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all the time series observations). We believe also that the multi-scale aspect of time series (i.e., involving a temporal part of the observations), not present in static data, could enrich the denition of the existing metrics.

In this work, our objective is to learn a combined multi-modal and multi-scale time series metric for a robust k-NN classier. The main contributions of the PhD are:

-The denition of a new space representation: the pairwise dissimilarity space where each pair of time series is embedded as a vector described by basic temporal metrics.

-The denition of basic temporal metrics that involve one modality at one specic scale.

-The learning of a multi-modal and multi-scale temporal metric for a large margin k-NN classier of univariate time series.

-The denition of the general problem of learning a combined metric as a metric learning problem using the dissimilarity representation.

-The proposition of a framework based on Support Vector Machine (svm) and a linear and non-linear solution to dene the combined metric that satises at least the properties of a dissimilarity measure.

-The comparison of the proposed approach with standard metrics on a large number of public datasets.

-The analysis of the proposed approach to extract the discriminative features that are involved in the denition of the learned combined metric.

Organization of the manuscript

The rst part makes a review of existing methods in machine learning and metrics for time series. The rst chapter presents classical approaches in machine learning. We recall the general principle and framework in supervised learning and focus on two machine learning algorithms: the k-Nearest Neighbors (k-NN) and the Support Vector Machine (svm). In the second chapter, we review some basic terminology for time series and recall at least three In this chapter, we recall some concepts of machine learning. First, we review the principles, the learning framework and the evaluation protocol in supervised learning.

Then, we present the algorithms used in our work: k-Nearest Neighbors (k-NN) and Support Vector Machines (svm).

Classication, Regression

In this section, we review some terminology used in machine learning. First, we recall the principle of machine learning. Then, we detail how to design a framework for supervised learning. After that, we present model evaluation. Finally, we review data normalization.

Machine learning principle

The idea of machine learning (also known as pattern learning or pattern recognition) is to imitate with algorithms executed on computers, the ability of living beings to learn from examples. For instance, to teach a child how to read letters, we show him during a training phase, labeled examples of letters ('A', 'B', 'C', etc.) written in dierent styles and fonts.

We don't give him a complete and analytic description of the topology of the characters but labeled examples. Then, during a testing phase, we want the child to be able to recognize and 8 Chapter 1. Related work to label correctly the letters that have been seen during the training, and also to generalize to new instances [START_REF] Dreyfus | Apprentissage Apprentissage statistique[END_REF].

Let X = {x i , y i } n i=1 be a training set of n vector samples x i ∈ R p and y i their corresponding labels. The aim of supervised machine learning is to learn a relationship (model) f between the samples x i and their labels y i based on examples [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]; [START_REF] Dreyfus | Apprentissage Apprentissage statistique[END_REF]; [START_REF] Duda | Pattern Classication and Scene Analysis[END_REF]. After the training phase based on labeled examples (x i , y i ), the model f has to be able to generalize on the testing phase, i.e., to give a correct prediction ŷj for new instances x j that haven't been seen during the training.

When y i are class labels (e.g., class 'A', 'B', 'C' in the case of child's reading), learning the model f is a classication problem; when y i is a continuous value (e.g., the energy consumption in a building), learning f is a regression problem. For both problems, when a part of the labels y i are known and another part of y i is unknown during training, learning f is a semisupervised problem [START_REF] Zhu | Semi-Supervised Learning Literature Survey[END_REF]. Note that when the labels y i are totally unknown, learning f refers to a clustering problem (unsupervised learning) [START_REF] Jain | Data clustering: a review[END_REF]; [START_REF] Chen | Data mining: An Overview from a Database Perspective[END_REF]. Semi-supervised and unsupervised learning problems are out of the scope of this work.

Model selection in supervised learning

A key objective of supervised learning algorithms is to build models f with good generalization capabilities, i.e., models f that correctly predict the labels y j of new unknown samples x j .

There exist two types of errors committed by a classication or regression model f : training error and generalization error. Training error is the error on the training set and generalization error is the error on the testing set. A good supervised model f must not only t the training data X well, it must also accurately classify records it has never seen before (test set X T est ). In other words, a good model f must have low training error as well as low generalization error. This is important because a model that ts the training data too much can have a poorer generalization error than a model with a higher training error. Such situation is known as model overtting (Fig. 1.1). In general, the complexity in learning can be measured through 2 measures: the information complexity and the computational complexity. The information complexity concerns the generalization performances of the learner: how many samples are needed? How much time the learner will take to converge to its optimal solution? Etc. The computational complexity deals with the computational resources needed to make a new prediction based on the training data.

In most cases, learning algorithms require to tune some hyper-parameters. A rst approach could consist in trying all the possible combinations of hyper-parameters values and keep the one with the lowest training error. However, as discussed above, the model with the lowest training error is not always the one with the best generalization error. To avoid overtting, the training set can be divided into 2 sets: a learning and a validation set. Suppose that we have two hyper-parameters to tune: C and γ. We make a grid search for each combination (C, γ) of the hyper-parameters, that is in this case a 2-dimensional grid (Fig. 1.2). For each combination (a cell of the grid), the model is learned on the learning set and evaluated on the This process is referred to as the model selection. An alternative is cross-validation with v folds, illustrated in Fig. 1.3. In this approach, we partition the training data into v equal-sized subsets. The objective is to evaluate the error for each combination of hyper-parameters. For each run, one fold is chosen for validation, while the v -1 remaining folds are used as the learning set. We repeat the process for each fold, thus v times. Each fold gives one validation error and thus we obtain v errors. The total error for the current combination of hyper-parameters is obtained by summing up the errors for all v folds. When v = n, the size of training set, this approach is called leave-one-out or Jackknife. Each test set contains only one sample. The advantage is that as much data as possible are used for training. Moreover, the validation sets are exclusive and they cover the entire data set. The drawback is that it is computationally expensive to repeat the procedure n times. Furthermore, since each validation set contains only one record, the variance of the estimated performance metric is usually high. This procedure is often used when n, the size of the training set, is small. There exist other methods such as sub-sampling or bootstrap [START_REF] Duda | Pattern Classication and Scene Analysis[END_REF]; [START_REF] Dreyfus | Apprentissage Apprentissage statistique[END_REF]. We only use cross-validation in our experiments.

To sum up, Fig. 1.4 shows a general approach for solving machine learning problems. In general, a dataset can be divided into 3 sub-datasets (illustrated in Fig. 1.5):

• A training set X = {x i , y i } n
i=1 , which consists of n samples x i whose labels y i are known. The training set is used to build the supervised model f . When the learning algorithm requires some hyper-parameters to be tuned, there exists a risk of model overtting. To avoid such risk, the training set X has to be divided into two subsets :

A learning set which is used to build the supervised model f for each value of the hyper-parameters.

A validation set which is used to evaluate the supervised model f for each value of the hyper-parameters. The model f with the lowest error on the validation set is kept, thus ensuring that it has the best generalization abilities.

• A test set X T est = {x j , y j } m j=1 , which consists of m samples x j whose labels y j are also known but are not used during the training step. The model f is applied to predict the 1.1. Classication, Regression 11 label ŷj of samples x j to evaluate the performance of the learnt model by comparing ŷj and y j .

• An operational set X op = {x l , y l } L l=1 , which consists of L samples x l whose labels y l are totally unknown. The operational set is in general a new dataset on which the learnt algorithm is applied. 

Model evaluation

As seen in the previous section, model selection is inherently based on the ability to quantify its error on the validation set. In this section, we recall how this error is computed for classication and regression problems.

1.1.3.a Classication evaluation

The performance of a classication model is based on the counts of test samples x j correctly and incorrectly predicted by the model f . These counts are tabulated in a table called the confusion matrix. Table 1.1 illustrates the concept for a binary classication problem. Each cell g ij of the table stands for the number of samples from class i predicted to be of class j.

Based on this matrix, the number of correct predictions made by the model is g 01 g 00

C i=1 g ii ,
Table 1.1: Confusion matrix for a 2-class problem.

For binary classication problems, g 11 is the number of true positives, g 10 is the number of false negatives, g 01 is the number of false positives and g 00 is the number of true negatives.

To summarize the information, it is generally more convenient to use performance metrics such as the classication accuracy (Acc) or the error rate (Err). This allows several models to be compared with a single number. Note that Err = 1 -Acc.

Acc =

Number of correct predictions

Total number of predictions

= C i=1 g ii C i,j=1 g ij (1.1)
Err =

Number of wrong predictions

Total number of predictions

= C i,j=1,i =j g ij C i,j=1 g ij (1.2)
Using these performance metrics allows one to compare the performance of dierent classiers f . It allows one to determine in particular whether one learning algorithm outperforms another on a particular learning task on a given test set Let consider 2 classiers f A and f B . We test these classiers on the test set X T est and denote p A and p B their respective error rates. The intuition of this statistical test is that when algorithm A classies an example x j from the test set X T est , the probability of misclassication is p A . Thus, the number m A (resp. m B ) of misclassication of m test examples made by classier f A (resp. f B ) is a binomial random variable with mean mp A and variance p A (1p A )m. The binomial distribution can be approximated by a normal distribution when m has a reasonable value (Law of large numbers). The dierence between two independent normally distributed random variables is also normally distributed with a mean m(p A -p B ). Thus, the quantity m A -m B is a normally distributed random variable. Under the null hypothesis (the two algorithms should have the same error rate), this will have a mean of zero and a standard error se of:

se = 2p(1 -p) m (1.3) where p = p A +p B 2
is the average of the two error probabilities. From this analysis, we obtain the statistic:

z = p A -p B 2p(1 -p)/m (1.4)
which has (approximatively) a standard normal distribution. We can reject the null hypothesis if |z| > Z 0.975 = 1.96 (for a 2-sided test with probability of incorrectly rejecting the null hypothesis of 0.05).

1.1.3.b Regression evaluation

The performance of a regression model f is based on metrics that measure the dierence between the predicted label ŷj and the known label y j . The Mean Absolute Error function (M AE) computes the mean absolute error, a risk metric corresponding to the expected value of the absolute error loss or L 1 -norm loss.

M AE

= 1 m m j=1 |ŷ j -y j | (1.5)
A commonly used performance metrics is the Root Mean Squared Error function (RM SE)

that computes the root of the mean square error:

RM SE = 1 m m j=1 (ŷ j -y j ) 2 (1.6)
Many works rely on the R 2 measure, the coecient of determination [START_REF] Nagelkerke | A note on a general denition of the coecient of determination[END_REF]. It provides 14 Chapter 1. Related work a measure of how well future samples are likely to be predicted by the model 1 . It can also be interpreted as a measure of how the model f is better than a constant model.

R 2 = 1 - m j=1 (ŷ j -y j ) 2 m j=1 (ȳ -y j ) 2 (1.7)
where ȳ = m j=1 y j is the mean over the known labels y j .

Data normalization

Real dataset are often subject to uneven scaling, noise, outliers, etc. Before applying any learning protocol, it is often necessary to pre-process the data: data scaling, data ltering (e.g., de-noising), outlier removal, etc. We focus on data normalization in this work.

Let X = {x i , y i } n i=1 be a training set, x i being a sample described by p attributes x 1 , . . . , x p .

Part 2 of Sarle's Neural Networks FAQ (1997) 2 explains the importance of data normalization for neural networks but they can be applied to any learning algorithms. The main advantage of normalization is to avoid attributes in greater numeric ranges to dominate those in smaller numeric ranges. Another advantage is to avoid numerical diculties during the calculation.

For example, in the case of Support Vector Machine (svm), because kernel values usually depend on the inner products of feature vectors, i.e., the linear kernel and the polynomial kernel, large attribute values might cause numerical problems [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF].

In most cases, it is recommended to scale each attribute to the range [-1; +1] or [0;

1]. Many normalization methods have been proposed such as Min/Max normalization or Znormalization [START_REF] Mohamad | Standardization and its eects on K-means clustering algorithm[END_REF]. Let µ j and σ j as the mean and the standard deviation of an attribute x j , applying the Z-normalized attribute x norm j is given by:

x norm j = x j -µ j σ j (1.8)
Finally, we recall some precautions to the practitioner in the learning protocol, experimented by Hsu & al. in the context of svm [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]. First, training and testing data must be scaled using the same method. Secondly, training and testing data must not be scaled separately.

Thirdly, the whole dataset must not be scaled together at the same time as it often leads to poorer results. A proper way to do normalization is to scale the training data, store the parameters of the normalization (e.g., µ i and σ i for Z-normalization), then apply the same normalization parameters to the testing data. In Decision Trees, the aim is to build a decision tree by recursively partitioning the sample space [START_REF] Quinlan | Induction of Decision Trees[END_REF]. The tree consists of nodes that split the sample space into sub-spaces, and leaf nodes that are associated to classes. In Deep Neural Networks, most of the propositions aim to learn a representation of the data by extracting features using a cascade of layers [START_REF] Lee | Unsupervised feature learning for audio classication using convolutional deep belief networks[END_REF],

then to use a neural network algorithm to learn a model from the learned features. One main advantage of Decision Trees over Deep Neural Networks is that by using the features from the sample space, the model is still interpretable.

In the following of the work, the k-Nearest Neighbors (k-NN) will be considered as our classier. The Support Vector Machine (svm) will be used for its large margin concept, a key part of one of our algorithms. In this section, we focus and detail these two approaches.

k-Nearest Neighbors (k-NN) classier

A simple approach to classify samples is to consider that "close" samples have a great probability to belong to the same class. Given a test sample x j , one can use the class y i of its nearest neighbor x i in the training set in order to predict its labels: ŷj = y i . More generally, we can consider the k nearest neighbors of x j . The class y j of a test sample x j is assigned with a voting scheme among them, i.e., using the majority of the class of nearest neighbors. This algorithm is referred to as the k-Nearest Neighbors algorithm (k-NN) [START_REF] Silverman | An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges[END_REF]; [START_REF] Cover | Nearest neighbor pattern classication[END_REF]. Fig. 1.6 illustrates the concept for a neighborhood of k = 3 and k = 5. where i * = argmin i∈{1,...,n} D(x i , x j ).

The k-NN algorithm can be extended to estimate continous labels (regression problems). In that case, the label y j is dened as :

y j = 1 k k i=1 y i (1.10)
where i corresponds to the index of the k-nearest neighbors [START_REF] Altman | An introduction to kernel and nearest-neighbor nonparametric regression[END_REF]. There exists other variants of the k-NN algorithms. In a weighed k-NN, the approach consists in weighting the k-NN decision by assigning to each neighbor x i from an unknown sample x j , a weight dened as a function of the distance D(x i , x j ) [START_REF] Dudani | Distance weighed k-Nearest Neighbor rule[END_REF]. To cope with uncertainty or imprecision in the labeling of the training data x i , other authors propose some variants such as the fuzzy k-NN or the belief k-NN. In a fuzzy k-NN, the membership degree in each class of an unseen sample

x j is obtained by combining the memberships of its neighbors [START_REF] Keller | A fuzzy K-nearest neighbor algorithm[END_REF]. In a belief k-NN, the approach relies on the Dempster-Shafer theory to modify the belief concerning the class membership of a pattern, and quantify the uncertainty attached to each sample [START_REF] Denoeux | A k-nearest neighbor classication rule based on Dempster-Shafer theory[END_REF].

Despite its implementation simplicity, the k-NN algorithm has been shown to be successful on time series classication problems [START_REF] Belongie | Shape Matching and Object Recognition Using Shape Contexts[END_REF]; [START_REF] Xi | A Fast time series classication using numerosity reduction[END_REF]; [START_REF] Ding | Querying and Mining of Time Series Data : Experimental Comparison of Representations and Distance Measures[END_REF]. Ding & al. in [Din+08] presents the benece of using a framework based on 1-NN classier to evaluate the performance of metrics for time series. He states that accuracy evaluations should answer the question:

why is this a good measure for describing the (dis)similarity between time series? First, the underlying distance metric is critical to the performance of 1NN classier . Thus, the accuracy of the 1-NN classier directly reects the eectiveness of the metric. Second, 1-NN classier is easy to implement and doesn't need to learn any hyper-parameters, which make it straightforward for anyone to reproduce results. Other methods to compare metrics exists such as clustering with small data sets which are not statistically signicant, or compare the compactness of the metric . Third, it has been proved that the error ratio of 1NN classier is at most twice the Bayes error ratio.

However, the k-NN algorithm presents some disadvantages, mainly due to its computational complexity, both in memory space (storage of the training samples x i ) and time (search of the neighbors) [START_REF] Duda | Pattern Classication and Scene Analysis[END_REF]. Suppose that we have n labeled training samples in p dimensions, and nd the closest neighbors to a test sample x j (k = 1). In the most simple approach, we look at each stored samples x i (i = 1, . . . , n) one by one, calculate its distance to x j (D(x i ,x j )) and retain the index of the current closest one. For the standard Euclidean distance, each metric computation is O(p) and thus the search is O(pn). Finally, note that using standard metrics refer to all of them as metrics.
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(such as the Euclidean distance) in the k-NN relies on all p dimensions in the computation of the metric and thus assumes that all dimensions have the same eect on the metric. This assumption may be wrong and may impact the classication performances.

To overcome these limitations (memory space, computation complexity), some authors proposed algorithms that structures the data: Ball Tree, k-d Tree, etc. In a ball tree, the aim is to build a binary tree that improves the kNN in term of speed. Each node of the tree partitions the data into two disjoint sets which are associated to dierent hyperspheres, called balls. While the balls themselves may intersect, each sample is assigned to one or the other ball in the partition according to its distance from the ball's center. Each leaf node in the tree denes a ball and enumerates all samples inside that ball. In a k-d [YL99]; [START_REF] Heisele | Face recognition with support vector machines: global versus component-based approach[END_REF]; [START_REF] Sadri | Application of Support Vector Machines for recognition of handwritten Arabic/Persian digits[END_REF]; [START_REF] Campbell | Learning with Support Vector Machines[END_REF]. svms belong to the category of kernel methods, algorithms that depends on the data only through dot-products [SS13]. It thus allows non-linear problems to be solved. This section gives a brief overview of the mathematical key points and interpretation of the method. For more information, the reader can consult [SS13]; [START_REF] Campbell | Learning with Support Vector Machines[END_REF]; [START_REF] Cortes | Support-vector networks[END_REF].

We rst present an intuition of maximum margin concept. We give the primal formulation of the svm optimization problem. Then, by transforming the latter formulation into a dual form, the kernel trick can be applied to learn non-linear classiers. Finally, we detail how we can interpret the obtained coecients and how svms can be extended for regression problems.

1.2.2.a Intuition

Let {x i , y i } n i=1 be a set of n samples x i ∈ R p and their labels y i = ±1 (2 class-problem). The objective is to learn a hyperplane, whose equation 18 Chapter 1. Related work . We denote ||w|| 2 , the L 2 -norm of the vector w and ||w|| 1 the L 1 -norm of w:

||w|| 2 = √ w T w = p h=1 w 2 h (1.11) ||w|| 1 = p h=1 |w h | (1.12)
where w = [w 1 , . . . , w p ] T denotes the weight vector.

The two hyperplanes passing through the support vectors of each class are referred to as the canonical hyperplanes, and the region between the canonical hyperplanes is called the margin band (Fig. 1.8). From this, for a binary classication problem, to classify a new sample x j , the decision function is: 1.14) subject to constraints (Eq. 1.15). This formulation is referred to as the primal hard margin problem. When the problem is not linearly separable, slack variables ξ i ≥ 0 are introduced to relax the optimization problem:

f (x j ) = sign(w T x j + b) (1.13) 1.2.2.b Primal formulation
argmin w,b,ξ       Regularization 1 2 ||w|| 2 2 +C Loss n i=1 ξ i      
(1.16) s.t. ∀i = 1, . . . , n :

y i (w T x i + b) ≥ 1 -ξ i (1.17) ξ i ≥ 0 (1.18)
where C > 0 is a trade-o hyper-parameter. This formulation is referred to as the primal soft margin problem. 

argmax α L(w, b) = 1 2 (w T w) - n i=1 α i (y i (w T x i + b) -1) (1.19) s.t. ∀i = 1, . . . , n : 
α i ≥ 0 (1.20) y i (w T x i + b) -1 ≥ 0 (1.21) α i (y i (w T x i + b) -1) = 0 (1.22)
where α i ≥ 0 are the Lagrange multipliers. In optimization theory, Eqs. 1.20, 1.21 and 1.22 are called the Karush-Kuhn-Tucker (kkt) conditions [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. It corresponds to the set of conditions which must be satised at the optimum of a constrained optimization problem.

The kkt conditions will play an important role in the interpretation of svm in Section 1.2.2.e.

At the maximum value of L(w, b), the derivatives with respect to b and w are set to zero:

∂L ∂b = - n i=1 α i y i = 0 ∂L ∂w = w - n i=1 α i y i x i = 0 that leads to: n i=1 α i y i = 0 (1.23) w = n i=1 α i y i x i (1.24)
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By substituting w into L(w, b) in Eq. 1.19, we obtain the dual formulation (Wolfe dual):

argmax α   n i=1 α i - 1 2 n i,j=1 α i α j y i y j (x T i x j )   (1.25) s.t. ∀i = 1...n : n i=1 α i y i = 0 (1.26) α i ≥ 0 (1.27)
The dual objective in Eq. 1.25 is quadratic in the parameters α i . Adding the constraints in Eqs. 1.26 and 1.27, it is a constrained quadratic programming optimization problem (qp).

Note that while the primal formulation is a minimization problem, the equivalent dual formulation is a maximization problem. It can be shown that the objective functions of both formulations (primal and dual) reach the same value when the solution is found [START_REF] Campbell | Learning with Support Vector Machines[END_REF].

In the same spirit, it can be shown that the soft margin primal problem leads to the same formulation to the ones in Eqs. 1.25 and 1.26, except that the Lagrange multipliers α i are upper bounded by the trade-o C in the soft margin formulation [START_REF] Campbell | Learning with Support Vector Machines[END_REF]:

0 ≤ α i ≤ C (1.28)
The constraints in Eq. 1.28 are called the Box constraints. From the optimal value of α i , denoted α * i , it is possible to compute the weight vector w * and the bias b * at the optimality:

w * = n i=1 α * i y i x i (1.29) b * = n i=1 (w T x i -y i ) (1.30)
At the optimality point, Eq. 1.22 leads α * i = 0 for all datapoints that are well classied and that are not on the margin. Hence, only a few number of datapoints have α * i > 0 as shown as in Fig. 1.9. These samples are the support vectors. All other datapoints have α * i = 0, and the decision function is independent of them. Thus, the representation is said sparse.

