
HAL Id: tel-01679262
https://theses.hal.science/tel-01679262

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmable Low Overhead, Run Length Limited and
DC-Balanced Line Coding for High-Speed Serial Data

Transmission
Julien Saade

To cite this version:
Julien Saade. Programmable Low Overhead, Run Length Limited and DC-Balanced Line Coding
for High-Speed Serial Data Transmission. Networking and Internet Architecture [cs.NI]. Université
Grenoble Alpes, 2015. English. �NNT : 2015GREAM079�. �tel-01679262�

https://theses.hal.science/tel-01679262
https://hal.archives-ouvertes.fr

I

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et informatique

Arrêté ministériel : 7 août 2006

Présentée par

Julien Saadé

Thèse dirigée par M. Frédéric Pétrot

préparée au sein du Laboratoire TIMA, CNRS/Grenoble INP/UJF
(CIFRE STMicroelectronics)
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique (MSTII)

Encodage de donnée
programmable et à faible
surcoût, limité en disparité et en
nombre de bits identiques
consécutifs

Thèse soutenue publiquement le « 3 juin 2015 »,
devant le jury composé de :

M. Bernard TOURANCHEAU
Professeur université Grenoble Alpes (Président)

M. Michel PAINDAVOINE
Professeur université de Bourgogne (Rapporteur)

M. Olivier SENTIEYS
Professeur université Rennes 1 (Rapporteur)

M. Thierry DIVEL
Ingénieur Fogale Sensation Suisse (Membre)

M. Joel HULOUX
Ingénieur STMicroelecronics Grenoble (Membre)

M. Frédéric PETROT
Professeur Institut Polytechnique Grenoble (Membre)

II

III

Programmable Low Overhead, Run

Length Limited and DC-Balanced Line

Coding for High-Speed Serial Data

Transmission

By

Julien Saadé

Supervised by Prof. Frédéric Pétrot

In collaboration with

TIMA Laboratory, Université Grenoble-Alpes

and

STMicroelectronics

A thesis submitted for the degree of

Docteur de l’université Grenoble Alpes

May 2015

IV

V

Abstract

Thanks to their routing simplicity, noise, EMI (Electro-Magnetic

Interferences), area and power consumption reduction advantages over parallel

links, High Speed Serial Links (HSSLs) are found in almost all today’s System-

on-Chip (SoC) connecting different components: the main chip to its

Inputs/Outputs (I/Os), the main chip to a companion chip, Inter-Processor

Communication (IPC) and etc… Serial memory might even be the successor of

current DDR memories.

However, going from parallel links to high-speed serial links presents many

challenges; HSSLs must run at higher speeds reaching many gigabits per second

to maintain the same end-to-end throughput as parallel links as well as satisfying

the exponential increase in the demand for throughput. The signal’s attenuation

over copper increases with the frequency, requiring more equalizers and

filtering techniques, thereby increasing the design complexity and the power

consumption.

One way to optimize the design at high speeds is to embed the clock within

the data, because a clock line means more routing surface, and it also can be

source to high EMI. Another good reason to use an embedded clock is that the

skew (time mismatch between the clock and the data lanes) becomes hard to

control at high frequencies. Transitions must then be ensured inside the data that

is sent on the line, for the receiver to be able to synchronize and recover the data

correctly. In other words, the number of Consecutive Identical Bits (CIBs) also

called the Run Length (RL) must be reduced or bounded to a certain limit.

Another challenge and characteristic that must be bounded or reduced in the

data to send on a HSSL is the difference between the number of ‘0’ bits and ‘1’

bits. It is called the Running Disparity (RD). Big differences between 1’s and

VI

0’s could shift the signal from the reference line. This phenomenon is known as

Base-Line Wander (BLW) that could increase the BER (Bit Error Rate) and

require filtering or equalizing techniques to be corrected at the receiver,

increasing its complexity and power consumption.

In order to ensure a bounded Run Length and Running Disparity, the data to

be transmitted is generally encoded. The encoding procedure is also called line

coding. Over time, many encoding methods were presented and used in the

standards; some present very good characteristics but at the cost of high

additional bits, also called bandwidth overhead, others have low or no overhead

but do not ensure the same RL and RD bounds, thus requiring more analog

design complexity and increasing the power consumption.

In this thesis, we propose a novel programmable line coding that can perform

to the desired RL and RD bounds with a very low overhead, down to 10 times

lower that the existing used encodings and for the same bounds. First, we show

how we can obtain a very low overhead RL limited line coding, and second we

propose a very low overhead method which bounds the RD, and then we show

how we can combine both techniques in order to build a low overhead, Run

Length Limited, and Running Disparity bounded Line Coding.

VII

Dedication

To my Mother and Father
For everything.

VIII

IX

Acknowledgments

I would like to warmly thank my four thesis supervisors, in scrambled order,

André Picco, head of the High-Speed Links team at STMicroelectronics, and

Frédéric Pétrot, SLS team leader at TIMA laboratory, for welcoming me,

directing my thesis and always giving me advices that helped me stay on the

right path. I thank Joel Huloux, MIPI Alliance’s chairman, for taking the time

to advise me and giving me the opportunity to participate to MIPI’s PHY and

LLI Working Groups, assist and contribute to discussions with experts from the

leading semiconductor companies all over the world, from whom I’ve learned

and gained a lot of experience. I want to thank Abdelaziz Goulahsen, MIPI’s

LLI Working Group chairman, for all his help and expertise, the many technical

meetings we had and all the things I learned from him. I consider myself lucky

being supervised by such experienced people.

I also must thank Erwan Le-Saint for offering me this opportunity and

welcoming me in his team.

I thank my thesis committee members, Bernard Tourancheau, Olivier

Sentieys, Michel Paindavoine and Thierry Divel for accepting to review and

comment my thesis.

Many thanks to Steve Kwiatkowski, Jérôme Deroo, Mohamed Daoudi,

Klodjan Bidaj and Gilles Ries, experts and engineers at STMicroelectronics, for

the many fruitful technical discussions we had and the help they have provided

me.

Last but not least, I thank my parents and my brothers for all the love and

support they have provided me throughout my thesis, and my entire life. This

thesis, for all its worth, is dedicated to them.

X

XI

TABLE OF CONTENTS

Contributions………………………………………………………………….........XIII

List of Acronyms, Figures and Tables……………………………………………....XV

1. INTRODUCTION .. 1

2. PROBLEM STATEMENT... 7
2.1 CHAPTER’S INTRODUCTION .. 7
2.2 HIGH SPEED SERIAL LINKS ... 9
2.3 LINE CODING’S EFFECT ON DATA TRANSMISSION .. 14
2.4 CHAPTER’S CONCLUSION ... 21

3. STATE OF THE ART .. 25
3.1 CHAPTER’S INTRODUCTION .. 25
3.2 SYSTEM-LEVEL COMPARISON OF THREE HSSLS: LLI, PCIE AND USB 26
3.3 LINE CODING’S STATE OF THE ART... 33
3.4 STATE OF THE ART’S CONCLUSION ... 44

4. LOW EMI ENCODING METHOD... 47
4.1 CHAPTER’S INTRODUCTION .. 47
4.2 PROBABILITY OF A REPETITIVE PATTERN .. 47
4.3 METHOD TO ELIMINATE THE PROBABILITY OF REPETITIVE PATTERNS 49
4.4 CHAPTER’S CONCLUSION .. 55

5. LOW OVERHEAD RUN LENGTH LIMITED ENCODING METHOD 57
5.1 CHAPTER’S INTRODUCTION .. 57
5.2 BIT STUFFING OVERHEAD VS. DATA’S DISTRIBUTION 58
5.3 PROPOSAL FOR A LOW OVERHEAD RUN LENGTH LIMITED ENCODING 61
5.4 CHAPTER’S CONCLUSION .. 66

6. LOW OVERHEAD DC-BALANCED ENCODING METHOD 69
6.1 CHAPTER’S INTRODUCTION .. 69
6.2 A NOVEL DC-BALANCED LINE CODING .. 70
6.3 OVERHEAD ESTIMATION... 76
6.4 CHAPTER’S CONCLUSION ... 78

7. DC-BALANCED AND RUN LENGTH LIMITED LINE CODING 81
7.1 CHAPTER’S INTRODUCTION .. 81
7.2 MERGING POSSIBILITIES ... 82
7.3 PROPOSAL FOR A DC-BALANCED AND RL LIMITED ENCODING 83
7.4 CHAPTER’S CONCLUSION ... 86

8. EXPERIMENTAL RESULTS ... 89
8.1 CHAPTER’S INTRODUCTION .. 89
8.2 DOUBLE SCRAMBLING (METHOD 1) PSD SIMULATION 90
8.3 MORE OVERHEAD SIMULATION RESULTS .. 94
8.4 VHDL MODEL AND GATE-COUNT ESTIMATION ... 98
8.5 EYE DIAGRAMS RESULTS AND COMPARISON ... 99
8.6 CHAPTER’S CONCLUSION .. 104

9. CONCLUSION ... 107

Bibliography……………………………………………………………….. 111

Annexes……………………………………………………………………. 117

XII

XIII

Contributions

Patents:

“Serial Transmission Having a low level EMI”, 2013

Inventors: J. Saadé, A. Goulahsen

“Polarity-Bit data Encoding Method using Aperiodic Frames”, 2014

Inventors: J. Saadé, A. Goulahsen

Conference papers and oral presentations:

“A System-Level Overview and Comparison of Three High-Speed Serial

Links: USB 3.0, PCI Express 2.0 and LLI 1.0”, IEEE 16th Symposium on

Design and Diagnostic of Electronic Circuits and Systems (DDECS 2013) –

Karlovy Vary, Czech Republic

Authors: J. Saadé, F. Pétrot, A. Picco, J. Huloux, A. Goulahsen

 “A Scalable Low Overhead Line Coding for Asynchronous High Speed

Serial Transmission”, IEEE 18th Workshop on Signal and Power Integrity

(SPI 2014) – Gent, Belgium

Authors: J. Saadé, A. Goulahsen, A. Picco, J. Huloux, F. Pétrot

“Low Overhead, DC-Balanced and Run Length Limited Line Coding”,
IEEE 19th Workshop on Signal and Power Integrity (SPI 2015) – Berlin,

Germany

Authors: J. Saadé, A. Goulahsen, A. Picco, J. Huloux, F. Pétrot

Other Participations:

“Latest Version of Interface Protocol Speeds Mobile Device Development,
Lowers e-BoM. MIPI Alliance’s Low Latency Interface Working Group
Delivers LLI v2.1” Published in Design & Reuse Magazine
Authors: A. Goulahsen (STMicroelectronics) and V. Leonov (Intel)

Thanked contributors: B. Balakrishnan (Ericsson), U. Leucht-Roth (Intel) and

J. Saadé (STMicroelectronics)

XIV

XV

List of acronyms

HSSL

SoC

I/O

IPC

DDR

EMI

CIB

RL

RD

BLW

BER

AP

RFIC

NRZ

Mbps

Gbps

MLT-3

PAM

MIPI

LLI

High Speed Serial Link

System on Chip

Input/Output

Inter Processor Communication

Double Data Rate SDRAM

Electro-Magnetic Interferences

Consecutive Identical Bits

Run Length

Running Disparity

Base-Line Wander

Bit Error Rate

Application Processor

Radio Frequency Integrated Circuit

Non-Return to Zero

Megabits per second

Gigabits per second

Multi-Level 3

Pulse Amplitude Modulation

Mobile Industry Processor Interface

Low Latency Interface

XVI

UniPro

DigRF

RF

UFS

CSI

DSI

PCIe

M-PCIe

SSIC

ISO

OSI

PHY

PLL

Tx

Rx

Dp

Dn

CDR

CRC

e-BoM

LFSR

PRBS

Unified Protocol

Digital RF

Radio Frequency

Universal Flash Storage

Camera Serial Interface

Display Serial Interface

Peripheral Component Interconnect express

Mobile-PCIe

SuperSpeed Inter-Chip

International Standards Organization

Open Systems Interconnection

Physical Layer

Phase Locked Loop

Transmitter

Receiver

Differential positive

Differential Negative

Clock and Data Recovery

Cyclic Redundancy Check

electronic Bill of Materials

Linear Feedback Shift Register

Pseudo-Random Binary Sequence

XVII

List of Figures

Chapter 2 :

Figure 2.1 Some High Speed Serial Links speed evolution............................ 8

Figure 2.2 HSSLs different domains of application 9

Figure 2.3 MIPI® System Diagram for mobile devices [3] 10

Figure 2.4 Open Systems Interconnection (OSI) Layers 11

Figure 2.5 Simplified block diagram of HSSLs Physical Layer 13

Figure 2.6 Eye diagram example ... 14

Figure 2.7 Common mode voltage representation (voltage mismatch = 5%,

time mismatch = 5%) .. 15

Figure 2.8 Power Spectral Density example of the Vcm of raw picture data at

1.4 GHz .. 16

Figure 2. 9 Clock and Data Recovery simplified schematic 16

Figure 2.10 PLL-based Clock Recovery simplified schematic 17

Figure 2.11 Running disparity calculation example for NRZ signaling 18

Figure 2.12 AC-coupling and transition period ... 18

Figure 2.13 Simplified AC-coupling ... 19

Figure 2.14 Baseline Wander and jitter introduced by the high pass filter [17]

 ... 20

Chapter 3:

