Steve Kwiatkowski

Jérôme Deroo

Mohamed Daoudi

Thanks to their routing simplicity, noise, EMI (Electro-Magnetic Interferences), area and power consumption reduction advantages over parallel links, High Speed Serial Links (HSSLs) are found in almost all today's Systemon-Chip (SoC) connecting different components: the main chip to its Inputs/Outputs (I/Os), the main chip to a companion chip, Inter-Processor Communication (IPC) and etc… Serial memory might even be the successor of current DDR memories.

André Picco, head of the High-Speed Links team at STMicroelectronics, and Frédéric Pétrot, SLS team leader at TIMA laboratory, for welcoming me, directing my thesis and always giving me advices that helped me stay on the right path. I thank Joel Huloux, MIPI Alliance's chairman, for taking

However, going from parallel links to high-speed serial links presents many challenges; HSSLs must run at higher speeds reaching many gigabits per second to maintain the same end-to-end throughput as parallel links as well as satisfying the exponential increase in the demand for throughput. The signal's attenuation over copper increases with the frequency, requiring more equalizers and filtering techniques, thereby increasing the design complexity and the power consumption.

One way to optimize the design at high speeds is to embed the clock within the data, because a clock line means more routing surface, and it also can be source to high EMI. Another good reason to use an embedded clock is that the skew (time mismatch between the clock and the data lanes) becomes hard to control at high frequencies. Transitions must then be ensured inside the data that is sent on the line, for the receiver to be able to synchronize and recover the data correctly. In other words, the number of Consecutive Identical Bits (CIBs) also called the Run Length (RL) must be reduced or bounded to a certain limit.

Another challenge and characteristic that must be bounded or reduced in the data to send on a HSSL is the difference between the number of '0' bits and '1' bits. It is called the Running Disparity (RD). Big differences between 1's and VI 0's could shift the signal from the reference line. This phenomenon is known as Base-Line Wander (BLW) that could increase the BER (Bit Error Rate) and require filtering or equalizing techniques to be corrected at the receiver, increasing its complexity and power consumption.

In order to ensure a bounded Run Length and Running Disparity, the data to be transmitted is generally encoded. The encoding procedure is also called line coding. Over time, many encoding methods were presented and used in the standards; some present very good characteristics but at the cost of high additional bits, also called bandwidth overhead, others have low or no overhead but do not ensure the same RL and RD bounds, thus requiring more analog design complexity and increasing the power consumption.

In this thesis, we propose a novel programmable line coding that can perform to the desired RL and RD bounds with a very low overhead, down to 10 times lower that the existing used encodings and for the same bounds. First, we show how we can obtain a very low overhead RL limited line coding, and second we propose a very low overhead method which bounds the RD, and then we show how we can combine both techniques in order to build a low overhead, Run Length Limited, and Running Disparity bounded Line Coding.

Dedication

To my Mother and Father For everything.

Introduction

Smartphones and tablets have emerged in the last decade as an essential part of our lives. The number of applications handled is increasing and the quality of service provided to the user is still improving, resulting in more and more onboard hardware components, design complexity and bandwidth increase. One of the main challenges is then the power consumption, especially when focusing on a mobile device and its battery life, in addition to the worldwide environmental impact of the power consumption when expecting 4 billion smartphones and tablets by 2017 [1].

Essential elements that directly affects the performance of mobile devices are High Speed Serial Links (HSSLs). HSSLs connect the different components of a mobile device; the Application Processor (AP) to the modem or a companion chip, the AP to the camera or the display, the AP to the mass storage device, the RFIC (Radio Frequency Integrated Circuit) to the modem and etc… HSSLs are also used in laptops and computers as well as in networking. This results in a variety of HSSLs because each application have different requirements, and different protocols are designed to fulfill their needs.

In this thesis, a system-level overview on high-speed serial links is made, with special focus on three protocols: the Universal Serial Bus (USB), the Peripheral Component Interconnect express (PCIe) and the Low Latency Interface (LLI). We will make a comparison between the different parameters and justify their field of use.

With the increasing demand for bandwidth, the speed of HSSLs is doubling every two to three years presenting many challenges to the designers in terms of complexity and power consumption. The design must then be optimized as much as possible.

One of the parameters that directly affects the bandwidth and the performance of a HSSL is the line coding. In many, if not most of the HSSLs, the data to transmit on the link is encoded to ensure two main characteristics: a bounded Run Length (RL), which means that a certain number of consecutive identical bits must not be exceeded so the data contains enough transitions. The receiver benefits from the transitions to synchronize and recover the clock and the data correctly. The second characteristic that the encoding must bound is the Running Disparity (RD), which means that the difference between the numbers of transmitted 0's and 1's must not exceed a specific limit to reduce the BaseLine Wander (BLW) which is the signal shifting from the zero reference.

The BLW closes the eye diagram (which is the superposition of all the bits of a signal) and might create sampling errors when recovering the data.

For those reasons, the line coding intervenes to present solutions. However, Line coding comes at the cost of added bits also called overhead, affecting the throughput. Over time, many encodings have been used in the standards, some present very good characteristics but at the cost of high overhead, reducing the bandwidth efficiency of the link. Other encodings have low overhead but do not ensure the same bounds for RL and RD and require analog components such as filters and equalizers to compensate. This means more design complexity and power consumption.

In this thesis, an overview on the existing methods which bound the RL and the RD is made. We will highlight their advantages and their drawbacks. Then we will present an optimized low overhead method that bounds the Run Length.

Another main contribution of this thesis is a low overhead method that bounds the Running Disparity with an overhead down to 10 times lower than the existing methods, and for the same bounds. After presenting both methods separately, we will show how we can combine them to build a low overhead, run length limited and running disparity bounded line coding.

In addition to its low overhead characteristic, other advantages of the line coding proposed in this thesis will be highlighted such as providing interoperability between links with different RL and RD requirements as well as early errors detection.

Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2, "Problem Statement", explains in details today's High Speed Serial Links challenges. We will focus on the line coding's effect on the performance of HSSLs and the need for a new line coding.

Chapter 3, "State of the art", is divided into two main sections; the first one presents the state of the art of HSSLs focusing on three of today's HSSLs' protocols. The second section presents the state of the art of the encodings that were proposed and used in HSSLs, we will name their advantages and drawbacks and show the overhead-performance tradeoff.

In Chapter 4, "Low EMI encoding method", we present a line coding that ensures reduced EMI that could be caused by the data.

In Chapter 5, "Low overhead run length limited encoding Method", we will present an overhead-optimized line coding to limit the Run Length and evaluate its advantages over existing equivalent methods.

In Chapter 6, "Low Overhead DC-Balanced encoding method", we will present an overhead-optimized line coding, but this time to bound the Running Disparity. A comparison will also be made with the existing equivalent methods.

Chapter 7, "DC-Balanced and run length limited line coding" presents a method to combine both encoding methods presented in chapters 5 and 6, to build a low overhead, RL limited and RD limited Line Coding.

In Chapter 8, "Experimental results", we present the overhead results of the proposed line coding based on simulation, we show the resulting eye diagrams, the VHDL model and the gate count estimation, we compare those results with other encodings and highlight the advantages of our proposal.

In Chapter 9 we conclude and summarize the work presented in this thesis.

Chapter's Introduction

With the increase demand for throughput, High Speed Serial Links are now facing important challenges to transmit the data over a channel. In less than 15 years, the frequency has drastically increased from 500 Mbps (Megabits per second) to 16 Gbps (Gigabits per second) as we can see in figure 2.1 and copperbased channels are still used in most HSSL as transmit medium because of their many advantages in terms of area and cost over optical links. of a mobile device as we can see in Figure 2.3 and now joins more than 280 companies.

Figure 2.3 MIPI® System Diagram for mobile devices [3]

In

Session: allows session establishment, maintenance and termination:

allows two application processes on different machines to establish, use and terminate a connection.

4.

Transport: provides end to end communication control, splits the message into smaller units (if not already small enough), and passes the smaller units down to the network layer. This layer can also provide message acknowledgment, traffic control and session multiplexing when there's many.

3.

Network: controls the operation of the subnet, deciding which physical path the data should take based on network conditions, priority of service, and other factors.

2.

Data Link: provides error-free transfer of data frames from one node to another over the physical layer by errors checking and sometimes correction.

This layer also provides link establishment and termination, frame traffic control, sequencing, acknowledgement, and delimiting.

1. Physical: describes the electrical/optical, mechanical, and functional interfaces to the physical medium, and carries the signals for all of the higher layers. This layer provides data encoding and physical medium attachment.

HSSL's role in a system is then to route the different components and provide reliable data transmission and reception at the desired speed over the channel.

Focusing on the physical layer

In this paragraph, we will focus on the lowest layer of HSSLs. In figure 2.5 we can see a simplified schematic of the Physical Layer (PHY). then made parallel by the de-serializer, de-encoded, and then forwarded to the upper layer.

Line Coding's effect on data transmission

Introduction

The most important measures to evaluate the performance of HSSLs are the BER (Bit Error Rate) and the eye diagram, which is the plot of the superposition of all the bits during transmission as we can see in figure 2.6. The eye diagram is judged by its vertical and horizontal opening. The protocol specification defines the minimum opening required at the receiver. The transmission should respect the specification so the system could ensure the defined BER.

Timing Jitter and the Signal-to-Noise Ratio (SNR) are two of the factors that affect the BER and the eye diagram's opening. Data encoding has a direct impact on both and in this section we're going to see how. Transmitted data can also contribute to increase Electro-Magnetic Interferences (EMI), causing errors in neighboring lanes or even neighboring devices. We will start by explaining how the data can increase EMI, and then we'll show the impact of the RL and RD of the data on the transmission.