From Eqs. 1.13 & 1.29, to classify a new sample x j , the decision function for a binary classication problem is:

f (x j ) = sign n i=1 α * i y i (x T i x j ) + b * (1.31)
Chapter 1. Related work for Support Vector Machine (svm) and has been received a great number of improvements and extensions to symbolic objects such as text or graphs [START_REF] Boser | A Training Algorithm for Optimal Margin Classiers[END_REF].

From the dual objective in Eq. 1.25, we note that the samples x i are only involved in a dot-product. Therefore, if we map these samples x i into a higher dimensional hyperspace, called the feature space, we only need to know the dot product in the feature space:

(x i .x j ) → Φ(x i ).Φ(x j ) (1.32)
where Φ is the mapping function.

The intuition behind using such mapping is that for many datasets, it is not possible to nd a hyperplan that can separate the two classes in the input space if the problem is not linearly separable. However, by applying a transformation Φ, data might become linearly separable in a higher dimensional space. Fig. 1.10 illustrates the idea: in the original 2-dimensional space (left), the two classes can't be separated by a line. However, with a third dimension such that the +1 (circle) labeled points are moved forward and the -1 (cross) labeled moved back the two classes become separable.

In most of the case, the mapping function Φ does not need to be known since we only need the dot product Φ(x i ).Φ(x j ). Therefore, we can use any kernel function κ such that: κ(x i , x j ) = Φ(x i ).Φ(x j ). We call Gram matrix G, the matrix containing all κ(x i , x j ):

G = (κ(x i , x j )) 1≤i,j≤n =   κ(x 1 , x 1 ) ... κ(x 1 , x n ) ... ... κ(x n , x 1 ) ... κ(x n , x n )  
Dening a kernel has to follow rules. One of these rules species that the kernel function has to dene a proper inner product in the feature space. Mathematically, the Gram matrix has to be semi-denite positive (Mercer's theorem) [SS13]. These restricted feature spaces, containing an inner product are called Hilbert spaces. are mixed together, and it is not possible to separate them by a line: the data is not linearly separable. Right: using a kernel, these two classes of data become separable by a hyperplane in feature space, which maps to the nonlinear boundary shown, back in input space.

Many kernels have been proposed in the literature such as the polynomial, exponential or wavelet kernels [SS13]. The most popular ones that we will use in our work are respectively the Linear and the Gaussian (or Radial Basis Function (rbf)) kernels:

κ(x i , x j ) = x T i x j (1.33) κ(x i , x j ) = exp - ||x j -x i || 2 2 2σ 2 = exp -γ||x j -x i || 2 2 (1.34)
where γ = 1 2σ 2 is the parameter of the Gaussian kernel and ||x j -x i || 2 is the Euclidean distance between x i and x j . Note that the Linear kernel is the identity transformation. In practice, for large scale problem (when the number of dimensions p is high), using a Linear kernel is sucient [START_REF] Fan | LIBLINEAR: A library for large linear classication[END_REF].

The Gaussian kernel computed between a sample x j and a support vector x i is an exponen-24 Chapter 1. Related work tially decaying function in the input space. The maximum value of the kernel (κ(x i , x j )=1) is attained at the support vector (when x i = x j ). Then, the value of the kernel decreases uniformly in all directions around the support vector, with distance and ranges between zero and one. It can thus be interpreted as a similarity measure. Geometrically speaking, it leads to hyper-spherical contours of the kernel function as shown in Fig. 1.11

6 . The parameter γ controls the decreasing speed of the sphere. In practice, this parameter is learned during the training phase (Section 1.1.2).

Figure 1.11: Illustration of the Gaussian kernel in the 1-dimensional input space for a small and large γ when x i is xed and x j varies.

By applying the kernel trick to the soft margin formulation in Eqs. 1.25, 1.26 and 1.28, the following optimization problem allows non-linear classiers to be learned:

argmax α   n i=1 α i - 1 2 n i=1 n j=1 α i α j y i y j κ(x i , x j )   (1.35) s.t. n i=1 α i y i = 0 (1.36) 0 ≤ α i ≤ C (1.37)
The decision function f becomes:

f (x j ) = sign n i=1 α * i y i κ(x i , x j ) + b * (1.38)
Let n SV be the number of support vectors (n SV ≤ n). To recover b * , we recall that for support vectors x i :

y j n SV i=1 α * i y i κ(x i , x j ) + b * = 1 (1.39)
From this, we can solve b * using an arbitrarily chosen support vector x i :

b * = 1 y j - n SV i=1 α * i y i κ(x i , x j ) (1.40)
Note that in this case, we can't recover the weight vector w * but it is not useful here for the decision function.

1.2.2.e Interpretation

Interpretation in the primal We recall that x i is a sample in p dimensions: x 1 , . . . , x p . Geometrically, the vector w represents the direction of the hyperplane and points towards the direction of positive decision function f (x) ≥ 0 (Fig. 1.12). The absolute value of the bias |b| is equal to the distance of the hyperplane to the origin x = 07 if the norm of the vector w is equal to 1. In the soft margin problem, the slack variables ξ i can be interpreted as follows:

• ξ i = 0 implies that x i is correctly classied and is either on the margin or on the correct side of the margin.

• 0 < ξ i ≤ 1 implies that x i lies inside the margin, but on the correct side of the decision boundary.

• ξ i ≥ 1 implies that x i lies on the wrong side of the decision boundary and is misclassied.

In the primal formulation, the weight vector w = [w 1 , . . . , w p ] T contains as many elements as there are dimensions in the dataset, i.e., w ∈ R p . The magnitude of each element in w denotes the importance of the corresponding variable for the classication problem. If the element of w for some variable is 0, these variables are not used for the classication problem.

In order to visualize the above interpretation of the weight vector w, let us examine several hyperplanes w T x + b = 0 shown in Fig. 1.13 with p = 2. Fig. 1.13(a) shows a hyperplane where elements of w are the same for both variables x 1 and x 2 . The interpretation is that both variables contribute equally for classication of objects into positive and negative. Fig. 1.13(b) shows a hyperplane where the element of w for x 1 is 1, while that for x 2 is 0. This is interpreted as that x 1 is important but x 2 is not. An opposite example is shown in Fig. 1.13(c) where x 2 is considered to be important but x 1 is not. Finally, Fig. 1.13(d) provides a 3-dimensional example (p = 3) where an element of w for x 3 is 0 and all other elements are equal to 1. The interpretation is that x 1 and x 2 are important but x 3 is not.

Another way to interpret how much a variable contributes to the vector w is to express the contribution in percentage: the ratio w j ||w|| 2 .100 denes the percentage of contribution for each variable x j in the svm model. The interpretation is only valid if the variables x j of the samples are normalized before learning the svm model, they evolve in the same range. As a constrained optimization, the dual form satises the Karush-Kuhn-Tucker (kkt) conditions (Eqs. 1.20, 1.21 and 1.22). We recall Eq. 1.22:

α i (y i (w T x i + b) -1) = 0
From this, for every datapoint x i , either α * i = 0 or y i (w T x i + b) = 1. Any datapoint with α * i = 0 do not appear in the sum of the decision function f in Eq. 1.31 or 1.38. Hence, they play no role for the classication decision of a new sample x j . The other x i such that α * i > 0 correspond to the support vectors. Looking at the distribution of α * i allows also to have either a better understanding of the datasets, or either to detect outliers. The higher the coecient α * i for a sample x i is, the more the sample x i impacts on the decision function f . However, an unusually high value of α * i among the samples can lead to two interpretations: either this point is a critical point to the decision, or this point is an outlier. In the soft margin formulation, by constraining α * i to be inferior to C (Box constraints) the eect of outliers can be reduced and controlled.

1.2.2.f Variants of SVM

From the primal formulation of svm (Eqs. 1.14 & 1.15), some works investigate the eect of modications in the regularization and loss term [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF].

First, the two common regularizers are ||w|| 1 and ||w|| 2 . The former is referred to as L 1 -Regularizer while the latter is L 2 -Regularizer. L 1 -Regularizer is used to obtain sparser models than L 2 -Regularizer, i.e., the vector w will contain many elements w i that will be equal to zero. Thus, it can be used for variable selection.

Secondly, the two common loss functions ξ i are max(1 -y i (w T x i + b), 0) and [max(1y i (w T x i + b), 0)] 2 . The former is referred to as L 1 -Loss and the latter is L 2 -Loss function. L 2loss function will penalize more slack variables ξ i during training and would be more sensitive to outliers. Theorically, it should lead to less error in training and poorer generalization in most of the case [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]. In general, L 1 -Loss is preferred.

1.2.2.g Extensions of SVM

svm has received many interest in recent years. Many extensions has been developed such as νsvm, asymmetric soft margin svm or multiclass svm [START_REF] Kijsirikul | Multiclass Support Vector Machines using Adaptive Directed Acyclic Graph[END_REF]; [START_REF] Crammer | On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines[END_REF]. One interesting extension is the extension of Support Vector Machine to regression problems, also called Support Vector Regression (svr). The objective is to nd a linear regression model f (x) = w T x + b. To preserve the property of sparseness, the idea is to consider an -insensitive error function. It gives zero error if the absolute dierence between the prediction f (x i ) and the target y i is less than where > 0 penalize samples that are outside of a -tube as shown as in Fig. 1.14. The -insensitive error function E is dened by:

E (f (x i ) -y i ) = 0 if |f (x i ) -y i | < |f (x i ) -y i | - otherwise (1.41)
The soft margin optimization problem in its primal form is formalized as:

argmin w,b       Regularization 1 2 ||w|| 2 2 +C Loss n i=1 (ξ i 1 + ξ i 2 )       (1.42) s.t. ∀i = 1, . . . , n : y i -(w T x i + b) ≤ + ξ i 1 (1.43) (w T x i + b) -y i ≤ + ξ i 2 (1.44) ξ i 1 ≥ 0 (1.45) ξ i 2 ≥ 0b (1.46)
The slack variables are divided into 2 kind of slacks variables, one for samples above the decision function f (ξ i 1 ), and one for samples under the decision function f (ξ i 2 ). As for svm, 

argmax α   n i=1 y i (α i 1 -α i 2 ) - 1 2 n i=1 n j=1 (α i 1 -α i 2 )(α j 1 -α j 2 )(x i .x j )   (1.47) s.t. ∀i = 1, . . . , n : n i=1 α i 1 = n i=1 α i 2 (1.48) 0 ≤ α i 1 ≤ C (1.49) 0 ≤ α i 2 ≤ C (1.50)
As in svm, we obtain three possible regression functions for a new sample x j , respectively in its primal, dual, and non-linear form:

f (x j ) = w T x j + b (1.51) f (x j ) = n i=1 (α * i 1 -α * i 2 )(x i .x j ) + b (1.52) f (x j ) = n i=1 (α * i 1 -α * i 2 )κ(x i , x j ) + b (1.53)
More informations about the calculation development can be found in [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF].

Conclusion of the chapter

This chapter reviews the dierent steps in a machine learning framework: data normalization, model selection and model evaluation. We focus on two machine learning algorithms: the k-Nearest Neighbors (k-NN) and the Support Vector Machine (svm).

Our objective being the learning of a metric that optimizes the performances of the k-NN classier, we review in the next section some metrics proposed for time series. In this chapter, we rst present the denition of time series. Then, we recall the general properties of a metric and introduce some metrics proposed for time series.

In particular, we focus on amplitude-based, behavior-based and frequential-based metrics. As real time series are subject to varying size and delays, we recall the concept of alignment and dynamic programming. Finally, we present some proposed combined metrics for time series.

Denition of time series

Time series are data that can be frequently found in various emerging applications such as sensor networks, smart buildings, social media networks or Internet of Things (IoT) [START_REF] Najmeddine | Mesures de similarité pour l'aide à l'analyse des données énergétiques de bâtiments[END_REF];

[Ngu+12]; [START_REF] Yin | Clustering distributed time series in sensor networks[END_REF]. They are involved in many learning problems such as recognizing a human movement in a video, detecting a particular operating mode, etc. [START_REF] Panagiotakis | Shape-based individual/group detection for sport videos categorization[END_REF]; [START_REF] Ramasso | Human action recognition in videos based on the transferable belief model : Application to athletics jumps[END_REF]. In clustering problems, one would like to organize similar time series together into homogeneous groups. In classication problems, the aim is to assign time series to one of several predened categories (e.g., dierent types of defaults in a machine). In regression problems, the objective is to predict a continuous value from observed time series (e.g., forecasting the 32 Chapter 2. Time series metrics measurement of a power meter from pressure and temperature sensors). Due to their temporal and structured nature, time series constitute complex data to be analyzed by classic machine learning approaches.

For physical systems, a time series of duration T can be seen as a signal, sampled at a frequency f e , in a temporal window [0; T ]. From a mathematical perspective, a time series of length q is a collection of a nite number of observations made sequentially at discrete time instants t = 1, ..., q. Note that q = T f e .

Let x i = (x i1 , x i2 , ..., x iq ) be a univariate time series of length q. Each observation x it is bounded (i.e., the innity is not a valid value: x it = ±∞). The time series x i is said to be univariate if the collection of observations x it (t = 1, ..., q) comes from the observation of one variable (e.g., the temperature measured by one sensor). When simultaneous observation of p variables (several sensors such as the temperature, the pressure, etc.) are made at the same time, the time series is said to be multivariate. From this, one possible representation would be x i = (x i,1 , ...., x i,p ) = (x i1,1 , ..., x iq,1 , x i1,2 , ..., x i1,p , ..., x iq,p ). 1 This time series can be downloaded from http://www.york.ac.uk/depts/maths/data/ts/ts04.dat 2.2. Properties and representation of a metric 33

Properties and representation of a metric

A mapping D : R p × R p → R + over a vector space R p is called a metric or a distance if for all vectors ∀ x i , x j , x l ∈ R p , it satises the properties 1 to 4[DD09]:

1. D(x i , x j ) ≥ 0 (positivity) 2. D(x i , x j ) = D(x j , x i ) (symmetry) 3. D(x i , x j ) = 0 ⇔ x i = x j (distinguishability) 4. D(x i , x j ) + D(x j , x l ) ≥ D(x i , x l ) (triangular inequality) 5. D(x i , x i ) = 0 (reexivity) 
A mapping D that satises at least properties 1, 2 and 5 is called a dissimilarity, and the one that satises at least properties 1, 2, 4 a pseudo-metric. A metric, a dissimilarity and a pseudo metric can be both interpretated as a measure of how "dierent" two samples are: if a sample x i is expected to be closer to x j than to x l , then D(x i , x j ) ≤ D(x i , x l ). A mapping S : R p ×R p → R is called a similarity on R p if S satises the properties of positivity, symmetry and the inequality: ∀ x i , x j , S(x i , x j ) ≤ S(x i , x i ). To simplify the discussion in the following, we refer to pseudo-metric and dissimilarity as metrics, pointing out the distinction only when necessary.

Metric can be represented in two ways (Fig. x i and x) can be xed and the distance sphere is shown for each metric (e.g., the Manhattan, Euclidean and Innite distance). Secondly, by xing a data point x i , the distance sphere is xed and the data point x changes according to the considered distance at hand (x M anhattan for the Manhattan distance, x Euclidean for the Euclidean distance, x Inf inite for the Innite distance). For example, the latter representation is used by Weinberger and Saul in [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF] to illustrate the eect of an initial Euclidean distance and a learned Mahalanobis metric to purify the neighborhood of data points. This concept will be explored in Chapter 3.

Given the pairwise dissimilarities between samples, some algorithms such as MultiDimensional Scaling (mds) [START_REF] Carroll | Multidimensional scaling[END_REF] or Isomap [START_REF] Geng | Supervised nonlinear dimensionality reduction for visualization and classication[END_REF] have been proposed to visualize the proximity between samples in a dataset. Briey, a mds algorithm aims to place each sample in a Pdimensional space (in general, P = 2 or 3) such that the between-object distances are preserved as well as possible. Classical mds takes an input matrix giving dissimilarities between pairs of samples and outputs a coordinate for each sample whose conguration minimizes a loss function called stress. An example of applications is given in Fig. 2.3: the distances between pairs of cities is given and the aim is to reconstruct a two dimensional map that reproduces the best the given distances. More generally, we can take benece of this algorithm for any other type of data (samples, time series, etc.) if the given dissimilarity matrix is given. 

Unimodal metrics for time series

In the following, we suppose that time series have the same duration T and have been regularly

sampled at the frequency f e . Therefore, they have the same length q = T f e . Let x i = (x i1 , x i2 , ..., x iq ) and x j = (x j1 , x j2 , ..., x jq ) be two univariate time series of length q.

General review of unimodal metrics for time series

Dening and evaluating metrics for time series has become an active area of research for a wide variety of problems in machine learning [START_REF] Ding | Querying and Mining of Time Series Data : Experimental Comparison of Representations and Distance Measures[END_REF]; [START_REF] Najmeddine | Mesures de similarité pour l'aide à l'analyse des données énergétiques de bâtiments[END_REF]. For example, as explained in [START_REF] Montero | TSclust : An R Package for Time Series Clustering[END_REF], a crucial question in clustering is to determine what we mean by "similar" samples, i.e., dening a suitable metrics between two samples. The idea is not restricted to clustering and can be naturally extended to other machine learning problems (supervised, semi-supervised). Due to their temporal nature, time series may be compared based on dierent characteristics, called modalities, such as their amplitude, shape or frequency. Contrary to static data, time series may be also subject to temporal specicities such as delays. From In the following, we focus on three types of metrics for time series, two in the time domain (amplitude-based and behavior-based distance) and one in the frequential domain (frequential-based distance).

Amplitude-based metrics

The most usual comparison measures are amplitude-based metrics, where time series are compared in the temporal domain on their amplitudes regardless of their behaviors or frequential characteristics. Among these metrics, there are the commonly used Euclidean distance that compares elements observed at the same time [START_REF] Ding | Querying and Mining of Time Series Data : Experimental Comparison of Representations and Distance Measures[END_REF]:

d E (x i , x j ) = q t=1 (x it -x jt ) 2 (2.1)
Note that the Euclidean distance is a particular case of the Minkowski L p norm (p = 2). An other amplitude-based metric is the Mahalanobis distance [START_REF] Prekopcsák | Time series classication by class-specic Mahalanobis distance measures[END_REF], dened as a dissimilarity measure weighted by a matrix M:

d M (x i , x j ) = (x i -x j ) T M -1 (x i -x j ) (2.2)
If the covariance matrix M is the identity matrix, the Mahalanobis distance is equal to the Euclidean distance. If the covariance matrix M is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

d M (x i , x j ) = q t=1 (x it -x jt ) 2 m t (2.3)
where m t is the variance of the x it and x jt over the sample set. Note that this is equivalent to normalize each feature: x it = x it / √ m t and use the Euclidean distance on the normalized features x it . In the following of the work, we consider the standard Euclidean distance d E as the amplitude-based distance d A .

In the example of Fig. 2.4, let's try to determine which time series (x 2 or x 3 ) is the closest to x 1 . The amplitude-based distance d A states that x 1 is closer to x 3 than to x 2 since d A (x 1 , x 3 ) = 24.1909 < d A (x 1 , x 2 ) = 29.0818.

Frequential-based metrics

The second category, commonly used in signal processing, relies on comparing time series based on their frequential properties (e.g., Fourier Transform, Wavelet, Mel-Frequency Cepstral Coecients [START_REF] Sahidullah | Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition[END_REF]; [START_REF] Torrence | A Practical Guide to Wavelet Analysis[END_REF]; [START_REF] Brigham | The fast Fourier transform[END_REF]). In this work, we limit the frequential comparison to Discrete Fourier Transform [START_REF] Lhermitte | A comparison of time series similarity measures for classication and change detection of ecosystem dynamics[END_REF], but other frequential properties can be used as well.

Thus, for time series comparison, rst the time series x i are transformed into their Fourier representation xi = [x i1 , ..., xiF ], with xif the complex components at frequential index f = 

d F (x i , x j ) = F f =1 (|x if | -|x jf |) 2 (2.4)
In the example of Fig. 2.4, recall that the Euclidean distance d A states that x 1 is closer to x 3 than x 2 . However, in the frequency domain (Fig. 2.5), the frequential-based distance d F states that x 1 is closer to x 2 than to x 3 since d F (x 1 , x 2 ) = 0.0835 < d F (x 1 , x 3 ) = 1.0124. Chapter 2. Time series metrics

Behavior-based metrics

The third category of metrics aims to compare time series based on their shape or behavior despite the range of their amplitudes. By time series of similar behavior, it is generally intended that for all temporal window [t, t ], they increase or decrease simultaneously with the same growth rate. On the contrary, they are said of opposite behavior if for all [t, t ], if one time series increases, the other one decreases and (vise-versa) with the same growth rate in absolute value. Finally, time series are considered of dierent behaviors if they are not similar, nor opposite. Many applications refer to the Pearson correlation [START_REF] Abraham | An Integrated Framework for Simultaneous Classication and Regression of Time-Series Data[END_REF]; [START_REF] Benesty | Pearson correlation coecient[END_REF] for behavior comparison. A generalization of the Pearson correlation, called the temporal

correlation cort r , is introduced in [DC03]; [DCA12]; [DCN07]: cort r (x i , x j ) = q t,t =1 (x it -x it )(x jt -x jt ) q t,t =1 (x it -x it ) 2 q t,t =1 (x jt -x jt ) 2 (2.5) where |t-t | ≤ r, r ∈ [1, ..., q -1].
The parameter r can be tuned or xed a priori and depends on the importance of noise in data. For non-noisy data, low orders r is generally sucient.

For noisy data, the practitioner can either use de-noising data technics (Kalman or Wiener ltering [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF]; [START_REF] Wiener | Extrapolation, Interpolation & Smoothing of Stationary Time Series -With Engineering Applications[END_REF]), or x a high order r. This parameter can be seen as a temporal window where the time series are compared.

The temporal correlation cort computes the sum of growth rate between x i and x j between all pairs of values observed at [t, t ] for t ≤ t+r (r-order dierences). The value cort r (x i , x j ) = +1 means that x i and x j have similar behavior. The value cort r (x i , x j ) = -1 means that x i and x j have opposite behavior. Finally, cort r (x i , x j ) = 0 expresses that their growth rates are stochastically linearly independent (dierent behaviors).

