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Résumé

Au cours des dernières années, la croissance des architectures de réseaux de
télécommunication a rapidement augmenté pour suivre un trafic en plein es-
sor. En outre, leur consommation d’énergie est devenue un enjeu important,
tant pour son impact économique qu’écologique. De multiples approches ont
été proposées pour la réduire. Dans cette thèse, nous nous concentrons sur
l’approche Energy Aware Routing (EAR) qui consiste à fournir un routage
valide tout en diminuant le nombre d’équipements réseau actifs.

Cependant, les réseaux actuels ne sont pas adaptés au déploiement de
politiques vertes globales en raison de leur gestion distribuée et de la nature
fermée des périphériques réseau actuels. Les paradigmes de Software Defined
Network (SDN) et de Network Function Virtualization (NFV) promettent de
faciliter le déploiement de politiques vertes. En effet, le premier sépare le plan
de contrôle et de données et offre donc une gestion centralisée du réseau. Le
second propose de découpler le logiciel et le matériel des fonctions réseau et
permet une plus grande flexibilité dans la création et la gestion des services
réseau.

Dans cette thèse, nous nous concentrons sur les défis posés par ces pa-
radigmes pour le déploiement de politiques EAR. Nous consacrons les deux
premières parties aux SDNs. Nous étudions d’abord les contraintes de taille
de table de routage causées par la complexité accrue des règles, puis le
déploiement progressif de périphériques SDN dans un réseau actuel. Nous
concentrons notre attention sur NFV dans la dernière partie, et plus partic-
ulièrement nous étudions les châınes de fonctions de services.
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Abstract

In the recent years, the growth of the architecture of telecommunication net-
works has been quickly increasing to keep up with a booming traffic. More-
over, the energy consumption of these infrastructures is becoming a growing
issue, both for its economic and ecological impact. Multiple approaches were
proposed to reduce the networks’ power consumption such as decreasing the
number of active elements. Indeed, networks are designed to handle high
traffic, e.g., during the day, but are over-provisioned during the night. In
this thesis, we focus on disabling links and routers inside the network while
keeping a valid routing. This approach is known as Energy Aware Routing
(EAR).

However current networks are not adapted to support the deployment
of network-wide green policies due to their distributed management and the
black-box nature of current network devices.The SDN and NFV paradigms
bear the promise of bringing green policies to reality.The first one decou-
ples the control and data plane and thus enable a centralized control of the
network.The second one proposes to decouple the software and hardware of
network functions and allows more flexibility in the creation and management
of network services.

In this thesis, we focus on the challenges brought by these two paradigms
for the deployment of EAR policies. We dedicated the first two parts to
the SDN paradigm. We first study the forwarding table size constraints
due to an increased complexity of rules. We then study the progressive
deployment of SDN devices alongside legacy ones. We focus our attention
on the NFV paradigm in the last part, and more particularly, we study the
Service Function Chaining problem.
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Chapter 1

Introduction

1.1 Motivations

With the recent trends of cloud computing, development of Internet of Things
(IoT) and video on demand, the architecture of telecommunication networks
needs to grow at an increasing rate to keep up with this booming traffic.
The energy consumption of these infrastructures is becoming a growing is-
sue, both for its economic and ecological impact. Estimations are that the
Information and Communication Technologies (ICT) sector annual growth is
greater than the worldwide energy consumption. Communication networks,
personal computers, and data centers show a growth of 10%, 5%, and 4%,
respectively, while worldwide energy consumption shows a 3% growth only
[Van+14]. With the rising cost of energy and the increased sensitivity of
environmental issues, it is becoming important to consider the reduction of
the ICT’s energy footprint.

In the recent years, component manufacturers for personal computers,
smartphones and servers put a focus on reducing energy consumption and
bringing CPU, GPU and other components close to energy proportionality.
However, network appliances are still far from this ideal power consumption
[Cha+08]. For example, network devices are still an important part of the
power usage of a data center. According to [Abt+10], switches and routers
represent 15% of the total energy consumption of a data center at peak traffic
and about 50% when the traffic is low. Indeed, communication networks are
designed to handle peak traffic and are thus over-provisioned during low
traffic period, e.g., at night time. This leads to significant power-hungry idle
devices during low load period. By shutting down a part of the network,
we could achieve important energy savings. This could be done either by
providing more energy efficient network appliances or by consolidating traffic
in a few elements. Consolidation of the traffic can be achieved in several ways
such as Virtual Machine (VM) migration in data centers [LLW11], dynamic
base station switching for mobile network [Zho+09] or the minimization of

1
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the number of active devices, called Energy Aware Routing (EAR). In this
thesis, we focus on EAR for backbone networks.

Current networks are not adapted to support the deployment of network-
wide green policies. Legacy protocols used in these networks operate in
a distributed manner, limiting the possibility of centralized green decisions.
Indeed, legacy routers manage both the control and the data plane. The con-
trol plane represents the part of the network that takes the routing decisions.
The data plane represents the part of the network in charge of forwarding
packets according to the choices of the control plane. The emerging Software
Defined Network (SDN) paradigm bears the promises to fast forward the
deployment of more efficient green policies inside a network. By regrouping
the network control plane inside one or multiple controllers, SDN provides
a centralized view and control over the network. Routers are stripped of
their intelligence and are demoted to forwarding devices. The management
of the network is done by different applications running on the controllers
such as routing or security applications. The controllers provide rules to the
router for them to match flows against using, for instance, the OpenFlow
API [McK+08].

Another roadblock for energy savings is the current implementation of
network functions. Network operators can provide different types of services
to their clients, and each service requires a particular set of functions to ap-
ply to the traffic, such as Deep Packet Inspection (DPI), firewall or video
encoders. In legacy networks, each function is executed using a particular
hardware called middlebox. These middleboxes reduce the flexibility of op-
erators to deploy new services as operators cannot easily move them in the
network. This lack of mobility also cripples the deployment of energy savings
policies in the network. The locations of middleboxes are usually chosen to
maximize the performances during rush hours. However, when traffic slows
down during the night, the position of the middleboxes still constrains the
request’s paths.

The Network Function Virtualization (NFV) initiative, launched in 2012
[Gem+16], brings flexibility to network functions by replacing middleboxes
with general purpose servers. These servers can hosts many VMs that can
then execute any network functions. This paradigm would help the deploy-
ment of green policies tremendously, as we would be able to move around
the functions on the network to adapt to the traffic.

In this thesis, we look at how to leverage the SDN and NFV paradigms
to enable the deployment of EAR. More specifically, we consider the new
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constraints that come with these new technologies and how they affect the
design of green policies.

1.2 Energy efficiency in networks

Since the work of Gupta et al. [GS03], a lot of works have considered the
problem of energy efficiency of networks and we can observe two main com-
plementary directions. The first one focuses on the network hardware and
their power consumption. The goal is to minimize their energy usage, without
impacting their performances, by providing more efficient circuits, efficient
power-saving techniques and bringing them closer to energy proportionality.
The second way considers the whole network and optimizes the routing of
the data for reduced power consumption. The principle is to aggregate the
traffic on a subset of hardware to minimize the number of active equipment.

In this thesis, we focus solely on network-wide energy efficiency for wired
networks. Nevertheless, as they widely dictate the design of green policies for
the whole network, we first present an overview of hardware energy efficient
solutions, followed by the power models that derive from these mechanisms.

1.2.1 Hardware energy efficiency

As previously stated, a lot of work has been done to design servers close
to energy proportional, but only a few improvement has been made on the
network side of ICT, for all kinds of networks. While network hardware
represents 15% of the power consumption of a data center during peak time,
this number goes up to 50% during low-load periods [Abt+10]. This energy
inefficiency during low traffic periods also holds for Internet Service Provider
(ISP)’s networks, that we study in this thesis.

Indeed, in [Cha+08], Chabarek et al. conducted a study over a couple
of devices and showed that an idle router, i.e., a router not forwarding any
packets, consumes about 80% of the energy of a router at full capacity. Their
proposed model decomposes the consumption of a router as the power con-
sumption of its chassis and its network interfaces. By reducing the consump-
tion of the interfaces, and more specifically, moving them towards energy
proportionality, we could significantly lower the consumption of a router,
and thus of the whole network.

We can also reduce the consumption of a router’s links by shutting them
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Figure 1.1: Prop, ON-OFF, Hybrid model for the power consumption of
a link (u, v).

down. However, turning it back on requires a non-negligible amount of
time. This reboot time could lead to significant packet losses in the net-
work. Putting a link into sleep-mode might be a safer option at the cost of
a slight trade-off between energy savings and re-activation time.

Energy Efficient Ethernet (IEEE 802.3 az standard [Chr+10]) proposes
to use a Low Power Idle mode to reduce the power consumption of links
when idle. We obtain the best energy savings when there is no traffic in the
network. Otherwise, gains might not be significant enough when the traffic
is low due to switching back and forth between the two states. In this case,
it might be better to reduce the rate at which the link operates. This is the
principle behind Adaptive Link Rate (ALR) [Chr+10]; Ethernet switches
can change between different rates (e.g., 100Mbit/s, 1Gbit/s) depending on
the bandwidth needed. Although it has been shown that ALR only achieve
energy reduction when below 10% utilization [Hau15], it provides an alterna-
tive for reducing the energy consumption of nearly idle links. It can even be
combined with Low Power Idle (LPI) to provide even better energy savings
[Hau15].

Power model

In Figure 1.1, we present the different power models that can be used to
model a link power consumption. The first model, Prop, represents a link
that consumes energy proportionally to its load. An idle link would thus
consume no power. This model represents a perfect scenario and is far from
reality. The ON-OFF model follows the observations of [Cha+08] that a
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router consumption is nearly the same, idle or not. This model proposes an
all or nothing approach: energy is used as soon as the link is active.

In this thesis, we use the Hybrid model, a mix of the two previous model,
as it provides a good representation of the power consumption of current
hardware. An active link has a baseline energy consumption and uses addi-
tional power proportional to its load. The power consumption of a link (u, v)
can be given by

Pl(u, v) = xuv ⇥ P IDLE(u, v) + Tuv ⇥ PLOAD(u, v)

where xuv represents the state of the link (ON or OFF), P IDLE(u, v) the
baseline energy usage of the link, Tuv the fraction of the link’s bandwidth
used and PLOAD(u, v) the linear energy coefficient of the link. The maximum
energy PMAX(u, v) used by a link is thus given by PLOAD(u, v)+P IDLE(u, v).
Note that it is easy to switch to an ON-OFF or Prop model by setting
PLOAD(u, v) or P IDLE(u, v) at 0, respectively. For example, in Chapter 4, we
only focus our study on the number of active links and thus set PLOAD(u, v)
to 0.

The Hybrid model can even be further tuned to consider ALR. In this
case, the linear part of the model would become a staircase function, as seen
in Figure 1.1. However, we believe that this model would provide marginal
improvement on the Hybrid model at the cost of a model with increased
complexity

Note that for all models, we can differentiate inactive links into two states:
offline and in sleep mode. As mentioned earlier, the difference between the
two comes in a trade-off between re-activation time and energy savings.

Finally, we could consider shutting down the chassis of the router when all
network interfaces are not used. However, and similarly to a link, the start-up
time of a router is prohibitive and would impact the network performances
negatively. Some routers provide a power-save mode that could provide slight
energy savings and a low re-activation time. We further explore this power-
save mode in Part II.

1.2.2 Network-wide energy efficiency

Even tough some solutions are designed to reduce the energy consumption
of the network, network hardware is still far from being energy proportional.
It is thus important to consider solutions that can shut down as much equip-
ment as possible while maintaining an operational network. This approach
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(a) (b)

(c) (d)

Figure 1.2: Example of Energy Aware Routing solutions.

is known as Energy Aware Routing and has led to a multitude of works in
the network community, see, e.g., [CMN09; CMN12; Pha14; Rou+13] for
backbone networks, [SLX10] for data center networks, [DGF12] for wireless
networks or [R B+11] for a survey.

Let us now consider the network shown in Figure 1.2 composed of 9 rou-
ters, 10 links and 4 flows. We present in Figure 1.2 different EAR solutions
for this network. We show in Figure 1.2a a routing that aims at minimizing
the end-to-end delay of each flow. This routing gives us the possibility to shut
down one link, using Energy Efficient Ethernet (EEE) for example, without
any intervention of the network operator as no flow is forwarded on it. With
sufficient links’ capacities, we can reduce the network energy consumption,
as shown in Figure 1.2b, by regrouping all flows on the links in the middle of
the network. Doing this, we can shut down five links and put three routers
to sleep. This approach represents the basic EAR solution. However, this
solution nearly doubles the number of hops of the green flow. Depending
on Quality of Service (QoS) requirements, it might be better to consider the
solution presented in Figure 1.2c, where only four links are offline, but the
number of hops of the green flow is reduced by 2. Works like [Cia+12] for-
mulate the EAR problem around these constraints. Finally, the last solution,
presented in Figure 1.2d, takes into consideration the reliability of the net-
work. Indeed, if one of the equipment in the middle of the network fails, the
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Figure 1.3: Variations of traffic on a typical France Telecom network link.

whole network is cut in half. By keeping the lower right link active, we can
provide a network tolerant to one-link failure. Moreover, this solution allows
to load balance the flows by redirecting the red flow instead of overloading
the links in the middle. In this thesis, we only consider solutions like the
one presented in Figure 1.2b. However, we evaluate our solutions using QoS
metrics such as end-to-end delay and link load.

The concept is simple, but depending on the scenarios considered, differ-
ent constraints can be added to the model. We present in the following the
assumptions used in this thesis.

State of the links

Firstly, network interfaces’ type plays a great deal in the way links can be
shut down. Networks can be composed of bidirectional links, with different
upload and download bandwidth. However, by shutting down one of the
end point’s network interface, both devices can no longer transmit data to
each other. Ethernet networks show this behavior as one link can forward
communications both ways.

However, if the links are unidirectional, we can fine-tune the subset of
active elements in the network by choosing only to shut down communications
one way or both ways. Optical fiber networks display this type of behavior
as one fiber link will forward data one way.
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Traffic estimation

Instability of traffic might severely impact the efficiency of green policies. As
previously stated, switching the states of network equipment is not instan-
taneous. However, due to high multiplexing ISP traffic is stable and follows
predictable daily and weekly patterns [OSP13]. We discuss ways to estimate
the traffic in Chapter 6 and how to react to unpredicted changes in traffic
due to failures or flash crowd.

Even with predictable traffic patterns, an effective network-wide green
policy has to carefully select the interval at which it should update the subset
of active equipment. A too big interval will result in small energy savings,
and a too small one will lead to network instability. Only a few configurations
are sufficient to obtain near-optimal energy savings, as shown in [Ara+16].
Changing the state of the devices only a few times a day reduces the chance
of decreasing the network performances.

Figure 1.3 shows the traffic of a typical France Telecom network link.
During the night, traffic is at its lowest, and rush hours are in the afternoon.
We can also see that by using five time periods denoted D1 to D5, we can
have a close approximated model of the traffic. We use these five time periods
in this thesis. In the case of unexpected traffic or devices failures, we could
consider re-activating all devices in the network if the traffic exceeds a certain
threshold.

1.3 Software Defined Networks and Network

Function Virtualization

The distributed management of legacy networks holds back the deployment
of network-wide green policies. Indeed, designing effective green policies re-
quires a centralized management of the network. Moreover, current network
hardware are hard to configure on the fly, making hard any attempt to design
dynamic policies without manual input. Virtualization and softwarization of
the network, brought by the SDN and NFV paradigms, bear the promise of
simplifying the management of the network by bringing abstraction and pro-
grammability of the underlying network. These two technologies would give
network operators more freedom in deploying network-wide dynamic policies,
including energy efficiency.
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1.3.1 Software Defined Networks

(a) Legacy network

Switch
SDN Controller
Control Message
Data packet

(b) SDN network

Figure 1.4: Differences between legacy and SDN networks . Blue represents
the control plane and green the data plane.

The Software Defined Network paradigm is an emerging paradigm that
proposes an alternative to the current legacy networks, by decoupling the
data and the control plane. This new paradigm is promoted by the Open
Network Foundation (ONF), created in 2011 and composed of companies
such as Google, Verizon, or Facebook. Google presented their first fully
operational SDN network, B4 [Jai+13], and showed that they could use their
data center network at full capacity leveraging SDN centralized capability.
This accomplishment demonstrated that the SDN paradigm is not just a fad
and can undoubtedly bring something new in the way networks are built and
managed.

Figure 1.4 illustrates the differences between legacy and SDN networks. In
legacy networks, routers forward packets and also exchange control messages
with other routers of the topology to take local routing decisions. In SDN
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networks, routers1 are relegated to simple forwarding devices, and one or
more controllers manage the control plane. As the management of the control
plane is given to the controllers, routers must report to them information
about the state of the network. This emerging network architecture raises
new challenges and opportunities, as discussed in [Kre+15]. We now present
a general view of SDN and some challenges of its deployment in large scale
networks.

The use of a centralized control plane introduces concerns such as scala-
bility, protection, and security. In legacy networks, routers share the load of
the control plane, and each router only communicates with nearby devices.
An SDN controller, however, needs recurrent updates from the routers to
keep an accurate view of the network. For large networks, having a single
controller might thus not be sufficient. Indeed, it may become overloaded
due to control messages from the switches, and the end-to-end delay with
routers may be too high. In this case, more than one controllers are neces-
sary to manage the control plane, leading again to a distributed control of
the network which brings new difficulties. Moreover, in addition to router
and link failures, controller reliability is also an important problem for the
deployment of SDN.

In particular, controller locations also plays an important part in network
performance and reliability. When placing controllers in an SDN network,
we need to consider its possible load, the distance to the router under its
management and in the case of resiliency, the possible failure in the network.
The placement of controller inside a network has been studied in works such
as [HSM12; Lan+15]. When we consider the resiliency of the network, we also
need to consider the possibility of failures of other controllers and the possible
impact of such failures on the remaining ones. Indeed, SDN-capable devices
can be configured to contact other controllers in case of failure. Resiliency
for controller placement solutions can be found in [Hoc+13; GB13].

We also need to provide a way for all the controllers to exchange control
messages to keep a unified view of the network. For control messages, an
out-of-band network can assure the communications between the controllers
but more frequently is done in-band, i.e., in the same network as the data
plane, since it presents smaller Operational Expenditure (OpEx) and Capital
Expenditure (CaPex). Moreover, consistency problems of the network view

1In this thesis, we use the terms router and switch interchangeably to designate SDN
capable forwarding devices.
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arise as controllers must share information to keep a consistent network view
with each other. Several works already propose protocols for a distributed
control plane in SDN networks [JCG14].

Finally, a whole pan of the research on SDN network focuses on the
security of communications, between controllers or between the switches and
the controller, see, e.g., [SOS13].

We do not, however, consider these problems in this thesis.

The OpenFlow protocol was born from the work of McKeown et al.
in Stanford to bring programmability to network devices, before the SDN
acronym was coined [McK+08]. It brought the tool to nurture the creation
of the SDN paradigm. by providing a way for communication between rou-
ters and controllers. The routers use this protocol to report data to the
controllers (e.g., link state, traffic). Since routers no longer compute deci-
sions, they must request the action(s) to follow to the controller when they
encounter traffic they have no rules to match it against. An analogy to CPU
programming language can be made between OpenFlow and assembly lan-
guage such as x86. Indeed, OpenFlow provides a basic set of commands to
change the state of the SDN devices on the network in the same way that
assembly provides basic CPU operations. Although out of the scope of this
thesis, it is worth mentioning that efforts like [Bos+14] propose higher level
programming languages to ease the development of network application by
network operators, in the same way that high level language such as C++,
Python and Java exists.

In OpenFlow 1.3, packets are matched on up to 40 fields such as source,
destination addresses or Type of Service (ToS) field. Forwarding rules are no
longer destination based as in legacy networks, but they are flow based. SDN-
capable forwarding devices implement the more sophisticated OpenFlow rules
using Ternary Content-Addressable Memories. This type of memory can,
like regular Content-Addressable Memory (CAM), match bit to 0 or 1, but
it can also match using “don’t care” bit that can either match a 0 or a 1. The
flow granularity possible with SDN comes at a price since Ternary Content-
Addressable Memory (TCAM) is power hungry, more expensive and take
more space in the router chassis. Due to these technical constraints, and by
considering the higher complexity of OpenFlow rules, the size of a forwarding
table in SDN equipment is limited (in the order of 1000 rules). Software
rules can be used to increase this limit at the cost of weaker performances
[Ryg+16]. We explore these constraints in Part I as well as the software-
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hardware trade off.

1.3.2 Hybrid networks

Figure 1.5: Example of an SDN-legacy network. Blue switches represent
legacy devices.

Network operators might be reluctant to shelve their legacy equipment
and their well known protocols for SDN devices and protocols. Progressive
migration might, however, be a more realistic scenario in which legacy and
SDN hardware and protocols would coexist.

New challenges arise in regards to the coexistence of legacy and SDN
equipment, and most of the SDN solutions found in the literature might not
be applicable in this case. Among opportunities and challenges for hybrid
networks, Vissichio et al. [VVB14] present four migration scenario that con-
siders mixing up SDN and legacy equipment. The first scenario considers a
topology based migration in which whole sub-domains might be upgraded to
SDN capable devices. This kind of migration is the most straightforward sce-
nario, interactions between legacy, and SDN protocols are limited. However,
in Service or Class-based migration, both paradigms coexist in the same net-
work as shown in Figure 1.5. In both type of migration, the traffic is divided
into groups (by Service or Classes, respectively) and each paradigm is in
charge of a set of groups. SDN controllers must implement the legacy proto-
cols used by the legacy devices installed in the network. SDN switches still
report to their respective controllers as in a fully SDN network. Moreover,
they forward legacy control messages to the controller, which is in charge of
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Figure 1.6: Example of Service Function Chains in a network.

answering in place of the SDN switches. Some works already leverage hy-
brid network capabilities for Traffic Engineering (TE) [AKL13] or robustness
[Chu+15] for these types of SDN-OSPF hybrid networks. We consider such
networks for Energy Aware Routing in Chapter 6.

1.3.3 Network Function Virtualization

The deployment of network services requires different network functions such
as firewall, DPI, or video optimization. In legacy networks, these functions
are executed by specialized hardware devices called middleboxes. These de-
vices are hard to migrate throughout the network, limiting network operators
ability to adapt to traffic and to design new services.

Virtualization of network functions, pushed by the NFV initiative
[Gem+16], brings flexibility in the management of network functions. Func-
tions can now be executed in VMs on general hardware that can be easily
moved on the network. A server might run a firewall function at one point,
and the same server might be running a video optimization function the next
hour.

As the functions require a lot of different virtual resources (bandwidth,
CPU cores, memory), NFV Management & Orchestration (MANO) is at
the heart of the paradigm. It comprises Virtual Network Functions (VNFs)
provisioning, as well as the management of the underlying structure (net-
work and servers). An orchestrator is in charge of assigning locations to the
function and allocating the necessary resources to satisfy the requests in the
network.

Services are composed of a chain of network functions to apply in a par-
ticular order (partial or total), known as Service Function Chains and defined
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in [HP15]. We present, in Figure 1.6, examples of Service Function Chains
applied to two different flows. The red flow subscribed to a service that re-
quires the execution of a firewall function, followed by a DPI function. The
second flow’s service also requires the execution of a firewall but followed by
the execution of a video optimizer. As we will see in Part III, the difficulty of
finding the locations of the functions is significantly increased by the order
requirement.

Like the SDN paradigm, the NFV one still has a lot to prove regard-
ing scalability, resilience, reliability, and security, see, e.g., [Mij+16]. We
can draw parallels between the two paradigms. Indeed, while SDN offers to
decouple data and control plane, NFV offers to decouple functions from hard-
ware. Even though virtual switches [Pfa+15] can execute SDN forwarding
functions, performances still favor the use of hardware switches.

1.3.4 Using Software Defined Network and Network
Function Virtualization for Energy Aware Rout-
ing

By enabling network abstraction and programmability, the virtualization and
softwarization of the network seem promising in enabling network-wide green
policies. The controllers can decide the subset of network devices to shut
down using the metrology data collected using the OpenFlow protocols. The
controllers can decide which subset of equipment can be put into power-save
mode and reconfigure the whole network to change the forwarding paths.
Multiple works already addressed the deployment of green solutions using
SDN networks such as [ARM17; Wan+14; MTT14; Rah+16; LSC14]. How-
ever, few of them also considers the challenge brought by this new paradigm.

In this thesis, we focus our attention on the constraints brought by this
emerging paradigm and their impact on the implementation of green policies.

For example, EAR intrinsically increases the number of links that the
demands have to go through by turning down equipment, increasing the
total number of required rules in the network. As previously stated, SDN
table size is limited, and thus EAR might overload TCAMs. This problem
is considered in Part I.

As stated, centralized control brought by SDN eases the deployment of
green policies on the network. Equipment can be shut down, and the traffic
can be rerouted on the remaining devices. However, in hybrid networks,
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this behavior might be detected as failures by legacy protocols such as Open
Shortest Path First (OSPF) [Moy98]. For example, OSPF routers regularly
exchange Hello packets with neighbors to know if the link is still functional.
After a predefined interval without responses to these packets, the OSPF
device declares a failure occurred on the link. We address this issue in Part II.

Finally, network functions executed by middleboxes impose hard con-
straints on the routing of requests in the network. The rigidity of these
devices can severely impact the efficiency of energy saving solutions. NFV ad-
dresses these limitations and enables the deployment of network-wide energy
policies. Network functions can be clustered on a subset of servers while the
rest are shut down. The main issue with function placement comes from the
way services are built. Each service comprises a set of ordered functions to
apply to the corresponding requests. We thus have to consider this ordering
when placing the function and make sure that requests are forwarded to the
node in the right order. This is the problem we consider in Part III and we
extend it to EAR.

1.4 Research Methodology

We now present the methodology used in this section. We first present
the metrics studied for the evaluation of our EAR solution and then briefly
present the techniques used to tackle the different problems explored in this
thesis.

1.4.1 Metrics studied

The principal metric studied is, of course, the energy savings provided by
our solutions. However, energy savings impact the network performances
regarding the end-to-end delay, link’s load or even packet losses.

Delay

By nature, Energy Aware Routing increases the length of the paths in the
network by removing some shortest paths. It is thus important to study the
delay of the path provided by an EAR solution to check that communications
are not affected by a too substantial end-to-end delay. We consider the hop
count of the paths (number of links) as well as the delay in milliseconds.
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We check that delays are below the usual 50ms required by Service Level
Agreements (SLAs).

Link load

By reducing the subset of active equipment in the network, we funnel the
traffic on a set of links leading to more loaded links. In the case of failure or
sudden increase activity due to unforeseen events, some links might become
overloaded, resulting in a degradation of the network performances due to
packet losses.

Packet losses

Using Mininet [Min] emulation and our SDN testbed, we were also able to
study the packet losses in addition to the packet delay. This metric is of par-
ticular importance in hybrid networks where the quality of the coordination
between legacy and SDN plays a big part in the correct lifetime of packets.

1.4.2 Technique used

In this thesis, we used different techniques to tackle the EAR problem and
the inherent constraints of the virtualization of networks. The three main
methods used are the following:

• Integer Linear Programming is used to model the different problems
encountered and then used to validated the quality of the solutions
provided in Parts I to III.

• Greedy algorithms are used from Parts I to III.

• Finally, in Part III, we used the Column Generation decomposition
model.

We further described these techniques in Chapter 2.

1.5 Thesis plan and Contributions

In this section, we go over the plan of this thesis and present the main
contribution of each part. We also provided the list of publications of all
works.
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In Chapter 2, we first present to the reader basis on Integer Linear Pro-
gramming, as this mathematical framework is widely used in this thesis. We
also introduce the concept of the column generation decomposition model,
used in Part III. Finally, we present the concept of Greedy Algorithm also
widely used throughout this work.

We first tackle, in Part I, the table size constraints imposed by the TCAM
used by SDN capable equipment. We first study, in Chapter 3, the use of ag-
gregation rules to reduce the size of the table. We consider two types of com-
pression (i) only using the default rule and (ii) using aggregation on source
and destination in addition to the default rule. We propose an Integer Linear
Program (ILP) formulation when wildcard rules are used, as well as heuristic
and approximation algorithms. We validated them using random forwarding
and using network table obtained from SNDlib instances [Orl+10].

We then study the Compression Problem in the context of Energy
Aware Routing and formulate the Energy Aware Routing with Compres-
sion (EARC) problem. We propose ILP formulations for the problem for
both default and wildcard rules and propose an efficient heuristic using the
compression heuristics proposed in Chapter 3. We show that using wildcard
rules, we can provide energy savings close to the classic EAR scenario where
tables have no size constraints.

Finally, in Chapter 5, we collaborated with members of the SigNet team to
look at the table constraints on an SDN testbed, including an HP5412zl SDN
switch. We focus our study on data centers topologies. We propose Minnie,
a dynamic non-energy aware variant of the heuristic presented in Chapter 4.
We also show that entry size limit can be attained with a few numbers of
clients. Using the 3-approximation algorithm presented in Chapter 3, we can
deploy up to 3000 servers with up to a million flows with a maximum capacity
of 1000 rules of each router, with no noticeable increase in packet delay. We
also compare the performance of hardware and software rules and show that
similarly to [Ryg+16], even though software rules can greatly increase router
table capacities, their matching performance is far from rules implemented
in TCAM.

All of these results can be found in the following publications [Rif+17;
Rif+16; Gir+16; Hav+15; Rif+15].

The second part of the thesis focuses on the deployment of energy policies
in networks in which SDN capable equipment and legacy devices coexist. The
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main issue of EAR in hybrid networks is that turning off SDN capable equip-
ment is detected as a failure by legacy protocols. Inspired by [Chu+15], we
use backup tunnels to reroute traffic when disabling links. To prevent packet
losses due to the detection time of a disabled link by legacy protocols, we
also propose a smooth extinction mechanism. First, we model the Energy
Aware Routing in a hybrid SDN network (hEAR) with tunnels problem as
an ILP. As the tunnel selection increases the difficulty of the problem, we
then propose an efficient heuristic to shutdown links and routers and sat-
isfy all requests in the network. Combined with the use of tunnels, smooth
link extinction, and failure/flash crowd detection mechanism, this comprises
Smooth ENergy Aware Routing (SENAtoR). We show, using a Mininet
testbed, that our solution enables EAR in a hybrid network without intro-
ducing additional packet losses thanks to our smooth link extinction.

Results are under submission and can be found in [Hui+17a].

Function Virtualization for Energy Aware Routing is studied in Part III.
In Chapter 7, we first propose an optimal scalable model to the Service
Function Chain Placement using Column Generation, called NFV CG. It can
solve instances on networks with up to 50 nodes and about 10 000 requests
in just over a minute. We also study the trade-off between the number of
NFV capable hosts and bandwidth usage in the network. We show that
adding more NFV nodes greatly decreases the bandwidth up to 50% of the
network. We observe diminishing returns when more than 50% of the network
is NFV-capable. We then build upon this model to consider two variants of
the problem.

In the first variant, we consider licenses cost constraints, i.e., limits on
the number of replicas of a function that can be deployed in the network.
These restrictions significantly increase the difficulty of the problem. We thus
propose a two-phase heuristic that first chooses the location of the function
and then use NFV CG to route the requests.

The second variant, studied in Chapter 8, corresponds to the EAR prob-
lem with Service Function Chain (SFC) constraints. Using a baseline scenario
of a legacy network (No SDN + middleboxes), we study the possible energy
savings done with only SDN (and middleboxes) and a SDN/NFV scenario.
We show that while SDN saves between 18 and 51% of energy during the
night, the use of VNF provides 4 to 12% more energy savings.

Results of this part can be found in [HJG17; Hui+17b]
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Finally, we studied structured overlay for live video streaming Peer-to-
peer (P2P) systems. Since these works are far from the scope of this thesis,
we provide them in Appendices A and B.

These results can be found in [GH15; GH16].
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In this chapter, we present the basis of the different techniques used
throughout this thesis. Three main techniques are used: Linear Program-
ming, Column Generation, and Greedy Algorithm. For all of them, we pro-
vide a brief introduction and provide an example applied to the Energy Aware
Routing (EAR) problem.

2.1 Linear Programming

Linear Programming is a powerful mathematical framework used to solve op-
timization problems (minimization or maximization). It comprises a function
to optimize, called the objective function and a set of constraints expressed
as (in)equalities. As indicated by the name of the framework, the objective
function and the (in)equalities are linear. All linear programs can be written
in the following canonical form:

min cTx

s.t. Ax ≥ b

x ≥ 0 (2.1)

30
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where x represents the vector of variables to determine, A is a matrix of
known coefficients and c and b are vectors of known coefficients.

An important concept of Linear Programming is the concept of duality.
Every primal problem can be transformed into its dual problem. For exam-
ple, the dual of Problem 2.1 is

max bTy

s.t. ATy  c

y ≥ 0 (2.2)

where y is the vector of variables of the dual problem. The dual of a dual
is the primal problem. Two important duality theorems exist. The weak
duality theorem states that the value of the objective value of any feasible
solution of the dual is an upper bound on the optimal objective value of the
primal solution. The strong duality theorem states that if x⇤ is the optimal
solution of the primal, then there exists an optimal solution of the dual, y⇤,
and

cTx⇤ = bTy⇤

These theorems are used to provide bounds on the objective value and are
exploited by primal-dual algorithms or the column generation decomposition
model.

When one or more variables are integers, we talk about Mixed Integer
Linear Programming (or Integer Linear Programming when all variables are
integers). Linear Programs can be solved easily, depending on their sizes,
by state of the art solvers. However, solving Integer Linear Programs (ILPs)
and Mixed Integer Linear Programs (MILPs) is known to be NP-Hard. Many
exact methods have proposed such as branch-and-bound, cutting planes, col-
umn generation or Bender’s decomposition. For a more in-depth view of
linear programming, we point the reader to [Chv83].

2.1.1 Example: Multi-commodity flow problem

We now present, as an example, the formulation of the multi-commodity
flow problem. The MultiCommodity Flow (MCF) problem is a well-known
network flow problem where multiple flows request between different sources
and destinations, called commodities [AMO93]. More formally, we model a
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network as a digraph D = (V,A) where each arc (u, v) 2 A has a capac-
ity Cuv. We have k commodities S1, S2, . . . , Sk defined by Si = (si, ti, Di)
where si and ti are the source and destination and Di the charge of the flow.
The goal is to find a path for each commodity such that link capacities are
respected.

We can easily formulate this problem using Integer Linear Programming
or Linear Programming if the flow can be split between multiple paths. We
first introduce the set of variables f i

uv 2 [0, 1] that represent the fraction of
flow going through the link (u, v) for the commodity Si. If the flows are
un-splittable, i.e., a commodity can only be forwarded on exactly one path,
we have that f i

uv 2 {0, 1}. We then need to satisfy the following two sets of
constraints to have a valid solution.

Flow conservation constraints For a given commodity Si and a given
node u 2 V \ {si, ti}, the sum of incoming flows must be equal to the sum of
outgoing flows of the commodity. For the node si, the difference between the
outgoing flows and the incoming must be equal to one, i.e., all flow has to
exit the source node. It is reversed for the destination node ti: the difference
between the incoming and the outgoing flows must be equal to Di, i.e., all
flow has to enter the destination node. These constraints are expressed as
follows.

X

v2N+(u)

f i
uv −

X

v2N−(u)

f i
vu =

8

><

>:

1 if u = si

−1 if u = ti

0 else

8i 2 {1 . . . k}, u 2 V (2.3)

Link capacity constraints The following set of constraints states that
the sum of the flows on a link must not exceed its capacity.

kX

i=1

Di ⇥ f i
uv  Cuv 8(u, v) 2 A (2.4)

Objective function Multiple objective functions can be considered for
the MCF problem. First, we could consider the minimum cost variant of
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the MCF problem. A cost to forward flows is given to each arc (u, v), de-
noted Quv. The objective is to minimize the total cost of forwarding each
commodity and is given by

min
X

(u,v)2A

kX

i=1

Quv ⇥ f i
uv (2.5)

In the context of Energy Aware Routing, we want to reduce the number
of active links in the network. Indeed, the EAR problem consists in routing
a set of requests (or commodities) through a network. We could thus use the
MCF formulation for the EAR problem. In this case, we need to introduce a
new set of variables, xuv 2 {0, 1}, that represent the state of each arc (active
or not). We also need to slightly alter the link capacity constraints to forbid
forwarding of flows on inactive links. The constraints thus become

kX

i=1

Di ⇥ f i
uv  Cuv ⇥ xuv 8(u, v) 2 E (2.6)

and the objective function is given by

min
X

(u,v)2A

xuv (2.7)

We have presented a formulation of the MCF known as the edge for-
mulation since we use a variable for each arc and commodity. A second
formulation referred to as the path formulation exists. It uses, for each com-
modity, a variable for each path between its end-point. This considerably
increases the number of variables of the formulation since the number of
paths in a graph is exponential. Nonetheless, using the column generation
decomposition model, we can greatly reduce the number of paths considered
as we explain in the next section.

2.2 Column Generation

Column generation is an efficient algorithm to solve large linear programs.
This technique originated from the observation that most variables do not
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Figure 2.1: Flowchart of the Column Generation at root node algorithm.

belong in the optimal solution. This is particularly the case for extended
formulation such as the path formulation mentioned earlier. We thus consider
a restricted set of variables at the start of the algorithm and then find new
variables (columns) that can improve the solution.

We present in Figure 2.1 the flow chart of the algorithm. The problem
is divided into two problems: the Restricted Master Problem (RMP) and
the Pricing Problem (PP). The RMP represents the initial formulation of
the problem with a reduced number of variables. These variables are often
provided by a heuristic to jump start the process. The PP is in charge
of generating the new variables to add in the RMP. Depending on the
formulation multiple PPs can exist for the same problem. In this case, they
can be solved in parallel to speed up the process. These two problems depend
on each other: first, the RMP is solved to obtain the optimal dual value of the
problem. The dual values are then provided to the PP to find variables with
a negative reduced cost (in the case of minimization). The reduced cost of a
variable represents the value by which the objective function will improve if
the variable enters the solution. Going back to the primal formulation given
earlier in Equation (2.1), the reduced cost of a variable xi is given by

ci − (ATu)i
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where u is the dual cost vector obtained from the solution of the RMP. The
exchanges between RMP and PP continue until no variables with a negative
reduced cost are found. In this case, the objective function value of the
RMP is optimal. Note that the algorithm provides optimal solutions for
Linear Programs. However, we can still use it to solve some Integer Linear
Programs.

If the original problem is an ILP, we consider the relaxation of the prob-
lem, i.e., integrality constraints are relaxed. We use the column generation
algorithm to optimally solve this relaxed formulation and then transform the
RMP back to an ILP. Since we only use a subset of variables, the ILP might
not find any feasible solution. This, however, does not mean that the prob-
lem is unfeasible. In the case where we obtain an integer solution xilp, it
might not be the optimal solution to the problem. But we can compare it
with the lower bound given by the optimal solution x⇤

lp
of the relaxed for-

mulation. For a particular instance, we can gage the quality of the integer
solution using the ratio: " = (xilp−x⇤

lp
)/x⇤

lp
. The closer to 0 the ratio is, the

better the solution is and when it is equal to 0, the integer solution xilp is
an optimal solution of the problem. While we only described Column Gen-
eration at the Root node, this technique can be integrated into the standard
branch-and-bound algorithm to solve large ILP optimally. This is known as
branch & price. In this thesis, we only consider Column Generation at the
Root node.

2.2.1 Multi-commodity flow: Path formulation

As previously stated the MCF problem can also be formulated using a path
formulation. As the name indicates, we use, for each commodity, a variable
for every possible path between the source and destination of the commodity.
We denote Pi the set of paths for the commodity i and zip 2 [0, 1] the variable
that represents the fraction of the flow going through the path p 2 Pi. As
for the edge formulation, if the flows are un-splittable we have zip 2 {0, 1}. If
we want to minimize the number of active links in the network, we formulate
the problem as follows:

Objective

min
X

(u,v)2A

xuv (2.8)
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One path per commodity

X

p2Pi

zip = 1 8i 2 {1 . . . k} (2.9)

Link capacity constraints

kX

i=1

X

p2Pi

δpuvDi ⇥ zip  Cuv ⇥ xuv 8(u, v) 2 A (2.10)

where δpuv = 1 if link (u, v) 2 p. It is clear that the number of variables is
exponential and that no solver will be able to construct the model for large
enough instances. Instead, we can start with a small subset of paths for each
commodity, e.g., the shortest paths, and use a PP for each commodity to
find paths improving the solution. Each PP consists in finding a constrained
path with the minimum reduced cost. The reduced cost for a path of a given
commodity i is given by

⇡
(2.9)
i −Di ⇥

X

(u,v)2A

⇡(2.10)
uv ⇥ δuv

where ⇡
(2.9)
i and ⇡

(2.10)
uv correspond to the dual values of their respective con-

straints in the RMP and δuv is a variable equal to 1 if the link is (u, v) is
in the path. The PP for a commodity i can be formulated as follows, where
dual values are given as input.

Objective function.

min ⇡
(2.9)
i −

X

(u,v)2A

⇡(2.10)
uv Di ⇥ δuv (2.11)

Flow conservation constraints

X

v2N+(u)

δuv −
X

v2N−(u)

δvu =

8

><

>:

1 if u = si

−1 if u = ti

0 else

u 2 V (2.12)
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Link capacity constraints

Di ⇥ δuv  Cuv (u, v) 2 A (2.13)

Since we have one PP per commodity, we can parallelize the search of new
variables since PPs are independent of each other. This takes advantages
of modern CPU architectures that propose multiple processing cores and
increases the resolution speed.

2.3 Greedy Algorithms

Greedy algorithms represent the class of algorithms where decisions are taken
greedily, and no backtracking is done until a solution is found (see [Cor+01]
for further reading). At each step of the algorithm, we use the local optimum
to build a solution. The main advantage of these algorithms is that they
provide fast and easy to implement algorithms to use in practice.

In general, greedy algorithms have the following components:

• A set of possible candidates to choose from.

• A selection function that selects the best valid candidate to add to the
solution.

Some problems can be solved to optimality by greedy algorithms as the
shortest path problem using Dijkstra’s algorithm or the unweighted interval
scheduling problem. In other cases, a greedy algorithm might not give an
optimal solution but can provide a good approximation of the optimal so-
lution, e.g., a 2-approximation greedy algorithm exists for the vertex cover
problem. In the worst case, greedy algorithms offer no performance guar-
antee. This is why we use the previously mentioned mathematical tools to
compare our greedy algorithms’ performances with the optimal solution that
they provide. This is the case for the EAR problem, that has been shown
in [GMM12] to be NP-Complete, with no polynomial-time constant-factor
approximation algorithm existing.

