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UNIVERSITÉ DE RENNES 1

Abstract
Prove & Run

École doctorale Matisse

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Static Analysis of Functional Programs with an
Application to the Frame Problem in

Deductive Verification

by Oana Fabiana Andreescu

In the field of software verification, the frame problem refers to establishing the bound-
aries within which program elements operate. It has notoriously tedious consequences
on the specification of frame properties, which indicate the parts of the program state
that an operation is allowed to modify, as well as on their verification, i.e. proving
that operations modify only what is specified by their frame properties. In the context
of interactive formal verification of complex systems, such as operating systems, much
effort is spent addressing these consequences and proving the preservation of the sys-
tems’ invariants. However, most operations have a localized effect on the system and
impact only a limited number of invariants at the same time. In this thesis we address
the issue of identifying those invariants that are unaffected by an operation and we
present a solution for automatically inferring their preservation. Our solution is meant
to ease the proof burden for the programmer. It is based on static analysis and does
not require any additional frame annotations. Our strategy consists in combining a
dependency analysis and a correlation analysis. We have designed and implemented
both static analyses for a strongly-typed, functional language that handles structures,
variants and arrays. The dependency analysis computes a conservative approximation
of the input fragments on which functional properties and operations depend. The
correlation analysis computes a safe approximation of the parts of an input state to a
function that are copied to the output state. It summarizes not only what is modified
but also how it is modified and to what extent. By employing these two static analyses
and by subsequently reasoning based on their combined results, an interactive theo-
rem prover can automate the discharching of proof obligations for unmodified parts
of the state. We have applied both of our static analyses to a functional specification
of a micro-kernel and the obtained results demonstrate both their precision and their
scalability.
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Chapter I

Résumé étendu en Français

I.1 Le Problème du Frame
Dans le domaine de la vérification formelle de logiciels, il est impératif d’identifier les
limites au sein desquelles les éléments ou fonctions opèrent. Une spécification com-
plète d’une opération doit non seulement préciser que les valeurs de sortie possèdent
une certaine propriète, mais elle doit également délimiter les parties de l’état d’éntrée
sur lesquelles l’opération fonctionne. Ces limites constituent les propriétés de frame
(frame properties en anglais). Elles sont habituellement spécifiées manuellement par
le programmeur et leur validité doit être vérifiée : il est nécessaire de prouver que les
opérations du programme n’outrepassent pas les limites ainsi déclarées. La spécification
et la preuve de propriétés de frame est une tâche notoiremment connue comme étant
longue et fastidieuse. L’effort considérable investi dans cette tâche est une manifesta-
tion du problème de frame (frame problem en anglais). Les manifestations du problème
de frame apparaissent dans le contexte de tous les langages de spécification et de toutes
les méthodes de vérification formelle.

I.2 Objectifs
Au fil du développement de ProvenCore, un micro-noyau polyvalent qui garantit l’isola-
tion, il est apparu évident que la spécification et la vérification des systèmes de transi-
tion, en général, ainsi que la spécification et vérification des systèmes d’exploitation en
particulier ne sont pas immunes au problème du frame. Les systèmes d’exploitation sont
caractérisés par des états complexes définis par des types de données algébriques et des
tableaux associatifs, qui sont des briques fondamentales pour représenter et manipuler
des données complexes d’une manière efficace. Les systèmes d’exploitation sont aussi
caractérisés par des transitions, qui associent de tels états d’entrée à de nouveaux états
de sortie. Cependant, la plupart des transitions ne sont pas concernées par l’état d’en-
trée dans son intégralité, mais dépendent de et modifient un sous-ensemble de celui-ci.
Intuitivement, des propriétés valides pour l’état d’entrée restent trivialement valides
pour l’état de sortie obtenue après la transition, tant qu’elles dépendent seulement des
parties de l’état d’entrée qui ne sont pas modifiées par la transition. En pratique, prou-
ver la préservation de ces propriétés n’est pas une tâche évidente, et impose un effort
manuel conséquent et une foule de preuves pénibles et répétitives.



xxiv

L’objectif de notre travail a été d’adresser ce problème et de trouver une solution
automatisée pour inférer la préservation de ces propriétés. Plus précisément, notre but a
été l’inférence automatique des propriétés qui dépendent d’un sous-ensemble de l’entrée
qui est disjoint du frame de l’opération, c’est-à-dire du sous-ensemble de l’état qui est
modifié. À cette fin, nous avons proposé une solution basée sur l’analyse statique, qui
ne requiert pas d’annotations de frame supplémentaires. En détectant le sous-ensemble
de l’état dont dépend une propriété ainsi que la partie qui n’est pas affectée par une
opération, nous pouvons résoudre automatiquement les obligations de preuve liées à
des parties non modifiées.

Nous employons deux analyses statiques dans ce but : une analyse de dépendance et
une analyse de corrélation. Les deux analyses gèrent des programmes manipulant des ta-
bleaux associatifs ainsi que des types de données algébriques (structures et variants), et
calculent des résultats reflétant la structure sous-jacente de ces types (champs, construc-
teurs et cellules de tableau). Un raisonnement automatique basé sur le résultat combiné
de ces deux analyses statiques permet d’inférer la préservation de certaines propriétées
relatives à l’état de sortie. À terme, ces deux analyses ont pour vocation à être em-
ployées par une tactique de preuve qui sera intégrée à l’assistant de preuve interactive
inclus dans la suite logicielle ProvenTools, développée par Prove & Run.

Smart, le langage ciblé par la suite logicielle ProvenTools, est un langage purment
fonctionnel qui manipule des structures de données algébriques et des tableaux associa-
tifs immuables. Ce travail a été motivé par la vérification de ProvenCore. ProvenCore est
implémenté via de multiples raffinements entre des modèles successifs du noyau, du plus
abstrait, qui permet la définition et la preuve de la propriété d’isolation, au plus concret,
qui est utilisé pour la génération de code. Les états globaux des couches abstraites sont
des structures complexes contenant de nombreux champs eux-mêmes composites. Des
commandes telles que fork, exec et exit peuvent être exécutées. Chacune de ces com-
mandes reçoit comme argument un état global d’entrée, et produit l’état du système
après exécution de la commande. En pratique, la plupart des commandes supportées
par le système ne menacent qu’un nombre limité d’invariants. Prouver automatique-
ment la préservation des invariants immunes peut diminuer considérablement le nombre
total de preuves à la charge du programmeur, et permet à celui-ci de se concentrer sur
les preuves les plus intéressantes.

I.3 Analyse de dépendance
L’analyse de dépendance gère des fonctions et leur spécification de manière uniforme.
Elle calcule conservativement pour chaque scénario d’exécution possible une approxi-
mation des sous-éléments de l’état d’entrée desquels dépend le résultat. Pour les va-
riants, une analyse supplémentaire est effectuée simultanément, afin de calculer le sous-
ensemble des constructeurs possibles dans chaque scénario d’exécution.

Nous avons défini notre propre domaine abstrait représentant les dépendances, et
obtenons des informations de dépendance qui reflètent la structure en couche des types
de données.
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Cette analyse a été conçue dans le but d’être exécutée à la volée durant la vérifica-
tion interactive, et opère de manière uniforme sur les programmes et leur spécification,
ces deux points conférant à notre approche son originalité. Nous avons implémenté un
prototype de cette analyse de dépendance en OCaml et l’avons appliquée à une spéci-
fication fonctionnelle de ProvenCore. Les résultats obtenus sont positifs, par exemple
l’analyse de dépendance s’exécute en moins d’une seconde sur un ensemble de plus de
600 prédicats totalisant approximativement 10000 lignes de code.

Afin d’introduire pour l’analyse de dépendance une forme de sensibilité au contexte,
nous avons conçu une extension basée sur des chemins symboliques. Cette extension
rallonge légèrement le temps d’exécution (de 10% à 20% sur les benchmarks utilisés).
Cependant, en utilisant l’analyse de dépendance avec cette extension, nous avons obtenu
des résultats plus précis pour 50% des prédicats inclus dans ces benchmarks.

I.4 Anaylse de corrélation
L’analyse de corrélation détecte le flot de valeurs d’entrée dans les valeurs de sortie. Elle
calcule conservativement une approximation des équivalences entre les sous-éléments
d’entrée et ceux de sortie pour une fonction donnée. C’est une analyse statique inter-
procédurale qui résume le comportement d’une fonction et qui détecte quelles parties
de l’état sont modifiées, et dans quelle mesure. Nous avons défini un type d’équivalence
partiel qui reflète la structure des types de données algébriques et tableaux associatifs.
Pour gagner en précision, et ne pas perdre d’informations lorsque l’entrée et la sortie
ont des types différents, nous avons introduit un niveau intermédiaire. Les corrélations
consistent donc en des chemins d’accès vers des sous-éléments de même type, et des
équivalences entre ces sous-éléments. Ce niveau intermédiaire permet de calculer de
manière flexible des équivalences précises entre des parties de l’entrée et des parties de
la sortie.

Nous avons là aussi implémenté en OCaml un prototype de cette analyse de cor-
rélation et nous l’avons appliqué à une spécification fonctionnelle de ProvenCore. Les
résultats obtenus sont encourageants : par exemple, les corrélations calculées pour un
sous-ensemble de 630 prédicats totalisant approximativement 10000 lignes de code sont
obtenus en moins de 0.5 secondes. Bien que plus complexe que l’analyse de dépendance,
l’analyse de corrélation s’exécute plus rapidement sur nos benchmarks car contrairement
à la première, elle ne s’applique qu’aux fonctions, mais pas aux spécifications. En effet,
les spécifications sont des prédicats booléens, et ne retournent pas un état modifié.

I.5 Procédure de décision
Nous avons esquissé une procédure de décision qui emploie nos deux analyses statiques.
Celle-ci constitue la première étape de notre solution pour l’inférence automatique de
la préservation des invariants de frame. En mettant au jour des équivalences entre
les entrées et les sorties, et après avoir détecté qu’une propriété ne dépend que de
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parties inchangées, il est possible d’inférer la préservation des invariants pour ces parties
inchangées.

La procédure de décision n’a pas encore été implémentée, mais des expériences
préliminaires et un prototype simple nous donnent une idée de la manière dont les
résultats de dépendance et de corrélation doivent être unifiés. Par ailleurs, cela nous a
permis de déterminer le genre de requêtes qui peuvent être traitées, et le mécanisme
permettant d’y répondre. Les résultats obtenus grâce à notre prototype simple sur une
spécification fonctionnelle de ProvenCore sont décrits et analysés.

L’unification des résultats des deux analyses passe par la création d’un graphe re-
liant les variables d’entrée et de sortie examinées par la requête. Les arcs représentent
des corrélations entre des sous-éléments de ces variables, qui sont détectées par la se-
conde analyse. Les dépendances de la propriété dont on cherche à inférer la préservation
indiquent les sous-éléments qui influent sur le résultat de cette propriété. Lorsque ces
sous-éléments sont laissés intacts, la propriété est trivialement préservée. L’algorithme
d’unification parcourt donc le graphe, en tentant de détecter un maximum d’équiva-
lences entre des sous-éléments des variables d’entrée et de sortie. Si les sous-éléments
indiqués par la dépendance sont inclus dans l’ensemble des sous-éléments équivalents,
alors la propriété est nécessairement préservée, car toutes les valeurs influant sur son
résultat sont les mêmes avant et après l’exécution de l’opération.

I.6 Conclusion
Pour conclure, nous avons conçu et implémenté deux analyses statiques qui détectent
les dépendances de données d’une propriété logique, ainsi que des corrélations entre
les entrées et sorties d’opérations. Nos premiers résultats sur un modèle fonctionnel
d’un micro-noyau sont encourageants, tant pour leur précision que pour la vitesse de
l’analyse, ce qui rend ces analyses adéquates pour un usage dans le cadre d’un prouveur
interactif. Hormis de menues améliorations impactant la précision de notre analyse, les
prochaines étapes consistent à les combiner afin de détecter les invariants qui ne sont
pas affectés par l’exécution d’un prédicat, puis intégrer cette détection comme tactique
dans le prouveur de théorèmes ProvenTools. Nous pensons qu’il est possible de tirer
parti des spécifications de frame à moindre coût, en particulier sans que cela impose
au programmeur l’écriture fastidieuse d’annotations intuitivement évidentes. Lors de
la vérification formelle de systèmes de transition complexes, il devient alors possible
d’intégrer aux outils de développement une inférence automatique de la préservation
des invariants liés au frame, via l’analyse statique.
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Chapter 1

Introduction

No human investigation can claim to
be scientific if it doesn’t pass the test
of mathematical proof.

Leonardo da Vinci

1.1 Formal Verification of Software
Since the middle of the last century, computers and information technology brought
forth a digital revolution, fundamentally changing the way we live, work and inter-
act with one another. Nowadays, computer programs govern our world and software
permeates our lives in manifold ways, shaping our interactions with the surrounding
environment. From the alarm clock that marks the start of our day and the coffee ma-
chine that motivates us to leave the house, to the smart phone we use for checking our
emails or bank account and the car we are driving (or the automated driverless subway
we are relying on), some type of software is discreetly acting in the background. We
have grown so accustomed to it that we do not even notice it anymore until it asserts
itself by impeding us to check our email, by displaying a blue error screen on an ATM or
ticket machine, or by serving us a salty bag of crisps, instead of the desperately needed
bottle of water we have just paid for on a vending machine. Such reminders can lead to
frustration and cause inconveniences, but essentially they cause minor problems. How-
ever, receiving such reminders as a result of malfunctions of medical equipment, such
as radiation therapy machines, of flight control systems, Mars orbiters, satellites or nu-
clear power plants, can have dramatic consequences, endangering human lives, causing
environmental harm or entailing significant financial losses. Therefore, the quality of
the software around us not only influences the quality of our daily lives, but it might
potentially have an impact on our safety and the safety of our surrounding world.

Writing reliable, completely error-free software is a difficult task and even a utopian
one in the absence of dedicated rigorous approaches for improving its quality. Indeed,
for many software systems no guarantees or warranties are provided and their quality
is addressed only by traditional software engineering approaches such as testing or code
review which cannot guarantee the absence of bugs. While this can be acceptable for
non-critical programs, mission- or safety-critical software systems, for which software
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quality is of the utmost importance, have to guarantee the absence of runtime errors
and provide high levels of confidence regarding their functional correctness. Certain
safety-critical market segments impose standards and regulatory requirements for the
development of such software systems. In these domains, formal program verification
is emerging as a promising approach, gaining a wider audience and more and more
terrain.

Formal program verification comprises a set of techniques and tools that can be used
to ensure by mathematical means that the program under scrutiny fulfills its functional
correctness requirements, i.e. that it computes the right information. For achieving this
goal, a formal description or specification of the program’s expected behaviour must
be given. Once this is established, multiple mathematical tools can be employed for
formally verifying that the program’s implementation follows the formal specification.

Formal methods can be traced back to the early days of computer science and
their origin can be linked to the names of Floyd (Floyd, 1967), Hoare (Hoare, 1969)
and Naur (Naur, 1966), (and later, to that of Dijkstra (Dijkstra, 1976)), and their
methods for verifying program code with respect to assertions. Despite their early
foundations, formal methods seemed, for decades, to be confined to the research world
as a consequence of intricate notations, failure to scale to real-world programs and
limited or inadequate tool support. Since the 1960’s however, considerable progress
has been made in the field of formal methods, in terms of both methodology and tools
for computer aided program verification. Still, formal program verification methods are
not yet a widespread alternative or even complement to testing in the industry. Unlike
testing that cannot show the absence of bugs, the goal of formal verification methods
is to prove by means of mathematical tools that the program execution is correct in all
specified environments, without actually executing the program itself. These are static
verification techniques.

Static verification techniques include program typing, model checking, deductive
verification methods and static program analysis. Besides requiring a formal specifica-
tion of the program’s intended behaviour and its envisioned properties at runtime, all
formal methods are theoretically characterized by undecidability and complexity, which
are addressed by introducing some form of approximation. For soundness consider-
ations, these approximations are necessarily over-approximations and all static veri-
fication techniques are necessarily conservative: they can prove the absence of some
erroneous runtime behaviours but they will inevitably trigger some false warnings, re-
jecting certain behaviours that are in practice correct.

Program Typing. Type systems (Cardelli and Wegner, 1985) are tools for reasoning
about programs. More specifically, they constitute “a syntactic method for proving the
absence of certain program behaviours by classifying phrases according to the kinds
of values they compute” (Pierce, 2002). They are used for computing static approxi-
mations of the runtime behaviours of the terms in a program and can guarantee that
well-typed programs are free from certain runtime type errors, such as passing strings
as arguments to a primitive arithmetic operation or using an integer as a pointer.
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In practice, type systems have become the most widespread instance of formal
methods, with applications to many programming languages and automatic typecheck-
ers built into a variety of compilers. Static typecheckers entail a variety of benefits
ranging from early error detection, to offering convenient abstraction and documen-
tation mechanisms and improving the efficiency of compilers, which nowadays make
use of the information provided by typecheckers during their optimization and code
generation phases.

The Curry-Howard correspondence implies that types can be used for expressing
arbitrary complex mathematical specifications. Additional type annotations could in
principle enable the full proof of complex properties, effectively transforming type
checkers into proof checkers (Pierce, 2002). Approaches such as Extended Static Check-
ing (Leino, 2001; Leino and Nelson, 1998; Flanagan et al., 2002) made progress towards
implementing entirely automatic checks for broad classes of correctness properties.

Additionally, approaches relying on type inference have been used for alias analy-
sis (O’Callahan and Jackson, 1997) and exception analysis (Leroy and Pessaux, 2000).
Powerful type systems based on dependent types (Martin-Löf, 1984; Nordström, Peters-
son, and Smith, 1990) are used in automated theorem proving. Various proof assistants,
including Coq (Bertot and Castéran, 2004; Sozeau and team, 1997) 1 are based on type
theory.

Model Checking. Model checking is a verification technique exhaustively exploring
all possible system states in a systematic manner (Baier and Katoen, 2008). More pre-
cisely, given a finite-state model of a system and a formal property, a model checking
tool verifies whether the property under scrutiny holds for a state in the given model.
Model checking emerged as a popular lightweight formal method as a consequence of
progress made in the development of program logic and decision procedures, auto-
matic model checking techniques, and compiler analysis (Jhala and Majumdar, 2009).
First, program logic and decision procedures (Nelson and Oppen, 1980; Shostak, 1984)
provided the needed framework and algorithmic tools to reason about infinite state
spaces. Automatic model checking techniques (Clarke and Emerson, 1981; Vardi and
Wolper, 1994) for temporal logic provided algorithmic tools for state-space exploration.
Abstract interpretation (Cousot and Cousot, 1977) provided connections between the
logical world of infinite state spaces and the algorithmic world of finite representa-
tions (Jhala and Majumdar, 2009).

Currently, model checking continues attracting considerable attention from the in-
dustry. This can be partly explained by it being a rather general verification approach
that is suitable for applications stemming from different areas, ranging from embedded
systems to hardware design. In addition, it is also an automatic, lightweight technique
supporting partial verification, and requires a low degree of user interaction and a lower
degree of expertise (Baier and Katoen, 2008), compared to other verification techniques.

1Coq Reference Manual Version 8.6 https://coq.inria.fr/distrib/current/files/
Reference-Manual.pdf

https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf
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Its main weaknesses stem, on one hand, from it suffering from the combinatorial state-
space explosion (the number of states needed to model the system accurately may easily
exceed the amount of available computer memory), and, on the other hand, from it
being less suitable for data-intensive applications.

Model checking techniques also impose the production of models, often expressed
using finite-state automata which are in turn described in a dedicated description lan-
guage. Another prerequisite for model checking is a formal specification of the prop-
erties to be verified, typically provided by means of temporal logic, which is suitable
for the specification of a variety of properties ranging from functional correctness and
safety, to liveness, fairness, and real-time properties (Baier and Katoen, 2008).

Deductive Verification Methods. Deductive verification methods consist in pro-
ducing formal correctness proofs, by first generating a set of formal mathematical proof
obligations from the program and its specification, and by subsequently discharging
these. Based on the manner in which proof obligations are discharged, namely auto-
matically or interactively, the deductive verification methods can be classified into two
broad categories. Both require a thorough understanding of the system to be proven,
as well as a good knowledge of the employed proof tools.

The first category of deductive methods rely on standalone tools, that accept as
inputs, programs written in a specific programming language (such as Java, C or Ada)
and specified in a dedicated annotation language (such as JML or ACSL). These auto-
matically produce a set of mathematical formulas, called verification conditions, which
are typically proven using automatic theorem provers (Gallier, 1987) or satisfiability
modulo theories solvers (SMT), such as Alt-Ergo, Z3, CVC3, Yices. Deductive verifi-
cation tools such as Why3 or Boogie, have their own programming and specification
language (WhyML and Boogie, respectively), which can act as intermediate verifica-
tion languages and are designed as a layer on which to build program verifiers for other
languages. Verifiers for C, Dafny, Chalice and Spec# have been built using Boogie.
WhyML has been used for the verification of Java, C and Ada programs.

The second category of deductive methods relies on interactive theorem provers
(Bertot and Castéran, 2004), also called proof assistants, such as Isabelle, Coq, Agda,
HOL or Mizar. Both the program and its specification are encoded in the proof as-
sistant’s own language (Gallina and Isar, respectively), and the proofs that a program
follows its specification, i.e. that it is functionally correct, are typically conducted in
an interactive manner, using the underlying proof construction engine. In other words,
users are required to actively participate in the verification process, by providing induc-
tive arguments and guiding the proof through proof tactics, proof hints or strategies.

Both deductive verification methods offer a high level of assurance. For automatic
theorem provers, the proof chain consisting of multiple steps (the model of the input
programming language, the generator of verification condition, the used SMT solver) at
which errors could potentially infiltrate, can be perceived as a weakness. For interactive
theorem provers, the high-level expertise required to employ them can be perceived as
discouraging by the wider audience. However, major industrial breakthroughs have
been recently achieved. For instance, Hyper-V, Microsoft’s hypervisor for highly secure
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virtualization was verified using VCC and the Z3 prover (Leinenbach and Santen, 2009).
CompCert (Leroy, 2009), the first formally proven C compiler, was verified using the
Coq proof assistant. High security properties of the seL4 microkernel (Klein et al.,
2009) have been proven using the Isabelle/HOL proof assistant.

Static Program Analysis. Static program analysis comprises multiple techniques
for computing, at compile-time, safe approximations of the set of values or behaviours
that can occur dynamically when executing a program. Static analysis techniques
initially emerged in the field of compilation, where they provided manners to generate
code efficiently, by avoiding redundant or superfluous computations (Nielson, Nielson,
and Hankin, 1999).

Static analyses compute sound, conservative information. However, for decades,
their scalability to industrial-size programs has been doubted, and their application has
been considered as being limited to the research world and to small programs. Recent
major breakthroughs have been achieved however, and they triggered, on one hand, the
inclusion of static analysis at different levels of the software validation process (Cousot,
2001) and, on the other hand, a proliferation of static code analysers for a variety
of languages, targeting mainstream usage and offering a solution for detecting and
eliminating common runtime errors. A recent example is Infer (Calcagno and Distefano,
2011), an open-source static analysis tool for bug detection in Java, C, and Objective-C
code. It was developed at Facebook, where it is used as part of the development process
for mobile applications. Furthermore, static analysis techniques and tools are nowadays
employed in the safety-critical market segment. For instance, Astrée (Cousot et al.,
2005; Blanchet et al., 2003; Cousot et al., 2007), a static analyser for embedded software
written in C, has been employed for the verification of aerospace software (Delmas and
Souyris, 2007; Bouissou et al., 2009; Bertrane et al., 2015). In particular, it has been
used for proving the absence of runtime errors in the primary flight control software of
the fly-by-wire system of Airbus airplanes.

It is argued (Cousot and Cousot, 2010) that model checking, deductive verifica-
tion and static program analysis represent approximations of the program semantics
formalized by the abstract interpretation theory (Cousot and Cousot, 1977).

Broadly speaking, this thesis focuses on static program analysis techniques that are
meant to be used during interactive theorem proving, in order to facilitate and auto-
mate the verification of a certain class of properties, in the context of a strongly typed
language.

1.2 The Frame Problem in a Nutshell
The frame problem (McCarthy and Hayes, 1969) has been initially identified and de-
scribed by McCarthy and Hayes in 1969 in the context of Artificial Intelligence (AI). Its
history is essentially intertwined with that of logicist AI, the branch of AI attempting
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to formalize reasoning within mathematical logic. The initial description of the frame
problem is the following:

“In proving that one person could get into conversation with another,
we were obliged to add the hypothesis that if a person has a telephone he
still has it after looking up a number in the telephone book. If we had
a number of actions to be performed in sequence we would have quite a
number of conditions to write down that certain actions do not change the
values of certain fluents. In fact, with n actions and m fluents we might
have to write down mn such conditions.”

Unsurprisingly, given its identification in the context of logicist AI, the frame prob-
lem manifests itself in the realm of formal software specification and verification as
well (Borgida, Mylopoulos, and Reiter, 1993). In this area, it continues to identify a
current problem having notoriously tedious consequences and imposing a considerable
amount of manual effort. For instance, when considering a simple procedure:

transferAmount(ownerId, id1, id2, amount)

that records the transfer of a given sum of money amount from a customer’s (identified
by ownerId) current deposit account (identified by the account number id1) to a savings
account (identified by the account number id2), a reasonable specification would be
the following:

Precondition : owner(id1) = ownerId ∧ owner(id2) = ownerId
∧
availableAmount(id1) ≥ amount

Postcondition : availableAmount(id1)’ = availableAmount(id1) - amount
∧
availableAmount(id2)’ = availableAmount(id2) + amount

The program states prior to the procedure’s execution and the ones subsequent to it, are
referred to by the typical unprimed/prime notation and by the availableAmount(id)
and owner(id) functions. The given specification declares a precondition that has
to hold prior to transferring the indicated sum of money from one account to the
other and it stipulates that the customer identified by ownerId must be the owner of
both accounts involved in the transaction. It also requires that the currently available
amout of money in the deposit account identified by id1 is higher than the amount to
be transferred. The postcondition specifies the procedure’s effects on the final program
state and encompasses the conditions that have to hold after executing the procedure.
They include a stipulation about incrementing the amount of money available in the
savings account by the transferred sum amount, as well as one referring to decrementing
the amount of money available in the current account by the same amount.

As discussed by Borgida et al. (Borgida, Mylopoulos, and Reiter, 1993), the prin-
ciples on which this specification relies are simple and ubiquitous. Program states
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are represented in terms of predicates and functions, and a procedure’s effects on the
program state are represented as changes to one or more of these predicates and func-
tions. However, the above specification can be interpreted in at least two manners and
multiple implementations, with different effects can comply to it. For instance, one
implementation that can be considered results in exactly two changes to the program
state, as required by the postcondition and as intuitively expected. Another implemen-
tation considered makes these two changes, but additionally also changes the ownership
of the two accounts involved in the transition. The postcondition still holds after exe-
cuting the second procedure version. However, the intuitive interpretation of the given
specification, namely that nothing else but the amount of money in the two accounts
changes, is inconsistent with the second implementation which does more than it is
necessary and indeed, even desired. In order to prevent such situations, the postcon-
dition for the transferAmount(ownerId, id1, id2, amount) procedure would have
to also include conditions such as:

forall id. owner(id)’ = owner(id) ∧ owner(id2)’ = owner(id2)
∧

forall id. id != id1⇒ id != id2⇒ amount(id)’ = amount(id)

In other words, the postcondition should include not only information about what
changes, but also about what does not change. While this might not seem dramatic
for the trivial example illustrated above, in real-world examples this quickly escalates,
leading to the necessity of specifying a plethora of conditions of the same type as the
ones indicated above. These are called frame properties. Writing such conditions is
necessary but also notoriously repetitive and tedious. Kogtenkov et al. (Kogtenkov,
Meyer, and Velder, 2015) rightfully state that:

“It is hard enough to convince programmers to state what their program
does; forcing them in addition to specify all that it does not do may be a
tough sell.”

The tedious, undeserved, manual effort entailed by the specification and verification
of frame properties is a manifestation of the frame problem. Though certain conventions
and approaches, such as the implicit frames approach, for specifying frame properties
can alleviate the manual effort imposed, some manifestation of the frame problem will
be visible to some extent in the context of any specification language and verification
method.

1.3 Prove & Run: Objectives and Products
The proliferation of mobile devices, with unprecedented processing power, storage ca-
pacity, and access to information, already generated a plethora of new possibilities for
billions of people. Breakthroughs in emerging technology stemming from fields such
as artificial intelligence and the Internet of Things have increased the number of such
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possibilities, but also brought forth an unprecedented number of massive security risks
and challenges. Prove & Run’s2 objective is to offer solutions for the security chal-
lenges entailed by the large-scale deployment of mobile and connected devices and of
the Internet of Things.

Attempts at addressing security challenges and diminishing or eliminating potential
security issues in systems linked to such devices must put their underlying operating
systems and kernels at the core of their efforts to ensure the absence of errors or
faulty behaviours. Any software running on the operating system depends on the
operating system. Furthermore, operating systems run in privileged modes, in which
protection from certain faulty behaviours is non-existing and bugs can lead to arbitrary
effects. Therefore, these central software parts need to provide a high level of trust and
demonstrate proven and auditable compliance with security properties.

Motivated by the desire to integrate the usage of formal methods in the industry
world and therefore to contribute to the increase of software quality and security, the
company’s initial efforts concentrated on offering a reliable software solution that fa-
cilitates the formalization of software functioning and mathematically proves that this
software accurately and correctly follows its specification and ensures complex secu-
rity properties. This led to the development of ProvenTools, a software development
toolchain, designed to write and formally prove models written in Smart, Prove & Run’s
purely functional, unified programming and specification language. For formally prov-
ing models written in Smart, ProvenTools integrates an interactive proof assistant, which
automates simple proofs and guides or assists users during more complex ones. The
prover was designed to offer detailed explanations about its results, providing either the
reasoning steps employed for achieved proofs or detailed information for properties that
cannot be proven. Such transparency on the prover’s side is imperative for products
that have to be certified, as auditors need to be able to verify the claims of the prover.
Furthermore, ProvenTools includes a generator for transforming programs modeled in
Smart into their equivalents in other languages, such as C, while leveraging the proof
guarantees of the Smart model.

Following the development of ProvenTools, Prove & Run reached a new stage, con-
centrating on developing and providing formally proven microkernels and hypervisors.
Unlike the widely used operating systems which are enormous and typically have mil-
lions of lines of code, microkernels are compact, minimal software systems, that can
provide all the mechanisms that need to run in privileged mode, including low-level ad-
dress space management, thread management and inter-process communication. They
can be used for creating a protected, secure environment on the execution platform,
on top of which sensitive, security-critical services can run. Being much smaller in size
compared to traditional operating systems, they are amenable to formal verification.
Hypervisors or virtualization platforms create and host virtual machines. They cre-
ate the possibility of running multiple, different operating systems, whose execution is
managed by the hypervisor, which has full control over all critical resources, such as
the memory or the CPU. Therefore, any security issue of the hypervisor impacts every

2Prove & Run Website http://www.provenrun.com/

http://www.provenrun.com/
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operating system it hosts. The security and reliability of the host hypervisor is thus
crucial.

By employing Smart and ProvenTools, two microkernels have been developed3. The
first, named ProvenCore, is a formally proven general purpose microkernel that ensures
isolation, i.e. integrity and confidentiality. The second, named ProvenCore-M, targets
embedded devices based on microcontrollers. ProvenVisor is a hypervisor currently in
development at Prove & Run.

1.4 Context and Problem Statement
During the development of ProvenCore it became obvious that the specification and
verification of transition systems in general, and operating systems in particular, are
not insulated from the frame problem. The latter are characterized by complex states
defined by algebraic data types and associative arrays, which are fundamental building
blocks for representing, grouping and handling complex data efficiently. Transitions,
their other characteristic component, map such a complex input state to an output
state. However, most transitions are rarely concerned with the entire input state that
they are manipulating for retrieving the output state. Most frequently, they depend on

s
X

t ?

f

Observation

Observation

Figure 1.1 – Complex Transition Systems: Frame Problem

and modify only a limited subset of it. Intuitively, properties holding for the input
state, should hold for the output state following the transition as well, as long as
they depend only on fragments of the state that are not modified by the transition. In
practice, proving the preservation of such properties does not come for free and imposes
considerable manual effort and a multitude of tedious, repetitive proofs.

3Prove & Run Products http://www.provenrun.com/products/

http://www.provenrun.com/products/


10 Chapter 1. Introduction

This general case is illustrated in Figure 1.1, where a transition system and a state
s in it are considered. For the state s, a property depending only on a limited subset,
shown in the grey rectangle with vertical lines, is known to hold. A transition f leads
to a new state t, obtained by modifying only a small part of the input state s, shown
in the orange rectangles with inclined lines. Since the previously proven property is
known to depend only on an unmodified subset of the state, we should be able to infer
the preservation of the property for the state t as well. This however is not inferred by
default.

The goal of this work is to address this issue and to find an automatic solution for
inferring the preservation of such properties. More specifically, we target the automatic
inference of properties that depend only on an input subset that is disjoint from an
operation’s frame, i.e. the state subset it modifies.

To this end, we propose a solution based on static analysis which does not require
any additional frame annotations. We argue that by detecting the subset on which a
property depends and by uncovering the part that is not modified by an operation,
as shown in Figure 1.2, we can automatically discharge proof obligations related to
unmodified parts. We employ two different static analyses for this goal.

Dependency Obs

  = Obs

 
Correlation f

 ?
?

 = ?
?

Invariant Obs

  ⇒ Obs

f
 

Figure 1.2 – Frame Problem and Solution Strategy

The first analysis of our two-step strategy is a dependency analysis, which is meant
to detect the input subset δ on which the outcome of an operation or of a logical
property L relies. This was illustrated by the grey rectangle with vertical lines in
Figure 1.1. The second one, is a correlation analysis, meant to detect the subset
ξ modified by an operation O. This was illustrated by the orange rectangles with
inclined lines in Figure 1.1. By employing these two static analyses, thus detecting δ
and ξ automatically, and by subsequently reasoning based on their combined results,
we can infer the preservation of the property L for the post-state of O.

We target the development of a proof tactic that relies on our solution based on
static analysis and that is meant to be integrated into the interactive proof assistant
offered by ProvenTools. Smart, the language to which the ProvenTools toolchain is
associated, is a purely functional language, manipulating immutable algebraic data
structures and associative arrays.
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The motivation and ideas behind this work were triggered by the verification of
ProvenCore. Its proof is based on multiple refinements between successive models, from
the most abstract, on which the isolation property is defined and proven, to the most
concrete, i.e. the actual model used for code generation. The global states of the ab-
stract layers are complex structures with multiple compound fields. Commands such
as fork, exec, exit can be executed. Each of these receives as input the global state
before executing the command and returns the state of the system after execution. In
practice, most supported commands effectively affect only a limited number of invari-
ants. Automatically proving the preservation of unaffected invariants can diminish the
total number of proof obligations.

1.5 Contributions and Structure of the Document
We propose an approach for automatically inferring the preservation of framing-related
invariants, which is meant to be used in the context of an interactive theorem prover.
Our approach employs two different static analyses, namely a dependency analysis and a
correlation analysis. Both analyses handle associative arrays and algebraic data types,
i.e. structures and variants, and compute fine-grained results mirroring the layered
structures of such types.

The dependency analysis handles functions and their specifications in a unified man-
ner and computes for each possible execution scenario a conservative approximation of
the input (sub)elements on which their outcome depends. It is a flow-sensitive, path-
sensitive interprocedural analysis. For variants, an additional analysis is simultaneously
conducted for computing the subset of possible constructors on a given execution sce-
nario.

In order to introduce a relaxed form of context-sensitivity for our dependency anal-
ysis, we have devised an extension based on symbolic paths.

The correlation analysis detects the flow of input values into output values. It com-
putes a conservative approximation of fine-grained equivalences between the input and
the output subelements of a function. It is an interprocedural analysis that summarises
the behaviour of functions and detects what is modified and to what extent.

For both analyses a prototype has been implemented and applied to a medium-sized
functional specification of a microkernel.

The rest of this dissertation is structured into 8 chapters, the first two being intro-
ductory.

Chapter 2 discusses the manifestations and effects of the frame problem on both
formal specification and formal verification and presents some of the main approaches
employed for addressing them. We also include a brief presentation of some of the
leading specification languages and deductive verification tools and their mechanisms
for dealing with frame properties.

In Chapter 3, we introduce the features and the syntax of Smart, the unified pro-
gramming and specification language developed at Prove & Run and give a concise
overview of ProvenTools, the toolchain associated with it.
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After these two preliminary chapters, in Chapter 4 we focus on the computational
version of Smart’s intermediate language, as it is the language that we consider through-
out the rest of this dissertation. We present its syntax, underline its specificities and
present its formal semantics.

Chapter 5 is dedicated to the dependency analysis, the first of the two static analyses
that we have developed and designed as companion tools to be used during interactive
program verification. We present our abstract dependency domain that mirrors the
layered structure of associative arrays and algebraic data types, discuss the analysis
at an intra- and interprocedural level and present the semantic interpretations of the
computed dependency information.

Chapter 6 touches upon the issue of context-sensitivity and presents our extension
to the dependency analysis presented in Chapter 5. This is meant to eliminate some
imprecision by introducing a relaxed form of context-sensitivity.

The correlation analysis, the second component of our strategy for inferring the
preservation of frame-related invariants, is presented in Chapter 7. We introduce our
abstract partial equivalence type, discuss the need for an additional level of abstraction,
allowing us to refer not only to variables, but also to substructures within them, and give
an in-depth presentation of the analysis at an intraprocedural level, and a description
of it at the interprocedural level.

The implementations of our two analyses and the results obtained on a medium-sized
functional specification of a microkernel are presented in Chapter 8. The strategy for
employing the information computed by the two analyses is discussed and illustrated.

Finally, Chapter 9 concludes this dissertation with a summary of our contributions
and some remarks concerning the specificities of each of our static analyses, as well
as our experience with their design and implementation. In addition, we also discuss
future perspectives and potential extensions to this work.

Notes about Chapter 5 and Chapter 7

• The work presented in Chapter 5 was the subject of a publication in the pro-
ceedings of the 17th International Conference on Formal Engineering Methods
(ICFEM15) (Andreescu, Jensen, and Lescuyer, 2015).

• The work presented in Chapter 7 was the subject of a publication in the proceed-
ings of the 14th International Conference on Software Engineering and Formal
Methods (SEFM) (Andreescu, Jensen, and Lescuyer, 2016).

• On-line dedicated web pages. The prototypes for each of the two discussed
static analyses can be tested on their dedicated web pages. Various examples
are provided and explained and additionally, users can devise and test their own
examples. The corresponding links are indicated in the chapters.
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Chapter 2

The Frame Problem in Software
Verification

All his successors gone before him have
done’t; and all his ancestors that come
after him may.

William Shakespeare

In this chapter, in Section 2.1 we give a very brief, necessarily incomplete, pre-
sentation of some of the major existing specification languages and verification tools,
focusing on those which have addressed the frame problem explicitly and which are rel-
evant for our discussion in the section following it. We then discuss the manifestations
of the frame problem in formal specification and verification in Section 2.2 and present
the basic approaches to specifying and verifying frame properties in Section 2.3. In Sec-
tion 2.4 we explain some of the difficulties entailed by these goals, when combined with
other concerns such as considerations regarding heap modifications and information
hiding. Even though we are not concerned with information hiding and heap modifica-
tions are beyond the scope of our work, there are some parallels that can be drawn and
some ideas stemming from work that has been done in these areas that are relevant for
our context and solution as well. In Section 2.5 we briefly present other approaches to
the automatic detection of frame properties. Finally, we give a short overview of some
of the approaches used for specifying and reasoning about pure methods in Section 2.6.

2.1 Specification Languages and Verification Tools
Dafny. Dafny (Leino, 2010) is a programming language designed at Microsoft with
a focus on verification. It is an imperative, sequential language, supporting generic
classes, dynamic allocation and inductive data types. Additionally, it also offers built-
in specification constructs, such as pre- and postconditions, frame specifications (which
we will discuss in more detail in Section 2.3), quantifiers, loop invariants, and termi-
nation metrics (decreases clauses used in conjunction with loop invariants). These
are reminiscent of contracts in Eiffel (Meyer, 1997; Meyer, 1991), or similar constructs
in JML (Leavens, Baker, and Ruby, 2006) and Spec# (Barnett et al., 2005b), which
we will present in the following paragraphs as well. Additionally, Dafny also includes
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support for algebraic data types, recursive functions and types, as well as updatable
ghost variables, which are not allowed to flow into non-ghost variables. Ghost vari-
ables and specification constructs in general are eliminated from the executable code,
as they are meant to be used strictly during verification. For framing, Dafny relies on
dynamic frames (Kassios, 2006) using ghost variables. We will discuss this approach in
Section 2.4.

Dafny has an accompanying static program verifier, run as part of the compiler,
which targets the verification of functional correctness properties of programs. This
is built on top of the Boogie verification engine (Barnett et al., 2005a), which in turn
uses Z3 (Moura and Bjørner, 2008). The Dafny compiler translates verified programs
written in Dafny to executable code for the .Net Platform. The tool is open source and
can be tried online 1.

Smart, the modeling language developed at Prove & Run will be presented in detail
in Chapter 3. Similar to Dafny, it is a unified programming and specification language
designed with the goal of facilitating verification. Unlike Dafny, Smart is a functional
language, relying on predicates, the equivalent of functions in other programming lan-
guages. Both Dafny and Smart are translated into intermediate languages (Boogie and
Smil, respectively), which act as median layers between Dafny or Smart programs and
the underlying verification tools. For Smart, the deductive verification tool is an inter-
active proof assistant. Executable code can be generated from both verified Dafny and
verified Smart models.

Spec#. The Spec# programming system (Mike Barnett, 2005; Barnett et al., 2005b;
Barnett et al., 2011) includes a programming language, a compiler and a static program
verifier. It stems from a research effort focusing on the development of a specification
methodology for object-oriented languages and seeking suitable approaches for enforc-
ing it both statically and dynamically. The Spec# methodology introduced some new
ideas that influenced the research community and served as a starting point for other
approaches (Barnett et al., 2011). It supports sound modular verification of object in-
variants in the presence of multi-object invariants, subclassing and reentrancy. Spec#
led to advances concerning the specification of pure methods, i.e. methods without
side-effects, and it introduced an ownership model that allows expressing and using
heap topologies in specifications (Barnett et al., 2011). We will discuss the latter in
Section 2.4.

The language Spec# is a formal object-oriented language extending the type sys-
tem of C# with non-null types and checked exceptions. It provides standard method
contracts based on pre- and postconditions, as well as object invariants, as inspired
by Eiffel and the Design by Contract (Meyer, 1992) approach. The accompanying
compiler performs various static data-flow analyses for checking that the non-null type
system is enforced and that contracts are pure, i.e. have no side-effects. In addition,
it also performs admissibility checks which are important for soundness and consist in

1Dafny Web Page: https://www.microsoft.com/en-us/research/project/
dafny-a-language-and-program-verifier-for-functional-correctness/
Accessed: 2017-02-12. (Archived by WebCite R© at http://www.webcitation.org/6oE9sn0iL)

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
http://www.webcitation.org/6oE9sn0iL
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restricting what can appear in object invariants and what pure methods can read. The
compiler also emits runtime checks: run-time assertions are generated for the program
points at which contracts are supposed to hold and any failure causes an exception to
be thrown (Barnett et al., 2011).

Another important contribution having its origins in the Spec# project, are the
Boogie intermediate language and verification engine. Spec# programs are translated
to the Boogie language, where the heap is modeled as a two-dimensional array indexed
by object references and field names. Method calls are modeled by assuming their
preconditions and type information, by assigning arbitrary values to anything that
they might modify and by subsequently assuming their postconditions. Based on this,
verification conditions are generated and expressed in a standard format supported by
automatic theorem provers. Any error reported by the theorem prover is mapped back
to Boogie and then to Spec# (Barnett et al., 2011).

Spec#2 has been developed at Microsoft and is publicly available.

Boogie. The Boogie project 3 comprises both an intermediate verification language
and a verification tool. The Boogie language (This is Boogie 2, Boogie Reference Man-
ual) is meant to be used as an intermediate representation for static program verifiers
of various source languages such as Dafny, Chalice, and Spec#. Verifiers for C, such as
VCC and HAVOC, have been built on top of Boogie as well. It supports mathematical
(types, constants, functions, axioms) and imperative components (global variables, pro-
cedure declarations and implementations). The latter specify sets of execution traces,
thereby describing and constraining states using the former. Parametric polymorphism,
partial orders, nondeterminism, logical quantifications, total expressions and partial
statements are among the language’s features.

The Boogie verification tool (Barnett et al., 2005a) infers invariants of the input
Boogie programs and then generates verification conditions expressed as formulae in
first-order logic and arithmetic that are passed to an SMT solver such as Z3. The
encoding for the verification formulae allows the reconstruction of error traces from
failed proofs.

JML. The Java Modeling Language (JML) (Leavens, Baker, and Ruby, 2006; Leavens
et al., 2006) is a behavioural interface specification language (Wing, 1987) targeting,
as its name implies, the specification of Java classes and interfaces. Its design was
guided by the syntax and semantics of Java, as some of the main targeted charac-
teristics were understandability and a shallow learning curve for programmers already
familiar with Java. The constructs it supports are inspired by the Design by Contract
approach, as well as by the Larch family of specification languages (Guttag, Horning,

2Spec# Web Page: https://www.microsoft.com/en-us/research/project/spec/
Accessed: 2017-02-12. (Archived by WebCite R© at http://www.webcitation.org/6oEAJnY8b)

3Boogie Web Page: https://www.microsoft.com/en-us/research/project/
boogie-an-intermediate-verification-language/
Accessed: 2017-02-12. (Archived by WebCite R© at http://www.webcitation.org/6oEAgwOzp)

https://www.microsoft.com/en-us/research/project/spec/
http://www.webcitation.org/6oEAJnY8b
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
http://www.webcitation.org/6oEAgwOzp
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and Wing, 1985). It also includes quantifiers, constructs for specifying frame conditions
and specification-only fields and methods.

Nowadays, an evergrowing variety of tools supports JML (Burdy et al., 2005),
ranging from tools for type-checking specifications (the jmlc compiler), to tools for
runtime debugging, static analysis (such as ESC/Java2 (Flanagan et al., 2002; Burdy
et al., 2005; Chalin et al., 2005) and Chase) and verification (such as LOOP, KeY and
KRAKATOA).

ESC/Java2 performs extended static checking (Flanagan et al., 2002) for Java pro-
grams annotated with specifications written in JML. It can check assertions and detect
frequent types of errors in Java, such as dereferencing null or indexing an array outside
its bounds. However, the ESC/Java2 tool did not initially address aspects related to
checking frame conditions and this became a notorious source of unsoundness (Burdy
et al., 2005). Various static verification tools (Berg and Jacobs, 2001; Cataño and Huis-
man, 2003; Marché, Paulin-Mohring, and Urbain, 2004; Marché, 2016) and dynamic
approaches (Lehner and Müller, 2010) addressed this issue.

2.2 Manifestations of the Frame Problem
In the realm of software verification, the frame problem refers to establishing the bound-
aries within which program elements operate and it has notoriously tedious implica-
tions and consequences along two different axes: the specification of frame properties
or frame conditions, which indicate which parts of the program state an operation
is allowed to modify, and their verification, i.e. proving that operations modify only
what is allowed according to the specified frame properties. Additionally, the verifi-
cation of frame properties has other ramifications, such as proving the preservation of
properties concerning parts of the state that are external to an operation’s frame, i.e
the parts of the state modified by the operation. Though identified decades ago, in
1969 in the context of Artificial Intelligence (McCarthy and Hayes, 1969), the frame
problem is still a current concern in the field of formal specification and verification.
Leavens et al. (Leavens, Leino, and Müller, 2007) identify it as one of the difficult
remaining challenges in program verification. Even more recently, Bertrand Meyer de-
scribed it as a subsisting problem (Meyer, 2015). He argues that it constitutes an
excellent candidate for automation and describes the usual approaches to the frame
problem, such as those frequently based on separation logic (Reynolds, 2005) or own-
ership types (Clarke, Potter, and Noble, 1998), as elegant, but requiring undeserved
manual specification effort, in addition to annotations on the implementation side. In
order to make verification appealing to a wider audience in the industry, the amount
of annotations required from the programmers is of the utmost importance and thus,
must be carefully taken into consideration when devising a solution. While it is le-
gitimate to require the specification of properties expressing the functional behaviour
expected of program elements, intermediate properties to which frame properties be-
long to, should as much as possible be detected automatically. They are an integral
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part of a complete specification and they are necessary for proving functional correct-
ness, but in practical terms, they are repetitive and cumbersome and their specification
is an inconvenience (Meyer, 2015). Borgida et al. provide a comprehensive discussion
of the problem itself and the approaches to addressing it (Borgida, Mylopoulos, and
Reiter, 1993; Borgida, Mylopoulos, and Reiter, 1995). In (Borgida, Mylopoulos, and
Reiter, 1995), Borgida et al. suggest grouping the permissions to modify variables
around variables themselves instead of methods. However, this type of specifications
have an unclear semantics in terms of proof obligations (Müller, 2002). A more recent
discussion of framing is provided by Hatcliff et al. and it is included in a comprehensive
survey of behavioural interface specification languages (Hatcliff et al., 2012). A discus-
sion regarding the remaining challenges related to the frame problem, with a focus on
modular verification and information hiding, is included in (Leavens, Leino, and Müller,
2007). The authors discuss possible approaches for addressing these challenges, as well
as their respective limitations. In the following section we present the main existing
approaches to specifying frame properties.

We remark that Smart does not provide any explicit specification constructs for
frame conditions. It is a functional language and it does not support global variables or
destructive updates. Implicitly, Smart predicates may read anything passed to them as
an input, without modifying it, and write everything in their output or locally declared
variables. The preservation of a frame property, i.e. a logical property depending only
on parts of the input that are copied without any modification to the output, can be
specified as an implication of the form:

frame_property(input) =⇒ predicate(input, output) =⇒ frame_property(output)
which can be included either in the predicate’s postcondition or as a separate predicate
with a Boolean result, receiving the predicate’s input, output elements as inputs.

2.3 Approaches to Specifying Frame Properties

Various approaches for expressing frame properties have emerged. These are known
as the manual, exclusive, and implicit approaches (Meyer, 2015). We remark that all
three major approaches target only the specification of write effects of an operation.
Most specification languages do not offer special constructs for the specification of read
effects (some notable exceptions are JML, Dafny and WhyML, the programming and
specification language provided by Why3).

2.3.1 The Manual Approach

One of the existing approaches to specifying frame properties does not rely on
any specific technique, but instead treats them like any other specification component.
This consists in explicitly stating for each operation what is not modified, implicitly
conveying that everything else may change. This type of specification can be done
with logical variables or with old expressions by explicitly stating for each unchanged
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variable that its value in the operation’s post-state is equal to its prior value in the
operation’s pre-state.

As described by McCarthy and Hayes (McCarthy and Hayes, 1969), with m op-
erations such as transfer and n “fluents” such as owner in our introductory example
from Section 1.2, the manual convention leads to a proliferation of clauses that need
to be specified. Their number can potentially be as high as mn. This can prove to
be tedious, repetitive and diverting attention and effort from what is truly interesting:
what is actually modified by the operation and how. Moreover, this approach can lead
to instability in the software process (Meyer, 2015).

For instance, adding new fields to a class whose existing methods are not affected by
the newly added fields, requires modifying the postcondition for each existing method
and adding clauses of the form newField = old newField for each added field.

Both Dafny (Leino, 2010) and Spec# (Leino and Müller, 2008a) support clauses of
the form e = old(e) in method postconditions, for specifying that a method has no
impact on the value of an expression e. However, these are not the primary mechanisms
for specifying frames in either Dafny or Spec#, as we will discuss in Section 2.3.2.

In Smart, for predicates manipulating inputs and outputs of the same structured
type it can be specified in the postcondition that the values of certain fields are equal
between the received input and the obtained output. For instance, for a predicate
receiving an input structure of type stype, having fields f, g, h and returning an output
structure of the same type, where the values of the fields f, h are equal to their values
in the input, a standard postcondition would have the following form:

stype@equals[f,h](input, output)

This can be viewed as a form of old expressions. However, the construct used in the
above postcondition, which we will discuss in Chapter 3, was not introduced specifically
for this purpose. This idiom is frequently employed for specifying contracts for implicit
predicates, a form of foreign or native functions signatures.

As we will discuss in Chapter 7, the fine-grained relations that we are detecting
between parts of the input and parts of the output can be seen as clauses of the form
subvalue = old(subvalue). However, in our case, these are detected automatically, by
means of static analysis and thus, do not require any annotation or manual effort.
Furthermore, by detecting them automatically, the potential of changes to the modeled
entities and types leading to instability is eliminated.

Another problem with this approach becomes visible when some variables are not
in scope, and hence cannot be explicitly mentioned in the specification (Hatcliff et al.,
2012). In order to overcome the problem in this context, complex solutions (Reynolds,
1981; O’Hearn, Reynolds, and Yang, 2001; Banerjee, Naumann, and Rosenberg, 2008)
based on Hoare logic style frame rules (Hoare, 1971) have been suggested (Hatcliff et
al., 2012).



2.3. Approaches to Specifying Frame Properties 19

2.3.2 The Exclusive Approach

The most frequent approach to framing is the exclusive approach. This consists in
expressing frame properties by means of modifies-clauses that list all the variables that
may be modified by an operation. Implicitly, everything that is not listed in such clauses
is understood as having to remain unchanged (Guttag et al., 1993a). This approach
relies on the observation that the mn matrix described by McCarthy and Hayes is
usually sparse, as most operations affect only a limited number of elements (Meyer,
2015).

Modifies clauses such asmodifies a, b, c can be interpreted as a set of clauses of the
form q = old(q), for any q other than a, b or c. Despite their widely accepted, yet mildly
misleading name, a modifies clause does not require a command to modify all the listed
elements. Essentially, modifies clauses put an upper bound on the set of elements that
can be modified and imply that it is strictly forbidden to modify anything else. The
exclusive approach to specifying frame properties owns its name to its characteristic
of identifying unaffected elements by exclusion (Meyer, 2015). Bertrand Meyer argues
that a more appropriate name for such clauses is only clauses (Meyer, 2015), since
the main goal is not necessarily to enumerate variables that will change, but rather to
specify that everything else, i.e. variables that are not listed, will not change.

This approach has its roots in the modifies construct presented by Liskov and Gut-
tag (Liskov and Guttag, 1986). Forms of modifies clauses have been used in many
different specification languages, including the Larch family (Guttag, Horning, and
Wing, 1985; Guttag et al., 1993a), JML (Leavens et al., 2006), Spec# (Mike Barnett,
2005), Dafny (Leino, 2010), and Z (Abrial, Schuman, and Meyer, 1980).

