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Introduction

The mathematical theory behind communication was initiated by Claude Shannon. In 1948 he pub-

lished the article “A Mathematical Theory of Communication”. In this article he discussed how to

optimize the communication and storage of information. Shannon’s work was considered the begin-

ning of both Information and Coding Theory. In 1950, Richard W. Hamming wrote “Error Detecting

and Error Correcting Codes”, which was the first paper explicitly introducing error-correcting codes.

Coding theory continued to evolve with the evolution of communication. Nowadays coding theory is

used in data compression, cryptography, error-correction and networking. It is also used in computer

storage media such as CDs, DVDs, Hard disks and Flash drives, as well as communication such as

satellite communication, deep space probes, Internet communications, mobile phones and networks.

The importance of coding theory and its involvement in our daily life gives the importance to study

different type of codes and to explore their properties in order to select the suitable codes for suitable

application. One class of codes that has gained much attention is the class of linear codes. That is due

to allowance for more efficient encoding and decoding algorithms than other codes. In this class there

are many types of codes with different properties and capabilities. This in turn raises the question of

classification of linear codes. This will be one of our main motivations to address the code equivalence

problem.

Code equivalence problem plays an important role in coding theory and code-based cryptography.

That is due to its significance in classification of codes and also construction and cryptanalysis of

code-based cryptosystems. It is also related to the long standing problem of graph isomorphism, a

well-known problem in the world of complexity theory.

Two linear codes are said to be linearly equivalent if there exists a linear isomorphism between them

that preserves the Hamming weight. Equivalent codes have the same properties such as length, dimen-

sion, minimum distance, weight distribution and correction capabilities. In coding theory the goal is to

have an efficient and reliable data transmission methods. Thus classification of codes by equivalence

enables to identify the codes that have the same capabilities.

In cryptography, more specifically in code-based cryptosystems, code equivalence problem is exten-

sively used in hiding the structure of secret codes such as in the McEliece-like cryptosystems. Thus

proving the difficulty of this problem enables to design secure cryptosystems. On the other hand

introducing an efficient algorithm to solve the problem enables to do efficient cryptanalysis.

The link between code equivalence problem and graph isomorphism problem was established by E.

Petrank and R. Roth in [70]. Graph isomorphism problem is a long standing problem in graph and

complexity theory. They provide a polynomial-time reduction of graph isomorphism to permutation

equivalence. This shows that graph isomorphism is easier than code equivalence problem.

1



Introduction 2

Graph isomorphism problem is not known if it is in the class P nor NP-complete but it is known to

be in the low hierarchy of the class NP. Thus graph isomorphism is not NP-complete unless P =
NP. Petrank and Roth in [70] proved that permutation equivalence problem has the same situation.

That is, it is not NP-complete unless P = NP.

The problem of finding the automorphism group of linear codes is strongly connected to the code

equivalence problem. Finding automorphism group of codes is the special case of code equivalence

when the two codes are equal. In fact one problem can be used to solve the other. The solution set

of the equivalence of codes is a coset of the automorphism group of the codes. On the other hand the

automorphism groups of equivalent codes are isomorphic. This isomorphism gives the solutions of

equivalence.

There are some few algorithms that were introduced to solve code equivalence problem. Up to now

there is no algorithm that solves the problem efficiently for all instances. In 1982 J. Leon introduced

a method to find automorphism groups of linear codes. This method is also used to find equivalence

between codes [53]. His algorithm works by finding the minimum weight codewords and retrieving

the automorphisms between them. Support splitting algorithm (SSA) was introduced in 1999 by N.

Senderier to find permutation equivalence between linear codes. The algorithm works by trying to

find a discriminant signature for the equivalent codes using the weight enumerators of their hull. The

heuristic complexity of this algorithm is exponential in the dimension of the hull which is usually small

for random instances of codes [75]. Later in 2013, SSA was extended to handle diagonal equivalence

after reducing the problem to permutation equivalence [78]. In this also the general complexity of

code equivalence was discussed. Another attempt to solve code equivalence problem was made by

I. Bouyukliev. He introduced an algorithm that reduces the test of equivalence between linear codes

to a test of isometry between binary matrices [17]. In [37] Feulner introduced an algorithm to find

automorphism group of linear codes that uses the idea of partition and refinement. His algorithm

finds a canonical representative of linear code such that any two equivalent codes have the same

representative. More details about previous work is given in Chapter 1.

Code equivalence problem is solved by some computer algebra systems such as Magma and GAP.

They implement Leon’s algorithm. In Magma it is used to solve permutation and diagonal equivalence

for codes of small length over small prime fields and F4 due to the high complexity. In GAP it is used

to solve permutation equivalence over binary field.

In this thesis we adopt algebraic approach to solve code equivalence problem in its permutation and

diagonal versions. Up to our knowledge, this is the first attempt to solve code equivalence problem

algebraically. Our contributions are contained in the chapters 3, 4 and 5.

We start by the problem of permutation equivalence. We develop algebraic model that describes the

problem where we prove that the problem is well-described by this model. In a first try to solve the al-

gebraic system we use the F4 algorithm implemented in Magma [16] for Groebner basis computation.

By using Groebner basis we can always solve the problem but as the codes get larger the computation

becomes complex. One important factor that improves the solving is the rank of the linear system

in our algebraic model. We use different techniques to improve the linear part of the system such

as block linearization and Frobenius action. We identify instances of the problem that can be solved

efficiently in polynomial-time. We find that the hull is a source of difficulty in solving the problem

since it decreases the rank of the linear part. Also it seems that during Groebner basis computation

other linear equations are found only in a higher degrees as the hull increases. We introduce two

techniques to overcome the difficulty associated to the existence of the hull. The first is based on the
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supplementary of the hull and the second is based on the closest vector problem.

We introduce a polynomial-time reduction from permutation equivalence when the hull is trivial to

graph isomorphism. This reduction enables to solve graph isomorphism using our algebraic modeling

for permutation equivalence. Moreover, the algebraic system of graph isomorphism has interesting

properties. These properties consist in obtaining the maximum rank of the linear part of the system

in addition to reducing the number of variables. For random graphs that are not isomorphic or with

few isomorphisms we can find the solutions only by solving the linear system. For regular graphs or

graphs with large number of isomorphisms we use additional techniques such as block linearization

and guessing strategy.

We study the diagonal equivalence where we develop algebraic models for the problem and solve it

using Groebner basis F4 algorithm. Considering codes with the same parameters, the complexity of

Groebner basis computation for diagonal equivalence is higher than the case of permutation equiva-

lence. That is due to the fact that we have less linear equations and/or more variables in the model.

Reduction to permutation equivalence was also considered. A new hybrid algebraic model that con-

siders the code and its closure is developed. In this case, the solutions are binary matrices similar

to permutations but with additional rows of zero we call them puncturing permutations. This model

permits to reduce the number of variables and to increase the number of linear equations. Solving

this system with our approaches for permutation equivalence such as block linearization and guessing

strategy solve the problem over small fields, namely F3 and F4.

The rest of this thesis is organized as follows: The first chapter provides a review of the literature of the

code equivalence problem in its permutation, diagonal and semilinear versions. In this we also discuss

its relationship with graph isomorphism problem. Chapter 2 is a quick glance on Groebner basis

where the main algorithms that compute Groebner basis are introduced and the general complexity is

discussed.

Chapter 3 is about our contributions to solving permutation equivalence problem. In this we develop

new algebraic model and we prove that the problem is well-described by this model. Then we use

different techniques to improve the model and to identify instances that can be solved efficiently.

Chapter 4 is dedicated to our contributions to the diagonal equivalence. We distinguish between two

different approaches. The first approach is to develop algebraic model that describes the problem and

to use Groebner basis techniques to solve the problem. The second approach is to use the notion of the

closure to reduce the diagonal equivalence to permutation equivalence. Then we use our techniques

from Chapter 3 to solve the reduced problem.

Chapter 5 is an application to our techniques of solving permutation equivalence in solving graph

isomorphism problem. We prove that permutation equivalence is reducible to graph isomorphism in

polynomial-time when the hull of the codes is trivial. This reduction in addition to our techniques of

solving permutation equivalence are used to solve graph isomorphism problem.





Chapter 1

Code Equivalence Problem

In this chapter we review the main results and findings related to code equivalence problem. We

start by defining code equivalence problem, the decision and computational version. We see that

there are many types of code equivalence: permutation, diagonal and semi-linear equivalence. We

review the existing methods for solving code equivalence problem. We describe the support splitting

algorithm (SSA) which solves permutation code equivalence problem for random linear codes with

heuristic complexity that is exponential in the dimension of the hull [75, 76]. A polynomial time

reduction from diagonal equivalence to permutation equivalence is introduced. The complexity of

solving diagonal equivalence using SSA is low (almost polynomial) over F3 and F4 but its complexity

becomes high for q > 5 [78].

The relation between graph isomorphism problem and code equivalence problem is discussed where

a reduction from graph isomorphism problem to permutation code equivalence over F2 is introduced.

This reduction shows that code equivalence problem is not easier than graph isomorphism problem

[70]. On the other hand a reduction from special type of permutation equivalence which is called basic

equivalence to bipartite graph isomorphism was introduced in [3].

Other work in finding automorphism group and classification of linear codes by finding canonical

representative is considered. The general problem of code equivalence, semilinear equivalence, is

considered and a polynomial time reduction from semilinear equivalence to diagonal equivalence is

introduced.

Basics of graph theory are required for this chapter. The necessary definitions and required back-

ground regarding graph theory will be provided when needed.

1.1 Notions about Linear Codes

In this section we give basic notions and definitions related to linear codes. Further notions on coding

theory are given in Appendix.

Definition 1.1.1. Let Fq be a finite field and Fn
q is an n-dimensional vector space over Fq. We define

a q-ary [n, k] linear code to be a k-dimensional linear subspace of Fn
q . The parameter n is called the

length of the code and k the dimension of the code. The elements of the code are called codewords.

5



Chapter 1. Code Equivalence Problem 6

Definition 1.1.2. Let C be an [n, k] linear code over Fq. We define a generator matrix G of C to be

a k×n matrix whose rows form a basis of C . A parity check matrix H of C is an (n− k)×n matrix

over Fq with rank n− k which satisfies: For every c ∈ Fn
q , c ∈ C ⇔HcT = 0.

Definition 1.1.3. The generator matrix of an [n, k] linear code is said to be in the standard (systematic)

form if it is of the form
(
Ik A

)
, where A is a k × (n− k) matrix. The corresponding parity check

matrix in the standard form is of the shape
(
−AT In−k

)
.

Any generator matrix can be transformed to standard form by elementary row operations and column

permutation.

Definition 1.1.4. Let C be an [n, k] linear code with parity check matrix H . The [n, n − k] linear

code generated by H is called the dual code of C and denoted C⊥. The hull of the code is defined to

be C ∩ C⊥ and denoted byH(C ).

Definition 1.1.5. The code C is called weakly self-dual if C ⊆ C⊥ and is called self-dual if C = C⊥.

Suppose C is an [n, k] self-dual code, then n must be even and it must satisfy n = 2k. In case of

weakly self-dual n > 2k. Note that, in both cases, self-dual and weakly self-dual, the code is equal to

its hull.

Definition 1.1.6. Let u = (u1, ..., un) and v = (v1, ..., vn) be vectors in Fn
q then we define the

Hamming distance dH between u and v as follows: dH(u,v) = #{i : ui 6= vi}. Hamming weight

of a vector u is wt(u) = dH(u,0).

Thus the Hamming distance represents the number of coordinates that they differ between the two

vectors or codeword where Hamming weight is the number of coordinates that differ from zero in the

vector. Thus dH(u,v) = wt(u− v).

Thus we define the minimum distance d of a code C as follows

Definition 1.1.7. The minimum distance d of a code C is defined as

d = min{dH(u,v) : u,v ∈ C ,u 6= v} = min{wt(c) : c ∈ C , c 6= 0}
Definition 1.1.8. Let u = (u1, ..., un) and v = (v1, ..., vn) be vectors in Fn

q , we define the inner

product as 〈u,v〉 =∑n
i=1 uivi.

1.2 Code Equivalence Problem (CEP)

In this section we define the three types of code equivalence: permutational, diagonal and semilinear

equivalence. We introduce the decision and computational versions of code equivalence. We see that

CEP can also be defined in terms of matrices.

1.2.1 Permutation Equivalence Problem (PEP)

Let C and C ′ be two [n, k] linear codes over Fq. We say C and C ′ are permutationally equivalent if

there exists a permutation π ∈ Sn such that

C
′ = {(cπ(1), cπ(2), . . . , cπ(n)) : (c1, c2, . . . , cn) ∈ C }.
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In other words, the codewords of C ′ results from permutation of coordinate entries of the codewords

of C . We write C ′ = C π.

In terms of generator matrices, let G and G′ be the generator matrices of C and C ′, respectively. We

say C and C ′ are permutationally equivalent if there exist a k × k invertible matrix S and an n × n
permutation matrix P such that

G′ = SGP .

Note that, the representation of the code by its generator matrix is not unique. This is why we need

the matrix S, for example the two matrices G and SG generate the same code for any k×k invertible

matrix S.

Proposition 1.2.1. Any linear code is permutationally equivalent to a linear code in the standard

form.

Proof. This is clear since the generator matrix of the standard form is obtained from the generator

matrix of the code by elementary row operation in addition to column permutation. �

The decision version of PEP is to decide if two given [n, k] linear codes are permutationally equiv-

alent or not where the computational version is to find one permutation by which the two codes are

equivalent.

1.2.2 Diagonal Equivalence Problem (DEP)

Let C and C ′ be two [n, k] linear codes over Fq. We say C and C ′ are diagonally equivalent if there

exist (α1, α2, . . . , αn) ∈ F∗
q and a permutation π ∈ Sn such that

C
′ = {(α1cπ(1), α2cπ(2), . . . , αncπ(n)) : (c1, c2, . . . , cn) ∈ C }.

In other words, the codewords of C ′ results from the codewords of C by permutation of coordinate

entries and scaling each coordinate by a nonzero element from Fq. Note that, when αi = 1 for

1 6 i 6 n this is simply permutation equivalence.

In terms of generator matrices, let G and G′ be generator matrices of C and C ′, respectively. We say

C and C ′ are diagonally equivalent if there exist a k × k invertible matrix S, an n × n permutation

matrix P and an invertible diagonal matrix D such that

G′ = SGPD.

Note that, one might prefer to write G′ = SGDP , this depends on the order of applying the opera-

tions, scaling then permuting or the opposite, however they are both valid notations.

Again as in permutation case, the decision version of DEP is to decide if two given [n, k] linear codes

are diagonally equivalent or not where the computational version is to find a permutation and elements

αi, 1 6 i 6 n (a diagonal matrix) by which the two codes are equivalent.

Diagonal equivalence is also termed by some authors linear equivalence as in [78] or monomial equiv-

alence as in [43].
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1.2.3 Semilinear Equivalence

Let C and C ′ be two [n, k] linear codes over Fq. We say C and C ′ are semilinear equivalent if there

exist (α1, α2, . . . , αn) ∈ F∗
q , a permutation π ∈ Sn and a field automorphism Ψ : Fq → Fq such that

C
′ = {(α1Ψ(cπ(1)), α2Ψ(cπ(2)), . . . , αnΨ(cπ(n))) : (c1, c2, . . . , cn) ∈ C }.

In other words, the codewords of C ′ results from the codewords of C by permutation of coordinate

entries, applying the field automorphism in each coordinate entry and scaling each coordinate by a

nonzero element from Fq. Note that, when Ψ = id the equivalence is diagonal. If in addition αi = 1
for 1 6 i 6 n this is simply permutation equivalence.

It is easy to see that permutation and diagonal equivalence are linear isomorphisms between linear

codes, i.e isomorphism that preserve the linearity between the two spaces. On the other hand, semi-

linear equivalence is a semilinear isomorphism since for c ∈ C and a ∈ Fq, Ψ(ac) = Ψ(a)Ψ(c) 6=
aΨ(c). Note that, for a word c ∈ C , Ψ(c) = (Ψ(c1), . . . , Ψ(cn)).

Two equivalent codes they must have the same length, dimension, minimum distance and weight

distribution. In the other direction, due to MacWilliams [60, 15], any linear isometry between linear

codes that preserves the Hamming distance induces linear equivalence.

1.2.4 Automorphism Group of Linear Code

The two problems of code equivalence and finding automorphism group of linear codes are tightly

related, see for example Section 3.2.2. Thus it is suitable to define the automorphism group of linear

code in this section.

The set of isomorphisms that preserve the Hamming weights from C to itself is called automorphism

group of C . When we restrict ourselves to permutation automorphisms it is called permutation group

of C .

1.3 Support Splitting Algorithm (SSA)

In this section we review the support splitting algorithm introduced by Sendrier in 1999 in [75, 76].

SSA algorithm solves the code equivalence problem in its permutation version for linear codes that

have small non-trivial hull and trivial permutation group. The SSA algorithm finds the equivalence be-

tween two linear codes by computing the weight enumerators of their hull. The algorithm complexity

is exponential in the dimension of the hull. The hull of random linear code is of small dimension thus

the run time for the algorithm is expected to be small. One of the drawbacks of the algorithm is that

its complexity becomes intractable for codes with large hull dimension specially self-dual and weakly

self-dual codes. That is because the algorithm computes the weight enumerators which is known to

be NP-hard problem [11].

The weight enumerator is invariant by permutation equivalence, i.e if two codes are permutationally

equivalent they must have the same weight distribution. Unfortunately the opposite is not true. If the

weight enumerators for two linear codes are equal, it does not imply that the two codes are equivalent.
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This will raise another issue about the use of weight enumerator to decide the equivalence. Practically

for random codes this is true with high probability that is why SSA works successfully in this case.

Next we show that the hull of the permutation equivalent codes are also equivalent by the same per-

mutation.

Proposition 1.3.1. Two linear codes are permutation equivalent if and only if their dual codes are

permutation equivalent by the same permutation.

Proof. Let C be a linear code, P an n × n permutation matrix, and CP a permutation equivalent

linear code of C , we show that (CP )⊥ = C⊥P .

x ∈ (CP )⊥ if and only if for all c ∈ C , 〈x, cP 〉 = 0. But 〈x, cP 〉 = x(cP )T = xP TcT =
(xP T )cT =

〈
xP T , c

〉
. Hence x ∈ (CP )⊥ if and only if xP T ∈ C⊥ ⇔ x ∈ (C⊥)(P T )−1 =

(C⊥)P , since P is a permutation.

The other direction is obvious since the dual of the dual is the code itself. �

The following proposition shows that the hull of the code, the subfield subcodes, and the trace codes

are stable by permutation equivalence, see Appendix A for the definitions.

Proposition 1.3.2. Let C be linear code H(C ),C |Fp , and Tr(C ) are the hull, the subfield subcode

and the trace code, respectively. Then we have

1. H(C )σ = H(C σ)

2. (C |Fp)
σ = C σ|Fp

3. (Tr(C ))σ = Tr(C σ).

Proof. 1. H(C )σ = (C ∩ C⊥)σ = C σ ∩ (C⊥)σ = C σ ∩ (C σ)⊥ = H(C σ).

2. (C |Fp)
σ = (C ∩ Fn

q )
σ = C σ ∩ Fn

q = C σ|Fp .

3. (Tr(C ))σ = {(Tr(c))σ : c ∈ C } = {Tr(cσ) : c ∈ C } = Tr(C σ).

�

Proposition 1.3.2 shows that any solution for the equivalence problem between two linear codes will

be also a valid solution for the equivalence problem between their hulls, subfield subcodes, and their

trace codes. Unfortunately, the opposite is not always true as we show by the next example.

Example 1.3.3. Consider the two [5, 3] linear codes A and B defined over F22 with primitive element

t and generated by

GA =



1 0 0 0 1
0 1 0 1 t
0 0 1 1 t2


 and GB =



1 0 0 1 t2

0 1 0 1 t
0 0 1 0 1


 .

These two codes are equivalent and the solution set of equivalence has order 2. Looking at their hulls,

they are [5, 1] linear codes and equivalent by 4 permutations. Their subfield subcodes are [5, 2] linear

codes and equivalent by 6 permutations. Finally their trace codes are [5, 4] linear codes and they are

equivalent by 12 permutations.



Chapter 1. Code Equivalence Problem 10

In the example above the solution set of the equivalence for A and B is strictly included in the

solution set of the equivalence of their hull, subfield subcodes and trace codes.

Before we proceed to the algorithm we introduce some definitions.

Definition 1.3.4. Let L denotes the set of all codes. An invariant over a set E is defined to be a

mapping L → E such that any two permutation equivalent codes take the same value.

Definition 1.3.5. Let In = {1, 2, . . . , n} be the set used to index the coordinates of the words of Fn
q .

A signature S over a set F maps a code C of length n and i ∈ In into an element of F such that for

all permutations σ on In, S(C , i) = S(σ(C ), σ(i)).

Assume that we relate the indexes i and j if S(C , i) = S(C , j) this induces a partition in the index

set In.

Definition 1.3.6. Let C be a code of length n. A signature S is said to be discriminant for C if there

exist i and j in In such that S(C , i) 6= S(C , j) and is said to be fully discriminant if for all i and j
distinct in In, S(C , i) 6= S(C , j).

Note that the fully discriminant signature exists if and only if the permutation group of C is trivial.

Thus a fully discriminant signature does not exist for codes that have non-trivial permutation group.

SSA Algorithm

1: Input: Two permutation equivalent codes A and B; fully discriminant signature S for A .

2: Output: Permutation σ.

3: for i, j ∈ In do

4: if S(A , i) = S(B, j) then

5: σ(i) = j.
6: end if

7: end for

Next we give simple examples to illustrate the support splitting algorithm. These examples are taken

from [75].

Example 1.3.7. We consider this simple example of two equivalent codes C = {1110, 0111, 1010}
and C ′ = {0011, 1011, 1101}. To obtain fully discriminant signature we puncture the code each time

at one position and use the weight enumerator denoted byW(.).

C1 = {0110, 0111, 0010} W(C1) = X +X2 +X3

C2 = {1010, 0011} W(C2) = 2X2

C3 = {1100, 0101, 1000} W(C3) = X + 2X2

C4 = {1110, 0110, 1010} W(C4) = 2X2 +X3

and for C ′

C ′
1 = {0011, 0101} W(C ′

1) = 2X2

C ′
2 = {0011, 1011, 1001} W(C ′

2) = 2X2 +X3

C ′
3 = {0001, 1001, 1101} W(C ′

3) = X +X2 +X3

C ′
4 = {0010, 1010, 1100} W(C ′

4) = X + 2X2
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Thus we can easily find the permutation between the two codes which is: σ(1) = 3, σ(2) = 1, σ(3) =
4, σ(4) = 2

It is not always possible to find a fully discriminant signature for the equivalent codes or it is too

complex to compute, for that reason the notion of refinement is introduced. We illustrate bellow how

to construct full discriminant signature from a discriminant signature by the notion of refinement.

Example 1.3.8. Consider the two codes C and C ′ as

C = {01101, 01011, 01110, 10101, 11110} and C
′ = {10101, 00111, 10011, 11100, 11011}.

We get the following:

C1 = {01101, 01011, 01110, 00101} W(C1) = X2 + 3X3

C2 = {00101, 00011, 00110, 10101, 10110} W(C2) = 3X2 + 2X3

C3 = {01001, 01011, 01010, 10001, 11010} W(C3) = 3X2 + 2X3

C4 = {01101, 01001, 01100, 10101, 11100} W(C4) = 2X2 + 3X3

C5 = {01100, 01010, 01110, 10100, 11110} W(C5) = 2X2 +X3 +X4

and for C ′

C ′
1 = {00101, 00111, 00011, 01100, 01011} W(C ′

1) = 3X2 + 2X3

C ′
2 = {10101, 00111, 10011, 10100} W(C ′

2) = X2 + 3X3

C ′
3 = {10001, 00011, 10011, 11000, 11011} W(C ′

3) = 3X2 +X3 +X4

C ′
4 = {10101, 00101, 10001, 11100, 11001} W(C ′

4) = 2X2 + 3X3

C ′
5 = {10100, 00110, 10010, 11100, 11010} W(C ′

5) = 3X2 + 2X3

Thus we have σ(1) = 2, σ(4) = 4, σ(5) = 3 and σ({2, 3}) = {1, 5}. We found that σ({2, 3}) =
{1, 5} thus we can not distinguish if position 2 is mapped to 1 or 5 by σ. The same is said about posi-

tion 3, thus the signature is not fully discriminant. We refine the signature to obtain a full discriminant

signature by doing the following. In this case one refinement is sufficient:

C{1,2} = {00101, 00011, 00110} W(C{1,2}) = 3X2

C{1,3} = {01001, 01011, 01010, 00001} W(C{1,3}) = X + 2X2 +X3

C ′
{2,1} = {00101, 00111, 00011, 00100} W(C ′

{2,1}) = X + 2X2 +X3

C ′
{2,5} = {10100, 00110, 10010} W(C ′

{2,5}) = 3X2

Thus we have σ(2) = 5 and σ(3) = 1

Of course computing the weight enumerators has high complexity especially when the code is large,

in fact it is NP-hard problem [11], for this reason SSA algorithm uses the hull of the code instead.

It has been proven that the dimension of the hull for random linear code is very small with high

probability [74]. The number of refinements to obtain fully discriminant signature is not known,

for that there is nothing precise about the complexity of the algorithm. The heuristic complexity is

O(n3 + qhn2 log n) where h is the dimension of the hull.

One factor that speeds up the computation when working with the hull to find a discriminant signature

is that the hull of punctured code can be deduced from the hull of the code without need for the whole

computation [75].

One disadvantage is that the signature built from the hull is less discriminant than the signature built

from the code since the hull is usually of small size, this can be handled by extra cycles of refinements
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of the signature. Another disadvantage of using the hull to decide equivalence is that the permutations

set that makes the hull of codes equivalent may be strictly larger than the permutations set that makes

the codes equivalent, see Example 1.3.3.

1.3.1 Issues about the SSA Algorithm

The algorithm uses the weight enumerator of the hull for signature. The weight enumerator com-

putation in general is NP-hard but computing weight enumerator of the hull for random codes is

achievable with high probability. For codes with large hull such as self-dual and weakly self-dual

codes still the algorithm is not practical.

Using the hull has some disadvantages since not any solution for the equivalence of the hulls is a

solution for the equivalence of the codes. Another disadvantage of using the hull is that it increases

the number of needed refinements to reach the fully discriminant signature since the signature that is

built from the hull is less discriminant [75].

Obtaining a fully discriminant signature is not always achievable, for example codes with non-trivial

permutation group cannot have fully discriminant signature.

Although the algorithm achieves good complexity for linear codes with small hull there is no clear

bound in the number of needed refinements for the algorithm to terminate. Another important issue

about SSA is that the algorithm is expected to have high complexity for structured codes such as

Reed-Muller codes and cyclic codes. That is because Reed-Muller codes have large hull (see Section

A.5.4) and also almost all cyclic codes have large hull [80].

1.4 Diagonal Equivalence

In this section we discuss the general case of code equivalence which we call diagonal equivalence.

In this case not only a permutation that acts on the code is considered but also an invertible diagonal

matrix. We distinguish the work of Sendrier and Simos in [78] where they give a reduction from

diagonal equivalence to permutation equivalence by using the notion of closure of the code then they

use the SSA to solve the reduced problem. The monomial matrix can be easily recovered from the

permutation between closures.

Definition 1.4.1. Let A = (ai,j) and B = (bi,j) be two matrices of size kA × nA and kB × nB
respectively. The Kronecker product A⊗B is the kAkB × nAnB matrix defined as

A⊗B = (ai,jB) .

Definition 1.4.2. Let C be an [n, k] linear code over Fq with primitive element α. Let G be a generator

matrix of C and a = (α, . . . , αq−1). We define the closure C̃ of C to be the [n(q − 1), k] linear code

C̃ = {c⊗ a : c ∈ C }.

The generator matrix of C̃ is given by G̃ = G⊗ a.

The closure duplicates the coordinates q − 1 times with different scalars from F∗
q .
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Example 1.4.3. Consider the [3, 2] linear code C over F4 (with primitive element α) that is generated

by

G =

(
1 0 α2

0 α2 1

)
.

The closure C̃ is the [9, 2] linear code that is generated by

G̃ = G⊗ (α, α2, 1) =

(
α α2 1 0 0 0 1 α α2

0 0 0 1 α α2 α α2 1

)
.

1.4.1 Properties of the Closure

The closure has some interesting properties that enable to find the solutions for diagonal equivalence

between linear codes. These properties are discussed next.

Proposition 1.4.4. [78] If two linear codes are diagonally equivalent then their closures are permu-

tationally equivalent.

Proof. Let A and B be two diagonally equivalent [n, k] linear codes over Fq with generator matrices

A and B. Then we have B = SAPD. Let Ã and B̃ be their closure with generator matrices Ã and

B̃, respectively. We can look at A as an n blocks of columns each of size q−1, that is for 1 6 d 6 n,

Ad = {αjAd : 1 6 j 6 q − 1}, recall that Ad is column d of the matrix A. Similarly we can define

Bd. Assume that Ai, column i in A, is sent to Bj by PD with a scalar αl. This is true if and only if

block Ai is mapped to block Bj with the columns inside the blocks are mapped using the cyclic shift

αl+aAi 7→ αaBj , 1 6 a 6 q − 1. �

Example 1.4.5. Consider the code A over F4 with generator matrix A =
(
A1 A2 A3

)
. Let α be

the primitive element of F4,

P =



0 0 1
1 0 0
0 1 0




and D = diag(α3, α, α2). Let B be the diagonally equivalent code to A that is generated by

B = APD =
(
α3A2 αA3 α2A1

)
. Then we have Ã and B̃ are respectively generated by:

Ã =
(
αA1 α2A1 A1 αA2 α2A2 A2 αA3 α2A3 A3

)

B̃ =
(
αA2 α2A2 A2 α2A3 A3 αA3 A1 αA1 α2A1

)
.

The permutation between the closures is given by π = (1 8 4)(2 9 5)(3 7 6) and satisfies B̃ = Ã
π

.

The following proposition shows that the closure is weakly self-dual for all codes defined over Fq

with q > 4, see also [78].

Proposition 1.4.6. Consider Fq with primitive element α. Let Ã be a closure of an [n, k] linear code

A over Fq with hull of dimension h and let h̃ be the dimension of the hull of Ã then

1. h̃ = h when q = 3.