Figure 3.1 Example of an LLI environment (not exhaustive) 27

Figure 3.2 Example of PCIe link environment ... 28

Figure 3.3 USB Structure ... 29

Figure 3.4 USB, PCIe and LLI Layering model comparison 30

Figure 3.5 Throughput efficiency comparison for USB, PCIe and LLI for a

write transaction and before line coding .. 31

Figure 3.6 Bit Stuffing Example for Run length limitation of 5 34

Figure 3. 7 Simplified representation of scrambling 36

Figure 3.8 LFSR Galois representation of the polynomial: X16 + X5 + X4 +

X3 + 1 .. 36

Figure 3.9 RD representation of the PRBS generated by the polynomial: X16

+ X5 + X4 + X3 + 1, seed value FFFFh .. 37

XVIII

Figure 3.10 a. Percentage of 1’s before and after scrambling b. spectrum of

the Vcm of the data before and after scrambling ... 39

Figure 3.11 Raw data’s disparity vs Scrambled data’s disparity (raw data
distribution 80% of 0’s and 20% of 1’s, polynomial: X16 + X5 + X4 + X3 + 1,
seed value FFFFh) .. 40

Chapter 4:

Figure 4.1 Probability of a repetitive pattern after a 2nd scrambling 50

Figure 4.2 Probability of a repetitive pattern after a 2nd scrambling of

repetitive packets only .. 52

Figure 4.3 Proposal’s block diagram for a reduced EMI line coding........... 53

Figure 4.4 Proposal’s framing example .. 54

Chapter 5:

Figure 5.1 Bit Stuffing Maximum Overhead for different N 58

Figure 5.2 Markov Chain representation of Bit Stuffing for a maximum RL

of N .. 58

Figure 5.3 Theoretical Bit Stuffing Overhead estimation 60

Figure 5.4 Bit Stuffing minimum vs. Maximum Overhead for different N . 60

Figure 5.5 Proposal’s block diagram for low overhead RL limited encoding
 ... 61

Figure 5.6 PSD of the proposed RL limited method vs. PSD of Scrambling-

only at 10 GHz frequency ... 62

Figure 5.7 Raw Throughput comparison vs. Link frequency for data encoded

with 8b/10b and the proposed RL-Limited encoding 63

Figure 5.8 Lane-count reduction thanks to our proposed RL-limited

encoding in the case of MIPI’s M-PHY running at HSG4 (11.64 Gbps) 65

Chapter 6:

Figure 6.1 Polarity-bit encoding’s overhead (deduced from equation 3.1) .. 70

Figure 6.2 Organization chart of the proposed balancing method 71

Figure 6.3 Example of data coded with our proposed method 72

XIX

Figure 6.4 Example of the CRD of scrambled before and after balancing

with our proposal for T=5 and S=2 (scrambling polynomial: X23 + X21 +

X16 + X8 + X5 + X2 + 1 with seed value FFFFFFh) 72

Figure 6.5 Proposed DC-balancer’s block diagram a. Transmitter b. Receiver
 ... 73

Figure 6.6 PSD of the Vcm of our proposed method vs. Scrambling’s PSD at
10 GHz frequency... 75

Figure 6.7 Proposal’s overhead (green) compared to the polarity-bit

encoding (blue), 8b/10b encoding and Interlaken’s protocol 76

Figure 6.8 Excel representation of the overhead and equation generation 77

Chapter 7:

Figure 7.1 Block diagrams of the methods presented in a. chapter 5, and b.

chapter 6 ... 82

Figure 7.2 DC-balancer and RL limiter’s block diagram 83

Figure 7.3 PSD of the Vcm of the proposed solution vs. scrambling’s PSD at
10 GHz frequency... 85

Chapter 8:

Figure 8.1 EMI killer packet before and after applying the “double
scrambling” method .. 91

Figure 8.2 PSD of an EMI killer packet before and after applying the

“double scrambling” method (slew rate = 50% of UI, time shift = 3% of UI,

voltage mismatch between Dp and Dn 5% of swing) 92

Figure 8.3 EMI killer packet before and after applying the “double
scrambling method” .. 92

Figure 8.4 PSD of an EMI killer packet before and after applying the

“double scrambling” method (slew rate = 50% of UI, time shift = 3% of UI,
voltage mismatch between Dp and Dn 5% of swing) 93

Figure 8.5 Bit Stuffing Overhead for: a. Non-Scrambled data / b. Scrambled

data... 95

Figure 8.6 Bit Stuffing PHY Hardware implementation example 98

XX

Figure 8.7 Eye diagrams on the receiver’s side for a simulation of 10 Kbits
on a DC-coupled channel without equalization, 800 mV transmitter swing for:

a. data non-encoded at 10GHz / b. data 8b/10b encoded at 10 GHz 100

Figure 8.8 Eye diagrams on the receiver’s side for a simulation of 10 Kbits
on a DC-coupled channel without equalization, 800 mV transmitter swing for:

a. data encoded with method 2 at 10GHz / b. data 8b/10b encoded at 10 GHz /

c. data encoded with method 2 at 8.28 GHz / d. data 8b/10b encoded at 10

GHz .. 101

Figure 8.9 Eye diagrams on the receiver’s side for a simulation of 400 Kbits
on a AC-coupled channel (C = 5pF and R = 50 Ω), 800 mV transmitter swing
for: a. data encoded with method 2 at 8.28GHz / b. data 8b/10b encoded at 10

GHz / c. data encoded with method 4 at 10 GHz / d. data 8b/10b encoded at 10

GHz / e. data encoded with method 4 at 9.3 GHz / f. data 8b/10b encoded at 10

GHz .. 103

XXI

List of Tables

Chapter 3:

Table 3.1 Overview Table of some HSSLs... 32

Table 3.2 Run Length Distribution after scrambling 40

Table 3.3 Overview on some existing encoding methods 43

Chapter 5:

Table 5. 1 RL-limited encoding proposal’s overhead 62

Table 5.2 Real use cases that can benefit from lanes reduction 65

Chapter 6:

Table 6. 1 Proposed DC-balancer’s overhead ... 76

Chapter 7:

Table 7.1 DC-balanced and RL-limited line coding’s overhead examples .. 84

Chapter 8:

Table 8.1 Summary of the encoding methods presented in this thesis 89

Table 8. 2 “scrambling + bit stuffing” method theoretical, image and random
data’s overhead ... 96

Table 8.3 Modified Bit Stuffing Overhead (MBSO) in % for different RD

and RL bounds / MBSO = f(RDbound, RLbound) ... 97

Table 8.4 Total Overhead in % for different RL and RD bounds / 97

Table 8.5 Gate count estimation of the bit stuffing block for different bus

width .. 99

XXII

1

Chapter

1
Introduction

Smartphones and tablets have emerged in the last decade as an essential part

of our lives. The number of applications handled is increasing and the quality

of service provided to the user is still improving, resulting in more and more on-

board hardware components, design complexity and bandwidth increase. One

of the main challenges is then the power consumption, especially when focusing

on a mobile device and its battery life, in addition to the worldwide

environmental impact of the power consumption when expecting 4 billion

smartphones and tablets by 2017 [1].

Essential elements that directly affects the performance of mobile devices

are High Speed Serial Links (HSSLs). HSSLs connect the different components

of a mobile device; the Application Processor (AP) to the modem or a

companion chip, the AP to the camera or the display, the AP to the mass storage

device, the RFIC (Radio Frequency Integrated Circuit) to the modem and etc…

HSSLs are also used in laptops and computers as well as in networking. This

results in a variety of HSSLs because each application have different

requirements, and different protocols are designed to fulfill their needs.

In this thesis, a system-level overview on high-speed serial links is made,

with special focus on three protocols: the Universal Serial Bus (USB), the

Peripheral Component Interconnect express (PCIe) and the Low Latency

Interface (LLI). We will make a comparison between the different parameters

and justify their field of use.

2

With the increasing demand for bandwidth, the speed of HSSLs is doubling

every two to three years presenting many challenges to the designers in terms

of complexity and power consumption. The design must then be optimized as

much as possible.

One of the parameters that directly affects the bandwidth and the

performance of a HSSL is the line coding. In many, if not most of the HSSLs,

the data to transmit on the link is encoded to ensure two main characteristics: a

bounded Run Length (RL), which means that a certain number of consecutive

identical bits must not be exceeded so the data contains enough transitions. The

receiver benefits from the transitions to synchronize and recover the clock and

the data correctly. The second characteristic that the encoding must bound is the

Running Disparity (RD), which means that the difference between the numbers

of transmitted 0’s and 1’s must not exceed a specific limit to reduce the

BaseLine Wander (BLW) which is the signal shifting from the zero reference.

The BLW closes the eye diagram (which is the superposition of all the bits of a

signal) and might create sampling errors when recovering the data.

For those reasons, the line coding intervenes to present solutions. However,

Line coding comes at the cost of added bits also called overhead, affecting the

throughput. Over time, many encodings have been used in the standards, some

present very good characteristics but at the cost of high overhead, reducing the

bandwidth efficiency of the link. Other encodings have low overhead but do not

ensure the same bounds for RL and RD and require analog components such as

filters and equalizers to compensate. This means more design complexity and

power consumption.

In this thesis, an overview on the existing methods which bound the RL and

the RD is made. We will highlight their advantages and their drawbacks. Then

we will present an optimized low overhead method that bounds the Run Length.

Another main contribution of this thesis is a low overhead method that bounds

3

the Running Disparity with an overhead down to 10 times lower than the

existing methods, and for the same bounds. After presenting both methods

separately, we will show how we can combine them to build a low overhead,

run length limited and running disparity bounded line coding.

In addition to its low overhead characteristic, other advantages of the line

coding proposed in this thesis will be highlighted such as providing

interoperability between links with different RL and RD requirements as well

as early errors detection.

Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2, “Problem Statement”, explains in details today’s High Speed

Serial Links challenges. We will focus on the line coding’s effect on the

performance of HSSLs and the need for a new line coding.

Chapter 3, “State of the art”, is divided into two main sections; the first one

presents the state of the art of HSSLs focusing on three of today’s HSSLs’

protocols. The second section presents the state of the art of the encodings that

were proposed and used in HSSLs, we will name their advantages and

drawbacks and show the overhead-performance tradeoff.

In Chapter 4, “Low EMI encoding method”, we present a line coding that

ensures reduced EMI that could be caused by the data.

In Chapter 5, “Low overhead run length limited encoding Method”, we will

present an overhead-optimized line coding to limit the Run Length and evaluate

its advantages over existing equivalent methods.

In Chapter 6, “Low Overhead DC-Balanced encoding method”, we will

present an overhead-optimized line coding, but this time to bound the Running

4

Disparity. A comparison will also be made with the existing equivalent

methods.

Chapter 7, “DC-Balanced and run length limited line coding” presents a

method to combine both encoding methods presented in chapters 5 and 6, to

build a low overhead, RL limited and RD limited Line Coding.

In Chapter 8, “Experimental results”, we present the overhead results of the

proposed line coding based on simulation, we show the resulting eye diagrams,

the VHDL model and the gate count estimation, we compare those results with

other encodings and highlight the advantages of our proposal.

In Chapter 9 we conclude and summarize the work presented in this thesis.

5

6

7

Chapter

2 Problem Statement

2.1 Chapter’s Introduction

2.2 High Speed Serial Links

 2.2.1 High Speed Serial Links’ variety

 2.2.2 HSSLs’ layering model
 2.2.3 Focusing on the physical layer

2.3 Line Coding’s effect on data transmission

 2.3.1 Introduction

 2.3.2 Data’s impact on EMI
 2.3.3 Data’s Run Length impact

2.3.4 Data’s Running Disparity impact

2.4 Chapter’s Conclusion

2.1 Chapter’s Introduction

With the increase demand for throughput, High Speed Serial Links are now

facing important challenges to transmit the data over a channel. In less than 15

years, the frequency has drastically increased from 500 Mbps (Megabits per

second) to 16 Gbps (Gigabits per second) as we can see in figure 2.1 and copper-

based channels are still used in most HSSL as transmit medium because of their

many advantages in terms of area and cost over optical links.

10

of a mobile device as we can see in Figure 2.3 and now joins more than 280

companies.

Figure 2.3 MIPI® System Diagram for mobile devices [3]

In Figure 2.3, we can find the different HSSLs connecting the components:

the LLI (Low Latency Interface), the UniPro (or UniPort, Unified Protocol), the

DigRF (Digital RF), CSI (Camera Serial Interface), DSI (Display Serial

Interface), M-PCIe (Mobile Peripheral Component Interconnect express, also

called low power PCIe), and SSIC (SuperSpeed Inter-Chip, or the low power

USB 3.0). Those protocols sometimes use different physical layers.

12

5. Session: allows session establishment, maintenance and termination:

allows two application processes on different machines to establish, use and

terminate a connection.

4. Transport: provides end to end communication control, splits the message

into smaller units (if not already small enough), and passes the smaller units

down to the network layer. This layer can also provide message

acknowledgment, traffic control and session multiplexing when there’s many.

3. Network: controls the operation of the subnet, deciding which physical

path the data should take based on network conditions, priority of service, and

other factors.

2. Data Link: provides error-free transfer of data frames from one node to

another over the physical layer by errors checking and sometimes correction.

This layer also provides link establishment and termination, frame traffic

control, sequencing, acknowledgement, and delimiting.

1. Physical: describes the electrical/optical, mechanical, and functional

interfaces to the physical medium, and carries the signals for all of the higher

layers. This layer provides data encoding and physical medium attachment.

HSSL’s role in a system is then to route the different components and provide

reliable data transmission and reception at the desired speed over the channel.

2.2.3 Focusing on the physical layer

In this paragraph, we will focus on the lowest layer of HSSLs. In figure 2.5

we can see a simplified schematic of the Physical Layer (PHY).

14

then made parallel by the de-serializer, de-encoded, and then forwarded to the

upper layer.

2.3 Line Coding’s effect on data transmission

2.3.1 Introduction

The most important measures to evaluate the performance of HSSLs are the

BER (Bit Error Rate) and the eye diagram, which is the plot of the superposition

of all the bits during transmission as we can see in figure 2.6. The eye diagram

is judged by its vertical and horizontal opening. The protocol specification

defines the minimum opening required at the receiver. The transmission should

respect the specification so the system could ensure the defined BER.