Figure 2.6 Eye diagram example

However, AC-coupling has a big drawback; after the transition period for the signal to stabilize, the capacitive effect can make the signal shift up and down (charging and discharging the coupling capacitor) creating Baseline Wander, closing the eye diagram and degrading the SNR. This could be explained differently; the coupling capacitor forms with the termination resistor a highpass RC filter that attenuates low frequency components formed by runs of consecutive bits, but more precisely by the difference between 1's and 0's, which is the running disparity. This is why one of the main interests of a line coding is to reduce or bound the RD.

Because it is a capacitance charge/discharge phenomenon, BLW due to the coupling capacitor can be estimated. For the sake of simplicity, we consider a single ended receiver (Dp or Dn). The simplified schematic is shown in figure 2.13.

Figure 2.13 Simplified AC-coupling

The BLW also creates timing Jitter as we can see in figure 2.14. This type of Jitter is part of the Pattern Dependent Jitter (PDJ) (also called Data Dependent Jitter (DDJ) or Inter-Symbol Interference (ISI)) and from [START_REF] Lavoie | Understanding the blocking capacitor effect on the HD/SD pathological signals[END_REF] and [START_REF]Choosing AC-Coupling Capacitors[END_REF] we can calculate both the BLW and the PDJ. The discharge time of the capacitor is represented by the signal being at the same level for a certain moment, this means consecutive identical 1's. But when the signal goes to 0, this will recharge the capacitor for a certain duration. The charge or discharge time will then be represented by the difference between number of 1's and 0's which is the Running Disparity times the bit duration.

The BLW can thus be written as follows:

BLW = 0.5*V pp (1-e -(RD*Tb)/(R*C)) (2.5)
where RD is the running Disparity and Tb is the bit time or 1/frequency Equation (2.3) shows that PDJ can be reduced by reducing the BLW. To reduce BLW, according to equation (2.5), we should increase the values of R and C. The resistor's value should be adapted to the driver and the channel, so its value cannot be simply manipulated. When it comes to the value of the capacitor, the best is to have an infinite value. But the more the capacitor's value gets bigger, the bigger is its surface and harder is the integration in the chip. Onchip capacitance per lane is limited to a few picoFarads (pF) at best in practical real estate of chip area [START_REF] Dong | AC-Coupling Strategy for High-Speed Transceivers of 10Gpbs and Beyond[END_REF]. Another consequence from increasing the capacitor's value is increasing the transition period, creating a high latency. R and C values are then forced by the system's obligations and their negotiation margin is tight. When there's no choice, filters and equalizers are used to counter the BLW's effect adding more complexity, area and power consumption. More details are provided in the next chapter.

Even when the transmitter and the receiver are DC-Coupled, BLW and PDJ exist, due to the channel and other factors, and are affected by the RD as we will observe later on. But it is more complex to get an estimation because it is channel-dependent and case-dependent.

Chapter's Conclusion

As seen in this chapter, the redundancy, Run Length and the Running Disparity of the data have an immediate impact on signal's integrity and system performance. For this reason, encodings have been designed to transform the raw data and limit or reduce the RL and the RD, but this comes at the cost of added bits called bandwidth overhead that sometimes reaches up to 25% of the initial size of the data, reducing the throughput. With the increasing demand for throughput, every bit sent on the link counts. Line coding is then a big challenge; so is it possible to design a line coding that can bound the RD and the RL to low values with a low overhead?

High Speed Links are also applied on a wide range on data communication as we saw earlier in this chapter and a big variety exists.

Chapter's Introduction

In the previous chapter we saw that a variety of high speed serial links exists to satisfy different types of applications, and then we saw the impact of the noncoded data on a HSSL.

This chapter is divided into two main parts: in the first part we will make a system-level comparison between three HSSLs that are used for three different kinds of application: the Universal Serial Bus (USB), the Peripheral Component Interconnect express (PCIe) and the Low Latency Interface (LLI). We analyze their different parameters, we show the relation between these parameters and how improving one parameter could result in a degradation of another. Based on this analysis, our conclusion outlines the reason why USB is used for I/Os, PCIe is used for data hungry devices and LLI for memory sharing.

In the second part of this chapter, we overview most of the existing line coding methods that were designed for NRZ signaling. We compare them and show the advantages and the drawbacks of each, then highlight the overhead/performance tradeoff.

System-level comparison of three HSSLs: LLI, PCIe and USB

The Low Latency Interface (LLI)

One additional challenge in mobile phones industry is to reduce the electronic Bill of Materials (e-BoM). With today's phone peripherals becoming more and more complex, as most of them are having their own CPU-DDR subsystem, reducing BoM is not a simple task. That's why the Mobile Industry Processor Interface (MIPI ®) Alliance developed the LLI 1.0 (Low Latency Interface 1.0) [START_REF]MIPI® Alliance Specification for Low Latency Interface (LLI)[END_REF] [21] which is a serial interface that enables peripherals, like modems for example, to share the system's main DDR located on the application processor's side, which enables mobile phones manufacturers to remove the modem's DDR and reduce the total phone's cost. LLI 2.0 version extended the use of LLI and made it a general chip-to-chip interconnect. LLI is also used for Inter-Processor Communication (IPC).

More details about latency, throughput and others parameters comparison can be found in the overview we made in [START_REF] Saadé | A System-level Overview and Comparison of Three High-Speed Serial Links: USB 3.0, PCI Express 2.0 and LLI 1.0[END_REF]. Other devices or operations have to wait to be served

Comparison's Summary

Table 3.1 Overview Table of some HSSLs

We conclude that USB with its intelligent software and hot plug feature allows easy Human Interface Device usage, and with its high throughput, it allows mass storage device usage. But with its high latency, high BER, and because USB is not memory mapped, it can allow neither memory sharing nor cache refill operations. PCIe with its intelligent NorthBrigde/ SouthBridge system design allows I/O connecting, and with its memory mapped instructions and its high throughput, even though it is latency-criticized [START_REF] Miller | Motivating future interconnects: a differential measurement analysis of PCI latency[END_REF], it allows data-hungry devices (like graphics card) to share the system's main DDR when connected directly to the root complex and using up to 32 lanes to increase throughput and decrease latency. But using multi-lanes will increase power consumption which is an important issue in mobile applications.

To allow DDR chip-to-chip sharing and cache refill operations inside mobile phones, and in order to enable manufacturers to remove the modem's DDR and

reduce the e-BoM, MIPI Alliance created the LLI featuring a low BER, low latency and low power consumption physical layer (the M-PHY), but at the cost of lower throughput efficiency.

Line Coding's State of the Art

Introduction

As mentioned in chapter 2, Line Coding is one of the biggest challenges in data transmission. That's why there is a big variety of coding methods that were proposed over time, and it is quite difficult to go through all of them.

As seen earlier in this chapter, HSSLs protocols add information to the data and decrease the efficiency before the PHY layer. Line coding must then be optimized as much as possible to not degrade the efficiency furthermore.

In this section, "line coding's state of the art", we will try to go through the most efficient line coding methods, and especially the ones implemented in HSSLs standards.

The next paragraphs will overview the following line coding methods: the Bit Stuffing, the 8b10b encoding, the Scrambling and the polarity-bit coding.

Bit Stuffing is used in protocols such as CAN (Controller Area Network) that uses the NRZ signaling and does the BS with N = 5. BS is also used by the USB 2.0 [START_REF]Universal Serial Bus Specification[END_REF] that uses NRZI signaling and does the BS with N = 6 for consecutive 1's only, because a 0 already contains a transition in NRZI.

We note that Bit Stuffing does not help in reducing the EMI and in spreading the spectrum. Repetitive patterns will stay repetitive with bit stuffing. Bit stuffing also does not help in reducing the RD.

The 8b/10b encoding

The 8b/10b encoding [START_REF] Franaszek | Byte oriented DC balanced 8B/10B partitioned block transmission code[END_REF] [29] was introduced back in 1983 and has gained success because of its excellent characteristics. 8b/10b encoding is made via 5b/6b and 3b/4b sub-block encoding for every byte to be transmitted. If we look at it in a different point of view, 8b/10b encoding transforms each data byte into a 10-bit symbol providing 2 10 = 1024 valid data words instead of 2 8 = 256 valid data words necessary to transmit an 8-bit information. Only the "best" combinations out of 1024 are chosen to represent the data bytes, i.e. the ones ensuring a Run Length limited to 5, and a Running Disparity bounded to +/-3.

In addition, 8b/10b encoding provides control symbols from the remaining combinations. The rest will be non-valid combinations used for errors detection.

However, because of adding 2 bits to each byte, 8b/10b encoding has an overhead of 2/8 = 25%. With the increasing demand for bandwidth, 25% of overhead seems to be an important issue. 8b/10b encoding helps in reducing by a factor of 2 the repetition of some bytes, but not all of them. There is then a positive effect on EMI but this might not be enough. is from the same degree) should be carefully chosen to generate a good pseudorandom sequence. In the simulations in this thesis, we will use polynomials that were implemented in famous standards and have been proven to provide good characteristics.

The Pseudo-Random Binary Sequence (PRBS) characteristics:

An N-bit LFSR generates a repetitive PRBS of length 2 N -1 bits. The PRBS pattern ensures a Run Length bounded to N bits. The PRBS provides equal probability of 1's and 0's. The Running Disparity of the PRBS pattern varies from a polynomial to another. An example of the X 16 + X 5 + X 4 + X 3 + 1 polynomial with FFFFh as seed value is represented in Figure 3.9.