In JML (Leavens, Baker, and Ruby, 2006), modifies clauses are called assignable
clauses and are used for indicating locations that a method may assign to. These are
slightly different than classical modifies clauses in other languages. For instance, a
method assigning to a location a and then re-establishing its original value, is required
to list a in its corresponding assignable clause. A typical modifies clause however, does
not require listing a, since the method does not modify a effectively. JML also features
conditional modifies clauses, allowing methods to specify that a modification may occur
only in certain situations. Non-pure methods that do not explicitly specify assignable
clauses are by default given an assignable everything clause. Pure methods have by
default an assignable nothing clause (Chalin et al., 2005). Additionally, JML provides
accessible clauses that allow specifying accessed locations (Leavens et al., 2006).

In Dafny (Leino, 2010) modifies clauses are expressed by sets of objects and they
must be interpreted as giving permissions to a method to modify any field of any object
that is a member of the specified set. Frame conditions are thus expressed at the level
of objects and not at the level of object fields. While Dafny methods are not required to
specify what they read, for Dafny predicates, i.e. functions returning Booleans, reading
frame conditions can also be specified (Koenig and Leino, 2012). These are memory
locations that predicates are allowed to read, and they can be specified as sets of
objects or object fields. Dafny checks that memory locations outside the reading frame
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are not accessed; nested predicate calls must have reading frames that are included
in the reading frames of the calling predicate. Predicate parameters are not memory
locations and, hence must not be declared. In addition, Dafny uses a form of dynamic
frames (Kassios, 2006) that we will present in Section 2.4.

In Spec# (Mike Barnett, 2005; Leino and Müller, 2008a), modifies clauses can be
explicitly added for constraining the modification of objects that were allocated in the
pre-state of a method, i.e. new objects allocated and modified by a method need not
be included in the modifies clauses. Methods can specify that any field of an object o
may be modified with a construct of the following form o.* ; it can also be specified
that only some field a may be modified with a construct of the form o.a. Unlike
the clauses expressed using old in postconditions for excluding some modifications,
modifies clauses must account for temporary modifications as well (similarly thus to
the JML assignable clause interpretation). For instance, for a method decrementing
some integer field f and incrementing it subsequently, the method could still specify
that f = old(f) in its postconditions. However, it would also have to include f in its
modifies clause.

Spec# implicitly adds a modifies clause to methods in which this.* is the only
listed element. Thus, by default, methods are allowed to modify any field of the this
object. To prevent this, the fields that may be modified must be explicitly included
in the clause (meaning that those not included are not allowed to change). A special
construct of the form this.o must be explicitly used for specifying that a method does
not modify any field of this (Leino and Müller, 2008a).

Information hiding imposes mechanisms for abstracting over program state that
cannot be explicitly mentioned in the modifies clause of a public method. To this end,
wildcards can be used for specifying that the private representations of objects may be
modified, as well as for specifying the modification of state in subclasses (Leino and
Müller, 2008a). However, wildcards do not extend to aggregate objects and to this end,
Spec# introduces the notion of ownership that we will discuss in Section 2.4.

In Boogie, frame conditions are expressed using coarse-grained modifies clauses
in conjunction with postconditions. These can quantify over fields and specify locations
of the heap that may be modified (This is Boogie 2, Boogie Reference Manual).

SPARK (Barnes and Limited, 1997) uses a variation of the typical exclusive ap-
proach. SPARK procedures may reference or update the state associated with their
parameters, in addition to that of global variables. SPARK contracts must explicitly
account for the global variables accessed (read or written) during procedure execution
in a globals construct. Additionally, for each parameter or global variable, it must be
indicated if it is read only, written only or both read and written. As SPARK is based
on the Ada language, this is done by means of mode annotations, such as in, out,
indicating that a parameter or global variable is read only or written only, respectively.
The in out annotation is used for signaling that the annotated parameter or global
variable is both read and written. Together, mode annotations on parameters and glob-
als provide a complete specification of the inputs and outputs of a procedure (Hatcliff
et al., 2012). VDM (Jones, 1990) provides similar annotations.
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The exclusive convention facilitates the specification of pure operations, i.e. opera-
tions having no side-effects, on which assertions in various languages, including Eiffel,
JML and Spec# rely on for supporting data abstraction. Specifying that an operation
is pure simply amounts to specifying an empty modifies clause. However, specifying
and verifying the effects of heap modifications on the results of pure methods has been
described as one of the difficult remaining challenges related to framing (Hatcliff et al.,
2012).

2.3.3 The Implicit Approach

The implicit approach eliminates the need to specify frame properties per se. One of
the implicit approaches relies on limiting what a procedure can modify based on the
procedure’s precondition. This approach is adopted in separation logic (discussed in
Section 2.4) and in the implicit dynamic frames (Smans, Jacobs, and Piessens, 2012)
technique, where reading and writing to memory requires knowing that the memory
contains that location. To this end accessibility information is specified in the precon-
ditions of methods. By analysing preconditions, an upper bound on the set of locations
that are modifiable by a procedure can be detected. As will be discussed in Chapter 7,
our approach to inferring fine-grained modifications can be seen as an implicit one as
well. It relies on data-flow analysis and it is entirely automatic, without requiring any
dedicated annotations.

Another approach to implicit framing was presented by Meyer. He proposes the
inference of frame properties for a method from the method’s postcondition (Meyer,
2015). This approach relies on the empirical observation that, in practice, when pro-
grammers realize that an element is modified by a method’s execution, they will gener-
ally include and express information about how the element is modified. It was inspired
by an informal review of publicly available JML code, which showed that in practice
elements included in an assignable clause overlap those appearing in the method’s post-
condition. Meyer argues that any exception to this observation can be easily addressed
by inserting a Boolean function into the postcondition, which always returns true and
which introduces its elements into the implicit frame (Meyer, 2015).

2.4 Topologies and Effects
Specification techniques for complex data structures and operations manipulating them
must be able to describe and to address issues related to two different aspects, namely:
the topology or structure of the former, and the effects of the latter on the data struc-
tures’ state (Hatcliff et al., 2012). In the object-oriented realm, objects encapsulate
state and functionality, yet their implementations are rarely limited to the fields and
methods of a single object. After all, one of the principles of object-oriented program-
ming is to favour composition over inheritance. Thus, object fields reference other
objects, often of different classes, and those objects in turn, reference yet other objects,
and so on. In order to reason about and to prove functional correctness, specifications
have to capture this “composite” shape of the implemented data structures (Leino and
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Müller, 2008a). They also have to describe the effects of operations on the state of
the data structures, including write effects, i.e. which parts are potentially modified by
an operation, and read effects, i.e. which parts are potentially accessed by an opera-
tion (Hatcliff et al., 2012).

For objects and heap data structures the write and read effects (Greenhouse and
Boyland, 1999) refer to parts of the heap, i.e. locations. Specifications for heap data
structures might also require including allocation and deallocation effects, as well as
locking information (Hatcliff et al., 2012). Detecting and reasoning about read and
write effects is necessary and relevant in different situations. For instance, Greenhouse
and Boyland (Greenhouse and Boyland, 1999) present an effects system for performing
semantics-preserving program manipulation on Java source code.

Our work is done in the context of a purely functional language, with immutable
data structures and no destructive updates. Reasoning about the heap is beyond our
scope. However, our concerns are similar: we handle “composite” data structures
modeled by immutable associative arrays and algebraic data types, i.e. structures and
variants, and we want to capture the behaviour of operations receiving such a composite
input, manipulating it, reconstructing it and returning its new state into a composite
output. Thus, in contrast to specification and reasoning techniques for objects which
are concerned with deep-heap effects, we are concerned with deep-state effects.

Specification techniques for topologies and effects must address three major chal-
lenges, namely abstraction, reasoning and framing (Hatcliff et al., 2012).

Abstraction. In the object-oriented context, heap properties must be expressed in an
implementation-independent manner. Abstraction is important for information hiding
and for supporting subtyping (Leino, 1998; Leavens and Müller, 2007). Aspects related
to visibility and information-hiding are orthogonal to our work. The language we are
working with does not have subtyping. Therefore, disclosing the topology of our data
structures is not problematic from this point of view.

Reasoning. The formal framework in which (heap) properties are expressed should
allow efficient, ideally automatic reasoning.

Framing. Specifications of heap operations should ease reasoning about framing and
aid in proving that certain heap properties are not affected by a heap operation. Fram-
ing can be illustrated by the following rule, expressing that a state that is unmodified
by C can be preserved:

{P}C{Q}
{P ∧R}C{Q ∧R}

if the write effect of C is disjoint from the free variables of R. In the presence of complex
heap data structures, the disjointness of the effects of C and the assertion R is more
difficult to express, as it needs to specify that the locations that are modified by C are
disjoint from the locations read by R. Similarly, though not referring to locations, we



2.4. Topologies and Effects 23

have to be able to express that the substructures (or subelements) modified by C and
those read by R are disjoint.

The sets of written or read locations are called footprints. Hatcliff et al. classify
approaches to the specification of heap properties into three categories. The first cate-
gory relies on explicit footprints and uses sets of objects or locations that are included
in predicates and effects specifications. Dynamic frames (Kassios, 2006; Kassios, 2011)
and region logic (Banerjee, Barnett, and Naumann, 2008; Banerjee, Naumann, and
Rosenberg, 2013) are the main exponents of this category. The second category re-
lies on implicit footprints, which are derived from predicates in specialized logics, such
as separation logic. The third approach relies on predefined footprints, which are de-
rived from predefined heap topologies (Hatcliff et al., 2012). Ownership types (Clarke,
Potter, and Noble, 1998) are the main exponent of this category. All of these tech-
niques allow specifying the topologies of common heap data structures and reasoning
about the effects of operations. However, each amounts to a different balance between
expressiveness and automation (Hatcliff et al., 2012).

2.4.1 Explicit Footprints

The explicit footprint approach to framing was pioneered by Kassios and the dynamic
frame theory (Kassios, 2006; Kassios, 2011). This proposed adding sets of locations to
the specification language and expressing footprints in terms of such sets. For preserving
information hiding, these sets of locations can involve dynamic frames, specification
variables that abstract over a set of locations. The initial solution based on dynamic
frames was formalized in the context of an idealized logical framework, using higher-
order logic and inductive-based proofs which are difficult to automate. Subsequent
work on region logic (Banerjee, Naumann, and Rosenberg, 2008; Banerjee, Barnett,
and Naumann, 2008; Banerjee, Naumann, and Rosenberg, 2013) and the Dafny verifier
on one hand, and VeriCool (Smans, Jacobs, and Piessens, 2008) on the other hand,
developed dynamic frames in a first-order setting.

VeriCool uses pure methods for describing sets of locations. Recursively defined pure
methods or logic functions can be a challenge for automatic theorem provers (Hatcliff
et al., 2012; Banerjee, Barnett, and Naumann, 2008).

In region logic, for minimizing the need for inductively defined predicates in spec-
ifications, the specification attributes used in the dynamic frames approach (Kassios,
2006) are replaced with ghost state (Banerjee, Naumann, and Rosenberg, 2013), i.e.
mutable auxiliary fields and variables. Programs have to be explicitly annotated with
these, which might imply a cumbersome manual effort but, unlike the dynamic frame
theory in its original form, this permits automated theorem proving.

Zee et al. have used explicit footprints for verifying the functional correctness
of linked data structures in Jahob (Zee, Kuncak, and Rinard, 2008). Banerjee et
al. (Banerjee, Naumann, and Rosenberg, 2008; Banerjee, Barnett, and Naumann, 2008)
encoded region logic in the intermediate verification language Boogie (Leino and Rüm-
mer, 2010).
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The dynamic frames approach using ghost variables is supported by the Dafny
language (Leino, 2010; Koenig and Leino, 2012). As described in Section 2.3.2, Dafny
supports the exclusive approach to specifying frames. Ghost variables are used in
modifies clauses. The standard idiom consists in declaring a set-valued ghost field,
Repr for instance, to dynamically maintain Repr (i.e. explicitly update it in the code)
as the set of objects that are part of the receiver’s representation, and to use Repr in
modifies clauses (Leino, 2010). The following idiom is standard (Leino, 2010):

class MyClass {
ghost var Repr: set<object>;
method SomeMethod() modifies Repr; { /*...*/ }

}

This modifies clause is to be interpreted as: the method may modify any field of
any object in Repr. If this is a member of the Repr set, then the modifies clause also
allows the method to modify the field Repr itself (Leino, 2010).

With explicit footprints, proving frame properties consists in proving that the read
effects of a predicate and the write effects of a method are disjoint.

Before the dynamic frame approach, data groups (Leino, 1998; Leino, Poetzsch-
Heffter, and Zhou, 2002) and solutions based on the Universe type system (Müller,
2002) have been proposed for specifying footprints within single objects.

The level of expressiveness offered by techniques based on explicit footprints is very
high, allowing specifications to relate different regions in arbitrary ways, ranging from
disjointness or inclusion of regions to characterizing their intersection. However, this
flexibility complicates reasoning. When regions are stored explicitly in ghost variables
as is done in Dafny, programs need to explicitly update these ghost variables to maintain
invariants. This can prove to be a cumbersome task. When pure methods are used as
in VeriCool, it is mandatory to reason explicitly about the effects of heap modifications
on their results (Hatcliff et al., 2012).

2.4.2 Implicit Footprints

The implicit footprint approaches rely on specialized logics for implicitly representing
footprints. Separation logic (O’Hearn, Reynolds, and Yang, 2001; O’Hearn, Yang, and
Reynolds, 2004; Reynolds, 2002; Reynolds, 2005; Reynolds, 2000) is the most prominent
representative of this category.

Separation logic extends Hoare logic (Hoare, 1971) with the separating conjunction
operator ∗. Each assertion in separation logic defines a portion of the heap. The
assertion P ∗Q is true if and only if P and Q hold for disjoint parts of the heap. Local
reasoning is fundamental to separation logic (O’Hearn, Reynolds, and Yang, 2001);
specifications need to describe all the state that the code C reads or writes. Thus, in
the triple {P}C{Q}, P must be interpreted as being all the state that is needed for
executing C, i.e. the footprint of C. This interpretation of Hoare triples leads to the
following frame rule in separation logic:
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{P}C{Q}
{P ∗R}C{Q ∗R}

which allows inferring that a local property is preserved for a wider state, obtained by
extending P with another disjoint state R. Some versions of separation logic impose
additional conditions about local variable modifications as the ∗ operator only separates
heaps. Separation logic can be extended such that ∗ also separates variables, thus
eliminating the need for additional conditions (Parkinson, Bornat, and Calcagno, 2006).

A separation logic for Java was introduced by Parkinson (Parkinson and Bierman,
2005). This has primitive assertions to describe the values of fields in the heap and
allows describing portions of the heap containing several disjoint objects using the ∗
operator.

Separation logic does not require explicitly specifying read or write effects. They are
implicit in a method’s precondition. Data structures are specified using logic functions.
By including such a logic function in a method’s precondition, the method is allowed
to read and write anything belonging to the footprint of the logic function, but cannot
access anything outside this footprint.

Approaches based on separation logic are hard to implement and to integrate into
verification tools. Verifiers based on separation logic have mostly relied on sym-
bolic execution and have not yet achieved the same level of automation as verifiers
based on verification condition generation (Hatcliff et al., 2012). However, currently
a series of tools exist that can reason using separation logic. These include Small-
foot (Berdine, Calcagno, and O’Hearn, 2005; Berdine, Calcagno, and O’Hearn, 2012),
SpaceInvader (Distefano, O’Hearn, and Yang, 2006; Calcagno et al., 2008), jStar (Dis-
tefano and Parkinson, 2008; Naudziuniene et al., 2011), VeriFast (Jacobs, Smans, and
Piessens, 2010; Jacobs et al., 2011) and SLAyer (Berdine, Cook, and Ishtiaq, 2011).

The implicit dynamic frames approach (Smans, Jacobs, and Piessens, 2012) unifies
the dynamic frames concept with separation logic. Framing specifications of a method
are inferred using an implicit approach, as described in Section 2.3.3. They are encoded
in first-order logic and can be used for automatic verification with SMT solvers. This
is done in VeriCool (Smans, Jacobs, and Piessens, 2008) and Chalice (Leino, Müller,
and Smans, 2009).

2.4.3 Predefined Footprints

In contrast to the implicit and explicit footprint approaches which describe properties
found in a program, the third approach focuses on reasoning efficiently about programs
with restricted topologies. Ownership types (Clarke, Potter, and Noble, 1998) are
representative of this approach.

Ownership types typically enforce a tree topology, whereby every object in the heap
has at most one owner object and the owner relation is acyclic. Topological properties
beyond this tree structure have to be expressed using object invariants and predicate
logic. Read and write effects typically use ownership as an abstraction mechanism: the
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right to read or write an object include the right to read or write all the objects it
(transitively) owns (Hatcliff et al., 2012).

Spec# addresses framing through ownership types: without explicit specifications
stating otherwise (modifies clauses of the form presented in Section 2.3.2), methods
may modify only the fields of the receiver and of those objects within the subtree of
which the receiver is the root. Ownership is expressed by means of attributes on field
declarations (Barnett et al., 2004; Barnett et al., 2011).

Ownership has been used to verify write effects (Müller, Poetzsch-Heffter, and Leav-
ens, 2003) and invariants (Drossopoulou et al., 2008; Leino and Müller, 2004; Müller,
Poetzsch-Heffter, and Leavens, 2006). All the existing ownership-based verification
techniques enforce that all modifications of an object must be initiated by the object’s
owner. This gives owners total control over modifications of their internal representa-
tions and allows them to maintain invariants (Hatcliff et al., 2012). Ownership-based
approaches have been used for reasoning about model fields (Leino and Müller, 2006)
and for enforcing object immutability (Leino, Müller, and Wallenburg, 2008).

The ownership topology can be enforced by type systems (Lu, Potter, and Xue,
2007; Müller, 2002). In JML it is enforced through universe types (Dietl and Müller,
2005). In Spec# it is encoded as object invariants (Barnett et al., 2004).

Reasoning about framing relies on the tree structure on the heap enforced by own-
ership. The ownership trees rooted in two different objects o1 and o2 are disjoint if
neither o1 owns o2, nor o2 owns o1. The disjointness of ownership trees can then be
used to prove that read and write effects of methods do not overlap (Hatcliff et al.,
2012).

2.5 Other Approaches to Reason about Frames

Rakamarić and Hu report in (Rakamaric and Hu, 2008) a method to infer frame
axioms of procedures and loops based on static analysis. As a starting point, they use
the DSA shape analysis, presented by Lattner et al. (Lattner, Lenharth, and Adve,
2007). DSA provides a summary of points-to relations as a graph, that is used to
compute a set of memory locations that are modified by a procedure or its callees. By
a pass through the graph, for each node that is reachable from the globals or procedure
parameters, they generate expressions representing a path to that node. The generated
frame axioms are used internally by an extended static checker of C programs, i.e. in
a purely automatic setting.

In (Taghdiri, Seater, and Jackson, 2006), Taghdiri et al. present a technique for
extracting procedure summaries for object-oriented procedures, used to prove verifi-
cation conditions. Procedures are executed symbolically and the environment of the
post-state is computed so as to express every variable and field in terms of the values
of the variables and fields of the pre-state. The extracted procedure summaries can
be viewed as detailed frame conditions, describing which memory locations might be
changed and how.
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In (Sozeau, 2009), Sozeau presents a generalized rewriting technique implemented
in the Coq proof assistant that allows substituting a term t of an expression by another
term t′ when t and t′ are related by a relation R. This generalizes equational reasoning
to reasoning modulo arbitrary relations. The technique relies on dependent types and
is based on a constraint generation algorithm generating type class constraints. The
Coq tactic supports polymorphic relations, morphisms and subrelations.

Bertrand Meyer proposed the double frame inference strategy, an approach that tar-
gets the automation of both frame specification and frame verification in the context
of Eiffel (Meyer, 1991), an object-oriented language with native support of Design by
Contract features (Meyer, 1992). The first component – the frame specification infer-
ence – relies on the analysis of method postconditions as described in Section 2.3.3 and
obtaining a set p̄. This represents an overapproximation of the set of elements that are
allowed to be modified by p according to its specification. The second component of the
strategy, the frame implementation inference relies on the frame calculus (Kogtenkov,
Meyer, and Velder, 2015), which is itself based on alias calculus (Kogtenkov, Meyer,
and Velder, 2015; Meyer, 2010; Meyer, 2011). Methods are analysed and p is detected;
this represents an overapproximation of the set of expressions whose values may change
as a result of executing p. Frame verification amounts to verifying that p̄ includes p.

2.6 Other Relevant Work
Pure methods, also known as queries or observers, are side-effect free methods that al-
ways evaluate to the same result value given the same input value. They are intensively
used for providing specifications for methods without disclosing implementation details
in languages such as JML, Spec# and Eiffel. Leavens et al. identify the development
of specification and verification techniques for determining the effects of heap modifi-
cations on the results of pure methods as one of the remaining challenging problems
related to framing (Leavens, Leino, and Müller, 2007). Though our work is not con-
cerned with heap modifications, we are interested in the dependency of Boolean Smart
predicates, i.e. logical properties, on the layered (“composite”) data structures they
are receiving as inputs. In Chapter 5 we present a static analysis meant to capture
such dependencies.

Various encodings of pure methods (Cok, 2005; Darvas and Müller, 2006) in pro-
gram logic have been proposed, but they do not cover aspects related to reasoning
about frame properties when the specifications make use of pure methods. Some spec-
ification techniques for frame properties (Leavens, Baker, and Ruby, 2006; Leino and
Müller, 2006; Leino and Nelson, 2002; Müller, Poetzsch-Heffter, and Leavens, 2003)
allow describing the fields that are potentially modified by a method execution using
modifies clauses. These however do not specify the effects of a method execution on
the results of pure methods (Leavens, Leino, and Müller, 2007).

One technique for determining the effects of heap modifications on the results of pure
methods requires listing all pure methods that are potentially affected by a method,
in the method’s modifies clause. This approach is adopted in COLD-K (Feijs and
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Jonkers, 1992), where the frame of a procedure specification lists the variables and the
equivalent of pure methods whose value may be changed by the procedure. For dealing
with modularity issues, COLD-K also makes use of read effects.

Other approaches (Leino and Müller, 2006; Müller, Poetzsch-Heffter, and Leavens,
2003) for determining effects on the results of pure methods rely on model fields. These
are specification-only constructs, whose value is determined by applying a mapping to
the concrete state of an object. They are similar to pure methods, but unlike the latter,
they do not have parameters and they are required to be confined (Leino and Müller,
2006; Müller, Poetzsch-Heffter, and Leavens, 2003).

Approaches based on model fields require that pure methods read only the state
of the receiver object and its sub-objects. This information about the read effect of a
pure method can be used to determine which write effects potentially have an impact
on the result of a pure method. In general, it can be proven that a method m does not
affect the result of a pure method p if the write effect of m and the read effect of p are
disjoint (Leavens, Leino, and Müller, 2007).

There are various approaches to using read effects for reasoning about pure meth-
ods. One approach relies on complete specifications of result values included in the
postconditions of pure methods. Used in conjunction with modifies clauses, these
allow determining whether a method affects the result of a pure method (Leavens,
Leino, and Müller, 2007). Various solutions based on explicitly specified read effects
exist (Feijs and Jonkers, 1992; Greenhouse and Boyland, 1999; Jacobs and Piessens,
2006). Specification of these using data groups (Leino, 1998; Leino, Poetzsch-Heffter,
and Zhou, 2002) and an effects system built on top of an ownership type system (Clarke
and Drossopoulou, 2002) have been proposed. Multi-threaded programs also require
such specifications (Praun and Gross, 2003).
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Chapter 3

The Smart Language and
ProvenTools

Languages are not strangers to one
another.

Walter Benjamin

In this chapter, we introduce Smart, a programming and specification language
developed at Prove & Run, as well as the toolchain associated with it. While not
claiming to be exhaustive, we give an overview of the language’s features and syntax in
Section 3.1. In Section 3.2, we present the tools manipulating Smartmodels. Section 3.3
briefly presents Smil, the Smart Intermediate Language. A computational version of it
– αSmil – is targeted by the static analyses presented throughout the remainder of this
thesis. The following chapter will focus entirely on αSmil, illustrating its usage and
introducing its syntax and formal semantics.

3.1 The Smart Modeling Language
Smart is a modeling language developed at Prove & Run. It constitutes a unified pro-
gramming and specification language, designed to facilitate proofs. One of the common,
often cited reasons why programmers reject the use of formal methods is that they are
not willing to learn a separate language just for specifying their programs, in particu-
lar if that language is fundamentally different from the programming language. Smart
addresses this issue by allowing one to both develop the implementation of programs
and to specify their logical properties in a single language.

The Smart language is a purely functional (side-effect free), strongly-typed, poly-
morphic first-order language. The basic building blocks of programs written in Smart
are predicates, the equivalent of functions in other common programming languages.
Besides the common primitive types that are traditionally available as built-in types,
algebraic data types (structures and variants), and associative arrays are provided as
well. Exit labels constitute the language’s main specificity; they facilitate separating
data- and control-flow in programs.

In addition, being designed in order to write code that will subsequently be proven,
the language allows the definition of various types of logical specifications as well.
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These range from pre- and postcondition contracts, local assertions and loop invariants
to inductive predicates, lemmas and hypotheses.

ProvenTools is a complex set of development tools for the Smart language. It has
been developed at Prove & Run with the goal of facilitating the achievement of high-level
certifications. The toolchain has the structure of a set of Eclipse plug-ins of JDT type
– Java Development Tools (Eclipse Java Development Tools (JDT)). Together, these
constitute a complete Integrated Development Environment (IDE) allowing one to not
only write, edit and document Smart models, but also to browse proof obligations, to
prove them by employing a built-in prover and finally, to generate executable code in
C.

ProvenCore1 (Lescuyer, 2015) and ProvenCore-M2 are two microkernels that have
been completely modeled in Smart and developed using ProvenTools. The former is
a general-purpose microkernel that ensures isolation, i.e. integrity and confidentiality.
The latter targets embedded devices based on microcontrollers.

Throughout the rest of this section we will present some of the main concepts and
mechanisms of Smart, discussing predicates, control flow, algebraic data types and
specification-only constructs.

3.1.1 Smart Predicates and Types

Smart supports modular program development with a straightforward module con-
cept. Modules constitute the compilation units of Smart programs and any valid Smart
program consists of a non-empty set of modules, which are themselves organized in
packages. Modules have an identifier that is unique in each program and, in practical
terms, each module corresponds to a file. Modules can import other modules and they
contain a list of type and constant declarations, as well as a list of predicates.

Predicates, the equivalent of functions in other common programming languages,
are the basic building blocks of programs written in Smart. Though named in reference
to predicate logic, predicates in Smart receive a number of inputs and produce a number
of outputs in return, in contrast to predicates in mathematics, which are commonly
understood to be Boolean-valued functions of the form:

P : X → {true, false}.

Smart predicates can be classified in two different categories, namely implicit and
explicit predicates, based on their implementation or their lack thereof.

Implicit predicates can be seen as a form of an assumption: as their names suggest,
they are not implemented per se, but simply declared using the implicit program
keywords. Such predicates are similar to the declarations of native methods in Java
or external functions in C. Traditionally, in Java, programmers use the Java Native
Interface (JNI) (Liang, 1999; Java Native Interface Documentation (JNI) 1999) when
they need to implement small, time-critical code portions in a lower-level language,

1http://www.provenrun.com/products/provencore/
2http://www.provenrun.com/products/provencore-m/

http://www.provenrun.com/products/provencore/
http://www.provenrun.com/products/provencore-m/


3.1. The Smart Modeling Language 31

such as assembly, or when they need to access a library already written in another
programming language such as C. In Smart, implicit predicates play an important role
with respect to code documentation. Their implementation is not provided in the
model, but, as we will further explain in Section 3.1.4, they can be used to specify
logical properties of the explicit implementations provided externally in a lower-level
language, typically in C or assembly.

For example, an implicit predicate converting an integer given as an input into a
float can be declared as follows:

public float_of ( int n, f l oa t f+)
impl ic i t program

The predicate’s result is given a name, f, and it is introduced as one of the predi-
cate’s parameters. It is marked as being the predicate’s output by the + symbol follow-
ing it and is thereby syntactically distinguished from the predicate’s input parameter,
n, which is unadorned.

In the general case, Smart predicates can have any number of input or output pa-
rameters. However, a parameter cannot be both at the same time and each of these
must be explicitly marked either as an input or as an output. An input parameter’s
value can be read and used in the predicate’s implementation. An output parameter’s
value must be constructed by the predicate’s implementation and returned as a result.
Furthermore, values in Smart are immutable. As a consequence, Smart predicates are
pure: it is impossible to pass a parameter “by reference” and modify a predicate’s input
as a side-effect. Smart is thus a side-effect free language which provides referential trans-
parency (Strachey, 1967). Furthermore, the language supports neither global variables,
nor global states, but can be characterized rather as a state-passing style language.
Smart predicates are deterministic: they always return the same output any time they
are called with a specific set of input values. In particular, this is a prerequisite for
implicit predicates.

As mentioned in the introduction, Smart is also a strongly-typed language. Each
input and output parameter of a predicate must have an associated type and the us-
age of an object of some type where a parameter of another data type is expected is
forbidden by the language. Unsafe conversions between different types are forbidden
as well. Smart provides various built-in types, such as int, short, long, char, boolean,
float and double, that are traditionally available in other programming languages as
well. Additionally, users can declare new types with the type keyword and then de-
fine predicates manipulating these types. As in the case of predicates, implicit data
types can be simply declared without being explicitly defined. For example, supposing
that an implicit data type called cartesian_point and the predicates manipulating it,
are defined in a lower-level language, we would make them available to other Smart
predicates using the following declarations:

// Implicit data type declaration
type cartesian_point
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/* Retrieve coordinate on X-axis. */
public get_X ( cartesian_point p, f l oa t x+)
impl ic i t program

/* Retrieve coordinate on Y-axis.*/
public get_Y ( cartesian_point p, f l oa t y+)
impl ic i t program

// Construct a new point p with coordinates (x, y).
public new_point ( f l oa t x, f l oa t y, cartesian_point p+)
impl ic i t program

// Pretty - print
public print_point ( cartesian_point p)
impl ic i t program

Some implicit predicates manipulating inputs of type cartesian_point are declared
as well: the first two of them – get_X and get_Y – simply return the input point’s numer-
ical coordinates on each of the Cartesian system’s axes. The next predicate, new_point
creates and returns a new point from the two given input coordinates. Alternatively,
it is possible to directly declare and implement these types and predicates in Smart as
we will show in the following paragraphs. The last one, print_point simply displays
the input point without effectively producing an output. As shown in the example,
similarly to Java, comments in Smart can be introduced by using // for single-line com-
ments or /* */ for multi-line comments. Similarly to Javadoc, code documentation can
be given using the begin-comment delimiter /**.

In general, implicit data types and the implicit predicates manipulating them can
act as a public interface for a concrete class, showing the type and the operations
allowed to manipulate values of that type, but hiding the implementation.

Explicit data types can be declared and defined using structures and variants. For
example, we could explicitly define the type cart_point by means of a structure having
two different fields of type float, called x and y. Each of them corresponds to the
point’s numerical coordinates on the X- or Y-axis, respectively:

type cart_point = {
f l oa t x;
f l oa t y;

}

For representing a point in a polar coordinate system we can define a different type
polar_point as follows:

type polar_point = {
/* Radial coordinate ( distance from the pole) */
f l oa t radius ;
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/* Polar angle */
f l oa t azimuth ;

}

Explicit predicates have explicitly defined implementations, following immediately
after their declaration, which strongly resembles that of an implicit predicate but from
which the keyword implicit is omitted. Their bodies are sequences of several state-
ments, which are essentially calls to other predicates. For example, to translate a point
(x, y), i.e. to add a given pair of numbers (a, b) to its Cartesian coordinates and obtain
the new point (x′, y′) = (x+ a, y + b), a predicate translate_point could be defined in
the following manner:

/* Convert x to float, add it to y and retrieve the sum. */
public sum_of ( int x, f l oa t y, f l oa t s+)
impl ic i t program
public translate_point ( cartesian_point p, int a,

int b, cartesian_point q+)
program {{ f l oa t xa, f l oa t yb }} // Local variables

{
print_point (p); /* 1 */

get_X (p, xa +); /* 2 */
get_Y (p, yb +); /* 3 */

sum_of (a, xa, xa +); /* 4 */
sum_of (b, yb, yb +); /* 5 */

new_point (xa, yb, q+); /* 6 */

print_point (p); /* 7 */

}

The body of the translate_point predicate consists in a sequence of several state-
ments: the first of these simply pretty-prints the input point p. The next two statements
are calls to accessors of p’s coordinates on the X- and Y-axis, which are stored in the
local variables xa and yb, respectively. Next, the coordinates (xa′, yb′) = (a+xa, b+yb)
for the translated point are computed by calling the sum_of predicate, which returns
the float sum of an integer and a float. The output point q is constructed by calling
the constructor new_point with xa and yb as inputs. The last statement pretty-prints
the input point p again.

As illustrated by our example, each call to a predicate is made by passing the
parameters in the same order as in the predicate’s declaration and by explicitly mark-
ing any output with +3. Replacing line 4 with sum_of(xa, a, xa+) would result in an

3This is mandatory because of overloading.
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error, because the first input parameter of a call to sum_of is expected to be an in-
teger and the second, a float. Similarly, omitting the + symbol at line 6 and writing
new_point(xa, yb, q) would result in an error. By explicitly marking the outputs of
each statement, it is straightforward to distinguish between the variables that are ac-
tually written by the statement and those that are used only as inputs. Furthermore,
since predicates are not allowed to modify their inputs, the language strictly forbids
using a predicate’s input parameter as an output for any statement in the predicate’s
body. Thus, in our example predicate, we are prevented from using the input point p
as the output of the new_point predicate call. However, outputs and local variables,
such as xa and xb, can be written to but reading them (i.e. using them as inputs for
a predicate call) before they have been written at least once, amounts to using unini-
tialized variables and behaves in an unspecified manner. In our example, xa and ya are
used as both inputs and outputs at line 4 and 5, respectively. This is correct since xa
and ya are local variables that have already been written to by the statements at line
2 and 3 preceding the calls to sum_of.

We stress again the fact that destructive updates are not possible in Smart: even if
at a first glance a statement such as the call to sum_of at line 4 might give the impression
that xa is modified in place, all that the statement actually does is to create a new float
whose value is obtained by adding the old value of xa to the value of a and then to set
xa to reference this new float instead of the old one. A simple conversion to a static
single assignment form (Cytron et al., 1989) would eliminate these assignments and
show the absence of any mutation whatsoever. Thus, were we to inspect the state of
the input point p before and after the calls to sum_of, we would observe that it remains
unchanged: this is what we do when printing p again at the end of sum_of.

As a last remark about our example, it is noteworthy to mention that the statement
new_point(xa, yb, q+) which produces the predicate’s output, is not the predicate’s
last statement. Smart does not support any dedicated return statement. Instead, when
exiting from a predicate, the outputs hold the values that they have been assigned when
executing the body. This mechanism allows one to define predicates having multiple
outputs. Their names are chosen by the programmer and their values can be modified
multiple times during the predicate’s execution; however, the values retrieved are the
ones that are available at the moment the program exits the predicate.

3.1.2 Exit Labels and Control Flow

Besides input and output parameters, the declaration of a predicate can also include a
set of exit labels. When called, a predicate exits with one of the specified exit labels, thus
summarising and returning to its callers further information regarding its execution.

Exit labels constitute the main specificity of the Smart language. They can denote
different exceptional execution scenarios and act as exit codes, similarly to exceptions
and exit status return values in other programming languages.

Every predicate has a non-empty set of labels; by default, any predicate has the
built-in exit label true that denotes the successful exit status of a predicate. The
predicates illustrated previously in Section 3.1.1 did not have explicitly declared exit
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labels; in such a case, it is assumed that the only possible exit label for the predicate
is true, and hence, that the predicate will succeed in all circumstances.

Returning to our previous example, the predicate translate_point, we could have
written its complete declaration by explicitly stating that true is the only possible exit
label:

public translate_point ( cartesian_point p, int a,
int b, cartesian_point q+)

-> [ true]
program {{...}} {

...
}

This declaration is strictly equivalent to the one given in Section 3.1.1.
In the general case, any number of labels can be specified after the parameters. For

example, we could declare a predicate that converts the coordinates of an input point
(x, y) of type cartesian_point to polar coordinates:

r =
√
x2 + y2

φ = atan2 (y, x)

and returns a point (r, φ) of type polar_point with these coordinates. For computing
the second polar coordinate, the polar angle or azimuth, the predicate would call an-
other predicate atan2, which is the arctangent function with two arguments, a common
variation on the arctangent function. The atan2 function avoids the problem of division
by zero; however it is undefined when both x and y, i.e. the Cartesian coordinates, are
zero. For declaring it in Smart we can add a special exit label for the case when the
given input coordinates represent the origin and the result cannot be returned:

/* Computes atan(y/x) */
public atan2( f l oa t x, f l oa t y, f l oa t at+) -> [ true, undef ]
impl ic i t program

The declared label’s name, undef, is a custom name and any valid identifier can
be chosen and used as a label in Smart. As previously mentioned, the exit label true
is predefined and has a special meaning. Another predefined label that is interpreted
in a special manner by conditional statements and logical operators is the false label.
Together, these two exit labels offer a convenient manner to model a Boolean result.
Frequently, a Boolean output value can be replaced by declaring these two possible exit
labels: true to denote a successful execution of the predicate and false, respectively.

Besides indicating the followed execution scenario, exit labels play an important
role with respect to control flow management. Primarily, the exit label of a call to
a predicate determines whether the next predicate call in sequential order should be
executed or not: when the predicate exits with true, the program can proceed to the
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next statement in the program. Any other exit label lbl disrupts the normal control
flow and forces the current predicate to exit with label lbl.

For example, a predicate cart_to_polar can be defined with two exit labels, true
and undef as well. It takes two float numbers, x and y, computes the corresponding
polar coordinates, r and phi, by calling the predicates compute_radius and atan2, and
constructs a new point p of type polar_point using the computed values:

public compute_radius ( f l oa t x, f l oa t y, f l oa t r+)
-> [ true]
impl ic i t program

public cart_to_polar ( f l oa t x, f l oa t y, polar_point p+)
-> [ true, undef ]
program {{ f l oa t phi, f l oa t r }}

{
compute_radius (x, y, r+);

atan2 (y, x, phi +);
new_polar_point (r, phi, p+);

}

There is no guarantee that the call to atan2 will return successfully with exit label
true: it might return with undef, in which case the execution of cart_to_polar will
break at that point and exit with label undef. Furthermore, no output will be generated.
In Smart, exit labels condition the existence of output parameters: every output is
associated to an exit label lbl and it is generated if and only if the predicate exits with
that particular exit label lbl. All other outputs are discarded and can be considered
as unchanged by the caller. The same output can be associated to multiple labels. By
default, if no output parameters are specified for a label, it means that no outputs are
generated when the predicate exits with this label. The only exception to this rule is
made in the case of the built-in true label: since true normally represents a successful
execution, every output of the predicate is associated to it by default. For example,
the previous declaration of cart_to_polar is strictly equivalent to:

public cart_to_polar ( f l oa t x, f l oa t y, polar_point p+)
-> [ true: <p>, undef : <>]
program {{ f l oa t phi, f l oa t r }}

{
compute_radius (x, y, r+);
atan2 (y, x, phi +);
new_polar_point (r, phi, p+);

}

Exit labels can thus behave similarly to exceptions in other programming languages. In
order to handle specific observed execution scenarios, Smart provides label transformers,
which allow catching labels before they escape the current predicate and transforming
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them into another label. Complex control flow can be expressed by indicating a set of
rules of the form lbl1 : lbl2 whose role is to transform the label lbl1 into lbl2 and
by associating them to statements.

For example, we could let the predicate cart_to_polar return the label origin_fail
when the inner computation of the azimuth fails, instead of just forwarding the label
returned by atan2:

public cart_to_polar ( f l oa t x, f l oa t y, polar_point p+)
-> [ true: <p>, origin_fail ]
program {{ f l oa t phi, f l oa t r }}

{
compute_radius (x, y, r+);
[undef : origin_fail ]

atan2(y, x, phi +);
new_polar_point (r, phi, p+);

}

Alternatively, we could also handle the failure of the computation by using trans-
formers and constructing the output point differently: for example, by declaring a
constant representing the azimuth of the origin, often called pole in polar coordinates,
and using this for the construction of p when the call to atan2 fails.

public const float POLEAZIMUTH;

public cart_to_polar (float x, float y, polar_point p+)
-> [true : <p>]
program {{ float phi, float r }}
{

compute_radius (x, y, r+);
[done : true]{

[true : done, undef : true]
atan2(y, x, phi+);
phi := POLEAZIMUTH;

}
new_polar_point (r, phi, p+);

}

In the following, we show how the control flows when atan2 terminates with label
true. The green arrows indicate how control is passed from one statement to the other,
based on their exit labels, when starting from the call to the atan2 predicate:
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public const float POLEAZIMUTH;
public cart_to_polar (float x, float y, polar_point p+)
-> [true : <p>]
program {{ float phi , float r }}
{

compute_radius (x, y, r+);
[done : true]{

[true : done, undef : true]
atan2(y, x, phi+);
phi := POLEAZIMUTH;

}
new_polar_point (r, phi, p+);

}

And here is how the control flows when atan2 terminates with label undef:

public const float POLEAZIMUTH;
public cart_to_polar(float x, float y, polar_point p+)
-> [true : <p>]
program {{ float phi , float r }}
{

compute_radius (x, y, r+); /* 1 */
[done : true ]{/* 2 */

[true : done, undef : true]/* 3 */
atan2(y, x, phi+); /* 4 */
phi := POLEAZIMUTH; /* 5 */

}
new_polar_point (r, phi, p+);

}

After computing the radius r by calling compute_radius, this new version of the
predicate starts by calling the predicate atan2. If this operation succeeds, then phi is
the value of the azimuth and we can use this value as the second input parameter for
the point’s constructor, new_polar_point. This is done by transforming true to a new
label done, whose effect is to jump immediately to the outer block, in this case the
top-level. The top-level block of the program catches done, transforms it back to true
and continues with the statement following the block, namely new_polar_point, which
will construct the output p, by using r and phi, the value of the azimuth returned
by atan2. When atan2 is undefined, the transformer undef : true is used to jump to
an additional statement: phi := POLEAZIMUTH, that assigns the value of POLEAZIMUTH to
phi. The constructor is reached in this case as well. However, this time the value of phi
written at line 5 is used as the second input parameter. We note that the statement
at line 5 is a call to a built-in assignment predicate, denoted by := and using an infix
notation.

The constant POLEAZIMUTH is declared using the keyword const. In Smart, constants
can be declared and used directly as inputs for predicate calls.
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In the general case, arbitrarily complex control flows can be expressed by coupling
label transformers, blocks and recursion.

In order to facilitate the user’s task of simulating common control flow structures
with labels and transformers, Smart provides various control flow statements, which
are themselves based on this mechanism. These include a construct that is equivalent
to the try ... catch ... mechanism in Java, a conditional if ...then ...else control
structure, as well as the common logical operators for negation (!), conjunction (&&),
disjunction (||), implication (=>) and equivalence (<=>).

Given the Cartesian coordinates (x, y), the first polar coordinate, the radius, is
obtained by computing: √

x2 + y2.

For explicitly defining the predicate compute_radius, we would first need to imple-
ment a predicate sqrt, computing the square root of a given positive number. Such a
predicate can be recursively implemented as follows, by using the if ...then ...else
construct and three implicit predicates:

/* Newton - Raphson Square Roots Finding Algorithm */

/* Divides a to b and retrieves result in div. */
public div_double (double a, double b, double div +)
-> [ true, undef]
impl ic i t program

/* Check if a is close enough to b: |a - b| < b * 0.001 */
public close_approximation (double a, double b)
-> [ true, f a l s e ]
impl ic i t program

/* Compute ((b + a/b) / 2) */
public better_approximation (double a, double b, double g+)
-> [ true, undef ]
impl ic i t program

public sqrt(double x, double g, double sqr +)
-> [ true, undef ]
/* Returns the square root of x by making recursive calls
with better and better guesses g, until reaching a guess
that is close enough to the actual square root ’s value. */
program {{ double aux }}
{

div_double (x, g, aux +);
i f close_approximation (aux, g);
then {

sqr := g;
}
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e l se {
better_approximation (x, g, aux +);
sqrt(x, aux, sqr +);

}
}

Besides recursion, Smart also supports loops by providing a specific construct that
is similar to a traditional “while” loop in other programming languages:
while {
...
}

The body of thiswhile block is repeatedly executed until a dedicated exit label called
exit tries to escape, in which case the loop is aborted and the execution continues after
the block. A “break” can be achieved by raising the special exit label inside the loop.

For instance, the previously recursive predicate sqrt, can be implemented iteratively
with a while loop as follows:

public sqrt_iter (double x, double g, double sqr +)
-> [ true, undef ]
/* Computes the square root of x iteratively . */
program

{
div_double (x, g, sqr +);
while {{ double aux }} {

[ true : exit , f a l s e : true]
close_approximation (sqr, g);

better_approximation (x, g, aux +);
div_double (x, aux, sqr +);

}
}

3.1.3 Polymorphism & Algebraic Data Types

Smart supports polymorphic types and predicates. For declaring polymorphic types a
number of type parameters must be introduced in the type’s declaration. For example,
an implicit type of polymorphic pairs can be declared as follows:

type pair <A, B>

This type is parameterized by two types A and B, which are the types of the first and sec-
ond projection of the pair. Type variables must always start with an uppercase letter,
while regular types must always start with a lowercase letter. The declaration of poly-
morphic predicates is straightforward. For instance, declaring an implicit constructor
for the pair type declared above, amounts to the following:
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public new_pair (A a, B b, pair <A, B> p+)
impl ic i t program

This predicate is implicitly parameterized by two type variables, A and B. The
type parameters of a predicate are implicitly determined by the type variables in its
arguments. Local variables in explicit predicates can also be declared with polymorphic
types. However, they can only depend on type variables introduced in the predicate’s
parameters. Type variables in polymorphic types can be instantiated by any type.

As mentioned in Section 3.1.1, Smart allows users to define their own concrete data
types, by using algebraic data types, namely structures and variants.

Structures. Structures, also called records or tuples in other programming languages,
represent the Cartesian products of the different types of their elements, called fields.
In Smart, these can be declared in two manners: either by using the keyword struct,
followed by the name of the structured type and its list of field types and field names,
or, by using the keyword type, as shown below. The latter is preferred. Declaring
polymorphic structures is possible by introducing type variables in the definition:

struct pair <A, B> {
A fst;
B snd;

}

type pair <A, B> = {
A fst;
B snd;

}

In order to build and manipulate structures, Smart supports built-in constructors
and accessors. For instance, for the following type definition of a structure:

type t = {
t1 f1;
t2 f2;
...

tn fn;
}

a constructor, a destructor, as well as individual accessors and “updaters” for any of
the structure’s fields are generated by Smart. Constructing an object of type t amounts
to using t@new which requires a value for each of t’s fields. For example, creating a
structure value s of type t with values e1 ... en for each field, amounts to calling
t@new(s+, e1, ..., en). The values of these fields can all be read with a single
predicate call to t@all(s, e1+, ..., en+) (which “destructs” the structure value into
its fields components). Individual accessors of type t@fi(s, ei+) are provided as well
for any field fi. Finally, the value of a field fi can be set to some variable vi by using
t@fi(s+, vi). As all statements in Smart, this call has a functional nature and handles
immutable data. Thus, setting the value of the fi field amounts to returning a new
structure where all fields have the same value as s, except fi which is set to vi.

It is possible to define a structured type with no fields at all:
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struct unit { }

The value s of this type can be constructed by using unit@new(s+) without any input.
This type can be seen as representing the absence of information.

Variants. Many programs need to deal with heterogeneous collections of values. For
example, a node in a binary tree can be either a leaf or an interior node with two
children; similarly, a node of an abstract syntax tree in a compiler can represent a
variable, an abstraction, an application, etc. Variant types provide the mechanism
that supports this kind of heterogeneous value collections (Pierce, 2002).

Variants, also called tagged unions in other programming languages, can be seen as
the dual of structures. A variant is the disjoint union of different types. It represents
data that may take on multiple forms, where each form is marked by a specific tag
called the constructor.

Revisiting our previously declared types cartesian_point and polar_point, in Smart
we can define a type point as being either expressed in Cartesian, or in polar or spherical
coordinates using the following variant declaration:

type point =
| Cartesian ( cartesian_point p)
| Polar ( polar_point p)
| Spherical ( f l oa t r, f l oa t theta , f l oa t phi)
;

Each form that a variant can take is indicated by the symbol |, followed by the
uppercase tag and the list of parameters and their types. The cases are mutually
exclusive and a value of type point can have only one form at a time. An object of type
point can be built by using one of the constructors called with the appropriate number
and types of inputs. For instance, a Cartesian point pc can be obtained by calling:
point@Cartesian(p, pc+). Given an object pt of type point, we can also distinguish
between the different cases by using a constructor that is similar to the match ...with
construct in OCaml:

switch (pt)
case Cartesian ( cartesian_point p) : get_X(p, x+);
case Polar ( polar_point p) : get_radius (p, r+);
case Spherical ( f l oa t r, f l oa t theta , f l oa t phi) : ...

For verifying if a given point pt is a Cartesian point, we can use:

point@case[ Cartesian ](pt)
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This could be obtained using the switch construct, but for practical considerations
the case construct has been additionally provided as a built-in predicate.

3.1.4 Specifications

Smart also supports various types of logical specifications, ranging from axioms and
lemmas, to pre- and postconditions, invariants and inductives.

In Section 3.1.1, we stated that implicit predicates are a form of assumption and
that declaring implicit Smart types and the predicates manipulating them, provides a
convenient manner of axiomatizing external implementations, frequently developed in a
lower-level language. They can provide implementation-independent descriptions and
act as abstractions that hide hardware-related details and low-level implementation
decisions. Another form of assumptions are hypotheses. Hypotheses are logical results
that are assumed, i.e. they constitute axioms which are supposed to be true. In Smart,
hypotheses are specification-only predicates, i.e. they cannot be called in the code.
They are introduced by the keyword hypothesis.

For example, we could revisit our polymorphic pair type introduced in Section 3.1.3
and provide a polymorphic axiomatization for it by using implicit predicates and hy-
potheses, that stipulate that the operations fst and snd, retrieve the first and second,
respectively, elements of the pair. These are declared as follows:

type pair <A, B>

public new_pair (A a, B b, pair <A, B> p+)
impl ic i t program

public fst(pair <A, B> p, A a+)
impl ic i t program

public snd(pair <A, B> p, B b+)
impl ic i t program

public hypothesis pair_fst (A a, B b)
program {{ pair <A, B> p, A a2 }}
{

new_pair (a, b, p+);
fst(p, a2 +);
a = a2;

}

public hypothesis pair_snd (A a, B b)
program {{ pair <A, B> p, B b2 }}
{

new_pair (a, b, p+);
snd(p, b2 +);
b = b2;

}
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Lemmas are another type of specification-only predicates, meant to facilitate prov-
ing logical properties. In contrast to hypotheses, lemmas must be proven. A lemma
can be introduced with the keyword lemma and it states that all paths that exit from
its body with an undeclared exit label represent impossible execution scenarios.

In Section 3.1.1, we introduced a type cartesian_point allowing to express a point
by its Cartesian coordinates, and we defined a predicate translate_point for translating
a point by a given pair of numerical values (a, b). We revisit our example and implement
a predicate that translates a pair of points by a fixed pair of numbers (a, b) that are
added to the Cartesian coordinates of each point of the pair. In addition, we consider
an implicit predicate euclidean_dist that computes the Euclidean distance d:

d =
√

(x2 − x1)2 + (y2 − y1)2

between a pair of points 〈(x1, y1); (x2, y2)〉. These are declared as follows:

type point_pair = pair < cartesian_point , cartesian_point >

/* For a pair of points (( x1, y1 ); (x2, y2 )) compute
d = sqrt ((x2 - x1 )^2 + (y2 - y1 )^2) */

public euclidean_dist ( point_pair p, f l oa t d+)
-> [ true]
impl ic i t program

/* For a pair of points (( x1, y1 ); (x2, y2 )) and a fixed
numerical pair (a, b), compute ((x1 ’, y1 ’), (x2 ’, y2 ’))
as (( x1 + a, y1 + b), (x2 + a, y1 + b)). */

public translate_pair ( point_pair p, pair < int , int > t,
point_pair o+)

-> [ true]
{
...
}

The translation of a pair of points preserves the Euclidean distance between them:
the Euclidean distance of a pair of points p will be equal to the Euclidean distance
of the pair of points obtained after a translation. We can express this property by
declaring it as a lemma:

public lemma edist_preserved (pair < f l oa t , f loat > t,
point_pair p)

program {{ point_pair translated , f l oa t d1, f l oa t d2 }}
{

euclidean_dist (p, d1+) =>
translate_pair (p, t, translated +) =>
euclidean_dist ( translated , d2 +) => d1 = d2;

}
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Specifying contracts for Smart predicates is also possible by employing pre- and
postconditions. A precondition represents a logical property that must be true prior
to calling a predicate and it serves the purpose of letting the callers know when it is
safe to call some predicate. Typically, it represents the caller’s obligations. In Smart,
a precondition can be introduced with the keyword pre and it can be attached to any
implicit or explicit predicate. A precondition can refer to the predicate’s inputs and
it can declare its own local variables. However, it cannot make use of the predicate’s
outputs.

For instance, for the atan2 predicate discussed in Section 3.1.2, we could indicate
that the predicate should never be called with the coordinates (0, 0) of the origin by
adding the following precondition:

public const f l oa t ZERO

public atan2 ( f l oa t x, f l oa t y, f l oa t at +) -> [ true]
pre {

x != ZERO || y != ZERO;
}
impl ic i t program

A postcondition represents a logical condition that must be true after executing
a predicate. Its purpose is to indicate to the callers of a predicate what they are
entitled to expect with respect to the outputs produced by the predicate. In Smart,
postconditions are introduced with the keyword post and they can be attached to
any implicit or explicit (computational) predicate, on a subset or all of the predicate’s
output labels. They can refer to the predicate’s inputs and the outputs associated to
the label considered in the postcondition. Additionally, they can declare their own local
variables.

