to disk. In this situation, the physical servers can be completely powered off.
Indeed, from the N servers hosting only idle VMs, N − 1 servers can be powered off, while one
will remain powered on. If physical servers possess hard drives, servers to be powered off must
transfer the VM images to the server remaining awake. Otherwise, the images of VMs must be
stored on network storage (e.g. SAN devices). When user activity is detected, and the Gateway
Process must be migrated back from the Sink Server to its VM, the remaining powered on server
will restore the required VM (by recovering the VM image from the network storage if needed),
and the Gateway Process will be restored in its original VM, on that particular server.

Assuming the case where the VM image was transfered on the local hard drive of the powered
on server, the time needed to restore the VM must be taken into account to estimate the total
elapsed time between the reception of the user’s request by the Gateway Process VNF and the
appropriate response from the VM. According to our experiments, the time needed to resume a
VM from disk, excluding the network transfer time, depends on the size of the image of the VM’s
RAM, which depends on the particular implementation of the used hypervisor. For instance,
KVM needs around 7 seconds to restore an image of a VM using 1GB of its assigned RAM.
This time increases linearly as the VM RAM image size increases. In VMWare, we measured
the time needed to restore a VM to be around 3 seconds, independantly of the image size. We
believe that VMWare hypervisor uses a memory-mapped file to assign the RAM to the VM before
it is completely restored to the physical memory, whereas KVM fully copies the RAM image’s
contents to the physical RAM before resuming the VM services.

5.3.6 Performance Evaluation

5.3.6.1 Impact on the Quality of Experience

In this Section, we run the key modules of SEaMLESS, and show that the amount of time needed
to migrate the Gateway Process from the Sink Container to the working VM is below 1 second.

To evaluate SEaMLESS, several experiments where conducted on mainstream, unmodified
applications. The different phases that are triggered in case of user activity/inactivity were tested

121

5. Energy Efficiency

individually: (i) dumping of the image; (ii) image compression; (iii) transferring of the image;
(iv) image decompression; (v) processes restoring; and (vi) VM resume. The time needed by
those six phases provides insights about the migration period of the service.

The testbed consists of two physical hosts equipped with 1Gbps network interface cards,
connected through one 1Gbps switch. One of the physical hosts runs a VM with Ubuntu 16.04, a
single processor, 1GB of RAM, and 8GB of virtual disk. The dumping and restoring mechanisms
are executed within the VM. Note that the time to dump and restore a process within the Sink
Container is similar to the time required to do the same process at the VM as in such a case, there
is no overhead introduced by a hypervisor layer and the image size of the Gateway Process remains
similar (e.g. the image size at the Sink Container exceeds the one from the VM by around 10KB
in our experiments). The transfer of the process image occurs between the two physical servers,
through the SDN switch.

From our tests, available in Table 5.1, we see that the application with the biggest image file
is the Apache 2 application with PHP enabled (7.508MB), followed by Apache 2 without PHP and
OpenSSH (1.832MB and 1.216MB respectively). Apache 2 and OpenSSH are the most deployed
softwares in servers where the performance is more important than preserving computational re-
sources.

Application Image Size (MB)
Delay (secs)

Transfer Dumping Restoring Comp. Decomp. Total

lighttpd 0.236 0.137 0.010 0.014 0.007 0.007 0.175

Apache 2 (without PHP) 1.832 0.183 0.089 0.082 0.024 0.025 0.403

Apache 2 (with PHP) 7.508 0.358 0.190 0.153 0.110 0.150 0.961

vsftpd 0.128 0.169 0.083 0.052 0.006 0.005 0.315

OpenSSH 1.216 0.166 0.192 0.081 0.019 0.019 0.477

Table 5.1: Size of the archived (tar.lzo) image of real-world applications.

The lightest image is for the vsftpd application (128KB), which deploys a single master
process listening on TCP port 21. Please note that in our configuration, the number of SSH worker
processes for OpenSSH (and, therefore, the size of the process image) depends on the number of
opened SSH session.

From those tests, we see that the total delay, from the dumping of the Gateway Process to its
deployment, is always smaller than 1 second.

5.3.6.2 Scalability and Energy Consumption of the Sink Server

The promise of possible energy gains with SEaMLESS is that the Sink Server is able to host way
more Gateway Process VNFs than it would be able to host virtual machines. In this Section, we
measure how the Sink Server scales with numerous Sink Container.

We use a Dell PowerEdge R520 to host a Sink Server VM that has been assigned 1 CPU and

122

5. Energy Efficiency

1GB of RAM. Table 5.2 shows that it is capable of hosting up to 53 Dorpbear SSH Sink Container,
if there are no active SSH sessions. In the case that all Dropbear SSH VNFs have 1 active SSH
session, the Sink Server is still capable of hosting 40 Sink Container. And as shown in Figure 5.14,
the memory used and the percentage of CPU used increases as a function of the number of Sink
Container deployed. However, we notice that the number of VNF that can be installed is limited
by the RAM capacity: 48 Apache 2 VNFs with PHP module would saturate 1GB of RAM, while
consuming only 19% of the CPU. These results show that a typical data center server configured
with 32GB of RAM can host around 1312 Dropbear SSH Sink Container with active sessions, and
up to 1696 Dropbear SSH Sink Container without connections. These figures are much higher
than the number of idle VMs that could possibly be running simultaneously on a server with only
32GB of RAM.

Application Maximum Number of VNFs

Apache 2 (with PHP) 48

Dropbear SSH 53

Dropbear SSH with cnx 40

Table 5.2: Maximum number of VNFs that can be configured in a Sink VM with 1 CPU and 1GB
of RAM.

450
500
550
600
650
700
750
800
850
900
950

1000

0 5 10 15 20 25 30 35 40 45
4

6

8

10

12

14

16

18

20

M
em

or
y

U
se

d
(M

B
)

%
 C

P
U

Number of VNF deployed

Memory
CPU

Figure 5.14: RAM and CPU used as a function of number of deployed Apache 2 with PHP module
VNF .

Figure 5.15, compares the energy consumption of the same server with Gateway Process
VNFs, compared to the same server with full-fledged VMs. We notice that even with 40 VNFs
configured on the Sink Server, each one maintaining an active SSH session, the energy consump-
tion of the server remains in average 10W lower than the energy consumption of the same server
running 20 idle VMs, each one keeping also a single SSH session.

This shows that, even without suspending or powering off the physical servers, SEaMLESS
provides a minimal gain of 10W per server.

123

5. Energy Efficiency

80

90

100

110

120

130

140

150

00 01 02 03 04 05 06 07 08 09 10

P
ow

er
 (

W
at

t)

Time (mm)

Sink Srvr
Sink-40VNF-SSH

Srvr-20VM-SSH

Figure 5.15: Energy consumption of the sink server with VNFs compared to the same server with
VMs.

5.4 Conclusion

Providing energy saving services in current networks and data centers is a challenging task as care
must be taken to avoid traffic disruption, preserve failure tolerance capabilities, and maintain ser-
vice availability even when the network operates with a reduced number of devices. In this chapter,
we have presented our solutions that permit to maintain the network performance intact when en-
abling energy efficiency (SENAtoR) and maintain energy efficiency and service availability even
when the service is idle (SEaMLESS).

We first presented our energy efficient solution SENAtoR that allows to deploy energy ef-
ficient solutions in backbone hybrid networks without degrading the network performance. We
showed that SENAtoR can decrease the energy consumption of backbone networks by 35% with
only 50% deployment of SDN nodes. We have shown through our SENAtoR implementation
and experimentation with emulated devices that we can deal with unexpected network events cor-
rectly. More strikingly, our experiments show that even when green services are enabled and traffic
spikes occur in a non SDN capable node, SENAtoR provides loss rates lower than the all-OSPF
case, since the SDN controller can provide most appropriate routes. Moreover, our numerical re-
sults show, in an all-to-all traffic matrix, an incremental deployment of SDN can provide between
5% to 35% of energy savings.

Then, we presented the Signet project SEaMLESS in which I participated. SEaMLESS pro-
vides enhanced functionalities which allow to optimize the energy efficiency of existing server
consolidation solutions. We have explained how SEaMLESS converts a Gateway Process inside
an idle VM into a VNF running on a Sink Server to enable to turn off idle VMs and release all
resources used by this memory. We showed that converting idle VMs to VNFs allows to release
a huge amount of memory space where tens of VNFs require almost the same memory space as a

124

5. Energy Efficiency

single VM. Thus, when server consolidations solutions are used, active servers utilization would
be optimized as memory is arguably the most scarce resource in data centers and clouds.

5.5 Publications

• International Conference

– N.Huin, M.Rifai, F.Giroire, D.Lopez Pacheco, G.Urvoy-Keller, J.Moulierac , "Bring-
ing Energy Aware Routing closer to Reality with SDN Hybrid Networks", IEEE Globe-
com 2017.

• Poster

– D. Lopez Pacheco, Q. Jacquemart, M. Rifai, A. Segalini, M. Dione, G. Urvoy-Keller
"SEaMLESS: a lightweight SErvice Migration cLoud architecture for Energy Saving
capabilitieS", ACM SoCC 2017.

