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Introduction

This thesis contains two different subjects. The first part introduces finite element methods to deal with the observational data with random noise arising from the thin plate spline problem and elliptic boundary problems. The goal is to investigate the stochastic convergence of the finite element method which characterizes the tail property of the probability distribution function of the finite element error. The second part introduces a mathematical and numerical framework for tissue property imaging from the cellular and the macroscopic scale. The mathematical models in this part help to understand the dependence of the conductivity of the tissue on the frequency and micro structure of the cells. A method for anisotropy imaging is also demonstrated in this Part. The imaging methods and reconstruction algorithms are developed for the corresponding models. Additional introductions for both subjects will be given respectively in this chapter.

Finite element methods with the observational data

In Part I, two cases are considered. One is the the thin plate spline smoother model and the other one is the elliptic boundary equations with uncertain boundary data. In this part, stochastic convergences of the finite element methods are proved for each problem.

The thin plate spline smoother is a classical model for finding a smooth function from the knowledge of its observation at scattered locations which may have random noises. In Chapter 1, a nonconforming Morley finite element method to approximate thin plate spline model is considered.

The spline model for scattered data has been extensively studied in the literature. In [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF] it is proved that the model has a unique solution in H 2 (R d ) under certian conditions. Explicit formula of the solution is constructed in [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF] based on radial basis functions. In [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] the convergence rate for the expectation of the error is derived. Under the assumption that the additional random noises are also sub-Gaussion random variables, [START_REF] Van De Geer | Empirical process in M-estimation[END_REF] proved the stochastic convergence of the error in terms of the empirical norm for d = 1. The stochastic convergence which provides additional tail information of the probability distribution function for the random error is very desirable for the approximation of random variables. We refer to [START_REF] Wahba | Spline Models for Observational Data[END_REF] for a detailed analysis of the thin plate spline smoothers.

It is well-known that the numerical method based on radial basis functions to solve the thin plate spline smoother requires to solve a symmetric indefinite dense linear system of equations of the size O(n), which is challenging for applications with very large data sets [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF]. Conforming finite element methods for the solution of thin plate model are studied in [START_REF] Arcangéli | Approximation spline de surfaces de type explicite comportant des failles[END_REF] and the references therein. In [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF] a mixed finite element method is proposed and the expectation of the finite element error is proved.

Contents

In this Chapter, we provide the optimal choice of smoothing parameter and propose a self-consistent iterative algorithm to determine the smoothing parameter based on our theoretical analysis. Numerical examples are presented to confirm the theoretical analysis and to show the competitive performance of the self-consistent algorithm for finding the smoothing parameter.

In Chapter 2, we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of the Lagrangian multiplier. We show the convergence of the random finite element error in expectation and, when the noise is sub-Gaussian, in the Orlicz ψ 2 -norm which implies the probability that the finite element error estimates are violated decays exponentially. Numerical examples are presented to support this result.

In many scientific and engineering applications involving partial differential equations, the input data such as sources or boundary conditions are usually given through the measurements which may be subject to random noises. A different perspective of solving partial differential equations with uncertain input data due to incomplete knowledge or inherent variability in the system has drawn considerable interests in recent years (see e.g. [START_REF] Babuˇska | Galerkin finite element approximations of Stochastic elliptic partial differential equations[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Gunzburger | Stochastic finite element methods for partial differential equations with random input data[END_REF][START_REF] Tang | Recent developments in high order numerical methods for uncertainty quantification[END_REF] and the references therein). The goal of those studies is to learn about the uncertainties in system outputs of interest, given information about the uncertainties in the system inputs which are modeled as random fields. This goal usually leads to the mathematical problem of breaking the curse of dimensionality for solving partial differential equations having large number of parameters.

The classical problem of finding a smooth function from the knowledge of its observation at scattered locations subject to random noises is well studied in the literature [START_REF] Wahba | Spline Models for Observational Data[END_REF]. One popular model to tackle this classical problem is to use the thin plate spline model [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF][START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF], which can be efficiently solved by using finite element methods [START_REF] Arcangéli | Approximation spline de surfaces de type explicite comportant des failles[END_REF][START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF][START_REF] Chen | Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data[END_REF]. But the method we propose in this Chapter is more efficient. One can combine the techniques developed in this chapter with the weak formulations given in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF] to deal with the observational Dirichlet boundary condition.

Two imaging methods and analysis of cell model for electropermeabilization

In Part II, we propose and analyze two imaging methods: the linearized model in multi-frequency electrical impedance tomography and the imaging of anisotropy conductivity using Diffusion Tensor. At the end of this Part, we analyze the well-posedness of the cell model for electropermeabilization and propose a dynamical homogenization scheme.

In Chapter 3, we provide a mathematical analysis of the linearized inverse problem in multifrequency electrical impedance tomography. We consider the isotropic conductivity distribution with a finite number of unknown inclusions with different frequency dependence.

Electrical impedance tomography (EIT) is a diffusive imaging modality in which the conductivity distribution of the concerned object is recovered from the electrode voltage measurements on the boundary, induced 0.2. Two imaging methods and analysis of cell model for electropermeabilization 3 by (multiple) known injected currents. The modality is safe, cheap and portable, and has the potential to be an established clinical imaging method in a multitude of applications [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. However, the EIT inverse problem is severely ill-posed. An approach to improve this problem is multi-frequency electrical impedance tomography (mfEIT), also known as EIT spectroscopy, which is also attracting attention in recent years. There have been several studies on frequency-difference imaging, see [START_REF] Griffiths | A dual-frequency applied potential tomography technique: computer simulations[END_REF][START_REF] Schlappa | Systematic errors in multifrequency EIT[END_REF][START_REF] Yerworth | Electrical impedance tomography spectroscopy (EITS) for human head imaging[END_REF][START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF][START_REF] Malone | Multifrequency electrical impedance tomography using spectral constraints[END_REF][START_REF] Kim | Reconstructing small perturbations in electrical admittivity at low frequencies[END_REF][START_REF] Malone | A reconstructionclassification method for multifrequency electrical impedance tomography[END_REF].

Our main contributions are as follows. First, we systematically discuss mfEIT reconstruction in the following three different scenarios, i.e., known spectral profiles, partially known spectral profiles and unknown spectral profiles. This analysis generalizes the existing studies, especially [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF]. Second, we provide a rigorous justification of mfEIT for handling geometrical errors. Third, we present a novel group sparse reconstruction algorithm of iterative shrinkage type, which is easy to implement and converges fast. The extensive numerical experiments fully confirm our discussions.

In Chapter 4, we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor using a novel technique called Diffusion Tensor Magneto-acoustography.

MAT-MI is a new noninvasive modality for imaging electrical conductivity distributions of biological tissue [START_REF] Xu | Magnetoacoustic tomography with magnetic induction (MAT-MI)[END_REF][START_REF] Li | Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue[END_REF][START_REF] Mariappan | Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of mri magnet[END_REF][START_REF] Zhou | A reconstruction algorithm of magnetoacoustic tomography with magnetic induction for an acoustically inhomogeneous tissue[END_REF][START_REF] Li | Multi-excitation magnetoacoustic tomography with magnetic induction for bioimpedance imaging[END_REF][START_REF] Xia | Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction[END_REF][START_REF] Ma | Magnetoacoustic tomography with magnetic induction: A rigorous theory[END_REF]. In the experiments, the biological tissue is placed in a static magnetic field. A pulsed magnetic field is applied to induce an eddy current inside the conductive tissue. Diffusion Tensor Imaging (DTI) is a non-invasive technique for characterizing the diffusion properties of water molecules in tissues (see e.g. [START_REF] Bihan | Imaging ofintravoxel Incoherent Motions -Application to Diffusion and Perfusion in Neurologic Disorders[END_REF] and the references therein). Imaging conductivity tensors in the tissue with DTI is based on the correlation property between diffusion and conductivity tensors [START_REF] Tuch | Conductivity tensor mapping of the human brain using diffusion tensor MRI[END_REF]. This linear relationship can be used to characterize the conductivity tensor.

Once the conductivity directions of anisotropy are determined, one needs only to reconstruct a cross-property factor which is a scalar function. However, up to now, all techniques have assumed an isotropic conductivity distribution in the image reconstruction problem to simplify the underlying mathematical theory [5,[START_REF] Qiu | Analysis of the Magnetoacoustic Tomography with Magnetic Induction[END_REF]. In this Chapter, we firstly formulate a new image reconstruction method of an anisotropic conductivity tensor distribution by combining the MAT-MI and DTI techniques. We propose an optimal control approach for reconstructing the cross-property factor relating the diffusion tensor to the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy.

In Chapter 5, the cell model for Electropermeabilization is demonstrated. The technique of electropermeabilization is employed to make the chemotherapeutical treatment of cancer more efficient and avoid side-effects. Instead of spreading out drugs over the whole body, electropermeabilization makes it possible to focus drug application on special areas. The mechanism of electropermeabilization relies on careful exposition of biological tissue to electrical fields: this changes the membrane properties of the cells such that treatment can enter more easily just at precisely defined areas of the tissue [START_REF] Ivorra | Tissue electroporation as a bioelectric phenomenon: Basic concepts[END_REF][START_REF] Miklavčič | Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy[END_REF].

For treatment planning in electropermeabilization, one is interested in the percentage of electroporated cells over the whole tissue to make decisions in the short term how to gear treatment [START_REF] Kranjc | In situ monitoring of electric field distribution in mouse tumor during electroporation[END_REF][START_REF] Dermol | Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination[END_REF][START_REF] Miklavčič | Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy[END_REF]. We tackle the Contents next step in electropermeabilization monitoring and investigate the question of determining microscopic parameters from macroscopic measurements. The modelling used stems from general physiological tissue models for cells, asymptotically simplified by Neu and Krassowska [START_REF] Neu | Asymptotic model of electroporation[END_REF]. Whereas the mathematical well-posedness of the model of that model is not available in the literature, there exists an investigation of well-posedness for a similar model in [START_REF] Kavian | electropermeabilization modeling at the cell scale[END_REF].

In order to describe the relation between macroscopic and microscopic quantities, we apply the homogenization scheme in [4] to the cell model of Neu and Krassowska [83]. This not only describes isotropic effective parameters such as classical theory [START_REF] Pavlin | Effective conductivitiy of cell suspensions[END_REF], but includes also anisotropy.

In this Chapter, we study effective parameters in a homogenization model as the next step to monitor the microscopic properties in clinical practice. We start from a physiological cell model for electropermeabilization and analyze its well-posedness. For a dynamical homogenization scheme, we prove convergence and then analyze the effective parameters, which can be found by macroscopic imaging methods. We demonstrate numerically the sensitivity of these effective parameters to critical microscopic parameters governing electropermeabilization. This opens the door to solve the inverse problem of reconstructing these parameters.

The results of Chapters 1 and 2 are from [START_REF] Chen | Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data[END_REF] and [START_REF] Chen | A proper sampling finite element method for elliptic problems with observational boundary data[END_REF], respectively. The results of Chapter 3, 4, and 5 are from [START_REF] Ammari | The Linearized inverse problem in multifrequency electrical impedance tomography[END_REF], [START_REF] Ammari | Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction[END_REF] and [START_REF] Ammari | Towards monitoring critical microscopic parameters for electropermeabilization[END_REF], respectively. 
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Introduction

In this chapter, we show the convergence analysis of finite element method for the thin plate model and the method to choose the optimal parameter. The thin plate spline smoother is a classical mathematical model for finding a smooth function from the knowledge of its observation at scattered locations which may be the subject to random noises. Let Ω be a bounded Lipschitz domain in R d (d ≤ 3) and u 0 ∈ H 2 (Ω) be the unknown smooth function. Let {x i } n i=1 ⊂ Ω be the scattered locations in the domain where the observation is taken. We want to approximate u 0 from the noisy data y i = u 0 (x i ) + e i , 1 ≤ i ≤ n, where {e i } n i=1 are independent and identically distributed random variables on some probability space (X, F, P) satisfying E[e i ] = 0 and E[e 2 i ] ≤ σ 2 . Here and in the sequel E[X] denotes the expectation of the random variable X. The thin plate spline smoother, i.e., D 2 -spline smoother to approximate u 0 , is defined to be the unique solution of the following variational problem min u∈H 2 (Ω)

1 n n i=1 (u(x i ) -y i ) 2 + λ n |u| 2 H 2 (Ω) , (1.1) 
where λ n > 0 is the smoothing parameter.

The spline model for scattered data has been extensively studied in the literature. For Ω = R d , it is proved in [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF] that (1.1) has a unique solution u n ∈ H 2 (R d ) when the set T = {x i : i = 1, 2, • • • , n} is not collinear (i.e. the points in T are not on the same plane). An explicit formula of the solution is constructed in [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF] based on radial basis functions. [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] derived the convergence rate for the expectation of the error |u n -u 0 | 2 H j (Ω) , j = 0, 1, 2. Under the assumption that e i , i = 1, 2, • • • , n, are also sub-Gaussion random variables, [START_REF] Van De Geer | Empirical process in M-estimation[END_REF] proved the stochastic convergence of the error in terms of the empirical norm u n -u 0 n := (n -1 n i=1 |u n (x i ) -u 0 (x i )| 2 ) 1/2 when d = 1. The stochastic convergence which provides additional tail information of the probability distribution function for the random error is very desirable for the approximation of random variables. We refer to [START_REF] Wahba | Spline Models for Observational Data[END_REF] for further information on the thin plate spline smoothers.

It is well-known that the numerical method based on radial basis functions for solving the thin plate spline smoother requires to solve a symmetric indefinite dense linear system of equations of the size O(n), which is challenging for applications with very large data sets [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF]. Conforming Chapter 1. FEM for the thin plate spline model finite element methods for the solution of thin plate model are studied in [START_REF] Arcangéli | Approximation spline de surfaces de type explicite comportant des failles[END_REF] and the references therein. In [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF] a mixed finite element method for solving ∇u n is proposed and the expectation of the finite element error is proved. The advantage of the mixed finite element method in [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF] lies in that one can use simple H 1 (Ω)-conforming finite element spaces. The H 1 smoother in [START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF] that the mixed finite element method aims to approximate is not equivalent to the thin plate spline model (1.1).

In this chapter we consider the nonconforming finite element approximation to the problem (1.1). We use the Morley element [START_REF] Morley | The triangular equilibrium element in the solution of plate bending problems[END_REF][START_REF] Shi | On the error estimates of Morley element[END_REF][START_REF] Wang | The Morley element for fourth order elliptic equations in any dimensions[END_REF] which is of particular interest for solving fourth order PDEs since it has the least number of degrees of freedom on each element. The difficulty of the finite element analysis for the thin plate smoother is the low stochastic regularity of the solution u n . One can only prove the boundedness of

E[|u n | 2 H 2 (Ω) ] (see Theorem 1.2.1 below
). This difficulty is overcome by a smoothing operator based on the C 1 -element for any Morley finite element functions. We also prove that the probability distribution function of the empirical norm of the finite element error has an exponentially decaying tail. For that purpose we also prove the convergence of the error u n -u 0 n in terms of the Orlicz ψ 2 norm (see Theorem 1.4.1 below) which improves the result in [START_REF] Van De Geer | Empirical process in M-estimation[END_REF].

One of the central issues in the application of the thin plate model is the choice of the smoothing parameter λ n . In the literature it is usually made by the method of cross validation [START_REF] Wahba | Spline Models for Observational Data[END_REF]. The analysis in this chapter suggests that the optimal choice should be

λ 1/2+d/8 n = O(σn -1/2 (|u 0 | H 2 (Ω) + σn -1/2 ) -1 ). (1.2) 
Since, in practical applications, one does not know u 0 and the upper bound of the variance σ, we propose a self-consistent algorithm to determine λ n from the natural initial guess λ n = n -4 4+d . Our numerical experiments show this self-consistent algorithm performs rather well.

The layout of the chapter is as follows. In Section 1.2 we recall some preliminary properties of the thin plate model. In Section 1.3 we introduce the nonconforming finite element method and show the convergence of the finite element solution in terms of the expectation of Sobolev norms. In Section 1.4 we study the tail property of the probability distribution function for the finite element error based on the theory of empirical process for sub-Gaussion noises. In Section 1.5 we introduce our self-consistent algorithm for finding the smooth parameter λ n and show several numerical examples to support the analysis in this chapter.

The thin plate model

In this section we collect some preliminary results about the thin plate smoother (1.1). In this chapter, we will always assume that Ω is a bounded Lipschitz domain satisfying the uniform cone condition. We will also assume that T are uniformly distributed in the sense that [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] there exists a constant B > 0 such that hmax h min ≤ B, where

h max = sup x∈Ω inf 1≤i≤n |x -x i |, h min = inf 1≤i =j≤n |x i -x j |.

The thin plate model

It is easy to see that there exist constants

B 1 , B 2 such that B 1 n -1/d ≤ h max ≤ Bh min ≤ B 2 n -1/d .
We write the empirical inner product between the data and any function

v ∈ C( Ω) as (y, v) n = 1 n n i=1 y i v(x i ). We also write (u, v) n = 1 n n i=1 u(x i )v(x i ) for any u, v ∈ C( Ω) and the empirical norm u n = ( 1 n n i=1 u 2 (x i )) 1/2 for any u ∈ C( Ω)
. By [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF], there exists a constant C > 0 depending only on Ω, B such that for any u ∈ H 2 (Ω) and sufficiently small h max ,

u L 2 (Ω) ≤ C( u n + h 2 max |u| H 2 (Ω) ), u n ≤ C( u L 2 (Ω) + h 2 max |u| H 2 (Ω) ). (1.
3) It follows from (1.3) and Lax-Milgram lemma that the minimization problem (1.1) has a unique solution u n ∈ H 2 (Ω). The following convergence result is proved in [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF].

