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Abstract 

 

Thanks to their routing simplicity, noise, EMI (Electro-Magnetic 

Interferences), area and power consumption reduction advantages over parallel 

links, High Speed Serial Links (HSSLs) are found in almost all today’s System-

on-Chip (SoC) connecting different components: the main chip to its 

Inputs/Outputs (I/Os), the main chip to a companion chip, Inter-Processor 

Communication (IPC) and etc… Serial memory might even be the successor of 

current DDR memories. 

However, going from parallel links to high-speed serial links presents many 

challenges; HSSLs must run at higher speeds reaching many gigabits per second 

to maintain the same end-to-end throughput as parallel links as well as satisfying 

the exponential increase in the demand for throughput. The signal’s attenuation 

over copper increases with the frequency, requiring more equalizers and 

filtering techniques, thereby increasing the design complexity and the power 

consumption. 

One way to optimize the design at high speeds is to embed the clock within 

the data, because a clock line means more routing surface, and it also can be 

source to high EMI. Another good reason to use an embedded clock is that the 

skew (time mismatch between the clock and the data lanes) becomes hard to 

control at high frequencies. Transitions must then be ensured inside the data that 

is sent on the line, for the receiver to be able to synchronize and recover the data 

correctly. In other words, the number of Consecutive Identical Bits (CIBs) also 

called the Run Length (RL) must be reduced or bounded to a certain limit. 

Another challenge and characteristic that must be bounded or reduced in the 

data to send on a HSSL is the difference between the number of ‘0’ bits and ‘1’ 

bits. It is called the Running Disparity (RD). Big differences between 1’s and 
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0’s could shift the signal from the reference line. This phenomenon is known as 

Base-Line Wander (BLW) that could increase the BER (Bit Error Rate) and 

require filtering or equalizing techniques to be corrected at the receiver, 

increasing its complexity and power consumption.  

In order to ensure a bounded Run Length and Running Disparity, the data to 

be transmitted is generally encoded. The encoding procedure is also called line 

coding. Over time, many encoding methods were presented and used in the 

standards; some present very good characteristics but at the cost of high 

additional bits, also called bandwidth overhead, others have low or no overhead 

but do not ensure the same RL and RD bounds, thus requiring more analog 

design complexity and increasing the power consumption. 

In this thesis, we propose a novel programmable line coding that can perform 

to the desired RL and RD bounds with a very low overhead, down to 10 times 

lower that the existing used encodings and for the same bounds. First, we show 

how we can obtain a very low overhead RL limited line coding, and second we 

propose a very low overhead method which bounds the RD, and then we show 

how we can combine both techniques in order to build a low overhead, Run 

Length Limited, and Running Disparity bounded Line Coding.  
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Chapter 

1 
Introduction 

 

Smartphones and tablets have emerged in the last decade as an essential part 

of our lives.  The number of applications handled is increasing and the quality 

of service provided to the user is still improving, resulting in more and more on-

board hardware components, design complexity and bandwidth increase. One 

of the main challenges is then the power consumption, especially when focusing 

on a mobile device and its battery life, in addition to the worldwide 

environmental impact of the power consumption when expecting 4 billion 

smartphones and tablets by 2017 [1].  

Essential elements that directly affects the performance of mobile devices 

are High Speed Serial Links (HSSLs). HSSLs connect the different components 

of a mobile device; the Application Processor (AP) to the modem or a 

companion chip, the AP to the camera or the display, the AP to the mass storage 

device, the RFIC (Radio Frequency Integrated Circuit) to the modem and etc…  

HSSLs are also used in laptops and computers as well as in networking. This 

results in a variety of HSSLs because each application have different 

requirements, and different protocols are designed to fulfill their needs. 

In this thesis, a system-level overview on high-speed serial links is made, 

with special focus on three protocols: the Universal Serial Bus (USB), the 

Peripheral Component Interconnect express (PCIe) and the Low Latency 

Interface (LLI). We will make a comparison between the different parameters 

and justify their field of use. 
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With the increasing demand for bandwidth, the speed of HSSLs is doubling 

every two to three years presenting many challenges to the designers in terms 

of complexity and power consumption. The design must then be optimized as 

much as possible. 

One of the parameters that directly affects the bandwidth and the 

performance of a HSSL is the line coding. In many, if not most of the HSSLs, 

the data to transmit on the link is encoded to ensure two main characteristics: a 

bounded Run Length (RL), which means that a certain number of consecutive 

identical bits must not be exceeded so the data contains enough transitions. The 

receiver benefits from the transitions to synchronize and recover the clock and 

the data correctly. The second characteristic that the encoding must bound is the 

Running Disparity (RD), which means that the difference between the numbers 

of transmitted 0’s and 1’s must not exceed a specific limit to reduce the 

BaseLine Wander (BLW) which is the signal shifting from the zero reference. 

The BLW closes the eye diagram (which is the superposition of all the bits of a 

signal) and might create sampling errors when recovering the data. 

For those reasons, the line coding intervenes to present solutions. However, 

Line coding comes at the cost of added bits also called overhead, affecting the 

throughput. Over time, many encodings have been used in the standards, some 

present very good characteristics but at the cost of high overhead, reducing the 

bandwidth efficiency of the link. Other encodings have low overhead but do not 

ensure the same bounds for RL and RD and require analog components such as 

filters and equalizers to compensate. This means more design complexity and 

power consumption. 

In this thesis, an overview on the existing methods which bound the RL and 

the RD is made. We will highlight their advantages and their drawbacks. Then 

we will present an optimized low overhead method that bounds the Run Length.  

Another main contribution of this thesis is a low overhead method that bounds 
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the Running Disparity with an overhead down to 10 times lower than the 

existing methods, and for the same bounds. After presenting both methods 

separately, we will show how we can combine them to build a low overhead, 

run length limited and running disparity bounded line coding. 

In addition to its low overhead characteristic, other advantages of the line 

coding proposed in this thesis will be highlighted such as providing 

interoperability between links with different RL and RD requirements as well 

as early errors detection.  

 

Thesis Organization 

The remainder of this thesis is organized as follows: 

Chapter 2, “Problem Statement”, explains in details today’s High Speed 

Serial Links challenges. We will focus on the line coding’s effect on the 

performance of HSSLs and the need for a new line coding. 

Chapter 3, “State of the art”, is divided into two main sections; the first one 

presents the state of the art of HSSLs focusing on three of today’s HSSLs’ 

protocols. The second section presents the state of the art of the encodings that 

were proposed and used in HSSLs, we will name their advantages and 

drawbacks and show the overhead-performance tradeoff. 

In Chapter 4, “Low EMI encoding method”, we present a line coding that 

ensures reduced EMI that could be caused by the data. 

In Chapter 5, “Low overhead run length limited encoding Method”, we will 

present an overhead-optimized line coding to limit the Run Length and evaluate 

its advantages over existing equivalent methods. 

In Chapter 6, “Low Overhead DC-Balanced encoding method”, we will 

present an overhead-optimized line coding, but this time to bound the Running 
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Disparity. A comparison will also be made with the existing equivalent 

methods. 

Chapter 7, “DC-Balanced and run length limited line coding” presents a 

method to combine both encoding methods presented in chapters 5 and 6, to 

build a low overhead, RL limited and RD limited Line Coding. 

In Chapter 8, “Experimental results”, we present the overhead results of the 

proposed line coding based on simulation, we show the resulting eye diagrams, 

the VHDL model and the gate count estimation, we compare those results with 

other encodings and highlight the advantages of our proposal. 

In Chapter 9 we conclude and summarize the work presented in this thesis. 
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Chapter 

2 Problem Statement 

2.1 Chapter’s Introduction 

2.2 High Speed Serial Links 

 2.2.1 High Speed Serial Links’ variety 

 2.2.2 HSSLs’ layering model 
 2.2.3 Focusing on the physical layer 

2.3 Line Coding’s effect on data transmission 

 2.3.1 Introduction 

 2.3.2 Data’s impact on EMI 
 2.3.3  Data’s Run Length impact 

2.3.4  Data’s Running Disparity impact 

2.4 Chapter’s Conclusion 

 

2.1   Chapter’s Introduction 

With the increase demand for throughput, High Speed Serial Links are now 

facing important challenges to transmit the data over a channel. In less than 15 

years, the frequency has drastically increased from 500 Mbps (Megabits per 

second) to 16 Gbps (Gigabits per second) as we can see in figure 2.1 and copper-

based channels are still used in most HSSL as transmit medium because of their 

many advantages in terms of area and cost over optical links.  
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of a mobile device as we can see in Figure 2.3 and now joins more than 280 

companies. 

 

 

Figure 2.3   MIPI® System Diagram for mobile devices [3] 

In Figure 2.3, we can find the different HSSLs connecting the components: 

the LLI (Low Latency Interface), the UniPro (or UniPort, Unified Protocol), the 

DigRF (Digital RF), CSI (Camera Serial Interface), DSI (Display Serial 

Interface), M-PCIe (Mobile Peripheral Component Interconnect express, also 

called low power PCIe), and SSIC (SuperSpeed Inter-Chip, or the low power 

USB 3.0). Those protocols sometimes use different physical layers. 
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5. Session: allows session establishment, maintenance and termination: 

allows two application processes on different machines to establish, use and 

terminate a connection. 

4. Transport: provides end to end communication control, splits the message 

into smaller units (if not already small enough), and passes the smaller units 

down to the network layer. This layer can also provide message 

acknowledgment, traffic control and session multiplexing when there’s many. 

3. Network: controls the operation of the subnet, deciding which physical 

path the data should take based on network conditions, priority of service, and 

other factors. 

2. Data Link: provides error-free transfer of data frames from one node to 

another over the physical layer by errors checking and sometimes correction. 

This layer also provides link establishment and termination, frame traffic 

control, sequencing, acknowledgement, and delimiting. 

1. Physical: describes the electrical/optical, mechanical, and functional 

interfaces to the physical medium, and carries the signals for all of the higher 

layers. This layer provides data encoding and physical medium attachment. 

HSSL’s role in a system is then to route the different components and provide 

reliable data transmission and reception at the desired speed over the channel. 

 

2.2.3   Focusing on the physical layer 

In this paragraph, we will focus on the lowest layer of HSSLs. In figure 2.5 

we can see a simplified schematic of the Physical Layer (PHY).  
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then made parallel by the de-serializer, de-encoded, and then forwarded to the 

upper layer. 

 

2.3   Line Coding’s effect on data transmission 

2.3.1   Introduction 

The most important measures to evaluate the performance of HSSLs are the 

BER (Bit Error Rate) and the eye diagram, which is the plot of the superposition 

of all the bits during transmission as we can see in figure 2.6.  The eye diagram 

is judged by its vertical and horizontal opening. The protocol specification 

defines the minimum opening required at the receiver. The transmission should 

respect the specification so the system could ensure the defined BER.  

Timing Jitter and the Signal-to-Noise Ratio (SNR) are two of the factors that 

affect the BER and the eye diagram’s opening. Data encoding has a direct 

impact on both and in this section we’re going to see how. Transmitted data can 

also contribute to increase Electro-Magnetic Interferences (EMI), causing errors 

in neighboring lanes or even neighboring devices. We will start by explaining 

how the data can increase EMI, and then we’ll show the impact of the RL and 

RD of the data on the transmission.  