2.3.1 Greedy Energy Aware Routing

The Energy Aware Routing problem is a equivalent to a MCF problem where
the goal is to satisfy all requests and minimizing the number of active links
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Figure 2.2: Flow chart of the greedy algorithm for the Energy Aware Routing
problem

while respecting link capacities. We now present the greedy algorithm shown
in Figure 2.2. It was originally proposed in [GMM12] for undirected graphs.

In this algorithm, the set of possible candidates to choose from is the
set of links in the network. Initially, we find a valid routing with all active
links. The selection function selects the link with the least amount of traffic
on it. A link (u, v) can be added to the set of inactive links if and only if
all requests can be routed when (u, v) and the previously selected links are
inactive. If no valid routing can be found, the link is removed from the set
of candidates. The algorithm stops when all links have been considered.

This algorithm constitutes a basis on which the algorithms proposed in
this thesis are built upon. Indeed, in each of the problems considered the
main goal is to minimize the number of active links. The routing constraints
are thus the only changing components of the algorithm and depend on the
problem considered, e.g., paths are constrained by the limited table capacity
for the Compression Problem or by the execution order of the functions for
the Service Function Chaining problem.
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Chapters Techniques used

Chapter 3 ILP, Greedy
Chapter 4 ILP, Greedy
Chapter 5 Greedy

Chapter 6 ILP, Greedy

Chapter 7 ILP, Column Generation
Chapter 8 ILP, Greedy, Column Generation

Table 2.1: Summary of the techniques used in each chapter

2.4 Summary of the technique used for each

chapter

Table 2.1 summarizes the techniques used in each chapter of this thesis.
While greedy algorithms and ILP formulations are the most used techniques,
the last part of the thesis focuses on the Column Generation technique.
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Forwarding Rule Space
Constraints

Context

In classical networks, routers use distributed routing protocols such as Open
Shortest Path First (OSPF) [Moy98] to decide on which interfaces packets
should be forwarded. In Software Defined Network (SDN) networks, one or
several controllers take care of path computations, and routers become simple
forwarding devices. When a packet arrives, with a new destination for which
no routing rule exists, the router contacts a controller that provides a route
to the destination. Then, the router stores this route as a rule in its SDN
table and uses it for next incoming matching packets. This separation of the
control plane from the data plane allows a smoother control over routing and
an easier management of the routers.

Also, SDNs aim at applying flow-based forwarding rules instead of desti-
nation based rules (as in legacy routers) to provide a finer control of the net-
work traffic. For instance, in OpenFlow 1.3, forwarding decisions can be made
taking into account from zero up to a maximum of 40 fields of a Transmission
Control Protocol (TCP) or a User Datagram Protocol (UDP) packet. When
any of the 40 fields should be ignored when forwarding a packet, such a
field is set to “don’t care” bits. Due to the complexity of SDN forwarding
rules, SDN forwarding devices need Ternary Content-Addressable Memo-
ries (TCAMs) to store their routing table (as classical Content-Addressable
Memory (CAM) can only perform binary operations). However, TCAMs
are more power hungry, expensive and physically bigger than binary CAMs
available in legacy routers. Consequently, the available TCAM memory in
routers is limited. Indeed, a typical switch supports between around a couple
of thousands to no more than 25 thousands of 12-tuples forwarding rules, as
reported in [Ste+12].

Undoubtedly, emerging switches will support larger forwarding tables
[Bos+13], but TCAMs still introduce a fundamental trade-off between for-
warding table size and other concerns like cost and power. The maximum
size of routing tables is thus limited and represents a significant concern for
the deployment of SDN technologies. This problem has been addressed in
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previous works, as discussed later, using different strategies, such as rout-
ing table compression [GMP14; Hu+15], or distribution of forwarding rules
[Coh+14].

In this part, we examine a more general framework in which table com-
pression using wildcard rules is possible. Compression of SDN rules was
discussed in [GMP14]. The authors propose algorithms to reduce the size of
the tables, but only by using a default rule. We consider here a stronger com-
pression methodology in which any packet header field may be compressed.
Considering multiple field aggregation is an important improvement as it al-
lows a more efficient compression of routing tables, leaving more space in the
TCAM to apply advanced routing policies, like load-balancing and to imple-
ment quality of service policies. In the following, we focus on compression of
rules based on sources and destinations. However, our solution also applies
if other fields are considered, such as Type of Service (ToS) field or transport
protocol. The chapter is organized as follows.

Contributions and plan

We first present, in Chapter 3, the Compression Problem which consists in
reducing the size of the forwarding tables using the default rule and aggre-
gation rule on the source and destination. Several solutions are proposed in
Section 3.2 such as an Integer Linear Program, an approximation algorithm,
and a greedy heuristic algorithm. We compare them in Section 3.3 using ran-
domly generated tables and using network tables obtained from simulations
on SDNlib instances.

In Chapter 4, we define and explore the Energy Aware Routing with Com-
pression (EARC) Problem. As the EAR problem is known to be NP-hard
[Gir+10] (and thus EARC), we propose two Integer Linear Programs for the
default rule and multi-field compression (see Section 4.2) as well as an effi-
cient heuristic algorithm, in Section 4.3. The heuristic is composed of three
modules: a routing module, in charge of finding paths for each demand in
the network while respecting link and node capacities; a compression module,
responsible for the reduction of the table size in the network; and an energy
saving module that decides which link to shutdown. We further validated
the solutions proposed for the Compression Problem in Chapter 3 by using
them in the compression module. We compare all solutions on four SNDlib
instances in Section 4.4 and show that we can save almost as much power
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as possible without capacity constraints, by jointly routing and compressing
routing tables.

Finally, we present a dynamic variant of the heuristic presented in Chap-
ter 4 without the energy saving module, Minnie, in Chapter 5. It routes
the traffic and compresses routing tables to satisfy link capacity and routing
table size of the different forwarding devices. We validate our algorithm on
multiple well-known data center topologies in Section 5.2. We show that one
can deploy networks with up to 1 million flows using Minnie by carefully
choosing a threshold for compression. We further validated Minnie using a
testbed emulating a k = 4 Fat-Tree data center topology in Section 5.3. We
demonstrate on the one hand that even with a small number of clients the
limit regarding the number of rules is reached without compression, increas-
ing the delay of new incoming flows. Minnie, on the other hand, reduces
the number of rules needed, with no packet losses, nor noticeable additional
delays using TCAM.

Related work

To support a vast range of network applications, OpenFlow rules are more
complex than forwarding rules in traditional Internet Protocol (IP) routers.
For instance, access-control requires matching on source - destination IP
addresses, port numbers and protocol [Cas+09] whereas a load balancer may
match only on source and destination IP prefixes [RDJ11]. These complicated
matching can be well supported using TCAM since all rules can be read in
parallel to identify the matching entries for each packet. However, as TCAM
is expensive and extremely power-hungry, the on-chip TCAM size is typically
limited. Several works have tackled the distribution of the forwarding policies
on a network considering the table size constraints, see [Ngu+16] for a survey.
These solutions can be regrouped into three main categories.

In the first category, the rule space capacity of the whole network is used
by spreading the rules in order to circumvent the individual switches capac-
ities. In [KHK13] and [Kan+13], the authors propose similar solutions, in
which the set of end points policies of the network is divided and then spread
over the network so that every packet is affected by all the policies. However
the routing policies are not taken into consideration. In both [Ngu+15] and
[Coh+14], routing policies are dealt with by changing the path of the flows to
take advantages of the table space from all the switches of the network. These
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types of solution do however change the path used to route a flow and thus
impact the Quality of Service (QoS) of the network. In [Ngu+15], the authors
propose OFFICER. It creates a default path for all communications, and
later, some deviations are introduced from this path using different policies
to reach the destination. According to the authors, the Edge First strategy,
where the deviation is performed to minimize the number of hops between
the default path and the target one, offers the best trade-off between the
required QoS and forwarding table size. Note however, that applying this
algorithm could unnecessarily penalize the QoS of flows when the routers’
forwarding tables are rarely full.

In the second category, caching techniques are used to limit the number of
concurrent rules in a switch, such as CacheFlow, proposed in [Kat+16], which
introduces a CacheMaster module and a shared section of software switches
per TCAM (available in hardware switches only). The CacheMaster con-
structs the dependency tree of the rules to be installed and then distributes
the rules between the TCAM and the software switches, placing the most
popular rules in the hardware switch, thus enabling fast forwarding for the
biggest possible amount of traffic. When a packet needs a forwarding rule not
available in the TCAM, such a packet is forwarded to the software switches,
which send back the packet to the hardware switch in a predetermined in-
put port, to be resent at a specific output port. If the software switches
do not have a matching rule, the SDN controller is called. The weaknesses
of CacheFlow relies in its inherent architecture, as this solution requires the
installation of a software switch for every hardware switch, which might need
a reorganization of the network cabling and additional resources to host soft-
ware switches. Secondly, the optimal number of needed software switches
can be difficult to determine, due to the fact that for performance reasons,
software switches must only keep forwarding rules (whose number depends
on the traffic characteristics) in the kernel memory space, which is limited.
Lastly, the two-layer architecture of CacheFlow (i.e., software switches over
a hardware switch) increases the delay to contact the controller and install
missing rules.

The third category considers reducing the size of the table by using com-
pression techniques. Our work falls under this category. Works such as
[BK14] or [KS13] propose modifications to the rule shape to reduce their
size, but requires hardware modifications. To the best of our knowledge, the
closest papers to our work are [Hu+15; BM14; GMP14]. In [Hu+15] the
authors introduce XPath which identifies end-to-end paths using path ID
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and then compresses all the rules and pre-install the necessary rules into the
TCAM. We compare our results with the ones of XPath in Section 5.2.2.
Minnie uses fewer rules even in the case of an all-to-all traffic as XPath codes
the routes for all shortest paths between sources and destinations. This is at
the cost of less path redundancy which is useful for load-balancing and fault
tolerance. Network operators should consider this trade-off when choosing
which method to use. In [BM14] the authors suggest SDN rule compres-
sion by following the concept of longest prefix matching with priorities using
the Espresso [TNW96] heuristic and show that their algorithm leads to 17%
savings only. We succeed in reaching better compression ratios.

To the best of our knowledge, only [GMP14] and [Awa+17] consider the
joint problem of compression and energy aware routing. While the solution
proposed in [Awa+17] falls into the first category, the solution in [GMP14]
uses the default rule to reduce the size of the table. We extend this solution
by considering other types of compression.



Chapter 3

The Compression Problem
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3.1 Introduction

In this chapter, we study the Compression Problem which consists in reducing
the size of the forwarding tables using the default rule and aggregation rule
on source and destination. This problem is the common theme of the first
part of this thesis.

After a definition of the problem in Section 3.1.1, we propose several
solutions such as an Integer Linear Program, an approximation algorithm,
and a greedy heuristic algorithm, in Section 3.2.

We compare them in Section 3.3 using randomly generated tables and
using network tables obtained from simulations on SDNlib instances.

47
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Flow Output port
(0, 4) Port-4
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 5) Port-4
(1, 6) Port-6
(2, 4) Port-4
(2, 5) Port-5
(2, 6) Port-6

(a) Without compres-
sion

Flow Output port
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 6) Port-6
(2, 5) Port-5
(2, 6) Port-6
(⇤, ⇤) Port-4

(b) Default port com-
pression

Flow Output port
(1, 5) Port-4
(2, 6) Port-6
(1, ⇤) Port-6
(⇤, 4) Port-4
(⇤, ⇤) Port-5

(c) Multi-field compres-
sion

Table 3.1: Examples of routing tables: (a) without compression, (b) with
default port compression (only (⇤, ⇤) rule), (c) with multi-field compression
(three possible aggregation rules), giving the routing table with minimum
number of rules.

3.1.1 Definition of the problem

A forwarding table is composed of multiple entries that match flows with
corresponding action(s). In OpenFlow 1.3, the matching can be done on
40 fields from the packet header. For each field, the matching rule can use
a particular value or a wildcard (noted ⇤) that can accept any value. The
action associated with a matching rule can be to drop the packet, modify the
header, or forward it to a specific port.

In the following, we consider the action to be limited to a forward to
outgoing ports. We also limit the use of the wildcard to the source and des-
tination addresses. However, our solution also applies if other fields are con-
sidered such as ToS field or transport protocol. We compress a table by using
either the aggregation by source (i.e., (s, ⇤, p)), by destination (i.e., (⇤, t, p))
or by the default rule (i.e., (⇤, ⇤, p)). When only the default rule is used, we
talk about default port compression, and, when all the wildcard may be used,
about multi-field compression.

An example is given in Table 3.1. Table 3.1a represents the original
table. Table 3.1b provides the result using default port compression and
Table 3.1c the one using multi-field compression, that is when all three types
of wildcard rules can be used to obtain the optimal compressed table. Since
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multiple entries can correspond to the same flow, rule priority is given from
top to bottom. Indeed, in Table 3.1c, if we exchange the priorities of the rules
(1, ⇤, Port− 6) and (⇤, 4, Port− 4), a flow from source 1 to destination 4 is
no longer forwarded through Port-4 like in the original table.

3.2 Heuristics and exact formulations

We propose several solutions to solve the Compression Problem: First, Comp-
Default, giving optimal solutions for the default port compression. We then
provide an integer linear program, Comp-LP, which gives optimal solutions
for the multi-field compression. However, as the problem is NP-Hard (see
[GHM15; GHM16] for a proof), the program does not scale to large tables
(also see Section 3.3 for compression time and a discussion). We thus pro-
vide two heuristic algorithms for the compression problem, Comp-Greedy and
Comp-Direction.

3.2.1 Default Rule (Comp-Default)

When using only the default port compression, finding the optimal solution
is simple. The algorithm finds the most occurring port p⇤ in the forwarding
table, remove all the rules with p⇤, and add the default rule (⇤, ⇤, p⇤) at the
end of the table.

3.2.2 Integer Linear Programming (Comp-LP)

We first define the following notations. We then formulate the problem as
an Integer Linear Program.

• R, set of rules in the forwarding table

• S, set of sources in the forwarding table

• T , set of destinations in the forwarding table

• P , set of ports of the router

• rstp 2 {0, 1}, where rstp = 1 if the rule (s, t, p) exists

• stp 2 {0, 1}, where stp = 1 if the wildcard rule (⇤, t, p) exists
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• tsp 2 {0, 1}, where tsp = 1 if the wildcard rule (s, ⇤, p) exists

• dp 2 {0, 1}, where dp = 1 if p is the default port of the table

• ost 2 {0, 1}, where ost = 1 if the wildcard rule for the source s has
higher priority than the one for the destination t.

• ots 2 {0, 1}, where ots = 1 if the wildcard rule for the destination t has
higher priority than the one for the source s. By definition, ost = 1−ots.

We want to minimize the total number of rules in the compressed table
(3.1). All original rules must have a corresponding rule in it (3.2).

min
X

(s,t,p)2R

rstp +
X

p2P

 
X

t2T

stp +
X

s2S

tsp

!

+
X

p 2 Pdp (3.1)

rstp + stp + tsp + dp ≥ 1 8(s, t, p) 2 R (3.2)

There can be at most one default port (3.3), one wildcard rule per source
(3.4) and one wildcard rule per destination (3.5) in the table.

X

p2P

dp  1 (3.3)

X

p2P

stp  1 8t 2 T (3.4)

X

p2P

tsp  1 8s 2 S (3.5)

For every rule (s, t, p) in the original table, if a matching wildcard rules
exists with a different port, i.e., (s, ⇤, p0 6= p) or (⇤, t, p0 6= p), either the
original rule (s, t, p) or a matching wildcard rule with the right port exists
with a higher priority, (3.6) to (3.9).

rstp + stp ≥ tsp0 8(s, t, p) 2 R, p0 2 P \ {p} (3.6)

rstp +ots ≥ tsp0 8(s, t, p) 2 R, p0 2 P \ {p} (3.7)

rstp + tsp ≥ stp0 8(s, t, p) 2 R, p0 2 P \ {p} (3.8)

rstp +ost ≥ stp0 8(s, t, p) 2 R, p0 2 P \ {p} (3.9)

Finally, we remove the cyclic order dependencies between rules.

1  os1t1 + ot1s2 + os2t2 + ot2s1  3 8s1 6= s2 2 S, t1 6= t2 2 T (3.10)
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As we will see in Section 3.3, the computation time of the ILP is pro-
hibitive for larger tables. Note that a slight alteration of this formulation is
used in the formulation proposed in Chapter 4.

3.2.3 Most savings heuristic (Comp-Greedy)

For this heuristic algorithm, we add wildcard rules for sources or destinations
in a greedy way, based on the highest potential compression ratio. The
potential compression ratio of a source s (or destination t) is equal to the
number of rules with the most repeated port p among all the rules with s
(or t) over the total number of rules with s (or t). At each step, we compute
the potential compression ratio of all sources and destinations. We then
add the wildcard rule corresponding to the source or destination with the
highest potential compression ratio, and we remove all the rules matching
the wildcard rule. Ties between ports are resolved at random. Note that at
each step, the compression ratios of the other sources can be affected. We
thus recompute them at each step.

3.2.4 Direction Based Heuristic (Comp-Direction)

We present a second heuristic, shown in Algorithm 1. It was studied
in [GHM15; GHM16] and was proved to be efficient, as it provides a 3-
approximation of the compression problem. We will demonstrate that it is
also efficient in practice.

It first computes three compressed routing tables (aggregation by source
(line 1-22), by destination (line 23-44) and by the default rule (line 45-52))
and then chooses the smallest one, as explained in more detail below.

Given a routing table such as the one given in Table 3.2a, the algorithm
first considers an aggregation by source (Table 3.2b) using (s, ⇤, p⇤s) rules. The
main principle is simple, but there is a small technicality to break ties. We
first consider the sources one by one and choose (one of) the most occurring
port(s) in the rules with this source. It corresponds to the port allowing to
compress the most rules using a rule of aggregation by source. Then, we use
the default rule to reduce the number of aggregated rules.

There is a small technicality to break ties when there are several most
occurring ports. As a matter of fact, the choice taken of aggregation ports
for each source affects the default port chosen. We thus postpone the choice
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Flow Output port
(0, 4) Port-4
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 5) Port-4
(1, 6) Port-6
(2, 4) Port-4
(2, 5) Port-5
(2, 6) Port-6

(a) Without Compres-
sion

Flow Output port
(0, 4) Port-4
(1, 5) Port-4
(2, 4) Port-4
(2, 5) Port-5
(0, ⇤) Port-5
(⇤, ⇤) Port-6

(b) Source table

Flow Output port
(1, 4) Port-6
(1, 5) Port-4
(0, 6) Port-5
(⇤, 4) Port-4
(⇤, 5) Port-5
(⇤, ⇤) Port-6

(c) Destination table

Flow Output port
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 6) Port-6
(2, 5) Port-5
(2, 6) Port-6
(⇤, ⇤) Port-4

(d) Default only

Flow Output port
(1, 5) Port-4
(2, 6) Port-6
(1, ⇤) Port-6
(⇤, 4) Port-4
(⇤, ⇤) Port-5

(e) Optimal solution
(ILP)

Table 3.2: Examples of routing tables: (a) without compression, (b) com-
pression by the source, (c) compression by the destination, (d) default rule
only, and (e) routing table with minimum number of rules given by Integer
Linear Program. The order of the rules reads top to bottom.
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of the source aggregation port in case of ties to choose the default port
compressing the largest number of aggregation rules, as explained in details
below.

For each source s, we need to find the port p⇤s such that we can aggregate
using the rule (s, ⇤, p⇤s), and the port p⇤ to aggregate with the default rule
(⇤, ⇤, p⇤). First, we compute the set of most occurring ports for each source s,
noted P⇤

s . The default port p
⇤ is thus the most occurring port in all sets P⇤

s .
If multiple ports can be chosen, one is selected at random. Then, for each
source s, the port p⇤s is equal to p

⇤ if p⇤ 2 P⇤
s . Otherwise we choose at random

among P⇤
s . Once the ports for the aggregated rules are chosen, we build the

compressed table. First, we add rules that cannot be aggregated (line 12),
i.e., (s, t, p 6= p⇤s). Then, we add all the aggregation rules by source that do
not use the default port p⇤ (line 15), i.e., (s, ⇤, p⇤s 6= p⇤). Finally, we add the
default rule (⇤, ⇤, p⇤) (line 16). The order of insertion in the routing gives the
order for the matching, i.e., non aggregated rules, then source aggregation
rules and then default rule.

For example, the sets of the most occurring ports of sources 0, 1, and 2
in Table 3.2a are {Port-5}, {Port-6}, {Port-4, Port-5, Port-6}, respectively.
Since Port-5 and Port-6 appear two times each, we choose at random Port-6
to be the default port. The ports used for the aggregation by source for 0, 1,
2 are then Port-5, Port-6, Port-6, respectively. Port-6 is chosen for the source
2, because it is the default port. We can now build the compressed table by
adding all rules that have ports different than their corresponding aggregate
rules: (0, 4, 4), (1, 5, 4), (2, 4, 4), (2, 5, 5). Then, we add all aggregate rules
with a port different from the default port: (0, ⇤, 5). Finally, we add the
default rule (⇤, ⇤, 5). This gives us the compressed table in Table 3.2b.

For the second compressed routing table (Table 3.2c), we do the same
compression considering the aggregation by destination with (⇤, t, p⇤t ) rules.
As for the third table (Table 3.2d) a single aggregation using the best de-
fault port is performed, i.e., one of the most occurring port in the routing
table becomes the default port (tie broken uniformly at random). This table
is equivalent to the one produced by Comp-Default. We then choose the
smallest routing table among the three computed ones.
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Algorithm 1: Compressing a table
Input: Set of rules R
Output: Compressed rules
// Compression by source

1 list of rules Cr // order of insertion = order of matching

2 foreach s 2 V do

3 P⇤
s , set of most occurring ports p in {(s, t, p) | 8t 2 V };

4 p⇤ = most occurring port in all P⇤
s // ties are broken at random

5 foreach s 2 V do

6 if p⇤ 2 P⇤
s then

7 p⇤s = p⇤

8 else

9 p⇤s = most occurring port in P⇤
s // ties are broken at random

10 foreach (s, t, p) 2 R do

11 if p 6= p⇤s then

12 add (s, t, p) to Cr;

13 foreach s 2 V do

14 if p⇤s 6= p⇤ then

15 add (s, ⇤, p⇤s) to Cr;

16 add (⇤, ⇤, p) to Cr;
// Compression by destination

17 list of rules Cc // order of insertion = order of matching

18 P⇤
t , set of most occurring ports p in {(s, t, p) | 8t 2 V }, 8s 2 V ;

19 p⇤ = most occurring port in P⇤
t // ties are broken at random

20 foreach t 2 V do

21 if d 2 P⇤
t then

22 p⇤t = p⇤

23 else

24 p⇤t = most occurring port in P⇤
t // ties are broke at random

25 foreach (s, t, p) 2 R do

26 if p 6= p⇤t then

27 add (s, t, p) to Cc;

28 foreach t 2 V do

29 if p⇤t 6= p⇤ then

30 add (s, ⇤, p⇤t ) to Cc;

31 add (⇤, ⇤, d) to Cc;
// Default port compression

32 list of rules Cd;
33 p⇤ = most occurring port in R // ties are broke at random

34 foreach (s, t, p) 2 R do

35 if p 6= p⇤ then

36 add (s, t, p) to Cd;

37 add {(⇤, ⇤, p⇤)} to Cd;

38 return smallest set of rules between Cr, Cc, and Cd
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3.3 Compression of forwarding tables

We now evaluate typical compression ratios, compression times and compare
the different solutions proposed in Section 3.2: the solution using default
port compression (Comp-Default) and the three solutions using the multi-
field compression: the optimal one from the Linear Program (Comp-LP),
when it is possible to compute it, the Direction Based Heuristic (referenced
as Comp-Direction or Comp-Dir in short), and last, the Most savings heuris-
tics (Comp-Greedy). As instances, we consider randomly generated routing
tables as well as network routing tables coming from simulations on SNDlib
instances [Orl+10].

3.3.1 Random tables

In this section, we focus on the compression of random tables. The following
parameters are used to generate the random tables studied:

• the number of sources and destinations n

• the number of ports of the switch p

• the density of the corresponding matrix 0  d  1

For a pair source-destination, there is an entry in the table with probability
d, and in this case, the exit port is chosen uniformly at random among the p
ports.

We show the average compression ratio of the solutions proposed in Sec-
tion 3.2, given by

1−
size of the compressed table

size of the original table

, as a function of the parameters used to build the random matrices. We
vary the number of ports in the experiments of Figure 3.1, the number of
network nodes (corresponding to the number of sources and destinations) in
Figure 3.2, and the table density in Figure 3.3. Each point represents the
average of the results for 10 random forwarding tables for the comparison
with the Linear Program (LP) and 20 for the heuristics.

Gap from optimal for small tables. For small routing tables, we are able
to compute the optimal compressed tables using the integer linear program
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Figure 3.1: Compression ratio as a function of the number of ports for the
four compression methods.
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Figure 3.2: Compression ratio as a function of the number of network nodes,
i.e., the number of sources and destinations, for the four compression meth-
ods.
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Figure 3.3: Compression ratio as a function of the forwarding tables density
for the four compression methods.

(see Figure 3.1a and Figure 3.2a). As an example, in Figure 3.1a, we compare
Comp-LP and the other three solutions on a set of random tables with n = 15
sources/destinations, a density of 0.5 with a number of ports between 2 and
9. Without surprise, the ILP compresses better than the other 3 solutions
with 68% ratio at only two ports to 32% with nine ports. The two heuristics
present the same compression with a ratio of 59% at two ports and 23% at
nine ports. Finally, the only use of the default port yields to the worst com
pression as it compresses 53% of the rules with 2 ports and only 15% at nine
ports. Similarly, the difference of compression ratio in Figure 3.2 is between
4 and 10% when comparing the optimal solution with the Comp-Greedy and
Comp-Direction heuristics. Default port is the less efficient solution with a
compression ratio around 23%, when the compression ratio of Comp-Greedy
and Comp-Direction heuristics is around 30%. In Figure 3.2a, we vary the
number of network nodes between 5 and 11. The global comparison between
solutions is similar, except that, when there is a small number of network
nodes, Comp-Greedy does not behave well and provides worse results than
Comp-Default. The explanation is that, for small tables, Comp-Greedy adds
source and destination aggregation rules that are not necessary, as a default
rule works well. Because of the order between source and destination rules,
most of these rules cannot be aggregated when we add the default rule,
leading to an inefficiency. The problem disappears for larger numbers of
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network nodes (larger than 10), and thus would not appear for ISP networks
which have more network nodes.

Comparison between heuristics for larger tables. However, the ILP
does not scale well for larger tables. In Figure 3.1b, we only compare the two
heuristics and Comp-Default on tables with n = 450 sources/destinations
and a density of 0.5. First, we notice that the two heuristics Comp-Greedy
and Comp-Direction obtain the best results. However, the Comp-Default
solution is not far behind with a ratio between 49% and 11% for the random
tables. We will see later that the difference is significantly higher for real
network tables. Comp-Greedy behaves better than Comp-Direction, with a
compression ratio between 55% and 16% to be compared to a compression
ratio between 52% and 14% for Comp-Direction.

Impact of the parameters. The compression ratio is very sensitive to
the number of ports, see Figure 3.1. The compression ratio varies from 55%
to 18% when the number of ports ranges from 2 to 9 for a random matrix
with around 100 000 rules. Similar results are observed for small tables with
variations from 70% to 35%. We observe higher compression ratio for smaller
numbers of ports. This is expected as, for example, the impact of setting a
default port is higher when the number of ports is lower. For two ports, using
a default port saves at least 50% of the rules.

Conversely, the density and the size (number of network nodes) of the
forwarding tables do not have an important impact on the compression ratio.
For the experiments in Figures 3.2, the compression ratio varies of only a few
percents when the number of network nodes increases from 5 to 11, and then
from 50 to 1000; and similarly, when the density goes from 0.1 to 1, even if it
represents a 10-fold increase in the number of rules in the table (Figure 3.3).
However, density and size of the forwarding tables have an impact on the
compression time as discussed below.

Compression time. We study the time to compress forwarding tables.
This time depends mostly on the number of entries in the forwarding table,
as presented in Figure 3.4. The compression time using linear programming
(Comp-LP) is a lot higher than the one using heuristic algorithm: around
1000 s for only 125 rules, when it takes a lot less than 1ms for the heuris-
tics. We thus had to present the results for Comp-LP independently in
Figure 3.4(a) with a different log-scale ([0, 107]), compared to ([0, 104]) for
Figure 3.4(b). We observe that the compressing time of Comp-LP increases
exponentially with the number of rules. It reaches the limit of one hour we
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Figure 3.4: Compression times of forwarding tables as a function of the
number of rules in the tables for four methods of compression (two different
scales for Time).

had set for tables with a little bit more than 150 rules. Note that a network
with ten nodes cannot have more than 90 entries in a routing table (in the
extreme case of one central node seeing all the possible flows). Thus, we
know that we can use Comp-LP for networks with some nodes reaching 10,
and surely a little bit more as all traffic usually is not routed through a single
node. In fact, we show in Section 4.4, that LP runs on the SNDlib Atlanta
network with 15 nodes, but that it is not usable for larger networks.

On the contrary, the compression time of the heuristic algorithms is very
low and does not increase exponentially, but linearly in the number of rules.
A large network with 100 nodes cannot have more than 10 000 entries in
a routing table. A forwarding table of this size is compressed in less than
10ms (around 10ms for Comp-Greedy, 1ms for Comp-Direction, and less
than 1ms for Comp-Default). It is even possible to compress a routing table
with a million rules (for a network of more than a thousand nodes) in a little
bit more than 1 s for Comp-Greedy and less than 10ms for Comp-Direction
and Comp-Default. The heuristic algorithms for compression can thus be
used for very large networks and have a very low execution time.

3.3.2 Network tables

We now compare the solutions on tables from routing on backbone networks
using the routing module presented in Section 4.3.1. We use four of the
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(a) atlanta
(b) germany50 (c) zib54

(d) ta2

Figure 3.5: The four SNDlib topologies used. Each edge corresponds to two
directional links. Black nodes are switches with only one port.



CHAPTER 3. THE COMPRESSION PROBLEM 61

CoPp-DLr CoPp-GreeGyCoPp-DefDult CoPp-LP
0.0

0.2

0.4

0.6

0.8

1.0

C
o
P

p
 r

D
tL

o

(a) atlanta

Comp-Dir Comp-GreeGy Comp-DefDult
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

D
ti

o

(b) germany50

Comp-Dir Comp-GreeGy Comp-DefDult
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

D
ti

o

(c) zib54

Comp-Dir Comp-GreeGy Comp-DefDult
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

D
ti

o

(d) ta2

Figure 3.6: Compression ratio of the three different heuristics on SNDlib
topologies.
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SNDlib instances shown in Figure 3.5:

- atlanta network with 15 nodes and 44 directed links,

- germany50 network with 50 nodes and 176 directed links,

- zib54 network with 54 nodes and 216 directed links, and

- ta2 network with 81 nodes and 162 directed links.

For each network, we compute a routing of all demands without consid-
ering a limit on the number of rules. We then extract the forwarding tables
for all routers. We then compress each of them with the different compres-
sion solutions. Since the ILP does not scale, we only compare it with the
other solutions on the atlanta network, see Figure 3.6a. On the other three
networks, we compare the EARC-H-Direction, EARC-H-Greedy and EARC-
H-Default solutions, see Figures 3.6b to 3.6d for germany50, ta2, and zib54
networks, respectively.

Compression rates The first global observation is that the solutions achi-
eve higher compression rates for network tables than for random tables, with
median values around 80% for all networks. This is good news as it shows
the efficiency of the algorithms for practical cases. The explanation of this
phenomenon is that real network tables have a larger number of repeating
ports traffic originating from a source or going to a destination, than random
matrices.

We remark that some tables show a compression ratio near 100% for all
solutions for zib54 and ta2. These tables corresponds to the two routers
with only one outgoing port (the two routers in black in Figure 3.5). Thus,
only the default port can be used to route all the demands.

Comparison of the solutions. In the atlanta network, we see that the
difference in efficiency between the heuristics, Comp-Direction, and Comp-
Greedy, and the linear program for compression, Comp-LP, is smaller than in
the case of random tables. The compression rate of Comp-Direction is almost
the same as the one of Comp-LP, with a median ratio of 81%. This is also
good news: real network tables are easier to compress than random tables.
We thus can suppose that the results of the heuristics on larger networks
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should be good. And, in fact, we obtain very high compression rates: the
median is 83% for germany50, 86% for ta2 and zib54.

Last, we observe that the difference between the two levels of compression
is more significant for real network tables than for random tables. The me-
dian ratios of the Comp-Default solution are about 30% lower than the one
from the Comp-Greedy heuristics. This shows the importance of considering
multi-field compression.

The two heuristics using multi-field compression, Comp-Direction and
Comp-Greedy, show similar results on all networks. While the Comp-Greedy
heuristic provides better compression ratios on random tables, the advantage
for real network tables is for the Comp-Direction heuristic: the median ratio
is 4% higher for germany50, ta2, and zib54, and 8% for atlanta. We use
both heuristics in the simulations of the next chapter in which we obtain
results for the EARC problem on practical network instances.

3.4 Conclusion

The finer control offered by SDN comes at the cost of more complex for-
warding rules and smaller space constraints for forwarding tables. Even if
newer hardware are expected to increase the capacities of the forwarding ta-
bles, the high cost and high power usage of the TCAM is an obstacle to the
deployment of complex routing policies in large networks.

In this chapter, we studied the Compression Problem, which consists of
minimizing the size of a forwarding table using a default rule and possible
wildcard rules, i.e., aggregating rules on the source or the destination of a
network flow.

We studied several solutions to the problem on randomly generated for-
warding tables as well as routing table generated from SDNlib instances. We
show that multi-field compression significantly increases the compression ra-
tio of the table. We also show that the Comp-Direction heuristic provides
the best results on routing tables.

In the next two chapter, we will continue to study the Compression Prob-
lem, first, in the EAR context and then in the context of data centers network.
As we showed that the heuristics presented in this chapter are efficient, we
re-use them in both settings.
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4.1 Introduction

In this chapter, we define and explore the Energy Aware Routing with Com-
pression (EARC) Problem. To the best of our knowledge, we are the first
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to study the EARC problem. As the EAR problem is known to be NP-hard
[Gir+10] (and thus EARC), we propose two Integer Linear Programs for the
default rule and multi-field compression (see Section 4.2) as well as an effi-
cient heuristic algorithm, in Section 4.3. The heuristic is composed of three
modules: a routing module, in charge of finding paths for each demand in
the network while respecting link and node capacities; a compression module,
responsible for the reduction of the table size in the network; and an energy
saving module that decides which links to shutdown. We further validated
the solutions proposed for the Compression Problem in Chapter 3 by using
them in the compression module. We compare all solutions on four SNDlib
instances in Section 4.4 and show that we can save almost as much power
as possible without capacity constraints, by jointly routing and compressing
routing tables.

4.1.1 Definition of the problem

Energy Aware Routing with Compression (EARC)

We consider a backbone network as a directed graphG = (V,A). The nodes in
V describe routers, and the arcs in A represent connections or links between
those routers. The links have a limited capacity. We denote by Cuv the
capacity of a link (u, v). The nodes have a limited memory space to store
rules, and we note Su the maximum number of rules can be installed at
router u. We denote by Dst the demand of traffic flow from node s to node
t such that Dst ≥ 0, s 6= t 2 V . The objective is to find a feasible routing
for all traffic flows, respecting the capacity and the rule space constraints
and being minimal in energy consumption. We name the problem Energy
Aware Routing with Compression (EARC). Since the power consumption of
routers is mostly independent of traffic load as stated in related work, the
energy consumption of the network is given by the number of active links in
our model. We consider that routers have to stay powered on in backbone
networks as they are the points of entry and exit of traffic.

Power Model

Campaigns of measures of power consumption (see, e.g., [Cha+08]) show
that a network device consumes a significant amount of its power as soon as
it is switched on. Following this observation, on/off power models have been
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proposed and studied. Later, researchers and hardware constructors have
proposed more energy proportional hardware models [Nic+12]. To encom-
pass those different models, see [Idz+16] for a discussion, we use a hybrid
power model in which the power of an active link (u, v) is expressed as

P IDLE

uv +
bwuv

Cuv

PLOAD

uv

where P IDLE(u, v) represents the energy used when the link uv is switched on,
bwuv the bandwidth that is carried on uv, and PLOAD(u, v) the additional
energy consumed by (u, v) when it is fully capacitated, i.e., when the amount
of carried bandwidth equals the transport capacity (Cuv) of link (u, v). We
assume that links can be put into sleep mode, by putting to sleep both
endpoint interfaces. Routers cannot be put into sleep mode, as there are the
sources/destinations of network traffic.

4.2 Integer Linear Programming

We propose two Integer Linear Programs to solve the EARC problem. In
the first one, EARC-LP-Default, only the default port compression is allowed,
while multi-field compression is used in the second, EARC-LP-Multi. The
first program thus is less powerful but runs faster. We were able to obtain
optimal solutions for small networks using both ILPs.
The following notations are used in both formulations:

• xuv: binary variable to indicate if the link (u, v) is active or not.

• D: the set of all traffic demands to be routed.

• Dst 2 D: demand of traffic flow from s to t.

• Cuv: capacity of a link (u, v).

• Cu: maximum number of rules that can be installed at router u.

4.2.1 EARC with default port Compression (EARC-
LP-Default)

In this version of the problem, a flow can be routed following the FIB, that
contains only perfect match rules, or via the default port. The following
notations are used in the formulation of the ILP:
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• f st
uv 2 {0, 1}: a flow (s, t) that is routed on the link (u, v) by a distinct
rule. We call f st

uv as normal flow.

• gstuv 2 {0, 1}: a flow (s, t) that is routed on the link (u, v) by a default
rule. gstuv is called default flow to distinguish from the normal flow f st

uv.

• fuv 2 R
+: sum of the flows routed on the link (u, v).

• kuv 2 {0, 1}: binary variable to indicate if the default port of the router
u is to go to v or not.

• xuv 2 {0, 1}: binary variable to indicate if the link (u, v) is active or
not.

We want to minimize the power consumption of the network (4.1).

min
X

(u,v)2A

(P IDLE

uv xuv + PLOAD

uv

fuv
Cuv

) (4.1)

The flow conservation constraints (4.2) express that the total flows en-
tering and leaving a router are equal (except the source and the destination
nodes). It is noted that a normal flow entering a router can become a default
flow on outgoing link and vice versa.

X

v2N−(u)

f st
vu + gstvu −

X

v2N+(u)

gstuv − f st
uv =

8

><

>:

−1 if u = s,

1 if u = t,

0 else

8u 2 V, (s, t) 2 D (4.2)

A flow cannot be router as both a default flow and a normal one (4.3).

f st
uv + gstuv  1 8(u, v) 2 A, (s, t) 2 D (4.3)

Link capacities are given by Equation (4.4) and no flow is allowed to be
forwarded on a disabled link.

fuv =
X

(s,t)2D

Dst(f st
uv + gstuv)  Cuvxuv 8(u, v) 2 A (4.4)
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The total number of rules in the table of a router is equal to the sum
of the normal flow forwarded from the router. It cannot exceed the table
capacity Cu minus the reserved rule for the default port (4.5).

X

(s,t)2D

X

v2N(u)

f st
uv  Cu − 1 8u 2 V (4.5)

Finally, we limit the number of default port to one per router (4.6). A
demand can only be forwarded on an edge as a default flow if is the edge of
the default port (4.7).

X

v2N(u)

kuv  1 8u 2 V (4.6)

gstuv  kuv 8(u, v) 2 A, (s, t) 2 D (4.7)

4.2.2 EARC with multi-field Compression

In this version, we consider that the forwarding table contains several wild-
card rules. These rules can match any flow that comes from a source s (i.e.,
(s, ⇤, p)) or goes to a destination t (i.e., (⇤, t, p)). The following notations are
used for the formulation of the ILP:

• S, set of all sources

• T , set of all destinations

• f st
uv 2 {0, 1}, where f st

uv = 1 if the flow (s, t) is routed on the link (u, v)

• fuv 2 R
+: sum of the flows routed on the link (u, v).

For each router u, we also define the following sets of variables used for the
compression of the tables, similar to the ones defined in Section 3.2.2. We
use the notation pv to define the port of the router u connected to the router
v.

• rustpv 2 {0, 1}, where rustpv = 1 if the rule (s, t, pv) exists.

• sutpv 2 {0, 1}, where sutpv = 1 if the wildcard rule (⇤, t, pv) exists.

• tuspv 2 {0, 1}, where tuspv = 1 if the wildcard rule (s, ⇤, pv) exists.
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• dupv 2 {0, 1}, where dupv = 1 if pv if the default port.

• oust 2 {0, 1}, where oust = 1 if the wildcard rule for the source s has
higher priority than the one for the destination t.

• outs 2 {0, 1}, where outs = 1 if the wildcard rule for the destination t has
higher priority than the one for the source s. By definition, oust = 1−outs.

We want to minimize the power consumption of the network (4.8).

min
X

(u,v)2A

✓

P IDLE

uv xuv + PLOAD

uv

fuv
Cuv

◆

(4.8)

Flow conservation is ensured via the following set of constraints:

X

v2N+(u)

f st
uv −

X

v2N−(u)

f st
vu =

8

><

>:

1 if u = s,

−1 if u = t,

0 else

8u 2 V, (s, t) 2 D (4.9)

The sum of the flows on a link cannot exceed its capacity. Moreover, if
the link is disabled, no flow can be forwarded on it (4.10).

fuv =
X

(s,t)2D

Dstf st
uv  Cuvxuv 8(u, v) 2 A (4.10)

The following sets of constraints are similar to the ones presented for
Comp-LP. The principal change is that the table is not longer an input of
the problem and depend on the routing of the demands. Thus, if a demand
(s, t) is forwarded on the link (u, v), there must exists a corresponding rule
on the router u (4.11). Moreover, a non aggregated rule can only exists if
the demand (s, t) is forwarded on the link (u, v) (4.12).

rustpv + sutpv + tuspv + dupv ≥ f st
uv 8(u, v) 2 A, (s, t) 2 D (4.11)

rustpv  f st
uv 8(u, v) 2 A, (s, t) 2 D (4.12)

The total number of rules in the table of a router u cannot exceed its
capacity Cu

X

v2N+(u)

0

@dupv +
X

(s,t)2D

rustpv +
X

t2T

sutpv +
X

s2S

tuspv

1

A  Cu 8u 2 V (4.13)
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We limit to one the number of default port (4.14), the number of wildcard
rules for one source (4.15) and for one destination (4.16).