Lemma 1.2.1. Let U n ∈ H 2 (R d
) be the solution of the following variational problem: min

u∈D -2 L 2 (R d ) u -y 2 n + λ n |u| 2 H 2 (R d ) , (1.4) 
where

D -2 L 2 (R d ) = {u|D α u ∈ L 2 (R d ), |α| = 2}.
Then there exist constants λ 0 > 0 and C > 0 such that for any λ n ≤ λ 0 and nλ

d/4 n ≥ 1, E U n -u 0 2 n ≤ Cλ n |u 0 | 2 H 2 (Ω) + Cσ 2 nλ d/4 n , (1.5) 
E |U n | 2 H 2 (Ω) ≤ C|u 0 | 2 H 2 (Ω) + Cσ 2 nλ 1+d/4 n . (1.6) 
Define the bilinear form a :

H 2 (Ω) × H 2 (Ω) → R as a Ω (u, v) = 1≤i,j≤d Ω ∂ 2 u ∂x i ∂x j ∂ 2 v ∂x i ∂x j dx, ∀u, v ∈ H 2 (Ω). (1.7) It is obvious that |u| 2 H 2 (Ω) = a(u, u) for any u ∈ H 2 (Ω).
Theorem 1.2.1. Let u n ∈ H 2 (Ω) be the unique solution of (1.1). Then there exist constants λ 0 > 0 and C > 0 such that for any λ n ≤ λ 0 and nλ

d/4 n ≥ 1, E u n -u 0 2 n ≤ Cλ n |u 0 | 2 H 2 (Ω) + Cσ 2 nλ d/4 n , (1.8) 
E |u n | 2 H 2 (Ω) ≤ C|u 0 | 2 H 2 (Ω) + Cσ 2 nλ 1+d/4 n . (1.9) Proof. It is clear that u n ∈ H 2 (Ω) and U n ∈ H 2 (R d
) satisfy the following variational forms:

λ n a Ω (u n , v) + (u n , v) n = (y, v) n , ∀v ∈ H 2 (Ω), (1.10) 
λ n a R d (U n , w) + (U n , w) n = (y, w) n , ∀w ∈ H 2 (R d ). (1.11) Let F : H 2 (Ω) → D -2 L 2 (R d
) be the extension operator defined by

F u = argmin v∈D -2 L 2 (R d ),v| Ω =u |v| H 2 (Ω) .
It is known [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF][START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] that

F u = u in Ω and |F u| H 2 (R d ) ≤ C|u| H 2 (Ω)
for some constant C > 0. We write ũ = F u in R d in the following. Thus, it follows from (1.10)-(1.11) that

λ n a Ω (u n -U n , v) + (u n -U n , v) n = λ n a R d \ Ω(U n , ṽ), ∀v ∈ H 2 (Ω), which implies by taking v = u n -U n | Ω ∈ H 2 (Ω) that λ n |u n -U n | 2 H 2 (Ω) + u n -U n 2 n ≤ λ n |U n | H 2 (R d ) |ũ n -Ũn | H 2 (R d ) ≤ Cλ n |U n | H 2 (R d ) |u n -U n | H 2 (Ω) ,
where

Ũn = F (U n | Ω ). Therefore |u n -U n | 2 H 2 (Ω) ≤ C|U n | 2 H 2 (R d ) , u n -U n 2 n ≤ λ n |U n | 2 H 2 (R d ) .
(1.12)

Since U n is the solution of (1.4) and Ũn = U n in Ω, we have

|U n | H 2 (R d ) ≤ | Ũn | H 2 (R d ) ≤ C|U n | H 2 (Ω) . Therefore, E[|u n | 2 H 2 (Ω) ] ≤ CE[|U n | 2 H 2 (Ω)
], which implies (1.9) by using (1.6). Similarly one obtains (1.8) from the second estimate in (1.12) and (1.5)- (1.6). This completes the proof. Theorems 1.2.1 and 1.2.1 suggest that an optimal choice of the parameter

λ n is such that λ 1+d/4 n = O((σ 2 n -1 )|u 0 | -2 H 2 (Ω) ).

Nonconforming finite element method

In this section we consider the nonconforming finite element approximation to the thin plate model (1.1) whose solution u n ∈ H 2 (Ω) satisfies the following weak formulation

λ n a Ω (u n , v) + (u n , v) n = (y, v) n , ∀v ∈ H 2 (Ω). (1.13)
We assume that Ω is a polygonal or polyhedral domain in R d (d = 2, 3) in the reminder of this chapter. Let M h be a family of shape regular and quasiuniform finite element meshes over the domain Ω. We will use the Morley element [START_REF] Morley | The triangular equilibrium element in the solution of plate bending problems[END_REF] for 2D, [START_REF] Wang | The Morley element for fourth order elliptic equations in any dimensions[END_REF] for 3D to define our nonconforming finite element method. The Morley element is a triple (K,

P K , Σ K ), where K ∈ M h is a simplex in R d , P K = P 2 (K)
is the set of second order polynomials in K, and Σ K is the set of the degrees of freedom. In 2D, for the element K with vertices a i , 1 ≤ i ≤ 3, and mid-points b i of the edge opposite to the vertex

a i , 1 ≤ i ≤ 3, Σ K = {p(a i ), ∂ ν p(b i ), 1 ≤ i ≤ 3, ∀p ∈ C 1 (K)}.
In 3D, for the element K with edges S ij which connects the vertices a i , a j , 1 ≤ i < j ≤ 4, and faces

F j opposite to a j , 1 ≤ j ≤ 4, Σ K = { 1 |S ij | S ij p, 1 ≤ i < j ≤ 4, 1 |F j | F j ∂ ν p, 1 ≤ j ≤ 4, ∀p ∈ C 1 (K)}.
Here ∂ ν p is the normal derivative of p of the edges (2D) or faces (3D) of the element. We refer to Figure 1.1 for the illustration of the degrees of freedom of the Morley element.

Let V h be the Morley finite element space

V h = {v h : v h | K ∈ P 2 (K), ∀K ∈ M h , f (v h | K 1 ) = f (v h | K 2 ), ∀f ∈ Σ K 1 ∩ Σ K 2 }.
The functions in V h may not be continuous in

Ω. Given a set G ⊂ R 2 , let M h (G) = {K ∈ M h : G ∩ K = ∅} and N (G)
the number of elements in M h (G). For any v h ∈ V h , we define

vh (x i ) = 1 N (x i ) K ∈M h (x i ) (v h | K )(x i ), i = 1, 2, • • • , n. (1.14) Notice that if x i is located inside some element K, then M h (x i ) = {K} and vh (x i ) = v h (x i ), i = 1, 2, • • • , n.
With this definition we know that (v h , ŵh ) n and (e, ŵh ) n are well-defined for any v h , w h ∈ V h . Let

a h (u h , v h ) = K∈M h 1≤i,j≤d K ∂ 2 u h ∂x i ∂x j ∂ 2 v h ∂x i ∂x j dx, ∀u h , v h ∈ V h .
The finite element approximation of the problem (1.13) is to find

u h ∈ V h such that λ n a h (u h , v h ) + (û h , vh ) n = (y, vh ) n , ∀v h ∈ V h . (1.15)
Since the sampling point set T is not collinear, by Lax-Milgram lemma, problem (1.15) has a unique solution.

Let I K : H 2 (K) → P 2 (K) be the canonical local nodal value interpolant of Morley element [START_REF] Shi | On the error estimates of Morley element[END_REF][START_REF] Wang | The Morley element for fourth order elliptic equations in any dimensions[END_REF] and

I h : L 2 (Ω) → V h be the global nodal value interpolant such that (I h u)| K = I K u for any K ∈ M h and piecewise H 2 (K) functions u ∈ L 2 (Ω). We introduce the mesh dependent semi-norm | • | m,h , m ≥ 0, |v| m,h =   K∈M h |v| 2 H m (K)   1/2 , for any v ∈ L 2 (Ω) such that v| K ∈ H m (K), ∀K ∈ M h . Lemma 1.3.1. We have |u -I K u| H m (K) ≤ Ch 2-m K |u| H 2 (K) , ∀u ∈ H m (K), 0 ≤ m ≤ 2,(1.16) u -I h u n ≤ Ch 2 |u| H 2 (Ω) , ∀u ∈ H 2 (Ω), (1.17) 
where h K is the diameter of the element K and h = max K∈M h h K .

Chapter 1. FEM for the thin plate spline model Proof. Since I K p = p for any p ∈ P 2 (K) [START_REF] Wang | The Morley element for fourth order elliptic equations in any dimensions[END_REF], estimate (1.16) follows from the standard interpolation theory for finite element method [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. Moreover, we have, by local inverse estimates and the standard interpolation estimates

u -I K u L ∞ (K) ≤ inf p∈P 2 (K) u -p L ∞ (K) + |K| -1/2 I K (u -p) L 2 (K) ≤ Ch 2-d/2 K |u| H 2 (K) . Let T K = {x i ∈ T : x i ∈ K, 1 ≤ i ≤ n}.
By assumption, T is uniformly distributed and the mesh is quasi-uniform, and hence the cardinal

#T K ≤ Cnh d . Thus u -I h u 2 n ≤ 1 n K∈M h #T K u -I K u 2 L ∞ (K) ≤ Ch 4 |u| 2 H 2 (Ω) .
This proves (1.17).

The following property of Morley element will be used below.

Lemma 1.3.2. Let K, K ∈ M h and F = K ∩ K . There exists a constant C independent of h such that for any v h ∈ V h , |α| ≤ 2, ∂ α (v h | K -v h | K ) L ∞ (F ) ≤ Ch 2-|α|-d/2 (|v h | H 2 (K) + |v h | H 2 (K ) ).
Proof. By [116, Lemma 5] we know that

v h | K -v h | K L 2 (F ) ≤ Ch 3/2 (|v h | H 2 (K) + |v h | H 2 (K ) ).
By using the inverse estimate we then obtain

∂ α (v h | K -v h | K ) L ∞ (F ) ≤ Ch -|α| v h | K -v h | K L ∞ (F ) ≤ Ch -|α|-(d-1)/2 v h | K -v h | K L 2 (F ) ≤ Ch 2-|α|-d/2 (|v h | H 2 (K) + |v h | H 2 (K ) ).
This proves the lemma.

Lemma 1.3.3. There exists a linear operator

Π h : V h → H 2 (Ω) such that for any v h ∈ V h , |v h -Π h v h | m,h ≤ Ch 2-m |v h | 2,h , m = 0, 1, 2, (1.18) vh -Π h v h n ≤ Ch 2 |v h | 2,h , (1.19) 
where the constant C is independent of h.

Proof. We will only prove the lemma for the case d = 2. The case of d = 3 will be briefly discussed in the Appendix A. We will construct Π h v h by using the Agyris element. We recall [21, P.71] that for any K ∈ M h , Agyris element is a triple (K, P K , Λ K ), where P K = P 5 (K) and the set of degrees of freedom, with the notation in Figure 1.

2, Λ K = {p(a i ), Dp(a i )(a j - a i ), D 2 p(a i )(a j -a i , a k -a i ), ∂ ν p(b i ), 1 ≤ i, j, k ≤ 3, j = i, k = i, ∀p ∈ C 2 (K)}.
Let X h be the Agyris finite element space It is known that

X h = {v h : v h | K ∈ P 5 (K), ∀K ∈ M h , f (v h | K 1 ) = f (v h | K 2 ), ∀f ∈ Λ K 1 ∩ Λ K 2 }.
X h ⊂ H 2 (Ω).
We define the operator Π h as follows. For any

v h ∈ V h , w h := Π h v h ∈ X h such that for any K ∈ M h , w h | K ∈ P 5 (K) and ∂ α (w h | K )(a i ) = 1 N (a i ) K ∈M h (a i ) ∂ α (v h | K )(a i ), 1 ≤ i ≤ 3, |α| ≤ 2, (1.20) ∂ ν (w h | K )(b i ) = ∂ ν (v h | K )(b i ), 1 ≤ i ≤ 3.
(1.21)

Here M h (a i ) and N (a i ) are defined above (1.14). To show estimate (1.18) we follow an idea in [21, Theorem 6.1.1] and use the element Hermite triangle of type (5) [21, P.102], which is a triple (K, P K , Θ K ), where P K = P 5 (K) and the set of degrees of freedom

Θ K = {p(a i ), Dp(a i )(a j -a i ), D 2 p(a i )(a j - a i , a k -a i ), Dp(b i )(a i -b i ), 1 ≤ i, j, k ≤ 3, j = i, k = i, ∀p ∈ C 2 (K)}.
The finite element space of Hermite triangle of type ( 5) is H 1 conforming and a regular family of Hermite triangle of type ( 5) is affine-equivalent. For any K ∈ M h , denote by p i , p ij , p ijk , q i the basis functions associated with the degrees of freedom p(a i ),

Dp(a i )(a j -a i ), D 2 p(a i )(a j -a i , a k -a i ), Dp(b i )(a i - b i ), 1 ≤ i, j, k ≤ 3, j = i, k = i.
For any v h ∈ V h , we also define a linear operator q h := Λ h v h as follows: for any K ∈ M h , q h | K ∈ P 5 (K) and

∂ α (q h | K )(a i ) = 1 N (a i ) K ∈M h (a i ) ∂ α (v h | K )(a i ), 1 ≤ i ≤ 3, |α| ≤ 2, (1.22) D(q h | K )(b i )(a i -b i ) = D(v h | K )(b i )(a i -b i ), 1 ≤ i ≤ 3. (1.23)
Then from the definition of Morley element and Hermite triangle of type (5), we know that

φ h | K := (v h -q h )| K ∈ P 5 (K) satisfies φ h (x) = i,j=1,2,3,j =i D(φ h | K )(a i )(a j -a i )p ij (x) + i,j,k=1,2,3,j =i,k =i D 2 (φ h | K )(a i )(a j -a i , a k -a i )p ijk (x).
Since a regular family of Hermite triangle of type ( 5) is affine-equivalent, by standard scaling argument [21, Theorem 3.1.2], we obtain easily

|q i | H m (K) + |p i | H m (K) + |p ij | H m (K) + |p ijk | H m (K) ≤ Ch 1-m K , m = 0, 1, 2.
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0, 1, 2, |φ h | H m (K) ≤ Ch 1-m K   3 i=1 1≤|α|≤2 h |α| |∂ α (v h | K )(a i ) -∂ α (q h | K )(a i )| 2   1/2
.

(1.24) By Lemma 1.3.2 and the fact that

∂ α (q h | K )(a i ) is the local average of ∂ α v h over elements around a i in (1.22) |∂ α (v h | K )(a i ) -∂ α (q h | K )(a i )| ≤ Ch 1-|α|   K ∈M h (a i ) |v h | 2 H 2 (K )   1/2 , ∀1 ≤ |α| ≤ 2.
Inserting the above estimate into (1.24), we get

|v h -q h | H m (K) ≤ Ch 2-m   K ∈M h (K) |v h | 2 H 2 (K )   1/2 , m = 0, 1, 2. (1.25)
By (1.20)-(1.23) we know that q h -w h ∈ P 5 (K) and satisfies

q h (x) -w h (x) = 3 i=1 D(q h | K -w h | K )(b i )(a i -b i )q i (x).
On the other hand, for 1 ≤ i ≤ 3, (1.21) and the tangential derivative of (q h | K -w h | K ) vanishes as a consequence of (1.20) and (1.22). Since

D(q h | K -w h | K )(b i )(a i -b i ) = ∂ ν (q h | K -v h | K )(b i )[(a i -b i ) • ν], since ∂ ν (w h | K )(b i ) = ∂ ν (v h | K )(b i ) by
|q i | H m (K) ≤ Ch 1-m K for m = 0, 1, 2, we then obtain that |q h -w h | H m (K) ≤ Ch 2-m 3 i=1 |∂ ν (q h | K -v h | K )(b i )| 2 1/2 ≤ Ch 2-m   K ∈M h (K) |v h | 2 H 2 (K )   1/2 , m = 0, 1, 2, (1.26) 
where in the second inequality we have used the fact that by the inverse estimate and (1.25),

|∂ ν (q h | K -v h | K )(b i )| ≤ |q h -v h | W 1,∞ (K) ≤ Ch -1 K |q h -v h | H 1 (K) ≤ C   K ∈M h (K) |v h | 2 H 2 (K )   1/2 .
Combining (1.25) and (1.26) shows (1.18).

To show (1.19), we use the notation in the proof of Lemma 1.3.1, the inverse estimate and (1.18) to get

vh -w h 2 n ≤ C n K∈M h #T K v h -w h 2 L ∞ (K) ≤ C v h -w h 2 L 2 (Ω) ≤ Ch 4 |v h | 2 2,h .
This completes the proof.

For any function v which is piecewise in C 2 (K) for any K ∈ M h , we use the convenient energy norm

| v| h = λ n |v| 2 2,h + v 2 n 1/2 .
Here

v(x i ), i = 1, 2, • • • , n, is defined as in (1.14), that is, v(x i ) is the local average of all v| K (x i ), where K ∈ M h such that x i ∈ K . Theorem 1.3.1. Let u n ∈ H 2 (Ω)
be the unique solution of (1.13) and u h ∈ V h be the solution of (1.15). Then there exist constants λ 0 > 0 and C > 0 such that for any λ n ≤ λ 0 and nλ

d/4 n ≥ 1, E u 0 -ûh 2 n ≤ C(λ n + h 4 )|u 0 | 2 H 2 (Ω) + C 1 + h 4 λ n + h 4 λ n 1-d/4 σ 2 nλ d/4 n . (1.27) In particular, if h 4 ≤ Cλ n , we have E u 0 -ûh 2 n ≤ Cλ n |u 0 | 2 H 2 (Ω) + Cσ 2 nλ d/4 n . (1.28) 
Proof. We start by using the Strang lemma [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] |

u n -ûh | h ≤ C inf v h ∈V h | u n -vh | h +C sup 0 =v h ∈V h |λ n a h (u n , v h ) + (u n -y, vh ) n | | v h | h .
(1.29) By Lemma 1.3.1 we have

inf v h ∈V h | u n -vh | h ≤ C(λ 1/2 n + h 2 )|u n | H 2 (Ω) . (1.30) Since for any v h ∈ V h , Π h v h ∈ H 2 (Ω)
, by (1.13) and the fact that

y i = u 0 (x i )+ e i , i = 1, 2, • • • n, we obtain λ n a h (u n , v h ) + (u n -y, vh ) n = λ n a h (u n , v h -Π h v h ) + (u n -y, vh -Π h v h ) n ≤ λ n |u n | H 2 (Ω) |v h -Π h v h | 2,h + u n -u 0 n vh -Π h v h n + (e, vh -Π h v h ) n .
Now by using Lemma 1.3.3 we have sup

0 =v h ∈V h |λ n a h (u n , v h ) + (u n -y, vh ) n | | v h | h ≤ Cλ 1/2 n |u n | H 2 (Ω) + C h 2 λ 1/2 n u n -u 0 n + sup 0 =v h ∈V h |(e, vh -Π h v h ) n | | v h | h . (1.31)
Since e i , i = 1, 2, • • • , n, are independent and identically distributed random variables, we have

E |(e, vh -Π h v h ) n | 2 = σ 2 n -1 vh -Π h v h 2 n ≤ Cσ 2 n -1 h 4 |v h | 2 2,h ,
where we have used Lemma 1.3.3 in the last inequality.