2. For q > 4, Ã is weakly self-dual code
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Proof. Let H(A ) be the hull of A and let x ∈ H(A ) thus for all y ∈ A we have x.y =∑n
i=1 xiyi = 0. On the other hand, we denote by ṽ ∈ Ã the element that corresponds to v ∈ A .

x̃.ỹ =
∑q−1

j=1(α
j)2
∑n

i=1 xiyi

In F3 we have λ2 = 1 for all λ ∈ F∗
3, thus we have x̃.ỹ = (q − 1)

∑n
i=1 xiyi and x̃.ỹ = 0 implies

x.y = 0. Hence in F3, x̃ ∈ H(Ã ) if and only if x ∈ H(A ) and thus h̃ = h.

To prove the second part

x̃.ỹ =
∑q−1

j=1(α
j)2
∑n

i=1 xiyi

where x̃ and ỹ are any two elements from Ã . Since we have
∑q−1

j=1(α
j)2 = 0 for all x,y ∈ Ã we

have x̃.ỹ = 0. Thus Ã is weakly self-dual. �

1.4.2 Issues and Complexity of Computation

In [78] the problem of diagonal equivalence is reduced to permutation equivalence and SSA algorithm

is used to solve the reduced problem where the weight distribution of the hull is used to build the

signature. Same issues mentioned in Section 1.3.1 about SSA for permutation equivalence hold here.

For random linear codes over Fq with q = 3 with small hull the complexity of solving the equivalence

is low. Over F4 they used different inner product which is called Hermitian inner product in order to

avoid weakly self-dual codes. This trick was not successful for larger q. For q > 5 the complexity

is high since all closures are weakly self-dual even if the original code has trivial hull. In [78] they

conjecture that for a given q > 5, the decision and computational problems of the diagonal equivalence

over Fq are hard for almost all instances. This conjecture is still questionable since it is related to a

specific way of building the signature from the weight enumerator using the hull.

1.4.3 Reduction of Semilinear Equivalence

The semilinear code equivalence problem is reducible to diagonal equivalence in polynomial time.

That is because if q = pm we have exactly m distinct field automorphisms thus if we have an algo-

rithm for solving diagonal equivalence, repeating this algorithm at most m times can solve the related

semilinear equivalence.

1.5 Code Equivalence and Graph Isomorphism

In this section we study the relationship between code equivalence and graph isomorphism problems.

Graph isomorphism problem is a well-known problem in graph and complexity theory. It is known to

be in the low hierarchy of class NP but it is not known whether it is in class P or NP-complete. In

practice, very often graph isomorphism problem can be solved efficiently but still there are many hard

instances. The two problems of graph isomorphism and code equivalence are strongly related where

a reduction from graph isomorphism problem to permutation code equivalence problem is introduced

in [70]. This shows that code equivalence problem cannot be easier than graph isomorphism problem.

On the other hand a reduction of special type of permutation code equivalence which is called basic

equivalence to isomorphism of hypergraphs is introduced in [3].
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1.5.1 Reduction of Graph Isomorphism to Code Equivalence

In this section we summarize the results of Petrank and Roth [70]. They show that under the assump-

tion of polynomial-time hierarchy does not collapse code equivalence problem is not NP-complete.

They also relate the code equivalence problem to graph isomorphism problem where they present a

polynomial-time reduction from graph isomorphism to code equivalence. This shows that code equiv-

alence problem is at least as hard as graph isomorphism. Thus if one is able to find an efficient

algorithm for deciding code equivalence then he can settle the long-standing open problem of graph

isomorphism.

In their work they proved that code equivalence is not NP-complete (unless P = NP) using tech-

niques of interactive proof that will not be presented here but rather we will go through the detail of

the reduction from graph isomorphism to code equivalence.

Definition 1.5.1. A graph G = (V,E) is called simple graph if the set of vertices V 6= ∅ and E is a

set of unordered pairs of elements of V representing edges, and E has the following properties:

• Edges are undirected.

• No edge from a vertex to itself.

• No parallel edges.

If the edges have directions the graph is called directed graph or digraph; if there is an edge from a

vertex to itself it is called graph with self-loop; and if the graph contains parallel edges it is called

multigraph. Unless it is mentioned explicitly, “graph” refers to a simple graph.

Definition 1.5.2. Let G1 = (V,E1) and G2 = (V,E2) be two graphs with the same set of vertices

V and sets of edges E1 and E2, respectively. We say G1 and G2 are isomorphic if there exists a

permutation (isomorphism) π : V → V such that {u, v} ∈ E1 if and only if {π(u), π(v)} ∈ E2.

Definition 1.5.3. Consider the graph G = (V,E), the incident matrix of G (denoted by D) is the

|E| × |V | matrix satisfying: for every e ∈ E and v ∈ V we have

De,v =

{
1 if e = {v, u} for some u ∈ V
0 otherwise

From the definition of graph isomorphism and incidence matrix one can see the following proposition.

Proposition 1.5.4. Two graphs G1 and G2 are isomorphic if and only if their incidence matrices differ

only by permutation of rows and columns.

Next we present a mapping φ from the set of all graphs to the set of generator matrices over F2 such

that two graphs are isomorphic if and only if their respective images under φ are code equivalent. For

a graph G = (V,E), φ(G) is a generator matrix M with the following properties:

1. M is over F2 with size |E| × (3|E|+ |V |).
2. Each row in M has hamming weight 6 5.

3. The sum of each two rows or more is a vector of hamming weight > 6.
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Note that the second and third conditions guarantee that the code generated by M has exactly |E|
codewords of weight 6 5 which are the rows of M and M is unique generator matrix for this code

with properties 1− 3 (up to row swap).

We define φ(G) = [I|I|I|D] where I is |E| × |E| identity matrix and D is the incident matrix for

G. It can be easily seen that the reduction can be done in polynomial time. Now assume we have two

isomorphic graphs G1 and G2 with φ(G1) = [I|I|I|D1] and φ(G2) = [I|I|I|D2]. It is clear that the

two matrices have the same size and one can be obtained from the other by doing rows and columns

swap thus the two codes generated by them are equivalent.

Now assume G1 = (V1, E1) and G2 = (V2, E2) with φ(G1) = M1 and φ(G2) = M2 and assume

M1 and M2 generate equivalent codes. This means the two matrices have the same size i.e |E1| =
|E2| and |V1| = |V2| (We can assume V1 = V2 = V ). Since the two codes are equivalent we can

write M2 = SM1P where P is a permutation matrix and S is nonsingular matrix. Since M2

and M1P generate the same code and satisfy conditions 1 − 3 they are the same matrix up to row

permutation. Thus S is a permutation matrix. Now we can write [I|I|I|D2] = M2 = SM1P =
[S|S|S|SD1]P . Thus P can be written:

P =




S−1

S−1

S−1

T




where T is |V |×|V | permutation matrix. Note that the two graphs are isomorphic since D2 = SD1T

and the isomorphism is the permutation associated with T .

In conclusion, any instance of graph isomorphism problem can be reduced to permutation code equiv-

alence problem over F2. Thus code equivalence problem is at least as hard as graph isomorphism

problem.

1.5.2 Permutation Equivalence and Bipartite Graphs

In this section we consider the work of Babai et al. in [3] which discusses the relationship between a

special case of permutation code equivalence which is called basic equivalence and the isomorphism

of bipartite graphs. In this work a reduction from basic equivalence to the isomorphism of bipartite

graphs is introduced and complexity bound is found.

Definition 1.5.5. Let A and B be two [n, k] linear codes such that B = A σ. We call this basic

equivalence if σ ∈ Sn can be decomposed into two disjoint permutations σ1 ∈ Sk that acts in the first

k coordinates and σ2 ∈ Sn−k that acts on the last n− k coordinates.

Definition 1.5.6. A bipartite graph, also called a bigraph, is graph that its vertices can be decomposed

into two disjoint sets such that no two vertices within the same set are adjacent.

Definition 1.5.7. A hypergraphH is a pairH = (X,E) where X is a set of vertices, and E is a set of

non-empty subsets of X called hyperedges or edges. Therefore, E is a subset of P(X) \ {∅}, where

P(X) is the power set of X .

In other words, a hypergraph is a generalization of a graph in which an edge can join any number of

vertices. A hypergraph H may be represented by a bipartite graph B as follows: the sets X and E
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are the partitions of B vertices, and (x1, e1) are connected with an edge if and only if vertex x1 is

contained in edge e1 inH.

Definition 1.5.8. The biadjacency matrix of a bipartite graph (U, V,E) is a (0, 1)-matrix of size

|U | × |V | that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices.

Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs,

and directed graphs. The biadjacency matrices of bipartite graphs are exactly the incidence matrices

of the corresponding hypergraphs.

Theorem 1.5.9. [3] Any basic equivalence problem can be reduced to the bipartite graph isomor-

phism problem.

Proof. Consider the two [n, k] linear codes A and B over Fq which are basically equivalent. Let GA

and GB their generator matrices then the equivalence between A and B can be written as

GB = SGA P

where S is an invertible matrix and P is a permutation matrix. Note that P can be written

P =

(
P 1 0
0 P 2

)

where P 1 is k × k permutation matrix and P 2 is n− k × n− k permutation matrix.

Without loss of generality, let GA and GB be in the standard form thus

GA =
(
Ik A

)
and GB =

(
Ik B

)
.

Thus

GB =
(
Ik B

)
=
(
SP 1 SAP 2

)
,

hence

Ik = SP 1 and S = P−1
1 .

Considering this we get

B = P−1
1 AP 2.

Referring to Proposition 1.5.4 and if we consider A and B as incidence matrices of labeled bipartite

graphs then these two graphs are isomorphic. The labels here represent the field elements. �

Note that in the basic equivalence we assume that we know the set of coordinates where the in-

formation set of code A is permuted. This is not true for the general problem and in practice for

cryptosystems using code equivalence problem. Thus intuitively we need to find the information set

of k coordinates among n, thus
(
n
k

)
.

Combining this reduction with the method introduced in [4] to solve graph isomorphism problem by

finding canonical form with time complexity exp(Õ(
√
n)) we obtain a bound of exponential time

complexity in n to solve permutation code equivalence problem.
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1.6 Other Related Work

The problem of finding automorphism group of linear codes is closely related to solving equivalence

problem between linear codes. Thus the algorithms that are introduced to find automorphism group

of linear codes can be also used to solve the equivalence.

Leon in [53] used the idea of refinement of ordered partitions to compute the automorphism group

of linear codes. The algorithm works by finding the set of low weight codewords, since it is of

small size with respect to the code and it is invariant by the automorphism. This set is used to find

the automorphism instead of looking at the whole code and it should contain sufficient structure to

describe the automorphism. Often it is sufficient to use the minimum weight codewords, if this set is

very small and does not contain sufficient structure to describe the automorphism we extend the set by

adding the codewords of low weight next to the minimum. The algorithm partitions this set into small

subsets each invariant by the automorphism then it utilizes the concepts of base and strong generating

set to find the automorphism group. The algorithm of Leon is implemented in some computer algebra

systems to find automorphism groups of linear codes and to solve the equivalence. In GAP it is used to

solve permutation equivalence over binary field while in Magma it is used to solve permutational and

diagonal equivalence over small prime fields and F4 for codes of small length [78]. The complexity

of the algorithm is exponential in the dimension of the code since it finds all the minimum weight

codewords.

In [37] Feulner introduced an algorithm to find automorphism group of linear codes that uses the idea

of partition and refinement. His algorithm finds also a canonical representative (canonical generator

matrix) of linear code such that any two equivalent codes have the same representative. There is

nothing concrete about the complexity of the algorithm beyond the practical experiments which show

that it is comparable to Leon’s algorithm and thus exponential in the dimension of the code.
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Groebner Basis

Groebner basis is an important algebraic tool to solve systems of non-linear algebraic equations in

multivariables. It was introduced by B. Buchberger in 1965 in his PhD thesis [18]. Groebner basis has

various applications in cryptography, coding theory, algebra and many other fields. In this section we

provide a quick review of Groebner basis theory and the famous algorithms that compute Groebner

basis and its computation complexity. We start by some basic definitions and notations, we will follow

[25, 30] in their notation.

2.1 Basic Definitions and Notation

Definition 2.1.1. Let F be a field. A monomial in x1, . . . , xn is a product of the form xα1
1 xα2

2 . . . xαn
n

where all the exponents are non-negative integers. We write xα = xα1
1 xα2

2 . . . xαn
n withα = (α1, . . . , αn).

A term is of the form aαx
α with aα ∈ F∗. A polynomial f over F is a sum of terms f =

∑
α aαx

α

where aα ∈ F∗. The total degree of a monomial xα is |α| = α1 + . . . + αn. The total degree of

a polynomial f =
∑

α aαx
α is deg(f) = maxα:aα 6=0(|α|). The set of all polynomials over F form

a commutative algebra under polynomial addition and multiplication denoted by F[x1, . . . , xn] and

called polynomial ring in n variables over F.

Definition 2.1.2. A subset I ⊂ F[x1, . . . , xn] is an ideal if it satisfies:

1. 0 ∈ I (I 6= ∅).
2. If f, g ∈ I , then f + g ∈ I .

3. If f ∈ I and h ∈ F[x1, . . . , xn] then hf ∈ I .

The ideal generated by the polynomials f1, . . . , fs is

〈f1, . . . , fs〉 =
{

s∑

i=1

hifi : hi ∈ F[x1, . . . , xn], 1 6 i 6 s

}

Definition 2.1.3. A polynomial is said to be homogeneous if all its monomials have the same degree.

An ideal generated by homogeneous polynomials is called homogeneous ideal. The homogenization

of a non-homogeneous polynomial f(x1, . . . , xn) is fh = hdeg(f)f(x1
h , . . . ,

xn
h ) where h is a new

variable.

19
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Remark 2.1.4. Homogeneous ideals contain non-homogeneous polynomials.

Definition 2.1.5. Let I ⊂ F[x1, . . . , xn] be an ideal, the radical of I , denoted
√
I is

√
I = {f : fm ∈ I for some integer m > 1}

The ideal I is called radical ideal if
√
I = I .

Note that it is always true that I ⊆
√
I .

Lemma 2.1.6. [25] Let I ⊂ F[x1, . . . , xn] be an ideal then
√
I is an ideal in F[x1, . . . , xn] with

I ⊆
√
I and

√
I is a radical ideal.

Theorem 2.1.7 (Hilbert Basis Theorem). [25] Every ideal I ⊂ F[x1, . . . , xn] has a finite generating

set. That is, I = 〈g1, . . . , gt〉 for some g1, . . . , gt ∈ I .

Theorem 2.1.8 (The Ascending Chain Condition). [25] Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be an ascending

chain of ideals in F[x1, . . . , xn] then there exists an N ∈ N such that IN = IN+1 = IN+2 = . . ..

Definition 2.1.9. Let F be a field, F its algebraic closure and f1, . . . , fs ∈ F[x1, . . . , xn] are polyno-

mials. The affine variety defined by f1, . . . , fs in F is

V
F
(f1, . . . , fs) = {(a1, . . . , an) ∈ F

n
: fi(a1, . . . , an) = 0, ∀1 6 i 6 s}

Let I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn] be an ideal we define

V
F
(I) = {(a1, . . . , an) ∈ F

n
: f(a1, . . . , an) = 0, ∀f ∈ I}

Let V ⊂ Fn be an affine variety then we define I(V ) ⊂ F[x1, . . . , xn] by

I(V ) = {f ∈ F[x1, . . . , xn] : f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ V }

The ideal I is said to be zero-dimensional if the polynomial system fi = 0, 1 6 i 6 s has a finite

number of solutions in an algebraically closed extension F of F and positive-dimensional if the poly-

nomial system has infinitely many solutions. This naming corresponds to the dimension of V
F
(I) as a

variety.

Note that in a finite field of q elements, Fq, the equations xqi = xi, 1 6 i 6 n always hold, these

equations are called field equations. In this case VFq(f1, . . . , fs) = V
Fq
(f1, . . . , fs, x

q
1−x1, . . . , x

q
n−

xn).

Theorem 2.1.10. [25] Let I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn] be an ideal then V
F
(I) = V

F
(f1, . . . , fs)

and VF(I) = VF(f1, . . . , fs).

Theorem 2.1.11. [25] Let F be an algebraically closed field and J ⊂ F[x1, . . . , xn] is an ideal then

I(VF(J)) =
√
J

Theorem 2.1.12. [8] Let I ⊂ F[x1, . . . , xn] be an ideal such that, for all 1 6 i 6 n, there exists

fi ∈ I ∩ F[xi] 6= 0 with gcd(fi, f
′
i) = 1, where f ′i is the derivative of fi. Then I is radical.

Corollary 2.1.13. Let I ⊂ Fq[x1, . . . , xn] be an ideal then the ideal 〈I, xq1 − x1, . . . , x
q
n − xn〉 is

radical.



Chapter 2. Groebner Basis 21

2.2 Solving Polynomial Systems

The problem of solving polynomial systems over a given field is an old problem in algebraic geome-

try and symbolic computation. It also appears in many different disciplines such as computer algebra,

physics, geometry and cryptography. Optimizing the algorithms that solve this problem is a major

research problem since this will lead to a breakthrough in many different fields of science. In cryp-

tography, there are many cryptosystems relying on the hardness of solving polynomial systems such

as multivariate public key cryptosystems (MPKC) [27].

The questions arising when we want to solve a polynomial system are, for instance, to decide if a given

polynomial system is inconsistent (has no solution), zero-dimensional (has finitely many solutions),

or positive-dimensional (has infinitely many solutions). If it is zero-dimensional then we would like to

find the solution set (or at least a description of it) and if it is positive-dimensional we want to describe

it.

The elimination theory is the oldest method to solve polynomial systems where it solves the systems

by elimination of variable. The initial system of polynomials is reduced to an equivalent but easier

system (e.g triangular system) then solutions can be found by solving univariate equations (which

is not always possible) and successive evaluations of polynomials. This can be done by the use of

linear algebra to represent polynomial systems (linearization) and the use of the theory of resultant.

Informally speaking, the resultant of two polynomials is a polynomial expression of their coefficients,

which is equal to zero if and only if the polynomials have a common root [2].

The resultant and Groebner basis are the main algebraic tools that are used to solve polynomial sys-

tems. There are also numerical methods to find approximate solutions for polynomial systems. Here

we focus on algebraic methods and in this chapter we discuss Groebner basis and its algorithms.

2.3 Monomials Ordering

Definition 2.3.1. A monomial ordering on F > is any relation on the set of monomials xα, α ∈ Nn

satisfying:

1. The relation > is a total ordering on the monomials of F[x1, . . . , xn].

2. If t1 > t2 and s are monomials, then st1 > st2 for all t1, t2 and s.

3. for any monomial t we have t > 1.

Monomial ordering is called graded if monomials of different total degrees are ordered according to

their total degree.

Below are some important monomial ordering:

1. Lexicographic Order (lex): We say xα >lex x
β if the leftmost nonzero entry in (α1−β1, . . . , αn−

βn) is positive.

2. Graded Lex Order (grlex): We say xα >grlex x
β if the total degree of xα is greater than the total

degree of xβ . If the total degrees are equal we use the lex order.
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3. Graded Reverse Lex Order (grevlex): We say xα >grevlex x
β if the total degree of xα is greater

than the total degree of xβ . If the total degrees are equal then if the rightmost nonzero entry in

(α1 − β1, . . . , αn − βn) is negative.

4. Elimination Order (elm): We divide the variables in blocks that are ordered lexicographically. A

monomial ordering is chosen inside the block, usually grevlex. That is, an order to eliminate

the variables x1, . . . , xn is a monomial ordering on F[x1, . . . , xn, y1, . . . , ym] such that for all

monomials xα1yβ1 , xα2yβ2 we have xα1 > xα2 ⇒ xα1yβ1 > xα2yβ2 . Elimination order is also

called block order.

Example 2.3.2. Let x > y > z and consider M1 = x2y3z4 and M2 = xy5z3 then

M1 >lex M2, M1 >grlex M2, M2 >grevlex M1.

Let x1 > x2, y1 > y2, B1 = {x1, x2} > B2 = {y1, y2}. An elimination order with grevlex to

eliminate B1 orders the following monomials as follows

• x21y
4
1 > x22y

6
2 .

• x21y
6
1 > x21y

6
2 .

Definition 2.3.3. Let f =
∑

α aαx
α be a nonzero polynomial in F[x1, . . . , xn] and > is a monomial

order.

1. The leading monomial of f , LM(f) = maxα:aα 6=0
xα in monomials of f .

2. The leading coefficient of f is the coefficient associated to LM(f).

3. The leading term of f is LT (f) = LC(f)LM(f).

4. For an ideal I , we denote by LT (I) the set of all leading terms of elements of I and 〈LT (I)〉 is

the ideal generated by the elements of LT (I).

5. The terms of f is the set T (f) = {aαxα : aα 6= 0}.
6. The monomials of f is the set M(f) = {xα : aα 6= 0}.

2.4 Polynomials Division

In this section we generalize the division of polynomials of one variable to division of polynomials of

F[x1, . . . , xn].

Theorem 2.4.1. [25] Fix a monomial order on F[x1, . . . , xn] and let F = (f1, . . . , fs) be an ordered

s-tuple of polynomials in F[x1, . . . , xn] then every f ∈ F[x1, . . . , xn] can be written as

f = a1f1 + . . .+ asfs + r

where ai, r ∈ F[x1, . . . , xn] and either r = 0 or r is a linear combination, with coefficients in F, of

monomials, none of which is divisible by any of LT (f1), . . . , LT (fs). We will call r a remainder of f
on division by F . Furthermore, deg(f) > deg(aifi).

The division algorithm processes the following steps:
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1: Input: f1, . . . , fs, f
2: Output: a1, . . . , as, r
3: a1 := 0, . . . , as := 0, r := 0
4: p := f
5: while p 6= 0 do

6: i := 1
7: divisionoccurred := false
8: while i 6 s and divisionoccurred = false do

9: if LT (fi) divides LT (p) then

10: ai := ai + LT (p)/LT (fi)
11: p := p− (LT (p)/LT (fi))fi
12: divisionoccurred := true
13: else

14: i := i+ 1
15: end if

16: end while

17: if divisionoccurred = false then

18: r := r + LT (p)
19: p := p− LT (p)
20: end if

21: end while

Unfortunately, the remainder r of the division is not unique if we change the order of the division. This

will not help to determine if a polynomial lies in certain ideal since it can give a non-zero remainder

by some order of the division while another order gives zero. Thus we need to look for a generating

set for the ideal that gives a unique remainder regardless of the order of the division. Fortunately

Groebner basis will have this property.

Definition 2.4.2. Let f, g, p ∈ F[x1, . . . , xn] with p 6= 0 and P is a finite set of F[x1, . . . , xn]. Then

we say

• The polynomial f reduces to g modulo p and we write f −→
p
g if there exist a monomial s and

m = xα ∈M(f) such that sLM(p) = m and g = f − aα
LC(p)sp where aα is the coefficient of m in

f .

• The polynomial f reduces to g modulo P and we write f −→
P
g if f −→

p
g for some p ∈ P .

• The polynomial f is reducible modulo p if there exists g 6= f ∈ F[x1, . . . , xn] such that f −→
p
g.

• The polynomial f is reducible modulo P if there exists g 6= f ∈ F[x1, . . . , xn] such that f −→
P
g.

• The polynomial f is top reducible modulo P if there exists g ∈ F[x1, . . . , xn] such that f −→
P
g and

LM(g) < LM(f).

• A reduction of f modulo P = {p1, . . . , ps} is a polynomial g such that there exist polynomials

g1, . . . , gs ∈ F[x1, . . . , xn] with f =
∑s

i=1 gipi + g and no leading monomial of pi divides a

monomial of g. We write g = f
P

.

Definition 2.4.3. Let f, g ∈ F[x1, . . . , xn] different from zero withLM(f) = xα withα = (α1, . . . , αn)
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and LM(g) = xβ with β = (β1, . . . , βn) and consider γ = (γ1, . . . , γn) with γi = max(αi, βi) for

each i. We define the least common multiple ofLM(f) andLM(g) and we writeLCM(LM(f), LM(g))
to be the monomial xγ .

We define the S-polynomial of f and g to be

S(f, g) =
LCM(LM(f), LM(g))

LT (f)
f − LCM(LM(f), LM(g))

LT (g)
g

The S-polynomials play an important role in Groebner basis computation because of the Buchberger

criterion of Groebner basis with S-polynomials stated in Theorem 2.5.8.

2.5 Groebner Basis

Definition 2.5.1. (Groebner Basis) Fix a monomial order. A finite subset G = {g1, . . . , gm} of an

ideal I is said to be a Groebner basis if 〈LT (G)〉 = 〈LT (I)〉. A Groebner basis G is called reduced

if LC(g) = 1 for all g ∈ G and g is not reducible modulo Gr {g} for all g ∈ G .

Theorem 2.5.2. [25] Any polynomial ideal different from zero has a Groebner basis and has a unique

reduced Groebner basis.

For a fixed monomial ordering, Groebner basis is not necessarily unique, that is if {g1, g2} is a Groeb-

ner basis for some ideal also {g1, g2, g1 + g2} is a Groebner basis. The reduced Groebner basis is

unique.

Definition 2.5.3. Let I = 〈f1, . . . , fs〉 be a homogeneous ideal. The set G ⊂ F[x1, . . . , xn] is a

degree d Groebner basis of the ideal I if G generates I and one of the following holds:

• S(g1, g2)
G
= 0 for all g1, g2 ∈ G where deg(S(g1, g2)) 6 d.

• All f ∈ I , deg(f) = d′ with d′ 6 d is top reducible by G.

One can notice that, as a result from Hilbert Basis Theorem and ascending chain condition, for a large

enough degree D, degree D Groebner basis is a Groebner basis for the homogeneous ideal and thus

G1 ⊂ . . . ⊂ GD−1 ⊂ GD = GD+1 = . . . where Gi is the reduced i-basis.

Proposition 2.5.4. Let G = {g1, . . . , gt} be a Groebner basis for an ideal I ⊂ F[x1, . . . , xn] and let

f ∈ F[x1, . . . , xn]. Then there is a unique r ∈ F[x1, . . . , xn] with the following two properties:

• No term of r is divisible by any of LT (g1), . . . , LT (gt).

• There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed

when using the division algorithm.

As a direct result from the above proposition, a polynomial f ∈ F[x1, . . . , xn] belongs to the ideal

I ⊂ F[x1, . . . , xn] which has a Groebner basis G if and only if f
G
= 0, i.e the remainder on division

of f by G is zero. Note that, the reduced Groebner basis of a polynomial system is {1} if and only if

the system has no solution.
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Proposition 2.5.5. Fix an admissible term ordering and letG be a basis of the ideal I ⊂ F[x1, . . . , xn],
then the following statements are equivalent:

1. The set G is a Groebner basis.

2. For all f ∈ I, fG = 0.

3. Every 0 6= f ∈ I is reducible modulo G.

4. Every 0 6= f ∈ I is top reducible modulo G.

5. For all f ∈ I , there exists g ∈ G such that LT (g)|LT (f).
In this case, the reduction of any f modulo G is unique, and is called the Normal form of f modulo

G.

Theorem 2.5.6 (Elimination Theorem). Let I ⊂ F[x1, . . . , xn, y1, . . . , ym] be an ideal and G a

Groebner basis of I for an elimination order with x1, . . . , xn > y1, . . . , ym then

Gn = G ∩ F[y1, . . . , ym]

is a Groebner basis for the elimination ideal In = I ∩ F[y1, . . . , ym].

Theorem 2.5.7 (Homogenization Theorem). Let F = {f1, . . . , fs} ⊂ F[x1, . . . , xn] and F h is the

homogenized version of F . If Gh is a Groebner basis for 〈F h〉, a Groebner basis of 〈F 〉 can be

obtained by dehomogenizing Gh (by setting the homogenization variable to 1). This Groebner basis

is not necessarily reduced.

Groebner basis is very powerful algebraic tool and it is used to solve the following problems:

• The ideal membership problem of determining if a given polynomial belongs to a given ideal.

• Solving polynomial equations problem where we need to find the solutions of a given polyno-

mial system.

• The implicitization problem of finding system of polynomial equations that defines a given

variety.

We conclude this section by Buchberger criterion which will be used in Buchberger algorithm to find

Groebner basis.

Theorem 2.5.8 (Buchberger Criterion). Let I be a polynomial ideal. Then a basis G = {g1, ..., gt}
for I is a Groebner basis for I if and only if for all pairs i 6= j, the remainder on division of S(gi, gj)
by G (listed in some order) is zero.

2.6 Buchberger Algorithm

Buchberger algorithm was first introduced in 1965 together with Groebner basis in Bruno Buchberger

PhD thesis under the supervision of Wolfgang Groebner [18]. The algorithm starts the computation

by a set of polynomialsG and extends it to a Groebner basis of the ideal I . It uses the fact that if f ∈ I
and G is a Groebner basis then the reduction of f by G gives zero otherwise G is not a Groebner basis

and f will be added to G. We continue adding all such f using Buchberger criterion until Groebner

basis definition is satisfied. A basic version of Buchberger algorithm is presented next.
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Theorem 2.6.1 (Buchberger Algorithm). Let I = 〈f1, . . . , fs〉 6= 0 be a polynomial ideal. Then a

Groebner basis for I can be constructed in a finite number of steps by the following algorithm:

1: Input: F = {f1, . . . , fs}
2: Output: a Groebner basis G = {g1, . . . , gt} for I , with F ⊂ G
3: G := F
4: repeat

5: G′ := G
6: for each pair {p, q}, p 6= q in G′ do

7: S := S(p, q)
G′

8: if S 6= 0 then

9: G := G ∪ {S}
10: end if

11: end for

12: until G = G′

The Buchberger criterion decides that G is a Groebner basis for an ideal I if and only if for all pairs

gi and gj in G the remainder of the division of S(gi, gj) by G (listed in some order) is zero. Thus

Buchberger algorithm starts from a set of polynomials and then computes the S-polynomials for all

pairs in G. If the computed S-polynomial is not reduced to zero by G it will be added to G until all

the S-polynomials are reduced to zero by the elements of G.

It is clear that the basic version of Buchberger algorithm is not optimized in terms of computation. The

most intensive operation in the algorithm is the reduction of the S-polynomials by the basis elements.

The algorithm considers all pairs of S-polynomials regardless of that there are some of them are known

to be zero in a previous step. To improve the performance of the algorithm the minimal number of

S-polynomials need to be considered. One way to do that, there are some S-polynomials that are

known to be reduced to zero beforehand and some of them are combination of other S-polynomials.

An improved version of Buchberger algorithm which cares of the these improvements is presented

next.