X

v2N(u)

dupv  1 8u 2 V (4.14)

X

v2N(u)

sutpv  1 8u 2 V, t 2 T (4.15)

X

v2N(u)

tuspv  1 8u 2 V, s 2 S (4.16)

For a given demand (s, t) routed on a link (u, v1), if a matching wildcard
rule exists with different port than v, the table must contain the unaggregated
rule (s, t, pv1) or another wildcard rule, (s, ⇤, pv1) or (⇤, t, pv1), with a higher
priority.

rustpv1 + sutpv1≥ tuspv2 − 1 + f st
upv1

8u 2 V, (s, t) 2 D, v1 6= v2 2 N+(u)

(4.17)

rustpv1 + outs ≥ tuspv2 − 1 + f st
upv1

8u 2 V, (s, t) 2 D, v1 6= v2 2 N+(u)

(4.18)

rustpv1 + tuspv1≥ sutpv2 − 1 + f st
upv1

8u 2 V, (s, t) 2 D, v1 6= v2 2 N+(u)

(4.19)

rustpv1 + oust ≥ sutpv2 − 1 + f st
upv1

8u 2 V, (s, t) 2 D, v1 6= v2 2 N+(u)

(4.20)

Finally, we remove cyclic order dependencies between rules.

1  ous1t1 + out1s2 + ous2t2 + out2s1  3 8u 2 V, s1 6= s2 2 S, t1 6= t2 2 T
(4.21)

Both linear programs run for small networks. In particular, we were able
to obtain optimal solutions for the atlanta network from SNDLib, which has
15 nodes and 22 bi-directional links, see Section 4.4. However, the running
time increases very quickly as the Energy Aware Routing problem is NP-
Hard [GMM12]. Thus, we propose efficient heuristic algorithms for larger
networks in the following section.
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4.3 Heuristic Algorithms

As the linear programs proposed in the previous section do not run for
medium and large networks, we propose here efficient heuristic algorithms.
The problem can be decomposed into three sub-problems:

• First, the compression problem consists in reducing the size of a sin-
gle table by using aggregation rules: the default rule for default port
compression, and, additionally, source or destination rules for the multi-
field compression, see Chapter 3.

• Second, the routing problem goal is to compute and assign a path in
the network for each demand while respecting the link and forwarding
table capacities.

• Last, the energy saving problem goal is to shut down a maximum num-
ber of links while maintaining a valid routing in the network for all the
flows.

The heuristic algorithm is thus composed of three different modules designed
to solve these subproblems. For every demand, using the routing module, we
compute a path and the corresponding set of rules to install on the nodes.
Whenever a node become overloaded, the compression module is called upon
that node. Once all demands have been assigned to a path, the energy saving
module is called.

4.3.1 Routing module

We propose an efficient routing heuristic using a weighted shortest-path al-
gorithm with an adaptive metrics. When several routes are possible for flow,
we select the one using the less loaded equipment, links, and routers, as mea-
sured by our metrics. The intuition is two-fold:(i) we want to avoid sending
new flows to a router with a very loaded routing table, if there exists an alter-
native path using routers with less loaded routing tables (ii) load balancing
the traffic over the multiple possible paths is currently done in data centers
to avoid overloading links. More emphasis can be given to one or the other
thanks to two parameters in the weight computation, named ↵ and β.

For every flow (s, t, d), we first build a weighted directed graph (digraph)
Gst = (V,Ast, w), where, for every (u, v) 2 Ast, wuv is the weight of link
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(u, v). Gst represents the residual network after having routed the previously
routed flows:

- Gst is a subgraph of G where an arc (u, v) is removed if its capacity
is less than d or if the flow table of the router u is full and does not
contain any wildcard rule for (s, t, pv) (where pv represents the output
port of u towards v). Note that, when a table is full and compressed,
a node u has only one outgoing arc (to the node v), corresponding to
the first existing rule of the form (s, ⇤, pv), (⇤, t, pv) or to the default
rule (⇤, ⇤, pv). As more tables get full, the number of nodes with only
one outgoing arc increases, reducing the size of the graph.

- The weight wuv of a link depends on the overall flow load on the link and
the table’s usage of router u. We note wc

uv the weight corresponding to
the link capacity and wr

uv the weight corresponding to the rule capacity.
They are defined as follows:

wc
uv =

Fuv

Cuv

where Cuv is the capacity of the link (u, v) and Fuv the total flow load
on (u, v). The more the link is used, the heavier the weight is, which
favors the use of lower loaded links allowing load-balancing. And

wr
uv =

(
|Ru|
Cu

if 6 9 wildcard rule for (s, t, v)

0 otherwise

where Ru is the current set of rules for router u. Recall that Su is the
maximum number of rules which can be installed in the routing table
of router u. The weight is proportional to the usage of the table. Note
that wc

uv 2 [0, 1] and wr
uv 2 [0, 1]. They measure the percentages of

usage of link (u, v) and the routing table of router u.

The weight wuv of a link (u, v) is then given by:

wuv = 1 + ↵wc
uv + βwr

uv (4.22)

The ↵ and β, with β = 1−↵, parameters allow for a tuning between link
and node capacity emphasis. The additive term 1 is used to provide the
shortest path in terms of the number of hops when links and routers
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are not used (i.e., when wc
uv = 0 and wr

uv = 0 for all (u, v) 2 Ast). This
term could be replaced by the delay to traverse link (u, v) to obtain the
shortest paths in terms of delay. When the links and routers are used,
we take into account their usage. Note that wuv  2. This ensures that
l(p)  2 ⇥ l(p⇤), where p is the path found by the routing module, p⇤

is the unweighted shortest path and l(p) the number of hops of path
p (indeed, l(p)  w(p) as wuv ≥ 1, w(p)  w(p⇤) as p was selected,
and w(p⇤)  2 l(p⇤), where w(p) is the sum of the weights of the links
of path p). This means that no path longer than twice the current
available shortest path is selected.

When (Gst, w) is built, we compute a route for the flow by finding the shortest
path between s and t in the digraph minimizing the weight w. If no such
path exists, the module return that no feasible routing was found. We also
compute the set of non-wildcard rules to install on the nodes to ensure a
valid routing.

Setting the parameters of routing module. The metric Equation (4.22)
to find a path for each demand combines link usage and link capacity with
table capacity and table usage. The importance of links is given by the
parameter ↵ and the one for the tables by β. If ↵ is larger than β, we give
more weight to links. In Figure 4.1, we compare the effect of giving a higher
priority to one or the other by changing the weight ↵ or β. In particular, we
provide results for values of ↵ : β 1:1, 3:1, and 1:3. We tested other values
which are not presented here for clarity of the plots. We also compare the
metric with a simple metric, called dumb, where all links have a weight of
one.

On zib54, the use of dumb andmetric 1:1 allow to shutdown between 40%
and 50% of the links, while the use of metric 3:1 and 1:3 allow to shutdown
between 48% and 56% of the network. The same behavior can be observed
on the ta2 network where between 48% and 56% of the network is shutdown
with the metric 1:1, 52% and 56% for the dumb metric, 54% and 61% for the
metric 3:1 and 56% and 60% for the metrics 1:3. We also observe that during
the off peak hours, the metrics 3:1 gives better results than the metrics 1:3
while it is the other way around for the peak hours. For germany50, the
difference between metrics is smaller, but the metric 3:1 is almost always the
best one.

To summarize, for the three networks, the best metrics are 3:1 and 1:3.
We thus choose one of the two, metric 3:1, as the default metric in the
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Algorithm 2: Finding a path for a flow

Input: A flow (s, t, d),
a digraph G = (V,A),
rule space capacity Su 8u 2 N ,
set of rules Ru 8u 2 N ,
link capacity Cuv 8a 2 A,
flow Fuv, 8a 2 A
Output: A path for (s, t, d)

1 Create a weighted digraph Gst = (V,Ast = ;,W );
2 foreach (u, v) 2 A do
3 if Cuv −Fuv ≥ d then
4 if 9 wildcard rule for (s, t, pv) then
5 add edge (u, v) to Gst;
6 wr

uv = 0;
7 wc

uv = Fuv/Cuv;
8 Wuv = 1 + ↵wr

uv + βwc
uv;

9 else if |Ru| < Su then
10 add edge (u, v) to Gst;
11 wr

uv = |Su|/Ru;
12 wc

uv = Fuv/Cuv;
13 Wuv = 1 + ↵wr

uv + βwc
uv;

14 return weighted shortest path between s and t in Gst = (V,A0,W )
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Figure 4.1: Energy savings for the different metrics with EARC-H-Direction.
For metric ↵ : β, ↵ represents the weight of the links and β the weight of the
table (See Section 4.3.1).

remaining of the chapter.
Note that the Minnie algorithm, presented in Chapter 5, use the same

routing module.
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4.3.2 Energy savings module

The energy savings module uses a greedy approach to select the links to
switch off. It tries to remove in priority links that are less loaded and to
accommodate their traffic on other links to reduce the total number of active
links.

The algorithm is simple. We start with the full network. We launch the
routing module to try to find a feasible routing for all the demands. If such
a routing exists, we try to remove the edge with the lowest load. We then
re-launch the routing module on the network without the considered edge.
If a feasible routing is found, we continue and try to switch off another edge.
If no feasible routing is found, we put back the edge, and we try to remove
the edge with the second lowest load. An edge, which was selected and could
not be removed, is not considered anymore in the following of the algorithm.
The algorithm stops when all edges have been selected once.

4.3.3 Compression module

The compression module is called whenever a table is full. Different levels
of compression can be offered: default rules only, or wildcard aggregation
on source or destination. Optimal and heuristic solutions are presented in
Chapter 3.

4.4 Energy savings

In this section, we study the energy saved over multiple periods of time
and the four following networks: atlanta, germany50, ta2 and zib54. We
compare the results obtained for the different solutions proposed to solve
the EARC problem, the EAR problem without compression and Classical
Routing (CR) (without energy).

For the power parameters, we look at the Powerlib database [Van+12]
that collects representative data for major network equipment such as rou-
ters, switches, transponders. In this database, the scope of the values for the
maximal power is huge, going, as an example, from 10W to 9000W for IP
router components. Therefore, in order to present results that do not rely
on a specific equipment from a specific vendor, we choose for the parameters
of the power model a classical On-Off power model. Several other papers
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Compression Name Short name Routing Energy Compression
kind in figures algo

default port EARC-LP-Default LP (Section 4.2.1)
multi-field EARC-LP-Multi LP (Section 4.2.2)
default port EARC-H-Default EARC-Default Heur Opt. Comp-Default (Section 3.2.1)
multi-field EARC-H-LP Heur LP Comp-LP (Section 3.2.2)
multi-field EARC-H-Greedy EARC-Greedy Heur Heur Comp-Greedy (Section 3.2.3)
multi-field EARC-H-Direction EARC-Dir Heur Heur Comp-Direction (Section 3.2.4)

none EAR yes yes none (but no limit on the number of rules)
none EAR-with-limit yes yes none (with limit on the number of rules)
none Classic Routing CR yes no none (but no limit on the number of rules)

Table 4.1: Names of the solutions to solve the EARC problem (and of the
EAR problem without compression for comparison).
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Figure 4.2: Daily traffic in multi-period

are dealing with this same power model, and among others, we can cite the
very well known and most-cited paper in this area: [Cha+08].

The different solutions are summarized in Table 4.1. Unless specified,
the limit of the forwarding table is 750 rules. We considered a typical daily
pattern of traffic as shown in Figure 4.2. Data come from a typical France
Telecom link. For each network considered, we rescale the traffic based on the
traffic matrices provided by SNDib. We then divide the day into five periods,
with different levels of traffic as shown in Figure 4.2. D1 represents the off
peak hours with the least amount of traffic on the network and D5 the peak
hours. We choose a small number of periods as network operators prefer
to carry out as few as possible changes to configurations of their network
equipment to minimize the chance of introducing errors or producing routing
instability. Moreover, most of the energy savings can be achieved with a
very small number of configurations, see for example [Ara+16]. We can not
disable any router since they are all transmitters and receivers of traffic in
the matrices considered. Energy savings is thus computed as the number of
links to sleep divided by the total number of links of the network (|E|).
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4.4.1 The need for more space
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Figure 4.3: Number of overloaded routers in three networks with unlimited
rule-space algorithm

In Figure 4.3, we show the number of overloaded routers (with more
than 750 installed rules) when applying the heuristic proposed in [GMM12]
for Energy Aware Routing. This EAR heuristic does not take into account
the table size constraint. As a result, we see that for almost every traffic
patterns (except for D5 on germany50), an EAR needs more than 750 rules
to be deployed. In germany50, up to 10% of the devices are overloaded. For
zib54, this number goes up to 11% and 16% for ta2. This confirms that to
be able to deploy energy policies on a SDN, the table size problem needs to
be resolved.

4.4.2 Optimal vs. Heuristic solution

We compare for a small network, atlanta (15 links and 44 links), the so-
lutions using linear programming and heuristic algorithms. We considered
solutions for different rule capacities on routers: 100, 750 and 2000 rules.

Both linear programs, LP-Default and LP-Multi, proposed in Section 4.2
can be run on the atlanta network (but not on larger networks such as
germany50, zib54 and ta2). As expected, LP-Multi, which solves the prob-
lem using more complex wildcards, has a longer execution time as it has more
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Table 4.2: Energy savings (in %) and computation times (in millisecond) for
the ILPs and the heuristics on the atlanta network

Rule capacity
EARC-LP-Default EARC-LP-Multi EARC-H-Direction EARC-H-LP
savings time savings time savings time savings time

100 52.27 641 940 52.27 694 302 40.91 ⇠ 14 40.91 3381
750 52.27 33 830 52.27 486 759 40.91 ⇠ 14 40.91 3311
2000 52.27 23 640 52.27 487 386 40.91 ⇠ 14 40.91 3300

variables: around 8min for 750 and 2000 rule capacities, to be compared with
23 s and 33 s for EARC-LP-Default. For a limit of 100 rules, both ILPs see
an aggravated execution time, with a sharper increase for LP-default. Both
LPs find the same optimal solution, with a savings of 52.27%. This is be-
cause atlanta is a small network with nodes of small degrees. The need
for compression is not high, and both levels of compression achieve the same
results.

We ran two heuristic algorithms with two different compression modules
proposed in Section 3.2, EARC-H-Direction with the Comp-Direction heuris-
tic and EARC-H-LP, which solves optimally the compression problem each
time a table has to be compressed when flows are routed. Both heuristics
provide solutions of the same values, 40.91% of energy savings. However, the
computation times are a lot higher for EARC-H-LP: more than 3 s compared
to 14ms for the heuristic. The computation time will prevent us from using
EARC-H-LP on larger networks. As a matter of fact, we recall the com-
pression time of tables using the LP increases exponentially, see Figure 3.4.
However, we observe that both solutions provide the same level of energy sav-
ings for the three rule capacities. The EARC-H-Direction heuristic is very
efficient, and we use it to get solutions for larger networks.

4.4.3 Energy savings during the day

In Figure 4.4, we compare the multiple solutions proposed for the compression
module. We also check the possibility of an SDN routing without compression
(corresponding to a simple EAR). The ILP is not considered in the compar-
ison as the networks are too big to be optimally resolved in an acceptable
time.
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Figure 4.4: Energy savings of the different heuristics during the day with a
limit of 750 rules.
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Need for compression First, we see that, as the networks grow in size,
not all heuristics give a valid SDN routing. No compression is needed to
find a valid SDN routing on germany50. However, it is impossible to find a
routing satisfying the capacity constraint for zib54 and ta2 without using a
compression algorithm. Moreover, multi-field compression should be used to
find a valid routing for ta2. Indeed, it is impossible to find a valid routing
for ta2 while using only default port compression.

Compression impact On germany50, all heuristics give similar results
between 52% for the peak hours and up to 65% during the night. They
are all small within a margin of about 2% from one another. The EARC-
H-Greedy and EARC-H-Direction heuristics show the best results and no
compression gives the worst ones in all periods.

For the zib54 network, the difference between the heuristics is a little
bit more visible. Between 46% and 56% is saved during the day. Once
again, either the EARC-H-Greedy or EARC-H-Direction heuristics gives the
best results depending on the periods. The only exception is during the D2
periods, where the EARC-H-Default compression shut about 1% more links
than the other two heuristics.

Finally, in the ta2 network, the EARC-H-Greedy heuristic saves a little
bit more energy than the EARC-H-Direction one as the former saves almost
2% more than the latter.

The amount of saved energy by the heuristics for each network is different.
The explanation is that the order in which each link is extinguished depends
on its charge. A small change in the routing thus can affect the total energy
saved.

EAR vs. EARC We compare the results of the proposed solutions with
the one of the classic EAR approach in which no limit on the number of
rules is considered. We show that by using an efficient way to route demands
and compress forwarding tables, it is possible to save almost as much power
consumption as the EAR approach (curve named No Limit in Figure 4.4).
Indeed, we see that for the zib54 network, we succeeded to save the same
amount of energy when using the best of all solutions. The solution EARC-
H-Direction alone is very close to the EAR one. Only half a percent of energy
is lost for some periods of time. On germany50, the results of the heuristics
are almost as good. For some periods of time, no solutions can do as well as



CHAPTER 4. ENERGY AWARE ROUTING WITH COMPRESSION 82

D1 D2 D3 D4 D5
0

1

2

3

4

5

6

7
6

tr
e
tc

h
 r

D
ti

o

(a) germany50

D1 D2 D3 D4 D5
0

1

2

3

4

5

6

6
tr

e
tc

h
 r

D
ti

o

(b) zib54

D1 D2 D3 D4 D5
0

1

2

3

4

5

6
6

tr
e
tc

h
 r

D
ti

o

(c) ta2

Figure 4.5: Stretch ratio of the paths given by a EARC solution (EARC-H-
Direction) compared to the one given by a classic routing (without energy
savings) on the germany50 network with different traffic matrices.
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Figure 4.6: Average delay by path on the germany50 network

EAR, but the difference again is only of half a percent. In general, the results
of EARC-H-Greedy are withing 1% of the one of EAR. For the network ta2,
the difference between EAR and our solutions is higher but stays with 2%.

4.4.4 Path lengths

As we shut down links, we remove some shortest paths in the network and
thus raise the minimum delay between nodes. To study this effect, we look
at the length of the paths in our EAR solutions and compare it to a routing
obtained not using the energy saving module. For these comparisons, we use
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Figure 4.7: Average delay by path on the zib54 network.
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Figure 4.8: Average delay by path on the ta2 network.

the Direction heuristic.
In Figure 4.5, we show the distribution of the stretch ratio of the path

used in EARC-H-Direction compared to a CR. The first observation is that
the behavior is similar for the three topologies: the median stretch is about 2
in the off-peak hour period (corresponding to the demand D1) and decreases
to about 1.3 in the peak hours (demand D5). The explanation is that, as
expected, in the off-peak hours, a large number of links can be switched off,
and the paths are the longest. For larger demands, more links are on, and
the stretch decreases.

Note that the median value is not very high. However, the third quartile
value of the off-peak hours is quite high: 7, 6 and 5.25 for germany50, zib54,
and ta2, respectively. These values are mostly due to paths of small lengths
stretched all the way trough the network to attain their destination (corre-
sponding for example to nodes linked by a switched-off edge). Nevertheless,
we show below that these somehow large values of stretch do not cause a
problem of too large delays on the networks.
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4.4.5 Delays

In Figures 4.6, 4.7 and 4.8, we show the delay of the paths in the three
networks, for both the classical routing and an EARC solution (EARC-H-
Direction). We consider an optical network in which the delay is proportional
to the distance [Cho+07], and we used the distances given by the geographical
coordinates in SNDlib for the germany50 network. We got an average value
of 1.8ms per link. Since the coordinates are not given for the other two
topologies, we used the same average value for zib54 and ta2.
The delays for the classical routing are similar for the three networks with a
median of 8ms and a maximum of 15ms during all periods. For the EARC
solution, the values are much higher. Larger delays are shown during the off-
peak hours as expected. The germany50 network shows the biggest delays
among the three topologies. The explanation is that more energy can be
saved for this network. Its median delay is between 11ms and 16ms, and
the maximum delay is below 50ms. The delay on the two larger networks
is slightly less impacted as fewer links can be turned off. The maximum
delay observed on zib54 and ta2 is about 40ms and the medians fluctuate
between 14ms and 9ms for zib54 and 14ms and 10ms for ta2.

Note, that the maximum delay observed is always below 50ms. This is an
important fact, as Service Level Agreement (SLA)s often choose this value
as the maximum allowed delay for a route in a network [Gir+03]. Thus, even
if new routes computed by our algorithms may experience sometimes a high
value of stretch, this will not be a problem for network operators.

4.4.6 Link load

When we turn off links, we aggregate the flows on the remaining links. The
load of them is thus increased. In Figure 4.9, we compare the link load of all
network links (switched off and switched on) for energy aware routing and
classical routing. In Figure 4.10, cumulative distributions are given consider-
ing only the switched on links. Results are provided only for off-peak traffic
(D1) and rush hour traffic (D5) in the first figure for clarity reason, while all
five demand matrices are considered in the other.

The first observation is the percentage of links with a null load (switched
off links), e.g., for germany50 62% with the demand D1 and 54% with D5.
The load on the remaining links is highly increased: for germany50 again, we
see that no link has a load higher than 15% for the CR for the D1 (higher
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Figure 4.9: Comparison of the cumulative distribution function of the link
load for EARC and CR. Results for off peak traffic (D1) and rush hour traffic
(D5) are provided.
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Figure 4.10: Cumulative distribution function of the link load of the swichted
on links using EARC for the five demand matrices (D1 is off peak traffic and
D5 is rush hour traffic.)
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than 50 % for D5), when 45% of the links have a load higher than this value
for EARC (40% for D5). Similarly, for zib54 and ta2, more than 80% of
the links have a load smaller than 10% for D1 for CR and of 30% for D5,
when more than 50% of the switched on links have a load higher than 50%
for EARC.

Note that, in the germany50 network, there is a very notable difference
between the D1 and D5 period. In the off-peak hours, only 30% of the
switched-on links are above 75% compared to 52% in the peak hours. In
the other two networks, the difference between periods as the difference as
the range of energy savings is smaller. For zib54, in the off-peak hours, the
maximum link utilization is 86%, and the minimum is 2% while in the peak
hours, 19% of the link are above this usage and the minimum is 6%.

4.5 Conclusion

In this chapter, we studied the impact of the table size constraints on the
energy savings possible on an SDN network. To the best of our knowledge, we
are the first to study the Energy Aware Routing with Compression Problem.
We modeled the problem as an ILP, for both default port and multi-field
compression scheme. We also proposed efficient heuristic algorithms for large
networks using the heuristics solutions presented in 3. We showed, using real
traffic traces, that using wildcard rules allows for almost as much energy
savings as in the case of classic EAR without capacities on the forwarding
tables. We also evaluate the impact of the proposed solutions on path delay.
We demonstrated that, if the delay is inevitably increased, the maximum
delay always stays below typical values given by SLAs.
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5.1 Introduction

In this chapter, we look at the Compression Problem in the context of classical
routing in data center networks. We present Minnie, a routing solution us-
ing multi-field compression to circumvent the table size constraints imposed
by TCAMs. It can be seen as a dynamic variant of the heuristic presented
in Chapter 4 without the energy saving module. It routes the traffic and
compresses routing tables to satisfy link capacity and routing table size of
the different forwarding devices. We validate our algorithm on multiple well-
known data center topologies in Section 5.2. We show that one can deploy
networks with up to 1 million flows using Minnie by carefully choosing a
threshold for compression. We further validated Minnie using a testbed em-
ulating a k = 4 Fat-Tree data center topology in Section 5.3. We demonstrate
on the one hand that even with a small number of clients the limit concerning

87
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the number of rules is reached if no compression is performed, increasing the
delay of new incoming flows. Minnie, on the other hand, reduces the num-
ber of rules needed, with no packet losses, nor noticeable additional delays
using TCAM. A summary of the simulation and experimental results of this
section can be found in Table 5.1

MINNIE Application

New incoming 
flow

Routing Module

Compression 
Module

If any overloaded 
switch with new 
rules

Install rules on 
the switches 
of the path

Install new 
compressed table

Figure 5.1: Minnie algorithm

5.1.1 Minnie

Minnie, shown in Figure 5.1, is composed of two modules: a routing mod-
ule using the routing heuristic presented in Section 4.3.1, and a compression
module using the Comp-Direction approximation algorithm presented in Sec-
tion 3.2.4.

Every time the controller detects a new flow, the routing module computes
a path on the network along a set of rules to install on the switches of
the path. Once the rules are installed, the compression module is called
on any switch reaching its maximum capacity. Delaying the compression
offers a reduced impact on the delay onto new packets, as we will see in
Section 5.3.2. The details of deploying Minnie in an SDN controller can be
found in Section 5.3.1.

5.2 Simulations on data center topologies

In this section, we study the behavior of Minnie through simulations for
a wide variety of data center architectures. We first present the different
scenarios, performance metrics, and data center architectures in Section 5.2.1.
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We then demonstrate that Minnie works well for topologies of various sizes
and structures in Section 5.2.2.

5.2.1 Simulation settings

We present in this section the different scenarios studied via simulations,
the traffic patterns and metrics that will be evaluated. All simulations were
carried out on a computer equipped with a 3.2GHz 8 Core Intel Xeon Central
Processing Unit (CPU) and 64GB of Random Access Memory (RAM).

Scenarios

We ran simulations under three different scenarios:

• Scenario 1: No compression. We only use the routing module of
Minnie and fill up the routing tables without compressing them. This
scenario serves as a baseline for measuring the efficiency of Minnie.

• Scenario 2: Compression at the end of the simulation. We
compress the routing tables of every switch once at the end of the
simulation, when all the forwarding rules have been stored assuming an
unlimited capacity of the routing table. We use it to test the efficiency
of the compression module of Minnie.

• Scenario 3: Minnie (Dynamic compression at a fixed thresh-
old). We validate Minnie with a threshold of 1000 rules, which rep-
resents the routing table limit. This scenario aims at testing Minnie

in a scenario closer to real life. The capacity of 1000 rules has been
chosen as it corresponds to the number of entries supported by the
TCAM of typical switches such as Apollo 2 and Triumph 2 [Mod16].
The actual number ranges around couple of thousands to tens of thou-
sands [Ste+12].

Traffic patterns

For all scenarios, we consider an all-to-all traffic in which every single server
establishes a connection to all other servers. Each flow is constantly send-
ing traffic. We consider this situation to test Minnie in the most extreme
scenario in terms of number of flows, and thus, in terms of number of rules.
Each flow is represented by a unique source-destination pair.
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Data center architectures

To test the efficiency of Minnie, we considered state-of-the-art data cen-
ter architectures: Fat-Tree [ALV08], VL2 [Gre+09], BCube [Guo+09] and
DCell [Guo+08]. For each family of architecture, we considered topologies
of different sizes hosting from few units to about 3000 end points. These end
points can be either servers or IP subnets, grouping thousands of different
machines. In the following, for simplicity, we often use the term server for
both cases. The number of flows routed in the topologies can thus reach a
few million.

The architectures considered during these simulations can be classified into
two different groups:

• Group 1, in which servers only act as end hosts includes Fat-Tree and
VL2.

• Group 2, in which servers also act as forwarding devices (similarly to
switches) includes BCube and DCell.

We detail below how we chose the different set of parameters to build
these topologies like the number of switches or level of recursion.

Fat-Tree. The Fat-Tree is one of the most well-known architectures. The
switches are divided into three categories: core, aggregation, and access (or
Top of the Rack (ToR)) switches. A k Fat-Tree is composed of k pods of k
switches and k2/4 core switches. Every switch possesses k ports. Inside a
pod, aggregation and edge switches form a complete bipartite graph. Each
core switch is connected to every pod via one of the k/2 aggregation switches.
Every ToR switch has a rack composed of k/2 servers. A k = 4 Fat-Tree is
shown as example in Figure 5.2a.

For our simulations, to build Fat-Trees with up to 3000 servers, we con-
sidered k values between 4 and 22.

VL2. The VL2 architecture is also composed of three layers of switches:
intermediate, aggregation and ToR switches. The intermediate and aggrega-
tion switches are connected to form a complete bipartite graph. Each ToR
is connected to two different aggregation switches. Three parameters control
the number of switches of each layer and the number of servers of the archi-
tecture: Da represents the number of ports of an aggregation switch, Di the
number of ports of an intermediate switch and T the number of servers in



CHAPTER 5. MINNIE 92

Core

Aggregation

Access

(a) Group 1: A Fat-Tree with k = 4
pods

Intermediate

Aggregation

ToR

(b) Group 1: A VL2 network with Di =
6-ports intermediate swiches, Da = 6-
ports aggregation switches and T = 2
servers per ToR

Dcell(2, 0)[0]

Dcell(2, 0)[1]Dcell(2, 0)[2]

(c) Group 2: A DCell(2, 1),
composed of 3 DCell(2,0)

BCube(3, 0)[0] BCube(3, 0)[1] BCube(3, 0)[2]

(d) Group 2: A BCube(3, 1), composed
of 3 BCube(3, 0)

Figure 5.2: Example of topologies studied.
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the rack of a ToR switch. Figure 5.2b shows a VL2(Da = 6, Di = 6, T = 2).
The topology has Da/2 (3 in the example) aggregation switches, Di (6 in the
example) intermediate switches, DaDi/4 (9 in the example) ToR switches
and TDaDi/4 (18 in the example) servers.

For our simulations, we chose the parameters of the topologies to ensure
that every switch has the same number of ports, that is VL2(2k, 2k, 2k− 2)
for k between 2 and 11.

DCell. The DCell architecture is a topology in which both servers and
switches act as forwarding devices. The topology is built recursively. The
basic block is the level-0 DCell, DCell(n,0), where n servers are connected
to a unique switch. From a DCell(n, l-1), composed of s(n, l − 1) servers,
a DCell(n, l) can be built by connecting each server of a DCell(n, l-1) to
a different DCell(n, l-1). This builds a DCell(n, l) containing (s(n, l) + 1)
DCell(n, l-1). For example, a DCell(2, 0) is composed of 2 servers (s(n, 0) =
n) and to create a DCell(2, 1), as shown in Figure 5.2c, 3 DCell(2, 0) are
interconnected.

In our simulations, we compare topologies with one level of recursion
(referenced as DCell(l = 1)), with n between 1 and 54, and topologies with
two levels of recursion (referenced as DCell(l=2)), with n between 1 and 7.

BCube. BCube is another architecture in which the servers also act as
forwarding devices. Again, it is a recursive construction. The building block
is a BCube(n, 0), composed of n servers connected to a single switch. The
level l being composed of multiple l− 1 levels. Unlike in the construction of
DCell, in which the recursion connect servers together, the construction of
BCube is done by connecting the servers via new switches. The number of
switches added to make a BCube of level l is equal to the number of servers
in a BCube of level l−1. Each switch is then connected to one server of every
BCube of level l− 1 and each servers to l+1 switches – see the BCube(3, 1)
in Figure 5.2d.

Like for DCell topologies, the same number of servers can be obtained
with different levels of recursion. We consider levels of recursion up to 3.

5.2.2 Simulation results

In this section, we validate Minnie through simulations over the set of
topologies described in Section 5.2.1. We demonstrate in this section that
Minnie works well for different topologies and different sizes of data centers.
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We first analyze the compression rates that can be obtained by compress-
ing large tables. Then, we show that if tables are compressed all along the
simulation as soon as the limit is reached, then the compression module is
much more efficient and the compression ratio reaches 90% for some topolo-
gies. We then investigate the efficiency of Minnie when considering around
1000 servers in multiple topologies. We show the efficiency of our method by
comparing the results of Minnie with XPath [Hu+15]. Finally, we present
the routing and compression time of these different topologies.

Metrics To assess the efficiency of Minnie, we measure the following met-
rics:

- Average compression ratio of compressed tables: compression ratio =

1−
number of rules of a switch

number of flows passing through the switch

Note that the compression ratio measures the efficiency of the com-
pression algorithm. We thus do not consider tables, on which no com-
pression event was performed (in particular empty tables), when we
compute the average compression ratio.

- Number of compression events performed by a switch during the sim-
ulation.

- Number of flows passing through a switch (maximum and average over
all switches).

- Number of rules per switch (maximum and average over all switches).

- Computation time for compressing a table and for routing a flow.

- Maximum number of servers which can be installed on a data center
topology without going beyond a forwarding table size of 1000 rules.

For each family of topologies, we present the results for the three sce-
narios described in Section 5.2.1, referenced respectively as No compression,
Compression at the end and Minnie.
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Figure 5.3: Average compression ratio on the different topologies in Scenario
2.

Efficiency of the compression module. The efficiency of the compres-
sion module of Minnie can be assessed from Figure 5.3 where we look at
the average compression ratios of the Compression at the end scenarios. In
this figure we observe that DCell, BCube and VL2 topologies follow a simi-
lar phenomenon. They all feature a sharp increase of the compression ratio
when the number of servers is between 0 and 100: for example, the ratio
raises from 62% to 84% for DCell(l=2). Then, for larger number of servers,
the compression ratio levels off. On the other hand, Fat-Tree topologies have
a different behavior and do not experience the increase phase ; the curve
is almost flat all along the simulation. The higher ratio shown on DCell
topologies is explained by the aggregation of flows on the few switches avail-
able in the topology. Combined with a few number of outgoing ports, the
compression module can attain a very high compression ratio.

In the flat phase, compression ratios are between 60% and 80% for the
three families BCube, VL2 and Fat-Tree, and even reach values between 85%
and 99.9% for DCell. In summary, the compression module of Minnie
features a minimum of 60% savings in memory.

Compression event frequency. In Figure 5.4, we observe the total num-
ber of compression events executed for the different topologies. Group 1
topologies reach a maximum of 516 compressions for the k = 18 Fat-Tree
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Figure 5.4: Number of compression executed for different topologies

(and 301 for VL2(20, 20, 18)). This represents an average of about one
compression event per switch for the Fat-Tree topology and less than six
compression events for VL2. However, Group 2 shows a higher number of
compression events, with a maximum of almost 6000 compression events for
a BCube(53, 1) (in average, 54 compression events per forwarding device).
This difference is due to the near saturation of most of the switches in Group
2 topologies. In these nearly saturated tables, the compression leaves a table
that is close to the 1000 limit and thus, the table is compressed after the
addition of a few new flows.

Efficiency of Minnie Minnie is composed of a routing and a compression
module. When the number of rules reaches the 1000 limit, Minnie triggers
the compression module. This dynamic behavior allows to efficiently route
traffic without overloading the routing tables on topologies where the number
of servers increases. Figure 5.5 presents the maximum number of rules on
a device (a router or a server depending on the family of topology) as a
function of the number of servers for the different families of topologies. We
remark that the curve for Minnie first follows the No compression one until
reaching the 1000 limit. Indeed, during this first phase, Minnie performs
no compression at all as the limit is not attained. Then, Minnie triggers
compression regularly and manages to keep all routers’ table below the limit
of 1000. When performing compression, Minnie has introduced wildcard
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Figure 5.5: Maximum number of rules on a forwarding device as a function
of the number of servers for different data center architectures.
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rules in the routing tables, and the new incoming flows will follow these
paths in priority. Therefore, Minnie deals with the same number of flows
as No Compression with less than 1000 entries while No Compression needs
between 104 and 106 entries. Note that some points for Minnie are not
depicted. Indeed, in Figure 5.5, we present only the results in which all
the flows are routed without overloading the routing tables. As soon as one
request cannot be routed and when the routing tables cannot be further
compressed, the simulations are stopped.

This phenomenon can be clearly seen for DCell(l=1) topologies in Fig-
ures 5.5a. Without compression, only 72 servers can be deployed in a
DCell(8, 1) without overloading tables while Minnie allows deploying 1056
servers with a DCell(32, 1). This represents a 15 fold increase compared to
No compression. The number of servers which can be deployed with DCell
topologies having two levels of recursion (Figure 5.5b) is similar: 930 with a
DCell(5, 2) when running Minnie and less than 200 with No compression.

Another key observation is that Minnie can reach or even out-
performs Compression at the end without exceeding the limit of
number of rules. Indeed, if we consider for example Fat-Tree topologies
in Figure 5.5c, without compression, the largest Fat-Tree which can be de-
ployed with a rule limit of 1000 is a k = 8 Fat-Tree with 128 servers and
992 rules. With compression at the end, the number of servers which can be
deployed would be around 256. However, we see that Minnie succeeds in
deploying a k = 18 Fat-Tree with 1458 servers without having overloading
issues. This is a 6 fold increase compared to Compression at the end. This
is due to the fact that by compressing online, i.e., when flows are
introduced, Minnie impacts the routing of the following flows. Be-
cause of the metrics used in the routing module, the algorithm will prefer to
select shortest paths using wildcards as they do not increase the number of
rules. This allows better compression ratios.

The phenomenon also appears for BCube topologies (Figures 5.5d, 5.5e,
5.5f) and with a striking intensity for VL2 topologies (Figure 5.5g). When
compressing at the end, up to 96 servers can be deployed without reaching
the table size limit (and only 36 without compression). With Minnie, this
number can be pushed up to 1800 servers which represents 36 fold increase.
Difference of behavior inside a family of topologies. We notice in
Figure 5.3 and 5.5 a difference of behavior inside a family of topologies.
For a given family of data centers, different topologies can host a similar
number of servers. For example, DCell(32,1) and DCell(5,2) host around



CHAPTER 5. MINNIE 99

1000 servers, as well as BCube(32,1), BCube(10,2) and BCube(6,3). But the
behavior of these topologies is significantly different: for example, the average
number of rules is 113 for a DCell(32,1) compared to 642 for a DCell(5,2).
We see that the compression ratio of the family DCell(l=1) is higher (more
than 95% when the number of servers is greater than 200) than the one of
DCell(l=2) (more than 85% when the number of servers is greater than 200).
Hence, the choice of the best set of parameters for a given family of
topologies is very important. In order to answer this question, we study
in the following section all these topologies with similar number of servers
(around 1000).

Comparison of Minnie effect on topologies with 1000 servers. Ta-
ble 5.2 sums up the effect of Minnie on the different topologies with a similar
number of servers (around 1000), hence a similar number of flows to route.
We detail below the different parts of the table, highlighting the key conclu-
sions to draw.

Topology characteristics. The first part of the table provides ba-
sic information about the topologies. Even with a similar number of
servers, the topologies are very different in terms of number of switches
(between 20 and 903), links (between 1056 and 5184) and average number of
ports per switch (between 2.9 and 54.4).

Flows in the network. The second part of the table reports the num-
ber of flows introduced in the network during the simulation. These topolo-
gies behave very differently in terms of number of flows per device: the aver-
age number of rules ranges from 3734 to 216 000 and the maximum number of
rules ranges from 7800 to 650 000. Two explanations can be given for these
differences. First, the topologies have very different numbers of switches
(from 20 to 864). Secondly, in the topologies of Group 2, servers also act as
switches, and thus also host some rules, leading to a lower average number
per device.

Compressing with Minnie. The third part of the table represents
the effect of using Minnie on the number of rules, average compression ra-
tio and computation time. Minnie succeeds to route the traffic on all
the topologies without exceeding the limit of 1000 rules per device
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Topology servers # switches # links # Avg ports #
# flow Rule w/ comp # Average Computation time

per switch Comp. in average (ms)
Max Average Max Average Ratio Paths Comp.

Group 1
k = 4 Fat-Tree (64) 1024 20 1056 54.4 454 244 216 268 999 446 ⇠ 99.60 0.17 13
k = 8 Fat-Tree (8) 1024 80 1280 19.2 649 044 61 030 999 323 ⇠ 99.61 0.21 7
k = 16 Fat-Tree (1) 1024 320 3072 16 630 998 15 897 999 303 ⇠ 98.42 0.30 5
VL2(16, 16, 14) 896 88 384 16 261 266 42 906 1000 673 ⇠ 97.90 0.15 4
VL2(8, 8, 64) 1024 28 612 ⇠ 41.1 423 752 161 499 1000 799 ⇠ 99.45 0.19 11
VL2(16, 16, 16) 1024 88 1152 ⇠ 17.5 276 575 56 040 1000 648 ⇠ 98.39 0.18 4

Group 2
DCell(32, 1) 1056 33 1584 ⇠ 2.91 63 787 4893 1000 113 ⇠ 97.23 0.09 2
DCell(5, 2) 930 186 1860 ⇠ 3.33 11 995 5716 994 642 ⇠ 87.84 0.19 2

BCube(32, 1) 1024 64 2048 ⇠ 3.77 37 738 3734 999 329 ⇠ 86.04 0.19 2
BCube(10, 2) 1000 300 3000 ⇠ 4.62 10 683 4153 998 653 ⇠ 80.85 0.25 2
BCube(6, 3) 1296 864 5184 4.8 7852 5184 991 831 ⇠ 83.18 0.49 4

Table 5.2: Comparison of the behavior of MINNIE for different families of
topologies with around 1000 servers each. For the Fat-Tree topologies, we
tweak the number of clients per server to obtain 1024 ”servers”.

(maximum number of rules between 989 and 1000).
We also observe that with 1000 servers Minnie allows to attain an

average compression ratio higher than 80%. This shows that consider-
ing the state of the forwarding table when routing increases the compression
done by the wildcard rules. Compared with the Compression at the end sce-
nario, we see a ratio increase between 20% and 30% for the Fat-Tree and VL2
topologies, and a smaller increase between 5 and 10% for BCube. This dif-
ference comes from the smaller amount of shortest path available in BCube
compared to the Group 1 topologies. DCell topologies display close to no
differences since flows were already highly aggregated in the other scenario.

As for the computation time we notice that Minnie dynamically com-
putes the route with a sub-millisecond delays as the maximum average
routing computation time is 0.49ms for BCube(6,3). And finally, we can ob-
serve that compressing the rules with Minnie will cost less than 13ms
delay in all topologies.

Comparison with XPath. We compare Minnie with another compres-
sion method of the literature, XPath [Hu+15]. XPath combines re-labeling
and aggregation of paths. Each path is assigned an ID. Two paths can share
the same ID if they are either convergent or disjoint but not if they are di-
vergent. The assignment of IDs is then based on prefix aggregation. This
method requires that, for every request in the data center, an application
contacts the controller to acquire the corresponding ID of the path to its
destination.