Let N h be the dimension of V h which satisfies

N h ≤ Ch -d since the mesh is quasi-uniform. Recall that if {X i } N h i=1 are random variables, E[sup 1≤i≤N h |X i |] ≤ N h i=1 E[|X i |]. then we have E sup 0 =v h ∈V h |(e, v h -Π h v h ) n | 2 | v h | 2 h ≤ N h • sup 0 =v h ∈V h E |(e, v h -Π h v h ) n | 2 | v h | 2 h ≤ C σ 2 h 4-d nλ n .
(1.32) Combining (1.29)- (1.32) we obtain

E | u n -ûh | 2 h ≤ Cλ n E |u n | 2 H 2 (Ω) + C h 4 λ n E u n -u 0 2 n + C σ 2 h 4-d nλ n .
This completes the proof by using Theorem 1.2.1.

Stochastic convergence

In this section we study the stochastic convergence of the error u 0 -ûh n which characterizes the tail property of P( u 0 -ûh n ≥ z) for z > 0. We assume the noises e i , i = 1, 2, • • • , n, are independent and identically distributed sub-Gaussian random variables with parameter σ > 0. A random variable X is sub-Gaussion with parameter σ if it satisfies

E e λ(X-E[X]) ≤ e 1 2 σ 2 λ 2 , ∀λ ∈ R. (1.33)
The probability distribution function of a sub-Gaussion random variable has a exponentially decaying tail, that is, if X is a sub-Gaussion random variable, then

P(|X -E[X]| ≥ z) ≤ 2e -1 2 z 2 /σ 2 , ∀z > 0. (1.34)
In fact, by Markov inequality, for any λ > 0,

P(X -E[X] ≥ z) = P(λ(X -E[X]) ≥ λz) ≤ e -λz E[e λ(X-E[X]) ] ≤ e -λz-1 2 σ 2 λ 2 . Taking λ = z/σ 2 yields P(X -E[X] ≥ z) ≤ e -1 2 z 2 /σ 2 . Similarly, one can prove P(X -E[X] ≤ -z) ≤ e -1
2 z 2 /σ 2 . This shows (1.34).

Stochastic convergence of the thin plate splines

We will use several tools from the theory of empirical processes [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes: with Applications to Statistics[END_REF][START_REF] Van De Geer | Empirical process in M-estimation[END_REF] for our analysis. We start by recalling the definition of Orlicz norm. Let ψ be a monotone increasing convex function satisfying ψ(0) = 0. Then the Orilicz norm X ψ of a random variable X is defined by 

X ψ = inf C > 0 : E ψ |X| C ≤ 1 . ( 1 
(|X| > z) ≤ Ke -Cz 2 , ∀z > 0, then X ψ 2 ≤ (1 + K)/C.
Let T be a semi-metric space with the semi-metric d and let {X t : t ∈ T } be a random process indexed by T . Then the random process 

{X t : t ∈ T } is called sub-Gaussian if P(|X s -X t | > z) ≤ 2e -1 2 z 2 /d(s,t)
|X s -X t | ψ 2 ≤ K diam T 0 log D(ε, T, d) dε.
Here K > 0 is some constant.

The following result on the estimation of the entropy of Sobolev spaces is due to Birman-Solomyak [START_REF] Birman | Piecewise polynomial approximations of functions of the classes W k α[END_REF]. Lemma 1.4.3. Let Q be the unit square in R d and SW α,p (Q) be the unit sphere of the Sobolev space W α,p (Q), where α > 0, p ≥ 1. Then for ε > 0 sufficient small, the entropy

log N (ε, SW α,p (Q), • L q (Q) ) ≤ Cε -d/α , where if αp > d, 1 ≤ q ≤ ∞, otherwise if αp ≤ d, 1 ≤ q ≤ q * with q * = p(1 -αp/d) -1 .
For any δ > 0, ρ > 0, define

S δ,ρ (Ω) := {u ∈ H 2 (Ω) : u n ≤ δ, |u| H 2 (Ω) ≤ ρ}.
(1.39)

The following lemma estimates the entropy of the set S δ,ρ (Ω).
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log N (ε, S δ,ρ (Ω), • L ∞ (Ω) ) ≤ C ρ + δ ε d/2
.

Proof. By (1.3) we have for any 

u ∈ S δ,ρ (Ω), u H 2 (Ω) ≤ C( u L 2 (Ω) + |u| H 2 (Ω) ) ≤ C( u n + |u| H 2 (Ω) ) ≤ C(δ + ρ),
:= σn -1/2 u n . Proof. By definition E n (u) -E n (v) = n i=1 c i e i , where c i = 1 n (u -v)(x i )
. Since e i is a sub-Gaussion random variable with parameter σ and E[e i ] = 0, by (1.33)

, E[e λe i ] ≤ e 1 2 σ 2 λ 2 , ∀λ > 0. Thus, since e i , i = 1, 2, • • • , n, are independent random variables, E e λ n i=1 c i e i ≤ e 1 2 σ 2 λ 2 n i=1 c 2 i = e 1 2 σ 2 n -1 λ 2 u-v 2 n = e 1 2 d(u,v) 2 λ 2 .
This shows E n (u) -E n (v) is a sub-Gaussion random variable with parameter d(u, v). By (1.34) we have

P(|E n (u) -E n (v)| ≥ z) ≤ 2e -1 2 z 2 /d(u,v) 2 , ∀z > 0.
This shows the lemma by the definition of sub-Gaussion random process (1.37).

The following lemma which improves Lemma 1.4.1 will be used in our subsequent analysis. Lemma 1.4.6. If X is a random variable which satisfies

P(|X| > α(1 + z)) ≤ C 1 e -z 2 /K 2 1 , ∀α > 0, z ≥ 1,
where C 1 , K 1 are some positive constants, then

X ψ 2 ≤ C(C 1 , K 1 )α for some constant C(C 1 , K 1 ) depending only on C 1 and K 1 . Proof. If y ≥ 2α, then z = (y/α) -1 ≥ 1. Thus P(|X| > y) = P(|X| > α(1 + z)) ≤ C 1 exp - 1 K 2 1 y α -1 2 .
Since ( y α -1) 2 ≥ 1 2 ( y α ) 2 -1 by Cauchy-Schwarz inequality, we obtain

P(|X| > y) ≤ C 1 e 1 K 2 1 e -y 2 2K 2 1 α 2 = C 1 e 1 K 2 1 e -y 2 K 2 2 ,
where K 2 := √ 2αK 1 . On the other hand, if y < 2α, then

P(|X| > y) ≤ e y 2 K 2 2 e -y 2 K 2 2 ≤ e 2 K 2 1 e -y 2 K 2 2 .
Therefore, P(|X| > y) ≤ C 2 e -y 2 /K 2 2 , ∀y > 0, where C 2 = max(C 1 e 1/K 2 1 , e 2/K 2 1 ). This implies by Lemma 1.4.1,

X ψ 2 ≤ 1 + C 2 K 2 = C(C 1 , K 1 )α, where C(C 1 , K 1 ) = √ 2K 1 1 + C 2 ,
which completes the proof.

Theorem 1.4.1. Let u n ∈ H 2 (Ω) be the solution of (1.13). Denote by ρ 0 = |u 0 | H 2 (Ω) + σn -1/2 . If we take

λ 1/2+d/8 n = O(σn -1/2 ρ -1 0 ), (1.40) 
then there exists a constant C > 0 such that

u n -u 0 n ψ 2 ≤ Cλ 1/2 n ρ 0 , |u n | H 2 (Ω) ψ 2 ≤ Cρ 0 . (1.41)
Proof. We will only prove the first estimate in (1.41) by the peeling argument. The other estimate can be proved in a similar way. From (1.10) it follows that

u n -u 0 2 n + λ n |u n | 2 H 2 (Ω) ≤ 2(e, u n -u 0 ) n + λ n |u 0 | 2 H 2 (Ω) . (1.42) 
Let δ > 0, ρ > 0 be two constants to be determined later, and

A 0 = [0, δ), A i = [2 i-1 δ, 2 i δ), B 0 = [0, ρ), B j = [2 j-1 ρ, 2 j ρ), i, j ≥ 1.
(1.43) For i, j ≥ 0, define

F ij = {v ∈ H 2 (Ω) : v n ∈ A i , |v| H 2 (Ω) ∈ B j }.
Then we have

P( u n -u 0 n > δ) ≤ ∞ i=1 ∞ j=0 P(u n -u 0 ∈ F ij ).
(1.44)

Now we estimate P(u n -u 0 ∈ F ij ). By Lemma 1.4.5, {(e, v) n : v ∈ H 2 (Ω)} is a sub-Gaussion random process with respect to the semi-distance

d(u, v) = σn -1/2 u -v n . It is easy to see that diam F ij ≤ σn -1/2 sup u-u 0 ,v-u 0 ∈F ij ( u -u 0 n + v -u 0 n ) ≤ 2σn -1/2 • 2 i δ.
Then by (1.38) and the maximal inequality in Lemma 1.4.2 we have

sup u-u 0 ∈F ij |(e, u -u 0 ) n | ψ 2 ≤ K σn -1/2 •2 i+1 δ 0 log N ε 2 , F ij , d dε = K σn -1/2 •2 i+1 δ 0 log N ε 2σn -1/2 , F ij , • n dε.
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log N ε 2σn -1/2 , F ij , • n ≤ log N ( ε 2σn -1/2 , F ij , • L ∞ (Ω) ) ≤ C 2σn -1/2 • (2 i δ + 2 j ρ) ε d/2
. Therefore,

sup u-u 0 ∈F ij |(e, u -u 0 ) n ψ 2 ≤ K σn -1/2 •2 i+1 δ 0 2σn -1/2 • (2 i δ + 2 j ρ) ε d/4 dε = Cσn -1/2 (2 i δ + 2 j ρ) d/4 (2 i δ) 1-d/4 ≤ Cσn -1/2 [2 i δ + (2 i δ) 1-d/4 (2 j ρ) d/4 ]. (1.45) 
By (1.42) and (1.36) we have for i, j ≥ 1:

P(u n -u 0 ∈ F ij ) ≤ P(2 2(i-1) δ 2 + λ n 2 2(j-1) ρ 2 ≤ 2 sup u-u 0 ∈F ij |(e, u -u 0 ) n | + λ n ρ 2 0 ) = P(2 sup u-u 0 ∈F ij |(e, u -u 0 ) n | ≥ 2 2(i-1) δ 2 + λ n 2 2(j-1) ρ 2 -λ n ρ 2 0 ) ≤ 2 exp   - 1 Cσ 2 n -1 2 2(i-1) δ 2 + λ n 2 2(j-1) ρ 2 -λ n ρ 2 0 2 i δ + (2 i δ) 1-d/4 (2 j ρ) d/4 2   .

Now we take

δ 2 = λ n ρ 2 0 (1 + z) 2 , ρ = ρ 0 , where z ≥ 1. (1.46)
Since by assumption λ 1/2+d/8 n = O(σn -1/2 ρ -1 0 ) and σn -1/2 ρ -1 0 ≤ 1, we have λ n ≤ C for some constant. By some simple calculation we have for i, j ≥ 1,

P(u n -u 0 ∈ F ij ) ≤ 2 exp   -C 2 2(i-1) z(1 + z) + 2 2(j-1) 2 i (1 + z) + (2 i (1 + z)) 1-d/4 (2 j ) d/4 2   .
By using the elementary inequality ab ≤ 1 p a p + 1 q b q for any a, b > 0, p, q > 1, p -1 + q -1 = 1, we have

(2 i (1 + z)) 1-d/4 (2 j ) d/4 ≤ (1 + z)2 i + 2 j . Thus P(u n -u 0 ∈ F ij ) ≤ 2 exp -C(2 2i z 2 + 2 2j ) .
Similarly, one can prove for i ≥ 1, j = 0, 

P(u n -u 0 ∈ F i0 ) ≤ 2 exp -C(2 2i z 2 ) . Therefore, since ∞ j=1 e -C(2 2j ) ≤ e -C < 1 and ∞ i=1 e -C(2 2i z 2 ) ≤ e -Cz 2 , we finally obtain ∞ i=1 ∞ j=0 P(u n -u 0 ∈ F ij ) ≤ 2 ∞ i=1 ∞ j=1 e -C(2 2i z 2 +2 2j ) + 2 ∞ i=1 e -C(2 2i z 2 ) ≤ 4e -Cz 2 .
P( u n -u 0 n > λ 1/2 n ρ 0 (1 + z)) ≤ 4e -Cz 2 , ∀z ≥ 1. (1.47)
This implies by using Lemma 1.4.6 that u n -u 0 n ψ 2 ≤ Cλ 1/2 n ρ 0 , which completes the proof.

We remark that (1.47) implies that

lim z→∞ lim n→∞ P( u n -u 0 n > λ 1/2 n ρ 0 (1 + z)) = 0.
In terms of the terminology of the stochastic convergence order, we have

u n -u 0 n = O p (λ 1/ 2 
n )ρ 0 which by assumption (1.40) yields

u n -u 0 n = O p (n -2 4+d )σ 4 4+d ρ -4 4+d 0 .
This estimate is proved in [32, Section 10.1.1] when d = 1. Our result in Theorem 1.4.1 is stronger in the sense that it also provides the tail property of the probability distribution function of the random error u n -u 0 n .

Stochastic convergence of the finite element method

The following lemma provides the estimate of the entropy of finite dimension subsets [START_REF] Van De Geer | Empirical process in M-estimation[END_REF]Corollary 2.6].

Lemma 1.4.7. Let G be a finite dimensional subspace of L 2 (Ω) of dimension N > 0 and G R = {f ∈ G : f L 2 (Ω) ≤ R}. Then N (ε, G R , • L 2 (Ω) ) ≤ (1 + 4R/ε) N , ∀ε > 0. Lemma 1.4.8. Let G h := {v h ∈ V h : | v h | h = (λ n |v h | 2 2,h + vh 2 n ) 1/2 ≤ 1}. Assume that h = O(λ 1/4 n ) and nλ d/4 n ≥ 1. Then sup v h ∈G h |(e, vh -Π h v h ) n | ψ 2 ≤ Cσn -1/2 λ -d/8 n .
Proof. Similar to the proof of Lemma 1.4.5 we know that { Ên (v h ) := (e, vh -

Π h v h ) n , ∀v h ∈ G h } is a sub-Gaussion random process with respect to the semi-distance d(v h , w h ) = σn -1/2 (v h -Π h v h ) -( ŵh -Π h w h ) n . By Lemma 1.3.3, for any v h ∈ G h , vh -Π h v h n ≤ Ch 2 |v h | 2,h ≤ Ch 2 λ -1/2 n
≤ C, where we have used the assumption h = O(λ

1/4
n ) in the last inequality. This implies that the diameter of G h is bounded by Cσn -1/2 . Now by the maximal inequality in Lemma 1.4.2 

sup v h ∈G h |(e, vh -Π h v h ) n | ψ 2 ≤ K Cσn -1/2 0 log N ε 2 , G h ,
Π h v h L 2 (Ω) ≤ C(h 2 max |Π h v h | H 2 (Ω) + Π h v h n ) ≤ C(n -2/d λ -1/2 n + Π h v h -vh n + vh n ) ≤ C(n -2/d λ -1/2 n + Ch 2 λ -1/2 n + 1) ≤ C,
v h L 2 (Ω) ≤ v h -Π h v h L 2 (Ω) + Π h v h L 2 (Ω) ≤ Ch 2 |v h | 2,h +C ≤ C, ∀v h ∈ G h .
(1.49) Moreover, by Lemma 1.3.3 and the inverse estimate,

d(v h , w h ) ≤ Cσn -1/2 h 2 |v h -w h | 2,h ≤ Cσn -1/2 v h -w h L 2 (Ω) , ∀v h , w h ∈ V h . (1.50) Now since the dimension of V h is bounded by Ch -d , Lemma 1.4.7 together with (1.49)-(1.50) implies log N ε 2 , G h , d = log N ε Cσn -1/2 , G h , • L 2 (Ω) ≤ Ch -d (1 + σn -1/2 /ε).
Inserting this estimate to (1.48)

sup v h ∈G h |(e, vh -Π h v h ) n | ψ 2 ≤ C Cσn -1/2 0 Ch -d (1 + σn -1/2 /ε) dε ≤ Ch -d/2 σn -1/2 .
This completes the proof since h = O(λ

1/4 n ).
The following theorem is the main result of this section.

Theorem 1.4.2. Let u h ∈ V h be the solution of (1.15). Denote by

ρ 0 = |u 0 | H 2 (Ω) + σn -1/2 . If we take h = O(λ 1/4 n ) and λ 1/2+d/8 n = O(σn -1/2 ρ -1 0 ), (1.51) 
then there exists a constant C > 0 such that

ûh -u 0 n ψ 2 ≤ Cλ 1/2 n ρ 0 , |u h | H 2 (Ω) ψ 2 ≤ Cρ 0 . (1.52)
Proof. By (1.29)-(1.31) we have

λ 1/2 n |u h | H 2 (Ω) + ûh -u 0 n ≤ C(1 + h 2 λ 1/2 n ) u n -u 0 n + C(h 2 + λ 1/2 n )(|u n | H 2 (Ω) + |u 0 | H 2 (Ω) ) + C sup 0 =v h ∈V h |(e, vh -Π h v h ) n | | v h | h .
The theorem follows now from Theorem 1.4. By (1.36), we know from Theorem 1.4.2 that

P( ûh -u 0 n ≥ z) ≤ 2e -z 2 /(Cλnρ 2 0 ) , ∀z > 0,
that is, the probability density function of the random error ûh -u 0 n decays exponentially as n → ∞.