When r = q -1, it leads to the Pearson correlation. As cort r is a similarity measure, it can be transformed into a dissimilarity measure: 

d B (x i , x j ) = 1 -cort r (x i , x j ) 2 (2.6) Considering Fig. 2.6, the behavior-based metric d B states that x 1 is closer to x 4 than to x 2 or x 3 since d B (x 1 , x 2 ) = 0.477, d B (x 1 , x 3 ) = 1 and d B (x 1 , x 4 ) = 0.

Time series alignment and dynamic programming approach

In some applications, time series needs to be compared at dierent time t (i.e., energy data [START_REF] Najmeddine | Mesures de similarité pour l'aide à l'analyse des données énergétiques de bâtiments[END_REF]) whereas in others, comparing time series on the same time t is essential (i.e., gene expression [START_REF] Douzal-Chouakria | Adaptive dissimilarity index for measuring time series proximity[END_REF]). When time series are asynchronous (i.e., varying delays or dynamic changes), they must be aligned before any analysis process. The asynchronous eects can be of various natures: time shifting (phase shift in signal processing), time compression or time dilatation. For example, in the case of voice recognition (Fig. 2.7), it is straightforward that a same sentence said by two dierent speakers will produce dierent time series: one speaker may speak faster than the other; one speaker may take more time on some vowels, etc.

To cope with delays and dynamic changes, dynamic programming approach has been introduced [START_REF] Berndt | Using dynamic time warping to nd patterns in time series[END_REF]. An alignment π of length |π ij | = m between two time series x i and x j of length q is dened as the set of m (q ≤ m ≤ 2q -1) couples of aligned elements of x i to m elements of x j :

π ij = ((π i (1), π j (1)), (π i (2), π j (2)), . . . , (π i (m), π j (m))) (2.7)
where the applications π i and π j dened from {1, ..., m} to {1, ..., q} obey the following boundary monotonicity conditions:

1 = π i (1) ≤ π i (2) ≤ ... ≤ π i (m) = q (2.8) 1 = π j (1) ≤ π j (2) ≤ ... ≤ π j (m) = q
(2.9) ∀l ∈ {1, ..., m}, π i (l + 1) ≤ π i (l) + 1

(2.10) and π j (l + 1) ≤ π j (l) + 1

(2.11) and

(π i (l + 1) -π i (l)) -(π j (l + 1) -π j (l)) ≥ 1.

(2.12)

In the following, we denote π = π ij to simplify the notation. Intuitively, an alignment π denes a way to associate elements of two time series. Alignments can be described by paths in the q × q grid that crosses the elements of x i and x j (Fig. 2.8). We denote π a valid alignment and A ij , the set of all possible alignments between x i and x j (π ∈ A). To nd the best alignment π * between two time series x i and x j , the Dynamic Time Warping (dtw) algorithm has been proposed [START_REF] Keogh | Exact indexing of dynamic time warping[END_REF]; [START_REF] Salvador | FastDTW : Toward Accurate Dynamic Time Warping in Linear Time and Space[END_REF].

dtw requires to choose a cost function ϕ to be optimised, such as a dissimilarity function (d A , d B , d F , etc.). Standard dtw uses the Euclidean distance d A (Eq. 2.1) as the cost function [START_REF] Berndt | Using dynamic time warping to nd patterns in time series[END_REF]. The warp path π is optimized for the chosen cost function ϕ:

π * = argmin π∈A ij 1 |π| (t,t )∈π ϕ(x it , x jt ) (2.13)
When the cost function ϕ is a similarity measure (Section 2.2), the optimization involves maximization instead of minimization. When other constraints are applied on π, Eq. (2.13) leads to other variants of dtw (Sakoe-Shiba [START_REF] Sakoe | Dynamic Programming Algorithm Optimization for Spoken Word Recognition[END_REF], Itakura parallelogram [START_REF] Rabiner | Fundamentals of Speech Recognition[END_REF]). Finally, the warped signals x i,π * and x j,π * are dened as:

x i,π * = (x iπ i (1) , ..., x iπ i (m) )

(2.14)

x j,π * = (x jπ j (1) , ..., x jπ j (m) )

(2.15) Once an optimal alignment π * has been found, and whatever cost function ϕ have been chosen to nd it, the metric presented in Section 2.3 (amplitude-based d A , behavior-based d B , frequential-based d F ) can be then computed on the warped signals x i,π * and x j,π * . In the following, we suppose that the best alignment π * is found. For simplication purpose, we refer to x i,π * and x j,π * as x i and x j .

Combined metrics for time series

In most classication problems, it is not known a priori if time series of a same class exhibits same modalities (characteristics) based on their amplitude, behavior or frequential components alone. In some cases, several components (amplitude, behavior and/or frequential) may be implied.

Combination functions

A rst technic considers a classier for each p metric and combines the decision of the p resulting classiers. This methods is referred to as post-fusion [START_REF] Zhang | Multi-metric learning for multi-sensor fusion based classication[END_REF], not considered in our work. Other propositions show the benet of involving both behavior and amplitude components through a combination function. They combines the unimodal metrics together to obtain a single metric used after that in a classier. This is called pre-fusion. The most basic combination functions that we could use combines two unimodal metrics through a linear or geometric function. For example, with d A and d B , we obtain: 

D Lin (x i , x j ) = βd B (x i , x j ) + (1 -β)d A (x i , x j ) (2.16) D Geom (x i , x j ) = (d B (x i , x j )) β (d A (x i , x j )) 1-β (2.17
D Sig (x i , x j ) = 2d A (x i , x j ) 1 + exp(βcort r (x i , x j )) = 2d A (x i , x j ) 1 + exp(β(1 -2d B (x i , x j ))) (2.18)
where β is a parameter that denes the compromise between behavior and amplitude components. Note that these combinations are xed and dened independently from the analysis task at hand. Moreover, in the case of D Sig , the component cort r can be seen as a penalizing factor of d A . Finally, one could extend D Lin and D Geom by adding metrics, but that would imply to add parameters. The grid search to nd the best parameters would become time consuming. 

Proposition of normalization of distances

When combining several metrics into a single metric, it is necessary to normalize the metrics involved in the combination to avoid one metric from another to have a larger impact in the combination. Classically, to normalize data, Z-normalization is used (Section 1.1.4). In that case, we suppose that the variables x j are normally distributed: data evolves between [-∞; +∞] and are coming from a Gaussian process. In some cases, the data are skewed such as monetary amounts, incomes or distances. These data may be log-normally distributed, e.g., the log of the data is normally distributed (Fig. 2.10). Some works proposes to take the log of the data (x ln j ) to restore the symmetry, and then, to apply a Z-normalization of this transformation [ZMP14]:

x ln j = ln(x j );

(2.19)

x ln,norm j = x ln j -µ ln j σ ln j (2.20)

x norm j = exp(x ln,norm j ) (2.21)
where ln denotes the Natural Logarithm function, µ ln j and σ ln j the mean and the standard deviation of a variable x ln j .

Conclusion of the chapter

To cope with modalities (characteristics) inherent to time series (amplitude, behavior, frequency, etc.), we review in this chapter several unimodal metrics for time series, in particular, the Euclidean distance d A , the behavior-based distance d B and the Fourier-based distance d F . In practice, real time series may be subject to delays and need to be re-aligned before any analysis task. For that, the Dynamic Time Warping (dtw) algorithm is used in practice.

However, the metrics d A , d B and d F only include one modality. In general, several modalities may be implied and some combined metric have been proposed, but the propositions are often limited to two modalities and the metrics are dened independently from the analysis task.

As k-NN performances is impacted by the choice of the metric, other work propose in the case of static data to learn the metric in order to optimize the k-NN classication. In the following, inspired from these ideas, we propose framework to learn a combined metric for a large margin k-NN classier of time series. 

Motivations

This work focuses on dening a 'good' metric for k-NN classication of time series. The denition of a metric to compare samples is a fundamental issue in data analysis or machine learning. As seen in Chapter 2, temporal data may be compared based on one or several characteristics, called modalities (amplitude, behavior, frequency) and they might be subject to delays. In some classication problems, the sharing of common features at the global level (implying all the time series observations) characterizes the class membership. In other problems, the presence of saliencies or local events is a key characteristic to discriminate the classes. Thus, there is a need to take into account local and global aspects, depending on the complexity of the considered data. We refer this notion as scale in our work. We believe that the denition of a temporal metric should consider at least these dierent aspects (modality, delay, scale) in order to improve the performance of a classier. Our aim is to take leverage from the metric learning framework [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]; [START_REF] Bellet | Good edit similarity learning by loss minimization[END_REF] to learn a multi-modal and multi-scale temporal metric for time series nearest neighbors classication.

Specically, our objective is to learn from the data a linear or non linear function that combines several temporal modalities at several temporal scales, that satises metric properties (Section 2.2), and that generalizes the case of unimodal metrics at the global scale.

Metric learning can be dened as learning, from the data and for a task, a pairwise function (i.e., a similarity, dissimilarity or a distance) that brings closer samples that are expected to be 3.1. Motivations 49 similar, and pushes far away those expected to be dissimilar. Such similarity and dissimilarity expectations, is inherently task-and application-dependent, generally given a priori and xed during the learning process. Metric learning has become an active area of research in the last decade for various machine learning problems (supervised, semi-supervised, unsupervised, online learning) and has received many interests in its theoretical background (generalization guarantees) [START_REF] Bellet | A Survey on Metric Learning for Feature Vectors and Structured Data[END_REF]. From the surge of recent researches in metric learning, one can identify mainly two categories: the linear and non linear approaches. The former is the most popular, it denes the majority of the propositions, and focuses mainly on the Mahalanobis distance learning [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]. The latter addresses non linear metric learning which aims at capturing non linear structures in the data, e.g., Kernel Principal Component Analysis (KPCA) and Support

Vector Metric Learning (SVML). In both cases, the metric is learned in the original space (i.e., space described by the features of the samples). In KPCA, the aim is to project the data into a non linear feature space and learn the metric in that projected space [START_REF] Zhang | Transfer metric learning by learning task relationships[END_REF]; [START_REF] Chatpatanasiri | A new kernelization framework for Mahalanobis distance learning algorithms[END_REF]. In SVML, the Mahalanobis distance is learned jointly with the learning of the SVM model in order to minimize the validation error [START_REF] Xu | Distance Metric Learning for Kernel Machines[END_REF]. In general, the optimization problems in non linear approaches is more expensive to solve that in linear approaches, and the methods tend to favor overtting as the constraints are generally easier to satisfy in a nonlinear kernel space. A more detailed review on metric learning is done in [START_REF] Bellet | A Survey on Metric Learning for Feature Vectors and Structured Data[END_REF]. We propose in this work to learn a multi-modal and multi-scale temporal metric for a robust k-NN classier. For this, the main idea is to embed time series into a pairwise dissimilarity space where a linear function combining several modalities at dierent temporal scales can be learned, driven by a large margin optimization process inspired from the nearest neighbors metric learning framework [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]. Thanks to the "kernel trick", the proposed solution is extended to non-linear temporal metric learning context. A sparse and interpretable variant of the proposed metrics conrms its ability to localize nely discriminative modalities as well as their temporal scales.

In this chapter, we rst recall the Large Margin Nearest Neighbors (lmnn) framework and study the properties of the learned metrics. Finally, we give the algorithm. Note that these formalizations don't only concern time series and could be applied to learn a combined metric on any type of data.

3.2 A recall on Large Margin Nearest Neighbors (LMNN)

Let X = {x i , y i } n i=1 be a set of n static vector samples, x i ∈ R p , p being the number of descriptive features and y i the class labels. Weinberger & Saul proposed in [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF] an approach to learn a metric D for a large margin k-NN classier in the case of static data. The m 2 tml concept and optimization problem will be inspired in the following by this approach.

Large Margin Nearest Neighbor (lmnn) approach is based on two intuitions: rst, each training sample x i should have the same label y i as its k nearest neighbors; second, training samples with dierent labels should be widely separated. For this, the concept of target and impostors for each training sample x i is introduced. Given a metric D, target neighbors of x i , noted j i, are the k closest x j of the same class (y j = y i ), while impostors of x i , denoted, l i, are the x l of dierent class (y l = y i ) that invade the perimeter dened by the farthest targets of x i . Mathematically, for a sample x i , an imposter x l is dened by an inequality related to the targets x j : ∀l, ∃j ∈ j i/ D(x i , x l ) ≤ D(x i , x j ) + 1 

A recall on Large Margin Nearest Neighbors (LMNN)

51 lmnn approach learns a Mahalanobis distance D for a robust k-NN. We recall that the k-NN decision rule will correctly classify a sample if the majority of its k nearest neighbors share the same label (Section 1.2.1). The objective of lmnn is to increase the number of samples with this property by learning a linear transformation L of the input space (x i = L.x i ) before applying the k-NN classication:

D 2 L (x i , x j ) = D 2 (Lx i , Lx j ) (3.2) D 2 L (x i , x j ) = ||L(x i -x j )|| 2 2 (3.3)
Commonly, the squared distances can be expressed in terms of a square matrix:

D 2 L (x i , x j ) = (x i -x j )L T L(x i -x j ) (3.4) Let M = L T L.
It is proved that any matrix M formed as below from a real-valued matrix L is positive semidenite (i.e., no negative eigenvalues) [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]. Using the matrix M, squared distances can be expressed as:

D 2 M (x i , x j ) = (x i -x j )M(x i -x j ) (3.5)
The computation of the learned metric D M can thus be seen as a two-stepped procedure: rst, it computes a linear transformation of the samples x i given by the transformation L; second, it computes the Euclidean distance in the transformed space:

D 2 M (x i , x j ) = D 2 L (Lx i , Lx j ) (3.6)
Learning the linear transformation L is thus equivalent to learn the corresponding Mahalanobis metric D parametrized by M. This equivalence leads to two dierent approaches to metric learning: we can either estimate the linear transformation L, or estimate a positive semidenite matrix M. lmnn solution refers to the latter one.

Mathematically, the metric learning problem can be formalized as an optimization problem involving two terms for each sample x i : one term penalizes large distances between nearby inputs with the same label (pull), while the other term penalizes small distances between inputs with dierent labels (push). For all samples x i , this implies a minimization problem:

argmin M,ξ              i,j i D 2 M (x i , x j ) pull +C i,j i,l i ξ ijl push              s.t. ∀i = 1, . . . , n, ∀j i, l i, D 2 M (x i , x l ) -D 2 M (x i , x j ) ≥ 1 -ξ ijl ξ ijl ≥ 0 M 0 (3.7)
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where ξ ijl are slack variables, C is a trade-o between the push and pull term and M 0 means that M is a positive semidenite matrix. Generally, the parameter C is tuned via cross validation and grid search (Section 1.1.2). Similarly to Support Vector Machine (svm) approach, slack variables ξ ijl are introduced to relax the optimization problem.

Multi-modal and multi-scale pairwise dissimilarity space

In this section, we rst present the concept of pairwise dissimilarity space for multi-modal description. Then, in the case of time series, we enrich this representation with a multi-scale description.

Pairwise embedding

Let {x i , y i } n i=1 be a set of n time series x i = [x i1 , . . . , x iq ] ∈ R q labeled y i . Let d 1 , . . . , d p be p given metrics that allow one to compare samples x i . As discussed in Chapter 2, three naturally modalities are involved for time series comparison: amplitude-based d A , behaviorbased d B and frequential-based d F . Our objective is to learn a metric D that combines the p basic temporal metrics for a robust k-NN classier.

The computation of a metric d, and D, always takes into account a pair of samples (x i , x j ). We introduce a new space representation referred to as the pairwise dissimilarity space. We note ϕ an embedding function that maps each pair of time series (x i , x j ) to a vector x ij in a pairwise dissimilarity space E = R p whose dimensions are d 1 , . . . , d p (Fig. 3.3):

ϕ : R q × R q → E = R p (x i , x j ) → x ij = [d 1 (x i , x j ), . . . , d p (x i , x j )] T (3.8)
A metric D that combines the p metrics d 1 , . . . , d p can be seen as a function of the dissimilarity space:

D : R p → R x ij → D(x ij ) = f (d 1 (x i , x j ), . . . , d p (x i , x j )) (3.9)
In that space, the norm of a pairwise vector ||x ij || refers to the proximity between the time series x i and x j . In particular, if ||x ij || = 0 then x j is identical to x i according to all metrics d h . 

Interpretation in the pairwise dissimilarity space

In this section, we give more detailed interpretations in the dissimilarity space. We recall that the norm of a pairwise vector is given by:

||x ij || 2 = p h=1 (d h (x i , x j )) 2 (3.10)
In the following, we denote the norm ||x ij || as an initial distance in the dissimilarity space and call it D 0 . Any other initial metric could have been chosen. The norm of a pairwise vector x ij can be interpreted as a proximity measure: the lower the norm of x ij is, the closer are the time series x i and x j . Two pairwise vectors x ij and x kl that are on a same line that passes through the origin x ii = 0 represent dierences in the the same proportions between their respective modalities (Fig. 3.4).

The Euclidean distance p h=1 (d h (x i , x j ) -d h (x k , x l )) 2 between two pairwise vectors x ij and x kl represents the similarity between the dierences among the same modalities, in the same proportions. Note that if the Euclidean distance is close to 0 (x ij and x kl are close in the dissimilarity space), it doesn't mean that the time series x i , x j , x k and x l are similar. Fig 3.5 shows an example of two pairwise vectors x ij and x kl close together in the pairwise space. However, in the temporal space, the time series x 1 and x 3 are not similar for example. It means that x i is as similar to x j as x k is to x l , i.e., the distance D 0 between x i and x j is nearly the same than the distance D 0 between x k and x l . Time series Metric Learning (M 2 TML) 

Multi-scale description for time series

The multi-modal representation in the dissimilarity space can be enriched for time series by measuring each unimodal metric d h at dierent temporal localization, called in this work scales. Note that the distance measures (amplitude-based d A , frequential-based d F , behaviorbased d B ) in Eqs. 2.1, 2.4 and 2.6 imply systematically the total time series elements x it and thus, restricts the distance measures to capture local temporal dierences. In this work, we provide a multi-scale framework for time series comparison using a hierarchical structure.

Many methods exist in the literature such as the sliding window [START_REF] Keogh | Segmenting Time Series: A Survey and Novel Approach[END_REF] or the dichotomy [START_REF] Douzal-Chouakria | Classication trees for time series[END_REF]. We detail here the latter one.

A multi-scale description can be obtained by repeatedly segmenting a time series expressed at a given temporal scale to induce its description at a more local level. Many approaches have been proposed assuming xed either the number of the segments or their lengths [START_REF] Fu | A review on time series data mining[END_REF]. In the following, the term metric is used to reference both a distance or a dissimilarity measure.

The proposition is based on two standard intuitions in metric learning, i.e., for each time series x i , the metric D should bring closer the time series x j of the same class (y j = y i ) while pushing the time series x l of dierent classes (y l = y i ). These two sets are called respectively P ull i and P ush i . In addition, in order to have a robust k-NN, a safety margin between the resulting metric values between the sets P ull i and P ush i must be considered. Our proposition is inspired from the lmnn framework where the optimization problem involves a pull term that penalizes large distances between sample of same labels (P ull i ). It can be interpreted as a regularization term on P ull i . In lmnn, the push term penalizes small distances between samples of dierent labels (P ush i ). It can be interpreted as a loss term on P ush i . To ensure a safety margin between similar and dissimilar samples, in lmnn, a constraint is added:

D 2 (x ij ) -D 2 (x il ) ≥ 1 -ξ ijl .
Similarly, we formalize the m 2 tml problem as an optimization problem involving both a regularization term on D and the pull set P ull i , denoted R P ull (D), and a loss term on ξ and the push set P ush i , denoted L P ush (ξ). A set of constraints is added to control the push term in order to have a large margin between P ull i and P ush i :

argmin D,ξ {R P ull (D) + L P ush (ξ)} s.t. ∀i, j ∈ P ull i , l ∈ P ush i , D(x il ) -D(x ij ) ≥ 1 -ξ ijl ξ ijl ≥ 0 (3.12)
Note that for the m 2 tml problem, the square of the distances in the constraints are not needed. Among the possibilities for the regularization term, we decide to choose to minimize the sum of the distances of the pull pairs. Among the possibilities for the loss term, we decide to choose to minimize the sum of the slack variables on the push pairs: 

R P ull (D) = i j∈P ull i D(x ij ) (3.13) L P ush (ξ) = i j∈P ull i l∈P ush i ξ ijl (3.
argmin D,ξ                      i j∈P ull i D(x ij ) pull +C i j∈P ull i l∈P ush i ξ ijl push                      s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , D(x il ) -D(x ij ) ≥ 1 -ξ ijl ξ ijl ≥ 0 (3.15)
where ξ ijl are the slack variables and C, the trade-o between the pull (regularization) and push (loss) costs. In the next section, we detail dierent strategies to dene the P ull i and P ush i sets.

Push and pull set denition

To build the pairwise training set, we associate for each x i , two sets, P ull i and P ush i , where the two sets are chosen according to one of the following strategies, illustrated in Fig 3 .7.

Recall that the norm D 0 (x ij ) = ||x ij || 2 is set as our initial distance D 0 .

1. k-NN vs impostors: for a given x i , the sets of pairs to pull and to push corresponds respectively to:

∀i ∈ 1, . . . , n, P ull i = {x ij / y j = y i , D 0 (x ij ) is among the k-lowest distance} (3.16)

P ush i = {x il / y l = y i , D 0 (x il ) ≤ max x ij ∈P ull i D 0 (x ij )} (3.17)
Note that it corresponds to the denition of neighborhood dened by Weinberger & Saul.

2. k-NN vs all: for a given x i , the sets of pairs to pull and to push corresponds respectively to:

∀i ∈ 1, . . . , n, P ull i = {x ij / y j = y i , D 0 (x ij ) is among the k-lowest distance} (3.18)

P ush i = {x il / y l = y i } (3.19)
Note that by considering all samples of dierent classes, we ensure that a pair x il doesn't become an imposter during the optimization process. Finally, let discuss about the similarities and dierences between lmnn (Weinberger & Saul [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]) and our m 2 tml proposition. In lmnn, the sets P ull i and P ush i are dened according the k-NN vs impostors strategy (Eqs. 3.16 & 3.17) and may be unbalanced.

The sets are dened and xed during the optimization process according to the initial metric D 0 . In m 2 tml the sets P ull i and P ush i are dened according the m-NN + vs m-NN - strategy (Eqs. 3.20 & 3.21) and are balanced. The sets are dened and xed during the optimization process according to the initial metric D 0 , but the m-neighborhood is larger than the k-neighborhood. By considering a neighborhood larger than the k-neighborhood, we believe that the generalization properties of the learned metric D will be improved.