 

Figure 2.6   Eye diagram example 
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However, AC-coupling has a big drawback; after the transition period for the 

signal to stabilize, the capacitive effect can make the signal shift up and down 

(charging and discharging the coupling capacitor) creating Baseline Wander, 

closing the eye diagram and degrading the SNR. This could be explained 

differently; the coupling capacitor forms with the termination resistor a high-

pass RC filter that attenuates low frequency components formed by runs of 

consecutive bits, but more precisely by the difference between 1’s and 0’s, 

which is the running disparity. This is why one of the main interests of a line 

coding is to reduce or bound the RD.  

Because it is a capacitance charge/discharge phenomenon, BLW due to the 

coupling capacitor can be estimated. For the sake of simplicity, we consider a 

single ended receiver (Dp or Dn). The simplified schematic is shown in figure 

2.13. 

 

Figure 2.13   Simplified AC-coupling 

The BLW also creates timing Jitter as we can see in figure 2.14. This type of 

Jitter is part of the Pattern Dependent Jitter (PDJ) (also called Data Dependent 

Jitter (DDJ) or Inter-Symbol Interference (ISI)) and from [17] and [18] we can 

calculate both the BLW and the PDJ. 
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Figure 2.14   Baseline Wander and jitter introduced by the high pass filter 
[17] 

In figure 2.14, ∆V represents the BLW, and PDJ is the Jitter and they can be 

calculated according to the following equations: 

BLW = 0.5*Vpp(1-e-t/RC)   (2.2) 

 P③J = BLWl e (2.3)   with  slope = � .6T  (2.4) 

Where  t is the discharge time 

  Vpp is the peak-to-peak voltage (voltage swing) 

  R is twice Rt (considering the driver’s resistor) 

  C is the coupling capacitor 

and  Tr is the rise time (20% to 80% of the signal) 

The discharge time of the capacitor is represented by the signal being at the 

same level for a certain moment, this means consecutive identical 1’s. But when 

the signal goes to 0, this will recharge the capacitor for a certain duration. The 

charge or discharge time will then be represented by the difference between 

number of 1’s and 0’s which is the Running Disparity times the bit duration. 

The BLW can thus be written as follows: 

BLW = 0.5*Vpp(1-e-(RD*Tb)/(R*C))  (2.5) 

where  RD is the running Disparity 
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and  Tb is the bit time or 1/frequency 

Equation (2.3) shows that PDJ can be reduced by reducing the BLW. To 

reduce BLW, according to equation (2.5), we should increase the values of R 

and C. The resistor’s value should be adapted to the driver and the channel, so 

its value cannot be simply manipulated. When it comes to the value of the 

capacitor, the best is to have an infinite value. But the more the capacitor’s value 

gets bigger, the bigger is its surface and harder is the integration in the chip. On-

chip capacitance per lane is limited to a few picoFarads (pF) at best in practical 

real estate of chip area [19]. Another consequence from increasing the 

capacitor’s value is increasing the transition period, creating a high latency. R 

and C values are then forced by the system’s obligations and their negotiation 

margin is tight. When there’s no choice, filters and equalizers are used to 

counter the BLW’s effect adding more complexity, area and power 

consumption. More details are provided in the next chapter. 

Even when the transmitter and the receiver are DC-Coupled, BLW and PDJ 

exist, due to the channel and other factors, and are affected by the RD as we will 

observe later on. But it is more complex to get an estimation because it is 

channel-dependent and case-dependent. 

 

2.4   Chapter’s Conclusion 

As seen in this chapter, the redundancy, Run Length and the Running 

Disparity of the data have an immediate impact on signal’s integrity and system 

performance. For this reason, encodings have been designed to transform the 

raw data and limit or reduce the RL and the RD, but this comes at the cost of 

added bits called bandwidth overhead that sometimes reaches up to 25% of the 

initial size of the data, reducing the throughput. With the increasing demand for 

throughput, every bit sent on the link counts. Line coding is then a big challenge; 
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so is it possible to design a line coding that can bound the RD and the RL to low 

values with a low overhead? 

High Speed Links are also applied on a wide range on data communication 

as we saw earlier in this chapter and a big variety exists. The bounds to the RL 

and RD requested by the link could be variable and case-dependent. Is it then 

possible to design a programmable low overhead line coding that performs to 

the desired Run length and Running Disparity? 
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 3.3.3 The 8b/10b encoding 

 3.3.4 Data Scrambling 

 3.3.5 The Polarity Bit Coding 

 3.3.6 Summary of some existing encoding methods 

3.4 State of the Art’s Conclusion 

 

3.1   Chapter’s Introduction 

In the previous chapter we saw that a variety of high speed serial links exists 

to satisfy different types of applications, and then we saw the impact of the non-

coded data on a HSSL. 

This chapter is divided into two main parts: in the first part we will make a 

system-level comparison between three HSSLs that are used for three different 
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kinds of application: the Universal Serial Bus (USB), the Peripheral Component 

Interconnect express (PCIe) and the Low Latency Interface (LLI). We analyze 

their different parameters, we show the relation between these parameters and 

how improving one parameter could result in a degradation of another. Based 

on this analysis, our conclusion outlines the reason why USB is used for I/Os, 

PCIe is used for data hungry devices and LLI for memory sharing.   

In the second part of this chapter, we overview most of the existing line 

coding methods that were designed for NRZ signaling. We compare them and 

show the advantages and the drawbacks of each, then highlight the 

overhead/performance tradeoff. 

 

3.2   System-level comparison of three HSSLs: 

LLI, PCIe and USB 

3.2.1   The Low Latency Interface (LLI) 

One additional challenge in mobile phones industry is to reduce the 

electronic Bill of Materials (e-BoM). With today’s phone peripherals becoming 

more and more complex, as most of them are having their own CPU-DDR 

subsystem, reducing BoM is not a simple task. That’s why the Mobile Industry 

Processor Interface (MIPI®) Alliance developed the LLI 1.0 (Low Latency 

Interface 1.0) [20] [21] which is a serial interface that enables peripherals, like 

modems for example, to share the system’s main DDR located on the 

application processor’s side, which enables mobile phones manufacturers to 

remove the modem’s DDR and reduce the total phone’s cost. LLI 2.0 version 

extended the use of LLI and made it a general chip-to-chip interconnect. LLI is 

also used for Inter-Processor Communication (IPC). 
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More details about latency, throughput and others parameters comparison 

can be found in the overview we made in [25]. 

 

3.2.6   Comparison’s Summary 

Table 3.1 summarizes the overview. 

Parameter Protocols Advantages Consequences 

Differential Swing = 

800mV 

USB 

PCIe 

Long distances applications 

(cables) 
High power consumption 

Differential Swing = 

400mV 
LLI Low power consumption Short distances applications 

Memory mapping 
LLI 

PCIe 

Direct access to data 

(memory sharing 

possibilities) 

Occupying the CPU bus 

No memory mapping USB 
Not occupying the CPU 

bus 

No direct access to data (No 

memory sharing) 

Multi-lane scalability 
LLI 

PCIe 

Multiplying throughput and 

decreasing latency 

More power consumption and 

no external connectors 

possibility 

No multi-lane 

scalability 
USB 

External connectors 

possibility 

No throughput increasing 

possibility 

Low latency error retry 

time 
LLI 

Cache refill operations 

possibility 

Low data efficiency 

(throughput) 

High latency error 

retry time 

PCIe 

USB 

High data efficiency 

(throughput) 

No possibility for cache refill 

operations 

Time Framing QoS USB All devices are served High latency for interrupts 

Priority based QoS 
LLI 

PCIe 

Low latency for interrupts 

and for high priority 

operations 

Other devices or operations 

have to wait to be served 

Table 3.1    Overview Table of some HSSLs 

We conclude that USB with its intelligent software and hot plug feature 

allows easy Human Interface Device usage, and with its high throughput, it 

allows mass storage device usage. But with its high latency, high BER, and 

because USB is not memory mapped, it can allow neither memory sharing nor 

cache refill operations. PCIe with its intelligent NorthBrigde/ SouthBridge 

system design allows I/O connecting, and with its memory mapped instructions 

and its high throughput, even though it is latency-criticized [26], it allows data-
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hungry devices (like graphics card) to share the system’s main DDR when 

connected directly to the root complex and using up to 32 lanes to increase 

throughput and decrease latency. But using multi-lanes will increase power 

consumption which is an important issue in mobile applications. 

To allow DDR chip-to-chip sharing and cache refill operations inside mobile 

phones, and in order to enable manufacturers to remove the modem’s DDR and 

reduce the e-BoM, MIPI Alliance created the LLI featuring a low BER, low 

latency and low power consumption physical layer (the M-PHY), but at the cost 

of lower throughput efficiency. 

 

3.3   Line Coding’s State of the Art 

3.3.1   Introduction 

As mentioned in chapter 2, Line Coding is one of the biggest challenges in 

data transmission. That’s why there is a big variety of coding methods that were 

proposed over time, and it is quite difficult to go through all of them. 

As seen earlier in this chapter, HSSLs protocols add information to the data 

and decrease the efficiency before the PHY layer. Line coding must then be 

optimized as much as possible to not degrade the efficiency furthermore. 

 In this section, “line coding’s state of the art”, we will try to go through the 

most efficient line coding methods, and especially the ones implemented in 

HSSLs standards. 

The next paragraphs will overview the following line coding methods: the 

Bit Stuffing, the 8b10b encoding, the Scrambling and the polarity-bit coding. 
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Bit Stuffing is used in protocols such as CAN (Controller Area Network) that 

uses the NRZ signaling and does the BS with N = 5. BS is also used by the USB 

2.0 [27] that uses NRZI signaling and does the BS with N = 6 for consecutive 

1’s only, because a 0 already contains a transition in NRZI. 

We note that Bit Stuffing does not help in reducing the EMI and in spreading 

the spectrum. Repetitive patterns will stay repetitive with bit stuffing. Bit 

stuffing also does not help in reducing the RD. 

 

3.3.3   The 8b/10b encoding 

The 8b/10b encoding [28] [29] was introduced back in 1983 and has gained 

success because of its excellent characteristics. 8b/10b encoding is made via 

5b/6b and 3b/4b sub-block encoding for every byte to be transmitted. If we look 

at it in a different point of view, 8b/10b encoding transforms each data byte into 

a 10-bit symbol providing 210 = 1024 valid data words instead of 28 = 256 valid 

data words necessary to transmit an 8-bit information. Only the “best” 

combinations out of 1024 are chosen to represent the data bytes, i.e. the ones 

ensuring a Run Length limited to 5, and a Running Disparity bounded to +/- 3. 

In addition, 8b/10b encoding provides control symbols from the remaining 

combinations. The rest will be non-valid combinations used for errors detection. 

However, because of adding 2 bits to each byte, 8b/10b encoding has an 

overhead of 2/8 = 25%. With the increasing demand for bandwidth, 25% of 

overhead seems to be an important issue. 