CHAPTER 5. MINNIE 101

Topology
Number of rules
XPath MINNIE

BCube(4, 2) 108 56
BCube(8, 2) 522 443

(a) Comparison with MINNIE for paths between servers

Topology
Number of rules

ToR to ToR Server to Server
XPath MINNIE MINNIE

k = 8 Fat-Tree 116 27 272
k = 16 Fat-Tree 968 116 6351
k = 32 Fat-Tree 7952 482 113 040
k = 64 Fat-Tree 64 544 1925 -
VL2(20, 8, 40) 310 135 138 354
VL2(40, 16, 60) 2820 1252 -
VL2(80, 64, 80) 49 640 22 957 -

(b) Comparison with MINNIE: for paths between servers and paths between level
1 switches

Table 5.3: Comparison of the maximum number of rules on a switch between
XPath and Minnie (between servers or ToRs).
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In Table 5.3, we compare the maximum number of rules installed on a for-
warding device between XPath and Minnie for a larger variety of topologies.
Numbers reported in the table for XPath are directly extracted from [Hu+15].
In Minnie, we consider all the flows between servers even if they act only as
end hosts but in XPath, only the path between ToRs are considered for the
standard architecture (VL2, Fat-Tree). So for an accurate comparison, we
apply the same principle to Minnie by only considering flows between ToRs.
Since in [Hu+15], they also consider a bigger table size of 144 000 entries,
the limit is set to 144 000 for Minnie too. Minnie requires a lower number
of rules to be installed than XPath on every architecture while both dealing
with all possible (source,destination) flows. This can be explained by the fact
that XPath installs rules for all possible paths for every source/destination
pair before compressing while Minnie only considers one path per flow.

Execution time of Minnie Finally, we study the execution time of Min-

nie in order to assess if it is a viable solution in practice. We discuss here the
software running time. It represents the time of execution of the algorithm
in the controller. In Section 5.3, we then study the additional network delay
induced by our method for a flow using our testbed experiment.

Routing time. When a new flow arrives, the controller has to compute
its path in the network and the set of rules to be installed in the switches along
the path. We plot in Figure 5.6a the average time for this operation. Recall
that, to compute the paths we used Dijkstra algorithm with the metrics
wuv and residual graph Gst described in Section 4.3.1. The longest average
time is about 0.42ms which corresponds to the k = 18 Fat-Tree (with 1458
servers and 405 switches), whereas the shortest routing time happens for
VL2, DCell(l=1) and BCube(l=1) which have a small number of shortest
paths between two routers. On the contrary, the Fat-Tree and BCube(l=3)
experience a longer routing time explained by the large number of possible
paths between two servers. Note that even if Fat-Tree and VL2 have a similar
shape, the latter topology has significantly fewer switches and edges, which
explain the smaller number of possible paths and therefore the smaller routing
time. Nevertheless, for all of the studied topologies, the routing time
is small and we will see in Section 5.3.2 that the delays of the
packets are not significantly impacted.

Moreover, we observe a surprising behavior for some topologies. In most
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cases, the computation time is globally increasing with the size of the topolo-
gies. However, DCell(l=1), BCube(l=1), and BCube(l=2) experience a drop
in computation time: For example, the computation time for BCube(l=1)
topologies increases to 0.18ms for 1024 servers, then drops to 0.10ms for
1350 servers to increase again to 0.22ms for 2800 servers. This behavior
is caused by the saturation of a large number of switches of the topology
when the number of flows becomes high during the simulation. A switch is
saturated when the compression module can no longer reduce the size of the
table below the 1000 limit. However, a saturated switch can still forward
a new flow (say between server s and server t) using the first wildcard rule
in the routing table of the form (s, ⇤, p), (⇤, t, p), or (⇤, ⇤, p). The degree of
this switch is one in the residual graph used by Minnie to compute Dijkstra.
This decreases the computation time and the routing becomes very fast when
the number of saturated switches is large (as the number of possible paths
is then small). This is helpful as it may decrease the routing time of large
topologies with high number of flows.

(a) Average routing time over all flows (b) Average compression time per for-
warding device

Figure 5.6: Computation time for the compression and routing phases for
different topologies.

Compression time. After having determined the path of a new flow
and installed the rules along the path, we check if the size of one of the
corresponding routing tables reaches the limit of 1000 rules. If so, Minnie

carries out a compression of the routing table. We plot in Figure 5.6b the av-
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erage time to compress a routing table during the simulations for each group
of topology. We see that even for the simulations of the largest topologies
(pushed to their maximum with an all-to-all traffic of 6 million flow), the
average compression time is below 16ms. This corresponds to large (uncom-
pressed) routing tables dealing with 20 000 flows. A topology with around
1000 servers (1 million of flows in total) experiences an average compression
time between 2 and 4ms. As a typical example, we provide in Figure 5.7 the
time needed to compress a switch for a BCube(32,1) and a k = 12 Fat-Tree
(432 servers) in function of the number of flows passing through it. For the
k = 12 Fat-Tree, the average compression time is 1.29ms. For any switch,
the first compression is done when reaching 1000 flows corresponding to 1000
forwarding rules (as aggregation rules are only introduced at the first com-
pression). We then see that the second compression for a switch is done for
around 2500 flows followed by compression when reaching 3000 to 4000 flows.
These compression results show that previous compressions were efficient and
that a large number of new flows are routed via aggregated rules. As for the
two exceptions observed of tables compressed with around 18 000 flows1, they
correspond to one or two switches on which the paths are concentrated.

These time results allow to assume that the impact of Minnie on the
controller load and on the flow delay will be limited for these sizes
of topologies. Note also that, when a new flow arrives, we choose to apply
the compression module when the routing table size reaches the rule limit,
but only after the new flow is routed. Thanks to this strategy, the delays
experienced by the packets of the flow are not impacted by the compression
carried out by the controller. These results are furthermore validated by
running Minnie on a data center testbed in the following sections.

5.3 Experiments on an SDN testbed

In this section, we demonstrate the effectiveness of Minnie using an SDN
testbed. The characteristics of our experimental network is described in
Subsection 5.3.1. More specifically, we explain how with a single hardware
switch and Open vSwitches (OVSes) we deploy a full k=4 Fat-Tree topology
with enough clients to exceed the routing table size of the hardware switch,

1Beware to distinguish the number of flows in the network from the number of rules.
Here the number of rules per router is always below 1000 while the number of flows can
be way higher.
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(a) BCube(32, 1)

first compression

second compression

(b) k = 12 Fat-Tree

Figure 5.7: Scatter plot of the time to compress a table as a function of the
number of flows passing through the forwarding device.

as well as the traffic pattern that fits the needs of our cases of study. A few
details about the implementation of Minnie within a Beacon controller is
also provided. The obtained results are shown in Section 5.3.2, where we
discuss the impact of Minnie over the traffic delay, loss rate and the impact
of using software rather than hardware rules. A table of content of the results
obtained through simulations and experiments is available in Table 5.1.

5.3.1 Experimental settings

Testbed description

Our testbed consists of an HP 5400zl SDN capable switch with four modules
of 24 GigaEthernet ports, and 4 DELL servers. Each server has 6 quad-core
processors, 32GB of RAM and 12 GigaEthernet ports. On each server, we
deployed four Virtual Machines (VMs) with eight network interfaces each.
Each VM is connected to a dedicated OVS. Each OVS is further connected
using one physical port (of the server’s 12 ports) to the HP switch.

The topology of our data center network is a full k=4 Fat-Tree topology
(see Figure 5.8), which consists of 20 SDN hardware switches. Those switches
are emulated with 20 Virtual Local Area Networks (VLANs) on the physical
switch (referred to as vSwitches). Since each VLAN possesses an independent
OpenFlow instance, it behaves as an independent SDN-based switch with its
proper isolated set of ports and MAC addresses. The VLAN configuration
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and ports isolation prevent the physical switch from routing traffic among
VLAN through the backplane. The vSwitches are then interconnected on
the HP switch using Ethernet cables.

The HP SDN switch can support a total of 65 536 rules, both software
and hardware. Software rules are handled in the RAM and processed by
the general-purpose CPU (slow path) while hardware rules are stored in the
TCAM (fast path) of the switch. The number of hardware rules that can be
stored per module in our switch being equal to 750, the total switch capacity
is equal to 3000 hardware rules maximum. Those 65 536 entries are shared
among all 20 switches and are distributed to the vSwitches in the order of
arrival of the flows.

In one of the physical servers, we also deployed an additional VM hosting
a Beacon [Eri13] controller to manage all the switches (HP vSwitches or
OVSes) in the data center. According to [Sha+13], Beacon features high
performance regarding throughput and ensures a high level of reliability and
security. To prevent the controller from becoming the bottleneck during our
experiments, we configured it with 15 CPU cores and 16GB of RAM.

Figure 5.8: Our k=4 Fat-Tree architecture with 16 OVS, 8 access, 8 aggre-
gate, and 4 core switches.

Detecting new flows

When a switch does not find a match for a packet to a flow entry in its
forwarding table, its default action is to contact and ask the controller the
action to perform. However, by introducing wildcard and default rules in the
tables, we override this default action, which can introduce routing errors.
Indeed, let us consider a brand new flow between s1 and d1 on the network.
If the access switch of s1 contains a matching wildcard rule, e.g., (s1, ⇤, p2),
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due to a previous compression of its table, the switch will forward it through
the port p2 without contacting the controller. In the best case scenario, the
switch connected via p2 does not have a corresponding wildcard rule and
will contact the controller. In the worst case, the packet is forwarded to its
destination without ever being detected by the controller. In both cases, it
can cause inconsistent and inefficient routing in the network and can impact
the compression of the table since the controller is missing information.

In [Rif+15], we circumvented the problem by not compressing the table of
the access switches, at the cost of lower compression ratios and overloading of
these switches. The problem can also be solved by deploying OVSes between
the servers and the access switches. The forwarding tables of the virtual
switches are not compressed to allow compression on the access switches
without missing detection of new flows.

This added layer could be seen as a mere shift of the problem from the
edge devices to the physical servers. We believe however that this architecture
represents a major step towards the solution of limited TCAM space because
of the following reasons:

1. While the TCAM size is a real problem for physical SDN-capable de-
vices, placing one OVS per server, even without compressing the flow
table, should not introduce major performance problems. Indeed the
number of rules to be processed by each OVS should remain modest2

while an OVS can handle 1000 rules at the kernel space, and up to a
maximum of 200 000 rules [Pfa+15].

2. Virtualization is a common service in modern data centers. Hence,
virtual switches are routinely used to provide network access to the
virtual machines. OVS is natively supported by Xen 4.3 and newer
releases. VMware offers support to OVS through the NSX service for
Multi-Hypervisor, which is the natural choice for large data centers.
KVM, due to its native integration in Linux environments, can easily
be deployed using OVSes.

2As reported in [Cur+11], a typical rack of 40 servers generate around 1300 flows per
second. Therefore, each server is generating on average around 32.5 flows per second.
Assuming a worst case where every rule per flow is unique and that the expiration interval
for unused rules is the default value of 10 seconds of inactivity, then, a OVS in a single
server will need to store 325 forwarding rules roughly (plus the default route to reach the
local VM). This value is pretty small compared to the 1000 rules in the fast path of an
OVS.
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Number of clients

In our Fat-Tree architecture, we can easily deduce the number of rules cor-
responding to a valid routing assuming that each VM talks to all other VMs
not in its IP subnet, i.e., VMs not connected to the same ToR. Without
compressing the rules, a flow requires one rule on each switch along the path
from its source to its destination. The set of flows that a switch forwards
depends on its level in the Fat-Tree. Note that here, a flow is identified by
the couple IP source and IP destination addresses. Hence, for every pair of
nodes A and B, there are two unidirectional flows: A ! B and B ! A, i.e.,
two rules per switch on the path from A to B.

For any flow between two servers, the path first goes through the access
switches to which the servers are connected. Assuming n servers per access
switch (n = 2 in Figure 5.8), then each of the n servers connected to an
access switch communicates with the other 7 ⇥ n servers in other subnets
via outgoing and incoming flows. Overall, this represents 14n2 flows going
through any access switch.

Using the same argument to find the number of flows for switches at the
higher levels, we have a total of 13n2 flows at each aggregation switch and
12n2 flows for a core switch. In total, 264n2 rules are needed for the entire
network.

In Figure 5.9, we compare the total number of rules with no compres-
sion at all, and with compression (obtained via simulation) on all switches.
Without compression, we can only deploy 15 clients per subnet without run-
ning out of space in the forwarding table of our entire data center (65 536
entries), while up to 36 clients can be deployed when compressing at the end.
Therefore, Figure 5.9 explains our choice of installing 16 clients per subnet.
Indeed, it is the first value for which the number of rules exceeds our total
number of rules’ limit (67584 rules) when without using compression.

Experimental scenarios

We aim at assessing the performance of Minnie with a high number of rules
and a high load. Unfortunately, those two objectives are contradictory in our
testbed. Indeed, stressing the SDN switch in terms of rules, i.e., getting close
to the limit of 65536 entries, imposes to have software rules. As software rules
are handled, by definition, by the general purpose CPU of the switch (the
so-called slow path), a safety mechanism has been implemented by HP to
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Figure 5.9: Total number of rules installed as a function of the number of
servers, in a k = 4 Fat-Tree configuration.

limit the processing speed to only 10 000 packets/s per VLAN. Assuming an
Maximum Transmission Unit (MTU) of 1500 bytes, we could not go beyond
120MB/s, shared between all ports in a VLAN. This is why we designed a
second scenario where only hardware rules are used. In this scenario, we can
fully use the 1GB/s link but we are limited to the 3000 hardware rules that
have to be shared among the 20 switches. We thus consider two scenarios
to assess the performance and the feasibility of deploying Minnie in real
networks:

• Scenario 1: Low load with (large number of) software rules
(LLS). This scenario enables to test the behavior of the switch when
the flow table is full.

• Scenario 2: High load with (small number of) hardware rules
(HLS). This scenario enables us to demonstrate that the impact of
Minnie remains negligible even when the switch transfers a load close
to the line rate.

For each scenario, we consider three compression cases, which are similar
to the ones presented in Section 5.2.1:
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• Case 1: No compression. Tables are never compressed. This case
provides the baseline against which we compare results obtained with
Minnie.

• Case 2: Compression at the end In this case, we compress the
table once the physical forwarding table is full or when all forwarding
rules have been installed. This scenario illustrates the worst case and
provides insights about the maximum stress introduced by Minnie in
the network. Indeed, by delaying the compression, we end up with the
largest amount of rules possible to remove and the biggest compressed
table to install.

• Case 3: Minnie Individual tables are compressed once they reach a
set threshold. Three different thresholds values are considered in both
scenarios: 500, 1000 and 2000 rules for LLS, and 15, 20 and 30 rules
for HLS.

While LLS allows to test the scalability of Minnie in terms of number of
rules in real SDN equipments, this scenario might introduce, by default, an
important jitter in the network because of the usage of the general-purpose
CPU to process the traffic.

HLS helps to better understand the impact of the compression and for-
warding table replacement over the traffic. Since the traffic rate fills up to
75% of the access links, which is not enough to introduce congestion, and
packets are processed by the Application-Specific Integrated Circuit (ASIC),
we expect to have a low jitter. Hence, any sudden increase of this last will
immediately suggest an important impact of the compression mechanisms
over the network stability.

Traffic pattern

We further detail the actual implementation of the two scenarios in our
testbed.

Low Load with software rules Scenario - LLS. In this scenario, the
traffic is generated as follows: each client pings all other clients in every other
subnet. This means that for each access switch, each of the 16 clients pings
112 other clients. As we explained in Section 5.3.1, pings between hosts in
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the same subnet are not routed using IP and thus are not using any TCAM
space.

We start with an initial client transmitting five ping packets to one other
client. This train of five Internet Control Message Protocol (ICMP) requests
forms a single flow from the SDN viewpoint. We wait for this ping to termi-
nate before sending five other different ping packets to another client, and
so on until all the 112 clients are pinged. When the first client finishes its
pings series, a second client (hosted in the same VM) starts the same op-
eration. Hence, the traffic is generated during the whole experiment in a
round-robin manner, among the eight clients of each VM. Moreover, VMs
do not start injecting traffic at the same time. We impose an inter-arrival
period of 10 minutes between them. Hence, VM 1 starts sending traffic at
time zero, while VM 2 starts at minute 10, VM 3 at minute 20, and so on.
This smooth arrival of traffic in the testbed is motivated by the fact that we
do not wish to overload the physical switch with OpenFlow events. Indeed,
as stated in [Kre+15], commercial OpenFlow switches can handle up to 200
events/s. Since our testbed has 20 switches that handle its flow mod (mes-
sage for sending rules), packet out (message with the packet to send) and
other events, the critical number of events can be easily reached.

An experiment for this scenario lasts up to three and a half hour, and all
rules are installed after the first two hours and forty-five minutes.

High Load with hardware rules Scenario - HLS In this scenario, we
used one client per VM so that the total number of rules installed (1056
rules in total) is less than the hardware limit (3000 rules). Each VM starts
a 50MB/s ICMP traffic with the other clients in a round robin manner. We
wait a period of 75 s before starting the outgoing traffic of a new VM. In
total, we have a load of 800MB/s on each 1GB/s link.

This scenario lasts up to 1 hour, and all the rules are installed, as hardware
rules, after the first 20min.

Deploying Minnie in the SDN controller

When the controller is asked about a new packet in the network, the Minnie

SDN application will first execute the routing module and then, if necessary,
the compression module. The compression module is called on a table when a
new rule is installed, and the table reaches its maximum threshold. The rule
is first installed in the switch table to allow the packets to be forwarded and
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the compression module is executed. Once the compression is launched at the
controller, a single OpenFlow command is used to remove the entire routing
table from the switch. Then the compressed table is sent immediately to limit
the downtime period, defined as the period between the old rules removal and
the installation of the compressed table. When two or more switches need to
be compressed at the same time, the compression is executed sequentially.

As stated in Chapter 3, OpenFlow entries can specify a 16-bit priority
field in the case where a flow matches multiple entries in the table. The
switch executes the action of the rules with the highest priority.

The compressed table created using Minnie only contains three types of
rules: (i) Normal forwarding rules which match on source and destination (ii)
Aggregated forwarding rules that match on either source or destination (iii)
and the default rule. Note that a compressed table, given by Minnie, can not
contain both types of aggregation rules. Hence, three priorities are sufficient,
with the normal rules having the highest and the default rule having the
lowest.

To minimize the downtime when compressing and pushing its compressed
table to an SDN device, we decided to delete all the rules and install the new
rules instead of updating existing rules. This decision was motivated by
the fact that updating the SDN rules in TCAM is time-consuming and an
update operation is considered as two operations (delete + insert) [KPK14].
Our methodology leads to a single delete action for the whole table and
then a batch of rule insertions. These rules are going to be inserted without
waiting for the barrier reply message in order not to provoke large delay (see
[KPK14] for details). In case one rule was not installed in the SDN switch,
the controller will be notified of this problem, and it will then reinstall the
required rule. As we will see in Section 5.3.2, this strategy did not have any
negative impact on the network traffic delay or packet loss.

5.3.2 Experimental results

Scenario 1: compression with LLS

Number of rules As explained in Section 5.3.1, in this scenario and with-
out compression, the limit of 65 536 entries in our HP switch is reached.
On the other hand, compressing the table with Minnie allows installing all
the required rules without reaching the limit, when compressing at a given
threshold (500, 1000 or 2000 entries) or when the flow table is full. Indeed,
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Level No Comp Comp 500 Comp 1000 Comp 2000 Comp full
access 3452 752 761 790 802
aggregation 3233 618 649 672 717
core 3014 97 97 97 97
total 65 535 11 346 11 667 12 087 12 542

Table 5.4: Average number of SDN rules installed in a virtual switch at each
level

Level Comp 500 Comp 1000 Comp 2000 Comp full
access (8 switches) 79% 78.75% 77.95% 77.61%
aggregation (8 switches) 81.43% 80.51% 82.14% 78.45%
core (4 switches) 96.84% 96.84% 96.84% 96.83%
total (20 switches) 83.21% 82.19% 81.55% 81.44%

Table 5.5: Average compression ratios for all compression threshold.

as shown in Table 5.4, the total number of installed rules does not exceed
13 000 in all compression cases. This represents a total saving higher than
80% of the total forwarding table capacity (Table 5.5) with a saving larger
than 96% at the third level and a minimal saving over 76%.

Figure 5.10 depicts how the number of rules evolves with and without
compression. Please, note that this figure takes into account the total number
of forwarding rules in the network, including both OVSes and the HP switch.
The number of rules increases at the same pace in all three scenarios during
the first 30 minutes. When the compression is triggered, the number of rules
decreases. Later, for compression at 500 and 1000 entries, the number of rules
increases at a lower pace than in the non-compression case. This is because
(i) the controller has installed some wildcard rules and so fewer rules at level
1, 2 or 3 need to be installed for new flows, and (ii) other compression events
are triggered. We further notice here that the presence of wildcard rules also
explains the difference between the compression when the forwarding table
is full and the compression with fixed thresholds. This is in line with the
results of Section 5.2.1 where we observed that the presence of wildcard rules
in the routing tables influences the routing as the new incoming flows will
follow these paths in priority. Even though the difference between dynamic
compression and compression at the end is more pronounced for networks
with a larger number of servers (see Figure 5.5), the phenomenon can already
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Figure 5.10: Total number of rules installed in the network for all compression
threshold

be observed in the testbed.
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Figure 5.11: Duration of a compression event for all compression threshold

Compression time Figure 5.11 shows the compression time seen by the
controller. This time comprises the computation time of compressed rules
(already analyzed in Section 5.2.2), the removal of the current forwarding
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Figure 5.12: Total number of rules installed as a function of the number of
servers, in a k = 4 Fat-Tree configuration.

table, the formatting of the compressed rules to the OpenFlow standards,
and the injection of the new rules to the switch.

We notice that the compression time per switch remains in the order of
a few milliseconds. Indeed, compression takes about 5ms (resp. 7ms) for
compression at 500 and 1000 entries (resp. 2000 entries). Even the worst case
– compressing when the table is full – represents less than 18ms for most of
the switches with a median at 9ms. Moreover, in this latter case, sequentially
compressing all switches requires no more than 152ms. This compression
period is mainly due to the time needed to delete all the routing table using
one delete request and install all the new rules in the switch. Indeed, the
time needed to compute the compressed routing table is negligible as noted
in Section 5.2.2 (Figure 5.6). It is important to note here that the code
used to compute the compressed tables is the same in our simulations and
experiments. These results are in line with the results shown in [KPK14]
(Figure 3). We have smaller delays because, as stated before, we do not wait
for the barrier reply before sending the next flow insertion rule (hence we
ignore barrier reply message time). Moreover, we delete all the rules using a
single action instead of deleting each rule one by one.

SDN control path In the SDN paradigm, the controller-to-switch link
is a sensitive component as the switch is CPU bounded and cannot handle
events at a too high rate. Figure 5.13 represents the network traffic between
the switch and the controller in the different scenarios. We can observe
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Figure 5.13: Network traffic between the switches and the controller for all
compression threshold.

that the load increases highly when the switch reaches its limit in terms of
the number of software+hardware rules and we do not compress the routing
tables. After time t=2:30, the limit is reached, and for every packet of every
new flow, each switch along the path has to ask the controller for the output
port. These traffic peaks vanish when we compress the routing tables for
the 1000, 2000 limits, and for the case of compression when full. As for
the compression at 500 scenario, we notice the occurrence of high peaks
after the first hour. They result from successive compression events (over
16 000 in our experiments as can be seen in Table 5.6) that are triggered by
any new packet arrival. Indeed, in this scenario, most of the switches will
perform a compression for every new flow, since the total number of rules
after compression remains higher than the threshold.

To understand the impact of the control plane on the data plane, we look
at three key metrics that we detail in the following sections. We first consider
(i) the loss rate for all scenarios, followed by (ii) the delay of the first packet
of new flows and (iii) the delay of subsequent packets (packets 2 to 5). Note
that the first packet’s delay should be higher when there is no compression
(at least after t=2:30) or for the compression at 500 scenario. We ruled out
a precise study of the loss rate as the load in this section is low. We report in
Table 5.6 the loss rates observed for all scenarios. Though there exist some
significant differences between the different scenarios, the absolute values are
fairly small. We, therefore, focus on delays hereafter.
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Compression threshold
None 500 1000 2000 When full

# of compressions 0 16 594 95 28 20
% packet loss 6.25⇥ 10−6 0.003 5.65⇥ 10−4 2.83⇥ 10−5 3.7⇥ 10−4

Table 5.6: Total number of compressions and packet loss rate for all com-
pression threshold.

New rules installations: Impact on first packet delay The first
packet delay provides insights on the time needed to contact the controller
and install the rules when a new flow arrives. Indeed, the round trip delay
seen by the first packet of a new flow includes the network propagation delay,
the queuing delay, and the time needed for a switch to obtain a new rule.

We observe in Figure 5.14 that for the scenarios with compression at 1000
rules and compression at 2000 rules, the first packet delay ranges from 25ms
to 35ms. This increase as compared to subsequent packets of the same flow
- which can reach a factor of 10 as we will see in the next section - highlights
the price to pay to obtain and install a forwarding rule in software. The
results can significantly worsen if the controller is frequently modifying the
forwarding rule, like in the compression at 500 rules case. Indeed, for that
special case, the third quantile reaches up to 600ms for the first packet delay.
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Figure 5.14: First packet delay for different compression threshold (boxplot)

Surprisingly, the cases without compression and compression at the table
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limit lead to similar results. Compressing when the table is full should in-
tuitively result in better performance as in many cases, a limited number of
new rules are needed and can be installed as compared to the no compres-
sion case. However, in our tests, the table becomes full after 2 hours and 30
min of the experiment (out of 3 hours). Hence the similarity of results in
Figure 5.14. In fact, when the table is full, the impact is striking, as can be
seen in the time series of Figure 5.15a, which shows the evolution of the first
packet delay per new flow when no compression is executed. Indeed, after
2:30 hours - when the table is full- we can observe a jump in the delay for
no compression while when compressing at the table limit the trend is the
opposite and the delay decreases (Figure 5.15e) after compression. As for the
case of compression at 500, the first packet delay features a chaotic behavior
(Figure 5.15b) due to its high compression frequency as expected. Regarding
the scenarios of compression at 1000 (Figure 5.15c) and compression at 2000
(Figure 5.15d), the benefits of compressing periodically are striking: the first
packet delay shows a constant trend during the whole experiment.

Eventually, note that the results obtained here are impacted by the fact
that we use software rules, which increases the delay to install rules. Results
of the experiments using TCAM exclusively are provided in Section 5.3.2.

Subsequent packets’ delay As explained previously, we expect to ob-
serve higher delays for subsequent packets for the case of no compression
(when the table is full) and also possibly for the case of compression at 500
as the switches have to reinstall new rules at a high frequency.

In our experiments, the delay seen by packets 2 to 5 of each flow is shorter
than 4ms most of the time for scenarios without compression, compression
at 1000, compression at 2000 and compression at the forwarding table size
limit, as we can see in Figure 5.16. Compression at 500 is slightly different
(the third quartile reaches up to 5ms), highlighting the negative impact of
the high frequency of compression events on the data path of the switches.

Figure 5.16 aggregates all the results together, and we have again to resort
on the time series to observe specific effects. When all needed forwarding
rules are successfully installed and the compression frequency is low (which
is the case for compression at the limit, compression at 1000 and compression
at 2000), the delay of packets 2 to 5 is consistently comprised between 2ms
and 6ms (Figures 5.17d to 5.17f).

Without compression, while most of the packets experience a delay be-
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(c) Compression at 1000
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(d) Compression at 2000
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Figure 5.15: First packet delay for different compression threshold (over time)



CHAPTER 5. MINNIE 120

 0

 2

 4

 6

 8

 10

No Comp Comp 500 Comp 1000 Comp 2000 Comp Full

D
u
ra

ti
o
n
 (

m
s
)

Figure 5.16: Average packet delay for subsequent packets (boxplot)

tween 2ms and 6ms before the table limit is reached, all new incoming
packets will see a delay equal or higher than 40ms afterward (Figure 5.17b).
As for the case of compression with small table limit (500 rules), we remark
in Figure 5.17c a time interval between 1:45 hour and 2:15 hour, where the
delay increases suddenly from 2ms to 100ms. This is because some switches
are unable to reach a forwarding table smaller than 500 rules even after com-
pression, and hence, the controller executes a compression after every new
flow arrival. After time 2:15, the frequency of new incoming flows that need
to be installed decreases (Figure 5.15b), leading to a stabilization of the
delay.

From all the results shown above, we notice that putting a low table limit
(e.g., 500) has a negative impact on the traffic passing through the network,
whereas setting it to 1000 and 2000 provided enhances performance for net-
work traffic. This is due to the fact that in our scenarios, the compressed
table had a size larger than 500 while it was always less than 1000. Hence, to
leverage always the benefit of Minnie we advise to set a dynamic threshold
that will change based on the compressed table size - see Section 5.3.3.

Scenario 2: compression with HLS

We have so far investigated the behavior of Minnie in an environment where
the flow table can be full. The latter scenario involves the use of software
rules and thus the slow path of our HP switch.

We now turn our attention to the case where the load on the data plane
is as high as 80%. This entails using hardware rules only, and we are limited
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(b) Without compression 8 IPs
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(c) Compression 500
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(d) Compression 1000
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(e) Compression 2000
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Figure 5.17: Average packet delay for subsequent packets (over time)
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to 3000 such rules with our HP switch, shared among the 20 switches of our
k=4 Fat-Tree topology. The experiments in this section are consequently
performed with one client per access switch (16 clients in total) and an all-
to-all traffic pattern with 50Mb/s per flow.
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Figure 5.18: Packet delays in the HLS (boxplot)

As expected, the first packet round trip delay decreases to around 1ms,
while packets 2 to 5 experience a round trip delay of around 0.55ms3. The
compression duration, in all scenarios, is equal to 1ms only, which is under-
standable given the small total number of flows. More importantly, we
noticed no packet losses and no drastic effects on delay even dur-
ing compression events, which proves that Minnie is a viable and
realistic solution. Indeed, the maximum variation of delay between the
delays of no compression and all compression scenarios is less than 0.1ms, a
value which might be observed even in non-SDN networks (see Figure 5.18).

The compression ratio in Table 5.7 demonstrates that even with a low
number of rules, Minnie can achieve a high compression ratio, over 70%.
Figure 5.19 which represents the evolution of the forwarding table size for
all cases – no compression, compression at 15, 20, 30 and when full (after
installing all the needed rules)– highlights that Minnie maintains a similar
low number of rules in all compression scenarios.

The last question that we aim at investigating is the impact of compres-
sion on TCP connections. The high load scenario is especially relevant as

3A direct comparison between these delays and the one for the low load and software
rules scenario is not straightforward. Section 5.3.2 will present a fair comparison of these
two modes.
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Compression threshold
15 rules 20 rules 30 rules when full

level 1 (8 switches) 76.56% 75.66% 75.00% 72.76 %
level 2 (8 switches) 75.48% 73.31% 71.87% 69.71 %
level 3 (4 switches) 76.04% 76.56% 74.47% 73.95 %
total (20 switches) 76.04% 74.9% 73.67% 71.78%

Table 5.7: Average percentage of SDN rules savings at each level
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Figure 5.19: Total number of rules installed in the network
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data centers are in general operated at high loads. The variation of the
round trip delay of most of the packets is less than 0.1ms (Figure 5.18)
for compression at 20 entries with the highest variability. For compression
at 20 entries and during the first 20 minutes of the experiment (compres-
sion events occur during that period), the minimum and maximum round
trip delays between servers in the same pod is around 0.4ms and 0.6ms re-
spectively. The minimum and maximum round trip delays between servers
in different pods is around 0.55ms and 0.8ms respectively (see Figure 5.20).
Those observed delays will not produce any problem to TCP connections. In-
deed, the minimum Retransmission Timeout (RTO) value (the time needed
to trigger a TCP timeout and retransmit a non-acknowledged packet), is
equal to 200ms on Linux systems (and defined to be 1 second in the Request
for Comments (RFC) 2988 [PA00]), which is far from our observed delays
(lower than a millisecond). A recent draft submitted to the TCPM Working
Group [Ben+15] appeals for a decrease of the minimum RTO value to 10ms.
Once again, the maximum delay observed during the compression events is
still far from that proposed minimum RTO. Hence compression operations
should not lead to any spurious TCP time out. Note that results obtained
in the simulations on the computational time (Figure 5.6 of Section 5.2.2)
confirm that the impact of Minnie on the delay experienced by the packets
of the flow should be limited in general.

 0.1

 1

 10

00 10 20 30 40 50 00

a
v
e
ra

g
e
 d

e
la

y
 (

m
s
)

time

between pods
inside pod

Figure 5.20: Subsequent packets’ delay with Compression at 20 entries
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Comparison between software and hardware rules

So far, we have seen that relying only on the ASIC of the switch to forward
the traffic provides better results, regarding delay and jitter, than using the
general purpose CPU for such a task. Hence, the question of the impact of
the slow path on the switch performance arises.

Assessing the difference between using hardware and software rules by
comparing the results of the previous sections is difficult as the number of
rules is different from one scenario to the other. For this reason, we devised a
third scenario where we compare the performance of software and hardware
rules using both, the same number rules and the same traffic load, in all
cases.

In this experiment, we have one client per access switch, and each flow is
composed by a train of 5 ICMP request/reply packets, which is the default
behavior of the ping command. With this configuration, we can observe in
Figure 5.21a that installing rules in software increases the first packet delay by
a factor of 20 from a median of 1ms to 20ms as compared to hardware rules.
The average matching delay of the remaining packets (Figure 5.21b) features
a 6-fold increase in software as compared to hardware (3ms compared to
0.5ms).

The results obtained with these experiments thus confirm the large dis-
crepancy in terms of average delay results between the two scenarios. They
further justify the necessity of using only TCAM, which can better
be exploited thanks to the compression executed by Minnie.
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5.3.3 Discussion

The results obtained via simulation, in Section 5.2.2, and experimentation,
in Section 5.3.2, demonstrate the feasibility and efficiency of Minnie. We
discuss here several practical points and possible extensions of our algorithm.

Dealing with different workloads.

We have used an all-to-all traffic pattern, which constitutes a worst case in
terms of traffic workload that an application could generate in the network.
This was however achieved with 16 IPs per server in the experimentation
part and 1 IP per server in the simulation part, which might seem relatively
limited. However, in an operational network deployment, it is reasonable to
admit that SDN rules are mainly installed on an IP subnet basis, while flow-
based rules (created with the matching of all or several fields of the OpenFlow
standard) might rarely be employed. Our results can thus be interpreted as
routing all-to-all traffic between several IP subnets per server, as one expects
to observe in a typical data center where virtualization is used. This means
that Minnie can deal with a worst case traffic scenario involving a large
number of end hosts.

Rule deletion.

All scenarios studied in this work considered flows with an unlimited lifetime
in order to obtain a worst case scenario regarding the total number of rules
involved. However, in practice, flows are active for a limited amount of time
as they come and go. We discuss here a possible extension of Minnie that
would handle the departure of flows.

OpenFlow enables the use of idle or hard timeouts to remove rules if no
more packets are seen (idle) or after a fixed time interval (hard). Timeouts
could be set on the level-0 switches, allowing the detection of inactive flows by
Minnie. Hard timeouts enable the controller to know the exact state of each
level-0 switch without any feedback from the switch. With idle timeouts, the
controller can specify (in OpenFlow) when a rule is inserted, that the switch
must notify the controller when the rule expires. With the exact information
of the currently active rules, Minnie, which keeps an uncompressed version
of all the rules in all switches, can delete any unused aggregated rules. As
more and more rules are removed, the compression module could also be
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called to produce a smaller table to insert in place of the current one.

Impact of compression on rule update.

We discussed the impact of rule compression on the performance of rule
update in several parts of the paper. We summarize here the findings. We
have 3 cases of rule update in the compressed tables:

- Addition of a new simple rule (assuming the table sizes are below the
compression threshold). This event is due to the arrival of a new flow.
In this case, there is no impact of compression on rule update. Note
that, thanks to aggregated rules, a new flow arrival will require a new
entry at the level-0 OVSes, but might require no new entries at the
access switches or higher switch levels, if the new flow is routed by
already existing aggregated rules. In this case, we do not have to
update the routing table.

- Deletion of a rule. This is done in particular when a flow finishes.
This operation is discussed above and was not tested yet. However,
the controller knows which flow uses which rule (simple or aggregated),
and thus may easily know which rule to delete (or not) when an entry
expires at the level-0 OVS switches, which is a fast operation.

- Compression event. If a table is full, we compress the table in its total-
ity, and we send the new compressed table to the corresponding switch.
We then update the switch table by doing, first, a delete operation to
remove the old table, and then, we send the new rules to be inserted
in the fewest number of packets4. We measured the duration of these
operations experimentally and tested its impact on delay and packets
losses. We first evaluated the time needed to carry out a compression
event (compression time, time to send a new table to the switch, and
time of updates). We show that this time is in the order of a few mil-
liseconds, as presented in Figure 5.11. Recall that, if a compression
event is needed when a new flow arrives, we first send the forwarding
rules for the new flow, and we compress only afterward, thus avoiding
additional delay for a new flow due to a compression event. We also

4We have observed that several flow mod operations are encapsulated in only a few
TCP packets
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evaluated the impact of rule compression on the network thanks to our
experiments. We report packet delay and loss rates in our experiments
and compare scenarios with compression and without compression. We
show that even for the High Load Scenario (HLS), the loss rate and
the delay are not impacted, see, e.g., Table 5.7 and Figure 5.19.

Dynamic compression limit.

Early compression helps to maintain the routing tables small. However, the
threshold should not be set smaller than the actual compressed table size,
as exemplified by the case of compressing at 500 entries in the experimen-
tation part. To work around this potential issue and reap the full benefit of
compression we advise to set a dynamic compression limit. We can start for
example with a low limit, e.g., 100 rules, and once a certain percentage of
our limit is reached, e.g., at 80%, to trigger Minnie to compress the rout-
ing table. We then increase this compression limit whenever the resulting
compressed table is higher than the actual limit, e.g., to 150% of the current
compressed table size.

Dealing with burstiness of traffic.

A dimension that we have not explored during our tests is the burstiness
of the arrival of flows that could lead to stress the switch-controller com-
munication and hit the limit of a few hundreds events/s that the switch
can sustain. This could be the case of an application that generates a lot
of requests towards a large set of servers at a high rate. In this situation,
Minnie could help alleviate the load on the controller. Indeed, the sooner
one compresses the flow table, the more likely we are to install rules that
will prevent the switch from querying the controller for a rule for every new
connection. One could argue that compressing entails complete modifica-
tion of the flow table at the switch, i.e., a large number of events (deletion,
insertion) related to the management of the table. However, in OpenFlow,
those events can be grouped together: all insertions can be sent at once to
the switch. In summary, Minnie should also help to alleviate the
stress of the switch-controller channel in case of flash-crowds of
new connections.
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Security.

Eventually, note that Minnie does not alter the security level of the SDN
network. Indeed, rules are not compressed in the level-0 switches that connect
the VMs to the network. This means that there is no possibility for a packet
that belongs to one tenant to be seen or to be inserted in the network of
another tenant, provided that the SDN rules at the edge are correctly written.
Compressing at the edge could indeed give the opportunity to the traffic of
one tenant to enter another tenant’s network thanks to some wildcard effect.
Note however that we do not compress at the edge not because of any security
concern, but to prevent any misbehavior in the routing process.

5.4 Conclusion

In this chapter, we introduced Minnie, which aims at routing flows while
respecting link and SDN routing table capacity constraints, using table com-
pression. We have investigated through numerical experiment the versatility
of Minnie on a variety of data center topologies and demonstrate that it can
handle close to a million flows with no more that 1000 rules per switch.

We also complemented our results with experiments on a testbed em-
ulating a k = 4 Fat-Tree. They have confirmed the ability of Minnie to
drastically reduce the number of rules to manage with no noticeable adverse
effect on delay or packets losses.



Bibliography

[Moy98] J. Moy. OSPF Version 2. RFC 2328. Ascend Communications,
Inc., Apr. 1998. url: https://www.rfc-editor.org/rfc/
rfc2328.txt (cit. on p. 42).

[Ste+12] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John
Carter. “PAST: Scalable Ethernet for Data Centers”. In: Pro-
ceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies. CoNEXT 1́2. New York,
NY, USA: ACM, 2012, pp. 49–60 (cit. on pp. 42, 90).

[Bos+13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. “Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN”. In: Proceed-
ings of the ACM SIGCOMM 2013 conference on SIGCOMM -
SIGCOMM ’13 (2013) (cit. on p. 42).

[GMP14] Frédéric Giroire, Joanna Moulierac, and T Khoa Phan. “Opti-
mizing rule placement in software-defined networks for energy-
aware routing”. In: GLOBECOM. IEEE, 2014, pp. 1–6 (cit. on
pp. 43, 45, 46).

[Hu+15] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao
Wang, Hongze Zhao, and Chuanxiong Guo. “Explicit Path Con-
trol in Commodity Data Centers: Design and Applications”. In:
Proceedings of the 12th USENIX Conference on Networked Sys-
tems Design and Implementation. NSDI1́5. Berkeley, CA, USA:
USENIX Association, 2015, pp. 15–28 (cit. on pp. 43, 45, 94,
100, 102).

[Coh+14] R. Cohen, L. Lewin-Eytan, J.S. Naor, and D. Raz. “On the
effect of forwarding table size on SDN network utilization”. In:
INFOCOM. IEEE, 2014, pp. 1734–1742 (cit. on pp. 43, 44).

130

https://www.rfc-editor.org/rfc/rfc2328.txt
https://www.rfc-editor.org/rfc/rfc2328.txt


BIBLIOGRAPHY 131

[Gir+10] Frederic Giroire, Dorian Mazauric, Joanna Moulierac, and Brice
Onfroy. “Minimizing Routing Energy Consumption: From Theo-
retical to Practical Results”. In: 2010 IEEE/ACM International
Conference on Green Computing and Communications and In-
ternational Conference on Cyber, Physical and Social Comput-
ing (Dec. 2010) (cit. on pp. 43, 65).