Interpretation in the pairwise dissimilarity space

In this section, we give more detailed interpretations of the m 2 tml problem in the dissimilarity space. Our objective is to learn a metric D as a linear or non-linear combination of the p unimodal metrics d 1 , . . . , d p . The metric D can be seen as a function of the dissimilarity space that should:

• pull to the origin x ii = 0 the pairs x ij of P ull i • push away from the origin all the pairs x il of P ush i Fig. 3.8 illustrates the idea in the original space and in the pairwise dissimilarity space: rst, we build the sets P ull i and P ush i according to an initial metric D 0 ; secondly, we optimize the metric D so that the pairs P ull i are pulled to the origin and the pairs P ush i are pushed away from the origin. Figure 3.8: Metric learning problem in the original space (top) and the pairwise dissimilarity space (bottom) for a k = 3 neighborhood of x i . Before learning (left), push samples x l invade the targets perimeter x j . In the dissimilarity pairwise space, this is equivalent to have push pairwise vectors x il with an initial distance D 0 lower than the distance of pull pairwise vectors x ij . The aim of m 2 tml is to learn a metric D to push x il (black arrow) and pull x ij from the origin (white arrow).

Note that by considering a larger neighborhood, we ensure that pairs P ush i doesn't invade the perimeter dened by pairs P ull i during the optimization process. Similarly to the interpretation of slack variables in svm, if a push pair invade the perimeter dened by pairs P ull i , Time series Metric Learning (M 2 TML) then in Eq. 3.15, it will violate the constraints and the slack variables ξ ijl will be penalized in the objective function:

• If D(x il ) < D(x ij ), then the pair x il is an imposter pair that invades the neighborhood of the target pairs x ij . The slack variable ξ ijl > 1 will be penalized in the objective function.

• If D(x ij ) ≤ D(x il ) ≤ D(x ij ) + 1, the pair x il is within the safety margin of the target pairs x ij . The slack variable ξ ijl ∈ [0; 1] will have a small penalization eect in the objective function.

• If D(x il ) > D(x ij ) + 1, ξ ijl = 0 and the slack variable has no eect in the objective function.

In the following, we propose dierent regularizers for the pull term R P ull (D). First, we use a linear regularization. Secondly, we use a quadratic regularization that enables to extend the approach to learn non-linear functions for D by using the "kernel" trick. Thirdly, we formulate the problem as a svm problem to solve a large margin problem between P ull i and P ush i sets, and then, we dene the combined metric D based on the svm solution. Finally, we sum up the retained solution (svm-based solution) and give the main steps of the algorithm.

Linear formalization for M 2 TML

In this section, we dene the problem of learning a combined metric D as a linear combination in the dissimilarity space using a linear regularizer. First, we give the m 2 tml optimization problem for a linear regularizer. Then, we discuss the properties of the learned metric D.

Let {x ij } n i,j=1 be a set of pairwise vectors x ij = [d 1 (x i , x j ), ..., d p (x i , x j )] T described by p metrics d 1 , . . . , d p . We consider a linear combination of the p metrics:

D(x ij ) = w T x ij = p h=1 w h .d h (x i , x j ) (3.22)
where w = [w 1 , . . . , w p ] T is the vector of weights w h . From Eq. 3.15, by choosing R P ull (D) = 3.6. Quadratic formalization for M 2 TML 61 R P ull (w) = i,j∈P ull i w T x ij , learning a linear combined metric D can be formalized as follow:

argmin w,ξ                      i j∈P ull i w T x ij pull +C i j∈P ull i l∈P ush i ξ ijl push                      s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , (3.23) w T (x il -x ij ) ≥ 1 -ξ ijl ξ ijl ≥ 0 ∀h = 1, . . . , p, w h ≥ 0 (3.24)
where ξ ijl are the slack variables, C the trade-o between the pull and push costs, and P ull i and P ush i are dened in Eqs. 3.20 & 3.21.

Note that the problem is very similar to a C-svm classication problem. When C is innite, we have a "strict" problem: the solver will try to nd a direction w in the dissimilarity space E for which all ξ ijl = 0, that means that only pull samples should be in the close neighborhood of each x i . Let denote x * ij and x * il , the vectors for which ξ ijl = 0. In that case, if a solution is found, the margin min i,j,l (||x * il -x * ij || 2 ) can be derived from the tightest constraint, for which equality holds:

w T (x * il -x * ij ) = 1 ||w|| 2 ||x * il -x * ij || 2 = 1 ||x * il -x * ij || 2 = 1 ||w|| 2
Concerning the properties of D, positivity is ensured with the constraints w h ≥ 0 (Eq. 3.24) and because d 1 , . . . , d p are dissimilarity measures (d h ≥ 0). As the metric D is dened as a linear combination of dissimilarity measures d 1 , . . . , d p , it can be shown that symmetry and reexivity is veried.

Quadratic formalization for M 2 TML

In this section, we dene the problem of learning D as a linear or non-linear combination in the dissimilarity space using a quadratic regularizer. First, we give the optimization problem and its dual formulation form involving only dot products. Then, we discuss on the properties Chapter 3. Multi-modal and Multi-scale Time series Metric Learning (M 2 TML) of the learned metric D. Finally, we study a link between svm and the quadratic formalization.

Primal and dual formalization

The formulation in Eq. 3.23 supposes that the metric D is a linear combination of the metrics d h . The linear formalization being similar to the one of a L 1 -regularized svm, it can be derived into a dual form involving only dot-products to extend the method to nd non-linear solutions for D. For that, we propose to change the linear regularizer R P ull (w) in the objective function of Eq. 3.23 into a quadratic regularizer. Two solutions for R P ull (w) are at least possible:

1. R P ull (w) = 1 2 p h=1 i j∈P ull i (w h d h (x ij )) 2 (3.25) 2. R P ull (w) = 1 2 p h=1    i j∈P ull i w h d h (x ij )    2 = 1 2 m.n p h=1 w h dh 2 (3.26) where dh = 1 mn i j∈P ull i d h (x ij ) denotes the mean of the distances d h (x ij ) for each metric d h .
Other regularizations are possible. We focus on these two propositions that can be reduced to the following formula:

R(P ull) = 1 2 w T Mw (3.27)
where M denotes respectively the following matrix for each regularizer:

1. M = Diag(X T pull X pull ) =         i j∈P ull i d 2 1 (x ij ) 0 . . . 0 i j∈P ull i d 2 p (x ij )         (3.28) 2. M = Diag(x).Diag(x) =    d1 2 0 . . . 0 dp 2    (3.29)
where X pull = i P ull i be a (m.n) × p matrix containing the vector x ij ∈ P ull i and

x = [ d1 , . . . , dp ] T is a vector of size p containing the mean of the metrics d1 , . . . , dp .

From this, the optimization problem can be written using a quadratic regularization for the 3.6. Quadratic formalization for M 2 TML 63 pull term:

argmin w,ξ                      1 2 w T Mw pull +C i j∈P ull i l∈P ush i ξ ijl push                      s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , w T (x il -x ij ) ≥ 1 -ξ ijl ξ ijl ≥ 0 (3.30)
Note that in this case, the constraint w h ≥ 0 (Eq. 3.24) is not considered because the following development would not allow us to obtain a formulation with only dot-product.

Similarly to svm, the formulation in Eq. 3.30 can be reduced to the maximization of the following Lagrange function L(w, ξ, α, r), consisting of the sum of the objective function and the constraints multiplied by their respective Lagrange multipliers α and r:

L(w, ξ, α, r) = 1 2 w T Mw + C ijl ξ ijl - ijl r ijl ξ ijl - ijl α ijl w T (x il -x ij ) -1 + ξ ijl (3.31)
where α ijl ≥ 0 and r ijl ≥ 0 are the Lagrange multipliers. At the maximum value of L(w, ξ, α, r), the derivatives with respect to w and ξ ijl are set to zero:

∂L ∂w = Mw - ijl α ijl (x il -x ij ) = 0 ∂L ∂ξ ijl = C -α ijl -r ijl = 0
The matrix M being diagonal in both case (Eqs. 3.28 & 3.29), it is thus invertible. The equations lead to: 

w = M -1 ijl α ijl (x il -x ij ) (3.32) r ijl = C -α ijl (3.
argmax α    ijl α ijl - 1 2 ijl i j l α ijl α i j l (x il -x ij ) T M -1 (x i l -x i j )    s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , 0 ≤ α ijl ≤ C (3.34)
For any new pair of samples x i and x j , the resulting metric D writes:

D(x i j ) = ijl α ijl (x il -x ij ) T M -1 w T x i j (3.35)
By developing Eq. 3.34, the dual formulation is equivalent to:

argmax α    ijl α ijl - 1 2 ijl i j l α ijl α i j l x T il M -1 x i l -2x T ij M -1 x i l + x T ij M -1 x i j    s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , 0 ≤ α ijl ≤ C (3.36)
And the metric in Eq. 3.35 writes:

D(x i j ) = ijl α ijl x T il M -1 x i j similarity of x i j to P ush set - ijl α ijl x T ij M -1 x i j
similarity of x i j to P ull set (3.37) 3.6. Quadratic formalization for M 2 TML 65 3.6.2 Non-linear combined metric

The above formula (Eqs. 3.36 and 3.37) can be extended to nd non-linear function for the metric D. As M is a diagonal matrix, it is invertible and can be written

M -1 = M -1 2 M -1 2 .
For each regularization, we give below the matrix M -1 2 :

1. M -1 2 =           1 i j∈P ull i d 2 1 (x ij ) 0 . . . 0 1 i j∈P ull i d 2 p (x ij )           (3.38) 2. M -1 2 =     1 d1 0 . . . 0 1 dp     (3.39)
Then, the formulation in Eqs. 3.36 and 3.37 can be written to involve only an inner product between pairs:

x

T il M -1 x i j = x T il M -1 2 M -1 2 x i j = M -1 2 x il T M -1 2 x i j =< M -1 2 x il ; M -1 2 x i j >
The inner product can be easily kernelized using the "kernel" trick:

< M -1 2 x il ; M -1 2 x i j > = κ(M -1 2 x il ; M -1 2 x i j )
The matrix M -1 2 can be thus interpreted in the rst regularization proposition as a normalization by the variance of the distance for each metric d h . In the second regularization, it can be interpreted as a normalization by the mean of the distance for each metric d h .

By replacing the inner product by a kernel back into Eq. 3.36, the kernelized dual formulation becomes:

argmax α ijl α ijl - 1 2 ijl i j l α ijl α i j l (κ(M -1 2 x il ; M -1 2 x i l ) -2κ(M -1 2 x ij ; M -1 2 x i l ) + κ(M -1 2 x ij ; M -1 2 x i j )) s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , 0 ≤ α ijl ≤ C (3.40)
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By replacing the inner product by a kernel back into Eq. 3.37, we obtain:

D(x i j ) = similarity of x i j to P ush set ijl α ijl κ(M -1 2 x il ; M -1 2 x i j ) - similarity of x i j to P ull set ijl α ijl κ(M -1 2 x ij ; M -1 2 x i j ) (3.41)
Let's give some interpretation and discussion about the properties of D. Similarly to svm, from Eq. 3.35, at the optimality, only the triplets (x il -x ij ) with α ijl > 0 are considered as the support vectors and the computation of the metric D depends only on these support vectors. Note that in this case, there exist two categories of support vectors (Eqs. 3.37 & 3.41): the vectors x il from the push set P ush i and the vectors x ij from the pull set P ull i which α ijl > 0. The resulting metric D can be interpreted as the dierence involving two similarity terms: a new pair x i j is dissimilar when its similarity to the P ush set is high while its similarity to the P ull set is low. Inversely, the pair x i j is similar when its similarity to the P ush set is low while its similarity to the P ull set is high.

Concerning the property of D, it is not a dissimilarity as non positive: D is a dierence of two similarities, the similarity of the pull term is greater than the similarity of the push term.

Link between SVM and the quadratic formalization

Parallels between Large Margin Nearest Neighbors (lmnn) and svm have been studied in the literature [START_REF] Do | A metric learning perspective of SVM: on the relation of LMNN and SVM[END_REF]. svm is a well known framework: its has been well implemented in many libraries (e.g., liblinear [START_REF] Fan | LIBLINEAR: A library for large linear classication[END_REF] and libsvm [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]), well studied for its generalization properties and extension to non-linear solutions (Section 1.2.2).

Similarly, we study in this section a link between the quadratic formalization of m 2 tml and a svm problem when the form of the metric D is dened a priori. For that, let consider the following svm problem that aims to separate the set P ull i and P ush i : argmin w,b,ξ

           1 2 ||w|| 2 2 + C i j∈P ull i or j∈P ush i p i ξ ij            s.t.
∀i, j ∈ P ull i or j ∈ P ush i :

y ij (w T x ij + b) ≥ 1 -ξ ij ξ ij ≥ 0 (3.42)
where p i is a weight factor for each slack variable ξ ij (in classical svm, p i = 1).
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The loss part in the svm formulation can be split into 2 terms involving the sets P ull i and

P ush i : argmin w,b,ξ      1 2 ||w|| 2 2 + C i j∈P ull i p + i ξ ij + C i l∈P ush i p - i ξ il      s.t. : ∀i, j ∈ P ull i : y ij (w T x ij + b) ≥ 1 -ξ ij ∀i, l ∈ P ush i : y il (w T x il + b) ≥ 1 -ξ il ∀i, j ∈ P ull i : ξ ij ≥ 0 ∀i, l ∈ P ush i : ξ il ≥ 0 (3.43)
where p + i and p - i are the weight factors for pull pairs P ull i and push pairs P ush i .

We show in Appendix B that solving the svm problem in Eq. 3.43 for w and b solves a similar problem with a quadratic regularization in Eq. 3.30 for D(x ij ) = -1 2 (w T x ij + b) and where p - i and p + i are dened as:

p - i = Card(P ull i ) 2 = j∈P ull i 1 2 (3.44) p + i = Card(P ush i ) 2 = l∈P ush i 1 2 (3.45)
where Card(P ull i ) and Card(P ush i ) denotes respectively the cardinal of the set P ull i and P ush i (equal to m in the m-NN + vs m-NN -strategy). p - i can be interpreted as the half of the number pairs in P ull i and p + i as the half of the number of time series in P ush i . Let dene ξ ijl = ξ ij +ξ il 2 and ξ ijkl =

ξ ij +ξ kl 2 .
Let's underline below the main similarities and dierences between the svm problem in Eq. 3.43 and the quadratic formalization of m 2 tml in Eq. 3.30:

-Both problems suppose at rst a linear combination for D.

-Both problems can be extended to learn non-linear combinations for D thanks to the kernel trick.

-The two problems involve dierent regularization terms: in the quadratic formalization, the regularizer involves a pull action (Eqs. 3.25 & 3.26), not present in svm.

-Concerning the constraints and the slack variables:

Both problems share a same set of constraints between triplets:

∀i, j ∈ P ull i , l ∈ P ush i :

D(x il ) -D(x ij ) ≥ 1 -ξ ijl
The svm problem includes an additional set of constraints that is not present in the quadratic formalization. svm takes into account pull pairs x ij and push pairs Chapter 3. Multi-modal and Multi-scale Time series Metric Learning (M 2 TML)

x kl that don't belong to the same neighborhood:

∀i, j ∈ P ull i , k, l ∈ P ush k , i = k : D(x kl ) -D(x ij ) ≥ 1 -ξ ijkl
Geometrically, the global svm margin includes both local neighborhoods and "interneighborhood" between pull and push pairs of dierent neighborhood.

The svm problem includes in the loss term additional slack variables ξ ijkl that are not present in the quadratic formalization because of the additional set of constraints. It is not only a push term.

Concerning the properties of the metric D, positivity is not ensured in the primal and dual formulation as there are no constraint on w. Symmetry and reexivity is ensured.

SVM-based formalization for M 2 TML

In this section,we formulate the problem as a svm problem to solve a large margin problem between P ull i and P ush i sets, and then, induce a combined metric D for the obtained svm solution. Thanks to the svm framework, the proposition can be naturally extended to learn both, linear or non-linear functions for the metric D.

Support Vector Machine (svm) resolution

Let {x ij , y ij = ±1}, x ij ∈ P ull i ∪P ush i be the training set, with y ij = -1 for x ij ∈ P ush i and +1 for x ij ∈ P ull i . For a maximum margin between the sets P ull i and P ush i , the problem is formalized in the dissimilarity space E : argmin w,b,ξ

   1 2 ||w|| 2 2 + C i,j ξ ij    s.t. y ij (w T x ij + b) ≥ 1 -ξ ij ξ ij ≥ 0 (3.46)
In the linear case, a L 1 regularization (||w|| 1 ) in Eq. 3.46 leads to a sparse and interpretable w that uncovers the modalities, periods and scales that dierentiate best pull from push pairs for a robust nearest neighbors classication. In practice, the local neighborhoods for each sample x i can have very dierent scales. Thanks to the unit radii normalization x ij /r i , where r i denotes the norm of the m-th neighbors in P ull i , the svm ensures a global large margin solution involving equally local neighborhood constraints (i.e., local margins). This point will be detailed in Section 3.8. x i and x test . In particular, for m 2 tml, two quantities are used to dene the dissimilarity measure: the projected norm and the distance to the margin.

Let denote P w (x i,test ), the orthogonal projection of x i,test on the axis of direction w :

P w (x i,test ) = < w, x i,test > ||w|| 2 w = w T x i,test ||w|| 2 w (3.47)
The projected norm ||P w (x i,test )|| of x i,test on the direction w limits the comparison of x i and x test to the features separating pull and push sets (Fig. 3.9), it is dened as:

||P w (x i,test )|| = |w T x i,test | ||w|| 2 (3.48)
Figure 3.9: The projected vector P w (x ij ) and P w (x ij )

Although the norm ||P w (x i,test )|| satises positivity, it doesn't guarantee lower distances for pull pairs than for push pairs as illustrated in Fig 3 .10.

Note that the distance of the projection to the margin w T P w (x i,test ) + b gives the membership of the projected vector P w (x i,test ) in the pull or push side. However, it can't used as a dissimilarity (non-positivity). Time series Metric Learning (M 2 TML) We propose to add an exponential term to operate a "push" on push pairs based on their distances to the separator hyperplan, that leads to the dissimilarity measure D of required properties:

D(x i,test ) = ||P w (x i,test )||. exp(λ[-(w T P w (x i,test ) + b)] + ) λ ≥ 0 (3.49)
where λ controls the "push" term and w T P w (x i,test ) + b denes the distance between the orthogonal projected vector and the separator hyperplane; [t] + = max(0; t) being the positive operator. Note that, for a pair lying into the pull side (y ij = +1), [-(w T P w (x i,test )+b)] + = 0, the exponential term is vanished (i.e. no "pull" action) and the dissimilarity leads to the norm term. For a pair situated in the push side (y ij = -1), the norm is expanded by the push term, all the more the distance to the hyperplane is high. The rst one (Fig. 3.11-a), represents common expected conguration where pairs P ull i are situated in the same side as the origin. The dissimilarity increases proportionally to the norm in the pull side, then exponentially on the push side. Although the expansion operated in the push side is dispensable in that case, it doesn't aect nearest neighbors classication. 

Solution for the non-linearly separable Pull and Push sets

The above solution holds true for any kernel κ and allows us to extend the dissimilarity D given in Eq. 3.49 to non linearly separable pull and push pairs. Let κ be a kernel dened in the dissimilarity space E and the related Hilbert space (feature space) H . For a non linear combination function of the metrics d h , h = 1, . . . , p in E , we dene the dissimilarity measure D H in the feature space H as:

D H (x i,test ) = | ||P w (Φ(x i,test ))|| -||P w (Φ(0))|| | . exp   λ   -   ij y ij α ij κ(x ij , x i,test ) + b     +   λ ≥ 0 (3.50)
with Φ(x i,test ) and Φ(0) denotes the image of x i,test and 0 into the feature space H . Based on Eq. 3.47, from the known svm equations (Section 1.2.2), the inner product gives < w; Φ(x i,test ) >= ij y ij α ij κ(x ij , x i,test ) and the norm of w gives ||w|| = ijkl α ij α kl y ij y kl κ(x ij , x kl ). Replacing back into Eq. 3.48, the norm of the orthogonal projection of Φ(x i,test ) on w gives:

||P w (Φ(x i,test ))|| = ij y ij α ij κ(x ij , x i,test ) ijkl α ij α kl y ij y kl κ(x ij , x kl ) (3.51)
Note that as Φ(0) is not guaranteed to be the origin in the feature space H , the norms in Eq. 3.50 are centered with respect to Φ(0) to ensure the reexivity property. It is easy to show that both D and D H ensure the properties of a dissimilarity (positivity, reexivity, symmetry).

Note that the framework to dene the metric D and D H can also be used in the linear and quadratic formalization. However, the obtained solution for D and D H can be far away from the original form of D that was optimized in the optimization problem. In this section, we review the main steps of the retained svm solution. In particular, we detail two pre-processing steps needed to adapt the svm framework to our metric learning problem that are the pairwise space normalization and the neighborhood scaling.

Pairwise space normalization. The scale between the p basic metrics d h can be dierent.

Thus, there is a need to scale the data within the pairwise space and ensure comparable ranges for the p basic metrics d h . In our experiment, we use dissimilarity measures with values in [0; +∞[. Therefore, we propose to Z-normalize their log distributions as explained in Section 2.5.2.

Neighborhood scaling. As exposed in Section 3.7.1, in real datasets, local neighborhoods may have very dierent scales as illustrated in Fig. 3.12. To make the pull neighborhood spreads comparable, we propose for each x i to scale each pair x ij such that the L 2 norm (radius) of the farthest m-th nearest neighbor is 1:

x norm ij = d 1 (x i , x j ) r i , . . . , d p (x i , x j ) r i T (3.52)
where r i is the radius associated to x i corresponding to the maximum norm of its m-th nearest neighbor of same class in P ull i :

r i = max x ij ∈P ull i D 0 (x ij ) (3.53)
For simplication purpose, we denote x ij as x norm ij . Fig. 3.12 illustrates the eect of neighborhood scaling in the dissimilarity space.

Figure 3.12: Eect of neighborhood scaling before (left) and after (right) on the neighborhood of two time series x 1 (green) and x 2 (red). Circles represent pairs P ull i and squares represent pairs P ush i for m = 3 neighbors. Before scaling, the problem is not linearly separable with a global svm approach and the spread of each neighborhood are not comparable. After scaling, the target neighborhood becomes comparable and in this example, the problem becomes linearly separable. 