8b/10b encoding helps in reducing by a factor of 2 the repetition of some 

bytes, but not all of them. There is then a positive effect on EMI but this might 

not be enough. 
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is from the same degree) should be carefully chosen to generate a good pseudo-

random sequence. In the simulations in this thesis, we will use polynomials that 

were implemented in famous standards and have been proven to provide good 

characteristics. 

 The Pseudo-Random Binary Sequence (PRBS) characteristics: 

An N-bit LFSR generates a repetitive PRBS of length 2N-1 bits. The PRBS 

pattern ensures a Run Length bounded to N bits. The PRBS provides equal 

probability of 1’s and 0’s. The Running Disparity of the PRBS pattern varies 

from a polynomial to another. An example of the X16 + X5 + X4 + X3 + 1 

polynomial with FFFFh as seed value is represented in Figure 3.9. 

 

 

Figure 3.9    RD representation of the PRBS generated by the polynomial: 

X16 + X5 + X4 + X3 + 1, seed value 1FFFFh 

Scrambled data’s characteristics: 

As mentioned before, scrambling is a XOR between the raw data and the 

PRBS sequence. The XOR operation was chosen because of its characteristics: 

 Binary data with any probability distribution of 1’s and 0’s, once XORed 

with a sequence of equal distribution of 1’s and 0’s, results in data 

(scrambled data) with equal probability of 1’s and 0’s. This isn’t the case 
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Figure 3.10   a. Percentage of 1’s before and after scrambling b. spectrum 
of the Vcm of the data before and after scrambling 

Balancing the number of 1’s and 0’s inside the data results in two major 

benefits: 

1. Scrambled data has statistically more transitions than raw data before 

scrambling especially if the raw data is very unbalanced in terms of 1’s and 

0’s. By using Markov Chains, we can get a theoretical estimation of the run 

length distribution. Table 3.2 summarizes the distribution from a RL of 5 to 
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a RL of 20. The values in Table 3.2 are deduced from the theoretical study 

in Annex B. We also made a simulation on long sequences of data and made 

a comparison. 

Run Length 
Occurs Theoretically in 

average (Bytes) 

Occurs according to our 
simulation 

Min/Average/Max (Bytes) 

5 4 1/8.45/26 

6 8 1/17/49 

7 16 2/35.6/100 

10 128 9/302/748 

14 2 K 128/6.34 K/19.3 K 

18 32 K 5.42 K/64.6 K/240.3 K 

20 
: 

128 K 
: 

5.7 K/262 K/784.3 K 
: 

Table 3.2    Run Length Distribution after scrambling 

2. Scrambling statistically reduces the Running Disparity especially if the raw 

data is not balanced. Figure 3.11 shows an example. 

 
Figure 3.11   Raw data’s disparity vs Scrambled data’s disparity (raw 

data distribution 80% of 0’s and 20% of 1’s, polynomial: X16 + X5 + X4 
+ X3 + 1, seed value FFFFh) 
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Scrambling’s advantages: 

To summarize, we can deduce the following advantages from scrambling: 

1. Scrambling helps in reducing EMI by randomizing the data and eliminating 

redundant patterns. 

2. Scrambling creates transitions by balancing the number of 1’s and 0’s. This 

is beneficial in clock and data recovery. 

3.  Scrambling reduces the Running Disparity, which means Baseline Wander 

reduction and Data Dependent Jitter reduction. 

4. Scrambling has 0% overhead. No bits are added to the transmission 

 

Scrambling’s drawbacks: 

Despite all of its advantages, scrambling has the following drawbacks: 

1. Scrambling could produce repetitive patterns that will cause peaks in the 

Vcm spectrum, causing EMI. We will call them EMI Killer packets. Even 

though their probability of happening is low, they could still happen. 

2. Scrambling creates transitions inside the data, but it does not ensure a 

guaranteed bound for the RL. Let’s suppose a CDR that can handle a 

maximum run length of 9. According to table 3.2, a run length of 10 happens 

theoretically every 128 bytes. An error could then occur on the recovery 

every 128 bytes requiring a retry and degrading system performance. Even 

when the CDR can handle big values of RL, patterns could be designed 

(aligned with the PRBS) to create hundreds of consecutive Identical Bits 

[30] that are known as killer packets. 
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3. Scrambling reduces the RD but it does not guarantee a certain bound. The 

RD could still reach high values that can go more than +/- 1000. In addition 

to analog filters that could be added to correct the BLW, Protocols like PCIe 

3.0 cut the transmission when the RD reaches high values and send special 

patterns to balance the RD. This also affects system performance and 

latency. 

Standards using scrambling: 

Many scrambling-based encodings have been implemented on HSSLs 

standards. The 64b/66b encoding used in 10G Ethernet uses scrambling and 

adds 2 bits “sync header” (‘10’ or ‘01’) to every 64 bits to ensure a transition 

and indicate whether the frame is control or data. PCIe 3.0 uses 128b/130b 

encoding using the same principle. USB 3.1 uses 128b/132b encoding adding 4 

bits sync header (‘1010’ or ‘0101’) enabling a single error in the sync header to 

be corrected without going through a retry. 

3.3.5   The Polarity Bit Coding 

The polarity bit coding is one of the most overhead-optimized methods that 

bounds the Running Disparity. Over time, DC-balanced codes have been 

introduced. In 1986, Knuth proposed a method [31] to construct frames with 

equal number of 0’s and 1’s. Knuth proved that any binary sequence of a 

specific size, could be balanced by inverting, at a specific bit position, all the 

rest of the sequence. The drawback of this method is that this particular bit 

position must be sent with the frame (and should be balanced as well) for the 

receiver to know how to reconstruct the original frame. This will add a relatively 

important number of bits for small frames. For large frames, the number of 

added bits is less important, but the RD could reach high values inside the frame 

before going back to zero. Other Knuth-based methods were proposed, but as 

far as we know, they did not solve the high overhead issue. 
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The simplest and the lowest overhead method is the polarity-bit coding. It 

consist of systematically adding 1 bit to a frame of a specific size to indicate 

whether it is inverted or not depending on the Cumulated RD (CRD) and the 

RD of the frame itself; i.e. if the CRD is positive, and the RD of the frame is 

positive as well, all the bits inside the frame will be inverted and the polarity bit 

will transmit the info to the receiver.  

The polarity bit coding is used by the 64b/67b encoding; 3 bits are added to 

the 64 bits of the frame: 2 bits (‘10b’ or ‘01b’) to ensure a transition and indicate 

whether the frame is raw data or control, and 1 polarity bit to indicate if the 64 

bits (which are scrambled) are inverted or not. The CRD bound ensured by such 

coding could be deduced from the worst case scenario according to equation 

(3.1): 

CRDbound = +/- ( FrameSize + FrameSize/2 )   (3.1) 

Which gives for the 64b/67b encoding CRDbound = +/- 96 for FrameSize = 64. 

The overhead cost for the CRD bound is 1/64 = 1.56 %. The total overhead cost 

is 3/64 = 4.687 %. 

3.3.6   Summary of some existing encoding methods 

The table below summarizes the line coding’s state of the art. 

Line Coding Standards Max RL RD Bound Overhead 

Bit Stuffing 
CAN 

USB 2.0 
5 
6 

N/A 
N/A 

0% to 20% 
0% to 16.6% 

8b/10b PCIe 2.0, USB 3.0 … 5 +/- 3 25 % 

 Scrambling-Based codings 

64b/66b 10G Ethernet 64 N/A 3.125 % 

128b/130b PCIe 3.0 128 N/A 1.562 % 

128b/132b USB 3.1 128 N/A 3.125 % 

 Scrambling + polarity bit based coding 

64b/67b Interlaken 64 +/- 96 4.687 % 

Table 3.3    Overview on some existing encoding methods 
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3.4   State of the Art’s Conclusion 

In the first part of this chapter we overviewed three High Speed Serial Links 

and we showed the differences on system-level justifying the variety of HSSLs 

protocols.  

In the Line Coding’s state of the art, we overviewed many encoding methods 

used in today’s standards. We showed how a line coding that bounds the RL 

and the RD to low values will have high overhead, and when releasing the 

constraints on RL and RD we can design a line coding with low overhead. 

Releasing the RL and RD constraints might result in more analog complexity.  

One interesting line coding which has no overhead is the scrambling. 

Scrambling has 0% overhead while providing good characteristics, but it does 

not guarantee randomization, or RL bounds, or RD bounds.  

In this thesis we propose methods that are able to benefit from scrambling’s 

advantages while guaranteeing randomization, RL bounds and RD bounds with 

a very low overhead. 
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Chapter 

4 
Low EMI encoding 

method 
4.1 Chapter’s Introduction 

4.2 Probability of a repetitive pattern 

4.3 Method to eliminate the probability of repetitive patterns 

 4.3.1 Re-scrambling all the data after the first scrambling 

 4.3.2 Re-scrambling with repetitive packets selection 

 4.3.3 Reduced EMI line-coding 

4.4 Chapter’s Conclusion 

 

4.1   Chapter’s Introduction 

Using Scrambling as a technique to reduce EMI is efficient. However, as we 

explained in chapter 3, scrambling could generate repetitive patterns that will 

end up increasing EMI. Repetitive patterns after scrambling could also be 

designed on purpose to break the system. 

In this chapter, we propose a technique that eliminates the possibility of 

generating or designing a repetitive pattern. 

 

4.2   Probability of a repetitive pattern 

The probability of having a repetitive pattern after scrambling is considered 

low. In Annex C we calculate the probability for a pattern of length “L” bits to 

be repeated “M” times after scrambling. This probability is given in equation 

(4.1): 
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       P (L, M) = ∗        (4.1) 

Where   L: length of the pattern in bits 

M: the number of repetition 

 

Example: 

Consider we want to calculate the probability of a byte to be repeated 5 

times in a row:  

P (8, 5) = 

88∗  = 
80 = 2.328 x 10-10 

This is the probability of happening in a time unit of 40 bits. For this 

repetition to happen once, we can calculate after how many bits this could 

happen as follows: 

P (L, M) →  L*M =40 bits 

1 occurrence → X bits? 

X = 40/ P (L, M) = 1.718 x 1011 bits 

This means that after scrambling, a byte can be repeated 5 times in a row 

once every 1.718x1011 bits. At 10 Gbits/s throughput, this will happen 

theoretically in average every 17 seconds (1.718x1011 bits/10x109 bits/s). 

 

As we saw in this section, the probability of a repetitive pattern is low, but it 

can happen rapidly depending on the link’s frequency and could generate EMI, 

creating errors in RF components or neighboring lanes of the same link. It is 

then a question of time.  
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If the critical pattern length and repetition number that could cause errors 

shows to happen rarely, i.e. a pattern of length 8 bits will be repeated 8 times 

every 14 years at 10 Gbits/s after scrambling, then scrambling can be good 

enough. 

With the increasing demand for bandwidth, repetitive patterns can happen 

more often, and the small number of repetitions could generate EMI. An error 

every few seconds or milliseconds can trigger the retry mechanism and degrade 

system performance. A protection from EMI killer packets (repetitive packets) 

after scrambling might then be a necessity. 