For instance, a predicate equal_points verifying if two points are equal and having
four possible exit labels, eq_points, eq_x, eq_y and false, respectively, could declare
postconditions as follows:

public equal_points ( cartesian_point p, cartesian_point q)
-> [ eq_points , eq_x, eq_y, f a l s e ]
program {{ f l oa t px, f l oa t qx, f l oa t py, f l oa t qy }} {

cartesian_point@x(p, px +);
cartesian_point@x(q, qx +);
cartesian_point@y(p, py +);
cartesian_point@y(q, qy +);
i f px = qx;
then {

[ true: eq_points , f a l s e : eq_x] py = qy; }
e l se {

[ true: eq_y] py = qy; }
}

post eq_points { p = q;}
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post eq_x {{ f l oa t x1, f l oa t x2}} {
cartesian_point@equals[x](p,q);

}
post * {p != q;}

The first postcondition applies to the exit label eq_points, the second to the label
eq_x and the last one, indicated by * applies to labels eq_y and false.

In Smart, mathematical relations can be represented by introducing inductives or
schemes. These predicates have no outputs but they always have true and false as
their exit labels. Inductive predicates are the only part of the language that cannot be
transformed into executable code; however, they can be used to facilitate the proofs.
Predicates introduced with the inductive keyword represent the least fixed point of
their cases, introduced with the keyword case and a user-defined name. Each case can
introduce existentially quantified variables. In particular, in the absence of recursion,
inductive predicates represent a parallel disjunction of cases. An inductive predicate
will exit with the label true if any of its declared cases holds.

For example, we could specify membership for an implicit array type using an
inductive named contains having a single case, with the user-defined name ElemAt,
which introduces an existentially quantified variable idx:

type array <A>

public get_size (array <A> arr, int s+)
impl ic i t program
public get_elem (array <A> arr, int i, A ai+)
-> [ true, oob]
impl ic i t program

// Membership defined with an inductive and an existential .
public contains (array <A> arr, A a) -> [ true, f a l s e ]
inductive
/* An array contains an element if there exists a valid
index where this element is to be found . */
case ElemAt ( int idx ): {{ A b }} {

[ oob : f a l s e ] get_elem (arr, idx, b+) && b = a; }

Schemes on the other hand represent conjunction of cases; cases are introduced
with the keyword with, followed by a user-defined name and each of them can introduce
universally quantified variables. A scheme will return the label true only if all of its
declared cases hold.

Using a scheme with two cases, Size and Forall, as shown below, we can define
the pointwise equality of arrays. The first case, Size, verifies if the two arrays have the
same length, by introducing two universally quantified variables, n and m. The Forall
case verifies that for any index i, the arrays contain equal elements. Two arrays are
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equal pointwise if and only if they are of the same size and at any given index i, the
arrays have the same element.

public equals_pointwise (array <A> arr1, array <A> arr2)
-> [ true, f a l s e ]
// Extensional equality of arrays [arr1] and [arr2]
scheme
// They must be of the same size
with Size: {{ int n, int m }} {

get_size (arr1, n+) => get_size (arr2, m+) => n = m; }

// If they exist, elements at the same index must be equal
with Forall ( int i): {{ A a, A b }} {

? get_elem (arr1, i, a+) => ? get_elem (arr2, i, b+) =>
a = b; }

Loop invariants are supported as well. These can be introduced in various ways,
for instance by declaring them with the keyword invariant or by declaring them as
inductives.

3.1.5 Illustrating Smart – An Abstract Process Manager

To illustrate the Smart language and its capabilities, we consider an abstract process
manager and its fundamental components, process and thread. We define the data struc-
tures corresponding to threads and processes, implement the predicates corresponding
to a simple thread switch and specify some fundamental properties for processes.

Thread

Stack Register Counter

Data Files

Code

Process with a single thread

Thread1 . . . Threadn

Stack . . . Stack

Counter . . . Counter

Register . . . Register

Data Files

Code

Process with n threads

The implementation of threads and processes differs depending on the operating
system, but frequently a thread is a component of a process that belongs to exactly
one process, outside which it cannot exist. Each thread represents a separate flow of
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control. Multiple threads can be associated to one process; they execute concurrently
and provide a mechanism to improve application performance through parallelism. In
a nutshell, threads represent a software approach to improving the performance of
operating systems by reducing the overhead of process switching.

A thread is a flow of execution through the process code, having its own program
counter, that keeps track of which instruction to execute next, as well as, system
registers which hold its current working variables, and a stack which contains the
execution history. Every thread is uniquely identified by a thread identifier. Peer
threads share some information, such as the code and data segments. When one thread
alters a code memory item, all other threads see the change.

Ready

Running

Blocked

Figure 3.1 – Possible Transitions between Thread States

We define a thread type as a structure consisting of multiple fields such as the
thread’s identifier, its current state and the memory region for its stack.

type memory_region = {
// Start address
int start;
// Region length
int length ;

}

type state =
| Ready
| Running
| Blocked

;

type thread = {
// Identifier
int id;
// Current state
state crt_state ;
// Stack
memory_region stack;

}

The thread’s stack is identified by its start address and its length. The state of a
thread is defined as a variant having three alternatives: Running (the thread is currently
executing), Ready (the thread is currently awaiting execution and could potentially be
started) and Blocked (the thread has exhausted its allocated time or is waiting for
an event to occur; it must be unblocked before being able to execute). The possible
transitions between states are shown in Figure 3.1. A thread’s current state determines
the valid transitions.

Similarly, a process is defined as a structure consisting of an internal identifier, an
identifier for the thread that is currently executing, an address space and an array of
possibly inactive threads associated with it. Whether a thread in the thread array is
active or has terminated is indicated by a variant of type option. An inactive thread,
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indicated by None, is a thread that terminated its execution and whose slot in the array
of associated threads has not been reallocated. In contrast, a blocked thread, indicated
by Some, is a thread that cannot execute currently but should execute in the future,
once the resources it is waiting for are freed. We consider a segmented address space,
with addresses existing not in a single linear range, but instead in multiple segments,
corresponding to the code, the data and the stack, respectively.

type option <A> =
| None
| Some (A a)

;

type address_space = {
memory_region code;
memory_region data;
memory_region stack;

}

type process = {
// Array of associated threads
array <option <thread >> threads ;
// Internal id
int pid;
// Currently running thread
int crt_thread ;
// Address space
address_space adr_space ;

}

Next, we consider a simple predicate called stop_thread, having two possible exe-
cution scenarios as indicated by its two exit labels true and invalid. When the given
input index i corresponds to an active thread, the predicate executes successfully, thus
exiting with true. In this case, the state of the i-th thread associated to the input
process is set to Blocked and the new state of the process is returned in the output
out. Otherwise, when the given index i corresponds to a thread that is Ready, or when
there is no active thread at that index, the predicate exits with the label invalid and
no output is generated.

public stop_thread ( process in, int i, process out +)
-> [ true, invalid ]
program {{ array <option <thread >> ta, state s, thread ti,

option <thread > tio }}
{

// Copy in to out
out := in;
// Fetch in. threads and copy it to ta
process@threads (in, ta +);
// Get the array ’s i-th element
[ oob : invalid ] get_elem (ta, i, tio +);
// Check if the i-th element is active
switch (tio)
case Some ( thread th): {ti := th ;}
case None: ra i se invalid ;
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// Get the thread ’s current state
thread@crt_state (ti, s+);
// Check whether the transition is valid
[ f a l s e : invalid ]state@case[ Running ](s);
// Create the new state for the running thread
state@Blocked (s+);
// Set the newly created state
thread@crt_state (ti+, s);
// Reset tio to the thread with the modified state
option@Some(tio +, ti );
// Reset the i-th thread and return the new state ta
[ oob : invalid ] set_ei (ta, i, tio, ta +);
// Update out. threads to ta
process@threads (out +, ta);

}

Another auxiliary predicate called start_thread, when given a valid index, of an
unblocked thread, sets the state of the i-th thread to Running. It is implemented
similarly as shown below:

public start_thread ( process in, int i, process out +)
-> [ true, invalid ]
program {{ array <option <thread >> ta, state s, thread ti,

option <thread > tio }}
{

// Copy in to out
out := in;
// Fetch in. threads and copy it to ta
process@threads (in, ta +);
// Get the array ’s i-th element
[ oob : invalid ] get_ei (ta, i, tio +);
// Check if the i-th thread is active
switch (tio)
case Some ( thread th): {ti := th ;}
case None: ra i se invalid ;

thread@crt_state (ti, s+);

// Check whether the transition is valid
[ f a l s e : invalid ]state@case[Ready ](s);
// Create the new state for the running thread
state@Running (s+);
// Set the newly created state
thread@crt_state (ti +, s);
// Reset tio to the thread with the modified state
option@Some(tio +, ti );
// Set the i-th element and return the new state ta
[ oob : invalid ] set_ei (ta, i, tio, ta +);
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// Update out. threads to ta
process@threads ( out +, ta);

}

These two predicates will be called by the predicate run_thread that performs a
simple thread switch. It stops the thread currently executing, indicated by crt_thread
and starts the one with the given index i. The new state of the process is returned in
the output out.

public run_thread ( process in, int i, process out +)
-> [ true, inval ]
program {{ int crt }} {

process@crt_thread (in, crt +);
[ true : true, invalid : inval ] stop_thread (in, crt, out +);
[ true : true, invalid : inval ] start_thread (out, i, out +);
process@crt_thread (out +, nid );

}

Next, we introduce a fundamental property for any valid process state, namely the
fact that the stack regions of all its associated threads are completely disjoint.

public not_disjoint ( process p) -> [ true, f a l s e ]
inductive
case StacksJoint ( int i, int j):
{{ thread ti, thread tj, memory_region sti,

memory_region stj }} {
i != j;
[None : f a l s e ] thread (p, i, ti +);
[None : f a l s e ] thread (p, j, tj +);
thread@stack(ti, sti +); thread@stack (tj, stj +);
overlap (sti, stj );

}
case CodeStackJoint ( int i):

{{ thread ti, memory_region sti, address_space as,
memory_region code }} {
[None : f a l s e ] thread (p, i, ti +);
thread@stack (ti, sti +);
process@adr_space (p, as +);
address_space@code(as, code +);
overlap (sti, code );

}
case DataStackJoint ( int i):

{{ thread ti, memory_region sti, address_space as,
memory_region data }} {
[None : f a l s e ] thread (p, i, ti +);
thread@stack (ti, sti +);
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process@adr_space (p, as +);
address_space@data(as, data +);
overlap (sti, data );

}

public disjoint_stacks ( process p) -> [ true, f a l s e ]
program {

! not_disjoint (p);
}

This property is expressed using an inductive predicate that characterizes the potential
situations in which the memory isolation of the different associated threads of a process
can be broken. The natural manner of expressing such a property in Smart is by using
a scheme as presented in Section 3.1.4; here we use an inductive predicate because
the language we are working with and which will be presented in Chapter 4 does
not support schemes. In our inductive predicate, the first case, StacksJoint, checks
whether there exist two different threads having overlapping stacks. The next two
cases, CodeStackJoint and DataStackJoint, check whether there exists a thread whose
stack overlaps the process’ code segment or data segment, respectively. This uses an
auxiliary predicate, verifying if two memory regions overlap, i.e. if there exists an
address that is contained simultaneously by two different segments. This operation is
symmetric; we express this property with the lemma overlap_sym.

public contains ( memory_region m, int address )
-> [ true, f a l s e ]
impl ic i t program
public overlap ( memory_region m1, memory_region m2)
-> [ true, f a l s e ]
inductive
case InBoth ( int address ): {

contains (m1, address ) && contains (m2, address );
}

public lemma overlap_sym ( memory_region m1, memory_region m2)
-> [ true, f a l s e ]
program {

overlap (m1, m2) => overlap (m2, m1);
}

3.2 ProvenTools
ProvenTools is a comprehensive set of development tools for the Smart language. It
has been developed at Prove & Run with the goal of facilitating the achievement of
high-level certifications. The toolchain has the structure of a set of Eclipse plug-ins of
JDT type – Java Development Tools. Together, these constitute a complete Integrated
Development Environment (IDE) allowing one to not only write, edit and document
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Smart models, but also to browse proof obligations, to prove them by employing a
built-in prover and finally, to generate executable code in C or Java.

The plug-ins are based on Xtext (Xtext Documentation), an official Eclipse plug-in
dedicated to the creation of DSLs (Domain Specific Languages) in Eclipse. Xtext-based
DSLs are described in an EBNF (Extended Backus-Naur Form) grammar language.
Fully statically typed expressions can be embedded in the developed DSL and Java
style scoping and linking are supported.

Proofs

Proof
Obligations

C Code

Java Code

Prover

Code Generators

Prover

Code Generators

Smil
Smart Code &
Specifications

Front-end Back-end

Figure 3.2 – The ProvenTools Toolchain

Concretely, the toolchain includes a compiler whose front-end contains the plug-in
in charge of Smart, as well as the plug-in dedicated to Smil, the Smart Intermediate
Language, to which Smart programs and specifications are translated. Smil is a simpler
form of the Smart language. Though roughly equivalent to Smart, Smil has a rather
different form manipulating less complex structures and having no syntactic sugar.
Harder to be understood by a human reader, Smil is meant to be easily manipulated by
the back-end of the toolchain. The back-end currently offers a C code generator and
an interactive prover. An overview of this architecture is shown in Figure 3.2.

While employing ProvenTools, the code undergoes various compilation steps and
transformations. During the compilation chain, the Smart code is transformed to a
Smart AST (Abstract Syntax Tree). The obtained AST is then compiled to a Smil
AST. Following, the Smil AST is transformed to Smil source code and then reinserted
in the compilation chain by the plug-in in charge of it.

After finishing all the compilation chain and obtaining the Smil AST and the asso-
ciated Smil source code, the back-end of the compiler can be employed. The back-end
comprises a source code generator and a prover. The generator transforms Smart mod-
els into their equivalents in C.
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Figure 3.3 – Smart Editor

Smart Editor. The Smart editor provides facilities to edit Smart code and supports
broad and complex features, such as syntax highlighting, facilities for code navigation
and visualization, and edition assistants, including word completion and quick fixes. A
snapshot of it is shown in Figure 3.3.

Prover. ProvenTools provides users a dedicated view for interacting with the prover.
This presents the existing proof obligations and provides facilities to solve them. Proof
obligations are generated for any logical lemma, precondition, postcondition or invariant
included in the Smart models. Additionally, any label that remains unhandled in the
code triggers the generation of a proof obligation, thus enforcing that each possible exit
label of a predicate is either explicitly handled or proven to be impossible.

An automatic prover, trying various proof search procedures, is called whenever a
proof obligation is generated. It uses previously proven obligations or existing hypothe-
ses for discharging new obligations automatically. Unproved obligations can be solved
by interactively employing manual tactics, called hints, which are provided in the IDE.
Hints that are considered useless with respect to the currently selected proof obliga-
tions are automatically disabled. Additionally, users can define strategies, i.e. proof
patterns, and employ an interactive proof assistant, that applies them automatically in
the background. This will suggest a possible proof as soon as it finds one. Proofs thus
found are rechecked as if they had been done manually.
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ProvenTools offers facilities to inspect any manual or automatic proof step, thus
making an eventual review of the proofs possible. The toolchain also provides a dedi-
cated system for assisting the user into adapting former proofs to new changes, due to
code maintenance or evolution.

C Code Generator. The executable part of Smartmodels is translated to executable
C code by the C code generator. To this end, the executable parts of the Smart models
are identified and extracted, while the logical parts are discarded. Users can guide
this process through annotations and they can specify that particular values are purely
logical. Functional implementations are transformed to imperative ones: the dedicated
C code generation plug-in tries to replace functional modifications of structures in the
models by in-place updates. Such transformations are correct only if the different
values are handled linearly in the Smart code, i.e. if no previous value is read after
applying a functional update on it. For ensuring the safety of functional to imperative
code transformations, the C generation plug-in employs various global static analyses.
When safety cannot be guaranteed, the generator reports errors or introduces copies,
if the users deemed it acceptable.

In earlier experiments (Lescuyer, 2015), the Prove & Run team was able to generate
C code for a complete model of ProvenCore that did not require dynamic allocation,
and ran at a speed comparable to the original C code.

3.3 Smil
Smil is an intermediate language to which Smart models are compiled. Similarly to
Smart, Smil is a functional language with algebraic data types (structures and variants).
However, unlike Smart, Smil is not a user-oriented language, i.e. it was not designed to
write programs in it directly, but rather to provide a representation of Smart programs
at a different level of abstraction. Thus, reading Smil code is a rather cumbersome task
as it is a language without syntactic sugar, meant to serve as a starting point for the
main components of the ProvenTools back-end exploiting Smart models: the prover and
the code generator.

To give an idea of Smil’s syntax, we illustrate below the types thread and process,
as well as the stop_thread predicate, from our abstract process manager example given
in Section 3.1.5.

public type state =
| Ready
| Running
| Blocked ;

public type thread = {
id : int ;
crt_state : state;
stack : memory_region ;

}
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public state_acopy_ahypothesis (state state_1 ) -> [ true]
hypothesis
{{ state state_2 }}{

[<1>] : state@switch ( state_1 )
-> [ Ready -> 5, Running -> 4, Blocked -> 3];

[<2>] : ==<state >( state_1 , state_2 )
-> [ true -> true, f a l s e -> error ];

[<3>] : state@Blocked ( state_2 )
-> [ true -> 2];

[<4>] : state@Running ( state_2 )
-> [ true -> 2];

[<5>] : state@Ready ( state_2 )
-> [ true -> 2];

}

public thread_ahypothesis ( thread x1) -> [ true]
hypothesis
{{ thread x2, int zid, state zcrt_state ,

memory_region zstack }}{
[<1>] : thread@a l l (x1, zid, zcrt_state , zstack )

-> [ true -> 2];
[<2>] : thread@new(x2, zid, zcrt_state , zstack )

-> [ true -> 3];
[<3>] : ==< thread >( x1, x2)

-> [ true -> true, f a l s e -> error ];
}

The type declarations in Smil strongly resemble their Smart counterpart. Predicate
declarations as well mirror the form found in Smart, except that in Smil any output
variable associated to the true exit label is explicitly declared as such. Preconditions
and postconditions are appended to any predicate and, as shown above, a hypothesis
is added for any explicitly declared type.

The real syntax differences are visible in predicate implementations: every state-
ment is preceded by a numerical label and every possible exit label lbl of the statement
indicates another numerical label. The latter numerical label actually designates the
statement that will be executed next, if the current statement exits with label lbl. In
particular, this mechanism replaces the try ...catch ... and the conditional control
constructs, as well as the logical operators and any other construct based on label
transformers described in Section 3.1.2. Thus, the predicate bodies are very similar in
form to a control flow graph, where the statements represent the nodes of the graph
and the exit labels represent transitions.

public stop_thread ( process in, int i, process out +)
-> [true <out >, invalid ]

pre { [<0>] : true() -> [ true -> true]; }
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{{ array <option <thread >> ta, state s, thread ti,
option <thread > tio, thread th}} {

[<1>] : :=< process >( out, in)
-> [ true -> 2];

[<2>] : process@threads (in, ta)
-> [ true -> 3];

[<3>] : get <option <thread >>(ta, i, tio)
-> [ true -> 4, oob -> invalid ];

[<4>] : option@switch <thread >( tio, th)
-> [None -> 6, Some -> 7];}

[<5>] : state@Blocked (s)
-> [ true -> 8];

[<6>] : true()
-> [ true -> invalid ];

[<7>] : :=< thread >(ti, th)
-> [ true -> 5];

[<8>] : thread@crt_state +( ti, ti, s)
-> [ true -> 9];

[<9>] : option@Some <thread >( tio, ti)
-> [ true -> 10];

[<10 >] : set <option <thread >>(ta, i, tio, ta)
-> [ true -> 11, oob -> invalid ];

[<11 >] : set <option <thread >>(ta, i, tio, ta)
-> [ true -> 12, oob -> invalid ];

[<12 >] : process@threads +( out, out, ta)
-> [ true -> true];

}
post true 0
post invalid 0

In a nutshell, Smil constitutes a representative, albeit restricted set of constructs
and it is a language designed to be well-suited for further transformations and analyses.

The next chapter focuses entirely on αSmil, the computational version of Smil with
which we are working throughout the rest of this thesis. We will illustrate its usage
and describe its abstract syntax and formal semantics.
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Chapter 4

The αSmil Language

One day I will find the right words,
and they will be simple.

Jack Kerouac

In this chapter, we define the syntax and the semantics of αSmil, the language
that we consider in this thesis. This is a computational version of Smil (presented in
Section 3.3) which is essentially a subset of Smart, presented in the previous chapter,
Chapter 3. However, it contains a few additional elements introduced for the purpose
of this thesis.

The αSmil language is a first-order, purely functional and strongly-typed language
with arrays and algebraic data types, i.e. structures and variants. It is an intermediate,
analysis-oriented language.

4.1 αSmil Syntax
The αSmil language is minimal in the sense that it contains only those constructs that
are needed for the purpose of this thesis. For instance, unlike Smart and Smil, the
language does not contain visibility modifiers because these modifiers play no role in
the techniques presented in the sequel. During the introduction of the grammar, we
will point out the most important deviations from Smart and Smil.

Programs. A program in αSmil consists of a number of type and constant declara-
tions and definitions followed by a collection of predicates. In contrast to Smart and
Smil, type and predicate declarations have no visibility modifiers (such as public), and
they are not organized into modules. The absence of visibility modifiers is a natural
consequence of the disappearance of modules. We assume that there is one module
in which every type, constant and predicate declaration resides and these are mutu-
ally visible to each other. These restrictions are made for the sake of simplicity since
the techniques proposed in this thesis are orthogonal to the concepts of visibility and
modules.

Constants are declared using the keyword const, followed by the type and the con-
stant identifier. Constant identifiers are written in upper-case letters and are preceded
by the special symbol #.
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Types are declared using the keyword type, followed by the type identifier and, op-
tionally, in the case of polymorphic type declarations, by a number of type parameters,
given in upper-case letters between <>. In the case of implicit types this constitutes the
complete type declaration. Explicit type declarations continue with the symbol = and
the type’s definition. Throughout the rest of this chapter and the presentation of our
static analyses we will ignore polymorphism. The abstract types of our analyses are
not polymorphic and the impact of polymorphism is visible only at the implementation
level, for type substitutions that will be discussed in Chapter 8.

Types. Similarly to Smart, algebraic data types, i.e. structures and variants, and
associative arrays are supported. We let T be the universe of type identifiers and
T0 ⊂ T the set of base type identifiers. We assume a set of identifiers for structure
fields and variant constructors, denoted by F and C, respectively.

A structure represents the Cartesian product of the different types of its elements,
called fields. A variant is the disjoint union of different types. It represents data that
may take on multiple forms, where each form is marked by a specific tag called the
constructor. Arrays group elements of data of the same type (given in angle brackets)
into a single entity; elements are selected by an index whose type is included (as denoted
by the superscript) in the array’s definition as well.

Definition 4.1.1. Types τ ∈ T in αSmil.

τ ∈ T, τ := | τ0 ∈ T0 base types
| struct{f1 : τ, . . . , fn : τ} fi ∈ F , 0 ≤ n structures
| variant[C1 : τ | . . . | Cn : τ ] Ci ∈ C, 1 ≤ m variants
| arrτ 〈τ〉 arrays

Variants and structures can be used together to model traditional algebraic variants
with zero or several parameters. For instance, a generic type option<T> is actually
modeled as:

variant[Some : struct{t : T} | None : struct{}].

Concretely, structures are declared and defined by indicating a set of pairs of field
identifiers and their corresponding types between {}. Declaring structures with no fields
is possible. Variants are declared and defined by indicating the list of their constructors,
each starting with an upper-case letter, preceded by the symbol |. Unlike structures,
variants must have at least one declared constructor. For instance, the state and thread
types from our Abstract Process Manager example given in Smart in Section 3.1.5, on
page 48, have the following Smil declaration:

type state =
|Ready
| Running
| Blocked

type thread = {
id : int ;
crt_state : state;
stack : memory_region

}
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In contrast to Smart, in structure declarations, the field name precedes the field type.

Predicates. Predicates are declared using the keyword predicate, which is specific
to αSmil, followed by a predicate identifier and a signature. A signature is given by a
sequence of input types and a non-empty finite mapping of exit labels, λ ∈ L \ {error},
to sequences of output labels. The set of exit labels L contains three distinguished
elements, true, false and error. The latter cannot appear in predicate signatures; it is
used as a sink node in control flow graphs, which will be presented in Section 4.2. We
write signatures in the following manner:

σ =

(x1 : τ1, . . . , xn : τn)︸ ︷︷ ︸
input identifiers : types

[λ1 : (τ11 : y11, . . . , τ1k1 : y1k1)| . . . |
label : (output types : identifiers)︷ ︸︸ ︷
λp : (τp1 : yp1, . . . , τpkp : ypkp)]︸ ︷︷ ︸

p possible exit labels

We denote by Σ the mapping between predicate identifiers and their signatures.
The predicate declaration is followed by the predicate’s body. Depending on its

body’s nature, a predicate will be implicit, explicit or inductive. Smart implicit and
explicit predicates have been presented in Section 3.1.1 of our previous chapter, while
inductive predicates have been illustrated in Section 3.1.4, on page 46. For implicit
predicates, the body consists solely in the keyword implicit. For explicit predicates, an
optional declaration unit can follow. This is a finite mapping from variables to types and
it must be given between double curly braces, i.e. {{typeid videntifier}}. Input and
output parameters must be different from all the variables appearing in the declaration
units. Declaration units are followed by a sequence of statements representing calls to
predicates.

Just as presented in Chapter 3.1.4 for Smart, an inductive predicate is syntactically
distinguished by the keyword inductive, followed by its different cases, declared with
the keyword case followed by an identifier, an optional list of existentially quantified
variables and a body of statements.

A generic call to a predicate p is of the form:

p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm].

The predicate p is called with inputs e1, . . . , en and yields one of the declared exit
labels λ1, . . . , λm, each having its own set of associated output variables ō1, . . . , ōm,
respectively. We denote by ō a sequence of 0 or more output variables.

Statements. The αSmil language supports the statements presented in Table 4.2.
These represent calls to built-in predicates and can be seen as special cases of the
predicate call presented above. All statements have a functional nature and handle
immutable data. A statement consists in as many variables as there are input types
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s := | o := e (1) assignment
| e1 = e2 (2) equality test
| nop (3) no operation
| r := {e1, . . . , en} (4) create structure
| {o1, . . . , on} := r (5) destructure structure
| o := r.fi (6) access field
| r′ := {r with fi = e} (7) update field
| r′ = 〈f1, . . . , fk〉r′′ (8) check (partial) structure equality
| v := Cp[e] (9) create variant
| switch(v) as [o1| . . . |on] (10) destructure variant
| v ∈ {C1, . . . , Ck} (11) variant possible
| o := a[i] (12) array access
| a′ := [a with i = e] (13) array update
| p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm] (14) predicate call

Table 4.2 – αSmil – Set of Supported Statements

in the signature σp of the called built-in predicate p, and a mapping associating to
each exit label of σp a sequence of variables, one variable for each output type in the
corresponding sequence.

The first three statements are generic and can be applied to any type. Statement (1)
is a call to the built-in assignment predicate denoted by :=, present in an identical form
in Smart as well. Statement (2) is a call to the logical operator = verifying whether its
two input arguments are equal. Statement (3) is the αSmil equivalent of a no-operation.
As a general convention for the statements notation, we denote by e the identifiers of
entry variables, and by o, the identifiers of output variables.

Statements (4) – (8) are structure-related. The first of them, statement (4), is the
constructor of a structure r of type rtype, having n fields. It corresponds to the state-
ment rtype@new(r+, e_1, ..., e_n) in Smart. Statement (5) returns the values of
all the fields of r into the output parameters o1, . . . , on and it is the equivalent of
rtype@all(r, o_1+, ..., o_n+) in Smart. Statement (6) is the individual accessor of
a field fi and corresponds to rtype@f_i(r, e_i+) in Smart. As previously mentioned,
our language is purely functional and handles only immutable algebraic data structures
and arrays. Therefore, setting the field fi of a structure, shown in (7) and being the
equivalent of rtype@f_i(r’+, e_i), returns a new structure where all fields have the
same value as in r, except fi which is set to ei. Statement (8) verifies if the values
of the indicated subset of fields of two structures r′ and r′′ are equal. It exists in
Smart as well, where it has a similar syntax: rtype@equals[f,g](r’, r’’), for check-
ing that the values of fields f and g of the two structures are equal, or the dual:
rtype@equals-[f,g](r’, r’’), for checking that the values of all fields except f and g
are equal.

The next group of statements is variant-related. The first of them, statement (9)
creates a new variant v of type vtype using the constructor Cp with e as an argument.
It corresponds to vtype@Cp(v+, e) in Smart. Statement (10) is used for matching on
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the different constructors of the input variant v and corresponds to switch(v) case ...
in Smart. The last statement of this group, statement (11), verifies if the given variant
was created with one of the constructors in {C1, . . . , Ck}. This could be obtained with
a variant switch, but for practical considerations it has been provided as a built-in
predicate. Its counterpart in Smart is vtype@case[C1, ..., Ck](v).

Statements (12) and (13) are array-related. (12) returns the value of the i-th cell of
the input array a. Similarly to (7), updating the i-th cell of an array – shown in (13) –
has a functional nature. It returns a new array where all cells have the same values as
in a, except the i-th cell which is set to e. These statements are specific to αSmil.

Statement (14) is a generic call to a predicate p and has been presented on page 61.

Exit Labels. All of the built-in supported statements have an associated set of exit
labels, λ ∈ L \ {error}. These are indicated in Table 4.3. There are two distinguished
exit labels, true and false, respectively. An additional built-in label called error is used
as a sink node in control flow graphs. It cannot be used as an exit label for a predicate.

Table 4.3 – Statements and their Exit Labels

Statement Exit Labels

o := e (1)
[
true 7→ o

]

e1 = e2 (2)

[
true 7→ ∅
false 7→ ∅

]

nop (3)
[
true 7→ ∅

]
r := {e1, . . . , en} (4)

[
true 7→ r

]
{o1, . . . , on} := r (5)

[
true 7→ o1, . . . , on

]
o := r.fi (6)

[
true 7→ o

]
r′ := {r with fi = e} (7)

[
true 7→ r′

]

r′ = 〈f1, . . . , fk〉r′′ (8)

[
true 7→ ∅
false 7→ ∅

]

v := Cp[e] (9)
[
true 7→ v

]
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switch(v) as [o1| . . . |on] (10)

 λC1 7→ o1
... . . . ...

λCn 7→ on



v ∈ {C1, . . . , Ck} (11)

[
true 7→ ∅
false 7→ ∅

]

o := a[i] (12)

[
true 7→ o
false 7→ ∅

]

a′ := [a with i = e] (13)

[
true 7→ a′

false 7→ ∅

]

p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm] (14)

 λ1 7→ ō1
... . . . ...
λm 7→ ōm



As shown in Table 4.3, statement (10) has an exit label λCi corresponding to each
constructor Ci of the input variant. Statements (2), (8) and (11) are bi-labeled, using true
and false as logical values. Neither of them has any associated outputs. Statements (12)
and (13) are bi-labeled as well. However, unlike the previously mentioned statements,
they use the label false as an “out of bounds” exception and generate an output only
for the label true. All other statements except (14) are uni-labeled: they associate all
their output parameters (if any), to the label true. In contrast to Smart, in αSmil,
every exit label, including true, must be explicitly indicated. Furthermore, any output
is explicitly associated to an exit label.

In Section 3.1.5 (on page 50) of our previous chapter, we introduced a Smart pred-
icate, called stop_thread. If the given index i designates an active associated thread,
this predicate sets its state to Blocked and returns the new state of the process. Oth-
erwise, the predicate exits with label invalid. Revisiting it, we can finally indicate its
body in the αSmil language1:

Table 4.4 – Predicate Body in αSmil

// Signature
predicate stop_thread ( process p, int i)
-> [ true: process o | invalid ]
// Declaration unit
{{ array < option_thread > ta, option_thread th,

thread ti, state s}}
// Predicate body

1The αSmil version is slightly simplified, as we are not checking if the transition to Blocked is valid.
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{
ta := p. threads : [ true -> 1]; // 0
th := ta[i] : [ true -> 2, f a l s e -> 9]; // 1
switch (th) as [ti | ] : [Some -> 3, None -> 9]; // 2
s := Blocked : [ true -> 4]; // 3
ti := {ti with crt_state = s} : [ true -> 5]; // 4
th := Some(ti) : [ true -> 6]; // 5
ta := [ta with i = th] : [ true -> 7, f a l s e -> 9]; // 6
o := {p with threads = ta} : [ true -> 8]; // 7
[ true]; // 8
[ invalid ] // 9

}

Every statement in our stop_thread example is followed by a construct of the form
exit_label -> numerical_label. This indicates the statement to be executed next, as
identified by the numerical_label, if the current statement exits with label exit_label.
For example, when the first statement, ta := p.threads, exits with label true, the
predicate’s execution continues with the statement following it, having the numerical
label 1. We remark that the predicate’s exit labels are included in the body of an
explicit predicate, as can be seen at lines 8 and 9, respectively, in the case of true
and inval. Intuitively, the predicate’s body resembles a control flow graph and can
be illustrated as shown in Figure 4.1. The predicate’s exit labels are the control flow
graph’s exit nodes, as will be discussed in Section 4.2.

0: ta := in.threads
1: th := ta[i]
2: switch(th) as [Some:ti | None]
3: s := BLOCKED
4: ti := {ti with current_state=s}
5: th := Some(ti)
6: ta := [ta with i=th]
7: o := {in with threads=ta}
8: true 9: inval

false

None

false

Figure 4.1 – Body of the stop_thread Predicate

We are working with αSmil, which is a computational version of Smil where all
specification-only predicates have been removed. Simulating hypotheses, lemmas and
contracts is straightforward and can be achieved using predicates having only the true
and false labels and no associated output. Inductives are the only exception to this
rule: they are supported in αSmil as well and their declaration is similar to the one in
Smart. The αSmil equivalent of the not_disjoint inductive presented in our Abstract
Process Manager example (on page 46) has the following form:

predicate not_disjoint ( process p)
-> [ true | f a l s e ]
inductive
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case StacksJoint ( int i, int j) :
{{ thread ti, thread tj, memory_region sti,

memory_region stj }} {
i = j : [ true -> 1, f a l s e -> 7];
thread (p, i)[ true: ti | None] : [ true -> 2, None -> 7];
thread (p, j)[ true: tj | None] : [ true -> 3, None -> 7];
sti := ti.stack : [ true -> 4];
stj := tj.stack : [ true -> 5];
overlap (sti, stj )[ true| f a l s e ] : [ true -> 6, f a l s e -> 7];
[ true];
[ f a l s e ];
[error]

}
case CodeStackJoint ( int k) :

{{ thread tk, memory_region stk, address_space asp,
memory_region code }} {

thread (p, k)[ true: tk | None] : [ true -> 1, None -> 6];
stk := tk.stack : [ true -> 2];
asp := p. adr_space : [ true -> 3];
code := asp.code : [ true -> 4];
overlap (stk, code )[ true| f a l s e ] : [ true -> 5, f a l s e -> 6];
[ true];
[ f a l s e ];
[error]

}
case DataStackJoint ( int l) :

{{ thread tl, memory_region stl, address_space aspace ,
memory_region data }} {

thread (p, l)[ true: tl | None] : [ true -> 1, None -> 6];
stl := tl.stack : [ true -> 2];
aspace := p. adr_space : [ true -> 3];
data := aspace .data : [ true -> 4];
overlap (stl, data )[ true| f a l s e ] : [ true -> 5, f a l s e -> 6];
[ true];
[ f a l s e ];
[error]

}
predicate disjoint_stacks ( process p) -> [ true | f a l s e ]

{
not_disjoint (p)[ true| f a l s e ] : [ true -> 1, f a l s e -> 2];
[ true];
[ f a l s e ];
[error]

}

This inductive predicate has been introduced and explained in Section 3.1.5 of the
previous chapter (on page 52) and it characterizes the potential situations in which the
memory isolation of the different associated threads of a process can be broken.
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4.2 Control Flow Graph
Predicate bodies in αSmil resemble a control flow graph representation, having state-
ments as nodes. The nodes represent program states, and the edges are defined by
statements with a particular exit label λ.

The control flow graph Gp = (N, E) of a predicate p has a node ni ∈ N for each
program point. For each statement s at program point ni that can execute and reach
program point nj with exit label λk, an edge (ni, nj) is added to Gp and labeled with
s and λk. Gp has a single entry node nin ∈ N corresponding to the program point
associated to the first statement of p. The set of exit nodes nout ⊂ N consists of the
nodes associated to each possible exit label λk of the predicate. To these, one additional
exit node which is used as a sink node is added. This corresponds to the error label.

In practice, all the outgoing edges of a node ni ∈ N bear the different cases of the
same statement s found at program point ni. Thus, the edges are labeled with the
same statement s and there is an edge labeled s, λk for each possible exit label λk of s.

The subfigures in Figure 4.2 show the control flow graph of the following predicate:

predicate thread ( process p, int i)
-> [ true: thread ti | None | oob]

which receives a process p and an index i as inputs and returns the i-th active thread
of the input process. If the i-th thread is inactive, it exits with the exit label None.
In the case of an “out of bounds” exception, the exit label oob is returned. For better
readability, Figure 4.2-b gives the control flow of the same predicate where we have
labeled the nodes with statements of the predicate and the edges with their exit la-
bels. Throughout the rest of our αSmil predicate examples, we will favour the latter
representation.

a) Gthread b) Gthread – alternative representation
n1

n2

n3 oob

true None

ts := p.threads, true

tio := ts[i], true
tio := ts[i], false

switch (tio) as [ti| ], Some switch (tio) as [ti| ], None

ts := p.threads

tio := ts[i]

switch(tio) as [ti| ] oob

true None

true

true false

Some None

Figure 4.2 – Example – Control Flow Graph of Predicate thread

4.3 Well-Typed αSmil Statements
We formally define what it means for an αSmil statement to be well-typed and detail
the full system of inference rules for the statements supported by αSmil in Table 4.6
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and Table 4.7.
A well-typed αSmil statement is a statement that is compatible with the types

specified in the signature σp of the called built-in predicate p. This requires a typing
environment Γ mapping variables to their types.

Definition 4.3.1. Typing Environment Γ.

Γ : V → T.

Furthermore, αSmil distinguishes between variables v ∈ V which can be written
to and variables which are read-only. Therefore, the definition of well-typedness for
statements requires two different sets of variable identifiers, one for each kind of variable.
These are:

• V+, V+ ⊆ V, which denotes the set of identifiers of writable and readable vari-
ables, and

• V \ V+, which denotes the set of read-only variables.

The mapping between predicate identifiers and their signatures is denoted by Σ.

Definition 4.3.2. Mapping between Predicate Identifiers and Signatures.

Σ : P → S .

Definition 4.3.3. Well-Typed Statement. A statement s exiting with label λ ∈ L \
{error} is well-typed in the typing environment Γ, given Σ:

Σ,Γ,O ` s→ λ

if it is compatible with the types specified in its signature. Moreover, outputs of a
well-typed statement must be in the writable variables set, O ⊆ V+.

The inference rule for a well-typed predicate call captures all these properties and
is shown in rule [WTPCall], given in Table 4.6.

Table 4.6 – Well-Typed Predicate Call

Σ(p) = (x1 : τ1, . . . , xn : τn)[λ1 : (τ1,1 : y1,1, . . . , τ1,k1 : y1,k1)| . . .
. . . | λm : (τm,1 : ym,1, . . . , τm,km : ym,km)]

Γ(e1) = τ1 . . . Γ(en) = τn
∀i ∈ {1, . . . ,m}, Γ(oi,1) = τi,1 . . . Γ(oi,ki) = τi,ki

{oi,1, . . . oi,ki} ∈ O ∀i, ∀j,∀ki, j 6= ki oi,j 6= oi,ki λ ∈ {λ1, . . . , λm}
Σ,Γ,O ` p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]→ λ

WTPCall
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The inference rules for the αSmil statements representing calls to built-in predicates
are detailed in Table 4.7.

Table 4.7 – Well-Typed Statements

Γ(e1) = Γ(e2) λ ∈ {true, false}
Σ,Γ,O ` e1 = e2 → λ

WTEquals

Γ(o) = Γ(e) o ∈ O
Σ,Γ,O ` o := e→ true

WTAsgn

Σ,Γ,O ` nop→ true
WTNop

Γ(r) = struct{f1 : τ1, . . . , fn : τn}
Γ(e1) = τ1 . . .Γ(en) = τn r ∈ O
Σ,Γ,O ` r := {e1, . . . , en} → true

WTRecNew

Γ(r) = struct{f1 : τ1, . . . , fn : τn}
Γ(o1) = τ1 . . .Γ(on) = τn ∀i, oi ∈ O ∀i 6= j, oi 6= oj

Σ,Γ,O ` {o1, . . . , on} := r → true
WTRecAll

Γ(r) = struct{f1 : τ1, . . . , fi : τi, . . . , fn : τn} Γ(o) = τi o ∈ O
Σ,Γ,O ` o := r.fi → true

WTRecGet

Γ(r) = Γ(r′) = struct{f1 : τ1, . . . , fi : τi, . . . , fn : τn}
Γ(e) = τi r′ ∈ O

Σ,Γ,O ` r′ := {r with fi = e} → true
WTRecSet

Γ(r′) = Γ(r′′) = struct{g1 : τ1, . . . , gn : τn}
λ ∈ {true, false} {f1, . . . , fk} ⊆ {g1, . . . , gn}

Σ,Γ,O ` r′ = 〈f1, . . . , fk〉r′′ → λ
WTRecEq

Γ(v) = variant[C1 : τ1| . . . | Cp : τp| . . . | Cn : τn]
Γ(e) = τp v ∈ O

Σ,Γ,O ` v := Cp[e]→ true
WTVarCons

Γ(v) = variant[C1 : τ1| . . . | Cp : τp| . . . | Cn : τn]
Γ(op) = τp op ∈ O

Σ,Γ,O ` switch(v) as [o1| . . . |on]→ λCp
WTVarSwitch
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Γ(v) = variant[D1 : τ1| . . . | Dm : τm]
{C1, . . . , Ck} ⊆ {D1, . . . , Dm} λ ∈ {true, false}

Σ,Γ,O ` v ∈ {C1, . . . , Ck} → λ
WTVarPos

Γ(a) = arrτi〈τ〉 λ ∈ {true, false} Γ(i) = τi Γ(o) = τ o ∈ O
Σ,Γ,O ` o := a[i]→ λ

WTAGet

Γ(a′) = Γ(a) = arrτi〈τ〉
λ ∈ {true, false} Γ(i) = τi Γ(e) = τ a′ ∈ O

Σ,Γ,O ` a′ := [a with i = e]→ λ
WTASet

The well-typedness of statements plays an important role with respect to the state-
ments’ interpretation, as we will show in the next section. It is also essential for the
well-typedness and well-formedness of dependency and correlation summaries that will
be presented in the following chapters.

The control flow graph Gp = (N, E) of a predicate p is well-typed if any edge labeled
with (s, λ) ∈ E is well-typed:

∀(s, λ) ∈ E , Σ,Γ,O ` s→ λ

Σ,Γ,O ` Gp = (N, E)
WTCfg

Figure 4.3 – Well-Typed Control Flow Graph

4.4 Operational Semantics of αSmil Statements
This section presents the structural operational semantics (Nielson, Nielson, and Han-
kin, 1999; Plotkin, 2004) of the αSmil language. Sometimes also called the small step
operational semantics, this allows reasoning about intermediate stages in a program’s
execution and emphasizes the individual steps of the computation.

Types We take T0 to be the universe of primitive types τ0 ∈ T0. Structures, variants
and associative arrays are defined inductively. Structures are finite labeled products of
types. They are a generalization of the Cartesian product. Variants are finite labeled
disjoint unions of several types τ . Two types are equal when they are pointwise equal.

Semantic Values. For each type τ we define the set Dτ of semantic values of that
type. For each primitive type τ0 ∈ T0, we suppose a given Dτ0 . Other semantic values
are defined inductively as shown below.
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Definition 4.4.1. Semantic Values Dτ .

Dstruct{f1:τ1,...,fn:τn} = {{f1 = v1, . . . , fn = vn}| ∀i, vi ∈ Dτi}

Dvariant[C1:τ1| ...| Cn:τn] =
⊎

1≤i≤n{Ci[v]| v ∈ Dτi},where
⊎

is the disjoint
union

Darrτi 〈τ〉 = {(P, (vk)k∈P)| P ⊆ Dτi , ∀k ∈ P, vk ∈ Dτ}.

In αSmil, arrays are partial. In a semantic value belonging to Darrτi 〈τ〉, P denotes
the domain of valid indices for the array.

Two values of the same type are equal when they are pointwise equal.
Traditionally, in operational semantics one is interested in how the state is modified

during the execution of a statement. αSmil has no concept of state per se; what is
essential is the evaluation of variables in different environments or semantic contexts.
To emphasize this idea, we define a valuation or environment E ∈ E , as a mapping
from variables to semantic values.

Definition 4.4.2. Valuation or environment E.

E : V → D.

Two valuations E and E’ are equal if they are mapping the same set of variables to
semantic values that are pointwise equal:

E = E′ ⇐⇒ ∀v ∈ V, E(v) = E′(v).

Given a typing environment Γ, a valuation E is well-typed if the value mapped to
any variable v ∈ Dom(E) is of the appropriate type Γ(v). We denote this by Γ ` E
and show it in [WTEnv]:

∀v ∈ E, E(v) ∈ DΓ(v)

Γ ` E
WTEnv

Definition 4.4.3. A configuration
〈
E, [s]

〉
of the semantics is a pair consisting of a

valuation and a statement.

Definition 4.4.4. The transitions of the semantics are of the form:〈
E, [s]

〉 λ−→ E′.

They express how the configuration is changed by one step of computation, occur-
ing when executing a statement s that exits with label λ. The exit label yielded by
the statement’s execution uniquely determines the statement that will be executed
next. The change of the valuation is recorded in the resulting valuation E’. We write
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E [x→ v] for the valuation that is identical to E except that x is mapped to the value
v. We say that E is extended with x→ v and formally we define it as shown below.

Definition 4.4.5. Extend E with x→ v.

(E [x→ v])(y) =
{
v if x = y
E(y) otherwise

Extending a valuation E with multiple mappings x̄ → v̄, consists in applying the
extension in a left-associative fashion. In the following we will omit parentheses for
such extensions, thus denoting:

(. . . ((E [x1 → v1])[x2 → v2]) . . .)[xn → vn]

as:
E [x1 → v1] [x2 → v2] . . . [xn → vn].

An interpretation I ∈ I for a predicate is defined as a mapping from a predicate
and an initial environment to an output environment and an exit label.

Definition 4.4.6. Predicate Interpretation I ∈ I .

I : P × E → E × L.

The initial environment is a mapping between the predicate’s formal arguments and
their effective values. The output environment is a mapping between the predicate’s
formal output arguments and their effective values after executing the predicate.

The detailed definition of the semantics of generic statements is described below
in Table 4.8. The first clause, [nop] constitutes an axiom, as it has no premises. It
states that the nop statement executes in one step, yielding the exit label true without
extending the valuation E. The semantics of equality tests is given by two inference
rules, [equalT ] and [equalF ], one for each of the statement’s possible exit labels. A
call to the built-in predicate = will exit with label true if and only if the valuations of
its arguments e1 and e2 are equal (clause [equalT ]). Otherwise, the statement will exit
with label false (clause [equalF ]). In both cases, the statement leaves the valuation E
unchanged. The semantics of an assignment is given by the [asgn] clause: the statement
always yields the exit label true and extends the valuation E with o mapped to the
value E(e) of e.

Table 4.8 – The Structural Operational Semantics of αSmil Generic
Statements

[nop]
〈
E, [nop]

〉 true−−→ E

[equalT ]
E(e1) = E(e2)〈

E, [e1 = e2]
〉 true−−→ E
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[equalF ]

E(e1) 6= E(e2)〈
E, [e1 = e2]

〉 false−−→ E

[asgn]
E′ = E [o→ E(e)]〈
E, [o := e]

〉 true−−→ E′

The semantics of structure-related statements is given in the Table 4.9. The creation
of a structure always yields the exit label true, as indicated by the [recNew] clause and
it extends the valuation E by mapping the resulting output variable r to the structural
value obtained by mapping every field fi to the value E(ei) of the corresponding ei
arguments. The destructuring of a structure r extends the valuation E by mapping
every output oi to the corresponding value E(vi) of the fi field of r. The statement
always exits with true. The valuation E′ obtained after executing an access to a given
field fi of a structure r is an extension of E where the output o is mapped to the
corresponding value of r’s fi field in E. The semantics of a field update is given by
the clause [recSet]. This statement extends the valuation E by mapping the output
structure r′ to a new value, where the updated field fi is mapped to the value of e in
E and every other field is mapped to the same value it had in E. Finally, the last two
clauses correspond to a partial structure equality test. As shown by [recEqualsT ], the
statement yields the exit label true if and only if the values of every field gi in the given
set of fields are equal for r and r′ in E. Otherwise, the statement yields the label false.
In both cases, the valuation E remains unchanged.

Table 4.9 – Operational Semantics of αSmil Structure-Related
Statements

[recNew]
E′ = E [r → {f1 = E(e1), . . . , fi = E(ei), . . . , fn = E(en)}]〈

E, [r := {e1, . . . , en}]
〉 true−−→ E′

[recAll]

E(r) = {f1 = v1, . . . , fn = vn}
E′ = E [o1 → v1] [o2 → v2] . . . [on → vn] ∀i, j, i 6= j, oi 6= oj〈

E, [{o1, . . . , on} := r]
〉 true−−→ E′

[recGet]

E(r) = {f1 = v1, . . . , fi = vi, . . . , fn = vn}
E′ = E [o→ vi]〈

E, [o := r.fi]
〉 true−−→ E′

[recSet]

E(r) = {f1 = v1, . . . , fi = vi, . . . , fn = vn}
E′ = E

[
r′ → {f1 = v1, . . . , fi = E(e), . . . , fn = vn}

]〈
E, [r′ := {r with fi = e}]

〉 true−−→ E′
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[recEqualsT ]

E(r′) = {f1 = vf1 , . . . , fn = vfn}
E(r′′) = {f1 = wf1 , . . . , fn = wfn}

{g1, . . . , gk} ⊆ {f1, . . . , fn} vgi = wgi , ∀i ∈ {1, . . . , k}〈
E, [r′ = 〈g1, . . . , gk〉r′′]

〉 true−−→ E

[recEqualsF ]

E(r′) = {f1 = vf1 , . . . , fn = vfn}
E(r′′) = {f1 = wf1 , . . . , fn = wfn}

{g1, . . . , gk} ⊆ {f1, . . . , fn} ∃i, i ∈ {1, . . . , k}, vgi 6= wgi〈
E, [r′ = 〈g1, . . . , gk〉r′′]

〉 false−−→ E

Table 4.10 details the semantics of variant-related statements. As indicated by the
[varCons] clause, the construction of a variant v with a constructor Cp always yields
the exit label true. The obtained valuation E′ is an extension of E, where the value
of v is obtained by applying the constructor Cp to the argument’s value, E(e). A
variant switch exits with the label λCi , if the value of v in E has been constructed
with the Ci constructor. The valuation E′ obtained after executing the statement is an
extension of E whereby the corresponding output oi is mapped to the value of the Ci
constructor’s argument, E(e). The last two clauses, [varPossibleT ] and [varPossibleF ],
indicate the semantics of a variant possible check and correspond to the statement’s
possible exit labels. The statement will yield the label true only if the value of v in E has
been obtained with a constructor D that is a member of the given set of constructors
{C1, . . . , Ck}. Otherwise, the false label will be returned. In both cases the valuation
remains unchanged.

Table 4.10 – Operational Semantics of αSmil Variant-Related
Statements

[varCons]
E′ = E [v → Cp[E(e)]]〈
E, [v := Cp[e]]

〉 true−−→ E′

[varSwitch]

E(v) = Ci[e] E′ = E [oi → E(e)]〈
E, [switch(v) as [o1| . . . |on]]

〉 λCi−−→ E′

[varPossibleT ]
E(v) = D[e] D ∈ {C1, . . . , Ck}〈

E, [v ∈ {C1, . . . , Ck}]
〉 true−−→ E

[varPossibleF ]

E(v) = D[e] D /∈ {C1, . . . , Ck}〈
E, [v ∈ {C1, . . . , Ck}]

〉 false−−→ E
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Table 4.11 describes the semantics of array-related statements. Each array-related
statement has two corresponding clauses, one for each of the Boolean exit labels. Ac-
cessing an array’s element yields the exit label true if the given index i is a valid index.
The resulting valuation E′ is extended by mapping the output o to the value in E of
the array’s i-th element. Otherwise, when the given index i is invalid, as indicated
by the [arrGetF ] clause, the statement yields the label false and leaves the valuation
unmodified. The semantics of an array update is given by the [arrSetT ] and [arrSetF ]
clauses. If the given index i is valid, the exit label true is yielded and the resulting
valuation is obtained by extending E with a′ whose i-th element’s value is the value of
e in the initial valuation E. The values of all other elements of a′ are the ones found in
E for the elements of a. On the contrary, if the given index i is invalid, the valuation
remains unchanged and the label false is yielded.

Table 4.11 – Operational Semantics of αSmil Array-Related
Statements

[arrGetT ]

E(a) = (P, (v)k), E(i) ∈ P E′ = E
[
o→ vE(i)

]
〈
E, [o := a[i]]

〉 true−−→ E′

[arrGetF ]

E(a) = (P, (v)k), E(i) /∈ P〈
E, [o := a[i]]

〉 false−−→ E

[arrSetT ]

E(a) = (P, (v)k) E(i) ∈ P

E

[
a′ → (P, (w)k), wk =

{
E(e) if k = E(i)
vk otherwise

]
〈
E, [a′ := [a with i = e]]

〉 true−−→ E′

[arrSetF ]

E(a) = (P, (v)k) E(i) /∈ P〈
E, [a′ := [a with i = e]]

〉 false−−→ E

The semantics of a generic predicate call p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm] is cap-
tured by the [pCall] inference rule shown in Table 4.12. Interpreting the predicate p in
the context of its arguments’ values in the valuation E, yields a label λi and a map-
ping between its formal output arguments and their resulting values vi,j . The resulting
evaluation E′ is obtained by extending E with the output variables oi,j mapped to the
corresponding vi,j .

The interpretation of a statement is well-typed with respect to a signature if and
only if every tuple in the interpretation is well-typed, i.e. if it has the expected number
of inputs, with the adequate types, and an adequate label with well-typed outputs as
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well. Furthermore, it has to be total, i.e. for every well-typed tuple of inputs, there
exists a label and some outputs that match in the interpretation.