Conclusion of the chapter

To learn a multi-modal and multi-scale temporal combined metric, we propose in this chapter to embed time series into a pairwise dissimilarity space. The multi-modal and multi-scale metric learning (m 2 tml) problem can be formalized as a problem of learning a function in the pairwise dissimilarity space, that ensures the properties of a dissimilarity.

To learn a metric for a robust k-NN, we formulate the m 2 tml problem into a general regularized large margin optimization problem involving a regularization (pull) and loss (push) term.

Choosing a m-neighborhood, greater than the k-neighborhood allows the learned metric to be generalized better. From the general formalization, we propose three dierent formalizations (Linear, Quadratic, svm-based). The adaptation of svm in the dissimilarity space to learn the multi-modal and multi-scale metric D have brought us to propose a pre-processing step before solving the problem such as the neighborhood scaling. Note that any multi-class problem is transformed in the pairwise dissimilarity space as a binary classication problem.

As we have dened all functions components of our algorithms (learning, testing), we test our proposed algorithms m 2 tml in the next chapter on large public datasets. In this chapter, we evaluate the eciency of the proposed m 2 tml algorithm on public datasets for classication problems of univariate time series. First, we describe the datasets. Then, we detail the experimental protocol. Finally, we present and discuss the obtained results.

Description

The eciency of the learned multi-modal and multi-scale dissimilarities D and D H is evaluated through a 1-NN classication on 30 public datasets 1 [START_REF] Keogh | The UCR Time Series Classication/Clustering Homepage[END_REF]. The 1-NN classier is used to make the results comparable with the results of the UCR time series data mining archive 2 .

Time series come from several elds (simulated data, medical data, electrical data, etc.), are from variable lengths (from small (q = 24) to long lengths (q = 1882)) and the number of classes to discriminate evolves between 1 and 37 classes. Note that some of the datasets have a small number of time series in the training set (n < 30) and others have a large number of time series in the training set (n > 100). The results using standard metrics (Euclidean distance, Dynamic time warping) show both easy and challenging classications problems, the latter being opened for improvements.

1 PowerCons: The results of the learned metrics D and D H are compared to those of three a priori combined metrics D Lin , D Geom , D Sig (Eqs. 2.16, 2.17, 2.18) and ve alternative uni-modal metrics covering:

1. The standard Euclidean distance d A (Eq. 2.1) and Dynamic time warping3 dtw (Eq.

2.13)

2. The behavior-based measures d B (Eq. 2.6) and d B-dtw its counterpart for asynchronous time series, that is d B is evaluated once time series are synchronized using dynamic programing 3. The frequential-based metric d F (Eq. 2.4). 

Symbol Name Equation reference Description

Experimental protocol

The dierent metrics can be split into two categories. For those without parameters to tune (d A , dtw), the 1-NN classier is applied directly on the test set. other subsets. To take into account of variability within the data, multiple rounds of crossvalidation are performed using dierent partitions, and the validation results are averaged over the rounds. Note that for unbalanced datasets in classication problems, it is recommended to use stratied sampling. Table 4.3 resumes the parameter ranges for each metric. We recall that the parameters retained are those that:

-First, minimize the average classication error on the validation set.

-Secondly, in the case of multiple solutions leading to equal performances, the most discriminant one is retained (i.e., making closer pull pairs and far away push pairs).

Precisely, it minimizes the ratio

d intra d inter
where d intra and d inter stands respectively to the mean of all intraclass and interclass distances.

As D and D H involves several parameters to be tuned, we detail hereafter the procedure. The combined metrics D and D H (κ as the Gaussian kernel) are learned respectively under L 1 and L 2 regularization, using liblinear and libsvm libraries [START_REF] Fan | LIBLINEAR: A library for large linear classication[END_REF]; [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]. The Particularly, note that for nearly all datasets for which an uni-modal metric succeeds, the m 2 tml metrics succeed similarly or lead to equivalent results. However, for several challenging datasets (e.g. FaceFour, Beef, FaceUCR, SonyAIBO, BME, CinCECGTorso), m 2 tml realizes drastic improvements, to the best of our knowledge never achieved before for these challenging public data. For instance, a score of 3% is obtained for Beef against an error rate varying from 30% to 50% for alternative metrics, and of 2.3% obtained for FaceFour v.s. 13% to 23% for alternative metrics. Finally, D and D H are most datasets, either equivalent or better if only compared to the standard metrics d A (the Euclidean distance) and dtw.

If we compare the a priori combined metrics (D Lin , D Geom , D Sig ) based on only the unimodal metrics involved in the combination (either d A and d B or dtw and d B-dtw ), we observe that a priori combined metrics achieved on two-third of the data with an equivalent or better score. Compared to the learned metrics (D, D H ), the results are globally similar except for 8 datasets where the learned metrics perform better (FaceFour, Beef, ECG5Days, FaceUCR, SonyAIBO, PowerCons, BME, UMD) and one where the a priori combined metrics perform better (OSULeaf ). Note that the combined metric D Sig is limited to two components and can't be easily extend to other metrics in its combination. D Lin and D Geom could be easily extended and a proposition could be:

D Lin (x i , x j ) = p h=1 α h d h (x i , x j ) (4.1) D Geom (x i , x j ) = p h=1 α h d h (x i , x j ) (4.2)
However, by considering p metrics d h the resulting models requires to optimize p parameters.

The grid search to nd the best parameters α h can become time consuming. The m 2 tml approach has been proposed to prevent such an exhaustive grid search.

In the second part, we perform a graphical analysis for a global comparison on the whole datasets. In Fig. 4.2-a, each dataset is projected according to, on the x-axis its best error rate obtained for D and D H , and on y-axis its best performance w.r.t the standard amplitudebased metrics d A and dtw. In Fig. 4.2-b, the y-axis is related to the best error rate of the behavior-based metrics d B and and d B-dtw . In Fig. 4.2-c, the y-axis is related to the best error rate of the two "non-warp" uni-modal metrics d A and d B , . In Fig. 4.2-d, the y-axis is related to the best error rate of the two "warp" uni-modal metrics dtw and d B-dtw that are also the two most performant uni-modal metrics. In Fig. 4.2-e, the y-axis is related to the error rate of the frequential-based metric d F . In Fig. 4.2-f, the y-axis is related to the best error rate of the a priori-combined metrics D Lin , D Geom , D Sig . For all plots, let rst give some interpretations. If the datasets are situated on the rst bisector, it means that the considered metrics in x-axis and y-axis have equal performance. For datasets situated above the rst bisector, it means in this case that m 2 tml method is better that the considered metrics in y-axis. Similarly, for datasets situated below the rst bisector, it means in this case that the considered metrics in y-axis are better than m 2 tml. Less challenging datasets (low classication error rate) are situated near the origin and challenging dataset (high classication error rate) are situated far from the origin.

For all plots, we can note that the datasets are principally projected above the rst bisector, indicating higher error rates mostly obtained for uni-modal and a priori combined metrics than for m 2 tml. For the less challenging datasets (near the origin of each graph), although almost projected near the bisector denoting equal performances for the compared metrics, m 2 tml still bring improvements with projections clearly positioned above the bisector. Finally, from all plots, note that some datasets (Adiac, OSULeaf, InlineSkate) remains challenging for all studied metrics.

Analysis of the discriminative features

For the learned metric D, thanks to the L 1 regularization, the learned svm reveals the features that most dierentiate pull from push pairs. We recall that the weight for each feature can be analyzed through the weight vector w obtained by learning the svm classier. Table 4.5 shows the sparse, muti-modal and multi-scale potential of m 2 tml approach. It gives for each dataset, the weights of the top ve 'discriminative' features that contribute to the denition of D. For instance, for FaceFour D reaches an error of 2.3% by combining, in the order of importance, the behavior d B-dtw , frequential d F and amplitude dtw modalities, at the global (I 0 ) and local (I 4 , I 5 , I 2 ) scales. For Beef, the learned model is very sparse as D involves only the behavior modality based on the segment I 3 (d 3 B ). Note that if we look at only the most discriminative feature (1st column), the m 2 tml method helps to localize discriminative modality and a specic temporal scale (localization) that could not be easily guessed a priori (e.g., Lightning7: behavior modality on the segment I 6 (d 6 B-dtw ), OliveOil: frequential modality on the segment I 5 (d 5 F ), TwoLeadECG: behavior modality on the segment

I 4 (d 4 B-dtw )).
In Fig. 4.3, we plot the weights of all features for SonyAIBO, Beef, CincECGtorso and FaceFour cases as an example. It illustrates both the sparsity of the m 2 tml approach (Beef, CincECGtorso and FaceFour) and the ability of the algorithm to combine all the features into the metric D (SonyAIBO). In particular, the approach is able to either select one single feature (Beef ) or combine several selected features (CinCECGTorso, FaceFour). Fig. 4.4 illustrates the temporal locations of the most discriminative features for these datasets. Note that from looking at the temporal representation, it is not easy to determine a priori which modality (value, behavior, frequential) and at which temporal scale (localization) is the most discriminative feature to separate the classes.

In summary, we can emphasize that for almost all datasets, the denition of D involves no more than ve features (the most contributive ones), that assesses not only the model's sparsity but also the representativeness of the revealed features.

Dataset

Feature weights (%) (mds) is used to visualize the distribution of samples according to their pairwise dissimilarities.

ItalyPowerD d 0 B (27.5%) d 4 F (17.2%) d 1 F (12.3%) d 1 A (11.2%) d 2 B (9%) CinCECGtorso d 0 F (38.4%) d 5 A (13.1%) d 4 B (11.5%) d 1 F (11.2%) d 2 A (9.8%) BME d 0 B (75.2%) d 4 F (15.5%) d 2 B (5.8%) d 1 B (1.9%) d 1 F (0.7%) ECG200 d 0 B (89.6%) d 6 B (2.4%) d 3 A (2.3%) d 1 B (2.2%) d 4 B (2%)
Briey, we recall that mds is a method of visualizing the proximity between samples in a dataset (Section 2.2). Given an input dissimilarity matrix, we can project the time series on a 2-dimensional plot whose conguration reproduces the best the dissimilarities between the time series. Note that the mds representation has no link with the dissimilarity space representation whose dimensions are basic temporal metrics.

For FaceFour, Fig. 4.5 shows the rst obtained plans and their corresponding stresses, the classes being indicated in dierent symbols and colors. We can see distinctly the eect of the learned D that leads to more compact and more isolated classes with robust neighborhoods for 1-NN classication (i.e., closer pull pairs and far away push pairs) than the best alternative metric d B-dtw that shows more overlapping classes and heterogeneous neighborhoods.

Conclusion of the chapter

The large conducted experiments and the impressive performances obtained attest the efciency of the learned m 2 tml metrics for time series nearest neighbors classication. As discussed, the datasets encompass time series that involve global or local temporal comparison, require or not time warping, with linearly or non linearly separable neighborhoods.

Finally, let us underline the merit of the m 2 tml solution, that not only leads to equivalent or better performances from the standard metrics (Euclidean distance, Dynamic time warping), but also provides a comprehensive and ne-grained information about which modalities are mostly discriminant, how they should be combined and precisely at which temporal granularity (localization).

4 Matlab function: mdscale for metrics and non metrics Temporal data may be compared based on various characteristics, called modalities. Time series can be compared not only on their amplitudes like static data, but also on other modalities such as their behavior, frequency, etc. To cope with delays in real time series, Dynamic time warping approach can be used to re-align the signals. Some authors propose to combine several modalities through a combination function but the combinations are either, limited to two modalities or in the case of multiple modalities (more than 2), the number of parameters to optimize for a classier may become time consuming. In general, state of the art approaches compared the time series by involving all observations, restricting the potential of comparison measures (metrics) to capture local dierences. We proposed to take into account local characteristics, that we named multi-scale. We have believed that all of these considerations (modality, scale, delays) should be taken into consideration in the denition of a metric in order to improve the performance of the classier.

The objective is to learn a metric for a robust k-NN. For that, we propose a general formalization of the problem of learning a combined multi-modal and multi-scale temporal metric (m 2 tml). Based on a pairwise dissimilarity representation of the pairs of time series, the metric learning problem can be reduced to the learning of a linear or non linear function of the dissimilarity space that satises the properties of a dissimilarity. Inspired from metric learning work, the problem is formalized as an optimization problem involving a regularization and loss term which aims to pull samples that are expected to be similar and push away samples that should be dissimilar. First, by considering a linear combination of the basic metrics, changing the regularization term leads the general formalization to a linear and quadratic formalization. The latter allows us to extend to the learning of non-linear functions thanks to the "kernel" trick. However, the methods can lead to functions that doesn't meet the properties of a dissimilarity (non-positivity). Secondly, we propose to formulate the problem as a svm problem which aims to separate pull and push samples, then we dene a metric that satises the required properties of a dissimilarity.

Conclusion

The eciency of the proposed svm-based solution has been tested in the case of classication of univariate time series, on a wide variety of datasets coming from various elds (simulated data, medicine, power consumption, etc.), diverse sizes of training and testing, various number of classes, etc. The m 2 tml solution achieves not only, either equivalent or better performances compared to the standard global metrics (Euclidean distance, dynamic time warping, temporal correlation, Fourier-based distance), but it also provides a sparse and interpretable solution that allows us to give a comprehensive analysis of the most discriminative modalities and their respective temporal granularity that may not be always intuitive a priori.

Perspectives

Extension to other modalities, multivariate problems and other type of data The framework can be easily extend to multivariate problem. For each dimension, we consider the set of multi-modal and multi-scale description. Then, we consider the union over the dimensions as the pairwise dissimilarity description d 1 , . . . , d p .

The proposed solution has been tested in the case of time series data but the framework is more general. It can be applied to any other type of data (strings, graphs, images) to learn a combined metric. These data might be compared on other characteristics. Deza & Deza makes a detailed review of metrics for various domains in [START_REF] Deza | [END_REF].

Other possibilities for the multi-scale description A second improvement is about the multi-scale description that denotes in this work as a temporal segmentation. We propose a multi-scale approach based on a binary segmentation using a dichotomy process. Other solutions could be proposed, in particular, in order to localize automatically nely events of interest. For example, in the case of the dataset SonyAIBO, the discriminative temporal locations of the signal is known a priori (Fig. 4.6). With the actual multi-scale description, it is not possible to extract exactly the two red patterns of interest. A solution based on a sliding window of variable lengths could be used to locate precisely these patterns.

5 source: http://www.cs.ucr.edu/~eamonn/LogicalShapelet.pdf Similarly, the m 2 tml framework could be extended to learn local combined temporal metrics for each neighborhood. The objective is to learn for each n set P ull i and P ush i (n being the number of samples in the training set) a local metric using the same framework than the one we propose in this work. We obtain n local metrics D i . Then, to classify a new sample x test , we compute the n metrics D i (x i,test ) and classify x test using the k lowest distances D i (x i,test ).

Re-iteration of the initial metric

Similarly to Large Margin Nearest Neighbors (lmnn) approach proposed by Weinberger & Saul [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF], the m 2 tml approach might inherit the same problem of the initial distance, i.e., xing the set P ull i and P ush i according to an initial distance (Euclidean distance in this work). Other initial distances could have been used. If the initial distance is far away from the optimal solution, the denition of the sets P ull i and P ush i can impact the convergence to the optimal solution. In same spirit as the multi-pass lmnn approach proposed by Weinberger & Saul, we could re-iterate the learning process. At each step, we re-dene the sets P ull i and P ush i using the distance learned at the previous step. Then, we stop the learning when arriving at convergence (e.g., the sets P ull i and P ush i doesn't evolve anymore or evolve slightly between two steps).

Conclusion

Other propositions to dene the combined metric First, as said in Section 3.7, note that the framework to dene the metric D and D H can also be used in the linear and quadratic formalization. However, the obtained solution for D and D H can be far away from the original form of D that has been optimized in the optimization problem.

Secondly, we have proposed a form for the metric D and D H so that it satises the properties of a dissimilarity. Other solutions could have been proposed. In particular, instead of using a max operator in the denition of D and D H , an other variant could consider a parameter λ that can be either positive or negative. In the case of negative λ, the action of the exponential term would become a pull term instead of a push term. Note that in both cases, for extreme value of λ, there exists a risk to binarize the metric. In particular, for λ → -∞, there exists a risk of having zero values for the nearest neighbors, which could lead to problems when classifying by the nearest neighbors.

Extension to regression problems

For the svm-based solution, in the pairwise dissimilarity space, each vector x ij is labeled y ij by following the rule: if x i and x j are similar, the vector x ij is labeled -1; and +1 otherwise. For classication problems, the concept of similarity between samples x i and x j is driven by the class label y i and y j in the original space: 

y ij = +1 if y i = y j -1 if y i = y j
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This approach may leads to border eects between the classes. For instance, two samples

x i and x j that are close to a frontier and that are on dierent sides of the border will be considered as dierent, as illustrated in Fig 4 .8. Moreover, a new sample x j will have its labels y j assigned to a class and not a real continuous value.

Figure 4.8: Border eect problems. In this example, x 2 and x 3 have closer value labels y 2 and y 3 than x 3 and x 4 . However, with the discretization x 2 and x 3 don't belong to the same class and thus are consider as not similar.

The second approach considers the continuous value of y i , computes a L 1 -norm between the labels |y i -y j | and compare this value to a threshold . Geometrically, a tube of size around each value of y i is built. Two samples x i and x j are considered as similar if the absolute dierence between their labels |y i -y j | is lower than (Fig. 4.9): 

y ij = -1 if |y i -y j | ≤ +1 otherwise (4.4)
i (w T x i + b) ≥ 1 (C.3)
En réécrivant le problème, on obtient une forme duale équivalente :

argmax α   n i=1 α i - 1 2 n i,j=1 α i α j y i y j (x i .x j )   (C.4) s.t. ∀i = 1...n : n i=1 α i y i = 0 (C.5) α i ≥ 0 (C.6)
Cette forme ne fait apparaître que des produits scalaires entre les données. On peut alors appliquer l'astuce du kernel pour apprendre des fonctions non-linéaires.

(x i .x j ) → Φ(x i ).Φ(x j ) = κ(x i .x j ) (C.7)
où Φ est une fonction de transformation de κ, une fonction kernel. Le problème d'optimisation peut alors s'écrire : 

argmax α   n i=1 α i - 1 2 n i=1 n j=1 α i α j y i y j κ(x i , x j )   (C.8) s.t. n i=1 α i y i = 0 (C.9) 0 ≤ α i ≤ C (C.

Propriétés et représentation d'une métrique

Une fonction D : R p × R p → R + sur un espace R p est appelée métrique ou distance si pour tout vecteur ∀ x i , x j , x l ∈ R p , elle satisfait les propriétés 1 à 4 

[DD09] 1. D(x i , x j ) ≥ 0 (positivité) 2. D(x i , x j ) = D(x j , x i ) (symétrie) 3. D(x i , x j ) = 0 ⇔ x i = x j (distingabilité) 4. D(x i , x j ) + D(x j , x l ) ≥ D(x i , x l ) (inégalité triangulaire) 5. D(x i , x i ) = 0 ( 

Métriques unimodales pour les séries temporelles

Dans la suite, on suppose que les séries temporelles ont la même longueur q et échantillonnées à la même fréquence f e . Soit x i = (x i1 , x i2 , ..., x iq ) et x j = (x j1 , x j2 , ..., x jq ), deux séries temporelles univariées de longueur q.

De nombreuses mesures de comparaison pour les séries ont été proposées dans la littérature.

Une revue détaillée peut être trouvée dans [START_REF] Montero | TSclust : An R Package for Time Series Clustering[END_REF]. Dans notre travail, on se focalise sur trois catégories de mesures de comparaison basées sur l'amplitude, la forme et les fréquences.

La mesure de comparaison la plus utilisée repose sur la comparaison entre les amplitudes des séries dans le domaine temporel, indépendamment de leurs formes ou de leurs contenus en fréquence. Parmi elles, la plus commune est la distance euclidienne qui compare les observations situées aux mêmes instants [Din+08]: 

d E (x i , x j ) = q t=1 (x it -x jt ) 2 (C.
d F (x i , x j ) = F f =1 (|x if | -|x jf |)
cort r (x i , x j ) = q t,t =1 (x it -x it )(x jt -x jt ) q t,t =1 (x it -x it ) 2 q t,t =1 (x jt -x jt ) 2 (C.13) avec |t -t | ≤ r, r ∈ [1, ..., q -1].
Le paramètre r peut être appris ou xé a priori en fonction du niveau de bruit dans les données. Lorsque r = q -1, la formule revient au coecient de correlation de Pearson. Comme la mesure cort r est une similarité, on peut la transformer en dissimilarité: 

d B (x i , x j ) = 1 -cort r (x i , x j ) 2 (C.

Métriques combinées pour les séries temporelles

Certains auteurs ont proposé de combiner plusieurs modalités (en général la forme et l'amplitude) avec des fonctions de combinaisons linéaires, géométriques ou sigmoïdes [START_REF] Douzal-Chouakria | Classication trees for time series[END_REF];

[DCN07] : Espace de représentation par paires multi-modale et multiéchelle Soit {x i , y i } n i=1 , un ensemble de n séries temporelles x i = [x i1 , . . . , x iq ] ∈ R q labellisées y i . On appelle d 1 , . . . , d p , p métriques qui comparent les séries x i (e.g., basées sur l'amplitude d A , la forme d B ou les fréquences d F ). Notre objectif est d'apprendre une métrique D qui combine les p métriques temporelles de base pour un classieur robuste k-NN.

D Lin (x i , x j ) = βd B (x i , x j ) + (1 -β)d A (x i , x j ) (C.15) D Geom (x i , x j ) = (d B (x i , x j )) β (d A (x i , x j )) 1-β (C.16) D Sig (x i , x j ) = 2d A (x i , x j ) 1 + exp(βcort r (x i , x j )) = 2d A (x i , x j ) 1 + exp(β(1 -2d B (x i , x j ))) (C.17
On propose une nouvelle représentation appelée Espace de Représentation par Paires. On appelle ϕ une fonction qui transforme chaque paire de séries temporelles (x i , x j ) en un vecteur x ij dans l'espace des paires E = R p dont les dimensions sont d 1 , . . . , d p : ϕ : R q × R q → E = R p (x i , x j ) → x ij = [d 1 (x i , x j ), . . . , d p (x i , x j )] T La proposition est basée sur deux intuitions en apprentissage de métrique : pour chaque série temporelle x i , la métrique D doit rapprocher les séries x j de même classe (y j = y i ) et éloigner les séries x l de classes diérentes (y l = y i ). On appellera respectivement ces ensembles P ull i et P ush i . Pour obtenir un k-NN robuste, on ajoutera une marge entre les valeurs de la métrique D entre les ensembles P ull i et P ush i .