Another reason why there might be a need to ensure the protection from 

repetitive patterns is that they might be designed easily for attack purpose; once 

the scrambling polynomial is known, the PRBS sequence is also known. 

Patterns could be designed such as once XORed with the PRBS sequence, they 

generate repetitive patterns that will be source of high EMI.  

In the next section, we will present a method to eliminate the probability of 

a repetitive packet or the possibility of designing such packet. 

 

4.3   Method to eliminate the probability of 

repetitive patterns 

A good method to randomize a repetitive pattern is to scramble it. To 

randomize the repetitive packets after scrambling, we propose to scramble a 

second time. But should we re-scramble all the data after a first scrambling or 

should we re-scramble the repetitive packets only? 
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  is the state where a killer packet is generated after the scrambling of state 

 (a good packet resulting from the 1st scrambling). Its probability is: 

Ɛ*Prob(state 2) = Ɛ*(1- Ɛ) 

  is the state where a good packet is generated after the scrambling of state 

 (a good packet resulting from the 1st scrambling). Its probability is: (1- 

Ɛ)*Prob(state 2) = (1- Ɛ)*(1- Ɛ) 

To verify, the sum of the probabilities of states , ,  and  is 1. 

The probability of having a killer packet is the sum of the probabilities of states 

 and  which is: 

Prob(Killer) = Ɛ*Ɛ + Ɛ*(1- Ɛ) 

Prob(Killer) = Ɛ 

 

The probability of having a good packet is the sum of the probabilities of states 

 and  which is: 

Prob(good) = (1- Ɛ)*Ɛ + (1- Ɛ)*(1- Ɛ) 

Prob(good) = (1- Ɛ) 

 

Conclusion: 

The probability of an EMI killer packet and the probability of a good packet 

after applying a 2nd scrambler for all the packets of the 1st scrambling, are 

exactly the same as the probabilities of states  and . Therefore, there is no 

interest from applying a 2nd scrambling on all packets. 
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4.4   Chapter’s conclusion 

Scrambling is an efficient method to eliminate redundancy and give a 

random aspect to the spectrum of the data, randomizing the Vcm spectrum which 

is responsible of EMI in differential signaling. But scrambling could generate 

EMI killer packets. 

In this chapter, we introduced a new method to ensure reduced EMI. The 

proposed method consists of a first scrambler stage to scramble all the data. A 

repetition detection block forwards only the frames containing repetitive data to 

a second scrambling block. This block randomizes the repetitive data with a 

polynomial different than the first one.  

When EMI is a main constraint, the presented method eliminates the 

possibility of having a repetitive pattern or designing an EMI killer packet. The 

cost of the proposal is 1 additional bit for each frame. 
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 5.2.3 The minimum bit stuffing overhead 

5.3 Proposal for a low overhead Run Length limited encoding 

 5.3.1 Proposal’s block diagram 

5.3.2 Power Spectral Density Aspects 

 5.3.3 Proposal’s advantages 

5.4 Chapter’s Conclusion 

 

5.1   Chapter’s Introduction 

As we saw in chapter 3, two of the most used methods to limit the Run 

Length (RL) have two major drawbacks; the 8b/10b encoding bounds the RL to 

5 but has 25% overhead. The Bit Stuffing (BS) bounds the RL to the desired 

value (N), but the BS’s Overhead (BSO) is not predictable because it is data 

dependent, and it can reach high values that goes to 20% for N = 5 for example. 

In this chapter, we propose a line coding that can bound the Run Length with 

a very low overhead down to 8 times lower than 8b/10b’s overhead and down 

to 6 times lower than Bit Stuffing overhead and for the same RL bounds. 
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We denote by P the probability of 1’s, and Q the probability of 0’s. The blue 

circles in figure 5.2 represents the state of 1’s and the white ones represents 0’s.  

12 represents the state of 2 consecutive 1’s, and 1N represents the state of N 

consecutive 1’s. Same for the 0’s states. To go from a 1i state to another 1i+1 

state, or from 0i state to 11 state, the probability is P (the probability of 1’s). 

Conversely, to go from a 0i state to another 0i+1 state, or from 1i state to 01 state, 

the probability is Q (the probability of 0’s). 

If the bit stuffing is fixed to N, when we are on the state 1N , the only 

possibility is to go to the state 01 with a probability of 1. Same when we are on 

the state 0N , the only possibility is to go to the state 11 with the probability of 1 

because bit stuffing is performed for N consecutive identical bits. 

In Annex E we calculate from the above Markov chain the probability of 

having N consecutive identical bits, which is the sum of the probabilities of 

states 0N and 1N. This particular probability also represents the bit stuffing 

overhead, because a bit is added every time the states 0N and 1N are reached. 

The Bit Stuffing Overhead (BSO) for a Maximum Run Length of N can be given 

by equation (5.1): = − � + − �    (5.1) 

Where    Q = Probability of 0’s 

P = Probability of 1’s = 1-Q 

Π01 and Π11= Probability of the states 01 and 11 

In Annex E we also demonstrated that: � = � =  +  

Where   =  − −   and  =  − −  
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The Bit Stuffing’s overhead for a max RL of N can then be calculated 

depending on the data’s probability distribution of 1’s and 0’s (P and Q). This 

is illustrated in figure 5.3.  

 

Figure 5.3    Theoretical Bit Stuffing Overhead estimation 

5.2.3   The minimum Bit Stuffing Overhead 

From figure 5.3, we can see that the BSO is on its minimum values when P 

= Q = 0.5. This is illustrated in figure 5.4 and compared to the maximum and 

average BSO values and we can see the huge difference. 

 

Figure 5.4    Bit Stuffing minimum vs. Maximum Overhead for different 

N 
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N 3 4 5 6 7 8 9 10 

Theory 14,29 %  6.67 % 3.23 % 1,59 % 0,79 % 0,39 % 0,20 % 0,10 % 

Image 16.65 % 7.13 % 3.33 % 1.61 % 0.79 % 0.39 % 0.19 % 0.09 % 

Table 5. 1    RL-limited encoding proposal’s overhead 

 

5.3.2   Power Spectral Density Aspects 

To verify that the presented solution does not harm the randomization aspect 

given by scrambling, we plot the PSD of the Vcm generated by encoding the data 

according to our proposal in figure 5.6 and we compare it with scrambling-only. 

We can clearly see that the PSD plots are very similar. The presented RL-limited 

method does not eliminate the random aspect. 

 

Figure 5.6    PSD of the proposed RL limited method vs. PSD of 

Scrambling-only at 10 GHz frequency 

 

5.3.3   Proposal’s advantages 

The biggest advantage of the proposed line coding is its very low overhead. 

As we can see in table 5.1, to ensure the same RL bound as 8b10b encoding 

which is 5, our proposed method has an overhead of 3.23% whereas the 8b10b’s 

overhead is 25%. If we release the constraints on the RL bound, we can also 
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lower the overhead down to less than 1%. Practically, Low overhead offers 

many advantages for the designers or the users as follows: 

 

a. Improved bandwidth efficiency over 8b/10b encoding 

A link running at a specific frequency will benefit from an obvious 

improvement in throughput. The raw throughput (Th) as a function of the link’s 

frequency (LF) and the encoding’s overhead (OH) could be given by the 

following equation: ℎ = ��+ �     (5.2) 

An example of the raw throughput difference between 8b/10b encoding and 

the RL-limited encoding for N= 5 (OH considered 3.5 %, equivalent to 8b/10b 

encoding in RL bound) at different link frequencies are shown in figure 5.7. 

 

Figure 5.7    Raw Throughput comparison vs. Link frequency for data 

encoded with 8b/10b and the proposed RL-Limited encoding 

As we can see from the above figure, we can improve the throughput to many 

Gigabits per second (Gbps) thanks to the proposed encoding while keeping the 

same RL bounds. At 6 GHz link frequency, the raw throughput using our line 

coding is 1 Gbps better than when using 8b/10b encoding. At 12 GHz, we can 

gain up to 2 Gbps throughput.  
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b. Power consumption reduction 

One of the benefits from reducing the overhead is power consumption 

reduction. While the power consumption for the high speed links is generally 

given in mW/Gbps, one of the recent studies and implementations [32] 

estimates the power consumption per transmit/receive unit at 2.8 mW/Gbps. 

When the data is encoded, the power consumption (Pc) could be given by the 

following equation: 

Pc(encoded_data) = Pc(raw_data) + OH*Pc(raw_data) (5.3) 

If we consider we target a throughout of 10 Gbps, the power consumption 

compared to 8b/10b encoding could be given as follows: 

Target 

Throughput 

Power 

consumption per 

Gbps 

8b/10b encoded 

data power 

consumption 

Proposed 

encoding power 

consumption 

10 Gbps 2.8 mW 35 mW 28.98 mW 

We can see that we can save 6 mW per transmit/receive unit when using the 

line coding we propose in this chapter. 

 

c. Lane Count reduction over 8b/10b encoding 

Reducing the line coding’s overhead can enable in many cases lane count 

reduction. Multi-lanes is the feature of many protocols because it allows 

throughput improvement and multiplication. However, throughput 

multiplication might not be the protocol’s requirement because the protocol 

might need few Gpbs more to reach its target raw throughput. The proposed low 

overhead line coding might then enable lane count reduction. This is illustrated 

in figure 5.8 where we consider MIPI’s M-PHY physical layer running at High-

Speed Gear 4 (HSG4) which is 11.64 GHz. The figure illustrates the lanes 
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saving for different raw target throughput. We can see that we save up to 50 % 

of the Physical layer’s complexity and power consumption thanks to our 

encoding. 

 

 

Figure 5.8    Lane-count reduction thanks to our proposed RL-limited 
encoding in the case of MIPI’s M-PHY running at HSG4 (11.64 Gbps) 

 

 

Table 5.2 shows real use cases where lanes reduction and power/area saving 

could be done. 

 

Table 5.2    Real use cases that can benefit from lanes reduction 
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d. Reduce the CDR’s analog complexity 

As highlighted in paragraph 2.3.3, the lack of transitions inside the data can 

push designer to integrate analog solutions that could increase the clock 

recovery’s complexity up to twice. The proposed RL-limited solution enables 

hardware complexity reduction (which means area and power consumption) 

over encoding that are not RL-limited. 

e. Early Errors Detection 

Errors could be detected when the run length exceeds N (the maximum fixed 

by the proposed encoding) before forwarding the data to the upper layer (Data 

Link Layer) and CRC check. 

f. Interoperability 

This line coding also allows interoperability between CDR units having 

different RL requirements. i.e. a receiver can ask a transmitter to encode with 

bit stuffing for a specific N. This can happen at the link initialization process; 

an attribute can be allocated for this purpose. 

 

5.4   Chapter’s conclusion 

In this chapter we proposed a low overhead run length bounded line coding 

which combines the benefits of scrambling and bit stuffing.  

The proposed coding enables a run length bounded to 5 while having an 

overhead of 3.23% instead of 25% for 8b/10b for the same RL bound. This 

allows better throughput efficiency for the same link frequency, or reducing the 

frequency for a same target throughput. Throughput reduction can enable lane 

count saving up to 50%, which means 50% power consumption reduction of the 

physical layer which is the most power-hungry part of a High-Speed Serial link.  
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This line coding also allows reducing the CDR complexity, early errors 

detection and interoperability between CDR units having different run length 

requirements. 