125

5. Energy Efficiency

126

Chapter 6

Conclusion

Contents
6.1 Scalability . 127

6.2 Performance . 128

6.3 Energy Efficiency . 130

6.4 Final Remarks . 132

In this thesis, I presented the work done during my three years of PhD which tackled the
scalability, performance and energy efficiency problems to build next-generation SDN based vir-
tualized networks. We first presented MINNIE in Chapter 3, a solution developed in collaboration
with the COATI team, which allows to enable flow scalability in Software Defined Networks by
optimizing the usage of the TCAM memory in the hardware SDN forwarding devices. We then
presented our performance solutions: a coarse grained scheduler and PRoPHYS in Chapter 4 that
allow to enhance the flow performance and resilience in SDN and hybrid networks respectively.
Finally, we created energy efficient solutions in Chapter 5 where we presented SENAtoR and
SEaMLESS. SENAtoR allows to decrease the energy consumption in backbone hybrid networks
while preserving network performance even when link failures and/or traffic peaks occur. SEaM-
LESS allows to migrate the Gateway Process of idle virtual machines to a virtual network function
in order to release unused idle resources and shutdown idle VMs to preserve energy while main-
taining service availability. We detail those contributions, pinpoint their limitations, and provide
potential ideas for future work in the next sections. At the end of this chapter we provide final
remarks regarding the current state of SDN, its potentials and the biggest remaining challenges
that SDN networks face in our opinion.

6.1 Scalability

To permit SDN physical devices that feature limited and power hungry TCAM memory to scale we
created MINNIE. MINNIE is a solution built as a module of the Beacon controller that maximizes

127

6. Conclusion

the usage of the limited TCAM space in hardware SDN forwarding devices. When the forwarding
rule TCAM limit is reached on an SDN node, MINNIE automatically compresses the SDN device
forwarding table on the controller side based on the source or the destination IP addresses. Then,
MINNIE transmits the new compressed forwarding table to the SDN device to replace the old
forwarding table which used the full TCAM space. Using experimentations and simulations we
demonstrated that MINNIE provides a minimum of 70% compression ratio and does not negatively
impact the network performance.

When MINNIE transmits the new compressed routing table of a switch, multiple flow in-
sertion events are transmitted to the switch simultaneously which could impact the switch per-
formance in case a peak of new flows is arriving at the switch. In such a case, MINNIE can be
modified to send the new compressed routing table when the network utilization is low in order to
respect the number of events supported by the switch. MINNIE has been tested on an experimental
testbed with either a large number of flows or a high bandwidth due to the limitation of our testbed.
Extra tests need to be done to assess the performance of MINNIE with high bandwidth and large
number of flows and with traffic peaks to validate the performance of MINNIE before integrating
it in the network. This could be done with a testbed featuring several physical SDN switches as, in
our case, we had to split our physical switch into several virtual switches to carry out experiments.

6.2 Performance

In this thesis, we tried to enhance the flow performance and resilience in SDN and hybrid networks
leveraging the controller centrality and online monitoring of statistics information with our coarse-
grained scheduling prototype and our failure resilient solution PRoPHYS.

Our Coarse Grained Scheduling solution pulls the SDN statistics information from the for-
warding devices to detect large flows. We devised two schedulers: (i) a State-full and (ii) a
Stateless Scheduler. The state-full scheduler detects large flows by pulling every flows’ statistics
from the SDN devices. On the other hand, the stateless scheduler monitors the client bandwidth
utilization. Then, when the client traffic utilization reaches a predefined bandwidth threshold, the
scheduler zooms into the client’s traffic and uses the state-full scheduler to detect large flows. The
large flows are detected by monitoring the number of transmitted packets of every flow. Any flow
that has transmitted more than the defined packet threshold set by the administrator is considered
as a large flow. After detecting large flows, both variants of this prototype de-prioritize large flows
(change from highest priority queue to lowest priority queue) in order to enable short flows to fin-
ish quickly. The test results have shown that this solution was efficient on small linear topologies,
where all short flows end before long flows using the state-full and stateless schedulers. However,
as explained before this scheduler failed on more complex topologies such as fat tree and VL2
topologies.

The current version of our coarse grained scheduling prototype requires to pull the statistics
information for all the flows from all the switches in the network and applies the same policy in

128

6. Conclusion

all switches. Applying the same policy can lead to degradation of performance flows that have
to pass through multiple switches in the network if the flow is either always prioritized on all
switches or the flow is always de-prioritized in the network. To solve this, we estimate that the
controller scheduling module has to take into consideration the network topology structure, the
flow path, the Layer 4 port used by this application and the full network utilization (i.e. utilization
of the SDN forwarding nodes and their links). Moreover, for a complete coarse grained scheduling
solution, one should take intro consideration multiple queues instead of two, rerouting when high
network congestion is detected to use the backup links, plus selective SDN port or flow monitoring
approach to decrease the number of control packets transmitted by the controller to the switches
and packet delay between SDN nodes.

After creating our coarse grained scheduling prototype we continued leveraging the controller
centrality and the statistics information provided by Openflow to enhance the network performance
in case of link failure by introducing SDN nodes that will enable to monitor the network using our
PRoPHYS solution. PRoPHYS features two techniques (active and passive) to enhance network
resilience by decreasing the link failure detection time in hybrid SDN networks. The passive
technique estimates link failures by detecting discrepancies between the transmitted and received
port statistics of the same set of flows on SDN nodes. This technique first constructs a matrix of
communicating ports. It then monitors the transmitted and received statistics of this set of ports.
Once this methodology detects that the transmitted statistics are less than the received statistics
across a network segment, it supposes the existence of link or node failure. This methodology
proved to decrease the link/network failure detection interval by 50%, however, it presents some
false positives. The active technique depends on the transmission of a path monitoring packet cre-
ated by the controller, instead of the switches, which decreases the CPU overhead in the switches.
This methodology is faster than traditional failure detection methodologies such as (BFD) since it
detects a link or segment failure if the packet is not received after a dynamic moving average time-
out that is calculated based on the real delay between the nodes. This methodology also proved
to provide a 50% decrease in the number of packets loss compared to classical failure detection
methodologies.

Both of our performance solutions have been studied on small scale prototype networks which
enabled us to gain a first insight on their performance and their limitations. Again, both solutions
would benefit from being tested on large scale ISP topologies using both software and hardware
SDN switches with real traffic patterns and distributed controllers to be able to better study the
impact of pulling switch statistics on the SDN switches performance, the statistics reply delay and
the accuracy of the statistics reply information delivered to the controller.

Our current version of PRoPHYS, also depends on multiple control packets to detect link
failure where it depends on the statistics information or the controller packet transmission across
the network to detect link failure. This could hence increase the control overhead which is the
bottleneck of SDN technology. However, we estimate that in large scale hybrid ISP network,
we would have multiple distributed controllers and the controller would be placed in-band (i.e.
uses the same network topology constructed by the SDN nodes to communicate with the SDN

129

6. Conclusion

switches). Thus, in such a case, one could leverage the controller default control packets to detect
link failures and estimate the link delays. The only control packets that would thus have to be
transmitted to detect link failures is for the nodes controlled by different controllers that share a
link.

Moreover, PRoPHYS currently uses tunnels to reroute the traffic when link failures are de-
tected, which degrades the flow performance due to encapsulation overhead. To maintain the flow
performance without incurring routing loops due to the routing table difference between the SDN
switches and the legacy routing devices, one could try to propagate the controller routing table
scheme used by the SDN devices to the legacy layer 3 routing devices. Moreover, since legacy
nodes would require a few milliseconds to propagate the routing information and converge, one
could consider buffering the packets either at the SDN switch or on the controller if the switch
does not feature buffering.

6.3 Energy Efficiency

Finally, after creating solutions that allow SDN networks to scale to millions of flows and enhance
the network performance and resilience, we focused on energy efficient solutions. In Chapter 5, we
presented our energy efficient solutions that allow energy efficiency without negatively impacting
the network performance (SENAtoR) or service availability (SEaMLESS).

SENAtoR is an energy efficient solution for backbone hybrid networks developed with the
COATI team. Similarly to classic energy aware routing algorithms, SENAtoR turns off/on SDN
devices based on the traffic utilization. SENAtoR features however three main aspects that allow to
preserve network performance and avoid packet loss while turning off network devices, and when
sudden link failures or traffic spikes occur. First, to avoid packet loss when turning off network
devices, SENAtoR asks the controller to stop sending OSPF hello packets from the SDN switch
to its neighboring devices, once the SDN switch is to be turned off or put in sleep mode. After, a
duration larger than the OSPF failure detection and convergence period, the controller then puts
the corresponding SDN switch in sleep mode which allows to save energy without loosing the
previously installed forwarding rules. Second, SENAtoR monitors the network traffic to detect
possible link failures or sudden traffic spikes when SDN nodes are turned off. If link/node failures
are discovered or if traffic peaks appear, SENAtoR turns on again all previously turned off SDN
nodes to prevent network disconnection or data packet loss. Third, SENAtoR uses tunnels to
reroute from the SDN nodes neighbors to the correct destination to prevent routing loops due to
the differences in the routing table of OSPF and SDN nodes.

Similarly to PRoPHYS, SENAtoR uses tunnels to perform rerouting in hybrid networks.
However, as shown in Chapter 4 Table 4.2 tunnels degrade the throughput and increase the delay as
they require packet encapsulation and additional processing delay. Thus, as stated in the previous
section to maintain the flow performance, one could try to propagate the controller routing table
scheme from the SDN nodes to the layer3 legacy nodes so that all the nodes in the network will

130

6. Conclusion

have the same routing scheme.

Moreover, SENAtoR performance features have been tested on a small ISP topology using
simulation and with the assumption that in an ISP network we can estimate the traffic pattern which
gives a first insight on the performance of SENAtoR. However, for a complete view, SENAtoR
has to be tested in a real medium to large size ISP network where the network traffic varies and
multiple link failures might occur in order to test its efficiency and decipher the threshold increase
or decrease in the network traffic that allows to detect possible traffic peaks or link failures. As
a first approach, one could consider the dynamic threshold based on the full network current and
estimated utilization information, and the network topology and probably flows information.