Numerical examples

From Theorem 1.4.2 we know that the mesh size should be comparable with λ

1/4

n . The smoothing parameter λ n is usually determined by the crossvalidation in the literature [START_REF] Wahba | Spline Models for Observational Data[END_REF]. Here we propose a self-consistent algorithm to determine the parameter λ n based on λ 1/2+d/8 n = σn -1/2 (|u 0 | H 2 (Ω) + σn -1/2 ) -1 as indicated in Theorem 1.4.2. In the algorithm we estimate |u 0 | H 2 (Ω) by |u h | 2,h and σ by u h -y n since u 0 -y n = e n provides a good estimation of the variance by the law of large number. Algorithm 1.5.1. (SELF-CONSISTENT ALGORITHM FOR FINDING λ n ) 1 • Given an initial guess of λ n,0 ; 2 • For k ≥ 0 and λ n,k known, compute u h with the parameter λ n,k over a quasiuniform mesh of the mesh size h = λ

1/4 n,k ; 3 • Compute λ 1/2+d/8 n,k+1 = u h -y n n -1/2 (|u h | 2,h + u h -y n n -1/2 ) -1 .
Now we show several examples to confirm our theoretical analysis. We will always take Ω = (0, 1) × (0, 1) and {x i } n i=1 being uniformly distributed over Ω. We take u 0 = sin(2πx 2 + 3πy)e

√

x 3 +y , see Figure 1.3. The finite element mesh of Ω is construct by first dividing the domain into h -1 × h -1 uniform rectangles and then connecting the lower left and upper right vertices of each rectangle.

Example 1.5.1. In this example we show that the choice of the smoothing parameter λ n by (1.51) is optimal. We set e i , i = 1, 2, • • • , n, being independent normal random variables with variance σ = 1 and n = 2500. Since |u 0 | H 2 (Ω) ≈ 200, (1.51) suggests the optimal choice of λ n ≈ 3 × 10 -6 . Figure 1.4 shows that λ n = 1×10 -6 is the best choice among 11 different choices

λ n = 10 -k , k = 1, 2, • • • , 10.
Here we also choose the mesh size h = λ Example 1.5.2. In this example we show that the empirical error u 0 -u h n depends linearly on λ 1/2 n to confirm (1.52). We set e i , i = 1, 2, • • • , n, to be independent normal random variables with variance σ = 1. We take n varying from 2500 to 9 × 10 4 . In this test we use the optimal λ n and take the mesh size h = λ n . We also run the test for combined random errors, i.e., e i = η i + α i , where η i and α i are independent normal random variables with variance σ 1 = 1 and σ 2 = 10. agrees with the optimal choice 3×10 -6 given by (1.51). Furthermore, u h -y n = 0.99 provides a good estimate of the variance σ. We now consider the combined random noise. Let e i = η i +α i , i = 1, 2, • • • , n, where η i and α i are independent normal random variables with variance σ 1 = 1 and σ 2 = 10. It is obvious that

σ 2 = Ee 2 i = σ 2 1 + σ 2 2 = 101.
Let n = 4 × 10 4 . Again Figure 1.6 (c) and (d) show the sequence {λ n,k } generated by Algorithm 1.5.1 converges. Now λ n,19 = 2.16 × 10 -5 which fits well the optimal choice 1.03 × 10 -5 given by (1.51). Also u h -y n = 10.07 gives a good estimate of the variance σ.

Chapter 2

Elliptic problems with observational boundary data

Introduction

In this chapter, we discuss another application of empirical process. Here, we demonstrate the Dirichlet problem with observational boundary data and analyze the convergence of FEM for this problem.

In many scientific and engineering applications involving partial differential equations, the input data such as sources or boundary conditions are usually given through the measurements which may subject to random noises. Let Ω ⊂ R 2 be a bounded domain with smooth boundary Γ. In this chapter we consider the problem to find u ∈ H 1 (Ω) such that

-∆u = f in Ω, u = g 0 on Γ. (2.1) 
Here f ∈ L 2 (Ω) is given but the boundary condition g 0 ∈ H 2 (Γ) is generally unknown. We assume that we know the measurements g i = g 0 (x i ) + e i , i = 1, 2, • • • , n, where T = {x i : 1 ≤ i ≤ n} is the set of the measurement locations on the boundary Γ and e i , i = 1, 2, • • • , n, are independent identically distributed random variables over some probability space (X, F, P) satisfying E[e i ] = 0 and E[e 2 i ] = σ > 0. In this chapter P denotes the probability measure and E[X] denotes the expectation of the random variable X. We remark that for simplicity we only consider the problem of observational Dirichlet boundary data in this chapter and the problem with observational sources f or other type of boundary conditions can be studied by the same method.

A different perspective of solving partial differential equations with uncertain input data due to incomplete knowledge or inherent variability in the system has drawn considerable interests in recent years (see e.g. [START_REF] Babuˇska | Galerkin finite element approximations of Stochastic elliptic partial differential equations[END_REF][START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF][START_REF] Gunzburger | Stochastic finite element methods for partial differential equations with random input data[END_REF][START_REF] Tang | Recent developments in high order numerical methods for uncertainty quantification[END_REF] and the references therein). The goal of those studies is to learn about the uncertainties in system outputs of interest, given information about the uncertainties in the system inputs which are modeled as random field. This goal usually leads to the mathematical problem of breaking the curse of dimensionality for solving partial differential equations having large number of parameters.

The classical problem to find a smooth function from the knowledge of its observation at scattered locations subject to random noises is well studied in the literature [START_REF] Wahba | Spline Models for Observational Data[END_REF]. One popular model to tackle this classical problem is to use the thin plate spline model [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF][START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] which can be efficiently solved by using finite element methods [START_REF] Arcangéli | Approximation spline de surfaces de type explicite comportant des failles[END_REF][START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF][START_REF] Chen | Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data[END_REF]. The scattered Chapter 2. Elliptic problems with observational boundary data data in our problem (2.1) are defined on the boundary of the domain and a straightforward application of the method developed in [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF][START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF][START_REF] Arcangéli | Approximation spline de surfaces de type explicite comportant des failles[END_REF][START_REF] Roberts | Approximation of a thin plate spline smoother using continuous piecewise polynomial functions[END_REF][START_REF] Chen | Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data[END_REF] would lead to solve a fourth order elliptic equation on the boundary which would be much more expansive than the method proposed in this chapter.

Our method is based on the following weak formulation of Lagrangian multiplier for (2.1) in [START_REF] Babuˇska | The finite element method with Lagrangian multipliers[END_REF]:

Find (u, λ) ∈ H 1 (Ω) × H -1/2 (Γ) such that (∇u, ∇v) + λ, v = (f, v), ∀v ∈ H 1 (Ω), (2.2) 
µ, u = µ, g , ∀µ ∈ H 1/2 (Γ), (2.3) 
where (•, •) is the duality pairing between H 1 (Ω) and H 1 (Ω) which is an extension of the inner product of L 2 (Ω) and •, • is the duality pairing between H 1/2 (Γ) and H -1/2 (Γ) which is an extension of the inner product of L 2 (Γ). Let Ω h be a polygonal domain which approximates the domain Ω.

Let V h ⊂ H 1 (Ω h ) and Q h ⊂ L 2 (Γ)
be the finite element spaces for approximating the field variable and the Lagrangian multiplier. Our finite element method is defined as follows:

Find (u h , λ h ) ∈ V h × Q h such that (∇u h , ∇v h ) Ω h + λ h , v h n = (I h f, v h ) Ω h , ∀v h ∈ V h , µ h , u h n = µ h , g n , ∀µ h ∈ Q h , where (•, •) Ω h is the inner product of L 2 (Ω h ), •,
• n is some quadrature rule for approximating •, • , and I h is some finite element interpolation operator (we refer to Section 2.2 for the precise definitions). We remark that while the method of Lagrangian multiplier is one of the standard ways in enforcing Dirichlet boundary condition on smooth domains, it is essential here for solving the problem with Dirichlet observational boundary data even when the domain Ω is a polygon. One can also combine the techniques developed in this chapter with other weak formulations in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF] to deal with the observational Dirichlet boundary condition. Our analysis in Section 2.3 shows that

E u -u h • Φ -1 h L 2 (Ω) ≤ Ch 2 | ln h|∆(u, f, g 0 ) + C| ln h|(σn -1/2 ), (2.4) 
where

∆(u, f, g 0 ) = u H 2 (Ω) + f H 2 (Ω) + g 0 H 2 (Γ) and Φ h : Ω h → Ω
is the Lenoir homeomorphism defined in Section 2.3 . This error estimate suggests that in order to achieve the optimal convergence, one should take the number of sampling points satisfying σn -1/2 ≤ Ch 2 to compute the solution over a finite element mesh of the mesh size h. For problems having Neumann or Robin boundary conditions, the same method of the analysis in this chapter yields this relation should be changed to σn -1/2 ≤ Ch. This suggests the importance of appropriate balance between the number of measurements and the finite element mesh sizes for solving PDEs with random observational data. If the random variables e i , 1 ≤ i ≤ n, are also sub-Gaussian, we prove by resorting to the theory of empirical processes that for any z > 0,

P u -u h • Φ -1 h L 2 (Ω) ≥ h 2 | ln h|∆(u, f, g 0 ) + | ln h|(σn -1/2 ) z ≤ 2e -Cz 2 .
This implies that the probability of the random error u-u h L 2 (Ω) violating the error estimate in (2.4) decays exponentially.

The layout of the chapter is as follows. In Section 2.2 we introduce our finite element formulation and derive an error estimate based on the Babuška-Brezzi theory. In Section 2.3 we study the random finite element error in terms of the expectation. In Section 2.4 we show the stochastic convergence of our method when the random noise is sub-Gaussion. In Section 2.5 we report some numerical examples to confirm our theoretical analysis.

The finite element method

We start by introducing the finite element meshes. Let M h be a mesh over Ω consisting of curved triangles. We assume that each element K ∈ M h has at most one curved edge and the edge of the element K is curved only when its two vertices all lie on the boundary Γ. For any K ∈ M h , we denote K the straight triangle which has the same vertices as K. We set Ω h = ∪ K∈M h K and assume that the mesh Mh = { K : K ∈ M h } over Ω h is shape regular and quasi-uniform:

h K ≤ Cρ K , ∀K ∈ M h , h K ≤ Ch K , ∀K, K ∈ M h , (2.1) 
where h K and ρ K are the diameter of K and the diameter of the biggest circle inscribed in K. The finite element space for the field variable is then defined as

V h = {v h ∈ C( Ωh ) : v h | K ∈ P 1 ( K), ∀ K ∈ Mh },
where P 1 ( K) is the set of the linear polynomials on K. As usual, we demote h = max K∈ Mh h K .

Let E h = {K ∩ Γ : K ∈ M h } be the mesh of Γ which is induced from M h . We assume that each element E ∈ E h is the image of the reference element Ê = [0, 1] under a smooth mapping F E . Since the boundary Γ is smooth, the argument in [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]Theorem 4.3.3] implies that if the diameter of the element h E is sufficiently small,

DF E L ∞ ( Ê) ≤ Ch E , D T F -1 E L ∞ (E) ≤ Ch -1 E , ∀E ∈ E h , (2.2) 
where D is the derivative in Ê and D T is the tangential derivative on Γ. It is then obvious that there are constants

C 1 , C 2 independent of the mesh M h such that C 1 h ≤ h E ≤ C 2 h, ∀E ∈ E h .
We use the following finite element space for the Lagrangian multiplier [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF]:

Q h = {µ h ∈ C(Γ) : µ h | E = μh • F -1 E for some μh ∈ P 1 ( Ê), ∀E ∈ E h },(2.3)
where P 1 ( Ê) is the set of linear polynomials over Ê.

We assume that the measurement locations T are uniformly distributed over Γ in the sense that [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF] there exists a constant B > 0 such that smax s min ≤ B, where

s max = sup x∈Γ inf 1≤i≤n s(x, x i ), s min = inf 1≤i =j≤n s(x i , x j ).
Here s(x, y) is the arc length between x, y ∈ Γ. It is easy to see that there exist constants

B 1 , B 2 such that B 1 n -1 ≤ s max ≤ Bs min ≤ B 2 n -1 .
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We introduce the empirical inner product between the data and any function

v ∈ C(Γ) as g, v n = n i=1 α i g i v(x i ). We also write u, v n = n i=1 α i u(x i )v(x i ) for any u, v ∈ C(Γ) and the empirical norm u n = ( n i=1 α i u 2 (x i )) 1/2
for any u ∈ C(Γ). We remark that the empirical norm is in fact a semi-norm on C(Γ). The weights α i , i = 1, 2 • • • , n, are chosen such that u, v n is a good quadrature formula for the inner product u, v that we describe now.

Let T E = T∩E be the measurement points in E ∈ E h . Since the measurement locations are uniformly distributed, n E = #T E ∼ nh E . We further assume that

t j,E = F -1 E (x j ), j = 1, 2 • • • , n E , are ordered as 0 = t 0,E ≤ t 1,E < t 2,E < • • • < t n E ,E ≤ t n E +1,E = 1.
We remark that the vertices of the element E need not be at the measurement locations. Denote

∆t j,E = t j,E -t j-1,E , j = 1, 2, • • • , n E + 1.
We define the following quadrature formula

Q T E (w) = n E j=1 ω j,E w(t j,E ), ∀w ∈ C( Ê), (2.4) 
where

ω 1,E = ∆t 1,E + 1 2 ∆t 2,E , ω j,E = 1 2 (∆t j,E + ∆t j+1,E ), j = 2, • • • , n E - 1, ω n E ,E = 1 2 ∆t n E ,E + ∆t n E +1,E . Lemma 2.2.1. There exists a constant C independent of T E such that 1 0 w(t)dt -Q T E (w) ≤ C 1 0 |w (t)|dt + 1 2 ∆t 1,E t 1,E t 0,E |w (t)|dt + 1 2 ∆t n E +1,E t n E +1,E t n E ,E |w (t)|dt, ∀w ∈ W 2,1 ( Ê).
Proof. We introduce the standard piecewise trapezoid quadrature rule

QT E (w) = n E +1 j=1 ∆t j,E w(t j-1,E ) + w(t j,E ) 2 , (2.5) 
which is exact for linear functions. By the Bramble-Hilbert lemma we know that there exists a constant C such that

1 0 w(t)dt -QT E (w) ≤ C 1 0 |w (t)|dt, ∀w ∈ W 2,1 ( Ê).
Now the lemma follows since

Q T E (w) -QT E (w) (2.6) = 1 2 ∆t 1,E (w(t 1,E ) -w(t 0,E )) + 1 2 ∆t n E +1,E (w(t n E ,E ) -w(t n E +1,E )).
This completes the proof. Now for any v ∈ C(Γ) we can define the following quadrature rule which defines the weights α j , j = 1, 2, • • • , n, in the empirical inner product,

Γ vds = E∈E h 1 0 v(F E (t))|F E (t)|dt (2.7) ≈ E∈E h n E j=1 ω j,E |F E (t j,E )|v(x j ) = n j=1 α j v(x j ), α j = E∈E h ,x j ∈T E ω j,E |F E (t j,E )|. Since ∆t 1,E ≤ C∆t 2,E , ∆t n E +1,E ≤ C∆t n E ,E , and ∆t j,E /∆t k,E ≤ C for any j, k = 2, • • • , n E , because the points in T are uniformly distributed, we have ω j,E ∼ 1/n E ∼ 1/(nh E )
. This implies by (2.2) that there exist constants B 3 , B 4 such that

B 3 n -1 ≤ α j ≤ B 4 n -1 , j = 1, 2, • • • , n. (2.8) Let y j , j = 1, 2, • • • , J, be the nodes of the mesh M h on Γ. For any v h ∈ V h , we define Π h v h ∈ Q h such that Π h v h (y j ) = v h (y j ), j = 1, 2, • • • , J.
For any E ∈ E h , let Ẽ be the segment connecting two vertices of E and denote F Ẽ : Ê → Ẽ the affine mapping from the reference element Ê to Ẽ.

Then (Π h v h )(F E (t)) = v h (F Ẽ (t)), ∀t ∈ Ê.
Now we are in the position to define the finite element solution for the problem (2.2)-(2.3). Given f ∈ H 2 (Ω) and the observation g i at x i of the boundary value g 0

(x i ), i = 1, 2, • • • n, find (u h , λ h ) ∈ V h × Q h such that (∇u h , ∇v h ) Ω h + λ h , Π h v h n = (I h f, v h ) Ω h , ∀v h ∈ V h , (2.9) 
µ h , Π h u h n = µ h , g n , ∀µ h ∈ Q h , (2.10) 
where (•, •) Ω h is the inner product of L 2 (Ω h ) and I h : C( Ω) → V h is the standard Lagrange interpolation operator. The interpolation operator I h can be replaced by the Clément interpolant [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF] if the source f is less regular. We remark that the computation in (2.9)-(2.10) does not involve any geometric representation of the boundary Γ due to the introduction of the quadrature. Following [START_REF] Pitkäranta | Local stability conditions for the Babuška method of Lagrange multiplier[END_REF][START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF] we introduce the following mesh-dependent Sobolev norms

v 2 1/2,h = E∈E h h -1 E v 2 L 2 (E) , v 2 -1/2,h = E∈E h h E v 2 L 2 (E) , ∀v ∈ L 2 (Γ).
We use the following norms for functions

v h ∈ V h , µ h ∈ Q h v h V h = ∇v h 2 L 2 (Ω h ) + Π h v h 2 1/2,h 1/2 , µ h Q h = µ h -1/2,h .
We consider now the well-posedness of the discrete problem (2.9)-(2.10) in the framework of Babuška-Brezzi theory. We start from the following simple lemma.

Lemma 2.2.2. There exists a constant

C such that | 1, v -1, v n | ≤ C E∈E h 1 0 h E |v E | + h 2 E |v E | + h 3 E |v E | dt, ∀v ∈ W 2,1 (Γ),
where

vE (t) = v| E (F E (t)) for any E ∈ E h .
Proof. We first note that since Γ is smooth, we have

|F E (t)| ≤ Ch 2 E , |F E (t)| ≤ Ch 3 E for any E ∈ E h . Since | 1, v -1, v n | ≤ E∈E h E vds -Q T E (v E (t)|F E (t)|) ,
the lemma follows easily from Lemma 2.2.