We note that the variable data length due to this proposal can be problematic 

to the PHY layer’s framing, a proposal to variable length data is added in Annex 

G. 
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Low overhead            
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6.1 Chapter’s Introduction 

6.2 A Novel DC-balanced Line Coding 

 6.2.1 Introducing the method 

 6.2.2 Ensured Running Disparity Bounds 

 6.2.3 Ensured Run Length Bounds 

6.2.4 Conditions Required 

6.2.5 Power Spectral Density Aspect 

6.3 Overhead Estimation 

 6.3.1 Simulation-Based Overhead Estimation 

 6.3.2 Deducing the Overhead’s Equation 

6.4 Chapter’s Conclusion 

 

6.1   Chapter’s Introduction 

 The polarity-bit encoding is the most overhead optimized DC-balanced 

method as we saw in chapter 3. However, for small RD (Running Disparity) 

bounds, this method have a high overhead as illustrated in figure 6.1. 

As we can see, this method is only advantageous for high RD bounds. For 

the same RD bounds ensured by 8b/10b encoding (+/- 3), the polarity bit method 

adds 50% overhead whereas 8b/10b has 25% overhead. 
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Figure 6.1    Polarity-bit encoding’s overhead (deduced from equation 3.1) 

In this chapter, we will introduce a novel method which bounds the Running 

Disparity with a much lower overhead than the polarity-bit encoding for small 

RD bounds as well as for high RD bounds. This method has also an overhead 

significantly lower than 8b/10b’s overhead, for the same RD bounds. 

  

6.2   A Novel DC-balanced Line Coding 

6.2.1   Introducing the method 

Inverting bits is an efficient method to reduce the RD, but systematically 

inverting means systematically adding a polarity bit to indicate to the receiver 

if the frame has been inverted or not, which as we saw is not beneficial for small 

RD bounds. 

The method we propose consists of bits inversion using aperiodic frames. 

The RD of the transmitted data that we denote by CRD (Cumulated Running 

Disparity) is counted bit-by-bit on the transmitter’s side, and when the CRD 

reaches a certain threshold T, the RD of the next packet of Size ‘S’ bits is 

checked to see if the packet should be inverted, or not. A bit will be inserted 

after the S bits to indicate if they were inverted or not. Only when RD(S) = 0, 

there will be no bit added. In other words, the programming should be done 

according to the following logic: 
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will be when going from a CRD of –3 to a CRD of +3 with a RL of 6 ones, or 

inversely. The RL bounds could be given by the following equation: 

RLbounds = 2*CRDbounds = 2*(T + S/2)  (6.2) 

 

6.2.4   Conditions required 

To ensure the bounds mentioned in equation (6.1), condition 1 should be 

respected: 

Condition 1: T > S/2 

If T <= S/2, the S bits can push the RD out of the limits as follows: 

e.g. if T = 2 and S = 6 the CRD should be bounded to +/- 5. But suppose at 

a certain time we have CRD = +2 and RD(S) = -6. In this case the S bits won’t 

be inverted because they allow us to reduce the CRD. The CRD will the go 

down to -4, and with the polarity bit inserted (which will be 0) the CRD is now 

at -5. We should check then the next S bits again. Suppose the next bits are at 

“000111”, RD(S) = 0, the bits are not inverted and the CRD will then reach -8 

violating the +/- 5 bounds. If T > S/2, this cannot happen. 

The following conditions, 2, 3 and 4, should be respected in order to optimize 

the overhead as much as possible: 

Condition 2: S is even 

It is the only case where RD(S) could be equal to 0, enabling the encoding 

to not add a polarity bit and reducing the overhead. 

Condition 3: insertion of the polarity-bit after the S bits 

Inserting the polarity-bit at first will increase the overhead because it should 

be inserted also for the case where RD(S) = 0, whereas polarity-bit insertion 

after the S bits will allow the receiver to check the S bits first and know that 
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once RD(S) = 0, no polarity-bit has been inserted by the transmitter and 

overhead will be saved. 

Condition 4: Apply Scrambling before the proposed line coding 

This condition is optional but scrambling the data before applying the 

proposed DC-balancing will reduce the RD of the raw data. The proposed DC-

balancer will then intervene less adding less bits. A second reason to use 

scrambling is that it allows the overhead to be independent from the raw data’s 

distribution. 

 

6.2.5   Power Spectral Density Aspect 

To verify that the presented solution does not harm the randomization aspect 

given by scrambling, we plot the PSD of the Vcm generated by encoding the data 

according to our proposal in figure 6.6 and we compare it with scrambling-only. 

We can clearly see that the PSD plots are very similar.  The proposed DC-

balancer does not eliminate the random aspect. 

 

Figure 6.6    PSD of the Vcm of our proposed method vs. Scrambling’s 
PSD at 10 GHz frequency 
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6.3   Overhead Estimation 

6.3.1   Simulation-Based Overhead Estimation 

On Matlab, we generate 200 random frames of 400 Kbits each, and then 

apply the line coding we propose on scrambled frames. We then make the 

average of the overhead of the 200 frames. The results of the overhead is given 

in table 6.1. We also made a theoretical overhead estimation study in Annex F 

for some overhead values and the results are also shown in table 6.1. 

T S 
CRD 

bounds 
Simulation 
Overhead 

Theoretical Average 
Overhead 

2 2 +/- 3 14.27 % 16.67 % 
3 2 +/- 4 9.05 % 10.00 % 
4 2 +/- 5 6.60 % 7.14 % 
5 2 +/- 6 5.32 % 5.56 % 
5 4 +/- 7 4.32 % 5.21 % 
9 6 +/- 12 2.05 % -- 

16 16 +/- 24 0.80 % -- 
32 32 +/- 48 0.31 % -- 
64 64 +/- 96 0.11 % -- 

Table 6. 1    Proposed DC-balancer’s overhead 

An overhead comparison is given in figure 6.7 

 

Figure 6.7    Proposal’s overhead (green) compared to the polarity-bit 
encoding (blue), 8b/10b encoding and Interlaken’s protocol 
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The relation between the RD bounds and its corresponding Overhead (OH) 

is displayed in figure 6.8. In other terms, it could be written as follows: 

OH ≈ 0.66*|RDbounds|-1.39   (6.3) 

An important condition for equation 6.3 to work properly is that T and S 

values must be chosen to provide the lowest overhead. As mentioned earlier, 

this could be done by simulation. 

 

6.4   Chapter’s Conclusion 

Polarity-bit coding is a low overhead method which bounds the Running 

Disparity. However for small RD bounds, this method has a very high overhead 

that exceeds 8b/10b encoding’s overhead.  

In this chapter, we proposed a novel line coding which is able to bound the 

RD with low overhead even for small RD bounds. The presented method is 

based on aperiodic frames inversion, when necessary. The overhead simulations 

and the theoretical overhead have shown to be very low when compared to other 

existing line coding methods which bound the Running Disparity.  

As we saw in chapter 5, low overhead could enable lane count reduction (up 

to 50% saving in power, area and complexity) or bandwidth increase for better 

performance. 

Other advantages are the feature of the proposed DC-balanced encoding:  

 Scalability: the RD bounds could be chosen according to the 

application’s requirements 

 Early errors detection: an error could be detected whenever the RD 

exceeds the bounds 
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 Reduce the analog complexity: no (or less) filters will be needed to 

correct the baseline wander 

We shall note again that the Run Length is automatically bounded with our 

solution, but the RL bound depends on the RD bounds and is not scalable. In 

the next chapter we propose a scalable solution.    

We note as well that the variable data length due to this proposal can be 

problematic to the PHY layer’s framing, a proposal to variable length data is 

added in Annex G. 
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7 
DC-balanced and         
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Line Coding 
7.1 Chapter’s Introduction 

7.2 Merging Possibilities 

 7.2.1 Reminder of the methods of chapters 5 and 6 

 7.2.2 Merging possibilities 

7.3 Proposal for a DC-balanced and RL limited encoding 

 7.3.1 Proposal’s block diagram 

 7.3.2 The Modified Bit Stuffing 

 7.3.3 Proposal’s overhead 

 7.3.4 Power Spectral Density Aspect 

7.4 Chapter’s Conclusion 

 

7.1   Chapter’s Introduction 

In chapter 5, we proposed a low overhead method which bounds the Run 

Length (RL) to the desired value. In chapter 6 we proposed a low overhead 

method which bounds the Running Disparity (RD) to the desired value. As we 

showed earlier, chapter 6 method bounds the RL as well, but the RL bound 

depends on the RD bound which might not be enough. Bounding the RD to +/-

10 for example will bound the RL to 20 which could be considered a high value. 

This chapter’s purpose is to propose a line coding that enables choosing the 

desired bounds for the RD as well as for the RL by merging both methods (of 

chapter 5 and 6) together with some modification. 
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We note that the modified bit stuffing we propose can be applied on any 

balanced data to ensure transitions and without disrupting the Running Disparity 

(it can be added for example after a standard polarity-bit coding). 

 

7.3.3   Proposal’s Overhead 

The Modified Bit Stuffing (MBS) adds two bits instead of one for the 

standard bit stuffing procedure. The MBS Overhead (MBSO) should normally, 

if applied immediately after scrambling, be twice the overhead of the standard 

bit stuffing presented in table 5.1.  

However, the MBS is applied after balancing the data, and balancing the data 

creates transitions and bounds the RL to a value that is RDbounds dependent as 

we saw in chapter 6. The MBSO depends then also on the RDbounds ensured by 

the balancing block. Some examples are illustrated in table 7.1 below and more 

overhead results will be presented in chapter 8. 

Balancing BO 

(Balancing’s 
Overhead) 

MBS RL 

Bound 

(Modified 

Bit 

Stuffing) 

MBSO 

(Modified Bit 

Stuffing’s 

Overhead) 

TO 

(Total 

Overhead) 

T S RD 

Bounds 

2 2 +/- 3 14.27 % 5 3.13 % 17.4 % * 

3 2 +/-4 9.05 % 6 1.65 % 10.7 % 

5 2 +/- 6 5.32 % 5 5.43 % 10.75 % 

7 6 +/- 10 2.66 % 10 0.11 % 2.77 % 

15 10 +/-20 1.03 % 8 0.71 % 1.75 % 

64 64 +/- 96 0.11 % 7 1.56 % 1.67 % 

 (*) equivalent to 8b10b in RL and RD bounds 

Table 7.1    DC-balanced and RL-limited line coding’s overhead examples 
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As we can see in table 7.1, to have the same equivalent of 8b10b encoding 

in RL and RD bounds, we get an overhead of 17.4% whereas 8b10b encoding 

has 25% overhead, which is more than 7% overhead reduction.  

If we release the constraints on the RL and/or the RD bounds, we can have a 

much lower overhead.  

 

7.3.4   Power Spectral Density Aspect 

To verify that the presented solution does not harm the randomization aspect 

given by scrambling, we plot the PSD of the Vcm generated by encoding the data 

according to our proposal in figure 7.3 and we compare it with scrambling-only. 