After describing SENAtoR in Chapter 5 we presented SEaMLESS. SEaMLESS is an archi-
tecture created by the Signet team that is still in its infancy. It aims at solving the idle VM problem
in current data centers and enterprise clouds. The key issue is mainly how to release all the re-
sources used by the idle VM (e.g. memory and energy) while maintaining the availability of the
service provided.

In order to release the memory used by these VMs and to allow server consolidation SEaM-
LESS migrates the idle VM Gateway Process to a VNF service which allows to turn off the VM
machine while maintaining its services reachable. When users try to connect to this VM service,
the VNF establishes the connection first, then in case of an attempt to access the VM service data,
the orchestrator resumes the idle VM and the VNF would then handle the session back to the VM
to be treated. This allows an availability close to 100% of the VM services in data centers and
enterprise clouds while optimizing the usage of memory and energy resources.

SEaMLESS holds the promise of allowing a better sever consolidation scheme and liberating
memory space in the physical servers. The total energy gains and memory that can be saved in a
real enterprise cloud have not been tested yet. Thus additional large scale tests should be done to
study better the efficiency of SEaMLESS. Indeed, SEaMLESS is still a project under study, the
Signet team is continuing to build the whole SEaMLESS architecture and automatize all the steps
required to migrate the idle VM to a VNF. We also want to study its performance in a simulated
cloud network using Grid 5000 [Gri] and its integration with data center management solutions
like OpenStack or VM consolidation algorithms like Btrplace [The].

Moreover, the current version of SEaMLESS suggests to dump the idle VM to disk to increase
the energy saving. However, this increases the data response time of the VM when new connection
is established when the VM is dumped. A first approach to decrease the VM response time is to
better analyze the connection and user information once a user is connected to the VNF in order
to estimate the probability to access the VM resources. Thus, one could consider that upon some
connections to the VNF, the VM could be resumed before the user asks for the VM resources.

131

6. Conclusion

6.4 Final Remarks

In this chapter, we summarized our solutions that enhance SDN nodes scalability and use SDN
to enhance flow performance, resilience and network energy efficiency. SDN is a promising tech-
nology that can be used to replace current network devices to enhance the network performance,
decrease the configuration, maintenance and energy costs. With the insertion of Data Plane Devel-
opment Kit (DPDK), simple data plane actions such as forwarding, buffering, and queuing could
be modified and adapted to user requirements. Moreover, the programmability of the network and
the usage of a centralized controller allows SDN to introduce Machine Learning (ML) and Artifi-
cial Intelligence (AI) into the data center, ISP and cloud networks which moves the network into a
new era of auto programmable configurable networks that do not require any human intervention.

SDN alongside NFV can already be deployed in the data center and cloud networks to de-
crease the cost of the network as a single SDN node could replace the action of the switch, router,
firewall, DHCP, intrusion detection systems and intrusion prevention systems. Moreover, cen-
tralized controllers and distributed controllers– in a small geographical area– can allow online
network analysis and auto management. It can also be configured to allow to perform automated
decisions regarding VM or VNF migration based on the network and VM or VNF utilization and
the global network view. SDN can also be used with OpenStack to automatically add or delete
network services or controllers servers based on the online network analysis.

As for the introduction of SDN in ISP networks, it is more cumbersome due to the large
geographical distance that might separate the controller from the switches. Though this delay
might not negatively impact the performance of the SDN switch as shown in Chapter 4, it could
impact the distributed controllers performance that needs to communicate to exchange the network
status and information. In such a case, we imagine that ISP networks would not leverage all of
the benefits of SDN technology achievable for data center and cloud networks such as online
full network analysis and adaptation. Thus, the delay of the communication channel between the
control plane and the data plane remains a challenge for SDN.

However, the biggest challenge that SDN still faces, in my opinion, is security. The central-
ization of the control plane and the use of the Openflow channel to communicate all the topology
information, control features and configuration, and the flow information renders the communica-
tion channel and the controller the weakest point in the network. Thus, as explained in [KREV+15]
new security and encryption methodologies should be created to protect the communication chan-
nel and the controller nodes.

132

Acronyms

AN Active networks. 1

AS Autonomous Systems. 80

ASIC Application-Specific Integrated Circuit. 14, 24, 25, 40

BFD Bidirectional Forwarding Detection. 76, 77, 82, 96, 125

CAB CAching in Buckets. 16

CBR Constant Bit Rate. 84, 86, 104

CDF Cumulative Distribution Function. xix, 73, 86, 104

CLI Command Line Interface. ix, 1, 2

CPU Central Processing Unit. 3, 19, 21, 36, 39, 40

DC Data Centers. ix, x, 1, 112

DPDK Data Plane Development Kit. 17, 128

DRAM Dynamic Random-Access Memory. 16

ECN Explicit Congestion Notification. 19, 68

EF Edge First. 25

FIS flow instruction set. 4

FPGA Field Programmable Gate Array. 16, 17, 68

FRR Fast Rerouting. 76, 78

GPU Graphics Processing Unit. 16

GRE Generic Routing Encapsulation. 83, 103

133

Acronyms

HLS High Load with (small number of) hardware rules. xvi, 40, 41, 50

HULL High bandwidth and Ultra-Low Latency. 67

ICT Information and Communication Technologies. 93, 94, 112

ISP Internet Service Providers. ix, xiii, 1, 8, 9, 20, 78, 80, 83, 87, 94, 95, 98, 102–104, 106, 107,
112, 125, 127, 128

LAS Least Attained Service. 67

LLDP Link Layer Discovery Protocol. 75, 77

LLS Low Load with (large number of) software rules. xvi, 39–41, 45

LS Link State. 106

LSP Label Switched Path. 78

LXBs Logical Crossbars. 78

MPLS Multi-protocol Label Switching. 76, 78

NaaS Networking as a Service. 116

NETFPGA NETwork Field Programmable Gate Array. 17

NFV Network Function Virtualization. 20, 128

NOS Network Operating System. 5

OvS OpenvSwitch. xvi, xix, 3, 23, 36–38, 42, 66, 69, 70, 74, 103, 116

PDQ Preemptive Distributed Quick. 67

PoP Point of Presence. 98–100, 102–104

PRoPHYS Providing Resilient Path in Hybrid SDN Networks. xi, 8, 9, 66, 74–76, 80, 83, 84,
86, 87, 90, 123–126

QoE Quality of Experience. iii, 75

QoS Quality of Service. 13, 18, 25, 67, 117, 118

RSVP Resource Reservation Protocol. 78

RTT Round Trip Time. 72

134

Acronyms

SDC Software-Defined Counters. 14

SDDP Segment Discrepancy Detection. 81, 82, 84, 89

SDN Software Defined Networking. iii, ix–xiii, xv–xvii, xix–xxi, 1–9, 11–21, 23–27, 35, 36,
38–42, 44, 65–70, 72, 74–83, 88–91, 93–110, 112, 115, 116, 119, 121, 123–126, 128

SENAtoR Smooth ENergy Aware Routing. xi, xii, 8, 94, 96, 97, 100, 102–104, 106, 107, 110,
112, 121, 123, 126, 127

SLAs Service Level Agreements. 112

SoC System-On-Chip. 17

SPT Shortest Path Tree. 98

SRAM Static Random-Access Memory. 16

STP Spanning Tree Protocol. 18

STT Stateless Transport Tunneling. 83

TCAM Ternary Content Addressable Memory. iii, x, 3, 7, 8, 15, 16, 19, 24–27, 35, 36, 38, 78,
95, 107, 123, 124

TE Traffic Engineering. 78, 107

ToS Type of Service. 69

VLAN Virtual Local Area Network. 36, 39, 97

VM virtual machine. iii, xii, xvii, xx, xxi, 8, 9, 20, 36, 38, 41, 93–97, 112–123, 127, 128

VMs virtual machines. 8, 9

VNF virtual network function. iii, xii, xx, xxi, 8, 9, 94, 97, 112, 113, 115–118, 120–123, 127,
128

135

Acronyms

136

Bibliography

[SW] SWI Venture LLC. Green ict: Sustainable computing, media, e-devices. http:
//www.vertatique.com/ict-10-global-energy-consumption.

[AABN04] Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown, and Eeva Nyberg. Differ-
entiation between short and long TCP flows: Predictability of the response time.
In Proceedings of IEEE INFOCOM 2004, 2004.

[ACJ+07] D. L. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and J. Wang.
Compressing Rectilinear Pictures and Minimizing Access Control Lists. In ACM-
SIAM SODA, 2007.

[ADRC14] Kanak Agarwal, Colin Dixon, Eric Rozner, and John Carter. Shadow macs: Scal-
able label-switching for commodity ethernet. In Proceedings of the third workshop
on Hot topics in software defined networking, pages 157–162. ACM, 2014.

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, August 2008.

[AFRR+10] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center net-
works. In NSDI, volume 10, pages 19–19, 2010.

[AHM+03] Ismail Ari, Bo Hong, Ethan L Miller, Scott A Brandt, and Darrell DE Long. Man-
aging flash crowds on the internet. In IEEE/ACM MASCOTS 2003, 2003.

[AKE+12] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 19–19. USENIX Association,
2012.

[AKL13] Sugam Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineering in
software defined networks. In INFOCOM, 2013 Proceedings IEEE, pages 2211–
2219. IEEE, 2013.