Table 4.12 – Semantics of a Predicate Call

Σ(p) = p(x1 : τ1, . . . , xn : τn)[λ1 : (τ̄1 : ȳ1)| . . .
. . . | λi : (τi,1 : yi,1, . . . , τi,ki : yi,ki)| . . . | λm : (τ̄m : ȳm)]

I(p, inputs) = (outputs, λi) inputs(xl) = E(el),∀l ∈ {1, . . . , n}
outputs(yi,1) = vi,1, . . . , outputs(yi,ki) = vi,ki

E′ = E [oi,1 → vi,1] . . . [oi,ki → vi,ki ]〈
E, [p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]]

〉 λi−→ E′
pCall

Definition 4.4.7. Subject Reduction Property.
The interpretation of a well-typed statement given well-typed interpretations for

the external predicate calls, preserves the fact that the valuation is well-typed:

∀ Γ, E, s, λ,Σ, (Γ ` E) ∧ (Σ,Γ,O ` s→ λ) ∧ (
〈
E, [s]

〉 λ−→ E′) =⇒ Γ ` E′.

Definition 4.4.8. The Progress Property.
A well-typed statement in a well-typed environment can always be interpreted to

some label and outputs:

∀ E,Γ,Σ, s, (Γ ` E) ∧ (Σ,Γ,O ` s→ λ) =⇒ ∃λ′, E′,
〈
E, [s]

〉 λ′−→ E′.

The well-typedness of an interpretation, as well as the subject reduction and progress
properties have been formally proven in Coq by Stéphane Lescuyer.
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Chapter 5

Dependency Analysis for
Functional Specifications

... like islands in the sea, separate on
the surface but connected in the deep.

William James

Algebraic data types (structures and variants) and associative arrays are fundamen-
tal building blocks for representing, grouping and handling complex data efficiently.
However, as argued in Chapter 1, operations manipulating them are rarely concerned
with the entire compound input data structure. Frequently, they depend only on a lim-
ited subset of their input. Complete specifications or contracts (Meyer, 1997) of such
operations will not only stipulate that the output possesses a certain property (Borgida,
Mylopoulos, and Reiter, 1993; Polikarpova et al., 2013), but will also include their frame
conditions (Borgida, Mylopoulos, and Reiter, 1995), i.e. the parts of the input on which
they operate. Such conditions facilitate reasoning locally without overlooking the global
picture: if a property P is known to hold at a certain point in the program where a
predicate p is called, P still holds after the call to p, provided that the (sub)structures
on which P depends are disjoint from the (sub)structures that might be modified ac-
cording to p’s frame condition (Banerjee and Naumann, 2014). Though intuitively
easy, specifying and proving the preservation of logical properties for the unmodified
part is a particular manifestation of the frame problem (McCarthy and Hayes, 1969;
Leavens, Leino, and Müller, 2007) – a notoriously cumbersome task in formal software
verification, imposing unnecessary manual effort (Meyer, 2015).

One of the challenges of addressing this problem and thereby simplifying the ver-
ification of certain preserved properties is to determine the input fragments on which
these properties depend, i.e. their footprint (Distefano, O’Hearn, and Yang, 2006)
or, to a first approximation, their read effects (Feijs and Jonkers, 1992; Greenhouse
and Boyland, 1999; Clarke and Drossopoulou, 2002). While specifications sometimes
include the write effects (Clarke and Drossopoulou, 2002) of an operation through mod-
ifies clauses (Guttag et al., 1993b), read effects are usually not specified explicitly even
though this information can be useful for reasoning about an operation’s results. The
purpose of the dependency analysis presented in this chapter is to take a step forward in



78 Chapter 5. Dependency Analysis for Functional Specifications

this direction and to detect such information automatically. More precisely, our analy-
sis is a static dependency analysis for the αSmil language (presented in Chapter 4) that
computes a conservative approximation of the input fragments on which the operations
depend.

Dependence and liveness analyses are traditionally used in the compilation realm,
for code optimization (Kennedy, 1978), dead code elimination (Knoop, Rüthing, and
Steffen, 1994; Wand and Siveroni, 1999; Liu and Stoller, 2003), program slicing (Weiser,
1984; Tip, 1995; Reps and Turnidge, 1996; Castillo et al., 2008) or compile-time garbage
collection (Jones and Métayer, 1989; Park and Goldberg, 1992; Wand and Clinger,
1998). In contrast to the vast majority of static analyses that are meant to be used
strictly on code and in an essentially purely automatic setting, our analysis is thought
of as a companion tool to be exploited in the middle of interactive program verification
and it is designed to be used on programs as well as on specifications.

5.1 Dependency Analysis in a Nutshell
In a nutshell, our dependency analysis targets the delimitation of the input subset on
which the output depends, in the context of an operation with a compound input. We
define dependency as the observed part of a structured domain and strive to obtain type-
sensitive results, distinguishing between the subelements of arrays and algebraic data
types and capturing the dependency specific to each. The targeted results are meant
to mirror – in terms of dependency – the layered structure of compound data types.
Furthermore, the dependency analysis must work with conservative approximations and
it must guarantee that what is marked as not needed is definitely not needed, i.e. it is
irrelevant for the obtained output.

In the classification of Hind (Hind, 2001), our dependency analysis is a flow-
sensitive, field-sensitive, interprocedural analysis that handles associative arrays, struc-
tures and variant data types. Specific dependency results are computed for each of the
possible execution scenarios, i.e. for each exit label. Thus, our analysis also shows a
form of path-sensitivity (Hind, 2001). However, we favour the term label-sensitivity to
describe this characteristic, as it seems more appropriate applied to our case and the
language we are working with.

Our dependency analysis targets complex transition systems in general, and oper-
ating systems and microkernels in particular. These are characterized by states defined
by complex compound data structures and by transitions, i.e. state changes, that map
an input state to an output state. Automatically proving the preservation of invariants
concerning only subelements of the state, i.e. fields, array cells, etc., that have not been
altered by a transition in the system would considerably diminish the number of proof
obligations. The first step towards achieving this goal consists in automatically detect-
ing dependency summaries and the minimum relevant input information for producing
certain outputs.

As mentioned, our analysis targets fine-grained dependency summaries for arrays,
structures and variants, expressed at the level of their subelements. For variants,
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besides capturing the specific dependency on each constructor and its arguments, we
argue that additional, relevant information can be computed, regarding the subset of
possible constructors at a given program point. This is not dependency information
per se but it enriches the footprint of a predicate with useful information. Together
with the dependency information, this additional information about constructors is
meant to answer the same question, namely, what fragments of the input influence the
output, from a different, albeit related point of view. Therefore, we are simultaneously
performing a possible-constructors analysis. This has an impact on the defined abstract
dependency type, making it more complex, as we will see in the following section. The
possible-constructors analysis could be performed separately, as a stand-alone analysis.
By performing the two analyses simultaneously, we lose some of the precision that
would be attained if the two were performed separately, but we reduce overhead and
present relevant information in a unified manner.

Designing the analysis as a tool to be used in the context of interactive program
verification, on both code and specifications, has led to specific traits. One of them
concerns the treatment of arrays. In contrast to dependence and liveness analyses used
for code optimizations (Gross and Steenkiste, 1990), which require precision for every
array cell, we compute dependency information referring to all cells of the array or
to all but one cell, for which an exceptional dependency is computed. In practice, a
considerable number of relevant properties and operations involving arrays fall into this
spectrum.

In the following subsection, in order to better illustrate the problem that our analysis
addresses, we briefly present two examples of αSmil predicates manipulating structures,
variants and arrays and describe the dependency information that we are targeting.

5.1.1 Targeted Dependency Information

To present the envisioned dependency results, we consider two αSmil predicates, thread
and start_address, whose control flow graphs and implementations are shown below.
Both predicates manipulate inputs of type process, introduced in Section 3.1.5 (on
page 49) and shown in Figure 5.2. Internally, they handle values of type thread and
memory_region, respectively, described in Section 3.1.5 (on page 48) as well and shown
below in Figure 5.1.

type memory_region = {
// Start address
start : int ;
// Region length
length : int

}

type thread = {
// Identifier
id : int ;
// Current state
crt_state : state;
// Stack
stack : memory_region

}

Figure 5.1 – Example Data Types – Thread and Memory Region
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type option <A> =
| None
| Some (A a)

type process = {
// Array of associated threads
threads : array <option <thread >>;
// Internal id
pid : int ;
// Currently running thread
crt_thread : int ;
// Address space
adr_space : address_space

}

Figure 5.2 – Input Type – Process

The first predicate, thread, having the control flow graph shown in Figure 5.4 and
whose implementation is shown in Figure 5.3, receives a process p and an index i
as inputs. It reads the i-th element in the threads array of the input process p. If
this element is active, then the predicate exits with the label true and outputs the
corresponding thread ti. Otherwise, it exits with the label None and no output is
generated.

predicate thread ( process p, int i)
-> [ true: thread ti|None|oob]

{{ array <option <thread >> th, option <thread > tio }} {
th := p. threads : [ true -> 1];
tio := th[i] : [ true -> 2, f a l s e -> 5];
switch (tio) as [ |ti] : [None -> 4, Some -> 3];
[ true];
[None ];
[oob]

}

Figure 5.3 – Predicate thread – Implementation

Our dependency analysis should be able to distinguish between the different exit
labels of the predicate. For the label true for instance, it should detect that only
the field threads is read by the predicate, while all others are irrelevant to the result.
Furthermore, it should detect that for the threads array of the input p only the i-th
element is inspected. Additionally, since we are considering the label true, the i-th
element is necessarily an active thread, indicated by the constructor Some. The other
constructor, None, is impossible for this execution scenario. On the contrary, for the
exit label None, the constructor Some is impossible. For the exit label oob, nothing but
the index i and the “support” or “length” of the associated threads array is read. The
targeted dependency results for the predicate thread are depicted in Figure 5.5.

The second predicate, start_address, whose control flow graph is shown in Fig-
ure 5.6, receives a process p and an index j as inputs and finds the start address of
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th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None

Figure 5.4 – Gthread – Control Flow Graph of Predicate thread

Exit label true:

adr_space

crt_thread

pid

process p

i
threads

Exit label None:

adr_space

crt_thread

pid

process p

i
threads

option<thread>:

Some(thread t)

None

Read/Needed

Irrelevant/Not Needed

Figure 5.5 – Targeted Dependency Results for Predicate thread

the stack corresponding to an active thread. It makes a call to the predicate thread,
thus reading the j-th element of the threads array of its input process. If this is an
active element, it further accesses the field stack, from which it only reads the start
address start. Otherwise, if the element is inactive, the predicate forwards the exit
label None of the called predicate thread and generates no output. When given an
invalid index i, the predicate exits with label oob. The predicate’s implementation is
shown in Figure 5.7.

The dependency information for this predicate should capture the fact that on the
true execution scenario, only the field start of the input’s j-th associated thread is
read. Furthermore, the only possible constructor on this execution path is the Some
constructor. On the contrary, for the None execution scenario the only possible con-
structor is the None constructor. The targeted dependency results for the start_address
predicate are depicted in Figure 5.8. We remark that for the oob execution scenario,
only the “support” or “length” of the threads array is read.
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thread(p, j)[true: tj | None | oob]

sj := tj.stack None

adr := sj.start

true

error

true
None

true

true

oob

Figure 5.6 – Gstart_address – Control Flow Graph of Predicate
start_address

predicate start_address ( process p, int j)
-> [ true: int adr|None]

{{ thread tj, memory_region sj }} {
thread (p, j)[ true: tj | None | oob] : [ true -> 1,

None -> 4, oob -> 5];
sj := tj. stack : [ true -> 2];
adr := sj.start : [ true -> 3];
[ true];
[None ];
[error]

}

Figure 5.7 – Predicate start_address – Implementation
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Figure 5.8 – Targeted Dependency Results for Predicate
start_address
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5.1.2 Outline

The rest of this chapter is focusing on technical details related to the dependency analy-
sis. In Section 5.2 we present the abstract dependency domain. This is the fundamental
building block on which our analysis relies in order to determine expressive dependency
summaries. It is followed in Section 5.3 by an in-depth description of our analysis at an
intraprocedural level, underlining the data-flow equations in Section 5.3.2 and explain-
ing them by illustrating the step-by-step mechanism on an example in Section 5.3.3. A
summary of the dependency analysis at an interprocedural level is given in Section 5.4.
We illustrate the approach, underline its shortcomings on an example in Section 5.4.1,
and discuss their origin in Section 5.4.2. Two different semantic interpretations of our
dependency information are discussed in Section 5.5. In Section 5.6 we review and
discuss approaches targeting information that is similar to our dependency summaries.
Finally, in Section 5.7 we conclude and present some other potential applications of
our dependency analysis, which are not confined to the field of interactive program
verification.

5.2 Abstract Dependency Domain
The first step towards inferring expressive, type-sensitive results that capture the de-
pendency specific to each subelement of an algebraic data type or an associative array,
is the definition of an abstract dependency domain D, that mimics the structure of such
data types. The dependency domain δ ∈ D, shown below, is defined inductively from
the three atomic cases — >, � and ⊥ — and mirrors the structure of the concrete
types.

Definition 5.2.1. Dependency Domain δ ∈ D.

δ := | > Everything – atomic case (i)
| � Nothing – atomic case (ii)
| ⊥ Impossible – atomic case (iii)
| {f1 7→ δ1; . . . ; fn 7→ δn} f1, . . . , fn fields (iv)
| [C1 7→ δ1; . . . ;Cm 7→ δm] C1, . . . , Cm constructors (v)
| 〈δ〉 (vi)
| 〈δdef . i : δexc〉 i array index (vii)

As reflected by the above definition, the dependency for atomic types is expressed in
terms of the domain’s atomic cases: > (least precise), denoting that everything is needed
and �, denoting that nothing is needed. The third atomic case ⊥, denoting impossible,
is introduced for the possible constructors analysis performed simultaneously, and is
further explained below.

The dependency of a structure (iv) describes the dependency on each of its fields. For
instance, revisiting our thread example from Section 5.1.1, we could express an over-
approximation of the dependency information depicted for the process p in Figure 5.5
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using the following dependency:

{threads 7→ >; pid 7→ �; crt_thread 7→ �; adr_space 7→ �}.

This captures the fact that all fields except the threads field are irrelevant, i.e. they
are not read and nothing in their contents is needed. The dependency for the threads
field is an over-approximation and expresses the fact that it is entirely necessary, i.e.
everything in its value is needed for the result.

For arrays we distinguish between two cases, namely arrays with a general depen-
dency applying to all of the cells given by (vi) and arrays with a general dependency
applying to all but one exceptional cell, for which a specific dependency is known given
by (vii). For instance, for the threads field of the previous example, the following de-
pendency:

〈� . i : >〉

would be a less coarse approximation, capturing the fact that only the i-th element of
the associated threads array is needed, while all others are irrelevant.

For variants (v), the dependency is expressed in terms of the dependencies of their
constructors, expressed in turn in terms of their arguments’ dependencies. Thus, a
constructor having a dependency mapped to � is one for which nothing but the tag
has been read, i.e. its arguments, if any, are irrelevant for the execution. For in-
stance, for the i-th element of the threads array of our previous example, the following
dependency:

[Some 7→ >; None 7→ �]

would be a more precise approximation, when considering the exit label true. It is
still an over-approximation as it expresses that both constructors are possible. The
argument of the Some constructor is entirely read, while for None only the tag is read.

For variants, we want to take a step further and to also include the information
that certain constructors cannot occur for certain execution paths. Impossible, the
third atomic case — ⊥ — is introduced for this purpose. As mentioned previously
in Section 5.1, in order to obtain this additional information, we perform a “possible-
constructors” analysis simultaneously, which computes for each execution scenario, the
subset of possible constructors for a given value, at a given program point. All construc-
tors that cannot occur on a given execution path are marked as being ⊥. In contrast,
constructors for which only the tag is read are marked as �. The difference between ⊥
and � can be illustrated by considering a polymorphic option type option<A>, having
two constructors, None and Some(A val), respectively, and a Boolean predicate that
pattern matches on an input of this type and returns false in the case of None and
true in the case of Some, unconditioned by the value val of its argument. For the
true execution scenario, the dependency on the Some constructor would be �. The
tag is read and it is decisive for the outcome, but the value of its argument val is
completely irrelevant. The dependency on the None constructor however would be ⊥:
the predicate can exit with label true if and only if the input matches against the Some
constructor. By distinguishing between these two cases we can not only distinguish the
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input’s subelements that have a direct impact on an operation’s output, but addition-
ally, we can also obtain a more detailed footprint that highlights the influence exerted
by the input’s “shape” on the operation’s outcome.

For instance, for the i-th element of the threads array of our previous example, a
dependency mapping the constructor None to ⊥ would be a more precise approximation,
when considering the label true. Taking into account all the discussed values, we can
express the dependency depicted in Figure 5.5 for the label true as follows:

threads 7→ 〈� . i : [Some 7→ >; None 7→ ⊥]〉
pid 7→ �
crt_thread 7→ �
adr_space 7→ �

 .
We remark that >, � and ⊥ can apply to any type. For instance, > can be seen

as a placeholder for data that is needed in its entirety. Structure, array or variant
dependencies whose subelements are all entirely needed and thus, uniformly mapped
to >, are transformed to >. The ⊥ dependency is a placeholder for data that cannot
occur on a certain execution scenario. A whole variant value is impossible if all its
constructors are mapped to ⊥. A whole structure or array is impossible if any of its
subelements is impossible.

The ⊥ atomic value is the lower bound of our domain and hence, the most precise
value. The final abstract dependency is a closure of all these combined recursively. To
give an intuition of the shape of our dependency lattice, we illustrate below in Figure 5.9
the Hasse diagram of the order relation between pairs of atomic dependency values.
Intuitively, if the two analyses would be performed separately, the upper “diamond”
shape would correspond to the dependency analysis, and the lower one to the possible-
constructors analysis. The � element would be the lower bound for the dependency
domain and the upper bound for the possible-constructors domain. By performing
them simultaneously, ⊥ becomes the domain’s lower bound.

(>,>)

(>,�) (�,>)

(�,�)

(⊥,�) (�,⊥)

(⊥,⊥)

(>,⊥) (⊥,>)

Figure 5.9 – Order Relation on Pairs of Atomic Dependencies

The partial order relation is denoted by v and defined as shown below.

Definition 5.2.2. Partial Order v.

v ⊆ D ×D.
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Table 5.1 – v – Comparison of Two Domains

δ v >
Top

⊥ v δ
Bot

δ1 v δ′1 . . . δn v δ′n
{f1 7→ δ1; . . . ; fn 7→ δn} v {f1 7→ δ′1; . . . ; fn 7→ δ′n}

Str
� v δ1 . . . � v δn
� v {f1 7→ δ1; . . . ; fn 7→ δn}

�Str

δ1 v δ′1 . . . δn v δ′n
[C1 7→ δ1; . . . ;Cn 7→ δn] v [C1 7→ δ′1; . . . ;Cn 7→ δ′n]

Var
� v δ1 . . . � v δn
� v [C1 7→ δ1; . . . ;Cn 7→ δn]

�Var

δdef v δ′def

〈δdef 〉 v 〈δ′def 〉
ADef

� v δdef

� v 〈δdef 〉
�ADef

δdef v δ′def δexc v δ′def

〈δdef . i : δexc〉 v 〈δ′def 〉
AIA

δdef v δ′def δdef v δ′exc

〈δdef 〉 v 〈δ′def . i : δ′exc〉
AAI

δdef v δ′def δexc v δ′exc

〈δdef . i : δexc〉 v 〈δ′def . i : δ′exc〉
AI
� v δdef � v δexc

� v 〈δdef . i : δexc〉
�AI

δdef v δ′def δexc v δ′exc δdef v δ′exc δexc v δ′def i 6= j

〈δdef . i : δexc〉 v 〈δ′def . j : δ′exc〉
AIJ

It is used to compare dependencies and it is detailed in Table 5.1. We write δ1 v δ2
and we read it as “a dependency δ1 is more precise than another dependency δ2” if
it represents a smaller subset of a structural object, and if it allows at most as many
constructors as δ2. The greatest element is > (Top) and ⊥ is the least (Bot). Instances
of identical structure and variant types are compared pointwise (Str, Var). For arrays
without known exceptional dependencies we compare the default dependencies applying
to all array cells (ADef). If exceptional dependencies are known for the same cell, these
are additionally compared (AI). For arrays with known exceptional dependencies for
different cells, we compare each dependency on the left-hand side with each one on the
right-hand side (AIJ). The comparison of � with structures (�Str), variants (�Var)
and arrays (�ADef, �AI) is a pointwise comparison between � and the dependency
of each subelement.

5.2.1 Join and Reduction Operator

The join operation is denoted by ∨ and it is defined as shown below.

Definition 5.2.3. Join Operation ∨.

∨ : D ×D → D.
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It is detailed in Table 5.2. Intuitively, the join of two dependencies is the union of
the dependencies represented by the two. It is a commutative operation for which the
undisplayed cases in Table 5.2 are defined by their symmetrical counterparts. The
operation is total: joining incompatible domains such as a structure and a variant or
two structures having different field identifiers, results in >, the least precise value.
Join is applied pointwise on each subelement; ⊥ is its identity element and > is its
absorbing element. Joining � and the dependency of a structure, variant or array is
applied pointwise. The value obtained by joining δ and δ′ is an upper bound of the two:

δ v δ ∨ δ′ and δ′ v δ ∨ δ′, ∀ δ, δ′ ∈ D.

Defining the join of two dependencies corresponding to arrays is subtle. As shown
in Table 5.1, we are allowing comparisons between dependencies corresponding to ar-
rays with exceptions on different variables (rule AIJ); the join operation in this case
amounts to joining the four different dependencies without keeping any of the two ex-
ceptions. We could have chosen to keep one of the known exceptional dependencies
but this would have posed two problems: on one hand, the join operation would not
be commutative, and, on the other hand, it is hard to predict how the exceptional
dependencies would be used at the intraprocedural level and which of the two could
potentially lead to a gain in precision. Thus, we adopted this design decision. A
strategy possibly worth investigating in such cases would be to allow users to specify
array cells of interest at specific program points. This user-supplied information could
then be taken into consideration whenever joining array dependencies with two differ-
ent known exceptional dependencies. Our current join approach for arrays can lead to
non-monotonic approximations in join. This becomes visible when noting that for a

Table 5.2 – ∨ – Join Operation

δ′ δ′′ δ′ ∨ δ′′

> ∨ δ = >
⊥ ∨ δ = δ

{f1 7→ δ1; . . . ; fn 7→ δn} ∨ {f1 7→ δ′1; . . . ; fn 7→ δ′n} = {f1 7→ δ1 ∨ δ′1; . . . ; fn 7→ δn ∨ δ′n}
� ∨ {f1 7→ δ1; . . . ; fn 7→ δn} = {f1 7→ � ∨ δ1; . . . ; fn 7→ � ∨ δn}

[C1 7→ δ1; . . . ;Cn 7→ δn] ∨ [C1 7→ δ′1; . . . ;Cn 7→ δ′n] = [C1 7→ δ1 ∨ δ′1; . . . ;Cn 7→ δn ∨ δ′n]
� ∨ [C1 7→ δ1; . . . ;Cn 7→ δn] = [C1 7→ � ∨ δ1; . . . ;Cn 7→ � ∨ δn]

〈δdef 〉 ∨ 〈δ′def 〉 = 〈δdef ∨ δ′def 〉
� ∨ 〈δdef 〉 = 〈� ∨ δdef 〉

〈δdef 〉 ∨ 〈δ′def . i : δ′exc〉 = 〈δdef ∨ δ′def . i : δdef ∨ δ′exc〉
� ∨ 〈δdef . i : δexc〉 = 〈� ∨ δdef . i : � ∨ δexc〉

〈δdef . i : δexc〉 ∨ 〈δ′def . j : δ′exc〉
{
i = j

i 6= j
=

〈δdef ∨ δ′def . i : δexc ∨ δ′exc〉
〈δdef ∨ δexc ∨ δ′def ∨ δ′exc〉

� ∨ � = �
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monotonic join operation the following should hold:

∀δ, δ′, ρ, δ v δ′ =⇒ δ ∨ ρ v δ′ ∨ ρ (i).

Considering:
ρ ≡ 〈ρdef . i : ρi〉
δ ≡ 〈δdef . j : δj〉
δ′ ≡ 〈δ′def . i : δ′i〉 where i 6= j

the hypothesis δ v δ′ is translated into the following constraints:

δdef v δ′def , δdef v δ′i, δj v δ′def , δj v δ′i.

Applying (i) for these three dependencies, we obtain:

〈(δdef ∨ δj) ∨ (ρdef ∨ ρi)〉 v 〈δ′def ∨ ρdef . i : δ′i ∨ ρi〉,

which holds if and only if both of the following inequalities hold:

(δdef ∨ δj) ∨ (ρdef ∨ ρi) v δ′def ∨ ρdef
(δdef ∨ δj) ∨ (ρdef ∨ ρi) v δ′i ∨ ρi

.

Considering, for instance,

ρi = >, ρdef 6= >, δdef = δj = δ′def = ⊥,

a counterexample is found.
As a consequence of the non-monotonic approximations made for arrays (rule AIJ),

the value obtained by joining two dependencies is an upper bound, not a least upper
bound. We address this issue and indicate our solution in Section 5.3 (on page 94).
We remark that we keep only one exceptional cell for array dependencies as in practice
most operations manipulating arrays tend to either modify only one element or all of
them. Logical properties on arrays generally have to hold for all elements. Keeping
more than one exceptional dependency would be much more costly, and the additional
cost would not necessarily be justified in practice. However, the join operation would
be more straightforward and would not impose non-monotonic approximations.

Besides join, a reduction operator denoted by ⊕ has been defined as well.

Definition 5.2.4. Reduction Operator ⊕.

⊕ : D ×D → D.

This is a recursive, commutative, pointwise operation. Intuitively, this operator is intro-
duced for taking advantage of the information additionally computed by the possible-
constructors analysis that we perform simultaneously. Following the same execution
path, the same constructors must be possible. The reduction operator is used in order
to incorporate this additional information computed for constructors. The dependency
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analysis can be seen as amay analysis, i.e. when combining the dependency information
computed at two different points on the same execution path, the result must account
for all dependencies computed at any of the two combined points. In contrast, the
possible-constructors analysis can be seen as a must analysis, i.e. when combining in-
formation at two different points on the same execution path, it needs to keep facts that
hold at both combined points. Thus, the reduction operator combines dependencies on
the same execution path and consists in performing the intersection of constructors in
the case of variants and the union of dependencies for all other types. The reduction
operator’s role will become more transparent after presenting the intraprocedural de-
pendency analysis and the corresponding data-flow equations in Section 5.3. Its identity
element is � and its absorbing element is ⊥. The reduction operator between >, and
the dependency of a structure, variant or array is applied pointwise. Two instances of
identical variant types are pointwise reduced. Similarly to join, the undisplayed cases
in Table 5.3 are defined with respect to their symmetrical counterparts.

δ′ δ′′ δ′ ⊕ δ′′

⊥ ⊕ δ = ⊥
� ⊕ δ = δ

{f1 7→ δ1; . . . ; fn 7→ δn} ⊕ {f1 7→ δ′1; . . . ; fn 7→ δ′n} = {f1 7→ δ1 ⊕ δ′1; . . . ; fn 7→ δn ⊕ δ′n}
{f1 7→ δ1; . . . ; fn 7→ δn} ⊕ > = {f1 7→ δ1 ⊕>; . . . ; fn 7→ δn ⊕>}
[C1 7→ δ1; . . . ;Cn 7→ δn] ⊕ [C1 7→ δ′1; . . . ;Cn 7→ δ′n] = [C1 7→ δ1 ⊕ δ′1; . . . ;Cn 7→ δn ⊕ δ′n]
[C1 7→ δ1; . . . ;Cn 7→ δn] ⊕ > = [C1 7→ δ1 ⊕>; . . . ;Cn 7→ δn ⊕>]

〈δdef 〉 ⊕ 〈δ′def 〉 = 〈δdef ⊕ δ′def 〉
〈δdef 〉 ⊕ 〈δ′def . i : δ′exc〉 = 〈δdef ⊕ δ′def . i : δdef ⊕ δ′exc〉

〈δdef . i : δexc〉 ⊕ 〈δ′def . j : δ′exc〉 =
〈δdef ⊕ δ′def . i : δdef ⊕ δ′exc〉 where i = j

〈(δdef ∨ δexc)⊕ (δ′def ∨ δ′exc)〉 otherwise
〈δdef 〉 ⊕ > = 〈δdef ⊕>〉

〈δdef . i : δexc〉 ⊕ > = 〈δdef ⊕> . i : δexc ⊕>〉
> ⊕ > = >

Table 5.3 – ⊕ – Reduction Operator

Finally, the extractions summarized in Table 5.4, have been defined for dependencies
δ and are used to express the data-flow equations of Section 5.3.
Definition 5.2.5. Extraction of a field’s dependency.

.f : D 9 D.

Definition 5.2.6. Extraction of a constructor’s dependency.

@C : D 9 D.

Definition 5.2.7. Extraction of an array’s cell dependency.

〈i〉 : D 9 D.
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Definition 5.2.8. Extraction of an array’s dependency outside a cell i.

〈∗ \ i〉 : D 9 D.

Definition 5.2.9. Extraction of an array’s general dependency.

〈∗〉 : D 9 D.

They are partial functions, and can only be applied on dependencies of the cor-
responding kind. For instance, the field extraction .f only makes sense for atomic or
structured values with a field named f , which should be the case if the dependency
represents a variable of a structured type with some field f . For any of the atomic
dependencies δa, applying any of the defined extractions yields δa.

Table 5.4 – Dependency Extractions

δ.f, f ∈ F

>.f = >
�.f = �
⊥.f = ⊥
{f1 7→ δ1; . . . ; fn 7→ δn}.f = δi if f = fi

δ@C,C ∈ C

>@C = >
�@C = �
⊥@C = ⊥
[C1 7→ δ1; . . . ;Cm 7→ δm]@C = δj if C = Cj

δ〈∗ \ i〉 δ〈i〉 δ〈∗〉

>〈∗ \ i〉 = > >〈i〉 = > >〈∗〉 = >
�〈∗ \ i〉 = > �〈i〉 = � �〈∗〉 = �
⊥〈∗ \ i〉 = ⊥ ⊥〈i〉 = ⊥ ⊥〈∗〉 = ⊥
〈δdef 〉〈∗ \ i〉 = δdef 〈δdef 〉〈i〉 = δdef 〈δdef 〉〈∗〉 = δdef

〈δdef . k : δexc〉〈∗ \ i〉 ={
δdef when i = k
δdef ∨ δexc otherwise

〈δdef . k : δexc〉〈i〉 ={
δexc when i = k
δdef ∨ δexc otherwise

〈δdef . k : δexc〉〈∗〉 =
δdef ∨ δexc

5.2.2 Well-Typed Dependencies

The described syntactic dependencies are untyped. However, their interpretation is
made in the context of a type τ . Dependencies such as � or > do not exhibit any data
type features and can apply to any type, but others will be completely constrained, and
most will fall in between, uncovering a few layers of structured types before reaching one
of the “generic” leaves, �, > or ⊥. For example, the dependency {f 7→ δf} only really
makes sense for structured types with a single field f , whose type itself is compatible
with δf , and shall not be used in connection with variant or array types.

As a consequence, we conclude the presentation of our abstract dependency type
by explaining what it means for a dependency to be compatible with some type τ , i.e.
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to be well-typed of some type τ . This is described as a judgement parameterized by the
typing environment Γ (Definition 4.3.1) and the different inference rules are detailed in
Table 5.5.

Γ ` > : τ
WT>

Γ ` ⊥ : τ
WT⊥

Γ ` � : τ
WT�

τ = struct{f1 : τ1, . . . , fn : τn}
Γ ` δ1 : τ1 . . . Γ ` δn : τn
Γ ` {f1 7→ δ1; . . . ; fn 7→ δn} : τ

WTStruct

τ = variant[C1 : τ1| . . . | Cn : τn]
Γ ` δ1 : τ1 . . . Γ ` δn : τn
Γ ` [C1 7→ δ1; . . . ;Cn 7→ δn] : τ

WTVar

Γ ` δdef : τ
Γ ` 〈δdef 〉 : arrτi〈τ〉

WTArr

Γ ` δdef : τ Γ ` δexc : τ Γ(i) = τi

Γ ` 〈δdef . i : δexc〉 : arrτi〈τ〉
WTArrI

Table 5.5 – Well-Typed Dependencies

The atomic dependency values are generic: they are well-typed with respect to any
type (WT>, WT�, WT⊥). The dependency δ for a structure (WTStruct) is well-
typed only with respect to an adequate structured type, whose field types are themselves
compatible with the dependency mapped to them in δ. Similarly, the dependency δ
for a variant (WTVar) is well-typed only with respect to an adequate variant type.
In turn, its constructors must be themselves compatible with the dependency mapped
to them in δ. For well-typed array dependencies (WTArr, WTArrI), the default
dependency as well as the exceptional dependency have to be compatible with the
type τ of the array’s elements. Furthermore, the type of i, the index of the known
exceptional dependency has to be compatible with τi, the array’s index type.

In the following section, we are discussing our intraprocedural dependency domain
and the manner in which dependencies are computed and manipulated.

5.3 Intraprocedural Analysis and Data-Flow Equations

5.3.1 Intraprocedural Dependency Domains

At an intraprocedural level, dependency information has to be kept at each point of
the control flow graph, for each variable of the typing environment Γ, that maps input,
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output and local variables to their types. We use the term domain to denote this
information.

Definition 5.3.1. Intraprocedural Dependency Domain ∆ ∈ D . An intraprocedural
domain ∆ ∈ D :

∆ : V → D

is a mapping from variables to dependencies.

An intraprocedural domain is associated to every node of the control flow graph, rep-
resenting the dependencies at the node’s entry point. A special case is the mapping
which binds all variables to ⊥, which we call Unreachable:

Unreachable ≡ x 7→ ⊥.

In particular it is associated to nodes that cannot be reached during the analysis.
Also, if any of the variables of ∆ is marked as ⊥, the entire node collapses, becoming
Unreachable.

For any node of the control flow graph associated to an intraprocedural domain ∆,
∆(x) retrieves the dependency associated to the variable x. If a dependency for x has
not been computed yet, it is mapped to �.

Forgetting a variable x from a reachable intraprocedural domain, denoted by ∆ \ x,
“erases” the variable’s dependency information, by mapping it to �.

Definition 5.3.2. Forget x.

∆ \ x =


Unreachable when ∆ = Unreachable

∆′ = y 7→
{

∆(y) when y 6= x
� when y = x

The v∆, ∨∆ and ⊕∆ operations are pointwise extensions of v (defined in 5.2.2), ∨
(defined in 5.2.3), and ⊕ (defined in 5.2.4), respectively; they apply to intraprocedural
dependency domains, for each variable and its associated dependency δv.

We define a partial order v∆ on D .

Definition 5.3.3. Intraprocedural Partial Order v∆.

v∆ ⊆ D ×D , ∆′ v∆ ∆′′ iff ∆′(x) v ∆′′(x),∀x ∈ V.

In particular, Unreachable is the bottom of this intraprocedural lattice. It is the identity
element of the intraprocedural join ∨∆ operation and the absorbing element of the
intraprocedural reduction operator ⊕∆ defined below.

Definition 5.3.4. Intraprocedural Join Operation ∨∆.

∨∆ : D ×D → D

∆′ ∨∆ ∆′′ = ∆ ⇐⇒ ∆(x) = ∆′(x) ∨∆′′(x),∀x ∈ V.
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Definition 5.3.5. Intraprocedural Reduction Operator ⊕∆.

⊕∆ : D ×D → D

∆′ ⊕∆ ∆′′ = ∆ ⇐⇒ ∆(x) = ∆′(x)⊕∆′′(x), ∀x ∈ Γ.

Finally, an intraprocedural domain ∆ is well-typed with respect to a typing envi-
ronment Γ if and only if the dependency mapped to any variable x is well-typed with
respect to x’s type in the typing environment Γ (Definition 4.3.1).

5.3.2 Intraprocedural Data-Flow Equations

Table 5.6 – Statements – Representations and Data-Flow Equations

Representation Equation
n

n1 . . . ni . . . nk∆n1

∆ni ∆nk

s, λ1 s, λks, λi
∆n =

∨
∆

n
s,λi−−→ni

JsKλi(∆ni)

Our dependency analysis is a backward data-flow analysis. For each exit label, it
traverses the control flow graph starting with its corresponding exit node and it marks
all other exit points as Unreachable, since exit labels are mutually exclusive. The in-
traprocedural domain for the currently analysed label is initialized with its associated
output variables mapped to >. Thereby, the analysis starts by making a conservative
approximation and by considering that all the input has been observed and the output
depends on it entirely. Typically, dependence analyses are forward analyses. However,
given our goal to express label-specific dependencies as input-output relations and tak-
ing into consideration the characteristics of the αSmil language, choosing to design our
analysis as a backward data-flow analysis seemed a pertinent choice. In αSmil, outputs
are associated to a particular exit label and they are generated if and only if the pred-
icate exits with that particular label. By traversing the control flow graph backwards,
we can use this information and consider, starting with the initialisation phase, only
the outputs that are relevant for the analysed exit label.

After the initialisation, the analysis then traverses the control flow graph and grad-
ually refines the dependencies until a fixed point is reached. Table 5.6 summarizes the
representation and general equation of the statements. For each statement, the pre-
sented data-flow equation operates on the intraprocedural domains of the statement’s
successor nodes. The intraprocedural domain at the entry point of the node is obtained
by joining the contributions of each outgoing edge as shown in Figure 5.10.

Definition 5.3.6. The contribution of an edge (ni, nj) labeled with s and λ is given
by JsKλ(∆nj ) where JsKλ(.) is the transfer function of the edge labeled s, λ.
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Dependencies corresponding to variables that are written by a statement s on an exit
label λ, denoted by gens,λ in Figure 5.10, are forgotten from the intraprocedural domain
on which we are operating.

statement

∆in = JsKλ1(∆λ1)∨∆ . . .∨∆JsKλn(∆λn)
JsKλi(∆i) : (∆i \ gens,λi

)⊕∆ δs,λi

δs,λi
contribution of s on λi

δs,λ1
∆λ1

. . .
δs,λn

∆λn

(∆λ1 \ gens,λ1) ⊕∆δs,λ1 (∆λn \ gens,λn
) ⊕∆δs,λn

Figure 5.10 – Computation of the Intraprocedural Domain at a Node’s
Entry Point

In Section 5.2.1 we explained that as a consequence of the non-monotonic approxi-
mations made when joining dependencies corresponding to arrays, the result of the join
operation is an upper bound, not a least upper bound. In order to deal with this issue, we
adopt the generic solution consisting of systematically joining the dependency domain
associated to a node before its iteration with the new dependency domain computed
by the transfer function. Thus, the dependency domain of a node n is:

∆n = old(∆n)∨∆ (
∨

∆
n−→n′

JsKλ(∆n′)).

This is not prohibitive in terms of performance, leading to an increase of the execution
time of 5% to 10%.

Tables 5.7, 5.8, 5.9, 5.10 define the transfer functions for each built-in statement
of our language, whereas the general case of a predicate call and its corresponding
equation will be detailed in Section 5.4.

Table 5.7 presents the transfer functions for statements which are not type-specific.
For equality tests (1) both of the inputs e1, e2 are completely read, whether the test
returns true or false. The transfer functions therefore, reduce the domain of the corre-
sponding successor node with a domain consisting of e1 and e2 both mapped to >. In
the case of assignment (2), the dependency of the written output variable o is forgotten
from the successor’s intraprocedural domain, thus being mapped to � and forwarded
to the input variable e. The transfer function for the nop operation (3) is simply the
identity.
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Statement JsKλi(∆)

Equality test (1)
Je1 = e2Ktrue(∆) = ∆ ⊕∆ dep where

Je1 = e2Kfalse(∆) = ∆ ⊕∆ dep dep =
{
e1 7→ >
e2 7→ >

}

Assignment (2) Jo := eKtrue(∆) = (∆ \ o) ⊕∆ {e 7→ ∆(o)}

No Operation (3) JnopKtrue(∆) = ∆

Table 5.7 – Generic Statements – Data-Flow Equations

The data-flow equations given in Table 5.8 correspond to structure-related state-
ments. For the equations (4), (5), (6) and (7) we assume that the variable r is of type
struct{f1 : τ, . . . , fn : τ} for some fields fi, 1 ≤ i ≤ n. The equation (4) refers to the
creation of a structure: each input ei is read as much as the corresponding field fi of
the structure is read. The destructuring of a structure is handled in (5): each field fi is
needed as much as the corresponding variable oi is. When accessing the i-th field of a
structure r (6), only the field fi is read, and only as much as the access’ result o itself.
The equation (7) treats field updates: the variable ei is read as much as the field fi is.
The structure r is read as much as all the fields other than fi are read in r′. Finally, the
equations given in (8) handle partial structure equality tests, and the transfer functions
are the same for the labels true or false: for both compared structures r′ and r′′, all the
fields in the given set f1, . . . , fk are completely read, and only those.

Statement JsKλi(∆)

Create (4) Jr := {e1, . . . , en}Ktrue(∆) = (∆ \ r) ⊕∆
⊕

1≤i≤n
{ei 7→ ∆(r).fi}

Destructure (5) J{o1, . . . , on} := rKtrue(∆) = (∆ \ {oi| oi ∈ ō}) ⊕∆ {r 7→ {f1 7→ ∆(o1); . . . ; fn 7→ ∆(on)}}

Access field (6) Jo := r.fiKtrue(∆) = (∆ \ o) ⊕∆ {r 7→ {f1 7→ �; . . . ; fi 7→ ∆(o); . . . ; fn 7→ �}}

Update field (7) Jr′ := {r with fi = e}Ktrue(∆) = (∆ \ r′) ⊕∆

{
ei 7→ ∆(r′).fi
r 7→ {f1 7→ δ1; . . . ; fn 7→ δn}

}

where δj =
{

∆(r′).fj if j 6= i
� otherwise

Equality (8)

Jr′ = 〈f1, . . . , fk〉r′′Ktrue(∆) = ∆ ⊕∆ d where d =
{
r′ 7→ {f1 7→ δ1; . . . ; fn 7→ δn}
r′′ 7→ {f1 7→ δ1; . . . ; fn 7→ δn}

}

Jr′ = 〈f1, . . . , fk〉r′′Kfalse(∆) = ∆ ⊕∆ d and δi =
{
> if fi ∈ {f1, . . . , fk}
� otherwise

Table 5.8 – Structure-Related Statements – Data-Flow Equations
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The data-flow equations given in Table 5.9 correspond to variant-related statements.
They follow the same principles as those used for structure-related statements above.
Note that the transfer functions for the switch (10) and possible constructor test (11)
introduce ⊥ dependencies for constructors which are known to be impossible on the
considered edge. In particular, since ⊥ is an absorbing element for ⊕, these transfer
functions erase, for every constructor which is known to be locally impossible, all the
dependency information possibly attached to such a constructor in the successor nodes.
This is the actual raison d’être for the reduction operator, since using ∨∆ to combine
a successor domain and a local contribution would lose this information.

Finally, the equations for array-related statements are given in Table 5.10. We as-
sume for both that the context is fixed and that I is the distinguished set of input
variables for the analysed predicate. This set is used to make sure that exceptions in
array dependencies are only registered to variables in I and not local or output vari-
ables. The reason for such a constraint is pragmatic: input variables are not assignable
in our language, and therefore they always represent the same value intraprocedurally.
Otherwise, each time a variable is written by a statement, we would need to traverse
all the dependencies in the domain to erase or reinterpret the occurrences where this
variable appears as an exception. Only recording exceptions for input variables makes
this kind of costly traversal useless, and since only exceptions about input variables
make sense at the interprocedural level (see Section 5.4), we do not lose much precision
by doing so.

Statement JsKλi(∆)

Create variant (9) Jv := Cp[e]Ktrue(∆) = (∆ \ v) ⊕∆ {e 7→ ∆(v)@Cp}

Variant Switch (10) Jswitch(v) as [o1| . . . |on]Kλi(∆) = (∆ \ oi)⊕∆ {v 7→ depi}
where depi = [C1 7→ ⊥; . . . ;Ci 7→ ∆(oi); . . . ;Cn 7→ ⊥]

Possible variant (11)

Jv ∈ {C1, . . . , Ck}Ktrue(∆) = ∆ ⊕∆ {v 7→ [C1 7→ δ1; . . . ;Cn 7→ δn; ]}

where δi =
{

∆(v)@Ci if Ci ∈ {C1, . . . , Ck}
⊥ otherwise

Jv ∈ {C1, . . . , Ck}Kfalse(∆) = ∆ ⊕∆
{
v 7→

[
C̄1 7→ δ̄1; . . . ; C̄n 7→ δ̄n;

]}

where δ̄i =
{

∆(v)@C̄i if C̄i /∈ {C1, . . . , Ck}
⊥ otherwise

Table 5.9 – Variant-Related Statements – Data-Flow Equations



5.3. Intraprocedural Analysis and Data-Flow Equations 97

Statement JsKλi(∆)

Array access (12)

Jo := a[i]Ktrue(∆) =


(∆ \ o) ⊕∆

{
i 7→ >
a 7→ 〈� . i : ∆(o)〉

}
when i ∈ I

(∆ \ o) ⊕∆

{
i 7→ >
a 7→ 〈∆(o) ∨ �〉

}
when i /∈ I

Jo := a[i]Kfalse(∆) = ∆ ⊕∆

{
i 7→ >
a 7→ 〈�〉

}

Array update (13)

Ja′ := [a with i = e]Ktrue(∆) =



(∆ \ a′) ⊕∆


i 7→ >
e 7→ ∆(a′)〈i〉
a 7→ 〈∆(a′)〈∗ \ i〉 . i : �〉


when i ∈ I

(∆ \ a′) ⊕∆


i 7→ >
e 7→ ∆(a′)〈∗〉
a 7→ 〈∆(a′)〈∗〉 ∨ �〉


when i /∈ I

Ja′ := [a with i = e]Kfalse(∆) = ∆ ⊕∆

{
i 7→ >
a 7→ 〈∅〉

}

Table 5.10 – Array-Related Statements – Data-Flow Equations

The transfer functions for (12) and (13) thus take care of making adequate approximations
when exceptions cannot be introduced. As for the cases when the array access exits
with the false label, note that the contribution to the array a is 〈�〉, which is strictly
less precise than �. The operation makes implicit bounds checking and this can thus
be seen as accounting for the fact that no cell in a has been read, but the “length”
or “support” of a has been read. Hence it would not be correct to claim that the
result of the statement does not depend on a at all. Similarly, a variant dependency
[C1 7→ �, . . . , Cn 7→ �] mapping all constructors to nothing has not read any value in
any of the constructors, but may still depend on the variant’s constructor itself. In
contrast, we do not make this distinction for structures because we assume surjective
pairing, i.e. structure values consist only of the fields themselves. Our solution can
easily be adapted in order to deal with non-surjective cases.

5.3.3 Intraprocedural Dependency Analysis Illustrated

To better illustrate our analysis at an intraprocedural level, we exemplify the mechanism
behind it, step by step, on the predicate thread, discussed in Section 5.1.1. We consider
the true execution scenario, apply our dependency analysis and compare the actual
obtained results with the targeted ones depicted in Figure 5.5.

Since a predicate can only exit with one label at a time and we are considering the
true label, we can map the nodes None and oob to Unreachable, as shown in Figure 5.11.
This is an advantage of backwards analyses. For true, we make a pessimistic assumption
and map the output ti to >, considering that control on the output is external and
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th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None
Unreachable

Unreachableti 7→ >

Figure 5.11 – Analysing Predicate thread – Initialisation

hence, out of our reach, and that ti will be entirely needed by a potential caller. Going
further up the control flow graph, we analyse the variant switch.

In order to compute the dependency for the node corresponding to the variant
switch, we apply the data-flow equation, given by (10) in Table 5.9. Since we are
analysing the true case, we know that all other constructors (only the constructor None
in this case) are locally impossible. Thus, we map it to ⊥. We continue by forgetting
the dependency information we knew about the output ti. Since its value is needed
only in as much as the result of the switch on the corresponding edge is needed, we
forward it to the part corresponding to the Some constructor. This is summarized below:

. . . ⊕⊕ . . .⊥ ⊥

C1 CSome Cn

tio =

ti =

Jswitch(v) as [o1| . . . |on]Kλi(∆) = (∆ \ oi)⊕ {v 7→ depi}
where
depi = [ C1 7→ ⊥; . . . ; Ci 7→ ∆(oi); . . . ; Cn 7→ ⊥ ]

Figure 5.12 – Applying the Variant Switch Equation

Taking all this into account, for the node corresponding to the variant switch, we
obtain the dependency shown in Figure 5.13. For the output ti, we depend entirely
on the Some constructor of the node’s input variant tio, while the constructor None is
impossible.

Making a step further up the graph, we access the cell i of the array th and apply
the equation (12) given in Table 5.10. We begin by forgetting the dependency for the
output tio, since this is written. Since we only access the element i, we map all other
cells to Nothing, i.e. �. To the dependency corresponding to the i-th cell, we forward
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th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 5.13 – Analysing Predicate thread – Variant Switch

the dependency we knew about tio, since we depend on it to the extent to which the
result of the access is needed.

⊕�⊕� . . . ⊕⊕ . . . ⊕�⊕�
1 i n

th =

tio =

Jo := a[i]Ktrue(∆) =


(∆ \ o) ⊕

{
i 7→ >
a 7→ 〈� . i : ∆(o)〉

}
when i ∈ I

(∆ \ o) ⊕
{
i 7→ >
a 7→ 〈∆(o) ∨ �〉

}
when i /∈ I

Figure 5.14 – Applying the Array Access Equation

We thus obtain a dependency stating that we depend only on the i-th cell of the
array th, for which only the constructor Some is possible and entirely needed. The cell’s
index i is entirely needed as well. The applied equation is shown in Figure 5.14 (since
i is an input, we use the first case of the equation) and the obtained results are shown
in Figure 5.15.

As a last step, we access the field threads of the input process p and apply the
equation (6) given in Table 5.8 and illustrated in Figure 5.16. As before, we forget the
information for th, the access result. We map all other fields to � and we forward the
dependency of the variable th to the dependency part of the field threads.

We thus obtain the dependency result shown in Figure 5.17. This states that for the
label true, the output ti depends only on the i-th cell of the field threads of the input
process p, for which it depends entirely on the Some constructor. Before returning the
predicate’s final results, the analysis filters out any dependency information referring
to local variables and verifies that the invariant imposed on dependency information
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th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

th 7→ 〈� . i: [Some 7→ >; None 7→ ⊥] 〉
i 7→ >

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 5.15 – Analysing Predicate thread – Array Access

f1 = ⊕�⊕� f2 = ⊕�⊕�

fthreads = ⊕⊕

fn−1 = ⊕�⊕� fn = ⊕�⊕�

p =

th =

Jo := r.fiKtrue(∆) = (∆ \ o) ⊕ {s 7→ {f1 7→ �; . . . ; fi 7→ ∆(o); . . . ; fn 7→ �}}

Figure 5.16 – Applying the Field Access Equation

related to arrays holds. Since the results refer only to the inputs p and i and the index
of the exceptional computed dependency is an input, the invariant holds and the final
result can be retrieved. The final dependency results obtained for the thread predicate
on the exit label true are identical to the ones that we were targeting and that were
depicted in Figure 5.5. For readability considerations, for structures such as the input
process p, we omit dependencies on fields mapped to �. We maintain this convention
throughout the rest of this chapter, and thus any field of a structure that is omitted
from a dependency summary should be interpreted as being mapped to �, i.e. nothing.

5.4 Interprocedural Dependencies
Exit labels, presented in Section 3.1.2 and in Section 4.1 (on page 63), constitute an
increased source of expressivity, as they indicate the scenario that was observed while
executing a predicate. We incorporate this expressivity in our dependency results, by
computing specific dependencies for each possible execution scenario. Therefore, our
analysis is performed label by label and interprocedural dependency domains associate
an intraprocedural domain to each exit label of the analysed predicate. The variable



5.4. Interprocedural Dependencies 101

th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

p 7→ { threads 7→ 〈� . i: [Some 7→ >; None 7→ ⊥]〉}
i 7→ >

th 7→ 〈� . i: [Some 7→ >; None 7→ ⊥] 〉
i 7→ >

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 5.17 – Analysing Predicate thread – Field Access

key-set of each associated intraprocedural domain comprises the inputs of the analysed
predicate. A label that cannot be returned is mapped to an Unreachable intraprocedural
domain. This is a form of path-sensitivity (Robert and Leroy, 2012). However, we favor
the term label-sensitivity for this characteristic, as it seems to be a more natural choice
applied to our case and the language we are working on.

An interprocedural domain of a predicate p is thus defined as shown below.

Definition 5.4.1. Interprocedural Dependency Domain.

Dp : Λp → D , where Λp the set of output labels of predicate p.

For each analysed label of a predicate, the analysis starts by initializing the intrapro-
cedural domain mapped to it, with the output variables associated to the exit label.
To avoid making any false assumption, these are initially mapped to the most general
dependency, namely >. Subsequently, as described in Section 5.3.2, the dependency
information is gradually refined until a fixed point is reached. The execution scenarios
denoted by the exit labels of a predicate are mutually exclusive. Therefore, during the
analysis of a particular exit label, all other exit labels of the predicate are mapped to
Unreachable. After reaching a fixed point, the intraprocedural domain is filtered so that
only input variables appear in the variable set. As explained in Section 5.3.2, the in-
traprocedural domains are built such that only input variables may appear as exception
indices in dependencies computed for arrays. This invariant is preserved throughout
the analysis.

Interprocedural dependency information is expressed in terms of the formal param-
eters of predicates. For analysing predicate calls, we need to substitute the formal
parameters of the callee, by the ones that are supplied by the caller. Therefore, a
substitution must be performed on interprocedural summaries. This consists in substi-
tuting all occurrences of formal input parameters of a predicate by the corresponding
effective input parameters. The substitution operation is denoted as J (χ), where χ is
a substitution from formal to effective parameters.
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We proceed by detailing the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m].

The general equation (given in Table 5.6) applies:

∆n =
∨

∆
n
s,λi−−→ni

Jp(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]Kλi(∆ni).

The transfer functions for the predicate call statement are deduced from the predicate’s
interprocedural domain in the following fashion:

Jp(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]Kλi(∆) = (∆ \ ōi)
⊕

j∈{1,...,n}
ej 7→ depij

where (PredEq)
depij = Dp(λi)(εj) J (ε̄ 7→ ē).

Namely, the mappings for the outputs ō associated to a label λi are removed, and the
contribution of a call to each input ej stems from the contribution of the interprocedural
domain for label λi and formal input εj . In these, all the formal input parameters
ε̄ in array dependency domains are substituted by the corresponding effective input
parameters from ē.

An αSmil program is analysed by computing, once and for all an interprocedural
dependency domain for every predicate. These are stored in a mapping binding pred-
icate identifiers to their interprocedural dependency domains. Whenever a predicate
call is handled intraprocedurally, the corresponding computed interprocedural depen-
dency summary is retrieved from the mapping, propagated to the calling site and used
as explained above. If an interprocedural dependency summary for a called predicate
has not been computed yet, it is handled as if it were an implicit predicate. In practice,
in programs generated in αSmil from Smil, predicates are sorted in topological order
when possible. For implicit predicates described in Chapters 3 and 4, a pessimistic
assumption is made: it is considered that everything in their inputs has been read and
is needed, for any of their possible exit labels. Since their implementation is hidden, a
conservative approximation must be made in their case.