1 by taking w = vE (t)|F E (t)| in each element E ∈ E h . We omit the details. Lemma 2.2.3. Let K h = {v h ∈ V h : Π h v h , µ h n = 0, ∀µ h ∈ Q h }.
There exists a constant α > 0 independent of h, n such that

(∇v h , ∇v h ) Ω h ≥ α v h 2 V h , ∀v h ∈ K h .
Proof. For simplicity we write

ṽh = Π h v h ∈ Q h for any v h ∈ V h . Then ṽh , ṽh n = 0 for any v h ∈ K h . By Lemma 2.2.2 for v = ṽ2
h we obtain after some simple computations

| ṽh , ṽh -ṽh , ṽh n | ≤ Ch( ∇v h 2 L 2 (Ω h ) + Ch 1/2 ∇v h L 2 (Ω h ) ṽh L 2 (Γ) ). Thus ṽh 2 1/2,h ≤ Ch -1 ṽh 2 L 2 (Γ) = Ch -1 | ṽh , ṽh -ṽh , ṽh n | ≤ C ∇v h 2 L 2 (Ω h ) + Ch ∇v h L 2 (Ω h ) ṽh 1/2,h . This shows ∇v h 2 L 2 (Ω h ) ≥ C ṽh 2 
1/2,h and completes the proof.

Lemma 2.2.4. There exists constants

C 1 , C 2 > 0, h 0 > 0 independent of h, n such that for h ≤ h 0 , C 1 µ h L 2 (Γ) ≤ µ h n ≤ C 2 µ h L 2 (Γ) , ∀µ h ∈ Q h . Proof. Since μh (t) = µ h (F E (t)) is linear in Ê for any E ∈ E h , we use Lemma 2.2.2 for v = µ 2 h to obtain | µ h , µ h -µ h , µ h n | ≤ C E∈E h Ê h E |μ h | 2 dt ≤ C µ h 2 L 2 (Γ) .
This shows the right inequality. Next by definition we have

µ h , µ h n = E∈E h Q T E (μ 2 h |F E |). (2.11)
From (2.5) and (2.2) we know that for any

E ∈ E h , QT E (μ 2 h |F E |) = 1 2 n E j=0 t j+1 t j μh (t j ) 2 |F E (t j )| + μ2 h (t j+1 )|F E (t j+1 )| dt ≥ Ch E n E j=0 t j +1 t j μh (t j ) 2 + μh (t j+1 ) 2 dt ≥ Ch E n E j=0 t j +1 t j |μ h (t)| 2 dt,
where in the last inequality we have used the fact that μh is linear in Ê and the Jensen inequality for convex functions.

Thus | QT E (μ 2 h |F E |)| ≥ C µ h 2 L 2 (E) , ∀E ∈ E h .
On the other hand, by (2.6) we have

|Q T E (μ 2 h |F E |) -QT E (μ 2 h |F E |)| ≤ Ch E µ h 2 L 2 (E) .
Therefore, by (2.11),

µ h n ≥ C µ h L 2 (Γ)
for sufficiently small h. This completes the proof.

We have the following inf-sup condition for the empirical inner product.

Lemma 2.2.5.

There exists a constant h 0 , β > 0 independent of h, n such that for

h ≤ h 0 , sup v h ∈V h \{0} Π h v h , µ h n v h V h ≥ β µ h Q h , ∀µ h ∈ Q h .
Proof. The proof follows an idea in [START_REF] Pitkäranta | Boundary subspaees for the finite element method with Lagrange multipliers[END_REF] where the inf-sup condition for the bilinear form v h , µ h is proved. Let y j , j = 1, 2, • • • , J, be the nodes of the mesh M h on Γ and denote ψ j , j = 1, 2, • • • , J, the corresponding nodal basis function of V h . For any

µ h ∈ Q h , we define v h (x) = J j=1 µ h (y j )ψ j (x) ∈ V h . It is easy to check that v h 2 V h ≤ C J j=1 |µ h (y j )| 2 ≤ Ch -1 µ h 2 L 2 (Γ) .
(2.12)

From the definition of

Π h v h ∈ Q h we know that Π h v h = µ h on Γ. Thus by Lemma 2.2.4, Π h v h , µ h n = µ h 2 n ≥ C µ h 2 L 2 (Γ) .
This completes the proof by using (2.12).

By Lemma 2.2.4 we know that for any

v h ∈ V h , µ h ∈ Q h | Π h v h , µ h n | ≤ C Π h v h L 2 (Γ) µ h L 2 (Γ) ≤ C v h V h µ h Q h .
Now by the standard Babuška-Brezzi theory (cf., e.g., [16, Proposition 5.5.4]) we obtain the following theorem.

Theorem 2.2.1.

There exists a constant h 0 > 0 independent of h, n such that for any h ≤ h 0 , the discrete problem (2.9)-(2.10) has a unique solution (u h , λ h ) ∈ Chapter 2. Elliptic problems with observational boundary data

V h × Q h . Moreover, for any (u I , λ I ) ∈ V h × Q h , we have u h -u I V h + λ h -λ I Q h ≤ C 3 i=1 M ih ,
where the errors M 1h , M 2h , M 3h are defined by

M 1h = sup v h ∈V h \{0} |(∇u I , ∇v h ) Ω h + λ I , Π h v h n -(I h f, v h ) Ω h | v h V h , M 2h = sup µ h ∈Q h \{0} | µ h , Π h u I -g 0 n | µ h Q h , M 3h = sup µ h ∈Q h \{0} | µ h , e n | µ h Q h .

Convergence of the finite element method

We will use the Lenoir homeomorphism

Φ h : Ω h → Ω [70]. The map- ping Φ h is defined elementwise: for any K ∈ Mh , Φ h | K = Ψ K is a C 2 - diffeomorphism from K to K. If no edge of K belongs to ∂Ω h , Ψ K = I, the identity.
If one edge Ẽ of K lies on ∂Ω h which corresponds to the curved edge E of K ∈ M h , Ψ K maps Ẽ onto E and Ψ K = I, the identity, along the other two edges of K. We need the following properties of Ψ K from [START_REF] Lenoir | Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[END_REF] in the following lemma.

Lemma 2.3.1. The following assertions are valid for any K ∈ Mh and K ∈ M h . 1 • The mapping Ψ K : K → K satisfies the following estimates

D s (Ψ K -I) L ∞ ( K) ≤ Ch 2-s , ∀s ≤ 2, sup x∈ K |J(Ψ K )(x) -1| ≤ Ch,
where J(Ψ K ) denotes the modulus of the Jacobi determinant of Ψ K .

2 • The mapping Ψ -1 K : K → K satisfies D s (Ψ -1 K -I) L ∞ (K) ≤ Ch 2-s , ∀s ≤ 2, sup x∈K |J(Ψ -1 K )(x) -1| ≤ Ch.
Let r h : L 1 (Ω h ) → V h be the Clément interplant [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] which enjoys the following properties

|v -r h v| H j ( K) ≤ Ch m-j |v| H m (∆ K ) , ∀ K ∈ Mh , 0 ≤ j ≤ m, m = 1, 2, (2.1) |v -r h v| H j (e) ≤ Ch m-j-1/2 |v| H m (∆e) , ∀e ∈ Ẽh , 0 ≤ j < m, m = 1, 2, (2.2)
where Ẽh is the set of all sides of the mesh Mh , and for any set A ⊂ Ω h , ∆ A is the union of the elements surrounding A. We remark that (2.1) is proved in [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] and (2.2) is the consequence of (2.1) and the following scaled trace inequality

|v| L 2 (e) ≤ Ch -1/2 v L 2 (∆e) + Ch 1/2 ∇v L 2 (∆e) , ∀v ∈ H 1 (Ω h ).
We will assume in this section that the solution u ∈ H 2 (Ω) and thus λ ∈ H 1/2 (Γ). By the trace theorem, there exists a function λ ∈ H 1 (Ω) such that λ = λ on Γ and λ H 1 (Ω) ≤ C λ H 1/2 (Γ) . Now we define the following

interpolation operator R h : L 2 (Ω) → L 2 (Ω) R h v = [r h (v • Φ h )] • Φ -1 h , ∀v ∈ L 2 (Ω).
We notice that similar interpolation functions are used in [START_REF] Lenoir | Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[END_REF] where the Clément interpolation operator is replaced by the Lagrangian interpolation operator. The following theorem can be easily proved by using Lemma 2.3.1 and (2.1)-(2.2).

Lemma 2.3.2. For any v ∈ H 2 (Ω), we have v-R h v H j (Ω) ≤ Ch m-j v H m (Ω) , v -R h v H j (Γ) ≤ Ch m-j-1/2 v H m (Ω) , 0 ≤ j ≤ m -1, m = 1, 2.
For any 

v h ∈ V h , we denote vh = v h • Φ -1 h which is a function defined in Ω. Let Ω * = ∪ K∈M * h K,
∈ V h , |(∇v h , ∇w h ) Ω h -(∇v h , ∇ wh )| ≤ Ch vh H 1 (Ω * ) wh H 1 (Ω * ) .
(2.3)

Now by the Poincáre inequality, it is easy to see that

v L 2 (Ω) ≤ C ∇v L 2 (Ω) + C v 1/2,h , ∀v ∈ H 1 (Ω). Thus by (2.3) vh H 1 (Ω) ≤ ∇v h L 2 (Ω) + C vh 1/2,h ≤ C v h V h + Ch 1/2 vh H 1 (Ω) ,
which implies, for sufficiently small h,

vh H 1 (Ω) ≤ C v h V h , ∀v h ∈ V h . (2.4) Lemma 2.3.3. Let (u, λ) ∈ H 2 (Ω) × H 1/2 (Γ) be the solution of (2.2)-(2.
3). We have

u -u h • Φ -1 h H 1 (Ω) + λ -λ h -1/2,h ≤ Ch u H 2 (Ω) + 3 i=1 M ih ,
where M ih , i = 1, 2, 3, are defined in Theorem 2.2.1 with

u I = r h (u • Φ h ) ∈ V h and λ I = R h λ ∈ Q h .
Proof. We first observe that by Lemma 2.3.2

λ -λ I L 2 (Γ) ≤ Ch 1/2 λ H 1 (Ω) ≤ Ch 1/2 λ H 1/2 (Γ) ≤ Ch 1/2 u H 2 (Ω) .
Notice that ǔh = R h u, we obtain by Lemma 2.3.2, (2.4), and Theorem 2.2.1 that

u -u h • Φ -1 h H 1 (Ω) + λ -λ h -1/2,h ≤ u -R h u H 1 (Ω) + λ -R h λ -1/2,h + C( u h -u I V h + λ h -λ I Q h ) ≤ Ch u H 2 (Ω) + C 3 i=1 M ih .
This completes the proof.

Lemma 2.3.4. We have M 1h ≤ Ch| ln h| 1/2 ( u H 2 (Ω) + f H 2 (Ω) ).
Chapter 2. Elliptic problems with observational boundary data Proof. We first note that by (2.2) we have

(∇u, ∇v h ) + λ, vh = (f, vh ), ∀v h ∈ V h . Now since Π h v h = vh on Γ, for any v h ∈ V h , we have |(∇u I , ∇v h ) Ω h + λ I , Π h v h n -(I h f, v h ) Ω h | ≤ |(f, vh ) -(I h f, v h ) Ω h | + |(∇u I , ∇v h ) Ω h -(∇u, ∇v h )| + | λ, vh -λ I , vh n |. Since Φ h = Ψ K is identity for K ∈ M h \M * h , we have (f, vh ) -(I h f, v h ) Ω h = K∈M * h K ((f • Ψ K )v h J(Ψ K ) -I h (f • Ψ K )v h )dx,
which implies by using Lemma 2.3.1 that

|(f, vh ) -(I h f, v h ) Ω h | ≤ Ch f L 2 (Ω * ) vh L 2 (Ω * ) + Ch 2 f H 2 (Ω) v h L 2 (Ω) . Obviously, f L 2 (Ω * ) ≤ Ch 1/2 f L ∞ (Ω) ≤ Ch 1/2 f H 2 (Ω)
. Moreover, by the well-known embedding theorem [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF] 

v L p (Ω) ≤ Cp 1/2 v H 1 (Ω) , ∀v ∈ H 1 (Ω), ∀p > 2,
we have

v L 2 (Ω * ) ≤ C|Ω * | 1 2 -1 p p 1/2 v H 1 (Ω) ≤ Ch 1 2 -1 p p 1/2 v H 1 (Ω) .
By taking p = ln(h -1 ) we obtain then

v L 2 (Ω * ) ≤ Ch 1/2 | ln h| 1/2 v H 1 (Ω) , ∀v ∈ H 1 (Ω). (2.5)
This implies 

|(f, vh ) -(I h f, v h ) Ω h | ≤ Ch 2 | ln h| 1/2 f H 2 (Ω) v h V h . ( 2 
|(∇u I , ∇v h ) Ω h -(∇u, ∇v h )| (2.7) ≤ |(∇u I , ∇v h ) Ω h -(∇ǔ I , ∇v h )| + |(∇(u -ǔI ), ∇v h )| ≤ Ch u H 2 (Ω) v h V h .
By using Lemma 2.2.2 one can prove

| vh , wh n -vh , wh | ≤ Ch v h H 1 (Ω h ) w h H 1 (Ω h ) , ∀v h , w h ∈ V h . (2.8) Thus | λ I , vh n -λ I , vh | ≤ Ch r h ( λ • Φ h ) H 1 (Ω h ) v h H 1 (Ω h ) ≤ Ch u H 2 (Ω) v h V h , which implies by using Lemma 2.3.2 that | λ, vh -λ I , vh n | ≤ Ch u H 2 (Ω) v h V h .
(2.9)

The estimate for M 1h now follows from (2.6), (2.7) and (2.9).

Lemma 2.3.5. We have

M 2h ≤ Ch u H 2 (Ω) .
Proof. We first we observe that the argument in the proof of Lemma 2.2.1 implies that

1 0 w(t)dt -Q T E (w) ≤ C w L 2 ( Ê) , ∀w ∈ H 1 ( Ê).
For any v ∈ H 1 (Γ), by taking

w(t) = vE (t)|F E (t)| in each element E ∈ E h , where vE (t) = v| E (F E (t)), we know that | 1, v -1, v n | ≤ C E∈E h (h E v E L 2 ( Ê) + h 2 E vE L 2 ( Ê) ).
We use the above inequality for v = µ h ϕ, where ϕ = u -ǔI in Γ, to obtain

| µ h , ϕ -µ h , ϕ n | ≤ C E∈E h μh L 2 ( Ê) (h E φE L 2 ( Ê) + h 2 E φ E L 2 ( Ê) ),
where we have used the fact μh

W 1,∞ ( Ê) ≤ C μh L 2 ( Ê) since μh ∈ P 1 ( Ê).
This implies by using Lemma 2.3.2 again

| µ h , u -ǔI -µ h , u -ǔI n | ≤ C µ h L 2 (Γ) ( u -R h u L 2 (Γ) + h|u -R h u| H 1 (Γ) ) ≤ Ch 3/2 u H 2 (Ω) µ h L 2 (Γ) .
This completes the proof.

The following theorem shows the convergence of the finite element solution in the sense of expectation. Theorem 2.3.1. We have

E u -u h • Φ -1 h H 1 (Ω) + h 1/2 λ -λ h L 2 (Γ) ≤ Ch| ln h| 1/2 ( u H 2 (Ω) + f H 2 (Ω) ) + Ch -1 (σn -1/2 ). Proof. By Lemmas 2.3.3-2.3.5 we are left to estimate E[M 3h ]. We first observe that E sup µ h ∈Q h \{0} | µ h , e n | 2 µ h 2 Q h ≤ Ch -1 E sup µ h ∈Q h \{0} | µ h , e n | 2 µ h 2 L 2 (Γ)
.

(2.10)

Let N h be the dimension of Q h and let {ψ j } N h j=1 be the orthonormal basis of Q h in the L 2 (Γ) inner product. Then for any µ h = N h j=1 (µ h , ψ j )ψ j , by
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| µ h , e n | 2 ≤ C n 2 µ h 2 L 2 (Γ) N h j=1 n i=1 e i ψ j (x i ) 2 .
Since e i , i = 1, 2, • • • , n, are independent and identically random variables, we have

E sup µ h ∈Q h \{0} | µ h , e n | 2 µ h 2 L 2 (Γ) ≤ C σ 2 n 2 N h j=1 n i=1 ψ j (x i ) 2 .
Since the number of measurement points in E, #T E ≤ Cnh E and N h ≤ Ch -1 , we obtain by using the inverse estimate that

N h j=1 n i=1 ψ j (x i ) 2 ≤ Cnh N h j=1 E∈E h ψ j 2 L ∞ (E) ≤ CN h n ≤ Cnh -1 . Therefore E sup µ h ∈Q h \{0} | µ h , e n | 2 µ h 2 L 2 (Γ) ≤ Ch -1 (σ 2 n -1 ). (2.11) 
This, together with (2.10), yields

E sup µ h ∈Q h \{0} | µ h , e n | 2 µ h 2 Q h ≤ Ch -2 (σ 2 n -1 ),
which completes the proof.

The following lemma will be useful in deriving the improved estimate for u -

u h • Φ -1 h L 2 (Ω) .
Lemma 2.3.6. We have

E sup µ h ∈Q h \{0} | e, µ h n | µ h H 1/2 (Γ) ≤ C| ln h|(σn -1/2 ).
Proof. Let h 0 = h ≤ 1 and h i = h (p+1-i)/(p+1) for 1 ≤ i ≤ p, where p ≥ 1 is an integer to be determined later. Obviously h i ≤ h i+1 , 0 ≤ i ≤ p. Let E h i be a uniform mesh over the boundary Γ and Q h i the finite element space defined in (2.3) over the mesh

Q h i . Let {y k h i } N h i
k=1 be the nodes of the mesh

E h i , i = 0, • • • , p. We introduce the following Clément-type interpolation operator π h i : L 1 (Γ) → Q h i such that for any v ∈ L 1 (Γ), (π h i v)(y k h i ) = 1 |S(y k h i )| S(y k h i ) v(x)ds(x), 1 ≤ k ≤ N h i ,
where S(y k h i ) is the union of the two elements sharing the common node y k h i . It is easy to show by scaling argument that v -

v -π h i v L 2 (Γ) ≤ h m i v H m (Γ) , ∀v ∈ H 1 (Γ), m = 0, 1.
π h i v L 2 (Γ) ≤ Ch 1/2 i v H 1/2 (Γ) , ∀v ∈ H 1/2 (Γ).
(2.12)

Now we introduce the telescope sum

µ h = p-1 i=0 (µ h i -µ h i+1 ) + µ hp , ∀µ h ∈ Q h = Q h 0 , (2.13) 
where

µ h i = π h i µ h ∈ Q h i , 0 ≤ i ≤ p + 1.
By (2.12)

µ h i -µ h i+1 L 2 (Γ) ≤ Ch 1/2 i+1 µ h H 1/2 (Γ) . (2.14)
Then the same argument in proving (2.11) implies

E sup µ h ∈Q h \{0} | e, µ h i -µ h i+1 n | µ h H 1/2 (Γ) ≤ Ch 1/2 i+1 h -1/2 i (σn -1/2 ), E sup µ h ∈Q h \{0} | e, µ hp n | µ h H 1/2 (Γ) ≤ Ch -1/2 p (σn -1/2 ).
By (2.13) we then obtain

E sup µ h ∈Q h \{0} | e, µ h n | µ h H 1/2 (Γ) ≤ C(p + 1)h -1 2(p+1) (σn -1/2 ).
This completes the proof by taking the integer p such that p < | ln h| ≤ p + 1.