Le problème peut se formaliser sous la forme d'un problème général d'optimisation impliquant un terme de régularisation sur l'ensemble P ull i , appelé R P ull (D), et un terme de pénalisation sur l'ensemble P ush i , appelé L P ush (ξ) : α ijl α i j l (κ(M -1 2 x il ; M -1 2 x i l ) -2κ(M -1 2 x ij ; M -1 2 x i l )

+ κ(M -1 2 x ij ; M -1 2 x i j )) 

Formalisation à base svm

Dans une troisième proposition, on propose une formalisation à base svm dont l'objectif est : 1) d'apprendre avec un svm une direction de séparation entre les ensembles P ull i and P ush i ; 2) de bâtir sur la base de la solution svm, la métrique résulante dans le cadre linéaire ou non-linéaire.

Soit {x ij , y ij = ±1}, x ij ∈ P ull i ∪ P ush i un ensemble d'apprentissage avec y ij = -1 si x ij ∈ P ush i et +1 si x ij ∈ P ull i . Le problème de séparation svm entre les ensembles P ull i et P ush i se formalise comme étant : argmin w,b,ξ Les jeux de données sont variés, que ce soit en terme de longueur des séries (de 24 à 1882), de nombre de classes à discriminer (de 2 et 37), de taille de jeu en apprentissage (20 à 390), etc. 

Résultats et discussion

On donne dans la 
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Figure 1

 1 Figure 1.1: An example of overtting in the case of classication. The objective is to separate blue points from red points. Black line shows a classier f 1 with low complexity where as green line illustrates a classier f 2 with high complexity. On training examples (blue and red points), the model f 2 separates all the classes perfectly but may lead to poor generalization on new unseen examples. Model f 1 is often preferred.

Figure 1 . 2 :

 12 Figure 1.2: Example of a 2 dimensional grid search for parameters C and γ. It denes a grid where each cell of the grid contains a combination (C , γ). Each combination is used to learn the model and is evaluated on the validation set.

Figure 1

 1 Figure 1.3: v-fold Cross-validation for one combination of parameters. For each of v experiments, use v -1 folds for training and a dierent fold for Testing, then the training error for this combination of parameter is the mean of all testing errors. This procedure is illustrated for v = 4.

Figure 1 . 4 :

 14 Figure 1.4: General framework for building a supervised (classication/regression) model. Example with 3 features and 2 classes ('Yes' and 'No').

Figure 1 . 5 :

 15 Figure 1.5: Division of a dataset into 3 datasets: training, test and operational.

  where C is the number of classes.

Figure 1 . 6 :

 16 Figure 1.6: Example of k-NN classication. The test sample (green circle) is classied either to the rst class (red stars) or to the second class (blue triangles). If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and only 1 star inside the inner circle. If k = 5 (dashed line circle) it is assigned to the rst class (3 stars vs. 2 triangles inside the outer circle).In the k-NN algorithm, the notion of "closeness" between samples x i is based on the computation of a metric

Figure 1 . 7 :

 17 Figure 1.7: Example of linear classiers (blue lines) in a 2-dimensional classication problem.For a set of samples of classes +1 (stars) and -1 (circles) that are linearly separable, there exists an innite number of separating hyperplanes corresponding to w T x + b = 0.

Finding w and b by maximizing the margin 1 ||w|| 2

 2 Figure 1.8: The argument inside the decision function of a svm classier is w T x + b. The separating hyperplane corresponding to w T x + b = 0 is shown as a blue line in this 2-dimensional plot. This hyperplane separates the two classes of data with points on one side labeled y i = +1 (w T x i + b ≥ 0) and points on the other side labeled y i = -1 (w T x i + b < 0). Support vectors are circled in purple and lie on the hyperplanes w T x + b = +1 and w T x + b = -1 (red lines)

Figure 1 . 9 :

 19 Figure 1.9: Hyperplane obtained after a dual resolution (blue line). The 2 canonical hyperplanes (red lines) contain the support vectors whose α i > 0. Other points have their α i = 0 and the equation of the hyperplane is only aected by the support vectors.

Figure 1 .

 1 Figure 1.10: Left: in two dimensions the two classes of data (-1 for cross and +1 for circle)

Figure 1 .

 1 Figure 1.12: Geometric representation of SVM.

Figure 1 .

 1 Figure 1.13: Example of several svms and how to interpret the weight vector w

Figure 1 .

 1 Figure 1.14: Illustration of svm regression (left), showing the regression curve with theinsensitive "tube" (right) [CGS05]. Samples x i above the -tube have ξ 1 > 0 and ξ 1 = 0, points below the -tube have ξ 2 = 0 and ξ 2 > 0, and points inside the -tube have ξ = 0.

  Some authors propose to extract representative features from time series. Fig. 2.1 illustrates a model for time series proposed by Chateld in [Cha04]. It states that a time series can be decomposed into 3 components: a trend, a cycle (periodic component) and a residual (irregular variations).

Figure 2

 2 Figure 2.1: The Beveridge wheat price index is the average in nearly 50 places in various countries measured in successive years from 1500 to 1869 1 .

  2.2). First, in Fig. (a), data points (samples

Figure 2 . 2 :

 22 Figure 2.2: Example of metric representation: (a) Data points are xed and the distance sphere is shown for each metric given a constant. (b) The distance sphere is xed and the data points x are moving according to each distance.

Figure 2 . 3 :

 23 Figure 2.3: Example of mds. (a) Distances between ten cities in miles. (b) Two dimensional plot of the ten cities from a classical mds 2 .

  the surge of research, one can identify at least three categories: metrics in the time domain, metrics in a feature-extracted domain, metrics based on models. The rst category (metrics in the time domain) aims to compare the closeness of time series observations in the temporal domain. Without being exhaustive, many variants cover the Minkowski distance or the Frechet distance [Mau06] for amplitude comparison, and the correlation-based distances [DC03]; [DCA12]; [DCN07]; [Ben+09]for behavior comparison.The second category (metrics in a feature extracted domain) aims to project the time series in an other domain, such as the frequential domain or the symbolic representation, and to compute a distance in the projected domain. For frequential-based distance, many measures have been proposed such as the periodogram-based distance[START_REF] Caiado | A periodogram-based metric for time series classication[END_REF] or the dissimilarity measure based on the discrete wavelet transform[START_REF] Chan | Wavelet distance measure for person identication using electrocardiograms[END_REF]. Based on the symbolic representation SAX (Symbolic Aggregate approXimation), a dissimilarity measure between symbols have been proposed in[START_REF] Lin | A Symbolic Representation of Time Series, with Implications for Streaming Algorithms[END_REF].In the third category (metrics based on models), the aim is to assume a model of the time series and to compute the dissimilarity between the evaluated models. Most of the propositions assume that time series are generated by either an ARIMA (AutoRegressive Integrated Moving Average) or ARMA (AutoRegressive Moving Average) process[START_REF] Kalpakis | Distance Measures for Eective Clustering of ARIMA Time-Series[END_REF];[START_REF] Martin | Metric for ARMA processes[END_REF]. Some work have considered alternative models such as the Markov chains[START_REF] Ramoni | Bayesian clustering by dynamics[END_REF] or the hidden Markov models[START_REF] Smyth | Clustering sequences with hidden Markov models[END_REF]. Based on the ARIMA or ARMA model, a number of metrics have been proposed, such as the Piccolo distance[START_REF] Piccolo | A distance measure for classifying ARIMA models[END_REF] or the Maharaj distance[START_REF] Maharaj | A Signicance Test for Classifying ARMA Models[END_REF], which evaluate the distance between the parameters of the estimated model. Other distances between series based on their evaluated models have been proposed such as the kernel of Binet-Cauchy[START_REF] Vishwanathan | Binet-cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes[END_REF].

Figure 2

 2 Figure 2.4: 3 toy time series in the temporal domain. Time series in blue and red are two sinusoidal signals. Time series in green is a random signal.

Figure 2

 2 Figure 2.5: 3 toy time series in the frequency domain: blue and red are the spectrum of the Fourier transform of two sinusoidal signals; green is the spectrum of the Fourier transform of a random signal.

Figure 2

 2 Figure 2.6: The signal from Fig. 2.4 and a signal x 4 which is signal x 1 and an added translation. Based on behavior comparison, x 4 is the closest to x 1 .

Figure 2 . 7 :

 27 Figure 2.7: Example of a same sentence said by two dierent speakers. Time series are shifted, compressed and dilatated in the time.

Figure 2

 2 Figure 2.8: Example of dtw grid between 2 time series x i and x j (top) and the signals before and after warping (bottom). On the dtw grid, the two signals can be represented on the left and bottom of the grid. The optimal path π * is represented in green line and shows how to associate elements of x i to element of x j . Background show in grey scale the value of the considered metric (amplitude-based distance d A in classical dtw)

  )where β ∈ [0; 1] denes the trade-o between the amplitude d A and the behavior d B components, and is thus application dependent. For example, in classication problems, this parameter can be learned through a grid search procedure (Section 1.1.2). Without being restrictive, these combinations can be extended to take into account more unimodal metrics.More specic work ond A and cort propose to combine the two components through a sigmoid combination function [DCA12]; [DCN07]:
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 2 Fig. 2.9 illustrates the value of the resulting combined metrics (D Lin , D Geom and D Sig ) in 2-dimensional space using contour plots for dierent values of the trade-o β. For small value of β (β = 0), the three metrics only includes d A . For high value of β (β = 1), D Lin and D Geom only includes d B . For β = 6 and for small values of d B , D Sig mostly includes d B while for large value of d B , D Sig mostly includes d A .
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 2 Figure 2.9: Contour plot of the resulting combined metrics: D Lin (1 st line), D Geom (2 nd line) and D Sig (3 rd line), for dierent values of β. For the three combined metrics, the rst and second dimensions are respectively the amplitude-based metrics d A and the behavior-based metric d B .
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 2 Figure 2.10: A nearly log-normal distribution, and its log transform3
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  Fig. 3.1 illustrates a result obtained with our proposition. There is a signicant improvement in classication performances by taking into account in the metric denition, several modalities (behavior d B , frequential d F ) located at dierent scales (illustrated by black rectangles in the gure), one at the global scale (d F ) and one at a more locally scale (d B ). The performance of the learned combined metric is compared with the ones of the standard metrics that take into account for each, only one modality on a global scale (involving all time series elements).

Figure 3 . 1 :

 31 Figure 3.1: CinCECGtorso dataset and error rate using a kNN classier (k = 1) with standard metrics (Euclidean distance, Dynamic Time Warping, temporal correlation) and a learned combined metric D. The gure shows the 2 major metrics involve in the combined metric D and their respective temporal scale (black rectangles).

  Contrary to static data, metric learning for structured data (e.g. sequence, time series, trees, graphs, strings) is less frequent. While for sequence data most of the works focus on string edit distance to learn the edit cost matrix[START_REF] Oncina | Learning stochastic edit distance: Application in handwritten character recognition[END_REF];[START_REF] Bellet | Good edit similarity learning by loss minimization[END_REF], metric learning for time series is still in its infancy. Without being exhaustive, major recent proposals rely on weighted variants of dynamic time warping to learn alignments under phase or amplitude constraints[START_REF] Reyes | Feature weighting in dynamic time warping for gesture recognition in depth data[END_REF];[START_REF] Jeong | Weighted dynamic time warping for time series classication[END_REF];[START_REF] Zhang | Merge-weighted dynamic time warping for speech recognition[END_REF];[START_REF] Mei | Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classication[END_REF], enlarging alignment learning framework to multiple temporal matching guided by both global and local discriminative features[START_REF] Frambourg | Learning multiple temporal matching for time series classication[END_REF]. For most of these propositions, temporal metric learning process is systematically: a) Uni-modal (amplitude-based), the divergence between aligned elements being either the Euclidean or the Mahalanobis distance and b) Uni-scale (global level), involving all time series elements at once, which restricts its potential to capture local characteristics. We believe that perpectives for metric learning, in the case of time series, should include multi-modal and multi-scale aspects.

  proposed by Weinberger & Saul. Secondly, we introduce the concept of pairwise dissimilarity space. We formalize the general problem of learning a combined metric for a robust k-NN as the learning a function in the dissimilarity space. From the general formalization, we propose three formalizations (Linear, Quadratic and svm-based), give an interpretation of the solutions Chapter 3. Multi-modal and Multi-scale Time series Metric Learning (M 2 TML)

  imposter x l is a sample that invades the target neighborhood plus one unit margin as illustrated in Fig.3.2. The target neighborhood is dened with respect to an initial metric D 0 . Without prior knowledge, L2-norm is often used. Metric learning by lmnn aims at minimizing the number of impostors invading the target neighborhood. By adding a margin safety of one, the model is ensured to be robust to small amounts of noise in the training sample (large margin). The learned metric D pulls the targets x j and pushes the impostors x l as illustrated in Fig.3.2.

Figure 3 . 2 :

 32 Figure 3.2: Pushed and pulled samples in the k = 3 target neighborhood of x i before (left) and after (right) learning. The pushed (vs. pulled) samples are indicated by a white (vs. black) arrows (Weinberger & Saul [WS09]). Note: the representation of the metric here is the one where the distance sphere is xed and the data points are moving according to the considered distance (Section 2.2).

  Figure 3.3: Example of embedding of four time series x i from the temporal space (left) into the dissimilarity space (right) for p = 3 basic metrics.

Figure 3

 3 Figure 3.4: Example of interpretation of two pairwise vectors x 12 and x 34 on a same line passing through the origin in the pairwise dissimilarity space.

Figure 3

 3 Figure 3.5: Example of two pairwise vectors x 12 and x 34 close in the pairwise dissimilarity space. However, the time series x 1 and x 3 are not similar in the temporal space.

  Figure 3.6: Multi-scale decomposition

  14) with D = f (d 1 , . . . , d p ) combination of the metrics d 1 , . . . , d p . The m 2 tml problem for large margin k-NN classication can be written as the following 3.4. M 2 TML general problem 57 optimization problem:

Chapter 3 .

 3 Figure 3.7: Example of dierent strategies to build P ull i and P ush i sets for a k = 2 neighborhood.

Figure 3 .

 3 Figure 3.10: Example of svm solutions and of the resulting metric D dened by the norm of the projection on w. Fig. (a) represents common expected conguration where pull pairs P ull i are situated in the same side as the origin x ii = 0. In Fig. (b), the vector w = [-1 -1] T indicates that push pairs P ush i are on the side of the origin point. One problem arises in Fig. (b): distance of push pairs D(x il ) is lower than the distance of pull pairs D(x ij ).

Fig. 3 .

 3 Fig. 3.11, illustrates for p = 2 the behavior of the learned dissimilarity according to two extreme cases.

Fig. 3 .

 3 Fig.3.11-b, shows a challenging conguration where pairs P ush i are situated in the same side as the origin. The dissimilarity behaves proportionally to the norm on the pull side, and increases exponentially from the hyperplane until an abrupt decrease induced by a norm near 0. Note that the region under the abrupt decrease mainly uncovers false pairs P ush i , i.e., pairs of norm zero labeled dierently.
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 3 Figure 3.11: The behavior of the learned metric D (p = 2; λ = 2.5) with respect to common (a) and challenging (b) congurations of pull and push pairs.
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 3 Multi-modal and Multi-scale Time series Metric Learning (M 2 TML) 3.8 SVM-based solution and algorithm for M 2 TML
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 41 Figure 4.1: Temporal representation of some datasets (SonyAIBO, ECG200, BME, UMD, FaceFour, PowerConsumption) considered in the experiments.

  For those that require to tune parameters (d B , d B-dtw , D Lin , D Geom , D Sig , D, D H ), we recall briey the grid search and cross-validation procedure (Section 1.1.2). When a learning algorithm requires to tune some parameters, to avoid overtting, the training set can be divided into two sets: a learning and a validation set. The model is learnt for each combination of parameters (grid search) on the learning set and evaluated on the validation set. The model with the lowest error on the validation set is retained. An other alternative is cross-validation, which partitions the training set into v folds, performs the learning on one subset, and validates on the v -1

  parameters are estimated on a validation set by line/grid search. A cross-validation and stratied sampling for unbalanced datasets are used. Particularly, for each couple (r, λ) r ∈ {1, 4, 10} and λ ∈ {0, 10, 30}, the pairwise svm parameters (C, α, γ) are learned by grid search as indicated in Table4.3.DissimilarityParameter Ranges Descriptiond B , d B-dtw r {1, 2, 3, , . . . , q -1}Order of behavior-based metricD Lin , D Geom , D Sig β {0, 0.1, . . . , 1}Trade-o between value and behavior componentsD, D H λ {0, 10, 30}Strength of the 'push' termD, D H r {1, 4, 10}Order of behavior-based metrics D, D H C {10 -3 , 0.5, 1, 5, 10, 20, 30, ..., 150} Parameter of svm D, D H α {1, 2, 3} Size of the m = α.k neighborhood D H γ {10 -3 , 10 -2 , . . . , 10 3 } Parameter of the Gaussian kernel Table 4.3: Parameter ranges Note that the temporal order r for the behavior-based metrics d B is noise-dependent, typically 1 is retained for noise-free data. The parameter λ corresponds to the strength of the 4.3.2 Comparison of the classication performances on the test set From Table 4.4, we can see rst that the 1-NN classication reaches the best results in: 1. Less than one-third of the data when based on unimodal metrics d A , d B or d F 2. Slightly more than one-third for unimodal metrics dtw and d B-dtw 3. Two-thirds (19 -20 times on 30) when based on a priori combined metrics D Lin , D Geom and D Sig 4. More than two-thirds (21 times on 30) when based on learned metrics D or D H .
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Figure 4 Figure 4

 44 Figure 4.2: (a) Standard amplitude-based (Euclidean distance d A and dtw) vs. m 2 tml (D and D H ) metrics. (b) Behavior-based (d B and d B-dtw ) vs. m 2 tml metrics. (c) No-warp (d A and d B ) vs. m 2 tml metrics. (d) Warp (dtw and d B-dtw ) vs. m 2 tml metrics. (e) Frequential-based (d F ) vs. m 2 tml metrics. (f ) A priori (D Lin , D Geom , D Sig ) vs. m 2 tml metrics.
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 44 Figure 4.4: Temporal representation of the top m 2 tml feature weights for 4 datasets.

  Figure 4.5: mds visualization of the d B-dtw (Fig. a) and D (Fig. b) dissimilarities for FaceFour

Figure 4

 4 Figure 4.6: (a) Two classes of time series from the Sony AIBO accelerometer. (b) The andshapelets from the walk cycle on carpet. (c) The Sony AIBO Robot.5

(4. 3 )

 3 For regression problems, each sample x i is assigned to a continuous value y i . Two approaches are possible to dene the similarity concept. The rst one discretizes the continuous space of values of the labels y i to create classes. One possible discretization bins the label y i into Q intervals as illustrated in Fig.4.7. Each interval becomes a class which associated value can be set for example as the mean or median value of the interval. Then, the classication framework is used to dene the pairwise label y ij .

Figure 4 . 7 :

 47 Figure 4.7: Example of discretization by binning a continuous label y into Q = 4 equal-length intervals. Each interval is associated to a unique class label. In this example, the class label for each interval is equal to the mean in each interval.

Figure 4 . 9 :

 49 Figure 4.9: Example of pairwise label denition using an -tube (green lines) around the time series x i (circled in blue). For, time series x j that falls into the tube, the pairwise label is y ij = -1 (similar) and outside of the tube, y ij = +1 (not similar). m-NN + and m-NN - time series are indicated respectively in green and red circle for k-NN with k = 1 and m = 3 neighborhood.

  ) où β est un paramètre contrôlant le compromis des composantes forme d B et amplitude d A . Ce paramètre peut être appris en utilisant une procédure de grille de recherche et de validation croisée. Lorsque l'on combine plusieurs métriques, il est nécessaire de les normaliser pour éviter les problèmes d'échelles. Comme les distances sont des données provenant d'une distribution asymétrique (elles appartiennent à [0; +∞]), on propose dans ce travail de Z-normaliser le log de leur distribution [ZMP14]. Chapitre 3 : M 2 TML Dans ce chapitre, on s'intéresse d'abord au problème d'apprentissage de métriques multimodales et multi-échelles (m 2 tml) pour la classication de séries temporelles. Ensuite, on rappelle l'architecture Large Margin Nearest Neighbors (lmnn) proposée par Weinberger &Saul. Troisièmement, on introduit le concept de l'espace des paires. On formalise ensuite le problème général de m 2 tml où l'on décline 3 formalisations diérentes (Linéaire, Quadratique, svm-based). On donne les interprétations de la solution obtenue et les propriétés de la métrique retenue.MotivationsNotre objectif est la dénition d'une métrique pour la classication de séries temporelles.Jusqu'à maintenant, on a vu que les séries peuvent être comparées sur la base de une ou plusieurs modalités et peuvent être sujettes à des phénomènes tels que les délais.Nous allons nous inspirer des travaux de l'apprentissage de métriques pour apprendre une métrique multi-modale et multi-échelle pour la classication de séries temporelles par plus proches voisins. Plus précisément, notre objectif sera d'apprendre depuis les données, une fonction linéaire ou non-linéaire qui combine plusieurs modalités à plusieurs échelles et qui satisfait les propriétés d'une dissimilarité (Section 2.2).Une métrique est une fonction dénie sur des paires (i.e., similarité, dissimilarité ou distance). Son apprentissage doit permettre de rendre proche les objets qui sont sensés être similaires et rendre éloigné les objets qui sont sensés être diérents. La notion de similaire et diérent dépend de l'application et est en général xée pendant l'apprentissage. De nombreuses recherches ont été menées ces dernières décennies et on peut en distinguer au moins 2 grandes familles : linéaire et non-linéaire. Les premières, qui regroupent la majorité des propositions, visent à apprendre une pondération de la distance de Mahalanobis[START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]. Les deuxièmes visent en général à capturer les structures non linéaires qui existent dans les données comme la Kernel Principal Component Analysis (KPCA)[START_REF] Zhang | Transfer metric learning by learning task relationships[END_REF];[START_REF] Chatpatanasiri | A new kernelization framework for Mahalanobis distance learning algorithms[END_REF] ou les Support Vector Metric Learning (SVML)[START_REF] Xu | Distance Metric Learning for Kernel Machines[END_REF]. Une revue plus détaillée des recherches en apprentissage de métriques peut être trouvée dans[START_REF] Bellet | A Survey on Metric Learning for Feature Vectors and Structured Data[END_REF].Contrairement aux données statiques, les travaux sur l'apprentissage de métriques pour les données structurées (e.g., séquence, séries temporelles, arbre, graphes, chaînes de caractères) sont beaucoup moins fréquents. Sans être exhaustif, la plupart des travaux reposent sur des variantes pondérées de la dynamic time warping pour apprendre des alignements sous des contraintes de phases ou d'amplitudes[START_REF] Reyes | Feature weighting in dynamic time warping for gesture recognition in depth data[END_REF]; [JJO11]; [ZLL14]; [Mei+15] ou proposent des architectures d'apprentissage d'alignement en réalisant des appariements temporelles multiples guidées par des caractéristiques discriminantes globales et locales [FDCG13]. On notera que pour la plupart, ces propositions restent : a) Uni-modales (basées sur les amplitudes), b) Uni-116 Appendix C. Résumé en français échelles (échelle globale). Nous pensons que les perspectives de l'apprentissage de métriques, dans le cadre des séries temporelles devrait inclure les aspects multi-modals et multi-échelles. Dans ce travail ,on propose d'apprendre une métrique multi-modale et multi-échelle pour la classication robuste de séries temporelles pour un classieur k-NN. Pour cela, nous allons plonger les séries dans un espace des paires où une fonction linéaire combinant les diérentes modalités et échelles temporelles sera apprise, grâce à un processus d'optimisation à vaste marge inspiré des travaux de Weinberger [WS09]. Grâce à l'astuce du noyau, la solution proposée est étendue à l'apprentissage de combinaisons non-linéaires. Une variante parcimonieuse et interprétable de la solution permet de montrer le potentiel de la méthode pour localiser nement les modalités et échelles discriminatives.