1: Input: F = {f1, . . . , fs}
2: Output: G, a Groebner basis for I = 〈f1, . . . , fs〉
3: B := {(i, j) : 1 6 i < j 6 s}
4: G := F
5: t := s
6: while B 6= ∅ do

7: Select (i, j) ∈ B
8: if LCM(LT (fi), LT (fj)) 6= LT (fi)LT (fj) and Criterion(fi, fj , B) is false then

9: S := S(fi, fj)
G

10: if S 6= 0 then

11: t := t+ 1
12: ft := S
13: G := G ∪ {ft}
14: B := B ∪ {(i, t) : 1 6 i 6 t− 1}
15: end if

16: end if

17: B := B \ {(i, j)}
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18: end while

Note that, when LCM(LT (fi), LT (fj)) = LT (fi)LT (fj) we say the leading terms LT (fi) and

LT (fj) are relatively prime and it is easy to see that S(fi, fj) −→
G

0. The Criterion(fi, fj , B) is

true if there is some k /∈ {i, j} for which the pairs (i, k) and (k, j) are not in B and LT (fk) divides

LCM(LT (fi), LT (fj)). It is not difficult to see that S(fi, fj) is a combination of S(fi, fk) and

S(fk, fj), thus it suffices to add S(fi, fk) and S(fk, fj).

2.6.1 Other Improvements of Buchberger algorithm

In this section we discuss some other improvements that may be very useful to avoid a lot of useless

computation when implementing Buchberger algorithm.

• As we have noticed, the order of the division by the polynomials f1, . . . , fs affects the computation

of Groebner basis. Ordering the leading terms of the polynomials in an increasing degree for a

selected monomial ordering has been shown to perform better practically. That is because for a

graded ordering, leading terms with smaller degree will be selected first and thus less comparison

operations will be needed.

• Another way to improve Buchberger algorithm is to use what is so called normal selection strat-

egy which selects pairs from B such that their LCM has the smallest degree. The resulting S-

polynomial from this pair will have a small degree and thus can be used to avoid a lot of other

S-polynomials that are reduced to zero.

• Selecting the suitable monomial ordering according to the problem. In practice grevlex ordering

performs better most of the time. There are some algorithms to move from an order to another

in polynomial time, when the number of solutions is finite (without need to recompute Groebner

basis), such as FGLM [33] and Groebner walk [21].

• Avoiding reduction to zero provides big enhancement to the performance since a lot of S-polynomials

are reduced to zero though the improved algorithm avoids many of them but still big number of re-

duction to zero still takes place. This has been noted by Faugère F5 algorithm [31] and a strong

criterion to avoid zero reduction was introduced.

• Another way to improve the algorithm is to systematically inter-reduce the set of polynomials of G
each time it is enlarged. This will lessen the number of S-polynomials to be considered in the next

steps.

2.7 Groebner Basis and Linear Algebra

In this section we discuss the linear algebra techniques that are used to compute Groebner basis.

These techniques has been used in F4 and F5 algorithms and have shown considerable improvement

in Groebner basis computation. Before we proceed to the F4 and F5 algorithms we need to introduce

matrix representation of polynomial system and Macaulay matrix.
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2.7.1 Matrix Representation of Polynomials

This technique is an old method for solving non-linear systems of multivariables where we use linear

algebra techniques to represent these systems. We represent the system by a matrix where each row

corresponds to one of the polynomials and each column corresponds to a monomial that appears in

one of the polynomials. Then we can use linear algebra and Gauss elimination to simplify and solve

the system.

Consider G = {g1, . . . , gm} a set of polynomials in a polynomial ring F[x1, . . . , xn] and let M =
{m1, . . . ,mr} be the decreasing ordered set of all monomials appearing in the polynomials in G. For

gi, 1 6 i 6 m we can write gi =
∑r

j=1 aijmj . We represent this system by an m × r matrix M
where the elementMi,j represents the coefficient of the monomial mj appearing in the polynomial

gi. Thus the matrix representation of this system of polynomials will be as follows:

M =

m1 m2 . . . mr





g1 a11 a12 . . . a1r
g2 a21 a22 . . . a2r
...

...
...

. . .
...

gm am1 am2 . . . amr

After expressing the system of polynomials G by a matrix M we can perform row operations to

compute an Echelon form. The computation of an echelon form will result in an equivalent matrix

M′. By reverting backM′ to a system of polynomials will produce a system G′ which is equivalent

to G. In other words, if I = 〈G〉 and I ′ = 〈G′〉 then I = I ′.

2.7.2 Macaulay Matrix and Groebner Basis

Definition 2.7.1 (Macaulay Matrix). Let f1, . . . , fs be polynomials from F[x1, . . . , xn] each of degree

di, 1 6 i 6 s. The Macaulay matrix of degree d,Md, is the matrix that contains for each polynomial

fi and each monomial m of degree d − di a row that corresponds to mfi. The columns ofMd are

indexed by the monomials of degree 6 d. In the row that corresponds to mfi, the element in the

column indexed by mj corresponds to the coefficient of the monomial mj in the polynomial mfi.

Md =

Monomials mj of degree 6 d






...
mfi coefficients of mj in mfi
...

We can define Macaulay matrix to be the matrix representation of the polynomial system

{mfi : 1 6 i 6 s,m is a monomial with deg(m) = d− di}

We call the representation of polynomial system by Macaulay matrix, linearization of the system.
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For the homogeneous case, if I = 〈f1, . . . , fs〉 is a homogeneous ideal in F[x1, . . . , xn] with deg(fi) =
di, 1 6 i 6 s. We define Id = {f ∈ I : deg(f) = d}, Id has a structure of vector space. Macaulay

matrix of degree d that describes Id,Mh
d , will have for each fi and each monomialm of degree d−di

one row whose entry in the column indexed by a monomial mj is the coefficient of mj in mfi. Note

that, the number of monomials of degree d in n variables is
(
n+d−1

d

)
, this represents the number of

columns ofMh
d .

Performing Gaussian elimination in Macaulay matrix Mh
d gives a basis for Id. It has been proved

in [51] that if D is the maximal degree that appears in the reduced Groebner basis of the ideal I ,

Groebner basis of I can be constructed by considering the reduced Macaulay matrices M̃h
d with

min(d1, . . . , ds) 6 d 6 D.

Theorem 2.7.2. [51] Let I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn] be a homogeneous ideal. The set of

polynomials corresponding to the rows of the reduced Macaulay matrices of degree d 6 D of the

polynomials f1, . . . , fs forms a degree D Groebner basis of I . There exists an integer D such that a

degree D Groebner basis of I is a Groebner Basis of I .

Groebner basis obtained from Macaulay matrices is not reduced.

Considering the affine case, of course any polynomial can be homogenized by adding new variable,

thus the previous approach is valid for affine case. The drawback of this method (homogenization) is

that wrong solutions can be found that correspond to h = 0 where h is the homogenization variable.

These solutions are called solutions at infinity and they are not solutions to the initial system.

Computation of Groebner basis for affine polynomials using Macaulay matrices (without homog-

enization) is performed in a similar way where we consider the general construction of Macaulay

matrices. InMd the columns represent all monomials of degree 6 d and each row is a tfi with t runs

over all monomials that make the degree of the product 6 d. Degree D Groebner basis is constructed

as before from the reduced Macaulay matrices M̃d, d 6 D. For large enough D Groebner basis for

the ideal is computed.

2.7.3 The F4 Algorithm

The F4 algorithm was introduced in 1999 by Faugère in [30]. The algorithm uses the techniques of

linear algebra and S-polynomials to compute Groebner basis. The biggest advantage of the algorithm

is that it reduces large number of S-polynomials simultaneously in one step using linear algebra. This

makes the algorithm much more efficient than Buchberger algorithm where only one S-polynomial

is selected and reduced at a time. In this section we describe the F4 algorithm. We follow Faugère

original description and notation.

Let F = {f1, . . . , fs} be a set of polynomials in F[x1, . . . , xn], > be a monomial ordering, and

M(F ) = (m1, . . . ,ml)
T is the column vector of monomials appearing in F ordered decreasingly

according to >. Let MF be the matrix representation of F with columns ordered according to

M(F ). Then MFi,j is the coefficient of mj in fi and F = MF .M(F ) where F is the column

vector (f1, . . . , fs)
T . We can move back and forth between polynomial representation and matrix

representation.

LetMF be the matrix representation of the set of polynomials F then we denote by F̃ the polynomial

representation of the reduced matrix M̃F ofMF (the reduction is done without pivoting the columns).
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Definition 2.7.3. Let fi and fj be two polynomials from F[x1, . . . , xn], we define the critical pair

of fi and fj denoted by Pair(fi, fj) to be the 5-tuple (LCMij ,mi, fi,mj , fj) where mi,mj are

monomials and LCMij is the least common multiple of fi and fj such that LCMij = LM(mifi) =
LM(mjfj). The degree of Pij = Pair(fi, fj) is defined to be deg(LCMij) and Left(Pij) = mifi
and Right(Pij) = mjfj .

The F4 Algorithm

1: Input: A set of polynomials F = (f1, . . . , fs),
Sel is a function that takes the list of pairs and returns a list of pairs of minimum

degree with Sel(I) 6= ∅ if I 6= ∅
2: Output: G, a Groebner basis for I = 〈f1, . . . , fs〉
3: G := F, d := 0, P := {Pair(f, g) : f, g ∈ G, f 6= g}
4: while P 6= ∅ do

5: d := d+ 1
6: Pd := Sel(P )
7: P := P \ Pd

8: Ld := Left(Pd) ∪Right(Pd)
9: F̃+

d := Reduction(Ld, G)

10: for h ∈ F̃+
d do

11: P := P ∪ {Pair(h, g) : g ∈ G}
12: G := G ∪ {h}
13: end for

14: end while

15: return G

The Reduction Process

1: Input: L,G finite subsets of F[x1, . . . , xn]
2: Output: A finite subset of F[x1, . . . , xn] or ∅
3: F := SymbolicPreProcessing(L,G)
4: F̃ := Gaussian reduction of F with respect to >
5: F̃+ := {f ∈ F̃ : LT (f) /∈ LT (F ) and f 6= 0}
6: return F̃+

The Symbolic Preprocessing

1: Input: L,G finite subsets of F[x1, . . . , xn]
2: Output: A finite subset of F[x1, . . . , xn]
3: F := L
4: Done := LM(F )
5: while Monomials(F ) 6= Done do

6: Choose an element m ∈Monomials(F ) \Done
7: Done := Done ∪ {m}
8: if m is top reducible modulo G then

9: There exists g ∈ G and a monomial m′ such that m := m′LM(g)
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10: F := F ∪ {m′.g}
11: end if

12: end while

13: return F

The Selection Function

1: Input: A list of critical pairs P
2: Output: A list of critical pairs Pd

3: d := min{deg(LCM(p)) : p ∈ P}
4: Pd := {p ∈ P : deg(LCM(p)) = d}
5: return Pd

When the F4 algorithm selects the pairs of the minimum degree from the list of pairs, this is called

the normal strategy for F4. Then a set of Left and Right of the selected pairs is constructed and

reduced by the elements of G (the set that will be extended to a Groebner basis). This corresponds

to the selection of S-polynomials and their reduction by the basis elements in Buchberger algorithm.

The difference is that we select and reduce many polynomials at a time and not only one. This is

done using the matrix representation of the polynomials and Gaussian elimination which significantly

enhances the computation. We update the list of pairs and the set G with the elements that are not

reduced to zero in the reduction process until all the pairs are reduced to zero by G.

Theorem 2.7.4. [30] The F4 algorithm computes a Groebner basis G for the ideal I = 〈F 〉 ⊂
F[x1, . . . , xn] such that F ⊆ G and 〈G〉 = 〈F 〉.

The symbolic preprocessing helps to improve the reduction process. If we want to reduce a set L
by G then the symbolic preprocessing adds to a set F (initially F = L) all the multiples m′.g with

m′ a monomial and g ∈ G such that LM(m′g) reduces an element from Monomials(L). Thus the

maximum number of reductors of L from G are considered. It also includes the polynomials whose

leading terms are a monomial in one of the LM(m′g), and so on by induction.

The F4 algorithm can be improved by applying Buchberger criteria and improvements that were dis-

cussed in Section 2.6. In the basic version of F4 presented above, the rows of the matrices generated

in previous steps of reduction are ignored in the next steps. Another way to improve F4 algorithm is

to reuse all rows of matrices that are generated during the computation in the reduction process. This

helps to speed up the reduction.

In spite of the considerable improvements introduced by the F4 algorithm, still big amount of com-

putation is wasted in reduction to zero. The algorithm can be improved by avoiding this unnecessary

computation by knowing in advance the pairs that will be reduced to zero. This is introduced by F5

algorithm that will be discussed next.

Improvements of linear algebra step results in a considerable improvement in the whole algorithm,

since Gaussian elimination takes the biggest part of the algorithm. Using sparse matrices and com-

pressed representation for them will improve the space complexity.
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2.7.4 The F5 Algorithm

In both Buchberger and F4 algorithms about 90% of the computation time is spent in reduction to

zero. The main idea of the F5 algorithm is to optimize Buchberger criterion by avoiding as many

as possible unnecessary computation that is reduced to zero. Assuming that the input system of

polynomials is regular (see Definition 2.7.5) there is no reduction to zero. If the system is semi-

regular (see Definition 2.7.7) there will be reduction to zero in the last step.

The F5 algorithm avoids zero reduction by taking into account the relationships between polynomials

fifj−fjfi = 0 which are called the trivial syzygies. Groebner basis is computed incrementally, i.e. if

Gi is a Groebner basis for 〈f1, . . . , fi〉 the next step is to compute Groebner basisGi+1 for 〈Gi, fi+1〉.
In the matrix representation changing the order of the rows is not allowed and we eliminate rows that

will be reduced to zero by previous rows, thus we avoid zero reduction. It has been proved by Faugère

in [31] that if the system is regular, no zero reduction occurs. If the system of polynomials is not

regular some zero reductions still may happen.

We present the matrix version of the F5 algorithm (matrix-F5) as presented by Bardet et al. in [7].

The matrixM appearing during Groebner basis computation of the ideal generated byF = {f1, . . . , fs}
contains either elements of F or elements of F multiplied by some monomial or combination of a

row with smaller rows (order of rows is defined next). It is convenient to locate each element in

M by the triple (i,m, µ) where 1 6 i 6 s, m is a scaling monomial, and µ is a monomial rep-

resenting the column index. The pair (i,m) is the index of a row in M that results from mfi with

combination with smaller rows, S = (i,m) is used as a signature of the polynomial mfi. We say

S = (i,m) < S′ = (i′,m′) if i < i′ or i = i′ and m < m′. The allowed row operation is to replace

the row by a linear combination of this row with rows that have smaller signatures scaled by some

field elements. We denote by Rows(M) the polynomials corresponding to the rows of M and by

LM(M) the leading monomials of the polynomial representation ofM.

As we mentioned previously, F5 computes Groebner basis incrementally thus we denote byMd,i the

Macaulay matrix that is used to compute degree d Groebner basis for 〈f1, . . . , fi〉 with some rows are

removed.

Definition 2.7.5. Let (f1, . . . , fs) be sequence of polynomials from F[x1, . . . , xn]. We say this se-

quence is regular if for all 1 6 i 6 s and g such that gfi ∈ 〈f1, . . . , fi−1〉 then g ∈ 〈f1, . . . , fi−1〉.

An affine sequence of polynomials (f1, . . . , fs) is regular if the sequence (f̃1
h
, . . . , f̃s

h
) is regular,

where f̃i
h

is the homogeneous part of fi of highest degree.

Definition 2.7.6. Let I = 〈f1, . . . , fs〉 in F[x1, . . . , xn] be a homogeneous ideal of dimension 0 over

an algebraically closed field, we define the degree of regularity of I by

degreg(I) = min

{
d > 0 : dimF ({f ∈ I, deg(f) = d}) =

(
n+ d− 1

d

)}

Note that,
(
n+d−1

d

)
is the number of monomials of degree d.

Definition 2.7.7. Let (f1, . . . , fs) be sequence of homogeneous polynomials from F[x1, . . . , xn] and

I = 〈f1, . . . , fs〉 is of dimension 0. We say this sequence is semi-regular if for all 1 6 i 6 s and g
such that gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < degreg(I) then g ∈ 〈f1, . . . , fi−1〉.
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An affine sequence of polynomials (f1, . . . , fs) is semi-regular if the sequence (fh1 , . . . , f
h
s ) is semi-

regular, where fhi is the homogeneous part of fi of highest degree.

Proposition 2.7.8 (F5 Criterion). [7] Assume we have homogeneous polynomials. Let S = (j,m)

be a signature of a row in M̃d−di,i−1 with leading monomial t where S < (i, 1) then the row with

signature (i, t) belongs to the vector space generated by the rows ofMd,i having smaller index.

Remark 2.7.9. For affine case, we let S = (j,m) be the signature of a row in M̃d′,i−1 (for some d′)
where S < (i, 1), with leading monomial t of degree d− di (d′ may be > d− di in this case).

The F5 criterion states that if a monomial t is reducible by LM(Gi−1), leading monomials of Groeb-

ner basis of 〈f1, . . . , fi−1〉, then we do not need to consider the polynomial tfi in the next step.

Matrix-F5 Algorithm

The following matrix-F5 algorithm computes degree D Groebner basis for homogeneous system of

polynomials.

1: Input: Homogeneous polynomials f1, . . . , fs of degrees d1 6 . . . 6 ds; a maximal degree D
2: Output: The elements of degree at most D of the reduced Groebner basis of f1, . . . , fi with

1 6 i 6 s
3: Set Gi := ∅, 1 6 i 6 s
4: for d := d1 to D do

5: Md,0 := ∅,M̃d,0 := ∅
6: for i := 1 to s do

7: if d < di then

8: Md,i :=Md,i−1

9: else if d = di then

10: Md,i := add the new row fi to M̃d,i−1 with index (i, 1)
11: else

12: Md,i := M̃d,i−1

13: Crit := LM(M̃d−di,i−1)
14: for f in Rows(Md−1,i) \ Rows(Md−1,i−1) do

15: (i, u) := index(f) with u = xj1 . . . xjd−di−1
and 1 6 j1 6 . . . 6 jd−di−1 6 n

16: for j := jd−di−1 to n do

17: if uxj /∈ Crit then

18: add the new row xjf with index (i, uxj) inMd,i

19: end if

20: end for

21: end for

22: end if

23: Compute M̃d,i by Gaussian elimination fromMd,i

24: Add to Gi all rows of M̃d,i not reducible by LT (Gi)
25: end for

26: end for

27: return [Gi|i = 1, . . . ,m]

Proposition 2.7.10. Any row entered by the algorithm matrix-F5 into the matrixMd,i represents a
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polynomial gifi + . . . + g1f1, where gi is reduced with respect to 〈f1, . . . , fi−1〉. If g ∈ Gi \ Gi−1

then its index has the form (i, t).

Theorem 2.7.11. The algorithm matrix-F5 computes the elements of degree at most D of the reduced

Groebner basis of 〈f1, . . . , fi〉 with 1 6 i 6 s.

Theorem 2.7.12. Let (f1, . . . , fs) be a regular sequence then all the matrices generated by the matrix-

F5 algorithm have full rank.

As we have mentioned above, one problem of F5 algorithm if the sequence of polynomials is not reg-

ular still zero reduction may happen. That is because in regular sequences all syzygies are generated

by the trivial syzygies. Thus in non-regular sequence different syzygies may exist. The F5 algorithm

enhances the computation by avoiding zero reduction by using signatures to track polynomials. On

one hand this improves the reduction process on the other hand this adds some complexity since we

need to keep track of signatures of the polynomials to be used later to avoid adding polynomials that

will be reduced to zero. If the maximal degree D is large enough the reduced Groebner basis of the

ideal is computed.

2.7.5 Complexity of Groebner Basis

The complexity of computation of Groebner basis is doubly exponential in the number of variables in

its worst case 2.7.13. That is because the degrees of the polynomials in the resulting basis can be quite

large. For example in [63], the authors gave the example of a system of n polynomials in n variables

where polynomials of degree doubly exponential in n appear in the Groebner basis.

A large amount of work has been done to bound the degree of polynomials appearing during Groebner

basis computation based on the degrees of the given generators of the ideal, see for example [67, 28].

In [67, 28] the following upper bound was introduced for Groebner basis computation

Theorem 2.7.13. Fix a monomial order and let I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn] and let D =
max{deg(fi) : 1 6 i 6 s} then there exists a Groebner basis of I such that all its elements of degree

6 D2O(n)
.

Another bound on the maximal degree reached during the computation and on the complexity of

Groebner basis computation is introduced by the following theorem

Theorem 2.7.14. [51, 41] Let f1, . . . , fs be a system of s polynomials in n variables with s 6 n and

coefficients in any field F. If the homogenized system has a finite number of solutions, then for the

grevlex order, and for almost any linear change of variable, the maximum degree of any polynomial

during the computation of the Groebner basis is bounded by Macaulay bound
∑s

i=1(di− 1)+ 1 with

di = deg(fi) and d1 > . . . > ds. The cost of the computation of Groebner basis is polynomial in Dn

with D = max{di}.

In spite of existence of examples where the degree of polynomials grows double exponentially, in

practice the computation of a Groebner basis seems to be much more efficient. For example if the

ideal is zero dimensional, a Groebner basis may be computed in O(Dn) where D is the maximum

degree of the generators of the ideal [6]. The selection of monomial ordering plays an important

role in the complexity of computation. The grevlex order has been shown to produce polynomials of

smallest degree in all cases [9].
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Introducing F4 algorithm is considered a major milestone in Groebner basis computation. That is

because it enhances a lot the computation by using the techniques of linear algebra accompanied with

Buchberger criteria and the normal strategy for F4 beside the symbolic preprocessing of polynomials

before reduction and reuse of polynomials. The use of linear algebra enables doing reduction of large

number of S-polynomials at a time. When introduced, the F4 algorithm, it was able to solve some

previously intractable problems such as Cyclic9 [30].

In spite of the considerable improvements introduced by the F4 algorithm still the worst case complex-

ity remains the same as Buchberger algorithm but it is several times faster than previous algorithms

for integers and modular computation [30].

As in F4, the F5 algorithm can use linear algebra to compute Groebner basis. The F5 algorithm

was introduced to optimize Buchberger criterion by avoiding any unnecessary computation of S-

polynomials that are reduced to zero by means of signature of polynomials. When introduced, F5

algorithm was very promising since it was able to solve Cyclic10 that was previously intractable [31].

It was also used to break the HFE cryptosystem successfully [35].

The F5 algorithm is about ten times faster than F4 algorithm in most cases but this is not the case

in general where one can find examples where F4 performs better. The best performance of F5 is

achieved for non over-constrained systems. In the original version of F5 algorithm when the system

is over-constrained, bad performance is expected [31].

The work of Bardet in her PhD thesis [8] was considered the first to analyze the complexity of F5

algorithm, the matrix version, for homogeneous regular and semi-regular sequences and to give a

bound of the number of operations required to compute Groebner basis.

In Section 2.7.2 we described how to obtain degreeD Groebner basis using linear algebra in Macaulay

matrices. This gives a rise to estimate a simple bound on the number of operations required to compute

Groebner basis for the F5 algorithm which is given by the following proposition [7].

Proposition 2.7.15. Fix a graded monomial ordering and let (f1, . . . , fs) be a system of homogeneous

polynomials in F[x1, . . . , xn] and I = 〈f1, . . . , fs〉. The number of operations in the filed F required

to compute Groebner basis of I up to degree D is bounded by

O

(
sD

(
n+D − 1

D

)ω)
, as D →∞

where ω is the exponent of matrix multiplication over F.

A good estimate of the maximum degree reached by computation of Groebner basis leads to a good

estimate of the complexity. Considering grevlex and regular sequences, it has been shown in [51] that

with a generic linear change of coordinates one can bound the degree of regularity dreg of the ideal

by Macaulay bound

dreg 6

s∑

i=1

(deg(fi)− 1) + 1

Proposition 2.7.16. [7] Let (f1, . . . , fn) be a regular system of homogeneous polynomials in F[x1, . . . , xn],
then the highest degree in the elements of a Groebner basis for a graded ordering is bounded by

Macaulay bound.

Our target in this section was to give a quick glance on the complexity of computation of Groebner

basis rather than going to the whole detail. We refer the interested reader to [8, 6, 5, 7] to get the
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detailed complexity analysis of Groebner basis computation with matrix-F5 for regular and semi-

regular sequences.



Chapter 3

Permutation Equivalence Problem (PEP)

Permutation equivalence is an important problem that plays a major role in code-based cryptography

and complexity theory since we can reduce graph isomorphism problem to code equivalence problem

in polynomial time. In this chapter we introduce many techniques, mostly algebraic, for solving PEP.

We recall matrix definition of PEP and introduce algebraic modeling to solve the problem. We show

that a permutation is a solution for the equivalence if and only if it is a solution for our algebraic

system. The new modeling contains linear and polynomial equations in multivariables. We study the

properties of the linear system and also the properties of the solution set.

Groebner basis is used successfully to solve algebraic system. We used the F4 algorithm implemented

in computation algebra system Magma. We use the maximum number of linear equations since it

improves Groebner basis computation. There are many factors that affect the computation of Groebner

basis such as: the number of variables, the rank of the linear system, the dimension of the hull, the

size of the solution set, and the size of the field. We implement experiments in random linear codes

with different parameters over different fields to estimate time and memory complexity.

When we solve PEP practically by Groebner basis, if the hull is trivial and the system has a unique

solution, then the maximum degree reached by the F4 algorithm is 2. Thus we can solve the system

using linear algebra and Macaulay matrices of degree 2 polynomials obtained from the initial linear

system.

Based on the experimental observations from the structure of the system and Groebner basis we found

that we can reduce the complexity of solving in some cases. We introduce a new and efficient algebraic

technique which we call block linearization. Using this technique we can improve the linear system

by adding many equations without much computation. Thus in many cases we can solve PEP with

the cost of linear algebra in our matrices.

Frobenius action is used to improve the linear part of the system. If the extension of the field is large

enough and the linear codes under equivalence test are random with trivial hull one can solve the

problem efficiently using only the linear part and Frobenius action. combining Frobenius action with

block linearization enables to extend the range of solving to codes with non-trivial hull. We introduce

two techniques to overcome the difficulty associated to the existence of the hull. The first is based on

the supplementary of the hull and the second is based on the closest vector problem.

We also develop other techniques such as distinguishing correct positions of the permutation by punc-

37
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turing the codes. Finally, we introduce an approach based on the ISD technique to solve the equiva-

lence.

3.1 Notation

Throughout this chapter and the rest of the thesis we use the following notation. The symbol 1n

represents the vector (1, . . . , 1) of length n. When the context is clear we will simply write 1. The

concatenation of two vectors u and v is denoted by (u,v). The set of matrices with entries in F

having m rows and n columns is denoted byMm,n (F). The set of n × n invertible matrices is the

general linear group GLn(F). The rows of a matrix are denoted by bold letters and the columns are

denoted by capital bold letters. For instance the i-th row of a matrix A = (ai,j) is ai and its j-th
column is Aj . It will be convenient to view matrices as column vector. For that purpose the column

matrix associated to a k × n matrix A is denoted by A and is defined by A
T def
=
(
AT

1 , . . . ,A
T
n

)
. The

identity matrix of size n is written as In. The Kronecker product A⊗B of two matrices A = (ai,j)
and B = (bi,j) is the matrix (ai,jB).

We denote by Sn the Symmetric group of all permutations on n letters. The image of an integer i by

a permutation σ is represented by iσ. However, in some occasions we will use the classical notation

σ(j). Notice that σγ where both σ and γ are permutations from Sn is the permutation of Sn defined

for any i in [1, n]
def
= {1, . . . , n} by iσγ

def
= (iσ)γ .

To each σ in Sn we associate a matrix P = (pi,j) from GLn(R) with pi,j = 1 if i = jσ and pi,j = 0
otherwise. We will identify σ and P so that we will systematically write P ∈ Sn, and the image

of i by P will be iP and sometimes P (i). The action of Sn over Fn is defined for any σ in Sn and

v in Fn by vσ def
= vP =

(
vσ(1), . . . , vσ(n)

)
. We extend this convention for any subset C ⊂ Fn by

defining C σ def
= CP

def
=
{
uσ : u ∈ C

}
. Notice that for any σ and γ from Sn we have by definition

vσγ def
= (vσ)γ .

3.2 Our Modeling

In this section we introduce our algebraic modeling of PEP. The modeling includes linear and polyno-

mial equations. We show that this modeling is sufficient to describe PEP. We also study the properties

of the linear part of the system as well as the properties of the solution set. Before going into details,

we first make the following assumptions in order to focus only on interesting instances.

Assumption 3.2.1. We assume that A and B are two linear codes of length n and dimension k over

a field F such that

1. h
def
= dimH(A ) = dimH(B).

2. 1n ∈ A (resp. A ⊥) if and only if 1n ∈ B (resp. B⊥).

3. 1n ∈ H(A )⊥ if and only if 1n ∈ H(B)⊥.

Furthermore, without loss of generality, we also assume that A and B (resp. A ⊥ and B⊥) have no

zero coordinates (zero coordinates can be removed).
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These assumptions are not restrictive. If one of the conditions is not satisfied, it is easy to decide

the non-equivalence of the two codes. Conditions 2–3 come from the fact that 1n is invariant by any

permutation. Actually, the vector space generated by 1n contains exactly all the vectors invariant by

any permutation of Sn.

Proposition 3.2.2. If the characteristic of the field F is 2 then 1n belongs toH(A )⊥.

Proof. For any a inH(A ) we have the following relations

0 = 〈a,a〉 =
n∑

i=1

a2i =

(
n∑

i=1

ai

)2

.

This equality implies that, for any a inH(A ), 0 =
∑n

i=1 ai = 〈a,1n〉 which means that 1n belongs

toH(A )⊥. �

3.2.1 Defining PEP

In this part we recall our definition of PEP in terms of generator matrices. The definition establishes

a relationship between the generator matrices of the equivalent codes. In the light of this definition

we also provide a relationship between the parity check matrices of the equivalent codes. Moreover

we deduce a relationship between the generator matrix of the code and the parity check matrix of its

equivalent code. This will give rise to build our algebraic system.

Definition 3.2.3. (Permutation Equivalence Problem (PEP)) Let A and B be two [n, k] linear

codes with k × n generator matrices GA and GB , respectively. Are there a k × k matrix S and an

n× n permutation matrix P such that GB = SGA P ?

This modeling has the disadvantage of seeking two unknown matrices S and P which leads to k2+n2

variables. We will show later how to improve this modeling and reduce the number of variables.

3.2.2 Properties of the Solution Set

In this section we show the relationship between the solution set of the equivalence of two linear codes

and their permutation groups. Precisely we show that if the two codes are equivalent then the solution

set is a coset to their permutation groups. Moreover the permutation groups of equivalent codes are

isomorphic. The solutions set of the equivalence can be found from this isomorphism.

Proposition 3.2.4. Let A be a linear code of length n, Π(A ) the permutation group of A and σ a

permutation from the symmetric group Sn. The set of permutations γ in Sn such that A
γ−→ A σ is

exactly the set σΠ(A )
def
= {στ : τ ∈ Π(A )}.