Theorem 2.3.2. We have

E u -u h • Φ -1 h L 2 (Ω) ≤ Ch 2 | ln h|( u H 2 (Ω) + f H 2 (Ω) + g 0 H 2 (Γ) ) + C| ln h|(σn -1/2 ).
Proof. Let (w, p) ∈ H 1 (Ω) × H -1/2 (Γ) be the solution of the following problem

(∇w, ∇v) + p, v = (u -ǔh , v), ∀v ∈ H 1 (Ω), (2.15) 
µ, w = 0, ∀µ ∈ H -1/2 (Γ).

(2.16)

By the regularity theory of elliptic equations, (w, p) ∈ H 2 (Ω) × H 1 (Ω) and satisfies

w H 2 (Ω) + p H 1 (Ω) ≤ C u -ǔh L 2 (Ω) .
(2.17) (2.18)

Let w I = I h (w • Φ h ) ∈ V h be the Lagrange interpolation of w ∈ H 2 (Ω) and p I = r h (p•Φ h ) ∈ V h be
= (∇(w -wI ), ∇(u -ǔh )) + p -pI , u -ǔh + [(f, wI ) -(I h f, wI ) Ω h ] + [(∇w I , ∇u h ) Ω h -(∇ wI , ∇ǔ h )] + [ pI , u -ǔh -pI , u -ǔh n ] -pI , e n := I + • • • + VI.
By Lemma 2.3.1 and (2.17) we have

|I| + |II| ≤ Ch u -ǔh H 1 (Ω) u -ǔh L 2 (Ω) . (2.19)
By (2.6) and (2.17)

|III| ≤ Ch 2 | ln h| 1/2 f H 2 (Ω) w I V h (2.20) ≤ Ch 2 | ln h| 1/2 f H 2 (Ω) u -ǔh L 2 (Ω) . Since Φ h | K = I for K ∈ M h \M * h , by (2.
3), Lemma 2.3.1 and (2.17) we have

|IV| ≤ Ch wI H 1 (Ω * ) ǔh H 1 (Ω * ) .
Now by using (2.5), Lemma 2.3.1, and (2.17), we have

ǔh H 1 (Ω * ) ≤ u -ǔh H 1 (Ω) + Ch 1/2 | ln h| 1/2 u H 2 (Ω) , wI H 1 (Ω * ) ≤ Ch u -ǔh L 2 (Ω) + Ch 1/2 | ln h| 1/2 u -ǔh L 2 (Ω) .
This implies

|IV| ≤ C h u -ǔh H 1 (Ω) + h 2 | ln h| u H 2 (Ω) u -ǔ L 2 (Ω) . (2.21)
To estimate the term V we first use the triangle inequality

|V| ≤ | pI , u -ǔI -pI , u -ǔI n | + | pI , u I -ǔh -pI , ǔI -ǔh n | By using Lemma 2.2.2 for v = pI (u -ǔI ) one obtains easily | pI , u -ǔI -pI , u -ǔI n | ≤ Ch 2 g 0 H 2 (Γ) pI L 2 (Γ) ≤ Ch 2 g 0 H 2 (Γ) u -ǔh L 2 (Ω) ,
where we have used the estimate pI

L 2 (Γ) ≤ C p H 1 (Ω) ≤ C u -ǔh L 2 (Ω)
. By (2.8) and (2.17) we have

| pI , u I -ǔh -pI , ǔI -ǔh n | ≤ Ch p I H 1 (Ω h ) u I -u h H 1 (Ω h ) ≤ Ch u I -u h H 1 (Ω h ) u -ǔh L 2 (Ω) .
Thus 

|V| ≤ Ch 2 (h -1 u -ǔh H 1 (Ω) + u H 2 (Ω) + g 0 H 2 (Γ) ) u -ǔh L 2 (Ω) . ( 2 
u -ǔh L 2 (Ω) ≤ Ch 2 | ln h| u H 2 (Ω) + f H 2 (Ω) + g 0 H 2 (Γ) (2.23) + Ch u -ǔh H 1 (Ω) + sup µ h ∈Q h \{0} | e, µ h n | µ h H 1/2 (Γ) .
The lemma now follows from Theorem 2.3.1 and Lemma 2.3.6.

Sub-Gaussian random errors

In this section, we will study the convergence of our finite element method when the random errors added to the boundary data are sub-Gaussian. We will use the theory of empirical processes [START_REF] Utreras | Convergence rates for multivariate smoothing spline functions[END_REF][START_REF] Van Der Vaart | Weak Convergence and Empirical Processes: with Applications to Statistics[END_REF].

Definition 2.4.1. A random variable X is called sub-Gaussian with parameter σ if E[e λ(X-E[X]) ] ≤ e σ 2 λ 2 /2 , ∀ λ ∈ R.
The following definition on the Orilicz ψ 2 -norm will be used in our analysis.

Definition 2.4.2. Let ψ 2 = e x 2 -1 and X be a random variable. The ψ 2 norm of X is defined as

X ψ 2 = inf C > 0 : E ψ 2 |X| C ≤ 1 . It is known that [112, Lemma 2.2.1] if X ψ 2 ≤ K, then P(|X| > z) ≤ 2 exp - z 2 K 2 , ∀ z > 0. (2.1)
Inversely, if

P(|X| > z) ≤ C exp - z 2 K 2 , ∀ z > 0, (2.2) then X ψ 2 ≤ √ 1 + CK.
Definition 2.4.3. Let (T, d) be a semi-metric space, a stochastic process {X t : t ∈ T } is called a sub-Gaussian process with respect to the semi-metric d, if

P(|X t -X s | > z) ≤ 2 exp - 1 2 z 2 d 2 (t, s) , ∀ s, t ∈ T, z > 0.
For a semi-metric space (T, d), the covering number N (ε, T, d) is the minimum number of ε-balls that covers T . A set is called ε-separated if the distance of any two points in the set is strictly greater than ε. The packing number D(ε, T, d) is the maximum number of ε-separated points in T . It is easy to check that [112, P.98] 

N (ε, T, d) ≤ D(ε, T, d) ≤ N ( ε 2 , T, d). ( 2 
|X t -X s | ψ 2 ≤ K diam T 0 D(ε, T, d) dε.
Here K > 0 is some constant.

The following lemma provides the estimate of the covering number for finite dimensional subsets [START_REF] Van De Geer | Empirical process in M-estimation[END_REF]Corollary 2.6].

Lemma 2.4.2. Let G be a finite dimensional subspace of L 2 (D) of dimension N > 0 and G R = {f ∈ G : f L 2 (D) ≤ R}. Then N (ε, G R , • L 2 (D) ) ≤ (1 + 4R/ε) N , ∀ε > 0. Theorem 2.4.1. We have u -u h • Φ -1 h H 1 (Ω) ψ 2 + h 1/2 λ -λ h L 2 (Γ) ψ 2 ≤ Ch| ln h| 1/2 ( u H 2 (Ω) + f H 2 (Ω) ) + Ch -1 (σh -1/2 ). Proof. By Lemmas 2.3.3-2.3.5 we are left to estimate M 3h ψ 2 . Let F h = {µ h ∈ Q h : µ h L 2 (Γ) ≤ 1}, then M 3h ψ 2 ≤ h -1/2 sup µ h ∈F h |µ h , e n | ψ 2 .
(2.4)

For any µ h ∈ F h , denote by E n (µ h ) = µ h , e n . Then E n (µ h ) -E n (µ h ) = n i=1 c i e i , where c i = α i (µ h -µ h )(x i ), i = 1, 2, • • • , n. For any λ > 0, since α i ≤ B 4 n -1 by (2.8), E e λ n i=1 c i e i ≤ e 1 2 λ 2 σ 2 n i=1 c 2 i ≤ e 1 2 B 4 λ 2 σ 2 n -1 µ h -µ h 2 n = e 1 2 σ 2 1 λ 2 ,
where

σ 1 = B 4 σn -1/2 µ h -µ h n . Thus E n (µ h ) -E n (µ h
) is a sub-Gaussian process with the parameter σ 1 . This implies by (2.1) that 

P(|E n (µ h -µ h )| > z) ≤ 2e -z 2 /2σ 2 1 , ∀z > 0. Thus E n (µ h ) is a sub-Gaussian random process with respect to the semi- distance d(µ h , µ h ) = µ h -µ h * n , where µ h * n = B 4 σn -1/2 µ h
µ h ∈F h | µ h , e n | ψ 2 ≤ K 2C 2 B 4 σn -1/2 0 log N ( ε 2 , F h , • * n ) dε = K 2C 2 B 4 σn -1/2 0 log N ( ε 2B 4 σn -1/2 , F h , • n ) dε.
By Lemma 2.2.4 and Lemma 2.4.2 we know that for any δ > 0,

N (δ, F h , • n ) ≤ N (C -1 1 δ, F h , • L 2 (Γ) ) ≤ (1 + 4C 1 /δ) N h ,
where N h is the dimension of Q h which is bounded by Ch -1 . Therefore,

sup µ h ∈F h | µ h , e n | ψ 2 ≤ Ch -1/2 2C 2 B 4 σn -1/2 0 log 1 + Cσn -1/2 ε dε ≤ Ch -1/2 (σn -1/2 ). (2.5) 
This shows M 3h ψ 2 ≤ Ch -1 (σn -1/2 ) by (2.4).

By (2.2), Theorem 2.4.1 implies that the probability of the H 1 -finite element error violating the convergence order O(h|

ln h| 1/2 ( u H 2 (Ω) + f H 2 (Ω) )+ h -1 (σn -1/2 )) decays exponentially.
Theorem 2.4.2. We have

u -u h • Φ -1 h L 2 (Ω) ψ 2 ≤ Ch 2 | ln h|( u H 2 (Ω) + f H 2 (Ω) + g 0 H 2 (Γ) ) + C| ln h|(σn -1/2 ). Proof. Let G h = {µ h ∈ Q h : µ h H 1/2 (Γ) ≤ 1}. By (2.23) we are left to show sup µ h ∈G h | µ h , e n | ψ 2 ≤ C| ln h|(σn -1/2 ).
(2.6)

Again we use the telescope sum in (2.13) and obtain

sup µ h ∈G h | µ h , e n | ψ 2 (2.7) ≤ p-1 i=0 sup µ h ∈G h | µ h i -µ h i+1 , e n | ψ 2 + sup µ h ∈G h | µ hp , e n | ψ 2 .
By the same argument as the one in the proof of (2.5) and using (2.14) we have 

sup µ h ∈G h | µ h i -µ h i+1 , e n | ψ 2 ≤ Ch 1/2 i+1 (h -1/2 i + h -1/2 i+1 )(σn -1/2 ), sup µ h ∈G hp | µ h , e n | ψ 2 ≤ Ch -1/2 p (σn -1/2
(Ω) + f H 2 (Ω) + g 0 H 2 (Γ) ) + | ln h|(σn -1/2
)) decays exponentially.

Numerical examples

In this section, we show several numerical experiments to verify the theoretical analysis in this chapter. The analyses in Section 2.3 and Section 2.4 suggest that the optimal convergence rate can be achieved by taking n = O(h -4 ). For the examples below, we take the exact solution u 0 = sin(5x + 1) sin(5y + 1).

Chapter 2. Elliptic problems with observational boundary data Example 2.5.1. We take Ω = (0, 1) × (0, 1). We construct the finite element mesh by first dividing the domain into h -1 ×h -1 uniform rectangles and then connecting the lower left and upper right angle. We set {x i } n i=1 being uniformly distributed on Γ, and e i , i = 1, 2, • • • , n, being independent normal random variables with variance σ = 2. We take different n = h -i , i = 1, 2, 3, 4. Figure 2.1 shows the convergence rate of the error in the H 1 and L 2 norm for each choice of n. Table 2.1 show the convergence rate α in the H 1 norm and the convergence rate β in the L 2 norm.

(a) H 1 convergence (b) L 2 convergence FIGURE 2
We observe that the numerical results confirm our theoretical analysis. The optimal convergence rate is achieved when choosing n = h -4 while the other choices do not achieve optimal convergence. For example, when n = h -2 , the L 2 error is approximately O(h 1 ) and no convergence for the H 1 error.

Example 2.5.2. We take Ω to be the unit circle. The mesh is depicted in Figure 2.2. We set {x i } n i=1 being uniformly distributed on Γ, and let e i = η i + α i , i = 1, 2, • • • , n, where η i and α i are independent normal random variables with variance σ 1 = 1 and norm and the convergence rate β in the L 2 norm. Here again we observe the numerical results confirm our theoretical analysis.

σ 2 = 10e i , i = 1, 2, • • • , n. We take different n = h -i , i = 1, 2, 3, 4.
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n h H 1 error α L 2 error β n = h -1 0.

Part II

Two imaging methods and analysis of cell model for electropermeabilization

Chapter 3

The Linearized inverse problem in multifrequency EIT

Introduction

In this chapter, we propose a linearized method to solve the multifrequency EIT problem. Electrical impedance tomography (EIT) is a diffusive imaging modality in which the conductivity distribution of the concerned object is recovered from the electrode voltage measurements on the boundary, induced by (multiple) known injected currents. The modality is safe, cheap and portable, and has the potential to be an established clinical imaging method in a multitude of applications [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. However, the EIT inverse problem is severely ill-posed, and up to now, the resulting image quality is rather modest when compared with other modalities. This has motivated numerous studies on EIT imaging techniques.

The static imaging, which aims at recovering the absolute conductivity values, has so far achieved only limited success in practice. This is attributed to the fact that the electrode voltages are insensitive to localized conductivity changes, and thus the reconstructions are very sensitive to inevitable data noise as well as modelling errors, e.g., the boundary shape and electrode positions (and contact impedances). Hence, apart from accurate data, a very accurate forward model is also required for the success of static imaging, which is often difficult to obtain in practice. One prominent idea is to use difference imaging, in the hope of cancelling out the errors due to boundary shape, electrode and other systematic errors. One traditional approach to overcome these issues is the time difference imaging, where an image of the resulting conductivity change is produced by inverting a linearized sensitivity model. A second approach is multifrequency electrical impedance tomography (mfEIT), also known as electrical impedance tomography spectroscopy, and it has attracted some attention in recent years.

In mfEIT, one exploits the frequency dependence of the conductivity distribution. Experimentally, researchers have observed that many biological tissues exhibit strong frequency dependence within certain frequency ranges [START_REF] Geddes | The specific resistance of biological material -A compendium of data for the biomedical engineeer and physiologist[END_REF][START_REF] Gabriely | The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz[END_REF][START_REF] Laufer | Electrical impedance characterization of normal and cancerous human hepatic tissue[END_REF]. In mfEIT, the boundary voltage measurements are recorded simultaneously, whilst varying the modulation frequency of the injected current. The multifrequency approach is expected to be especially useful for diagnostic imaging of physiological conditions such as acute stroke, brain injury, and breast cancer, since patients are admitted into care after Chapter 3. The Linearized inverse problem in multifrequency EIT the onset of the pathology and a baseline recording of healthy tissue is not available.

There have been several studies on frequency-difference imaging. Several earlier pieces of works include [START_REF] Griffiths | A dual-frequency applied potential tomography technique: computer simulations[END_REF][START_REF] Schlappa | Systematic errors in multifrequency EIT[END_REF][START_REF] Yerworth | Electrical impedance tomography spectroscopy (EITS) for human head imaging[END_REF]. For example, a multifrequency experimental design which provides up to 64 electrodes for imaging the head was described in [START_REF] Yerworth | Electrical impedance tomography spectroscopy (EITS) for human head imaging[END_REF]. In these useful works, the simple frequency difference (between two neighboring frequencies) was often employed. Seo et al. [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF] proposed a weighted frequency difference imaging technique, which is based on a suitable weighted voltage difference between any two sets of data. It was numerically shown that the approach can accommodate geometrical errors, including imperfectly known boundary. This approach can improve the reconstruction quality when the background is frequency dependent. Recently, Malone et al. [START_REF] Malone | Multifrequency electrical impedance tomography using spectral constraints[END_REF] proposed a nonlinear reconstruction scheme, which uses all multifrequency data directly to reconstruct the volume fraction distribution of the tissues, and validated the approach on phantom experimental data; see also [START_REF] Malone | A reconstructionclassification method for multifrequency electrical impedance tomography[END_REF] for a recent probabilistic reconstruction-classification based technique. We also refer to [START_REF] Kim | Reconstructing small perturbations in electrical admittivity at low frequencies[END_REF] for a related mathematical study.

In this work, we shall analyze mfEIT in the linearized regime, by linearizing the forward model around the homogeneous background conductivity, as customarily adopted in practice [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF][START_REF] Adler | Electrical Impedance Tomography[END_REF]. We shall discuss both the mathematically convenient continuum model and the practically popular complete electrode model. Our main contributions are as follows. First, we systematically discuss mfEIT reconstruction in the following three different scenarios, i.e. known spectral profiles, partially known spectral profiles and unknown spectral profiles. This analysis generalizes the existing studies, especially [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF]. Second, we provide a rigorous justification of mfEIT for handling geometrical errors. Third, we present a novel group sparse reconstruction algorithm of iterative shrinkage type, which is easy to implement and converges fast. The extensive numerical experiments fully confirm our discussions.