(C. 18 )

 18 Une métrique D qui combine les p métriques d 1 , . . . , d p est une fonction dans l'espace des paires :D : R p → R x ij → D(x ij ) = f (d 1 (x i , x j ), . . . , d p (x i , x j )) (C.19)On donne diérentes interprétations dans ce nouvel espace, en particulier, la norme d'un vecteur ||x ij || qui donne la proximité entre les séries x i et x j selon l'ensemble des métriques. La représentation multi-modale dans cet espace peut être enrichie pour les séries temporelles par une représentation multi-échelle. Il existe diérentes méthodes comme la fenêtre glissante [Keo+03] ou la dichotomie [DCA12]. Dans ce travail, nous avons choisi d'opter pour une dichotomie. Problème général de M2TML Notre objectif est d'apprendre une dissimilarité D = f (d 1 , . . . , d p ) dans l'espace des paires E , qui combine les p dissimilarités d 1 , . . . , d p pour un classieur k-NN robuste. La fonction f peut être linéaire ou non-linéaire et doit satisfaire au moins les propriétés d'une dissimilarité, i.e., positivité (D(x ij ≥ 0)), réexivité (D(x ii ) = 0 ∀i) et symétrie (D(x ij ) = D(x ji ) ∀i, j).

α

  {R P ull (D) + L P ush (ξ)} s.t. ∀i, j ∈ P ull i , l ∈ P ush i , D(x il ) -D(x ij ) ≥ 1 -ξ ijlξ ijl ≥ 0 (C.20)Dans la suite, nous choisissons:R P ull (D) = i j∈P ull i D(x ij ) (C.21) L P ush (ξ) = i j∈P ull i l∈P ush i ξ ijl (C.22) avec D = f (d 1 , . . . , d p ), une combinaison des métriques d 1 , . . . , d p , ξ ijl les slack variables et C, le compromis entre le terme de régularisation et le terme de pénalisation.Pour construire les ensembles P ull i et P ush i , plusieurs stratégies peuvent être considérées: 1) k-NN vs impostors, 2) k-NN vs All, 3) m-NN + vs m-NN -. Dans la suite, on considère la stratégie m-NN + vs m-NN -car le voisinage considéré est plus large que celui dans la stratégie k-NN vs impostors et nous permettra de mieux généraliser la solution obtenue.De la même manière que pour le svm, cette formulation primale peut être réécrite pour obtenir une forme duale ne faisant intervenir que des produits scalaires entre les vecteurs:ijl α i j l (x il -x ij ) T M -1 (x i l -x i j )    s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , 0 ≤ α ijl ≤ C (C.26)Pour toute nouvelle paire de séries x i et x j , la métrique D s'écrit:D(x i j ) = ijl α ijl (x il -x ij ) T M -1 w T x i j (C.27)En remplaçant le produit scalaire par un noyau, on obtient la formulation duale kernelisée :

  s.t. ∀i = 1, . . . , n, ∀j ∈ P ull i , l ∈ P ush i , 0 ≤ α ijl ≤ C (C.28) et la métrique D s'écrit alors:D(x i j ) = similarité de x i j à l'ensemble P ush ijl α ijl κ(M -1 2 x il ; M -1 2 x i j ) -similarité de x i j à l'ensemble P ull ijl α ijl κ(M -1 2 x ij ; M -1 2 x i j ) (C.29)La métrique D n'est pas une dissimilarité car elle est non-positive. Elle résulte de la diérence de deux termes. Des liens entre la formalisation quadratique et les SVM sont étudiés dans ce chapitre.

(C. 31 )y

 31 On pourrait dénir la métrique comme étant la norme de ce projeté. Même si la norme satisfait la condition de positivité pour une métrique, elle n'assure pas cependant que les distances des paires pull soient plus faibles que celles des paires push, notamment dans les cas où les paires push se trouve plus proches de l'origine que les paires pull. Pour résoudre ce problème, on propose d'ajouter un terme push explicite avec une fonction exponentielle :D(x i,test ) = ||P w (x i,test )||. exp(λ[-(w T P w (x i,test ) + b)] + ) λ ≥ 0 (C.32)où λ est un paramètre contrôlant le terme push, w T P w (x i,test ) + b dénit la distance à la marge du projeté orthogonal, [t] + = max(0; t) étant l'opérateur max.On propose également une extension dans le cadre d'ensemble de paires pull et push non linéairement séparables. La métrique s'écrit alors :D H (x i,test ) = | ||P w (Φ(x i,test ))|| -||P w (Φ(0))|| | . ij α ij κ(x ij , x i,test ) + b x i,test ) et Φ(0) dénissent l'image des vecteurs x i,test et 0 dans l'espace de Hilbert H .Notons que la métrique a besoin d'un centrage par rapport à Φ(0) pour assurer la propriété de réexivité car Φ(0) n'est pas assuré de se projetter sur l'origine dans l'espace de Hilbert H . On peut facilement montrer que les métriques D et D H assurent les propriétés d'une dissimilarité (positivité, réexivité, symétrie).Chapitre 4 : ExpérimentationsDans ce chapitre, nous évaluons l'ecacité de la méthode proposée m 2 tml sur un grand nombre de jeux de données publiques qui couvrent la classication de séries temporelles univariées.On décrit d'abord les jeux de données. Ensuite, on détaille le protocole expérimental. Enn, on présente et discute les résultats obtenus.DescriptionOn étudie l'ecacité des métriques apprises multi-modales et multi-échelles D et D H en utilisant un classieur 1-NN sur 30 jeux de données publiques 1[START_REF] Keogh | The UCR Time Series Classication/Clustering Homepage[END_REF]. On utilise un classieur 1-NN pour rendre les résultats comparables avec ceux de l'archive UCR datant d'août 2015.

  On compare les métriques D et D H avec les métriques unimodales: valeur (distance euclidienne d A et la dynamic time warping dtw), forme (sans alignement d B et avec alignement d B-DT W ), fréquence d F ainsi que les métriques combinées a priori : linéaire D Lin , géométrique D Geom et sigmoïde D Sig . Protocole expérimental Dans le cas où les métriques n'ont pas de paramètres à optimiser (d A , dtw), on applique directement le classieur 1-NN sur l'ensemble de test. Dans le cas où des paramètres sont à optimiser (d B , d B-dtw , D Lin , D Geom , D Sig , D, D H ), on utilise une procédure de grille de recherche et de validation croisée. On rappelle que les paramètres retenus sont ceux qui: -D'abord, minimisent en moyenne l'erreur de classication sur le jeu de validation. -Ensuite, dans le cas où plusieurs solutions donnent des performances identiques, on garde le jeu de paramètres qui minimisera le ratio d intra d inter où d intra et d inter représentent respectivement la moyenne des distances intra-classes et inter-classes.

  D H avec les métriques combinées a priori (D Lin , D Geom , D Sig ) qui sont uniquement basées sur la combinaison forme-amplitude, on observe des scores équivalents ou meilleurs. Dans 8 cas en particulier, on observe une amélioration signicative (FaceFour, Beef, ECG5Days, FaceUCR, SonyAIBO, PowerCons, BME, UMD) de la métrique apprise par rapport les métriques combinées a priori. Notons que les combinaisons linéaires D Lin et géométriques D Geom pourraient inclure davantage de métriques mais cela nécessiterait d'optimiser davantage de paramètres, ce qui peut devenir lourd en terme de temps de calcul. A contrario, pour la m 2 tml, l'augmentation du nombre de métriques à considérer n'implique pas l'augmentation du nombre de paramètres à optimiser. Dans un second temps, pour la métrique apprise D, grâce à la régularisation L 1 , la méthode permet de mettre en évidence les modalités et les échelles les plus discrimantes entre les paires pull et push, ce que nous analysons dans la Table 4.5. Ainsi, on peut observer par exemple que le score de 2.3% obtenu pour FaceFour est atteint en combinant des métriques basées sur la forme d B-dtw , la fréquence d F et les amplitudes dtw, aux échelles globales (I 0 ) et locales (I 4 , I 5 , I 2 ). En regardant la première colonne du tableau, la méthode permet de donner la modalité et l'échelle les plus discriminantes pour chaque jeu de données, qui dans la plupart des cas n'auraient pas pu être devinée facilement a priori (e.g., Lightning7: modalité forme sur le segmentI 6 (d 6 B-dtw ), OliveOil: modalité fréquece sur le segment I 5 (d 5 F ), TwoLeadECG: modalité forme sur le segment I 4 (d 4 B-dtw )). Dans une dernière analyse, on compare l'eet global des métriques alternatives et des métriques provenant de l'approche m 2 tml sur la distribution des voisinage et la discrimination des classes. Pour cela, on eectue une projection MultiDimensional Scaling 2 (mds) pour 2 Matlab function: mdscale pour des métriques et des non metriques 123 visualiser les distributions des séries à partir de leurs dissimilarités. On rappelle brièvement que la méthode mds permet de visualiser dans un espace 2D par exemple les proximités entre les objets d'un jeu de données à partir des dissimilarités connues entre les objets. Pour le jeu de données FaceFour (Fig. 4.5), on montre le mds et l'erreur de reconstruction (stress), en indiquant des couleurs et symboles diérents pour les classes. On peut voir distinctement que l'apprentissage de la métrique a permis de rendre les classes plus isolées et plus compactes, ce qui est intéressant pour une classication par plus proches voisins. Au contraire, la meilleure métrique unimodale (d B-dtw ) montre des classes qui se surposent et des voisinages plus hétérogènes. Conclusion L'objectif de ce travail est l'apprentissage d'une métrique combinée pour une classication robuste par plus proches voisins de séries temporelles. Pour cela, on propose une formalisation générale du problème d'apprentissage de métriques multi-modales et multi-échelles (m 2 tml). Basé sur une représentation par paires, le problème d'apprentissage de la métrique revient à chercher une fonction linéaire ou non-linéaire de ce nouvel espace, qui satisfait les propriétés d'une dissimilarité. Inspiré des travaux d'apprentissage de métrique, le problème se formalise sous la forme d'un problème d'optimisation impliquant un terme de régularisation et d'un terme pénalisation qui visent respectivement à rapprocher les séries sensées être similaires et repousser celles qui sont sensées être dissimilaires. Tout d'abord, en considérant une combinaison linéaire des métriques, on propose une formalisation linéaire et quadratique où le terme de régularisation est changé. La formalisation quadratique permet l'extension de l'apprentissage à des combinaisons non-linéaires grâce à l'astuce du noyau. Cependant, la méthode ne permet pas de trouver des fonctions de combinaison qui respectent les propriétés d'une dissimilarité (non-positive). Nous avons proposé alors une formalisation à base svm qui vise à séparer les ensembles pull et push, et ensuite de bâtir la métrique qui satisfait les propriétés requises pour obtenir une dissimilarité. L'ecacité de la méthode retenue à base svm a été testée sur un grand nombre de jeux de données publiques. Les performances obtenues de la méthode m 2 tml sont équivalentes ou meilleures par rapport aux métriques classiques (distance euclidienne, dynamic time warping, corrélation temporelle, distance à base Fourier). La méthode m 2 tml permet également de donner une solution parcimonieuse et interprétable qui permet une analyse discriminante des modalités et de leurs échelles. En termes de perspectives, de nombreux aspects pourraient être améliorés. Tout d'abord, on pourrait ajouter d'autres modalités, étendre aux données multivariées, étendre à d'autres types de données sans changer l'architecture proposée. Deuxièmement, nous avons proposé d'utiliser une description multi-échelle basée sur un découpage dichotomique. D'autres méthodes comme la fenêtre glissante pourraient être utilisées pour localiser plus nement les évènements d'intérêt. Troisièmement, nous avons appris une métrique globale intégrant les contraintes locales liées à chaque voisinage. On pourrait envisager d'apprendre une métrique pour chaque voisinage et s'inspirer des travaux existants en apprentissage de métriques locales. Enn, d'autres perspectives comme la ré-itération de la métrique initiale pour dénir les voisinages, l'adaptation à la régression, ou l'utilisation de la métrique apprise dans d'autres classieurs peuvent également être considérées pour de nouvelles perspectives de recherche.
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  Tree, the aim is to divide the training data into two parts, right node and left node. Left or right side of tree is searched according to query records. After reaching the terminal node, records in terminal node are examined to nd the closest data node to query record. A more detailed reviews of other algorithms to improve the kNN speed can be found in[START_REF] Bhatia | Survey of Nearest Neighbor Techniques[END_REF].

1.2.2 Support Vector Machine (SVM) algorithm

Support Vector Machine (svm) is a classication method introduced in 1992 by Boser, Guyon, and Vapnik

[START_REF] Boser | A Training Algorithm for Optimal Margin Classiers[END_REF]

;

[START_REF] Cortes | Support-vector networks[END_REF] 

to solve at rst linearly separable problems. The svm classier has demonstrated high accuracy, ability to deal with high-dimensional data, good generalization properties and interpretation for various applications from recognizing handwritten digits, to face identication, text categorization, bioinformatics and database marketing

[START_REF] Wang | Support Vector Machines ( SVM ) in bioinformatics Bioinformatics applications[END_REF]

;

  It is a quadratic programming optimization problem subject to constraints.

	Chapter 1. Related work
	1.2.2.c Dual formulation
	From the primal formulation, it is possible to have an equivalent dual form. This latter
	formulation allows samples x i to appear in the optimization problem through dot-products
	only. The kernel trick can be applied to extend the methods to learn non-linear classiers.
	First, to simplify the calculation development, let consider the hard margin formulation
	in Eqs. 1.14 and 1.15. As a constrained optimization problem, the formulation is equivalent
	to the maximization of a Lagrange function L(w, b), consisting of the sum of the objective
	function (Eq. 1.14) and the n constraints (Eq. 1.15) multiplied by their respective Lagrange
	multipliers α = [α 1 , . . . , α n ] T :
	Thus, it is a convex problem: any local solution is a global solution. The objective function in
	Eq. 1.16 is made of two terms. The rst one, the regularization term, penalizes the complexity
	of the model, controlling the ability of the algorithm to generalize on new samples. The second
	one, the loss term, is an adaptation term to the data. The hyper-parameter C is a trade-o
	between the regularization and the loss term. When C tends to +∞, all the slack variables
	ξ i have to be equal to zero in order to not have an innite loss term. The problem is thus
	equivalent to the primal hard margin problem. The hyper-parameter C is learnt during the
	training phase (Section 1.1.2).
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  Solution for the linearly separable Pull and Push sets Let x test be a new sample, x i,test ∈ E gives the proximity between x i and x test based on the p multi-modal and multi-scale metrics d h . The objective being to predict the label y test of x test using a k-NN classier, it is necessary to dene the metric D(x i,test ). We review in this section dierent interpretations in the dissimilarity space.M 2 TML metric denition Given a test pair x i,test , the norm ||x i,test || of the pair allows to estimate the proximity between

	3.7. SVM-based formalization for M 2 TML	69
	3.7.2	

  3.8. SVM-based solution and algorithm for M 2 TML 73 Finally, Algorithm 1 summarizes the main steps to learn a multi-modal and multi-scale temporal metric D for a robust nearest neighbors classier of time series. Algorithm 2 details the steps to classify a new sample x test using the learned metric D. Output: the learned dissimilarity D or D H depending of κ 3: Pairwise dissimilarity embedding and normalization Embed pairs (x i , x j ) i, j ∈ 1, ..., n into E as described in Eq. 3.8 and normalize d h s Build P ull i and P ush i sets and neighborhood scaling Build the sets of pairs P ull i and P ush i as described in Eq. 3.20 & 3.21 and scale the radii to 1 (Eq. 3.52). 5: svm learning Train a svm for a large margin classier between P ull i and P ush i sets (Eq. 3.46) (resp. D H (x i , x test )) a linear (resp. non linear) combination function of the metrics d h (x i , x test ). 5: Classication Consider the k lowest dissimilarities D(x i , x test ) (resp. D H (x i , x test )). Extract the labels y i of the considered x i and make a vote scheme to predict the label ŷtest of x test Chapter 3. Multi-modal and Multi-scale Time series Metric Learning (M 2 TML)

	Algorithm 1 Multi-modal and Multi-scale Temporal Metric Learning (m 2 tml) for k-NN
	classication of time series
	1: Input: {x i , y i } n i=1 n labeled time series
	d 1 , ..., d p metrics as described in Eqs. 2.1, 2.4, 2.6, 3.11
	a kernel κ
	2: (Section 2.5.2)
	4:

6: Dissimilarity denition Consider Eq. 3.49 (resp. Eq. 3.50) to dene D (resp. D H ) a linear (resp. non linear) combination function of the normalized metrics d h s. Algorithm 2 k-NN classication using the learned metric D or D H 1: Input: {x i , y i } n i=1 n labeled time series x test a time series to test d 1 , ..., d p metrics as described in Eqs. 2.1, 2.4, 2.6, 3.11 the learned dissimilarity D or D H depending of the kernel κ 2: Output: Predicted label ŷtest 3: Dissimilarity embedding Embed pairs (x i , x test ) i ∈ 1, ..., n into E as described in Eq. 3.8 and normalize d h s using the same normalization parameters than Algorithm 1 4: Combined metric computation Consider Eq. 3.49 (resp. Eq. 3.50) to compute D(x i , x test )

Table 3 .

 3 Table 3.1 sums up the characteristics of each formalization and the induced dissimilarities. 1: The dierent formalizations for m 2 tml

	D Sparcity Dissimilarity properties	Linear formalization formalization Quadratic Linear Linear/Non-linear Yes No Yes No (non-positivity)	SVM-based formalization Linear/Non-linear Yes (L 1 regularized svm) Yes

  Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.2 Comparison of the classication performances on the test set . . . . . . . 80 4.3.3 Analysis of the discriminative features . . . . . . . . . . . . . . . . . . . . 81 4.3.4 Eect on the neighborhood before and after learning . . . . . . . . . . . . 83

	Chapter 4
	Experiments
	Contents 4.1

4.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 4 .

 4 1 gives a description of the datasets considered in the experiments and Fig. 4.1gives the temporal representation for some of the datasets. Note that for some datasets (e.g., SonyAIBO, ECG200, FaceFour, PowerConsumption), it is visually dicult to discriminate the classes using one modality (value, behavior, frequential).

	Dataset	Nb. Class Nb. Train Nb. Test TS length
	ItalyPowerD	2	67	1029	24
	CinCECGtorso	4	40	1380	1639
	BME	3	300	1500	128
	ECG200	2	100	100	96
	SonyAIBOII	2	27	953	65
	Coee	2	28	28	286
	ECG5Days	2	23	861	136
	SonyAIBO	2	20	601	70
	Adiac	37	390	391	176
	Beef	5	30	30	470
	Trace	4	100	100	275
	CBF	3	30	900	128
	CC	6	300	300	60
	DiatomSizeReduc	4	16	306	345
	Symbols	6	25	995	398
	GunPoint	2	50	150	150
	FacesUCR	14	200	2050	131
	TwoLeadECG	2	23	1139	82
	UMD	3	360	1440	150
	MoteStrain	2	20	1252	84
	Lighting2	2	60	61	637
	OliveOil	4	30	30	570
	FISH	7	175	175	463
	FaceFour	4	24	88	350
	SwedishLeaf	15	500	625	128
	MedicalImages	10	381	760	99
	Lighting7	7	70	73	319
	PowerCons	2	73	292	144
	OSULeaf	6	200	242	427
	InlineSkate	7	100	550	1882

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+ consumption, bme and umd: http://ama.liglab.fr/~douzal/tools.html.

2 Note: the datasets and results are the ones before the update of August 2015 76 Chapter 4. Experiments

Table 4

 4 

.1: Dataset table description providing the number of classes (Nb. Class), the number of time series for the training (Nb. Train) and the testing (Nb. Test) sets, and the length of each time series (TS length).

Table 4 .