[Cas+09] M. Casado, M.J. Freedman, J. Pettit, Jianying Luo, N. Gude,
N. McKeown, and S. Shenker. “Rethinking Enterprise Network
Control”. In: IEEE/ACM Transactions on Networking 17.4
(Aug. 2009), pp. 1270–1283. issn: 1558-2566. doi: 10.1109/
tnet.2009.2026415. url: http://dx.doi.org/10.1109/
TNET.2009.2026415 (cit. on p. 44).

[RDJ11] R. Wang, D. Butnariu, and J. Rexford. “OpenFlow-based Server
Load Balancing Gone Wild”. In: Hot-ICE. 2011, pp. 12–12 (cit.
on p. 44).

[Ngu+16] X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti. “Rules
Placement Problem in OpenFlow Networks: A Survey”. In:
IEEE Communications Surveys Tutorials 18.2 (2016), pp. 1273–
1286 (cit. on p. 44).

[KHK13] Yossi Kanizo, David Hay, and Isaac Keslassy. “Palette: Dis-
tributing tables in software-defined networks”. In: INFOCOM,
2013 Proceedings IEEE. IEEE. 2013, pp. 545–549 (cit. on p. 44).

[Kan+13] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David
Walker. “Optimizing the One Big Switch Abstraction in Software-
defined Networks”. In: Proceedings of the Ninth ACM Confer-
ence on Emerging Networking Experiments and Technologies.
CoNEXT 1́3. New York, NY, USA: ACM, 2013, pp. 13–24 (cit.
on p. 44).

[Ngu+15] Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry
Turletti. “OFFICER: A general Optimization Framework for
OpenFlow Rule Allocation and Endpoint Policy Enforcement”.
In: INFOCOM. IEEE, Apr. 2015, pp. 478–486 (cit. on pp. 44,
45).

https://doi.org/10.1109/tnet.2009.2026415
https://doi.org/10.1109/tnet.2009.2026415
http://dx.doi.org/10.1109/TNET.2009.2026415
http://dx.doi.org/10.1109/TNET.2009.2026415


BIBLIOGRAPHY 132

[Kat+16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David
Walker. “CacheFlow: Dependency-Aware Rule-Caching for
Software-Defined Networks”. In: Proceedings of the Symposium
on SDN Research. SOSR 1́6. New York, NY, USA: ACM, 2016,
6:1–6:12 (cit. on p. 45).

[BK14] S. Banerjee and K. Kannan. “Tag-In-Tag: Efficient flow table
management in SDN switches”. In: CNSM. 2014, pp. 109–117
(cit. on p. 45).

[KS13] K. Kannan and S. Banerjee. “Compact TCAM: Flow Entry
Compaction in TCAM for Power Aware SDN”. In: ICDCN.
2013, pp. 439–444 (cit. on p. 45).

[BM14] W. Braun and M. Menth. “Wildcard Compression of Inter-
Domain Routing Tables for OpenFlow-Based Software-Defined
Networking”. In: Software Defined Networks (EWSDN), 2014
Third European Workshop on. Sept. 2014, pp. 25–30 (cit. on
pp. 45, 46).

[TNW96] Michael Theobald, Steven M. Nowick, and Tao Wu. “Espresso-
HF: A Heuristic Hazard-free Minimizer for Two-level Logic”. In:
Proceedings of the 33rd Annual Design Automation Conference.
DAC 9́6. New York, NY, USA: ACM, 1996, pp. 71–76 (cit. on
p. 46).

[Awa+17] Mohamad Khattar Awad, Mohammed El-Shafei, Tassos Dim-
itriou, Yousef Rafique, Mohammed Baidas, and Ammar Alhu-
saini. “Power-efficient routing for SDN with discrete link rates
and size-limited flow tables: A tree-based particle swarm opti-
mization approach”. In: International Journal of Network Man-
agement (2017), e1972–n/a (cit. on p. 46).

[GHM15] Frédéric Giroire, Frédéric Havet, and Joanna Moulierac. “Com-
pressing Two-dimensional Routing Tables with Order”. In:
INOC. 2015, pp. 1–8 (cit. on pp. 49, 51).

[GHM16] Frédéric Giroire, Frédéric Havet, and Joanna Moulierac. “On the
Complexity of Compressing Two Dimensional Routing Tables
with Order”. In: Algorithmica (Nov. 2016). issn: 1432-0541. doi:
10.1007/s00453-016-0243-7. url: http://dx.doi.org/10.
1007/s00453-016-0243-7 (cit. on pp. 49, 51).

https://doi.org/10.1007/s00453-016-0243-7
http://dx.doi.org/10.1007/s00453-016-0243-7
http://dx.doi.org/10.1007/s00453-016-0243-7


BIBLIOGRAPHY 133
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[KPK14] Maciej Kuzniar, P Perešıni, and Dejan Kostic. “What you need
to know about SDN control and data planes”. In: EPFL, TR
199497 (2014) (cit. on pp. 112, 115).

[PA00] V. Paxson and M. Allman. Computing TCP’s Retransmission
Timer. RFC 2988 (Proposed Standard). Nov. 2000 (cit. on
p. 124).

[Ben+15] S. Bensley, L. Eggert, D. Thalerand P. Balasubramanian, and G.
Judd. Microsoft’s Datacenter TCP (DCTCP): TCP Congestion
Control for Datacenters draft-bensley-tcpm-dctcp-05. Internet-
Draft. July 2015 (cit. on p. 124).



Part II

Hybrid networks

136



Chapter 6

Energy Aware Routing for
Hybrid Networks

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 138

6.2 Related work . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Hybrid SDN Networks . . . . . . . . . . . . . . . . 140

6.2.2 Handling Failures and Flash Crowds . . . . . . . . 140

6.3 Energy Aware Routing for Hybrid Networks . . 141

6.3.1 Routing in a Hybrid Network . . . . . . . . . . . . 141

6.3.2 Traffic Estimation . . . . . . . . . . . . . . . . . . 142

6.3.3 Power Model and Energy Aware Mechanisms . . . 142

6.4 Integer Linear Program . . . . . . . . . . . . . . . 143

6.5 SENAtoR . . . . . . . . . . . . . . . . . . . . . . . 146

6.5.1 Mechanisms . . . . . . . . . . . . . . . . . . . . . . 146

6.5.2 Heuristic . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Numerical results . . . . . . . . . . . . . . . . . . 150

6.6.1 ILP vs. SENAtoR . . . . . . . . . . . . . . . . . . 151

6.6.2 Simulations on Larger Networks . . . . . . . . . . 152

6.7 Experimentations . . . . . . . . . . . . . . . . . . 157

6.7.1 Testbed Description . . . . . . . . . . . . . . . . . 157

6.7.2 Experimental Results . . . . . . . . . . . . . . . . 158

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . 160

137



CHAPTER 6. EAR FOR HYBRID NETWORKS 138

6.1 Introduction

In the previous chapter, we saw that the SDN paradigm bears the promise
of enabling green policies in networks, even with added constraints such as
TCAM size. While it is easy to consider networks built from the ground up
with SDN in mind, many existing networks are still using legacy equipment,
and thus unable to deploy these kinds of solutions. Operators desiring to
implement green policies must then consider transitioning their network to
SDN-capable equipment.

Different scenarios may be envisioned for the transition from legacy to
SDN networks [VVB14]. One of the most realistic is a progressive migra-
tion, where legacy hardware is replaced over an extended period of time by
SDN hardware. There is thus a coexistence of legacy and SDN, hardware
and protocols, in the network. As an example, to route packets inside the
network, legacy nodes have to follow legacy protocols, such as OSPF, while
SDN nodes may choose the next hops of the packets using an optimization
algorithm running in the controller.

In this chapter, we consider the Energy Aware Routing in a hybrid SDN
network (hEAR) problem which consists in reducing the power usage of a
network where both legacy and SDN equipment coexist. To provide energy
optimization in hybrid networks, we introduce SENAtoR (Smooth ENergy
Aware Routing). The main idea is that the controller first chooses the set of
routes that minimizes the number of used network equipment for the current
traffic, and then we put SDN nodes in sleep mode (i.e., power save mode
which turns off network interfaces). We consider a typical dynamic traffic
of an operator and, hence, our solution adapts the numbers of active and
inactive network equipment during the day.

When the SDN nodes are put to sleep, and their links are turned off, traffic
has to be rerouted, while avoiding packet loss. It is thus impossible to wait
for the convergence of legacy protocols (e.g., OSPF). Moreover, if Internet
Service Provider (ISP) network traffic usually shows smooth variations of
throughput, it also experiences sudden changes which may correspond to
(link or node) failures or to flash crowds [Rou+02].Thus, to avoid packet
loss, we propose three mechanisms:

1. Tunneling. This first mechanism is inspired by the solution proposed
in [Chu+15] to handle single link failure. The goal was to avoid waiting
for the convergence of legacy routing protocols by using tunnels from a
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node with a failing link to an SDN node which can reach an alternative
OSPF shortest path in one hop. We reused this idea to reroute using
pre-set tunnels from any node, with a turned off link, to any other node
with a direct path towards the destination which does not include a
disabled link.

2. Turning off links smoothly. To prevent OSPF routers from sending
packets towards a node which was just put into sleep mode by the
energy saving mechanism, we propose to force OSPF re-convergence
before the Network Interface Card (NIC) at the SDN is turned off.
The idea is that the SDN controller discards any OSPF packet sent
on the node to be disabled to simulate a node failure while any other
data packet must be properly processed and forwarded. After a period
of time, greater than the link failure detection period and than the
convergence of OSPF (which can be estimated with the OSPF timer
values), and if no more traffic is received, the SDN router will effectively
turn off the appropriate NICs. Note that while OSPF has not converged
yet, packets can be rerouted through the pre-set tunnels; and since
the link and node are still on, packets are not lost during the routing
transition.

3. Traffic Spike and link failure mitigation Network capacity over-
provisioning is exploited by energy aware algorithms to save energy.
Indeed, networks are oversized, in particular, to handle traffic variations
due, e.g., to link failures or flash crowds. It is thus of crucial importance
for energy saving mechanisms, which turn off pieces of equipment, to
not impact the failure tolerance of networks. We exploit the metrology
data received by the controller from SDN nodes to detect significant
traffic variations and react to them.

Our contributions are the following:

- We propose several mechanisms to bring energy aware solutions closer
to reality in ISP networks to avoid packet losses when putting network
devices into sleep mode: tunneling, smooth shutdown of links, and
detection of traffic variations.

- We model and formulate the Energy Aware Routing in a hybrid SDN
network (hEAR) problem as an ILP.
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- To validate the solutions, we carried out extensive simulations on sev-
eral network topologies and show the energy savings for different levels
of SDN penetration.

- The mechanisms were implemented and tested on a small SDN plat-
form. The results of the experimentations show that it is possible to
implement energy saving solutions while reducing packet losses com-
pared to legacy protocols.

6.2 Related work

6.2.1 Hybrid SDN Networks

As the most realistic scenario for the introduction of the SDN paradigm
is a gradual migration, we focus on hybrid networks. In these networks,
legacy and SDN hardware stand alongside. The difficulty is to make different
protocols coexist. Opportunities and research challenges of Hybrid SDN
networks are discussed in [VVB14]. Routing efficiently in hybrid networks
has been studied in [AKL13]. The authors show how to leverage SDN to
improve link utilization, reduce packet losses and delays. We extend this
work by considering energy efficiency.

6.2.2 Handling Failures and Flash Crowds

Turning off SDN devices in hybrid IP-SDN networks can be interpreted as
link or node failures by legacy network devices and might decrease the net-
work ability to drain sudden, yet not malicious, traffic surges (due, for in-
stance, to exceptional events such as earthquakes). Consequently, our energy-
aware solution implements some features to cope with link failures and flash
crowds correctly. The network community has addressed such problems, with
the help of SDN, as follows.

Link Failure Detection and Mitigation

As in legacy devices, SDN devices can rely on the legacy Bidirectional For-
warding Detection (BFD) algorithm to detect link failures [KW15]. Once the
link failure has been detected, OpenFlow already offers a link failure mitiga-
tion technique through the notion of FAST-FAILOVER group rules, where
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several rules per flow can be installed. Protection of the link and control
channel of OpenFlow requires, however, more complex solutions, like the one
proposed in [Sha+16]. To avoid losses in case of link failures in hybrid net-
works, [Chu+15] proposes to introduce pre-set tunnels from a legacy router
towards an SDN router, which form backup paths. Later, SDN nodes reroute
traffic through non-damaged paths. We borrow this idea and propose to use
pre-set tunnels when a node is turned down. This is an adaptation and a
generalization of the solution offered in [Chu+15] to handle a link failure.
Indeed, we use it for energy efficiency when multiple links are turned off. We
also allow tunnels to be set between any (OSPF or SDN) pair of nodes and
we carry out practical experimentations to validate the method.

Detecting Traffic Variations in SDN Networks

Traffic variations of backbone networks are usually smooth as the network
traffic is an aggregation of multiple flows [Rou+02; Ian+01]. However, abrupt
variations happen in case of link failures or flash crowd [LCD04]. Meth-
ods have been proposed to detect them in legacy networks, see for example
[LCD05; Ari+03]. Netfuse [Wan+13] has been proposed in SDN-based data
centers to mitigate the effect of traffic variations.

6.3 Energy Aware Routing for Hybrid Net-

works

6.3.1 Routing in a Hybrid Network

A network is modeled as a directed graphD = (V,A) where a node represents
a Point of Presence (PoP) and an arc represents a link between two PoPs. A
PoP consists of several routers linked together in full mesh [Gir+03]. Each
link (u, v) 2 A is connected to a specific router in PoP u and in PoP v, see
Figure 6.1. A link (u, v) has a maximum capacity Cuv. In each PoP, it exists
a switch that is connected to exactly one other PoP. We consider hybrid
networks in which SDN capable equipments are deployed alongside legacy
routers. This kind of networks can be found in the transition from legacy
networks to a complete Software Defined Network. We consider a scenario
in which PoPs do not contain heterogeneous equipments, i.e, all routers of a
PoP are either SDN capable or not. Legacy routers follow a legacy routing
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PoP v

PoP u

PoP w
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Legacy PoP
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Figure 6.1: 3 PoPs interconnected in an hybrid network.

protocol, such as OSPF. We denote the next hop to the destination t on
a legacy router u by nt(u). SDN switches are controlled by one or several
central controllers and can be configured, dynamically, to route to any of its
neighbors.

6.3.2 Traffic Estimation

We assume that an ISP can estimate the traffic matrix of its network using
(sampled) NetFlow measurements [B C04] or, in the case of hybrid networks,
by combining SDN and OSPF-TE data [AKL13]. Therefore, our solution
monitors traffic and continuously calculate the set of nodes or links to turn
off.

6.3.3 Power Model and Energy Aware Mechanisms

To model the power consumption of a link, we use a hybrid model comprised
of a baseline cost, representing the power used when the link is active, and a
linear cost depending on its throughput. This allows, by changing the value
of the parameters, to express different power models (between ON-OFF and
proportional to the load) found in the literature, see [Idz+16] for a discussion.
The power usage of a link is expressed as follows

Pl(u, v) = xuvP
IDLE

uv +
Fuv

Cuv

PLOAD

uv
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where xuv represents the state of the link (ON or OFF), P IDLE
uv is the baseline

power consumption of an active link, Fuv the total amount of bandwidth on
the link, and PLOAD

uv the additional power consumption of the link when at
full capacity. Routers have two power states: active or sleep, and their total
consumption Pn(u) is given by

Pn(u) = Bu + ruvAu +
X

v2N+(u)

Pl(u, v)

where ruv represents the state of the router (ON or SLEEP), Bu is the sleep
state power usage and Au the additional power used when the equipment is
active.

To save energy, we must power down links and put routers to sleep. We
can only put SDN switches into sleep mode without negative impact on
the network. As it should be done dynamically according to the network
traffic, the decision is taken by the SDN controller. Thus, only links with
a SDN switch as one of its end points can be shut down. Since PoPs are
interconnected using dedicated routers inside their infrastructure, if a link
between two PoPs is shut down, then each router of the link can be shutdown,
if it is SDN capable.

6.4 Integer Linear Program

We propose the following Integer Linear Program to solve the hEAR-with-
tunnel-selection problem. A summary of the notations is found in Table 6.1.
The formulation presents several difficulties. First, legacy nodes have to route
flows through shortest paths following legacy protocols, when SDN nodes can
route a flow freely to any neighbors. Second, tunnels have to be set in a way
there exists a path for each flow, even when several network equipment are
put into sleep mode.

We want to minimize the power consumption of the network (6.1) with
at most k SDN PoPs (6.2).

min
X

u2V

Pn(u) (6.1)

X

u2V

su  k (6.2)
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Dst charge of the demand between s and t.
Cuv capacity of link (u, v)
P set of all paths

p(s, t) set of path between s and t
T set of all destinations

nt(u) OSPF next hop on node u for destination t

(a) Input parameters

f st
uv 2 {0, 1} demand between s and t is forwarded without tunnels between u and v
gstp 2 {0, 1} demand between s and t is forwarded on the tunnel p
ht
ux 2 {0, 1} a tunnel to x from u for packets with destination to t is used

nst
uv 2 {0, 1} v is the next hop on u for the demand between s and t

xuv 2 {0, 1} link (u, v) is on
su 2 {0, 1} u is an SDN PoP
estu 2 {0, 1} next hop on u for demand between s and t is inactive.
ruv 2 {0, 1} router in PoP u connected to PoP v is on

(b) Decision variables

Table 6.1: Notations used for the ILP

The flow conservation constraints are given by Equation (6.3) and the
link capacity constraints by Equation (6.4).

X

8w2V \{u}p(u,w)2P

gstp −
X

8w2V \{u}p(w,u)2P

gstp +
X

v2N+(u)

f st
uv −

X

v2N−(u)

f st
vu =

8

><

>:

1 if u = s,

−1 if u = t,

0 else

8(s, t) 2 D, u 2 V
(6.3)

X

(s,t)2D

Dst

0

@f st
uv +

X

{p2P|(u,v)2p}

gstp

1

A  xuvCuv 8(u, v) 2 A

(6.4)

At each node, only one tunnel destination can be defined for a destination
t

X

w2V

ht
uw  1 8u 6= t 2 V (6.5)
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Each demand (s, t) can be forwarded through a tunnel from u to w, 8w 2
V \ {u} if all links of the tunnel are not turned off (6.6), the link to the next
hop of u to destination t is off (6.7) and the tunnel destination allowed on u
for the destination t is w (6.8).

gstp  nuw
v1v2

8p(u, w) 2 P , (v1, v2) 2 p, (s, t) 2 D (6.6)

gstp  estu 8p(u, w) 2 P , (s, t) 2 D (6.7)

gstp  ht
uw 8p(u, w) 2 P , (s, t) 2 D (6.8)

If the next hop of u for the demand (s, t) is v and the link (u, v) is off,
estu = 1, i.e., the next hop link is inactive (6.9). However, if the next hop of
u for the demand (s, t) is v and the link (u, v) is on, estu = 0, the next hop
link is active (6.10).

nst
uv − xuv  estu 8(u, v) 2 A, (s, t) 2 D (6.9)

estu  2− nst
uv − xuv 8(u, v) 2 A, (s, t) 2 D (6.10)

Each node can only have one next hop per destination (or per demand
if the node is SDN) (6.11). Only SDN nodes can have a different next hop
than the OSPF next hop nt(u) (6.12).

X

v2N+(u)

nst
uv  1 8u 2 V, (s, t) 2 D (6.11)

nst
uv  su 8(u, v 6= nt(u)) 2 A, (s, t) 2 D (6.12)

Both arcs of a link share the same state (6.13) and a link can only shut-
down if one of its endpoints is an SDN nodes (6.14).

xuv = xvu 8(u, v) 2 A (6.13)

xuv ≥ 1− su − sv 8(u, v) 2 A (6.14)

A router u connected to a router v can only be put into sleep mode if it
is an SDN switch (6.15) and if the link (u, v) is off (6.16).

ruv ≥ 1− su 8(u, v) 2 A (6.15)

ruv ≥ xuv 8(u, v) 2 A (6.16)

The ILP can be used to find good solutions for small-sized instances, see
Section 6.6. The computation time is however prohibitive to find an optimal
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solution as the problem is NP-complete (indeed, it comprises as subproblem
the EAR problem which is NP-complete [Gir+10]). For larger instances, it
is even impossible to find feasible solutions using the ILP. We thus propose
an efficient heuristic algorithm to solve the hEAR problem.

6.5 Smooth ENergy Aware Routing (SENAtoR)

6.5.1 Mechanisms

SENAtoR uses three mechanisms to avoid packet losses in the network due
to shutting down equipment and limit packet losses due to link failures or
flash crowds.

Tunneling

Shutting down a link with the SDN controller results in a failure detection
by OSPF and a convergence period. To avoid losing packets during the re-
convergence phase, we use pre-set tunnel backup paths to redirect traffic
that would otherwise be lost. The idea is to reroute the traffic that would
use this down link or node to an intermediate node whose shortest path to
destination does not use down links.

As with most legacy network mechanisms, tunnels cannot be deployed
dynamically during the operation of the network. They have thus to be pre-
set statically. We thus consider two variants of the problem: (i) with tunnel
selection, (ii) with a pre-configured set of tunnels.

Turning off links smoothly

Before putting an SDN PoP switch in power-save mode, the SDN controller
stops sending any OSPF packet to its neighbors. This allows neighboring
OSPF routers to converge to a network view excluding this node. Indeed,
after the default dead interval of 3 ⇥ hello interval without receiving any
Hello packet, an OSPF router declares its neighbor as dead and stops using
the link. However, until the end of the dead interval, the link is considered
to be active, and traffic flows over this link. After the dead interval, plus a
safety margin of 10 additional seconds, and if no traffic is received through
its links (that we define as the OSPF expected convergence period), the SDN
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PoP switch is put in power-save mode. This simple strategy prevents any
additional packet loss.

Traffic spikes and link failures mitigation

Sudden traffic spikes are relatively rare due to the high statistical multiplex-
ing in the backbone of ISPs. However, exceptional events (such as earth-
quakes) can lead to flash crowds. Therefore, we complement SENAtoR with
a safeguard mechanism that aims at reactivating inactive SDN PoP switches
in case of a sudden traffic spike, in a similar fashion to [Car+16]. The latter
event is defined on a per link basis as follows: the controller is collecting
the traffic load on each interface of every SDN active switch at a small time
scale (in our experiments, once per minute). We then compare the real traf-
fic level received at interface i, Ei(t), to the estimated rate, EES

i (t), at the
last epoch where SENAtoR took its decision of turning off some links. In
case Ei(t) ≥ 1.5 ⇥ EES

i (t), for any interface i, all inactive SDN routers are
re-enabled. The value of 50% was chosen conservatively, since, in general,
ISP networks are over-provisioned. After the OSPF expected convergence
period, the controller reruns SENAtoR to obtain a new green architecture if
possible.

We employ a similar mechanism in case of link failures. When a link
connected to an active SDN router or a link between OSPF nodes fails,
SENAtoR turns on again any inactive SDN node. It also directly reroutes
the traffic through a different path if possible (including the pre-set tunnels).

Nearby SDN nodes can detect a link failure in between OSPF nodes due
to the traffic variation at their network links. A downstream link, in regards
to a failed link, will indeed observe a decrease of the rate of one interface
as compared to what the traffic matrix predicts. We benefit from the fact
that in typical ISP networks, traffic is all-to-all, i.e., from one PoP to any
other PoP. Hence, any SDN router in the network is likely to detect the link
loss, as a fraction of the traffic it handles is affected by the failure. Again
we use a conservative threshold of 50%, i.e., an SDN switch must detect a
decrease of 50% of any of its links’ load to trigger the link failure mitigation
mechanism. Once again, after the OSPF convergence expected period, the
controller re-uses SENAtoR to obtain a new green architecture eventually.
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6.5.2 Heuristic

SENAtoR’s heuristic has two steps: first, it assigns routes to the flows using
eventual tunnels, then it selects the equipment to turn-off. During the second
step, we may need to find a new path for demands that were using the device
that we try to shutdown. Note that two possibilities for the configuration
of the tunnels are considered, (i) with dynamic tunnel selection, (ii) with a
pre-configured set of tunnels.

Path assignment

To assign a path to a demand, we build a weighted residual graph Hst =
(V,A0) and then search for the shortest path between s and t in Hst. Nodes
in Hst are the ones of D and correspond to network routers. We only consider
links and tunnels which have enough residual capacities to satisfy the demand
Dst. For each node u, its set of out-neighbors is constructed as follows:

If u is a legacy node, the routing is done by the legacy routing protocol
towards next hop nt(u) if the link to nt(u) is active. In this case, the only
neighbor of u in Hst is n

t(u). Otherwise, if the link to nt(u) is inactive, the
routing is done through a tunnel. (1) If a tunnel from u is already defined for
the destination t, the neighbor of u in Hst is set as the tunnel endpoint. (2)
If no tunnel is defined, the next step depends on the variant of the problem.
(2i) In the tunnel selection variant, we have to set a tunnel. We thus add all
the potential tunnels by adding any node that can reach the destination t,
using direct forwarding (OSPF or OpenFlow) or existing tunnels. (2ii) With
pre-configured set of tunnels, u has no neighbor in Hst.

If u is an SDN node, the routing is done by OpenFlow rules installed by
the controller. We have two cases: (1) if no OpenFlow rule is set for the
demand in node u, any neighbor can be the next hop. The neighbors of u in
Hst are the same as in the original digraph D. (2), we only add as a neighbor
of u in Hst the node designed as the next hop by OpenFlow. Similar to a
legacy node, if the link to the next hop given by OpenFlow is inactive, we
consider tunnels in the same way described above.

We then compute a weighted shortest path from s to t in the residual
graphHst leading to the decision of which tunnel will be selected and whether
we need to install or not a new OpenFlow rule for the SDN node.

We present in Figure 6.2 an example of the construction, for the two
variant, of the residual graph Haf needed to find the path of the demand
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(a) Original network
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(b) Haf for the dynamic tunnel selec-
tion variant

a

b

c

d

e

f

(c) Haf for the pre-configured set of
tunnels variant. e is already set as the
tunnel for destination f on node b

Figure 6.2: Example of the Path Assignment step of the heuristic for a
demand between a and f when the link (b, d) is inactive. Red arcs represent
the OSPF next hops to f and tunnels are represented by green arcs. Circle
nodes represent OSPF nodes and square nodes, SDN nodes.
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between a and f . For both variant, all OSPF nodes in Haf (a, e, f) are
only connected to their next hop except for b, since the link (b, d) is off.
Both SDN nodes (c, d) are connected to all of their neighbors in the network
since no matching rule exists for the demand a and f . The set of arcs on
node b corresponding to tunnels is different between the two variant. In
Figure 6.2b, since no tunnel end point has yet to be set for destination f , we
add all possible valid tunnel end points. Node a is not a valid end-point as
it cannot reach f using non-tunnels arcs. Nodes d and f are not valid end
point because they cannot be reached from b since the link (b, d) is off. In
Figure 6.2b, only the tunnel to e is present since it was pre-set.

Off link Selection

When the routing module assigns a path to all demands, the energy savings
module tries to power off links to save energy. We consider SDN links one
by one, i.e., links with at least one SDN endpoint. We select the active link
with the smallest amount of traffic on both arcs. We then try to reroute all
the demands flowing through that link. If the routing module finds no valid
routing, we set the link as non-removable, and restore the former routing.
Otherwise, we set the link as inactive and powered off. We then consider
the remaining active links. The heuristic stops when all SDN links are either
powered off or non-removable.

6.6 Numerical results

In this section, we evaluate the solutions proposed on different ISP topologies.
We first compare the performances of the ILP and the heuristic algorithm on
a small topology. We then use SENAtoR on larger networks of SNDLib. We
show that SENAtoR obtains energy savings that range from 5% up to 35%
for different levels of SDN hardware installation.

For the parameters of the power model, we considered the cases of two
different hardware: our HP5412zl SDN switch and an ideal energy efficient
SDN switch as discussed in [Vu+14]. In the first case, we measured the
power consumption using a wattmeter: the switch uses 95W when in sleep
mode and 150W if it is active (Bu = 95, Au = 55). According to Cisco
specifications [Cis14], links are using 30W as a baseline and go up to 40W
when at full capacity (P IDLE

uv = 30, PLOAD
uv = 10). To have a fast recovery
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Figure 6.3: Energy Savings for the ILP and the heuristic on atlanta

from sleep mode, the TCAM must be kept under power to preserve the
forwarding rules. According to [Con+14], TCAM represents 30% of the
consumption of a high-end router, and considering results from [Vu+14], we
can safely assume that an ideal energy efficient switch could save up to 60%
of energy in sleep mode.

For the choice of SDN nodes in the networks, we tested and evaluated
different methods such as node degree, centrality, and covering (betweenness
centrality, closeness centrality and Max k-Vertex Cover). Finally, we
chose the simplest one in terms of computation that gives similar results:
the highest node degree. The resulting selection is first sort all nodes accord-
ing to their degree; second, choose the k first nodes. This method has the
advantages of being simple and allowing a good incremental upgrade to SDN
hardware.

6.6.1 ILP vs. SENAtoR

We use the atlanta network (composed of 15 nodes and 22 links) and the
traffic matrices provided by SNDLib to compute the energy savings for dif-
ferent numbers of SDN nodes. We solve the ILP with CPLEX and set a time
limit of one hour (as the ILP is complex). The results presented correspond
to the best solution found by the solver within the time limit. Note that for
percentages of SDN nodes below 13% and greater than 73%, the ILP solves
the problem optimally in less than one hour. The heuristic takes at most
5ms to find a solution in all settings.
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Figure 6.4: Daily traffic in multi-period.

6.6.2 Simulations on Larger Networks

We further look at the performance of the heuristic on atlanta and on larger
networks such as germany50 (50 nodes and 88 links), zib54 (54 nodes and
81 links) and ta2 (65 nodes and 108 links).

Traffic model

Since ISP traffic is roughly stable over time with clear daily patterns, a few
traffic matrices are enough to cover a whole day period. Consequently, a rel-
atively small number of routing reconfigurations allows operators to obtain
most of the energy savings [Idz+16] and avoid making frequent reconfigura-
tions. Indeed, as exemplified by the daily variations for a typical link in the
Orange ISP network (Figure 6.4), five traffic matrices (labeled D1 to D5) are
sufficient. These matrices are normalized and adapted to the size of each
studied topology.

Then, we compute the best hybrid energy aware routing for each matrix
and adapt the routing when the traffic changed.

Daily savings

In Figure 6.5, we compare the energy savings during the day for the four
topologies. The top figures represent the savings with HP switches and the
bottom ones the savings with ideal energy efficient switches. We look at four
different levels of SDN deployment: 10%, 25%, 50% and 100% of upgraded
nodes in the network. For each period, we compare the energy used to the
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(a) atlanta (b) germany50

(c) zib54 (d) ta2

Figure 6.5: Daily energy savings over the day for the (a) atlanta, (b)
germany50, (c) zib54 and (d) ta2 networks. with 10, 25, 50 and 100%
SDN nodes deployment. Top plots: power model of the HP switch. Bottom
plots: power model of an ideal energy efficient SDN switch.
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one of a legacy network at the same period. On a full SDN network, the
difference between night and day energy savings is between 2% and 7% (3.5
and 9% with ideal switches). With HP switches, we can save up to 19% on
atlanta, 22% on germany50, 17% on zib54 and 21% on ta2 with a full SDN
networks. With ideal switches, we obtain higher savings, between 25% and
35%.

Number of tunnels

(a) atlanta (b) germany50

(c) zib54 (d) ta2

Figure 6.6: Number of average tunnels installed per node on the (a) atlanta,
(b) germany50, (c)zib54 and (d) ta2 networks

We look at the number of tunnels used in Figure 6.6. For small SDN
budgets (up to 30% of the network for atlanta, 20% for larger networks),
the average number of tunnels significantly increases with the number of SDN
nodes. The reason is that more network links may be turned off, and thus,
more backup tunnels are needed. The number of tunnels then levels off and
decreases. Indeed, with a high penetration of SDN in the network, SDN nodes
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can dynamically forward the traffic regardless of OSPF, and the traffic can be
rerouted before arriving at the turned-off link. Thus, fewer backup tunnels
are needed. The maximum average number of tunnels required per node is
proportional to the size of the network (3 for atlanta, 8 for germany50, 9
for zib54 and 15 for ta2). Finally, while the number of tunnels needed may
seem high, we see in the next section that the impact of this overhead on the
network performance (packet loss or delay) is not noticeable.

Stretch and delay

(a) atlanta (b) germany50

(c) zib54 (d) ta2

Figure 6.7: Stretch ratio for four different levels of SDN deployment on (a)
atlanta, (b) germany50, (c) zib54 and (b) ta2 networks. The box represents
the first and third quartiles and whiskers the first and ninth deciles.

By nature, Energy Aware Routing has an impact on the length of the
route in the network. As we turn off links, we remove shortest paths. More-
over, tunnels can also increase the path length. In Figure 6.7, we show the
stretch ratio of the paths for four levels of SDN deployment. We only show
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the stretch for the period with the lowest amount of traffic, as it is the period
with the largest number of turned off links and thus the one with the largest
stretch.

Most of the demands are barely affected by SENAtoR. The median stays
around a ratio of 1 with a maximum of 1.25 for atlanta at 100% deployment,
1.25 for germany50 at 50% deployment, 1.33 for zib54 at 10%, and 1.25 for
ta2 at 25%. 90% of the paths have at most a ratio less than or equal to 3.
The stretch of the paths follows the same behavior as the number of tunnels
needed for a valid hEAR. Below a 50% deployment, we need an increased
number of tunnels to forward the traffic, and thus, we also increase the length
of the paths. On a full SDN network, we only see the stretch due to powered
off links.

(a) atlanta (b) germany50

(c) zib54 (d) ta2

Figure 6.8: Delays for the demands in the (a) atlanta, (b) germany50, (c)
zib54 and (b) ta2 networks.

Even though some paths reach a stretch ratio of 14 on germany50 and 9
on zib54, we can see in Figure 6.8 that the network delay stays relatively
small. Indeed, the paths with a big stretch are mostly one-hop paths that
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used to be on currently inactive links. To compute the delays, as the delay
is proportional to the distance in an optical network [Cho+07], we use the
distances given by the geographical coordinates in SNDlib for the germany50
network. We got an average value of 1.8ms per link. Since the coordinates
are not available for the other topologies, we used the same average value
for atlanta, zib54, and ta2. The median delay rarely goes above 10ms for
all four networks. The zib54 network experiences the worst delay with a
half SDN deployment, with almost 35ms of delay. The bottom line is that
using SENAtoR, we stay below a delay of 50ms. This is important, as this
value is often chosen by SLAs as the maximum delay allowed for a route in
a network [Faw+04]. Thus, even if new routes computed by our algorithms
may sometimes experience a high value of stretch, this will not be a problem
for network operators.

6.7 Experimentations

In this section, we present results obtained on a Mininet testbed with the
SENAtoR solution. Our objective is to demonstrate that SENAtoR can
indeed turn off links and put SDN switches in power save mode without
losing packets thanks to our smooth integration with OSPF to anticipate
link shutdown.

6.7.1 Testbed Description

We built a hybrid SDN testbed using Mininet [Min] and a remote Flood-
light [Flo] controller. The Mininet network topology is based on atlanta

with 50% SDN deployment. OSPF routers are materialized as host nodes
in Mininet and run the Quagga software [Qua] while OVSes [Pfa+15] act
as SDN switches. Our Floodlight controller is able to parse and respond to
OSPF hello packets received and forwarded by the SDN OVSes (through ad-
equate OpenFlow rules installed in the SDN switches) ; hence ensuring the
correct functioning of the adjacent OSPF routers. We use Generic Routing
Encapsulation (GRE) tunnels, and tune the administrative distance, so that
regular interfaces have a higher priority, to control the interplay between
the tunnel interface and the regular interfaces. When SENAtoR notifies an
SDN PoP switch to get into sleep mode, we turn off all of its interfaces and
disconnect it from the rest of the network. During this power-save mode,
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(a) Number of turned off links (b) Packet loss

Figure 6.9: atlanta topology

the memory keeps the set of rules previously installed by the controller to
perform a quick recovery back to normal active mode.

6.7.2 Experimental Results

Lossless link-turn-off

In Figure 6.9a we vary the traffic over time to simulate smooth variations on
the average rate. This is achieved by taking one traffic matrix and scaling it
using the same sinusoidal function as in Figure 6.4.

The energy saving results in Figure 6.9a are in line with the ones presented
in Section 6.6, i.e., the same number of links and nodes are turned off in
all cases. The added value of the experiment is to assess if our smooth link
shutdown approach to enable EAR is effective. Figure 6.9b portrays the time
series of packet losses with pure OSPF (OSPF operates the complete network,
and no link is turned off in this case), SENAtoR and ENAtoR (SENAtoR
without the smooth link shutdown). This shows the importance of SENAtoR
anticipation of links shutdown resulting from putting SDN switches in sleep
mode. Without it, losses explode to 104 packets (see ENAtoR). In this case,
the high loss rate of ENATOR is proportional to the amount of time it takes
for OSPF to declare the link down multiplied by the traffic intensity. In
contrast, SENAtoR manages to maintain the same packet loss as a full OSPF
network without any links shutdown, with negligible loss rates (10−4%), even
though it is using fewer links and nodes in the network.
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Figure 6.10: Loss rate percentage during a traffic spike in the atlanta topol-
ogy

Traffic spikes

To illustrate the traffic spike mitigation mechanism, we consider a fixed traffic
matrix (no scaling) and we induce a traffic spike either at an OSPF node
directly connected to an SDN switch (Figure 6.10a) or between OSPF nodes
(Figure 6.10b). We report the Cumulative Distribution Function (CDF) of
loss rates of all connections. The spike detection algorithm of SENAtoR
allows it to outperform OSPF. One of the reasons for such a phenomenon is
that regular OSPF nodes have no mechanisms to load balance automatically
packets in case of traffic spikes.

Link failure

We consider again a fixed traffic matrix (no scaling) and we induce a link
failure either between an SDN switch and an OSPF router or in between
two OSPF routers and report the corresponding loss rates on Figures 6.11a
and 6.11b. We compare three cases: (i) the legacy OSPF scenario, in which
the link failure is handled with a long convergence time, (ii) SENAtoR using
OSPF Link State (LS) Updates only to detect network changes; and (iii)
SENAtoR with its Link failure detection and mitigation mechanism.

We first observe that even in case (ii), SENAtoR does not experience
higher loss rates than case (i) (and significantly lower loss rates when failure
on OSPF-OSPF link). This happens even though some of the switches and
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Figure 6.11: Link failure experiment with the atlanta topology

links were down at the time of the failure, and had to be switched on. Indeed,
SDN switches do not need to wait for the OSPF convergence before rerouting
traffic through the pre-established set of tunnels. The link failure mitigation
mechanism further improves the situation.

We then observe a counterintuitive result: the loss rates using SENAtoR
are smaller when the failure occurs on an OSPF-OSPF link rather than on
an SDN-OSPF link. Two factors contribute to this result. First, we placed
SDN nodes at key locations in the network where they convey more traffic.
A failure at these nodes thus induces higher loss rates. Second, as soon
as a downstream SDN node detects a link failure in an OSPF-OSPF link,
SENAtoR limits the traffic flowing on this link by instructing upstream SDN
nodes to reroute their traffic.

6.8 Conclusion

In this chapter, we presented SENAtoR, an energy aware routing solution
that preserves failure tolerance and traffic overload management of the net-
work. We enriched SENAtoR with lossless link/node turn-off, spikes, and
traffic failure detection services. SENAtoR implementation and experimen-
tation with emulated devices running full OSPF agents show that we can deal
with unexpected network events correctly. More strikingly, our experiments
show that even when green services are enabled, and traffic spikes occur in
a non-SDN-capable node, SENAtoR provides loss rates lower than the all-
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OSPF case, since the SDN controller can provide most appropriate routes.
As a conclusion, SENAtoR provides energy savings while being compatible
with current network infrastructures. As a future work, we can improve
SENAtoR with a deeper study of the traffic network variations to provide
the most adapted thresholds for the spikes and link failure detections.
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Network Function
Virtualization

Context

In the last two parts, we considered the constraints of Software Defined
Network networks for the implementation of Energy Aware Routing (EAR).
We now shift our focus on the Network Function Virtualization and its impact
on Energy Aware Routing.

Network Function Virtualization proposes to virtualize network functions
and services that once ran on middleboxes. Each function was implement by
a specific middlebox; it exists as many different specific hardware as network
functions. While Software Defined Network (SDN) aims at decoupling con-
trol and data plane, the Network Function Virtualization (NFV) paradigm
provides a way to decouple software from hardware. Network operators are
no longer bound to the development of new hardware but only to new soft-
ware which exhibits shorter development timelines. General servers can now
run the network functions hosted on Virtual Machines (VMs), leaving more
breathing room for operators to manage and develop new services. Indeed,
functions can be moved on the network depending on the traffic, by migrating
the hosting VMs.

Moreover, network services are usually composed of an ordered chain of
functions to apply to the requests. They are called Service Function Chains.
Removing the need for middleboxes greatly help the construction of new
chains. Instead of physically deploying new middleboxes into the network,
network operators can rely on an NFV orchestrator to migrate the VMs
depending on the requests executed on the network. As virtual functions
require various resources (CPU cores, memory, bandwidth), NFV Manage-
ment & Orchestration (NFV MANO) represents an important part of the
infrastructure.

The problem we consider in this part is Service Function Chain (SFC)
provisioning, which comprises determining which Virtual Network Func-
tions (VNFs) are placed on which nodes and how VNF instances are assigned
to SFCs. The placement and assignment affect the traffic routing from the
SFC through the servers or virtual machines’ network. SFC provisioning
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must offer the best compromise between the conflicting goals of minimiz-
ing infrastructure and bandwidth resources, end-to-end latency (i.e., Service
Level Agreements (SLAs)) and reducing the replica numbers of VNFs and
SFCs. The location of the VNFs affects the end-to-end latency incurred by
the packets traversing a particular SFC. Also, a poor placement will cause the
flow to traverse the same path-segments back and forth inside the network,
increasing the network delay and consuming more bandwidth.

Contributions and plan

We first study the problem of Service Function Chain Provisioning with-
out energy efficiency in Chapter 7. We propose the design of a mathemati-
cal model with a decomposition scheme that allows a scalable exact solution
scheme, while nearly all previous algorithms of the literature (see next sec-
tion) are either heuristics or non-scalable exact algorithms. To the best of our
knowledge, we are the first to propose an exact model, which scales well with
the number of nodes and requests. Our model can solve within a few minutes
instances with almost 10.000 different demands. The model then allows the
investigation of the best compromise between the numbers of VNF replicas,
the best placement of VNFs, the resource requirements and the end-to-end
delays.