Timing Jitter and the Signal-to-Noise Ratio (SNR) are two of the factors that

affect the BER and the eye diagram’s opening. Data encoding has a direct

impact on both and in this section we’re going to see how. Transmitted data can

also contribute to increase Electro-Magnetic Interferences (EMI), causing errors

in neighboring lanes or even neighboring devices. We will start by explaining

how the data can increase EMI, and then we’ll show the impact of the RL and

RD of the data on the transmission.

Figure 2.6 Eye diagram example

19

However, AC-coupling has a big drawback; after the transition period for the

signal to stabilize, the capacitive effect can make the signal shift up and down

(charging and discharging the coupling capacitor) creating Baseline Wander,

closing the eye diagram and degrading the SNR. This could be explained

differently; the coupling capacitor forms with the termination resistor a high-

pass RC filter that attenuates low frequency components formed by runs of

consecutive bits, but more precisely by the difference between 1’s and 0’s,

which is the running disparity. This is why one of the main interests of a line

coding is to reduce or bound the RD.

Because it is a capacitance charge/discharge phenomenon, BLW due to the

coupling capacitor can be estimated. For the sake of simplicity, we consider a

single ended receiver (Dp or Dn). The simplified schematic is shown in figure

2.13.

Figure 2.13 Simplified AC-coupling

The BLW also creates timing Jitter as we can see in figure 2.14. This type of

Jitter is part of the Pattern Dependent Jitter (PDJ) (also called Data Dependent

Jitter (DDJ) or Inter-Symbol Interference (ISI)) and from [17] and [18] we can

calculate both the BLW and the PDJ.

20

Figure 2.14 Baseline Wander and jitter introduced by the high pass filter
[17]

In figure 2.14, ∆V represents the BLW, and PDJ is the Jitter and they can be

calculated according to the following equations:

BLW = 0.5*Vpp(1-e-t/RC) (2.2)

 P③J = BLWl e (2.3) with slope = � .6T (2.4)

Where t is the discharge time

 Vpp is the peak-to-peak voltage (voltage swing)

 R is twice Rt (considering the driver’s resistor)

 C is the coupling capacitor

and Tr is the rise time (20% to 80% of the signal)

The discharge time of the capacitor is represented by the signal being at the

same level for a certain moment, this means consecutive identical 1’s. But when

the signal goes to 0, this will recharge the capacitor for a certain duration. The

charge or discharge time will then be represented by the difference between

number of 1’s and 0’s which is the Running Disparity times the bit duration.

The BLW can thus be written as follows:

BLW = 0.5*Vpp(1-e-(RD*Tb)/(R*C)) (2.5)

where RD is the running Disparity

21

and Tb is the bit time or 1/frequency

Equation (2.3) shows that PDJ can be reduced by reducing the BLW. To

reduce BLW, according to equation (2.5), we should increase the values of R

and C. The resistor’s value should be adapted to the driver and the channel, so

its value cannot be simply manipulated. When it comes to the value of the

capacitor, the best is to have an infinite value. But the more the capacitor’s value

gets bigger, the bigger is its surface and harder is the integration in the chip. On-

chip capacitance per lane is limited to a few picoFarads (pF) at best in practical

real estate of chip area [19]. Another consequence from increasing the

capacitor’s value is increasing the transition period, creating a high latency. R

and C values are then forced by the system’s obligations and their negotiation

margin is tight. When there’s no choice, filters and equalizers are used to

counter the BLW’s effect adding more complexity, area and power

consumption. More details are provided in the next chapter.

Even when the transmitter and the receiver are DC-Coupled, BLW and PDJ

exist, due to the channel and other factors, and are affected by the RD as we will

observe later on. But it is more complex to get an estimation because it is

channel-dependent and case-dependent.

2.4 Chapter’s Conclusion

As seen in this chapter, the redundancy, Run Length and the Running

Disparity of the data have an immediate impact on signal’s integrity and system

performance. For this reason, encodings have been designed to transform the

raw data and limit or reduce the RL and the RD, but this comes at the cost of

added bits called bandwidth overhead that sometimes reaches up to 25% of the

initial size of the data, reducing the throughput. With the increasing demand for

throughput, every bit sent on the link counts. Line coding is then a big challenge;

22

so is it possible to design a line coding that can bound the RD and the RL to low

values with a low overhead?

High Speed Links are also applied on a wide range on data communication

as we saw earlier in this chapter and a big variety exists. The bounds to the RL

and RD requested by the link could be variable and case-dependent. Is it then

possible to design a programmable low overhead line coding that performs to

the desired Run length and Running Disparity?

23

24

25

Chapter

3 State of the Art

3.1 Chapter’s Introduction

3.2 System-level comparison of three HSSLs: LLI, PCIe and USB

 3.2.1 The Low Latency Interface (LLI)

 3.2.2 The Peripheral Component Interconnect express (PCIe)

 3.2.3 The Universal Serial Bus (USB)

 3.2.4 Layering model comparison

3.2.5 Other parameters Comparison

3.2.6 Comparison’s conclusion

3.3 Line Coding’s State of the Art
 3.3.1 Introduction

 3.3.2 The Bit Stuffing (BS)

 3.3.3 The 8b/10b encoding

 3.3.4 Data Scrambling

 3.3.5 The Polarity Bit Coding

 3.3.6 Summary of some existing encoding methods

3.4 State of the Art’s Conclusion

3.1 Chapter’s Introduction

In the previous chapter we saw that a variety of high speed serial links exists

to satisfy different types of applications, and then we saw the impact of the non-

coded data on a HSSL.

This chapter is divided into two main parts: in the first part we will make a

system-level comparison between three HSSLs that are used for three different

26

kinds of application: the Universal Serial Bus (USB), the Peripheral Component

Interconnect express (PCIe) and the Low Latency Interface (LLI). We analyze

their different parameters, we show the relation between these parameters and

how improving one parameter could result in a degradation of another. Based

on this analysis, our conclusion outlines the reason why USB is used for I/Os,

PCIe is used for data hungry devices and LLI for memory sharing.

In the second part of this chapter, we overview most of the existing line

coding methods that were designed for NRZ signaling. We compare them and

show the advantages and the drawbacks of each, then highlight the

overhead/performance tradeoff.

3.2 System-level comparison of three HSSLs:

LLI, PCIe and USB

3.2.1 The Low Latency Interface (LLI)

One additional challenge in mobile phones industry is to reduce the

electronic Bill of Materials (e-BoM). With today’s phone peripherals becoming

more and more complex, as most of them are having their own CPU-DDR

subsystem, reducing BoM is not a simple task. That’s why the Mobile Industry

Processor Interface (MIPI®) Alliance developed the LLI 1.0 (Low Latency

Interface 1.0) [20] [21] which is a serial interface that enables peripherals, like

modems for example, to share the system’s main DDR located on the

application processor’s side, which enables mobile phones manufacturers to

remove the modem’s DDR and reduce the total phone’s cost. LLI 2.0 version

extended the use of LLI and made it a general chip-to-chip interconnect. LLI is

also used for Inter-Processor Communication (IPC).

32

More details about latency, throughput and others parameters comparison

can be found in the overview we made in [25].

3.2.6 Comparison’s Summary

Table 3.1 summarizes the overview.

Parameter Protocols Advantages Consequences

Differential Swing =

800mV

USB

PCIe

Long distances applications

(cables)
High power consumption

Differential Swing =

400mV
LLI Low power consumption Short distances applications

Memory mapping
LLI

PCIe

Direct access to data

(memory sharing

possibilities)

Occupying the CPU bus

No memory mapping USB
Not occupying the CPU

bus

No direct access to data (No

memory sharing)

Multi-lane scalability
LLI

PCIe

Multiplying throughput and

decreasing latency

More power consumption and

no external connectors

possibility

No multi-lane

scalability
USB

External connectors

possibility

No throughput increasing

possibility

Low latency error retry

time
LLI

Cache refill operations

possibility

Low data efficiency

(throughput)

High latency error

retry time

PCIe

USB

High data efficiency

(throughput)

No possibility for cache refill

operations

Time Framing QoS USB All devices are served High latency for interrupts

Priority based QoS
LLI

PCIe

Low latency for interrupts

and for high priority

operations

Other devices or operations

have to wait to be served

Table 3.1 Overview Table of some HSSLs

We conclude that USB with its intelligent software and hot plug feature

allows easy Human Interface Device usage, and with its high throughput, it

allows mass storage device usage. But with its high latency, high BER, and

because USB is not memory mapped, it can allow neither memory sharing nor

cache refill operations. PCIe with its intelligent NorthBrigde/ SouthBridge

system design allows I/O connecting, and with its memory mapped instructions

and its high throughput, even though it is latency-criticized [26], it allows data-

33

hungry devices (like graphics card) to share the system’s main DDR when

connected directly to the root complex and using up to 32 lanes to increase

throughput and decrease latency. But using multi-lanes will increase power

consumption which is an important issue in mobile applications.

To allow DDR chip-to-chip sharing and cache refill operations inside mobile

phones, and in order to enable manufacturers to remove the modem’s DDR and

reduce the e-BoM, MIPI Alliance created the LLI featuring a low BER, low

latency and low power consumption physical layer (the M-PHY), but at the cost

of lower throughput efficiency.

3.3 Line Coding’s State of the Art

3.3.1 Introduction

As mentioned in chapter 2, Line Coding is one of the biggest challenges in

data transmission. That’s why there is a big variety of coding methods that were

proposed over time, and it is quite difficult to go through all of them.

As seen earlier in this chapter, HSSLs protocols add information to the data

and decrease the efficiency before the PHY layer. Line coding must then be

optimized as much as possible to not degrade the efficiency furthermore.

 In this section, “line coding’s state of the art”, we will try to go through the

most efficient line coding methods, and especially the ones implemented in

HSSLs standards.

The next paragraphs will overview the following line coding methods: the

Bit Stuffing, the 8b10b encoding, the Scrambling and the polarity-bit coding.

35

Bit Stuffing is used in protocols such as CAN (Controller Area Network) that

uses the NRZ signaling and does the BS with N = 5. BS is also used by the USB

2.0 [27] that uses NRZI signaling and does the BS with N = 6 for consecutive

1’s only, because a 0 already contains a transition in NRZI.

We note that Bit Stuffing does not help in reducing the EMI and in spreading

the spectrum. Repetitive patterns will stay repetitive with bit stuffing. Bit

stuffing also does not help in reducing the RD.

3.3.3 The 8b/10b encoding

The 8b/10b encoding [28] [29] was introduced back in 1983 and has gained

success because of its excellent characteristics. 8b/10b encoding is made via

5b/6b and 3b/4b sub-block encoding for every byte to be transmitted. If we look

at it in a different point of view, 8b/10b encoding transforms each data byte into

a 10-bit symbol providing 210 = 1024 valid data words instead of 28 = 256 valid

data words necessary to transmit an 8-bit information. Only the “best”

combinations out of 1024 are chosen to represent the data bytes, i.e. the ones

ensuring a Run Length limited to 5, and a Running Disparity bounded to +/- 3.

In addition, 8b/10b encoding provides control symbols from the remaining

combinations. The rest will be non-valid combinations used for errors detection.

However, because of adding 2 bits to each byte, 8b/10b encoding has an

overhead of 2/8 = 25%. With the increasing demand for bandwidth, 25% of

overhead seems to be an important issue.

8b/10b encoding helps in reducing by a factor of 2 the repetition of some

bytes, but not all of them. There is then a positive effect on EMI but this might

not be enough.

37

is from the same degree) should be carefully chosen to generate a good pseudo-

random sequence. In the simulations in this thesis, we will use polynomials that

were implemented in famous standards and have been proven to provide good

characteristics.

 The Pseudo-Random Binary Sequence (PRBS) characteristics:

An N-bit LFSR generates a repetitive PRBS of length 2N-1 bits. The PRBS

pattern ensures a Run Length bounded to N bits. The PRBS provides equal

probability of 1’s and 0’s. The Running Disparity of the PRBS pattern varies

from a polynomial to another. An example of the X16 + X5 + X4 + X3 + 1

polynomial with FFFFh as seed value is represented in Figure 3.9.

Figure 3.9 RD representation of the PRBS generated by the polynomial:

X16 + X5 + X4 + X3 + 1, seed value 1FFFFh

Scrambled data’s characteristics:

As mentioned before, scrambling is a XOR between the raw data and the

PRBS sequence. The XOR operation was chosen because of its characteristics:

 Binary data with any probability distribution of 1’s and 0’s, once XORed

with a sequence of equal distribution of 1’s and 0’s, results in data

(scrambled data) with equal probability of 1’s and 0’s. This isn’t the case

39

Figure 3.10 a. Percentage of 1’s before and after scrambling b. spectrum
of the Vcm of the data before and after scrambling

Balancing the number of 1’s and 0’s inside the data results in two major

benefits:

1. Scrambled data has statistically more transitions than raw data before

scrambling especially if the raw data is very unbalanced in terms of 1’s and

0’s. By using Markov Chains, we can get a theoretical estimation of the run

length distribution. Table 3.2 summarizes the distribution from a RL of 5 to

40

a RL of 20. The values in Table 3.2 are deduced from the theoretical study

in Annex B. We also made a simulation on long sequences of data and made

a comparison.

Run Length
Occurs Theoretically in

average (Bytes)

Occurs according to our
simulation

Min/Average/Max (Bytes)

5 4 1/8.45/26

6 8 1/17/49

7 16 2/35.6/100

10 128 9/302/748

14 2 K 128/6.34 K/19.3 K

18 32 K 5.42 K/64.6 K/240.3 K

20
:

128 K
:

5.7 K/262 K/784.3 K
:

Table 3.2 Run Length Distribution after scrambling

2. Scrambling statistically reduces the Running Disparity especially if the raw

data is not balanced. Figure 3.11 shows an example.

Figure 3.11 Raw data’s disparity vs Scrambled data’s disparity (raw

data distribution 80% of 0’s and 20% of 1’s, polynomial: X16 + X5 + X4
+ X3 + 1, seed value FFFFh)

41

Scrambling’s advantages:

To summarize, we can deduce the following advantages from scrambling:

1. Scrambling helps in reducing EMI by randomizing the data and eliminating

redundant patterns.