We can clearly see that the PSD plots are very similar.  The proposed DC-

balanced and RL-limited line coding does not eliminate the random aspect. 

 

Figure 7.3    PSD of the Vcm of the proposed solution vs. scrambling’s PSD 
at 10 GHz frequency 
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7.4   Chapter’s Conclusion 

In this chapter we presented a novel Low Overhead, Run Length Limited and 

DC-balanced line coding methodology.  

The presented line coding has 7% less overhead than 8b/10b encoding’s 

overhead for the same RD and RL bounds. If we release the constraints on the 

RD and the RD bounds, the overhead of the proposed encoding drastically 

decreases. 

In addition to its low overhead characteristic, the presented method offers 

scalability; the RD and RL bounds are completely programmable and adaptive. 

A transmitter can encode the data according to the receiver’s RL and RD 

requirements. 

We note that the variable data length due to this proposal can be problematic 

to the PHY layer’s framing, a proposal to variable length data is added in Annex 

G. 
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Chapter 

8 Experimental Results 

8.1 Chapter’s Introduction 

8.2 Double scrambling (method 1) PSD simulation 

8.3 More overhead simulation results 

 8.3.1 Scrambling + bit stuffing (method 2) overhead simulation 

8.3.2 Scrambling + balancing + modified bit stuffing (method 4) 

overhead simulation 

8.4 VHDL model and gate-count estimation 

8.5 Eye diagrams results and comparison 

 8.5.1 Eye diagrams on DC-coupled channel 

 8.5.2 Eye diagrams on AC-coupled channel 

8.6 Chapter’s Conclusion 

 

8.1   Chapter’s Introduction 

This chapter’s purpose is to show the simulation results of the four methods 

we presented in chapters 4, 5, 6 and 7 which are summarized in table 8.1. 

Method 1: Double Scrambling (Maxrepetition) 

 Purpose: eliminate data repetition for low EMI 

Method 2: Scrambling + Bit Stuffing(RLbound) 

 Purpose: bound the run length for clock and data recovery 

Method 3: Scrambling + Balancing(RDbounds) 

 Purpose: bound the running disparity to reduce baseline wander  

Method 4: Scrambling+Balancing(RDbounds)+Modified Bit Stuffing(RLbound) 

 Purpose: bound both the run length and the running disparity 

Table 8.1    Summary of the encoding methods presented in this thesis 
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The rest of this chapter is organized as follows: 

In paragraph 8.2, we highlight the peaks reduction in the Power Spectral 

Density (PSD) of the common mode voltage (Vcm) thanks to double scrambling 

(method 1). 

In paragraph 8.3, we give more overhead simulation results for the 

“scrambling + bit stuffing” (method 2) and for “scrambling + balancing + bit 

stuffing” (method 4). 

In paragraph 8.4, we give gate count hardware estimation of the proposed 

methods based on a VHDL model we designed. 

In paragraph 8.5 we show the different eye diagrams for methods 2, 3 and 4 

based on Matlab/Simulink simulation using the S-parameters of a DC-coupled 

channel and an AC-coupled channel. We then highlight the efficiency of the 

proposed methods. 

Paragraph 8.6 summarizes this chapter. 

We note that every simulation in this chapter that includes scrambling is done 

with the following LFSR polynomial: 

G(X) = X23 + X21 + X16 + X8 + X5 + X2 + 1 with seed value 1D-BFBCh. 

The 2nd scrambling polynomial used for the simulations of the proposed low 

EMI method is: 

G’(X) = X16 + X5 + X4 + X3 + 1 with seed value 1FFFFh. 

 

8.2   Double scrambling (method 1) PSD 

simulation 

As we saw in paragraph 2.3.2, redundancy and repetitive patterns have a 

direct impact on the Power Spectral Density (PSD) of the Vcm, which is a 
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In figure 8.4 we plot the PSD of pattern a. and pattern b. 

 
Figure 8.4    PSD of an EMI killer packet before and after applying the 

“double scrambling” method (slew rate = 50% of UI, time shift = 3% of 
UI, voltage mismatch between Dp and Dn 5% of swing) 

 

In figure 8.4, we can see that the peaks (in red) before applying the “double 

scrambling” method (method 1) have been reduced by almost 10 dBm/Hz after 

applying the proposed method (PSD in blue). 

 

Conclusion 

Reducing the repetitions has an obvious positive effect on the power spectral 

density of the common mode voltage. Thanks to the “double scrambling” 

method (method 1), we can reduce the peaks of an EMI killer packet by about 

10 dBm/Hz.  

 

 

 

 

 



 

94 
 

8.3   More overhead simulation results 

8.3.1   Scrambling + bit stuffing (method 2) overhead simulation 

In chapter 5 we presented the “scrambling + bit stuffing” method (method 

2), we calculated the theoretical overhead and compared it with a simulation on 

picture data. The picture’s data had a specific distribution of 1’s and 0’s and we 

wish to make a simulation on different data distribution. 

On Matlab, we generate frames with different distribution of 1’s and 0’s 

using the “rand” function. For each distribution, 200 frames of 2048 bits each 

are generated. We encode the generated frames using bit-stuffing only and then 

using the “scrambling + bit stuffing” method (method 2) we proposed, we 

calculate the overhead for each case and averaging is then made. Figure 8.5.a. 

shows the overhead of the bit-stuffing only and figure 8.5.b shows the overhead 

of our proposal (bit stuffing after scrambling). 
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Figure 8.5    Bit Stuffing Overhead for: a. Non-Scrambled data / b. 

Scrambled data 

In figure 8.5.a, we can see that the overhead is distribution-dependent and 

very similar to the theoretical graph in figure 5.3. When the data is scrambled, 

the bit stuffing’s overhead is independent from the data’s 1’s and 0’s 
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distribution and is very low as we can see in figure 8.5.b. The exact values are 

added to the ones in table 5.1 and are merged in table 8.2 as follows: 

N 3 4 5 6 7 8 9 10 

Theory 14,29 %  6.67 % 3.23 % 1,59 % 0,79 % 0,39 % 0,20 % 0,10 % 

Image 16.65 % 7.13 % 3.33 % 1.61 % 0.79 % 0.39 % 0.19 % 0.09 % 

Random 17.11 % 7.06 % 3.49 % 1.67 % 0.76 % 0.31 % 0.10 % 0.05 % 

Table 8. 2    “scrambling + bit stuffing” method theoretical, image and 
random data’s overhead 

8.3.2   Scrambling + balancing + modified bit stuffing (method 4) 

overhead simulation 

The “scrambling + balancing + modified bit stuffing” method (method 4) is 

constituted of 2 blocks which adds overhead: the Balancing block and the 

Modified Bit Stuffing (MBS) block. The Total Overhead (TO) could then be 

written as follows: 

TO = BO + MBSO  (8.1) 

Where BO is the Balancing block’s overhead 

And  MBSO is the MBS block’s overhead 

The values of the BO where presented in table 6.1 (not exhaustive) and some 

values of the MBSO and the TO were presented in table 7.1. The MBSO is 

RDbounds-dependent (because of the balancing’s block) and of course, RLbounds -

dependent (the N value at which the modified bit stuffing is executed). More 

detailed MBSO values as a function of the RDbounds and RLbounds are presented 

in table 8.3. 

The Total overhead as a function of the RDbounds and RLbounds are presented 

in table 8.4. 
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3 4 5 6 7 8 9 10 

+/- 3 31.6 10.75 3.10 0.43 0 0 0 0 

+/- 4 32.35 11.85 4.57 1.71 0.49 0.07 0 0 

+/- 5 32.54 12.39 5.08 2.07 0.79 0.28 0.07 0.08 

+/- 6 32.66 12.85 5.41 2.31 1.01 0.41 0.16 0.05 

+/- 7 33.45 13.58 5.89 2.53 1.05 0.45 0.17 0.05 

+/- 8 33.41 13.74 6.00 2.65 1.17 0.52 0.22 0.09 

+/- 9 33.42 13.84 6.10 2.73 1.22 0.55 0.24 0.09 

+/- 10 33.56 14.04 6.24 2.82 1.27 0.58 0.26 0.11 

+/- 15 33.56 14.23 6.52 3.00 1.42 0.68 0.32 0.13 

+/- 20 33.47 14.23 6.56 3.08 1.47 0.71 0.34 0.15 

+/- 40 33.39 14.32 6.64 3.167 1.55 0.77 0.38 0.18 

+/- 60 33.37 14.31 6.65 3.17 1.56 0.77 0.38 0.18 

+/- 96 33.35 14.30 6.65 3.18 1.57 0.79 0.39 0.19 

Table 8.3    Modified Bit Stuffing Overhead (MBSO) in % for different 
RD and RL bounds / MBSO = f(RDbound, RLbound) 

 

3 4 5 6 7 8 9 10 

+/- 3 45.87 25.02 17.37 14.70 14.27 14.27 14.27 14.27 

+/- 4 41.40 20.90 13.62 10.77 9.55 9.12 9.05 9.05 

+/- 5 39.14 18.99 11.68 8.67 7.39 6.88 6.68 6.68 

+/- 6 37.98 18.18 10.73 7.64 6.33 5.73 5.48 5.37 

+/- 7 37.77 17.91 10.21 6.85 5.37 4.77 4.49 4.38 

+/- 8 37.05 17.38 9.65 6.30 4.81 4.16 3.86 3.73 

+/- 9 36.46 16.89 9.15 5.78 4.27 3.60 3.28 3.14 

+/- 10 36.22 16.70 8.90 5.49 3.94 3.25 2.92 2.77 

+/- 15 35.07 15.74 8.02 4.51 2.93 2.18 1.83 1.64 

+/- 20 34.47 15.24 7.56 4.08 2.48 1.72 1.35 1.15 

+/- 40 33.80 14.72 7.05 3.57 1.96 1.18 0.78 0.59 

+/- 60 33.57 14.52 6.86 3.38 1.77 0.98 0.58 0.38 

+/- 96 33.46 14.42 6.77 3.30 1.69 0.90 0.51 0.30 

Table 8.4    Total Overhead in % for different RL and RD bounds /  
TO = f(RDbound, RLbound) 
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Bus width Gate count 

8 bits 340 Gates 

16 bits 880 Gates 

32 bits 3000 Gates 

Table 8.5    Gate count estimation of the bit stuffing block for different 
bus width 

We can see the small gate count of the proposed solution. With the increased 

hardware complexity of today’s chips, few hundreds of gates are considered 

negligible. 

“Scrambling + balancing” (method 3) and “scrambling + balancing + bit 

stuffing” (method 4) are estimated to have a hardware complexity of the same 

order of magnitude as “scrambling + bit stuffing” (method 2). 