Scrambled data's characteristics:

As mentioned before, scrambling is a XOR between the raw data and the PRBS sequence. The XOR operation was chosen because of its characteristics:

 Binary data with any probability distribution of 1's and 0's, once XORed with a sequence of equal distribution of 1's and 0's, results in data (scrambled data) with equal probability of 1's and 0's. This isn't the case Balancing the number of 1's and 0's inside the data results in two major benefits:

1. Scrambled data has statistically more transitions than raw data before scrambling especially if the raw data is very unbalanced in terms of 1's and 0's. By using Markov Chains, we can get a theoretical estimation of the run length distribution.

Scrambling's advantages:

To summarize, we can deduce the following advantages from scrambling:

1. Scrambling helps in reducing EMI by randomizing the data and eliminating redundant patterns.

2. Scrambling creates transitions by balancing the number of 1's and 0's. This is beneficial in clock and data recovery.

Scrambling has 0% overhead. No bits are added to the transmission

Scrambling's drawbacks:

Despite all of its advantages, scrambling has the following drawbacks:

1. Scrambling could produce repetitive patterns that will cause peaks in the Vcm spectrum, causing EMI. We will call them EMI Killer packets. Even though their probability of happening is low, they could still happen.

Scrambling creates transitions inside the data, but it does not ensure a

guaranteed bound for the RL. Let's suppose a CDR that can handle a maximum run length of 9. According to table 3.2, a run length of 10 happens theoretically every 128 bytes. An error could then occur on the recovery every 128 bytes requiring a retry and degrading system performance. Even when the CDR can handle big values of RL, patterns could be designed (aligned with the PRBS) to create hundreds of consecutive Identical Bits [START_REF] Johnson | Killer Packet[END_REF] that are known as killer packets.

3. Scrambling reduces the RD but it does not guarantee a certain bound. The RD could still reach high values that can go more than +/-1000. In addition to analog filters that could be added to correct the BLW, Protocols like PCIe 3.0 cut the transmission when the RD reaches high values and send special patterns to balance the RD. This also affects system performance and latency.

Standards using scrambling:

Many scrambling-based encodings have been implemented on HSSLs standards. The 64b/66b encoding used in 10G Ethernet uses scrambling and adds 2 bits "sync header" ('10' or '01') to every 64 bits to ensure a transition and indicate whether the frame is control or data. PCIe 3.0 uses 128b/130b encoding using the same principle. USB 3.1 uses 128b/132b encoding adding 4 bits sync header ('1010' or '0101') enabling a single error in the sync header to be corrected without going through a retry.

The Polarity Bit Coding

The polarity bit coding is one of the most overhead-optimized methods that bounds the Running Disparity. Over time, DC-balanced codes have been introduced. In 1986, Knuth proposed a method [START_REF] Knuth | Efficient Balanced Codes[END_REF] to construct frames with equal number of 0's and 1's. Knuth proved that any binary sequence of a specific size, could be balanced by inverting, at a specific bit position, all the rest of the sequence. The drawback of this method is that this particular bit position must be sent with the frame (and should be balanced as well) for the receiver to know how to reconstruct the original frame. This will add a relatively important number of bits for small frames. For large frames, the number of added bits is less important, but the RD could reach high values inside the frame before going back to zero. Other Knuth-based methods were proposed, but as far as we know, they did not solve the high overhead issue.

The simplest and the lowest overhead method is the polarity-bit coding. It consist of systematically adding 1 bit to a frame of a specific size to indicate whether it is inverted or not depending on the Cumulated RD (CRD) and the RD of the frame itself; i.e. if the CRD is positive, and the RD of the frame is positive as well, all the bits inside the frame will be inverted and the polarity bit will transmit the info to the receiver.

The polarity bit coding is used by the 64b/67b encoding; 3 bits are added to the 64 bits of the frame: 2 bits ('10b' or '01b') to ensure a transition and indicate whether the frame is raw data or control, and 1 polarity bit to indicate if the 64 bits (which are scrambled) are inverted or not. The CRD bound ensured by such coding could be deduced from the worst case scenario according to equation

Summary of some existing encoding methods

The table below summarizes the line coding's state of the art.

Line

State of the Art's Conclusion

In the first part of this chapter we overviewed three High Speed Serial Links and we showed the differences on system-level justifying the variety of HSSLs protocols.

In the Line Coding's state of the art, we overviewed many encoding methods used in today's standards. We showed how a line coding that bounds the RL and the RD to low values will have high overhead, and when releasing the constraints on RL and RD we can design a line coding with low overhead.

Releasing the RL and RD constraints might result in more analog complexity.

One interesting line coding which has no overhead is the scrambling.

Scrambling has 0% overhead while providing good characteristics, but it does not guarantee randomization, or RL bounds, or RD bounds.

In this thesis we propose methods that are able to benefit from scrambling's advantages while guaranteeing randomization, RL bounds and RD bounds with a very low overhead.

Chapter's Introduction

Using Scrambling as a technique to reduce EMI is efficient. However, as we explained in chapter 3, scrambling could generate repetitive patterns that will end up increasing EMI. Repetitive patterns after scrambling could also be designed on purpose to break the system.

In this chapter, we propose a technique that eliminates the possibility of generating or designing a repetitive pattern.

Probability of a repetitive pattern

The probability of having a repetitive pattern after scrambling is considered low. In Annex C we calculate the probability for a pattern of length "L" bits to be repeated "M" times after scrambling. This probability is given in equation This means that after scrambling, a byte can be repeated 5 times in a row once every 1.718x10 11 bits. At 10 Gbits/s throughput, this will happen theoretically in average every 17 seconds (1.718x10 11 bits/10x10 9 bits/s).

As we saw in this section, the probability of a repetitive pattern is low, but it can happen rapidly depending on the link's frequency and could generate EMI, creating errors in RF components or neighboring lanes of the same link. It is then a question of time.

If the critical pattern length and repetition number that could cause errors shows to happen rarely, i.e. a pattern of length 8 bits will be repeated 8 times every 14 years at 10 Gbits/s after scrambling, then scrambling can be good enough.

With the increasing demand for bandwidth, repetitive patterns can happen more often, and the small number of repetitions could generate EMI. An error every few seconds or milliseconds can trigger the retry mechanism and degrade system performance. A protection from EMI killer packets (repetitive packets) after scrambling might then be a necessity.

Another reason why there might be a need to ensure the protection from repetitive patterns is that they might be designed easily for attack purpose; once the scrambling polynomial is known, the PRBS sequence is also known.

Patterns could be designed such as once XORed with the PRBS sequence, they generate repetitive patterns that will be source of high EMI.

In the next section, we will present a method to eliminate the probability of a repetitive packet or the possibility of designing such packet.

Method to eliminate the probability of repetitive patterns

A good method to randomize a repetitive pattern is to scramble it. To randomize the repetitive packets after scrambling, we propose to scramble a second time. But should we re-scramble all the data after a first scrambling or should we re-scramble the repetitive packets only?

 is the state where a killer packet is generated after the scrambling of state (a good packet resulting from the 1st scrambling). Its probability is:

Ɛ*Prob(state 2) = Ɛ*(1-Ɛ) 
is the state where a good packet is generated after the scrambling of state (a good packet resulting from the 1st scrambling). Its probability is:

(1- Ɛ)*Prob(state 2) = (1-Ɛ)*(1-Ɛ)
To verify, the sum of the probabilities of states , , and is 1.

The probability of having a killer packet is the sum of the probabilities of states and which is:

Prob(Killer) = Ɛ*Ɛ + Ɛ*(1-Ɛ) Prob(Killer) = Ɛ
The probability of having a good packet is the sum of the probabilities of states and which is:

Prob(good) = (1-Ɛ)*Ɛ + (1-Ɛ)*(1-Ɛ) Prob(good) = (1-Ɛ) Conclusion:
The probability of an EMI killer packet and the probability of a good packet after applying a 2 nd scrambler for all the packets of the 1st scrambling, are exactly the same as the probabilities of states and . Therefore, there is no interest from applying a 2 nd scrambling on all packets.

Chapter's Introduction

As we saw in chapter 3, two of the most used methods to limit the Run Length (RL) have two major drawbacks; the 8b/10b encoding bounds the RL to 5 but has 25% overhead. The Bit Stuffing (BS) bounds the RL to the desired value (N), but the BS's Overhead (BSO) is not predictable because it is data dependent, and it can reach high values that goes to 20% for N = 5 for example.

In this chapter, we propose a line coding that can bound the Run Length with a very low overhead down to 8 times lower than 8b/10b's overhead and down to 6 times lower than Bit Stuffing overhead and for the same RL bounds.

The Bit Stuffing's overhead for a max RL of N can then be calculated depending on the data's probability distribution of 1's and 0's (P and Q). This is illustrated in figure 5.3.

Power Spectral Density Aspects

To verify that the presented solution does not harm the randomization aspect given by scrambling, we plot the PSD of the Vcm generated by encoding the data according to our proposal in figure 5.6 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The presented RL-limited method does not eliminate the random aspect.

Proposal's advantages

The biggest advantage of the proposed line coding is its very low overhead.