2. Scrambling creates transitions by balancing the number of 1’s and 0’s. This

is beneficial in clock and data recovery.

3. Scrambling reduces the Running Disparity, which means Baseline Wander

reduction and Data Dependent Jitter reduction.

4. Scrambling has 0% overhead. No bits are added to the transmission

Scrambling’s drawbacks:

Despite all of its advantages, scrambling has the following drawbacks:

1. Scrambling could produce repetitive patterns that will cause peaks in the

Vcm spectrum, causing EMI. We will call them EMI Killer packets. Even

though their probability of happening is low, they could still happen.

2. Scrambling creates transitions inside the data, but it does not ensure a

guaranteed bound for the RL. Let’s suppose a CDR that can handle a

maximum run length of 9. According to table 3.2, a run length of 10 happens

theoretically every 128 bytes. An error could then occur on the recovery

every 128 bytes requiring a retry and degrading system performance. Even

when the CDR can handle big values of RL, patterns could be designed

(aligned with the PRBS) to create hundreds of consecutive Identical Bits

[30] that are known as killer packets.

42

3. Scrambling reduces the RD but it does not guarantee a certain bound. The

RD could still reach high values that can go more than +/- 1000. In addition

to analog filters that could be added to correct the BLW, Protocols like PCIe

3.0 cut the transmission when the RD reaches high values and send special

patterns to balance the RD. This also affects system performance and

latency.

Standards using scrambling:

Many scrambling-based encodings have been implemented on HSSLs

standards. The 64b/66b encoding used in 10G Ethernet uses scrambling and

adds 2 bits “sync header” (‘10’ or ‘01’) to every 64 bits to ensure a transition

and indicate whether the frame is control or data. PCIe 3.0 uses 128b/130b

encoding using the same principle. USB 3.1 uses 128b/132b encoding adding 4

bits sync header (‘1010’ or ‘0101’) enabling a single error in the sync header to

be corrected without going through a retry.

3.3.5 The Polarity Bit Coding

The polarity bit coding is one of the most overhead-optimized methods that

bounds the Running Disparity. Over time, DC-balanced codes have been

introduced. In 1986, Knuth proposed a method [31] to construct frames with

equal number of 0’s and 1’s. Knuth proved that any binary sequence of a

specific size, could be balanced by inverting, at a specific bit position, all the

rest of the sequence. The drawback of this method is that this particular bit

position must be sent with the frame (and should be balanced as well) for the

receiver to know how to reconstruct the original frame. This will add a relatively

important number of bits for small frames. For large frames, the number of

added bits is less important, but the RD could reach high values inside the frame

before going back to zero. Other Knuth-based methods were proposed, but as

far as we know, they did not solve the high overhead issue.

43

The simplest and the lowest overhead method is the polarity-bit coding. It

consist of systematically adding 1 bit to a frame of a specific size to indicate

whether it is inverted or not depending on the Cumulated RD (CRD) and the

RD of the frame itself; i.e. if the CRD is positive, and the RD of the frame is

positive as well, all the bits inside the frame will be inverted and the polarity bit

will transmit the info to the receiver.

The polarity bit coding is used by the 64b/67b encoding; 3 bits are added to

the 64 bits of the frame: 2 bits (‘10b’ or ‘01b’) to ensure a transition and indicate

whether the frame is raw data or control, and 1 polarity bit to indicate if the 64

bits (which are scrambled) are inverted or not. The CRD bound ensured by such

coding could be deduced from the worst case scenario according to equation

(3.1):

CRDbound = +/- (FrameSize + FrameSize/2) (3.1)

Which gives for the 64b/67b encoding CRDbound = +/- 96 for FrameSize = 64.

The overhead cost for the CRD bound is 1/64 = 1.56 %. The total overhead cost

is 3/64 = 4.687 %.

3.3.6 Summary of some existing encoding methods

The table below summarizes the line coding’s state of the art.

Line Coding Standards Max RL RD Bound Overhead

Bit Stuffing
CAN

USB 2.0
5
6

N/A
N/A

0% to 20%
0% to 16.6%

8b/10b PCIe 2.0, USB 3.0 … 5 +/- 3 25 %

 Scrambling-Based codings

64b/66b 10G Ethernet 64 N/A 3.125 %

128b/130b PCIe 3.0 128 N/A 1.562 %

128b/132b USB 3.1 128 N/A 3.125 %

 Scrambling + polarity bit based coding

64b/67b Interlaken 64 +/- 96 4.687 %

Table 3.3 Overview on some existing encoding methods

44

3.4 State of the Art’s Conclusion

In the first part of this chapter we overviewed three High Speed Serial Links

and we showed the differences on system-level justifying the variety of HSSLs

protocols.

In the Line Coding’s state of the art, we overviewed many encoding methods

used in today’s standards. We showed how a line coding that bounds the RL

and the RD to low values will have high overhead, and when releasing the

constraints on RL and RD we can design a line coding with low overhead.

Releasing the RL and RD constraints might result in more analog complexity.

One interesting line coding which has no overhead is the scrambling.

Scrambling has 0% overhead while providing good characteristics, but it does

not guarantee randomization, or RL bounds, or RD bounds.

In this thesis we propose methods that are able to benefit from scrambling’s

advantages while guaranteeing randomization, RL bounds and RD bounds with

a very low overhead.

45

46

47

Chapter

4
Low EMI encoding

method
4.1 Chapter’s Introduction

4.2 Probability of a repetitive pattern

4.3 Method to eliminate the probability of repetitive patterns

 4.3.1 Re-scrambling all the data after the first scrambling

 4.3.2 Re-scrambling with repetitive packets selection

 4.3.3 Reduced EMI line-coding

4.4 Chapter’s Conclusion

4.1 Chapter’s Introduction

Using Scrambling as a technique to reduce EMI is efficient. However, as we

explained in chapter 3, scrambling could generate repetitive patterns that will

end up increasing EMI. Repetitive patterns after scrambling could also be

designed on purpose to break the system.

In this chapter, we propose a technique that eliminates the possibility of

generating or designing a repetitive pattern.

4.2 Probability of a repetitive pattern

The probability of having a repetitive pattern after scrambling is considered

low. In Annex C we calculate the probability for a pattern of length “L” bits to

be repeated “M” times after scrambling. This probability is given in equation

(4.1):

48

 P (L, M) = ∗ (4.1)

Where L: length of the pattern in bits

M: the number of repetition

Example:

Consider we want to calculate the probability of a byte to be repeated 5

times in a row:

P (8, 5) =

88∗ =
80 = 2.328 x 10-10

This is the probability of happening in a time unit of 40 bits. For this

repetition to happen once, we can calculate after how many bits this could

happen as follows:

P (L, M) → L*M =40 bits

1 occurrence → X bits?

X = 40/ P (L, M) = 1.718 x 1011 bits

This means that after scrambling, a byte can be repeated 5 times in a row

once every 1.718x1011 bits. At 10 Gbits/s throughput, this will happen

theoretically in average every 17 seconds (1.718x1011 bits/10x109 bits/s).

As we saw in this section, the probability of a repetitive pattern is low, but it

can happen rapidly depending on the link’s frequency and could generate EMI,

creating errors in RF components or neighboring lanes of the same link. It is

then a question of time.

49

If the critical pattern length and repetition number that could cause errors

shows to happen rarely, i.e. a pattern of length 8 bits will be repeated 8 times

every 14 years at 10 Gbits/s after scrambling, then scrambling can be good

enough.

With the increasing demand for bandwidth, repetitive patterns can happen

more often, and the small number of repetitions could generate EMI. An error

every few seconds or milliseconds can trigger the retry mechanism and degrade

system performance. A protection from EMI killer packets (repetitive packets)

after scrambling might then be a necessity.

Another reason why there might be a need to ensure the protection from

repetitive patterns is that they might be designed easily for attack purpose; once

the scrambling polynomial is known, the PRBS sequence is also known.

Patterns could be designed such as once XORed with the PRBS sequence, they

generate repetitive patterns that will be source of high EMI.

In the next section, we will present a method to eliminate the probability of

a repetitive packet or the possibility of designing such packet.

4.3 Method to eliminate the probability of

repetitive patterns

A good method to randomize a repetitive pattern is to scramble it. To

randomize the repetitive packets after scrambling, we propose to scramble a

second time. But should we re-scramble all the data after a first scrambling or

should we re-scramble the repetitive packets only?

51

 is the state where a killer packet is generated after the scrambling of state

 (a good packet resulting from the 1st scrambling). Its probability is:

Ɛ*Prob(state 2) = Ɛ*(1- Ɛ)

 is the state where a good packet is generated after the scrambling of state

 (a good packet resulting from the 1st scrambling). Its probability is: (1-

Ɛ)*Prob(state 2) = (1- Ɛ)*(1- Ɛ)

To verify, the sum of the probabilities of states , , and is 1.

The probability of having a killer packet is the sum of the probabilities of states

 and which is:

Prob(Killer) = Ɛ*Ɛ + Ɛ*(1- Ɛ)

Prob(Killer) = Ɛ

The probability of having a good packet is the sum of the probabilities of states

 and which is:

Prob(good) = (1- Ɛ)*Ɛ + (1- Ɛ)*(1- Ɛ)

Prob(good) = (1- Ɛ)

Conclusion:

The probability of an EMI killer packet and the probability of a good packet

after applying a 2nd scrambler for all the packets of the 1st scrambling, are

exactly the same as the probabilities of states and . Therefore, there is no

interest from applying a 2nd scrambling on all packets.

55

4.4 Chapter’s conclusion

Scrambling is an efficient method to eliminate redundancy and give a

random aspect to the spectrum of the data, randomizing the Vcm spectrum which

is responsible of EMI in differential signaling. But scrambling could generate

EMI killer packets.

In this chapter, we introduced a new method to ensure reduced EMI. The

proposed method consists of a first scrambler stage to scramble all the data. A

repetition detection block forwards only the frames containing repetitive data to

a second scrambling block. This block randomizes the repetitive data with a

polynomial different than the first one.

When EMI is a main constraint, the presented method eliminates the

possibility of having a repetitive pattern or designing an EMI killer packet. The

cost of the proposal is 1 additional bit for each frame.

56

57

Chapter

5

Low overhead

Run Length limited

encoding method
5.1 Chapter’s Introduction

5.2 Bit stuffing overhead vs. data distribution

 5.2.1 The maximum bit stuffing overhead

 5.2.2 Theoretical overhead estimation for bit stuffing

 5.2.3 The minimum bit stuffing overhead

5.3 Proposal for a low overhead Run Length limited encoding

 5.3.1 Proposal’s block diagram

5.3.2 Power Spectral Density Aspects

 5.3.3 Proposal’s advantages

5.4 Chapter’s Conclusion

5.1 Chapter’s Introduction

As we saw in chapter 3, two of the most used methods to limit the Run

Length (RL) have two major drawbacks; the 8b/10b encoding bounds the RL to

5 but has 25% overhead. The Bit Stuffing (BS) bounds the RL to the desired

value (N), but the BS’s Overhead (BSO) is not predictable because it is data

dependent, and it can reach high values that goes to 20% for N = 5 for example.

In this chapter, we propose a line coding that can bound the Run Length with

a very low overhead down to 8 times lower than 8b/10b’s overhead and down

to 6 times lower than Bit Stuffing overhead and for the same RL bounds.

59

We denote by P the probability of 1’s, and Q the probability of 0’s. The blue

circles in figure 5.2 represents the state of 1’s and the white ones represents 0’s.

12 represents the state of 2 consecutive 1’s, and 1N represents the state of N

consecutive 1’s. Same for the 0’s states. To go from a 1i state to another 1i+1

state, or from 0i state to 11 state, the probability is P (the probability of 1’s).

Conversely, to go from a 0i state to another 0i+1 state, or from 1i state to 01 state,

the probability is Q (the probability of 0’s).

If the bit stuffing is fixed to N, when we are on the state 1N , the only

possibility is to go to the state 01 with a probability of 1. Same when we are on

the state 0N , the only possibility is to go to the state 11 with the probability of 1

because bit stuffing is performed for N consecutive identical bits.

In Annex E we calculate from the above Markov chain the probability of

having N consecutive identical bits, which is the sum of the probabilities of

states 0N and 1N. This particular probability also represents the bit stuffing

overhead, because a bit is added every time the states 0N and 1N are reached.

The Bit Stuffing Overhead (BSO) for a Maximum Run Length of N can be given

by equation (5.1): = − � + − � (5.1)

Where Q = Probability of 0’s

P = Probability of 1’s = 1-Q

Π01 and Π11= Probability of the states 01 and 11

In Annex E we also demonstrated that: � = � = +

Where = − − and = − −

60

The Bit Stuffing’s overhead for a max RL of N can then be calculated

depending on the data’s probability distribution of 1’s and 0’s (P and Q). This

is illustrated in figure 5.3.

Figure 5.3 Theoretical Bit Stuffing Overhead estimation

5.2.3 The minimum Bit Stuffing Overhead

From figure 5.3, we can see that the BSO is on its minimum values when P

= Q = 0.5. This is illustrated in figure 5.4 and compared to the maximum and

average BSO values and we can see the huge difference.

Figure 5.4 Bit Stuffing minimum vs. Maximum Overhead for different

N

62

N 3 4 5 6 7 8 9 10

Theory 14,29 % 6.67 % 3.23 % 1,59 % 0,79 % 0,39 % 0,20 % 0,10 %

Image 16.65 % 7.13 % 3.33 % 1.61 % 0.79 % 0.39 % 0.19 % 0.09 %

Table 5. 1 RL-limited encoding proposal’s overhead

5.3.2 Power Spectral Density Aspects

To verify that the presented solution does not harm the randomization aspect

given by scrambling, we plot the PSD of the Vcm generated by encoding the data

according to our proposal in figure 5.6 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The presented RL-limited

method does not eliminate the random aspect.