Inductive predicates have been discussed in Section 3.1.4 (on page 46). They are
specification-only predicates and represent a disjunction of cases. Each case can intro-
duce existentially quantified variables. An inductive predicate exits with the true label
if any of its declared cases holds. Therefore, for inductive predicates one analysis per
case is made. For the true exit label, the dependency results are obtained by joining
the results of all cases. For the false label, everything is considered to be read.
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5.4.1 Interprocedural Dependency Analysis Illustrated

To better illustrate our analysis at an interprocedural level, we revisit our start_address
example predicate introduced in Section 5.1.1. We consider the true execution scenario,
apply our dependency analysis and compare the actual obtained results with the tar-
geted ones depicted in Figure 5.8.

thread(p, j)[true: tj | None | oob]

sj := tj.stack None

adr := sj.start

true

error

true
None

true

true

oob

adr 7→ >

sj 7→ {start 7→ >}

tj 7→ {stack 7→ {start 7→ >}}

Figure 5.18 – Gstart_address – Dependency Information

We begin by initialising the output adr with> and continue by traversing the control
flow graph backwards and by computing the dependency information at each node.
We apply the data-flow equation (6) given in Table 5.8 and we obtain the intermediate
results shown in Figure 5.18.

To compute the dependency information of the control flow graph’s entry node, i.e.
the one corresponding to a predicate call to thread, we use the dependency summary
computed for this predicate for the exit label true and we substitute the formal pa-
rameters, i.e. p and i appearing in it, with the effective arguments of the call, i.e. p
and j. We thus obtain the following dependency summary:

p 7→ { threads 7→ 〈� . j: [Some 7→ >; None 7→ ⊥]〉}
j 7→ >

We apply the data-flow equation (PredEq) corresponding to a predicate call, discussed
on page 102, and make use of the dependency information corresponding to the suc-
cessor node on the edge marked with true:

tj 7→ {stack 7→ {start 7→ >}}

thus obtaining the following final dependency result:

p 7→ { threads 7→ 〈� . j: [Some 7→ >; None 7→ ⊥]〉}
j 7→ >

However, the targeted results for start_address depicted in Figure 5.8 would trans-
late to:
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p 7→ { threads 7→ 〈� . j: [Some 7→ {t 7→ {stack 7→ {start 7→ >}}}; None 7→ ⊥]〉}
j 7→ >

Clearly, the dependency information computed by our analysis and shown in Fig-
ure 5.19 is an over-approximation of the results that we had envisioned. The obtained
dependency summary states that the entire j-th associated thread of the input pro-
cess p is needed in order to obtain the output adr on the true exit label. However,
in reality, only one of this thread’s fields is actually needed, namely the stack field,
for which only one subelement – the start field – is read. This loss of precision is
a consequence of the dependency information mapped to the Some constructor at the
control flow graph’s entry node, corresponding to a call to the thread predicate. When
executing successfully and exiting with label true, the thread predicate returns the i-th
associated thread of its input process. However, the predicate thread does not need this
element itself: it does not read nor use it per se, it merely retrieves it. The dependency
on this returned element is relative to the amount in which the predicate’s callers will
use it. The start_address predicate for instance, depends only on one of the 3 fields
of the returned thread. Yet, by mapping the i-th thread to > in thread’s dependency
summary, we fail to mirror this distinction. > is the top element of our dependency
domain and joining it with any other dependency will lead to >, thus shadowing any
other information we might compute while observing its usage.

5.4.2 Context-Insensitivity and its Consequences

Precision losses in dependency summaries, such as the one detected in our previous
example, are a direct consequence of considering and analysing predicates in isolation.
There is a level of information that goes beyond a predicate’s own control flow graph
and a more detailed picture that can emerge once non-local information connected to
the predicate’s use, i.e. the calling context, is included into the analysis.

Interprocedural analyses that consider the calling context when analysing the target
of a function – or, in our case, a predicate – call are context-sensitive analyses (Hind,
2001). As the name implies, context-sensitive analyses can jump back to the original
call site, using context information for the results they compute. Context-insensitive
analyses on the other hand dispense with such information and propagate back to all

thread(p, j)[true: tj | None | oob]

sj := tj.stack None

adr := sj.start

true

error

true
None

true

true

oob

adr 7→ >

sj 7→ {start 7→ >}

tj 7→ {stack 7→ {start 7→ >}}

p 7→ { threads 7→ 〈� . j: [Some 7→ >; None 7→ ⊥]〉}
j 7→ >

Figure 5.19 – Gstart_address – Final Dependency Results
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possible call sites the information that they compute once. This is a notorious source
of potential precision loss in static analysis. Choosing either one of these two traits has
significant consequences: on the one hand, by choosing to ignore the calling context
and the additional information it supplies, one pays a high price in terms of precision,
and on the other hand, by choosing to include such information, one risks sacrificing
scalability.

Our dependency analysis as presented so far is context-insensitive: for each predi-
cate, the analysis computes a dependency summary once, stores it, and further propa-
gates it to its callers, whenever needed. Considering that αSmil predicates are sequences
of calls to other predicates, built-in or user-defined, as discussed in Chapter 4, if we
would adopt a purely context-sensitive solution, we would gain in terms of precision,
but we would obtain results that are prohibitive in terms of performance. This is a
typical trade-off of static analyses. We address this issue and describe our solution in
detail in Chapter 6. Without adopting context-sensitivity to the letter, we strike a bal-
ance between the two alternatives by including lazy components in our interprocedural
dependency summaries and by using them for injecting the current intraprocedural
context on an as-needed basis. As will be discussed in Chapters 6 and 8, this approach
leads to improved precision, with only a marginal decrease in performance.

5.5 Semantics of Dependency Values
There are two different manners of interpreting dependency values δ, one focusing on
the possible constructors part and the other focusing on the dependency part. In
both cases the interpretations are relative to a type τ and hold only for well-typed
dependencies of the same type. The set of types that a dependency is compatible with
has been discussed in Section 5.2.2 and defined in Table 5.5.

First, focusing on the possible constructors aspect, dependencies can be interpreted
as a constraint on the forms that values may take. Such constraints can arise as
a consequence of ⊥, i.e. impossible, appearing in nested dependencies. These are
described by a characteristic function 1:

DD = {(v, δ) ∈ D×D | δ ∈ D, τ ∈ T, v ∈ Dτ ,Γ ` δ : τ}
1 : DD → {0, 1}.

This is defined as follows below.
Definition 5.5.1. Characteristic function 1.

1(v,>) = 1
1(v,�) = 1
1(v,⊥) = 0

1({f1 = v1, . . . , fn = vn}, {f1 7→ δ1; . . . ; fn 7→ δn}) =
{

1, when 1(vi, δi),∀1 ≤ i ≤ n
0, otherwise



106 Chapter 5. Dependency Analysis for Functional Specifications

1(Ci[v], [C1 7→ δ1; . . . ;Cn 7→ δn]) =
{

1, when 1(v, δi)
0, otherwise

1((P, (vk)k∈P), 〈δdef 〉) =
{

1, when 1(vk, δdef ),∀k ∈ P
0, otherwise

1((P, (vk)k∈P), 〈δdef . i : δexc〉) =


1, when (1(vk, δdef ),
∀k ∈ P, k 6= E(i)) or
(E(i) ∈ P,1(vE(i), δexc))

0, otherwise

This interpretation is compatible with the partial order v (Definition 5.2.2, Ta-
ble 5.1) defined on dependencies. If a dependency is more precise or equal to another
dependency, then it should be interpreted as constraints which are at least as strong as
the ones for the other dependency. Given a typing environment Γ (Definition 4.3.1):

∀τ ∈ T∗, δ v δ′ =⇒ (Dτ ∩ 1(•, δ)) ⊆ (Dτ ∩ 1(•, δ′))

where
T∗ = {τ ∈ T | Γ ` δ : τ ∧ Γ ` δ′ : τ}.

The interpretation of the reduction operator ⊕ (Definition 5.2.4) with respect to
the constraints semantics of dependencies is that if two dependencies δ and δ′ can be
interpreted as constraints for a value v, then their reduction can be interpreted as a
constraint for v as well:

1(v, δ) ∧ 1(v, δ′) =⇒ 1(v, δ ⊕ δ′).

The converse, which one might expect to be true as well, does not hold because of
approximations made by our treatment of arrays.

Given a valuation E (Definition 4.4.2), an intraprocedural dependency summary
can be interpreted as a conjunction of the constraints on every variable’s value as given
by its associated dependency. We use the notation E � ∆ to indicate this:

E � ∆ =⇒ ∀v ∈ V,1(E(v),∆(v)).

Under the appropriate conditions, given a semantic transition λ−→ (Definition 4.4.4)
from the configuration

〈
E, [s]

〉
(Definition 4.4.3) to the valuation E’, as defined in

Section 4.4, if the intraprocedural summary ∆′ of the statement’s s successor on label
λ represents the semantic interpretation of constraints given E’, then the contribution
JsKλ(∆′) (Definition 5.3.6) of the edge labeled with s and λ, must necessarily represent
the semantic interpretation of constraints given E. We thus obtain the following:
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Γ ` E =⇒ (5.1)
Σ,Γ,O ` s→ λ =⇒ (5.2)〈

E, [s]
〉 λ−→ E′ =⇒ (5.3)

Γ, E′ ` ∆′ =⇒ (5.4)
E′ � ∆′ =⇒ (5.5)
E � JsKλ(∆′) (5.6)

We note that thanks to the subject reduction property (Definition 4.4.7), (5.3)
implies that Γ ` E′.

Following from (5.6), when joining the contributions on all labels of the statement
s, the obtained intraprocedural dependency summary represents the semantic interpre-
tation of the disjunction of constraints given E:

(E � JsKλ1(∆′1))∨∆ . . .∨∆(E � JsKλn(∆′n)) =⇒
E � (JsKλ1(∆′1)∨∆ . . .∨∆JsKλn(∆′n)) =⇒
E � old(∆) =⇒
E � old(∆)∨∆(JsKλ1(∆′1)∨∆ . . .∨∆JsKλn(∆′n))

For a predicate p exiting with label λ and having the intraprocedural summary ∆λ,
the characteristic function, given I ⊆ E, a valuation mapping the predicate’s inputs to
their values, constrains the space of inputs that can make the predicate exit with the
label λ. It thus denotes the necessary conditions on inputs according to the observed
execution scenario and can be used as an inversion lemma when reasoning on calls to
a predicate.

The soundness of this interpretation as well as the well-formedness of our dependen-
cies have been proven in Coq and the corresponding files can be consulted online1. The
mechanized Coq proofs are entirely due to Stéphane Lescuyer. These proofs also deal
with deferred dependencies that will be presented in Chapter 6, but these constitute
an extension that does not modify the underlying lattice.

The second interpretation of dependency values focuses on the dependency part and
is a partial equivalence relation ≈:

TD= {(τ, δ) ∈ T× D | Γ ` δ : τ}
≈ :TD→ D× D.

The partial equivalence relation ≈τδ relates well-typed values of the same type τ . It
relates values that only differ in places that are irrelevant according to the dependency
δ. It is defined as shown below.

1The corresponding files are provided at the following address: http://ajl-demo.fr/2015/
proveCoq/

http://ajl-demo.fr/2015/proveCoq/
http://ajl-demo.fr/2015/proveCoq/
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Definition 5.5.2. Partial Equivalence Relation ≈τδ .

≈τ> = {(x, x)| x ∈ Dτ}
≈τ� = {(x, y)| x, y ∈ Dτ}
≈τ⊥ = {(x, y)| x, y ∈ Dτ}

≈struct{f1:τ1,...,fn:τn}
{f1 7→δ1;...;fn 7→δn} = { ({f1 = v1, . . . , fn = vn}, {f1 = w1, . . . , fn = wn}) |

∀i, 1 ≤ i ≤ n, (vi, wi) ∈ ≈τiδi}

≈variant[C1:τ1| ...| Cn:τn]
[C1 7→δ1;...;Cn 7→δn] = {(Ci[vi], Ci[wi]) | (vi, wi) ∈ ≈τiδi}

≈arrτi 〈τ〉
〈δdef 〉 = {((P, (vk)k∈P), (P, (wk)k∈P)) | ∀k, (vk, wk) ∈ ≈τδdef }

≈arrτi 〈τ〉
〈δdef .i : δexc〉 = { ((P, (vk)k∈P), (P, (wk)k∈P)) | E(i) ∈ P =⇒

(vE(i), wE(i)) ∈≈τδexc , ∀k 6= E(i), (vk, wk) ∈ ≈τδdef
}

This interpretation is compatible with the partial order v (Definition 5.2.2) defined
on dependencies. If a dependency is more precise or equal to another dependency, then
it should be interpreted as an equivalence relation relating more values:

δ v δ′ =⇒ ≈τδ ⊇ ≈τδ′ , ∀τ,Γ ` δ : τ ∧ Γ ` δ′ : τ.

The interpretation of the reduction operator ⊕ (Definition 5.2.4) with respect to
the equivalence relation interpretation of dependencies is that the set of values related
by δ ⊕ δ′ is a subset of the intersection of values related by δ and δ′, respectively:

≈τδ⊕δ′ ⊆ ≈τδ ∩ ≈τδ′ , ∀τ,Γ ` δ : τ ∧ Γ ` δ′ : τ.

The interpretation of the ∨ operator (Definition 5.2.3, Table 5.2) with respect to
the equivalence relation interpretation of dependencies is similar:

≈τδ∨δ′ ⊆ ≈τδ ∩ ≈τδ′ , ∀τ,Γ ` δ : τ ∧ Γ ` δ′ : τ.

Given two valuations E and E’, they are equivalent modulo an intraprocedural
dependency summary ∆ if the values that they associate to variables are equivalent
modulo the corresponding dependency associated in ∆:

E ≈Γ
∆ E′ =⇒ ∀v ∈ ∆, E(v) ≈Γ(v)

∆(v) E
′(v).

The equivalence relation ≈Γ
∆ thus relates valuations that are not distinguishable by

only looking at the parts specified by the intraprocedural dependency summary ∆.
This interpretation can be used to apply congruence modulo reasoning to predicate

calls. By calling a predicate p with two sequences of input values v̄ and ū, respectively,
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which are related by the intraprocedural dependency summary of p on label λ, then
the predicate will necessarily exercise the same execution scenario, exiting with label λ
and will yield identical outputs w̄.

5.6 Related Work
The frame problem and its manifestations in the software verification process – detect-
ing program properties that remain unchanged under a certain operation – are notori-
ous (Leavens, Leino, and Müller, 2007; Leavens and Clifton, 2005; O’Hearn, 2005). A
complete specification of a program will necessarily include frame properties (Borgida,
Mylopoulos, and Reiter, 1995). However, though necessary, specifying and verifying
frame properties is tedious and repetitive. Two prominent solutions to the frame prob-
lem come from separation logic (Reynolds, 2005; Distefano, O’Hearn, and Yang, 2006;
Calcagno et al., 2011) and ownership types (Clarke and Drossopoulou, 2002). However,
Meyer (Meyer, 2015) argues that the problem itself should not impose such annotation-
heavy solutions. Simpler, automatic solutions for their specification and verification
would allow programmers to concentrate on the truly challenging part (Meyer, 2015).

Though we share the same desideratum with separation logic (Reynolds, 2002;
Reynolds, 2005; O’Hearn, 2012; O’Hearn, Yang, and Reynolds, 2004), the programming
paradigm and context under which we operate leads to a considerably different solution.
Separation logic is targeted at low-level imperative programming languages and its
applications focus on shared, mutable data structures. We, on the other hand, focus
on a purely functional language and consider immutable algebraic data structures and
arrays. We treat mappings between variables and values and analyse their evolution in
a side-effect free environment, in the context of verification of programs where a new
output is obtained by altering just a subset of the input’s subelements and preserving
the rest. Instead of using a collection of Hoare triples as an abstract domain, we have
defined our own dependency domain. The results of our dependency analysis are close
to the concept of a footprint (Distefano, O’Hearn, and Yang, 2006; Hur, Dreyer, and
Vafeiadis, 2011; Bobot and Filliâtre, 2012), in the sense that they describe an over-
approximation of only those variables and subelements that are needed by a program
and are expressed as an input-output relation.

The dependency results computed by our analysis are similar to primitive read and
write effects used in ownership type systems (Clarke and Drossopoulou, 2002). Write
effects in our case are implicit and include strictly the output variables associated to
an exit label. Read effects can only refer to input variables of a predicate. Also,
read effects comprise the whole execution of a method even if they are irrelevant for
the method’s results. We however, ignore read effects on which the output does not
depend, reflecting only those which contribute to the observed result. A technique for
declaring and verifying read effects in an ownership type system is presented in (Clarke
and Drossopoulou, 2002). We use static analysis to automatically detect them. In
the Spec# (Mike Barnett, 2005) program verifier, the notion of confined is used for
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describing the reading effects of a pure method in terms of the ownership cone (Clarke,
Potter, and Noble, 1998) of its parameters.

In (Hughes, 1987), Hughes argues that analyses of programs that manipulate data
structures, should ideally distinguish between the information they are computing for
a data structure as a whole, and the information computed for each component within
it. The information that is computed by a backward analysis is dubbed generically as
context. A manner of constructing richer domains is described and it is argued that for
instance, a context for a sum type must contain (sub)contexts for any of its summands.
Similarly, for product types, a context should include a (sub)context for each component,
as well as a context referring to the value as a whole. We target fine-grained dependency
information for structures, variants and arrays. Similarly to the described product
type contexts, our dependencies for structures describe the dependency on each of the
structure’s fields. Variant dependencies are expressed in terms of the dependencies of
their constructors, i.e. their summands. Furthermore, it is argued that any context
should include a maximal element, interpreted as a “no information” value, a minimal
element, interpreted as “contradictory requirements” and an element representing “no
context” or “unused”. Close to the notion of “contradictory requirements”, we include
an atomic value denoting impossible in our dependency domain. Program points having
a “contradictory requirements” context denote points in the program that will lead to
crashes if reached. Our notion of impossible refers to nodes that are unreachable or
constructors that cannot occur on a given execution path. Our maximal element,
denoting everything is a safe value, close to the notion of “no information”. Nothing,
an element different from both everything and impossible, is similar to the notion of
“unused”. It denotes (sub)elements that are irrelevant and constitutes quite definite
information.

Hughes (Hughes, 1987) introduces a notion of needed/unneeded parameters for
programs manipulating lists. This enables detecting whether the value of a subterm is
ignored. The method is formulated in terms of a fixed, finite set of projection functions.
Multiple other approaches and analyses focus on the elimination of unnecessary data
structures (Cousot and Cousot, 1994), filtering of useless arguments and unnecessary
variables in the context of logic programming (Leuschel and Sørensen, 1996), and more
recently, removing redundant arguments (Alpuente, Escobar, and Lucas, 2007).

The concept of a context is further discussed by Wadler and Hughes in (Wadler and
Hughes, 1987). The authors describe a technique for strictness analysis for non-flat list
domains that relies on contexts represented using the notion of projections from domain
theory. These allow expressive list descriptions, such as contexts specifying that while a
list’s elements can be ignored, its length is relevant. Their backward analysis computes
necessary information using a fixed finite abstract domain.

Leino and Müller (Leino and Müller, 2008b) present a technique for verifying that
methods that query the state of identical data structures, return identical or equivalent
results. They stress the frequency of such assumptions in program verification, as well
as the counter-intuitive amount of effort required for the specification and verification
of such equivalent-results methods and their callers. One of the two interpretations
of our dependency values — ≈τδ — is an equivalence relation binding pairs of values
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that are not distinguishable by considering only the parts specified by the dependency
domain. Thus, it ensures not only that identical input data structures will lead to iden-
tical results but also that different invocations of a predicate with input data structures
that are congruent with respect to this interpretation will lead to identical results. Our
dependencies are similar to the influence sets presented by Leino and Müller. Influence
sets are represented as sets of heap locations and they are used to specify the parts
of the program state that are allowed to impact the return values. Influence sets are
user-defined and they are required to be self-protecting. This property is enforced by
requiring the set of path expressions specifying the influence set to be prefix close, a
constraint which is then checked syntactically. In contrast, our dependencies are com-
puted by static analysis. Influence sets may depend on the heap. Reasoning about
heap locations is beyond the scope of our analysis. We treat mappings between vari-
ables and values, analyse their evolution in a side-effect free environment and express
dependencies as input-output relations. The technique presented by Leino and Müller
has been applied for reasoning about pure methods (Leino, Müller, and Wallenburg,
2008; Hatcliff et al., 2012; Nordio et al., 2010; Banerjee and Naumann, 2014).

Identifying the input (sub)parts on which a predicate’s outputs depend can also be
seen as an instance of secure information flow (Sabelfeld and Myers, 2003), where the
predicate’s outputs and the input (sub)parts appearing in the predicate’s dependency
summary have a low-security level, i.e. are public, and everything else has a high-
security level, i.e. is private. The first interpretation of our dependency values mirrors
the notion of non-interference as given by Volpano et. al. in (Volpano, Irvine, and
Smith, 1996) for deterministic programs. By only observing the public parts, nothing
can be concluded about the private parts. The link between permissions and ownership
types has been underlined by Zhao and Boyland (Zhao and Boyland, 2008).

Liu and Stoller present a backward dependence analysis for the computation of
dead code (Liu and Stoller, 2003). They obtain expressive descriptions of partially
dead recursive data using liveness patterns. These are based on general regular tree
grammars that were extended with two notions: live and dead. Users can specify
liveness patterns at particular program points of interest. The analysis then uses these
and computes liveness patterns at all program points based on constraints derived from
the programming language semantics and the program itself. The obtained information
is meant to be used for identifying and eliminating dead code. In a separate paper (Liu,
1998), Liu presents three approximation operations meant to guarantee termination
in the context of fixed point computations using general grammar transformers on
potentially infinite grammar domains.

Static dependence or liveness analyses are typically used for code optimization,
dead code elimination (Liu and Stoller, 2003) and compile time garbage collection,
but only seldom for program verification. One exception that we are aware of comes
from Frama-C (Cuoq et al., 2012), where it is used in a purely automatic setting and
unlike our analysis it does not handle unions and arrays. A plug-in based on the
available value analysis (Frama-C Value Analysis User Manual) computes lists of input
and output locations for each function, distinguishing between operational, functional
and imperative inputs and outputs. Dependencies computed for an output o hold if
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and when the analysed function terminates. They are represented as sets of variables,
whose initial value can influence the final value of o. Input variables appearing in this
set are called functional inputs. Imperative inputs are the locations that may be read
during the execution of the analysed function. An over-approximation of the set of
these locations is computed; locations that are read only in non-terminating branches
are included in the imperative inputs set as well. Operational inputs are the memory
zones that are read without having been previously written to.

5.7 Conclusion
In the context of interactive formal verification of complex systems, considerable effort
is spent on proving the preservation of the system’s invariants. However, most oper-
ations have a localised effect on the system, which only really impacts few invariants
at the same time. Identifying those invariants that are unaffected by an operation can
substantially ease the proof burden for the programmer.

In this chapter, we have presented a data-flow analysis that computes a conserva-
tive approximation of the input fragments on which the operations depend. It is a
flow-sensitive, path-sensitive, interprocedural dependency analysis that handles arrays,
structures and variants. For the latter it simultaneously computes a subset of possible
constructors. We have defined our own abstract dependency domain and we obtain
dependency information that mirrors the layered structure of compound data types.

The main original traits of this contribution stem from its design as an analysis
meant to be used as a companion tool during interactive program verification, in a
unified manner on programs as well as on specifications.

We have implemented a prototype of the dependency analysis in OCaml and we
have applied it to a functional specification of ProvenCore (Lescuyer, 2015), a general-
purpose microkernel that ensures isolation. Its proof is based on multiple refinements
between successive models, from the most abstract one, on which the isolation property
is defined and proven, to the most concrete, i.e. the actual model used for code gener-
ation. Medium-sized experiments performed on the abstract layers of ProvenCore show
positive results. For instance, the dependency results of approximately 630 αSmil pred-
icates, totalling approximately 10000 lines of code are obtained in less than 1 second.
Static approaches have long been considered as being confined to small programs. We
believe that our preliminary results indicate that it is possible to report conservative
dependency summaries without sacrificing scalability. The implementation and the ob-
tained results will be presented and discussed in detail in Chapter 8. The prototype
can be tested on the web page2 dedicated to our dependency analysis, where various
examples are provided and explained. Additionally, users can devise and test their own
examples.

An obvious first challenge is to address the issue of context-sensitivity. In the
following chapter, we present a solution based on lazy components which are included
in our interprocedural dependency summaries. The current intraprocedural context is

2Dependency Analysis Web Page: http://ajl-demo.fr/2015/

http://ajl-demo.fr/2015/
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injected in them on an as-needed basis. As we will show in Chapter 6, these lead to
improved precision, with only a marginal decrease in performance.

Our main goal is to combine the dependency analysis with the correlation analysis
presented in Chapter 7, which is meant to detect relations between inputs and outputs.
By uncovering partial equivalence relations between inputs and outputs, after having
detected that a property only depends on unmodified parts and by unifying the results,
the preservation of invariants for the unmodified parts can be inferred.

We surmise that besides its intended target, other programming activities can rely
on our dependency analysis as well. For instance, it could have applications in the
testing realm: the computed dependency information could be used for designing and
generating test suites that avoid redundant testing of the same execution scenario.
Based on the second interpretation — ≈τδ — of our dependency information, given in
Section 5.5, classes of inputs that will test the same execution scenario can be deter-
mined. The input subelements on which the outputs of a predicate do not depend can
be consistently supplied with the same testing value, as they are completely irrelevant
for the outcome. On the contrary, the input subelements on which the outputs depend,
should be targeted and their values should be varied for more comprehensive testing.
Since our dependency analysis computes results for every exit label of an αSmil pred-
icate, it could also facilitate unit testing for exceptions. Furthermore, the computed
dependency information could provide assistance in specifying read effects of predicates,
similar to accesible clauses (Leavens et al., 2006) in JML.

The dependency analysis presented in this chapter has been the subject of a previous
publication (Andreescu, Jensen, and Lescuyer, 2015).
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Chapter 6

Deferred Dependencies: Injecting
Context in Dependency
Summaries

No symbols where none intended.

Samuel Beckett

6.1 Dealing with Context-Insensitivity
Traditionally, the precision of static analyses is characterized along several axes, in-
cluding the scope of the analysis, i.e. intraprocedural or interprocedural analyses, and
different nuances of sensitivity, relative to the analysis’ use of control-flow information
or of information pertaining to the calling context. This classification and terminology
has its origins in data-flow analyses (Hind, 2001; Midtgaard, 2012). Regarding scope,
intraprocedural analyses are local and operate within the boundaries of procedures. In
contrast, interprocedural analyses are global and operate across procedure calls (Midt-
gaard, 2012). These are somewhat more challenging and costly to perform and impose
dealing with parameter mechanisms.

Another important distinction is made regarding the calling context. Context-
sensitive analyses distinguish between different calling contexts. At the other end of
the spectrum, context-insensitive analyses compute information only once and subse-
quently use the same information at all calling sites. Clearly, a context-sensitive analysis
is more precise than a context-insensitive analysis, but it is also more costly (Nielson,
Nielson, and Hankin, 1999). The choice between which technique to use amounts to a
careful balance between precision and efficiency (Nielson, Nielson, and Hankin, 1999).
The dependency analysis presented in the previous chapter is an interprocedural, flow-
sensitive, context-insensitive data-flow analysis. Regarding pure context-sensitivity, in
a functional language such as αSmil, in which predicate calls and the manipulation of
the returned outputs are omnipresent, unfolding predicates at each call site and recom-
puting the needed information seems to be a daunting perspective that risks becoming
prohibitive in terms of execution time very quickly. On the other hand, choosing to
analyse predicates in isolation and to dispense completely with information regarding
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the calling context leads to clear precision losses as illustrated in Section 5.4.1 and
discussed in Section 5.4.2. In order to address this aspect, we have devised a solution
based on symbolic dependencies that requires an extension of our abstract dependency
domain (Definition 5.2.1) but which otherwise has a minimal impact on the dependency
analysis at an intraprocedural and interprocedural level.

Outline. In this chapter we present our solution based on symbolic dependencies. We
start by illustrating the addressed problem and the desired results in Section 6.2. In
Section 6.3 and Section 6.4, we present the extended abstract dependency domain. We
show the insertion and use of symbolic components at the intra- and interprocedural
level of our dependency analysis in Section 6.5 and Section 6.6, respectively. Finally,
we discuss their impact on the precision of the computed dependency information.

6.2 Symbolic Dependency Components in a Nutshell
Symbolic dependency components allow us to compute interprocedural predicate sum-
maries with lazy components, in which the caller’s intraprocedural information and
context can be injected on an as-needed basis. The interprocedural dependency infor-
mation for each predicate is still computed only once and propagated back to every
possible call site. However, even though the analysis does not systematically recompute
the dependency for the called predicate, it shows a form of context-sensitivity (Hind,
2001) and leads to increased precision, by creating templates with symbolic elements for
each predicate. These elements introduce degrees of freedom in our interprocedural de-
pendencies and allow us to parameterize and vary them according to the caller’s actual
intraprocedural context. Thus, we exclude some sources of coarse over-approximations
without sacrificing scalability.

Previously, in Section 5.4.1 we illustrated on two αSmil example predicates, thread
and start_address, how failing to take into consideration the current context of a
caller leads to over-approximations. We argued in Section 5.4.2 that a more precise
dependency blueprint can emerge, once we consider a predicate’s use as well. The first
example predicate given in Chapter 5, thread, is an accessor predicate: it receives a
process p and an index i as inputs and returns the i-th associated thread of the process
p when executing succesfully, i.e. when exiting with the true label. The computed
predicate’s dependency summary for the successful execution scenario was the following:

p 7→ { threads 7→ 〈� . i: [Some 7→ >; None 7→ ⊥]〉}
i 7→ >

This dependency information is expressive: it shows that only one of the 4 fields of
the input process is read by the predicate, while all others are irrelevant for its output.
The read field, threads, corresponds to the array of threads associated to the input
process p. Furthermore, the dependency summary shows that for this array only the
i-th element is inspected. This element is entirely needed while all others are irrelevant.
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This summary provides a rather detailed and precise blueprint of the predicate’s output
dependencies on its inputs. Yet, it fails to make one subtle, but important distinction
regarding the dependency on the i-th element of the associated threads array. If
we want to be more accurate while describing this predicate’s dependency, we need
to acknowledge that the predicate itself is not actually needing or depending on the
i-th associated thread of the process. Indeed, it does not read or use it per se, it
merely retrieves it. Thus, the dependency on the input process’ i-th associated thread
is relative to the amount in which the callers of the thread predicate will use the
output element in which it is retrieved. It is important to distinguish between these
two rather subtle nuances. Failing to do so can shadow information that is computed
while analysing callers of the thread predicate. This was exactly what happened for
our second example predicate, start_address. The predicate start_address receives
a process p and an index j as inputs. It makes a call to the predicate thread, thus
reading the j-th associated element of the process p. If this is an active element, it
further accesses the field stack, from which it only reads the start address, start. The
obtained dependency result:

p 7→ { threads 7→ 〈� . j: [Some 7→ >; None 7→ ⊥]〉}
j 7→ >

was an over-approximation of the desired dependency result:

p 7→ { threads 7→ 〈� . j: [Some 7→ {t 7→ {stack 7→ {start 7→ >}}}; None 7→ ⊥]〉}
j 7→ > .

Intraprocedurally, the dependency analysis was correctly detecting that only the
field stack of the thread was needed, for which only the start field was read. However,
when joining the dependency information computed locally for start_thread with the
one given by the predicate’s thread dependency summary, we obtain less precise de-
pendency results. This scenario is not a corner case; it would typically be exhibited in
the case of accessor predicates and their callers.

In order to address this source of precision loss, we can introduce symbolic or lazy
components in our abstract dependency domain. As a first attempt and approximation,
we could consider the set of output variables of a predicate as the lazy components.
These can be seen as the points at which a caller predicate may insert its intraprocedural
information in the dependency summary computed for the callee predicate.

The dependency summary for a successful execution of the thread predicate, i.e.
the true exit label, would therefore not map the i-th element of the threads array
to everything, i.e. >, the top element of our abstract dependency domain. Instead,
this would be mapped to the symbolic set of output variables in which this input
subelement is retrieved, i.e. the set containing the ti output variable. We denote this
set by Deferred(ti) as it represents the set of points in which a caller predicate can
inject its context. Establishing the dependency on the i-th associated thread of the
input process p is thus deferred or postponed and left to the caller predicates; it is
relative to their context and the amount in which they use the output ti:
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p 7→ { threads 7→ 〈� . j: [Some 7→ { t 7→ Deferred(ti)}; None 7→ ⊥]〉}
j 7→ > .

Using this dependency summary when computing the information for the predicate
start_thread we would obtain the targeted dependency result:

p 7→ { threads 7→ 〈� . j: [Some 7→ {t 7→ {stack 7→ {start 7→ Deferred(adr)}}}; None 7→ ⊥]〉}
j 7→ > .

This dependency summary for start_address shows that the dependency on the
j-th associated thread of the input process p, depends on the amount in which the
output adr, representing the start address of the thread’s stack, is subsequently used.
Indeed, start_address itself is an accessor predicate.

This first approximation of lazy components as sets of output variables of a predi-
cate is effective for accessor predicates. However, its limitations become visible when
considering functional, non-destructive mutator predicates, for example. Such predi-
cates receive a compound input, destructure it, and construct a new output variable.
This is created by modifying only one of the compound input’s subelements, and by
copying all the rest without further changes. For example, the predicate set_thread,
shown below, is the dual of our thread example predicate. It receives a process p, a
thread ti and an index i as inputs, and returns a new process r as an output, ob-
tained by setting the i-th associated thread in the threads array to ti, and by copying
everything else from p.

predicate set_thread ( process p, int i, thread ti)
-> [ true: process r]
{{ array <option <thread >> threads , option <thread > tio }} {

r := p : [ true -> 1];
threads := r. threads : [ true -> 2];
tio := Some(ti) : [ true -> 3];
threads := [ threads with i = tio] : [ true -> 4, f a l s e -> 6];
r := {r with threads = threads } : [ true -> 5];
[ true];
[error]

}

The dependency summary computed for this predicate on the exit label true is
shown below. It indicates that the given inputs, the index i and the thread ti, used for
updating the i-th associated thread of the output process r, are completely needed. For
the input process p, the fields pid, crt_thread and adr_space are completely needed
as well. They are copied without further changes to the output r. From the array
of associated threads, all elements, except the i-th, are needed as well. The latter is
completely irrelevant since it is replaced in the output r by the given ti. The former
are simply read and copied to r:
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p 7→


threads 7→ 〈>. i: �〉
pid 7→ >

crt_thread 7→ >
adr_space 7→ >


i 7→ >
ti 7→ >

At a first glance, this dependency summary seems to reflect rather accurately, the
predicate’s inputs and input subelements on which the output process r depends on.
However, similarly to the accessor predicate thread, a further distinction is possible.
The predicate set_thread does not depend itself on the input ti, nor on the fields of
the process p. It does not use these for new computations – it simply copies them to the
corresponding output subelements. Just as before, the amount in which the output’s
subelements are used subsequently characterizes more precisely the dependency on the
inputs of set_thread. For instance, the dependency on p’s current thread field should
be the symbolic element corresponding to the output’s process crt_thread. However,
our first attempt at representing symbolic elements as sets of output variables seen as
a whole, does not allow us to convey such information. For expressing it, we first need
to be able to refer to the substructure r.crt_thread and use this as a lazy component
in which callers may inject their own context. Similarly, for the threads array we need
to be able to refer to all other elements except the i-th one. Thus, at the symbolic
dependencies level as well, we need the capability of distinguishing between the different
subelements of the inputs. This would allow us to obtain the following dependency
summary:

p 7→


threads 7→ 〈 Deferred(r.threads〈∗\ i 〉) . i: �〉
pid 7→ Deferred(r.pid)

crt_thread 7→ Deferred(r.crt_thread)
adr_space 7→ Deferred(r.adr_space)


i 7→ >
ti 7→ Deferred(r.threads〈 i 〉@Some.t)

One way to capture the actual effect that is due to set_thread consists in replac-
ing all deferred dependencies with �, i.e. nothing, and simplifying the summary. The
dependency summary thus obtained shows the dependency on set_thread’s inputs in
the extreme case of calling the predicate and throwing away its result. In this case,
the summary for set_thread would show that the predicate only depends on the in-
put i and on the length or support of the threads array, captured by 〈�〉. On the
contrary, by replacing the deferred dependencies with >, i.e. everything, we obtain
exactly the results computed by the context-insensitive dependency analysis presented
in Chapter 5. The information thus obtained shows the dependency on set_thread’s
inputs when considering the other end of the spectrum, namely calling the predicate
and using its result entirely.



120 Chapter 6. Deferred Dependencies: Injecting Context in Dependency Summaries

The dependency summary with deferred occurrences is indeed precise. Not only
does it create a dependency template in which callers can inject their own context, but it
also distills the predicate’s set_thread specification. A quick glance and interpretation
of it indicates that it is indeed a non-destructive mutator, updating the i-th associated
thread of a process to ti and preserving everything else.

In order to obtain such dependency summaries, we need to refine our first approx-
imation of symbolic elements as sets of a predicate’s output variables. Just as needed
in our initial abstract dependency domain, we must reflect the layered structure of
algebraic data types and arrays at the level of symbolic dependencies as well. To this
end, we need to consider not only sets of output variables, but also symbolic paths to
substructures within them.

6.3 Symbolic Paths

6.3.1 Symbolic Path Type

In order to extend our abstract dependency domain with symbolic dependencies and to
obtain expressive dependency summaries as the ones discussed in the previous section,
we begin by introducing symbolic paths. These are meant to mirror the layered structure
of algebraic data types and arrays at the level of symbolic dependencies.

Each deferred occurence in a dependency summary is identified by symbolic paths.
Symbolic paths are rooted at one of the program’s variables and represent sequences of
symbolic internal accesses inside some value’s structure, i.e. they are symbolic traversals
from one value to some of its subparts. Paths are chains of symbolic accesses leading
to nested elements in which different calling contexts can be subsequently injected. We
define a recursive type π of symbolic paths encompassing this.

Definition 6.3.1. Symbolic path type π ∈ Π.

π ∈ Π, π := | ε endpoint – root
| .f π f ∈ F ,
| @Cπ C ∈ C,
| 〈i〉π i index,
| 〈∗ \ i〉π i index,
| 〈∗〉π

An endpoint, denoted by ε, is the special path denoting an entire element. For struc-
tures, we denote the symbolic path to some field f by .fπ. Similarly, for variants, we
denote the path to some chosen constructor C by @Cπ. For arrays, we distinguish
between three cases:

• symbolic paths referring to a specific array cell, identified by the cell’s index i,
and denoted by 〈i〉π;

• symbolic paths referring to all but one specific array cell, identified by its index
i, and denoted by 〈∗ \ i〉π;
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• symbolic paths referring to all the cells of an array, denoted by 〈∗〉π.

With one exception, these symbolic paths directly reflect the cases of our abstract
dependency domain. For instance, the correspondance between symbolic paths for
structures or variants is immediately apparent. In contrast, for arrays, the abstract
dependency domain included two cases, namely 〈δ〉, corresponding to a dependency
applying to all of the cells, and 〈δdef . i : δexc〉, corresponding to arrays with a general
dependency applying to all but one exceptional cell, for which a specific dependency
is known. In order to reflect the second case in the deferred occurrences, we need to
be able to refer to the exceptional cell on one hand, and to all other cells of the array
on the other hand. Hence, to this end, we need to introduce two symbolic path types:
the symbolic 〈i〉π path for expressing deferred occurrences of exceptional cells, and the
〈∗ \ i〉π symbolic path for expressing deferred occurences of all the other array cells,
except the one identified by i.

The action of appending a non-empty path π′ to another path π is denoted by
π :: π′. We call :: the extension operator and when applying it we say that we extend
π with π′.

We further consider sets P ⊂ Π of symbolic paths π and define the partial order
◦
v

between them.

Definition 6.3.2. Partial Order
◦
v for Path Sets.

∀P ⊂ Π, P ′ ⊂ Π, P
◦
v P ′ ⇐⇒ P ⊆ P ′.

They establish a semi-lattice based on the subset order. The bottom element of this
semi-lattice is ∅, the empty set of paths:

∀P ⊂ Π, ∅
◦
v P.

There is no top element. Theoretically, this would correspond to the set representing
all possible paths. In practice, this cannot be constructed and we chose not to add a
special case for it to our symbolic path type π.

The join operation of deferred path sets is based on set union and is denoted by
◦
∨.

Definition 6.3.3. Join Operation
◦
∨ for Path Sets.

∀P ⊂ Π, P ′ ⊂ Π, P
◦
∨ P ′ = P ∪ P ′.

It is symmetric and the value obtained by joining two path sets is the least upper bound.
Applying the extension operator :: on a set of symbolic paths P amounts to a

pointwise extension of each member of the path set.

Definition 6.3.4. Extension Operator ◦:: for Path Sets.

∀P ⊂ Π, P ◦:: π′ = {π :: π′| π ∈ P}.
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6.3.2 Semantics of Symbolic Paths

Semantically, paths of type π defined previously, are a symbolic representation of several
actual paths. In the following, we explicit this notion and we begin by defining simple,
actual paths in a value of the universe D (Definition 4.4.1).

Actual paths represent a unique sequence of internal accesses inside some value’s
structure, leading to a single nested element. Unlike symbolic paths that can, for
instance, cover multiple elements of an array, an actual path designates a single subvalue
of a structure, variant or array. The recursive actual path type π̃ ∈ Π̃ is defined below.

Definition 6.3.5. Actual Path Type π̃ ∈ Π̃.

π̃ := | ε̃ empty,
| .̃f π̃ f ∈ F ,
| @̃C π̃ C ∈ C,
| 〈̃i〉π̃ i index.

A symbolic path π covers an actual path π̃ if, when given a valuation E (Defini-
tion 4.4.2) of the index variables for arrays, it matches π̃. A set of symbolic paths
covers an actual path π̃ if at least one of the symbolic paths matches π̃. We denote
this by the �E relation that is parameterized by a valuation E. The definition of �E
is given in Table 6.1.

Table 6.1 – �E – Path Semantics

ε �E ε̃
�E ε̃

π �E π̃

.fπ �E .̃f π̃
�EStruct

π �E π̃

@Cπ �E @̃Cπ̃
�EVar

π �E π̃ E(i) = j

〈i〉π �E 〈̃j〉π̃
�ECell

π �E π̃

〈∗〉π �E 〈̃j〉π̃
�EAnyCell

π �E π̃ E(i) 6= j

〈∗ \ i〉π �E 〈̃j〉π̃
�EOutCell

Given a valuation E, a set P of symbolic paths covers an actual path π̃ if at least
one of the symbolic paths in the set covers or matches π̃:

∀P ⊂ Π, P ◦�E π̃ ⇐⇒ ∃π ∈ P, π �E π̃.
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The interpretation JP KE of a set of paths P is then the set of single actual paths
that are covered, given a valuation E.

Definition 6.3.6. Interpretation JP KE of a set of paths P .

∀P ⊆ Π, JP KE = {π̃| P ◦�E π̃}.

The partial order
◦
v (Definition 6.3.2) on sets of paths is compatible with the inter-

pretation JP KE in the sense that when P
◦
v Q holds, the interpretation JP KE of P is

included in JQKE for every valuation.

∀P,Q ⊆ Π,∀E,P
◦
v Q ⇐⇒ JP KE ⊆ JQKE .

Each single path can be interpreted as a way to find a subpart of a value, which we
explicit by the following function at. It is not defined for all cases, since not all paths
can be applied to all values.

Definition 6.3.7. Function at.

at : Π̃× D→ D

at(π̃, v) =



v when π̃ = ε̃

at(π̃′, vi) when π̃ = .̃fiπ̃
′ and

v = {f1 = v1, . . . , fi = vi, . . . , fn = vn}
at(π̃′, vC) when π̃ = @̃Ciπ̃′ and

v = Ci[vC ]
at(π̃′, vi) when π̃ = 〈̃i〉π̃′ and

v = (P, (vk)k∈P),
i ∈ P

6.3.3 Well-Typed Paths and Path Sets

Symbolic paths cannot be used in every context: their interpretation must be made in
the context of a type τ . An endpoint, i.e. the ε symbolic path can apply to any type. In
contrast, other symbolic paths that exhibit specific data features can only apply to the
corresponding types. For instance, a path such as .fπ is meaningless on values which
are not records, or on record values that do not exhibit a field f , the field specified in
the symbolic path.

A path set can be seen as a set of sequences of internal accesses inside some values’s
structure. In that sense, it is a set of possible traversals from one value to some of its
subparts. To characterize the contexts in which a path set is well-typed, we need to
consider the types of values to which it can be applied and the types of values to which
it can lead to. Therefore, in the following, we begin by defining a typing judgement for
symbolic paths as a three-place relation π : τ → τ ′, whose meaning is that π can be
applied to any value of type τ and in that case it will always describe subvalues of type
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τ ′. Additionally, the typing judgement is also parameterized by a set of input variables
I, which are the variables having the right to appear as identifiers for array accesses.
This is detailed in Table 6.2.

I ` ε : τ → τ
WTε

τ = struct{f1 : τ1, . . . , fi : τi, . . . , fn : τn}
I ` πi : τi → τ ′

I ` .fiπi : τ → τ ′
WTStructPath

τ = variant[C1 : τ1| . . . | Ci : τi| . . . | Cn : τn]
I ` πC : τi → τ ′

I ` @CiπC : τ → τ ′
WTVarPath

Γ ` π : τ → τ ′

I ` 〈∗〉π : arrτi〈τ〉 → τ ′
WTArrayPath

I ` π : τ → τ ′ I(i) = τi

I ` 〈i〉π : arrτi〈τ〉 → τ ′
WTCellPath

I ` π : τ → τ ′ I(i) = τi

I ` 〈∗ \ i〉π : arrτi〈τ〉 → τ ′
WTOutPath

Table 6.2 – Well-Typed Dependency Paths

A set P of symbolic paths is well-typed if every path contained by it is well-typed
for the same types:

∀P ⊂ Π, I
◦
` P : τ → τ ′ ⇐⇒ ∀π ∈ P, I ` π : τ → τ ′.

The well-typedness property of sets of symbolic paths is preserved by the join op-
eration

◦
∨ (Definition 6.3.3):

∀P ′, P ′′ ∈ Π, ∀τ ′, τ ′′ ∈ T,
I
◦
` P ′ : τ ′ → τ ′′ ⇒ I

◦
` P ′′ : τ ′ → τ ′′ ⇒ I

◦
` P ′

◦
∨ p′′ : τ ′ → τ ′′.

When extending a well-typed set of symbolic paths with a well-typed path using the
extension operator ◦:: (Definition 6.3.4), the resulting set of symbolic paths is well-typed
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as well:

∀P ′ ∈ Π, ∀τ, τ ′, τ ′′ ∈ T,
I
◦
` P ′ : τ ′ → τ ′′, I ` π′ : τ ′′ → τ ⇒ I

◦
` P ′ :: π′ : τ ′ → τ.

6.4 Abstract Dependency Domain with Deferred Accesses
Frequently, as explained in Section 6.2, the dependency on a predicate’s input variable is
relative to the amount in which some of the predicate’s outputs are subsequently needed.
More precisely, these outputs are those into which the input variable is copied and
retrieved. We strive to avoid over-approximations in such cases and to create degrees
of freedom for the callers by treating such output variables as points in which callers can
inject their own context externally. In other words, we want to defer the computation
of the dependency on certain input variables of a predicate to the predicate’s callers,
since they have additional information about the actual use of the predicate’s outputs.

In our previous section — Section 6.3 — we have introduced and defined an in-
termediate level consisting of symbolic paths and path sets. These reflect the layered
structure of algebraic data types and arrays, and allow us to consider not only output
variables as a whole, but also symbolic paths within them. Thus, we can compute
more flexible and expressive dependency summaries, with finer-grained elements. We
can finally link these two ideas and extend our abstract dependency domain with de-
ferred dependencies, by including an additional dependency case in our domain δ ∈ D,
initially defined (Definition 5.2.1) in Section 5.2.

Definition 6.4.1. Extended Abstract Dependency Domain δ ∈ D.

δ := | > Everything – atomic case (i)
| � Nothing – atomic case (ii)
| ⊥ Impossible – atomic case (iii)
| {f1 7→ δ1; . . . ; fn 7→ δn} f1, . . . , fn fields (iv)
| [C1 7→ δ1; . . . ;Cm 7→ δm] C1, . . . , Cm constructors (v)
| 〈δ〉 (vi)
| 〈δdef . i : δexc〉 i array index (vii)
| Deferred({o1 7→ P1; . . . ; ok 7→ Pk}) deferred accesses (viii)

A deferred dependency, shown in (viii) consists of a mapping which binds output
variables, which we also call root variables in this case, to sets of symbolic paths.

Definition 6.4.2. Access Map.

A : V 9 Π.

Only output variables can be treated as lazy dependency components. The sets of
symbolic paths mapped to them, allow us to distinguish between their subelements. In
the following discussion we will denote an access map {o1 7→ P1; . . . ; ok 7→ Pk} by a.
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For the partial order v (Definition 5.2.2), defined in Chapter 5 and detailed in Ta-
ble 5.1, an additional rule (Def) for comparing instances of deferred dependencies is
added. This is shown in Table 6.3. The top and bottom elements of our dependency
domain are as before > and ⊥, respectively. Thus, any instance of a deferred depen-
dency is more precise than > and less precise than ⊥. Just as >, ⊥ and the special
dependency case �, a deferred dependency can be used in association to any type,
albeit with some constraints for its elements.

∀o 7→ P ∈ a, a(o)
◦
v a′(o)

Deferred(a) v Deferred(a′)
Def

Table 6.3 – Extended Leq - Comparison of Two Domains

However, unlike the atomic cases >, ⊥ and �, deferred dependencies are not related
to � or to dependencies corresponding to structures, variants or arrays. Since they act
as placeholders for dependencies that are effectively computed subsequently, instances
of deferred dependencies can be compared only to > and ⊥ or to other instances of
deferred dependencies. For instance, comparing a deferred dependency to � would
yield:

Deferred({o1 7→ P1; . . . ; ok 7→ Pk}) 6v �
and

� 6v Deferred({o1 7→ P1; . . . ; ok 7→ Pk}).

The extended join operation ∨ (Definition 5.2.3), initially defined in Section 5.2.1
and detailed in Table 5.2, is shown below in Table 6.4. It still has ⊥ as its identity
element and > as its absorbing element. Joining two instances of deferred dependen-
cies amounts to a pointwise join of the path sets mapped to each output variable in
the access maps. The join between an instance of a deferred dependency and a de-
pendency corresponding to a structure, a variant, an array or to the special case �,
amounts to >, the top element of our domain. Since we cannot make any supposi-
tion regarding deferred dependencies, we are forced to make a pessimistic assumption
and to approximate to the least precise value. Join is a commutative operation for
which the undisplayed cases in Table 6.4 are defined with respect to their symmetrical
counterparts.

Similarly to join, the reduction operation ⊕ (Definition 5.2.4) has been initially
defined in Section 5.2.1 and it has been detailed in Table 5.3. The extended form is
shown in Table 6.5. It still has � as an identity element and ⊥ as an absorbing element.
When applying the reduction operation between a deferred dependency and a depen-
dency δ′ corresponding to a structure, a variant or an array, we over-approximate the
deferred dependency to > and apply the reduction operation between δ′ and >. Apply-
ing the reduction operation between a deferred dependency and > behaves similarly;
the outcome in this case is straightforward and amounts to >. As was the case for
join, applying the reduction operation between two instances of deferred dependencies
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δ′ δ′′ δ′ ∨ δ′′

Deferred(a) ∨ Deferred(a′) = Deferred(a′′) where

a′′(o) =


a(o)

◦
∨ a′(o) when o 7→ Po ∈ a, o 7→ P ′o ∈ a′

Po when o 7→ Po ∈ a
P ′o when o 7→ P ′o ∈ a′

Deferred(a) ∨ {f1 7→ δ1; . . . ; fn 7→ δn} = >
Deferred(a) ∨ [C1 7→ δ1; . . . ;Cm 7→ δm] = >
Deferred(a) ∨ 〈δ〉 = >
Deferred(a) ∨ 〈δdef . i : δexc〉 = >
Deferred(a) ∨ � = >

Table 6.4 – ∨ – Extended Join

amounts to a pointwise join of the path sets mapped to each output variable in the
access maps. The reduction operation is commutative and the undisplayed cases in
Table 6.5 are defined with respect to their symmetrical counterparts.

δ′ δ′′ δ′ ⊕ δ′′

Deferred(a) ⊕ Deferred(a) = Deferred(a′′) where

a′′(o) =


a(o)

◦
∨ a′(o) when o 7→ Po ∈ a, o 7→ P ′o ∈ a′

Po when o 7→ Po ∈ a
P ′o when o 7→ P ′o ∈ a′

Deferred(a) ⊕ > = >
Deferred(a) ⊕ {f1 7→ δ1; . . . ; fn 7→ δn} = >⊕ {f1 7→ δ1; . . . ; fn 7→ δn}
Deferred(a) ⊕ [C1 7→ δ1; . . . ;Cm 7→ δm] = >⊕ [C1 7→ δ1; . . . ;Cm 7→ δm]
Deferred(a) ⊕ 〈δ〉 = >⊕ 〈δ〉
Deferred(a) ⊕ 〈δdef . i : δexc〉 = >⊕ 〈δdef . i : δexc〉

Table 6.5 – ⊕ – Extended Reduction Operator

Finally, the extractions previously defined for dependencies δ (Definition 5.2.5, 5.2.6,
5.2.7, 5.2.8 and 5.2.9) have been extended in order to handle deferred dependencies as
well. Their treatment is summarized in Table 6.6. Making array-specific extractions, as
well as extracting field and constructor dependencies on a deferred dependency, amounts
to a pointwise extension of every path set in the access map with the corresponding
symbolic path.