As we can see in table 5.1, to ensure the same RL bound as 8b10b encoding which is 5, our proposed method has an overhead of 3.23% whereas the 8b10b's overhead is 25%. If we release the constraints on the RL bound, we can also lower the overhead down to less than 1%. Practically, Low overhead offers many advantages for the designers or the users as follows:

a. Improved bandwidth efficiency over 8b/10b encoding

A link running at a specific frequency will benefit from an obvious improvement in throughput. The raw throughput (Th) as a function of the link's frequency (LF) and the encoding's overhead (OH) could be given by the As we can see from the above figure, we can improve the throughput to many Gigabits per second (Gbps) thanks to the proposed encoding while keeping the same RL bounds. At 6 GHz link frequency, the raw throughput using our line coding is 1 Gbps better than when using 8b/10b encoding. At 12 GHz, we can gain up to 2 Gbps throughput.

b. Power consumption reduction

One of the benefits from reducing the overhead is power consumption reduction. While the power consumption for the high speed links is generally given in mW/Gbps, one of the recent studies and implementations [START_REF] Nazemi | A 2.8 mW/Gb/s Quad-Channel 8[END_REF] estimates the power consumption per transmit/receive unit at 2.8 mW/Gbps.

When the data is encoded, the power consumption (Pc) could be given by the following equation:

Pc(encoded_data) = Pc(raw_data) + OH*Pc(raw_data) (

If we consider we target a throughout of 10 Gbps, the power consumption compared to 8b/10b encoding could be given as follows: We can see that we can save 6 mW per transmit/receive unit when using the line coding we propose in this chapter.

c. Lane Count reduction over 8b/10b encoding

Reducing the line coding's overhead can enable in many cases lane count reduction. Multi-lanes is the feature of many protocols because it allows throughput improvement and multiplication. However, throughput multiplication might not be the protocol's requirement because the protocol might need few Gpbs more to reach its target raw throughput. The proposed low overhead line coding might then enable lane count reduction. This is illustrated in figure 5.8 where we consider MIPI's M-PHY physical layer running at High-Speed Gear 4 (HSG4) which is 11.64 GHz. The figure illustrates the lanes saving for different raw target throughput. We can see that we save up to 50 % of the Physical layer's complexity and power consumption thanks to our encoding. Table 5.2 shows real use cases where lanes reduction and power/area saving could be done.

Table 5.2 Real use cases that can benefit from lanes reduction d. Reduce the CDR's analog complexity

As highlighted in paragraph 2.3.3, the lack of transitions inside the data can push designer to integrate analog solutions that could increase the clock recovery's complexity up to twice. The proposed RL-limited solution enables hardware complexity reduction (which means area and power consumption) over encoding that are not RL-limited.

e. Early Errors Detection

Errors could be detected when the run length exceeds N (the maximum fixed by the proposed encoding) before forwarding the data to the upper layer (Data Link Layer) and CRC check.

f. Interoperability

This line coding also allows interoperability between CDR units having different RL requirements. i.e. a receiver can ask a transmitter to encode with bit stuffing for a specific N. This can happen at the link initialization process;

an attribute can be allocated for this purpose.

Chapter's conclusion

In this chapter we proposed a low overhead run length bounded line coding which combines the benefits of scrambling and bit stuffing.

The proposed coding enables a run length bounded to 5 while having an overhead of 3.23% instead of 25% for 8b/10b for the same RL bound. This allows better throughput efficiency for the same link frequency, or reducing the frequency for a same target throughput. Throughput reduction can enable lane count saving up to 50%, which means 50% power consumption reduction of the physical layer which is the most power-hungry part of a High-Speed Serial link. In this chapter, we will introduce a novel method which bounds the Running Disparity with a much lower overhead than the polarity-bit encoding for small RD bounds as well as for high RD bounds. This method has also an overhead significantly lower than 8b/10b's overhead, for the same RD bounds.

A Novel DC-balanced Line Coding

Introducing the method

Inverting bits is an efficient method to reduce the RD, but systematically inverting means systematically adding a polarity bit to indicate to the receiver if the frame has been inverted or not, which as we saw is not beneficial for small RD bounds.

The method we propose consists of bits inversion using aperiodic frames.

The RD of the transmitted data that we denote by CRD (Cumulated Running Disparity) is counted bit-by-bit on the transmitter's side, and when the CRD reaches a certain threshold T, the RD of the next packet of Size 'S' bits is checked to see if the packet should be inverted, or not. A bit will be inserted after the S bits to indicate if they were inverted or not. Only when RD(S) = 0, there will be no bit added. In other words, the programming should be done according to the following logic:

will be when going from a CRD of -3 to a CRD of +3 with a RL of 6 ones, or inversely. The RL bounds could be given by the following equation:

RL bounds = 2*CRD bounds = 2*(T + S/2) (6.2)

Conditions required

To ensure the bounds mentioned in equation (6.1), condition 1 should be respected:

Condition 1: T > S/2
If T <= S/2, the S bits can push the RD out of the limits as follows:

e.g. if T = 2 and S = 6 the CRD should be bounded to +/-5. But suppose at a certain time we have CRD = +2 and RD(S) = -6. In this case the S bits won't be inverted because they allow us to reduce the CRD. The CRD will the go down to -4, and with the polarity bit inserted (which will be 0) the CRD is now at -5. We should check then the next S bits again. Suppose the next bits are at "000111", RD(S) = 0, the bits are not inverted and the CRD will then reach -8

violating the +/-5 bounds. If T > S/2, this cannot happen.

The following conditions, 2, 3 and 4, should be respected in order to optimize the overhead as much as possible:

Condition 2: S is even It is the only case where RD(S) could be equal to 0, enabling the encoding to not add a polarity bit and reducing the overhead.

Condition 3: insertion of the polarity-bit after the S bits

Inserting the polarity-bit at first will increase the overhead because it should be inserted also for the case where RD(S) = 0, whereas polarity-bit insertion after the S bits will allow the receiver to check the S bits first and know that once RD(S) = 0, no polarity-bit has been inserted by the transmitter and overhead will be saved.

Condition 4: Apply Scrambling before the proposed line coding

This condition is optional but scrambling the data before applying the proposed DC-balancing will reduce the RD of the raw data. The proposed DCbalancer will then intervene less adding less bits. A second reason to use scrambling is that it allows the overhead to be independent from the raw data's distribution.

Power Spectral Density Aspect

To verify that the presented solution does not harm the randomization aspect

given by scrambling, we plot the PSD of the Vcm generated by encoding the data according to our proposal in figure 6.6 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The proposed DCbalancer does not eliminate the random aspect. The relation between the RD bounds and its corresponding Overhead (OH) is displayed in figure 6.8. In other terms, it could be written as follows:

OH ≈ 0.66*|RD bounds | -1.39 (6.3)

An important condition for equation 6.3 to work properly is that T and S values must be chosen to provide the lowest overhead. As mentioned earlier, this could be done by simulation.

Chapter's Conclusion

Polarity-bit coding is a low overhead method which bounds the Running Disparity. However for small RD bounds, this method has a very high overhead that exceeds 8b/10b encoding's overhead.

In this chapter, we proposed a novel line coding which is able to bound the RD with low overhead even for small RD bounds. The presented method is based on aperiodic frames inversion, when necessary. The overhead simulations and the theoretical overhead have shown to be very low when compared to other existing line coding methods which bound the Running Disparity.

As we saw in chapter 5, low overhead could enable lane count reduction (up to 50% saving in power, area and complexity) or bandwidth increase for better performance.

Other advantages are the feature of the proposed DC-balanced encoding:

 Scalability: the RD bounds could be chosen according to the application's requirements  Early errors detection: an error could be detected whenever the RD exceeds the bounds

Chapter's Introduction

In chapter 5, we proposed a low overhead method which bounds the Run Length (RL) to the desired value. In chapter 6 we proposed a low overhead method which bounds the Running Disparity (RD) to the desired value. As we showed earlier, chapter 6 method bounds the RL as well, but the RL bound depends on the RD bound which might not be enough. Bounding the RD to +/-10 for example will bound the RL to 20 which could be considered a high value.

This chapter's purpose is to propose a line coding that enables choosing the desired bounds for the RD as well as for the RL by merging both methods (of chapter 5 and 6) together with some modification.

We note that the modified bit stuffing we propose can be applied on any balanced data to ensure transitions and without disrupting the Running Disparity (it can be added for example after a standard polarity-bit coding).

Proposal's Overhead

The If we release the constraints on the RL and/or the RD bounds, we can have a much lower overhead.

Power Spectral Density Aspect

To verify that the presented solution does not harm the randomization aspect given by scrambling, we plot the PSD of the Vcm generated by encoding the data according to our proposal in figure 7.3 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The proposed DCbalanced and RL-limited line coding does not eliminate the random aspect. In figure 8.4, we can see that the peaks (in red) before applying the "double scrambling" method (method 1) have been reduced by almost 10 dBm/Hz after applying the proposed method (PSD in blue).

Conclusion

Reducing the repetitions has an obvious positive effect on the power spectral density of the common mode voltage. Thanks to the "double scrambling" method (method 1), we can reduce the peaks of an EMI killer packet by about 10 dBm/Hz. GHz. In this case, 8b/10b throughput is 8 Gbps (using equation 5.2) whereas "scrambling + bit Stuffing" (method 2) throughput is 9.66 GHz (corresponds to 3.5% overhead for N = 5)

 Comparison 2: eye diagrams comparison for the same target throughput of 8 Gbps. In this case, the link's frequency when using 8b/10b encoding should be 10 GHz whereas when using "scrambling + bit Stuffing" (method 2) for RLbound = 5, the frequency of the link should be 8.28 GHz

The eye diagrams are illustrated in figure 8.8 as follows: From figure 8.8, we can see that "scrambling + bit Stuffing" (method 2) gives an eye opening centered at the baseline (due to scrambling's effect) but it is less opened than 8b/10b encoded data's eye at the same frequency. In this case, 8b/10b's better eye comes at the cost of lower throughout (1.66 Gbps less than method 2 throughout). For the same target throughout, method 2 gives the best eye opening.