Figure 5.6 PSD of the proposed RL limited method vs. PSD of

Scrambling-only at 10 GHz frequency

5.3.3 Proposal’s advantages

The biggest advantage of the proposed line coding is its very low overhead.

As we can see in table 5.1, to ensure the same RL bound as 8b10b encoding

which is 5, our proposed method has an overhead of 3.23% whereas the 8b10b’s

overhead is 25%. If we release the constraints on the RL bound, we can also

63

lower the overhead down to less than 1%. Practically, Low overhead offers

many advantages for the designers or the users as follows:

a. Improved bandwidth efficiency over 8b/10b encoding

A link running at a specific frequency will benefit from an obvious

improvement in throughput. The raw throughput (Th) as a function of the link’s

frequency (LF) and the encoding’s overhead (OH) could be given by the

following equation: ℎ = ��+ � (5.2)

An example of the raw throughput difference between 8b/10b encoding and

the RL-limited encoding for N= 5 (OH considered 3.5 %, equivalent to 8b/10b

encoding in RL bound) at different link frequencies are shown in figure 5.7.

Figure 5.7 Raw Throughput comparison vs. Link frequency for data

encoded with 8b/10b and the proposed RL-Limited encoding

As we can see from the above figure, we can improve the throughput to many

Gigabits per second (Gbps) thanks to the proposed encoding while keeping the

same RL bounds. At 6 GHz link frequency, the raw throughput using our line

coding is 1 Gbps better than when using 8b/10b encoding. At 12 GHz, we can

gain up to 2 Gbps throughput.

64

b. Power consumption reduction

One of the benefits from reducing the overhead is power consumption

reduction. While the power consumption for the high speed links is generally

given in mW/Gbps, one of the recent studies and implementations [32]

estimates the power consumption per transmit/receive unit at 2.8 mW/Gbps.

When the data is encoded, the power consumption (Pc) could be given by the

following equation:

Pc(encoded_data) = Pc(raw_data) + OH*Pc(raw_data) (5.3)

If we consider we target a throughout of 10 Gbps, the power consumption

compared to 8b/10b encoding could be given as follows:

Target

Throughput

Power

consumption per

Gbps

8b/10b encoded

data power

consumption

Proposed

encoding power

consumption

10 Gbps 2.8 mW 35 mW 28.98 mW

We can see that we can save 6 mW per transmit/receive unit when using the

line coding we propose in this chapter.

c. Lane Count reduction over 8b/10b encoding

Reducing the line coding’s overhead can enable in many cases lane count

reduction. Multi-lanes is the feature of many protocols because it allows

throughput improvement and multiplication. However, throughput

multiplication might not be the protocol’s requirement because the protocol

might need few Gpbs more to reach its target raw throughput. The proposed low

overhead line coding might then enable lane count reduction. This is illustrated

in figure 5.8 where we consider MIPI’s M-PHY physical layer running at High-

Speed Gear 4 (HSG4) which is 11.64 GHz. The figure illustrates the lanes

65

saving for different raw target throughput. We can see that we save up to 50 %

of the Physical layer’s complexity and power consumption thanks to our

encoding.

Figure 5.8 Lane-count reduction thanks to our proposed RL-limited
encoding in the case of MIPI’s M-PHY running at HSG4 (11.64 Gbps)

Table 5.2 shows real use cases where lanes reduction and power/area saving

could be done.

Table 5.2 Real use cases that can benefit from lanes reduction

66

d. Reduce the CDR’s analog complexity

As highlighted in paragraph 2.3.3, the lack of transitions inside the data can

push designer to integrate analog solutions that could increase the clock

recovery’s complexity up to twice. The proposed RL-limited solution enables

hardware complexity reduction (which means area and power consumption)

over encoding that are not RL-limited.

e. Early Errors Detection

Errors could be detected when the run length exceeds N (the maximum fixed

by the proposed encoding) before forwarding the data to the upper layer (Data

Link Layer) and CRC check.

f. Interoperability

This line coding also allows interoperability between CDR units having

different RL requirements. i.e. a receiver can ask a transmitter to encode with

bit stuffing for a specific N. This can happen at the link initialization process;

an attribute can be allocated for this purpose.

5.4 Chapter’s conclusion

In this chapter we proposed a low overhead run length bounded line coding

which combines the benefits of scrambling and bit stuffing.

The proposed coding enables a run length bounded to 5 while having an

overhead of 3.23% instead of 25% for 8b/10b for the same RL bound. This

allows better throughput efficiency for the same link frequency, or reducing the

frequency for a same target throughput. Throughput reduction can enable lane

count saving up to 50%, which means 50% power consumption reduction of the

physical layer which is the most power-hungry part of a High-Speed Serial link.

67

This line coding also allows reducing the CDR complexity, early errors

detection and interoperability between CDR units having different run length

requirements.

We note that the variable data length due to this proposal can be problematic

to the PHY layer’s framing, a proposal to variable length data is added in Annex

G.

68

69

Chapter

6
Low overhead

DC-balanced encoding

method
6.1 Chapter’s Introduction

6.2 A Novel DC-balanced Line Coding

 6.2.1 Introducing the method

 6.2.2 Ensured Running Disparity Bounds

 6.2.3 Ensured Run Length Bounds

6.2.4 Conditions Required

6.2.5 Power Spectral Density Aspect

6.3 Overhead Estimation

 6.3.1 Simulation-Based Overhead Estimation

 6.3.2 Deducing the Overhead’s Equation

6.4 Chapter’s Conclusion

6.1 Chapter’s Introduction

 The polarity-bit encoding is the most overhead optimized DC-balanced

method as we saw in chapter 3. However, for small RD (Running Disparity)

bounds, this method have a high overhead as illustrated in figure 6.1.

As we can see, this method is only advantageous for high RD bounds. For

the same RD bounds ensured by 8b/10b encoding (+/- 3), the polarity bit method

adds 50% overhead whereas 8b/10b has 25% overhead.

70

Figure 6.1 Polarity-bit encoding’s overhead (deduced from equation 3.1)

In this chapter, we will introduce a novel method which bounds the Running

Disparity with a much lower overhead than the polarity-bit encoding for small

RD bounds as well as for high RD bounds. This method has also an overhead

significantly lower than 8b/10b’s overhead, for the same RD bounds.

6.2 A Novel DC-balanced Line Coding

6.2.1 Introducing the method

Inverting bits is an efficient method to reduce the RD, but systematically

inverting means systematically adding a polarity bit to indicate to the receiver

if the frame has been inverted or not, which as we saw is not beneficial for small

RD bounds.

The method we propose consists of bits inversion using aperiodic frames.

The RD of the transmitted data that we denote by CRD (Cumulated Running

Disparity) is counted bit-by-bit on the transmitter’s side, and when the CRD

reaches a certain threshold T, the RD of the next packet of Size ‘S’ bits is

checked to see if the packet should be inverted, or not. A bit will be inserted

after the S bits to indicate if they were inverted or not. Only when RD(S) = 0,

there will be no bit added. In other words, the programming should be done

according to the following logic:

74

will be when going from a CRD of –3 to a CRD of +3 with a RL of 6 ones, or

inversely. The RL bounds could be given by the following equation:

RLbounds = 2*CRDbounds = 2*(T + S/2) (6.2)

6.2.4 Conditions required

To ensure the bounds mentioned in equation (6.1), condition 1 should be

respected:

Condition 1: T > S/2

If T <= S/2, the S bits can push the RD out of the limits as follows:

e.g. if T = 2 and S = 6 the CRD should be bounded to +/- 5. But suppose at

a certain time we have CRD = +2 and RD(S) = -6. In this case the S bits won’t

be inverted because they allow us to reduce the CRD. The CRD will the go

down to -4, and with the polarity bit inserted (which will be 0) the CRD is now

at -5. We should check then the next S bits again. Suppose the next bits are at

“000111”, RD(S) = 0, the bits are not inverted and the CRD will then reach -8

violating the +/- 5 bounds. If T > S/2, this cannot happen.

The following conditions, 2, 3 and 4, should be respected in order to optimize

the overhead as much as possible:

Condition 2: S is even

It is the only case where RD(S) could be equal to 0, enabling the encoding

to not add a polarity bit and reducing the overhead.

Condition 3: insertion of the polarity-bit after the S bits

Inserting the polarity-bit at first will increase the overhead because it should

be inserted also for the case where RD(S) = 0, whereas polarity-bit insertion

after the S bits will allow the receiver to check the S bits first and know that

75

once RD(S) = 0, no polarity-bit has been inserted by the transmitter and

overhead will be saved.

Condition 4: Apply Scrambling before the proposed line coding

This condition is optional but scrambling the data before applying the

proposed DC-balancing will reduce the RD of the raw data. The proposed DC-

balancer will then intervene less adding less bits. A second reason to use

scrambling is that it allows the overhead to be independent from the raw data’s

distribution.

6.2.5 Power Spectral Density Aspect

To verify that the presented solution does not harm the randomization aspect

given by scrambling, we plot the PSD of the Vcm generated by encoding the data

according to our proposal in figure 6.6 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The proposed DC-

balancer does not eliminate the random aspect.

Figure 6.6 PSD of the Vcm of our proposed method vs. Scrambling’s
PSD at 10 GHz frequency

76

6.3 Overhead Estimation

6.3.1 Simulation-Based Overhead Estimation

On Matlab, we generate 200 random frames of 400 Kbits each, and then

apply the line coding we propose on scrambled frames. We then make the

average of the overhead of the 200 frames. The results of the overhead is given

in table 6.1. We also made a theoretical overhead estimation study in Annex F

for some overhead values and the results are also shown in table 6.1.

T S
CRD

bounds
Simulation
Overhead

Theoretical Average
Overhead

2 2 +/- 3 14.27 % 16.67 %
3 2 +/- 4 9.05 % 10.00 %
4 2 +/- 5 6.60 % 7.14 %
5 2 +/- 6 5.32 % 5.56 %
5 4 +/- 7 4.32 % 5.21 %
9 6 +/- 12 2.05 % --

16 16 +/- 24 0.80 % --
32 32 +/- 48 0.31 % --
64 64 +/- 96 0.11 % --

Table 6. 1 Proposed DC-balancer’s overhead

An overhead comparison is given in figure 6.7

Figure 6.7 Proposal’s overhead (green) compared to the polarity-bit
encoding (blue), 8b/10b encoding and Interlaken’s protocol

78

The relation between the RD bounds and its corresponding Overhead (OH)

is displayed in figure 6.8. In other terms, it could be written as follows:

OH ≈ 0.66*|RDbounds|-1.39 (6.3)

An important condition for equation 6.3 to work properly is that T and S

values must be chosen to provide the lowest overhead. As mentioned earlier,

this could be done by simulation.

6.4 Chapter’s Conclusion

Polarity-bit coding is a low overhead method which bounds the Running

Disparity. However for small RD bounds, this method has a very high overhead

that exceeds 8b/10b encoding’s overhead.

In this chapter, we proposed a novel line coding which is able to bound the

RD with low overhead even for small RD bounds. The presented method is

based on aperiodic frames inversion, when necessary. The overhead simulations

and the theoretical overhead have shown to be very low when compared to other

existing line coding methods which bound the Running Disparity.

As we saw in chapter 5, low overhead could enable lane count reduction (up

to 50% saving in power, area and complexity) or bandwidth increase for better

performance.

Other advantages are the feature of the proposed DC-balanced encoding:

 Scalability: the RD bounds could be chosen according to the

application’s requirements

 Early errors detection: an error could be detected whenever the RD

exceeds the bounds

79

 Reduce the analog complexity: no (or less) filters will be needed to

correct the baseline wander

We shall note again that the Run Length is automatically bounded with our

solution, but the RL bound depends on the RD bounds and is not scalable. In

the next chapter we propose a scalable solution.

We note as well that the variable data length due to this proposal can be

problematic to the PHY layer’s framing, a proposal to variable length data is

added in Annex G.

80

81

Chapter

7
DC-balanced and

Run Length Limited

Line Coding
7.1 Chapter’s Introduction

7.2 Merging Possibilities

 7.2.1 Reminder of the methods of chapters 5 and 6

 7.2.2 Merging possibilities

7.3 Proposal for a DC-balanced and RL limited encoding

 7.3.1 Proposal’s block diagram

 7.3.2 The Modified Bit Stuffing

 7.3.3 Proposal’s overhead

 7.3.4 Power Spectral Density Aspect

7.4 Chapter’s Conclusion

7.1 Chapter’s Introduction

In chapter 5, we proposed a low overhead method which bounds the Run

Length (RL) to the desired value. In chapter 6 we proposed a low overhead

method which bounds the Running Disparity (RD) to the desired value. As we

showed earlier, chapter 6 method bounds the RL as well, but the RL bound

depends on the RD bound which might not be enough. Bounding the RD to +/-

10 for example will bound the RL to 20 which could be considered a high value.

This chapter’s purpose is to propose a line coding that enables choosing the

desired bounds for the RD as well as for the RL by merging both methods (of

chapter 5 and 6) together with some modification.

84

We note that the modified bit stuffing we propose can be applied on any

balanced data to ensure transitions and without disrupting the Running Disparity

(it can be added for example after a standard polarity-bit coding).

7.3.3 Proposal’s Overhead

The Modified Bit Stuffing (MBS) adds two bits instead of one for the

standard bit stuffing procedure. The MBS Overhead (MBSO) should normally,

if applied immediately after scrambling, be twice the overhead of the standard

bit stuffing presented in table 5.1.

However, the MBS is applied after balancing the data, and balancing the data

creates transitions and bounds the RL to a value that is RDbounds dependent as

we saw in chapter 6. The MBSO depends then also on the RDbounds ensured by

the balancing block. Some examples are illustrated in table 7.1 below and more

overhead results will be presented in chapter 8.