The rest of the chapter is organized as follows. In Section 3.2, we mathematically formulate mfEIT using a continuum model, and analyze three important scenarios, depending on the knowledge of the spectral profiles. Then, in Section 3.3, we illustrate the potential of mfEIT in handling the modelling error due to an imperfectly known boundary shape. These analyses are then extended to the more realistic complete electrode model in Section 3.4. In Section 3.5, we present a novel group sparse reconstruction algorithm. Last, in Section 3.6, extensive numerical experiments are presented to illustrate the approach both with a known and with an imperfectly known boundary.

The Continuum Model

In this section, we mathematically formulate multifrequency electrical impedance tomography (mfEIT) in the continuum model. The extensions to an imperfectly known boundary and the complete electrode model will be described in Sections 3.3 and 3.4 below. Let Ω be an open bounded domain in R d (d = 2, 3), occupied by the object, with a smooth boundary ∂Ω. Then the mfEIT forward problem reads: given any input flux f ∈ L 2 (∂Ω) with ∂Ω f ds = 0 and the frequency-dependent conductivity distribution σ(x, ω), find u(x, ω) such that

           -∇ • (σ(x, ω)∇u(x, ω)) = 0 in Ω, σ(x, ω) ∂u ∂ν = f (x) on ∂Ω, ∂Ω u(x, ω)ds = 0, (3.1) 
where ω is the frequency, ∇ denotes the gradient with respect to the spatial variable x, and ν is the unit outward normal direction to the boundary ∂Ω.

The weak formulation of problem (3.1) is given by: find u = u(x, ω) ∈ H 1 (Ω), with the grounding condition ∂Ω u(x, ω)ds = 0, such that

Ω σ∇u • ∇vdx = ∂Ω f vds, v ∈ H 1 (Ω).
Throughout, we assume that the frequency-dependent conductivity distribution σ(x, ω) takes the following separable form:

σ(x, ω) = K k=0 σ k (x)s k (ω), (3.2) 
where K + 1 is the number of spectral profiles, and {s k (ω)} K k=0 are a collection of (possibly only partially known) material spectra, often referred to as endmembers, and {δσ k (x)} K k=0 are scalar functions representing the corresponding proportions, also known as abundances, following the terminology in the hyperspectral unmixing literature [START_REF] Keshava | Spectral unmixing[END_REF]. Further, we shall assume σ 0 (x) = 1 + δσ 0 (x),

σ k (x) = δσ k (x), k = 1, . . . , K,
where the δσ k s are small (in suitable L p (Ω) norms) so that a linearized model is valid. The δσ k s, including the background δσ 0 , are all unknown and represent the small inclusions/anomalies in the object Ω. We assume that they have compact spatial supports in the domain Ω, and are disjoint from each other. We also assume that the background spectral profile s 0 (ω) is known.

In order to gain sufficient information about the conductivity distribution σ(x, ω), we apply M linearly independent input currents {f n } M n=1 ⊂ L 2 (∂Ω), with the grounding condition ∂Ω f n ds = 0, to the boundary ∂Ω.

Let {u n ≡ u n (x, ω)} M n=1 ⊂ H 1 (Ω) be the corresponding solutions to (3.1), i.e., Ω σ∇u n • ∇vdx = ∂Ω f n vds, v ∈ H 1 (Ω). (3.3)
Then the mfEIT inverse problem is to recover the abundances {δσ k } K k=0 and/or other quantities of interest from noisy measurements of the electrode voltage {u n (x, ω)} M n=1 on the boundary ∂Ω at a number of modulating frequencies {ω q } Q q=1 . Next we derive the linearized model for the inverse problem. The linearized model is customarily employed in EIT applications due to its computational convenience [START_REF] Holder | Electrical Impedance Tomography: Methods, History and Applications[END_REF][START_REF] Adler | Electrical Impedance Tomography[END_REF]. In this work, we adopt a linearized model based on an integral representation. Let v m ∈ H 1 (Ω) be the potential corresponding to the unperturbed conductivity distribution σ 0 (x, ω) ≡ s 0 (ω) with the input current f m , namely

Ω σ 0 ∇v m • ∇vdx = ∂Ω f m vds, v ∈ H 1 (Ω). (3.4) 
We observe that v m = v * m /s 0 (ω), where v * m is the solution of (3.4) corresponding to the case s 0 ≡ 1. In other words, the dependence of v m on the frequency ω is explicit. By taking v = v m in (3.3) and v = u n in (3.4), and subtracting the two identities, we obtain

K k=0 s k (ω) Ω δσ k ∇u n • ∇v m dx = ∂Ω (f n v m -f m u n )ds.
Hence, under the approximation ∇u n (x, ω) ≈ ∇v n (x, ω) in the domain Ω (valid in the linear regime), and using the identity v m = v * m /s 0 (ω), we arrive at the following linearized model

K k=0 s k (ω) Ω δσ k ∇v * n • ∇v * m dx = s 0 (ω) 2 ∂Ω (f n v m -f m u n )ds. (3.5)
Note that the right hand side of this identity is completely known: u n is the measured electrode voltage data (and thus depends on the frequency ω), and v m can be computed (using the reference conductivity σ 0 (x, ω) ≡ s 0 (ω)), and thus it is known upon simple computation. Next, we triangulate the domain Ω into a shape regular quasi-uniform mesh of simplicial elements {Ω l } L l=1 such that Ω = ∪ L l=1 Ω l , and consider a piecewise constant approximation of the inclusions δσ k s: for k = 0, . . . , K,

δσ k (x) ≈ L l=1 (δσ k ) l χ Ω l (x),
where χ Ω l is the characteristic function of the lth element Ω l , and (δσ k ) l denotes the value of the kth abundance δσ k in the lth element Ω l . Upon substituting the approximation into (3.5), we have the following finite-dimensional linear inverse problem

K k=0 s k (ω) L l=1 (δσ k ) l Ω l ∇v * n • ∇v * m dx = s 0 (ω) 2 ∂Ω (f n v m -f m u n )ds.
Last, we introduce the sensitivity matrix M and the data vector X. We use a single index j = 1, . . . , J with J = M 2 for the index pair (m, n) with j = M (m -1) + n, and introduce the sensitivity matrix M = [M jl ] ∈ R J×L with its entries M jl given by

M jl = Ω l ∇v * n • ∇v * m dx (j ↔ (m, n)),
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which is independent of the frequency ω. Likewise, we introduce a data vector X(ω) ∈ R J with its jth entry X j (ω) given by

X j (ω) = s 0 (ω) 2 ∂Ω (f n v m (ω) -f m u n (ω))ds (j ↔ (m, n)).
Upon writing the vectors A k = (δσ k ) l ∈ R L , k = 0, . . . , K, we obtain the following linear system (parameterized by the frequency ω)

M K k=0 s k (ω)A k = X(ω). (3.6) 
In the mfEIT inverse problem, the abundance vectors {A k } K k=0 are of primary interest and have to be estimated from the frequency dependent data X(ω), and occasionally the spectral profiles {s k (ω)} K k=γ1 are also of interest. (Recall that the background spectral profile s 0 (ω) is always supposed to be known.) Depending on the further a priori knowledge available about the spectral profiles {s k (ω)} K k=1 , we distinguish the following three cases:

(a) All the spectral profiles {s k (ω)} K k=0 are known.

(b) The spectral profiles {s k (ω)} K k=1 may not be fully known, but their frequency dependence differs substantially.

(c) The spectral profiles are only partially known, and we aim at a partial recovery of the abundances.

These three cases are of different degree of challenge, and we shall discuss them separately below.

Case (a): Known Spectral Profiles

First we consider the case when the spectral profiles {s k (ω)} K k=0 are all known. In some applications, this does not represent a restriction, since the spectral profiles of many materials can actually be measured accurately (see e.g. [START_REF] Gabriel | Electrical conductivity of tissue at frequencies below 1MHz[END_REF] for the electrical conductivity of tissues at frequencies below 1 MHz). Suppose that we can measure the boundary voltage u(x, ω) at Q distinct frequencies {ω q } Q q=1 . Then by writing S = (S kq ) ∈ R (K+1)×Q , with S kq = s k (ω q ), we get from (3.6) the following matrix equation

M AS = X, (3.7) 
where the matrix X = [X(ω 1 ) . . . X(ω Q )] ∈ R J×Q . In equation (3.7), the sensitivity matrix M can be precomputed, and the spectral profile matrix S and data X are known: Only the abundance matrix A = [A 0 . . . A K ] ∈ R L×(K+1) is unknown. It is natural to assume that a sufficiently large number of frequencies are taken, so that the corresponding spectral profile matrix S is incoherent in the sense that Q ≥ K + 1 and rank(S) = K + 1 (and presumably S is also well-conditioned). Then the matrix S admits a right inverse S -1 . By letting Y = XS -1 we obtain M A = Y.

These are K + 1 decoupled (and usually undetermined) linear system. By letting Y = [Y 0 . . . Y K ] ∈ R J×(K+1) , we have K + 1 independent (finitedimensional) linear inverse problems

M A k = Y k , k = 0, . . . , K, (3.8) 
where A k represents the kth abundance. Here each linear system determines one and only one abundance A k . The stable and accurate numerical solution of these ill-conditioned linear systems by suitable regularization techniques will be discussed in detail in Section 3.5 below.

The condition rank(S) = K + 1 on the matrix S is necessary and sufficient for the full decoupling of the abundances, and the well-conditioning of S ensures a stable decoupling procedure. It specifies the condition under which the abundance unmixing is practically feasible, and also the proper selection of the frequencies {ω q } Q q=1 such that rank(S) = K + 1. Note that the condition rank(S) = K + 1 depends essentially on the independence/incoherence of the continuous spectral profiles {s k (ω)} K k=0 (or frequency contrast). In the absence of this spectral incoherence, a fully decoupling is impossible. For example, consider the simple case of two endmembers, with s 0 (ω) = 1 + ω, s 1 (ω) = 2 + 2ω. Then no matter how many frequencies one chooses, the spectral matrix S is always of rank one. Thus it is impossible to separate the two abundances, and instead only a linear combination can be obtained.

The right inverse Y = XS -1 can alternatively be viewed as a leastsquares procedure min

Y ∈R J×(K+1) X -Y S F .
This formulation exhibits clearly that for a rank-deficient spectral matrix S, the proposed approach yields the minimum-norm matrix Y compatible with the data, and for an inconsistent S, it yields a best approximation via projection (even though the physical interpretation is less clear).

In addition, by the perturbation theory for least-squares problems [START_REF] Grcar | Spectral condition numbers of orthogonal projections and full rank linear least squares residuals[END_REF], the well-conditioning of the spectral matrix S implies that the procedure is also stable with respect to small perturbations in the spectral profiles.

It is worth noting that this approach represents a natural generalization of the weighted frequency difference EIT (fdEIT) method proposed in [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF], where only two abundances and two frequencies are considered (K = 1 and Q = 2).

Example 1. Consider the case with K = 1 and Q = 2, namely, two inclusions and two frequencies. We write

X = [X(ω 1 ) X(ω 2 )] and S = s 0 (ω 1 ) s 0 (ω 2 ) s 1 (ω 1 ) s 1 (ω 2 ) .
Therefore, if S is invertible, we obtain

Y = XS -1 = s 0 (ω 1 ) det S s 1 (ω 2 ) s 0 (ω 1 ) X(ω 1 ) - s 1 (ω 1 ) s 0 (ω 1 ) X(ω 2 ) X(ω 2 ) - s 0 (ω 2 ) s 0 (ω 1 ) X(ω 1 ) .
The second column of Y recovers exactly the weighted fdEIT method discussed in [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF]. Thus our method generalizes [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF], as the recent work [START_REF] Jang | Detection of admittivity anomaly on highcontrast heterogeneous backgrounds using frequency difference EIT[END_REF]. Our approach is slightly more general since it directly incorporates the multifrequency data. The use of multiple frequencies is expected to improve the numerical stability, especially when high correlation may occur between neighboring frequencies and possibly the spectral profiles themselves are not precisely known. Further, the use of multiple frequencies enables completely decoupling multiple inclusions, instead of only one inclusion, which can be very useful in practice. It is also worth noting that in the special case of constant background spectral profile s 0 (ω 1 ) = s 0 (ω 2 ), the approach reduces to the usual frequency difference. This delineates the region of validity of the usual frequency difference imaging for processing multifrequency data. We also note that the invertibility of spectral file matrix S is equivalent to the fact that the two rows of S are not collinear, i.e., the two frequency profiles are incoherent, and there is frequency dependent conductivity contrast.

Case (b): Spectral Profiles with Substantially Different Frequency Dependence

Next we consider the case when some of (or, possibly all) the spectral profiles {s k (ω)} K k=1 are not known, but do not change rapidly with the frequency ω, if compared to the remaining ones. Thus, instead of using the data X(ω) directly, it is natural to differentiate the relation (3.6) with respect to ω to eliminate the contributions from the abundances whose endmembers do not vary much with the frequency ω. This discriminating effect is useful in practice. For example, it is known that the conductivity of the malign tissues is more sensitive with respect to the frequency variation in certain frequency ranges [START_REF] Surowiec | Dielectric properties of breast carcinoma and the surrounding tissues[END_REF][START_REF] Laufer | Electrical impedance characterization of normal and cancerous human hepatic tissue[END_REF], even though the conductivity of healthy tissues in the background may exhibit fairly complex structure. The differentiation procedure provides a valuable tool in such scenarios.

More precisely, let P ⊆ {0, 1, . . . , K} be such that d dω s p (ω q ) d dω s k (ω q ), p ∈ P, k ∈ {0, 1, . . . , K} \ P.

(3.9)

By differentiating (3.6) with respect to the frequency ω we obtain

M K k=0 A k d dω s k (ω) = d dω X(ω).
In view of the assumption (3.9), this equality may be rewritten as

M p∈P A p d dω s p (ω) ≈ d dω X(ω). (3.10) 
In other words, the contributions from the remaining profiles are negligible, provided that the abundances A k are comparable in magnitude. Different reconstruction schemes should be used depending on whether the spectral profiles {s p (ω)} p∈P are known.

Case (b1):

The Spectral Profiles {s p (ω)} p∈P are not Known

In the case when the spectral profiles {s p (ω)} p∈P are not known, the linear system (3.10) cannot be simplified further. By solving this underdetermined system, we can recover at most p∈P s p (ω)A p , namely a linear combination of the inclusions. Since the weights {s p (ω)} p∈P are unknown, it is impossible to separate the abundances. However, in the particular case, when P = {p} (i.e., |P| = 1), the abundance δσ p may be recovered up to an unknown multiplicative constant, which gives the support information. We illustrate the technique with an example.

Example 2. Consider the case K = 1, and two linear frequency profiles, i.e., s 0 (ω) = α 0 + β 0 ω and s 1 (ω) = α 1 + β 1 ω, with β 0 β 1 . Then the differentiation imaging amounts to

β 0 M A 0 + β 1 M A 1 = X (ω).
If M A 0 and M A 1 are comparable, then β 0 β 1 implies that the contribution of β 0 M A 0 to the data is negligible (in comparison with β 1 M A 1 ). Hence upon differentiation, the technique allows to recover the dominant component β 1 M A 1 , which upon linear inversion yields β 1 A 1 , which in particular contains the support information about the abundance A 1 , and also its magnitude up to a multiplicative constant. Further, for known β 1 , it allows full recovery of the abundance A 1 .

Case (b2): The Spectral Profiles {s p (ω)} p∈P are Known

If the spectral profiles {s p (ω)} p∈P are known, it is possible to perform the same analysis of Case (a) (in Section 3.2.1) to system (3.10). Taking measurements at Q distinct frequencies ω 1 , . . . , ω Q , we have M p∈P A p s p (ω q ) ≈ X (ω q ), q = 1, . . . , Q.

Then, by writing S = ( S pq ) ∈ R |P|×Q , with S pq = s p (ω q ), we get

M A S = X
where the matrix X = [X (ω 1 ) . . . X (ω Q )] ∈ R J×Q . Then the inversion step is completely analogous to that discussed in Section 3.2.1, provided that the incoherence condition rank S = |P| (as well as well-conditioning) holds. All the inclusions A p , p ∈ P, can be recovered.

Numerical Implementation

In the implementation, we take the forward difference between neighboring frequencies

M K k=0 A k s k (ω q+1 ) -s k (ω q ) ω q+1 -ω q = X(ω q+1 ) -X(ω q ) ω q+1 -ω q . (3.11)
It approximates the first order derivative s k (ω q ) with the forward difference

d dω s k (ω q ) ≈ s k (ω q+1 ) -s k (ω q ) ω q+1 -ω q .
If more than one neighboring frequencies are available, it is also possible to use higher order difference formulas to get more accurate approximations of the derivative s k (ω), e.g., central difference scheme (on a nonuniform frequency grid)

d dω s k (ω q ) ≈ δω 2 q-1 (s k (ω q+1 ) -s k (ω q )) + δω 2 q (s k (ω q ) -s k (ω q-1
)) δω q δω q-1 (δω q + δω q-1 )

,

where δω q = ω q+1 -ω q . In practice, these represent different ways to perform differentiation imaging. However, their robustness with respect to noise in the data might differ due to the well-known ill-posed nature of numerical differentiation [START_REF] Hanke | Inverse problems light: numerical differentiation[END_REF]. In this work, we shall use the forward difference scheme (3.11).