Conclusion:

for DC-coupled channels, using "scrambling + bit Stuffing" (method 2) could be better than using 8b/10b encoding. In the state of the art's chapter, we overviewed the bit stuffing which is one of the most optimized RL-limited line coding methods and we showed its drawbacks. Bit stuffing's overhead is data-dependent and can reach high values when the data has a specific distribution. We then overviewed the 8b/10b encoding which is a widely used data coding because it ensures a RL bounded to 5 and a RD bounded to +/-3, however, at the cost of 25% bandwidth overhead. We also showed that data scrambling has good characteristics in randomizing, creating transitions and reducing the RD of the raw data, but scrambling does not ensure any bounds for both the RL and the RD, nor randomization. We finally showed that the polarity-bit coding can offer a bounded RD at a low overhead cost. However, for small RD bounds, the polarity-bit coding's overhead is very high and becomes less competitive compared to 8b/10b encoding for example.

In this thesis, we proposed 4 novel encoding methods.

In chapter 4, we proposed a reduced EMI method (double scrambling, method 1) that ensures the elimination of repetitive sequences (that are the cause of data-dependent EMI) by re-scrambling repetitive packets after the first scrambling block. The repetitive packets selection is mandatory to ensure the good functioning of the method.

In chapter 5, we showed that scrambling before bit stuffing can reduce the bit stuffing overhead to its minimum value and make the overhead predictable, independent of the raw data's distribution. So we proposed a low overhead RLlimited line coding (Scrambling + bit stuffing, method 2) that has a low overhead down to 3.5% for a maximum RL of 5, the same as 8b/10b encoding's RL bound which comes at the cost of 25% bandwidth overhead. The proposed line coding offers scalability; the RL-bound can be programmable based on the CDR (Clock and Data Recovery) unit requirements. This can allow more overhead reduction, down to 0.1% for a maximum RL of 10.

In chapter 6, we proposed a low overhead DC-balanced line coding (scrambling + balancing, method 3) that can bound the RD to low values, with a low overhead. This encoding is based on aperiodic frames polarity inversion after scrambling (but scrambling is not mandatory). Thanks to aperiodic frames, this method allows significant overhead reduction over the existing methods; 14.3% is the overhead necessary to limit the RD to +/-3, whereas with 8b/10b the cost is 25% for the same RD bound. To limit the RD to +/-96, the proposed method has an overhead of 0.11%, whereas the polarity-bit coding has an overhead of 1.56% for the same bounds. Scalability is also a feature of this method and allows choosing the desired RD limit.

The method we proposed in chapter 7 merges the methods proposed in chapters 5 and 6 to build a programmable low overhead, Run Length limited and DC-balanced line coding (scrambling + balancing + modified bit stuffing, method 4). Scrambling is advised to be applied to the data first, the balancing method of chapter 6 is then applied on the scrambled data, and finally a modified bit stuffing is applied as a final stage. The modified bit stuffing scheme was proposed to not disrupt the RD of the balanced data. This method is also programmable to the desired RD and RL bounds. For example, to limit the RL to 5 and the RD to +/-3 which are the same equivalent of the 8b/10b encoding, the overhead is 17.4%, whereas the 8b/10b cost is 25%. If the RL and RD bounds constraints are released, we can still have decent bounds with a very low overhead.

With the multitude of the existing High Speed Serial Links (HSSLs) and the large domain of applications, the line coding presented in this thesis is perfectly adaptable to every case. And with the increasing demand for throughput, the line coding methods presented in this thesis can allow bandwidth increase for a specific link frequency. Reducing the frequency for a same target throughput could be another clever choice to make which enables reducing the power consumption, the complexity of the design, the noise etc… probability of ones PRAW. The probability to be determined is the probability of ones after the XOR operation denoted by PXOR. The probabilities indicated in Table A.1 are calculated through the following logic:

The probability of having a 0 after a XOR could be obtained by multiplying the probabilities of having both the inputs x and y at 0. The corresponding probability is qx.qy which is (1px)(1py). Same is for the rest. Now we want to determine PXOR while having the inputs with probabilities PRAW and PLFSR. From the truth table, the probability of 1's after the XOR could be given by the following equation: We shall note that even though the scrambling balances the data, it does not guarantee any running disparity bounds.

We can deduce that a run length of 5 consecutive identical bits will happen theoretically in average after scrambling once every 8 bytes.

The same calculation is done for the rest of the run lengths according to the following formula: PRL(i) = Π0i + Π1i

The results are illustrated in table B.1 as follows:

1 .

 1 INTRODUCTION .. 1 2. PROBLEM STATEMENT...

Figure 2 . 1

 21 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 2

 22 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 3

 23 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 4

 24 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 5

 25 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 7

 27 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 8

 28 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 9

 29 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 .

 2 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 .

 2 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 .

 2 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 .

 2 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 2 . 3 :Figure 3 . 1

 2331 Figure 2.1 Some High Speed Serial Links speed evolution............................Figure 2.2 HSSLs different domains of application Figure 2.3 MIPI® System Diagram for mobile devices [3]Figure 2.4 Open Systems Interconnection (OSI) LayersFigure 2.5 Simplified block diagram of HSSLs Physical Layer Figure 2.6 Eye diagram example ...Figure 2.7 Common mode voltage representation (voltage mismatch = 5%, time mismatch = 5%) ..Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at 1.4 GHz ..Figure 2. 9 Clock and Data Recovery simplified schematicFigure 2.10 PLL-based Clock Recovery simplified schematicFigure 2.11 Running disparity calculation example for NRZ signalingFigure 2.12 AC-coupling and transition period ...Figure 2.13 Simplified AC-coupling ...Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] ...

Figure 3 .

 3 Figure 3.10 a. Percentage of 1's before and after scrambling b. spectrum of the Vcm of the data before and after scrambling ...Figure 3.11 Raw data's disparity vs Scrambled data's disparity (raw data distribution 80% of 0's and 20% of 1's, polynomial: X16 + X5 + X4 + X3 + 1,

Figure 3 . 4 :Figure 4 . 1

 3441 Figure 4.1 Probability of a repetitive pattern after a 2nd scramblingFigure 4.2 Probability of a repetitive pattern after a 2nd scrambling of repetitive packets only ..Figure 4.3 Proposal's block diagram for a reduced EMI line coding...........Figure 4.4 Proposal's framing example ..

Figure 4 . 2

 42 Figure 4.1 Probability of a repetitive pattern after a 2nd scramblingFigure 4.2 Probability of a repetitive pattern after a 2nd scrambling of repetitive packets only ..Figure 4.3 Proposal's block diagram for a reduced EMI line coding...........Figure 4.4 Proposal's framing example ..

Figure 4 . 3

 43 Figure 4.1 Probability of a repetitive pattern after a 2nd scramblingFigure 4.2 Probability of a repetitive pattern after a 2nd scrambling of repetitive packets only ..Figure 4.3 Proposal's block diagram for a reduced EMI line coding...........Figure 4.4 Proposal's framing example ..

Figure 4 . 4 5 :Figure 5 . 1

 44551 Figure 4.1 Probability of a repetitive pattern after a 2nd scramblingFigure 4.2 Probability of a repetitive pattern after a 2nd scrambling of repetitive packets only ..Figure 4.3 Proposal's block diagram for a reduced EMI line coding...........Figure 4.4 Proposal's framing example ..

Figure 5 . 5 6 :Figure 6 . 1

 55661 Figure 5.1 Bit Stuffing Maximum Overhead for different NFigure 5.2 Markov Chain representation of Bit Stuffing for a maximum RL of N .. Figure 5.3 Theoretical Bit Stuffing Overhead estimation Figure 5.4 Bit Stuffing minimum vs. Maximum Overhead for different N .Figure 5.5 Proposal's block diagram for low overhead RL limited encoding ... Figure 5.6 PSD of the proposed RL limited method vs. PSD of Scramblingonly at 10 GHz frequency ... Figure 5.7 Raw Throughput comparison vs. Link frequency for data encoded with 8b/10b and the proposed RL-Limited encoding Figure 5.8 Lane-count reduction thanks to our proposed RL-limited encoding in the case of MIPI's M-PHY running at HSG4 (11.64 Gbps)

Figure 6 . 2

 62 Figure 6.1 Polarity-bit encoding's overhead (deduced from equation 3.1) ..Figure 6.2 Organization chart of the proposed balancing method Figure 6.3 Example of data coded with our proposed method

Figure 6 . 4 7 :Figure 7 . 1 8 :Figure 8 . 1 Figure 8 . 7

 6477188187 Figure 6.4 Example of the CRD of scrambled before and after balancing with our proposal for T=5 and S=2 (scrambling polynomial: X23 + X21 + X16 + X8 + X5 + X2 + 1 with seed value FFFFFFh) 72 Figure 6.5 Proposed DC-balancer's block diagram a. Transmitter b. Receiver ... 73 Figure 6.6 PSD of the Vcm of our proposed method vs. Scrambling's PSD at 10 GHz frequency... 75 Figure 6.7 Proposal's overhead (green) compared to the polarity-bit encoding (blue), 8b/10b encoding and Interlaken's protocol 76 Figure 6.8 Excel representation of the overhead and equation generation 77

Figure 8 . 8 Figure 8 . 9

 8889 Eye diagrams on the receiver's side for a simulation of 10 Kbits on a DC-coupled channel without equalization, 800 mV transmitter swing for: a. data encoded with method 2 at 10GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 2 at 8.28 GHz / d. data 8b/10b encoded at 10 GHz .. Eye diagrams on the receiver's side for a simulation of 400 Kbits on a AC-coupled channel (C = 5pF and R = 50 Ω), 800 mV transmitter swing for: a. data encoded with method 2 at 8.28GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 4 at 10 GHz / d. data 8b/10b encoded at GHz / e. data encoded with method 4 at 9.3 GHz / f. data 8b/10b encoded at GHz ..