Then, in Chapter 8, we extend our model to the Energy Efficient Service
Function Chaining problem. We study the impact of using Virtual Network
Functions instead of middleboxes when deploying SDN green policies. We
also propose GreenChains, a Integer Linear Program (ILP)-based heuristic
to solve the Energy-Efficient Service Function Chaining (EE-SFC) problem.
We show that using NFV allows to save 4 to 12% more energy than the
hardware scenario (SDN+middleboxes).

We present in the next section works on SFC problem for exact and partial
formulations.

Related work

Following the NFV initiative in 2012 [Gem+16], several surveys are now
available on NFV, see, e.g., [LC15; HB16; Mij+16] where the various NFV
challenges are discussed. Focusing on the SFC provisioning problem, various
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works proposed partial and exact mathematical formulations, considering
several objective functions.

Partial mathematical formulations. In Martini et al. [Mar+15] and
Riggio et al. [Rig+15], the authors only solve the placement and routing
for each request independently. A heuristic based on an ILP is proposed in
Gupta et al. [Gup+15]. The authors only consider the k-shortest paths for
every request in the network and a simplified node capacity constraint, for
which only one function per node can be deployed.

Exact mathematical formulations. Luizelli et al. [Lui+15] provide an
exact model minimizing the number of instances of functions in the net-
work. However, they consider only a couple of tens of requests. Savi et al.
[STV15] propose an exact formulation in which the number of VNF nodes
is minimized. Their model takes into account additional costs inherent to
a multi-core environment. However, they only provide results on a small
network. Bari et al. [Bar+16], the authors consider the Operational Expen-
diture (OpEx) for a daily traffic scenario as their objective function. Mo-
hammadkhan et al. [Moh+15] propose an exact model along with heuristics
aiming at minimizing the maximum usage of CPU and links. The scope
of the experiments is limited to the case in which the number of cores per
service is limited to one.

The ILPs proposed in the works mentioned above do not scale for larger
networks. To the best of our knowledge, using column generation, our work is
the first to optimally solve the problem of SFC placement in a network with
50 nodes and for all-to-all demand scenarios (10 000 requests). Even tough
some works [STV15; Lui+15] minimize the number of function replications
in the network, we are also the first to consider constraints on the num-
ber of function replications throughout the whole network while minimizing
bandwidth usage.

Energy Efficient Network Function Virtualization Only a few works
investigate the potential of network virtualization for energy efficiency. In
[Bol+14], Bolla et al. present an extension of an open source software frame-
work, the Distributed Router Open Platform (DROP), to enable a novel
distributed paradigm for NFV. DROP includes sophisticated power man-
agement mechanisms, which are exposed by means of the Green Abstraction
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Layer. In [Mij15], Mijumbi estimates the energy savings that could result
from the three main NFV use cases-Virtualized Evolved Packet Core, Virtu-
alized Customer Premises Equipment and Virtualized Radio Access Network.
However, both papers do not consider the constraints of service chains. The
work of Soualah et al. [Sou+17] is, to the best of our knowledge, the closest
to ours. They explore a scenario with service function chains and dynamic
requests arrival. However, they only reduce the energy consumption of the
physical machines and not of the network.
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7.1 Introduction

In this chapter, we study the Service Function Chaining Provisioning prob-
lem and propose the first scalable exact model. It can solve instances with
10 000 requests on network of 50 nodes.

The chapter is organized as follows. A detailed and formal statement of
the Service Function Chain Provisioning problem is given in Section 7.1.1
followed by the description of the layered graph model used for all of our
ILP models. We describe our optimization models in Section 7.2, first a
classical ILP model, and then a decomposition ILP one. Solution process
and algorithms are depicted in Section 7.3. We then present extensions of
the models to handle the case in which the number of VNF replicas is limited
in Section 7.4. Numerical results are described in Section 7.5.

7.1.1 Problem Statement

We consider an SDN network that is represented by a graph G = (V, L)
where V denotes the set of nodes and L the set of links. Each service chain c
is defined as an ordered sequence of Virtual Network Functions (VNFs), with
some functions possibly repeated. We denote by nc the number of functions
in c, i.e., the length of the sequence. Let C be the set of all service chains.

Demand is defined by a set of requests, where each request is charac-
terized by a source vs, a destination vd, a service chain c and a bandwidth
requirement, i.e., Dc

sd units. Let SD the set of node pairs with some demand.
Let F be the set of virtual network functions, indexed by f . The number

of cores required by function f in any chain is equal to ∆f per unit of band-
width, i.e., Dc

sd ⇥ ∆fc
i
cores for request (vs, vd, c,D

c
sd) at the node hosting

function f c
i , the ith function of chain c.

We assume that only a subset of nodes V vnf ✓ V can host VNFs. In-
deed, deployment of VNFs can be made on general purpose servers or stan-
dard IT platforms like high-performance switches, service, and storage, see,
e.g., [LC15] for more details. Running a VNF requires a certain amount of
resources, e.g., CPU, memory, disk, while the number of required resources
usually depends on the volume of traffic that passes through it. Consequently,
each node v 2 V vnf has a given core capacity ccv. Similarly, each link ` of
the network has a transport capacity of cap`. Notations are summarized in
Table 7.1.
Service Function Chain Provisioning Problem. For a given demand
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G = (V, L) optical (grid) network

V vnf ✓ V
subset of nodes which are enabled to
host virtualization functions

SD Set of node pairs with some demand

Dc
sd

bandwidth demand from s to d for
chain c

∆f
# required cores per bandwidth unit for
function f

cap` transport capacity (bandwidth) of link `
capv core capacity of node v

nc length (i.e., number of functions) of the
chain c

f i
c the ith function in chain c
Csd set of chains between vs and vd

Table 7.1: Notations.

D, provision the service chains, while minimizing the overall bandwidth re-
quirement subject to the core and transport capacities, and possibly to a
limit on the number of NFV nodes and SFC replicas.

When provisioning SFCs, each chain is assigned a path in which functions
of c are encountered in the same order as in c, with some functions possibly
located at the same node.

7.1.2 Layered Graph

Following a similar idea as in [DW16], we use a layered graph Gl that is
defined as follows. The initial network graph G is transformed into a layered
graph Gl by adding max

c2C
nc layers to the graph (counting G as the base layer,

i.e., layer 0, and where each layer is an exact copy of the original graph. For
every node v 2 V , let vi denote the corresponding node in the ith layer
(i = 1, . . . , nc). Every (i − 1, i) layer pair is connected vertically by links
from vi−1 to vi, see Figure 7.1 for an illustration.

Finding a path and a chain placement for a request (us, ud, c,D
c
sd) consists

in finding a path from node vs on the first layer to node vd on the nc + 1th
layer. Indeed, each layer represents the progression of the chain, e.g., being
on the second layer means that the first function of the chain is already
executed. The placement of the node is given by the link used to switch
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Figure 7.1: Layered Graph

between layers.
All Integer Linear Programming (ILP) models presented in the layered

graph.

7.2 Optimization Models

We first present a classical Integer Linear Program (ILP) model, called NFV -
ILP, in Section 7.2.1 and then a reformulation with a Column Generation
(CG) decomposition model, called NFV CG, in Section 7.2.2.

7.2.1 Model NFV ILP

Model NFV ILP is an Integer Linear Program based on the layered graph
described in Section 7.1.2.
Variables. Model NFV ILP uses two sets of variables. The first set is a set
of 0-1 variables 'sd,c,i

` defined as follows. Variable 'sd,c,i
` = 1 if (us, ud, c,D

c
sd)

is provisioned on link ` at layer i, 0 otherwise. The second set corresponds
to 0-1 variables ↵sd,c,i

v such that ↵sd,c,i
v = 1 if f i

c is installed on node v. Note
that we will use the convention that if v 62 V vnf, ↵sd,c,i

v = 0.

Objective. Minimization of the bandwidth requirements

min
X

(vs,vd)2SD

X

c2Csd

Dc
sd

X

`2L

nc
X

i=0

'sd,c,i
` (7.1)
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Constraints. There are three sets of constraints.
Flow constraints. They translate the requirement of a path from source to
destination going through the locations of the functions of the service chain
requested by each node pair demand. Only the source node on the first layer
and the destination node on the last layer can have a positive outgoing and
incoming flow respectively.

X

`2!+(u)

'sd,c,i
` −

X

`2!−(u)

'sd,c,i
`

+ ↵sd,c,i
v − ↵sd,c,i−1

v = 0

8v 2 V, (vs, vd) 2 SD, c 2 Csd, 0 < i < nc (7.2)
X

`2!+(v)

'sd,c,0
` −

X

`2!−(v)

'sd,c,0
`

+ ↵sd,c,0
v =

(

1 if v = vs

0 else

8(vs, vd) 2 SD, v 2 V, c 2 Csd (7.3)
X

`2!+(v)

'sd,c,nc

` −
X

`2!−(v)

'sd,c,nc

`

− ↵sd,c,nc

v =

(

−1 if v = vd

0 else

8(vs, vd) 2 SD, v 2 V, c 2 Csd. (7.4)

Link capacity. Usage of a given link ` is distributed over the different layers
and cannot exceed the link transport capacity cap`.

X

(vs,vd)2SD

X

c2Csd

Dc
sd

nc
X

i=0

'sd,c,i
`  cap` 8` 2 L. (7.5)

Node capacity. The placement of a function in node v is described by the
usage of cross-layer link (vi−1, vi). The usage of a node is determined by the
set of cross-layer links that are used to switch from one layer to the next,
and should not exceed its core capacity.

X

(vs,vd)2SD

X

c2Csd

nc
X

i=0

∆fc
i
Dc

sd↵
sd,c,i
v  ccv 8v 2 V vnf. (7.6)
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7.2.2 Model NFV CG

As we will see in Section 7.5.3, the NFV ILP model does not scale well for
medium to large networks. We thus propose a Column Generation model,
called NFV CG model. It relies on the concept of configurations, i.e., a
potential path provisioning or service path for a given request.

More formally, a configuration, i.e., a Service Path for a request (us, ud, c,D
c
sd)

is composed of: (i) a network path, i.e., an ordered set of nodes from the
source to the destination node of the request, and (ii) a set of locations
for the VNFs in the SFC request. Each Service Path is thus specific to a
given request and its SFC. However, a given SFC may be shared with several
requests.

We use the following additional parameters.

Parameters

• p 2 P c
sd: a Service Path from vs to vd, where P c

sd denotes the set of
paths from vs to vd for chain c. A service path is composed of a path
in the network and a set of pairs (v, f). Each pair (v, f) expresses that
function f is executed on node v.

• length(p) 2 N: it denotes the number of links of path p.

• apiv 2 {0, 1}, where apiv = 1 if f c
i is installed on node v for Service Path

p 2 P c
sd.

• δp` 2 N denotes the number of occurrences of link ` in path p.

Variables

• ysd,cp ≥ 0, where ysd,cp = 1 if request (us, ud, c,D
c
sd) is forwarded through

service path p, 0 otherwise.

Objective

min
X

(vs,vd)2SD

X

c2Csd

X

p2P c
sd

Dc
sd length(p) y

sd,c
p (7.7)

As for Model NFV ILP, the objective is to minimize the amount of band-
width used in the SDN network. For a path, this amount is its length, i.e.,
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the number of hops, multiplied by the bandwidth requirement of the request.
The set of constraints can then be expressed as follows.

Constraints
Exactly one path per demand and per chain:

X

p2P c
sd

ysd,cp = 1 8c 2 Csd, (vs, vd) 2 SD (7.8)

Link capacity: for all ` 2 L,

X

(vs,vd)2SD

X

c2Csd

X

p2P c
sd

(Dc
sd δ

p
` )⇥ ysd,cp  cap` (7.9)

Node capacity: for all v 2 V vnf,

X

(vs,vd)2SD

X

c2Csd

ncX

i=0

X

p2P c
sd

(∆fc
i
Dc

sd apiv) ⇥ ysd,cp  ccv (7.10)

7.3 Solution Scheme

Model NFV ILP can be easily solved by an ILP solver such as CPLEX. Model
NFV CG requires more attention as, at first look, it has an exponential
number of variables. Indeed, its linear relaxation can be solved exactly using
column generation ([Chv83]), using a limited number of configurations, i.e.,
variables. An integer solution is next derived, together with its accuracy.
Details are given below.

7.3.1 Pricing Problem

The role of the Pricing Problem is to generate a valid Service Path for a
given request (us, ud, c,D

c
sd). This problem corresponds to an NP-complete

problem, the Shortest Weight-constrained path problem [GJ79]. Once again,
the formulation relies on the layer graph (Gl) introduced in Section 7.1.2.
The so-called reduced cost defines its objective.

• u(j) represents the vector of dual variables of constraints (j) in the
RMP. Note that these values are given as input to the pricing problem
in the column generation solution process.
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Variables:

• ↵i
v 2 {0, 1}, where aiv = 1 if f c

i is installed on node v.

• 'i
` 2 {0, 1}, where 'i

` = 1 if the flow forwarded on link ` on layer i, i.e.,
links in each layer in graph Gl.

The service path generator (pricing problem) is written for each request
(us, ud, c,D

c
sd).

min
X

`2L

ncX

i=0

'i
` ⇥ (Dc

sd −Dc
sdu

(7.9)
` )

− u
(7.8)
sd

+Dc
sd

X

v2V

u(7.10)
v

ncX

i=0

∆fc
i
↵i
v (7.11)

Flow conservation: they correspond to flow constraints (i.e., route) from the
ith function to the (i + 1)th function of the service chain associated with
the vs  vd request for which the pricing problem is solved (constraints
(7.12)), and then flow constraints from the source node to the location of
the first function of the service chain (constraints (7.13)), and similarly from
the location of the last function of the service chain to the destination node
(constraints (7.14)). Note that aiv = 0 for all nodes that are not VNF capable.
Observe that the next set of constraints take care of the possibility that
several VNFs can be located on the same node, including on the source or
destination nodes.

X

`2!+(v)

'i
` −

X

`2!−(v)

'i
` + ↵i

v − ↵i−1
v = 0

v 2 V, 0 < i < nc (7.12)

X

`2!+(v)

'0
` −

X

`2!−(v)

'0
` + ↵0

v =

(

1 if v = vs

0 else

v 2 V (7.13)

X

`2!+(v)

'nc

` −
X

`2!−(v)

'nc

` − ↵nc

v =

(

−1 if v = vd

0 else

v 2 V (7.14)
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Lastly, we need to make sure that the produced paths are respecting the
link and node capacities of the original network.
Link capacity. For ` 2 L,

Dc
sd

nc
X

i=0

'i
`  cap`. (7.15)

Node capacity. For v 2 V vnf,

nc
X

i=0

(∆fc
i
Dc

sd)⇥ ↵i
v  ccv. (7.16)

Note that, since the resolutions of the pricing problems for all requests are
independent, we launch in parallel the corresponding ILPs to improve the
execution time.

Speeding the solution of the pricing problem with the Bellman-Ford algo-
rithm. As discussed above, the pricing problem can be solved using an ILP.
However, it can be solved more quickly using the following observation. A
solution to the Pricing Problem is equivalent to a constrained shortest path
in the layered graph. The weight wi` of the link ` at layer i is equal to

wi` = Dc
sd − u

(7.9)
` Dc

sd

and the weight of the link going from layer i to i+ 1 at node v is equal to

wiv = −Dc
sdu

(7.10)
v ∆fc

i

If we now ignore the capacity constraints, the pricing problem becomes a
simple shortest path problem. Since the dual values of the constraints (7.9)
and (7.10) can be negative, we use the Bellman-Ford algorithm to solve it.
As we did not consider the capacity constraints, we may obtain invalid paths.
However, they are easily discarded by checking if they use more capacity than
available. In this case, we then launch the ILP. This method allows us to
speed up the column generation process, as shown in the next section.

7.4 Limiting Function Replicas

We now consider the case in which an operator is constrained by the number
of replicas of each virtualized function. Such scenario may occur when the
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operator has a limited budget for its license cost or when the licenses provided
for a function only allow a certain number of replicas in the network.

Having a limited number of preset NFV capable nodes, as done in Sec-
tion 7.5.4, is a simple addition to the models. However, limiting the number
of function replicas, which may be placed on any nodes, increases greatly the
complexity of the models and the execution time. Indeed, this introduces a
large number of binary variables in the model.

In section 7.4.1, we provide again two models, the first one being an
ILP and the second one using column generation. As the complexity of the
model is high, we introduce in Section 7.4.2 a heuristic algorithm to solve
the problem for large networks. The heuristic first finds a good placement of
the network functions by solving a variant of a capacitated k-mean cluster-
ing problem (or facility location problem) using an ILP, and then uses this
placement in the CG model to find a solution of the general problem.

7.4.1 Models

The models are extensions of NFV ILP and NFV CG, as described below,
and are called NFV ILP+ and NFV CG+, respectively. In our two models, we
introduce a new set of variables, bvf , indicating if the function f is installed
on node v. We can now limit the total number of functions on the network
using the following constraints in both models.

X

v2V vnf

bvf  Lf f 2 F (7.17)

where Lf represents the maximum number of replicas for the function f .
In the NFV ILP+ model, we then limit the placement of functions for

every request with the following constraints

asd,c,iv  bvfc
i

v 2 V vnf, (vs, vd) 2 SD, c 2 Csd, 0 < i < nc (7.18)

For NFV CG+, a Service Path can only be used if all the execution loca-
tions of its functions are active. Another way to formulate this is to say that
a location v for a function f must be active, i.e, bvf = 1, if any path using
this location is active. This can be expressed using the following constraints

X

c2Csd

X

(vs,vd)2SD

X

p2P c
sd

βp
vfy

sd,c
p  Mbvf v 2 V vnf, f 2 F (7.19)
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where M ≥ |SD|⇥|C| and βp
vf = 1 if function f need to be installed on node

v for path p.
We can remove the big M at the cost of a higher number of constraints.

Indeed, since
P

p2P c
sd

βp
fvy

sd,c
p 

P

p2P c
sd

ysd,cp = 1, we can replace the constraints

(7.19) at the cost of a higher number of constraints by

X

p2P c
sd

βp
vfy

sd,c
p  bvf

8v 2 V vnf, f 2 F , (vs, vd) 2 SD, c 2 Csd, (7.20)

Pricing Problem
We introduce the set of variables βvf into the Pricing Problem to keep

track of the function placement. Note that chains can contain multiple occur-
rences of the same function and that this is taken into account with variables
↵vfc

i
, allowing a function to arise several times (e.g., firewall application) in

a service chain to be used in different locations, i.e., potentially a different
one for each occurrence.

The objective function of the Pricing Problem for a request (us, ud, c,D
c
sd)

for NFV CG becomes:

min
X

`2L

ncX

i=0

'i
` ⇥
⇣

Dc
sd −Dc

sdu
(7.9)
`

⌘

− u
(7.8)
sd +Dc

sd

X

v2V vnf

u(7.10)
v

ncX

i=0

∆fc
i
↵i
v

+
X

v2V

X

f2F

βvfu
(7.20)
sd,c,v,f .

Like the RMP formulation, we add the following two sets of constraints
for the number of replicas in the network. First, we limit the number of
replicas in the network.

X

v2V vnf

βvf  Lf f 2 F (7.21)

Then, we limit the execution of function on node where the function is in-
stalled.

βvfc
i
≥ ↵i

v v 2 V vnf, 0  i  nc (7.22)
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Unlike the Pricing Problem of NFV CG, it is not possible to find a so-
lution using the Bellman Ford algorithm and we thus use CPLEX to solve
it.

7.4.2 Heuristics (NFV Algo+)

As shown in Section 7.5, NFV CG can find quickly near-optimal solutions to
the SFC placement problem, when the number of function replica is not lim-
ited. However, NFV CG+ has an execution time a lot longer and is not able
to solve a large network such as germany50. Thus, we propose a heuristic
solution using NFV CG, called NFV Algo+. First, we consider the place-
ment of functions in the network in the same fashion as a facility location
problem, as explained below. Then, we use NFV CG to solve the routing of
the requests once the placement has been chosen.

Location problem The core of the method is a variant of a k-mean clus-
tering problem. For each function, we have to choose k = Lf possible loca-
tions. As our goal is to minimize the network bandwidth, a good solution
is to choose the locations that minimize the request path lengths, that is
the distances between the sources and destinations of the requests and the
location associated with the requests. Our solution is not directly a k-mean,
but a generalization, as we have capacity constraints of nodes to satisfy. We
thus model the placement problem as an ILP.

We search for each function f exactly Lf nodes that can host it. Since
each node has a limited capacity, we also need to consider on which node
the function of a specific request must be executed. We thus use the two
following sets of variables.

• xsd,c
vi 2 {0, 1}, where xsd,c

vi = 1 if the ith function of the chain c for the
demand (vs, vd) is installed on the node v.

• bvf 2 {0, 1}, where bvf = 1 if the function f is installed on v.

The problem is formulated as follows.

min
X

v2V vnf

X

(vs,vd)2SD

X

c2Csd

X

i2{0...nc}:fc
i =f

(d(vs, v) + d(vd, v))⇥ xsd,c
vi (7.23)
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We want to minimize the distance of the request to the location of the func-
tion (7.23). The distance is given by the sum of the distance to the source,
d(vs, v), and the distance to the destination, d(vd, v).

X

v2V vnf

xsd,c
vi = 1 (vs, vd) 2 SD, c 2 Csd,

0  i  nc, f = f c
i (7.24)

bvfc
i
≥ xsd,c

vi (vs, vd) 2 SD, c 2 Csd, 0  i  nc,

v 2 V vnf, f = f c
i (7.25)

The functions of a request need to be executed on exactly one node (7.24),
and they can be executed only on nodes on which the function is installed
(7.25).

X

(vs,vd)2SD

X

c2Csd

X

i2{0...nc}:fc
i =f

(∆fc
i
Dc

sd)⇥ xsd,c
vi  capv

v 2 V vnf (7.26)
X

v2V vnf

bvf  Lf (7.27)

Finally, we have the node capacity (7.26) and the maximum license con-
straints (7.27).

7.5 Numerical Results

In this section, we report the numerical results. First, we describe the
datasets we used (Section 7.5.1). Then, we present the performance of NFV -
CG in Section 7.5.2. Next, in Section 7.5.3, we compare the performance of
the two models described in Section 7.2 and look at the compromise between
the number of VNF nodes and the bandwidth requirements in Section 7.5.4.
Finally, we compare the different solutions we propose for the case with a
limited number of possible VNF replicas and study the impact on bandwidth
requirement in Section 7.5.5.

7.5.1 Data Sets

To emulate a realistic traffic, we used the data in [Cis15] in conjunction with
the four chains presented in Table 7.2 as in [STV15]. Each SFC is composed
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(a) internet2 (b) atlanta

(c) germany50

Figure 7.2: Bandwidth vs. number of VNF nodes with a 1TB offered load.
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(a) internet2 (b) atlanta

(c) germany50

Figure 7.3: Distribution of the number of hops for each demand vs. number
of VNF nodes with a 1TB offered load. Boxes are defined by the first and
third quartiles. Ends of the whiskers correspond to the first and ninth deciles.
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of a sequence of virtual network functions and requires a specific amount
of bandwidth. We use the distribution of traffic from [Cis15] to know the
number of requests of each service type. For example, a 1TB network load is
composed of 699GB of Video Streaming. This amount of traffic correspond to
an equivalent of 699

4⇥ 10−3 requests. We then choose at random the source and
destination for each request and then aggregate the resulting set of requests
with respect to their source and destination nodes. Overall, we have a total
of 4⇥ n(n− 1) demands (each type of chains for every node pair).

Service Chain Chained VNFs rate % traffic
Web Service NAT-FW-TM-WOC-IDPS 100 kbps 18.2%

VoIP NAT-FW-TM-FW-NAT 64 kbps 11.8%
Video Streaming NAT-FW-TM-VOC-IDPS 4 Mbps 69.9%
Online Gaming NAT-FW-VOC-WOC-IDPS 50 kbps 0.1%

Table 7.2: Service chain requirements [STV15]

When choosing the set of nodes which can host VNFs, we select the nodes
based on their betweenness centrality, which is the number of paths going
through the node, when considering the shortest paths between all pairs
of nodes. Betweenness centrality is a good indicator of the importance of
a node in the network. Programs were tested on three different networks,
whose characteristics are described in Table 7.3.

7.5.2 Performance of Model NFV CG

Table 7.4 summarizes the performance of Model NFV CG. We present results
for the three different topologies for a selected number of VNF nodes, around
the half of the size of the networks. For each instance, we simulate an overall
traffic of 1 Tbps.

In the last three columns, we give the optimal value of the linear relaxation
(zlp

lp
), the value of the ILP solution (z̃ilp) and the accuracy of the ILP solution

". In most instances, " = 0, meaning that we obtain the optimal ILP solution
For the cases where " > 0, its value remains very small, meaning that z̃ilp is
very close to the optimal ILP value.

Lastly, we observe that the number of generated columns is relatively
low to reach very accurate ILP solutions, taking into account that we need
to select one column per request, i.e., 360, 840 and 9800 columns for data
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Network Ref. |V | |L|
internet2 [14] 10 16
atlanta

[Orl+07]
15 44

germany50 50 88

Table 7.3: Network Data

instances associated with networks Internet1, atlanta, and germany50, re-
spectively.

# # #
Network traffic VNF generated z?

lp
z̃ilp "

requests nodes columns

internet2 360
5 382 2,086.7 2,086.7 0
6 382 2,064.8 2,064.4 0
7 379 2,064.4 2064.4 0

atlanta 840
7 1,198 2,591.5 2,592.9 5.4⇥ 10−4

8 1,611 2,581.7 2,581.7 0
9 1,266 2,534.4 2,535.8 5.6⇥ 10−4

germany50 9,800
24 28,083 4,217.6 4,218.0 8.1⇥ 10−5

25 28,140 4,211.9 4,212.3 8.8⇥ 10−5

26 26,977 4,190.7 4,191.0 7.4⇥ 10−5

Table 7.4: Numerical results

7.5.3 Comparison ILP vs CG

In Figure 7.4, we compare the two models presented in Section 7.2 on the
germany50 network. We also compare the computation time for NFV CG
when the Pricing Problem is solved using CPLEX or Bellman-Ford. We
assume all nodes are VNF enabled nodes and the number of requests varies
between 10 and 100% of the requests in an all-to-all traffic scenario.

Model NFV ILP is solved exactly using the CPLEX ILP solver, while
Model NFV CG is solved using the solution scheme described in Section 7.3,
i.e., with an "-optimal solution scheme. As the accuracy of the solutions
of Model NFV CG is very good, the solutions of both models are identical.
However, NFV CG takes more time as the number of requests increases.
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Figure 7.4: Computational times of NFV ILP and NFV CG on the ger-
many50 network. NFV ILP does not provides results for 80% and up in a
reasonable time.

Indeed, when reaching 80% requests in the all-to-all scenario, NFV ILP does
not give any solution anymore, as the CPLEX solver runs out of memory.
Comparatively, NFV CG outputs an "-optimal solution with all requests in
two minutes and a half. Using Bellman-Ford, the solution is found in 62
seconds. See Figure 7.4 for the comparison of computing times, using the
ratio of the computational times.

7.5.4 Bandwidth Requirement and Delay vs. Number
of VNF Capable Nodes

In this set of experiments, we want to study the impact of the number of VNF
nodes on the bandwidth requirement and the delay. Generating numerous
VNF nodes could be quite costly (e.g., license price, CPU utilization, energy
consumption...), and should be compensated by a significant decrease in the
bandwidth requirement or justified by unacceptable delays otherwise. Our
results show that this is not the case. We next discuss them in detail.
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(a) internet2 (b) atlanta

(c) germany50

Figure 7.5: Execution times of the three methods, the ILP, the column gen-
eration model, and the algorithm NFV Algo+, for different limits on the
number of function replicas.
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Figure 7.2 shows the bandwidth used for an overall 1Tbps traffic when
the number of VNF nodes varies. As we allow more VNF nodes, the overall
required bandwidth in the network decreases. This is as expected. Since
every request requires a SFC, their provisioning must go through VNF nodes
in the required order, possibly requesting more hops than in one of the short-
est paths in the network. However, what we learn from Figure 7.2 is that,
when reaching 50% for VNF capable nodes, the bandwidth gain is getting
significantly smaller.

We next investigated the increase of the number of VNFs with respect to
the delay, as measured by the number of hops. Results are described in Fig-
ure 7.3 using a box-and-whisker plot. It shows that the median value for the
number of hops stabilizes as soon as the number of VNF nodes reaches 3, 9,
9 for the Internet 2, atlanta and germany50 networks, respectively. While
the stabilization occurs later with bandwidth requirements, these results say
that, indeed, only few requests are affected when increasing the number of
VNFs beyond the 3, 9 and 9 values for Internet 2, atlanta and germany50

networks, respectively. Consequently, for homogeneous traffic as in our ex-
periments, there is little advantage both in terms of delays and bandwidth
requirements to increase much the number of VNF nodes. It might be slightly
different with heterogeneous traffic, depending on the type of traffic that is
impacted.

7.5.5 Limited Number of Function Replicas

We now evaluate the three methods proposed for a limited number of function
replicas, NFV ILP+, NFV CG+ and the heuristic algorithm NFV Algo+. We
consider the scenarios presented in Section 7.5. All nodes can potentially host
VNFs. We first present the execution times and then the evolution of the
bandwidth usage as a function of the number of allowed function replicas.

Execution Times We provide in Figure 7.5 the execution times of the
NFV ILP+, NFV CG+, and of NFV Algo+ for internet2, atlanta, and
germany50.

We first observe that, as expected, the more stringent the constraint on
the number of function replicas, the harder it is for the methods to find a
solution. For internet2, NFV CG+ takes only a few seconds to propose
a solution when the number of replications is 10 (equal to the number of
nodes), 9 or 8. However, more than one day is necessary to solve the case in
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which the number of allowed replications is 4. NFV ILP+ and NFV Algo+

experience a similar trend, with lower orders of execution times (respectively
between 4 s and 1min and between 400ms and 4 s).

The second observation is that the execution time of NFV ILP+ becomes
almost prohibitive (more than one day) when the number of allowed function
replications is small. In fact, we were not able to run NFV ILP+ for net-
works larger than internet2. On the contrary, NFV CG and NFV Algo+

have low execution times for any number of replications. Considering larger
networks, NFV ILP+ runs on atlanta for any number of replicas, but not
on germany50, for which, only NFV Algo+ provides solutions.

(a) ILP

(b) NFV Algo+

NAT

FW

TM

WOC

IDPS

VOC

Figure 7.6: Placement of functions given by the ILP (a) and by NFV Algo+

(b) when the number of function replicas is limited to 5 for internet2.
Bar height in a node gives the percentage of requests (between 0 and 36%)
associated to the node function replica.

Replica Placement We provide the results of the function replica place-
ment in Figure 7.6 for internet2 and in Figure 7.7 for germany50. For each
node and each function, we present the percentage of requests associated to
the function replica. A value of 0 means that there is no function replica on
the node. The height of the box represents the maximum value over all nodes,
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NAT

FW

TM

WOC

IDPS

VOC

Figure 7.7: Placement of functions given by NFV Algo+ when the number
of function replicas is limited to 11 for germany50. Bar height in a node
gives the percentage of requests (between 0 and 20%) associated to the node
function replica
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respectively 36% for internet2 and 20% for germany50. For internet2, the
maximum number of function replicas was set to 5. We compare the result
of the first phase of NFV Algo+ (placing function replicas) to the one of the
ILP. We observe that the optimal solution provided by the ILP has selected
five nodes (only a replica of the IPDS function is in another node), which are
central in the network. This confirms the intuition that this kind of nodes are
good candidates, as they have a small average distance to the other nodes,
which are sources and destinations of requests. This intuition is at the core
of NFV Algo+’s first phase, which selects a set of nodes minimizing the dis-
tances between the sources and destinations of the requests and the replica
positions. NFV Algo+ also selected five nodes (only four replicas of the VOC
function are in 4 other nodes). Three of them are common with the ILP, and
two are different. The two last ones seem less central, but they have a high
degree, which reduces their distances to the other nodes. For germany50,
the number of function replicas was limited to 11. Only the result of NFV -
Algo+ is presented as the ILP does not run on the network. We observe that
central nodes with often a high degree are mostly selected. Indeed, again,
they are nodes with a small average distance to the other nodes, and thus
are suitable candidates for function replicas. We thus validate NFV Algo+,
which provides good solutions to the placement problem. We now study the
bandwidth usage.

Bandwidth Usage Figure 7.8a, 7.8b and 7.8c show the bandwidth usage
respectively for internet2, atlanta, and germany50. The number of allowed
replications varies between n and 1, where n is the number of nodes in the
network. The results are given by NFV Algo+ (and additionally by ILP for
internet2). To assess the quality of the solutions, we compare the results
given by NFV Algo+ with the results of the relaxation of NFV CG+, which
constitutes a lower bound of the optimal solution. The gap for NFV CG+ is
higher than the one of NFV CG. The reason is that limiting the number of
replicas requires the introduction of new constraints, which are hard to relax
efficiently1. However, the gap is within few percent for most of the values.
For a small number of replicas, the gap is higher. However, the difference to
optimal can be a lot smaller than the gap. For instance, for internet2, we
see that the largest gap is around 20% when the difference to optimal given

1Note that, when the number of replicas is small for germany, the relaxation does not
run. This shows the difficulty of the problem on large networks.
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(a) internet2 (b) atlanta

(c) germany50

Figure 7.8: Bandwidth usage as a function of the number of allowed function
replicas.
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by NFV ILP+ is only 4%. To summarize, the solutions given by NFV Algo+

are within few percent from optimal for most values (and 16% for the worst
case) and for the three networks. This shows that NFV Algo+ provides good
solutions.

First, we need at least 4, 4, and 11 function replicas for internet2,
atlanta, and germany50, respectively. We observe a general trend for the
three networks. Starting from n, there is a first phase in which the number of
function replications can be reduced without affecting the bandwidth usage
significantly. This first phase corresponds to values between 10 and 6 for
internet2, 15 and 7 for atlanta, 50 and 20 for germany50. In a second
phase, on the contrary, the number of function replications can be reduced
only at the cost of a strong increase of bandwidth usage: from 1932 to 2392
(+24%) for internet2, from 2506 to 2974 (+19%) for atlanta, from 4095
to 4860 (+19%) for germany50. Another way to state it, as a takeaway
for a network operator: having a few more replicas than necessary leads to
important gains, when adding further supplementary replicas has less impact.

7.6 Conclusions

In this chapter, we look at the Service Function Chain placement problem
and propose two Integer Linear Program models to solve it. We show that a
simple ILP does not scale well for large networks. However, with a decompo-
sition model like Model NFV CG, we can solve exactly the Service Function
Chain Provisioning Problem. Taking into account the work of the literature,
this is the first model that scales with an increasing number of nodes, but
also, with an increase in the number of requests with service chain require-
ments. We are also the first to tackle the minimization of bandwidth with a
maximum number of VNF replicas. To this end, we extended our models and
proposed a heuristic algorithm based on NFV CG and a capacitated k-mean
clustering problem. Model NFV CG then allowed us to look at the trade-off
between the network bandwidth requirement, the number of VNF capable
nodes, and the limit of the number of VNF replicas. We found that dimin-
ishing returns occur when adding VNF capable nodes, and that, when more
than 50% of the network can host vnf, they are only little benefits. A sim-
ilar trade-off exists for the number of replicas: from the configurations with
the minimum possible number of replicas, adding a small number of them
decreases the bandwidth usage significantly, but then adding more replicas
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shows a little supplementary gain.
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8.1 Introduction

In this chapter, we explore the potential energy savings of using NFV for Ser-
vice Function Chains. We consider the problem of reducing network energy
consumption while placing service functions using generic hardware along the
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paths followed by flows. A specific difficulty is that the network functions
have to be executed in a specific order and can be repeated several time in
the same chain.
In summary, the contributions of this work are the following

– We show how virtualization can be used to improve the energy efficiency
of networks, when demands have to go through a chain of services. To
the best of our knowledge, we are the first to propose such a method.

– We propose a way of modeling this problem based on Integer Linear
Programming. The ILP can solve optimally instances of small sizes.
We thus propose and validate a heuristic algorithm, GreenChains,
to handle instances of larger sizes.

– We formulate a Column Generation model to solve the EE-SFCP

problem on large instances.

– We provide enhancements of the model with the use of cuts as the EE-
SFCP problem is a difficult optimization problem. As a matter of fact,
it contains a sharp On-Off phenomena, as a network device consumes
a large portion of its energy as soon as it is used, even if very lightly
used. Cuts allow the reduction of the integrality gap.

– This allows us to carry out extensive simulations on networks of differ-
ent sizes. We study three different scenarios: a legacy scenario which
serves as baseline for comparison, a hardware scenario in which the
routing can be changed dynamically by a centralized SDN controller,
but in which network functions are executed by specific hardware, and
finally, an NFV scenario in which the network functions are virtualized
and can be placed dynamically. We show that between 22% to 62% of
energy can be saved during the night while respecting the constraints
of the service chains.

– Finally, we propose a latency analysis with respect to switching off
some network elements for energy savings.

The chapter is organized as follows. The problem is presented in Sec-
tion 8.1.1 along the power model and the layered graph model used in our
mathematical formulations. We present in Sections 8.2, 8.3 and 8.4 the ILP
formulation, GreenChains and column generation scheme, respectively.
We then compare the models and assess their quality in Section 8.5.
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8.1.1 SFC and VNF Placement

Notations

We assume the network to be represented by a directed graph G = (V,A),
where V is the set of nodes (indexed by u), and L is the set of links (indexed
by (u, v)). Each node u 2 V has a set of computing, storage and network
resources denoted by Cu to host network functions. Within this study, we
assume that the resources are described by a given number of CPU cores.

Traffic is described by a set of requests D, in which each request d is
defined by a 4-tuple (us, ud, c,D

c
sd), where us is the source of the request, ud

its destination, Dc
sd its bandwidth requirement, and c the requested service

chain. Indeed, each request d is associated with a given application, which
is required to pass through a given SFC. Let F be the overall set of virtual
functions arising in the service chains, indexed by f , and C be the set of
service chains, indexed by c. Each service chain c corresponds to a sequence
of nc functions f

c
1 , . . . , f

c
i , . . . , f

c
nc
, where f c

i denotes the ith function of chain
c. Note that some functions may appear more than once in a given chain.
Each virtual function f has its one resource requirement, and we denote by
∆f the number (fraction) of cores required by the function f per bandwidth
unit.

The Energy Efficient Service Function Chain Provisioning (EE-SFCP)
problem consists in jointly provisioning a set D of requests coupled with
service function chains C and placing virtual functions arising in the chains,
in order to minimize the network energy consumption, subject to link and
node capacities.

Power Model

Campaigns of measures of power consumption (see, e.g., [Cha+08]) show
that a network device consumes a large amount of its power as soon as it is
switched on and that the energy consumption does not depend much on the
load. Following this observation, on/off power models have been proposed
and studied. Later, researchers and hardware constructors have proposed
more energy proportional hardware models [Nic+12]. To encompass those
different models, we use a hybrid power model in which the power of an
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active link (u, v) is expressed as

Puv = P IDLE

uv +
Fuv

Clink
uv

PLOAD

uv ,

where P IDLE
uv represents the energy used when the link (u, v) is switched

on, Fuv the bandwidth that is carried on (u, v), and PLOAD
uv the additional

energy consumed by (u, v) when it is fully capacitated, i.e., when the amount
of carried bandwidth equals the transport capacity (Clink

uv ) of link (u, v).
We assume that links can be put into sleep mode, by putting to sleep both
endpoint interfaces. Two links in opposite direction between a pair of nodes
are assumed to be in the same state (active or in sleep mode), as the send
and receive elements of a unidirectional fiber are usually controlled by the
same interface. Routers cannot be put into sleep mode, as there are the
sources/destinations of network traffic. However, cores may be put into sleep
mode and the power used by node u is equal to

Pu = Punit

u ⇥#cores

with Punit

u being the energy consumption of a single core.

Layered Graph

Like in Chapter 7, we use a layered graph Gl that is defined as follows. We
add max

c2C
nc layers to the original graph G and each layer contains a copy of

G. For every node u 2 V , let ui be the corresponding node in the ith layer
(i = 0, 1, . . . , nc). Every (i − 1, i) layer pair is connected by (ui−1, ui) links.
Provisioning of a chain and node placement of its functions amounts to find
a path from node us on the first layer, i.e. u0

s, to node ud on the ncth layer,
i.e., unc

d . Placement of a function on a node is given by the endpoints of the
link used to switch between layers.

8.2 Compact formulation

We now present the ILP formulation for the EE-SFCP problem. Let us first
introduce the set of variables.

• xuv 2 {0, 1} where xuv = 1 if link (u, v) is active, 0 otherwise
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• f sd,c
iuv 2 {0, 1} where f sd,c

iuv = 1 if the flow for the request (us, ud, c,D
c
sd)

uses the link (u, v) in layer i. We consider here un-splittable routing.

• asd,ciu 2 {0, 1} where asd,ciu = 1 if the ith function of the chain c is executed
on node u for the request (us, ud, c,D

c
sd).

• ku 2 N, number of CPU cores used in node u.

• fuv 2 R, flow passing through link (u, v). This variable is linked and is
added to the ILP for clarity of the presentation.

The formulation is given as follows.
Objective

min
X

(u,v)2A

✓

P IDLE

uv ⇥ xuv + PLOAD

uv ⇥
fuv
Clink

uv

◆

+
X

u2V

Puku (8.1)

Flow Conservation

X

u2N+(u)

f sd,c
iuv −

X

u2N−(u)

f sd,c
iuv + asd,ciu − asd,ci−1u = 0

8(us, ud) 2 SD, c 2 Csd, u 2 V, 0 < i < nc (8.2)

X

u2N+(u)

f sd,c
0uv −

X

u2N−(u)

f sd,c
0uv + asd,c0u =

(

1 if u = us,

0 else

8(us, ud) 2 SD, c 2 Csd, u 2 V (8.3)

X

u2N+(u)

f sd,c
ncuv

−
X

u2N−(u)

f sd,c
ncuv

− asd,cnc−1,u =

(

−1 if u = ud,

0 else

8(us, ud) 2 SD, c 2 Csd, u 2 V (8.4)

Link Capacity

fuv =
X

(us,ud)2SD

X

c2Csd

ncX

i=0

Dc
sd ⇥ f sd,c

iuv  Clink

uv ⇥ xuv 8(u, v) 2 A (8.5)
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Number of CPU cores used

X

(s,t)2D

nc−1X

i=0

(
∆fc

i
Dc

sd

)
⇥ asd,ciu  ku u 2 V (8.6)

Node Capacity
ku  Cnode

u u 2 V (8.7)

8.3 Solving large Instances withGreenChains

As the ILP proposed in the previous section cannot provide solutions for large
networks, we propose here an ILP-based heuristic algorithm called Green-

Chains to solve the EE-SFCP problem. The problem can be decomposed
into three sub-problems.