Balancing BO

(Balancing’s
Overhead)

MBS RL

Bound

(Modified

Bit

Stuffing)

MBSO

(Modified Bit

Stuffing’s

Overhead)

TO

(Total

Overhead)

T S RD

Bounds

2 2 +/- 3 14.27 % 5 3.13 % 17.4 % *

3 2 +/-4 9.05 % 6 1.65 % 10.7 %

5 2 +/- 6 5.32 % 5 5.43 % 10.75 %

7 6 +/- 10 2.66 % 10 0.11 % 2.77 %

15 10 +/-20 1.03 % 8 0.71 % 1.75 %

64 64 +/- 96 0.11 % 7 1.56 % 1.67 %

 (*) equivalent to 8b10b in RL and RD bounds

Table 7.1 DC-balanced and RL-limited line coding’s overhead examples

85

As we can see in table 7.1, to have the same equivalent of 8b10b encoding

in RL and RD bounds, we get an overhead of 17.4% whereas 8b10b encoding

has 25% overhead, which is more than 7% overhead reduction.

If we release the constraints on the RL and/or the RD bounds, we can have a

much lower overhead.

7.3.4 Power Spectral Density Aspect

To verify that the presented solution does not harm the randomization aspect

given by scrambling, we plot the PSD of the Vcm generated by encoding the data

according to our proposal in figure 7.3 and we compare it with scrambling-only.

We can clearly see that the PSD plots are very similar. The proposed DC-

balanced and RL-limited line coding does not eliminate the random aspect.

Figure 7.3 PSD of the Vcm of the proposed solution vs. scrambling’s PSD
at 10 GHz frequency

86

7.4 Chapter’s Conclusion

In this chapter we presented a novel Low Overhead, Run Length Limited and

DC-balanced line coding methodology.

The presented line coding has 7% less overhead than 8b/10b encoding’s

overhead for the same RD and RL bounds. If we release the constraints on the

RD and the RD bounds, the overhead of the proposed encoding drastically

decreases.

In addition to its low overhead characteristic, the presented method offers

scalability; the RD and RL bounds are completely programmable and adaptive.

A transmitter can encode the data according to the receiver’s RL and RD

requirements.

We note that the variable data length due to this proposal can be problematic

to the PHY layer’s framing, a proposal to variable length data is added in Annex

G.

87

88

89

Chapter

8 Experimental Results

8.1 Chapter’s Introduction

8.2 Double scrambling (method 1) PSD simulation

8.3 More overhead simulation results

 8.3.1 Scrambling + bit stuffing (method 2) overhead simulation

8.3.2 Scrambling + balancing + modified bit stuffing (method 4)

overhead simulation

8.4 VHDL model and gate-count estimation

8.5 Eye diagrams results and comparison

 8.5.1 Eye diagrams on DC-coupled channel

 8.5.2 Eye diagrams on AC-coupled channel

8.6 Chapter’s Conclusion

8.1 Chapter’s Introduction

This chapter’s purpose is to show the simulation results of the four methods

we presented in chapters 4, 5, 6 and 7 which are summarized in table 8.1.

Method 1: Double Scrambling (Maxrepetition)

 Purpose: eliminate data repetition for low EMI

Method 2: Scrambling + Bit Stuffing(RLbound)

 Purpose: bound the run length for clock and data recovery

Method 3: Scrambling + Balancing(RDbounds)

 Purpose: bound the running disparity to reduce baseline wander

Method 4: Scrambling+Balancing(RDbounds)+Modified Bit Stuffing(RLbound)

 Purpose: bound both the run length and the running disparity

Table 8.1 Summary of the encoding methods presented in this thesis

90

The rest of this chapter is organized as follows:

In paragraph 8.2, we highlight the peaks reduction in the Power Spectral

Density (PSD) of the common mode voltage (Vcm) thanks to double scrambling

(method 1).

In paragraph 8.3, we give more overhead simulation results for the

“scrambling + bit stuffing” (method 2) and for “scrambling + balancing + bit

stuffing” (method 4).

In paragraph 8.4, we give gate count hardware estimation of the proposed

methods based on a VHDL model we designed.

In paragraph 8.5 we show the different eye diagrams for methods 2, 3 and 4

based on Matlab/Simulink simulation using the S-parameters of a DC-coupled

channel and an AC-coupled channel. We then highlight the efficiency of the

proposed methods.

Paragraph 8.6 summarizes this chapter.

We note that every simulation in this chapter that includes scrambling is done

with the following LFSR polynomial:

G(X) = X23 + X21 + X16 + X8 + X5 + X2 + 1 with seed value 1D-BFBCh.

The 2nd scrambling polynomial used for the simulations of the proposed low

EMI method is:

G’(X) = X16 + X5 + X4 + X3 + 1 with seed value 1FFFFh.

8.2 Double scrambling (method 1) PSD

simulation

As we saw in paragraph 2.3.2, redundancy and repetitive patterns have a

direct impact on the Power Spectral Density (PSD) of the Vcm, which is a

93

In figure 8.4 we plot the PSD of pattern a. and pattern b.

Figure 8.4 PSD of an EMI killer packet before and after applying the

“double scrambling” method (slew rate = 50% of UI, time shift = 3% of
UI, voltage mismatch between Dp and Dn 5% of swing)

In figure 8.4, we can see that the peaks (in red) before applying the “double

scrambling” method (method 1) have been reduced by almost 10 dBm/Hz after

applying the proposed method (PSD in blue).

Conclusion

Reducing the repetitions has an obvious positive effect on the power spectral

density of the common mode voltage. Thanks to the “double scrambling”

method (method 1), we can reduce the peaks of an EMI killer packet by about

10 dBm/Hz.

94

8.3 More overhead simulation results

8.3.1 Scrambling + bit stuffing (method 2) overhead simulation

In chapter 5 we presented the “scrambling + bit stuffing” method (method

2), we calculated the theoretical overhead and compared it with a simulation on

picture data. The picture’s data had a specific distribution of 1’s and 0’s and we

wish to make a simulation on different data distribution.

On Matlab, we generate frames with different distribution of 1’s and 0’s

using the “rand” function. For each distribution, 200 frames of 2048 bits each

are generated. We encode the generated frames using bit-stuffing only and then

using the “scrambling + bit stuffing” method (method 2) we proposed, we

calculate the overhead for each case and averaging is then made. Figure 8.5.a.

shows the overhead of the bit-stuffing only and figure 8.5.b shows the overhead

of our proposal (bit stuffing after scrambling).

95

Figure 8.5 Bit Stuffing Overhead for: a. Non-Scrambled data / b.

Scrambled data

In figure 8.5.a, we can see that the overhead is distribution-dependent and

very similar to the theoretical graph in figure 5.3. When the data is scrambled,

the bit stuffing’s overhead is independent from the data’s 1’s and 0’s

96

distribution and is very low as we can see in figure 8.5.b. The exact values are

added to the ones in table 5.1 and are merged in table 8.2 as follows:

N 3 4 5 6 7 8 9 10

Theory 14,29 % 6.67 % 3.23 % 1,59 % 0,79 % 0,39 % 0,20 % 0,10 %

Image 16.65 % 7.13 % 3.33 % 1.61 % 0.79 % 0.39 % 0.19 % 0.09 %

Random 17.11 % 7.06 % 3.49 % 1.67 % 0.76 % 0.31 % 0.10 % 0.05 %

Table 8. 2 “scrambling + bit stuffing” method theoretical, image and
random data’s overhead

8.3.2 Scrambling + balancing + modified bit stuffing (method 4)

overhead simulation

The “scrambling + balancing + modified bit stuffing” method (method 4) is

constituted of 2 blocks which adds overhead: the Balancing block and the

Modified Bit Stuffing (MBS) block. The Total Overhead (TO) could then be

written as follows:

TO = BO + MBSO (8.1)

Where BO is the Balancing block’s overhead

And MBSO is the MBS block’s overhead

The values of the BO where presented in table 6.1 (not exhaustive) and some

values of the MBSO and the TO were presented in table 7.1. The MBSO is

RDbounds-dependent (because of the balancing’s block) and of course, RLbounds -

dependent (the N value at which the modified bit stuffing is executed). More

detailed MBSO values as a function of the RDbounds and RLbounds are presented

in table 8.3.

The Total overhead as a function of the RDbounds and RLbounds are presented

in table 8.4.

97

3 4 5 6 7 8 9 10

+/- 3 31.6 10.75 3.10 0.43 0 0 0 0

+/- 4 32.35 11.85 4.57 1.71 0.49 0.07 0 0

+/- 5 32.54 12.39 5.08 2.07 0.79 0.28 0.07 0.08

+/- 6 32.66 12.85 5.41 2.31 1.01 0.41 0.16 0.05

+/- 7 33.45 13.58 5.89 2.53 1.05 0.45 0.17 0.05

+/- 8 33.41 13.74 6.00 2.65 1.17 0.52 0.22 0.09

+/- 9 33.42 13.84 6.10 2.73 1.22 0.55 0.24 0.09

+/- 10 33.56 14.04 6.24 2.82 1.27 0.58 0.26 0.11

+/- 15 33.56 14.23 6.52 3.00 1.42 0.68 0.32 0.13

+/- 20 33.47 14.23 6.56 3.08 1.47 0.71 0.34 0.15

+/- 40 33.39 14.32 6.64 3.167 1.55 0.77 0.38 0.18

+/- 60 33.37 14.31 6.65 3.17 1.56 0.77 0.38 0.18

+/- 96 33.35 14.30 6.65 3.18 1.57 0.79 0.39 0.19

Table 8.3 Modified Bit Stuffing Overhead (MBSO) in % for different
RD and RL bounds / MBSO = f(RDbound, RLbound)

3 4 5 6 7 8 9 10

+/- 3 45.87 25.02 17.37 14.70 14.27 14.27 14.27 14.27

+/- 4 41.40 20.90 13.62 10.77 9.55 9.12 9.05 9.05

+/- 5 39.14 18.99 11.68 8.67 7.39 6.88 6.68 6.68

+/- 6 37.98 18.18 10.73 7.64 6.33 5.73 5.48 5.37

+/- 7 37.77 17.91 10.21 6.85 5.37 4.77 4.49 4.38

+/- 8 37.05 17.38 9.65 6.30 4.81 4.16 3.86 3.73

+/- 9 36.46 16.89 9.15 5.78 4.27 3.60 3.28 3.14

+/- 10 36.22 16.70 8.90 5.49 3.94 3.25 2.92 2.77

+/- 15 35.07 15.74 8.02 4.51 2.93 2.18 1.83 1.64

+/- 20 34.47 15.24 7.56 4.08 2.48 1.72 1.35 1.15

+/- 40 33.80 14.72 7.05 3.57 1.96 1.18 0.78 0.59

+/- 60 33.57 14.52 6.86 3.38 1.77 0.98 0.58 0.38

+/- 96 33.46 14.42 6.77 3.30 1.69 0.90 0.51 0.30

Table 8.4 Total Overhead in % for different RL and RD bounds /
TO = f(RDbound, RLbound)

99

Bus width Gate count

8 bits 340 Gates

16 bits 880 Gates

32 bits 3000 Gates

Table 8.5 Gate count estimation of the bit stuffing block for different
bus width

We can see the small gate count of the proposed solution. With the increased

hardware complexity of today’s chips, few hundreds of gates are considered

negligible.

“Scrambling + balancing” (method 3) and “scrambling + balancing + bit

stuffing” (method 4) are estimated to have a hardware complexity of the same

order of magnitude as “scrambling + bit stuffing” (method 2).

8.5 Eye diagrams results and comparison

8.5.1 Eye diagrams on DC-coupled channel

In this section, we simulate on Matlab/Simulink using the S-parameters of a

DC-coupled PCB (Printed Circuit Board) channel, data being encoded with

different encoding methods. The data distribution used for this simulation is

80% of 0’s and 20% of 1’s. At first, we show in figure 8.7 the eye diagram of

non-encoded data vs. 8b10b encoded data’s eye at 10 GHz. The non-encoded

data’s eye is completely shifted from the baseline because of the non-balanced

data distribution. It is considered closed.

100

Figure 8.7 Eye diagrams on the receiver’s side for a simulation of 10
Kbits on a DC-coupled channel without equalization, 800 mV transmitter
swing for: a. data non-encoded at 10GHz / b. data 8b/10b encoded at 10

GHz

From figure 8.7, we can see the interest of line coding on the eye diagram.

Now we wish to plot the eye diagrams for the “scambling + bit stuffing”

(method 2) for RLbound = 5 (or N = 5, same bound ensured by 8b/10b encoding)

and compare it with 8b/10b encoding. For this purpose, we make two

comparisons:

 Comparison 1: eye diagrams comparison for a same link frequency of 10

GHz. In this case, 8b/10b throughput is 8 Gbps (using equation 5.2) whereas

“scrambling + bit Stuffing” (method 2) throughput is 9.66 GHz

(corresponds to 3.5% overhead for N = 5)

 Comparison 2: eye diagrams comparison for the same target throughput

of 8 Gbps. In this case, the link’s frequency when using 8b/10b encoding

should be 10 GHz whereas when using “scrambling + bit Stuffing” (method

2) for RLbound = 5, the frequency of the link should be 8.28 GHz

The eye diagrams are illustrated in figure 8.8 as follows:

101

Figure 8.8 Eye diagrams on the receiver’s side for a simulation of 10
Kbits on a DC-coupled channel without equalization, 800 mV transmitter

swing for: a. data encoded with method 2 at 10GHz / b. data 8b/10b
encoded at 10 GHz / c. data encoded with method 2 at 8.28 GHz / d. data

8b/10b encoded at 10 GHz

From figure 8.8, we can see that “scrambling + bit Stuffing” (method 2) gives

an eye opening centered at the baseline (due to scrambling’s effect) but it is less

opened than 8b/10b encoded data’s eye at the same frequency. In this case,

8b/10b’s better eye comes at the cost of lower throughout (1.66 Gbps less than

method 2 throughout). For the same target throughout, method 2 gives the best

eye opening.