Proof. Clearly any σΠ(A ) is a solution to the equivalence problem between A and A σ. Now let us

assume that γ is such that A
γ−→ A σ. Since by assumption we also have A

σ−→ A σ, we deduce that

σ−1γ belongs to Π(A ), which terminates the proof. �

The next proposition shows that the permutation groups of the equivalent codes are isomorphic.
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Proposition 3.2.5. The permutation groups of the permutationally equivalent codes are isomorphic.

Proof. Let Π(A ) and Π(B) be the permutation groups of the two equivalent codes B = A σ.

Define the mapping φ : Π (A ) → Π(B) by φ(π) = σπσ−1. It is easy to verify that φ is an

isomorphism. �

Remark 3.2.6. Proposition 3.2.5 shows that if we can find the permutation groups of equivalent codes

we can find the solution of the equivalence by finding the isometry between the two permutation

groups. This problem is called group isomorphism problem which is known to be not harder than

graph isomorphism problem [65]. Thus it is not harder than code equivalence problem.

Remark 3.2.7. Note that we can look at the problem of finding the permutation group of a code as a

special case of the PEP problem where A = B.

3.2.3 Permutation Equations

In this section we introduce algebraic equations that describe the permutation. Let P = (xi,j) be an

n× n permutation matrix, then it satisfies PP T = In and the set of permutation matrices is exactly

the set of solutions of the following system of polynomial equations:

Perm =





PP T − In, (n2 degree 2 equations)

x2i,j − xi,j , 1 6 i, j 6 n (P has binary entries)

xi,jxi,j′ , 1 6 i, j, j′ 6 n, j 6= j′ (at most one non-zero element on each row)

xi,jxi′,j , 1 6 i, i′, j 6 n, i 6= i′ (at most one non-zero element on each column)∑n
j′=1 xi,j′ − 1, 1 6 i 6 n (the non-zero element in each row is 1)∑n
i′=1 xi′,j − 1, 1 6 j 6 n (the non-zero element in each column is 1)

(3.1)

The following proposition shows that, as a system of generators, the previous equations contain re-

dundancy, but we will see later that this redundancy may be useful for the computational point of

view.

Proposition 3.2.8. The set V (Perm) of solutions of the polynomial system Perm is exactly the set

of permutation matrices. Moreover, the ideal 〈Perm〉 admits a smaller set of generators :

〈Perm〉 =
〈
{xi,jxi′,j}16i,i′,j6n,i 6=i′ ,





n∑

j′=1

xi,j′ − 1





16i6n

〉
. (3.2)

Proof. We prove only (⊆) since the other inclusion is clear. Indeed, we will show that the two associ-

ated varieties are equal, i.e. that any matrix P whose entries satisfy (1) xi,jxi′,j = 0(1 6 i, i′, j 6 n, i 6= i′)
and (2)

∑n
j′=1 xi,j′ = 1 (1 6 i 6 n) is a permutation matrix. The equations in (1) show that each col-

umn is either zero or contains one non-zero element. Thus P contains at most n non-zero elements.

The equations in (2) with (1) show that there must be exactly one non-zero element and this element

equals to 1. There cannot be more than one 1 in a row otherwise there is a row sum up to zero. Thus

P is a permutation matrix. �

Remark 3.2.9. Notice that, for any j, if we multiply the polynomial
∑n

j′=1 xi,j′ − 1 by xi,j and

reduce the result by the polynomials xi,jxi,j′ for j′ 6= j, then we get the polynomial x2i,j − xi,j . Also
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for row pi in P we have pi · pi′ = 0 if i 6= i′ and pi · pi = 1 thus PP T = In. It is also possible

to express the polynomials xi,jxi,j′ as a polynomial combination of (1) and (2), but the degree of the

polynomials appearing in this expression are larger than 2. From the computational point of view, it is

more interesting to start with a generating system containing many polynomials of small degree rather

than with a minimal set of generators.

Remark 3.2.10. We also have

〈Perm〉 =
〈
{xi,jxi,j′}16i,j,j′6n,j 6=j′ ,

{
n∑

i′=1

xi′,j − 1

}

16j6n

〉
. (3.3)

3.2.4 Our Modeling for PEP

Consider the following algebraic system

Smin :





GA PHT
B

= 0∑n
j′=1 xi,j′ = 1, 1 6 i 6 n

xi,jxi′,j = 0, i 6= i′

Note that, by Theorems 3.2.8 and 2.1.12, Smin generates a radical ideal. The following theorem

proves that the system Smin fully describes PEP.

Theorem 3.2.11. Let A and B be two [n, k] linear codes with generator matrices GA and GB and

parity check matrices HA and HB . Then A and B are permutationally equivalent by a permutation

P if and only if P satisfies the system Smin.

Proof. (⇒). Since A and B are permutationally equivalent then there exists a permutation matrix

P and an invertible matrix S such that GB = SGA P according to Definition 3.2.1. We know that

GBHT
B

= 0 thus SGA PHT
B

= 0 and hence GA PHT
B

= 0. Thus if A and B are permutationally

equivalent then the matrix P satisfies the system Smin.

(⇐). Now assume that we have a matrix P that satisfies the system Smin. Then P is a permutation

matrix by Proposition 3.2.8. P also satisfies GA PHT
B

= 0, and rank(GA P ) = rank(B)
thus GA P is a generator matrix for B. Any generator matrix for B, GB , can be found through

GB = SGA P where S is k × k invertible matrix and this is our definition of the equivalence. Thus

A and B are permutation equivalent by P . �

Remark 3.2.12. Note one can use the linear system HA PGT
B

= 0 instead of GA PHT
B

= 0 using

the same argument as in Theorem 3.2.11.

Corollary 3.2.13. Let A and B be two [n, k] linear codes with generator matrices GA and GB and

parity check matrices HA and HB respectively, then the following statements are equivalent

• A and B are permutation equivalent by a permutation P .

• There exists an n× n permutation matrix P such that GA PHT
B

= 0

• There exists an n× n permutation matrix P such that HA PGT
B

= 0

Proof. This corollary follows form Theorem 3.2.11 and Proposition 1.3.1 which states, B = A π ⇔
B⊥ = (A ⊥)

π
. �
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3.2.5 Properties of the Linear System

In this section we focus only on the linear part of the system and we show some of its properties. Al-

though the system Smin is sufficient to describe PEP, but for the sake of enhancement of computation

one might need to consider the maximum number of linear equations in the system. That is because

if we start Groebner basis computation from the minimized system the other set of linear equations

will be generated during the computation. Thus it will be useful to add these linear equations from

the beginning. Thus Smin can be written:

S :





GA PHT
B

HA PGT
B∑n

j′=1 xi,j′ − 1, 1 6 i 6 n∑n
i′=1 xi′,j − 1, 1 6 j 6 n

xi,jxi′,j , 1 6 i, i′, j 6 n, i 6= i′

xi,jxi,j′ , 1 6 i, j, j′ 6 n, j 6= j′

x2i,j − xi,j , 1 6 i, j 6 n.

We separate the linear system into two parts one from the equivalence and the other from the permu-

tation.

L :

{
GA PHT

B
= 0

HA PGT
B

= 0

P :

{ ∑n
j′=1 xi,j′ = 1, 1 6 i 6 n∑n
i′=1 xi′,j = 1, 1 6 j 6 n

Definition 3.2.14. The linear system associated to PEP is E = L ∪P.

Next we define our system in terms of Kronecker product since it is more convenient for mathematical

writing. Firstly, we recall well-known facts about Kronecker product of matrices.

Lemma 3.2.15. [45] Let A, B, C and D be matrices over a field F. Then the following properties

hold:

1. rank(A⊗B) = rank(A) rank(B).

2. (A⊗B) (C ⊗D) = (AC)⊗ (BD)

3. If A and B are invertible then A⊗B is invertible with (A⊗B)−1 = A−1 ⊗B−1

4. (A⊗B)T = AT ⊗BT

5. If a (resp. b) is an eigenvector of A (resp. B) with α (resp. β) in F is the associated eigenvalue

then a⊗ b is an eigenvector of A⊗B and αβ is its associated eigenvalue.

Lemma 3.2.16. For any linear codes A ⊂ Fn1 and B ⊂ Fn2 we have

(A ⊗ Fn1)⊥ = A
⊥ ⊗ Fn1 . (3.4)

(Fn2 ⊗B)⊥ = Fn2 ⊗B
⊥. (3.5)
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Proposition 3.2.17. Let A ⊂ Fn1 and B ⊂ Fn2 be two linear codes where n1 and n2 are integers

> 1. We then have the following relations

1. (A ⊗ Fn2) ∩ (Fn1 ⊗B) = A ⊗B.

2. (A ⊗B)⊥ = A ⊥ ⊗ Fn2 + Fn1 ⊗B⊥.

Proof. Let us prove the first equality. Firstly, we clearly have the inclusion A ⊗B ⊂ (A ⊗ Fn2) ∩
(Fn1 ⊗B). The other inclusion can be deduced by using (3.4) and observing that the only way for a

codeword b from Fn1 ⊗B to be in A ⊗ Fn2 is that b belongs to A ⊗B.

The second part is the dual of the first one using (3.4) and (3.5). �

Corollary 3.2.18. For any linear codes A1 ⊂ Fn1 , B1 ⊂ Fn1 and A2 ⊂ Fn2 , B2 ⊂ Fn2 we have

(A1 ⊗A2) ∩ (B1 ⊗B2) = (A1 ∩B1)⊗ (A2 ∩B2) (3.6)

Proof. Let us set C⊥ = (A1 ⊗A2) ∩ (B1 ⊗B2) then by using Equation (3.4) and (3.5) and Propo-

sition 3.2.17 we have the following equalities

C = (A1 ⊗A2)
⊥ + (B1 ⊗B2)

⊥

= A1
⊥ ⊗ Fn2 + Fn1 ⊗A2

⊥ + B1
⊥ ⊗ Fn2 + Fn1 ⊗B2

⊥

=
(
A1

⊥ + B1
⊥
)
⊗ Fn2 + Fn1 ⊗

(
B2

⊥ + A2
⊥
)

which terminates the proof. �

Lemma 3.2.19. For any matrices A = (ai,j), B = (bi,j) and C = (ci,j), we have ABCT =
(C ⊗A)B.

Proof. This can be proved by observing that for any matrices A, B, C and D = ABCT with the

notation CT =
(
cTi,j

)
we have di,j =

∑
k (aiBk) c

T
k,j =

∑
k cj,kai Bk = (cj ⊗ ai)B. In particular

Dj = (cj ⊗A) B which implies D = (C ⊗A)B which concludes the proof. �

Corollary 3.2.20. The linear system L can be rewritten as follows in terms of Kronecker product:

L :





(
HB ⊗GA

)
P = 0

(
GB ⊗HA

)
P = 0

Proposition 3.2.21. Any n× n permutation matrix P is a solution of the linear system P:

P :





(
1n ⊗ In

)
P = 1

T
n

(
In ⊗ 1n

)
P = 1

T
n

The rank of P is 2n− 1.

Proof. The value of the rank comes from the fact that by adding all the rows of 1n ⊗ In we obtain

1n2 . Similarly we obtain this result by adding all the rows of In ⊗ 1n. It is easy to see that these two

combinations provide the only non-zero row combination in P that results in zero. �
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Lemma 3.2.22. Let G and H be respectively the generator matrix and the parity check matrix of

a code C of length n. Let D =

(
G

H

)
. A parity check matrix of H(C ) is D and in particular

rank(D) = n− dimH(C ).

Proposition 3.2.23. Let hA and hB be the dimensions of H(A ) and H(B), respectively. Then we

have

rank(L) = 2k(n− k)− hA hB.

Proof. That the matrix defining the linear system L is actually
[
GB ⊗HA

HB ⊗GA

]
.

This is a generator matrix of the linear code B⊗A ⊥+B⊥⊗A . Hence by Corollary 3.2.18 we have

dim
(
B ⊗A

⊥ + B
⊥ ⊗A

)
= dimB ⊗A

⊥ + dimB
⊥ ⊗A − dim

(
B ⊗A

⊥
)
∩
(
B

⊥ ⊗A

)

= 2k(n− k)− dimH(A )⊗H(B).

This last equality gives exactly the required result and finishes the proof. �

Remark 3.2.24. An obvious upper-bound for the rank of E would be

rank(E) 6 2k(n− k)− h2 + 2n− 1.

Theorem 3.2.25. Let C be either A or B and

δ = 2k(n− k)− h2 + 2n− 1− rank(E).

Then 0 6 δ 6 2n− 1, and we have:

1. If 1n ∈ H(C ) then δ > 2(n− h)− 1.

2. If 1n /∈ H(C ) and 1n ∈ H(C )⊥ then

δ >





2(n− k) if 1n ∈ C ,
2k if 1n ∈ C⊥,
2h+ 1 if 1n /∈ C and 1n /∈ C⊥

3. If δ = 0 then 1n /∈ H(C )⊥.

Proof. Let Un and T be the matrices corresponding to the linear systems P and L, respectively.

From Proposition 3.2.21 and Proposition 3.2.23 we know the exact rank of Un and T . Let U and

T be the vector spaces generated by Un and T , respectively. Our target is to improve the bound of

Remark 3.2.24 by finding elements in U ∩ T .

Firstly assume 1n ∈ H(C ). Without loss of generality we can assume 1n is a row in GC and HC .

Consider the vector space V which is generated by

V =




HB ⊗ 1n

GB ⊗ 1n

1n ⊗GA

1n ⊗HA .



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Clearly, V ⊆ T ∩ U . The proof terminates by observing that the dimension of V is 2(n − h) − 1.

That is because rank

(
GC

HC

)
= (n− h) and 1n ⊗ 1n is a duplicated row in V . The remaining rows

in V are independent.

Next assume that 1n /∈ H(C ), 1n ∈ H(C )⊥ and 1n ∈ C . Consider the vector space V which is

generated by

V =

(
HB ⊗ 1n

1n ⊗HA .

)

Clearly, V ⊆ T ∩ U and the dimension of V is 2(n− k) since V is of full rank.

The case 1n /∈ H(C ), 1n ∈ H(C )⊥ and 1n ∈ C⊥ can be proved similarly where we get the

dim(T ∩ U) > 2k.

Assume that 1n /∈ H(C ), 1n ∈ H(C )⊥, 1n /∈ C and 1n /∈ C⊥. Thus 1n = gC + hC with

0 6= gC ∈ C , 0 6= hC ∈ C⊥ and C ∈ {A ,B}. Then we can write

hB ⊗ gA = (1n − gB)⊗ gA . (3.7)

Similarly,

gB ⊗ hA = gB ⊗ (1n − gA ). (3.8)

Then we can write

1n ⊗ gA − gB ⊗ 1n = hB ⊗ gA − gB ⊗ hA ∈ T ∩ U. (3.9)

We denote by E and E′ the vector space generated by 1n ⊗ gA − gB ⊗ 1n and

(
gB ⊗ hA

hB ⊗ gA

)
,

respectively. Clearly E ⊆ E′.

Now let uB ∈ H(B), thus we can write
(
uB ⊗GA

uB ⊗HA

)
= uB ⊗

(
GA

HA

)

Since 1n ∈ H(C )⊥, thus for all uB inH(B) we have

uB ⊗ 1n ∈ T ∩ U.
Similarly for all uA inH(A ) we have

1n ⊗ uA ∈ T ∩ U.
Let V1 and V2 be the vector spaces generated by GH(B) ⊗ 1n and 1n ⊗ GH(A ), respectively with

GH(C ) the generator matrix ofH(C ). Thus Vi ⊆ T ∩ U for i ∈ {1, 2}.
To prove that V1 ∩ V2 = {0} it is sufficient to notice they are constructed from the basis of the hull

and 1n /∈ H(C ).

We terminate by proving that dim(V1 + V2 + E) = 2h + 1 where we need only to prove that

(V1+V2)∩E = {0}. Note that (V1+V2)∩E′ = {0} since gB,hB /∈ H(B) and gA ,hA /∈ H(A ).
Thus (V1 + V2) ∩ E = {0} since E ⊆ E′.

Finally if δ = 0 then we are not in any of the previous cases and thus 1n /∈ H(C )⊥. �
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3.3 PEP and Groebner Basis

Groebner basis techniques are well-known and well-studied and applied in solving system of mul-

tivariate polynomials. Here we consider these techniques to solve PEP since our modeling for the

problem is a set of multivariate linear and quadratic polynomials. For brief literature about Groebner

basis refer to Chapter 2 and for detailed description refer to the book [25] and for the algorithms F4

and F5 refer to [30, 31].

Recall our polynomial system S for PEP as introduced in the Section Our Modeling for PEP

S :





(HB ⊗GA ) P ,

(GB ⊗HA ) P ,

(1T
n ⊗ In) P ,

(In ⊗ 1
T
n ) P ,

xi,jxi′,j , i 6= i′

xi,jxi′,j , 1 6 i, i′, j 6 n, i 6= i′

xi,jxi,j′ , 1 6 i, j, j′ 6 n, j 6= j′

x2i,j − xi,j , 1 6 i, j 6 n.

As before we denote the linear part of S by E. It is convenient here to consider the system with the

maximum number of linear equations. That is because instead of letting Groebner basis computation

generates these linear equations we input them directly in the initial system. Doing this enables to

eliminate larger number of variables before starting Groebner basis computation.

As we have seen previously 2k(n− k)−h2 6 rank(E) 6 2k(n− k)−h2+2n− 1− δ with δ as in

Theorem 3.2.25. By experiments for random codes rank(E) is almost identical to the upper bound.

We have proved in Theorem 3.2.11 that the system S fully describes PEP. Thus the solutions of S

are exactly the permutations fulfilling the equivalence between the two codes. Thus using Groebner

basis we can always solve S and retrieve the set of permutations between the permutation equivalent

codes. If the reduced Groebner basis is {1} then the system has no solution and the two codes are not

permutation equivalent. The complexity of Groebner basis computation for PEP depends on many

factors that are discussed next.

3.3.1 Factors Affecting the Computation

There are many factors affecting the computation of Groebner basis. The first factor is the length of

the code n which directly affects the number of unknowns which is n2. Thus as the length of the

code increases the number of quadratic equations increases and the size of matrices in Groebner basis

computation increases.

The second factor is the rank of E and this is in turn affected by the rate of the code and the size of

the hull. As long as the rank of E is large we can eliminate more variables from the system and this

enhances Groebner basis computation significantly. The best rank is achieved when the hull is trivial

and the rate of the code is 0.5 and it decreases as the rate goes far from 0.5, i.e. as the rate of the code

or its dual tends to zero (note that the high rate and low rate codes behaves the same way since the

system uses the code and its dual). In case of self-dual codes we have h = k = n
2 thus the rank of the
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n k h #Sol Deg Time (s) Memory (MB)

10 2 0 288 3 2−3.5 25

2 0 2,880 5 20.6 26.5

0 4 2 2−4.6 25

5 2 8 2 2−4.3 25

5 2,688 4 24.5 27.5

20 5 0 384 3 25.5 29.2

0 1 2 24.3 29.7

10 2 1 2 24.7 29.6

5 1 2 25.6 29.0

9 6,144 4 > 217.3 > 214.6

30 7 0 16 2 29.5 213.4

15 3 1 2 210.1 214.8

7 1 2 211.6 214.3

Table 3.1: Solving PEP for random codes over F2 with F4 algorithm using the system S

linear system is upper bounded by n2

4 + 2n − 1 − δ. Hence when the code is self-dual or has large

hull we loose a significant number of linear equations and this in turn affects the computation.

The third factor is the size of the field since computation in small fields especially the binary field

is much faster and less memory consuming. Thus as we have our codes defined in a large field the

complexity of Groebner basis computation increases. The extension fields has some advantage since

we can use Frobenius action to improve the linear part. The arithmetic operations complexity on the

field is also affected by the implementation of the field operation in the computation algebra software.

The fourth factor is the size of the solution set where large solution sets result in a higher degrees

of polynomials appearing during Groebner basis computation. As we mentioned in Groebner basis

chapter (Chapter 2) the degrees of polynomials appearing during the computation is the main player

affecting the total complexity.

3.3.2 Experimental Results

Table 3.1, 3.2 and 3.3 are experiments using Magma to solve PEP with our modeling using F4 algo-

rithm. The experiments confirm the effect of the length of the codes, the rate, the hull, the size of the

solution set and the field in the computation.

One can notice from the experiments, the increase in the length of the code increases the complexity

of solving. Similarly, the increase in the size of the hull also increases the complexity where the worst

complexity is obtained for self-dual codes. Solving equivalence problem for codes with large solution

set is more complex than the solving for codes with small solution set since large solution sets result

in an increase of the degree of polynomials. The rate of the code also affects the complexity where

small rates have higher complexity. Solving PEP using Groebner basis over extension field performs

better in many cases specially for codes with large hull.
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n k h #Sol Deg Time (s) Memory (MB)

10 2 0 12 2 2−3.6 25

0 1 2 2−3.3 25

5 2 1 2 2−3.3 25

5 24 3 22.6 26

20 5 0 1 2 25.3 211.1

0 1 2 25.7 211.8

10 2 1 2 25.5 211.5

5 1 2 25.6 211.1

30 7 0 1 2 210.4 215.6

15 3 1 2 211.2 216.6

7 1 2 211.1 216.2

Table 3.2: Solving PEP for random codes over F5 with F4 algorithm using the system S

n k h #Sol Deg Time (s) Memory (MB)

10 2 0 2 2 2−4.6 25

5 0 1 2 2−3.8 25

2 1 2 2−3.6 25

5 1 2 2−1.9 25

20 5 0 1 2 24.9 211.1

10 0 1 2 25 212.0

2 1 2 24.8 211.7

5 1 2 25.0 211.2

10 1 2 26.8 210.7

30 7 0 1 2 210.1 216.0

15 3 1 2 210.1 216.7

7 1 2 210.3 216.4

Table 3.3: Solving PEP for random codes over F8 with F4 algorithm using the system S
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n k h Deg Time (s) Memory (MB)

10 2 0 2 2−4.6 25

0 2 2−5.6 25

5 2 2 2−5.6 25

5 2 2−3.5 25

20 5 0 2 23.5 28.5

0 2 22.7 29.3

10 2 2 24.2 29.5

5 2 24.4 28.8

9 3 215.0 214.2

30 7 0 2 28.8 213.3

15 3 2 28.1 214.7

7 2 210.0 214.5

Table 3.4: Deciding inequivalence for random codes over F2 with F4 using the system S

Running the experiments with the same parameters for non-equivalent codes has better complexity.

The maximum degree reached during the computation does not exceed two for codes with not large

hull since the solution set is empty. The hull of the code seems to play an important role in the

total complexity since one can notice from the experiments the large difference in time and memory

complexity for codes with large hull, see Table 3.4, 3.5 and 3.6.

3.3.3 Estimating the Complexity of the Groebner basis Computation

We define the algebraic system associated to the quadratic equations as follows

Q
def
=

n⋃

i=1

n⋃

j=1

{
x2i,j − xi,j

} n⋃

j=1

⋃

i 6=i′

{
xi,jxi′,j

} n⋃

i=1

⋃

j 6=j′

{
xi,jxi,j′

}
. (3.10)

In our case, we can remark that the polynomial ideal contains the equations from Q, see Section 3.2.3,

which is already a Groebner basis. To simplify the computations and reduce the size of the matrices,

we will work in the quotient ring

R[X] = F[X]/(Q) (3.11)

where X is seen as the set of variables {xi,j}i,j∈[1,n]. This means that all the computations will be

done modulo the polynomials in Q. Notice that, as Q is already a Groebner basis for the chosen

monomial ordering, computing a Groebner basis of E ∪Q in F[X] is done by computing a Groebner

basis of E modulo Q, using the Normal Form.

The first step in the Groebner basis computation consists in computing the row echelon form of the

linear system E modulo Q. This linear system has Nr = 2k(n − k) + 2n = 2R(1 − R)n2 + 2n
rows and Nc = n2 + 1 columns if we assume the rate R = k

n of the codes is a constant. The cost

of the Gaussian elimination is O(n2ω) where ω is the cost of matrix multiplication. For simplicity,
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n k h Deg Time (s) Memory (MB)

10 2 0 2 2−3.8 25

0 2 2−3.8 25

5 2 2 2−3.8 25

5 2 2−3.3 25

20 5 0 2 24.7 210.7

0 2 25.1 211.5

10 2 2 25.0 211.5

5 2 25 211.1

30 7 0 2 29.7 215.8

15 3 2 210.5 216.7

7 2 210.3 216.2

Table 3.5: Deciding inequivalence for random codes over F5 with F4 using the system S

n k h Deg Time (s) Memory (MB)

10 2 0 2 2−5.1 25

5 0 2 2−4.6 25

2 2 2−5.1 25

5 2 2−2.6 25

20 5 0 2 23.6 211.1

10 0 2 23.7 212.1

2 2 23.3 211.7

5 2 23.5 211.2

10 2 25.5 210.4

30 7 0 2 28.9 216.0

15 3 2 28.6 216.8

7 2 28.7 216.4

Table 3.6: Deciding inequivalence for random codes over F8 with F4 using the system S
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if we take ω = 3 the complexity is O(n6). After this first step, from Theorem 3.2.25 we have

2k(n− k)− h2 + 2n− 1− δ = O(n2) independent linear equations.

The Macaulay matrix in degree 2 consists in all products of a linear equation by a variable xi,j (modulo

Q). There are n2 different variables, the matrix we construct in degree 2 contains O(n4) rows. The

columns consist of the monomials of degree 0 and 1, and the monomials xi,jxs,t with i, j, s, t ∈ [1, n]
in R[X] it excludes the cases (i, j) = (s, t) or (i = s and j 6= t) or (j = t and i 6= s). The total

number of monomials is
(
n2

2

)
+ n2 + 1− 2n

(
n
2

)
= O(n4).

We get a matrix with O(n4) rows and O(n4) columns. The cost of a row echelon form is O(n4ω),
which is O(n12) for a simple Gaussian elimination.

Theorem 3.3.1. A Groebner basis computation for the system S with Buchberger, F4 or F5 algo-

rithms will have to compute an equivalent of the echelon form of the Macaulay matrices in degree 1

and 2, resulting in O(n4ω) operations in F.

As it is noticed from the experiments in Table 3.1 - 3.6, when the hull is trivial and the solution set

contains one element the maximum degree reached by computation does not exceed 2. We will give a

method, called block linearization, to compute in this case the Groebner basis without computing the

echelon form in degree 2. The cost of this method is O(n2ω+1) instead of O(n4ω).

3.4 Block Linearization

In this section we introduce a new improvement of the way of solving the system S. We show how to

compute linear equations in the system without computing the degree 2 row echelon form which can

be hard, even if it has a polynomial complexity. In some cases we do not need to go further and we can

find the solution of the equivalence directly, while other cases need more work to get the solutions.

The interesting thing is that this method is quite efficient in practice.

Recall that the HullH(C ) of C ⊂ Fn is the linear code C ∩C⊥. Moreover, sinceH(C )⊥ = C +C⊥,

a parity check matrix ofH(C ) is given by

HH(C ) =

(
GC

HC

)
.

In particular, H(C ) = {0} if and only if HH(C ) is invertible. We recall an elementary fact when

dealing with codes over fields that are included in R.

Proposition 3.4.1. Let F be a subfield of R. Any linear code C over F has a trivial hull.

Proof. This comes from the fact that over R, the inner product is definite. �

The following proposition explains precisely how to characterize codes with trivial hulls over any

field.

Proposition 3.4.2. A linear code C has a trivial hull if and only if GCG
T
C

is invertible, and the

inverse of HH(C ) is then given by

H−1
H(C ) =

[
GT

C

(
GCG

T
C

)−1
HT

C

(
HCH

T
C

)−1]
. (3.12)
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Proof. Let us assume that C has dimension k. The matrix GCG
T
C

is then not invertible if and only

if there exists x in Fk such that both xGCG
T
C
= 0 and x 6= 0 hold. This is equivalent to xGC 6= 0

and xGC belongs to C ∩ C⊥ = H(C ). By symmetry, we also have that HCH
T
C

is invertible. The

expression of H−1
H(C ) follows immediately from these facts. �

Another important property when C has a trivial hull is the possibility to write Fn = C ⊕ C⊥.

This means that for each v in Fn there exist a unique vC in C and a unique vC⊥ in C⊥ such that

v = vC +vC⊥ . These elements can be seen as the projections of v on C and C⊥. In order to provide

their expression, we need to define the following n× n matrix ΣC where

ΣC

def
= GT

C

(
GCG

T
C

)−1
GC . (3.13)

Remark 3.4.3. We also define ΣC⊥ = HT
C

(
HCH

T
C

)−1
HC .

Proposition 3.4.4. Let C be a linear code with trivial hull. For any v in Fn the unique vC in C and

a unique vC⊥ in C⊥ such that v = vC + vC⊥ are defined as

vC = vΣC and vC⊥ = vΣC⊥ . (3.14)

Proof. We assume that C is of dimension k. It follows from the definition of HH(C ) that vC and vC⊥

can be computed by finding xC from Fk and xC⊥ from Fn−k such that v = (xC ,xC⊥)HH(C ) =
xCGC + xC⊥HC , and consequently vC = xCGC and vC⊥ = xC⊥HC . By assumption HH(C ) is

invertible, and hence, by keeping the k first coordinates of vH−1
H(C ) and by using (3.12) we obtain then

xC = v GT
C

(
GCG

T
C

)−1
. The last n− k coordinates of vH−1

H(C ) give xC⊥ = v HT
C

(
HCH

T
C

)−1
.

�

Proposition 3.4.5. For any linear code C ⊂ Fn with trivial hull, the following properties then hold

1. Σ
T
C
= ΣC , Σ2

C
= ΣC and ΣC⊥ = In −ΣC

2. HCΣC = ΣCH
T
C
= 0 (the rows and columns of ΣC belong to C )

3. rank(ΣC ) = k

The polynomial system S contains some equations that involve only unknowns corresponding to one

column (or one row) of P , that is to say, equations of the form
∑n

i=1 aixi,j = b for some ai and b in

F, and j in [1, n]. The next lemma explains that we can deduce directly the value of many variables

from this kind of equations.

Lemma 3.4.6. Assume that S contains for some j in [1, n] a linear equation
∑n

i=1 aixi,j = b where

ai and b are in F. If we set J
def
= {i : ai 6= b} then any solution of S satisfies the relations

∀i ∈ J, xi,j = 0.

Proof. We have for all i in [1, n] the following equalities

b xi,j =

(
n∑

i′=1

ai′xi′,j

)
xi,j = ai xi,j mod Q.

This implies that xi,j = 0 for any i ∈ J . �
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Remark 3.4.7. If J is empty, Lemma 3.4.6 does not give new equations. This happens in particular

with equation
∑n

i=1 xi,j = 1 which is always in E by construction.