Finally, we add the following rule to the well-typed dependency rules given in Chap-
ter 5, Table 5.5:
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Extraction δ Result

Field Deferred({o1 7→ P1; . . . ; ok 7→ Pk}).f Deferred(o1 7→ P1
◦:: .fε; . . . ; ok 7→ Pk

◦:: .fε; )
Constructor Deferred({o1 7→ P1; . . . ; ok 7→ Pk})@C Deferred(o1 7→ P1

◦:: @Cε; . . . ; ok 7→ Pk
◦:: @Cε; )

Cell Deferred({o1 7→ P1; . . . ; ok 7→ Pk})〈i〉 Deferred(o1 7→ P1
◦:: 〈i〉ε; . . . ; ok 7→ Pk

◦:: 〈i〉ε; )
Array General Deferred({o1 7→ P1; . . . ; ok 7→ Pk})〈∗〉 Deferred(o1 7→ P1

◦:: 〈∗〉ε; . . . ; ok 7→ Pk
◦:: 〈∗〉ε; )

Outside Cell Deferred({o1 7→ P1; . . . ; ok 7→ Pk})〈∗ \ i〉 Deferred(o1 7→ P1
◦:: 〈∗ \ i〉ε; . . . ; ok 7→ Pk

◦:: 〈∗ \ i〉ε; )

Table 6.6 – Extended Extraction Operators

Γ(o1) = τ1 Γ, I
◦
` P1 : τ1 → τ

. . .

Γ(ok) = τk Γ, I
◦
` Pk : τk → τ

o1 ∈ O . . . ok ∈ O
Γ, I,O ` Deferred({o1 7→ P1; . . . ; ok 7→ Pk}) : τ

WTDeferred

Table 6.7 – Well-Typed Dependencies – Extended

6.5 Deferred Dependencies at the Intraprocedural Level

6.5.1 Extended Intraprocedural Dependency Analysis

At the intraprocedural and interprocedural level of our dependency analysis, the intro-
duction of deferred dependencies has a minimal impact in terms of required changes.

Intraprocedurally, each predicate is analysed on every possible exit label. As ex-
plained in Section 5.3.2, our dependency analysis is a backward data-flow analysis. For
each possible exit label of a predicate, the control flow graph is traversed backwards,
starting from the exit node that corresponds to the analysed execution scenario. De-
pendency information is computed at every point of the control flow graph, for each
of the predicate’s input, output and local variables and this information is gradually
refined until a fixed point is reached.

By traversing the control flow graph backwards, we take advantage of the infor-
mation regarding the outputs that are associated to the analysed exit label and we
consider only the relevant ones starting from the initialisation phase. As explained
previously in Section 5.3.2, the intraprocedural domain for the currently analysed exit
label is initialised with its associated output variables mapped to >, the least precise
element of our abstract dependency domain. This is a conservative over-approximation:
it is considered that control on the outputs is lost and that these are entirely observed
externally. As illustrated in Section 6.2, this over-approximation propagates along the
control flow graph and, in certain cases, has a non-negligible impact on the precision
of the computed dependency summaries.

We argued that at the intraprocedural level of the analysis, a subtle, but important
distinction can be made, regarding the dependency on certain inputs. This consists in



6.5. Deferred Dependencies at the Intraprocedural Level 129

distinguishing between the cases in which a predicate effectively uses an input subele-
ment to compute an output subelement, and those in which it simply forwards it to
an output subelement. In the latter cases, the predicate does not use or need such an
input subelement per se, and as a consequence, the dependency on it is relative to the
amount in which the predicate’s callers will subsequently use the output in which it
is retrieved. At the intraprocedural level, in order to avoid the propagation of over-
approximations, it is important to make this distinction early on, from the initialisation
phase. Therefore, we introduce deferred dependencies at this level, instead of mapping
the output variables to > as was previously done.

For a predicate p of the following form:

p(e1, . . . , en) [λ1 : o1,1, . . . , o1,k1 | . . . | λi : oi,1, . . . , oi,ki | . . . | λm : om,1, . . . , om,km ]

analysed on the λi exit label, the intraprocedural dependency domain used for initial-
ising the node corresponding to λi is the following:

oi,1 7→ Deferred(oi,1 7→ {ε})
. . . . . . . . .
oi,ki 7→ Deferred(oi,ki 7→ {ε})

For each associated output oi,j , 1 ≤ j ≤ ki of the analysed label λi, a set Poi,j of
symbolic paths is constructed. Initially, this consists of a single element, namely the ε
path. The deferred dependency associated to each output oi,j is an access map binding
oi,j itself to its corresponding set of symbolic paths Poi,j . Since the symbolic paths ε
refer to the output variables in their entirety, this is still a conservative approximation,
but, in contrast to our previous initialisation strategy, it acknowledges the fact that
dependencies on the inputs might be relative to the amount in which the outputs are
subsequently used. It allows injecting context-sensitive information later on.

This new initialisation strategy is enough to incorporate the expressive power of
deferred dependencies at an intraprocedural level. Whereas before we were computing
label-specific dependency summaries as input-output relations, the new strategy allows
us to obtain label-specific dependency templates with lazy components, that can be
parameterized and varied according to a caller’s own intraprocedural context. These
can be seen as context-insensitive dependency summaries with context-sensitive leaves.

6.5.2 Intraprocedural Dependency Analysis Illustrated

In order to illustrate the use of deferred dependencies at an intraprocedural level, we
revisit our thread example predicate, discussed in Section 5.3.3. As done previously,
we consider the true execution scenario and apply our extended dependency analysis.
We initialize the dependency corresponding to the true exit node, by mapping the
predicate’s output ti to the deferred dependency mapping it to a set containing a
single symbolic path, namely ε.
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After the initialisation phase, the analysis continues as before, by traversing the
control flow graph backwards and by applying at each step the corresponding data-
flow equation. The deferred dependency is propagated upwards until the entry node is
reached and analysed.

th := p.threads

tio := th[i]

switch(tio) as [ | ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

p 7→ { threads 7→ 〈� . i: [Some 7→ {t 7→ Deferred(ti 7→ {ε})}; None 7→ ⊥]〉}
i 7→ >

th 7→ 〈� . i: [Some 7→ {t 7→ Deferred(ti 7→ {ε})}; None 7→ ⊥] 〉
i 7→ >

tio 7→ [Some 7→ {t 7→ Deferred(ti 7→ {ε})}; None 7→ ⊥]

ti 7→ Deferred(ti 7→ {ε})

Figure 6.1 – Analysing thread – Dependency Summary with Deferred
Occurrences

The final dependency summary for the true exit label of the predicate is obtained:

p 7→ { threads 7→ 〈� . i: [Some 7→ {t 7→ Deferred(ti)}; None 7→ ⊥]〉}
i 7→ >

and this is similar to the targeted dependency information for thread, discussed in
Section 6.2 and illustrated on page 117.

6.6 Deferred Dependencies at the Interprocedural Level
At the interprocedural level, the impact of introducing deferred dependencies is visible
only at the level of the substitutions that have to be performed. Previously, the only re-
quired substitution consisted in replacing all occurrences of formal input parameters of
a predicate with the corresponding effective input parameters. After having introduced
deferred dependencies, further substitutions are needed. These can be easily illustrated
by revisiting our start_address example predicate discussed in Section 5.4.1. As done
previously, we consider the true execution scenario and apply our extended dependency
analysis.

We begin by initialising the output adr with a corresponding deferred dependency,
as discussed in Section 6.5.1. The analysis traverses the control flow graph backwards
and computes the dependency information at each node, until reaching the control
flow graph’s entry node, which corresponds to a call to the thread predicate. The
intermediate dependency results are shown in Figure 6.2.

We obtain the dependency summary for the true exit label of the called predicate
thread. In order to be able to use it, we must first substitute the formal input param-
eters, i.e. p and i, appearing in it, with the effective arguments of the call, i.e. p and
j. Additionally, in deferred dependencies, we also have to substitute the formal output
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thread(p, j)[true: tj | None | oob]

sj := tj.stack None

adr := sj.start

true

true
None, oob

true

true

adr 7→ Deferred(adr 7→ {ε})

sj 7→ {start 7→ Deferred(adr 7→ {ε})}

tj 7→ {stack 7→ {start 7→ Deferred(adr 7→ {ε})}}

Figure 6.2 – Gstart_address – Intermediate Dependency Results for
start_address

parameters appearing as roots in the access maps, i.e. ti, with the corresponding ef-
fective output parameters. These substitutions are shown in Figure 6.3. Formal index
variables appearing in dependencies corresponding to arrays have to be substituted
with their effective counterparts as well. Similarly, any formal index variable appearing
in symbolic paths that correpond to arrays must be substituted by the corresponding
effective index variable.

p 7→ { threads 7→ 〈� . i: [Some 7→ {t 7→ Deferred(ti)}; None 7→ ⊥]〉}
i 7→ >

tj 7→ {stack 7→ {start 7→ Deferred(adr 7→ {ε})}}

p j tj

j

Figure 6.3 – Substitution of Formal Parameters by Effective Parame-
ters

We can finally take advantage of the flexibility obtained using deferred dependencies
by injecting the caller’s intraprocedural dependency information into the deferred oc-
currences of the callee’s dependency summary. This is another type of substitution and
consists in replacing deferred occurrences of formal output parameters of a predicate
by the dependency information computed in the current context for the corresponding
effective output parameters. For our start_address example, this is shown in Fig-
ure 6.4 and amounts to substituting the dependency computed for tj in the deferred
occurrence of ti in the dependency summary of thread.

After this substitution, we obtain the following dependency summary for the exit
label true of the start_address predicate:

p 7→ { threads 7→ 〈� . j: [Some 7→ {t 7→ {stack 7→ {start 7→ Deferred(adr 7→ {ε})}}}; None 7→ ⊥]〉}
j 7→ >
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p 7→ { threads 7→ 〈� . j: [Some 7→ {t 7→ Deferred(tj)}; None 7→ ⊥]〉}
j 7→ >

tj 7→ {stack 7→ {start 7→ Deferred(adr 7→ {ε})}}

Figure 6.4 – Substituting Deferred Dependencies by Actual Dependen-
cies

6.6.1 Applying Context-Sensitive Information by Substitution

As shown in our previous example, deferred dependencies associate sets of symbolic
paths to certain root variables. We can substitute such deferred dependencies by actual
dependencies computed in the current context, by applying the symbolic paths to the
actual dependency to substitute. We iterate through entire dependency summaries in
order to substitute the nested deferred dependencies appearing at some leaves. This
substitution can be seen as an application of contextual information to summaries
with deferred dependencies, which are essentially context-insensitive abstractions with
context-sensitive leaves. It is denoted by a mapping σ which associates dependencies
to root variables appearing in deferred access maps.

Definition 6.6.1. Substitution σ.

σ : V → D.

Simultaneously, while substituting root variables in deferred dependencies by their
actual dependencies, computed in the current intraprocedural context, we also substi-
tute indices in information corresponding to arrays. These are substituted either by
another array index, i.e. the one corresponding to an actual input parameter, or they
are eliminated, when corresponding to a local variable. Their elimination consists in
approximating the dependencies so as to remove references to the array index. This
substitution is denoted by φ and it is a mapping from variables to new variables to
replace them.

Definition 6.6.2. Substitution φ.

φ : V 9 V.

The two substitutions can be done separately. However, for performance reasons,
we chose to do them simultaneously. This is also what the actual implementation of the
dependency analysis does. We denote the two simultaneous substitutions by J (σ, φ)
and detail them in Table 6.9. Performing the two operations simultaneously can be
seen as a manner of reinterpreting a dependency computed in one context in another
context.

For sets of symbolic paths (as defined in Section 6.3.1) in deferred dependencies,
the operation P • (σ(o), φ) is the application of symbolic paths to the dependency of
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the root variable o computed in the current context. For a deferred access map, all
dependencies obtained by applying the symbolic paths are joined. The application of a
symbolic path π to a dependency δ is denoted by π ◦ (δ, φ) and it is shown in Table 6.8.
During the application, free variables appearing in symbolic paths associated to arrays
are substituted by their corresponding index variables as given by φ. If φ does not
contain a mapping for a free variable, an approximation is made in order to remove it
and the dependency obtained by applying 〈∗〉 is returned.

π ◦ (δ, φ)

ε ◦ (δ, φ) = δ

.fπ ◦ (δ, φ) = π ◦ (δ.f, φ)
@Cπ ◦ (δ, φ) = π ◦ (δ@C, φ)
〈∗〉π ◦ (δ, φ) = π ◦ (δ〈∗〉, φ)

〈i〉π ◦ (δ, φ) =
{
π ◦ (δ〈φ(i)〉, φ), i ∈ Dom(φ)
π ◦ (δ〈∗〉, φ), otherwise

〈∗ \ i〉π ◦ (δ, φ) =
{
π ◦ (δ〈∗ \ φ(i)〉, φ), i ∈ Dom(φ)
π ◦ (δ〈∗〉, φ), otherwise

Table 6.8 – Deferred Paths – Application and Substitutions

Definition 6.6.3. Application of Symbolic Paths to a Dependency.

P • (δ, φ) =
∨
∀π∈P

π ◦ (δ, φ).

δ J (σ, φ)

> J (σ, φ) = >
� J (σ, φ) = �
⊥ J (σ, φ) = ⊥

{f1 7→ δ1; . . . ; fn 7→ δn} J (σ, φ) = {f1 7→ δ1 J (σ, φ); . . . ; fn 7→ δn J (σ, φ)}
[C1 7→ δ1; . . . ;Cm 7→ δm] J (σ, φ) = [C1 7→ δ1 J (σ, φ); . . . ;Cm 7→ δm J (σ, φ)]

Deferred({o1 7→ P1; . . . ; ok 7→ Pk}) J (σ, φ) =
∨

1≤i≤k
Pi • (σ(oi), φ)

〈δdef 〉 J (σ, φ) = 〈δdef J (σ, φ)〉

〈δdef . i : δexc〉 J (σ, φ) =
{
〈δdef J (σ, φ) . φ(i) : δexc J (σ, φ)〉 i ∈ Dom(φ)
〈δdef J (σ, φ) ∨ δexc J (σ, φ)〉, otherwise

Table 6.9 – Interprocedural Domain – Substitutions
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6.6.2 Wrapped Calls and Results

As a simple experiment for verifying the precision of our dependency analysis approach
with deferred dependencies, we have replaced all calls to built-in predicates in our
previous example predicates, thread and start_address, illustrated in Section 6.5.2
and on page 131, respectively, with calls to predicates wrapping every call of this type.
We compared the precision of the obtained results, as well as the execution time needed
to compute the dependency summaries.

The thread_with_wrapped predicate thus has the following form:
predicate thread_with_wrapped ( process p, int i)
-> [ true: thread ti|None|oob]
{{ array < option_thread > th, option_thread tio }} {

get_threads (p)[ true: th] : [ true -> 1];
get_ith (th, i)[ true: tio| f a l s e ] : [ true -> 2, f a l s e -> 5];
switch_option (tio )[ none|some: ti] : [none -> 4, some -> 3];
[ true];
[None ];
[oob]

}

The start_address predicate becomes:
predicate start_address_wrapped ( process p, int j)

-> [ true: int adr|None]
{{ thread tj, memory_region sj}} {

thread (p, j)[ true: tj | None | oob] : [ true -> 1,
None -> 4, oob -> 4];

get_stack (tj) [ true: sj] : [ true -> 2];
get_start (sj) [ true: adr] : [ true -> 3];
[ true];
[None ];
[error]

}

The dependency summaries obtained for each of the two predicates are identical
to the ones obtained for the predicates thread and start_address in their original
form. The dependency information for thread and start_address is computed in 0.33
milliseconds, while that for the versions with calls to the wrapped built-in predicates,
i.e. thread_with_wrapped and start_address_wrapped are obtained in 0.65 milliseconds.
We ran the analysis 10001 times in a loop. The time measured includes only the
execution of the analysis algorithms. It excludes the time required to load the input
files, as well as the time spent printing the results.

6.7 Related Work
For the past few decades, interprocedural analyses have generated considerable interest
in the static analysis community. They expand the scope of analysis beyond a pro-
cedure’s limits in order to encompass the effect of callees on callers. The precision
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of both data-flow and control-flow analyses is traditionally characterized in terms of
context-sensitivity, i.e. computing information depending on the calling context, or,
its dual, context-insensitivity. For control-flow analyses, the terms polyvariant and
monovariant analyses are used interchangeably for the same distinction (Nielson and
Nielson, 1999). In (Midtgaard, 2012), a comprehensive survey of control-flow analyses
for functional programs is made. Context-sensitivity has the advantage of increased
precision. However, the scalability of such analyses is frequently a major concern. The
precision and performance impact of context-sensitivity is discussed by Lhoták and
Hendren in (Lhoták and Hendren, 2006). In contrast, Ruf argues in (Ruf, 1995) that
context-insensitivity leads to little or no precision penalty. Shapiro and Horwitz ar-
gue in (Shapiro and Horwitz, 1997) that using a more precise pointer analysis does in
general lead to more precise results.

Sharir and Pnueli introduced in (Sharir and Pnueli, 1978) a comprehensive theory
of interprocedural data-flow analyses for general frameworks. The first of them, the
functional approach is based upon computing a context-sensitive summary of a function
or procedure call. Procedures are viewed as collections of structured program blocks
and input-output relations are established for each such block. Subsequently, the effect
of procedure calls is computed by simply using such relations. The second approach
proposed by Sharir and Pnueli is the call-string approach. Broadly speaking, this is
based upon avoiding infeasible paths by matching corresponding calls and returns.
It can be seen as an extension to intraprocedural data-flow analyses, in which only
valid interprocedural paths are considered during graph traversal. This is achieved by
tagging the propagated data with an encoded history of procedure calls, thus making the
interprocedural flow explicit and increasing the accuracy of the propagated information.
Both approaches are generic and can be used for a wide variety of analyses. Our form
of interprocedural dependency analysis is closer to the functional approach. For each
predicate of the analysed program, it computes a dependency summary as an input-
output relation and then uses this summary whenever the predicate is called. Symbolic
elements are used to allow callers to inject their own context information.

Though desirable in terms of precision, context-sensitivity is often considered pro-
hibitively costly in terms of performance. In practice, many analyses make a com-
promise and relax to a certain degree this requirement for scalability. Our approach
makes no exception either: it constitutes an application of context-sensitive informa-
tion to summaries with deferred dependencies, which are essentially context-insensitive
abstractions with context-sensitive leaves. Though not purely context-sensitive, we
obtain a gain in precision without sacrificing scalability.

Purely context-sensitive analyses have been developed, especially in the area of
points-to analyses (Gharat, Khedker, and Mycroft, 2016), but also for information
flow control (Hammer and Snelting, 2009) or liveness analysis used for garbage collec-
tion (Asati et al., 2014). In (Khedker, Mycroft, and Rawat, 2011), Khedker et. al.,
present a lazy context-sensitive points-to analysis. Points-to information is computed
only for the pointers that are live and the propagation of points-to information is sparse,
being restricted to live ranges of pointers. Though our approach is not directly com-
parable to this approach, it is interesting to make a few general remarks. In (Khedker,
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Mycroft, and Rawat, 2011), strong liveness is used for identifying the pointers that
are directly used or which are used for defining pointers that are strongly live. On
the other hand, we use strong dependency to identify and distinguish between input
subelements that are directly needed for computing the output and input subelements
that are simply copied into and forwarded as outputs. Thus, Khedker et. al. prevent
the explosion of information by clearly distinguishing between relevant and irrelevant
information. We achieve scalability by refining the notion of needed or depending on.
Their analysis is fully context-sensitive and is based on the call-string approach (Sharir
and Pnueli, 1978); our analysis shows a relaxed form of context-sensitivity and is closer
to the functional approach.

Jensen et. al. present in (Jensen, Møller, and Thiemann, 2010) a technique based on
lazy propagation for context-sensitive interprocedural analysis of JavaScript programs,
i.e. programs with objects and first-class functions. Transfer functions may not be
distributive, and hence the IFDS technique (Reps, Horwitz, and Sagiv, 1995; Padhye
and Khedker, 2013) is not applicable. They propagate data-flow information “by need”
in an iterative fixpoint algorithm.

The computation of relevant information is deferred in demand-driven analyses (Hor-
witz, Reps, and Sagiv, 1995; Heintze and Tardieu, 2001; Zheng and Rugina, 2008;
Sridharan et al., 2005) as well. These compute the targeted results only at specific
program points, thereby avoiding the effort of computing a global result. We compute
dependency summaries with symbolic elements. These can be seen as dependency tem-
plates parameterized by a caller’s context. Their instantiation is deferred and left to
the callers.

6.8 Conclusion
We have presented an extension of our dependency analysis, introducing a relaxed
form of context-sensitivity. Our solution is based on computing deferred dependen-
cies consisting of symbolic access maps in which caller’s can subsequently inject their
specific context information on an as-needed basis. The dependency summaries for
each predicate are computed only once. However, by including nested context-sensitive
components at the summaries’ leaves, we reduce the precision penalty exerted by our
previous context-insensitive approach. The introduction of deferred dependencies re-
quired the introduction of an additional level of symbolic paths and path sets. However,
the impact of this extension had a minimal impact on the dependency analysis at the
intra- and interprocedural levels, imposing only the modification of the initialisation
strategy and of the substitution operation. As we will discuss in Chapter 8, our ex-
tension of the dependency analysis with deferred dependencies led to an increase of
10%–20% in execution time on our used benchmark. However, it obtained more precise
dependency information for 50% of the predicates included in the used benchmark.
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Chapter 7

Correlation Analysis

A thousand fibers connect us [...]; and
among those fibers, as sympathetic
threads, our actions run as causes, and
they come back to us as effects.

Hermann Melville

7.1 Introduction
In the field of Artificial Intelligence, the frame problem (McCarthy and Hayes, 1969)
is loosely, but frequently described as “knowing what stays the same as actions occur
in a changing world” (Morgenstern, 1995). In the realm of software verification, the
frame problem refers to establishing the boundaries within which functions operate
and it has notoriously tedious implications and consequences along two different axes:
the specification of frame properties (Borgida, Mylopoulos, and Reiter, 1995) and their
verification.

Another frequently used definition of the frame problem in the context of Artificial
Intelligence refers to “efficiently determining what remains the same in a changing
world” (Morgenstern, 1995). This definition is similar to the first, yet the initial words
“efficiently determining” confer it a subtle, but crucial nuance. In this chapter we are
rather interested in the latter and we address the issue of automatically detecting deep-
state modifications in the context of αSmil, a functional language. In our “changing
world”, destructive updates are not allowed. The new state out of a structured value
in is obtained by destructuring in and reconstructing it in out by copying unmodified
subvalues from in and replacing in out only what needs to reflect the modification.
Thus, referring to old values per se, as one of the three major approaches to specifying
frame properties (described in Section 2.3.1) implies, does not make sense. Instead, we
have to focus on, and to detect the relations between the (sub)values in and out. To
this end we present a static correlation analysis which, when given a predicate that
manipulates a structured input, is meant to determine automatically, the subset that
remains unchanged and is further propagated into the output. Thus, the behaviour of
a predicate is summarised by computing relations between parts of the input and parts
of the output. The computed correlation summaries are a safe approximation of what
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part of an input state of a predicate is copied to the output state; they summarise not
only what is modified by the predicate but also how it is modified and to what extent.

Outline. We continue this chapter by illustrating the targeted correlation results on
an αSmil example in Section 7.1.1. In Section 7.1.2 we give a brief overview of the
characteristics of our correlation analysis and explain the motivation behind some of
them. The rest of the chapter is focusing on technical details related to the correlation
analysis. In Section 7.2 we present our abstract partial equivalence type, a fundamen-
tal component of our correlation analysis. It is followed in Section 7.3 by an in-depth
presentation of paths and correlations, an intermediate level of abstraction that is im-
perative for obtaining expressive results. In Section 7.4, we focus on the correlation
analysis at an intraprocedural level and illustrate the step-by-step mechanism behind
it in Section 7.4.2. A summary of the correlation analysis at an interprocedural level is
given in Section 7.5. A possible extension going beyond the detection of equivalences
and handling more general relations is briefly discussed in Section 7.6. Detecting mod-
ifications is traditionally associated to shape and side-effect analyses. In Section 7.7 we
review and discuss such approaches.

7.1.1 Targeted Correlation Information

The goal of our analysis and the targeted correlation results can be illustrated on
an example predicate, such as stop_thread, for instance. This predicate has been
introduced in Section 3.1.5 (on page 50) and its body in the αSmil language was shown
in Section 4.1 on page 64. We revisit it and illustrate the predicate’s body in Figure 7.1.

predicate stop_thread(process in, int i)
-> [true: process o | inval]
{{array<option_thread> ta, option_thread th,
thread ti, state s}}
{
1: ta := in.threads
2: th := ta[i]
3: switch(th) as [Some:ti | None]
4: s := Blocked
5: ti := {ti with current_state=s}
6: th := Some(ti)
7: ta := [ta with i=th]
8: o := {in with threads=ta}
9: true 10: inval
}

false

None

false

Figure 7.1 – Body of the stop_thread Predicate

It has two possible execution scenarios: true, when the given index i corresponds to
an active thread, and inval otherwise, i.e. when it corresponds to an inactive element
or when it lies outside the array’s bounds. In the latter case, the predicate exits with



7.1. Introduction 139

the inval label and generates no output. In the former case, stop_thread modifies the
state of the i-th active thread by setting it to Blocked, and returns the new state of
the process in the output o. This is accomplished by destructuring the input process
in and copying the array of associated threads into the local variable ta (line 1). The
array’s i-th element is copied to the local variable th (line 2) and as it is an active
element, its corresponding thread is extracted and put into ti (line 3). The new state
for the thread value ti is created by setting its current_state field (line 5) to the state
s constructed previously (line 4). The new state o of the process is constructed, using
ti for its i-th active element (lines 6 and 7) and copying everything else from the input
in (line 9). It is interesting to note that for each destructuring step of in, there is a
corresponding construction step for o, as is visible at lines 1 and 8, 2 and 7, and 3 and
6, for instance.

The targeted correlation results for this predicate are illustrated in Figure 7.2. Our
analysis should infer that between the input process in and the output o, the values
of the fields pid, current_thread and address_space are equal. Furthermore, for the
threads array of associated threads it should detect that all elements are equal except
the value of the i-th element (as illustrated by Rth), for which only one of the three
fields, namely the current_state field, differs (shown by Ri).

in

o

address_space
current_thread

pid
threads

address_space
current_thread

pid
threads =

=
=

Rth

Rth i i
Ri

Ri stackcurrent_stateidentifier stackcurrent_stateidentifier

?
Figure 7.2 – Targeted Correlation Results for Predicate stop_thread

By tracking equalities between pairs of variables of the same type and by defining
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an abstract partial equivalence type that mirrors the layered structure of associative
arrays and algebraic data types, we can detect the equality of the values for the pid,
current_thread and address_space fields between the input and the output. However, if
we track only equalities between variables of the same type and we ignore the flow of an
input’s subelement value to a variable (or conversely, the flow of a variable’s value to an
output’s subelement) valuable information is lost. We are not only losing information
between inputs and outputs of different types, but by accumulating imprecisions, we
also lose information concerning inputs and outputs of the same type, such as the in
and o processes of our example. For instance, the equality between the values extracted
from the input in and copied into ta and th, respectively, as well as the relation between
the values of ta and o.threads, and th and o.threads[i] are ignored because neither
ta nor th are of the same type as in and o. As a consequence, we lose the information
concerning the relation between in’s and o’s threads values altogether. In order to
compute such information it is imperative to track (cor)relations between variables of
different types as well.

7.1.2 Correlation Analysis in a Nutshell

Our correlation analysis is a conservative static analysis inferring what is modified by
an operation and to what extent. It approximates the flow of input values into output
values, by uncovering equalities and computing correlations as pairs between input
parts and the output parts into which these are injected. What is marked as being
equal is definitely equal.

π

ρ

π′

ρ′
R′

R

Figure 7.3 – Intraprocedural Correlations – General Representation

Outputs are often complex compounds of different subparts of different input vari-
ables: a subset of the input is modified, while the rest is injected as is. We track the
origin of subparts of the output and relate it to subparts of the input. As previously
illustrated on our stop_thread example predicate, in order to prevent avoidable over-
approximations, we need to avoid dealing with data in a monolithic manner. To this
end, it is imperative to consider pairs of different types and granularities as well. As a
consequence, we are forced to introduce an additional level of granularity allowing us to
refer not only to variables, but also to substructures within them. At the intraprocedu-
ral level, illustrated in Figure 7.3, we define correlations as mappings between pairs of
inputs and outputs to which we associate mappings between pairs of valid inner paths
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and the relations binding them. Correlations for arrays and variants are exemplified in
Figures 7.4-a) and 7.4-b).

i i

R

a) Arrays: ∀i, a[i]R b[i] b) Variants

Figure 7.4 – Intraprocedural Domain – Examples

Similarly to our dependency analysis presented in Chapter 5, the correlation analysis
is an interprocedural, flow-sensitive, field-sensitive, label-sensitive analysis that handles
associative arrays, structures and variant data types. However, unlike the dependency
analysis for which we introduced a relaxed form of context-sensitivity in Chapter 6, the
correlation analysis is context-insensitive. Fine-grained equivalence relations between
the inputs and outputs of a predicate are computed once and subsequently propagated
to its callers.

Our correlation analysis is meant to be used in an interactive verification context.
Precise correlation summaries must be computed quickly in order to answer effectively,
when combined with dependency summaries, queries regarding the preservation of cer-
tain invariants.

7.2 Partial Equivalence Relations

7.2.1 Abstract Partial Equivalence Type

The first step towards automatically reasoning about the propagation of input subele-
ments into output subelements is the definition of an abstract partial equivalence type
R that mimics the structure of algebraic data types and arrays. A partial equivalence
relation R ∈ R is defined inductively from the two atomic elements, Equal and Any,
and mirrors the structure of the concrete types.

Definition 7.2.1. Partial Equivalence Type R ∈ R.

R := | Equal atomic case – equal (i)
| Any atomic case – unrelated (ii)
| {f1 7→ R1 ; . . . ; fn 7→ Rn} f1 , . . . , fn fields (iii)
| [C1 7→ R1 ; . . . ; Cn 7→ Rn ] C1, . . . , Cn constructors (iv)
| 〈Rdef 〉 array (v)
| 〈Rdef . i : Rexc〉 i array index (vi)

Such relations represent fine-grained partial equivalences between pairs of values of the
same type. Equal and Any represent equal and unrelated values, respectively. Partial
equivalence relations for structures (given by (iii)) and for variants (given by (iv)), are
expressed in terms of the partial equivalences of their subparts, by mapping each field
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or constructor to the corresponding relations. As for the dependency analysis presented
in Chapter 5, for arrays, we distinguish between two cases, namely arrays with a general
relation applying to all of the cells (as given by (v)) or to all but one exceptional cell
(as given by (vi)), for which a specific relation is known to hold.

The preorder relation of the partial equivalence lattice is denoted by vR and defined
below.

Definition 7.2.2. Preorder Relation vR .

vR ⊆ R ×R.

It is detailed in Table 7.1.

Table 7.1 – vR – Comparison of Two Domains

R vR Any
Top

Equal vR R
Bot

R1 vR R′1 . . . Rn vR R′n

{f1 7→ R1; . . . ; fn 7→ Rn} vR {f1 7→ R′1; . . . ; fn 7→ R′n}
Str

R1 vR R′1 . . . Rn vR R′n

[C1 7→ R1; . . . ;Cn 7→ Rn] vR [C1 7→ R′1; . . . ;Cn 7→ R′n]
Var

R vR R′

〈R〉 vR 〈R′〉
Adef

Rdef vR R′def Rexc vR R′exc

〈Rdef . i : Rexc〉 vR

〈
R′def . i : R′exc

〉 AI

Rdef vR R′ Rexc vR R′

〈Rdef . i : Rexc〉 vR 〈R′〉
AIA

R vR R′def R vR R′exc

〈R〉 vR

〈
R′def . i : R′exc

〉 AAI

i 6= j Rdef vR R′def Rdef vR R′exc Rexc vR R′def Rexc vR R′exc

〈Rdef . i : Rexc〉 vR

〈
R′def . j : R′exc

〉 AIJ

The join and meet operations are denoted by ∨R and ∧R , respectively.

Definition 7.2.3. Join Operation ∨R .

∨R : R × R → R.

Definition 7.2.4. Meet Operation ∧R .

∧R : R × R → R.
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Both are commutative operations, applied pointwise on each subelement. Join, shown
in Table 7.2, has Equal as its identity element and Any as its absorbing element. Meet,
shown in Table 7.3, has Equal as its absorbing element and Any as its identity element.
For both operations the undisplayed cases are defined by their symmetrical counter-
parts.

Table 7.2 – Partial Equivalences – ∨R – Join Operation

R′ R′′ R′ ∨R R′′

Any ∨R R = Any
Equal ∨R R = R

{f1 7→ R1; . . . ; fn 7→ Rn} ∨R {f1 7→ R′1; . . . ; fn 7→ R′n} = {f1 7→ R1 ∨R R′1; . . . ; fn 7→ Rn ∨R R′n}
[C1 7→ R1; . . . ;Cn 7→ Rn] ∨R [C1 7→ R′1; . . . ;Cn 7→ R′n] = [C1 7→ R1 ∨R R′1; . . . ;Cn 7→ Rn ∨R R′n]

〈R〉 ∨R 〈R′〉 = 〈R ∨R R′〉
〈R〉 ∨R 〈R′def . i : R′exc〉 = 〈R ∨R R′def . i : R ∨R R′exc〉

〈Rdef . i : Rexc〉 ∨R 〈R′def . j : R′exc〉
{
i = j

i 6= j
=

〈Rdef ∨R R′def . i : Rexc ∨R R′exc〉
〈Rdef ∨R R′def ∨R Rexc ∨R R′exc〉

Table 7.3 – Partial Equivalences – ∧R – Meet Operation

R′ R′′ R′ ∧R R′′

Any ∧R R = R

Equal ∧R R = Equal
{f1 7→ R1; . . . ; fn 7→ Rn} ∧R {f1 7→ R′1; . . . ; fn 7→ R′n} = {f1 7→ R1 ∧R R′1; . . . ; fn 7→ Rn ∧R R′n}
[C1 7→ R1; . . . ;Cn 7→ Rn] ∧R [C1 7→ R′1; . . . ;Cn 7→ R′n] = [C1 7→ R1 ∧R R′1; . . . ;Cn 7→ Rn ∧R R′n]

〈R〉 ∧R 〈R′〉 = 〈R ∧R R′〉
〈R〉 ∧R 〈R′def . i : R′exc〉 = 〈R ∧R R′def . i : R ∧R R′exc〉

〈Rdef . i : Rexc〉 ∧R 〈R′def . j : R′exc〉
{
i = j

i 6= j
=

〈Rdef ∧R R′def . i : Rexc ∧R R′exc〉
〈Rdef ∧R R′def ∧R Rexc ∧R R′exc〉

Additionally, extraction functions are defined for partial equivalence relations.

Definition 7.2.5. Extraction of a Field’s Relation:

extrf : R 9 R.

Definition 7.2.6. Extraction of a Constructor’s Relation:

extrC : R 9 R.

Definition 7.2.7. Extraction of a Cell’s Relation:

extr 〈i〉 : R 9 R.
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These are partial functions and can only be applied on relations of the corresponding
types. For example, the field extraction extrf only makes sense for atomic or structured
relations having a field named f , which should be the case if the relation connects two
values of a structured type with a field f . For any of the two atomic relations Equal
or Any, applying any of these extractions yields Equal or Any, respectively. They are
summarized in Table 7.4.

Table 7.4 – Partial Equivalence Extractions

extrf (R), f ∈ F

extrf (Any) = Any
extrf (Equal) = Equal

extrf ({f1 7→ R1; . . . ; fi 7→ Ri; . . . ; fn 7→ Rn}) = Ri if f = fi

extrC(R), C ∈ C

extrC(Any) = Any
extrC(Equal) = Equal

extrC([C1 7→ R1; . . . ;Ci 7→ Ri; . . . ;Cn 7→ Rn]) = Rj if C = Cj

extr 〈i〉(R)

extr 〈i〉(Any) = Any
extr 〈i〉(Equal) = Equal

extr 〈i〉(〈R〉) = R

extr 〈i〉(〈Rdef . i : Rexc〉) = Rexc
extr 〈i〉(〈Rdef . j : Rexc〉), i 6= j = Rdef ∨R Rexc

7.2.2 Well-Typed Partial Equivalences and their Semantics

As discussed in the case of dependencies in Section 5.2.2, syntactic partial equivalences
are untyped. However, their interpretation is made in the context of a type τ ∈ T.
The atomic cases, such as Equal and Any can apply to any type since they are not
exhibiting any data type features. Cases other than Equal and Any only have non-
empty interpretations for types τ which are compatible with their shape. For instance,
the structured relation {f 7→ R} only really makes sense for structured types with a
single field f , whose type itself is compatible with R, and will not be used in connection
with variant or array types for example. In Table 7.5 we detail the inference rules
related to the well-typedness of partial equivalences. This is described as a judgement
parameterized by a typing environment Γ (Definition 4.3.1).

Γ ` Equal : τ
WT>

Γ ` Any : τ
WT⊥
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τ = struct{f1 : τ1, . . . , fn : τn}
Γ ` R1 : τ1 . . . Γ ` Rn : τn
Γ ` {f1 7→ R1; . . . ; fn 7→ Rn} : τ

WTStruct

τ = variant[C1 : τ1| . . . | Cn : τn]
Γ ` R1 : τ1 . . . Γ ` Rn : τn
Γ ` [C1 7→ R1; . . . ;Cn 7→ Rn] : τ

WTVar

Γ ` R : τ
Γ ` 〈R〉 : arrτi〈τ〉

WTArr

Γ ` Rdef : τ Γ ` Rexc : τ Γ(i) = τi

Γ ` 〈Rdef . i : Rexc〉 : arrτi〈τ〉
WTArrI

Table 7.5 – Well-Typed Partial Equivalences

The atomic values are generic: they are well-typed with respect to any type (WT>,
WT⊥). The partial equivalences of structures (WTStruct) are well-typed only with
respect to an adequate structured type, whose field types are themselves compatible
with the equivalences mapped to them. Similarly, the partial equivalences of variants
(WTVar) are well-typed only with respect to an adequate variant type. In turn, the
constructors must be themselves pointwise compatible with the equivalences mapped
to them. For well-typed array equivalences (WTArr, WTArrI), the default relation
as well as the exceptional relation have to be compatible with the type τ of the array’s
elements. Furthermore, the type of i, the index of the known exceptional equivalence
relation, has to be compatible with τi, the array’s index type.

The semantics of a partial equivalence R for a type τ is a partial equivalence re-
lation over values of type τ . Given a valuation E from variables to semantic values
(Definition 4.4.2), the interpretation JRKτ of a relation R ∈ R with respect to some
type τ is a binary relation over Dτ (Definition 4.4.1). The interpretation JRKτ is defined
as shown in Table 7.6.

JEqualKτ = {(x, x)| x ∈ Dτ} JAnyKτ = Dτ × Dτ

J{f1 7→ R1; . . . ; fn 7→ Rn}Kstruct{f1:τ1,...,fn:τn} =
{({f1 = v1, . . . , fn = vn}, {f1 = w1, . . . , fn = wn}) | ∀i, 1 ≤ i ≤ n, (vi, wi) ∈ JRiKτi}

J[C1 7→ R1; . . . ;Cn 7→ Rn]Kvariant[C1:τ1| ...| Cn:τn] = {(Ci[vi], Ci[wi]) | (vi, wi) ∈ JRiKτi}

J〈Rdef 〉Karrτi 〈τ〉 = {((P, (v)k), (P, (w)k)) | ∀k, (vk, wk) ∈ JRdef Kτ}
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J〈Rdef . i : Rexc〉Karrτi 〈τ〉 = {((P, (v)k), (P, (w)k)) |
E(i) ∈ P =⇒ (vE(i), wE(i)) ∈ JRexcKτ , ∀k 6= E(i), (vk, wk) ∈ JRdef Kτ}

Table 7.6 – Partial Equivalence Relations – Semantics

A partial equivalence relation R only relates values of the same type τ , which
must be compatible with R’s “shape”. For structures, a partial equivalence relates
pointwise the values of the fields of the two structure values. For variant values, a
partial equivalence relation relates values built with the same constructor Ci, using
arguments whose values are related by a relation Ri. For arrays, P indicates the support
type, which has to be identical for both values. The values of the array elements are
pointwise related by the same relation Rdef , with the exception of the i-th elements
which are potentially related by an exceptional relation Rexc. Since variables i are used
for indicating the exceptional elements, the valuation E is used for determining the
value of i.

7.3 Paths and Correlations

7.3.1 Paths and Correlation Types

The partial equivalence relations discussed in Section 7.2 and defined in 7.2.1 are enough
to represent fine-grained information for values of the same structured type. For the
stop_thread example discussed in Section 7.1.1 these would suffice to express the equal-
ity of the pid, current_thread and address_space fields between the input process in
and the output process o, by simply mapping this pair to the following partial equiva-
lence: 

threads 7→ Any
pid 7→ Equal
current_thread 7→ Equal
address_space 7→ Equal

 .
However, the partial equivalence relations cannot, for instance, be used to convey the
equality at line 1 in Figure 7.1 between the value of the threads field of in and the local
ta variable. By not tracking information such as this, we lose the targeted information
regarding the threads field, denoted by Rth in Figure 7.2. In order to express this
information, we first need to be able to refer to the substructure in.threads and relate
its value to the one of ta.

To this end, rather than handling only partial equivalences between pairs of variables
of the same type and approximating the rest to Any – the element that conveys no
information – we introduce an intermediate level, allowing us to store relations between
subparts of values. We begin by introducing access paths. Unlike the symbolic paths
introduced in Chapter 6 and defined in 6.3.1, that are used for computing dependency
summaries with context-sensitive elements, the paths used for the correlation analysis
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are actual access paths inside some value’s structure. The symbolic paths used in
deferred dependencies may cover multiple actual paths inside a value, whereas the
access paths required for the correlation analysis represent unique chains of internal
accesses leading to a single, nested subvalue. Each access path is rooted at one of the
program’s variables. It is noteworthy to remark that in both cases, an intermediate level
below variables needs to be introduced as soon as fine-grained relations between pairs of
variables are considered, directly or indirectly. In the case of deferred dependencies this
was not the main goal per se but rather a mechanism for obtaining more precision in
specific cases for already pertinent dependency results. In contrast, for the correlation
results this is imperative for obtaining useful, expressive information in non-trivial
cases. We therefore define a recursive type π̂ ∈ Π̂ encompassing this.

Definition 7.3.1. Access Path Type π̂ ∈ Π̂.

π̂ := | ε̂ empty – root
| .f π̂ f ∈ F
| @Cπ̂ C ∈ C
| 〈i〉π̂ i index, program variable.

The empty path, denoted by ε̂, is the special case denoting an access to an entire
element, i.e. the root. The action of appending a non-empty path π̂′ to another path
π̂ is denoted by π̂ :: π̂′. For instance, the path denoting the current_state field of the
i-th active, associated thread of the in process of our stop_thread predicate would be
the following: in.threads〈i〉@Some.t.current_thread.

Meaningful information is conveyed by associating paths and partial equivalence
relations. For instance, the equality between in.threads and ta at line 1 in Figure 7.1
can be expressed by associating Equal to the pair of subelements identified by the
.threads path in in and by ε̂ in ta. We call correlation such a mapping from a pair
of access paths to a partial relation. After setting the i-th element of ta to ti, the
thread with the current state set to Blocked and everything else left unmodified, we
could express the relation between in and ta by two correlations, namely:

(.threads, ε̂) 7→ 〈Equal . i : Any〉

(.threads〈i〉@Some.t, 〈i〉@Some.t) 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal

 .
To this end, we introduce correlation maps κ ∈ K , defined below.

Definition 7.3.2. Correlation Maps κ ∈ K .
Correlation maps κ ∈ K are finite mappings from pairs of paths to partial equiva-

lence relations R ∈ R:
κ : Π̂× Π̂ → R.



148 Chapter 7. Correlation Analysis

Generally, for two given variables e and o, a correlation (π̂, ρ̂) 7→ R specifies that
e and o have nested subelements, respectively identified by the inner paths π̂ and ρ̂,
whose values are related by the relation R.

We conclude this subsection by specifying what it means for paths, correlations and
correlation maps to be well-typed.

For characterizing the contexts in which an access path π̂ is well-typed, we need to
consider the types of values to which it can be applied and the types of (sub)values
to which it can lead to. Therefore, in the following, we define a typing judgement for
access paths as a three-place relation π̂ : τ → τ ′, whose meaning is that π̂ can be
applied to any value of type τ and in that case it will always describe subvalues of type
τ ′. Additionally, the typing judgement is also parameterized by a set of input variables
I, which are the variables having the right to appear as identifiers for array accesses.
This is detailed in Table 7.7.

Γ, I ` ε̂ : τ → τ
WTε̂

τ = struct{f1 : τ1, . . . , fi : τi, . . . , fn : τn}
Γ, I ` π̂i : τi → τ ′

Γ, I ` .fiπ̂i : τ → τ ′
WTStructAPath

τ = variant[C1 : τ1| . . . | Ci : τi| . . . | Cn : τn]
Γ, I ` π̂i : τi → τ ′

Γ, I ` @Ciπ̂i : τ → τ ′
WTVarAPath

Γ, I ` π̂i : τ → τ ′ Γ(i) = τi i ∈ I
Γ, I ` 〈i〉π̂i : arrτi〈τ〉 → τ ′

WTCellAPath

Table 7.7 – Well-Typed Access Paths

Correlations are mappings from pairs of access paths to partial relations. Though
the two access paths can be applied to values of different types, they both need to
return subvalues of the same type τ ′. Furthermore, the partial equivalence relation
associated to them, has to be well-typed with respect to τ ′, as detailed in Table 7.5.
The inference rule for well-typed correlations is shown in Table 7.8.

Γ, I ` π̂ : τl → τ ′ Γ, I ` ρ̂ : τr → τ ′ Γ ` R : τ ′

Γ, I ` (π̂, ρ̂) 7→ R : (τl, τr)
WTCorrelation

Table 7.8 – Well-Typed Correlations
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Finally, as shown in Table 7.9, a correlation map κ is well-typed if all the correlations
it contains are well-typed.

∀(π̂, ρ̂) 7→ R ∈ κ, Γ, I ` (π̂, ρ̂) 7→ R : (τl, τr)
Γ, I ` κ : (τl, τr)

WTCorMaps

Table 7.9 – Well-Typed Correlation Maps

7.3.2 Alignment and Partial Order

There is no clear choice for a canonical form for correlations. For instance, it is equiv-
alent to write (ε̂, ε̂) 7→ {f 7→ R} and (.f, .f) 7→ R. Is one superior to the other?
Which one should be chosen? Operations can create and manipulate correlations in
different manners, that are hard to predict. New correlations can also be introduced
while considering def-use chains in the transfer function presented later in Section 7.4.1.
Choosing between the two forms considerably limits flexibility. Not choosing a canoni-
cal form however has consequences as well; notably, it renders the definition of a partial
order between correlation maps difficult. In order to compare two correlation maps κ1
and κ2, we cannot simply verify if the path pairs are identical and compare their asso-
ciated relations. A correlation of the second map could be linked, in different manners,
to multiple mappings of the first.

For instance, between a process p of the type used by our stop_thread example and
an array ta of the same type as the field threads of the process, we might have the
following correlation maps:

κ1 : (.threads, ε̂) 7→
〈

None 7→ Any

Some 7→

t 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal




〉

κ2 :

(.threads, ε̂) 7→ 〈Equal . i : Any〉

(.threads〈i〉@Some.t, 〈i〉@Some.t) 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal

 .

These correlation maps can be depicted as follows:



150 Chapter 7. Correlation Analysis

κ1

.threads
R1

p

taε

κ2

.threads
R2

R′2

p

taε

As illustrated above, in the given example map κ2, in addition to the relation R2
associated to (.threads, ε̂), the relation associated to (.threads〈i〉@Some.t, 〈i〉@Some.t)
and denoted by R′2, expresses information about the values of the process’ threads
field and ta as well. These are nested in the i-th element of each, as identified by
〈i〉@Some.t. In order to compare these two correlation maps, we have to first determine
the relationships between the pair of paths (.threads, ε̂) from κ1 and each pair of paths
of κ2. The first pair of paths in κ2 is identical, whereas the second pair refers to
elements that are further away from the root. Based on these relationships, we have
to extract all the information relevant to (.threads, ε̂) from κ2 and consider it in its
entirety. This amounts to:

(.threads, ε̂) 7→
〈
Equal . i :


None 7→ Any

Some 7→

t 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal




〉
.

Having expressed the information from the κ2 correlation map at the same level as
the information of κ1 is expressed, i.e. that of the pair of paths (.threads, ε̂), we
can finally compare them and conclude that the information contained by κ2 is more
precise than the relation associated to (.threads, ε̂) in κ1. The relation associated to
(.threads, ε̂) in κ1 captures the equality between the values of the identifier and stack
fields of all active thread elements of the two arrays identified by the paths. The relation
associated to (.threads, ε̂) in κ2 expresses the equality between all thread elements of
the two arrays, except the i-th elements. Furthermore, if the i-th elements of the two
arrays are active, it captures the equality between the values of the identifier and
stack fields. Thus, by using the information contained by κ1 we can conclude that for
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all active elements of the two arrays, the values of 2 out of the 3 fields are equal; by
using the more precise information contained by κ2 we can conclude that all elements
of the two arrays are equal, except the i-th one, for which the values of the same 2 out
of 3 fields as in κ1 are equal.

In the general case, for comparing two correlation maps κ1 and κ2, we need to
collect for each correlation (π̂, ρ̂) 7→ R in κ2 all the information contained by κ1 that
refers to the elements identified by (π̂, ρ̂) and verify if this covers at least the same
information as the relation R. This information could be scattered across multiple
mappings of the correlation map κ1. We call alignment the process of collecting for
any correlation (π̂, ρ̂) 7→ R in κ2 all the information contained in κ1 that refers to
the elements identified by (π̂, ρ̂). It is necessary in the absence of a canonical form,
a trait of our approach that is both a weakness and a strength: it leads to complex
computations but gives considerable flexibility, as will be shown in Section 7.4.

For aligning, we first determine the relationships between paths by determining the
relationship between the sequences of internal accesses that they represent. These can
be identical, representing the same traversal to the same subelement of a value or they
can be completely unrelated, such as .f and .g for instance, representing accesses to two
different fields of a structure. They can also represent sequences of accesses of different
depths, one being the prefix of the other, i.e. being closer to the root. For example,
the path .f is a prefix of the path .f〈i〉; the first represents the access to the field f ,
whereas the second one represents an access to the i-th element of the array nested in
the field f .

To distinguish between these cases, we define a link type and a matching operator.

Definition 7.3.3. Link Type µ ∈M .
A link type, denoted by µ ∈M is defined as follows:

µ := | Identical
| Left π̂
| Right π̂
| Incompatible

Definition 7.3.4. Matching Operator f.
The matching operator f retrieves the link µ between two paths:

f : Π̂× Π̂ →M f (π̂, ρ̂) =


Identical, π̂ = ρ̂
Left π̂′, π̂ :: π̂′ = ρ̂
Right ρ̂′, ρ̂ :: ρ̂′ = π̂
Incompatible, otherwise

The different cases are depicted in Table 7.11.
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f(π̂, ρ̂) = Identical
π̂ ρ̂

f(π̂, ρ̂) = Left π̂′

π̂

π̂′

ρ̂ ρ̂

f(π̂, ρ̂) = Right ρ̂′
π̂

ρ̂

ρ̂′

π̂

f(π̂, ρ̂) = Incompatible
π̂ ρ̂

Table 7.11 – Links between Access Paths

Definition 7.3.5. Aligning.
Aligning a correlation (π̂, ρ̂) 7→ R to another pair of paths (π̂′, ρ̂′), is denoted by ‖:

‖ : (Π̂× Π̂×R)× (Π̂× Π̂)→ R [(π̂, ρ̂) 7→ R] ‖ (π̂′, ρ̂′) = R
(π,ρ)
‖(π′,ρ′).

From R we obtain the information referring to the elements identified by (π̂′, ρ̂′) and
denote it by R

(π,ρ)
‖(π′,ρ′). This is done by matching on π̂ and π̂′ on the one hand and

on ρ̂ and ρ̂′ on the other and by distinguishing between the different cases. When
the paths are identical, we can simply return the relation R. When the links between
the paths differ or when the paths are incompatible, we have to approximate to the
least precise relation, thus returning Any. When π̂ and ρ̂ are more shallow paths, i.e.
closer to the root, we need to make a projection, denoted by  . For example, aligning
(.f, ε̂) 7→ {a 7→ Ra; b 7→ Rb; c 7→ Rc} to (.f.b, .b) consists in projecting .b on the relation
{a 7→ Ra; b 7→ Rb; c 7→ Rc} and thus obtaining Rb. More generically, this case is
depicted below:
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α̂
β̂
γ̂

δ̂

π̂
α̂

β̂

γ̂

δ̂

α̂
β̂
γ̂

δ̂

π̂
α̂

β̂

γ̂

δ̂

R

For aligning the known correlation to the given pair of paths, we need to extract
from R the information that is relevant for the nested element δ̂, as depicted below.

α̂
β̂
γ̂

δ̂

π̂
α̂

β̂

γ̂

δ̂

α̂
β̂
γ̂

δ̂

π̂
α̂

β̂

γ̂

δ̂

R

R
δ̂

On the contrary, if π̂′ and ρ̂′ are closer to the root, we need to perform an injection,
denoted by x. For example, aligning (.f.b, .b) 7→ Rb to (.f, ε̂) consists in creating a
relation {a 7→ Any; b 7→ Rb; c 7→ Any}. More generically, this case can be depicted as
follows:

α̂
β̂
γ̂

δ̂

β̂
γ̂

δ̂

α̂
β̂

β̂

R
δ̂

For aligning the known correlation to the given pair of paths, we need to express
the relation R

δ̂
at the level of the (α̂β̂, β̂) paths, a level that is closer to the root. This

consists in creating a new, higher-level relation where the element identified by δ̂ is
mapped to R

δ̂
and everything else is “filled” with Any since nothing is known about

the rest of the elements. This can be depicted as follows:
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α̂
β̂
γ̂

δ̂

β̂
γ̂

δ̂

α̂
β̂

β̂

R
δ̂

Rγ̂

Any Any

In the general case, R(π,ρ)
‖(π′,ρ′) is computed as defined below.

Definition 7.3.6. Computation of R(π,ρ)
‖(π′,ρ′).

R
(π,ρ)
‖(π′,ρ′) =


R whenf (π̂, π̂′) = f(ρ̂, ρ̂′) = Identical
 (σ̂, R) whenf (π̂, π̂′) = f(ρ̂, ρ̂′) = Left σ̂
x (R, σ̂) whenf (π̂, π̂′) = f(ρ̂, ρ̂′) = Right σ̂
Any otherwise

The used projection  and injection x operators are defined as follows:

Definition 7.3.7. Projection Operator  .

 : Π̂×R 9 R.

Projection :  (π̂, R) =


R when π̂ = ε̂
 (π̂′, extrf (R)), when π̂ = .f π̂′

 (π̂′, extrC(R)), when π̂ = @Cπ̂′
 (π̂′, extr 〈i〉(R)), when π̂ = 〈i〉π̂′

Definition 7.3.8. Injection Operator x.

x : R × Π̂ 9 R.