Conclusion: for DC-coupled channels, using “scrambling + bit Stuffing”

(method 2) could be better than using 8b/10b encoding.

102

8.5.2 Eye diagrams on AC-coupled channel

In this section, we simulate on Matlab/Simulink using the S-parameters of

an AC-coupled PCB (Printed Circuit Board) channel having a coupling

capacitor of 5 pF, data being encoded with different encoding methods. The data

distribution used for this simulation is 80% of 0’s and 20% of 1’s.

We make 3 comparisons:

 Comparison 1: “scrambling + bit Stuffing” (method 2) for RLbound = 5

(same RL bound as 8b/10b encoding) vs. 8b/10b encoding at the same

target throughput of 8 Gbps. Method 2 runs at 8.28 GHz (using equation

5.2) and 8b/10b runs at 10 GHz (using equation 5.2).

 Comparison 2: “scrambling + balancing + modified bit Stuffing”
(method 4) for RDbounds = +/-3 and RLbound = 5 (same RD and RL bounds

ensured by 8b/10b encoding) vs. 8b/10b encoding at the same frequency

of 10 GHz. Method 4 throughput is 8.5 Gbps (corresponding to 17.4%

overhead and using equation 5.2) whereas 8b/10b throughput is 8 Gbps

(corresponding to 25% overhead).

 Comparison 3: “scrambling + balancing + modified bit Stuffing”
(method 4) for RDbounds = +/-3 and RLbound = 5 (same RD and RL bounds

ensured by 8b/10b encoding) vs. 8b/10b encoding at the same target

throughput of 8 Gbps. Method 4 runs at 9.3 GHz (corresponding to 17.4%

overhead and using equation 5.2) whereas 8b/10b runs at 10 GHz

(corresponding to 25% overhead).

The eye diagram results of this comparison are illustrated in figure 8.9 as

follows:

103

Figure 8.9 Eye diagrams on the receiver’s side for a simulation of 400 Kbits on a AC-coupled

channel (C = 5pF and R = 50 Ω), 800 mV transmitter swing for: a. data encoded with method 2 at
8.28GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 4 at 10 GHz / d. data

8b/10b encoded at 10 GHz / e. data encoded with method 4 at 9.3 GHz / f. data 8b/10b encoded at
10 GHz

104

From figure 8.9, we can see from comparison 1 that “scrambling + bit

Stuffing” (method 2) might not be enough when using an AC-coupled channel

because the Running Disparity for this proposal is not bounded. “Scrambling +

balancing + modified bit Stuffing” (method 4), with RD bounded to +/-3 and

RL to 5 has almost the same eye opening as 8b/10b encoded data at the same

frequency and with a better throughput. For the same target throughout,

“Scrambling + balancing + modified bit Stuffing” (method 4) offers the best eye

opening.

8.6 Chapter’s conclusion

In this chapter we showed the positive effect of the “double scrambling

encoding” presented in chapter 4 on the PSD of the common mode voltage,

which means EMI reduction.

We also presented more overhead simulation results for the “scrambling +

bit stuffing” line coding and the “scrambling + balancing + bit stuffing” line

coding presented in chapters 5, 6 and 7.

We made a VHDL model for the “scrambling + bit stuffing” line coding and

showed the low hardware overhead and complexity of the presented solution.

The “Scrambling + balancing” (method 3) and “scrambling + balancing + bit

stuffing” (method 4) are estimated to have a hardware complexity of the same

order of magnitude as “scrambling + bit stuffing” (method 2).

We made eye-diagrams simulations on DC-coupled and AC-coupled

channels and made a comparison with 8b/10b encoding and verified that the

solutions we presented performed well and meet our expectations in terms of

eye diagram opening.

105

106

107

Chapter

9
Conclusion

High Speed Serial Links (HSSLs) are major actors in mobile devices and

networking, and their bandwidth is still facing an exponential increase to satisfy

the users’ requirements. Line coding is a very important step when designing a

HSSL because it has a direct impact on the bandwidth efficiency and on the data

transmission over the link as we showed in the problem statement chapter. The

line coding must help in reducing EMI, the Run Length (RL) and the Running

Disparity (RD) while having the lowest possible bandwidth overhead.

In the state of the art’s chapter, we overviewed the bit stuffing which is one

of the most optimized RL-limited line coding methods and we showed its

drawbacks. Bit stuffing’s overhead is data-dependent and can reach high values

when the data has a specific distribution. We then overviewed the 8b/10b

encoding which is a widely used data coding because it ensures a RL bounded

to 5 and a RD bounded to +/- 3, however, at the cost of 25% bandwidth

overhead. We also showed that data scrambling has good characteristics in

randomizing, creating transitions and reducing the RD of the raw data, but

scrambling does not ensure any bounds for both the RL and the RD, nor

randomization. We finally showed that the polarity-bit coding can offer a

bounded RD at a low overhead cost. However, for small RD bounds, the

polarity-bit coding’s overhead is very high and becomes less competitive

compared to 8b/10b encoding for example.

In this thesis, we proposed 4 novel encoding methods.

108

In chapter 4, we proposed a reduced EMI method (double scrambling,

method 1) that ensures the elimination of repetitive sequences (that are the cause

of data-dependent EMI) by re-scrambling repetitive packets after the first

scrambling block. The repetitive packets selection is mandatory to ensure the

good functioning of the method.

In chapter 5, we showed that scrambling before bit stuffing can reduce the

bit stuffing overhead to its minimum value and make the overhead predictable,

independent of the raw data’s distribution. So we proposed a low overhead RL-

limited line coding (Scrambling + bit stuffing, method 2) that has a low

overhead down to 3.5% for a maximum RL of 5, the same as 8b/10b encoding’s

RL bound which comes at the cost of 25% bandwidth overhead. The proposed

line coding offers scalability; the RL-bound can be programmable based on the

CDR (Clock and Data Recovery) unit requirements. This can allow more

overhead reduction, down to 0.1% for a maximum RL of 10.

In chapter 6, we proposed a low overhead DC-balanced line coding

(scrambling + balancing, method 3) that can bound the RD to low values, with

a low overhead. This encoding is based on aperiodic frames polarity inversion

after scrambling (but scrambling is not mandatory). Thanks to aperiodic

frames, this method allows significant overhead reduction over the existing

methods; 14.3% is the overhead necessary to limit the RD to +/- 3, whereas with

8b/10b the cost is 25% for the same RD bound. To limit the RD to +/- 96, the

proposed method has an overhead of 0.11%, whereas the polarity-bit coding has

an overhead of 1.56% for the same bounds. Scalability is also a feature of this

method and allows choosing the desired RD limit.

The method we proposed in chapter 7 merges the methods proposed in

chapters 5 and 6 to build a programmable low overhead, Run Length limited

and DC-balanced line coding (scrambling + balancing + modified bit

stuffing, method 4). Scrambling is advised to be applied to the data first, the

109

balancing method of chapter 6 is then applied on the scrambled data, and finally

a modified bit stuffing is applied as a final stage. The modified bit stuffing

scheme was proposed to not disrupt the RD of the balanced data. This method

is also programmable to the desired RD and RL bounds. For example, to limit

the RL to 5 and the RD to +/- 3 which are the same equivalent of the 8b/10b

encoding, the overhead is 17.4%, whereas the 8b/10b cost is 25%. If the RL and

RD bounds constraints are released, we can still have decent bounds with a very

low overhead.

With the multitude of the existing High Speed Serial Links (HSSLs) and the

large domain of applications, the line coding presented in this thesis is perfectly

adaptable to every case. And with the increasing demand for throughput, the

line coding methods presented in this thesis can allow bandwidth increase for a

specific link frequency. Reducing the frequency for a same target throughput

could be another clever choice to make which enables reducing the power

consumption, the complexity of the design, the noise etc…

110

111

Bibliography

[1] ‘4 milliards de smartphones et tablettes dans le monde en 2017’
www.frenchweb.fr

[2] Credo Announces First 56G SerDes Technology Based on

Conventional NRZ Modulation www.design-reuse.com

[3] MIPI Alliance www.mipi.org

[4] The OSI Model's Seven Layers Defined and Functions Explained

https://support.microsoft.com/kb/103884

[5] J. Chandrasekhar, E. Engin, M. Swaminathan, K. Uriu and T. Yamada,

“Noise Induced Jitter in Differential Signaling”, 58th Electronic
Components and Technology Conference (ECTC), 2008.

[6] C. Wang and J.L. Drewniak, “Quantifying the Effects on EMI and SI
of Source Imbalances in Differential Signaling”, IEEE International
Symposium on Electromagnetic Compatibility, 2003.

[7] E. McCune and P. Lefkin, “Manage EMI from high-speed digital

interfaces”, January 17, 2014, www.edn.com

[8] R. Imran and M. Islam, “Industrial Modified Digital Scrambler &
Descrambler System", HCTL Open Science and Technology Letters,

June 2013.

[9] J. Redouté and M. Steyaert, “A CMOS Source-Buffered Differential

Input Stage with High EMI Suppression”, 34th European Solid-State

Circuits Conference (ESSCIRC), 2008.

[10] H. Lee, “An Estimation Approach to Clock and Data Recovery”, thesis
dissertation, November 2006.

[11] Silicon Labs, “Jitter Attenuation – choosing the right Phase-locked

Loop Bandwidth”, 2010

[12] R. Leonowich, “Phase-Locked Loop System With Compensation For

Data-Transition-Dependent Variations In Loop Gain”, US. Patent
5,315,270, May 24, 1994.

http://www.frenchweb.fr/
http://www.design-reuse.com/
http://www.mipi.org/
https://support.microsoft.com/kb/103884
http://www.edn.com/

112

[13] L. Devito, J. Newton, R. Croughwell, J. Bulzacchelli, F. Benkley, “A
52 MHz and 155 MHz Clock-Recovery PLL”, IEEE International
Solid-State Circuits Conference, 1991.

[14] T. Lee and J.F. Bulzacchelli, “A 155-MHz Clock Recovery Delay- and

Phase-Locked Loop”, IEEE journal of solid-state circuits, vol 27,

December 1992.

[15] M. Hsieh and G.E. Sobelman, “Architectures for Multi-Gigabit Wire-

Linked Clock and Data Recovery”, IEEE circuits and Systems

Magazine, fourth quarter 2008.

[16] H. Johnson, “When to use AC Coupling”, High-Speed Digital Design

Online Newsletter: Vol. 4 Issue 15, 2001.

[17] R. Lavoie, “Understanding the blocking capacitor effect on the HD/SD
pathological signals”, Brioconcept Application Note: AN-01(rev 0.1),

2008.

[18] “Choosing AC-Coupling Capacitors”, Maxim Integrated Application

Note: HFAN-1.1, rev. 1, April 2008.

[19] Y. Dong et al. “AC-Coupling Strategy for High-Speed Transceivers of

10Gpbs and Beyond”, IFIP International Conference on Very Large
Scale Integration, VLSI - SoC 2007.

[20] MIPI® Alliance Specification for Low Latency Interface (LLI),

Revision 1.0.

[21] MIPI® Alliance Specification for Low Latency Interface (LLI),

Revision 2.0.

[22] PCI Express Base Specification, Revision 2.1.

[23] PCI Express Base Specification, Revision 3.0.

[24] Universal Serial Bus 3.0 Specification, Revision 1.0.

[25] J. Saadé, F. Pétrot, A. Picco, J. Huloux, A. Goulahsen, “A System-level

Overview and Comparison of Three High-Speed Serial Links: USB

3.0, PCI Express 2.0 and LLI 1.0”, IEEE 16th symposium on Design

and Diagnostic of Electronic Circuits and Systems, DDECS 2013.

113

[26] D. Miller, P. Watts, A. Moore, “Motivating future interconnects: a
differential measurement analysis of PCI latency”, Proceedings of the
5th ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, 2009.

[27] Universal Serial Bus Specification, Revision 2.0

[28] P.A. Franaszek and A.X. Widmer, “Byte oriented DC balanced 8B/10B
partitioned block transmission code”, U.S. Patent 4 486 739, December
4, 1984.

[29] P.A. Franszek and A.X. Widmer, “A DC-Balanced, Partitioned-Block,

8B/10B Transmission Code”, IBM Journal of research and
development, Volume 27, Number 5, September 1983.

[30] H. Johnson, “Killer Packet”, High-Speed Digital Design Online

Newsletter: Vol. 5 Issue 7, 2002.

[31] D.E. Knuth, “Efficient Balanced Codes”, IEEE transactions on
Information Theory, vol it-32, no.1, January 1986.

[32] A. Nazemi et al., “A 2.8 mW/Gb/s Quad-Channel 8.5-11.4 Gb/s Quasi-

Digital Transceiver in 28 nm CMOS”, Symposium on VLSI Circuits,
2013.

[33] W. Qian, M.D. Riedel, H. Zhou and J. Bruck, “Transforming
Probabilities with Combinational Logic”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2011.

[34] “Geometric Series”
http://classes.yale.edu/fractals/CalcTutorials/PowerSer/GeomSer/GeomSer.pdf

[35] H. Shi, V. Echevarria, W. T. Beyene and X. Yuan, “EMI Evaluation of
a Differential Signaling Interconnect at 3.2 Gbps”, IEEE 14th Topical
Meeting on Electrical Performance of Electronic Packaging, 2005.

[36] X. Duan, B. Archambeault, H. Bruens and C. Schuster, “EM emission
of differential signals across connected printed circuit boards in the

GHz range”, IEEE International Symposium on Electromagnetic
Compatibility (EMC), 2009.

http://classes.yale.edu/fractals/CalcTutorials/PowerSer/GeomSer/GeomSer.pdf

114

[37] T Matsushima, T. Watanabe, Y. Toyota, R. Koga and O. Wada,

“Prediction of EMI from two-channel differential signaling system

based on imbalance difference model”, IEEE International Symposium
on Electromagnetic Compatibility (EMC), 2010.