Definition 3.4.8. An equation
∑n

i=1 aixi,j = b is called a block equation in column j. Similarly, we

define a block equation in row i as an equation of the form
∑n

j=1 cjxi,j = d

Corollary 3.4.9. Assume there exist a and b in Fn such that b = aP . Then solving for all j in [1, n]
the linear equation

∑n
i=1 aixi,j = bj implies xi,j = 0 for all i and j such that bj 6= ai.

We can obtain a similar result for row block equations by considering the equation a = bP T but

in reality the equality gives exactly the same set of constraints as b = aP . This corollary permits

to simplify the solving of the problem, in particular, if the coordinates in b are all distinct. In that

situation, we recover the entire permutation by identifying for each i in [1, n] the only integer j in

[1, n] such that bj = ai, which means that j = P (i).

A direct method for producing a block equation in column j consists in reducing the matrix of the

linear system in row echelon form, with an ordering on the columns eliminating the variables xi,l
with l 6= j, and keeping only the rows such that the columns corresponding to the variable xi,l are

zero if l 6= j. This elimination method can be applied either on the matrix of the linear system E

or on a degree-D Macaulay matrix for any D > 2. But when applied on E this gives a cost of

O(n2ω) operations for one column j, and hence a total complexity of O(n2ω+1) operations after all

the columns have been treated. Hence we have proved the following result.

Proposition 3.4.10. Block equations can be generated from S in O(n2ω+1) operations.

Corollary 3.4.9 raises the question of producing efficiently such equations when they exist. An in-

teresting candidate for producing them is 1 since it is unaffected when permuting its coordinates. Of

course the linear system 1 = 1P provides no information on P . But if the codes have trivial hull,

it is then possible to obtain easily and more efficiently block equations as explained by what follows.

It consists in exploiting the property that when a code C has a trivial hull then Fn = C ⊕ C⊥. In

particular, we have 1 = 1C + 1C⊥ where 1C belongs to C and 1C⊥ lies in C⊥.

Proposition 3.4.11. If there exists P in Sn such that B = A P , and A and B have trivial hulls then

1B = 1A P and 1B⊥ = 1A ⊥P .

Proof. If H(A ) = A ∩ A ⊥ = {0} then H(A )⊥ = A + A ⊥ = Fn. Any permutation P that is

solution sends a word from A to a word of B. Hence, as 1B + 1B⊥ = 1 = 1P = 1A P + 1A ⊥P

and by the uniqueness of the decomposition over B⊥ and B, we have therefore 1B = 1A P and

1B⊥ = 1A ⊥P . �

We see from Proposition 3.4.4 that block equations can be obtained by essentially inverting the n× n
matrix HH(A ) and computing the products 1ΣA and 1ΣA ⊥ . So the complexity is O(nω) while the

general method requires O(n2ω+1) operations as we have seen in Proposition 3.4.10. Surprisingly,

for some range of parameters, we get so many new linear equations that the permutation equivalence

can be solved simply by linear algebra without resorting to the computation of a Groebner basis.

Proposition 3.4.12. When A and B are random linear codes the block equations 1B = 1A P add

about O
(
n2
(
1− 1

q

))
independent linear equations.

Proof. From Proposition 3.4.11 and by applying Lemma 3.4.6 on 1B = 1A P , we find a set I ⊂
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[1, n]2 such that xi,j = 0 for all (i, j) ∈ I. Since the codes are random, we expect that the coefficients

of 1A and 1B are uniformly distributed, and therefore the size of I is about O
(
n2
(
1− 1

q

))
. �

It is possible to improve the approach by iterating the process of finding new block equations after

adding to E equations xi,j = 0 when they are found coming from 1B = 1A P . Experiments show

that new block equations can be found by repeating twice or 3 times this process, but here again we

cannot solve the system by linear algebra for all instances. Indeed, for the sake of simplicity, let

us assume that 1B = 1A P adds exactly n2
(
1− 1

q

)
equations. We also consider two codes with

trivial hull and trivial permutation group satisfying Assumption 3.2.1. This means in particular that

the permutation equivalence between them has at most one solution. The values of the remaining n2

q

unknowns are then derived from the linear system E ∪
{
xi,j : (i, j) ∈ I

}
for some set I ⊂ [1, n]2

whose rank is expected to be equal to 2k(n − k) + n2
(
1− 1

q

)
with high probability. So the linear

system recovers the solution when it exists if n2 6 2k(n − k) + n2
(
1− 1

q

)
which is equivalent to

R(1 − R) > 1
2q where R = k/n is the rate of the considered codes and q is the size of the field F.

Finally, the computing of 1A and 1B requires time O(nω). The linear system for the remaining n2

q

variables can be solved in O
((

n2

q

)ω)
operations in F. This discussion hence gives the following

corollary. Our experimental results confirm the bound given here.

Corollary 3.4.13 (Informal). The permutation equivalence between two codes with trivial hull and

trivial permutation group satisfying Assumption 3.2.1 can be decided and solved inO
((

n2

q

)ω
+ nω

)

operations in F when the rate R = k
n and the size q of the field F satisfy

R(1−R) > 1

2q
. (3.15)

We see that as the field Fq gets larger, the range of solvable parameters gets wider. In particular

when q = Θ(n) the equivalence between two random linear codes can be decided in time O (nω).
However, when the size q is constant, which is the most frequent encountered case, the complexity

become O
(
n2ω
)
.

Actually the permutation equivalence between two codes with trivial hull can be greatly improved by

observing that Proposition 3.4.11 can be generalized. The idea is to consider all the vectors
{
ej :

j ∈ [1, n]
}

instead of just 1n. Indeed, if we assume again that C has a trivial hull then there is a

unique uj in C and u⊥
j in C⊥ such that ej = uj + u⊥

j . We see from Proposition 3.4.4 that uj

is exactly the j-th row of the n × n matrix ΣC = GT
C

(
GCG

T
C

)−1
GC and u⊥

j is the j-th row of

ΣC⊥ = HT
C

(
HCH

T
C

)−1
HC .

Consequently if B = A P then by using the fact that ejP = e
P

−1(j) we have ΣB = P T
ΣA P

which is obviously equivalent to the following relation

PΣB = ΣA P . (3.16)

Proposition 3.4.14. The linear systems L and
{
ΣA P − PΣB

}
are equivalent.
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Proof. Firstly ΣA P = PΣB is equivalent to
(
ΣB ⊗ In − In ⊗ΣA

)
P = 0, as ΣB is symmetric.

From Proposition 3.4.5 the rows of ΣC belong to C for any code C , and moreover rankΣC is equal

to the dimension of C . There exist therefore two k×nmatrices TB and TA such that GB = TBΣB

and GA = TA ΣA . We define then K as the matrix

K
def
=

[
TB ⊗HA

−HB ⊗ TA

]
.

Using the properties of the Kronecker product (see Lemma 3.2.15), we then have

K
(
ΣB ⊗ In − In ⊗ΣA

)
=

[
GB ⊗HA

HB ⊗GA

]
. (3.17)

Consequently,
{
ΣA P − PΣB

}
is linearly dependent with E. Reciprocally, we know from (3.13)

and Proposition 3.4.5 that by setting DC

def
= GT

C

(
GCG

T
C

)−1
for any linear code C with trivial hull,

the following equalities hold

(DB ⊗DA ⊥ ,−DB⊥ ⊗DA )

[
GB ⊗HA

HB ⊗GA

]
= ΣB ⊗ΣA ⊥ −ΣB⊥ ⊗ΣA

= ΣB ⊗ (In −ΣA )

− (In −ΣB)⊗ΣA

= ΣB ⊗ In − In ⊗ΣA .

This last equality with (3.17) proves that both systems are equivalent. �

Table 3.7 shows experiments for codes with trivial hull over F22 where we obtain the maximal rank

of the linear system by block linearization.

3.5 Codes over Non Prime Fields

We assume from now that the field F is equal to Fpm wherem > 1 and p is a prime number. We recall

that the Frobenius map ζp : Fq → Fq is defined for any x ∈ Fq as ζp(x) = xp. The composition of ζp
with itself u times is denoted by ζpu .

We have seen that the solutions are binary permutation matrices but L is built upon the field Fpm . A

classical way to take into consideration this property is to use the Frobenius action ζpu since for any

linear equation
∑

i,j ai,jxi,j = b we also have

bp
u
=


∑

i,j

ai,jxi,j




pu

=
∑

i,j

ap
u

i,j xi,j .

This adds new linear equations which enables to define new linear systems. For any u in [1,m − 1]
we set

L+ def
=

m−1⋃

u=0

{
ζpu (HB)P ζpu

(
GT

A

)
, ζpu (GB)P ζpu

(
HT

A

) }
.
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n k DB DBi DA #Sol Time (s) Memory (MB)

50 3 424 22 22 13,824 22.8 25

12 18 1 1 1 22.6 25

25 1 1 1 1 2−1.3 25

100 5 1,663 8 8 128 26.6 27.2

25 65 1 1 1 26.7 27.7

50 1 1 1 1 22.3 27.5

200 5 8,255 15 15 6,144 211.8 210.9

50 201 1 1 1 211.6 211.2

100 1 1 1 1 28.5 211.0

300 10 16,953 1 1 1 214.1 213.3

75 122 1 1 1 213.8 213.6

150 1 1 1 1 211.6 213.3

500 250 1 1 1 1 214.8 216.2

Table 3.7: Block linearization for random codes with trivial hull over F22

• DB is the dimension of the null space using block equations only.

• DBi is the dimension of the null space using iterated block linearization.

• DA is the dimension of the linear space spanned by the actual solution set.

• #Sol is the cardinality of the solution set.
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Proposition 3.5.1. If B = A P where P belongs to Sn then P satisfies L+. Furthermore,

rank(L+ ∪P) 6 m
(
2k(n− k)− h2 − δ

)
+ 2n− 1 (3.18)

with δ as defined in Theorem 3.2.25.

Hence, applying the Frobenius map adds new linear equations and in many cases we can obtain the

“maximal” rank given by (3.18) in Proposition 3.5.1. In that particular case, and when the system has

a unique solution or a small solution set, we can easily solve the equivalence problem. Experimentally

we found that we can obtain a system of rank n2 for random codes with trivial hull and unique solution

in the range 1/m < R < 1 − 1/m. The time complexity in this context is O(n2ω) operations over

Fpm .

It is however to assess precisely the impact of the Frobenius action because there is no easy way to

estimate the rank of L+, besides the simple upper-bound mentioned in 3.18. In particular, L+ ∪ P

cannot be of full rank if n2 > m
(
2k(n− k)

)
+ 2n which is equivalent to

2R(1−R) + 2

n
<

1

m
. (3.19)

Experimentally applying Frobenius action with iterated block linearization when the extension degree

is > 2 can handle the cases of codes with non-trivial hull but not selfdaul or weakly self-dual codes,

see Table 3.8.

3.6 Codes with Non-Trivial Hulls (General Approach)

3.6.1 Preliminary observations

We turn now to the case of a code C of dimension k and length n with a non trivial hull. We set

hC

def
= dimH(C ) > 0. Without loss of generality, as C +C⊥ = H(C )⊥, we know that there exist two

matrices ΞC , ΞC⊥ fromMn−hC ,n (F) and MC fromMn−hC ,hC
(F) such that ΞC + ΞC⊥ = ZC

where

ZC

def
=
[
In−hC

MC

]
, (3.20)

and such that the rows of ΞC (resp. ΞC⊥) belong to C (resp. C⊥). By using the same kind of

argument as in the proof of Proposition 3.4.14, as there exist DC in Mn−hC ,k (F) and DC⊥ in

Mn−hC ,n−k (F) such that ΞC = DCGC and ΞC⊥ = DC⊥HC we have the following fact.

Proposition 3.6.1. Any permutation P satisfying L also verifies the following linear equations

ZA PΞ
T
B = ΞA PZT

B. (3.21)

Proof. We consider the following equations deduced from the linear system L

(DB ⊗DA ⊥ ,−DB⊥ ⊗DA )

[
GB ⊗HA

HB ⊗GA

]
= ΞB ⊗ΞA ⊥ −ΞB⊥ ⊗ΞA

= ΞB ⊗ (ZA −ΞA )

− (ZB −ΞB)⊗ΞA

= ΞB ⊗ZA −ZB ⊗ΞA .
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n k h DF DFBi DA

50 10 9 1,004 1 1

10 1,044 122 1

25 24 1,153 1 1

25 1,250 1,250 1

100 20 19 4,204 1 1

20 4,282 4,282 1

50 49 4,803 1 1

50 5,000 5,000 −
200 20 19 26,004 1 1

100 99 19,603 1 1

300 40 39 51,004 1 1

Table 3.8: Frobenius Action and block linearization for random codes with non-trivial hull over F22

• DF is the dimension of the null space using Frobenius action only.

• DFBi is the dimension of the null space using Frobenius then iterated block linearization.

• DA is the dimension of the linear space spanned by the actual solution set.

• #Sol is the cardinality of the solution set.

We recall that
(
ΞB ⊗ ZA − ZB ⊗ ΞA

)
P = 0 is equivalent to (3.21), and this concludes the

proof. �

There is no easy way to solve (3.21) because the methods we developed in the previous section cannot

be used directly. We propose in the following two approaches: the first one tries to find a good

supplementary to the hull. The second approach is based on a very well-known problem in coding

theory called the closest vector problem.

3.6.2 An approach based on the supplementary of the hull

We recall the definition of the shortened code.

Definition 3.6.2. Let C be a linear code of length n over F and consider a non empty set I ⊂ [1, n].
The shortened code of C over I denoted by SI (C ) is the linear code formed by vectors u from C

such that we have the following

∀i ∈ I, ui = 0. (3.22)

Proposition 3.6.3. Let C be a linear code of length n and let us set hC

def
= dimH(C ). We consider

a set I ⊂ [1, n] of cardinality hC such that there exists a generator matrix GH(C ) where the columns

restricted to I form the identity matrix of order hC . Then the shortened code SI (C ) has a trivial hull

and is a supplementary ofH(C ) in C .
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Proof. Firstly, we prove that SI (C ) ∩ H(C ) = {0}. Indeed, the vectors in SI (C ) satisfy (3.22)

while non-zero vectors in H(C ) must have at least one i in I such that the coordinate at position i is

different from zero. Next, it is easy to see that C = SI (C ) +H(C ), hence C = SI (C ) ⊕ H(C ).
In particular, if there is v in the hull of SI (C ) then v belongs both to C and to the orthogonal of

SI (C ) ⊕ H(C ) = C which entails that v lies in H(C ). But this is possible only if v = 0 which

proves that the hull of SI (C ) is trivial. �

Proposition 3.6.4. Let A and B two codes such that there exists a permutation P satisfying B =

A P . Let A ⊂ [1, n] and let us define B def
= {P (a) : a ∈ A} then SB (B) = SA (A )P .

We have therefore a direct approach that exploits Proposition 3.6.3 and 3.6.4 for deciding the equiv-

alence between A and B by considering two sets A ⊂ [1, n] and B ⊂ [1, n] of cardinality h =
dimH(A ) = dimH(B) and testing the equivalence between the shortened codes SA (A ) and

SB (B). The probability that SA (A ) and SB (B) are equivalent is at least
h!(
n
h

) .

3.6.3 An approach based on closest vectors

Definition 3.6.5. Let C be a linear code of length n over F, and let z be a vector of Fn. The closest

vector to z in C is a codeword u∗ in C such that the following holds:

∀u ∈ C , wt(z − u∗) 6 wt(z − u).

Remark 3.6.6. It is not difficult to see that for any permutation σ the vector uσ
∗ is a closest vector to

zσ in C σ.

An algorithm for finding the list LC (z) containing all solutions u∗ consists in taking a parity check

matrix HC

def
=
[
In−k M

]
in systematic form and computing s

def
= HC z

T . Next, for all x ∈ Fk,

the algorithm computes y
def
=
(
s−MxT

)T
and keeps only couples (y,x) of minimum weight. The

solutions are then u∗
def
= z − (y,x). This algorithm recovers LC (z) with O

(
k(n− k)qk

)
operations.

Proposition 3.6.7. For any two permutation equivalent codes A and B = A P where P lies in Sn,

there exist ξA
j in LA (ej) and ξB

j in LB(ej) for each j in [1, n] such that matrices ΞA

def
=
[
ξA
j

]
and

ΞB

def
=
[
ξB
j

]
satisfy the equality

PΞB = ΞA P . (3.23)

The time complexity for constructing ΞA and ΞB is O
(
k(n− k)nqk

)
operations.

Remark 3.6.8. We can also apply this algorithm on each ej with either the linear code H(C ) since

for any permutation σ we haveH(C σ) = H(C )σ from Proposition 1.3.2, or with C⊥ especially when

n− k < k.

3.7 Finding a solution by Puncturing

In this section we study the effect of puncturing on the equivalent codes. We see, in some cases

where the codes have trivial hull and trivial permutation group, that we can identify the permutation
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by puncturing. We puncture the codes A and B in a chosen coordinates i and j, respectively, and

we construct the linear system E′ for the punctured codes. Then we can identify if we have made a

wrong guess for i and j by looking at the rank of E ∪ E′ where with the correct guess we expect to

get a smaller rank.

3.7.1 Method Description

The method processes the following steps in order to retrieve one permutation between two [n, k]
linear codes.

1: Input: Two generator matrices GA and GB .

2: Output: A permutation fulfilling the equivalence.

3: Construct the linear system E.

4: S ← ∅.
5: for i := 1 to n do

6: G′
A
← GA punctured in the coordinate i.

7: for j := 1 to n do

8: if j does not correspond to any previous i (check S) then

9: G′
B
← GB punctured in the coordinate j.

10: Construct the linear system E′ that corresponds to the punctured codes.

11: if the “guess is correct” using rank(E ∪ E′) then

12: add (i, j) to S and go to the next i.
13: end if

14: end if

15: end for

16: end for

17: return S.

Experimentally we found that we can distinguish between the correct and wrong guess by looking

at the rank of the system E ∪ E′ where the correct guess results in a smaller rank. The difference

between ranks of correct and wrong guesses is 1. Thus the algorithm requires comparison of ranks

that are computed in different steps. In the next section we analyze this method.

The algorithm does not always terminate successfully. We also present next when the algorithm

succeeds and when it fails. Note that the algorithm tries to find only one solution and not all the

solutions. It can be also used to find a small set of solutions.

3.7.2 Analysis of the Method

In order to see when the puncturing algorithm ends successfully and to show also the difference

between ranks of correct and wrong guess is 1 we can look at the puncturing in a different way.

When we puncture columns i and j in GA and GB , respectively, this corresponds to the guess that

the permutation P maps column i in GA to column j in GB , since GB = SGA P , thus the element

xi,j = 1 in P . Setting the element xi,j to be 1 adds 2n − 1 equations to the linear system. Thus we

have the equations:
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Gi,j :





xi,j = 1
xi,k = 0, 1 6 k 6 n, k 6= j
xk,j = 0, 1 6 k 6 n, k 6= i.

Remark 3.7.1. Note that the equations of Gi,j are linearly independent, thus the rank of Gi,j is 2n−1
and the equations

n∑
k=1

xi,k = 1 and
n∑

k=1

xk,j = 1 are linearly dependent on Gi,j .

Now instead of constructing the system E′ that corresponds to the column puncturing and considering

E ∪ E′ we can consider the system E∗ = E ∪Gi,j . Let E∗ be the matrix that corresponds to E∗. We

can reorder the columns of E∗ such that the columns that are related to the unknowns of Gi,j appear

at the right end of the matrix. Thus we have at least 2n− 1 equations in 2n− 1 unknowns by looking

at the last block of E∗. The following block matrix explains the structure of E∗

E∗ =




E

1 0
. . .

...
1 0

0 1 1
1 0

. . .
...

1 0




The way that we distinguish between the correct and wrong guess is by putting E∗ in the row echelon

form provided that with the wrong guess the system produces, by Gaussian elimination, one more

equation that is independent of Gi,j in the last block, thus the system has no solution. In the case of

correct guess, even if the system produces an equation in the last block it will be linearly dependent

on the existing equations.

Looking back to the case where we have block linear equation, in this case we know that the system

always contains at least three equations in the block of the last 2n − 1 columns. Two equations are

linearly dependent on Gi,j according to Remark 3.7.1, namely
∑n

k=1 xi,k = 1 and
∑n

k=1 xk,j = 1.

The status of the last equation, if dependent or not, enables to distinguish between the correct and

wrong guess.

We denote by G∗
i,j the subsystem of E∗ that contains only the unknowns of Gi,j . Then we have the

following proposition:

Proposition 3.7.2. We can identify our guess is wrong if the subsystem G∗
i,j has no solution.

Next we rewrite the puncturing algorithm in terms of the new description.

1: Input: Two generator matrices GA and GB .

2: Output: A permutation fulfilling the equivalence.

3: Construct the system E and its matrix E.

4: S ← ∅.
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5: for i := 1 to n do

6: for j := 1 to n do

7: if j does not correspond to any previous i (check S) then

8: Construct E∗ = E ∪Gi,j and let E∗ be its matrix.

9: Bring E∗ to the echelon form.

10: if the subsystem G∗
i,j has no solution then

11: continue to the next j,
12: else

13: add (i, j) to S
14: continue to the next i.
15: end if

16: end if

17: end for

18: end for

19: return S.

This algorithm tries to exclude wrong guesses and to find one solution. It terminates successfully when

the hull is trivial, the system has a unique solution and 1n /∈ C and 1n /∈ C⊥ with C ∈ {A ,B}. If

the system has many solutions and we want to find them we need to cancel the check in line 7 in the

algorithm. Thus we have for each i many options of j and we have like a tree. If the tree of small size

then we can validate all solutions against the system to find the correct ones.

The puncturing algorithm, to retrieve a single permutation, punctures the codes at most n2 times and

performs Gaussian elimination for each punctured codes. Thus the complexity is O(n2 × n2ω) =
O(n2(ω+1)).

Problems of the Method

As we have seen from the description of the method it is clear that it has some shortages and in some

cases does not terminate successfully, below we discuss these case.

• The first problem is that we need the system to produce at least on linearly independent equation of

Gi,j when we do the wrong guess, otherwise this guess is considered correct even if it is wrong.

• If the system has large solution set and we want to find all the solutions then the algorithm produces

with each coordinate i a list of coordinates j1, . . . js that can be related to it by different permuta-

tions. Now we need to do additional work to find the correct permutations solutions. This might

have high complexity depending on the size of the solution set.

3.8 ISD Approach

In this section we discuss how information set decoding (ISD) can be used to solve permutation

equivalence.
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3.8.1 ISD in Brief

Information Set Decoding (ISD) algorithms are the best known algorithms to decode linear codes

without previous knowledge about the code structure. ISD algorithms are probabilistic where the

algorithm succeed with some probability. The idea of ISD is to find a set of error-free coordinate

positions in the encrypted message and the restriction of the code generator matrix to these coordinate

positions is invertible. One can find the original message by multiplying the encrypted message by

the inverse of the restricted matrix. ISD is also used to find a codeword of a specific weight w and this

case is of interest for our equivalence problem.

There are many variants of ISD algorithms. They are introduced with the analysis of their complexity

in Appendix C.

3.8.2 Solving PEP with ISD

Here we show how to adopt ISD to solve our equivalence problem PEP. Consider our linear system L

that is related to PEP, we can write L : LP = 0 with

L =

(
HB ⊗GA

GB ⊗HA

)

The idea is that, we consider L as a parity check matrix of a linear code L of length n2. Our target

is to find a codeword of weight n in L . The dimension of L is n2 − rank(L). Since rank(L) =
2k(n− k)− h2 as in Proposition 3.2.23 then the dimension of L is k = n2 − 2k(n− k) + h2.

Let R be the rate of the codes under the equivalence test and λ is the rate of their hull then the rate

of the code L is 1 − 2R(1 − R) + λ2. Looking at the code L , our permutation solutions for PEP

are codewords of weight n with a specific structure in L . Thus we can use the ISD algorithms as

presented in the previous section to find such codewords.

Complexity of PEP with ISD

Consider the bound of the asymptotic complexity of ISD algorithm introduced in [79], see Ap-

pendix C. Applying this bound to find the asymptotic complexity of solving PEP with ISD we have

w = n with limn→∞ n/n2 = 0 and the rate of the code is 1 − 2R(1 − R) + λ2. Thus we have the

following proposition:

Proposition 3.8.1. The work factor of solving PEP using ISD is about

2

(
−n log2(2R(1−R)−λ2)

)(
1+O(1)

)

3.9 Conclusion

This chapter was devoted to permutation equivalence problem. We introduced our algebraic model

for the problem. We proved that the problem is well-described using our model. In an initial attempt

to solve the system we used Groebner basis. Using Groebner basis we are able to solve the problem
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but we get high complexity as the length of the code increases. We observed that when the hull is

trivial we can add many linear equations before solving the system. This technique is called block

linearization which utilizes block equations to find values of unknowns. When block equations exist

for each block we can solve the problem efficiently. Frobenius action is used over extension fields

to improve the linear part of the system. Experimentally, combining Frobenius action with block

linearization enables to extend the range of solving for codes with non-trivial hull.

To handle the general case of no-trivial hull we introduced two approaches. The first approach is

based on the supplementary of the hull which can be obtained by using the shortened codes. In this

case we obtain codes with trivial hulls then we can apply block linearization to solve the problem.

The probability that the resulting shortened codes are equivalent is at least
h!(
n
h

) . The second approach

is based on the closest vector problem. We constructed n2 linear equations in the n2 unknowns of the

permutation using the closest vectors to the standard vectors in the two codes. This method results in

a complexity of O
(
k(n− k)nqk + n2ω

)
.

In another method of solving permutation equivalence we focused on the linear part of the system.

We used the ISD to find a codeword of weight n in a code of length n2 which gave an exponential

complexity. We also considered the punctured codes to find the permutation between the equivalent

codes. In this case we were able to retrieve the permutation when we have a unique solution beside

having block equation for each block.
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Diagonal Equivalence Problem (DEP)

In this chapter we introduce new approaches to solve DEP. We introduce algebraic model for the

problem and use Groebner basis techniques to find solutions. Groebner basis computation for DEP

seems to be much harder than PEP. We modify the algebraic model to get better performance with

Groebner basis computation. We reduce DEP to PEP using the notion of the closure and use some of

the techniques that we developed in the previous chapter to solve the problem. The main disadvantage

of using the closure is that it expands the length of the code by a factor proportional to the underlying

field size, thus we get extra variables in our model. We improve the model of the closure where we

reduce the number of unknowns in the system by using the notion of puncturing permutation. This

approach turns out to be very useful when combined with Frobenius action, block linearization and

try and guess strategies over small fields, namely F3 and F4. As in PEP, information set decoding

(ISD) is also used to solve DEP. Let us first recall the definition of DEP

Let C and C ′ be two [n, k] linear codes over Fq. We say C and C ′ are diagonally equivalent if there

exist (α1, α2, . . . , αn) ∈ F∗
q and a permutation π ∈ Sn such that

C
′ = {(α1cπ(1), α2cπ(2), . . . , αncπ(n)) : (c1, c2, . . . , cn) ∈ C }.

In other words, the codewords of C ′ results from the codewords of C by permutation of coordinate

entries and scaling each coordinate by a nonzero element from Fq. Note that, when αi = 1 for

1 6 i 6 n this is simply permutation equivalence.

In terms of generator matrices, let G and G′ be the generator matrices of C and C ′, respectively. We

say C and C ′ are diagonally equivalent if there exists a k×k invertible matrix S, an n×n permutation

matrix P and an invertible diagonal matrix D such that

G′ = SGPD.

The matrix PD is called monomial matrix which is similar to permutation matrix but with exactly one

nonzero element from the underlying field in each row and column. This element is not necessarily

one as in the permutation case.

The decisional version of DEP is to decide if two given [n, k] linear codes are diagonally equivalent

or not where the computational version is to find the permutations and the elements αi, 1 6 i 6 n
(the diagonal matrices) by which the two codes are equivalent.

65
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4.1 Relation with Automorphism Group

In this section we see how the two problems of DEP and finding automorphism group of linear codes

are closely related.

Proposition 4.1.1. Let A be a linear code of length n, AA the automorphism group of A and σ a

linear isomorphism of A that preserves the hamming distance. The set of linear isomorphisms of A

that preserve the hamming distance γ such that A
γ−→ A σ is exactly the set σAA

def
= {στ : τ ∈

AA }.

Proof. Clearly any σAA is a solution to the equivalence problem between A and A σ. Now let us

assume that γ is such that A
γ−→ A σ. Since by assumption we also have A

σ−→ A σ, we deduce that

σ−1γ belongs to AA , which terminates the proof. �

The next proposition shows that the permutation groups of the equivalent codes are isomorphic.

Proposition 4.1.2. The automorphism groups of the diagonally equivalent codes are isomorphic.

Proof. Let AA and AB be the automorphism groups of the two equivalent codes B = A σ. Define

the mapping φ : AA → AB by φ(π) = σπσ−1. It is easy to verify that φ is an isomorphism. �

Proposition 4.1.2 shows that if we can find the automorphism groups of equivalent codes we can find

the solution of the equivalence by finding the isomorphism between the two automorphism groups.

The group isomorphism problem is known to be not harder than graph isomorphism problem [65].

We can look at the problem of finding the automorphism group of a code as a special case of the DEP

where A = B.

4.2 Algebraic Model

In this section we introduce two algebraic models for DEP and give a proof that they describe the

problem. We compare between these models and solve the problem using Groebner basis. We first

proof some properties of diagonal equivalence.

Proposition 4.2.1. Let A and B be two diagonal equivalent [n, k] linear codes over a field Fq and

let D be the diagonal matrix corresponding to the equivalence then DZ is another diagonal matrix

that satisfies the equivalence, where Z = αIn with α ∈ F∗
q .

Proof. Let GA and GB be the generator matrices of A and B respectively, thus by diagonal equiv-

alence GB = SGA PD. Considering Z we have

SGA PDZ = SGA PD(αIn) = (αS)GA PD

where (αS)GA is another basis for the code A . Thus DZ also satisfies the equivalence between A

and B. �

Corollary 4.2.2. Let A and B be two diagonal equivalent [n, k] linear codes over a field Fq. The

number of linear isometries between A and B that preserve the weight is multiple of q − 1.
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Proposition 4.2.3. Let A and B be two diagonal equivalent [n, k] linear codes and let GA ,GB,HA

and HB their generator and parity check matrices respectively. Then

GA PDHT
B = 0

Proof. Since A and B are equivalent then there exist an invertible matrix S, a permutation matrix P

and an invertible diagonal matrix D such that

GB = SGA PD.