137

http://www.vertatique.com/ict-10-global-energy-consumption
http://www.vertatique.com/ict-10-global-energy-consumption

Bibliography

[ALCP14] Joao Taveira Araújo, Raúl Landa, Richard G Clegg, and George Pavlou. Software-
defined network support for transport resilience. In Network Operations and Man-
agement Symposium (NOMS), 2014 IEEE, pages 1–8. IEEE, 2014.

[ASP05] Alia Atlas, George Swallow, and Ping Pan. Fast Reroute Extensions to RSVP-TE
for LSP Tunnels. RFC 4090, May 2005.

[B. 04] B. Claise. RFC 3954 - Cisco Systems NetFlow Services Export Version 9, 2004.

[BAAZ10] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understand-
ing data center traffic characteristics. Computer Communication Review, 40(1),
2010.

[BAAZ11] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine
grained traffic engineering for data centers. In Proceedings of the Seventh COn-
ference on emerging Networking EXperiments and Technologies, page 8. ACM,
2011.

[BAB12] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud computing.
Future Generation Computer Systems, 28(5):755 – 768, 2012. Special Section:
Energy efficiency in large-scale distributed systems.

[BAM09] Theophilus Benson, Aditya Akella, and David A Maltz. Unraveling the complexity
of network management. In NSDI, pages 335–348, 2009.

[BB10a] Anton Beloglazov and Rajkumar Buyya. Energy efficient allocation of virtual
machines in cloud data centers. In Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, pages 577–578. IEEE, 2010.

[BB10b] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource management
in virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10,
pages 826–831, Washington, DC, USA, 2010. IEEE Computer Society.

[BBD+13] Raffaele Bolla, Roberto Bruschi, Franco Davoli, Lorenzo Di Gregorio, Pasquale
Donadio, Leonardo Fialho, Martin Collier, Alfio Lombardo, Diego Reforgiato Re-
cupero, and Tivadar Szemethy. The green abstraction layer: A standard power-
management interface for next-generation network devices. IEEE Internet Com-
puting, 17(2):82–86, 2013.

[BBDL15] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Chiara Lombardo. Fine-
grained energy-efficient consolidation in sdn networks and devices. IEEE Trans-
actions on Network and Service Management, 12(2):132–145, 2015.

[BBK15] Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. Hyperflex: An sdn virtu-

138

Bibliography

alization architecture with flexible hypervisor function allocation. In Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium on, pages
397–405. IEEE, 2015.

[BBRF14] Fábio Botelho, Alysson Bessani, Fernando MV Ramos, and Paulo Ferreira. On
the design of practical fault-tolerant sdn controllers. In Software Defined Networks
(EWSDN), 2014 Third European Workshop on, pages 73–78. IEEE, 2014.

[BBU+09] Deborah Brungard, Malcolm Betts, Satoshi Ueno, Ben Niven-Jenkins, and Nurit
Sprecher. Requirements of an MPLS Transport Profile. RFC 5654, September
2009.

[BCW+15] Wei Bai, Kai Chen, Hao Wang, Li Chen, Dongsu Han, and Chen Tian.
Information-agnostic flow scheduling for commodity data centers. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), pages 455–468, Oakland, CA, May 2015. USENIX Association.

[BD14] R Bifulco and M Dusi. Reactive logic in software-defined networking: Account-
ing for the limitations of the switches. In Third European Workshop on Software
Defined Networks, page 6, 2014.

[BDG12] Ed. B. Davie and J. Gross. A Stateless Transport Tunneling Protocol for Network
Virtualization(STT). IETF draft-davie-stt-01, March 2012.

[BEBJ15] S. Bensley, L. Eggert, D. Thalerand P. Balasubramanian, and G. Judd. Mi-
crosoft’s Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters
draft-bensley-tcpm-dctcp-05. Internet-Draft, July 2015.

[BGK+13a] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for sdn. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 99–110. ACM,
2013.

[BGK+13b] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN. In SIGCOMM.
ACM, 2013.

[BK14] S. Banerjee and K. Kannan. Tag-in-tag: Efficient flow table management in sdn
switches. In CNSM, 2014.

[BM14] W. Braun and M. Menth. Wildcard compression of inter-domain routing tables
for openflow-based software-defined networking. In Software Defined Networks
(EWSDN), 2014 Third European Workshop on, pages 25–30, Sept 2014.

139

Bibliography

[BRC+13] Md Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi Zhang, Mo-
hamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba. Dynamic controller pro-
visioning in software defined networks. In Network and Service Management
(CNSM), 2013 9th International Conference on, pages 18–25. IEEE, 2013.

[Bri14] ONF Solution Brief. SDN Migration Considerations and Use Cases. Technical
Report ONF TR - 506, Open Network Foundation, November 2014.

[BRL+14] Jeremias Blendin, Julius Rückert, Nicolai Leymann, Georg Schyguda, and David
Hausheer. Position paper: Software-defined network service chaining. In Software
Defined Networks (EWSDN), 2014 Third European Workshop on, pages 109–114.
IEEE, 2014.

[CAJ+12] Carlos HA Costa, Marcelo C Amaral, Guilherme C Januário, Tereza CMB Car-
valho, and Catalin Meirosu. Sustnms: Towards service oriented policy-based net-
work management for energy-efficiency. In Sustainable Internet and ICT for Sus-
tainability (SustainIT), 2012, pages 1–5. IEEE, 2012.

[CEL+12] Antonio Cianfrani, Vincenzo Eramo, Marco Listanti, Marco Polverini, and
Athanasios V Vasilakos. An ospf-integrated routing strategy for qos-aware en-
ergy saving in ip backbone networks. IEEE Transactions on Network and Service
Management, 9(3):254–267, 2012.

[CFY04] Yan Chen, Toni Farley, and Nong Ye. Qos requirements of network applications
on the internet. Inf. Knowl. Syst. Manag., 4(1):55–76, January 2004.

[Cha13] Charter: Forwarding Abstractions Working Group, 2013.

[Cis] Cisco 1941 series integrated services routers data sheet.

[Cis12] I Cisco. Cisco visual networking index: Forecast and methodology, 2011–2016.
CISCO White paper, pages 2011–2016, 2012.

[Cis16] Cisco visual networking index: Forecast and methodology, 2016–2021. Technical
report, Cisco, June 2016.

[CKY11] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection. In INFO-
COM, 2011 Proceedings IEEE, pages 1629–1637. IEEE, 2011.

[CLENR14] R. Cohen, L. Lewin-Eytan, J.S. Naor, and D. Raz. On the effect of forwarding
table size on sdn network utilization. In INFOCOM. IEEE, 2014.

[CMFA14] Paul T Congdon, Prasant Mohapatra, Matthew Farrens, and Venkatesh Akella.
Simultaneously reducing latency and power consumption in openflow switches.
IEEE/ACM Transactions on Networking (TON), 2014.

140

Bibliography

[CMN09] Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Energy-aware backbone net-
works: a case study. In IEEE ICC, 2009.

[CMN12] Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Minimizing isp network energy
cost: Formulation and solutions. IEEE/ACM Transactions on Networking (TON),
20(2):463–476, 2012.

[CMT+11] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for high-
performance networks. SIGCOMM Comput. Commun. Rev., 41(4):254–265, Au-
gust 2011.

[CMZ+07] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and
Christophe Diot. Analysis of point-to-point packet delay in an operational net-
work. Computer networks, 51(13), 2007.

[COA] Coati. https://team.inria.fr/coati/.

[Con02] Paul Congdon. Link layer discovery protocol. RFC 2922, July 2002.

[COS] Sdn system performance.

[CRN+10] Ken Christensen, Pedro Reviriego, Bruce Nordman, Michael Bennett, Mehrgan
Mostowfi, and Juan Antonio Maestro. Ieee 802.3 az: the road to energy efficient
ethernet. IEEE Communications Magazine, 48(11), 2010.

[CRS+13] Prasad Calyam, Sudharsan Rajagopalan, Arunprasath Selvadhurai, Saravanan Mo-
han, Aishwarya Venkataraman, Alex Berryman, and Rajiv Ramnath. Leveraging
openflow for resource placement of virtual desktop cloud applications. In Inte-
grated Network Management (IM 2013), 2013 IFIP/IEEE International Sympo-
sium on, pages 311–319. IEEE, 2013.

[CSB+08] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright. Power
awareness in network design and routing. In IEEE INFOCOM, 2008.

[CSS14] C Jasson Casey, Andrew Sutton, and Alex Sprintson. tinynbi: Distilling an api
from essential openflow abstractions. In Proceedings of the third workshop on Hot
topics in software defined networking, pages 37–42. ACM, 2014.

[CXLC15] Cing-Yu Chu, Kang Xi, Min Luo, and H Jonathan Chao. Congestion-aware single
link failure recovery in hybrid sdn networks. In IEEE INFOCOM, 2015.

[D-L09] D-Link. Green computing and dlink (last accessed sep 2016), Feb 2009.

[Dav] Dave Plonka. Internet traffic flow size analysis. http://net.doit.wisc.

edu/data/flow/size/.

[DDW+10] Avri Doria, Ligang Dong, Weiming Wang, Hormuzd M. Khosravi, Jamal Hadi

141

https://team.inria.fr/coati/
http://net.doit.wisc.edu/data/flow/size/
http://net.doit.wisc.edu/data/flow/size/

Bibliography

Salim, and Ram Gopal. Forwarding and Control Element Separation (ForCES)
Protocol Specification. RFC 5810, March 2010.

[dep15] Facebook, google use sdn to boost data center connec-
tivity. http://searchsdn.techtarget.com/tip/

Facebook-Google-use-SDN-to-boost-data-center-connectivity,
March 2015.