- First, the energy saving problem tries to put into sleep mode as many
links and cores as possible to decrease the energy consumption of the
network.

- Second, the routing problem computes a path for each request, respect-
ing the link capacity constraints.

- Last, the goal of the service chain placement problem is to find a place-
ment of the NVF respecting the capacities of the nodes and the order
defined by the service chains, according to the path computed for each
request.

8.3.1 Energy Saving Module.

The goal of this module is to put links into sleep mode.
It first launches the routing module and then places the network functions

on the requests’ paths. If both modules succeed, it creates a list U of all links
according to their usage (volume of traffic). It then chooses the least loaded
link `min as a candidate to be put in sleep mode. It now considers the graph
G0 = (V,A \ {`min}). It launches the routing and placement modules again.
If they succeed, `min is put in sleep mode. The list U is actualized with
the new routing, as well as the least loaded link. If at least one of the two
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modules fails, GreenChains considers that `min cannot be into sleep mode
and the link is kept active for the final solution. The second element of U
is then considered. The algorithm goes on till all links have been tried and
set either as definitely in sleep mode or active. The goal of this module is to
reduce the energy used by the links by putting in sleep mode as many links
as possible.

8.3.2 Routing Module

We consider the requests one by one and compute a weighted shortest path
on a residual graph for each one of them. To favor links with a lower load, the
weight of the link in the residual graph is equal to the inverse of its residual
capacity. When we assign a path to a request, we decrease the capacity of
the residual graph by the amount of charge requested. Furthermore, when
considering a new demand to be routed, we remove links with a residual
capacity smaller than the demand.

8.3.3 Service Chain Placement Module.

This module is in charge of choosing the execution location of the chains
functions. We propose the following ILP that aims at minimizing the total
number of cores used.

Given a path Psd,c for every request (us, ud, c,D
c
sd), we need to find the

execution location of each function of the chain c. Each node of the path is
indexed by i, i.e., P i

sd,c is the ith node of Psd,c.

We introduce the following two sets of variables.

• asd,ciu 2 {0, 1} where asd,ciu = 1 if f c
i for request (us, ud, c,D

c
sd) is executed

on node u

• ku 2 N, #cores used in node u.

The formulation is given as follows.
Objective function

min
X

u2V

ku (8.8)

Execution constraints
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X

u2Psd,c

asd,ciu = 1 (us, ud) 2 SD, c 2 Csd, 1  i  nc (8.9)

Order constraints

asd,c
i,P k

sd,c


kX

j=1

asd,c
i−1,P j

sd,c

8(us, ud) 2 SD, c 2 Csd, 1  k  len(Psd,c), 1  i  nc (8.10)

Number of cores used

X

(us,ud)2SD

X

c2C

ncX

i=1

(
∆fc

i
Dc

sd

)
⇥ asd,civ  kv 8u 2 V (8.11)

Node Capacity constraints

ku  Cu 8u 2 V (8.12)

8.4 Decomposition Models

As the ILP does not scale, we propose a column generation scheme to help
validate our heuristic for larger networks. We first present here a model
using Column Generation, CG-simple. We then introduce two variants of
the models, CG-cut, and CG-cut+. Indeed, problems dealing with energy-
efficiency frequently lead to large integrality gap and bad precision. This is
due to the On-Off phenomena of power models, which translates into large
steps of the objective function. We thus try to improve the precision of the
model by introducing different sets of constraints. We discuss the precision
of the models in Section 8.5.3.

8.4.1 Column Generation Formulation

We propose a column generation formulation that relies on the concept of
Service Path: each Service Path p is associated with a 4-uplet (us, ud, c,D

c
sd)

and defines: (i) a potential route for the request (us, ud, c,D
c
sd) between us

and ud, (ii) node placement of the functions of chain c along the potential
route. A route is described by parameters δpuv, equal to the number of occur-
rences of the link (u, v) in the path p. Node placement is given by apui, equal
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to 1 if the ith function of the chain c is located at node u, 0 otherwise. We
denote by P c

sd the overall set of Service Path for each request (us, ud, c,D
c
sd).

We now define the set of variables. First set of decision variables: xuv = 1
if link (u, v)] is on (active), 0 otherwise. Note that links are powered off by
pair, i.e., xuv = xvu. Second set of decision variables: ypd = 1 if demand d is
routed using configuration p, 0 otherwise. Integer variables: kv = # required
cores in node u.

The objective, i.e., the minimization of the energy, can be written

min
X

(u,v)2A

P IDLE

uv xuv

| {z }

link switch
on energy

+
X

(u,v)2A

X

p2P c
sd

δpuv

0

@
X

d=(us,ud,c)2D

Dc
sd

Clink

`

Pmax
uv

1

A ypd

| {z }

link bandwidth energy

+
X

u2V

Pu ku

| {z }

node resource energy

(8.13)

The constraint set decomposes into three sets of constraints.

One path per demand:
X

p2P c
sd

ypd = 1 (us, ud) 2 SD, c 2 Csd

(8.14)

Link capacity:
X

d=(us,ud,c)2D

X

p2P c
sd

Dc
sd δ

p
uv y

p
d  xuv C

link

uv (u, v) 2 A

(8.15)

Node capacity:
X

d2D

X

p2P c
sd

Dc
sd

 
ncX

i=1

∆fia
p
ufi

!

ypd  ku  Cnode

u u 2 V

(8.16)

As we faced issues with large integrality gaps, we enhanced model (8.13)-
(8.16) with different sets of cuts, through the next two models.
CG-cut model. The first set of cuts in (8.17) states that, for each node, at
least one incident link should always be on. Moreover, the second inequality
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given by Equation (8.18) enforces that at least n − 1 links should be active
to have a connected network (or different if not all-to-all).

X

u2N+(u)

xuv ≥ 1 u 2 V (8.17)

X

(u,v)2A

xuv ≥ n− 1 (8.18)

CG-cut+ model. We further enhance the CG-cut model with:

xuv ≥
X

p2P c
sd

γp
uv y

p
d (u, v) 2 A, (us, ud) 2 SD, c 2 Csd (8.19)

where γp
uv = 1 if the link (u, v) belong the path p. Using (8.14), it follows

that
P

p2P c
sd

γp
uv y

p
d  1. It avoids the use of a big M formulation at the expense

of a large number of constraints.

8.4.2 Solution Scheme

To solve the model of Section 8.4.1 efficiently, we need to recourse to column
generation for solving the linear relaxation, and then to derive an ILP value,
using the last restricted master problem. We refer the reader to [Chv83] for
more precision on linear programming and column generation schemes.

There is a configuration generator, i.e., pricing problem, for each request
(us, ud, c,D

c
sd). Two sets of decision variables are required. First set is made

of variables 'i
uv such that 'i

uv = 1 if the provisioning of demand d uses link
(u, v) in layer i of the layered graph Gl, 0 otherwise. Second set contains
variables aiu such that aiu = 1 if the ith function (f c

i ) of chain c for request
(us, ud, c,D

c
sd) is placed on NFV node u, 0 otherwise. The formulation of the

Service Path generator is given as follows.

min− u
(8.14)
sd

+
X

(u,v)2A

ncX

i=0

'i
uv ⇥

✓

Pmax
u v

Dc
sd

Clink
uv

+ u(8.15)
uv Dc

sd

◆

+
X

u2V

nc−1X

i=0

aiu ⇥
(
u(8.16)
v ∆fiD

c
sd

)
(8.20)
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Path computation (flow conservation constraints):

X

v2N+(u)

'i
uv −

X

u2N−(u)

'i
uv + aiu − ai−1

u = 0 u 2 V, 0 < i < nc (8.21)

X

v2N+(u)

'0
uv −

X

v2N−(u)

'0
uv + a0u =

(

1 if v = vs

0 else
u 2 V (8.22)

X

v2N+(u)

'nc

uv −
X

v2N−(u)

'nc

uv − anc

v =

(

−1 if v = vd

0 else
u 2 V. (8.23)

Link capacity: Dc
sd

ncX

i=0

'i
uv  Clink

u v (u, v) 2 A. (8.24)

Node capacity: Dc
sd

ncX

i=0

∆fia
i
u  Cnode

u u 2 V. (8.25)

Speeding up the Pricing Problem

The Pricing Problem corresponds to a constrained shortest path with nega-
tive weights on the layered graph, and we can use CPLEX to solve it. How-
ever, if we discard the capacity constraints, the problem becomes the simpler
shortest path with negative weights problem. It can be solved much faster
than the original problem using the Bellman-Ford shortest path algorithm.
Since we remove the capacity constraints, the set of solutions considered is a
superset of the initial set of solutions. It is possible to find a path that might
use more resources than available. In this case, we fall back the ILP solver
to obtain a valid path. The weight of the inter-layer arcs is thus given by

wiu = u(8.16)
u ∆fiD

c
sd 0  i  nc, (u, v) 2 A

and the weight of intra-layer arcs by

wiuv = Pmax
uv

Dc
sd

Clink
uv

+ u(8.15)
uv Dc

sd 0  i < nc, u 2 V

Particularities of CG-cut+

By introducing the constraints (8.19) into the model, we also need to intro-
duce a new set of variable γl into the Pricing Problem that indicates if the
link (u, v) is used in the path. The objective function becomes
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min− u
(8.14)
sd

+
X

(u,v)2A

ncX

i=0

'i
uv ⇥

✓

Pmax
u v

Dc
sd

Clink
uv

+ u(8.15)
uv Dc

sd

◆

+
X

u2V

ncX

i=0

aiu ⇥
(
u(8.16)
u ∆fiD

c
sd

)

+
X

(u,v)2A

γlu
(8.19)
sd,c,l (8.26)

and the link capacities constraints becomes

Dc
sd

ncX

i=0

'i
uv  Clink

` ⇥ γuv (u, v) 2 A. (8.27)

Moreover, adding enhanced cuts creates negative cycles in the layered
graph used for the Pricing Problem. We choose not to get rid of the cycles by
enumerating them all. Instead, we check if the solution provided by the solver
contains any negative cycles. If that is the case, we add the corresponding
constraints in the formulation and call the solver again. We repeat this
process until the obtained solution no longer contains any negative cycles or
the reduced cost is no longer negative. Removing the cycle does not impact
too much the performance of the column generation scheme as it is executed
only a few times at the start of the algorithm.

8.5 Numerical Experiments

In this section, we investigate the energy savings obtained by the Column
Generation model. We compare the results with the ones of NFV Algo+

heuristic algorithm. We first present the data sets we use for the experi-
ments. We then take a look at the precision of the solutions obtained by
the Column Generation model and GreenChains. We investigate different
improvements of the model presented in Section 8.1.1. We then present the
energy savings achieved for network topologies of different sizes. Last, we
discuss the impact of the solutions on link usage and path lengths.
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Figure 8.1: Normalized daily variation of traffic of a France Telecom network
link and multi-period approximation

Service Chain Chained VNFs rate % traffic
Web Service NAT-FW-TM-WOC-IDPS 100 kbps 18.2%

VoIP NAT-FW-TM-FW-NAT 64 kbps 11.8%
Video Streaming NAT-FW-TM-VOC-IDPS 4 Mbps 69.9%
Online Gaming NAT-FW-VOC-WOC-IDPS 50 kbps 0.1%

Table 8.1: Service Chain Requirements [STV15]

8.5.1 Data sets

In networks, each type of flows has to go through a different chain of network
services. In our experiments, we consider four of the most frequent types of
flows, as presented in Table 8.1: Video Streaming, Web Service, Voice-over-
IP (VoIP), and Online Gaming. The traffic percentages are from [Cis15]. For
each one, we give the ordered set of functions required and the bandwidth
used. In total, we have six different functions, and each function requires a
different amount of cores to be executed.

We tested the CG models and GreenChains on three topologies of
different sizes from SNDlib [Orl+10]: pdh (11 nodes and 64 directed links),
atlanta (15 nodes and 44 directed links), and germany50 (50 nodes and 176
directed links).

For each network, we generate a set of demands from the traffic matrices
provided in SNDlib: we divide each aggregate flow from a source to a desti-
nation into four demands corresponding to the four different types of traffic.
The original load of the flow is conserved, and each sub-flow load is given by
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(a) Execution time (b) Energy used

Figure 8.2: Comparison between the compact formulation and Green-

Chains

the distribution of the last column of Table 7.2. For example, a flow with
a charge of 1 is split into a Web Service, a VoIP, a Video Streaming and
an Online Gaming sub-flows with a load of 0.182, 0.118, 0.699 and 0.001,
respectively.

We tested the solution on a daily traffic to see how much energy can
be saved during the day or at night. The variations of traffic come from a
trace of a typical France Telecom link shown in Figure 8.1. Previous work
[Ara+16] indicates that using a small number of configurations during the
day is enough to obtain most of the energy savings. In our case, we considered
five different levels of traffic called D1 to D5. D1 represents the period with
the lowest amount of traffic and D5 the one with the highest.

8.5.2 Compact formulation evaluation

We compare the results obtained by the heuristic algorithm, GreenChains,
with the optimal results given by the integer linear program on a small net-
work, pdh, with 11 nodes and 64 links. We consider instances with an in-
creasing complexity: the number of demands varies from 4 to 40. Note that
we consider multiples of 4 demands, as the traffic between a pair of nodes
is divided into four different demands corresponds to different categories of
traffic.

We compare the execution times of the ILP model and the algorithm in
Figure 8.2a. The experiments are made on a Intel(R) Xeon(R) CPU E5620
@2.40GHz 16 cores with 24GB of RAM. We see that the ILP model can be
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used to solve the problem with a reasonable time for a maximum number of
16 demands. In this case, it takes around 45 minutes to return the optimal
solution. The increase is exponential: for 20 demands, the execution time is
almost 3 hours. GreenChains, on the contrary, is a lot faster as it can find
a solution in less than 1 second for 20 demands (0.38 s). It solves an instance
with 40 demands in 0.78 s and the all-to-all instance (with 440 demands),
considered in the following, in less than 7 s. We see that the ILP cannot
be used in practice to solve instances with a large number of demands, and
thus we use the GreenChains for the experiments on larger networks in
the following.

The results regarding energy savings are given in Figure 8.2. Green-

Chains finds results within a precision between 0% to 16% for the different
number of demands. We consider this as good results given the difficulty of
the EE-SFCP problem. Moreover, it means that the potential energy savings
of using dynamic traffic and virtualization are in fact even greater than the
one presented in the following.

8.5.3 Quality of the Column Generation models

(a) pdh (b) atlanta (c) germany50

Figure 8.3: Performance of all three CG models on the (a) pdh, (b) atlanta
and, (c) germany50 network topologies.

We now compare the performance of the three different CG models (CG-
simple, CG-cut, and CG-cut+) with respect to their accuracy as given by " =
(z̃ilp−z?

lp
)/z?

lp
, where z?

lp
represents the optimal value of the relaxation of the

Restricted Master Problem, and z̃ilp the integer solution obtained at the end
of the column generation algorithm. In Figure 8.3, 8.4, and 8.5, we compare
the solutions found by the three CG models for all three networks and for the
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(a) pdh (b) atlanta (c) germany50

Figure 8.4: Accuracy, ", of all three CG models on the (a) pdh, (b) atlanta
and, (c) germany50 network topologies

(a) pdh (b) atlanta (c) germany50

Figure 8.5: Execution times of all three CG models on the (a) pdh, (b)
atlanta and, (c) germany50 network topologies
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5 different levels of traffic. We first observe in Figure 8.3, in which error bars
represent the gap between the relaxed and integer solutions, that CG-simple
and CG-cut provide similar solutions. However, " dramatically varies, as
shown in Figure 8.4. Cuts significantly improves ": for CG-simple, it varies
between 12% and 113% for pdh, 10% and 97% for atlanta, and 37% and
330% for germany50. For CG-cut, " is between 7 to 15% for pdh, 6 and 12%
for atlanta, and 24 and 30% for germany50. The ratio is further improved
with CG-cut+: between 4 and 8% for pdh, 1 and 6% for atlanta. However,
no solutions were found in a reasonable amount of time for the germany50
topology. As the energy savings are similar for the three models, it shows
that the three CG models provide rather accurate solutions, as confirmed by
the solutions and accuracy of the CG-cut and CG-cut+ models.

Finally, in Figure 8.5, we compare the execution times of the models.
We observe that CG-cut+ execution time (between 17 s and 5 h) is orders
of magnitude higher that the one of CG-simple (between 50ms and 440 s)
and CG-cut (between 70ms and 670 s). This is greatly due to the fact that
we speed up the resolution of the two previous model using the Bellman-
Ford shortest path algorithm for the Pricing Problem. The second factor
is that CG-cut+’s cuts slow the convergence time of the column generation
drastically.

We now focus on the CG-cut model, as it offers the best compromise in
terms of accuracy (w.r.t. CG-simple model) and computation time require-
ments (w.r.t. CG-cut+ model) to solve large networks.

8.5.4 Energy Savings

We now compare the energy savings obtained byGreenChains and CG-cut.
We consider three scenarios in the experiments:

- Legacy scenario. This scenario corresponds to the one of a legacy net-
work, whose operator does not try to reduce the energy consumption
of its network. Its goal is to minimize the total bandwidth used while
respecting the link capacity and the chain constraints. This scenario is
used as a baseline for comparison for the energy-aware algorithms.

- Hardware scenario. The hardware scenario corresponds to one of an
SDN (non-virtualized) network in which an operator tries to reduce
its energy consumption by adapting the routing to the demands. In
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(a) pdh (b) atlanta (c) germany50

Figure 8.6: Energy used for GreenChains and the CG model on the three
topologies.

this scenario, the network functions are carried out by some specific
hardware placed at given positions in the network.

- NFV scenario. The NFV scenario is the one of a virtualized SDN
network in which generic hardware nodes can execute any virtual net-
work functions. This is the scenario solved by the solutions provided
in Sections 8.2, 8.3 and 8.4.

We provide in Figure 8.6 the energy used for the five levels of demands for
pdh, atlanta, and germany50. The values are normalized: 100 corresponds
to the legacy scenario. We also present in Figure 8.7 the corresponding
energy savings during the day. We see that we obtained important savings
using virtualization: between 25 and 61% for pdh, 5 and 22% for atlanta, and
15 and 30% for germany50.

Validating GreenChains with CG-cut

We now compare the solutions provided by both GreenChains and CG-
cut in Figure 8.6. Error bars on the CG-cut solutions represent the lower
bounds given by z?

lp
. For the lowest traffic periods (D1, D2 and in D3), both

methods provide similar solutions for pdh and germany50. The CG model
provides slightly better solutions when the traffic is higher, with a difference
of 3 and 1% for pdh, of 5,and 2 for atlanta, and of 2 and 3% for germany50
respectively in the D5 period. Observe that, even if CG only provides slight
improvement of the heuristic’s solutions, it shows (c.f. " accuracy value) that
the heuristic gives good results, regardless of the traffic period.
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(a) pdh (b) atlanta (c) germany50

Figure 8.7: Saved energy forGreenChains for the three network topologies.

(a) pdh (b) atlanta (c) germany50

Figure 8.8: Link load for GreenChains for the three network topologies.

Link load

To reduce the amount of energy used by the network, we reroute some of the
flows to be able to put links into sleep mode. This means that the remaining
active links are more loaded. In Figure 8.8, we look at the link load given
by GreenChains for the highest and lowest traffic periods. First, we see
that, unsurprisingly, the percentage of links with no traffic is higher when
the traffic is low, around 40% of the links for atlanta and germany50. When
the network is at its highest utilization, it drops to around 15% for both
networks. The pdh network, due to its higher link density, can have more
links put into sleep mode. Indeed, between 44% and 71% of the links have
no traffic. Moreover, at the lowest traffic period, no links are used at 100%



CHAPTER 8. EE-SFC 216

(a) pdh (b) atlanta (c) germany50

Figure 8.9: Delay in milliseconds for GreenChains for the three network
topologies.

for pdh, atlanta and are at most used up to 57%, 52% of their capacity,
respectively. At rush hour, pdh and atlanta have at most links at 98 and
99% capacity while germany50 has only one link at full capacity.

Impact on Delay

When some links are put into sleep mode, some of the paths are becoming
longer. However, we show in Figure 7.3 that the maximum delay of every
path stays below the usual 50ms latency value in Service Level Agreements:
experienced delay is less than 5.4, 10.8 and 16.2ms on pdh, atlanta and
germany50 respectively. Moreover, the median of the delay stays constant for
pdh, atlanta at 3.6 and 5.4ms, respectively. For germany50, it only increases
from 7.2 for D5 (no link into sleep mode) to 9ms for D1.

8.6 Conclusion

In this work, we investigate the potential of network virtualization to reduce
the energy consumption of networks. We introduce a Column Generation
model to solve the problem of minimizing network energy consumption while
satisfying the SFC requirements. We also propose GreenChains, an ILP-
based heuristic that we validate using our Column Generation model. We
then compare three different scenarios corresponding to a continuous deploy-
ment of the SDN and NFV paradigm for energy efficiency. We show that
compared to a legacy scenario SDN can provide between 18 and 51% energy
savings during the night. We also demonstrated that the deployment of VNF
in an SDN network leads to additional energy savings between 4 and 12%.
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Chapter 9

Conclusion and future research

Being energy aware has become a crucial issue in the recent years. For eco-
nomic reasons or ecological concerns, reducing its energy footprint has be-
come a growing concern. It is particularly the case for Information and Com-
munication Technologies (ICT) and more precisely for computer networks.
On the other hand, the emerging SDN paradigm draw a lot of attention in
academia and the industry in last few years. It brings a new way of manag-
ing the network by decoupling its brain and muscle(s). The NFV paradigm
also brought a new approach to deal with the deployment of services inside
a network.

In this thesis, we studied how to leverage SDN and NFV to enable energy
efficiency in telecommunication networks. We focus on the challenges brought
by these new technologies and how they might impact the deployment of
green policies. We first looked at, in Part I, at the constraints imposed
by the Ternary Content-Addressable Memory (TCAM) installed in SDN-
capable forwarding devices. Combined with the increased complexity of the
OpenFlow rules, the table size of SDN switches is quite limited. We pro-
pose to use wildcard rules as well as the default rule offered by OpenFlow
to reduce the size of forwarding tables and thus formulated the Compres-
sion Problem in Chapter 3. We present a variety of solutions (ILPs, greedy
heuristic and approximation algorithm), and show that we can, in average,
compress routing tables by up to 85% using these aggregation rules. We then
studied, in Chapter 4, the Compression Problem in the context of energy ef-
ficiency, i.e., the Energy Aware Routing with Compression problem. EAR
increases the total number of required forwarding rules because it increases
the path’s length of the requests. However, we observed better compression
ratio due to the decreased number of ports on each switch. We also showed
that compression enabled us to obtain energy savings close to the EAR sce-
nario with no limit on the table size. Finally, in Chapter 5, we focus our
study on data center networks and provide a testbed implementation of our
previous solutions, without energy efficiency. In collaboration with members
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of the SigNet (I3S) team, we propose Minnie, a controller application for
joint compression and routing inside SDN networks. We show that relatively
small amount of clients can overload the TCAM tables and that using Min-

nie, we can deploy up to 3000 clients and manage up to a million flows with
only 1000 rules per switches. We also compare the performances of software
and hardware implementation of rules and demonstrated that TCAM is still
required to obtain good matching performances.

In Part II, we considered the scenario of progressive deployment of SDN-
capable devices alongside legacy routers and protocols. This scenario repre-
sents the most practical implementation of the paradigm in current networks
as network operators are reluctant to upgrade their whole network at once.
However, it poses some compatibility issues for green policies as a shutdown
SDN-capable device is detected as faulted by legacy protocols such as OSPF.
We thus proposed Smooth ENergy Aware Routing (SENAtoR) to solve the
problem of Energy Aware Routing in hybrid networks. It is a framework
that comprises a routing heuristic combined with the use of backup tunnels,
smooth link extinction, and mechanisms for unexpected traffic changes due
to failure or flash crowd. We show that SENAtoR can bring the deployment
of energy policies closer to reality and that it can quickly react to failure or
flash crowd leveraging the SDN paradigm.

In Part III, we shifted our focus on Network Function Virtualization and
the Service Function Chaining Provisioning Problem. We proposed, in Chap-
ter 7, a scalable exact model for the problem which can solve all-to-all sce-
narios with 10000 requests on a 50 node network in a minute, using the
column generation algorithm. We also extended the model to the case where
the number of replicas of the functions is limited. We showed that using
more than 50% of the network as NFV-capable nodes shows little improve-
ment on the bandwidth usage. The same goes for function replicas. We
then looked at the Energy Aware Routing with Service Function Chaining,
in Chapter 8. We extended the model proposed in Chapter 7 as well as pro-
posed the GreenChains heuristic. We compare the energy savings between
a legacy scenario and a hardware scenario (SDN without NFV). We show
we can save between 4 and 12% more energy using VNF than compared to
using middleboxes.

Perspectives First, we provided in Section 5.3.3 some directions for the
Compression Problem such as deletion of rules and different workload scenar-
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ios. For the SFC problem, we only considered a fraction of the specifications
provided by the RFC 7665 [HP15] and we believe that we could integrate
constraints such as anti-affinity rules and partial order for chains.

Moreover, we only considered some constraints imposed by the SDN and
NFV paradigms. For example, we never consider the controller placement
in any of our solutions. There is interest in studying the impact of the con-
troller placement on green policies as it constitutes the core of the paradigm.
An aggressive policy that would shutdown too many links might negatively
impact the performances of the remaining network devices.

Finally, we could also add two important improvements in the model
that we studied. Firstly, we could consider the Quality of Service (QoS)
or Quality of Experience (QoE) as a requirement of our solution. While we
partly evaluated our solutions by looking at metrics such as link load and end-
to-end delay, our model could be improved by adding QoS as a requirement
of our solutions. Secondly, we need to consider resiliency and its trade-off
with energy efficiency. By nature, both concept are contradictory as EAR
relies on reducing the set of active equipment and resiliency usually requires
redundancy. These two improvements could apply to SDN and NFV.
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A.1 Introduction

We consider in this study live streaming systems. In these systems, a source
streams a video to a set of clients who want to watch the video in real-time.
Streaming video can be done over a classic client/server architecture or a
distributed (e.g., peer-to-peer (P2P)) one. Distributed solutions are very
efficient for live streaming scenarios in which clients watch the video at the

224



APPENDIX A. HOMOGENEOUS LIVE STREAMING SYSTEMS 225

same time. The advantage is that the bandwidth of every user can be used
to forward the video to other users, lightening the source load.

P2P networks are of two types, with structured or unstructured overlays.
In the first type, the nodes are organized according to a (or several) logical
tree(s), called diffusion tree(s). The source of the video is the root and the
video is distributed from the source to the leaves, fathers forwarding the video
to their children. In an unstructured overlay, the tree is not explicitly defined:
a node having chunks of the video forwards opportunistically these chunks to
nodes who miss them. This second type of systems are the most frequently
used as they handle very easily churn, i.e., the departure and arrival of users,
which are very frequent in live video systems. Frequent churn is the main
problem of live distributed streaming system and the main difference from
classical multicast systems. Structured overlays have the disadvantage that
churn breaks their diffusion trees. However, we have hints that such systems
can in fact be very efficient. If their structure could be maintained by using
very simple distributed repair protocols even under frequent churn, this would
allow to keep the advantages of structured overlays, optimal diffusion rate
and continuity of the diffusion, while being resistant to churn.
Goal of the study. Our goal is to propose simple distributed repair mecha-
nisms for structured live streaming systems. To understand such systems, we
then want to develop formal models, which can be efficiently simulated. Last,
we aim at proving that they can be very efficient in practice (and potentially
more efficient than unstructured systems).
Contributions. In this work, we study a structured network for live video
streaming experiencing frequent node departure and arrivals.

- We propose different repair protocols for the diffusion tree using differ-
ent amount of information in Section A.2.2.

- We show that a system using these protocols can be, first, formally
analyzed and, second, efficiently simulated. We provide estimation of
different system metrics, e.g., bandwidth usage, delay, or number of
interruptions of the streaming, via simulations, as well as analysis.

- We provide analytical formulas of the system’s metrics in Section A.3.

- We developed a discrete-event simulator, presented in Section A.4.1.
We used it to compare the different repair protocols. The results are
presented in Section A.4.
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- We present first evidences that, by using simple distributed repair pro-
tocols, structured live streaming systems can be very resistant to churn.

A.1.1 Related Work.

Structured versus Unstructured Systems. There are two major classes
of P2P live video streaming architectures, the first one being named either
unstructured, mesh-based, gossiping or torrent-like; the second named either
structured or tree-based, see for example [Zha+05a] or [Li+13a] for a classifi-
cation. Note that this distinction is not strict and that mixed systems were
also proposed, e.g. [WXL10].

Early systems, like [CRZ00], influenced by IP multicast, attempted at
constructing a multicast tree to stream the media. To avoid the shortcom-
ings such as resistance to churn and low bandwidth usage, this simple idea
has evolved into elaborate algorithms like Splitstream, proposed in [Cas+03a]
or ZIGZAG, in [THD03]. The signature of this group of systems is an active
maintenance of an overlay structure that clearly defines the data flow, thus
the name structured overlays. SpreadIt, proposed in [DBG01], is the closest
work to ours. It considers multiple protocols for handling arrivals and de-
partures of peers in the network but presents few empirical results and no
analysis of the system.

On the other hand, we have systems inspired by BitTorrent, one of the
best-known peer-to-peer protocols, described in [Coh03]. The core idea of
this class of overlays is organizing the peers into a random, highly-connected
graph and disseminating the data using a simple, probabilistic algorithm.
The first instance of an unstructured system was introduced in [Ban+03] as
a way of enhancing a single-tree overlay. It was then the base for the first real
peer-to-peer network that streamed video to a big number of simultaneous
clients [Zha+05a]. The characteristic of this group of networks is that they
do not have an explicit overlay structure for the data flow, thus the name
unstructured overlays.

Unstructured systems are widely regarded the better choice. That is
often explained by the complexity of making a structured system reliable.
However, we show in this study that reliability can be ensured, for a simple
system, efficiently by a simple algorithm.
Analysis of Structured Systems. The existing analysis of these systems
focus on the feasibility, construction time and properties of the established
overlay network, see for example [Cas+03a; VYF06] and [DFC07] for a the-



APPENDIX A. HOMOGENEOUS LIVE STREAMING SYSTEMS 227

Variable Signification Default value
n Number of nodes of the tree, root not included 1022
d Node bandwidth (or ideal node degree) 2
h Height of the tree (root is at level 1) 10
µ Repair rate (avg. operation time: 100 ms) 1
λ Individual churn rate (avg. time in the system: 1

6000

10 min)
Λ System churn rate (Λ = λn) 1022

6000
⇡ 0.17

Terminology Values
unit of time 100 ms
systems with low churn Λ 2 [0, 0.4]
systems with high churn Λ 2 [0.4, 1]

Table A.1: Summary of the main variables and terminologies used in this
work.

oretical analysis. But these works usually do not consider over the issue of
tree maintenance. Generally, in these works, when some elements of the net-
works fail, the nodes disconnected from the root execute the same procedure
as for initial connection. This is not the case in our study. To the best of
our knowledge, there are no theoretical analysis, except [Gir+13a], on the
efficiency of tree maintenance in streaming systems, reliability is estimated
by simulations or experiments as in [Cas+03a].

In [Gir+13a], the authors propose an efficient maintenance scheme for
trees. The distributed algorithm ensures that the tree fastly recovers to a
“good shape” after one or multiple failures occur. The authors give analytic
upper bounds of the convergence time. This paper is a starting point of our
study. We introduce new repair algorithms and then provide an average case
analysis of these protocols.

A.2 Distributed Protocols and Modeling

A.2.1 Modeling

We consider a system, a source streaming a live video, and n nodes which
want to watch the video. A summary of the variables used in this work is
given in Table A.1. This source is the single reliable node of the network, all
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Figure A.1: Example of a push operation carried out by the overloaded Node
6.

other peers may be subject to failure. Nodes are organized according to a
tree of size n+1. The source is the root of the tree. Nodes forward the video
to their children in the tree. Each node has a given bandwidth allowing him
to serve a given number of other nodes d. In this study, we consider that all
nodes have the same bandwidth 2. A node is said to be overloaded, when
it has more than d children. In this case, he cannot serve all its children
and some of them do not receive the video. Note that the delay between
broadcasting a piece of media by the source and receiving by a peer is given
by its distance from the root in the logical tree. Hence our goal is to minimize
the tree depth, while following degree constraints.

Each node applies the following algorithm without the knowledge of the
whole network.

- When a node is overloaded, it carries out a push operation. It selects
two of its children, and the first one is reattached to the second one,
becoming a grandchild. Figure A.1 presents an example of such oper-
ation.

- When a node leaves the system, one of its child is selected to replace
him. It reattaches to its grandfather. The other children reattach to
it. An example is given in Figure A.2. In this work, we only consider
single failure but multiple failures could be handled by considering the
great grandfather of a node or by reattaching to the root.

- When a new node arrives, it is attached to the root.

Churn. We model the system churn rate with a Poisson model of rate Λ.
A node departure (also called churn event) occurs after an exponential time
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Figure A.2: Example of the operation made after the departure of Node 3.

of parameter Λ, that is in average after a time 1/Λ. We note the individ-
ual failure rate λ = Λ/n. In this work, we study scenarios with constant
size population. Thus, when a node leaves the system, we consider that a
new node appears. Authors in [H+06; Vu+07] carried out a measurement
campaign of a large-scale overlay for multimedia streaming, PPLive [H+06].
Among other statistics, the authors report that the median time a user stays
in such a system is around 10 minutes. In this study, we use this value as
the default value (after normalization see the following on default values).
Repair rate. When a node has a push operation to carry out, it has first
to change its children list, and then to contact its two children implicated in
the operation so that they also change their neighborhood (father, grandfa-
ther or children). This communication takes some amount of time, that can
vary depending on the node to contact and congestion inside the network.
To take into account this variation, we model the repair time as a random
variable with exponential distribution of parameter µ. [Li+08] reports that
the communication time in a streaming system is in average 79 ms. Thus,
we believe that assuming an average repair time of 100 ms is appropriate.
Default values. In the following, for the ease of reading, we normalize the
repair rate to 1. We call unit of time the average repair time, 100 ms. The
normalized default churn rate, λ is thus 1/6000 and the system churn rate is
Λ = nλ ⇡ 0.17. These default values are indicated as typical examples, but
in our experiments we present results for a range of values of Λ between 0
and 1. We talk of low churn systems for values of Λ below 0.4, and of high
churn systems for values above 0.4.
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A.2.2 Description of the Protocols

We now define four different protocols according to four different ways to
select the children during the operations and four different levels of knowledge
of the streaming system. We will study the trade-off between knowledge and
performance in the following.

Smallest Subtree Protocol (SSP)

. In this protocol, each node knows the subtree size of each of its sons. When
a churn occurs, the son with the largest subtree of the failing node takes
over the role of its father by adopting every of its sibling. It is itself adopted
by its grandfather. When a node is overloaded, its son with the third largest
subtree is pushed into the son with the second largest one.

Random Protocol (RP)

. In this protocol, nodes do not keep information about their subtree sizes.
They store their children in a queue and each new node attached to them
is put at the end of it. A node receiving the video only gives it to the two
children at the start of its queue. When a churn occurs, the eldest son takes
over the role of its father by adopting every of its sibling. It is adopted by
its grandfather. There is no interruption in the video transmission between
the son and the father. The order in the grandfather children is conserved
(i.e. If the father was the first child of its parent, the son takes the first
place in the grandparent sons). Every of its sibling is reattached to the new
father and thus is at the end of the queue, in the same order as it was in the
failing node queue. An overloaded node chooses at random the son that will
be pushed and also the node that will receive the pushed node.

No Interruption Protocol (NIP)

This protocol shares some similarity with the random protocol. The same
operation is done when a node leaves the system: the eldest child takes
over the role of the failing node. When an overloaded carries out a push
operation, it chooses uniformly at random a node not receiving the video and
pushes it under a node receiving the video. This ensures no interruption of
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the video distribution.

Partial Information Protocol (PIP)

The idea of the protocol starts with the observation that for most opera-
tions, it is relatively easy to determine the largest subtrees without storing
the exact size of all subtrees. When a new node arrives, we know that it has
a subtree size of one and that it has to be pushed to the bottom of the tree.
So we will label it as new. Then, during this arrival process, we will have
to decide in which subtree to push it. If we do the hypothesis that the tree
stays relatively well balanced during the protocol lifetime, we may choose at
random without adding too much imbalance in the tree. When there is a
churn, we know that one of the children replaces its father. It will have three
children, one large (its former brother), that we label big, and two smaller
ones, that we label normal. Hence, it has to push one of the smaller into the
second one. Again, if we suppose that the tree is relatively balanced, this
choice can be made randomly. The subtree pushed is relabeled as big, its new
brothers are labeled as normal, and we remove the label of its former brothers.

A.2.3 Metrics

To evaluate the performance of the different protocols, we are interested by
the following metrics.
Time to attach a new node. When a new node arrives into the system, it
has to attach to a node which has enough bandwidth to forward the video to
it. Basically, it is first attached to the root and then pushed to the bottom
of the tree to become a leaf. Ideally, this takes a small amount of time,
logarithmic in the number of nodes watching the video, n, see Section A.3.
Repair time after a node departure. When a node leaves the system, a
repair processed starts as described in Section A.2.1. Basically, one of its son
replaces it and some nodes are pushed in its subtree. The simulator records
this repair time at each churn event.
Number of people not receiving the video. Due to these two phenom-
enas, attachment of a new node and repairs, some people do not receive the
video during small periods of time during the life of the protocols. We study
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what fraction of the nodes do not receive the video and during which amount
of time.
Height of the tree or delay. The height of the diffusion tree gives the max-
imum delay between the source and a node. Ideally, it is equal to blogd nc+1,
where d is the maximum node degree.
Number of interruptions and interruption duration. We monitor the
number of interruptions of the video diffusion to a node during the protocol
lifetime, as well as the distribution of interruption durations.

A.3 Analysis

In this section, we analyze the Smallest Subtree Protocol. We give
analytical formulas to estimate different metrics: the repair time, the average
number of people not receiving the video, and the number of interruptions.

The analysis is done under an independence hypothesis of the failures,
meaning that the repair of one failure is done before another happens. Re-
mark that it implies that the diffusion tree is always a balanced binary tree
when a failure happens. Indeed, we are considering a system with constant
population in which a new node arrives when a node leaves. Using the in-
formation about subtree sizes, SSP will push this new node in the optimal
position. We will consider here complete binary trees of size n = 2h − 2,
but the analysis extends to other values. The independence hypothesis is
evaluated by simulation for different values of churn in Section A.4.2.
Analysis of the repair time. We study the repair time of the diffusion
tree when a node selected at random leaves the system. We consider the
position of the node in the tree.

If the failing node is a leaf, the tree is still balanced and nothing happens.
If the failure happens at depth i < h, the tree is repaired (that is, all

nodes have degrees less or equal to 2) after h− i− 1 push operations. Note
that when i = h− 1, no pushes are needed.

We give now the average time to repair the tree after a node departure.
In average, a node carries out an operation in a time 1

µ
. Hence, the average

time to carry out h− i−1 operations is h−i−1
µ

. The number of nodes at depth

i, 2  i  h, is 2i−1. Thus, the probability that the node leaving the system
is at depth i is 2i−1

n
. Recall than n = 2h − 2. If we note T the time to repair
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the diffusion tree, we have

E[T ] = 1
2h−2

Ph−2
i=2 2i−1 h−i−1

µ
= 2h−1−2(h−1)

µ(2h−2)

⇠ 1
2µ

when h is large.

The Smallest Subtree Protocol is very efficient. Indeed, only one half
operation is needed in average to repair the tree after a node departure.
Analysis of the number of nodes not receiving the video. During the
repair process, some nodes do not receive the video. Indeed, recall that only
the two biggest subtrees of an overloaded node receive the video. When a
node at level i leaves the system, its child with the largest subtree replaces it.
It becomes overloaded with three children of subtree sizes 2h−i−1, 2h−i−1−1,
and 2h−i−1 − 1 (A node at depth i is of height h− i+ 1. A subtree of height
i contains 2i − 1 nodes). Thus, 2h−i−1 − 1 nodes do not receive the video.
At each repair, the height of the tree is reduced by one and this number is
divided by around two. That is after k repairs, it is equal to 2h−i−1−k − 1,
see Figure A.3. A push operation is done in average in a time 1

µ
. Hence, if

we note ni the number of people without video when the failing node is at
level i, we have

E[ni] =
Λ

µ

h−i−1X

k=0

(2k − 1) =
Λ

µ

(
2h−i − h+ i− 1

)
.

Recall now that the probability that the failing node is at level i is 2i−1

2h−2
. If

we note nbad, the number of people without video, we have

E[nbad] =
Ph−2

i=2
2i−1

2h−2
ni =

2h−1(h−5)+2(h+1)
2h−2

Λ
µ

⇠ h−5
2

Λ
µ
when h is large.

Analysis of the number of interruptions. Recall that when a node
leaves the system at level i, its first child is overloaded with three children
of subtree sizes 2h−i − 1, 2h−i−1 − 1, and 2h−i−1 − 1. Only the two biggest
sons of a node receive the video. Thus, 2h−i−1 − 1 nodes are interrupted.
With a repair, the interruption for these nodes stops and the height of the
tree interrupted is reduced by one, that is after k repairs, it is equal to
2h−i−1−k − 1. Every interrupted node is only interrupted once. Hence, if we
note inti(t) the number of interruption when the failing node is at level i as
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Figure A.3: Effect of a push operation during a repair.

a function of the time, we have

E[inti(t)] = tΛ

h−i−1X

k=0

2k − 1 = tΛ(2h−i − h+ i− 1)

Recall now that the probability that the failing node is at level i is 2i−1

2h−2
. If

we note nint(t), the average number of interruptions, we have

E[nint(t)] =
Ph−2

i=2
2i−1

2h−2
inti =

2h−1(h−5)+2(h+1)
2h−2

tΛ

⇠ h−5
2
tΛ when h is large.