We know that GBHT
B

= 0 thus we have

SGA PDHT
B = 0⇒ GA PDHT

B = 0

�

Corollary 4.2.4. Let X = PD and let X be the column vector results by stacking the columns of X

then

(HB ⊗GA )X = 0

Proposition 4.2.5. Two linear codes are diagonal equivalent by the monomial matrix X = PD if

and only if their dual codes are diagonal equivalent by the monomial matrix X ′ = PD−1.

Proof. Let C be a linear code, X = PD an n×nmonomial matrix, and (C )X a diagonal equivalent

linear code of C , we show that ((C )X)⊥ = (C⊥)X ′.

For all c ∈ C , x ∈ ((C )X)⊥ ⇔ 〈x, cPD〉 = 0 ⇔ x(cPD)T = 0 ⇔ xDP TcT = 0 ⇔
(xDP T )cT = 0 ⇔

〈
xDP T , c

〉
= 0 ⇔ xDP T ∈ C⊥ ⇔ x ∈ (C⊥)(DP T )−1 ⇔ x ∈

(C⊥)PD−1, since (P T )−1 = P .

The other direction is obvious since the dual of the dual is the code itself. �

If HB and HA are two parity check matrices of two diagonal equivalent codes then one can write

HB = THA PD−1 where T is an invertible matrix.

In a similar way to Proposition 4.2.3 and Corollary 4.2.4 one can show the following

Corollary 4.2.6.

HA X ′GT
B = 0 and (GB ⊗HA )X ′ = 0

where X ′ is the column vector results by stacking the columns of X ′ = PD−1.

We can state a proposition similar to the one in the permutation case as follows

Proposition 4.2.7. Let A and B be two [n, k] linear codes with generator matrices GA and GB

and parity check matrices HA and HB respectively, then the following statements are equivalent

• A and B are diagonal equivalent.

• There exists an n× n monomial matrix X = PD such that GA XHT
B

= 0

• There exists an n× n monomial matrix X ′ = PD−1 such that HA X ′GT
B

= 0
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Let α be a primitive element in the field Fq, thus Fq = 〈α〉. The monomial matrix X = (xi,j) can be

described by the following algebraic equations

xi,jxi′,j = 0 for i 6= i′

xi,jxi,j′ = 0 for j 6= j′

The previous equations does not prevent zero matrix and zero rows and columns thus we need the

following equations

q−1∏

k=1

(
n∑

i=1

xi,j − αk

)
= 0, 1 6 j 6 n

q−1∏

k=1




n∑

j=1

xi,j − αk


 = 0, 1 6 i 6 n

One can easily verify that a matrix X = (xi,j) is a monomial matrix if and only if it satisfies these

set of equations. From one side any monomial matrix must verify these equations. From the other

side the first two equations show that each row and each column in X contains at most one nonzero

element. The last two equations show that it is not possible for all elements of row or column to be

zero. Moreover if a row or a column contains more than one nonzero element this will violate the first

two equations.

Below we present a minimized set of equations that describe the monomial matrix.

Proposition 4.2.8. Let X = (xi,j) be n × n matrix then X is a monomial matrix if and only if it

satisfies the following set of equations

(1)

xi,j′xi,j = 0, 1 6 j′ < j 6 n, 1 6 i 6 n

(2)
q−1∏

k=1

(
n∑

i=1

xi,j − αk

)
= 0, 1 6 j 6 n

Proof. It is clear that if X is a monomial matrix it satisfies the equations in (1) and (2).

On the other hand, the first set of equations states that any row has at most one nonzero element thus

X contains no more than n nonzero elements. The second set of equations states that X cannot have

zero column.

Suppose X has zero row, there are two cases:

1. The matrix X contains less than n nonzero elements thus it has zero column, this contradicts

the equations in (2).

2. The matrix X contains exactly n nonzero elements thus there is a row with more than one

nonzero element. This violates the first set of equations.
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Now assume that there is a column contains more than one nonzero elements this implies that there

must be zero column since X contains at most n nonzero elements. �

Corollary 4.2.9. Let X = (xi,j) be n × n matrix then X is a monomial matrix if and only if it

satisfies the following set of equations

xi′,jxi,j = 0, 1 6 i′ < i 6 n, 1 6 j 6 n

q−1∏

k=1




n∑

j=1

xi,j − αk


 = 0, 1 6 i 6 n

We can distinguish between two algebraic models which differ according to the method that we use

to express the monomial matrix X .

4.2.1 First Model

The first model contains n2 unknowns that correspond to X = (xi,j) and contains equations of

maximum degree q − 1. The model has the following equations

D1 :





(HB ⊗GA )X = 0

xi,j′xi,j = 0, 1 6 j′ < j 6 n, 1 6 i 6 n∏q−1
k=1

(∑n
i=1 xi,j − αk

)
= 0, 1 6 j 6 n

Theorem 4.2.10. Let A and B be two diagonal equivalent [n, k] linear codes over a field Fq. The

matrix X fulfills the equivalence between A and B if and only if it is a solution for the system D1.

Proof. (⇒) Assume that X is a matrix that fulfills the equivalence between A and B thus it satis-

fies the set of monomial equations. From Corollary 4.2.4 and 4.2.6, X satisfies also the system of

equations

(HB ⊗GA )X = 0

with X = PD.

(⇐) To prove the other direction, assume that X is a solution for the system D1 thus by Proposi-

tion 4.2.8, X is a monomial matrix. The matrix X satisfies the system

(HB ⊗GA )X = 0

Thus

GA PDHT
B = 0⇒ SGA PDHT

B = 0

for any k × k invertible matrix S. Thus we can write GB = SGA PD hence, by the definition of

diagonal equivalence, X fulfills the equivalence between A and B. �

Proposition 4.2.11. The rank of the linear part of D1 is k(n− k).
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n k #Sol Deg Time (s) Memory (MB)

6 3 8 4 25.059 25

8 4 8 4 21.737 25

10 5 2 3 22 26

12 6 2 3 25.858 27.539

14 7 2 3 29.984 29.885

16 8 2 3 213.643 212.580

18 9 2 3 216.188 214.752

20 10 2 3 218.987 216.9726

Table 4.1: Solving DEP using D′
1 with F4 algorithm for random codes over F3

• #Sol: Number of actual solutions.

• Deg: Maximum degree reached during Groebner basis computation.

We add some extra linear equations to D1 in order to see the effect in Groebner basis computation.

Unfortunately in this case adding extra linear equations leads to extra variables in the system or extra

equations of large degree.

Consider the system D′
1 as follows

D′
1 :





(HB ⊗GA )X = 0

(GB ⊗HA )X ′ = 0

xi,j′xi,j = 0, 1 6 j′ < j 6 n, 1 6 i 6 n∏q−1
k=1

(∑n
i=1 xi,j − αk

)
= 0, 1 6 j 6 n

x′i,j = xq−2
i,j , 1 6 i, j 6 n

where X ′ = (x′i,j) = PD−1 thus we have x′i,j = xq−2
i,j , 1 6 i, j 6 n.

This system is constructed from D1 by adding extra linear equations this leads to extra variables.

Using Groebner basis to solve DEP is complex in general. By experiments we have not managed to

finish the computation of Groebner basis for q > 5 for n > 20. The experiments are implemented in

a server Intel Xeon with 2.30GHz processor and 128GB memory.

Table 4.1 uses the system D′
1 and considers the favorable case where the codes are random (the hull

is zero or of small size) with rate 0.5 over F3 to get a linear system of a larger rank. Note that over F3

we have α−1 = α for all α ∈ F∗
3 thus X ′ = X .

4.2.2 Second Model

This model contains n2+n variables that correspond to the variables of permutation matrix P = (pi,j)
plus the variables of diagonal matrix D = diag(λ1, . . . , λn) since X = PD. The maximum degree

appears in these equation is q − 1.

In this model instead of considering the monomial matrix as one matrix we take care of its structure

as a permutation matrix multiplied by a diagonal matrix.

Next we recall Proposition 3.2.8 which gives a minimized set of equations that describe the permuta-

tion P .
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Proposition 4.2.12. Let P = (pi,j) be n × n matrix then P is a permutation matrix if and only if it

satisfies the set of equations:

1. pi,jpi′,j = 0 such that i 6= i′ and,

2.
∑n

j′=1 pi,j′ = 1 with 1 6 i 6 n

The diagonal matrix can be described by n variables λ1, . . . , λn ∈ Fq with λi 6= 0 for 1 6 i 6 n.

Thus satisfy the following equation

q−1∏

k=1

(
n∏

i=1

λi − αk

)
= 0

or in an equivalent way one can write

q−1∏

k=1

(
λi − αk

)
= 0, 1 6 i 6 n

Proposition 4.2.13. Let X be an n × n matrix with entries from Fq, X is a monomial matrix if and

only if it can be written as X = PD with P = (pi,j) an n × n matrix and D is a diagonal matrix

with λ1, . . . , λn in the diagonal with P and D satisfy the following system of equations

1. pi,jpi′,j = 0 such that i 6= i′,

2.
∑n

j′=1 pi,j′ = 1 with 1 6 i 6 n,

3.
∏q−1

k=1

(
λi − αk

)
= 0, 1 6 i 6 n.

D2 :





(HB ⊗GA )PD = 0

∑n
j′=1 pi,j′ = 1, 1 6 i 6 n

pi,jpi′,j = 0, i 6= i′

∏q−1
k=1

(
λi − αk

)
= 0, 1 6 i 6 n

The next theorem shows that the system D2 is quite sufficient to describe DEP.

Theorem 4.2.14. Let A and B be two diagonal equivalent [n, k] linear codes over a field Fq. Let

X = PD with P = (pi,j) is an n× n permutation matrix and D = diag(λ1, . . . , λn) is a diagonal

matrix. The matrices P and D fulfill the equivalence between A and B if and only if they are solution

for the system D2.

Proof. We prove only (⇐). Assume that P and D satisfy D2. It is clear, from Proposition 4.2.13,

that P is a permutation matrix and D is a diagonal matrix thus X is a monomial matrix. Since X

satisfies the system

(HB ⊗GA )X = 0

thus X satisfies the equivalence between A and B, see Theorem 4.2.10. �

Proposition 4.2.15. The rank of the linear part of D2 is 6 k(n− k) + n.
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n k #Sol Deg Time (s) Memory (MB)

6 3 48 4 20.578 25

8 4 16 3 20.926 25

10 5 2 3 24.225 27.170

12 6 2 3 25.833 28.006

14 7 4 3 211.369 211.420

16 8 2 3 211.978 212.001

18 9 2 3 211.956 212.682

20 10 2 3 216.801 214.702

Table 4.2: Solving DEP using D′
2 with F4 algorithm for random codes over F3

• #Sol: Number of actual solutions.

• Deg: Maximum degree reached during Groebner basis computation.

Considering the system D2. It is also complex to solve DEP with this model as explained in Table 4.2

where the favorable parameters are used in the tests. Note that this model does not contain linear

equations except the equations that correspond to the permutation.

We can slightly modify D2 and consider the modified system D′
2

D′
2 :





(HB ⊗GA )PD = 0

(GB ⊗HA )PD′ = 0

∑n
j′=1 pi,j′ = 1, 1 6 i 6 n

pi,jpi′,j = 0, i 6= i′

∏q−1
k=1

(
λi − αk

)
= 0, 1 6 i 6 n

λ′i = λq−2
i , 1 6 i 6 n

This system contains more equations but this also increases the number of variables where we have

n2 + 2n variables. We know that D′ = diag(λ′1, . . . , λ
′
n) = D−1 thus we have the equations

λ′i = λq−2
i , 1 6 i 6 n.

The favorable case for the system D′
2 is to be used for random codes over F3 where we have α−1 = α

for all α ∈ F∗
3 and we do not need to define extra variable. It is also useful in terms of algorithmic

aspect to add all linear equations of the permutation. Table 4.2 shows experimental results in this case.

The experiments show that using D′
2 is less complex than D′

1 as parameters are getting larger.

4.3 DEP and ISD

In this section we describe how to use the ISD approach to solve DEP. We have described similar

approach for PEP. Brief background about ISD can be found in Appendix C.

We consider the linear system

(HB ⊗GA )X = 0
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We assume that the matrix (HB ⊗GA ) is a parity check matrix for an [n2,K] linear code L with

K = n2 − k(n − k). Our target is to find a codeword of weight n in L . The ISD algorithm can be

used to find such a codeword.

Proposition 4.3.1. Let R be the rate of the original codes under the equivalence test then the rate of

the code L is 1−R(1−R).

Looking at the code L , our solutions of DEP are codewords of weight n (vector representation of a

monomial matrix) and have a specific structure in L . Thus we can use the ISD algorithms to find

such codewords.

We recall the bound of ISD complexity introduced in [79].

Let n be length of a code C , R is the code rate and ISD is looking for a codeword of weight w with

limn→∞w/n = 0 the work factor of ISD is: 2cw(1+O(1)) when n grows, and c = − log2(1− R) is a

constant.

Proposition 4.3.2. The work factor of solving DEP using ISD is about

2

(
−n log2(R(1−R))

)(
1+O(1)

)

PEP with ISD over F3

Over F3 as before we can use linear system of larger number of equations. In this case the bound of

ISD is similar to the one introduced for PEP since the rank is 2k(n− k)− h2. Assuming that the rate

of the hull is λ, thus we have work factor

2

(
−n log2(2R(1−R)−λ2)

)(
1+O(1)

)

4.4 Reduction to PEP

In this section we study how to use the reduction of DEP to PEP that is introduced in Section 1.4. We

use the techniques developed in the previous chapter to solve the reduced problem. The resulting code

has larger length thus we need to consider larger number of unknowns while the dimension remains

unchanged. Firstly we recall the definition of the closure of the code

Definition 4.4.1. Let C be [n, k] linear code over Fq = {0, 1, α, α2, . . . , αq−2}, we define the closure

C̃ of C to be the [n(q − 1), k] linear code:

C̃ = {c⊗ (α, . . . , αq−1) : c ∈ C }
= C ⊗ (α, . . . , αq−1)

Assume that we want to solve DEP between two [n, k] linear codes A and B over Fq with closures

Ã and B̃ respectively, the closures are [N, k] linear codes with N = n(q − 1). Let G̃A , G̃B and

H̃A , H̃B the generator and parity check matrices of Ã and B̃ respectively. The algebraic model that

describes the reduced problem is
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S :





(H̃B ⊗ G̃A ) P = 0

(G̃B ⊗ H̃A ) P = 0

(1T
N ⊗ IN ) P = 1N

(IN ⊗ 1
T
N ) P = 1N

xi′,jxi,j = 0, 1 6 i′ < i 6 N, 1 6 j 6 N

Here P is an N2 × 1 matrix. Let P̃ be the permutation matrix that corresponds to P . One can

notice that the equations in the system S that correspond to P̃ describe the general structure of a

permutation. Our permutation P̃ has more internal structure that can be used to improve the system

and add a lot of equations.

The permutation P̃ is composed of n × n blocks of size q − 1 × q − 1 each block is either 0 or a

permutation. The following matrix gives an example with n = 4 for the structure of P̃ over Fq.




0 0 P 1 0

P 2 0 0 0

0 0 0 P 3

0 P 4 0 0




where each block is of size (q− 1)× (q− 1). Before we continue to introduce the equations we need

to consider the group structure of a monomial matrix. Let D(n,Fq) be the group of n × n invertible

diagonal matrices over Fq and Sn the group of n× n permutation matrices. Note that

D(n,Fq) ≡ (F∗
q)

n

We can look to the group of n× n monomial matrices as a semidirect product

D(n,Fq)⋊ Sn

This imposes a cyclic structure on P̃ . That is if we assume P is a (q−1)× (q−1) permutation block

in P̃ then P has the following structure

P =




0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0

...
. . .

0 . . . 0 1
1 0 . . . 0

. . . . . .
...

0 0 1 . . . 0




Thus P i is completely determined by a location of one 1.

Considering this structure of P̃ one can add large number of linear equations. Consider the block

B = (xe,f )16e,f6q−1 in P̃ then we have the following linear equations

x1,k = x1+a, k+a−1 mod (q−1) +1, 1 6 a 6 q − 2, 1 6 k 6 q − 1
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We can write the equations for each block in a similar way. All these equations are linearly indepen-

dent since they use different set of variables. The number of equations per block is (q−2)(q−1) thus

for all blocks is n2(q − 2)(q − 1). Note that the number of variables in the system is n2(q − 1)2.

The linear equations added by using the structure of P̃ contributes positively to Groebner basis com-

putation but the complexity is higher than the permutation case for all q > 3. Note that over extension

field, q = pm we can improve the system using m− 1 Frobenius action.

Experimentally, using this approach with the methods that we have developed for PEP such as block

linearization do not solve DEP. That is due to the small rate of the closure and the large number

of variables which results in a linear system of small rank in addition to that the closure is weakly

self-dual over Fq with q > 4.

4.5 New Modeling Based on the Closure

In this section we present a new algebraic model based on the closure of the code. This model is more

efficient than the previous model since it involves less number of variables in the initial system. The

matrix of variables P̃ is not a permutation, it has similar structure to the permutation but with zero

rows allowed, we call it puncturing permutation.

Definition 4.5.1. Let n and r be positive integers and P be an nr × n binary matrix. P is called

puncturing permutation if every column contains exactly one 1 and each block of r rows Ri, that

contains the rows of indexes (i− 1)r + 1 6 j 6 ir for 1 6 i 6 n, contains exactly one 1.

Note that, when r = 1 the above definition coincides with the definition of the normal permutation.

Example 4.5.2. An example of a puncturing permutation with n = 4 and r = 2.

P̃ =




0 0 0 0
0 1 0 0

1 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0

0 0 1 0
0 0 0 0




Let A and B be two diagonal equivalent codes with GA ,GB and HA ,HB their generator and

parity check matrices thus we have

GB = SGA PD

In terms of closure of the code we have

G̃B = S̃G̃A P̃

We can adopt a hybrid model between the original one and the model of the closure.
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Proposition 4.5.3. Let GA be a generator matrix of an [n, k] linear code A over Fq = 〈α〉, P an

n × n permutation matrix and D an n × n diagonal matrix such that D = diag(αl1 , . . . , αln). We

can always find an n(q − 1)× n puncturing permutation matrix P̃ such that

GA PD = G̃A P̃

Proof. Let ai,j be the element in row i and column j in GA PD, then we can write ai,j = αljgiP j

where gi is row i in GA and P j is column j in P . To obtain the same element in G̃A P̃ let P̃ j be

column j in P̃ . The column P̃ j can be seen as an n blocks of size q − 1 where every block is zero

except one block that contains one 1. The index of the nonzero block in P̃ j corresponds to which

column is scaled where the position of the 1 in the nonzero block corresponds to the scalar, in this

case the index is lj . Thus we write

P̃
T

j =
(
0
T
q−1 . . . 0

T
q−1 IT

lj 0
T
q−1 . . . 0

T
q−1

)

where 0q−1 is zero vector of size q− 1 and I lj is the lj column in the q− 1× q− 1 identity matrix I .

To prove that each block of rows contains exactly one 1, assume that there is no duplicate or zero

columns in GA otherwise they can be removed. Let R be the block of q − 1 rows of P̃ that contains

P j , the jth column from P . This block contains exactly one 1 that corresponds to P j all other

elements inR are zeros, otherwise there is one column scaled by two different scalars, this contradicts

that we do not have duplicate or zero column. �

This shows that there is exactly n ones in P̃ these ones must spread in different columns otherwise P̃

contains zero column. Thus P̃ is a puncturing permutation matrix of n(q − 1) rows and n columns.

Consider the puncturing permutation P̃ in Example 4.5.2. We give the corresponding permutation P

and diagonal matrix D over F3.

P =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


D =




2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2




Note that, for any generator matrix

G =
(
G1 . . . Gn

)

we have

G̃P̃ = GPD

4.5.1 Algebraic Model

In this section we develop algebraic model that describes DEP with the new approach. We deduce

equations from the equivalence and equations that describe the puncturing permutation.
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Proposition 4.5.4. Let A and B be two diagonal equivalent codes with generator matrices GA and

GB respectively, such that GB = SGA PD for some permutation and diagonal matrices P and D

respectively. Then we have

GB = SG̃A P̃

where G̃A is the generator matrix of the closure of A and P̃ is a puncturing permutation matrix.

Proposition 4.5.5. Let C be a linear code with parity check matrix H and closure C̃ . Let H̃
−1

=

H ⊗
(
α−1 . . . α−(q−1)

)
. Then H̃

−1
generates a subcode of C̃⊥.

Proof. Let G be the generator matrix of C and

G̃ = G⊗
(
α . . . α(q−1)

)
.

be the generator matrix of C̃ then it is easy to check that

H̃
−1

G̃
T
= 0

Let x be a row from G and y a row from H then we have x.y = 0. The corresponding product for

the closure will give (q − 1)(x.y) = 0. �

Next we provide the first set of equations in our algebraic model

Theorem 4.5.6. Let A and B be two diagonal equivalent codes with generator matrices GA and

GB respectively, such that GB = SGA PD for some permutation and diagonal matrices P and D

respectively. Let HA and HB be the parity check matrices for A and B, respectively Then we have

{
(HB ⊗ G̃A ) P̃ = 0

(GB ⊗ H̃A

−1
) P̃ = 0

Where G̃A is the generator matrix of the closure of A , H̃A

−1
as defined before and P̃ is the column

representation of the puncturing permutation P̃ .

Proof. From Proposition 4.5.4 we have

GB = SGA PD = SG̃A P̃

Since we know

GBHT
B = 0

Thus we have

G̃A P̃HT
B = 0

⇒ (HB ⊗ G̃A )P̃ = 0

To prove the second part we know

HB = THA PD−1 and

HA PD−1 = H̃A

−1
P̃
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Thus we have

HBGT
B = 0

⇒ H̃A

−1
P̃GT

B = 0

⇒ (GB ⊗ H̃A

−1
)P̃ = 0

�

Let P̃ = (xi,j) be an n(q − 1) × n puncturing permutation. Then P̃ is described by the following

system of equations

P :





∑n(q−1)
i=1 xi,j = 1, 1 6 j 6 n∑n
j=1

∑l(q−1)
i=(l−1)(q−1)+1 xi,j = 1, 1 6 l 6 n

x2i,j = xi,j , 1 6 i 6 n(q − 1), 1 6 j 6 n

xi′,jxi,j = 0, 1 6 i′ < i 6 n(q − 1), 1 6 j 6 n
xi′,j′xi,j = 0, (l − 1)(q − 1) + 1 6 i′, i 6 l(q − 1), 1 6 l 6 n,

1 6 j′, j 6 n, j′ 6= j.

One can easily verify that if an n(q − 1)× n matrix P̃ satisfies P then it is a puncturing permutation

with the required structure.

In fact we do not need all these equations to describe P̃ . The following proposition presents a reduced

set of equations.

Proposition 4.5.7. Let P̃ = (xi,j) be an n(q − 1)× n puncturing permutation. Then P̃ is described

by the following system of equations

P′ :

{ ∑n
j=1

∑k(q−1)
i=(k−1)(q−1)+1 xi,j = 1, 1 6 k 6 n

xi′,jxi,j = 0, 1 6 i′ < i 6 n(q − 1), 1 6 j 6 n

Proof. Assume that P̃ is an n(q−1)×n matrix that satisfies the algebraic system P′. The second set

of equations states that each column contains at most one nonzero element, thus P̃ contains at most n
nonzero elements. The first set of equations shows that the sum of each row block is 1. Assume that

there is one row block contains more than one nonzero elements thus there exists one row block is 0

which contradicts the first set of equations. Thus there is exactly one nonzero element for each block

which is equal to 1 and we have exactly n ones in P̃ . The n ones are distributed in different columns

otherwise the second set of equations is violated. �

Now we are ready to present our algebraic system that models DEP. As we have done in the permuta-

tion case, in this model we add the maximum number of linear equations. This enhances the system

when solving. We can also add the equations that restrict the solutions to binary elements.
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S :





(
HB ⊗ G̃A

)
P̃ = 0(

GB ⊗ H̃A

−1
)

P̃ = 0

∑n(q−1)
i=1 xi,j = 1, 1 6 j 6 n∑n
j=1

∑k(q−1)
i=(k−1)(q−1)+1 xi,j = 1, 1 6 k 6 n

x2i,j = xi,j , 1 6 i 6 n(q − 1), 1 6 j 6 n

xi′,jxi,j = 0, 1 6 i′ < i 6 n(q − 1), 1 6 j 6 n

Proposition 4.5.8. The set of equations

n(q−1)∑

i=1

xi,j = 1, 1 6 j 6 n

can be written in terms of Kronecker product

(
In ⊗ 1n(q−1)

)
P̃ = 1

T
n

Proposition 4.5.9. The set of equations

n∑

j=1

k(q−1)∑

i=(k−1)(q−1)+1

xi,j = 1, 1 6 k 6 n

can be written in terms of Kronecker product

(
M ⊗ 1(q−1)

)
P̃ = 1

T
n

where M is an n×n2 matrix with each row has exactly n ones and the other elements are zeros. The

locations of the ones in row r, 1 6 r 6 n are i× n+ r, 0 6 i 6 n− 1.

Now we can rewrite the system S in terms of Kronecker product using the previous propositions as

follows

S :





(
HB ⊗ G̃A

)
P̃ = 0(

GB ⊗ H̃A

−1
)

P̃ = 0

(
In ⊗ 1n(q−1)

)
P̃ = 1

T
n(

M ⊗ 1(q−1)

)
P̃ = 1

T
n

x2i,j = xi,j , 1 6 i 6 n(q − 1), 1 6 j 6 n

xi′,jxi,j = 0, 1 6 i′ < i 6 n(q − 1), 1 6 j 6 n

Let D = diag(λ1, . . . , λn) be the diagonal matrix that corresponds to the equivalence. According

to Proposition 4.2.1 one can fix one element of the diagonal to be one, say λ1 = 1. The following

proposition explains the effect of fixing λ1 = 1 to P̃ .

Proposition 4.5.10. Let D = diag(λ1, . . . , λn) be the diagonal matrix that corresponds to the equiv-

alence between two codes and let P̃ = (xi,j) as defined before. Fixing λ1 = 1 corresponds to fixing

the first column in P̃ to be zero except the positions i(q − 1) with 1 6 i 6 n.
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Proof. Fixing λ1 = 1 shows that the first column in GA is left unscaled. All columns in G̃A are

scaled except the columns in the positions i(q − 1) with 1 6 i 6 n thus the first column in P̃ has

zeros except there is a 1 in one of these positions. The exact position of the 1 is not known since it

corresponds to the permutation. �

4.5.2 Properties of the Linear System

We discuss in this section the properties of the linear part of S, denoted L, where we give an upper

bound of the rank of the system. This bound depends on the field, in F3 for example is affected by the

hull where in Fq with q > 4 it does not. Before we proceed we recall Proposition 1.4.6.

Proposition. Let Ã be a closure of an [n, k] linear code A over Fq with hull of dimension h and let

h̃ be the dimension of the hull of Ã then

1. If q = 3 then h̃ = h.

2. If q > 4 then h̃ = k thus Ã is weakly self-dual code

Proposition 4.5.11. Let L be the linear system corresponding to the diagonal equivalence between

two [n, k] linear codes A and B over Fq and let L its corresponding matrix, then

• if q = 3, then rank(L) 6 2k(n− k) + 2n− 1− h2 and

• if q > 3, then rank(L) 6 2k(n− k) + 2n− 1.

where h is the dimension of the hull.

Proof. The linear part L is

L :





(
HB ⊗ G̃A

)
P̃ = 0(

GB ⊗ H̃A

−1
)

P̃ = 0

(
In ⊗ 1n(q−1)

)
P̃ = 1

T
n(

M ⊗ 1(q−1)

)
P̃ = 1

T
n

One can verify that the rank of (
In ⊗ 1n(q−1) −1T

n

M ⊗ 1(q−1) −1T
n

)

is 2n− 1.

The rank of (
HB ⊗ G̃A

GB ⊗ H̃A

−1

)

is 6 2k(n− k).
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Let GH(B) be the generator matrix of the hull of code B, G̃H(A ) and G̃
−1

H(A ) the generator matrices

of the hull of codes Ã and Ã −1 (the code generated by H̃A

−1
), respectively. Thus one can write

(
HB ⊗ G̃A

GB ⊗ H̃A

−1

)
=




(
GH(B)

H ′
B

)
⊗
(
G̃H(A )

G̃A

′

)

(
GH(B)

G′
B

)
⊗
(
G̃

−1

H(A )

H̃A

′

)




Note that when q = 3 we have G̃H(A ) = G̃
−1

H(A ) thus we have h2 redundant equations and the rank

is bounded by 2k(n− k) + 2n− 1− h2. For q > 3, G̃H(A ) not necessarily equals to G̃
−1

H(A ) thus we

have different systems and the rank is bounded by 2k(n− k) + 2n− 1 �

Let q = pm. The number of variables in the system is n2(pm − 1) while the number of equations

in the best case when the rate is 0.5 (k = n/2) and Frobenius action produces full rank matrices is

bounded by mn2/2 + 2n − 1. If we ignore the term 2n − 1 we find the ratio between the number

of variables and the rank is about
2(pm − 1)

m
. Figure 4.3 illustrates this ratio and shows that solving

DEP using this algorithm becomes more complex as q tends to infinity, here we set p = 2.
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Figure 4.3: Growth of number of variable compared to the rank of the system

4.5.3 Randomized Algorithm for Solving the Polynomial System

In this section we present a polynomial time algorithm to solve DEP using the linear part of the system

S denoted by L over the fields F3 and F4. We use try and guess strategy in addition to the techniques

that were developed for PEP.

1: Input: Two linear codes A and B over Fq.

2: Output: Set of puncturing permutations corresponding to the diagonal equivalence between A

and B.
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3: Build the linear system L and its matrix L.

4: Add the equations that correspond to fixing one element in the diagonal matrix D to L.

5: Apply Frobenius action if applicable.

6: Process L by using block linearization technique and update the system by adding equations of

the form xi,j = 0. The block size is n(q − 1) thus we have n blocks.

7: for all variables that correspond to columns 2 to n in P̃ do

8: L′ = L

9: Guess one variable x to be 1, this adds (2n− 1)(q − 1) equations to L′.

10: Solve the updated system L′ by block linearization.

11: if The null space of L′ is 0 then

12: Update L with the equation x = 0.

13: Continue to the next iteration of the loop.

14: else if The null space of L′ is small then

15: Search this space for puncturing permutations.

16: Break the loop.

17: else

18: L = L′.

19: end if

20: end for

21: return The set of puncturing permutations.

Experimentally we found that this algorithm solves DEP successfully for random codes over F3 and

F4. For Fq with q = pm > 5 it does not find a small enough null space thus the problem is complex

to solve. The reason is that the length of the closure increases exponentially in m. Thus the number

of variables also becomes exponential in m while the enhancement in the rank of the linear system

using Frobenius action is linear in m. Thus as the size of the field increases the dimension of the null

space increases with almost the same rate.