 

8.5   Eye diagrams results and comparison 

8.5.1   Eye diagrams on DC-coupled channel 

In this section, we simulate on Matlab/Simulink using the S-parameters of a 

DC-coupled PCB (Printed Circuit Board) channel, data being encoded with 

different encoding methods. The data distribution used for this simulation is 

80% of 0’s and 20% of 1’s. At first, we show in figure 8.7 the eye diagram of 

non-encoded data vs. 8b10b encoded data’s eye at 10 GHz. The non-encoded 

data’s eye is completely shifted from the baseline because of the non-balanced 

data distribution. It is considered closed. 
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Figure 8.7    Eye diagrams on the receiver’s side for a simulation of 10 
Kbits on a DC-coupled channel without equalization, 800 mV transmitter 
swing for: a. data non-encoded at 10GHz / b. data 8b/10b encoded at 10 

GHz 

From figure 8.7, we can see the interest of line coding on the eye diagram. 

 

Now we wish to plot the eye diagrams for the “scambling + bit stuffing” 

(method 2) for RLbound = 5 (or N = 5, same bound ensured by 8b/10b encoding) 

and compare it with 8b/10b encoding. For this purpose, we make two 

comparisons: 

 Comparison 1: eye diagrams comparison for a same link frequency of 10 

GHz. In this case, 8b/10b throughput is 8 Gbps (using equation 5.2) whereas 

“scrambling + bit Stuffing” (method 2) throughput is 9.66 GHz 

(corresponds to 3.5% overhead for N = 5) 

 Comparison 2: eye diagrams comparison for the same target throughput 

of 8 Gbps. In this case, the link’s frequency when using 8b/10b encoding 

should be 10 GHz whereas when using “scrambling + bit Stuffing” (method 

2) for RLbound = 5, the frequency of the link should be 8.28 GHz 

The eye diagrams are illustrated in figure 8.8 as follows: 
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Figure 8.8    Eye diagrams on the receiver’s side for a simulation of 10 
Kbits on a DC-coupled channel without equalization, 800 mV transmitter 

swing for: a. data encoded with method 2 at 10GHz / b. data 8b/10b 
encoded at 10 GHz / c. data encoded with method 2 at 8.28 GHz / d. data 

8b/10b encoded at 10 GHz 

From figure 8.8, we can see that “scrambling + bit Stuffing” (method 2) gives 

an eye opening centered at the baseline (due to scrambling’s effect) but it is less 

opened than 8b/10b encoded data’s eye at the same frequency. In this case, 

8b/10b’s better eye comes at the cost of lower throughout (1.66 Gbps less than 

method 2 throughout). For the same target throughout, method 2 gives the best 

eye opening. 

Conclusion: for DC-coupled channels, using “scrambling + bit Stuffing” 

(method 2) could be better than using 8b/10b encoding. 
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8.5.2   Eye diagrams on AC-coupled channel 

In this section, we simulate on Matlab/Simulink using the S-parameters of 

an AC-coupled PCB (Printed Circuit Board) channel having a coupling 

capacitor of 5 pF, data being encoded with different encoding methods. The data 

distribution used for this simulation is 80% of 0’s and 20% of 1’s.  

We make 3 comparisons: 

 Comparison 1: “scrambling + bit Stuffing” (method 2) for RLbound = 5 

(same RL bound as 8b/10b encoding) vs. 8b/10b encoding at the same 

target throughput of 8 Gbps. Method 2 runs at 8.28 GHz (using equation 

5.2) and 8b/10b runs at 10 GHz (using equation 5.2). 

 Comparison 2: “scrambling + balancing + modified bit Stuffing” 
(method 4) for RDbounds = +/-3 and RLbound = 5 (same RD and RL bounds 

ensured by 8b/10b encoding) vs. 8b/10b encoding at the same frequency 

of 10 GHz. Method 4 throughput is 8.5 Gbps (corresponding to 17.4% 

overhead and using equation 5.2) whereas 8b/10b throughput is 8 Gbps 

(corresponding to 25% overhead). 

 Comparison 3: “scrambling + balancing + modified bit Stuffing” 
(method 4) for RDbounds = +/-3 and RLbound = 5 (same RD and RL bounds 

ensured by 8b/10b encoding) vs. 8b/10b encoding at the same target 

throughput of 8 Gbps. Method 4 runs at 9.3 GHz (corresponding to 17.4% 

overhead and using equation 5.2) whereas 8b/10b runs at 10 GHz 

(corresponding to 25% overhead). 

The eye diagram results of this comparison are illustrated in figure 8.9 as 

follows: 
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Figure 8.9    Eye diagrams on the receiver’s side for a simulation of 400 Kbits on a AC-coupled 

channel (C = 5pF and R = 50 Ω), 800 mV transmitter swing for: a. data encoded with method 2 at 
8.28GHz / b. data 8b/10b encoded at 10 GHz / c. data encoded with method 4 at 10 GHz / d. data 

8b/10b encoded at 10 GHz / e. data encoded with method 4 at 9.3 GHz / f. data 8b/10b encoded at 
10 GHz 
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From figure 8.9, we can see from comparison 1 that “scrambling + bit 

Stuffing” (method 2) might not be enough when using an AC-coupled channel 

because the Running Disparity for this proposal is not bounded. “Scrambling + 

balancing + modified bit Stuffing” (method 4), with RD bounded to +/-3 and 

RL to 5 has almost the same eye opening as 8b/10b encoded data at the same 

frequency and with a better throughput. For the same target throughout, 

“Scrambling + balancing + modified bit Stuffing” (method 4) offers the best eye 

opening.  

 

8.6   Chapter’s conclusion 

In this chapter we showed the positive effect of the “double scrambling 

encoding” presented in chapter 4 on the PSD of the common mode voltage, 

which means EMI reduction. 

We also presented more overhead simulation results for the “scrambling + 

bit stuffing” line coding and the “scrambling + balancing + bit stuffing” line 

coding presented in chapters 5, 6 and 7. 

We made a VHDL model for the “scrambling + bit stuffing” line coding and 

showed the low hardware overhead and complexity of the presented solution. 

The “Scrambling + balancing” (method 3) and “scrambling + balancing + bit 

stuffing” (method 4) are estimated to have a hardware complexity of the same 

order of magnitude as “scrambling + bit stuffing” (method 2). 

We made eye-diagrams simulations on DC-coupled and AC-coupled 

channels and made a comparison with 8b/10b encoding and verified that the 

solutions we presented performed well and meet our expectations in terms of 

eye diagram opening. 
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Chapter 

9 
Conclusion 

 

High Speed Serial Links (HSSLs) are major actors in mobile devices and 

networking, and their bandwidth is still facing an exponential increase to satisfy 

the users’ requirements. Line coding is a very important step when designing a 

HSSL because it has a direct impact on the bandwidth efficiency and on the data 

transmission over the link as we showed in the problem statement chapter. The 

line coding must help in reducing EMI, the Run Length (RL) and the Running 

Disparity (RD) while having the lowest possible bandwidth overhead. 

In the state of the art’s chapter, we overviewed the bit stuffing which is one 

of the most optimized RL-limited line coding methods and we showed its 

drawbacks. Bit stuffing’s overhead is data-dependent and can reach high values 

when the data has a specific distribution. We then overviewed the 8b/10b 

encoding which is a widely used data coding because it ensures a RL bounded 

to 5 and a RD bounded to +/- 3, however, at the cost of 25% bandwidth 

overhead. We also showed that data scrambling has good characteristics in 

randomizing, creating transitions and reducing the RD of the raw data, but 

scrambling does not ensure any bounds for both the RL and the RD, nor 

randomization. We finally showed that the polarity-bit coding can offer a 

bounded RD at a low overhead cost. However, for small RD bounds, the 

polarity-bit coding’s overhead is very high and becomes less competitive 

compared to 8b/10b encoding for example. 

In this thesis, we proposed 4 novel encoding methods. 
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In chapter 4, we proposed a reduced EMI method (double scrambling, 

method 1) that ensures the elimination of repetitive sequences (that are the cause 

of data-dependent EMI) by re-scrambling repetitive packets after the first 

scrambling block. The repetitive packets selection is mandatory to ensure the 

good functioning of the method.  

In chapter 5, we showed that scrambling before bit stuffing can reduce the 

bit stuffing overhead to its minimum value and make the overhead predictable, 

independent of the raw data’s distribution. So we proposed a low overhead RL-

limited line coding (Scrambling + bit stuffing, method 2) that has a low 

overhead down to 3.5% for a maximum RL of 5, the same as 8b/10b encoding’s 

RL bound which comes at the cost of 25% bandwidth overhead. The proposed 

line coding offers scalability; the RL-bound can be programmable based on the 

CDR (Clock and Data Recovery) unit requirements. This can allow more 

overhead reduction, down to 0.1% for a maximum RL of 10. 

In chapter 6, we proposed a low overhead DC-balanced line coding 

(scrambling + balancing, method 3) that can bound the RD to low values, with 

a low overhead. This encoding is based on aperiodic frames polarity inversion 

after scrambling (but scrambling is not mandatory).  Thanks to aperiodic 

frames, this method allows significant overhead reduction over the existing 

methods; 14.3% is the overhead necessary to limit the RD to +/- 3, whereas with 

8b/10b the cost is 25% for the same RD bound. To limit the RD to +/- 96, the 

proposed method has an overhead of 0.11%, whereas the polarity-bit coding has 

an overhead of 1.56% for the same bounds. Scalability is also a feature of this 

method and allows choosing the desired RD limit. 

The method we proposed in chapter 7 merges the methods proposed in 

chapters 5 and 6 to build a programmable low overhead, Run Length limited 

and DC-balanced line coding (scrambling + balancing + modified bit 

stuffing, method 4). Scrambling is advised to be applied to the data first, the 
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balancing method of chapter 6 is then applied on the scrambled data, and finally 

a modified bit stuffing is applied as a final stage. The modified bit stuffing 

scheme was proposed to not disrupt the RD of the balanced data. This method 

is also programmable to the desired RD and RL bounds. For example, to limit 

the RL to 5 and the RD to +/- 3 which are the same equivalent of the 8b/10b 

encoding, the overhead is 17.4%, whereas the 8b/10b cost is 25%. If the RL and 

RD bounds constraints are released, we can still have decent bounds with a very 

low overhead. 

With the multitude of the existing High Speed Serial Links (HSSLs) and the 

large domain of applications, the line coding presented in this thesis is perfectly 

adaptable to every case. And with the increasing demand for throughput, the 

line coding methods presented in this thesis can allow bandwidth increase for a 

specific link frequency. Reducing the frequency for a same target throughput 

could be another clever choice to make which enables reducing the power 

consumption, the complexity of the design, the noise etc… 
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Annex A 

How does scrambling balance the data 

Scrambling is a XOR (eXclusive OR) operation between the raw data (the 

data to scramble) and the output of an LFSR (Linear Feeback Shift Register) 

also called PRBS (Pseudo-Random Binary Sequence). 

 

Fig A.1. Scrambling’s representation 

The raw data is considered to be unknown, so the distribution of “ones” and 

“zeroes” cannot be determined and their respective probabilities are considered 

to be random. 

But on the other side, the output of an LFSR is known to be uniformly 

distributed, and the probability of 1’s is equal to the probability of 0’s.  

Now the question is: What is the probability distribution of 1’s and 0’s 

after the XOR operation?  

We denote by P the probability of 1’s and Q the probability of 0’s. 

As mentioned before, the LFSR generates patterns with the probabilities 

PLFSR = QLFSR = 0.5. 