Analysis of the arrival time. When a new node arrives in the system,
it is first attached to the root. It does not receive the video until it is then
pushed to the bottom of the tree by h− 2 successive push operations. Since
a node carries out an operation in an average time of 1

µ
, if we node T the

time for the new node to receive the video, we have:

E[T ] =
h− 2

µ
.

A.4 Simulations

We developed a discrete-event simulator of the streaming system described
in Section A.4.1. We use it to analyze and compare the different protocols.
A summary of results is provided in this section for different metrics.

A.4.1 The simulator

Our desire to focus on high level simulation led us to develop a custom
C++ discrete-event simulator to evaluate metrics of the system described
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Figure A.4: Comparison between the formal model of Section A.3 and the
simulations for: (Left) Average fraction of peers not receiving the video as a
function of the churn rate due to the repair (1022 nodes). (Right) Average
number of interruptions per node (1022 nodes) for a time of 30,000 units of
time.

in Section A.2.3. We did not use low level network simulators like NS-2 or
OMNET because they would require more computation time and give metrics
non pertinent to our analysis. Our goal is to focus on the tree structure after
churns and reparations to validate our protocols.

A.4.2 Validation of the analytical model

To validate our analysis, we first compared the results given by the simulator
to the analytical formulas obtained in Section A.3.
People without the video. In Figure A.4 (Left) is given the average
fraction of people not receiving the video. New nodes joining the systems
are not taken into account until they start to receive the video. Only the
non distribution of video due to the repairs is counted. As an example, for
the default churn rate value, 0.17, only 0.03% of the nodes do not receive the
video in average, and for a high value of churn 1, only 0.25%.

We see that the closed formula models very closely the system. Recall
that the formulas were given for low churn, that is when a churn event is
repaired before another churn event. This corresponds to values of the churn
rate Λ between 0 and 0.5. However, we see that, even for larger churn values
(> 0.5), the system behavior is well predicted by the formula.
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Figure A.5: Average height (over time) of the tree (1022 nodes) as a function
of the churn rate for the four repair protocols. Left: y-axis range from 0 to
500. Right: y-axis range from 0 to 50.

Interruptions. The average number of video interruptions is given in Fig-
ure A.4 (Right) as a function of the churn rate. Again, the interruptions are
due to the repair of the diffusion tree when there is a node departure.

This number is the average over all nodes of the number of interruptions
per node for a period of 30,000 units of time. For example, for a value of
churn of 0.2, the diffusion for a node is interrupted 20 times in average, that
is, a node experiences an interruption every 1500 units of time, that is every
150 seconds. As we will see it later, the durations of the interruptions are
very short. Thus, they are without consequence for the end-user experience.

We see that the analytical formula gives a very good estimation of the
behavior of the system. This is true even for high churn.

A.4.3 Comparison of the protocols

In this section, we compare by simulation the performances of the different
protocols that we propose. Recall that these different protocols use different
levels of information. Several providers of live video may have different cri-
teria on the different metrics and on the implementation, leading to different
choices of the adequate protocol.
Levels of needed information. We recall that, for every protocol, each
node has at least to store the ids (and addresses) of children, father and
grandfather. In RP andNIP, each node stores the order in which its children
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attached to it. In SSP, each node needs to know the size of its subtree. Last,
in PIP, only two additional bits are necessary: a new node arriving in the
system is tagged as new till it finds a place in the diffusion tree and a node
pushed by a repair process is tagged as big. For the detailed discussion, the
reader may refer itself to Section A.2.2.

We now compare the protocols for the different metrics. As we will see,
the protocols do not behave at all similarly for some metrics. To improve
the readability of the figures, for each metric, we propose two plots with the
same data, but with different scales of the y-axis.
Height of the diffusion tree and delay. Figure A.5 shows the average
height (over time) of the tree as a function of the churn rate.

The first observation is that RP exhibits a very different behavior than
the other protocols, see Figure A.5 (Left). It behaves very badly: the height
of the diffusion reaches a value of 500. It is not of order logarithmic in n,
the number of nodes. On the contrary, it gets close to a linear height! The
diffusion tree looks like a path in this case. The protocol is very inefficient.
Thus, pushing the nodes randomly is not possible in practice.

We are now interested by the three other protocols (Figure A.5 (Right)).
They behave a lot better. First note that the average height does not depend
on the churn rate. Thus, the difference between the three protocols only is
the value of the height:

- SSP has a constant height of 10 which is exactly blogd nc + 1 for n =
1022. The protocol is optimal for the maximum height, and thus delay,
of a node.

- Partial Information Protocol has an average height around
12.3. The height is not very far from the optimal 10.

- No Interruption Protocol behaves worstly. The average weight
is around 33. It is nevertheless a lot better than the completely random
protocol RP, and could still be used in practice.

The explanation of the different protocols’ efficiency is due to their dif-
ferent behaviors, (1) when there is a churn event, and, (2) when there is an
arrival of a new node.

First, when a failing node is close to the root, a large subtree does not
receive the video anymore and has to be pushed in the tree by the repair
process. The SSP protocol succeeds to reconstruct a perfectly balanced tree
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Figure A.6: Average fraction of peers not receiving the video as a function
of the churn rate (1022 nodes). Left: y-axis range from 0 to 60%. Right:
y-axis range from 0 to 1.5%.

by using the information about the subtree sizes. It knows exactly what is
the right node to push. The two protocols RP and NIP do not have this
information: they blindly push the subtree. It can thus happen that a large
subtree ends up at the bottom of the tree at the end of the repair process.
This can increase its height significantly: in the worst case, the height can
be doubled with only one churn event. We see that PIP has performance
not too far from optimal. We see that, even without the information of the
subtree sizes, a simple guess of the node to be pushed is efficient in terms of
delay. The protocols recognizes large subtrees (of size 2i) from small subtrees
(of size 2i−1), leading to a near optimal repair process.

Second, when there is an arrival of a new node in the tree. SSP can push
this new node exactly at the right position of the diffusion tree. PIP and
NIP cannot distinguish two subtrees with a small difference of size and thus
push the new node randomly to the bottom of the diffusion tree. RP has
in this case a very bad behavior. As it does not have any information, it
does not know that a node is new. Hence, it pushes randomly a node that
can have a very large subtree, instead of the new node of subtree size one!
On the contrary, NIP does not push subtrees receiving the video to ensure
a continuity of the video diffusion. Hence, the arrival of a new node in the
system cannot trigger that a large subtree is pushed at the bottom of the
tree.

To sum up, the repair protocol SSP is optimal in terms of tree height
and, thus, of delay. This protocol uses information about node subtree sizes.
If this information is considered too costly to maintain by an operator, it
can obtain close to optimal performances with PIP, which uses a very small
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Figure A.7: Average number of interruptions of the streaming per node as a
function of the churn rate after 10,000 units of time. Left: y-axis range from
0 to 2500. Right: y-axis range from 0 to 200.
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Figure A.8: Average fraction of time for which the streaming was interrupted
as a function of the churn rate (after 30,000 units of time for 1022 nodes).

amount of information (two node labels).
Percentage of people without the video during time. Figure A.6
shows the average percentage of nodes that do not receive video as a function
of the churn rate.

We see again, in Figure A.6 (Left), that RP behaves a lot worse than the
other three protocols. As much as 52% of the nodes do not get the video for
a churn rate of 1. It already reaches 6% for a churn rate of 0.5. This protocol
is thus very inefficient.

The three other protocols, SSP, NIP and PIP, behave similarly, and
are very efficient. The average percentage of people without the video is
very small for churn values expected in a viable live streaming system (churn
rate between 0 and 0.4). For a churn rate of 0.2, the average percentage is
respectively 0.04%, 0.1% and 0.15 % of the nodes for the three protocols, see
Figure A.6 (Right).
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Figure A.9: Distribution of the durations for different churn values (1022
nodes over 30,000 units of time). Boxplots give: median value (red line),
first and third quartile (box), maximum value (blue cross).

Number of interruptions during the diffusion. We studied the number
and durations of interruptions of the video diffusion process for a node in
the system. Indeed, the diffusion to a node can be interrupted after the
departure of one of its ancestors. We report in Figure A.7 the average number
of interruptions for a node present in the system during 30,000 units of time
(3,000 seconds for the default values), as a function of the churn rate. Again,
we see in Figure A.7 (Left) that RP behaves very badly with a peak of 2,000
interruptions for a churn of 0.8. This represents an interruption every 15
units of time, that is every 1.5 second. This protocol is not viable. On the
contrary, we see in Figure A.7 (Right) that SSP, NIP and PIP behaves
very well and similarly. Even for a high value of churn like 1, the number of
interruptions per node is at most 150, representing an interruption every 200
units of times. For a low churn, e.g., Λ = 0.1, the number of interruptions
is close to 10, that is an interruption every 3,000 units of time, that is 5
minutes. We note that NIP behaves better than PIP for this metric, when
it is behaving worse for the other metric. The explanation is that the NIP

was specially designed to avoid the interruption of the video diffusion. During
the repair process, the two nodes receiving the video are never pushed, even
if they have a smaller subtree than a node not receiving the video. This is
not the case for SSP, PIP and RP.

We plot in Figure A.8, the average fraction of time of node was interrupted
during the simulation, that during 30,000 units of time. We see that for a
value of churn of 0.1, a node is interrupted in average for 0.15% of the time
only.

We plot in Figure A.9 the distribution of the duration of an interruption
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for Smallest Subtree Protocol. We see that the median time is 1.
More than half of the interruptions lasts 1 unit of time. The value of the
third quartile is less than 5 units of time for almost all values of churn rates.
The maximal interruption lasts less than 30 units of time for a system with
low churn (churn rate between 0 and 0.4).

To summarize, in a system in which nodes stay on average 15 minutes
(churn rate Λ = 0.1), a node watching a video for one hour will experience
12 interruptions of median duration 100 ms, few interruptions of duration
500 ms, and if it is not lucky, one interruption of 2.5 seconds. A buffer of
few seconds (e.g., 10s) of video will make these interruptions imperceptible
to the end-users. For a video rate of 480 kbps, it corresponds to a buffer size
of only 40MB.

A.5 Conclusion, Current and Future Work

In this work, we study a live video streaming system via formal analysis and
simulation. We show that, using a simple repair protocol, a structured peer-
to-peer system can be very efficient. The diffusion tree can be maintained
thanks to independent distributed operations of the nodes. This leads to
well-balanced diffusion trees, with almost optimal (logarithmic) distance to
the source. We additionally show that the diffusion of the video is interrupted
only for very short durations of times, imperceptible by an end user.

We are currently investigating analytical models of the streaming system.
In particular, the closed formulas are given for Smallest Subtree Proto-

col. We wish to obtain models for the other protocols. We are also working
on models for higher churn rates. For these rates, the source becomes a bot-
tleneck, as new peers attach to it. We can estimate repair times by modeling
the number attached to the source as a Markovian queuing system.
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B.1 Introduction

In a live streaming scenario, a source streams a video to a set of clients, who
want to watch it in real-time. Live streaming can be done either over a classic
client-server architecture or over a distributed one. The high bandwidth
required by a large number of clients watching the stream at the same time

242
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may saturate the source of a classic centralized architecture. In a distributed
scenario (e.g., P2P), the bandwidth required can be spread among the users
and the bottleneck at the source can be reduced. So, peer-to-peer systems
are cheap to operate and scale well with respect to the centralized ones.
Because of this, the P2P technology is an appealing paradigm for providing
live streaming over the Internet.

In P2P context, two families of systems exist: structured or unstructured
overlay networks. In structured overlay networks, peers are organized in a
static structure with the source at the root of a diffusion tree. A node re-
ceives data from a parent node that can be a peer or the source of the stream.
In unstructured overlay networks, peers self organize themselves without a
defined topology. Unlike the structured case, a peer can receive each piece
of the video from a different peer. The main challenge for P2P systems,
compared to a classical multicast system, is to handle churn, that is the fre-
quent arrival and departure of peers. In unstructured systems, the diffusion
is done opportunistically and, as the authors show e.g. in [Bon+08], this en-
sures efficiency and robustness to the dynamicity of peers. Nevertheless, in
this kind of systems, the control overhead may have a negative impact on the
performance: network links and peer states need to be constantly monitored.
In structured overlay, the content distribution is easier to manage. But, the
departure of users may break the diffusion tree. Our goal is to too show,
by proposing simple distributed repair mechanisms of the diffusion tree, that
structured systems may be robust to churn, while keeping their advantages,
an optimal diffusion rate and the continuity of diffusion.

Contributions. In this work, we study a structured network for live video
streaming experiencing frequent node departures and arrivals in systems
where nodes have heterogeneous upload bandwidth.

- We propose, in Section B.4, simple distributed repair protocols to re-
build the diffusion tree, when peers are leaving. Different protocols use
different levels of information.

- We compare the protocols using different metrics, i.e., delay, percentage
of clients without video, number and duration of interruptions, see
Section B.5. We validate the protocols using different peer bandwidth
distributions from literature.

- We study the efficiency of the protocols versus the level of information
they use. We show that a repair protocol can be very efficient, even
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when using only a small amount of local information on its neighbors,
see Sections B.5.2.

- We use real Twitch traces to compare our different heterogeneous pro-
tocols in a real-life scenario of a streaming session in Section B.5.3.
We show that our simple distributed repair protocols work very well in
practice.

- Finally, in Section B.5.4 we compare the protocols in a setting where
exact information is not always available.

B.2 Related Works

Structured vs unstructured systems. A general overview of P2P based
live streaming services can be found in [Li+13b]. As stated, there are two
main categories of distributed systems for video live streaming: unstruc-
tured and structured, even if hybrid solutions are also possible [WXL07].
In unstructured overlay networks, peers self organize themselves in an over-
lay network, that does not have a defined topology. CoolStreaming/DONet
[Zha+05b] is an implementation of this approach. In structured overlay net-
works, peers are organized in a static structure with the source at the root
of the tree. There are many techniques used in P2P live streaming with
single-source and structured topology. These techniques may fall into two
categories: single-tree and multiple-tree. In the single-tree approach each
node is connected to a small number of nodes to which it is responsible for
providing the data stream. ZIGZAG [THD03] is an example of this approach.
In the multiple-tree approach the main idea is to stripe the content across a
forest of multicast trees where each node is a leaf in every tree except one,
as done by SplitStream [Cas+03b].

Reliability In terms of reliability, unstructured systems are considered the
best choice. As shown in [Bon+08] this kind of systems is able to handle churn
(peers leaving the system) is a very efficient way. That is often explained by
the complexity of making a structured system reliable. However, we show in
this study that reliability can be ensured, for a simple system, efficiently by
a simple algorithm.

In existing studies of structured systems, see e.g. [Cas+03b; VYF06] and
[DFC07], authors focus on the feasibility, construction time and character-
istics of the established overlay network. But these works usually do not
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Variable Signification Default value
n Number of nodes of the tree, root not included 1022
d Node bandwidth (or ideal node degree) -
h Height of the tree (root is at level 1) -
µ Repair rate (avg. operation time: 100 ms) 1
λ Individual churn rate (avg. time in the system: 1

6000

10 min)
Λ System churn rate (Λ = λn) 1022

6000
⇡ 0.17

Terminology Values
unit of time 100 ms
systems with low churn Λ 2 [0, 0.4]
systems with high churn Λ 2 [0.4, 1]

Table B.1: Summary of the main variables and terminologies used in this
work.

consider over the issue of tree maintenance. Only few works focus on it. In
[Gir+13b; Gir+17] the authors propose a simple distributed repair algorithm
that allows to fast recover and obtain a balanced tree after one or multiple
failures. In [GH15] the authors develop a simple repair and distributed pro-
tocol based on a structured overlay network. By providing, through analysis
and simulations, estimations of different system metrics like bandwidth us-
age, delay and number of interruptions of the streaming, they show that
a structured live streaming systems can be very efficient and resistant to
churn. However, their study is based on the fact that all nodes have the
same bandwidth, where the bandwidth determines the maximum number of
other nodes that can be served simultaneously. We extend their work to the
case of peers with heterogeneous bandwidth.

B.3 Distributed Systems and Modeling

B.3.1 Modeling

We model a live streaming system as a tree of size n + 1 where the root
represents a source streaming a live video. A summary of the variables used
in this work is given in Table B.1. The n other nodes are clients wanting
to watch the video. The source is the only reliable node of the network, all
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Figure B.1: Example of a push operation carried out by the overloaded Node
6.

other peers may be subject to failure. A node v has a limited bandwidth
d(v) used to serve its children. A node v is said to be overloaded, when it
has more than d(v) children. In this case, it cannot serve all its children
and some of them do not receive the video. Note that the delay between the
broadcast of a piece of media by the source and the reception by a peer is
given by its distance from the root in the logical tree. Hence our goal is to
minimize the tree depth, while respecting degree constraints.

Each node applies the following algorithm with a limited knowledge of
the whole network.

- When a node is overloaded, it carries out a push operation. It selects
two of its children, and the first one is reattached to the second one,
becoming a grandchild. Figure B.1 presents an example of such oper-
ation.

- When a node leaves the system, one of its child is selected to replace
him. The other children reattach to it. An example is given in Fig-
ure B.2. In this work, we only consider single failure. But multiple
failures could be handled by considering the great grandfather of a
node or by reattaching to the root.

- When a new node arrives, it is attached to the root.

Churn. We model the system churn rate with a Poisson model of rate Λ.
A node departure (also called churn event) occurs after an exponential time
of parameter Λ, that is in average after a time 1/Λ. We note the individual
failure rate λ = Λ/n. Authors in [H+06; Vu+07] carried out a measurement
campaign of a large-scale overlay for multimedia streaming, PPLive [H+06].
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Figure B.2: Example of the operation made after the departure of Node 3.

Among other statistics, the authors report that the median time a user stays
in such a system is around 10 minutes. In this study, we use this value as
the default value.
Repair rate. When a node has a push operation to carry out, it has first
to change its children list, and then to contact its two children implicated in
the operation so that they also change their neighborhoods (father, grandfa-
ther or children). This communication takes some amount of time, that can
vary depending on the node to contact and congestion inside the network.
To take into account this variation, we model the repair time as a random
variable with exponential distribution of parameter µ. [Li+08] reports that
the communication time in a streaming system is in average 79 ms. Thus,
we believe that assuming an average repair time of 100 ms is appropriate.
Default values. In the following, for the ease of reading, we normalize the
repair rate to 1. We call unit of time the average repair time, 100 ms. The
normalized default churn rate, for an average stay of 10 minutes, λ is thus
1/6000 and the system churn rate is Λ = nλ ⇡ 0.17. These default values
are indicated as typical examples and are reported in Table B.1, but, in our
experiments, we present results for a range of values of Λ between 0 and 1.
We talk of low churn systems for values of Λ below 0.4, and of high churn
systems for values above 0.4.

B.3.2 Metrics

To evaluate the performance of the different protocols, we are interested by
the following metrics.
Number of people not receiving the video. Due to repairs and churn
events, some people do not receive the video during small periods of time.
We study what fraction of the nodes do not receive the video and during
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which amount of time.
Height of the tree or delay. The height of the diffusion tree gives the
maximum delay between the source and a node.
Number of interruptions and interruption duration. We monitor the
number of interruptions of the video diffusion to a node during the broadcast
lifetime, as well as the distribution of interruptions duration.

B.4 Protocols for Heterogeneous Systems

We present three new repair protocols using different levels of knowledge.
We then compare them, in particular to understand the trade-off between
knowledge and performance.

B.4.1 Description of the Protocols

To obtain a tree with minimum height while respecting the degree con-
straints, the following two optimality conditions must hold:

1. If there exists a node at level L, all previous levels must be complete;

2. For each pair of levels (L,L + 1) the minimum bandwidth between all
the nodes at level L must be greater than or equal to the maximum
bandwidth between all the nodes at level L+ 1.

Thus, the distributed protocols that we propose try to maintain nodes with
high bandwidth on top of the diffusion tree. To this end, when a node is
overloaded, it has to select carefully which node is pushed under which node
using the information it has on the diffusion tree.

Local Bandwidth Protocol (LBP) In this protocol, each node
knows the bandwidth of each of its children. Moreover, a node keeps track
of the number of push operations done on each of its children. Note that this
is a very local information that the protocol can easily get.

When a node is overloaded, it pushes its son with the smallest band-
width, as nodes with higher bandwidth should stay on top on the diffusion
tree. This son has to be pushed on a node receiving the video. We consider
all the nodes receiving the video and push on them proportionally to their
bandwidth (e.g., a node with a bandwidth of d = 4 should receive twice as
much pushes than a node with a bandwidth of d = 2). In details, the ex-
pected number of pushes to each son is proportional to its bandwidth. The
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father then pushes into the son with the largest difference between the push
operations done and the expected number of push operations.
Bandwidth Distribution Protocol (BDP) In this protocol, nodes
have additional information. Each node knows the bandwidth of each of
its children and the bandwidth distribution of the subtree rooted in each of
its children. Note that the bandwidth distribution can be pulled up from
the subtree. This may be consider costly by the system designer. However,
it is also possible for a node to estimate this distribution by keeping the
information of the bandwidth of the nodes pushed into it.

This additional information allows to estimate the optimal height of the
subtrees of each of the sons. Thus, when a node is overloaded, it can push
its son with the smallest bandwidth into its son (receiving the video) with
the smallest estimated height.
Full Level Protocol (FLP) In this protocol, each node knows the
bandwidth of each of its children and the last full level of the subtree rooted
in each of its children.
This information allows to know in which subtree nodes are missing. The
main idea is to push toward the first available slot in order to not increase
the height of the diffusion tree. When a node is overloaded, its son with the
smallest bandwidth is pushed into the son with the smallest last full level.
For all three protocols, a churn event is handled similarly. When a node
leaves the system, the children of the falling node are adopted by their
grandfather.

Discussion. In LBP, a node has no information about the underlying sub-
tree. Push operations are carried out according to the degree of the nodes
that receive the video. Since nodes may leave the system at any moment, it
can thus happen that a node is pushed into the worst subtree.
In BDP, a node knows the bandwidth distribution of each subtree rooted in
each one of its children. A node is pushed according to the estimated height
of the subtree rooted in its children. In the estimation a node assumes that
all the levels, except the last one, is complete. Hence, it can happen that a
node is not pushed on the best subtree.
In FLP, a node knows the last full level of the subtree rooted in each one
of its children. A node is pushed under the node with the smallest value.
In this way, we are sure that the node is pushed toward the best possible
position. This may not be enough. In fact, due to nodes arrival and nodes
departure the two optimality conditions may be broken.
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Thus, in none of the protocols, the two optimality conditions are always
true. However, the transmission delay is not the unique factor that deter-
mines the QoS for users. In fact, other factors like time to attach a new node,
number and duration of interruptions are as important as the transmission
delay. So, we decided to keep the protocols as simple as possible taking into
consideration all metrics.

Handling Free Riders. Some nodes in the system can have no upload
bandwidth and thus cannot distribute the video to anyone. They are called
free riders. They may pose difficulties and calls for special treatment. First,
an obvious observation is that protocols should not push nodes under a free
rider. All our protocols prevent this. More problematic, in some situations,
deadlocks may appear in which some nodes do not receive the video and
all their brothers are free riders. The situation cannot be solved by push
operations. In this case, we decided to ask the concerned free riders to rejoin
the system. This is a solution we wanted to avoid as the goal of a structured
protocol is to maintain as much as possible the parent-children relations of
the diffusion tree. But, we considered that this is a small cost that free riders
can pay, as they do not contribute to the system.

B.5 Simulations

We study and compare the performance of the protocols for 4 bandwidth
distributions of live video streaming systems that we found in the literature
and that we present in Section B.5.1. We first consider a scenario with a
constant population to understand well the differences between the protocols
in Section B.5.2. We then use real traces of live streaming from Twitch in
Section B.5.3. Last, we discuss how to update in practice the information
needed by the protocols in Section B.5.4.

B.5.1 Bandwidth Distributions

In [Sri+04], the authors estimate the outgoing bandwidth that hosts in the
live video streaming system can contribute. They use a combination of data
mining, inference, and active measurements for the estimation. They set an
absolute maximum bound of 20 for the out-degree. This means that each
node can contributes for at most 20. In [SNG06], the authors consider uplink
rates from 256 kbps to 5 Mbps according to a distribution that reflects today’s
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Figure B.3: Bandwidth distributions used in the simulations

different network access technologies. They assume an encoding rate of 250
kbps. The degree is then calculated as buplink(Kbps)/250c. In [Eft+11],
the authors set the uploading bandwidths equal to 4000 kbps, 1000 kbps,
384 kbps, and 128 kbps corresponding to a distribution of 15%, 25%, 40%,
and 20% of peers. We use as encoding rate 250 kbps and then calculate the
outgoing degree as in the previous case. In [Liu+08] the authors, to come
up with an accurate bandwidth distribution of Internet users, consider the
measurement studies in [Dis+07] for the overall distribution of residential
and Ethernet peers and [HLR07] for the detailed bandwidth distribution of
residential peers. As in the previous cases, we use 250 kbps as encoding
rate to derive the degrees. The bandwidth distributions are summarized
in Figure B.3. In three of them (Distributions 1, 3 and 4), there is the
presence of free riders, peers that join the system without sharing their own
resources. We see that the peer bandwidth can be very heterogeneous. For
example, in Distribution 1, 49.3% of the peers are free riders, while 18.4%
have bandwidth 20. Distributions 2 and 3 are similar (even if Distribution
2 has no free riders). The difference of degrees is smaller in Distribution 4.
The fact that the degree distributions are pretty different allow us to test
our algorithm for different settings.
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B.5.2 Constant population

We compare the three protocols presented in the previous section according to
four simple metrics: (i) average and maximum delay, (ii) percentage of people
receiving the video, (iii) number of interruptions and (iv) their duration. We
also add the Smallest Subtree Protocol (SSP) to the comparison, an
optimal repair protocol for homogeneous systems proposed in [GH15]. We
consider a range of churn rate between 0 and 1 on a system with 1022 clients
for a duration of 30 000 unit of time. The population is constant in the
system as we consider that when a node leaves the system, an other node
rejoins at the root. The metrics are averaged over 30 experiments.

Height of the diffusion tree and delay

Figure B.4 shows the average height (over time) of the diffusion tree as a
function of the churn rate for the 4 bandwidth distributions. For all the
distributions, SSP is the worst, by far, in terms of height and delay. Thus,
SSP is not a good choice when peers have heterogeneous upload bandwidth
capabilities. It is crucial to take the peer bandwidth into account and to try
to place peers with high bandwidth on top of the diffusion tree, as we do in
the three protocols proposed. For the 4 distributions, the average height of
LBP is higher than the one of BDP which is higher than the one of FLP.
They are respectively 5.5, 5.1, 5.1 for Distribution 1, 6, 5, 4.8 for Distribution
2, 6.2, 6, 5 for Distribution 3, 9.6, 7.6, and 7 for Distribution 4. Since the
three protocols have the same behavior in the case of churn event, the expla-
nation of the different behaviors relies on the different ways an overloaded
node pushes a son. From the plots we can derive three main facts: (1) Homo-
geneous protocols are very inefficient for systems with heterogeneous upload
bandwidth capabilities. (2) More information allows us to take better deci-
sions. FLP is the best, followed by BDP and LBP (3) However, even with
only very local information, we can have good results. In LBP, a node has
access to a a very small amount of information about the underlying subtree
and its performance is close to the one of FLP in which a node has more
information about its subtree.



APPENDIX B. HETEROGENEOUS LIVE STREAMING SYSTEMS 253

0.0 0.5 1.0
Churn

101

H
H
Lg
h
t

SSP

LBP

BDP

FLP

(a) Distribution 1

0.0 0.5 1.0
Churn

101H
H
ig
h
t

(b) Distribution 2

0.0 0.5 1.0
Churn

101

H
H
ig
h
t

(c) Distribution 3

0.0 0.5 1.0
Churn

101

H
H
ig
h
t

(d) Distribution 4

Figure B.4: Average height of the diffusion tree as a function of the churn
rate (1022 nodes).

Percentage of people without the video during time.

Figure B.5 shows the average percentage of nodes which do not receive video
as a function of the churn rate. As for the previous metric, SSP shows very
bad results when peers have heterogeneous upload bandwidth capabilities. In
fact, the percentage of people without video arrives to 70% for Distribution
1. On the other side, the three proposed protocols behave in a very similar and
efficient way. The average percentage of peers without video for the three
protocols LBP, BDP and FLP never exceeds 0.2%, if we consider systems
with low churn (Λ 2 [0, 0.4]), and 0.6%, if we consider systems

with high churn (Λ 2 [0.4, 1]). The explanation of these similar behaviors
is that a churn event is handled in the same way for the three protocols: the
children of the peer, which leaves the system, are adopted by their grandfa-
ther.

Number and duration of interruptions. Figures B.7 and B.8 show re-
spectively the average number of interruptions for a node present in the
system during 30 000 units of time and the average fraction of time a node
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Figure B.5: Average fraction of peers not receiving the video as a function
of the churn rate (1022 nodes). Right: Same plot without SSP protocol.
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Figure B.6: Distribution 4

Figure B.7: Average number of interruptions of the streaming per node as a
function of the churn rate. Right: Same plot without SSP protocol.
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Figure B.8: Average fraction of time for which the streaming as a function
of the churn rate. Right: Same plot without SSP protocol

was interrupted. The tree protocols LBP, BDP and FLP have the same
behavior. For the default value of churn rate, 0.17, measured on real PPLive
[H+06], an average of 9 interruptions can be experienced for all the distribu-
tions.

This corresponds to an interruption every 3500 units of time (6 minutes).
These interruptions have an imperceptible duration. In fact, for Λ = 0.17 in
the worst case a node is interrupted in average for 0.05% of the time only.
This corresponds to only 1.5 s. As discussed in the next section, with a very
small buffer of few seconds of video, the users won’t experience any inter-
ruption. SSP exhibits a different behavior for this metric. For 3 of the 4
bandwidth distributions, it is the best protocols in terms of number of inter-
ruptions. However, the duration of these interruptions are much bigger. In
fact, a peer may be interrupted even for the 75 % of the time for Distribution
1. The explanation of this behavior relies on the fact that, when a node in
SSP is interrupted, it has to wait a high amount of time until it will start to
see the video again. It is also explained by the lack of handling mechanism
for free riders. This confirms that SSP should not be used in systems with
heterogeneous peers. From now on, we will exclude SSP from our analysis
and focus just on LBP, BDP and FLP.

Average depth for each value of bandwidth. Figure B.9 shows the
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(a) Distribution 1

(b) Distribution 2

(c) Distribution 3

(d) Distribution 4

.l

Figure B.9: Average depth for each value of bandwidth of the distribution
for the 3 protocols
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Figure B.10: Number of viewers as a function of the time for a streaming
session of the user dizzykitten.

average depth (over time and over all nodes with the same bandwidth) for
each bandwidth value as function of the churn rate. For all the distributions,
nodes with the highest values of bandwidth are in the top layers of the
tree and nodes with the smallest values of bandwidth are in the bottom
positions of the tree. This leads to a better QoS for the peers sharing the
most. These peers experience the smallest possible delay and the smallest
number of interruptions among all the peers in the system. In fact, a peer is
interrupted by the departure of one of its ancestors. Thus, peers in the top
layers have a smaller probability of getting interrupted. On the other side,
peers sharing less experience higher delay and, in average, a larger number
of interruptions.

We can conclude that, for the three protocols LBP, BDP and FLP, the
more a peer shares, the better its QoS is. A node has thus incentives to share
its own resources and the protocols are robust to free riders.

B.5.3 Results with Twitch Traces

In order to simulate the protocols in real scenarios, we decided to use Twitch []
as a Use Case. Twitch is a live streaming video platform that mainly focuses
on video gaming and e-sport events. Twitch made its first appearance in
2011 and its popularity grew very fast. Today, with 1.5 million broadcasters
and 100 millions visitors per month Twitch represents the 4th largest source
of peak Internet traffic in the US [MB14]. With the goal of understanding
the behavior of the viewers of the stream, we monitored the 100 most famous
streamers (in terms of viewers and followers [Bla]).
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Phase 1 Phase 2 Phase 3
Arrival rate φ 0.0623196 0.0247548 0.0247548
Individual churn rate λ 1.572 ⇤ 10−5 1.572 ⇤ 10−5 3.155 ⇤ 10−5

Duration (time units) 14640 112890 9648

Table B.2: Parameters obtained from the model for the considered streaming
session

We gathered the number of viewers for each moment of their streaming
sessions. We noticed that most of the streaming sessions can be divided in
3 phases: (1) the start of the stream with a number of viewers increasing at
an extremely high rate, (2) the central part of the stream with the number
of viewers increasing at a slower rate than at the beginning of the stream
and (3) the end of the stream with a decreasing number of viewers. See
Figure B.10 (Left)
We defined a model to represent streaming sessions that follow the 3–phases
pattern. This model allows us to abstract from the real data and to repeat
the simulations several time in order to estimate the quantitative behavior of
the protocols more easily. Using the fact that, in average, a user spends 106
minutes on twitch.tv [Twi], for each phase, we calculate the arrival rate and
the individual churn rate, modeled as a Poisson model. Table B.2 shows the
rates given to the simulator for the considered streaming session. In order to
calculate the leaving rate of the 3rd phase, we assumed that the arrival rate
of Phase 3 is the same as the one of Phase 2. Fig. B.10 compares the data
obtained from monitoring the user with the data obtained from the model.

We simulated our 3 protocols using the data generated from the model for
our metrics of interest and according to the four distributions of bandwidth
presented in the previous section. Table B.3 summarizes the average results
of the 3 protocols after 250 simulations.

Height of the diffusion tree and delay. We see that all protocols achieve
a very small height of the diffusion tree: around 5 or 6 for the average.
Recall that we have around 1500 users at the maximum of the stream. The
protocols are thus very efficient. The evolution of the diffusion tree height
is given as an example in Figure B.11. We see the increase of height when
the users connect to the stream till a maximum height of 6 for FLP and
LBP, and of 7 for BDP. FLP for all the distributions gives us the tree with
the smallest height. The results of LBP and BDP are different from the
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Figure B.11: Height of the diffusion tree during time for an example of Twitch
session dizzykitten.

simulation case of previous section. In fact, since the individual churn rate
is very small during the experiment (⇠ 1.5 ⇤ 10−5), pushing according to the
children’s bandwidths (local information) reveals to be a good strategy, leading
to a better height than BDP for 2 of the 4 distributions. In particular LBP

behaves better than BDP in the case of very distant values of bandwidth
(Distributions 1 and 3) and worst when the values of bandwidth are really
close between them (Distribution 4).

Percentage of people without the video during time. In this case
the 3 protocols behave similarly, as in the simulation case. They are very
efficient: in average, only 0.2% of peers are unable to watch the video. Recall
that we count the users arriving and waiting to be connected at the right
place of the tree.

Number of interruptions during the diffusion. The protocols have a
similar behavior in most cases. For Distributions 1, 2 and 3 the numbers of
interruptions are between 12 and 21, for Distributions 4 is between 5 and
6. This means that, in the worst case, a peer staying for all the duration
of the stream experiences an interruption every 10 minutes. In all cases the
duration of these interruptions is very small. Considering all protocols and
all the distributions, a node is never interrupted for more than the 0.02% of
the time. This means, that a peer remaining during all the stream session
is interrupted for less than 3 seconds. A buffer of few seconds (e.g. 10s)
of video will make these interruptions imperceptible to the end-users. For a
video rate of 480 kbps, it corresponds to a buffer size of only 40MB.
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LBP BDP FLP
Height 5.66 6.1 5.17
People w/o video (%) 0.21 0.24 0.22
Number of Interruptions 17.54 12.12 20.87
Time of Interruptions (%) 0.01 0.01 0.017

(a) Distribution 1

LBP BDP FLP
Height 6.08 6.13 4.98
People w/o video (%) 0.21 0.21 0.22
Number of Interruptions 17.05 12.35 21.47
Time of Interruptions (%) 0.008 0.008 0.0013

(b) Distribution 2

LBP BDP FLP
Height 5.9 6.62 4.9
People w/o video (%) 0.21 0.21 0.22
Number of Interruptions 17.07 14.17 20.05
Time of Interruptions (%) 0.009 0.01 0.013

(c) Distribution 3

LBP BDP FLP
Height 9.12 7.9 7.06
People w/o video (%) 0.2 0.2 0.2
Number of Interruptions 5.62 5.57 6.76
Time of Interruptions (%) 0.009 0.008 0.009

(d) Distribution 4

Table B.3: Average metrics after 250 simulations
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B.5.4 Information update

As we just showed in the last subsection, more information about the subtree
leads to better repairs and thus to a better QoS for the clients. However,
in order to maintain this information accurate, a node must exchange with
all the nodes in its subtree. If the rate at which these exchanges are done
is too high, it can lead to message overhead and to a high delay from the
moment a node joins the system until when the node starts to see the video.
As a consequence, we tested the performance of FLP with the periodic
update of the last full level information for a node. In the experiments we
compare LBP with FLP protocol in the case a node obtains the exact last
full level information after fixed time length intervals, expressed in time units.

Impact of churn rate. Figure B.16 shows the average height of the tree as
a function of the churn rate for LBP, FLP and FLP with different update
times. For low churn rates, the influence of the update time is barely notice-
able. Introducing a delay of information only increases the average height
of the tree of about half a level at most. As the churn increases, longest
update time gives higher trees. However, even for high churn, FLP with
update remains better than LBP for intervals between update up to 100 t.u.
(i.e., 10 s), except for Distribution 2. Having larger update times, e.g. 200
t.u., gives worst results than LBP for these churn values. This shows that
FLP with periodic update should work well in practice, as the churn rate of
practical systems is between 0.1 and 0.2, see the discution of Section B.3.1.
We confirm this in the following by consider Twitch streaming session.
With Twitch streaming sessions. Figure B.21 shows the average height
of the tree during the streaming session for the protocols LBP, FLP and
FLP with periodic update of the last full level. For Distribution 1, we see
that FLP behaves better than LBP with refresh rates lower than 1100 units
of time (corresponding to 1min and 50 s). For Distribution 2, 3, and 4, the
thresholds for the refresh rate respectively are 600 time units (1min), 1min
and 20 s, and 2min Such refresh rates correspond to only a few control mes-
sages around every minutes, which is negligible compared to the bandwidth
used by the video streaming. This allows us to conclude that FLP can be
used in real deployment, if we set a refresh rate according to the needs of the
provider and to the arrival and churn rate of the peers in the stream. In fact,
in this way, we can significantly reduce the overhead resulting from finding
the last full level of the subtree at each iteration.
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Figure B.12: Distribution 1
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Figure B.14: Distribution 3
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Figure B.15: Distribution 4

Figure B.16: Average height of the tree (left) and percentage of people with-
out video (right) as a function of the churn rate for LBP, FLP and FLP

with periodic update of the last full level
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Figure B.19: Distribution 3
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Figure B.20: Distribution 4

Figure B.21: Average height of the tree for LBP, FLP and FLP with peri-
odic update of the last full level for the considered streaming session
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B.6 Conclusion

In this study we examined the problem of delivering live video streaming
in a P2P overlay network using a structured overlay. We have proposed 3
distributed protocols to repair the diffusion tree of the overlay, when there
is churn. The protocols use different amounts of information. Using simula-
tions and experiments with real traces from Twitch, we have shown that our
protocols behave well with respect to fundamental QoS metrics, even for very
heterogeneous bandwidth distributions. Our main result is that, with very
simple distributed repair protocols using only a small amount of information,
structured overlay networks can be very efficient and resistant to churn.



Bibliography

[Zha+05a] X. Zhang, J. Liu, B. Li, and T.S.P. Yum. “CoolStreaming/DONet:
A data-driven overlay network for efficient live media stream-
ing”. In: proceedings of IEEE Infocom. Vol. 3. 2005, pp. 13–17
(cit. on p. 226).

[Li+13a] Baochun Li, Zhi Wang, Jiangchuan Liu, and Wenwu Zhu. “Two
Decades of Internet Video Streaming: A Retrospective View”.
In: ACM Trans. Multimedia Comput. Commun. Appl. 9.1s (Oct.
2013), 33:1–33:20. issn: 1551-6857 (cit. on p. 226).

[WXL10] Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. “mTree-
bone: A collaborative tree-mesh overlay network for multicast
video streaming”. In: Parallel and Distributed Systems, IEEE
Transactions on 21.3 (2010), pp. 379–392 (cit. on p. 226).

[CRZ00] Y. hua Chu, S.G. Rao, and H. Zhang. “A case for end system
multicast”. In: Proc. of ACM Sigmetrics. 2000, pp. 1–12 (cit. on
p. 226).

[Cas+03a] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. “SplitStream: high-bandwidth multicast
in cooperative environments”. In: Proceedings of the nineteenth
ACM symposium on Operating systems principles. 2003, p. 313
(cit. on pp. 226, 227).

[THD03] D.A. Tran, K.A. Hua, and T. Do. “ZIGZAG: an efficient peer-
to-peer scheme for media streaming”. In: INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications. IEEE Societies. Vol. 2. Mar. 2003,
1283–1292 vol.2 (cit. on pp. 226, 244).

[DBG01] Hrishikesh Deshpande, Mayank Bawa, and Hector Garcia-
Molina. “Streaming live media over a peer-to-peer network”.
In: Technical Report (2001) (cit. on p. 226).

[Coh03] B. Cohen. “Incentives build robustness in BitTorrent”. In:
Workshop on Economics of Peer-to-Peer systems. Vol. 6. Cite-
seer. 2003, pp. 68–72 (cit. on p. 226).

265



BIBLIOGRAPHY 266

[Ban+03] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. “Re-
silient multicast using overlays”. In: ACM SIGMETRICS Per-
formance Evaluation Review. Vol. 31. 1. ACM. 2003, pp. 102–
113 (cit. on p. 226).

[VYF06] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Fran-
cis. “Chunkyspread: Heterogeneous unstructured tree-based
peer-to-peer multicast”. In: 14th IEEE International Confer-
ence on Network Protocols. 2006, pp. 2–11 (cit. on pp. 226,
244).

[DFC07] G. Dan, V. Fodor, and I. Chatzidrossos. “On the performance of
multiple-tree-based peer-to-peer live streaming”. In: 26th IEEE
International Conference on Computer Communications. 2007,
pp. 2556–2560 (cit. on pp. 226, 244).

[Gir+13a] F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes. “Main-
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