Figure 2 . 3 ,

 23 we can find the different HSSLs connecting the components: the LLI (Low Latency Interface), the UniPro (or UniPort, Unified Protocol), the DigRF (Digital RF), CSI (Camera Serial Interface), DSI (Display Serial Interface), M-PCIe (Mobile Peripheral Component Interconnect express, also called low power PCIe), and SSIC (SuperSpeed Inter-Chip, or the low power USB 3.0). Those protocols sometimes use different physical layers.

Figure 2 . 17]

 217 Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17] In figure 2.14, ∆V represents the BLW, and PDJ is the Jitter and they can be calculated according to the following equations: BLW = 0.5*V pp (1-e -t/RC)

Figure 3 . 9

 39 Figure 3.9 RD representation of the PRBS generated by the polynomial: X16 + X5 + X4 + X3 + 1, seed value 1FFFFh

Figure 3 .

 3 Figure 3.10 a. Percentage of 1's before and after scrambling b. spectrum of the Vcm of the data before and after scrambling

Figure 3 .

 3 11 shows an example.

Figure 3 . 11

 311 Figure 3.11 Raw data's disparity vs Scrambled data's disparity (raw data distribution 80% of 0's and 20% of 1's, polynomial: X16 + X5 + X4 + X3 + 1, seed value FFFFh)

3 .

 3 Scrambling reduces the Running Disparity, which means Baseline Wander reduction and Data Dependent Jitter reduction.

(3 .

 3 1): CRD bound = +/-(FrameSize + FrameSize/2) (3.1) Which gives for the 64b/67b encoding CRDbound = +/-96 for FrameSize = 64. The overhead cost for the CRD bound is 1/64 = 1.56 %. The total overhead cost is 3/64 = 4.687 %.

3

 3 Method to eliminate the probability of repetitive patterns 4.3.1 Re-scrambling all the data after the first scrambling 4.3.2 Re-scrambling with repetitive packets selection 4.3.3 Reduced EMI line-coding 4.4 Chapter's Conclusion

(4 8 0

 48 length of the pattern in bits M: the number of repetitionExample:Consider we want to calculate the probability of a byte to be repeated 5 times in a row: = 2.328 x 10 -10 This is the probability of happening in a time unit of 40 bits. For this repetition to happen once, we can calculate after how many bits this could happen as follows: P (L, M) → L*M =40 bits 1 occurrence → X bits? X = 40/ P (L, M) = 1.718 x 10 11 bits

Figure 5 . 3

 53 Figure 5.3 Theoretical Bit Stuffing Overhead estimation

Figure 5 . 4

 54 Figure 5.4 Bit Stuffing minimum vs. Maximum Overhead for different N

Figure 5 . 6

 56 Figure 5.6 PSD of the proposed RL limited method vs. PSD of Scrambling-only at 10 GHz frequency

 the raw throughput difference between 8b/10b encoding and the RL-limited encoding for N= 5 (OH considered 3.5 %, equivalent to 8b/10b encoding in RL bound) at different link frequencies are shown in figure 5.7.

Figure 5 . 7

 57 Figure 5.7 Raw Throughput comparison vs. Link frequency for data encoded with 8b/10b and the proposed RL-Limited encoding

Figure 5 . 8

 58 Figure 5.8 Lane-count reduction thanks to our proposed RL-limited encoding in the case of MIPI's M-PHY running at HSG4 (11.64 Gbps)

Figure 6 . 1

 61 Figure 6.1 Polarity-bit encoding's overhead (deduced from equation 3.1)

Figure 6 . 6

 66 Figure 6.6 PSD of the Vcm of our proposed method vs. Scrambling's PSD at 10 GHz frequency

Figure 6 . 7

 67 Figure 6.7 Proposal's overhead (green) compared to the polarity-bit encoding (blue), 8b/10b encoding and Interlaken's protocol

Figure 7 . 3 Figure 8 . 4

 7384 Figure 7.3 PSD of the Vcm of the proposed solution vs. scrambling's PSD at 10 GHz frequency

Figure 8 . 5

 85 Figure 8.5 Bit Stuffing Overhead for: a. Non-Scrambled data / b. Scrambled data In figure 8.5.a, we can see that the overhead is distribution-dependent and very similar to the theoretical graph in figure 5.3. When the data is scrambled, the bit stuffing's overhead is independent from the data's 1's and 0's

Figure 8 . 7  Comparison 1 :

 871 Figure 8.7 Eye diagrams on the receiver's side for a simulation of 10 Kbits on a DC-coupled channel without equalization, 800 mV transmitter swing for: a. data non-encoded at 10GHz / b. data 8b/10b encoded at 10 GHz From figure 8.7, we can see the interest of line coding on the eye diagram.

Figure 8 . 8

 88 Figure 8.8 Eye diagrams on the receiver's side for a simulation of 10 Kbits on a DC-coupled channel without equalization, 800 mV transmitter swing for: a. data encoded with method 2 at 10GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 2 at 8.28 GHz / d. data 8b/10b encoded at 10 GHz

Figure 8 . 9 9 Conclusion

 899 Figure 8.9 Eye diagrams on the receiver's side for a simulation of 400 Kbits on a AC-coupled channel (C = 5pF and R = 50 Ω), 800 mV transmitter swing for: a. data encoded with method 2 at 8.28GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 4 at 10 GHz / d. data 8b/10b encoded at 10 GHz / e. data encoded with method 4 at 9.3 GHz / f. data 8b/10b encoded at 10 GHz

PXOR = (1 -

 1 PRAW) PLFSR + PRAW(1 -PLFSR) PXOR = PLFSR + PRAW -2*PRAW*PLFSR For PLFSR = 0.5 this gives PXOR= PLFSR = 0.5 and is independent of the PRAW Thereby, the probability distribution that comes from XORing any raw data with a uniformly distributed LFSR pattern is PXOR = QXOR = 0.5.

Table 3 .

 3 1 Overview Table of some HSSLs... Table 3.2 Run Length Distribution after scrambling Table 3.3 Overview on some existing encoding methods

	Chapter 5:

Table 5 .

 5 1 RL-limited encoding proposal's overhead Table 5.2 Real use cases that can benefit from lanes reduction

	Chapter 6:

Table 6 .

 6 1 Proposed DC-balancer's overhead ...

	Chapter 7:

Table 7 .

 7 1 DC-balanced and RL-limited line coding's overhead examples ..

	Chapter 8:

Table 8 .1 Summary of the encoding methods presented in this thesis

 8 Table 8. 2 "scrambling + bit stuffing" method theoretical, image and random data's overhead ...

Table 8 .

 8 3 Modified Bit Stuffing Overhead (MBSO) in % for different RD and RL bounds / MBSO = f(RDbound, RLbound) ... Table 8.4 Total Overhead in % for different RL and RD bounds / Table 8.5 Gate count estimation of the bit stuffing block for different bus width ..

 The bounds to the RL and RD requested by the link could be variable and case-dependent. Is it then possible to design a programmable low overhead line coding that performs to the desired Run length and Running Disparity?

	Chapter
	3 State of the Art
	3.1 Chapter's Introduction
	3.2 System-level comparison of three HSSLs: LLI, PCIe and USB
	3.2.1 The Low Latency Interface (LLI)
	3.2.2 The Peripheral Component Interconnect express (PCIe)
	3.2.3 The Universal Serial Bus (USB)
	3.2.4 Layering model comparison
	3.2.5 Other parameters Comparison
	3.2.6 Comparison's conclusion
	3.3 Line Coding's State of the Art
	3.3.1 Introduction
	3.3.2 The Bit Stuffing (BS)
	3.3.3 The 8b/10b encoding
	3.3.4 Data Scrambling
	3.3.5 The Polarity Bit Coding
	3.3.6 Summary of some existing encoding methods
	3.4 State of the Art's Conclusion

Table 3 .

 3 1 summarizes the overview.

	Parameter	Protocols	Advantages	Consequences
	Differential Swing = 800mV	USB PCIe	Long distances applications (cables)	High power consumption
	Differential Swing = 400mV	LLI	Low power consumption Short distances applications
	Memory mapping	LLI PCIe	Direct access to data possibilities) (memory sharing	Occupying the CPU bus
	No memory mapping	USB	Not occupying the CPU bus	No direct access to data (No memory sharing)
	Multi-lane scalability	LLI PCIe	Multiplying throughput and decreasing latency	More power consumption and no external connectors possibility
	No multi-lane scalability	USB	External connectors possibility	No throughput increasing possibility
	Low latency error retry time	LLI	Cache refill operations possibility	Low data efficiency (throughput)
	High latency error	PCIe	High data efficiency	No possibility for cache refill
	retry time	USB	(throughput)	operations
	Time Framing QoS	USB	All devices are served	High latency for interrupts
	Priority based QoS	LLI PCIe	Low latency for interrupts and for high priority operations	

Table 3 .

 3 2 summarizes the distribution from a RL of 5 to a RL of 20. The values in Table3.2 are deduced from the theoretical study in Annex B. We also made a simulation on long sequences of data and made a comparison.