[38] G. Pitner et al., “EMI Sources from Mode Conversion in a Telco
System High-Speed SERDES”, Proceedings 60th Electronic

Components and Technology Conference (ECTC), 2010.

[39] T. Koo, H. Kang; J. Ha, E. Koh and J Yook, “Signal integrity
enhancement of high-speed digital interconnect with discontinuous and

asymmetric structures for mobile applications”, IEEE International
Symposium on Electromagnetic Compatibility (EMC), 2013.

[40] M. Pajovic, J. Savic, A. Bhobe and Z. Xiaoxia, “The gigahertz two-

band common-mode filter for 10-Gbit/s differential signal lines”, IEEE
International Symposium on Electromagnetic Compatibility (EMC),

2013.

[41] F. Michel, M. Steyaert, “Differential input topologies with immunity
to electromagnetic interference”, Proceedings of the 37th Solid-State

Circuits Conference (ESSCIRC), 2011.

[42] S. Connor, B. Archambeault and M. Mondal, “The impact of common
mode currents on signal integrity and EMI in high-speed differential

data links”, IEEE International Symposium on Electromagnetic
Compatibility (EMC) 2008.

[43] M.H. Alser and M.M. Assaad, “Design and modeling of low-power

clockless serial link for data communication systems”, National
Postgraduate Conference (NPC), 2011.

[44] D.G. Kam et al., “Is 25 Gb/s On-Board Signaling Viable?”, IEEE

Transactions on Advanced Packaging, Vol. 32, No.2, may 2009.

[45] B. Hong, C. Shin and D. Ko, “Emulation Based High-Accuracy

Throughput Estimation for High-Speed Connectivities: Case Study of

USB2.0”, 48th Design Automation Conference (DAC), 2011.

[46] B.E. Boos, “High Speed Digital Signal Compensation on Printed

Circuit Boards”, thesis dissertation, January 2004.

115

[47] P.V.Y. Jayasree, J.C. Priya, G.R. Poojita and and G. Kameshwari,

“EMI Filter Design for Reducing Common-Mode and Differential-

Mode Noise in Conducted Interference”, International Journal of

Electronics and Communication Engineering, Vol. 5, No. 3, 2012.

[48] M. Mansuri, “Low-Power Low-Jitter On-Chip Clock Generation”
thesis dissertation, 2003.

[49] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code (CRC)
Polynomial Selection For Embedded Networks”, Preprint: The
International Conference on Dependable Systems and Networks

(DSN), 2004.

[50] C.H. Heymann, H.C. Ferreira and J.H. Weber, “A Knuth-based RDS-

minimizing multi-mode code”, IEEE Information Theory Workshop
(ITW), 2011.

[51] A. Al-Rababa'a, D. Dube and J.-Y. Chouinard, “Using bit recycling to
reduce Knuth's balanced codes redundancy”, 13th Canadian Workshop
on Information Theory (CWIT), 2013.

[52] V. Skachek and K.A.S. Immink, “Constant Weight Codes: An
Approach Based on Knuth's Balancing Method”, IEEE Journal on
Selected Areas in Communications, Vol. 32, 2014.

116

117

Annex A

How does scrambling balance the data

Scrambling is a XOR (eXclusive OR) operation between the raw data (the

data to scramble) and the output of an LFSR (Linear Feeback Shift Register)

also called PRBS (Pseudo-Random Binary Sequence).

Fig A.1. Scrambling’s representation

The raw data is considered to be unknown, so the distribution of “ones” and

“zeroes” cannot be determined and their respective probabilities are considered

to be random.

But on the other side, the output of an LFSR is known to be uniformly

distributed, and the probability of 1’s is equal to the probability of 0’s.

Now the question is: What is the probability distribution of 1’s and 0’s

after the XOR operation?

We denote by P the probability of 1’s and Q the probability of 0’s.

As mentioned before, the LFSR generates patterns with the probabilities

PLFSR = QLFSR = 0.5.

From [33], the probability after a XOR operation could be calculated from

the truth table of the XOR operation. Table A.1 shows the truth table with the

different probabilities and Figure A.1 illustrates a XOR operation between the

LFSR’s pattern having PLFSR = 0.5 and Raw Data pattern with unknown

118

probability of ones PRAW. The probability to be determined is the probability of

ones after the XOR operation denoted by PXOR.

Table A.1. XOR truth table [33]

The probabilities indicated in Table A.1 are calculated through the following

logic:

The probability of having a 0 after a XOR could be obtained by multiplying

the probabilities of having both the inputs x and y at 0. The corresponding

probability is qx.qy which is (1 - px)(1 – py). Same is for the rest.

Now we want to determine PXOR while having the inputs with probabilities

PRAW and PLFSR. From the truth table, the probability of 1’s after the XOR could

be given by the following equation:

PXOR = (1 – PRAW) PLFSR + PRAW(1 – PLFSR)

PXOR = PLFSR + PRAW – 2*PRAW*PLFSR

For PLFSR = 0.5 this gives PXOR= PLFSR = 0.5 and is independent of the PRAW

Thereby, the probability distribution that comes from XORing any raw data

with a uniformly distributed LFSR pattern is PXOR = QXOR = 0.5.

We shall note that even though the scrambling balances the data, it does not

guarantee any running disparity bounds.

120

 Π11(1 + P + P2 + …) + Π01(1 + P + P2 + …) = 1

 (1 + P + P2 + …)(Π11+ Π01) = 1

According to Geometric Series [34], for any number r, if |r |<1:

Thereby, from :

− (Π11+ Π01) = 1 → Π11+ Π01 = 1 – P

According to Fig B.1:

Π11 = P*Π01 + P*Π02+ P*Π03+…. P*Π0i + …. = P* Σ Π0i

Π11 = P*(1 + P + P2 + …)*Π01

Π11 = − Π01 if we preplace this in :

− Π01 + Π01 = 1 – P → Π01 = (1 – P)2 = 0.25

 and symmetrically, Π11 = (1 – P)2 = 0.25

Now Π01 and Π11 are known, we can calculate from and the probability

of each state and each run length as follows:

Probability of a run length of 5 consecutive identical bits:

 PRL(5) = Π05 + Π15 = P4* Π11 + P4* Π01 = 0.0312

0.0312 is the probability of happening in 1 unit. To calculate in how many bits

this will happen, we use the following rule:

0.0312 → 1 unit
1 time → X bits?

X = 1/0.0312 = 32.0513 bits or around 8 bytes

121

We can deduce that a run length of 5 consecutive identical bits will happen

theoretically in average after scrambling once every 8 bytes.

The same calculation is done for the rest of the run lengths according to the

following formula:

PRL(i) = Π0i + Π1i

The results are illustrated in table B.1 as follows:

Table B.1 Run length theoretical average occurrence after scrambling

Run Length
Occurs in Theoretical

average (Bytes)

5 4

6 8

7 16

10 128

14 2 K

18 32 K

20

:

:

128 K

:

:

122

Annex C

Calculating the probability of a repetitive pattern

In this annex we consider we want to calculate the probability of a pattern of

length L bits, to be repeated M times in a row, after scrambling.

For this purpose, we consider L = 2 and M = 2, which is one of the easiest

cases.

There are 16 possible states in a window of 2*2 (the repetition window M*L)

as follows and the repeated states are highlighted:

00 00
00 01

00 10

00 11

01 00
01 01

01 10

01 11
10 00

10 01

10 10
10 11

11 00

11 01

11 10
11 11

We consider, after scrambling, that all the 16 states have equal probability (

because P = Q = 0.5). The probability of a repetitive pattern to happen for L =

2 and M = 2 is 4/16.

4 corresponds to all the possible states that can be formed by a pattern of

length 2 (00, 01, 10 or 11) which is 22 or more precisely 2L.

16 corresponds to all the cases that can be formed by a window of length 2x2

(or M*L) which is 22x2 or more specifically 2L*M.

Finally, the probability of a pattern of length L to be repeated M times (EMI

Killer Packet) can then be written as follows:

P (L, M) = ∗

123

Annex D

Re-Scrambling of a selected repetitive packet

As we saw in chapter 4, the probability of a repetitive packet (EMI Killer

Packet) after scrambling is low and was calculated in Annex C. this probability

is considered as Ɛ, which is a small fraction of 1.
However, we consider that after re-scrambling the repetitive packet a second

time, the probability of having a repetitive packet again is Ɛ*Ɛ. In this annex,

we determine this particular Ɛ*Ɛ case.

We consider the data after the 1st scrambling stage generates the following

data: 10 10, we consider this as a pattern of length 2 repeated 2 times (small

values for the sake of simplicity) and we re-scramble this pattern a 2nd time

(according to the method we proposed in chapter 4) with a polynomial and we

look at the pattern after the 2nd scrambling stage.

All the possible 2nd scrambling patterns (PRBS) and all the possible data after

2nd scrambling’s (10 10 XORed with the PRBS) results are cited as follows:

Data PRBS
After 2nd Scrambling
(Data XOR PRBS)

10 10

00 00 10 10

00 01 10 11

00 10 10 00

00 11 10 01

01 00 11 10

01 01 11 11

01 10 11 00

01 11 11 01

10 00 00 10

10 01 00 11

10 10 00 00

10 11 00 01

11 00 01 10

11 01 01 11

11 10 01 00

11 11 01 01

124

The repetitive patterns after scrambling happen according to the above table

only when PRBS pattern is repetitive.

The PRBS pattern can be repetitive for small L and M values, but for higher

pattern lengths (i.e. a pattern of 8 bits) the repetition cannot exist if the PRBS is

well chosen.

Conclusion:
The probability of a repetitive pattern after a second scrambling stage is 0 for

relatively large pattern lengths, and they cannot even be designed if the Pseudo

Random Binary Sequence (generated by the Linear Feedback Shift Register) is

well chosen.

126

Π01 = Q*Π11 + Π12

Π01 = Q*Π11 + P*Π11 (according to)

 Π01 = Π11

On the other side, we know that:

 ∑� ��= +∑� ��= =

 Π01*(1+ Q + Q2 + … + QN-1) + Π11*(1+ P + P2 + … + PN-1) = 1

 Π01*A+ Π11*B = 1 Where Π01 = Π11

 Π01*(A+B) = 1 or Π11*(A+B) = 1

 Π01 = Π11 = +

From geometric series [34], for any number r :

 gives = − − and = − − where P = Q = 0.5 after

scrambling

The probability of the state N corresponds to the overhead of the bit stuffing

because a bit is added when the state N is reached. The probability of the state

N could be written as follows:

 � � = � + � � � = − � + − �

And finally, the Bit Stuffing Overhead BSO could be written as follows:

 = − � + − �

Where � = � = + , = − − and = − −

Ex for N = 5, A= B= 1.937 / � = � = 0.258 / BSO(5) = 0.0322 = 3.22 %

128

we are on the state ‘+2’, we will stay on state +2 with a probability of ½ (2 states
out of 4 possible for the packet S).

Deducing the overhead equation:

The overhead due to T = 2 and S = 2 comes from the added polarity-bit. The

polarity-bit will be added when we are on the states +2 or -2 with RD(S) = +/-

2. There will be not bit added when RD(S) = 0 so this probability should be

subtracted. The balancing overhead for T = 2 and S = 2 can be written then as

follows:

BO(2,2) = Π+2 + Π-2 – ½ *Π+2 - ½ *Π-2

 Calculating the probabilities:

 The probabilities could be calculated using the Markov chain transition

matrix as follows:

The columns and rows correspond to the states, and the crossing of each

column and row corresponds to the probability of transition from the specific

state to the other. The matrix could be written as follows and we will call it Y.

Y = (
 / // // // // /)

The different states could be written in a matrix of one row:

(-2 -1 0 +1 +2)

To find the probability of state ‘-2”, we will do the following matrix
multiplication:

Π-2 = (1 0 0 0 0) * YX where X is a sufficiently big value that makes

 Π-2 stable after a specific X value.

Π-2 = (1 0 0 0 0) * Y100 = 0.1667 (calculation done on Matlab)

-2 -1 0 1 2

-2 1/2 0 1/2 0 0

-1 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0

1 0 0 1/2 0 1/2

2 0 0 1/2 0 1/2

129

 Π+2 = (0 0 0 0 1) * Y100 = 0.1667

 BO(2,2) = Π+2 + Π-2 – ½ *Π+2 - ½ *Π-2

 BO(2,2) = 0.1667 = 16.67 %

According to theory, the overhead due to the proposed balancing method for

T = 2 and S = 2 is 16.67 %. The simulation results gave 14.27 %.

Example 2: T = 3 and S = 2 (RD bounded to +/- 4)

Y =

(

/ // // // // // // /)

Π-3 = (1 0 0 0 0 0 0) * Y100 = 0.10

BO(3,2) = Π+3 + Π-3 – ½ *Π+3 - ½ *Π-3 = 0.10 = 10%

Example 3: T = 4 and S = 2 (RD bounded to +/- 5)

Y =

(

/ // // // // // // // // /)

Π-4 = (1 0 0 0 0 0 0 0 0) * Y100 = 0.0714

BO(4,2) = Π+4 + Π-4 – ½ *Π+4 - ½ *Π-4 = 0.0714 = 7.14 %

130

Example 4: T = 5 and S = 2 (RD bounded to +/- 6)

Y =

(

/ // // // // // // // // // // /)

Π-5 = (1 0 0 0 0 0 0 0 0) * Y100 = 0.0556

BO(5,2) = Π+5 + Π-5 – ½ *Π+5 - ½ *Π-5 = 0.0556 = 5.66 %

Example 5: T = 5 and S = 4 (RD bounded to +/- 7)

Y =

(

/8 / /8/ // // // // // // // // //8 / /8)

Π-5 = (1 0 0 0 0 0 0 0 0) * Y100 = 0.0417

BO(5,4) = Π+5 + Π-5 – 3/8*Π+5 - 3/8*Π-5 = 0.0521 = 5.21 %