[DHM+14] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana
Kompella. Elasticon: an elastic distributed sdn controller. In Proceedings of the
tenth ACM/IEEE symposium on Architectures for networking and communications
systems, pages 17–28. ACM, 2014.

[DLP17] M. Rifai A. Segalini M. Dione G. Urvoy-Keller D. Lopez Pacheco, Q. Jacquemart.
Seamless: a lightweight service migration cloud architecture for energy saving
capabilities. 2017.

[Doc] Docker. Build, ship, and run any app, anywhere. https://www.docker.

com/.

[Dpd14] Intel Data Plane Development Kit (Intel DPDK) with VMware Vsphere , 2014.

[DPP+10] Tathagata Das, Pradeep Padala, Venkat Padmanabhan, Ramachandran Ramjee, and
Kang G. Shin. Litegreen: Saving energy in networked desktops using virtualiza-
tion. In Annual Technical Conference. USENIX, June 2010.

[DRGF12] Floriano De Rango, Francesca Guerriero, and Peppino Fazio. Link-stability and
energy aware routing protocol in distributed wireless networks. IEEE Transactions
on Parallel and Distributed systems, 23(4), 2012.

[dSdF16] Rodrigo A. C. da Silva and Nelson L. S. da Fonseca. Topology-aware virtual ma-
chine placement in data centers. Journal of Grid Computing, 14(1):75–90, 2016.

[EA15] Can Eyupoglu and Muhammed Ali Aydin. Energy efficiency in backbone net-
works. Procedia-Social and Behavioral Sciences, 195:1966–1970, 2015.

[EBBS11] Rob Enns, Martin Bjorklund, Andy Bierman, and Jürgen Schönwälder. Network
Configuration Protocol (NETCONF). RFC 6241, June 2011.

[EFSM+11] Omar El Ferkouss, Ilyas Snaiki, Omar Mounaouar, Hamza Dahmouni, Racha Ben
Ali, Yves Lemieux, and Cherkaoui Omar. A 100gig network processor platform
for openflow. In Network and Service Management (CNSM), 2011 7th Interna-
tional Conference on, pages 1–4. IEEE, 2011.

[ENE] ENERGY STAR. Top 12 ways to decrease the energy consumption of your data
center. https://www.energystar.gov/sites/default/files/asset/document/DataCenter-
Top12-Brochure-Final.pdf.

142

http://searchsdn.techtarget.com/tip/Facebook-Google-use-SDN-to-boost-data-center-connectivity
http://searchsdn.techtarget.com/tip/Facebook-Google-use-SDN-to-boost-data-center-connectivity
https://www.docker.com/
https://www.docker.com/

Bibliography

[Eri13] David Erickson. The beacon openflow controller. In HotSDN, pages 13–18. ACM,
2013.

[ETHG05] Shirin Ebrahimi-Taghizadeh, Ahmed Helmy, and Sandeep Gupta. Tcp vs. tcp: a
systematic study of adverse impact of short-lived tcp flows on long-lived tcp flows.
In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 2, pages 926–937. IEEE,
2005.

[Eur] European Union. eurostat statistics explained- consumption of energy.
http://ec.europa.eu/eurostat/statistics-explained/

index.php/Consumption_of_energy.

[FDA+04] Wissam Fawaz, Belkacem Daheb, Olivier Audouin, M Du-Pond, and Guy Pujolle.
Service level agreement and provisioning in optical networks. IEEE Communica-
tions Magazine, 42(1), 2004.

[FFEB05] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure. Achiev-
ing sub-second IGP convergence in large IP networks. ACM SIGCOMM CCR,
35(3):35–44, 2005.

[FHMT00] Dino Farinacci, Stanley P. Hanks, David Meyer, and Paul S. Traina. Generic Rout-
ing Encapsulation (GRE). RFC 2784, March 2000.

[GB13] Minzhe Guo and Prabir Bhattacharya. Controller placement for improving re-
silience of software-defined networks. In Networking and Distributed Computing
(ICNDC), 2013 Fourth International Conference on, pages 23–27. IEEE, 2013.

[GC06] Chamara Gunaratne and Ken Christensen. Ethernet adaptive link rate: System
design and performance evaluation. In Local Computer Networks, Proceedings
2006 31st IEEE Conference on, pages 28–35. IEEE, 2006.

[GHJ+09] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta Sen-
gupta. Vl2: a scalable and flexible data center network. In ACM SIGCOMM
computer communication review, volume 39:4, pages 51–62. ACM, 2009.

[GHM15] Frédéric Giroire, Frédéric Havet, and Joanna Moulierac. Compressing two-
dimensional routing tables with order. In INOC, 2015.

[GLL+09] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: A high performance,
server-centric network architecture for modular data centers. SIGCOMM Comput.
Commun. Rev., 39(4):63–74, August 2009.

[GMP14] Frédéric Giroire, Joanna Moulierac, and T Khoa Phan. Optimizing rule placement

143

http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy
http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy

Bibliography

in software-defined networks for energy-aware routing. In GLOBECOM. IEEE,
2014.

[GNTD03] Frédéric Giroire, Antonio Nucci, Nina Taft, and Christophe Diot. Increasing the
robustness of ip backbones in the absence of optical level protection. In IEEE
INFOCOM, 2003.

[Gri] Grid 5000. https://www.grid5000.fr/mediawiki/index.php/

Grid5000:Home.

[GTB+14] W. Godycki, C. Torng, I. Bukreyev, A. Apsel, and C. Batten. Enabling real-
istic fine-grain voltage scaling with reconfigurable power distribution networks.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 381–393, Dec 2014.

[GWT+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. Dcell: A scalable and fault-tolerant network structure for data centers. SIG-
COMM Comput. Commun. Rev., 38(4):75–86, August 2008.

[GYG12] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. Rethinking end-to-
end congestion control in software-defined networks. In Proceedings of HotNets-
XI, 2012.

[Ham15] B. Hamzeh. Network failure detection and prediction using signal measurements.
US Patent 9,100,339, August 4 2015.

[HCG12] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Finishing flows quickly with
preemptive scheduling. ACM SIGCOMM Computer Communication Review,
42(4):127–138, 2012.

[HCW+15] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao Wang, Hongze Zhao,
and Chuanxiong Guo. Explicit path control in commodity data centers: Design
and applications. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI’15, pages 15–28, Berkeley, CA, USA,
2015. USENIX Association.

[Hew16] Hewlett Packard Enterprise Development LP. Bidirectional forwarding detection
(BFD), 2016.

[HHG+13] David Hock, Matthias Hartmann, Steffen Gebert, Michael Jarschel, Thomas Zin-
ner, and Phuoc Tran-Gia. Pareto-optimal resilient controller placement in sdn-
based core networks. In Teletraffic Congress (ITC), 2013 25th International, pages
1–9. IEEE, 2013.

[HJW+11] L. Huang, Q. Jia, X. Wang, S. Yang, and B. Li. Pcube: Improving power efficiency
in data center networks. In Cloud Computing (CLOUD), 2011 IEEE International

144

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

Bibliography

Conference on, pages 65–72, July 2011.

[HKGJ+15] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan
Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. Measuring control plane
latency in sdn-enabled switches. In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, page 25. ACM, 2015.

[HMBM16] David Ke Hong, Yadi Ma, Sujata Banerjee, and Z. Morley Mao. Incremental
deployment of SDN in hybrid enterprise and ISP networks. In ACM Symposium
on SDN Research, 2016.

[hp5] Hp procurve switch 5400zl series.

[HPO13] Hp openflow and sdn technical overview.e. http://h17007.www1.hpe.

com/docs/networking/solutions/sdn/devcenter/02_-_HP_

OpenFlow_and_SDN_Technical_Overview_TSG_v1_2013-10-01.

pdf, October 2013.

[HRG+17] Nicolas Huin, Myriana Rifai, Frédéric Giroire, Dino Lopez Pacheco, Guillaume
Urvoy-Keller, and Joanna Moulierac. Bringing Energy Aware Routing closer to
Reality with SDN Hybrid Networks. PhD thesis, INRIA Sophia Antipolis-I3S;
I3S, 2017.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed
tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[HSM+10a] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet
Sharma, Sujata Banerjee, and Nick McKeown. Elastictree: Saving energy in data
center networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages 17–17, Berkeley, CA, USA,
2010. USENIX Association.

[HSM+10b] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastictree: Saving energy
in data center networks. In Nsdi, volume 10, pages 249–264, 2010.

[HSM12] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement
problem. In Proceedings of the first workshop on Hot topics in software defined
networks, pages 7–12. ACM, 2012.

[HSS+] Luuk Hendriks, Ricardo de O Schmidt, Ramin Sadre, Jeronimo A Bezerra, and
Aiko Pras. Assessing the quality of flow measurements from openflow devices.
TMA 2016.

[HUKDB10] Martin Heusse, Guillaume Urvoy-Keller, Andrzej Duda, and Timothy X Brown.
Least attained recent service for packet scheduling over wireless lans. In World of

145

http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/02_-_HP_OpenFlow_and_SDN_Technical_Overview_TSG_v1_2013-10-01.pdf
http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/02_-_HP_OpenFlow_and_SDN_Technical_Overview_TSG_v1_2013-10-01.pdf
http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/02_-_HP_OpenFlow_and_SDN_Technical_Overview_TSG_v1_2013-10-01.pdf
http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/02_-_HP_OpenFlow_and_SDN_Technical_Overview_TSG_v1_2013-10-01.pdf

Bibliography

Wireless Mobile and Multimedia Networks (WoWMoM), 2010 IEEE International
Symposium on a, pages 1–9. IEEE, 2010.