Injection : x (R, π̂) =


R when π̂ = ε̂

{f1 7→ Any; . . . ; fi 7→x (R, π̂′); . . . ; fn 7→ Any}, when π̂ = .f π̂′, f = fi
[C1 7→ Any; . . . ;Ci 7→x (R, π̂′); . . . ;Cn 7→ Any], when π̂ = @Cπ̂′, C = Ci〈

Any . i : x (R, π̂′)
〉
, when π̂ = 〈i〉π̂′

For applying the injection operator we need to know the types of the elements onto
which the relation is injected, i.e. in order to “fill” the unknown relations for fields or
constructors with Any, we need to know which those fields or constructors are. Thus,
in practice, we need to connect the types to the context.

Aligning a correlation map κ ∈ K to (π̂′, ρ̂′), amounts to performing this operation
for each element (π̂, ρ̂) 7→ R of κ and intersecting the results with the ∧R operator
(Definition 7.2.4).

Definition 7.3.9. Aligning Correlation Maps.

κ ‖ (π̂′, ρ̂′) =
∧

R
(π̂,ρ̂)7→R∈κ

R
(π,ρ)
‖(π′,ρ′).
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The obtained results R(π,ρ)
‖(π′,ρ′) are intersected in order to take into account all the in-

formation scattered across the different elements of κ, and thus to obtain the most
precise partial equivalence relation that is contained in κ about the elements identified
by (π̂′, ρ̂′).

Finally, we can define the preorder for correlation maps.

Definition 7.3.10. Correlation Maps Preorder v̂.

κ1 v̂ κ2 ⇐⇒ ∀[(π̂, ρ̂) 7→ R] ∈ κ2, κ1 ‖ (π̂, ρ̂) vR R.

A correlation map κ1 is therefore more precise than another correlation map κ2, if the
relation obtained by aligning κ1 to any pair of paths (π̂, ρ̂) of κ2 is more precise than
R, the relation mapped to this pair in κ2. By definition, any correlation map κ ∈ K
is smaller than ∅, the empty correlation map. Therefore, the empty correlation map
is the top element for the correlation maps semilattice. A bottom element in this case
does not make sense, as it would have to map to Equal any pair of paths denoting
(sub)elements having compatible types.
The defined join operation between two correlation maps is denoted by

∨̂
.

Definition 7.3.11. Join Operation
∨̂

for Correlation Maps.

κ1
∨̂
κ2 = κ3 ⇐⇒ ∀[(π̂, ρ̂) 7→ R] ∈ κ1, κ3(π̂, ρ̂) = R ∨R κ2 ‖ (π̂, ρ̂).

It consists in aligning the correlation map κ2 to any correlation (π̂, ρ̂) 7→ R in κ1 and
joining the obtained aligned relation with R. We note that the correlation map obtained
by joining κ1 and κ2 will contain the same keys as κ1. We could have expressed join
by aligning the first correlation map to the elements of the second map. This would
lead to results that have different forms, i.e. (ε̂, ε̂) 7→ {f 7→ R} versus (.f, .f) 7→ R, but
which are equivalent by definition.

The meet operation between two correlation maps is denoted by
∧̂
.

Definition 7.3.12. Meet Operation
∧̂

for Correlation Maps.

κ1
∧̂
κ2 = κ3 ⇐⇒ κ3(π̂, ρ̂) =


R ∧R R′, when (π̂, ρ̂) 7→ R ∈ κ1,

and (π̂, ρ̂) 7→ R′ ∈ κ2
R when (π̂, ρ̂) 7→ R ∈ κ1,
R′ when (π̂, ρ̂) 7→ R′ ∈ κ2

∀(π̂, ρ̂).

7.4 Intraprocedural Correlation Analysis

7.4.1 Intraprocedural Correlation Summaries and Analysis

As was the case for the dependency analysis presented in Chapter 5, we are working with
a control flow graph (CFG) representation of the predicates’ bodies. We remind that
nodes represent program states and edges are defined by statements with a particular
exit label λ. In our case, all the outgoing edges of a node n bear the different cases of
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the same statement s found at the program point n. For each statement s there is an
edge labeled s, λk for each of its possible exit labels λk (as discussed in Section 4.2).
However, similarly to the dependency analysis, our correlation analysis does not depend
on this specificity.

Intraprocedurally, correlation information has to be kept at each point of the control
flow graph, for each input and output pair of the node.

Definition 7.4.1. Intraprocedural Correlation Summaries.
An intraprocedural correlation summary is a mapping from pairs of variables v ∈ V

to correlation maps:
K ∈ K, K : V × V → K .

There is one special case, called NoCorrelation, which associates Any – the least precise
partial relation – to any pair of variables, on any pair of valid, compatible paths. It
is the top element at the intraprocedural level. Unreachable is used for nodes that
cannot be reached, as its name implies, and constitutes the bottom element at the
intraprocedural level.

For each node of a given control flow graph, K(e, o) retrieves the correlation map
between the local variable e and the output variable o. If a mapping for e and o does
not currently exist, K(e, o) retrieves the correlation (ε̂, ε̂) 7→ Equal when e = o or the
empty correlation map ∅, otherwise.

Establishing the partial order vK and the join operation
∨
K is straightforward: v̂

(Definition 7.3.10) and
∨̂

(Definition 7.3.11) are extended pointwise to an intraproce-
dural summary, for each ordered input-output pair and its associated correlation map.

Definition 7.4.2. Partial Order for Intraprocedural Correlation Summaries.

vK⊆ K ×K K1 vK K2 ⇐⇒ ∀e, o ∈ V, K1(e, o) v̂ K2(e, o).

Definition 7.4.3. Join Operation for Intraprocedural Correlation Summaries.∨
K : K ×K → K K1

∨
KK2 = K3 ⇐⇒ ∀(e, o), K3(e, o) = K1(e, o)

∨̂
K2(e, o).

Our correlation analysis is a backward data-flow analysis, computing an intrapro-
cedural summary at each point of the control flow graph. This represents the cor-
relations at the node’s entry point. For each exit label, it traverses the control flow
graph starting with its corresponding exit node. The intraprocedural summary for
the currently analysed label is initialized with pairs between the local value of each
associated output variable of the label and the final value of the same output variable,
mapped to (ε̂, ε̂) 7→ Equal. The analysis traverses the control flow graph and gradually
refines the correlations, using Kildall’s worklist algorithm (Kildall, 1973), until a fixed
point is reached. Table 7.12 summarizes the representation and general equation of
the statements. For each statement, the presented data-flow equation operates on the
intraprocedural summaries of the statement’s successor nodes. The intraprocedural
summary at the entry point of the node is obtained by joining the contributions of
each outgoing edge.
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Definition 7.4.4. The contribution of an edge (n, ni) labeled with s and λi is given
by Csλi(Kni) ∈ C where Csλi(.) is the transfer function of the edge labeled s, λi.

We note that there are four statements supported by αSmil, i.e. the equality test, no-
operation, the partial structure equality test and the possible variant test, that have
no write effects and thus have no own contribution and are not included in Table 7.12.
Excepting the no-operation statement, the correlation information at their entry point
is obtained by simply joining the intraprocedural summaries of their successor nodes
on the true and false exit labels. For the no-operation statement, the correlation in-
formation at the entry point is identical to the intraprocedural summary of its only
successor node, the one on the true exit label.

Table 7.12 – Statements – Representations and Data-Flow Equations

Representation Equation
n

n1 . . . ni . . . nk

Kn

Kn1

Kni
Knk

s, λ1 s, λks, λi
Kn =

∨
K

n
s,λi−−→ni

Cs
λi

(Kni)

Statement Csλ(.) : csλ killλ

Assignment o := e {(e, o) 7→ [(ε̂, ε̂) 7→ Equal]} {o}true

New Struct r := {e1, . . . , en} ∀i, 1 ≤ i ≤ n {(ei, r) 7→ [(ε̂, .fi) 7→ Equal]} {r}true

Destructure {o1, . . . , on} := r ∀i, 1 ≤ i ≤ n {(r, oi) 7→ [(.fi, ε̂) 7→ Equal]} {oi}true

Get Field o := r.fi {(r, o) 7→ [(.fi, ε̂) 7→ Equal]} {o}true

Set Field r′ := {r with fi = e} {(r, r′) 7→ [(ε̂, ε̂) 7→ {r′}true
{f1 7→ Equal; . . . ; fi 7→ Any; . . . ; fn 7→ Equal}]

(e, r′) 7→ [(ε̂, .fi) 7→ Equal]}

Create Var. v := Cp[e] {(e, v) 7→ [(ε̂,@Cp.e) 7→ Equal]} {v}true

Var. Switch switch(v) as [o1| . . . |on] {(v, oi) 7→ [(@Ci.e, ε̂) 7→ Equal]} {oi}λCi

Array Get o := a[i] {(a, o) 7→ [(〈i〉, ε̂) 7→ Equal]} {o}true

Array Set a′ := [a with i = e] {(a, a′) 7→ [(ε̂, ε̂) 7→ 〈Equal . i : Any〉] {a′}true
(e, a′) 7→ [(ε̂, 〈i〉) 7→ Equal]}

The transfer function Csλ(.) formalizes the correlations created by the statement s
on the label λ between its local input variables and its local output variables, denoted
by csλ, as well as the set killλ of variables whose values have been redefined by the
statement s on the label λ. These are shown in Table 7.12. There is one crucial
difference between transfer functions Csλ(.) and intraprocedural summaries K. An
intraprocedural summary K implicitly maps any pair (v, v) for v ∈ V to (ε̂, ε̂) 7→ Equal.
On the contrary, in csλ, when the variable v is used as both input and output by the
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statement s, the pair (v, v) is mapped to the correlation map known between the input’s
v old value and the output’s v fresh value. Otherwise, when v is an output, i.e. v ∈ killλ,
but not an input of s, (v, v) is mapped to ∅. We remark that K represents a state,
while csλ represents a transition.

In order to obtain the contribution Csλi(Kni) of an edge labeled with s and λi, we
need to connect the information given by csλi to the information contained in the in-
traprocedural summary Kni . For example, at the entry of node 3 in Figure 7.1 (on
page 138), when considering the scenario in which the predicate exits with true, the
intraprocedural summary contains the mapping:

(th, o) 7→

(@Some.t, .threads〈i〉@Some.t) 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal


 .

On the true edge, statement 2 creates the mapping:

(ta, th) 7→ [(〈i〉, ε̂) 7→ Equal] .

Intuitively, since we are traversing the graph backwards and we are mapping ordered
(local) input-output pairs, (ta, th) and (th, o) can be seen as a def-use pair: the
correlation associated to (ta, th) expresses the relation between the defined value of th
and the input ta used for creating it, while the correlation associated to (th, o) shows
a subsequent use of that value of th for creating o. The contribution of statement 2 on
the true edge should capture this flow of ta’s value to o’s value, through the variable
th. Thus, it should contain a mapping for the pair (ta, o). In the general case we need
to detect any variable r such that [(p, r) 7→ κ] ∈ csλi , [(r, q) 7→ κ′] ∈ Kni and compute
the mapping for (p, q) in Csλi(Kni).

In order to compute the correlation map associated to (ta, o), we take into account
the fact that both the right path ε̂ of csλ(ta, th) and the left path @Some.t of Kn3(th, o)
refer to the th variable. However, they do not represent traversals of the same depth:
ε̂ refers to the entire value of th, while @Some.t refers to the value below the construc-
tor Some. Between ta and o we can conclude that the values nested under the Some
constructor of the i-th elements are related:

(ta, o) 7→

〈i〉@Some.t, .threads〈i〉@Some.t) 7→


identifier 7→ Equal

current_state 7→ Any
stack 7→ Equal


 .

We call the process of obtaining the correlation map associated to (ta, o) from the
correlations associated to (ta, th) and (th, o) composition.

In the general case, the composition operation is denoted by � and it refers to the
process of computing the flow of a variable p to a variable q through an intermediate
variable r. Thus, when knowing that (p, r) 7→ [(π̂, ρ̂) 7→ R] and that (r, q) 7→ [(π̂′, ρ̂′) 7→
R′], we must first obtain the link (Definition 7.3.3) between the paths ρ̂ and π̂′ relating
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subvalues of r to subvalues of p and q, respectively. This is obtained by matching with
f (Definition 7.3.4). In the context of the example given above, ρ̂ and π̂′ are the paths
referring to subvalues of the th variable, i.e. ε̂ and @Some.t, respectively. If the two
paths are incompatible, i.e. they refer to different, unrelated subvalues of r, there is
no flow between p and q through r. If the paths are compatible, we can compute the
correlation between p and r, by distinguishing between the three different possible link
cases obtained with f.

The case when the same subvalue of r identified by ρ̂ (and the identical π̂′) is related
to both p and q is depicted below:

f(ρ̂, π̂′) = Identical

π̂ ρ̂ ρ̂′R R′
p r

π̂′
q

In this case, computing the flow from p to q through r is rather straightforward. Since
the same subvalue of r is related to p’s subvalue identified by π̂ and to q’s subvalue
identified by ρ̂′, we can relate these two subvalues and map the pair (π̂, ρ̂′) to the
relation obtained by composing R and R′. We note that given the special form of
partial relations R ∈ R, the compose operation at this level is equivalent to ∨R

1

(Definition 7.2.3). The computation of the correlation for p and q is depicted below:

f(ρ̂, π̂′) = Identical

π̂ ρ̂ ρ̂′R R′

R ∨R R′

p r
π̂′

q

The subelements of r related to p and to q respectively can also have different
granularities, one being nested deeper in r than the other. For instance, the subvalue
of r identified by the path ρ̂ can be closer to the root than its subelement identified by
π̂′ related to q. This case is depicted below:

1However, this would not be the case anymore for a more complex partial relation type, including
not only equivalences but also more general relations.
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f(ρ̂, π̂′) = Left σ̂

π̂

σ̂

ρ̂

σ̂

ρ̂′
R

R′

p r
π̂′

q

In this case we can only detect the flow of p to q at the level of r’s subelement that is
related to both p and q, i.e. the subelement nested deeper. Thus, in order to compute
the correlation between p and q, we need to project σ̂ on R, and to compose the obtained
relation with R′. This is summarized by the following figure:

f(ρ̂, π̂′) = Left σ̂

π̂

σ̂

ρ̂

σ̂

ρ̂′
R

R′

 (σ̂, R) ∨R R′

p r
π̂′

q

Finally, in the complementary case, the subvalue of r identified by the path ρ̂
and correlated to p can be nested deeper than the subvalue identified by π̂′ which is
correlated to q. This case is depicted below:

f(ρ̂, π̂′) = Right σ̂

π̂ ρ̂

σ̂

ρ̂′

σ̂

R
R′

p r
π̂′

q

As in the previous case, we can only detect the flow of p to q at the level of r’s subelement
that is related to both p and q, i.e. the subelement nested deeper. In this case we need
to project σ̂ on R′ and to compose the obtained relation with R. The flow between p
and q is at the level of the subvalues identified by π̂ and ρ̂′ :: σ̂ respectively. This is
illustrated below:
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f(ρ̂, π̂′) = Right σ̂

π̂ π̂′

σ̂

ρ̂′

σ̂

R
R′

R ∨R (σ̂, R′)

p r
π̂′

q

Formally, if the ρ̂ and π̂′ paths are compatible, we compose the correlation elements
(π, ρ) 7→ R and (π′, ρ′) 7→ R′, thereby obtaining a new correlation element, (π•, ρ•) 7→
R./, which is computed as shown below.

Definition 7.4.5. Computing (π•, ρ•) 7→ R./.

(π•, ρ•) = (π, ρ) • (π′, ρ′) def=


(π, ρ′) whenf (ρ, π′) = Identical
(π :: σ, ρ′) whenf (ρ, π′) = Left σ
(π, ρ′ :: σ) whenf (ρ, π′) = Right σ

R./ = R ./ R′
def=


R ∨R R′ whenf (ρ, π′) = Identical
 (σ,R) ∨R R′ whenf (ρ, π′) = Left σ
R ∨R (σ,R′) whenf (ρ, π′) = Right σ

We note that the use of the projection operation (Definition 7.3.7) for both compat-
ible, non-identical link cases for r’s access paths related to p and to q respectively, is a
consequence of not choosing a canonical form for correlations. The flexibility confered
by the absence of a canonical correlation form is visible at the composition level.

The composition of correlation maps is denoted by # and defined below.

Definition 7.4.6. Composition of Correlation Maps.
Computing κ1 #κ2 amounts to intersecting the composition of all correlation ele-

ments from κ1 and κ2:

(κ1 #κ2)(π•, ρ•) =
∧

R
(π,ρ)7→R∈κ1

(π′,ρ′)7→R′∈κ2
(π•,ρ•)=(π,ρ)•(π′,ρ′)

R ./ R′.

Finally, the contribution Csλi(Kni) is obtained as defined below.

Definition 7.4.7. Contribution Csλi(Kni).

� : C×K → K csλ �K = K ′ where K ′(p, q) =
∧̂
r

(csλ(p, r) #K(r, q)).

It is depicted in Figure 7.5.
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statement s

(csλ1
�∆λ1)

∨
K . . .

∨
K(csλn �∆λn)

csλ1
Kλ1

. . .

csλn
Kλn

csλ1
�Kλ1 csλn �Kλn

Figure 7.5 – Entry Point – Correlation Information

We conclude this section by specifying what it means for intraprocedural corre-
lation summaries to be well-formed, showing the corresponding inference rule in Ta-
ble 7.19. Only ordered input-output pairs can appear as keys in intraprocedural map-
pings. Therefore, the well-formedness judgement is parameterized by the set of input
variables I, and by the set of output variables O. The former indicate variables that
have the right to appear as left members of the variable pairs, while the latter indicate
variables that have the right to appear as right members of the variable pairs. The cor-
relation map associated to each such input-output pair must be well-typed with respect
to the types of the variables as given by the typing environment Γ (Definition 4.3.1).
The typing judgement for correlation maps was shown in Table 7.9.

∀(e, o) 7→ κ ∈ K Γ(e) = τe Γ(o) = τo e ∈ I o ∈ O
Γ, I ` κ : (τe, τo)

Γ, I,O � K
WFIntraCor

Table 7.19 – Well-Formed Intraprocedural Correlation Summaries

7.4.2 Intraprocedural Correlation Analysis Illustrated

To better illustrate our correlation analysis at an intraprocedural level and to sum-
marize everything that has been presented so far in this chapter, we exemplify the
mechanism behind it, step by step, on the predicate stop_thread, discussed in Sec-
tion 7.1.1 on page 138. We consider the true execution scenario, apply our analysis
and compare the actual obtained correlation results with the targeted ones depicted in
Figure 7.2.

Since a predicate can only exit with one label at a time and we are analysing the
true label, we can map the exit node inval to the special case Unreachable. We begin
by initialising the correlation summary for the exit node corresponding to the true exit
label. As shown in Figure 7.6, this consists in mapping the pair referring to the local
value of the o variable and the final state of o, to a correlation map containing a single
correlation, namely (ε̂, ε̂) 7→ Equal. This acknowledges that the value of the output o
retrieved to the predicate’s callers is the most recent value computed locally. In the
following, we denote the final value of o by o# in order to distinguish it from the local
value.
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1: ta := in.threads

2: th := ta[i]

3: switch(th) as [ | ti]

4: s := Blocked

5: ti := {ti with current_state = s}

6: th := Some(ti)

7: ta := [ta with i=th]

8: o := {in with threads=ta}

9: true 10: inval

true

true

true

true

true

true

true

true

false

false

None

Unreachable(o, o#) 7→ {(ε̂, ε̂) 7→ Equal}

Figure 7.6 – Analysing Predicate stop_thread – Initialisation

We advance backwards along the control flow graph, reaching node 8. We apply the
equation corresponding to a field access as given in Table 7.12 and obtain the following
correlation summary:

(in, o) 7→

(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal




(ta, o) 7→ {(ε̂, .threads) 7→ Equal}

.

We compose it with the correlation summary of its successor node, i.e. the exit node
corresponding to the true exit label, thus detecting the flow of in to o# and of ta to o#
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respectively, through the local value o. This amounts to:

(in, o#) 7→

(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal




(ta, o#) 7→ {(ε̂, .threads) 7→ Equal}

.

Since node 8 does not have any other successor nodes, the correlation information at
its entry point is identical to the one we have just computed.

We advance one step, reaching node 7 and apply the corresponding equation,
thereby obtaining:

(ta, ta) 7→ {(ε̂, ε̂) 7→ 〈Equal . i : Any〉}

(th, ta) 7→ {(ε̂, 〈i〉) 7→ Equal}
.

We compose it with the correlation summary of node 8, tracking the flow of the local
value of ta to o#, through the new state of the variable ta, after updating its i-th
element. We also track the flow of th to o#. The correlation map for the (in, o#) pair
remains unchanged. We thus obtain:

(in, o#) 7→

(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal




(ta, o#) 7→ {(ε̂, .threads) 7→ 〈Equal . i : Any〉

(th, o#) 7→ {(ε̂, .threads〈i〉) 7→ Equal}

.

In order to obtain the correlation information at the entry point of node 7, we need to
join the computed correlation summary with the correlation summary known for the
other successor of node 7, namely the exit node 10. Since the latter is Unreachable, the
identity element for join at the intraprocedural level, it does not affect the correlation
summary at the entry point of node 7. We proceed similarly for nodes 6, 5, 4, 3 and 2,
applying the corresponding data-flow equation for each statement and composing with
the intraprocedural correlation summary of the successor node. Since each of these
nodes has only one possible exit label there are not multiple contributions that need to
be joined. At the entry point of node 6, for example we obtain the following summary:

(ta, o#) 7→ {(ε̂, .threads) 7→ 〈Equal . i : Any〉

(ti, o#) 7→ {(ε̂, .threads〈i〉@Some.t) 7→ Equal}
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(in, o#) 7→

(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal


 .

We skip some steps and obtain the following correlation summary at the entry point of
node 2:

(in, o#) 7→

(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal




(ta, o#) 7→


(ε̂, .threads) 7→ 〈Equal . i : Any〉

(〈i〉@Some.t, .threads〈i〉@Some.t) 7→


id 7→ Equal

current_state 7→ Any
stack 7→ Equal




.

Finally, we reach node 1, where we apply the data-flow equation corresponding
to a field access and compose the obtained information with the correlation summary
computed at the entry of node 2. We obtain:

(in, o#) 7→



(ε̂, ε̂) 7→


threads 7→ Any

pid 7→ Equal
crt_thread 7→ Equal
adr_space 7→ Equal


(.threads, .threads) 7→ 〈Equal . i : Any〉

(.threads〈i〉@Some.t, .threads〈i〉@Some.t) 7→


id 7→ Equal

current_state 7→ Any
stack 7→ Equal




Since the node 1 has only one successor node, this correlation summary represents

the correlation information at the entry point of node 1, i.e. there is no other correlation
summary to join it with. This contains a single pair of variables, (in, o#) and their
associated correlation map. Since the pair is an input-output pair of the stop_thread
predicate, we do not need to filter anything out. This constitutes the final correlation
summary for the analysed predicate on the true exit label. These results are identical
to the ones we had depicted as our targeted results in Figure 7.2.

For the inval exit label, the corresponding correlation summary is NoCorrelation.
This example can be tried on the web page2 dedicated to our correlation analysis. Other

2Correlation Analysis Web Page: http://www.ajl-demo.fr/2016/

http://www.ajl-demo.fr/2016/
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examples are provided and explained there as well. Additionally, users can devise and
test their own examples.

7.5 Interprocedural Correlation Analysis
Our analysis is performed label by label and interprocedural correlation domains asso-
ciate an intraprocedural summary to each exit label of the analysed predicate. There-
fore, interprocedural domains encapsulate an intraprocedural summary for each possible
execution scenario of a predicate.

An interprocedural domain Kp of a predicate p is thus defined as shown below.

Definition 7.5.1. Interprocedural Correlation Domain.

Kp : Λp → K where Λp is the set of output labels of predicate p.

The intraprocedural summary associated to each label is filtered so as to contain only
ordered pairs of variables where the left member is an input of the analysed predicate
and the right member is an output associated to the analysed label. The correlation
maps associated to such pairs are built so as to contain correlations where only input
variables may appear in array cell paths. Similarly, the exception index in partial
equivalence relations of arrays must be an input variable. Registering exceptions in
array correlations only for input variables is not a consequence of a language restriction
on array operations, but simply a consequence of the fact that at the interprocedural
level, only correlation information between inputs and outputs makes sense.

The interprocedural domain of a predicate is used for deducing the transfer functions
for a predicate call statement.

In the following we detail the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]︸ ︷︷ ︸
s

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m].

The general equation form given in Table 7.12 applies:

Kn =
∨
K

n
s,λi−−→ni

Csλi(Kni).

The transfer functions for the predicate call statement are deduced from the predicate’s
interprocedural domain in the following fashion:

Csλi(Kni) = csλi �Kni , killλi = {ōi}
csλi(ej , o

k
i ) = κj,ki , ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , h}
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where
κj,ki = Kp(λi)(εj , ωki ) J (ε̄ 7→ ē)
s = p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]; ōi = {o1

i , . . . , o
h
i }.

Namely, the contribution of a predicate call to each (ej , oki ) input-output pair stems
from the contribution of the interprocedural domain for label λi and formal input-
output pair (εj , ωki ). In these, all the formal input parameters ε̄ in array partial equiv-
alences and in array cell paths are substituted by the corresponding effective input
parameters from ē or approximated away. The substitution operation is denoted by
J (χ) where χ is a substitution from formal to effective parameters.

Our correlation analysis is context-insensitive and αSmil programs are analysed by
computing, once and for all an interprocedural correlation summary for every predicate
they contain. The correlation summaries are stored in a mapping binding predicate
identifiers to their interprocedural correlation information.

7.6 Extension – Constructor Evolution
The correlation analysis as presented so far in this chapter tracks and detects partial
equivalence relations between inputs and outputs of predicates. An interesting direction
to investigate, would be an extension of our analysis allowing us to detect not only
equivalences but more general relations, that could capture the evolution of constructors
for variants. In Figure 7.4-b), we illustrated the form of correlations computed for
variants. With the extension, the correlation information obtained for variants would
be richer, as illustrated in Figure 7.7.

Figure 7.7 – Construction Evolution

This extension would allow inferring the preservation of certain properties when
transitioning from a “stronger” state to a “weaker” state. For instance, we consider
again our process and thread data types introduced in Chapter 3, Section 3.1.5 (on
page 49 and 48, respectively). Additionally, we consider a predicate kill_thread, shown
below, which modifies the array of associated threads of the input p by setting the i-th
element to None. If the i-th element is already inactive, no modifications are made. In
this case, the predicate exits with label inactive and simply copies p to the output o.

predicate kill_thread ( process p, int i)
-> [ true: process o | inactive : process o | oob]
{{ array <option <thread >> threads , option <thread > thi, thread ti }}
{
o := p : [ true -> 1];
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threads := o. threads : [ true -> 2];
thi := threads [i] : [ true -> 3, f a l s e -> 9];
switch (thi) as [ti |] : [Some -> 4, None -> 8];
thi := None : [ true -> 5];
threads := [ threads with i = thi] : [ true -> 6, f a l s e -> 9];
o := {o with threads = threads } : [ true -> 7];
[ true];
[ inactive ];
[oob]
}

For variants we are currently detecting equivalence relations between the arguments
of variant values built with the same constructor. With the extension for capturing
constructor evolution, we could take a step further and also detect, for a given execution
scenario, the set of possible transitions between the different constructors. For instance,
for the kill_thread predicate on the true exit label, we could detect that the only
possible transition of the i-th element of the threads array is from Some to None. Had the
element been None, the predicate would have followed the inactive execution scenario.

We further consider a predicate disjoint_stacks(process p), verifying a fundamen-
tal property of any process, namely the fact that the stacks of all associated threads of
the process are disjoint. If the property holds for the input process p prior to executing
kill_thread, intuitively it should continue to hold subsequently, for the output process
o as well. If the array’s i-th element was already inactive, i.e. None, the property
disjoint_stack obviously still holds since the input p is simply copied to the output
o. If it was active, the transition from Some to None does not impact the property, as
it does not create a new memory region that could threaten the property. In this case,
the transition from Some to None is a transition from a “stronger” state to a “weaker”
state.

We have conducted preliminary experiments targeting the detection of such infor-
mation and these have led to promising results. Tracking general relations that capture
evolution requires certain modifications that are confined to the abstract partial relation
type and to the data-flow equations concerning variants.

The abstract partial relation type presented in Section 7.2 (Definition 7.2.1) would
need to be extended with Impossible, an additional atomic case along with Equal and
Any. It is required for signalling impossible transitions between variant constructors and
leads to some overlap with the possible-constructors analysis presented in Chapter 5.
The partial relations for variants would be expressed as a square matrix of constructors,
where each element aCi,Cj of the matrix has a corresponding associated partial relation
RCi,Cj . Impossible would be associated to any element aCi,Cj for which the transition
from Ci to Cj is impossible. For the elements aCi,Ci on the main diagonal for which the
transition from Ci to Ci is possible we could compute partial equivalences between the
arguments of the Ci constructor. For the elements aCi,Cj lying outside the main matrix
diagonal, for which the transition from Ci to Cj is possible the associated relation
would be Any. Alternatively, for computing reflexive relations, we could consider that
transitions on the main diagonal, i.e. from Ci to Ci, are always possible.
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Impossible would become the bottom element of our partial relation type R, replac-
ing Equal in this role. It would also become the identity element for the join operation
∨R (Definition 7.2.3) of partial relations and the absorbing element for the meet op-
eration ∧R (Definition 7.2.4). Similarly to the case of � for the abstract dependency
type, the current bottom element Equal would become the middle element of a double
diamond-shaped abstract type and it would require the addition of some extra compar-
ison cases for vR (Definition 7.2.2), as well as some extra cases for the ∨R (Table 7.2)
and ∧R (Table 7.3) operations. The most important modification however would be
in the case of the compose operation. Currently, the compose operation at the level of
partial equivalence relations is ∨R . With this extension it would amount to a matrix
multiplication.

7.7 Related Work
A rigorous presentation of the frame problem in specification and the different existing
approaches for addressing it has been given by Borgida et al. (Borgida, Mylopoulos,
and Reiter, 1993; Borgida, Mylopoulos, and Reiter, 1995). A more recent overview of
framing is included in (Hatcliff et al., 2012).

In recent years, a vast body of research has been conducted on the specification
of frame properties in the context of modular programming. This ranges from com-
plex approaches imposing the swinging pivots requirement (Leino and Nelson, 2002), to
approaches using data groups (Leino, 1998; Leino, Poetzsch-Heffter, and Zhou, 2002),
adopting the Universe type system (Müller, 2002; Müller, Poetzsch-Heffter, and Leav-
ens, 2003) or variations of it (Leino and Müller, 2004; Leino and Müller, 2006; Barnett
and Naumann, 2004; Barnett et al., 2004), to approaches based on the dynamic frame
theory (Kassios, 2006; Kassios, 2011; Smans, Jacobs, and Piessens, 2012), regional
logic (Banerjee, Naumann, and Rosenberg, 2008) or separation logic (Reynolds, 2002;
O’Hearn, Yang, and Reynolds, 2004; Parkinson and Bierman, 2005).

In (Smans, Jacobs, and Piessens, 2012) Smans et al. present a technique for frame
inference based on a variant of dynamic frames inspired by separation logic, and relying
on accessibility information contained within pre- and postconditions. By including
accessibility information in a method’s precondition, an upper bound on the set of
locations modifiable by the method can be detected. In our case, the upper bound on
the set of elements that a predicate may modify when exiting with a particular exit label
is implicitly the set of output variables generated on that exit label, joined with the
set of local variables. The implicit dynamic frame approach requires the specification
of accessibility information. Our correlation analysis is entirely automatic and infers
fine-grained frame properties for compound data structures.

The literature on shape analysis (Calcagno et al., 2009; Sagiv, Reps, and Wilhelm,
1999; Jones and Muchnick, 1979; Montenegro, Peña, and Segura, 2015) and side effects
analyses (Salcianu and Rinard, 2005; Milanova, Rountev, and Ryder, 2005) is vast.
The former is aimed at deep-heap mutations, while we are focusing on deep-state mod-
ifications, in the context of complex transition systems. The latter determine memory
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locations that may be modified by an operation. Reasoning about heap locations is
beyond our scope. We treat mappings between variables and their values, analyse their
evolution in a side-effect free environment and detect not only what is modified, but
also how and to what extent.

In (Chang and Leino, 2005), Chang and Leino present the congruence-closure ab-
stract domain, designed for an object-oriented context and implemented in the Spec#
program verifier. They infer and express relations between fields of variables, a goal
similar to ours. The congruence-closure domain maintains equivalence graphs mapping
field accesses to symbolic locations. On its own, this domain allows the inference and
expression of relations for accessed fields. In order to take into account updates as well,
this needs to use the heap succession domain as a base. Unlike us, they can express
preorders between fields, depending on the base domains used. However, our domain
handles both accesses and updates to structures, arrays and variants in a uniform man-
ner, independent of additional information. We have sketched an extension for handling
not only equivalences but also more general relations capturing constructor evolution.
This is a direction we plan to investigate in the future.

Rakamarić and Hu report in (Rakamaric and Hu, 2008) a method to infer frame
axioms of procedures and loops based on static analysis. As a starting point, they use
the DSA shape analysis, presented by Lattner et al. (Lattner, Lenharth, and Adve,
2007). DSA provides a summary of points-to relations as a graph, that is used to
compute a set of memory locations that are modified by a procedure or its callees.
By a pass through the graph, for each node reachable from the globals or procedure
parameters, they generate expressions representing a path to that node. The generated
frame axioms are used internally by an extended static checker of C programs, i.e.
in a purely automatic setting. In contrast, our analysis is designed for an interactive
verification context. Our technique focusing on a purely functional language is not
concerned by aliasing and does not depend on an external points-to framework.

In (Taghdiri, Seater, and Jackson, 2006), Taghdiri et al. present a technique for
extracting procedure summaries for object-oriented procedures, used to prove verifi-
cation conditions. Procedures are executed symbolically and the environment of the
post-state is computed so as to express every variable and field in terms of the values of
the variables and fields of the pre-state. Their goal is broader than ours. However, un-
like their summaries, our correlation results encompass only information that is visible
from the outside (to the callers).

Bertrand Meyer presents the double frame inference strategy, an approach that tar-
gets the automation of both frame specification and frame verification in the context
of Eiffel (Meyer, 1991). The first component – the frame specification inference – relies
on the analysis of method postconditions. The idea stems from an informal review
of JML code, which showed that in practice there is a considerable overlap between
what is mentioned in an assignable clause, i.e. modifies clause, and what is included
in the postcondition. It relies on the observation that in general, when manually writ-
ten specifications include clauses about what changes, they also include clauses about
how it changes. By analysing a method’s p postcondition, a set p̄ is obtained. This
represents an overapproximation of the set of elements that are allowed to be modified
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by p according to its specification. The second component of the strategy, the frame
implementation inference relies on the frame calculus (Kogtenkov, Meyer, and Velder,
2015), which is itself based on alias calculus (Kogtenkov, Meyer, and Velder, 2015;
Meyer, 2010; Meyer, 2011). Methods are analysed and p is detected; this represents
an overapproximation of the set of expressions whose values may change as a result of
executing p. Frame verification amounts to verifying that p̄ includes p. Though our
goal is closely related to the issue addressed by the double frame inference in general,
and the frame calculus in particular, the approaches are not directly comparable as
they target languages with different characteristics, which in turn influence both the
adopted analysis techniques and the derivative targeted issues. Both approaches are
conservative and automatic, i.e. neither requires manual annotations. In contrast to
the frame calculus, our correlation analysis is standalone and it is not concerned by
aliasing.

7.8 Conclusion
Identifying precise information concerning the effects of program operations is possible
by means of static analysis without sacrificing scalability. In this chapter, we have pre-
sented a data-flow analysis that tracks the origin of subparts of the output and relates
it to subparts of the inputs, thus detecting not only what is modified, but also how it is
modified and to what extent. The correlation analysis is a flow-sensitive, path-sensitive,
interprocedural analysis that handles arrays, structures and variants. The analysis is
context-insensitive but this trait does not have a costly impact in terms of precision.
We have defined a partial equivalence type mirroring the layered structure of algebraic
data types and associative arrays and we introduced an intermediate level consisting of
access paths and correlations in order to compute expressive, fine-grained equivalences
between parts of the inputs and parts of the outputs in a flexible manner. Just as
frame properties specified by means of old expressions tend to lead to a proliferation
of conditions to be specified, our correlation summaries showing equivalences between
input and output subelements can become verbose in the case of predicates handling
large compound values and modifying only a limited input subset. However, these are
detected automatically and their verbose form could easily be transformed using a more
compact notation of the following form:

input (* - {changed subelements}) = output (* - { corresponding subelements}).
Detecting modifications is traditionally associated to shape analyses, that focus

on deep-heap mutations. Side-effect analyses detect memory locations that may be
modified by an operation. We, however, are interested by deep-state modifications in
the context of a functional language. Other analyses inferring frame properties have
been devised. These are mostly used in a purely automatic setting. We however,
developed a correlation analysis meant to be used in an interactive verification context.

Similarly to the case of the dependency analysis presented in Chapter 5, we have
implemented a prototype of the correlation analysis in OCaml and we have applied it to
a functional specification of ProvenCore (Lescuyer, 2015). Medium-sized experiments
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performed on the abstract layers of ProvenCore show encouraging results. For instance,
the correlation results of approximately 630 αSmil predicates, totalling approximately
10000 lines of code are obtained in less than 0.5 seconds, i.e. faster than the dependency
summaries are obtained on the same predicates. This is partly a consequence of the
fact that, unlike the dependency analysis which computes summaries for both code
and specifications, the correlation analysis computes non-trivial results only for code.
Specifications are predicates with Boolean exit labels which generate no outputs. Since
our correlation analysis computes fine-grained relations between parts of the inputs
and parts of the outputs, it cannot detect anything non-trivial in their case. However,
this would change if we were to extend our correlation analysis and track relations
between parts of the inputs as well. This is a direction that we plan to investigate in
the future. We will focus on the implementation and the discussion of the obtained
results in Chapter 8. The prototype can be tested on the web page3 dedicated to our
correlation analysis, where multiple examples are provided and explained. Additionally,
users can devise and test their own examples.

The correlation analysis presented in this chapter has been the subject of a previous
publication (Andreescu, Jensen, and Lescuyer, 2016).

3Correlation Analysis Web Page: http://www.ajl-demo.fr/2016/

http://www.ajl-demo.fr/2016/
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Chapter 8

Implementation, Application and
Results

Any fact becomes important when it’s
connected to another.

Umberto Eco

In this chapter, we focus mainly on the practical aspects regarding our static anal-
yses and the approach to using their results for inferring the preservation of certain
logical properties. In Section 8.1 and Section 8.2 we give a brief overview of the imple-
mentations of our dependency and correlation analyses, respectively. In Section 8.3, we
succinctly present ProvenCore, one of the two microkernels developed at Prove & Run,
and discuss, in terms of execution times and precision, the experiments we made on its
functional specification. In Section 8.4 we describe the manner in which the summaries
computed by our dependency and correlation analyses are meant to be combined and
used for reasoning about the preservation of certain logical invariants. We illustrate
this approach and discuss it on some examples inspired by ProvenCore.

8.1 Implementation of the Dependency Analysis
Prototypes for both of our static analyses, the dependency analysis presented in Chap-
ter 5 and its extension with symbolic dependencies presented in Chapter 6, as well as the
correlation analysis presented in Chapter 7, have been implemented in OCaml (Rémy
and Vouillon, 1997). While trying to retain close proximity to the analyses as presented
theoretically, their implementation mildly diverges from them at certain points due to
performance and scalability considerations. One of the main differences is related to the
manner in which we store dependencies and partial equivalence relations. Based on the
observation that in general, when considering complex transition systems, the states
are characterized by properties depending only on a limited subset of their subelements,
while most transitions modify only a limited subset of the input state’s subelements, we
adopt a more compact representation. This in turn is reflected in some of the operators
as well.
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8.1.1 Dependency Type and Operators

The abstract dependency type δ that mirrors the structure of associative arrays and
algebraic data types was introduced in Chapter 5.2, on page 83. It is implemented by
the recursive type dep shown below:

(** Implementation for the dependency type
introduced in Chapter 5.2 **)

type dep =
| Everything (* top *)
| Impossible (* bottom *)
| Nothing
| Deferred of accesses (* symbolic *)
| Struct of struct_typ * dep FMap.t
| Variant of var_typ * dep CMap.t
| Array of dep * (var * dep) option

The maps used for expressing dependencies for structures and variants use as keys
fields and constructors, respectively:

type field
module FMap : EMap.S with type key = field

type cons
module CMap : EMap.S with type key = cons

In contrast to the extended abstract dependency type δ (Definition 6.4.1), the actual
dependency for structures stores, in addition to the map associating dependencies to
fields, the type struct_typ of the structure as well. Similarly, the actual dependency
for variants stores the variant’s type var_typ as well, in addition to the map associating
dependencies to constructors.

As previously mentioned, we are targeting complex transition systems, such as op-
erating systems and microkernels. In practice, transitions frequently map a large input
state to a large output state, but for computing the output state they are concerned
only with a limited subset of the input state. The number of subelements of a complex
input on which the outcome of a predicate depends tends to be low compared to the
total number of input subelements, so we are filtering fields mapped to �, denoted
by Nothing in our implemented dependency type, from dependencies for structures.
Similarly, from dependencies for variants we are filtering constructors mapped to ⊥,
denoted by Impossible in our implemented dependency type.

As a consequence of this optimization, we need to know, and hence, store the types
of structures and variants in order to correctly compare, join and reduce dependencies
corresponding to such types. In addition, this is also useful for checking that the
constructed dependencies are well-typed.
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For building dependencies of the corresponding type we have implemented smart
constructors. The dependency type is private and new dependencies can be constructed
only by using the provided smart constructors.

As explained in Section 5.2, >, � and ⊥ can apply to any type. For instance, >
can be seen as a placeholder for data that is needed in its entirety. Structure, array
or variant dependencies whose subelements are all entirely needed and thus, uniformly
mapped to >, are transformed to >. The ⊥ dependency is a placeholder for data that
cannot occur on a certain execution scenario. A whole variant value is impossible if all
its constructors are mapped to ⊥. A whole structure or array is impossible if any of its
subelements is impossible. These canonizations1 are made by our smart constructors.
For instance, the smart constructor for structure dependencies returns Everything if
it receives as an input a map of fields in which each key is mapped to Everything.
Since fields that are absent from a field map must be interpreted as being mapped
to Nothing, before returning Everything, the constructor also verifies that the map of
fields it received as an input contains all the fields of the structure type struct_typ
given as an input as well. If the given map of fields contains an Impossible value, the
smart constructor returns Impossible. Any mapping field 7→ Nothing is filtered from
the given input map.

Similarly, for variant dependencies, the corresponding smart constructor receives as
inputs the variant’s type and a map from constructor keys to dependency values. If
all constructors of the variant, as indicated by its type var_typ, are present in the in-
put map and mapped to Everything, the smart constructor returns Everything. If
all constructors are present and mapped to Impossible, the smart constructor re-
turns Impossible. Otherwise, if the input map contains some constructors mapped
to Impossible, the corresponding mappings are filtered from the map used to build the
variant dependency.

For arrays, the smart constructor returns Everything if both the default dependency
and the known exceptional dependency are Everything or if the former is Everything
and there is no known exceptional dependency. If any of the two dependencies is
Impossible, the smart constructor returns Impossible.

The smart constructor for deferred dependencies receives a set of variables as an
input. If the given set is empty, the constructor returns Nothing. Otherwise, it creates
the access map having the variables in the given input set, i.e. the root variables for
symbolic paths, as keys. As described in Section 6.5, a set containing a single path,
the empty path, is initially associated to each.

The v operator (Definition 5.2.2) as formally presented in Section 5.2 and detailed
in Table 5.1 on page 86, returns false whenever comparing two incompatible depen-
dencies. In practice, situations in which comparisons on incompatible types are made,
should never be reached. As a consequence, whenever we compare structure or variant
dependencies, we check, as a safety measure, that the two dependencies correspond
to structures or variants of the same type. Otherwise, the two dependencies are not

1For making all the described canonizations, we have to make sure that whenever we replace δ by
δ′, both δ v δ′ and δ′ v δ hold.
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comparable and we throw an exception that indicates that the types are incompatible.
For structure dependencies, whenever a mapping for one field f can be found only in
one of the two maps to be compared, we compare its mapped dependency value to
Nothing, since absent fields must be interpreted as being mapped to Nothing. Similarly,
for variant dependencies, whenever a mapping for a constructor C can be found only in
one of the two maps to be compared, we interpret it as being mapped to Impossible.

The join (Definition 5.2.3) and reduction operator (Definition 5.2.4) as formally
presented in Section 5.2 on page 87 and 89, respectively, are total: they return >, the
element conveying no information, for incompatible dependencies. In practice, the two
operators are partial: an exception is thrown whenever the two dependencies to be
joined or reduced are incompatible. This applies to structures or variant dependencies
that do not correspond to the same type as well. Otherwise, when joining or reducing
two compatible structure or variant dependencies, we interpret missing fields or missing
constructors as being mapped to Nothing or Impossible, respectively.

In Section 6.6.1, we described that there are two types of free variables that can
appear in dependencies. The first type consists of index variables that can appear in
array dependencies. For instance, in <Nothing ^ i : Everything>, the variable i is the
index of the cell for which the exceptional dependency Everything is known. Addi-
tionally, such index variables can also appear in symbolic paths related to arrays, such
as: <Nothing ^ i : Deferred(a[i])> or <Deferred(a[* - i]) ^ i : Nothing>. Such
indices must be input variables of the currently analysed predicate as explained in Sec-
tion 5.3.2, on page 97. The second type of free variables are the root variables that
appear in deferred dependencies. For instance, in <Deferred(a[* - i]) ^ i : Nothing>
the variable a is a root variable. In the general case, the root variables are those outputs
to which symbolic access paths are associated in deferred dependencies. In order to
make use of the computed context-sensitive information, actual dependencies can be
substituted for the root variables. This is done by applying the symbolic access paths
to the dependency to substitute. By traversing entire dependencies such as:

{ f -> <Nothing ^ j : Everything >;
g -> { b -> Deferred (o);};
h -> { x -> Everything ;

y -> <Deferred (a[* - j]) ^ j : Nothing >;}

and substituting the nested deferred dependencies such as Deferred(a[* - j]) and
Deferred(o), we apply context-sensitive information. Simultaneously, during the same
traversal, we also substitute the indices appearing in array dependencies, such as j in
the dependency associated to the field f, for instance. These are either substituted by
another index variable or they are forgotten. If the index to substitute is an input,
the formal variable will be replaced by the effective one. Otherwise, an approximation
is made, in order to remove the local index variable. This consists in joining the
default and the exceptional dependencies and using the result for building a new array
dependency without an exception.

An index substitution is a mapping from variables to either a new index variable to
replace it, or to Forget, if all references to the index variable should be removed. The
index type is shown below:
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type index = | NewIdx of var | Forget

The substitution function subst has the following type:

type var
module VMap : EMap.S with type key = var

val subst : index VMap.t -> dep VMap.t -> dep -> dep

Its first argument is the index substitution; the second argument is the dependency
substitution mapping root variables to dependencies. The third argument is the depen-
dency on which the substitutions are to be made. The function returns the dependency
obtained after making both substitutions. The two substitution passes are fused for
performance considerations.

A separate substitution is performed for dealing with polymorphic types. Our de-
pendency type is not polymorphic per se. However, αSmil supports polymorphic types
and thus, the variables described by the computed dependencies can have a polymorphic
type. Since the types of structures and variants are stored in the corresponding depen-
dencies, we must substitute polymorphic type parameters by their effective arguments.
This is done by a recursive function which traverses the dependencies and makes the
type substitution at each nested level if necessary. Besides this substitution, no other
modifications were made in the implementation in order to handle polymorphism. This
justifies our formal presentation of the analyses without polymorphism.

8.1.2 Intraprocedural Dependency Analysis

The intraprocedural dependency type ∆ (Definition 5.3.1) mapping variables to depen-
dencies δ that was introduced in Chapter 5.3.1 is implemented as shown below:

type reachable = dep VMap.t

(** Implementation of the intraprocedural dependency domain
introduced in Chapter 5.3.1 **)

type intra =
| Unreachable
| Reachable of reachable

The VMap type is a map having variables as keys:

type var
module VMap : EMap.S with type key = var
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In order to avoid needlessly storing large maps predominantly containing variables
mapped to Nothing, we do not store by default mappings for variables for which de-
pendencies have not yet been computed. Therefore, the intraprocedural dependency of
any variable v for which a mapping has not yet been stored in the map is interpreted as
v 7→ Nothing. As discussed in the previous section for the partial order, join, and reduc-
tion operators, when applying v∆ (Definition 5.3.3), and the join ∨∆ (Definition 5.3.4)
and reduction ⊕∆ (Definition 5.3.5) operators at the intraprocedural level any miss-
ing mapping from a Reachable domain has to be interpreted as a variable mapped to
Nothing.

With this interpretation, forgetting a variable v (Definition 5.3.2) from an intrapro-
cedural domain, denoted by \ in Chapter 5.3.1, becomes straightforward and amounts
to simply removing the mapping for v from the intraprocedural domain:

(* Forget *)
l e t forget d v =
match d with

| Unreachable -> d
| Reachable dmap -> Reachable (VMap. remove v dmap)

We remark that the complex operations are performed at the dependency type
level, and are mostly applied pointwise at the intraprocedural level. The interproce-
dural dependency domains are mappings from labels to intraprocedural dependency
summaries.

8.2 Implementation of the Correlation Analysis

8.2.1 Partial Equivalence Relations and Operators

The partial equivalence type R (Definition 7.2.1) that mirrors the structure of associative
arrays and algebraic data types which was introduced in Chapter 7.2.1 on page 141 is
implemented as shown below:

(** Implementation of the partial equivalence type
introduced in Chapter 7.2 **)

type pequiv =
| Equal (* bottom *)
| Any (* top *)
| PStruct of struct_typ * pequiv FMap.t (* structures *)
| PVariant of var_typ * pequiv CMap.t (* variants *)
| PArray of pequiv * (var * pequiv ) option (* arrays *)

The FMap and CMap types are the ones presented on page 174.
Similarly to structure and variant dependencies, and due to the same practical

considerations, in addition to the map associating partial equivalences to fields, the
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type struct_typ of the structure is stored as well. Similarly, the implemented partial
equivalence for variants stores the variant’s type var_typ as well, in addition to the
map associating partial equivalences to constructors.

For avoiding to store large maps in which the majority of the fields or constructors
are mapped to Any, we filter mappings of the type field 7→ Any and cons 7→ Any.

The partial equivalence type is private and the only manner in which partial equiva-
lence relations can be built is by using the provided smart constructors. The two atomic
cases Equal and Any, respectively can apply to any type. The smart constructors for
partial equivalences corresponding to structures filters out any field mapped to Any. It
also returns Equal if all fields of the structure are mapped to Equal in the given input
map. If, on the contrary, the given input map is empty or all fields are mapped to Any,
the smart constructor returns Any.

Similarly, for partial equivalences corresponding to variants, the corresponding
smart constructor receives as inputs the variant’s type and a map with constructor
keys and partial equivalences. If all constructors of the variants, as indicated by their
type, are present in the input map and mapped to Equal, the smart constructor returns
Equal. If all constructors are present and mapped to Any or if the given input map is
empty, the smart constructor returns Any. Otherwise, if the input map contains some
constructors mapped to Any, the corresponding mappings are filtered from the map
used to build the variant partial equivalence.

For arrays, the smart constructor returns Equal if both the default relation and the
known exceptional relation are Equal or if the former is Equal and there is no known
exceptional relation. If both the default relation and the known exceptional relation
are Any or if the former is Any and there is no known exceptional relation, the smart
constructor returns Any.

In contrast to dependencies, there is only one type of free variables that can appear
in partial equivalence relations, namely index variables. As was the case for array
dependencies, these can appear in partial equivalence relations corresponding to arrays
and they must be input variables. We traverse the partial equivalences recursively,
checking for each index variable appearing in an array relation if it is an input or
a local variable. References to local variables are eliminated, by approximating the
partial equivalences, effectively joining the default array relations with the exceptional
array relations.

8.2.2 Intraprocedural Correlations

In Chapter 7.4 on page 156 we have defined intraprocedural correlation summaries
(Definition 7.4.1) as mappings from pairs of variables to correlation maps. In practice,
the type intra is the following:

module PVMap = EMap.Make
( struct type t = element * element l e t compare = compare end)

module PMap = EMap.Make
( struct type t = Path.t * Path.t l e t compare = compare end)
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type correlation = pequiv PMap.t
type intra = correlation PVMap.t

type t =
| Related of intra
| NoCorrelation
| Unreachable

The implemented intraprocedural correlation summary type intra is a mapping
from pairs of elements to correlation maps. The element type is shown below:

(** The type of the elements for which correlations
are computed and kept intraprocedurally .
Ghost elements are used only for variants : for a
variant [v], a ghost element that nests the type
of the variant [v] is created . These are filtered
from final results . **)

type element =
| Local of var
| Output of var
| Ghost of texpr

In practice, we need to distinguish between output variables and local variables. This
is important for distinguishing between the final value of an output, i.e. the one cor-
related with values of the inputs, and its local intermediate values. Furthermore, we
need to introduce ghost elements for variants. When constructing a variant v with a
constructor C(a,b) for instance, we can keep correlations between the pairs (a,v) and
(b,v). However, we fail to capture the information regarding v’s construction with C.
In order to maintain it, we create a ghost element g_vtyp with v’s type, we add the
pair (g_vtyp,v) to the intraprocedural summary, and associate (ε̂, ε̂) 7→ [C 7→ Any] to
it. Such pairs are deleted from the intraprocedural predicate summaries; they are only
used while analysing a predicate’s body.

Unlike the operations discussed in Chapter 7, the implementations of the partial
order (Definition 7.4.2) and join (Definition 7.4.3) operations are parameterized by the
typing environment mapping variables to types. This has to be threaded through all
operations, as it is necessary for the injection operation (Definition 7.3.8). We need
to know the variable type onto which the relation is injected. For instance, in order
to “fill” the unknown relations for fields or constructors with Any, we must first know
what those fields or constructors are.

8.2.3 Dependency and Correlation Analysers

The input program is first parsed and each predicate is analysed in turn. Implicit pred-
icates are treated conservatively. Since their implementation is hidden, a pessimistic
assumption must be made. For the dependency analysis it is considered that every-
thing in their inputs has been read in order to obtain the outputs for any possible exit
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label. Similarly, for the correlation analysis it is considered that there is no correlation
between the input and the output variables on any possible exit label.