 4 Euclidean distance after alignment d B-dtw Behavior-based aligned dissimilarity Eqs. 2.13 & 2.6 Behavior metric based on cort after alignment A and d B (resp. dtw and d B-dtw ) D Geom Geometric combined metric Eq. 2.17 Combines d A and d B (resp. dtw and d B-dtw ) A and d B (resp. dtw and d B-dtw ) 2: Considered metric in the experiments Table 4.2 recalls briey the considered metrics in the experiments. The a priori combined metrics (D Lin , D Geom , D Sig ) rely, on 2 log-normalized dissimilarities d A , d B (resp. dtw, d B-dtw for asynchronous time series). The alternative metrics and the a priori combined metrics are evaluated as usual by involving all time series elements (i.e., at the global scale).

	d A d B dtw Eqs. 2.13 & 2.1 d F Value-based dissimilarity Eq. 2.1 Behavior-based dissimilarity Eq. 2.6 Dynamic time warping Frequential-based dissimilarity Eq. 2.4 D Lin Linear combined metric Eq. 2.16 Combines d D Sig Euclidean distance Behavior metric based on cort Frequential metric based on Fourier transform Sigmoid combined metric Eq. 2.18 Combines d D Linear learned metric Eq. 3.49 m 2 tml linear combined metric D H Non-linear learned metric Eq. 3.50 m 2 tml non-linear combined metric with a Gaussian kernel

For D and D H , we consider a 21-dimensional embedding space E that relies, for synchronous (resp. asynchronous) data, on 3 log-normalized dissimilarities d s A , d s B (resp. dtw s , d s B-dtw ), and d s F , at 7 temporal granularities s ∈ {0, ..., 6} obtained by binary segmentation, described in Section 3.3.

Table 4

 4 Eect on the neighborhood before and after learningIn the last part, we compare the global eect of the alternative and m 2 tml metrics on the 1-NN

	.5: Top 5 multi-modal and multi-scale features involved in D

  In this work, we only focus on three basic temporal metrics (euclidean distance, temporal correlation, Fourier-based distance). Montero & Vilar propose in[START_REF] Montero | TSclust : An R Package for Time Series Clustering[END_REF] a review on a wide number of metrics dedicated to time series. For remaining challenging datasets in our experiments, it could be interesting to integrate other basic temporal metrics in our framework to see the obtained results.

  Les travaux de cette thèse s'inscrivent dans le contexte d'une thèse CIFRE avec Schneider Electric et deux laboratoires publics de recherche, le LIG et le GIPSA-lab. Au sein de Schneider Electric, la thèse a eu lieu dans l'équipe Analytics for Solutions (A4S), membre de l'entité Stratégie et Technologie. Parmi les nombreux intérêts de l'équipe, dans le cadre de la modélisation de systèmes (e.g., bâtiments, réseaux de capteurs, Internet des Objets), deux sujets sont au moins étudiés : modélisation à partir des lois physiques (modèles boîtes blanches/grises) et modélisation à partir d'algorithmes d'apprentissage statistique (modèles boîtes noires). Avec l'augmentation du nombre de données et de capteurs qui permettent de collecter ces données, il devient de plus en plus dicile de modéliser les systèmes par les lois physiques pour certaines tâches de prédiction. Parmi les nombreuses applications dans Schneider Electric, NN) ou les Support Vector Machine (svm). Dans notre travail, le classieur utilisé est le k-NN et on utilisera les svm pour leur concept de vaste marge.L'approche des k-NN[START_REF] Silverman | An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges[END_REF];[START_REF] Cover | Nearest neighbor pattern classication[END_REF] est une approche simple pour classier des objets qui considère que des objets proches appartiendront à la même classe. La classe y j d'un nouvel individu x j est obtenue avec le vote majoritaire de la classe des k plus proches voisins x i . La notion de proximité est basée sur le calcul d'une métrique. Pour les données statiques, les distances usuelles sont la distance euclidienne, de Minkowski ou la distance de Mahalanobis. Malgré sa simplicité, le k-NN reste un algorithme qui réussit dans de nombreux problèmes de classication[START_REF] Belongie | Shape Matching and Object Recognition Using Shape Contexts[END_REF];[START_REF] Xi | A Fast time series classication using numerosity reduction[END_REF];[START_REF] Ding | Querying and Mining of Time Series Data : Experimental Comparison of Representations and Distance Measures[END_REF]. Néanmoins, il présente de nombreux désavantages, notamment en terme de complexité calculatoire, que ce soit en terme de stockage (stockage de l'ensemble des individus d'apprentissage) ou de temps (recherche des voisins)[START_REF] Duda | Pattern Classication and Scene Analysis[END_REF]. Des techniques existent pour surpasser ces limites comme les Ball Tree, k-d Tree, etc. qui visent essentiellement à partitionner les données. Une revue plus détaillée peut être trouvée dans[START_REF] Bhatia | Survey of Nearest Neighbor Techniques[END_REF].Les svm appartiennent à la catégorie des méthodes à noyaux, algorithmes qui ne dépendent que de produits scalaires entre les données[SS13]. Les svm permettent ainsi de résoudre des problèmes non linéairement séparables. Dans un problème linéairement séparable, l'objectif est d'apprendre un séparateur w T x+b qui va maximimer la marge 1/||w|| 2 entre les vecteurs supports de chaque classe. Ce problème peut s'écrire sous la forme d'un problème d'optimisation

	108	Appendix C. Résumé en français
	travaux [Die98]; [DHB95].	
	Algorithmes d'apprentissage statistique
	De nombreux algorithmes d'apprentissage ont été proposés dans le cadre supervisé comme
	les réseaux de neurones [Lee+09], les arbres de décisions [Qui86], les k-plus proches voisins
	Positionnement du problème et contributions (k-:
	Dans cette thèse, on se focalise sur la classication de séries temporelles monovariées, échantil-argmin w,b 1 2 ||w|| 2 2 (C.2)
	lonnées avec une fréquence d'échantillonnage xe, et de même longueur. Parmi les nombreux
	algorithmes d'apprentissage qui existent, certaines approches (e.g., k-Plus Proches Voisins
	k-PPV) classient les objets sur la base du concept de voisinage. En général, le concept de
	'proche' ou 'loin' entre objets est exprimé à l'aide d'une mesure de distance. Les séries tem-
	porelles peuvent être comparées sur la base de leurs amplitudes comme les données statiques,
	mais également, sur la base d'autres caractéristiques, appelées modalités, comme les formes
	ou leur contenu en fréquence. De nombreuses métriques pour les séries temporelles ont été
	proposées comme la distance euclidienne [Din+08], la corrélation temporelle [FDCG13] ou la
	distance à base de Fourier [SS12a]. Une revue plus détaillée peut être trouvée dans [MV14].

Introduction Motivation certaines vont impliquer en particulier, des données temporelles, par exemple, la prédiction de la consommation dans un bâtiment, le capteur virtuel dans des procédés industriels ou encore la détection de fautes. Plus généralement, Schneider Electric, comme de nombreuses autres entreprises et autres domaines (médecine, marketing, météorologie, etc.) s'est intéressé ces dernières décennies aux problèmes d'apprentissage (classication, régression, clustering) impliquant des séries temporelles à une ou plusieurs dimensions, à diérents échantillonnages, etc. En automatique et en traitement du signal, une série temporelle peut être vue comme la réponse d'un système dynamique. Contrairement aux données statiques, les séries temporelles sont des données en général plus complexes, dans le sens où l'aspect temporel (i.e., l'ordre d'apparition des observations) est une information clé supplémentaire. En général, les mesures existantes impliquent une modalité à l'échelle globale, sur l'ensemble des observations. Nous pensons que l'aspect multi-échelle des séries (c.a.d impliquer une partie des observations), absent dans les données statiques, pourrait enrichir la dénition des s.t. ∀i = 1, . . . , n : y

  10)Les svm sont donc des algorithmes intéressants car ils permettent l'apprentissage de fonctions linéaires ou non-linéaire. L'interprétation dans le primal du vecteur de poids w permet de déterminer les caractéristiques discriminantes du modèle, et dans le dual, l'analyse des coecients α permet de connaître les individus vecteurs supports et d'obtenir une solution parcimonieuse. Il existe des variantes des svm qui permettent de changer la régularisation en norme 1 pour obtenir un modèle parcimonieux ou les Support Vector Regression qui permettent de résoudre des problèmes de régression.

	Chapitre 2 : Mesure de comparaison
	pour les séries temporelles
	Dans ce chapitre, on donne tout d'abord la dénition d'une série temporelle. Ensuite, on
	rappelle les propriétés générales d'une mesure de distance et introduisons quelques métriques
	pour les séries temporelles. On se focalise en particulier sur les mesures basées sur les am-
	plitudes, les formes et les fréquences. Pour gérer les problèmes liés aux retards, on rappelle
	le concept d'alignement et de programmation dynamique. Finalement, on présente quelques
	modèles de métriques combinées pour les séries temporelles.
	Dénition d'une série temporelle

Dans la suite, on note x i = (x i1 , x i2 , ..., x iq ) une série temporelle de taille q. Chaque observation x it est bornée, i.e., l'inni n'est pas une valeur valide : x it = ±∞. Les séries temporelles peuvent être monovariées (provenant de la mesure d'un seul capteur par exemple) ou multivariées (provenant simultanément de plusieurs capteurs par exemple).

  ij (w T x ij + b) ≥ 1 -ξ ijξ ij ≥ 0 (C.30) Dans le cas linéaire, une régularisation L 1 permet d'obtenir une solution parcimonieuse et interprétable du vecteur de poids w et permet de mettre en évidence les modalités et échelles pour diérencier les paires pull et push an de faire une classication par plus proches voisins.Ensuite, pour dénir la métrique, deux éléments sont à considérer : la norme du projeté orthogonal et la distance à la marge. Pour une nouvelle paire test x i,test , on note P w (x i,test ) la norme du projeté orthogonal de x i,test sur la direction de séparation w: P w (x i,test ) = < w, x i,test >

							
	 	1 2	||w|| 2 2 + C	i,j	ξ ij	 
	s.t. ||w|| 2	w =	w T x i,test ||w|| 2 w

y

  Table 4.4, l'erreur de classication 1-NN sur le jeu de test pour les métriques unimodales (5 premières colonnes), les métriques combinées a priori (D Lin , D Geom , D Sig ) et 122 Appendix C. Résumé en français les métriques apprises D and D H . Pour chaque jeu de données, on donne en gras la meilleure performance et celles qui sont équivalentes en utilisant un Z-test avec un risque de 5%. La dernière colonne 'warp'indique si les données présentent ( ) ou non (×) des retards. Dans un premier temps, à partir de la table de résultats Table 4.4, on peut d'abord observer que l'erreur de classication 1-NN atteint les meilleurs résultats dans : 1. Moins de 1/3 des cas pour les métriques unimodales d A , d B or d F 2. Environ un peu plus de 1/3 des cas pour les métriques unimodales dtw et d B-dtw 3. 2/3 des cas (19 -20 fois sur 30) pour les métriques combinées a priori D Lin , D Geom et D Sig 4. Un peu plus de 2/3 des cas (21 fois sur 30) pour les métriques apprises D et D H . En particulier, pour pratiquement l'ensemble des jeux de données, lorsqu'une métrique unimodale réussit, la méthode m 2 tml atteint un meilleur score ou est équivalente. Pour certaines bases de données (e.g. FaceFour, Beef, FaceUCR, SonyAIBO, BME, CinCECGTorso), on a une amélioration signicative des résultats. Si on compare les métriques apprises D et

D. For static data, frequently used metrics are the Euclidean 3 A clarication of the terms metric, distance, dissimilarity, etc. will be given in Chapter 2. For now, we

is w T x + b = 0, that can separate samples of class +1 from the ones of class -1. When the problem is linearly separable such as in Fig.1.7, there exists an innite number of valid hyperplanes.Cortes & Vapnik[START_REF] Cortes | Support-vector networks[END_REF] propose to choose the separating hyperplane that maximizes the margin, i.e., the hyperplane that leaves as much distance as possible between the hyperplane

source: http://users.sussex.ac.uk/~christ/crs/ml/lec08a.html

https://www.quora.com/Support-Vector-Machines/What-is-the-intuition-behind-Gaussiankernel-in-SVM

0 stands for the null vector: 0 = [0, . . . , 0] T

source: http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/chapter3.pdf

source: http://www.r-statistics.com/2013/05/log-transformations-for-skewed-and-widedistributions-from-practical-data-science-with-r/

In this chapter, the term dtw denotes the classically value-based metric computed after an alignment of the time series obtained with the dtw algorithm with a value-based cost function.

'push' term; precisely, if no, moderate or strong 'push' is required during the training process, a λ value of 0, 10 and 30 is learned, respectively.
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1 PowerCons: https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+ consumption, bme and umd: http://ama.liglab.fr/~douzal/tools.html.

Results and discussion

In this section, we rst present a summary table of the quantitivative results obtained in the experiment. Secondly, we present an analysis of the performances of the dierent metrics.

Finally, we present the ability of our proposed approach m 2 tml to extract discriminative features.

Results

Table 4.4 reports the 1-NN classication test errors based on uni-modal metrics (rst 5 columns), on three a priori combined metrics (D Lin , D Geom , D Sig ) and on D and D H . The results for each dataset that are statistically and signicantly better than the best performance are indicated in bold (Z-test at 5% risk detailed in Section 1.1.3.a). The last column 'warp' indicates the synchronous ( ) or asynchronous (×) data type.

Data that need 'warp' are situated above the line. For each type of delay ('warp' or non-'warp'), the datasets are ordered from the less challenging datasets according to the performance of the classically used distances (d A or dtw) to the most challenging datasets.

Alternative uni-modal metrics A priori combinations m 2 tml warp

Dataset

D H (λ * ) warp 1 ItalyPowerD 0.045 0.028 0.078 0.050 0.055 0.028 0.028 0.030 0.034 (0) 0.046 (0) × 2 CinCECGtorso 0.103 0.367 0.167 0.349 0.367 0.094 0.094 0.093 0.092 (0) 0.088 (0) × 3 BME 0.173 0.160 0.373 0.107 0.120 0.107 0.107 0.107 0.007 (0) 0.007 (0) × 4 ECG200 0.120 0.070 0.160 0.230 0.190 0.070 0.070 0.070 0.080 (0) 0.080 (0) × 5 SonyAIBOII 0.141 0.142 0.128 0.169 0.194 0.142 0.142 0.144 0.162 (0) 0.142 (0) × 6 Coee 0.250 0.000 0.357 0.179 0.143 0.000 0.000 0.071 0.143 (0) 0.036 (10) × 7 ECG5Days 0.203 0.153 0.006 0.232 0.236 0.203 0.203 0.203 0.012 (10) 0.024 (0) × 8 SonyAIBO 0.305 0.308 0.258 0.275 0.343 0.308 0.308 0.293 0.188 (0) 0.228 (0) × 9 Adiac 0.389 0.297 0.261 0.396 0.338 0.373 0.363 0.402 0.358 (0) 0.361 (0) × 10 Beef 0.467 0.300 0.500 0.500 0.500 0.367 0.267 0.467 0.033 (0) 0.257 (0) × 11 Trace 0.240 0.240 0.140 0.000 0.000 0.000 0.000 0.000 0.000 (0) 0.010 (0) 12 CBF 0.148 0.140 0.382 0.003 0.000 0.000 0.000 0.000 0.097 (0) 0.008 (0) 13 CC 0.120 0.113 0.383 0.007 0.027 0.007 0.007 0.007 0.007 (0) 0.007 (0) 14 DiatomSizeR 0.065 0.076 0.069 0.033 0.029 0.033 0.033 0.042 0.088 (0) 0.029 (0) 

Conclusion Using the learned combined metric in other algorithms

In this work, we propose to learn a temporal metric for a robust k-NN classier. As explained in Section 1.2.1, for industrial practical usage, the k-NN algorithm may present some disadvantages, mainly due to its computational complexity, both in memory space (storage of the training samples) and time (search of the neighbors).

Inspired from the work on temporal trees in [START_REF] Douzal-Chouakria | Classication trees for time series[END_REF], we could use the learned metric in an other classier such as a decision tree. For multivariate classication problems, an idea could be to learn in a rst step a linear or non-linear multi-modal and multi-scale temporal metric for each dimension. Then, in a second step, given the set of multi-modal and multi-scale temporal metrics, we build a temporal tree based on the training samples: First, for each dimension, we split the data into two partitions using a clustering algorithm such as k-means (k = 2) with the learned temporal metric for the considered dimension. Secondly, similarly to classical decision tree, we compute a criterion (e.g., a Gini coecient or Information Gain coecient) to select the best split, i.e., the best learned temporal metric that minimize the criterion. Thirdly, we compute for each partition the centroid, i.e., the time series that minimizes the mean distance over all the other time series in the same partition. Then, for each obtained partition, we re-iterate the process until the stopping condition is met, e.g., all the sample in the partition have the same class label or the number of sample have fallen below some minimum threshold. It corresponds a leaf node and the label of the node is assigned to the one of the majority. To classify a new time series x test , similarly to classical decision tree, at each node, we compute the distance D or D H of the new sample to each centroid.

The time series x test is then assigned to the node of the nearest centroid until it reaches a leaf node where its label is assigned. 
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where α ijl ≥ 0 and r ijl ≥ 0 are the Lagrange multipliers.

The objective is to show that the Lagrangian is equal to:

where:

Link between SVM and the Quadratic formalization Objective First, let consider the m 2 tml quadratic formalization:

Secondly, let consider the svm problem that separates P ull i and P ush i sets:

where p + i and p - i are the weight factors for pull pairs P ull i and push pairs P ush i .

We study here a link between the two problems when D(

Appendix B. Link between SVM and the Quadratic formalization p + i are dened as:

Similarities and dierences in the constraints

First, we recall the svm constraints in Eq. B.2:

By summing each constraint two by two, this set of constraints implies the following set of constraints:

•∀i, j, k, l such that y ij = -1, and y kl = +1, i = j and i = k :

•∀i, j, l such that y ij = -1, and y il = +1, i = j :

, the second constraint in Eq. B.5 from the m 2 tml formulation is the same as the constraints in the svm formulation in Eq. B.2.

, we note that an additional set of constraints is present in the svm formulation (rst set of constraints in Eq. B.5) and not in m 2 tml.

Similarities and dierences in the objective function

Mathematically, from Eq. B.3, we write:

And from Eq. B.4, we write: 

the svm formulation (Eq. B.2) and the m 2 tml formalization (Eq. B.1) share a same loss term involving the slack variables ξ ijl (push cost). However, the svm formulation includes additionnal slack variables ξ ijkl due to the additional set of constraints.

In the svm formulation (Eq. B.2), the regularization part tends to minimize the norm of w whereas in m 2 tml (Eq. B.1), it tends to minimize the norm of w after a linear transformation through the matrix M (pull cost). Les contributions principales de la thèse sont :

-la dénition d'un nouvel espace de représentation: l'espace des paires où les paires de séries temporelles sont représentées par des vecteurs composés d'ensemble de métriques temporelles basiques.

-la dénition d'une métrique temporelle de base impliquant une modalité à une échelle spécique.

-l'apprentissage d'une métrique multi-modale et multi-échelle pour une classication à vaste marge de séries temporelles.

-la dénition du problème général d'apprentissage de métriques combinées comme étant un problème d'apprentissage dans l'espace des paires.

-la proposition d'une architecture basée sur les Support Vector Machine (svm) dans le cadre linéaire et non-linéairement séparable pour dénir une métrique combinée qui satisfasse les propriétés d'une dissimilarité.

-la comparaison de l'approche proposée avec les métriques standards sur un nombre important de jeux de données publics.

-l'analyse de la méthode proposée pour extraire les caractéristiques discriminantes impliquées dans la dénition de la métrique combinée apprise.

Organisation du manuscrit

La première partie du manuscrit fait un état de l'art des méthodes existantes en apprentissage statistique et des métriques pour les séries temporelles. Le premier chapitre présente les approches classiques en apprentissage. On rappelle le concept général de l'apprentissage supervisé et on se focalise sur deux approches : les k-Plus Proches Voisins (k-ppv) et les Support Vector Machine (svm). Dans le second chapitre, on précise la terminologie de base pour des séries temporelles et on présente trois catégories de distances classiques qui existent au moins pour les séries temporelles : basée sur les amplitudes, les formes et les fréquences. Chapitre 1 : Etat de l'art Dans ce chapitre, on rappelle les concepts généraux de l'apprentissage statistique. On présente d'abord le principe, l'architecture générale et le protocole d'évaluation de l'apprentissage supervisé. Ensuite, on présente deux algorithmes utilisés dans notre travail : les k-plus proches voisins (k-ppv) et les Support Vector Machine (svm).

Classication, Régression

L'idée de l'apprentissage statistique est d'imiter avec des algorithmes, la capacité qu'on les humains d'apprendre par l'exemple [START_REF] Dreyfus | Apprentissage Apprentissage statistique[END_REF]. Soit X = {x i , y i } n i=1 un ensemble d'apprentissage de n vecteurs avec x i ∈ R p et y i leurs étiquettes. Lors de la phase d'apprentissage, l'objectif est d'apprendre une relation f entre les exemples x i et leur étiquette y i sur la base d'exemples X [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]; [START_REF] Duda | Pattern Classication and Scene Analysis[END_REF]. Ensuite, lors de la phase de test, le modèle f doit être capable de généraliser, i.e., donner une bonne prédiction pour de nouvelles instances x j que le modèle n'a pas obligatoirement rencontré en apprentissage. On appelle ensemble de test X T est = {x j , y j } m 

avec ξ ijl les slacks variables, C le compromis entre le terme pull et push. Les ensembles P ull i et P ush i sont bâtis à partir de la stratégie m-NN + vs m-NN -. La métrique obtenue D est positive en ajoutant la contrainte w h ≥ 0. La symétrie et la réexivité sont quant à elles vériées.

Formalisation quadratique

Pour permettre l'extension de l'apprentissage à des combinaisons non-linéaires des métriques, on propose une formalisation quadratique qui permettra de faire apparaître des produits scalaires entre les vecteurs et d'appliquer l'astuce du noyau. Pour cela, on va utiliser un terme de régularisation quadratique de la forme R(P ull) = 1 2 w T Mw. Le problème s'écrit alors: argmin w,ξ Summary The denition of a metric between time series is inherent to several data analysis and mining tasks, including clustering, classication or forecasting. Time series data present naturally several modalities covering their amplitude, behavior or frequential spectrum, that may be expressed with varying delays and at multiple temporal scales exhibited globally or locally. Combining several modalities at multiple temporal scales to learn a holistic metric is a key challenge for many real temporal data applications. This thesis proposes a Multi-modal and Multi-scale Temporal Metric Learning (m 2 tml) approach for maximum margin time series nearest neighbors classication. The solution lies in embedding time series into a dissimilarity space where a pairwise svm is used to learn the metric. The m 2 tml solution is proposed for both linear and non linear contexts. A sparse and interpretable variant of the solution shows the ability of the learned temporal metric to localize accurately discriminative modalities as well as their temporal scales. A wide range of 30 public and challenging datasets, encompassing images, traces and ecg data, that are linearly or non linearly separable, are used to show the eciency and the potential of m 2 tml for time series nearest neighbors classication.
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