This approach fails over F3 when the hull is not trivial. That is because according to Proposition 4.5.11

the the rank of the linear system decreases by h2, h is the dimension of the hull, thus some important

equations that help in solving by block linearization will disappear. This is not the case over F4, again

see Proposition 4.5.11, where the rank does not decrease as in F3 and the approach can solve DEP for

codes with large hull and weakly self-dual codes but not self-dual codes, see the tables of experiments

4.4 and 4.5.

4.5.4 Complexity

The matrix L has n2(q − 1) columns. We assume q is constant thus the cost of Gaussian elimination

is O(n2ω). The block linearization needs to perform the Gaussian elimination n times (we have n
blocks of size n(q − 1)). Thus the complexity of block linearization is O(n1+2ω). For each variable

in the columns from 2 to n in P̃ we guess and solve by block linearization, thus the total complexity

is O(n3+2ω).

Experimentally for random codes over F3 and F4 with a small enough solution set we only need to

guess exactly one or two correct position of 1 in the column from 2 to n. Thus we can assume the

number of of guesses is O(n) to find a subset of the solution set. Thus the complexity in practice is

O(n2+2ω).
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n k Codim #Sol #Guess #Cols Time (s) Memory (MB)

30 4 10 384 77 2 26.229 25

6 1 2 51 1 25.858 25

15 1 2 60 1 26.629 25

50 5 12 4,096 95 1 29.077 25

10 1 2 61 1 28.966 26

25 1 2 69 1 29.644 26

100 10 1 2 171 1 213.736 28.140

20 1 2 312 2 215.328 28.267

50 1 2 20 1 212.254 211.315

Table 4.4: Solving DEP for random codes with trivial hull over F3

n k h Codim #Sol #Guess #Cols Time (s) Memory (MB)

30 6 0 1 3 73 1 27.665 25

6 6 2 6 52 1 27.180 25

15 0 1 3 52 1 27.585 25

6 1 3 73 1 28.061 25

14 1 3 88 1 28.276 25

50 10 0 1 3 61 1 28.966 26

10 10 1 3 20 1 28.611 26

25 0 1 3 141 1 211.845 26

10 1 3 64 1 210.755 26

24 1 3 297 2 212.520 26

100 20 0 1 3 180 1 215.616 28.366

20 20 1 3 250 1 216.183 28.531

50 0 1 3 15 1 213.052 29.180

20 1 3 79 1 215.313 29.180

49 1 3 260 1 216.959 29.180

Table 4.5: Solving DEP for random codes over F4
• Codim: Dimension of the null space of the final linear system.

• #Sol: Number of actual solutions.

• #Guess: Number of guesses tried.

• #Cols: Number of columns tried.
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4.6 Conclusion

This chapter was dedicated to diagonal equivalence. We introduced two algebraic models to solve

the problem. Solving DEP with Groebner basis is much harder in computation than PEP. We reduce

diagonal equivalence to permutation equivalence by using the notion of the closure of the code. The

closure has the disadvantage of extending the length of the code, thus the number of variables in the

algebraic model increases. A new model that combines the code and the closure was introduced in

order to reduce the number of variables. This model was useful to solve the problem over F3 and

F4 by using our techniques for solving PEP. In this case we obtain a polynomial complexity in n.

The ISD approach turned out to be useful to solve the problem in the general case where we obtain a

complexity

2

(
−n log2(R(1−R))

)(
1+O(1)

)
.



Chapter 5

Application to Graph Isomorphism

In this chapter we show how our approaches of solving code equivalence can be used to solve graph

isomorphism. We give a reduction from permutation equivalence of codes with trivial hull to graph

isomorphism. Then we solve the problem according to our strategies that we have developed in

Chapter 3. For quick review of the relationship between the two problems we refer the reader to

Section 1.5. Firstly we recall some basic definitions and notation about graphs.

A graph G = (VG , EG) is composed of a finite set of vertices VG and a set of edges EG ⊂ VG × VG .

For the sake of simplicity, we will always assume that VG = [1, n]. The graph G is undirected if for

each (i, j) in EG we also have (j, i) in EG , otherwise G is a directed graph. Classically, the adjacency

matrix AG =
[
aGi,j

]
of a graph G is a binary n × n matrix such that aGi,j = 1 if (i, j) ∈ EG and

aGi,j = 0 otherwise. In particular, AG is symmetric when G is undirected. However, as explained in

[59], it is possible to slightly change the definition so that the adjacency matrix of a directed graph is

symmetric. For that purpose, if D is a directed graph then its adjacency matrix AD is defined as

aDi,j
def
=





1 if (i, j) ∈ EG and (j, i) ∈ EG ,
2 if (i, j) ∈ EG and (j, i) /∈ EG ,
3 if (i, j) /∈ EG and (j, i) ∈ EG ,
0 otherwise.

Notice also that in our way of representing graphs, we do not consider here multi-edge graphs. Since

AG are symmetric and real, all its n eigenvalues are real. They are denoted by λ1(G), . . . , λn(G).
The spectrum Λ(G) of G is the set of its eigenvalues. The eigenspace associated to an eigenvalue λ is

denoted by Vλ(G). We recall that for any pair of distinct eigenvalues λ and β the eigenspace Vλ(G)
and Vλ(G) are orthogonal.

5.1 Code Equivalence and Graph Isomorphism

Recall the definition of ΣA from Section 3.4

ΣA

def
= GT

A

(
GA GT

A

)−1
GA .
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Note that ΣA is an n × n symmetric matrix hence we may interpret it as an adjacency matrix of a

weighted undirected graph. Referring to Proposition 3.4.14 which states the following

Proposition. The linear systems L and
{
ΣA P − PΣB

}
are equivalent.

we obtain the following result.

Theorem 5.1.1. Let A and B two linear codes with trivial hull of length n over a field F. There is

an O (nω) reduction from the permutation equivalence between A and B to the graph isomorphism

between two weighted undirected graphs having n vertices and weights in F.

5.2 Graph Isomorphism Testing

Definition 5.2.1. Let F ⊆ R be a field such that AG is viewed as a matrix with entries in F. The linear

subspace of Fn generated by the rows of AG is the linear code CG associated to G. This code is only

interesting when AG is not of full rank. Another way of seeingCG is by remarking that the eigenvector

space V0(G) associated to 0 is actually the dual of CG , and consequently entails the following

CG = V0(G)⊥

For any permutation σ from Sn and graph G we define Gσ as the graph where (i, j) ∈ EG if and only if

(σ(i), σ(j)) ∈ EGσ . An automorphism for G is a permutation σ such that Gσ = G. The automorphism

group of G is the set Π(G) def
=
{
σ ∈ Sn : Gσ = G

}
.

Recall that two graphs G = ([1, n], EG) and H = ([1, n], EH) are isomorphic if there exists σ in Sn
such that (i, j) ∈ EG if and only if (σ(i), σ(j)) ∈ EH. There exists therefore an n × n matrix P in

Sn such that

AH = P TAGP . (5.1)

Recall that we have also 1nP = 1nP
T = 1n. Hence, we associate a polynomial system modeling

the graph isomorphism problem as I(G,H) ∪Q with

I(G,H) def
=
{
1nP − 1n , 1nP

T − 1n , PAH −AGP
}
. (5.2)

Remark 5.2.2. Another way of viewing (5.1) is to rewrite it as PAH = AGP which is in turn

equivalent to (
AH ⊗ In − In ⊗AG

)
P = 0. (5.3)

When AG is invertible then (5.3) is equivalent to the linear system
(
AG
)−1

PAH = P , that is to say

(
AH ⊗

(
AG
)−1 − In2

)
P = 0. (5.4)

We now state important facts about eigenspaces for isomorphic graphs. We start by a lemma remind-

ing a well-known property and which entails that eigenspaces of isomorphic graphs are permutation

equivalent.
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Lemma 5.2.3. Let G be a graph with n vertices and P be permutation from Sn, then if v is an

eigenvector associated to the eigenvalue λ for AG then P Tv is an eigenvector associated to λ for

P TAGP .

The next theorem follows then immediately from this lemma.

Theorem 5.2.4. Let σ be a permutation from Sn. ThenH = Gσ if and only if for all λ in Λ we have

Vλ(H) = Vλ(G)σ.

In particular, if CG and CH are of dimension < n over F then CH = (CG)
σ

.

We recall that two isomorphic graphs have to satisfy (at least) the following assumptions.

Assumption 5.2.5 (Folklore). We consider throughout this section two graphs G andH with n vertices

such that the following holds for any field F ⊆ R

1. rankF AH = rankF AG

2. Λ
def
= Λ(G) = Λ(H) and

∀λ ∈ Λ, dF(λ)
def
= dimF Vλ(G) ∩ Fn = dimF Vλ(H) ∩ Fn.

3. h
def
= dimFH(CG) = dimFH(CH).

One would expect that the graph isomorphism problem would be solved completely just by solving

I(G,H) since the number of variables is n2 and the number of linear equations is n2 + 2n− 1, or at

least, when the graphs are not isomorphic, the rank of the linear system should be n2 so that the only

solution is 0. For randomly generated graphs this happens with high probability but this not the case

for “structured” graphs like for instance those that do not have a trivial automorphism group.

Actually, the first important issue about the solving of I(G,H) ∪ Q is to fix the underlying field on

which the vector spaces are considered. Indeed, the linear system can be considered over R, Q and

any prime field Fp where p is a prime number > 2. This ambiguity comes mainly from the fact that

the solutions of I(G,H) are sought among the binary vectors, and by construction the entries of an

adjacency matrix lie in Z. The choice of the underlying field is crucial as it is shown by the following

theorem.

Theorem 5.2.6. Assume that AG and AH are matrices with entries in a field F.

1. If AG is invertible then

rankF

(
AH ⊗

(
AG
)−1 − In2

)
= n2 −

∑

λ∈Λ

dF(λ)
2. (5.5)

2. If AG is not invertible then

rankF

(
AH ⊗ In − In ⊗AG

)
= 2dF(0)

(
n− dF(0)

)
. (5.6)
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Proof. The equality (5.5) when AG is invertible comes from the fact that

ker
(
AH ⊗

(
AG
)−1 − In2

)
=
⊕

λ∈Λ

Vλ(H)⊗ Vλ−1(G).

Let us assume that AG is not invertible. We denote by GG and HG a generator matrix and a parity

check matrix of CG . There exists then KG such that GG = KGA
G . We extend these notation to the

graphH. Hence we have the following equalities

(KH ⊗HG)
(
AH ⊗ In − In ⊗AG

)
= GH ⊗HG (5.7)

(HH ⊗KH)
(
AH ⊗ In − In ⊗AG

)
= HH ⊗GG (5.8)

Since by assumption CG has a trivial hull, by using the same arguments to prove Proposition 3.4.14,

we can see that the linear system (5.3) is equivalent to the linear system

[
GH ⊗HG

HH ⊗GG

]
P = 0.

The equality (5.6) comes then from Proposition 3.2.23 and rankFHH = rankFHG = dF(0). �

In light of Theorem 5.2.4 and Theorem 5.2.6, the most favorable situation is to take a field F such that

at least one of following properties hold, namely

1. Either dF(λ) = 0 for all λ in Λ,

2. the eigenspaces Vλ(G) have trivial hulls.

That is why we choose F to be either Q or Fp where p is such that at least one eigenspace Vλ(G) has

a trivial hull when it exists.

Tables 5.1 and 5.2 are experiments for random graphs for isomorphic and non-isomorphic case. We

also implemented experiments for some connected 3-regular (cubic) simple graphs including Petersen

graph, cubical graph, Wagner graph, and graphs with 12 vertices, see Figures 5.3, 5.4 and 5.5. For

these regular graphs the experiments include isomorphic and non-isomorphic cases where we are able

to decide for non-isomorphic case using block linearization and to retrieve one solution by using guess

strategy for isomorphic graphs.

n #ISO codim Time (s) Memory (MB)

50 1 1 22.807 26.687

100 1 1 27.524 210.255

150 1 1 211.222 212.305

200 1 1 213.203 213.943

250 1 1 214.267 215.509

300 1 1 214.644 216.309

Table 5.1: Finding isomorphism for random graphs with unique solution
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n Time (s) Memory (MB)

50 22.322 26.687

100 25.044 210.032

150 28.707 212.305

200 211.232 213.973

250 214.200 215.228

300 214.505 216.278

Table 5.2: Deciding non-isomorphism for random graphs

5.3 Conclusion

In this chapter we studied graph isomorphism problem. We used our algebraic model for permuta-

tion equivalence to model the problem. We introduced a polynomial time reduction from permutation

equivalence problem for codes with trivial hull to graph isomorphism. The algebraic model corre-

sponding to graph isomorphism contains more linear equations than the number of variables. This

enables to decide graph isomorphism in the case of random graphs with trivial automorphism groups.

Our experiments also included some small regular graphs.

Figure 5.3: Petersen Graph

Figure 5.4: Cubical and Wagner Graphs
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Figure 5.5: 12 vertices connected 3-regular graphs



Conclusion and Future Work

This thesis was the first attempt to solve code equivalence problem using algebraic approach. We

developed algebraic models for permutation equivalence as well as diagonal equivalence. In both

cases we proved that the problems are well-described using these models. We solved the algebraic

systems using Groebner basis F4 algorithm implemented in Magma. When used directly with these

models, Groebner basis computation has high complexity. We improved the algebraic system by

enhancing the linear part and/or reducing the number of variables. These improvements were very

efficient in identifying large number of easy instances of the problem. To improve the linear part

of the system we used block linearization, Frobenius action and guessing strategy. Beside algebraic

approaches we also considered other approaches to solve code equivalence such as ISD and punctured

codes.

Using our methods of block linearization and Frobenius action we found that permutation equiva-

lence problem seems to be easy for large instances of linear codes where we were able to provide

polynomial-time algorithms. Diagonal equivalence is at least as hard as permutation equivalence. It

can be reduced to permutation equivalence in polynomial-time. We introduced a new modeling for

diagonal equivalence using the notion of the closure of the code. Using this with our strategies for

solving permutation equivalence we were able to solve efficiently the instances of diagonal equiva-

lence over F3 with trivial hull and over F4.

We introduced a new reduction from permutation equivalence problem to graph isomorphism when

the hull is trivial. This reduction enabled to use our algebraic modeling that was developed for per-

mutation equivalence to solve graph isomorphism. The algebraic system of the graph isomorphism

has interesting properties in terms of the rank of the linear part and the number of variables. We

implemented experiments for random graphs and regular graphs. In both cases we were able to solve

the problem efficiently. For random graphs usually the linear system is sufficient to decide graph iso-

morphism and to get the solutions while for regular graphs we need to use block linearization. If the

set of isomorphism between the graphs is large we can use guessing strategy to obtain a small subset

of solutions or one solution.

Comparing our results with Leon’s algorithm implemented in Magma we can solve for wider range of

parameters over large fields. Leon’s algorithm works only for codes of small length over small prime

fields or F4. Beside that Leon’s algorithm has exponential complexity in the dimension of the code

because it computes the minimum weight codewords. The SSA algorithm works efficiently only for

codes with hull of small dimension (constant). Its complexity becomes intractable for codes with large

hull. In our case we can solve efficiently for codes with large hull over extension fields. Our result

for diagonal equivalence confirm the results of [78] using the SSA. We were able to solve efficiently

diagonal equivalence for random codes over F3 and F4. For Fq with q > 5 our method did not work.
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The future work of our thesis represented in many areas. The first is the area of Groebner basis

behavior and complexity. The complexity of Groebner basis in the worst case is double exponential

but for random systems it is simply exponential. The questions regarding our algebraic systems of

code equivalence are: what is complexity bound to solve the system using Groebner basis? What is

the effect of the hull? Experimentally, we found that when the hull is trivial and there is a unique

solution Groebner basis performs only the step of linearization. That means the maximum degree

of polynomials is 2. We performed the linearization by our own implementation and the bound of

the maximum degree is confirmed. In this case the complexity of Groebner basis computation is

polynomial. If there are many solutions or the hull is large we can reach higher polynomials degree.

These experimental results need to be proven.

For our methods, the hull was a source of difficulty especially over prime fields. One reason is that it

decreases the rank of the linear part of the system. Over non-prime fields we can use Frobenius action

to overcome the effect of the hull in reducing the rank. The effect of the large hull does not seem to

be only in degrading the rank of the linear part of the system but also in the structure of codes. That is

because when we compare two systems with linear parts of equal rank but one is coming from codes

with large hull and the other from codes with lower rate and trivial hull the later behaves better in

computation. The questions are: What are the other effects of the hull? and how to overcome them

especially for codes over prime fields? One idea that we introduced is to eliminate the hull by using

the shortened code and to obtain new codes with trivial hull.

N. Sendrier and D. Simos conjectured in [78] that the diagonal equivalence problem might be hard

for almost all instances over Fq with q > 5. In spite of using different technique from SSA we found

that we were able to solve diagonal equivalence efficiently over F3 and F4 and it was difficult over Fq

with q > 5. Thus proving (or disproving) the conjecture of [78] is an open problem of research.

Our modeling seems to be of interest for solving graph isomorphism problem. We implemented

many experiments in random and regular graphs and we were able to decide the isomorphism of

these graphs efficiently. We raise the following question: Can we prove something or improve the

complexity bound of graph isomorphism problem using this approach?

Solving code equivalence problem efficiently is an important step toward efficient cryptanalysis of

code-based cryptosystem. In code equivalence problem we assume that we know both the secret

and public codes. In cryptosystems this is not the case where we know only the public code. Thus

the problem for cryptanalysis is much harder. Experimentally we treated successfully some types of

codes that are used for cryptosystems such binary Goppa codes. In this case, we used linearization

to enhance the system which has polynomial cost but it becomes impractical when the length of the

code is large. Optimization need to be done in order to treat codes with large length as used in

cryptosystems.

McEliece problem is more related to the problem of subcode equivalence. Given two codes the sub-

code equivalence problem is to answer the question: Is one code equivalent to a subcode of the other?

In the case of McEliece cryptosystem, Goppa codes are subfield subcodes of the generalized Reed-

Solomon codes. The subcode equivalence problem is NP-complete in general, see [10]. The

question is: can we identify the easy instances of this problem? This enables to identify the weak

instances of McEliece cryptosystem.
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Appendix A

Coding Theory

This chapter introduces the basic definitions and background needed in the rest of the thesis regard-

ing coding theory and code-based cryptography. We define linear codes and discuss some of their

properties and parameters. We give the definition of weight enumerators and introduce MacWilliams

identity that relates the weight enumerators of the code and its dual. There are many classes of codes

that can be constructed from a given code such as punctured codes subfield subcodes, trace codes ...

etc. These classes are discussed in Section A.3. We define the encoding and decoding operations

since they are the corner stones of coding theory and code-based cryptography. Important families

of linear codes are introduced and discussed in Section A.5. In the last section we introduce code-

based cryptography and discuss briefly the original McEliece and Niederreiter cryptosystems. We see

how code-based cryptography relies on some NP-hard problem, thus it will be resistant to quantum

computers.

A.1 Bounds on the Parameters

In this section we give the important bounds introduced on the parameters of linear codes.

A.1.1 The Singleton Bound

Theorem A.1.1 (Singleton Bound). [73] For any [n, k, d] linear code over Fq we have d 6 n−k+1.

An [n, k, d] linear code is called Maximum Distance Separable, MDS, if it satisfies d = n− k + 1.

A.1.2 The Sphere-packing Bound (Hamming Bound)

Let w be a codeword of an [n, k, d] code defined over Fq. A sphere of radius t and center w in Fn
q is

the set of words in Fn
q at Hamming distance t or less from w. The number of words in this sphere is

given by:

Vq(n, t) =

t∑

i=0

(
n

i

)
(q − 1)i

99
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Theorem A.1.2 (Sphere-packing Bound). [73] For any [n, k, d] linear code over Fq we have:

Vq(n, ⌊d−1
2 ⌋) 6 qn−k

An [n, k, d] linear code is called perfect if it satisfies the upper limit of the inequality, i.e Vq(n, ⌊d−1
2 ⌋) =

qn−k.

A.1.3 The Gilbert-Varshamov Bound

Theorem A.1.3 (Gilbert-Varshamov Bound). [73] Consider the field Fq and the positive integers n, k
and d that satisfy

Vq(n− 1, d− 2) < qn−k

then there exists an [n, k] linear code over Fq with minimum distance at least d.

It has been proven that most of the linear codes satisfy Gilbert-Varshamov bound [73].

A.2 Weight Enumerators

In this section we define weight enumerators and state the important MacWilliams Identity that relates

the weight enumerators of the code and its dual.

Definition A.2.1. Let C be an [n, k, d] linear code over Fq, we define

Ai(C ) = #{c ∈ C : wt(c) = i}

The list [Ai(C )]i∈{0,...,n} is called weight distribution of C .

One can easily see that
n∑

i=0
Ai(C ) = qk and Ai(C ) = 0 for 1 6 i 6 d− 1.

The weight enumerator of C is:

WC (x) =
n∑

i=0

Ai(C )xi

and the homogeneous weight enumerator is:

WC (x, y) =
n∑

i=0

Ai(C )xiyn−i

A.2.1 MacWilliams Identity

Knowing the weight distribution of a linear code C , MacWilliams identity enables to determine the

weight distribution of its dual code.
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Theorem A.2.2 (MacWilliams Identity). [62] Let C be a linear code over Fq and C⊥ is its dual code

then their weight enumerators satisfy the following relation

WC⊥(x, y) =
1

|C |WC (x+ (q − 1)y, x− y)

If the code is self-dual then the weight enumerator is invariant under the MacWilliams identity.

A.3 Modifying Codes

Given C an [n, k, d] linear code we show how to construct other codes from C . The resulting codes

sometimes are of great importance and appear in many places throughout the thesis such as punctured

codes, square codes, subfield subcodes and trace codes.

A.3.1 Punctured Codes

Let C be an [n, k] linear code over Fq. We puncture C in the coordinate i by deleting the coordinate

i in all codewords of C . The resulting code is called the punctured code of C at coordinate i and

denoted Ci. The generator matrix of Ci is obtained from the generator matrix of C by deleting column

i. Puncturing can be done in a set of coordinates {i1, ..., it} with t < n.

Sometimes puncturing is done in such a way that we preserve the length of the code. Thus we replace

coordinate i by zero in all codewords instead of deleting the coordinate.

The following theorem gives the dimension and minimum distance of the punctured code.

Theorem A.3.1. [46] Let C be an [n, k, d] linear code over Fq and let Ci be the punctured code at

coordinate i then we have two cases

1. if d > 1, Ci is an [n − 1, k, di] linear code where di = d − 1 if C has a minimum weight

codeword with a nonzero ith coordinate otherwise di = d.

2. if d = 1, Ci is an [n − 1, k, 1] linear code if C has no codeword of weight 1 whose nonzero

entry is in coordinate i otherwise, if k > 1, Ci is an [n− 1, k − 1, di] code with di > 1.

A.3.2 Shortened Codes

Let C be an [n, k, d] linear code and consider the set of coordinates T of t elements and select all

the codewords of C that have 0 in the coordinates of T , this set is a subcode of C . Puncturing this

subcode on T will result in the shortened code ST (C ). The length of ST (C ) is n− t.
There is a strong connection between the punctured and shortened codes that is captured by the fol-

lowing theorem [46].

Theorem A.3.2. Let C be an [n, k, d] linear code over Fq and T a set of coordinates then we have

1. ST
(
C⊥
)
= (CT )

⊥
and (C⊥)T = (ST (C ))⊥.

2. If t < d, CT has dimension k and (CT )
⊥

has dimension n− t− k.
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3. If t = d and T is the set of coordinates where a minimum weight codeword is nonzero, then the

dimension of CT is k − 1 and the dimension of (CT )
⊥

is n− d− k + 1.

A.3.3 Extended Codes

The linear code C can be extended to other linear codes of bigger length by adding new coordinates.

There are many ways to do that but the most common way is to add new coordinate in such a way all

codewords sum up to zero. We denote the extended code by Ĉ .

Ĉ = {(c1, ..., cn+1) : (c1, ..., cn) ∈ C ,
n+1∑

i=1

ci = 0}

The extended code Ĉ has parameters [n + 1, k, d̂] where d̂ = d or d + 1. The generator matrix of Ĉ

can be obtained from the generator matrix of C by adding extra column to the end so that the sum of

each row is zero. and the parity check matrix Ĥ will be of the form:




1 ... 1 1

0
H 0

0




A.3.4 The (u|u+ v) Construction

Let Ci be [n, ki, di] linear codes of the same length over Fq, i ∈ {1, 2}, (u|u + v) construction will

give the linear code

C = {(u,u+ v) : u ∈ C1,v ∈ C2}
The code C is [2n, k1 + k2,min{2d1, d2}] linear code. Its generator and check matrices are

(
G1 G1

0 G2

)
and

(
H1 0

−H2 H2

)

A.3.5 Subfield Subcodes and Trace Codes

Here we define the subfield subcodes and trace codes and give the relation connecting the two codes

introduced by Delsarte in [26] and we give some bounds on their dimensions.

Definition A.3.3. Let C be an [n, k] linear code over a finite field F and K ⊆ F, we define the subfield

subcode C |K to be C ∩Kn.

Definition A.3.4. Let F = Fqm be finite field and K = Fq, we define the trace map TrF/K : F −→ K

to be TrF/K(α) = α + αq + . . . + αqm−1
, for α ∈ F. The trace of a word c = (c1, . . . , cn) ∈ Fn is

TrF/K(c) = (TrF/K(c1), . . . , T rF/K(cn)). We define the trace code of C , TrF/K(C ) = {TrF/K(c) :
c ∈ C }. When it is clear from the context we simply write Tr(.).

Subfield subcodes and trace codes are tightly related by the theorem of Delsarte [26].
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Theorem A.3.5 (Delsarte).

(C |K)⊥ = TrF/K(C
⊥)

The subfield subcode and trace code have the same length as the original code. If F = Fqm and

K = Fq then the dimension of the subfield subcode, dim(C |Fq), satisfies [84]

n−m(n− k) 6 dim(C |Fq) 6 k

and the dimension of the trace code satisfies [84]

k 6 dim(TrFqm/Fq
(C )) 6 mk

A.3.6 Schur Product Code

Let x = (x1, . . . , xn) and y = (y1, ..., yn) from Fn then we define Schur Product of x and y as

follows

x ∗ y = (x1y1, . . . , xnyn) ∈ Fn

It is also called component-wise product.

Let C be an [n, k, d] linear code over F, we define Schur product code C ∗ C to be the linear span of

{c ∗ c′ : c, c′ ∈ C }

It is often denoted C 2 and called the square code. Clearly the code C 2 has length n. Informally if

we look at the injective map c 7→ c ∗ c, we can assume we have a copy of C embedded in C 2 thus

k′ > k, where k′ is the dimension of C 2 and d′ 6 d, d′ is the minimum distance of C 2. By induction,

C i+1 = C i ∗ C ,C 1 = C .

A.4 Encoding and Decoding

Let C be an [n, k, d] linear code over Fq with generator matrix G, we can encode any message m ∈ Fk
q

by the following mapping: m 7→ mG = c. This mapping is one-to-one correspondence since G is

of rank k. If G is in the standard form, m will allocate the first k coordinates of the codeword c.

When a message is sent through a noisy channel an error e is expected, thus the received word w ∈ Fn
q

is different from the codeword c. When w is received, the decoding process is to determine the

corresponding codeword c, i.e to remove the error from the received word.

The known decoding algorithms that work for all linear codes have exponential time complexity. Thus

although the encoding is very simple the decoding in general is not easy. Hence the decoding can be

defined as follows:

Given a received word w ∈ Fn
q , the problem is to find the codeword c ∈ C such that d(w, c) is

minimal. Or equivalently, find an error vector of minimum weight e ∈ Fn
q such that w − e ∈ C .
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A.4.1 Syndrome Decoding

Let C be an [n, k, d] linear code over Fn
q with parity check matrix H . We define the syndrome of the

word w to be s = HwT . Note that w = c+ e thus s = HcT +HeT = HeT . The codewords of

C are exactly the words of syndrome 0 since HcT = 0 if and only if c ∈ C and two words in Fn
q

have the same syndrome if and only if their difference is in C . Thus the syndrome decoding performs

the following two steps:

1. Compute the syndrome of the received word, s = HwT ,

2. Find a minimum-weight word e ∈ Fn
q such that HeT = s.

The difficulty of decoding is in the second step which is known to be NP-hard problem for general

matrices H and s [73], since it corresponds to finding the minimum set of columns of H such that

their span contains s. For the codes with a specific structure in their parity check matrix there may be

efficient algorithm to find the syndrome and this is the case for most of the codes used in practice.

A.5 Important Classes of Linear Codes

In this section we introduce important types of codes that are extensively used in practice, that is due

to their structures and existence of fast decoding algorithm.

A.5.1 Cyclic Codes

Let C be a linear code of length n, C is said to be cyclic if for each codewords c = (c0, ..., cn−1) ∈ C

the word (cn−1, c1, ..., cn−2) is also in C . Here we prefer to use index from 0 to n − 1 to be able to

use the mod operation on the indexes. Another reason is that sometimes we need to use polynomial

expression to express the cyclic codes. In fact we have the bijection ψ : Fn
q → Fq[x]/(x

n−1) defined

by:

(c0, c1, ..., cn−1)↔ c0 + c1x+ ...+ cn−1x
n−1 = c(x)

shifting a codeword c by one position corresponds to multiplying c(x) by x in the polynomial ring

Fq[x]/(x
n − 1), thus

xc(x) = c0x+ c1x
2 + ...+ cn−1x

n mod (xn − 1) = cn−1 + c0x+ c1x
2 + ...+ cn−2x

n−1

The shift is not necessarily by one position but it can also by many positions this corresponds to

multiplying by a power of x or a polynomial in Fq[x]/(x
n − 1).

The following theorem states important properties of the cyclic codes.

Theorem A.5.1. [87] Let C be an [n, k] cyclic code over Fq,

1. There exists a unique monic polynomial g(x) over Fq[x] that divides (xn − 1) such that c ∈ C

if and only if g(x) divides c(x). The polynomial g(x) is called the generator polynomial of C .

The degree of g(x) is n− k.
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2. If we write the generator polynomial g(x) = g0 + g1x+ ...+ gn−kx
n−k, the generator matrix

of C is

G =




g0 g1 . . . gn−k 0 0 . . . 0
0 g0 g1 . . . gn−k 0 . . . 0
0 0 g0 g1 . . . gn−k . . . 0
...

. . .
. . .

. . .