[HWG+13] Yannan Hu, Wang Wendong, Xiangyang Gong, Xirong Que, and Cheng Shid-
uan. Reliability-aware controller placement for software-defined networks. In
Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on, pages 672–675. IEEE, 2013.

[HYG+15] Chengchen Hu, Ji Yang, Zhimin Gong, Shuoling Deng, and Hongbo Zhao. Desk-
topdc: setting all programmable data center networking testbed on desk. ACM
SIGCOMM Computer Communication Review, 44(4):593–594, 2015.

[ICC+16] Filip Idzikowski, Luca Chiaraviglio, Antonio Cianfrani, Jorge López Vizcaíno,
Marco Polverini, and Yabin Ye. A survey on energy-aware design and operation
of core networks. IEEE Communications Surveys & Tutorials, 18(2), 2016.

[IDGM01] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick McKeown. Moni-
toring very high speed links. In ACM IMW, 2001.

[IMP] Impt. http://ipmt.forge.imag.fr/.

[Int11] Software Defined Networking and Softwarebased Services with Intel Processors ,
2011.

[Int12] International Computer Science Institute, UC Berkeley . The nox controller.
https://github.com/noxrepo/nox, 2012.

[Iza15] Ryan Izard. Floodlight documentation. https://floodlight.

atlassian.net/wiki/, march 2015.

[JAG+14] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazières. Millions of little minions: Using packets for low latency
network programming and visibility. In Proceedings of the 2014 ACM Conference
on SIGCOMM, SIGCOMM ’14, pages 3–14, New York, NY, USA, 2014. ACM.

[JCPG14] Yury Jimenez, Cristina Cervello-Pastor, and Aurelio J Garcia. On the controller
placement for designing a distributed sdn control layer. In Networking Conference,
2014 IFIP, pages 1–9. IEEE, 2014.

[JKM+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-
deployed software defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3–14,
August 2013.

[JLX+15] Cheng Jin, Cristian Lumezanu, Qiang Xu, Zhi-Li Zhang, and Guofei Jiang.
Telekinesis: Controlling legacy switch routing with openflow in hybrid networks.

146

http://ipmt.forge.imag.fr/
https://github.com/noxrepo/nox
https://floodlight.atlassian.net/wiki/
https://floodlight.atlassian.net/wiki/

Bibliography

In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Net-
working Research, SOSR ’15, pages 20:1–20:7, New York, NY, USA, 2015. ACM.

[JP12] Michael Jarschel and Rastin Pries. An openflow-based energy-efficient data center
approach. In Proceedings of the ACM SIGCOMM 2012 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 87–88, New York, NY, USA, 2012. ACM.

[KARW14] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite
cacheflow in software-defined networks. In Proceedings of the third workshop
on Hot topics in software defined networking, pages 175–180. ACM, 2014.

[KARW16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Cacheflow:
Dependency-aware rule-caching for software-defined networks. In Proc. ACM
Symposium on SDN Research (SOSR), 2016.

[KB13a] K. Kannan and S. Banerjee. Compact TCAM: Flow Entry Compaction in TCAM
for Power Aware SDN. In ICDCN, 2013.

[KB13b] Kalapriya Kannan and Subhasis Banerjee. Compact tcam: Flow entry compaction
in tcam for power aware sdn. In International Conference on Distributed Comput-
ing and Networking, pages 439–444. Springer, 2013.

[KCG+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, et al. Onix: A distributed control platform for large-scale production net-
works. In OSDI, volume 10, pages 1–6, 2010.

[KCGJ14] Anand Krishnamurthy, Shoban P Chandrabose, and Aaron Gember-Jacobson.
Pratyaastha: An efficient elastic distributed sdn control plane. In Proceedings of
the third workshop on Hot topics in software defined networking, pages 133–138.
ACM, 2014.

[KGB13] Atefeh Khosravi, Saurabh Kumar Garg, and Rajkumar Buyya. Energy and carbon-
efficient placement of virtual machines in distributed cloud data centers. In Euro-
pean Conference on Parallel Processing, pages 317–328. Springer, 2013.

[KGCR12] Eric Keller, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford. Live migration
of an entire network (and its hosts). In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 109–114. ACM, 2012.

[KHK13] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing tables in
software-defined networks. In INFOCOM. IEEE, 2013.

[KLRW13] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing the
"one big switch" abstraction in software-defined networks. In CoNEXT. ACM,

147

Bibliography

2013.

[KPK14] Maciej Kuzniar, P Perešıni, and Dejan Kostic. What you need to know about sdn
control and data planes. EPFL, TR, 199497, 2014.

[KRA12] Jungsoo Kim, Martino Ruggiero, and David Atienza. Free cooling-aware dy-
namic power management for green datacenters. In High Performance Computing
and Simulation (HPCS), 2012 International Conference on, pages 140–146. IEEE,
2012.

[KREV+15] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE, 103(1), Jan 2015.

[KSP+14] Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar, Guido Appenzeller,
Joseph Little, Johan Van Reijendam, Paul Weissmann, and Nick McKeown. Matur-
ing of openflow and software-defined networking through deployments. Computer
Networks, 61:151–175, 2014.

[KVM] Kvm. https://www.linux-kvm.org/page/Main_Page.

[KW10] Dave Katz and David Ward. Bidirectional Forwarding Detection (BFD) for Multi-
hop Paths. RFC 5883, June 2010.

[KW15] Dave Katz and David Ward. Bidirectional Forwarding Detection (BFD). RFC
5880, October 2015.

[KZFR15] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana:
Controller fault-tolerance in software-defined networking. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,
page 4. ACM, 2015.

[LCB+12] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. Renewable and cooling aware workload
management for sustainable data centers. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 175–186. ACM, 2012.

[LCD04] Anukool Lakhina, Mark Crovella, and Christophe Diot. Characterization of
network-wide anomalies in traffic flows. In ACM IMC, 2004.

[LCD05] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies us-
ing traffic feature distributions. In ACM Computer Communication Review, vol-
ume 35, 2005.

[LCMO09] Yan Luo, Pablo Cascon, Eric Murray, and Julio Ortega. Accelerating openflow
switching with network processors. In Proceedings of the 5th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, pages 70–71.

148

https://www.linux-kvm.org/page/Main_Page

Bibliography

ACM, 2009.

[LCS+14] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, Anja Feldmann, et al.
Panopticon: Reaping the benefits of incremental sdn deployment in enterprise net-
works. In USENIX Annual Technical Conference, pages 333–345, 2014.

[LGZ+15] Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia, David Hock,
Michael Jarschel, and Marco Hoffmann. Heuristic approaches to the controller
placement problem in large scale sdn networks. IEEE Transactions on Network
and Service Management, 12(1):4–17, 2015.

[Lin15] Onos joins the linux foundation, becoming an opendaylight sib-
ling. https://www.sdxcentral.com/articles/news/

onos-joins-the-linux-foundation-becoming-an-opendaylight-sibling/

2015/10/, 2015.

[LLJ15] Jiaqiang Liu, Yong Li, and Depeng Jin. Sdn-based live vm migration across dat-
acenters. ACM SIGCOMM Computer Communication Review, 44(4):583–584,
2015.

[LLW+11] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH
Andrew. Greening geographical load balancing. In Proceedings of the ACM SIG-
METRICS joint international conference on Measurement and modeling of com-
puter systems, pages 233–244. ACM, 2011.

[LZH+14] Yanbiao Li, Dafang Zhang, Kun Huang, Dacheng He, and Weiping Long. A
memory-efficient parallel routing lookup model with fast updates. Computer Com-
munications, 38:60–71, 2014.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling
innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2), March
2008.

[MC11] Mehrgan Mostowfi and Ken Christensen. Saving energy in lan switches: New
methods of packet coalescing for energy efficient ethernet. In Green Computing
Conference and Workshops (IGCC), 2011 International, pages 1–8. IEEE, 2011.

[MC12] Jeffrey C Mogul and Paul Congdon. Hey, you darned counters!: get off my asic!
In Proceedings of the first workshop on Hot topics in software defined networks,
pages 25–30. ACM, 2012.

[Min] Mininet. http://mininet.org/.

[MLP+16] James McCauley, Zhi Liu, Aurojit Panda, Teemu Koponen, Barath Raghavan, Jen-
nifer Rexford, and Scott Shenker. Recursive SDN for carrier networks. ACM

149

https://www.sdxcentral.com/articles/news/onos-joins-the-linux-foundation-becoming-an-opendaylight-sibling/2015/10/
https://www.sdxcentral.com/articles/news/onos-joins-the-linux-foundation-becoming-an-opendaylight-sibling/2015/10/
https://www.sdxcentral.com/articles/news/onos-joins-the-linux-foundation-becoming-an-opendaylight-sibling/2015/10/
http://mininet.org/

Bibliography

SIGCOMM CCR, 46(4), 2016.

[MLT10] C. R. Meiners, A. X. Liu, and E. Torng. TCAM Razor: A Systematic Approach
Towards Minimizing Packet Classifiers in TCAMs. In IEEE/ACM Transaction in
Networking, 2010.

[MLT12] C.R. Meiners, A.X. Liu, and E. Torng. Bit weaving: A non-prefix approach to
compressing packet classifiers in tcams. Networking, IEEE/ACM Transactions on,
20(2), April 2012.

[MOS] What are sdn southbound apis? https://www.sdxcentral.com/sdn/

definitions/southbound-interface-api/.

[Moy98] John T. Moy. OSPF Version 2. RFC 2328, April 1998.