For inductive predicates, the dependency analysis computes a summary for each
case and joins the results for obtaining the dependency summary for the true exit
label. The false label is treated conservatively and everything is considered to be
read. Since inductive predicates are specification-only predicates that do not generate
outputs, the correlation analysis associates a NoCorrelation summary to both labels.

(** Analyse the body [g] of an explicit predicate **)
l e t analyze g =

l e t todo = Queue. create () in
List.iter ( fun v -> Queue.push v todo) (G. vertices g);
l e t result = init_result g in
l e t rec progress r =

try
l e t v = Queue .pop todo in
l e t vd = MV.find v r in
l e t edges = preds g v in
l e t vd ’ = transfer r v edges in
i f D.leq vd ’ vd then progress r
e l se begin

List.iter ( fun edge ->
Queue .push ( source edge) todo) edges;

progress (MV.add v (D.join vd vd ’) r)
end

with Queue .Empty -> r
in
progress result

The body of each explicit predicate is analysed independently for each possible
exit label using a variation of the worklist algorithm, as shown above in the analyze
function. Initially, a map is created having as many elements as there are nodes in
the predicate’s body. All of these are initially mapped to Unreachable, the bottom
element at the intraprocedural level. All the predicate’s exit nodes are loaded into
the working queue. Then a recursive function progress is executed until a fixed point
is reached and there are no more nodes left to analyse in the working queue. The
first node of the queue is popped and analysed. The node’s summary as stored in the
map is retrieved in vd. The analysis returns a summary vd’ for the node. The two
summaries, vd’ and vd are compared, and if the former is more precise than the latter,
then the recursive function progress is called. Otherwise, before calling progress, the
predecessors of the analysed node are pushed into the working queue and, in the map of
nodes, the join of vd and vd’ is associated to the analysed node. Since both analyses are
backwards analyses, the dependency and correlation information of a node is based on
the dependency or correlation information of its successors in the control flow graph and
the former must be recomputed if the latter are modified. Finally, from the computed
intraprocedural dependency summary, all mappings corresponding to local variables
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are filtered. From the computed correlation summary of an exit label l, all mappings
that do not correspond to an input and output variable pair are filtered.

For the dependency analyser, a command-line flag can be used to disable the usage
of deferred dependencies. Also, the well-typedness check of dependency summaries can
be enabled similarly.

A parser for dependency information has been implemented as well. This allows
us to annotate αSmil programs with the expected results and compare them to the
computed ones. A similar parser for the correlation information is planned for the near
future.

8.3 Dependency and Correlation Results on ProvenCore
Layers

8.3.1 ProvenCore Description

ProvenCore (Lescuyer, 2015) is one of the two microkernels entirely specified and devel-
oped in Smart at Prove & Run. Unlike Minix 3.1 by which it was inspired, ProvenCore
targets ARM architectures and uses a Memory Management Unit for managing virtual
address spaces. It is a general-purpose microkernel supporting creation and deletion of
processes, execution of programs, synchronous message-passing inter-process commu-
nication with timeouts, asynchronous notifications, and process-to-process data copies.

The main property ensured by ProvenCore is the isolation property. Isolation implies
two complementary properties, namely integrity and confidentiality. Integrity refers
to ensuring that the resources of a process (its code, data, and registers) cannot be
altered or interfered with by other processes, unless explicitly authorized by the process.
Confidentiality refers to ensuring that the resources of a process cannot be observed by
other processes, unless explicitly authorized by the process. In other words, integrity
ensures that until a process decides to communicate with other processes, it will execute
as if it were alone on the system. Confidentiality ensures that as long as a process does
not send its secrets to other processes, it can change its secrets without affecting other
processes.

The isolation property has been formally proven using the interactive proof as-
sistant of ProvenTools. The proofs also establish functional specifications verified by
ProvenCore (Lescuyer, 2015).

The proof for the isolation property is based on multiple refinements between suc-
cessive models, from the most abstract, on which the isolation property is defined and
proven, to the most concrete, i.e. the actual model used for code generation. These
successive models are shown in Figure 8.1.

Using multiple abstract models, each more abstract than its predecessor, enables
a degree of separation of concerns in the overall proof. The lower-level proofs include
a plethora of low-level properties and invariants, and are devoid of functional prop-
erties, while the higher-level models focus on functional specifications. Each layer of
abstraction removes details that are not relevant for it anymore and enables changing



8.3. Dependency and Correlation Results on ProvenCore Layers 183

SPM

RSM

FSP

TDS

Most Abstract

Least Abstract

Figure 8.1 – ProvenCore – Abstract Layers

the representation of the transition system in order to internalize in the structure of its
states some invariants of the preceding level.

The Security Policy Model (SPM) is the most abstract level and the one at which
the isolation property is expressed and proven. The kernel is modeled as an abstract
controller and the various processes are modeled as machines, each possessing its own
independent physical resources.

The Refined Security Model (RSM) is an intermediate layer, meant to bridge the
wide gap between its successor, the SPM and its predecessor, the FSP. In the RSM,
the machines share the same physical resources, which are managed by the controller.

The Functional Specifications (FSP) layer is a model roughly equivalent to its pre-
decessor – the TDS – in functionality, but unlike the latter it uses data structures and
algorithms that facilitate reasoning and formal proof. Its main functional difference
with the TDS is that it eliminates MMU address translation, using instead a linear
view of the RAM, similarly to the RSM.

The Target of Evaluation Design (TDS) is the model that is used to generate the
sequential Smart code of the kernel, as well as the models for hardware components
that are not translated into C code, but which are necessary for completing the TDS
specifications.

For each refinement, a view, i.e. a function from the concrete model state to the
abstract model state, is defined. Then, a correspondence or commutation lemma is
proven, establishing that transitions from c to c′ in the concrete model entail transitions
from the view of c to the view of c′ in the abstract model. Since the views are not total
functions, this requires showing that the views actually exist. In this manner, the
higher levels are attained, reaching models that are simpler and more flexible than the
TDS but that still simulate all its possible behaviours (Lescuyer, 2015).

This refinement chain also facilitates reusing parts of one proof effort in other proofs.
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8.3.2 Obtained Dependency and Correlation Results

Our dependency and correlation analyses must be evaluated by two different criteria,
namely execution time and precision. In this section we are discussing the former. The
latter will be discussed in the following section.

Both analyses target complex transition systems in general, and operating systems
in particular. The ideas behind them stemmed directly from the verification effort
entailed by ProvenCore. Unlike other static analyses, which are frequently employed in
a fully automatic setting, our static analyses are supposed to be used as companion
tools in the middle of interactive program verification. They are supposed to be applied
often, as steps during interactive proofs. For instance, the dependency and correlation
summaries for different predicates might be needed for verifying a single property.
These in turn may imply a whole-model analysis. Therefore, the dependency and
correlation analyses must perform quickly in order to answer effectively “questions”
asked frequently.

Our analyses have currently been applied to the functional specification of Proven-
Core (Lescuyer, 2015). More specifically, they have been applied to the RSM, FSP, and
TDS layers shown in Figure 8.1. Each of these layers is characterized by a global state
with numerous fields, and different transitions, i.e. supported commands or system
calls such as fork, exec, exit. Each supported command receives as an input the global
state before the transition and returns the state of the system after the transition.

For instance, in RSM the global states are much simpler compared to the ones in
the layers below it, i.e. FSP and TDS. They are modeled by a structure with 6 fields,
out of which 3 are modeled by arrays and 2 by structures. The RSM counterpart of
the optional table of processes is a store of machines, which are themselves the coun-
terpart of FSP processes. Machines are structures with 7 fields that refer to registers,
information regarding inter-process communication or permissions, and code and data
segments. Out of the 7 fields, 2 are modeled by variants, 2 by associative arrays and
other 2 by structures.

The global state of the FSP layer is modeled by a structure type with 15 fields,
including fields that concern process management (for memory allocations, information
about processes), interrupt handling (registered handlers, active handlers), scheduling
(priority queues, currently running process, process to run next), time management or
code data. Among these 15 fields, 9 fields are “composite” themselves, being modeled
by structures, variants or associative arrays. For instance, among the fields concerning
process management, there is a table of optional processes. The processes themselves
are modeled by a structure type having 26 fields. Out of the total of 26 fields, 11 are
modeled by algebraic data structures or associative arrays too.

The FSP global state is characterized by over 70 invariants.
In TDS, the global state is a structure having 33 fields, among which 23 are “com-

posite” as well. The processes are structures having 29 fields, among which 14 are
modeled by associative arrays or algebraic data types. The global state is character-
ized by approximately 140 invariants.



8.3. Dependency and Correlation Results on ProvenCore Layers 185

In Table 8.3 we give an overview of the global states for each analysed layer. The
first column shows the total number of fields. The second column indicates the number
of fields that are modeled by associative arrays. Between parentheses we indicate
the number of arrays having “composite” elements and elements of atomic or implicit
types, respectively. For example, the FSP global state has 6 fields that are modeled by
associative arrays and all 6 of them have “composite” elements. In columns 3, 4, and
5 we show the number of fields that are modeled by structures, variants and atomic or
implicit types, respectively.

Table 8.3 – ProvenCore Abstract Layers – Global State Type

Global State Arrays Structures Variants Atomic/Implicit

RSM 6 fields 2 fields (1/1) 2 fields 0 fields 2 fields
FSP 15 fields 6 fields (6/0) 0 fields 3 fields 6 fields
TDS 33 fields 14 fields (14/0) 3 fields 6 fields 10 fields

The global state of each layer contains an array or store of processes or machines.
In Table 8.4 we give an overview of the process or machine type for each analysed layer.
The table has the same structure as the one described previously for the global state
types.

Table 8.4 – ProvenCore Abstract Layers – Process/Machine Type

Process/Machine Arrays Structures Variants Atomic/Implicit

RSM 7 fields 2 fields (1/1) 2 fields 2 fields 1 field
FSP 26 fields 2 fields (0/2) 5 fields 3 fields 16 fields
TDS 29 fields 1 field (1/0) 8 fields 5 fields 15 fields

We have applied our dependency and correlation analyses on the RSM, FSP, and
TDS layers, thus conducting medium-sized experiments. An overview of the charac-
teristics for the 3 ProvenCore layers is included in Table 8.5, Table 8.7, and Table 8.9.
In each of these, the first column shows the total number of predicates of the analysed
layers. In parentheses, we indicate the number of predicates that only read information
and return a Boolean-like exit label, i.e. logical properties, as well as the number of im-
plicit predicates for which a pessimistic assumption is made. The second column shows
the total number of lines of code (LoC) for each, including comments and type defini-
tions. The next three columns indicate the number of LoC corresponding to predicates,
type definitions and comments, respectively.

We have run the analyses 101 times in a loop on a Lenovo laptop with a Quad-Core
Intel Core I7-5500U processor and 8 GB RAM. The system runs Xubuntu Gnu/Linux
64 bit, Release 15.10 with OCaml 4.01. Before the first run of each loop the operating
system’s cache was dropped using the following command:
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echo 3 > /proc/sys/vm/drop_caches

The time measured includes only the execution of the analysis algorithms. It ex-
cludes the time required to load the input files, as well as the time spent printing the
results.

On average, our fully context-insensitive dependency analysis as presented in Chap-
ter 5 computed the dependency summaries for 633 RSM/FSP predicates in 0.656 sec-
onds. For the TDS predicates, the dependency summaries were computed in 0.699
seconds on average. These results are indicated in Table 8.5.

Table 8.5 – Abstract Layers – Evaluation Data and Dependency
Analysis Timing

Predicates Total LoC Code Types Comments Dependency Avg

RSM/FSP 633 (235/65) 9853 8402 596 855 0.656 s

TDS 780 (231/155) 14000 11306 588 2106 0.699 s

In Table 8.6 we indicate the minimum and maximum execution times for the
context-insensitive dependency analysis. Various percentiles are indicated as well.

Table 8.6 – Abstract Layers – Detailed Dependency Analysis Timing
(in seconds)

Min 10%ile 50%ile 90%ile Max Avg

RSM/FSP 0.650 0.651 0.652 0.658 0.730 0.656

TDS 0.690 0.691 0.693 0.718 0.798 0.699

The average execution time of our dependency analysis with the deferred accesses
extension is shown in Table 8.7, in the last column denoted by Avg. On average,
our dependency analysis extended with deferred accesses, as presented in Chapter 6,
computed the dependency summaries with context-sensitive leaves for 633 predicates
in 0.779 seconds. For the TDS predicates, the dependency information was computed
in 0.919 seconds on average. These results are indicated in Table 8.7.

Therefore, using our relaxed form of context-sensitivity led to an increase of 10-20%
in execution time on the used benchmarks.

The detailed timing information for the dependency analysis using deferred accesses
is shown in Table 8.8.

The average execution time of our correlation analysis is shown in Table 8.9, in the
last column denoted by Avg. The correlation summaries for the RSM/FSP predicates
are computed in 0.426 seconds on average. For the TDS predicates, the correlation
summaries are computed in 0.496 seconds on average. Unlike the dependency analysis
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Table 8.7 – Abstract Layers – Evaluation Data and Deferred Depen-
dency Analysis Timing

Predicates Total LoC Code Types Comments Deferred Avg

RSM/FSP 633 (235/65) 9853 8402 596 855 0.779 s

TDS 780 (231/155) 14000 11306 588 2106 0.919 s

Table 8.8 – Abstract Layers – Detailed Deferred Dependency Analysis
Timing (in seconds)

Min 10%ile 50%ile 90%ile Max Avg

RSM/FSP 0.776 0.777 0.779 0.781 0.785 0.779

TDS 0.904 0.905 0.908 0.975 0.999 0.919

which computes information for code as well as specifications, i.e. logical properties,
in a unified manner, the correlation analysis only computes information for predicates
that actually modify data structures. This partly explains the time difference between
the two analyses. We also remark that the possible-constructors analysis is performed
simultaneously with the dependency analysis and this contributes to the difference
between the execution times as well.

Table 8.9 – Abstract Layers – Evaluation Data and Correlation Anal-
ysis Timing

Predicates Total LoC Code Types Comments Correlation Avg

RSM/FSP 633 (235/65) 9853 8402 596 855 0.426 s

TDS 780 (231/155) 14000 11306 588 2106 0.496 s

The detailed timing information for our correlation analysis is shown in Table 8.10.
Generally, static analysis has been considered prohibitive in terms of execution

time and it has been avoided in an interactive context and used predominantly in
an automatic context. Though currently applied only on medium-sized models, the
execution times of both of our analyses are short enough to expect reasonable execution
times for larger models as well2.

2It is noteworthy to remark that the interprocedural dependency and correlation summaries will
not necessarily be computed on-the-fly, during the interactive proof. They rather will be computed as
part of the build. In contrast, the treatment of a query, once all interprocedural information has been
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Table 8.10 – Abstract Layers – Detailed Correlation Analysis Timing
(in seconds)

Min 10%ile 50%ile 90%ile Max Avg

RSM/FSP 0.424 0.425 0.425 0.427 0.432 0.426

TDS 0.492 0.493 0.494 0.498 0.540 0.496

8.3.3 Precision of our Dependency and Correlation Summaries

In this section we try to illustrate the sort of dependency and correlation summaries
that are computed by our analyses. We conclude the section with a brief discussion
regarding the precision of our obtained results. Assessing and discussing precision as
a metric for usefulness is hard in isolation and can only be effectively done in relation
to actual applications. However, we present some statistics in order to give some
insight about the proportion of the non-trivial information computed. For our current
discussion we focus on the results obtained on the RSM/FSP and the TDS layers.

One of the analysed predicates of the RSM/FSP layers is do_auth. This predicate
is a system call clearing or granting an authorization to some process to read from or
write to some memory range of the current process. It receives a global state in and
an index i as inputs and produces, on the true label, the new global state out, after
modifying the permission for the i-th process in the process store.

The code of do_auth performs various system-wide checks before registering the
permission change, and is therefore not trivial, although its effect is quite limited.
Indeed, the correlation results computed by our analysis for the true label of this
predicate are shown below.

true : (in, out) 7→ [
(ε̂, ε̂) 7→ { ... 7→ Equal } 14 fields

procs 7→ Any }
(.procs, .procs) 7→ 〈 Equal . i : [ None 7→ Equal

Some 7→ {v 7→ { ... 7→ Equal} 25
fields

mem_auth 7→ Any}}]〉]

The analysis detects that out of the 15 fields of out, only the i-th element of the procs
field is changed. Furthermore, it detects that if this element is an active process, i.e.
built with the Some constructor, only the mem_auth field is modified out of the total of
26 fields. Everything else is copied from the input state in.

computed, will be executed in real-time. Nevertheless, it is desirable to have fast analyses, allowing
developers to iterate frequently.
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Combined with dependency summaries for logical properties, this correlation sum-
mary would allow us to infer the preservation of all invariants that are not concerned
with the memory permissions. All but one out of the specified properties for the global
state fall into this category. This is the relevant memory permissions property:

predicate proc_mem_auth_ok(proc proc) -> [true | false]

which verifies a fundamental property that has to hold for all processes in the process
store of proc and states that a process has permissions covering a valid range of mem-
ory addresses and referring only to existing processes. After executing do_auth, this
property is threatened and needs to be verified only for the i-th process of the store.
It is preserved for all others.

The dependency results computed by our analysis for this predicate are shown be-
low. The analysis detects that for each of the possible execution scenarios, the outcome
depends only on 2 out of the 26 fields, namely the stackframe and the memory per-
missions. The dependency on the stackframe is confined to only one of the 3 fields:
the data and stack segment. The memory permissions are given by a variant with 3
constructors, denoting reading and writing permissions or the absence of any permis-
sion. Furthermore, besides pinning down the outcome’s dependency on 2 out of the 26
fields of the proc structure, the analysis also detects that the absence of any memory
permission, indicated by the constructor NONE of the mem_auth variant, is ⊥ for the false
execution scenario. In other words, unused permissions cannot threaten the property
proc_mem_auth_ok.

false → {proc → { mem_auth → [ READ → { base → >; len → >}
WRITE → { base → >; len → >}
NONE → ⊥ ]

stackframe → { ds → >}}}
true → {proc → { mem_auth → [ READ → { base → >; len → >}

WRITE → { base → >; len → >}
NONE → � ]

stackframe → { ds → >}}}

The relevant memory permissions property is thus only threatened by transitions
that add memory permissions or change a process’ virtual space layout. Only 2 tran-
sitions out of the 25 belong to this category: exec which resets the process’ segments,
and do_auth which adds permissions and was discussed above. In particular, transi-
tions deleting memory permissions do not impact the property since the absence of
permissions, as shown by the dependency of the constructor NONE for the false label,
is an impossible case when the property does not hold. This is one of the practical
advantages of tracking constructor possibilities simultaneously and of extending the
correlation analysis to track the evolution of constructors as well.

In the following, we briefly discuss our dependency summaries obtained on the
RSM/FSP layer in terms of precision. An overview is given in Table 8.11. The first
column refers to the fully context-insensitive dependency analysis as presented in Chap-
ter 5. The second column refers to the dependency analysis extended with deferred
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access maps as presented in Chapter 6. The first line indicates the total number of
predicates, both implicit and explicit. The second line indicates the total number of
implicit predicates for which we are obliged to make a pessimistic assumption and to
consider everything needed, given that their implementation is hidden. The third line
indicates the number of explicit predicates without inputs for which empty summaries
are retrieved. Our dependency analysis detects the input subset that is read in order
to obtain the output. In the case of predicates without inputs this subset is empty.
Most explicit predicates without inputs correspond to wrapper predicates around calls
to constructors that take no arguments. Since αSmil is an intermediate language, such
predicates are automatically generated and do not necessarily correspond to program-
mer written predicates. The next line, line 4, indicates the number of predicates for
which we obtain non-trivial information. By non-trivial information, we mean depen-
dency summaries in which the dependency associated to at least one input variable
is different than >, i.e. Everything, the element conveying no information. With the
context-insensitive dependency analysis, we obtain non-trivial results for 344 predicates.
With the extended dependency we obtain non-trivial results for 403 predicates.

Table 8.11 – RSM/FSP Layers – Evaluation Data and Dependency
Summaries

Context-Insensitive Deferred

Number of Total Predicates 633 633

Number of Implicit Predicates 65 65
No Inputs 26 26

Number of Non-Trivial Results 344 403

Number of Trivial-Results 289 230
• Implicit 65 65
• No Inputs 26 26
• Other 198 139

Predicates with Atomic Inputs 31 31

Completely Read 71 71

Overapproximation 96 37

The following line — line 5 — indicates the total number of predicates for which
trivial results are obtained. These include the results for implicit predicates, as well as
those for predicates without inputs. For the simple version of the dependency analysis
we obtain 198 trivial results, excluding implicit predicates and predicates without in-
puts. For the extended dependency analysis we obtain trivial results for 139 predicates,
excluding implicit predicates and predicates without inputs. Therefore, for the first ver-
sion of the analysis, 49 trivial summaries are a consequence of context-insensitivity. The
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next 3 lines refer to the 139 predicates for which trivial results are obtained with both
versions of the dependency analysis: 31 of them correspond to predicates manipulat-
ing only inputs of atomic types, such as int. Such inputs are completely read and
thus, the trivial results are justified and do not correspond to an over-approximation.
Other 71 correspond to predicates making complex manipulations and actually read-
ing all of their input, such as well-formedness checks. The last 37 trivial results are
a consequence of over-approximations made by our analysis. The majority of them
correspond to complex predicates, making multiple calls to other complex predicates
and relying heavily on calls to implicit predicates, for which conservative assumptions
are made. For the simple dependency analysis, other 46 trivial results are a result of
over-approximations related to context-insensitivity.

An overview of the dependency results for the TDS layer is given in Table 8.12.
The table follows the same structure as described for Table 8.11.

Table 8.12 – TDS Layer – Evaluation Data and Dependency
Summaries

Context-Insensitive Deferred

Number of Total Predicates 780 780

Number of Implicit Predicates 155 155
No Inputs 15 15

Number of Non-Trivial Results 386 458

Number of Trivial-Results 394 322
• Implicit 155 155
• No Inputs 15 15
• Other 224 152

Predicates with Atomic Inputs 49 49

Completely Read 59 59

Overapproximation 116 44

We remark that with the deferred dependencies extension, we obtain more pre-
cise dependency summaries for 273 predicates of the RSM/FSP abstract layer. These
constitute approximately 50% of the predicates in the used benchmark. For the TDS
layer we obtain more precise results for 308 predicates using the deferred dependencies
extension. These constitute approximately 50% of the predicates in the TDS layer for
which non-trivial results can be obtained (i.e. excluding implicit predicates and those
without inputs). The dependency summaries obtained with the extended analysis are
considerably more detailed. For instance, just to give an intuition of the difference
between the results obtained for the TDS layer, the file containing the results com-
puted with the context-insensitive dependency analysis contains 7333 lines and its size
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is 263.1 kB, while the file containing the results computed with the extended analysis
contains 11547 lines and its size is 523.9 kB.

The statistics for the correlation analysis are shown in Table 8.13. Unlike the depen-
dency analysis, which handles both logical properties and predicates generating outputs,
the correlation analysis does not handle logical properties. It tracks fine-grained partial
equivalences between parts of the input and parts of the output. Therefore, the number
of RSM/FSP predicates for which we can obtain non-trivial results (i.e. at least one
partial equivalence between an input (sub)element and an output (sub)element, on at
least one exit label) is lower. Implicit predicates and specification-only predicates are
mapped to NoCorrelation, the top element conveying no information. Out of the 307
predicates left, we obtain non-trivial results for 186 of them. The rest include predi-
cates relying heavily on calls to implicit predicates. They also include complex system
calls such as fork or exec and auxiliary operations which modify their input entirely.

Table 8.13 – RSM/FSP Layers – Evaluation Data and Correlation
Summaries

Correlation Analysis

Number of Total Predicates 633

Number of Implicit Predicates 65
Number of Logical Properties (No Outputs) 235

No Inputs 26

Number of Non-Trivial Results 186

Number of Trivial-Results 90
• Implicit 65
• No Inputs 26
• No Outputs 235
• Atomic/Implicit Inputs 31

An overview of the correlation results for the TDS layer is given in Table 8.14. The
table follows the same structure as described for Table 8.13.

8.4 Reasoning about Framing using Correlations and De-
pendencies

8.4.1 A Decision Procedure

In general, reasoning about framing relies on the frame rule, which is commonly illus-
trated as follows:

{P}C{Q}
{P ∧R}C{Q ∧R}
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Table 8.14 – TDS Layer – Evaluation Data and Correlation Summaries

Correlation Analysis

Number of Total Predicates 780

Number of Implicit Predicates 155
Number of Logical Properties (No Outputs) 231

No Inputs 15

Number of Non-Trivial Results 235

Number of Trivial-Results 95
• Implicit 155
• No Inputs 15
• No Outputs 231
• Atomic/Implicit Inputs 49

The purpose of the frame rule is to enable local reasoning: a property R that holds
for a state P , will continue to hold after executing a command C, provided that R
reads only locations that are unmodified by C. The frame rule, also called the rule of
constancy (Reynolds, 1981), applies in its original form to simple languages which do
not use a heap. Separation logic addresses framing for heap-supporting languages.

In our case, the αSmil language with which we are working does not support mu-
tation. Our work is not concerned with heap modifications but focuses on deep-state
modifications. We handle predicates that receive a composite input state and construct
a new composite output state, without altering the former. The new output state is
constructed by copying the input state and modifying a subset of subelements.

In our context, the frame rule must be reinterpreted as follows: a property R is
preserved by a predicate C receiving an input state P and constructing an output state
Q, if the states P and Q agree on the subset on which the property R depends. In other
words, a property is preserved by a predicate, if the latter only modifies subelements on
which the property does not depend. Using the terminology used in separation logic,
a property R is preserved by a predicate C if the footprint of C is disjoint from the
footprint of R. However, we are not concerned with locations, but with subelements of
large states modeled by algebraic data structures and arrays. Therefore, when reasoning
about framing we need to check if the input subset modified by an operation is disjoint
from the subset that properties are reading and depending on.

We have devised two static analyses for automatically computing the footprints of
operations and properties. The dependency analysis detects the input subset on which
the outcome of an operation or of a property relies. The correlation analysis detects
the input subset that is modified by an operation in order to obtain the output. The
results of the two analyses are meant to be used and combined by a decision procedure
in order to automatically infer the preservation of frame properties.

The decision procedure has not been implemented yet, but based on preliminary
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experiments we give an intuition about how the dependency and correlation summaries
are meant to be unified, what type of queries could be answered, and the mechanism
used for answering them.

Concretely, the decision procedure is meant to receive a sequence of atoms, one of
which is a query. The query is to be answered based on the correlation summaries
computed for the other atoms. Atoms are calls to built-in or user-defined predicates.
Queries usually consist of a Boolean built-in statement, such as an equality check or
a partial structure equality check for instance, or a call to a logical predicate, having
true and false as exit labels and generating no outputs. In a nutshell, the dependency
summary computed for the query would have to be transformed and interpreted as a
set of correlations that are sufficient to answer affirmatively the given query. This
should then be compared to the correlations computed for the atoms. The query can
be answered affirmatively if the latter is less than or equal to the former.

We sketch the envisioned mechanism behind our decision procedure on a simple
example, receiving 4 atoms. One of them is a query, as shown below:

type state = {
f : int ;
g : int ;
h : int ;

}

v1 := s.f;
t := {s with g = w};

v2 := t.f;

Q: v1 = v2 - true -

In this case, it is not necessary to first obtain the dependency for the query marked
with Q and to interpret it as a correlation. The necessary and sufficient correlation for
the query to be answered affirmatively can be obtained directly:

(v1, v2) 7→ {(ε̂, ε̂) 7→ Equal}.

Separately, we need to extract all the correlation information regarding (v1, v2) from
the given atoms. For this, we must first find the chains of correlations connecting the
two through other intermediate atoms. Therefore, we begin by building an undirected
graph in which every variable appearing in the atoms is added as a node. An edge is
added between any nodes representing the input and the output of the same atom3.
For our example, the graph is shown below:

s

t v1

v2 w

3In general, these graphs will not be acyclic. Further measures will have to be taken for correctly
dealing with all cases.
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The path connecting v1 and v2 is highlighted in green. In the general case, such paths
could be detected using a depth-first search algorithm. Using the detected path between
v1 and v2, we build a chain of pairs of variables of the following form:

(v1, s) <-> (s, t) <-> (t, v2).

These are the unordered paths for which we need to extract the correlation information
contained in the correlation summaries of the atoms. The correlation summaries of our
example atoms are the following:

v1 := s.f : (s, v1) 7→ {(.f, ε̂) 7→ Equal}

t := {s with g = w} : (s, t ) 7→
{

(.f, .f) 7→ Equal
(.h, .h) 7→ Equal

}
(w, t ) 7→ {(ε̂, .g) 7→ Equal}

v2 := t.f : (t, v2) 7→ {(.f, ε̂) 7→ Equal}

In the correlation summaries computed by our analysis, correlation maps are associated
to pairs of input and output values, i.e. the computed information is expressed between
the input and the output variables of an operation. They can be seen as ordered pairs,
having inputs as the left members and outputs as the right members. However, the
correlation information expresses a relation between two runtime values which can
be compared independently of the order in which they appear4. The atoms refer to
values that occur in the program at different times, and answering the query is done
independently of the order of execution. Therefore, at this level, we can swap the
members of the pairs to which correlation maps are associated. This allows us to
obtain correlation information expressed in terms of the variable pairs in the chain
extracted from the graph of atom variables. For instance, for our example we would
obtain the following:

(v1, s) <-> (s, t) <-> (t, v2).

(v1, s) 7→ {(ε̂, .f) 7→ Equal}

(s, t ) 7→
{

(.f, .f) 7→ Equal
(.h, .h) 7→ Equal

}

(t, v2) 7→ {(.f, ε̂) 7→ Equal}

From these, we compute the Cartesian product of the correlations appearing in the
correlation maps as follows:

4When the evolution of constructors will be tracked as well, the relations will stop being symmetric.
Thus, the matrices will have to be transposed.
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{c1} × {c2, c3} × {c4}

where
c1 = (ε̂, .f) 7→ Equal
c2 = (.f, .f) 7→ Equal
c3 = (.h, .h) 7→ Equal
c4 = (.f, ε̂) 7→ Equal.

For our example, the obtained set would be the following:{
((ε̂, .f) 7→ Equal; (.f, .f) 7→ Equal; (.f, ε̂) 7→ Equal);
((ε̂, .f) 7→ Equal; (.h, .h) 7→ Equal; (.f, ε̂) 7→ Equal))

}
For each member of the obtained set we need to recursively compose the correlations
in order to obtain information regarding the values involved in the query. The compose
operations would be applied as follows:

(((c′1 � c′2)� c′3)� · · · )

where, for the first element of our example set, c′1, c′2 and c′3 have the following values:

c′1 = (ε̂, .f) 7→ Equal
c′2 = (.f, .f) 7→ Equal
c′3 = (.f, ε̂) 7→ Equal.

For our example, we cannot obtain any correlation information regarding (v1, v2)
by composing the correlations of the second member of the Cartesian product. The
first correlation relates the value of v1 to the value of the f field of s, while the second
correlation relates the values of the field h of s and t. Thus, in this case we cannot
infer anything regarding v1 and t, nor regarding v1 and v2. However, by composing
the correlations of the first member of the Cartesian product, we obtain the following:{

(v1, v2) 7→ (ε̂, ε̂) 7→ Equal;
}
.

If after composing, we would have obtained multiple correlations referring to (v1, v2),
these would have had to be intersected, thus allowing us to extract from the given
atoms the most precise correlation information regarding (v1, v2). In the general case,
the correlation information obtained after the intersection is the one that has to be
compared to the correlation computed previously, i.e. the sufficient correlation for the
query to be answered affirmatively. For our example this amounts thus to comparing:{

(v1, v2) 7→ (ε̂, ε̂) 7→ Equal;
}
vK

{
(v1, v2) 7→ (ε̂, ε̂) 7→ Equal;

}
.

Based on this, we can conclude that the given query Q will be answered affirmatively
for the atoms given in our example.
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8.4.2 Types of Targeted Queries

The types of queries that are targeted by our approach can be categorized as follows:

• equality of values;

• structure equality on the values of a subset of fields;

• implications of the form logical_property(ā) ⇒ logical_property(b̄), where ā and b̄
are related by the facts inferred from the other atoms of the query;

• conjunctions of such queries.

In the general case, we need to reinterpret a dependency summary as a correlation
summary. The query’s goal is to deduce the equality between pairs of variables. When
two such variables are of the same type, we can create a correlation map containing
a single correlation. That correlation associates to the pair of paths (ε̂, ε̂) a partial
equivalence relation which mirrors the dependency. The partial equivalence relation is
created as follows:

• When the dependency is Everything, the equivalence relation becomes Equal;

• When the dependency is Nothing, the equivalence relation becomes Any;

• Structure, variant and array dependencies are transformed pointwise to structure,
variant and array partial relations;

• When the dependency is Impossible, the equivalence relation becomes Any, in the
absence of the possible-constructors extension.

We illustrate here some example queries revolving around our do_auth predicate
discussed in Section 8.3.3.

A naive equality query on the entire input and output of do_auth would not be
satisfiable as do_auth does modify the memory authorizations of one process. This is
the first sort of supported query.

do_auth (now, i, arg3, ...)[ true: after |oob| f a l s e ]
Q after = now
⇒ no.

The main argument of the do_auth predicate is the global state now, an instance of
the global_state structure5:
type global_state = {

procs : array <option <process >>;
memory_regions : array < mem_region >;
irq_handlers : array < irq_handler >;
current_process : int ;
...

}

5Due to confidentiality reasons, the actual definition of the struct has been modified and edited for
length.
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Since the do_auth predicate only affects the mem_auth of one process in the procs
array, we can successfully deduce, for the values of now and after, the equality on the
fields memory_regions and current_process. This is the second sort of supported query.

do_auth (now, arg2, arg3, ...)[ true: after |oob| f a l s e ]
Q after = <memory_regions current_process >now
⇒ yes.

Finally, we can directly deduce that the all_ids_in_handlers_ok_global(state)
property is not threatened by the execution of the do_auth predicate.

do_auth (now, arg2, arg3, ...)[ true: after |oob| f a l s e ]
Q congruent all_ids_in_handlers_ok_global (now)

all_ids_in_handlers_ok_global (after )
⇒ yes.

This property verifies that all the identifiers used by the registered interruption
handlers stored in the field irq_handlers are valid. The property has the following
dependency summary:

false → {state→ {irq_handlers→ Everything}}
true → {state→ {irq_handlers→ Everything}}

From the correlation of the do_auth predicate, we know that the irq_handlers field
is preserved, and therefore it follows that the property, which only depends on that
field is preserved. Similar properties that do not depend on the procs array, but only
on parts or on the entirety of one or more of the other 14 fields will be preserved as
well.

The preservation of properties that have to hold for every process in the array
procs will be inferred as well, as long as they do not depend on the mem_auth field of
the processes. For instance, the property procs_proc_map_ok_global verifies that each
process of the array procs has valid code, data and stack segments. This property has
the following dependency summary:

true→
{
state→

{
procs→

〈[
None → Everything;
Some → {v→ {proc_map→ Everything}}

]〉}}

false→
{
state→

{
procs→

〈[
None → Everything;
Some → {v→ {proc_map→ Everything}}

]〉}}

Since for every active process of the array, the property depends only on the proc_map
field, it is unaffected by the modification of the mem_auth field. Therefore, the property
is preserved for the global state after obtained after the execution of do_auth. Similar
properties that do not depend on the mem_auth field, but only depend on other parts of
the data structure will be preserved as well.

An extension of the decision procedure sketched in Section 8.4.1 could take advan-
tage of additional information regarding array indices. For example, the query could
specify that two of the involved array indices are different.
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do_auth (now, i, arg3, ...)[ true: after |oob| f a l s e ]
Assert i != j
Q congruent mem_auth_ok_global (now, j)

mem_auth_ok_global (after , j)
⇒ yes.

The mem_auth_ok_global(state,j) property checks the well-formedness of the mem-
ory permission on the j-th process. The above query is satisfied if the property
mem_auth_ok_global holds for all processes other than the i-th. The correlation sum-
mary for do_auth states that the elements of the procs array are unmodified by the
operation, except for the i-th element. Combined with the dependency summary for
mem_auth_ok_global given below, this allows the query to be satisfied.

true→
{
state→

{
procs→

〈
Nothing . j :

[
None → Everything
Some → {v→ ProcDep1}

]〉}}

false→
{
state→

{
procs→

〈
Nothing . j :

[
None → Everything
Some → {v→ ProcDep2}

]〉}}

where ProcDep1 is:
mem_auth →


READ → { base → Everything;

len → Everything}
WRITE → { base → Everything;

len → Everything}
NONE → Impossible


stackframe → {ds→ Everything}


and ProcDep2 is:

mem_auth →


READ → { base → Everything;

len → Everything}
WRITE → { base → Everything;

len → Everything}
NONE → Nothing


stackframe → {ds→ Everything}


8.5 Decision Procedure Experiments
We have applied a basic prototype of the decision procedure using the dependency and
correlation summaries computed for the RSM/FSP layers of ProvenCore.

Our prototype considers pairs of one logical property and one predicate. The log-
ical property and the predicate must both operate on values of the same type. More
precisely, one of the predicate’s inputs, as well as one of its outputs and one of the
logical property’s inputs must all be of the same type. Our prototype attempts to
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detect whether the logical property is preserved after the execution of the predicate. If
several inputs or outputs are of the same type, all combinations are considered. Most
implicit types were not considered when searching for property/predicate pairs, as they
are less likely to yield successful results. For example, arguments of a primitive type
like int are unlikely to be unaffected by the execution of the predicate.

This prototype automatically inspected all such property/predicate pairs found in
the RSM/FSP layers. A property was considered to be preserved if its dependency
summary for the argument involved, when translated to a set of equalities, formed a
subset of the equalities implied by the predicate’s correlation summary. Both the true
and the false exit labels were considered independently, and the property is considered
to be preserved (subject to some conditions) when it is preserved for either or both exit
labels. More precisely, given a property π(̄ı)[true|false] and a predicate p(̄ı′)[` : ō′], we
report success when it can satisfy the following:

∃ i ∈ ı̄, i′ ∈ ı̄′, o′ ∈ ō′ such that Γ(i) = Γ(i′) = Γ(o′) (8.1)
∧ ∃ ` ∈ {true, false} (8.2)
∧ E(j) 6= E(k) ∧ E′(j) 6= E′(k) ∀j, k ∈ {ı̄, ı̄′, ō′} (8.3)

when j and k are used as array indices (8.4)

∧
〈
E,
[

Prop(̄ı[i→ i′])[true|false]
]〉 `−→ E (8.5)

∧
〈
E,
[

Pred (̄ı′)[`′ : ō| . . .]
]〉 `′−→ E′ (8.6)

∧
〈
E′
[

Prop(̄ı[i→ o′])[true|false]
]〉 `−→ E′ (8.7)

where ı̄[i → i′] and ı̄[i → o′] denote the sequence of variables ı̄ in which the variable i
is replaced by the variable i′ (respectively o′).

This initial prototype was run on the 398 explicit predicates and 235 properties of
the RSM/FSP layer of ProvenCore. Out of these, we filtered predicate/property pairs
for which the property has an input i of the same type as one of the predicate’s inputs
i′ and one of its outputs o′. These pairs involve 161 distinct predicates and 165 distinct
properties. In total, there were 8250 tuples (i, i′, o′, `) which satisfied the conditions 8.1
and 8.2.

This experiment allowed us, as a first result, to automatically identify 102 predicates
for which at least one property is preserved under the conditions 8.1 – 8.7 stated above.
For many predicates, it was possible to show that, after the execution of said predicate,
several properties are preserved (up to 33). Figure 8.2 shows an overview of how
many properties were inferred to be preserved for each predicate. The blue region
at the bottom indicates how many properties are inferred to be preserved for a given
predicate, while the red region above shows how many properties were compatible with
the predicate, but were not inferred to be preserved.

Figure 8.3 shows an overview of how many predicates were inferred to be preserving
each property. The blue region at the bottom indicates how many predicates are
inferred to be preserving a given property, while the red region above shows how many
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Figure 8.2 – Distribution of the number of inferred preserved proper-
ties. Predicates are sorted along that criterion.

predicates were compatible with the property, but were not inferred to be preserving
it.

It is worth noting that in both figures 8.2 and 8.3, the red zone contains properties
(respectively predicates) which could fall into these cases:

• The property is actually threatened by the predicate (respectively the predicate
threatens the property);

• The property is not threatened (respectively the predicate is not threatening),
but proving so requires more information that is obtained by our dependency
and correlation analysis. For example, a more precise dependency or correlation
analysis (e.g. tracking constructor evolution as presented in 7.6) could be needed.
A numerical or value analysis could also help determine that the parts of the in-
put data structure which are modified by the predicate and on which the logical
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Figure 8.3 – Distribution of the number of inferred predicates for which
a property is preserved. Properties are sorted along that criterion.

property also depends still satisfy the property after the execution of the pred-
icate. Alternatively, the preservation of these properties can be demonstrated
using an interactive prover.

• The property is not threatened (respectively the predicate is not threatening), and
the dependency and correlation summaries contain enough information to prove
the non-interference of the predicate and property, but our decision procedure
prototype failed to infer it. This can be due to a timeout (this initial prototype
has not been optimized at all, and can take a substantial time in some cases), or
to precision losses in the decision procedure prototype itself.
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Chapter 9

Conclusion and Perspectives

There is no real ending. It’s just the
place where you stop the story.

Frank Herbert

Despite its intuitive simplicity, the frame problem has proved to be an enduring
issue with notoriously tedious implications. Its different manifestations have been stud-
ied for several decades in various contexts, ranging from Artificial Intelligence, in the
context of which it has been originally identified, to the field of formal specification
and verification. Recently, it has received extensive attention from the object-oriented
verification community where it has been identified as a subsisting problem (Leavens,
Leino, and Müller, 2007) and an ideal candidate for automation (Meyer, 2015). Clas-
sical approaches to addressing the frame problem are typically relying on separation
logic (Reynolds, 2005) or ownership types (Clarke, Potter, and Noble, 1998). Though
the merits of such approaches are indisputable, the manual specification effort that they
require is non-negligible as well. Frame properties are an integral part of a complete
specification and they are mandatory for proving correctness, but ideally, they should
impose little additional effort. Programmers should be able to focus on the truly inter-
esting part, namely what code does, and rely on automatic tools for the repetitive and
cumbersome task of specifying and verifying frame properties.

Interactive formal verification of complex transition systems is not exempt from the
manifestations of the frame problem either. Considerable effort is spent on proving
the preservation of the system’s invariants, even though in practice the majority of
operations have a localised effect on the system and impact only a limited number of
invariants at the same time. Identifying those invariants that are unaffected by an
operation and automatically proving their preservation can substantially ease the proof
burden for the programmer. In this thesis we have presented an approach towards
automatically inferring the preservation of framing-related invariants. It is meant to
be used in the context of an interactive theorem prover and employs two different
static analyses, namely a dependency analysis and a correlation analysis, whose unified
results are meant to establish the disjointness between the data dependencies of a logical
property and the modifications performed by an operation. The decision procedure
meant to combine the results of the two analyses is still in an incipient stage. However,
our preliminary experiments related to automatically answering queries regarding the
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preservation of certain invariants for unmodified parts are encouraging. We believe
that our envisioned approach can become applicable to complex transition systems
on a routine basis. Reasoning about framing can come for free without imposing the
specification of additional clauses. We also believe that automatic reasoning about
framing can be achieved through static analysis. Generally, static analysis has been
considered prohibitive in terms of execution time. It has been predominantly used
in an automatic context and avoided in interactive contexts where queries have to be
answered fast so as not to impede the natural flow of an interactive proof. Though
currently applied only on medium-sized models, given the short execution times of our
dedicated static analyses, we believe that reasonable execution times for larger models
can be expected as well. Therefore, we surmise that static analysis is applicable in an
interactive verification context.

9.1 Contributions
The main contributions of this thesis are the designed and implemented dependency
and correlation analyses, which are meant to be used in the context of an interactive
theorem prover. Both analyses handle associative arrays and algebraic data types and
compute fine-grained results mirroring the layered structures of such types. They target
complex transition systems in general, and operating systems in particular. These are
characterized by states defined by complex compound data structures and by transi-
tions, i.e. state changes, that map an input state to an output state. Both of our static
analyses are concerned with deep-state manipulations, i.e. accesses and modifications,
respectively.

The dependency analysis presented in Chapter 5 automatically detects the relevant
input subset needed for producing certain outputs. It handles functions and their
specifications in a unified manner and computes for each possible execution scenario a
conservative approximation of the input (sub)elements on which their outcome depends.
It is a flow-sensitive, path-sensitive interprocedural data-flow analysis. Furthermore, for
variants, an additional analysis is simultaneously conducted for computing the subset
of possible constructors on a given execution scenario. Together with the dependency
information per se, this additional information about constructors is meant to answer
the same question, namely, what fragments of the input influence the output, from a
different, albeit related point of view. The first version of the dependency analysis was
fully context-insensitive. In order to introduce a relaxed form of context-sensitivity we
have devised an extension based on symbolic paths. This was presented in Chapter 6.

The extension for the dependency analysis is based on computing deferred depen-
dencies consisting of symbolic access maps in which callers can subsequently inject
their specific context information on an as-needed basis. The dependency summaries
for each predicate are still computed only once. However, by including nested context-
sensitive components at the summaries’ leaves, we reduce the precision penalty exerted
by the fully context-insensitive approach without sacrificing performance. As discussed
in Chapter 8, the deferred dependencies extension led to an increase of 10%–20% in
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execution time on the used benchmarks. In terms of precision, it led to more precise
dependency summaries for 50% of the predicates of the same benchmarks.

We surmise that besides its intended target, other programming activities can rely
on our dependency analysis as well. For instance, the analysis can have applications in
the testing realm, for designing and generating test suites that avoid redundant testing
of the same execution scenario. Classes of inputs that will test the same execution
scenario can be automatically determined. The input subelements on which the outputs
of a predicate do not depend can be consistently supplied with the same testing value, as
they are completely irrelevant for the outcome. On the contrary, the input subelements
on which the outputs depend, should be targeted and their values should be varied for
more comprehensive testing. Furthermore, our dependency analysis could also facilitate
unit testing for exceptions as it computes specific results for every execution scenario
of a predicate. Indeed, it is useful to have dedicated test cases which trigger each
exception that can be thrown by a function. The set of relevant parts of the input
differs for each possible exception and for the regular execution behaviour.

Our second contribution is the correlation analysis presented in Chapter 7 which
detects the flow of input values into output values. It computes a conservative approx-
imation of fine-grained equivalences between the input and the output subelements
of a function. The correlation analysis is an interprocedural data-flow analysis that
tracks the origin of subparts of the output and relates it to subparts of the inputs, thus
summarising the behaviour of functions and detecting not only what is modified, but
also how and to what extent. We have defined a partial equivalence type mirroring
the layered structure of algebraic data types and associative arrays and we introduced
an intermediate level consisting of access paths and correlations. These allow comput-
ing expressive information regarding equivalences between subparts of the inputs and
subparts of the outputs in a flexible manner.

Prototypes for both of our analyses have been implemented in OCaml. These were
discussed in Chapter 8. We have applied them to a functional specification of Proven-
Core (Lescuyer, 2015), a general-purpose microkernel that ensures isolation. Results
for medium-sized models have been obtained on average in less than 1 second with the
dependency analysis, and less than 0.5 seconds on average with the correlation analysis.
Static approaches have long been considered as being confined to small programs. We
believe that our preliminary results indicate that it is possible to report conservative,
precise information without sacrificing scalability.

We remark that our experience with the design and implementation of the two
analyses has been rather different. The dependency analysis is much more complex
semantically. This is partly a consequence of the simultaneous possible-constructors
analysis, which has an impact on the abstract dependency domain. Deferred depen-
dencies add yet another layer of complexity. However, the implementation proved to
be much simpler than the implementation of the correlation analysis. The latter posed
challenges due to the intermediate layer of access paths and correlations that we had to
add for obtaining expressive, fine-grained information. However, the correlation analy-
sis is simpler from a semantics point of view. It is also noteworthy to remark that for
both analyses, an intermediate level below variables needed to be introduced, as soon as



206 Chapter 9. Conclusion and Perspectives

fine-grained relations between pairs of variables were considered, directly or indirectly.
In the case of deferred dependencies this was not the main goal, but rather a mecha-
nism for obtaining increased precision in specific cases for already pertinent dependency
information. In contrast, for the correlation analysis, the inclusion of an intermediate
level was imperative for obtaining useful, expressive information in non-trivial cases.

As a first step towards a solution for automatically inferring the preservation of
framing-related invariants, we have sketched a decision procedure meant to employ
our two static analyses. By uncovering equivalences between inputs and outputs, after
having detected that a property only depends on unmodified parts and by unifying the
results, the preservation of invariants for the unmodified parts can be inferred.

9.2 Future Work
We conclude this thesis with some perspectives for practical future work, as well as
some theoretical open issues that we wish to address in the future.

Practical Future Work. From a practical point of view, our future work goals
revolve around the full implementation of the decision procedure, its integration in
the interactive theorem prover developed at Prove & Run, as well as its comprehensive
assessment in a real-word context.

Decision Procedure Implementation. Our first and main goal for the near
future focuses on the full implementation of the decision procedure combining our de-
pendency and correlation summaries and answering queries related to the preservation
of logical properties. The performance of the algorithm sketched in Section 8.4 should
be assessed on real-world examples. The complexity of this algorithm depends on the
number of paths relating two endpoints in the graph of query atoms variables. It
also depends on the number of correlations relating pairs of variables along the chains
connecting endpoints. This could lead to a combinatorial explosion of the number of
compose operations for large query graphs. Further optimization manners should be
investigated and applied in the algorithm implementing the decision procedure.

Validation. After having implemented the decision procedure, the precision of
our two static analyses employed by it should be comprehensively assessed on various
benchmarks.

Some of the theoretical aspects related to our static analyses have been formalized
in Coq by Stéphane Lescuyer. However, the actual implementation of the algorithms
is not formally connected to the mechanized proofs. Therefore, it would be desirable
to extensively test the implementation of the analysis algorithms. This could be done
by translating the dependencies and correlations to types in a sufficiently expressive
type system or by inserting runtime guards. These guards would check equalities for
correlations and would taint supposedly irrelevant values identified by the dependency
analysis, verifying that the output is not tainted. For the correlation analysis, inputs
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which are correlated to some output values could be given a universally quantified type,
the same type appearing in the parts of the output which are supposed to be equal.
This is commonly used as a design pattern in functional programming languages to
express data-flow constraints via the type system. For the dependency analysis, each
part of the input which is supposed to be irrelevant for a predicate’s output could be
assigned a distinct polymorphic type variable which does not appear in the output.
This allows the body of the predicate to take notice of a value’s presence without being
able to manipulate its contents.

Tool Integration and Support. Another important goal for the near future is
the integration of our decision procedure in the ProvenTools interactive prover. A tac-
tic allowing to automate the inference of framing-related invariant preservation should
be supported. This goal entails a sequence of other considerations that have to be
addressed. Currently, the dependency and correlation analyses handle whole programs
and compute summaries for every predicate of the analysed program. Though the
execution times of our analyses are low, even these can prove to be cumbersome in
a real world context. Therefore, the two analyses should be adapted so as to allow
incrementally analysing only parts of a program. Caching the results of the analyses
across invocations of the decision procedure could prove to be efficient as well. Addi-
tionally, the mechanism of answering queries regarding invariant preservation should
be transparent, allowing users to see the reasoning steps behind the decision procedure.
Transparency is necessary for the ProvenTools prover which targets products that have
to be certified. This possibly also requires a more concise output notation for the
dependency and correlation summaries in order to ease the interpretation of results.
Currently, they tend to be rather verbose for predicates handling composite values with
a large number of subelements.

For the dependency summaries, a parser was implemented allowing users to an-
notate predicates with expected dependency information. A similar parser could be
written for the correlation summaries. These annotations are a useful tool for testing
the analyses on benchmarks for which the correlations and dependencies are known.
In addition, they would allow users to annotate programs with constraints on the ex-
pected dependencies and correlations, similarly to type annotations in the presence of
type inference and check that these expectations hold.

Finally, the decision procedure and our dependency and correlation analyses could
be offered as a software library. A public API should describe and prescribe the ex-
pected behavior of our two static analyses and the decision procedure relying on them.

Theoretical Perspective. From a theoretical perspective, several interesting as-
pects remain open. In a nutshell, these consist in developing support for more sophis-
ticated queries that could be answered by our decision procedure. The precision of our
dependency and correlation analysis can be further increased as well.
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Decision Procedure. A first interesting theoretical effort revolves around the
formalization of our envisioned decision procedure used for inferring framing-related
invariants. The types of queries it can answer should be further investigated and
extended. For instance, it would be desirable to assert as a hypothesis that certain
predicates are known to be valid on some nodes of the graph. We further identified
two extensions for our correlation analysis that could increase the number of answered
queries.

Constructor Evolution. For increasing the number of queries that our decision
procedure can answer, one direction to investigate is the extension of our correlation
analysis, in order to track and compute information regarding the evolution of variant
constructors. This additional information should be leveraged to the context of our
decision procedure. The formalization and implementation of this extension constitute
an interesting effort. Furthermore, other types of relations between variables could be
considered as well.

Correlations between Inputs. Another extension of our correlation analysis
that would enrich the types of queries that can be answered by our decision proce-
dure consists in tracking correlations between pairs of inputs, in addition to the ones
computed between pairs of inputs and outputs. Besides the unified treatment of both
actual code and logical properties on the correlation analysis side, this would allow
answering queries that consist in a single logical property on multiple input values that
are additionally related by other facts. It would also allow detecting aliasing between
variables used as array indices.

Numerical Analysis for Arrays. Arrays are a source of precision loss in both
of our static analyses. Hence, it would be interesting to investigate the impact of using
simple numerical abstractions (congruence modulo and linear abstract domains). The
numerical analysis could otherwise be offloaded to an external SMT solver, such as Z3
or Alt-Ergo for instance. Symbolic evaluation of the arithmetic computations should
also be possible. This would avoid precision losses when joining two dependencies or
correlations with exceptional information on distinct index variables which prove to
have the same integer value in practice. Eliminating this source of imprecision would
likely benefit the analysis of loops over arrays.

In conclusion, we have devised and implemented two static analyses detecting the
data dependencies of a logical property, as well as correlations between the inputs and
the outputs of operations. Our first results on a functional model of a microkernel
are encouraging, both in terms of precision and speed, making these analyses suitable
to use in the context of interactive provers. Aside from incremental improvements on
the precision of our analyses, the next steps are to combine them in order to detect
invariants which are not affected by the execution of a predicate, and to integrate this
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as a tactic in the ProvenTools theorem prover. We believe that reasoning about framing
can come for free, without imposing additional annotations. Inferring the preservation
of framing-related invariants through static analysis can become applicable on a routine
basis for complex transition systems.
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