From [33], the probability after a XOR operation could be calculated from 

the truth table of the XOR operation. Table A.1 shows the truth table with the 

different probabilities and Figure A.1 illustrates a XOR operation between the 

LFSR’s pattern having PLFSR = 0.5 and Raw Data pattern with unknown 
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probability of ones PRAW. The probability to be determined is the probability of 

ones after the XOR operation denoted by PXOR. 

 

Table A.1. XOR truth table [33] 

The probabilities indicated in Table A.1 are calculated through the following 

logic: 

The probability of having a 0 after a XOR could be obtained by multiplying 

the probabilities of having both the inputs x and y at 0. The corresponding 

probability is qx.qy which is (1 - px)(1 – py). Same is for the rest. 

Now we want to determine PXOR while having the inputs with probabilities 

PRAW and PLFSR. From the truth table, the probability of 1’s after the XOR could 

be given by the following equation: 

PXOR = (1 – PRAW) PLFSR + PRAW(1 – PLFSR) 

PXOR = PLFSR + PRAW – 2*PRAW*PLFSR 

For PLFSR = 0.5 this gives PXOR= PLFSR = 0.5 and is independent of the PRAW 

Thereby, the probability distribution that comes from XORing any raw data 

with a uniformly distributed LFSR pattern is PXOR = QXOR = 0.5. 

We shall note that even though the scrambling balances the data, it does not 

guarantee any running disparity bounds. 
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 Π11(1 + P + P2 + …) + Π01(1 + P + P2 + …) = 1 

 (1 + P + P2 + …)( Π11+ Π01) = 1  

 

According to Geometric Series [34], for any number r, if |r |<1: 

 
Thereby, from : 

 

−  ( Π11+ Π01) = 1  → Π11+ Π01 = 1 – P  

 

According to Fig B.1: 

   

Π11 = P*Π01 + P*Π02+ P*Π03+…. P*Π0i + …. = P* Σ Π0i 

Π11 = P*(1 + P + P2 + …)*Π01 

Π11 = −  Π01  if we preplace this in : 

 

−  Π01 + Π01 = 1 – P  →  Π01 = (1 – P)2  = 0.25        

  and symmetrically,    Π11 = (1 – P)2  = 0.25 

 

Now Π01 and Π11 are known, we can calculate from  and  the probability 

of each state and each run length as follows: 

 

Probability of a run length of 5 consecutive identical bits: 

 

 PRL(5)  = Π05 + Π15 = P4* Π11 + P4* Π01 = 0.0312 

 

0.0312 is the probability of happening in 1 unit. To calculate in how many bits 

this will happen, we use the following rule: 

 

0.0312 → 1 unit 
1 time → X bits? 

 

X = 1/0.0312 = 32.0513 bits or around 8 bytes 
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We can deduce that a run length of 5 consecutive identical bits will happen 

theoretically in average after scrambling once every 8 bytes. 

 

The same calculation is done for the rest of the run lengths according to the 

following formula: 

PRL(i) =  Π0i + Π1i 

 

The results are illustrated in table B.1 as follows: 

 

Table B.1 Run length theoretical average occurrence after scrambling 

Run Length 
Occurs in Theoretical 

average (Bytes) 

5 4 

6 8 

7 16 

10 128 

14 2 K 

18 32 K 

20 

: 

: 

128 K 

: 

: 
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Annex C 

Calculating the probability of a repetitive pattern 

In this annex we consider we want to calculate the probability of a pattern of 

length L bits, to be repeated M times in a row, after scrambling. 

For this purpose, we consider L = 2 and M = 2, which is one of the easiest 

cases. 

There are 16 possible states in a window of 2*2 (the repetition window M*L) 

as follows and the repeated states are highlighted: 

 
00 00 
00 01 

00 10 

00 11 

01 00 
01 01 

01 10 

01 11 
10 00 

10 01 

10 10 
10 11 

11 00 

11 01 

11 10 
11 11 

 

We consider, after scrambling, that all the 16 states have equal probability ( 

because P = Q = 0.5). The probability of a repetitive pattern to happen for L = 

2 and M = 2 is 4/16. 

 

4 corresponds to all the possible states that can be formed by a pattern of 

length 2 (00, 01, 10 or 11) which is 22 or more precisely 2L. 

16 corresponds to all the cases that can be formed by a window of length 2x2 

(or M*L) which is 22x2 or more specifically 2L*M. 

 

Finally, the probability of a pattern of length L to be repeated M times (EMI 

Killer Packet) can then be written as follows: 

P (L, M) = ∗  
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Annex D 

Re-Scrambling of a selected repetitive packet  

As we saw in chapter 4, the probability of a repetitive packet (EMI Killer 

Packet) after scrambling is low and was calculated in Annex C. this probability 

is considered as Ɛ, which is a small fraction of 1. 
However, we consider that after re-scrambling the repetitive packet a second 

time, the probability of having a repetitive packet again is Ɛ*Ɛ. In this annex, 

we determine this particular Ɛ*Ɛ case. 
 

We consider the data after the 1st scrambling stage generates the following 

data: 10 10, we consider this as a pattern of length 2 repeated 2 times (small 

values for the sake of simplicity) and we re-scramble this pattern a 2nd time 

(according to the method we proposed in chapter 4) with a polynomial and we 

look at the pattern after the 2nd scrambling stage.  

All the possible 2nd scrambling patterns (PRBS) and all the possible data after 

2nd scrambling’s (10 10 XORed with the PRBS) results are cited as follows: 

 

Data PRBS 
After 2nd Scrambling  
(Data XOR PRBS) 

10 10 

00 00 10 10 

00 01 10 11 

00 10  10 00 

00 11 10 01 

01 00 11 10 

01 01 11 11 

01 10  11 00 

01 11 11 01 

10 00 00 10 

10 01 00 11 

10 10  00 00 

10 11 00 01 

11 00 01 10 

11 01 01 11 

11 10  01 00 

11 11 01 01 
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The repetitive patterns after scrambling happen according to the above table 

only when PRBS pattern is repetitive. 

 

The PRBS pattern can be repetitive for small L and M values, but for higher 

pattern lengths (i.e. a pattern of 8 bits) the repetition cannot exist if the PRBS is 

well chosen. 

 

Conclusion: 
The probability of a repetitive pattern after a second scrambling stage is 0 for 

relatively large pattern lengths, and they cannot even be designed if the Pseudo 

Random Binary Sequence (generated by the Linear Feedback Shift Register) is 

well chosen. 
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Π01  = Q*Π11 + Π12 

Π01  = Q*Π11 + P*Π11    (according to  ) 

  Π01 = Π11  

 

On the other side, we know that: 

 ∑� ��=  +∑� ��= =  

 

  Π01*(1+ Q + Q2 + … + QN-1) + Π11*(1+ P + P2 + … + PN-1) = 1  

 Π01*A+ Π11*B = 1  Where Π01 = Π11  

 Π01*(A+B) = 1 or   Π11*(A+B) = 1 

 Π01 = Π11 = +  

 

From geometric series [34], for any number r : 

 

   

 

 gives = − −   and   = − −   where P = Q = 0.5 after 

scrambling 

 

The probability of the state N corresponds to the overhead of the bit stuffing 

because a bit is added when the state N is reached. The probability of the state 

N could be written as follows: 

 � � = � + �    � � = − � + − �    
 

And finally, the Bit Stuffing Overhead BSO could be written as follows: 

 = − � + − �  

Where   � = � =  +  , =  − −   and  =  − −  

Ex  for N =  5, A= B= 1.937 / � = � =  0.258 /  BSO(5) =  0.0322 =  3.22 % 
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we are on the state ‘+2’, we will stay on state +2 with a probability of ½ (2 states 
out of 4 possible for the packet S).  

 

Deducing the overhead equation: 

The overhead due to T = 2 and S = 2 comes from the added polarity-bit. The 

polarity-bit will be added when we are on the states +2 or -2 with RD(S) = +/-

2. There will be not bit added when RD(S) = 0 so this probability should be 

subtracted. The balancing overhead for T = 2 and S = 2 can be written then as 

follows: 

BO(2,2) = Π+2 +  Π-2 – ½ *Π+2  - ½ *Π-2 

 

 Calculating the probabilities: 

 The probabilities could be calculated using the Markov chain transition 

matrix as follows: 

 

The columns and rows correspond to the states, and the crossing of each 

column and row corresponds to the probability of transition from the specific 

state to the other. The matrix could be written as follows and we will call it Y.  

Y = ( 
 / // // // // / ) 

 
 

The different states could be written in a matrix of one row: 

( -2  -1  0  +1  +2 ) 

To find the probability of state ‘-2”, we will do the following matrix 
multiplication: 

Π-2 = ( 1  0   0  0  0 ) * YX   where X is a sufficiently big value that makes  

          Π-2 stable after a specific X value. 

Π-2 = ( 1  0   0  0  0 ) * Y100 = 0.1667 (calculation done on Matlab) 

-2 -1 0 1 2

-2 1/2 0 1/2 0 0

-1 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0

1 0 0 1/2 0 1/2

2 0 0 1/2 0 1/2
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 Π+2 = ( 0  0   0  0  1 ) * Y100 = 0.1667 

 BO(2,2) = Π+2 +  Π-2 – ½ *Π+2  - ½ *Π-2 

 

 BO(2,2) = 0.1667 = 16.67 %  

 

According to theory, the overhead due to the proposed balancing method for 

T = 2 and S = 2 is 16.67 %. The simulation results gave 14.27 %. 

 

Example 2: T = 3 and S = 2 (RD bounded to +/- 4) 

Y = 

( 
   
/ // // // // // // / ) 

    

Π-3 = ( 1  0   0  0  0  0  0 ) * Y100 = 0.10 

BO(3,2) = Π+3 +  Π-3 – ½ *Π+3  - ½ *Π-3 = 0.10 = 10% 

 

Example 3: T = 4 and S = 2 (RD bounded to +/- 5) 

Y = 

( 
   
   
/ // // // // // // // // / ) 

   
   

 

Π-4 = ( 1  0   0  0  0  0  0  0  0 ) * Y100 = 0.0714 

BO(4,2) = Π+4 +  Π-4 – ½ *Π+4  - ½ *Π-4 = 0.0714 = 7.14 % 
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Example 4: T = 5 and S = 2 (RD bounded to +/- 6) 

Y = 

( 
   
   
  
/ // // // // // // // // // // / ) 

   
   
  

 

Π-5 = ( 1  0   0  0  0  0  0  0  0 ) * Y100 = 0.0556 

BO(5,2) = Π+5 +  Π-5 – ½ *Π+5  - ½ *Π-5 = 0.0556 = 5.66 % 

Example 5: T = 5 and S = 4 (RD bounded to +/- 7) 

Y = 

( 
   
   
  
/8 / /8/ // // // // // // // // //8 / /8) 

   
   
  

 

Π-5 = ( 1  0   0  0  0  0  0  0  0 ) * Y100 = 0.0417 

BO(5,4) = Π+5 +  Π-5 – 3/8*Π+5  - 3/8*Π-5 = 0.0521 = 5.21 % 

 

 

 

 