	Run Length	Occurs Theoretically in average (Bytes)	Occurs according to our simulation Min/Average/Max (Bytes)
	5	4	1/8.45/26
	6	8	1/17/49
	7	16	2/35.6/100
	10	128	9/302/748
	14	2 K	128/6.34 K/19.3 K
	18	32 K	5.42 K/64.6 K/240.3 K
	20	128 K	5.7 K/262 K/784.3 K
	:	:	:

Table 3 .2 Run Length Distribution after scrambling

 3

2. Scrambling statistically reduces the Running Disparity especially if the raw

data is not balanced.

Coding Standards Max RL RD Bound Overhead

	Bit Stuffing 8b/10b	CAN USB 2.0 PCIe 2.0, USB 3.0 …	5 6 5	N/A N/A +/-3	0% to 20% 0% to 16.6% 25 %
	Scrambling-Based codings			
	64b/66b	10G Ethernet	64	N/A	3.125 %
	128b/130b	PCIe 3.0	128	N/A	1.562 %
	128b/132b	USB 3.1	128	N/A	3.125 %
	Scrambling + polarity bit based coding			
	64b/67b	Interlaken	64	+/-96	4.687 %

Table 3 .3 Overview on some existing encoding methods

 3

Table 5 . 1 RL-limited encoding proposal's overhead

 5

6.3 Overhead Estimation 6.3.1 Simulation-Based Overhead Estimation On

 Matlab, we generate 200 random frames of 400 Kbits each, and then apply the line coding we propose on scrambled frames. We then make the average of the overhead of the 200 frames. The results of the overhead is given in table 6.1. We also made a theoretical overhead estimation study in Annex F for some overhead values and the results are also shown in table 6.1.

	T	S	CRD bounds	Simulation Overhead	Theoretical Average Overhead
	2	2	+/-3	14.27 %	16.67 %
	3	2	+/-4	9.05 %	10.00 %
	4	2	+/-5	6.60 %	7.14 %
	5	2	+/-6	5.32 %	5.56 %
	5	4	+/-7	4.32 %	5.21 %
	9	6	+/-12	2.05 %	--
	16	16	+/-24	0.80 %	--
	32	32	+/-48	0.31 %	--
	64	64	+/-96	0.11 %	--

Table 6 . 1 Proposed DC-balancer's overhead An

 6 overhead comparison is given in figure6.7

Table 7 .1 DC-balanced and RL-limited line coding's overhead examples

 7 Modified Bit Stuffing (MBS) adds two bits instead of one for the standard bit stuffing procedure. The MBS Overhead (MBSO) should normally, if applied immediately after scrambling, be twice the overhead of the standard bit stuffing presented in table 5.1.However, the MBS is applied after balancing the data, and balancing the data creates transitions and bounds the RL to a value that is RDbounds dependent as we saw in chapter 6. The MBSO depends then also on the RDbounds ensured by the balancing block. Some examples are illustrated in table7.1 below and more overhead results will be presented in chapter 8.As we can see in table7.1, to have the same equivalent of 8b10b encoding in RL and RD bounds, we get an overhead of 17.4% whereas 8b10b encoding has 25% overhead, which is more than 7% overhead reduction.

	Balancing	BO	MBS RL	MBSO	TO
	T S	RD Bounds	(Balancing's Overhead)	Bound (Modified	(Modified Bit Stuffing's	(Total Overhead)
				Bit	Overhead)	
				Stuffing)		
	2 2	+/-3	14.27 %	5	3.13 %	17.4 % *
	3 2	+/-4	9.05 %	6	1.65 %	10.7 %
	5 2	+/-6	5.32 %	5	5.43 %	10.75 %
	7 6 +/-10	2.66 %	10	0.11 %	2.77 %
	15 10 +/-20	1.03 %	8	0.71 %	1.75 %
	64 64 +/-96	0.11 %	7	1.56 %	1.67 %
	(*) equivalent to 8b10b in RL and RD bounds		

.89 2.53 1.05 0.45 0.17 0.05 +/- 33

		32.35 11.85 4.57 1.71 0.49 0.07	0	0
	+/-	32.54 12.39 5.08 2.07 0.79 0.28 0.07 0.08
	+/-	32.66 12.85 5.41 2.31 1.01 0.41 0.16 0.05
	+/-	33.45 13.58 5	

.41 13.74 6.

00 2.65 1.17 0.52 0.22 0.09 +/- 33

.42 13.84 6.

10 2.73 1.22 0.55 0.24 0.09 +/-10 33

.56 14.04 6.

24 2.82 1.27 0.58 0.26 0.11 +/-15 33

.56 14.23 6.

52 3.00 1.42 0.68 0.32 0.13 +/-20 33

.47 14.23 6.

56 3.08 1.47 0.71 0.34 0.15 +/-40 33

.39 14.32 6.64 3.167 1.55 0.77 0.38 0.18 +/-60 33.37 14.31 6.65 3.17 1.56 0.77 0.38 0.18 +/-96 33.35 14.30 6.65 3.18 1.57 0.79 0.39 0.19

Table 8 .3 Modified Bit Stuffing Overhead (MBSO) in % for different RD and RL bounds / MBSO = f(RDbound, RLbound)

 8

		3	4	5	6	7	8	9	10
	+/-	45.87 25.					

02 17.37 14.70 14.27 14.27 14.27 14.27 +/- 41.40 20.90 13.62 10.77 9.55 9.12 9.05 9.05 +/- 39.14 18.99 11.68 8.67 7.39 6.88 6.68 6.68 +/- 37.98 18.18 10.73 7.64 6.33 5.73 5.48 5.37 +/- 37

.77 17.91 10.

21 6.85 5.37 4.77 4.49 4.38 +/- 37

.05 17.38 9.

65 6.30 4.81 4.16 3.86 3.73 +/- 36

.46 16.89 9.

15 5.78 4.27 3.60 3.28 3.14 +/-10 36

.22 16.70 8.

90 5.49 3.94 3.25 2.92 2.77 +/-15 35

.07 15.74 8.

02 4.51 2.93 2.18 1.83 1.64 +/-20 34

.47 15.24 7.

56 4.08 2.48 1.72 1.35 1.15 +/-40 33

.80 14.72 7.

05 3.57 1.96 1.18 0.78 0.59 +/-60 33

.57 14.52 6.

86 3.38 1.77 0.98 0.58 0.38 +/-96 33

.46 14.42 6.

77 3.30 1.69 0.90 0.51 0.30Table 8 .4 Total Overhead in % for different RL and RD bounds / TO

 8

= f(RDbound, RLbound)

Table A .1. XOR truth table

 A

[START_REF] Qian | Transforming Probabilities with Combinational Logic[END_REF]

Table B .1 Run length theoretical average occurrence after scrambling

 B

	Run Length	Occurs in Theoretical average (Bytes)
	5	4
	6	8
	7	16
	10	128
	14	2 K
	18	32 K
	20	128 K
	:	:
	:	:

Acknowledgments

I would like to warmly thank my four thesis supervisors, in scrambled order,

Chapter's conclusion

Scrambling is an efficient method to eliminate redundancy and give a random aspect to the spectrum of the data, randomizing the Vcm spectrum which is responsible of EMI in differential signaling. But scrambling could generate EMI killer packets.

In this chapter, we introduced a new method to ensure reduced EMI. The proposed method consists of a first scrambler stage to scramble all the data. A repetition detection block forwards only the frames containing repetitive data to a second scrambling block. This block randomizes the repetitive data with a polynomial different than the first one.

When EMI is a main constraint, the presented method eliminates the possibility of having a repetitive pattern or designing an EMI killer packet. The cost of the proposal is 1 additional bit for each frame.

We denote by P the probability of 1's, and Q the probability of 0's. The blue circles in figure 5.2 represents the state of 1's and the white ones represents 0's.

12 represents the state of 2 consecutive 1's, and 1N represents the state of N consecutive 1's. Same for the 0's states. To go from a 1i state to another 1i+1 state, or from 0i state to 11 state, the probability is P (the probability of 1's).

Conversely, to go from a 0i state to another 0i+1 state, or from 1i state to 01 state, the probability is Q (the probability of 0's).

If the bit stuffing is fixed to N, when we are on the state 1N , the only possibility is to go to the state 01 with a probability of 1. Same when we are on the state 0N , the only possibility is to go to the state 11 with the probability of 1 because bit stuffing is performed for N consecutive identical bits.

In Annex E we calculate from the above Markov chain the probability of having N consecutive identical bits, which is the sum of the probabilities of states 0N and 1N. This particular probability also represents the bit stuffing overhead, because a bit is added every time the states 0N and 1N are reached.

The Bit Stuffing Overhead (BSO) for a Maximum Run Length of N can be given by equation (5.1):

=

-+ - In Annex E we also demonstrated that: We note that the variable data length due to this proposal can be problematic to the PHY layer's framing, a proposal to variable length data is added in Annex G.

Chapter's Introduction

The polarity-bit encoding is the most overhead optimized DC-balanced method as we saw in chapter 3. However, for small RD (Running Disparity) bounds, this method have a high overhead as illustrated in figure 6.1.

As we can see, this method is only advantageous for high RD bounds. For the same RD bounds ensured by 8b/10b encoding (+/-3), the polarity bit method adds 50% overhead whereas 8b/10b has 25% overhead.

 Reduce the analog complexity: no (or less) filters will be needed to correct the baseline wander

We shall note again that the Run Length is automatically bounded with our solution, but the RL bound depends on the RD bounds and is not scalable. In the next chapter we propose a scalable solution.

We note as well that the variable data length due to this proposal can be problematic to the PHY layer's framing, a proposal to variable length data is added in Annex G.