0 0 . . . 0 g0 g1 . . . gn−k




3. If h(x) = (xn − 1)/g(x) then c ∈ C if and only if c(x)h(x) = 0 in Fq[x]/(x
n − 1). The

polynomial h(x) is called parity check polynomial of C and has degree k. The corresponding

parity check matrix is given by

H =




0 . . . 0 0 hk . . . h1 h0
0 . . . 0 hk . . . h1 h0 0
... . .

.
. .
.

. .
.

hk . . . h1 h0 0 0 . . . 0




4. The matrix H generates C⊥ which is in turn cyclic code and its generator polynomial is
1
h0
(hk + hk−1x+ ...+ h1x

k−1 + h0x
k) = 1

h0
xkh(1/x).

A.5.2 Generalized Reed-Solomon Codes (GRS)

Let α1, . . . , αn be distinct nonzero elements from Fq and v1, . . . , vn nonzero elements from Fq. We

define the GRS code to be the [n, k, d] linear code over Fq with parity check matrix

HGRS =




1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n







v1
v2 0

0
. . .

vn




As one can notice by definition GRS length cannot exceed q − 1 since αi, 0 6 i 6 n, must be

distinct nonzero elements from Fq. The elements αi are called code locators and vi are called column

multipliers. The following proposition gives some of the properties of GRS codes.

Proposition A.5.2. [73] Let C be an [n, k, d] GRS code with parity check matrix as defined above.

1. The code C is an MDS code, i.e d = n− k + 1.

2. The generator matrix of C is

GGRS =




1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n







v′1
v′2 0

0
. . .

v′n



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That means the dual code C⊥ is an [n, n − k] GRS code that can be defined through the same

code locators.

As in the cyclic code we can use the polynomial notation to express the GRS codes. For every

word u = (u0, . . . , uk−1) ∈ Fk
q we associate a polynomial u(x) = u0 + u1x + . . . + uk−1x

k−1 ∈
Fq[x]/(x

k−1). The encoded word of u is c = uGGRS and in terms of polynomials c = (v′1u(α1), v
′
2u(α2), . . . , v

′
nu(α

where coordinate i is related to the evaluation of u(x) at αi, 1 6 i 6 n.

A.5.3 Reed-Solomon Codes (RS)

Reed-Solomon codes are special case of GRS codes. Let n be a positive integer dividing q − 1 and

choose α ∈ Fq such that αn = 1 and let b be an integer. The [n, k, d] RS code, C , is a GRS code with

code locators αi = αi−1 and column multipliers vi = αb(i−1) for 1 6 i 6 n. Thus the parity check

matrix will be

HRS =




1 αb . . . α(n−1)b

1 αb+1 . . . α(n−1)(b+1)

...
...

...
...

1 αb+d−2 . . . α(n−1)(b+d−2)




Note that d = n − k + 1. If we use the polynomial notation as defined before, for c ∈ C we have

c 7→ c(x). Thus c ∈ C if and only if HRSc
T = 0 implies that c(αi) = 0 for b 6 i 6 b + d − 2.

These elements are called the roots of the RS code. Thus the word c belongs to C if and only if all

roots of C are roots of c(x).

We define the generator polynomial to be g(x) = (x − αb)(x − αb+1) . . . (x − αb+d−2). Thus the

word c ∈ C if and only if g(x) divides c(x). From this C can be redefined in terms of polynomial

notation as follows

C = {u(x)g(x) : u(x) ∈ Fq[x]/(x
k − 1)}

Note that the elements of C are in Fq[x]/(x
n − 1) since the degree of g(x) is d− 1 = n− k and also

g(x) divides xn − 1. Thus one can notice that RS code is cyclic code.

A.5.4 Reed-Muller Codes (RM)

The r-th Reed-Muller code over F2 of length n = 2m, denoted RM(r,m), is defined by

RM(r,m) = {f(u0), f(u1), . . . , f(un−1) : degree(f) 6 r},

where ui, 0 6 i 6 n − 1 ranges over all binary vectors of length m and f is a function of binary

coefficients in m variables and degree at most r.Note that over F2, each variable xi, 1 6 i 6 m
satisfies x2i = xi.

By definition RM codes satisfy the inclusion R(0,m) ⊂ R(1,m) ⊂ . . . ⊂ R(m,m). The dimension

of RM(r,m) is
∑r

i=0

(
m
i

)
and the minimum distance is 2m−r. The dual code of RM(r,m) =

RM(m− r − 1,m) [61].



Appendix 107

A.5.5 Goppa Codes

Goppa codes were introduced by V. D. Goppa in 1970 using extensive results from algebraic geometry

[46]. Goppa codes are one of the important codes that are extensively used in code-based cryptography

especially the irreducible binary Goppa code. Binary Goppa codes were suggested to be used by

McEliece in his first code-based cryptosystem and they proved to be secured in practice. Although

a lot of research has been invested in breaking McEliece cryptosystem based on Goppa codes there

were no successful attack to fully break the system. Binary Goppa codes seem to be interesting in

cryptography for the following reasons [29]:

1. The lower bound of the minimum distance is easy to compute.

2. Knowing the generating polynomial allows for efficient decoding.

3. No efficient decoding method is known without the knowledge of the generating polynomial.

Definition A.5.3. [29] Let m and t be positive integers and

g(x) =
t∑

i=0

gix
i ∈ F2m [x]

be a monic polynomial of degree t called Goppa polynomial and L = (γ0, γ1, . . . , γn−1) ∈ Fn
2m a

tuple of n distinct elements are called code support such that

g(γi) 6= 0, 0 6 i 6 n− 1

The binary Goppa code Γ(L, g(x)) over F2 is defined by

Γ(L, g(x)) = {c ∈ Fn
2 :

n−1∑

i=0

ci
x− γi

≡ 0 mod g(x)}

We define the syndrome of the word c by

Sc(x) = −
n−1∑

i=0

ci
g(γi)

g(x)− g(γi)
x− γi

mod g(x)

Thus c ∈ Γ(L, g(x)) if and only if Sc(x) ≡
∑n−1

i=0
ci

x−γi
≡ 0 mod g(x). The code Γ(L, g(x)) is

called irreducible binary Goppa code if g(x) is irreducible over F2m .

The parity check matrix of Γ(L, g(x)) can be decomposed into three matrices H = XY Z where

X =




gt 0
gt−1 gt
...

...
...

. . .

g1 g2 g3 . . . gt


 Y =




1 1 . . . 1
γ0 γ1 . . . γn−1

...
...

. . .
...

γt−1
0 γt−1

1 . . . γt−1
n−1




Z =




1
g(γ0)

1
g(γ1) 0

0
. . .

1
g(γn−1)



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Hence c ∈ Γ(L, g(x)) if and only if XY ZcT = 0. The matrix H has dimensions t × n and

the elements of H are from F2m . Thus we can decompose the elements to be in the base field by

considering F2m an m dimensional vector space over F2 thus H will be over F2 with dimension

mt × n. Goppa code Γ(L, g(x)) has dimension k with k > n − mt. The minimum distance of

Γ(L, g(x)) is at least 2t + 1 thus it can always correct up to t errors. When g(x) is irreducible over

F2m that means it has no root in F2m therefore the elements of L can range over all the elements of

F2m . Note that Goppa codes can also be defined over arbitrary field.

A.6 Code-based Cryptography

Code-based cryptography is the branch of cryptography that uses the notions of coding theory to

design cryptosystem. Code-based cryptography is one of the strong nominated successors of the

number theoretic based cryptosystem. Research in quantum computer is rapidly progressing and with

appearance of quantum computers most of the currently used cryptosystem will turn to be insecure.

Thus it is very crucial to develop a solid and concrete theoretical and practical aspects of an alternative

cryptosystems that remain secure.

In code-based cryptography, the first developed cryptosystem is McEliece public key cryptosystem

which is introduced by Robert McEliece in 1978 [64]. McEliece original cryptosystem based on

binary Goppa code remains unbroken up to date. In spite of existence of serious tries to weaken or

degrade the security of this cryptosystem, see for example [36], [13], and [58], it remains secure.

Harald Niederreiter in 1986 in [68] suggested another variant of McEliece cryptosystem that uses the

parity check matrix instead of generator matrix which is equivalent to McEliece cryptosystem in terms

of security.

Next we briefly present McEliece and Niederreiter cryptosystems.

A.6.1 McEliece Cryptosystem

Let n, t ∈ N be public parameters with t ≪ n. McEliece Cryptosystem is composed of three parts:

Key generation, Encryption and Decryption.

Key Generation

• Generate the matrices G′,S and P where G′ is a k× n generator matrix of an [n, k,> 2t+ 1]
irreducible binary Goppa code Γ and k is about n/2. The matrix S is a k× k random invertible

matrix, and P is an n× n random permutation matrix.

• Compute G = SG′P .

The public key is (G, t) and the private key is (S, DΓ,P ) whereDΓ is an efficient decoding algorithm

of Γ.
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Encryption

Let m ∈ Fk
2 and e ∈ Fn

2 is random of weight t, the ciphertext c = mG+ e.

Decryption

When c is received, the decryption process is performed as follows:

• cP−1 = mSG′ + eP−1.

• Apply the efficient decoding algorithm DΓ, thus DΓ(cP
−1) = mSG′ since the word eP−1 is

of weight t and can be corrected.

• Select a set I ⊆ {1, . . . , n} of k columns index such that the matrix G′
I , that results from G′

by restriction to columns indexed by I , is invertible.

• Compute the plaintext, m = (mSG′)I(G
′
I)

−1S−1

Note that, McEliece cryptosystem can be defined for other families of codes other than Goppa codes

and arbitrary field according to the definition of the code. McEliece original parameters is to use

[1024, 524, 101] irreducible binary Goppa codes, thus t = 50 (security level 60 bits).

A.6.2 Niederreiter Cryptosystem

Niederreiter cryptosystem is a variant of McEliece that uses the dual code for the encryption process.

The security of Niederreiter cryptosystem is proved to be equivalent to McEliece [56] but in practice

Niederreiter is much faster than McEliece. Niederreiter cryptosystem is described as follows

As in McEliece cryptosystem, let n, t ∈ N be public parameters with t ≪ n. Niederreiter cryptosys-

tem is composed of three parts: Key generation, Encryption and decryption.

Key Generation

• Generate the matrices H ′,T and P where H ′ is an (n − k) × n parity check matrix of an

[n, k,> 2t + 1] irreducible binary Goppa code Γ and k is about n/2. The matrix T is an

(n− k)× (n− k) random invertible matrix, and P is an n× n random permutation matrix.

• Compute H = TH ′P .

The public key is (H, t) and the private key is (T , DΓ,P ) where DΓ is an efficient syndrome decod-

ing algorithm of Γ.

Encryption

Let m ∈ Fk
2 be the original message, we represent m by a word e ∈ Fn

2 of weight t and is called

plaintext. Find the ciphertext by computing the syndrome of e, s = HeT .
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Decryption

When s is received, the decryption process is performed as follows:

• T−1s = H ′PeT .

• Apply the efficient syndrome decoding algorithm DΓ to get PeT , thus DΓ(T
−1s) = PeT

since the word PeT is of weight t.

• Compute the plaintext, e, since eT = P−1(PeT ).

A.6.3 Hard Problems in Code-based Cryptography

Code-based cryptography relies on some proven NP-hard problems. These problems are the gen-

eral decoding problem and the problem of finding codewords of certain weights. Code equivalence

problem is another problem that plays an important role in the security of code-based cryptosystems.

This problem is not proved to be NP-hard but it has been shown also it is not easy [70]. The later

problem is the topic of our thesis and will be discussed in detail in the next chapters.

The General Decoding Problem

Let C be an [n, k, d] linear code over Fq and u ∈ Fn
q , the general decoding problem is to find w ∈ C

such that d(u,w) is minimal.

Let w = u+ e where e is an error vector. The decoding is unique if wt(e) 6 t = ⌊d−1
2 ⌋. It has been

proven in [11] that the general decoding problem is NP-hard.

The Problem of Finding Codewords of Certain Weights

Consider an [n, k, d] linear code over Fq and let a ∈ N, the problem of finding codewords of certain

weights is to find w ∈ C such that d(w,0) = a.

It has been proven in [11] that the problem of finding codewords of certain weights is NP-hard.

McEliece Problem

Let (G, t) be McEliece public key as defined above and c ∈ Fn
2 a ciphertext, McEliece problem is to

find the unique message m ∈ Fk
2 such that d(mG, c) = t.

McEliece problem is like the general decoding problem but in specific class of code, in this case binary

irreducible Goppa codes. Thus if one is able to solve the general decoding problem then he can solve

McEliece problem. The opposite may not be true since Goppa codes are just one class of linear codes.

Thus McEliece problem is not proved to be NP-hard.
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Notes about the Hull

As we have seen in the previous sections the hull of the code has central impact in many aspects of

our modeling of equivalence problem, PEP. The first impact is on the rank of the linear system E that

describes PEP as stated in Proposition 3.2.23. We found that as the dimension of the hull increases

we get less linear equations and this of course affects the complexity of solving the system. Also as in

section Block Linearization we have seen the existence of the hull might prevent block linearization

technique to work and we need to go for further improvement by linearization. We found that as the

hull is getting larger as the complexity increases unless we have an extension field then we can apply

Frobenius action to eliminate the effect of the hull. This section gives some background results about

the hull and we introduce new representation of linear codes considering the hull which we call hull

representation.

B.0.1 Construction of the Hull

As we have defined before the hull of a code C is the intersection of the code with its dual, i.e.

H(C ) = C ∩ C⊥.

Proposition B.0.1. Let G and H be the generator and parity check matrices of the code C then a

parity check matrix of the hull HH is obtained by

(
G

H

)
.

Proof. SinceH(C ) = C ∩ C⊥ thus (H(C ))⊥ = C + C⊥ and the result follows. �

Construction of Code with Arbitrary Hull

Here we introduce an algorithm to generate an [n, k] linear code over a field Fq with hull of a chosen

dimension h > 0.

1: Input: n, k, h,Fq.

2: Output: [n, k] linear code over Fq with hull of dimension h.

3: Let V ← 0 the zero vector space of length n over Fq

4: G← 1× n zero matrix

5: i← 1.
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6: while i 6 h do

7: Select a vector 0 6= v ∈ V ⊥ with v.v = 0 and v is linearly independent of the rows of G.

8: G←
(
G

v

)
.

9: V ← Span(rows(G))
10: i← i+ 1.

11: end while

12: Vd ← V
13: while i 6 k do

14: Select a vector 0 6= v ∈ Vd⊥ such that v.v 6= 0 and v is linearly independent of the rows of

G.

15: G←
(
G

v

)
.

16: i← i+ 1.

17: end while

18: return the linear code generated by G.

B.0.2 Properties of the Hull

In this section we present some properties of the hull. We have seen how the hull affects negatively

solving PEP but from the other side the hull has some interesting properties that make it useful when

considering equivalence.

1. The hull is invariant by permutation equivalence: As we have proved in Proposition 1.3.2 ifH(C )
is a hull of code C and σ is a permutation then (H(C ))σ = H(C σ). Thus sometimes instead of

considering PEP between the codes we can consider it between their hull. This approach has been

adopted by SSA.

2. The set of solutions of PEP between the hull of codes includes the set of solutions of PEP between

the codes, see Theorem 1.3.2 and Example 1.3.3. Accordingly the SSA algorithm might fail to find

the correct permutation since it solves PEP for the hull of codes. Thus the solution that is found by

SSA needs to be validated against the codes since it might be valid solution for the hulls but not

for codes.

3. According to the previous property and section Properties of the Solution Set the same relation

holds between the permutation groups, i.e. the permutation group of the hull includes the permu-

tation group of the code.

4. The dimension of the hull for random linear code over Fq is small with very high probability and is

not always 0 and tends to a constant when the size of the code goes to infinity [74, 75]. This prop-

erty is of interest for our algorithm where we achieve the best initial linear system when the hull

is trivial and as the hull increases we get fewer linear equations. Also as we have seen in Section

Block Linearization as the size of the hull increases we need to go for further improvements.

This property is also of interest for the SSA algorithm since the algorithm needs to compute a

signature of the codes using the weight enumerator and as the size of the code gets larger computing

the weight enumerator gets complex. Thus it is suitable to use the hull since it is usually has a small

size.
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5. Unlike random linear codes, almost all cyclic codes have hull of large dimension. The hull of

cyclic codes of length n over Fq is 0 if n|qi + 1 for some i > 1 otherwise it is O(n) [80]. Since

almost all positive integers do not belong to {qi + 1, i > 1} hence almost all cyclic codes are of

large hull [80]. This property makes cyclic codes one of the hard instances for our algorithm, see

section ?? as well for SSA algorithm.

Hull and PEP

As the hull is a source of complexity for our algorithm, it can also be used to improve the modeling

by adding extra linear equations to the system. If the hull has dimension kH(C ) with
(
kH
2

)
< n, where

n is the length of the code we can use the square code of the hull since it is also stable by permutation

equivalence. This will add some linear equations to the system, see section ??. The condition
(
kH
2

)

< n is achievable with high probability for random linear codes as we have mentioned in the previous

section. For codes with large hull such as cyclic, selfdaul and weakly selfdaul codes we cannot use

the square of the hull.

B.0.3 Hull Representation

In this section we introduce a new representation for the generator and parity check matrix of linear

codes considering the hull. In this representation, which we call it Hull Representation, the first rows

of the matrix are the basis of the hull. We have used partially this representation in Proposition 3.2.23

to find the rank of the linear system L.

Definition B.0.2 (Hull Representation). Let C be an [n, k] linear code with a hull of dimension h
and let G be a generator matrix of C . We say G is in Hull Representation if it has the form

(
Ih D M

0 Ik−h N

)

Where the first h rows are the basis of the hull.

Remark B.0.3. Note that when the hull is trivial (h = 0) or the code is self-dual or weakly self-dual

(k − h = 0) the hull representation is identical to the standard form.

The next theorem shows that any linear code has a generator matrix in the hull representation.

Theorem B.0.4. Any linear code has a generator matrix in the hull representation.

Proof. Let C be an [n, k] linear code with a hullH(C ) of dimension h. We construct G as follows:

1. Find a generator matrix of the hull in the standard form. This will construct the first h rows of G

and they are in the required form,
(
Ih D M

)
. Remember the column swap that is performed

here.

2. Find any basis for the rest of the code C rH(C ).

3. Perform column swap on this basis as the one that is done in Step 1. This basis will construct the

remaining k − h rows of G.
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4. Do row operations to get 0 matrix below Ih.

5. Do row operations among the lower k − h rows and columns swap among the last n− h columns

to obtain the lower k − h rows in the required form.

Note that the last step will preserve Ih and the 0 matrix and transform the rest to the required form.

�

The following lemma provides an important relationships between the different components of G in

the hull representation. These relationship will be needed later.

Lemma B.0.5. Let

G =

(
Ih D M

0 Ik−h N

)

be a generator matrix in the hull representation then

−(DDT +MMT ) = Ih and D = −MNT

Proof. Since
(
Ih D M

)
is a basis of the hull then

G




Ih

DT

MT


 = 0

and this gives directly the required result. �

The next theorem provides a formula for the parity check matrix in the standard form associated to

the generator matrix in the hull representation.

Theorem B.0.6. Let C be an [n, k] linear code with a generator matrix

G =

(
Ih D M

0 Ik−h N

)

then the parity check matrix H is given by

(
NTDT −MT −NT In−k

)

Proof. Let

G1 =
(
Ih D M

)
and G2 =

(
0 Ik−h N

)
.

Let C1 and C2 be the linear codes generated by G1 and G2, respectively. One can easily see that

G⊥
1 =

(
−DT

−MT In−h

)
and G⊥

2 =

(
Ih 0

0 −NT In−k

)

are the generator matrices of C1
⊥ and C2

⊥, respectively. We note that the code C⊥, is the intersection

of C1
⊥ and C2

⊥. Next we find the elements in the intersection.

(u, v)G⊥
1 = (−uDT − vMT , u, v)

(u′, v′)G⊥
2 = (u′,−v′NT , v′)
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where the length of u is k − h, v is n− k, u′ is h and v′ is n− k.

The vectors in the intersection satisfy the following:

v = v′, u = −v′NT , and u′ = −uDT − vMT

Thus

(u, v)G⊥
1 = (vNTDT − vMT ,−vNT , v)

= v
(
NTDT −MT −NT In−k

)

and hence the parity check matrix H is given by

(
NTDT −MT −NT In−k

)

�

Next we present another proof for Theorem B.0.6.

Proof. We know that the parity check matrix H satisfies GHT = 0. Thus we have

GHT =

(
Ih D M

0 Ik−h N

)

X

Y

Z


 = 0

⇒X +DY +MZ = 0 and Y +NZ = 0

⇒ Y = −NZ and X = (DN −M)Z.

The matrix Z can be chosen freely any n − k × n − k square matrix so we chose Z = In−k. Thus

we have

Y = −N and X = DN −M

and

HT =



DN −M

−N
In−k




and this completes the proof.

�

In the previous theorem the parity check matrix is given in the standard form. Next we deduce the

parity check matrix in the hull representation.

Theorem B.0.7. Let

G =

(
Ih D M

0 Ik−h N

)

be a generator matrix in the hull representation of an [n, k] linear code, without loss of generality, we

assume k 6 n− k. Then we can write

G =

(
Ih D X M1

0 Ik−h Y N1

)
,
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where M1 is h× k and N1 is k − h× k.

The parity check matrix in the hull representation is given by

H =

(
Ih D X M1

0 In−k−h Z

)

where Z is a solution for the system

BZT = −A
with

A =

(
D X

Ik−h Y

)
and B =

(
M1

N1

)
.

Proof. In this theorem we assume k 6 n− k otherwise we can consider the dual code.

The first h rows in G are basis of the hull. These rows can be the first h rows in H also. The last

n − k − h rows in H will have the form
(
0 In−k−h Z

)
as suggested by the hull representation.

Our target is to find Z in terms of components of G. We know that GHT = 0 thus we have:

GHT =

(
Ih D X M1

0 Ik−h Y N1

)



Ih 0 0

DT Ik−h 0

XT
0 In−2k

MT
1 ZT

1 ZT
2


 = 0

This yields the following equations in Z1 and Z2:





D +M1Z
T
1 = 0

X +M1Z
T
2 = 0

Ik−h +N1Z
T
1 = 0

Y +N1Z
T
2 = 0.

These equations can be written as follows:

(
M1

N1

)(
ZT

1 ZT
2

)
= −

(
D X

Ik−h Y

)

and this gives the required result. It is worth mentioning here, this system must have at least one

solution since we proved in Theorem B.0.6 that any linear code has a generator matrix in the hull

representation where the selection of the basis of the hull is optional. �

Remark B.0.8. Consider a generator matrix G in the hull representation. Let B be the matrix con-

structed from the last k columns of G, that is B = G[n− k + 1;n]. Let A be the matrix constructed

from the n − k − h columns before the last k columns in G, that is A = G[h + 1;n − k]. Then

regardless of the dimension of the code k, the submatrix Z satisfies the system BZT = −A.

Remark B.0.9. Note that the hull representation for the dual code as presented in Theorem B.0.7 and

Remark B.0.8 is valid when h = 0 and h = k.
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ISD Algorithm

Throughout this section we consider G a generator matrix of an [n, k] linear code, P is an n × n
permutation matrix, Ik is k× k identity matrix and p and l are parameters chosen in a suitable way to

improve the performance of the algorithms.

Lee-Brickell’s Algorithm

This algorithms was first introduced in [52] and it works as follows:

1: Input: G and p.

2: Output: Codeword of weight w.

3: Compute GP for a random P such that the first k columns of GP are linearly independent.

4: Write GP in the standard form G′ = [Ik J ], where J is a k × n− k matrix.

5: for all u, weight p vectors of length k do

6: if the weight of uG′ is w then

7: return uG′P−1 = uG.

8: end if

9: end for

10: if no such a codeword then

11: go to line 3.

12: end if

Leon’s Algorithm

This algorithm was introduced by Leon in [54] where the algorithm works as Lee-Brickell’s algorithm

except G′ is composed of three parts where the middle part is assumed to be error-free.

1: Input: G, p, l.
2: Output: Codeword of weight w.

3: Compute GP for a random P such that the first k columns of GP are linearly independent.

4: Write GP in the standard form G′ = [Ik L J ], where L is a k× l matrix and J is a k×n−k− l
matrix.

5: for all u vectors of weight 6 p and length k do
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6: if the wight of u[Ik L] is 6 p and the weight of uG′ is w then

7: return uG′P−1 = uG.

8: end if

9: end for

10: if no such a codeword then

11: Go to line 3.

12: end if

Stern’s Algorithm

This algorithm was first proposed by Stern in [82]. It has significant improvement over the previous

algorithms in terms of time complexity. Below is the description of the algorithm.

1: Input: G, p, l.
2: Output: Codeword of weight w.

3: Compute GP for a random P such that the first k columns of GP are linearly independent.

4: Write GP in the standard form G′ = [Ik L J ], where L is a k× l matrix and J is k× n− k− l
matrix.

5: for all u vectors of weight p and length k/2 do

6: Add to L0 the codeword x0 = (u, 0)G′.

7: Add to L1 the codeword x1 = (0, u)G′.

8: end for

9: Sort L0 and L1 according to φL(x) = [xk+1, ..., xk+l], the values of x in the coordinates corre-

sponding to L

10: for all pairs x0 ∈ L0 and x1 ∈ L1 do

11: if φL(x0) = φL(x1) then

12: Compute x = x0 + x1.

13: if x has weight w then

14: return xP−1

15: end if

16: end if

17: end for

18: if no such x then

19: Go to line 3.

20: end if

The following figure illustrates how the three algorithms work.

k n− k

Lee-Brickell
p w − p

Leon
p 0 w − p

Stern
p p 0 w − 2p
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Complexity of ISD

A work factor of Stern’s algorithm over binary field was provided in [29] as follows:

4p+1lpk2(n− k)(n− k+1
2 )
(
k/2
p

)3(n−k
l

)(
n
k

)

2l+1
(
2p
p

)(
w
2p

)(
k−w
k−2p

)(
n−k−w+2p

l

)

A precise work factor over arbitrary field Fq was given in [20] as follows: Let Q be the cost of one

iteration then:

Q = (n− 1)
(
(k − 1)(1− 1

qr ) + (qr − r)
) c
r

+
(
(k2 − p+ 1) + 2

(
k/2
p

)
(q − 1)p

)
l

+ q
q−1(w − 2p+ 1)2p(1 + q−2

q−1)
((k/2p )

2
(q−1)2p

ql

)

where c and r are parameters used to speed up the Gaussian elimination by reusing information and

precomputation that are proposed in [13].

The number of iterations neglecting the dependency on the previous iteration is:

T =

(
n
w

)
(
k/2
p

)2(n−k−l
w−2p

)

Thus the work factor of the algorithm over Fq is TQ.

R. C. Torres and N. Sendrier studied the asymptotic behavior of a generic ISD in [79]. Consider-

ing n as the code length, R is the code rate and ISD is looking for a codeword of weight w with

limn→∞w/n = 0 the work factor of ISD is: 2cw(1+O(1)) when n grows, and c = − log2(1− R) is a

constant.





Abstract

Code equivalence problem plays an important role in coding theory and code based cryptography.

That is due to its significance in classification of codes and also construction and cryptanalysis of

code based cryptosystems. It is also related to the long standing problem of graph isomorphism, a

well-known problem in the world of complexity theory.

We introduce new method for solving code equivalence problem. We develop algebraic approaches to

solve the problem in its permutation and diagonal versions. We build algebraic system by establishing

relations between generator matrices and parity check matrices of the equivalent codes. We end up

with system of multivariables of linear and quadratic equations which can be solved using algebraic

tools such as Groebner basis and related techniques.

By using Groebner basis techniques we can solve the code equivalence but the computation becomes

complex as the length of the code increases. We introduced several improvements such as block lin-

earization and Frobenius action. Using these techniques we identify many cases where permutation

equivalence problem can be solved efficiently. Our method for diagonal equivalence solves the prob-

lem efficiently in small fields, namely F3 and F4. The increase in the field size results in an increase

in the number of variables in our algebraic system which makes it difficult to solve.

We introduce a new reduction from permutation code equivalence when the hull is trivial to graph

isomorphism. This shows that this subclass of permutation equivalence is not harder than graph iso-

morphism. Using this reduction we obtain an algebraic system for graph isomorphism with interesting

properties in terms of the rank of the linear part and the number of variables. We solve the graph iso-

morphism problem efficiently for random graphs with large number of vertices and also for some

regular graphs such as Petersen, Cubical and Wagner Graphs.
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Résumé

Le problème d’équivalence de code joue un rôle important dans la théorie de code et la cryptographie

basée sur le code. Cela est dû à son importance dans la classification des codes ainsi que dans la

construction et la cryptanalyse des cryptosystèmes à base de codes. Il est également lié à un problème

ouvert d’isomorphisme de graphes, un problème bien connu dans le domaine de la théorie de la

complexité.

Nous prouvons pour les codes ayant un hull trivial qu’il existe une réduction polynomiale de l’équivalence

par permutation de codes à l’isomorphisme de graphes. Cela montre que cette sous-classe d’équivalence

de permutation n’est pas plus dure que l’isomorphisme de graphes.

Nous introduisons une nouvelle méthode pour résoudre le problème d’équivalence de code. Nous

développons des approches algébriques pour résoudre le problème dans ses deux versions : en per-

mutation et en diagonale. Nous construisons un système algébrique en établissant des relations entre

les matrices génératrices et les matrices de parité des codes équivalents. Nous nous retrouvons avec

un système plusieurs variables d’équations linéaires et quadratiques qui peut être résolu en utilisant

des outils algébriques tels que les bases de Groebner et les techniques associées.

Il est possible en thorie de résoudre l’équivalence de code avec des techniques utilisant des bases de

Groebner. Cependant, le calcul en pratique devient complexe à mesure que la longueur du code aug-

mente. Nous avons introduit plusieurs améliorations telles que la linéarisation par bloc et l’action de

Frobenius. En utilisant ces techniques, nous identifions de nombreux cas o le problème d’équivalence

de permutation peut être résolu efficacement. Notre méthode d’équivalence diagonale résout efficace-

ment le problème dans les corps de petites tailles, à savoir F3 et F4. L’augmentation de la taille du

corps entrane une augmentation du nombre de variables dans notre système algébrique, ce qui le rend

difficile à résoudre.

Nous nous intressons enfin au problme d’isomorphisme de graphes en considrant un système algébrique

quadratique pour l’isomorphisme de graphes. Pour des instances tires alatoirement, le systme possdent

des propriétés intéressantes en termes de rang de la partie linéaire et du nombre de variables. Nous

résolvons efficacement le problème d’isomorphisme de graphes pour des graphes aléatoires avec un

grand nombre de sommets, et également pour certains graphes réguliers tels que ceux de Petersen,

Cubical et Wagner.
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