[MQU+13] Ali Munir, Ihsan A Qazi, Zartash A Uzmi, Aisha Mushtaq, Saad N Ismail, M Saf-
dar Iqbal, and Basma Khan. Minimizing flow completion times in data centers. In
INFOCOM, 2013 Proceedings IEEE, pages 2157–2165. IEEE, 2013.

[MR17] Quentin Jacquemart Guillaume Urvoy-Keller Myriana Rifai, Dino Lopez. Pro-
phys: Providing resilient path in hybrid software defined networks. 2017.

[MVL+13] G Memon, M Varvello, R Laufer, T Lakshman, J Li, and M Zhang. Flashflow: a
gpu-based fully programmable openflow switch. University of Oregon, Tech. Rep,
2013.

[NCC10] Eugene Ng, Z Cai, and AL Cox. Maestro: A system for scalable openflow control.
Rice University, Houston, TX, USA, TSEN Maestro-Techn. Rep, TR10-08, 2010.

[NEC+08] Jad Naous, David Erickson, G Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an openflow switch on the netfpga platform. In Pro-
ceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pages 1–9. ACM, 2008.

[Neu] Neutron. Neutron. https://wiki.openstack.org/wiki/Neutron.

[NMN+14] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka,
and Thierry Turletti. A survey of software-defined networking: Past, present, and
future of programmable networks. IEEE Communications Surveys & Tutorials,
16(3):1617–1634, 2014.

[NSBT15] Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry Turletti. OF-
FICER: A general Optimization Framework for OpenFlow Rule Allocation and
Endpoint Policy Enforcement. In INFOCOM. IEEE, April 2015.

[Ono] Onos. http://onosproject.org/.

[Opea] Opencontrail. http://www.opencontrail.org/.

150

https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/
https://wiki.openstack.org/wiki/Neutron
http://onosproject.org/
http://www.opencontrail.org/

Bibliography

[Opeb] Opendaylight. https://www.opendaylight.org/.

[PA00] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988
(Proposed Standard), November 2000. Obsoleted by RFC 6298.

[PIC] Pica8 white box sdn.

[PLBMAL15] J. A. Pascual, T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano. Towards
a greener cloud infrastructure management using optimized placement policies.
Journal of Grid Computing, 13(3):375–389, 2015.

[PMK13] Gergely Pongrácz, Laszlo Molnar, and Zoltán Lajos Kis. Removing roadblocks
from sdn: Openflow software switch performance on intel dpdk. In Software
Defined Networks (EWSDN), 2013 Second European Workshop on, pages 62–67.
IEEE, 2013.

[POX15] Pox wiki. https://openflow.stanford.edu/display/ONL/POX+

Wikix, 2015.

[PPK+15] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. The design and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages
117–130, Oakland, CA, May 2015. USENIX Association.

[Qem] Qemu. http://www.qemu.org/.

[Qua] Quagga. http://www.nongnu.org/quagga/.

[RBU05] Idris A. Rai, Ernst W. Biersack, and Guillaume Urvoy-Keller. Size-based schedul-
ing to improve the performance of short TCP flows. IEEE Network, 19(1), 2005.

[RGK+02] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz,
Jennifer Yates, and Yin Zhang. Experience in measuring backbone traffic variabil-
ity: Models, metrics, measurements and meaning. In ACM IMW, 2002.

[RHC+15] Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, D Lopez-
Pacheco, Joanna Moulierac, and Guillaume Urvoy-Keller. Too many sdn rules?
compress them with minnie. In Global Communications Conference (GLOBE-
COM), 2015 IEEE, pages 1–7. IEEE, 2015.

[RHC+17] Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frederic Giroire, Joanna
Moulierac, Dino Lopez Pacheco, and Guillaume Urvoy-Keller. Minnie: an sdn
world with few compressed forwarding rules. Computer Networks, 2017.

[RJK+12] Ahmad Rostami, Tobias Jungel, Andreas Koepsel, Hagen Woesner, and Adam
Wolisz. Oran: Openflow routers for academic networks. In High Performance

151

https://www.opendaylight.org/
https://openflow.stanford.edu/display/ONL/POX+Wikix
https://openflow.stanford.edu/display/ONL/POX+Wikix
http://www.qemu.org/
http://www.nongnu.org/quagga/

Bibliography

Switching and Routing (HPSR), 2012 IEEE 13th International Conference on,
pages 216–222. IEEE, 2012.

[RLL12] Ramya Raghavendra, Jorge Lobo, and Kang-Won Lee. Dynamic graph query
primitives for sdn-based cloud network management. In Proceedings of the first
workshop on Hot topics in software defined networks, pages 97–102. ACM, 2012.

[RLPUK15] Myriana Rifai, Dino Lopez-Pacheco, and Guillaume Urvoy-Keller. Coarse-grained
scheduling with software-defined networking switches. ACM SIGCOMM Com-
puter Communication Review, 45(4):95–96, 2015.

[RMR13] Ramon Marques Ramos, Magnos Martinello, and Christian Esteve Rothenberg.
Slickflow: Resilient source routing in data center networks unlocked by openflow.
In Local Computer Networks (LCN), 2013 IEEE 38th Conference on, pages 606–
613. IEEE, 2013.

[RPUK14] Myriana Rifai, Dino Lopez Pacheco, and Guillaume Urvoy-Keller. Towards en-
abling green routing services in real networks. In Green Communications (Online-
Greencomm), 2014 IEEE Online Conference on, pages 1–7. IEEE, 2014.

[RRJ+15] Bruno B Rodrigues, Ana C Riekstin, Guilherme C Januário, Viviane T Nasci-
mento, Tereza CMB Carvalho, and Catalin Meirosu. Greensdn: Bringing energy
efficiency to an sdn emulation environment. In Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium on, pages 948–953. IEEE, 2015.

[RSKK16] Piotr Rygielski, Marian Seliuchenko, Samuel Kounev, and Mykhailo Klymash.
Performance analysis of sdn switches with hardware and software flow tables. In
Proceedings of the 10th EAI International Conference on Performance Evaluation
Methodologies and Tools (ValueTools 2016), 2016.

[RSV87] Richard L Rudell and Alberto Sangiovanni-Vincentelli. Multiple-valued mini-
mization for pla optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6(5):727–750, 1987.

[Ryu17] Ryu SDN Framework Community. Build sdn agilely. https://osrg.

github.io/ryu/, 2017.

[SB10] Mike Shand and Stewart Bryant. IP Fast Reroute Framework. RFC 5714, January
2010.

[SCF+12a] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. Past: Scal-
able ethernet for data centers. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’12, pages 49–
60, New York, NY, USA, 2012. ACM.

[SCF+12b] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. Past: Scal-

152

https://osrg.github.io/ryu/
https://osrg.github.io/ryu/

Bibliography

able ethernet for data centers. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages 49–60. ACM, 2012.

[Sch] Tom Scholl. BFD: Does it work and is it worth it? NANOG 45.

[SCPA11] Matt Sargent, Jerry Chu, Vern Paxson, and Mark Allman. Computing TCP Re-
transmission Timer. RFC 6298, June 2011.

[SGC+13] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Francesco Paolucci, and
Piero Castoldi. Openflow-based segment protection in ethernet networks. Journal
of Optical Communications and Networking, 5(9):1066–1075, 2013.

[SIG] Signet. http://signet.i3s.unice.fr/.

[SK14] Arne Schwabe and Holger Karl. Using mac addresses as efficient routing labels
in data centers. In Proceedings of the third workshop on Hot topics in software
defined networking, pages 115–120. ACM, 2014.

[SKZ08] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolidation
for cloud computing. In Proceedings of the 2008 conference on Power aware
computing and systems, volume 10, pages 1–5. San Diego, California, 2008.

[SLX10] Yunfei Shang, Dan Li, and Mingwei Xu. Energy-aware routing in data center
network. In ACM workshop on Green networking, 2010.

[SO14] N. M. Sahri and Koji Okamura. Fast failover mechanism for software defined net-
working: Openflow based. In Proceedings of The Ninth International Conference
on Future Internet Technologies, CFI ’14, pages 16:1–16:2, New York, NY, USA,
2014. ACM.

[Son13] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
127–132, New York, NY, USA, 2013. ACM.

[SSC+13] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. Openflow: Meeting carrier-grade recovery requirements. Elsevier Com-
puter Communications, 36(6):656–665, 2013.

[SSC+16] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. In-band control, queuing, and failure recovery functionalities for open-
flow. IEEE Network, 30(1), 2016.

[SSD+14] M Said Seddiki, Muhammad Shahbaz, Sean Donovan, Sarthak Grover, Miseon
Park, Nick Feamster, and Ye-Qiong Song. Flowqos: Qos for the rest of us. In
Proceedings of the third workshop on Hot topics in software defined networking,
pages 207–208. ACM, 2014.

153

http://signet.i3s.unice.fr/

Bibliography

[SWSB13] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari Balakrish-
nan. No silver bullet: Extending sdn to the data plane. In Proceedings of HotNets-
XII, 2013.

[SZZ+13] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan
Smeliansky. Advanced study of SDN/openflow controllers. In CEE-SECR. ACM,
2013.

[TAG16] Mehmet Fatih Tuysuz, Zekiye Kubra Ankarali, and Didem Gözüpek. A survey on
energy efficiency in software defined networks. Computer Networks, 2016.

[TG10] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control plane
for openflow. In Proceedings of the 2010 internet network management conference
on Research on enterprise networking, pages 3–3, 2010.

[TGG+12] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob
Sherwood. On controller performance in software-defined networks. Hot-ICE,
12:1–6, 2012.

[The] The BtrPlace Project. An open-source flexible virtual machine scheduler. http:
//www.btrplace.org/.