Chapter's Conclusion

In this chapter we presented a novel Low Overhead, Run Length Limited and DC-balanced line coding methodology.

The presented line coding has 7% less overhead than 8b/10b encoding's overhead for the same RD and RL bounds. If we release the constraints on the RD and the RD bounds, the overhead of the proposed encoding drastically decreases.

In addition to its low overhead characteristic, the presented method offers scalability; the RD and RL bounds are completely programmable and adaptive.

A transmitter can encode the data according to the receiver's RL and RD requirements.

We note that the variable data length due to this proposal can be problematic to the PHY layer's framing, a proposal to variable length data is added in Annex G. Purpose: bound both the run length and the running disparity

Table 8.1 Summary of the encoding methods presented in this thesis

The rest of this chapter is organized as follows:

In paragraph 8.2, we highlight the peaks reduction in the Power Spectral Density (PSD) of the common mode voltage (Vcm) thanks to double scrambling (method 1).

In paragraph 8.3, we give more overhead simulation results for the "scrambling + bit stuffing" (method 2) and for "scrambling + balancing + bit stuffing" (method 4).

In paragraph 8.4, we give gate count hardware estimation of the proposed methods based on a VHDL model we designed.

In paragraph 8.5 we show the different eye diagrams for methods 2, 3 and 4 based on Matlab/Simulink simulation using the S-parameters of a DC-coupled channel and an AC-coupled channel. We then highlight the efficiency of the proposed methods. Paragraph 8.6 summarizes this chapter.

We note that every simulation in this chapter that includes scrambling is done with the following LFSR polynomial: G(X) = X 23 + X 21 + X 16 + X 8 + X 5 + X 2 + 1 with seed value 1D-BFBCh.

The 2 nd scrambling polynomial used for the simulations of the proposed low EMI method is: G'(X) = X 16 + X 5 + X 4 + X 3 + 1 with seed value 1FFFFh.

Double scrambling (method 1) PSD simulation

As we saw in paragraph 2.3.2, redundancy and repetitive patterns have a direct impact on the Power Spectral Density (PSD) of the Vcm, which is a 8.3 More overhead simulation results

Scrambling + bit stuffing (method 2) overhead simulation

In chapter 5 we presented the "scrambling + bit stuffing" method (method 2), we calculated the theoretical overhead and compared it with a simulation on picture data. The picture's data had a specific distribution of 1's and 0's and we wish to make a simulation on different data distribution.

On Matlab, we generate frames with different distribution of 1's and 0's using the "rand" function. For each distribution, 200 frames of 2048 bits each are generated. We encode the generated frames using bit-stuffing only and then using the "scrambling + bit stuffing" method (method 2) we proposed, we calculate the overhead for each case and averaging is then made. We can see the small gate count of the proposed solution. With the increased hardware complexity of today's chips, few hundreds of gates are considered negligible.

"Scrambling + balancing" (method 3) and "scrambling + balancing + bit stuffing" (method 4) are estimated to have a hardware complexity of the same order of magnitude as "scrambling + bit stuffing" (method 2).

Eye diagrams results and comparison

Eye diagrams on DC-coupled channel

In this section, we simulate on Matlab/Simulink using the S-parameters of a DC-coupled PCB (Printed Circuit Board) channel, data being encoded with different encoding methods. The data distribution used for this simulation is 80% of 0's and 20% of 1's. At first, we show in figure 8

Eye diagrams on AC-coupled channel

In this section, we simulate on Matlab/Simulink using the S-parameters of an AC-coupled PCB (Printed Circuit Board) channel having a coupling capacitor of 5 pF, data being encoded with different encoding methods. The data distribution used for this simulation is 80% of 0's and 20% of 1's.

We make 3 comparisons: From figure 8.9, we can see from comparison 1 that "scrambling + bit Stuffing" (method 2) might not be enough when using an AC-coupled channel because the Running Disparity for this proposal is not bounded. "Scrambling + balancing + modified bit Stuffing" (method 4), with RD bounded to +/-3 and RL to 5 has almost the same eye opening as 8b/10b encoded data at the same frequency and with a better throughput. For the same target throughout, "Scrambling + balancing + modified bit Stuffing" (method 4) offers the best eye opening.

Chapter's conclusion

In this chapter we showed the positive effect of the "double scrambling encoding" presented in chapter 4 on the PSD of the common mode voltage, which means EMI reduction.

We also presented more overhead simulation results for the "scrambling + bit stuffing" line coding and the "scrambling + balancing + bit stuffing" line coding presented in chapters 5, 6 and 7.

We made a VHDL model for the "scrambling + bit stuffing" line coding and showed the low hardware overhead and complexity of the presented solution.

The "Scrambling + balancing" (method 3) and "scrambling + balancing + bit stuffing" (method 4) are estimated to have a hardware complexity of the same order of magnitude as "scrambling + bit stuffing" (method 2).

We made eye-diagrams simulations on DC-coupled and AC-coupled channels and made a comparison with 8b/10b encoding and verified that the solutions we presented performed well and meet our expectations in terms of eye diagram opening.

Annex A

How does scrambling balance the data

Scrambling is a XOR (eXclusive OR) operation between the raw data (the data to scramble) and the output of an LFSR (Linear Feeback Shift Register) also called PRBS (Pseudo-Random Binary Sequence).

Fig A.1. Scrambling's representation

The raw data is considered to be unknown, so the distribution of "ones" and "zeroes" cannot be determined and their respective probabilities are considered to be random.

But on the other side, the output of an LFSR is known to be uniformly distributed, and the probability of 1's is equal to the probability of 0's.

Now the question is: What is the probability distribution of 1's and 0's after the XOR operation?

We denote by P the probability of 1's and Q the probability of 0's.

As mentioned before, the LFSR generates patterns with the probabilities PLFSR = QLFSR = 0.5.

From [START_REF] Qian | Transforming Probabilities with Combinational Logic[END_REF], the probability after a XOR operation could be calculated from the truth table of the XOR operation. Table A Probability of a run length of 5 consecutive identical bits: PRL(5) = Π05 + Π15 = P 4 * Π11 + P 4 * Π01 = 0.0312 0.0312 is the probability of happening in 1 unit. To calculate in how many bits this will happen, we use the following rule: 0.0312 → 1 unit 1 time → X bits? X = 1/0.0312 = 32.0513 bits or around 8 bytes Annex C

Calculating the probability of a repetitive pattern

In this annex we consider we want to calculate the probability of a pattern of length L bits, to be repeated M times in a row, after scrambling.

For this purpose, we consider L = 2 and M = 2, which is one of the easiest cases.

There We consider, after scrambling, that all the 16 states have equal probability (because P = Q = 0.5). The probability of a repetitive pattern to happen for L = 2 and M = 2 is 4/16. 4 corresponds to all the possible states that can be formed by a pattern of length 2 (00, 01, 10 or 11) which is 2 2 or more precisely 2 L .

16 corresponds to all the cases that can be formed by a window of length 2x2 (or M*L) which is 2 2x2 or more specifically 2 L*M .

Finally, the probability of a pattern of length L to be repeated M times (EMI Killer Packet) can then be written as follows:

Re-Scrambling of a selected repetitive packet

As we saw in chapter 4, the probability of a repetitive packet (EMI Killer Packet) after scrambling is low and was calculated in Annex C. this probability is considered as Ɛ, which is a small fraction of 1.

However, we consider that after re-scrambling the repetitive packet a second time, the probability of having a repetitive packet again is Ɛ*Ɛ. In this annex, we determine this particular Ɛ*Ɛ case.

We consider the data after the 1 st scrambling stage generates the following data: 10 10, we consider this as a pattern of length 2 repeated 2 times (small values for the sake of simplicity) and we re-scramble this pattern a 2 nd time (according to the method we proposed in chapter 4) with a polynomial and we look at the pattern after the 2 nd scrambling stage.

All the possible 2 nd scrambling patterns (PRBS) and all the possible data after 2 nd scrambling's (10 The repetitive patterns after scrambling happen according to the above table only when PRBS pattern is repetitive.

The PRBS pattern can be repetitive for small L and M values, but for higher pattern lengths (i.e. a pattern of 8 bits) the repetition cannot exist if the PRBS is well chosen.

Conclusion:

The probability of a repetitive pattern after a second scrambling stage is 0 for relatively large pattern lengths, and they cannot even be designed if the Pseudo Random Binary Sequence (generated by the Linear Feedback Shift Register) is well chosen.

On the other side, we know that: we are on the state '+2', we will stay on state +2 with a probability of ½ (2 states out of 4 possible for the packet S).

Deducing the overhead equation:

The overhead due to T = 2 and S = 2 comes from the added polarity-bit. The polarity-bit will be added when we are on the states +2 or -2 with RD(S) = +/-2. There will be not bit added when RD(S) = 0 so this probability should be subtracted. The balancing overhead for T = 2 and S = 2 can be written then as follows: BO(2,2) = Π+2 + Π-2 -½ *Π+2 -½ *Π-2

Calculating the probabilities:

The probabilities could be calculated using the Markov chain transition matrix as follows:

The columns and rows correspond to the states, and the crossing of each column and row corresponds to the probability of transition from the specific state to the other. The matrix could be written as follows and we will call it Y. The different states could be written in a matrix of one row:

(-2 -1 0 +1 +2) To find the probability of state '-2", we will do the following matrix multiplication: Π-2 = (1 0 0 0 0) * Y X where X is a sufficiently big value that makes Π-2 stable after a specific X value.

Π-2 = (1 0 0 0 0) * Y 100 = 0.1667 (calculation done on Matlab)