[The12] The Open Networking Foundation. OpenFlow Switch Specification, Jun. 2012.

[THJ16] D. Taht J. Gettys T. Hoeiland-Joergensen, P. McKenney. The FlowQueue-CoDel
Packet Scheduler and Active Queue Management Algorithm. draft-ietf-aqm-fq-
codel-06, 2016.

[THW+13] Fung Po Tso, Gregg Hamilton, Rene Weber, Colin S. Perkins, and Dimitrios P.
Pezaros. Longer is better: Exploiting path diversity in data center networks. In
Proceedings of IEEE ICDCS ’13, 2013.

[TNW96] Michael Theobald, Steven M. Nowick, and Tao Wu. Espresso-hf: A heuristic
hazard-free minimizer for two-level logic. In Proceedings of the 33rd Annual
Design Automation Conference, DAC ’96, pages 71–76, New York, NY, USA,
1996. ACM.

[Top] The internet topology zoo. http://www.topology-zoo.org/dataset.
html.

[TP13] Fung Po Tso and D.P. Pezaros. Baatdaat: Measurement-based flow scheduling
for cloud data centers. In Computers and Communications (ISCC), 2013 IEEE
Symposium on, July 2013.

[TSS+97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wether-
all, and Gary J. Minden. A survey of active network research. IEEE Communica-
tions Magazine, 35:80–86, 1997.

154

http://www.btrplace.org/
http://www.btrplace.org/
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html

Bibliography

[UR10] Mueen Uddin and Azizah Abdul Rahman. Server consolidation: An approach to
make data centers energy efficient and green. arXiv preprint arXiv:1010.5037,
2010.

[VLQ+14] TH Vu, VC Luc, NT Quan, T Thanh, NH Thanh, and PN Nam. Sleep mode
and wakeup method for openflow switches. Journal of Low Power Electronics,
10(3):347–353, 2014.

[VRV14] Allan Vidal, Christian Esteve Rothenberg, and Fábio Luciano Verdi. The
libfluid openflow driver implementation. In Proc. 32nd Brazilian Symp. Comp.
Netw.(SBRC), pages 1029–1036, 2014.

[VSZ+11] Arun Vishwanath, Vijay Sivaraman, Zhi Zhao, Craig Russell, and Marina Thottan.
Adapting router buffers for energy efficiency. In ACM CoNEXT, 2011.

[VVB14] Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure. Opportunities
and research challenges of hybrid software defined networks. ACM SIGCOMM
Computer Communication Review, 44(2), 2014.

[VVC+17] Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G Xie, and Olivier
Bonaventure. Safe update of hybrid sdn networks. IEEE/ACM Transactions on
Networking, 2017.

[WNS12] Guohui Wang, TS Ng, and Anees Shaikh. Programming your network at run-time
for big data applications. In Proceedings of the first workshop on Hot topics in
software defined networks, pages 103–108. ACM, 2012.

[WWW+14] Zhiming Wang, Jiangxing Wu, Yu Wang, Ning Qi, and Julong Lan. Survivable
virtual network mapping using optimal backup topology in virtualized sdn. China
Communications, 11(2):26–37, 2014.

[WZS+13] Ye Wang, Yueping Zhang, Vishal Singh, Cristian Lumezanu, and Guofei Jiang.
Netfuse: Short-circuiting traffic surges in the cloud. In IEEE ICC, 2013.

[WZV+14] Lin Wang, Fa Zhang, Athanasios V. Vasilakos, Chenying Hou, and Zhiyong Liu.
Joint virtual machine assignment and traffic engineering for green data center net-
works. SIGMETRICS Perform. Eval. Rev., 41(3):107–112, January 2014.

[XBNJ13] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. Small is better:
Avoiding latency traps in virtualized data centers. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 7. ACM, 2013.

[Xen] Xen project. https://www.xenproject.org/.

[XSLW13] Mingwei Xu, Yunfei Shang, Dan Li, and Xin Wang. Greening data center net-
works with throughput-guaranteed power-aware routing. Computer Networks,
57(15):2880 – 2899, 2013.

155

https://www.xenproject.org/

Bibliography

[YLS+14] Baohua Yang, Junda Liu, Scott Shenker, Jun Li, and Kai Zheng. Keep forwarding:
Towards k-link failure resilient routing. In IEEE INFOCOM 2014, pages 1617–
1625, 2014.

[YRFW10] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable flow-
based networking with difane. ACM SIGCOMM Computer Communication Re-
view, 40(4):351–362, 2010.

[YWR14] Minlan Yu, Andreas Wundsam, and Muruganantham Raju. Nosix: A lightweight
portability layer for the sdn os. ACM SIGCOMM Computer Communication Re-
view, 44(2):28–35, 2014.

[YXX+14] Bo Yan, Yang Xu, Hongya Xing, Kang Xi, and H Jonathan Chao. Cab: A reactive
wildcard rule caching system for software-defined networks. In Proceedings of
the third workshop on Hot topics in software defined networking, pages 163–168.
ACM, 2014.

[ZHLL06] Kai Zheng, Chengchen Hu, Hongbin Lu, and Bin Liu. A tcam-based distributed
parallel ip lookup scheme and performance analysis. IEEE/ACM Transactions on
Networking (TON), 14(4):863–875, 2006.

[ZIA+15] David Zats, Anand Padmanabha Iyer, Ganesh Ananthanarayanan, Rachit Agarwal,
Randy Katz, Ion Stoica, and Amin Vahdat. Fastlane: making short flows shorter
with agile drop notification. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 84–96. ACM, 2015.

[ZJP14] Shijie Zhou, Weirong Jiang, and Viktor Prasanna. A programmable and scalable
openflow switch using heterogeneous soc platforms. In Proceedings of the third
workshop on Hot topics in software defined networking, pages 239–240. ACM,
2014.

[ZLC+16] Liang Zhang, James Litton, Frank Cangialosi, Theophilus Benson, Dave Levin,
and Alan Mislove. Picocenter: Supporting long-lived, mostly-idle applications
in cloud environments. In Proceedings of the Eleventh European Conference on
Computer Systems, page 37. ACM, 2016.

[Zus] Zuse-Institute Berlin. Problem germany50–d-b-l-n-c-a-n-n). http://sndlib.
zib.de/home.action.

[ZWW11] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy. In ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open Distributed
Processing, pages 143–164. Springer, 2011.

156

http://sndlib.zib.de/home.action
http://sndlib.zib.de/home.action

	Abstract
	Résumé
	Acknowledgments
	Résumé Étendue
	Contents
	List of Figures
	List of Tables
	Introduction
	Software Defined Networking
	Mode of Action
	Main Components
	sdn Forwarding devices
	Southbound Interface
	Controller Server

	Migration from Legacy to sdn Networks

	Contributions
	Roadmap
	List of Publications

	State of the Art
	Attempts to Overcome SDN Challenges
	Control Plane Scalability
	Resilience
	Multiple Switch Designs Interactivity
	Flow Table Capacity
	Switch Performance

	Attempts to Enhance Network Performance using sdn
	SDN in hybrid networks
	Traffic Engineering and Energy Efficiency
	Resilience
	Network Virtualization and Management

	Conclusion

	Flow Scalability: Minnie
	Related work
	Motivation: Software vs. hardware rules
	Description of Minnie algorithm
	Minnie: compression module
	Minnie: routing module

	Implementation: Minnie in sdn controller
	Experimental results using an sdn testbed
	TestBed description
	The need of level-0 ovs
	Number of clients chosen for the experimentations
	Experimental scenarios
	Traffic pattern

	Experimental results
	Scenario 1: Compression with lls
	Scenario 2: compression with hls

	Simulations scalability results
	Simulation settings
	Scenarios
	Data center architectures

	Simulation results
	Efficiency of the compression module
	Efficiency of Minnie
	Comparison of Minnie effect on topologies with 1000 servers
	Comparison with XPath

	Discussion
	Conclusion
	Publications

	Performance
	Control Plane Centrality
	Coarse-grained Scheduling
	Related Work
	Scheduling Methodologies
	Results
	Scheduler Limited Scope

	PRoPHYS: Enhancing Network Resilience using SDN
	Related Work
	Hybrid sdn Networks
	Total Downtime and Rerouting

	Passive Probing Failure Detection Methodology
	Matrix of Communicating sdn Ports
	sdn Ports Monitoring
	Failure Detection Module

	Active Probing Failure Detection Methodology
	Rerouting
	Performance Evaluation
	Impact on Network Traffic
	Impact of the Segment Delay on PortStats

	Discussion

	Conclusion
	Publications

	Energy Efficiency
	Related Work
	Backbone Networks
	Data Center

	SENAtoR: Reducing Energy Consumption in Backbone Networks
	Energy Aware Routing for Hybrid Networks
	Heuristic Algorithm (SENAtoR)

	OSPF-sdn interaction and traffic spikes/link failures
	 Lossless link turn-off.
	 Traffic bursts mitigation.
	 Link failure mitigation.

	Experimentations
	Testbed
	Results

	Numerical evaluation
	Simulations on larger networks

	SEaMLESS: Reducing Energy Consumption in DataCenters
	Migrating from the vm to the Sink Server
	Migrating from the Sink Server to the vm
	Addressing Routing Issues
	Detecting User Activity
	Energy Saving Strategies
	Servers in Standby Mode
	Powered-Off Servers

	Performance Evaluation
	Impact on the Quality of Experience
	Scalability and Energy Consumption of the Sink Server

	Conclusion
	Publications

	Conclusion
	Scalability
	Performance
	Energy Efficiency
	Final Remarks

	Glossary
	Bibliography