Case (c): Partially Known Spectral Profiles, Partial Recovery of the Abundances

In practice, it is also of interest to recover some information about the abundances when the spectral profiles {s k (ω)} are only partially known. Unfortunately, in general, this is infeasible. But, one can still obtain some information under certain a priori knowledge. To discuss the situation, recall the notation

Y k = M A k , cf. (3.8). Then Y 0 s 0 (ω q ) + . . . + Y K s K (ω q ) = X(ω q ), q = 1, . . . , Q. (3.12) 
Now suppose the frequency dependence of the spectral profiles {s k (ω)} K k=0 are polynomial type, namely

s k (ω) = N n=0 α n k ω n .
Inserting this expression in the identity (3.12) yields

N n=0 K k=0 (α n k Y k )ω n = X(ω).
By taking a sufficiently large number of modulating frequencies {ω q } Q q=1 , and using the identity principle for polynomials, we can compute the quantities

B n := K k=0 α n k Y k , n = 0, . . . , N.
Note that adding more frequencies would not add more information about Y k and α j k than {B n } N n=0 . In other words, the quantities {B n } N n=0 represent the essential information content in the data {X(ω q )} Q q=1 about the unknowns {Y k } K k=0 and {α n k : k = 0, . . . , K, n = 0, . . . , N }. Depending on K, N and the number of unknowns among the weights α n k of the spectral profiles, some inclusions Y k can be reconstructed without knowing the corresponding spectral profiles. In other situations, there may be more unknowns than the number of equations, and it may be infeasible to determine all of them.
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Instead of providing a general analysis of all possible cases, we present two examples that explain the different situations that may appear. Example 3. Consider the case K = 1. For every n we have

B 0 = α 0 0 Y 0 + α 0 1 Y 1 and B n = α n 0 Y 0 + α n 1 Y 1 , whence Y 1 = (α 0 0 α n 1 -α 0 1 α n 0 ) -1 (α 0 0 B n -α n 0 B 0 ).
Since the spectral profile s 0 is always assumed to be known, so are the quantities α 0 0 and α n 0 . Therefore, Y 1 may be reconstructed up to a multiplicative constant c, provided that α 0 0 α n 1 -α 0 1 α n 0 = 0, without assuming any knowledge of the corresponding spectral profile s 1 . Note that this nonzero condition simply represents the incoherence of the spectral profiles s 0 and s 1 . Finally, by solving the underdetermined system M A 1 = cY 1 , the inclusion δσ 1 can be reconstructed up to the multiplicative constant c.

In addition, assuming a unique recovery of the linearized EIT inverse problem, the knowledge of the quantity B 0 allows to recover an unknown linear combination of the abundances A 0 and A 1 , and in particular the union of their supports. Since the supports of A 0 and A 1 are assumed to be disjoint from each other, this piece of information allows the support of the abundance A 0 to be recovered, given that the support of the abundance A 1 has already been reconstructed.

Example 4. Note that if K = 2 and N = 1, we get only

α 0 0 Y 0 + α 0 1 Y 1 + α 0 2 Y 2 = B 0 and α 1 0 Y 0 + α 1 1 Y 1 + α 1 2 Y 2 = B 1
which is vastly insufficient to determine all the unknowns. However, a calculation similar to the one presented in the previous example shows that Y 2 can be determined up to a multiplicative constant if K = N = 2 and s 1 is known, provided that a certain nonzero condition is satisfied. Like before, by solving the underdetermined system M A 2 = cY 2 , the inclusion δσ 2 can be reconstructed up to a multiplicative constant, in particular its support. Like before, assuming a unique recovery with the linearized inverse problem, the union of the supports of δσ 0 and δσ 1 may be determined.

With obvious modifications, the preceding discussion is also valid for more general basis functions φ n (ω) which form a unisolvent system on the set of measured frequencies {ω q } Q q=1 [25, pp. 31-32].

Imperfectly Known Boundary

In this part, we illustrate the significant potentials of mfEIT for handling modelling errors, as in the case of an imperfectly known boundary. The analysis may be extended to other interesting scenarios, including imperfectly known contact impedances or injected currents. Here we shall discuss only the specific case of an imperfectly known boundary. This has long been one of the main obstacles in some practical applications of the EIT imaging [START_REF] Adler | Impedance imaging of lung ventilation: do we need to account for chest expansion[END_REF][START_REF] Kolehmainen | The inverse conductivity problem with an imperfectly known boundary[END_REF][START_REF] Kolehmainen | Electrical impedance tomography problem with inaccurately known boundary and contact impedances[END_REF]. It is known that the use of a slightly incorrect boundary can lead to significant errors in the reconstruction. mfEIT was proposed as one promising strategy to partially overcome the challenge in [START_REF] Seo | Frequencydifference electrical impedance tomography (fdEIT): algorithm development and feasibility study[END_REF], where its potential was also numerically demonstrated. Here we shall present an analysis of the approach in the linearized regime which justifies these numerical findings.

We denote the true but unknown physical domain by Ω, and the computational domain by Ω, which is an approximation to Ω. Next we introduce a forward map F : Ω → Ω, x → x, which is assumed to be a smooth orientation preserving map with a sufficiently smooth inverse map F -1 : Ω → Ω. We denote the Jacobian of the map F by J F , and the Jacobian of F with respect to the surface integral by J S F . Suppose now that the function u n ( x, ω) satisfies problem (3.1) in the true domain Ω with a conductivity σ( x, ω) and input current f n on ∂ Ω with

∂ Ω f n ds = 0, namely              -∇ x • ( σ( x, ω)∇ x u n ( x, ω)) = 0 in Ω, σ( x, ω) ∂ u n ( x, ω) ∂ ν = f n on ∂ Ω, ∂ Ω u n ( x, ω)d s = 0. (3.13)
Here the frequency-dependent conductivity σ( x, ω) takes a separable form

(cf. (3.2)) σ( x, ω) = K k=0 s k (ω) σ k ( x), (3.14) 
with σ 0 ( x) = 1 + δ σ 0 ( x), and σ k ( x) = δ σ k ( x), k = 1, . . . , K, where δ σ k are small and their supports are disjoint and stay away from the boundary ∂ Ω.

The weak formulation of problem (3.13) (by suppressing the dependence on the frequency ω) is given by: find

u n (•, ω) ∈ H 1 ( Ω) with ∂ Ω u n ( x, ω)d s = 0 such that Ω σ( x)∇ x u n ( x) • ∇ x v( x)d x = ∂ Ω f n vd s, v ∈ H 1 ( Ω). (3.15) 
Let us now discuss the experimental setup. The practitioner chooses a current density defined on the computational domain, namely a function f n on ∂Ω such that ∂Ω f n ds = 0. This current is then applied to the unknown boundary ∂ Ω of the real domain Ω. The deformation of the boundary has to be taken into account: the applied current f n on ∂ Ω results to be

f n = (f n • F )| det J S F |. (3.16) 
Note that this implies directly ∂ Ω f n d s = 0, as desired. This induces the electric potential u n ∈ H 1 ( Ω) given by (3.13) or, equivalently, by (3.15). Like in Section 3.2, the electric potential u n is assumed to be measured on ∂ Ω. However, because of the incorrect knowledge of the boundary, the measured quantity is in fact u n := u n • F -1 restricted to the computational boundary ∂Ω. 

∂ Ω f n u n d s = ∂Ω f n u n ds.
In physical terms, the integral ∂Ω f n u n ds represents the power needed to maintain the potential u n on the boundary ∂Ω. In other words, the choice (3.16) preserves the needed power for the measured data, and it agrees with the one adopted in [START_REF] Kolehmainen | The inverse conductivity problem with an imperfectly known boundary[END_REF].

We shall consider only the case that the computational domain Ω is a small variation of the true physical domain Ω (but comparable with the inclusions δσ k ), so that the linearized regime is valid. Specifically, we write the map F : Ω → Ω by F ( x) = x + φ( x), where is a small scalar parameter and the smooth function φ( x) characterizes the domain deformation. Further, let F -1 (x) = x + φ(x) be the inverse map, which is also smooth.

To examine the influences of the domain deformation on the linearized inverse problem discussed in Section 3.2, we introduce the solution v m ∈ H 1 (Ω) relative to the reference conductivity distribution σ 0 (x, ω) = s 0 (ω) in the computational domain Ω corresponding to the flux f m , i.e.,

Ω σ 0 ∇v m • ∇vdx = ∂Ω f m vds, v ∈ H 1 (Ω), (3.17) 
which is computable over the computational domain Ω (and solvable by the assumption ∂Ω f m ds = 0).

We can now state the corresponding linearized inverse problem. As a byproduct of the proof, we have that, even for an isotropic conductivity σ in the true domain Ω, cf. (3.14), in the computational domain Ω the equivalent conductivity σ(x, ω) is generally anisotropic (or matrix valued). Proposition 1. Set δσ k = δ σ k • F -1 for k = 0, 1, . . . , K and v * m = s 0 (ω)v m for m = 1, . . . , M . The linearized inverse problem on the computational domain Ω is given by

s 0 (ω) Ω Ψ∇v * n •∇v * m dx+ K k=0 s k (ω) Ω δσ k ∇v * n •∇v * m dx = s 0 (ω) 2 ∂Ω (f n v m -f m u n )ds, (3.18 
) for some smooth function Ψ : Ω → R d×d , which is independent of the frequency ω.

Proof. First, we derive the governing equation for the variable

u n = u n •F -1 in the domain Ω from (3.15). Denote by v = v • F -1 ∈ H 1 (Ω). By the chain rule we have ∇ x u n •F -1 = (J t F •F -1 )∇ x u n
, where the superscript t denotes the matrix transpose. Thus, we deduce

Ω σ( x)∇ x u n ( x) • ∇ x v( x)d x = Ω ( σ • F -1 )(x)(J t F • F -1 )(x)∇u n (x) • (J t F • F -1 )(x)∇v(x)| det J F -1 (x)|dx, = Ω (J F • F -1 )(x)( σ • F -1 )(x)(J t F • F -1 )(x)∇u n (x) • ∇v(x)| det J F -1 (x)|dx = Ω σ(x, ω)∇u n (x) • ∇v(x)dx,
where the transformed conductivity σ(x, ω) is given by [START_REF] Sylvester | An anisotropic inverse boundary value problem[END_REF][START_REF] Kolehmainen | The inverse conductivity problem with an imperfectly known boundary[END_REF][START_REF] Kolehmainen | Electrical impedance tomography problem with inaccurately known boundary and contact impedances[END_REF]] 

σ(x, ω) = J F (•) σ(•, ω)J t F (•) | det J F (•)| • F -1 (x). ( 3 
σ(x, ω)∇u n (x, ω) • ∇v(x)dx = ∂Ω f n vds, v ∈ H 1 (Ω). (3.20)
Then by choosing v = v m in (3.20) and v = u n in (3.17), we arrive at

Ω (σ -σ 0 )∇u n • ∇v m dx = ∂Ω (f n v m -f m u n )ds. (3.21) 
Note that J F = I + J φ , and

J F -1 = I + J φ = I -J φ • F -1 + O( 2 ), since is small. It is known that | det J F | = 1 + div φ + O( 2 ) [45, equation (2.10)].
Then the transformed conductivity σ(x, ω) can be explicitly written as

σ(x, ω) = σ(•, ω)(1 + div φ(•)) -1 (I + (J φ (•) + J t φ (•))) • F -1 (x) + O( 2 ) = σ(•, ω)((1 -div φ(•))I + (J φ (•) + J t φ (•))) • F -1 (x) + O( 2 ) = σ(•, ω) • F -1 (x) + Ψ(x) + O( 2 ).
where Ψ = (J φ + J t φ -div φI) • F -1 is smooth and independent of the frequency ω. Upon collecting terms, this together with the separable form of σ( x, ω) in (3.14) yields

σ(x, ω) ≈ s 0 (ω)I + s 0 (ω)Ψ(x) + K k=0 δσ k (x)s k (ω)I. (3.22)
Upon substituting it into (3.21) and invoking the approximation ∇u n ≈ ∇v n in the domain, we obtain the desired expression.

By Proposition 1, in the presence of an imperfectly known boundary with the deformation magnitude comparable with the inclusions {δσ k } K k=0 , there is one additional dominant source of errors in the linearized inverse problem: the perturbed sensitivity system contains an additional anisotropic component Ψ, resulting from the domain deformation. As a consequence, a direct inversion of the linearized model (3.18) is unsuitable. This is consistent with the empirical observation that a slightly incorrect boundary can lead to completely erroneous reconstructions [START_REF] Adler | Impedance imaging of lung ventilation: do we need to account for chest expansion[END_REF][START_REF] Gersing | Influence of changing peripheral geometry on electrical impedance tomography measurements[END_REF].

This issue can be resolved by using the proposed multifrequency approach. Indeed, by rearranging the terms in (3.18) we obtain

s 0 (ω) Ω ( Ψ+δσ 0 )∇v * n •∇v * m dx+ K k=1 s k (ω) Ω δσ k ∇v * n •∇v * m dx = s 0 (ω) 2 ∂Ω (f n v m -f m u n )ds.
(3.23) This equation is completely analogous to (3.5), with the only difference lying in the additional term Ψ. Therefore, all the methods discussed in Section 3.2 may be applied straightforwardly, since the right hand side is known. The background perturbation δσ 0 will never be properly reconstructed, due to the pollution of the error term Ψ. However, the inclusions corresponding to the other frequency profiles may be reconstructed, since they are affected by the deformation only through δσ k = δ σ k • F -1 . In other words, the location and shape can be slightly deformed. Thus we have shown that mfEIT is a very effective method to eliminate the modelling errors caused by the boundary uncertainty. Only the background anomaly (i.e., the inclusion δσ 0 ) is affected, and so cannot be reconstructed. All the other inclusions may be imaged successfully.

The Complete Electrode Model

In this section we adapt the approach discussed in Sections 3.2 and 3.3 to the more realistic complete electrode model, which has been shown to reproduce the experimental data within measurement precision [START_REF] Cheng | Electrode models for electric current computed tomography[END_REF] and is currently regarded as the most accurate model in a number of applications. We discuss the cases of a perfectly known and an imperfectly known boundary separately.

Perfectly Known Boundary

First we consider the case of a perfectly known boundary. Let Ω be an open bounded domain in R d (d = 2, 3), with a smooth boundary ∂Ω. We denote the set of electrodes by {e j } E j=1 ⊂ ∂Ω, which are disjoint from each other, i.e., ēi ∩ ēk = ∅ if i = k. The applied current on the jth electrode e j is denoted by I j , and the current vector I = (I 1 , . . . , I E ) t satisfies E j=1 I j = 0 by the law of charge conservation. Let the space R E be the subspace of the vector space R E with zero mean, i.e., I ∈ R E . The electrode voltages U = (U 1 , . . . , U E ) t are also normalized so that U ∈ R E . Then the mathematical formulation of the complete electrode model (CEM) reads [START_REF] Cheng | Electrode models for electric current computed tomography[END_REF][START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF]: given the frequency-dependent conductivity distribution σ(x, ω), frequency-independent positive contact impedances {z j } E j=1 and an input current pattern I ∈ R E , find the potential u(•, ω) ∈ H 1 (Ω) and the electrode

voltages U ∈ R E such that                          -∇ • (σ(x, ω)∇u(x, ω)) = 0 in Ω, u + z j ∂u ∂ν σ = U j on e j , j = 1, 2, . . . , E, e j ∂u ∂ν σ ds = I j for j = 1, 2, . . . , E, ∂u ∂ν σ = 0 on ∂Ω\ ∪ E j=1 e j , (3.24) 
where ∂u ∂νσ denotes the co-normal derivative (σ∇u) • ν. The second line describes the contact impedance effect: When injecting electrical currents into the object, a highly resistive thin layer forms at the electrode-electrolyte interface (due to certain electrochemical processes), which causes potential drops across this interface. The potential drop is described by Ohm's law, with the positive constants {z j } E j=1 being contact impedances. In practice, it was observed that the contact impedances {z j } E j=1 are inversely proportional to the conductivity of the object [START_REF] Holm | Electric Contacts: Theory and Applications[END_REF][START_REF] Hwang | Experimental limitations in impedance spectroscopy: Part iv. electrode contact effects[END_REF], and thus we can write

z j = s 0 (ω) -1 c j , (3.25) 
for some constants c j > 0 independently of the frequency, since by assumption, near the boundary ∂Ω we have σ(x, ω) = s 0 (ω). The metallic electrodes are perfect conductors, and hence the voltage U j on the jth electrode e j is a constant. The weak formulation of model (3.24) is given by: find (u, U ) ∈ H := H 1 (Ω) × R E (equipped with the product norm) such that [START_REF] Somersalo | Existence and uniqueness for electrode models for electric current computed tomography[END_REF] Ω σ(x, ω)∇u(x, ω)•∇v(x)dx+

E j=1 z -1 j e j (u-U j )(v-V j )ds = E j=1 I j U j , (v, V ) ∈ H.
The bilinear form defined on the left hand side is coercive and continuous on the space H, and thus by Lax-Milgram theorem there exists a unique solution

(u(•, ω), U (ω)) ∈ H. Consider M input currents {I n } M n=1 ⊂ R E , and let {(u n , U n )} M n=1
⊂ H be the corresponding solutions to the complete electrode model (3.24), i.e.,

Ω σ(x, ω)∇u n (x, ω)•∇v(x, ω)dx+ E j=1 z -1 j e j (u n -U n,j )(v-V j )ds = E j=1 I n,j V j , (v, V ) ∈ H.
(3.26) The electrode voltages U n ∈ R E can be measured in practice, and are used to recover the conductivity distribution σ(x, ω). To derive a linearized model, like before, let (v m , V m ) ∈ H be the solution corresponding to the unperturbed conductivity field with σ 0 (x, ω) = s 0 (ω): 

Ω σ 0 (x, ω)∇v m (x, ω)•∇v(x, ω)dx+ E j=1 z -1 j e j (v m -V m,j )(v-V j )ds = E j=1 I m,j V j , (v, V ) ∈ H.
(v * m , V * m ) = s 0 (ω)(v m , V m )
for the solution corresponding to the case σ 0 ≡ 1. Now we assume that the conductivity σ(x, ω) follows the separable form (3.2). Using the weak formulations for (u n , U n ) and (v m , V m ), we deduce immediately

K k=0 s k (ω) Ω δσ k (x)∇u n (x, ω) • ∇v m (x, ω)dx = E j=1 (I n,j V m,j -I m,j U n,j ).
Then, under the approximation ∇u n ≈ ∇v n in the domain Ω, and the piecewise constant approximation on the inclusions δσ k s on the quasi-uniform triangulation {Ω l } L l=1 of the domain Ω, we have

K k=0 s k (ω) L l=1 (δσ k ) l Ω l ∇v * n • ∇v * m dx = s 0 (ω) 2 E j=1 (I n,j V m,j -I m,j U n,j ).
This formula is almost identical with that for the continuum model, cf. (3.5), and formally their only difference lies in the computation of the data vector X(ω). Hence, all the discussions in Section 3.2 can be adapted straightforwardly to the complete electrode model. In particular, all inversion methods discussed there can be directly applied to this case.

Imperfectly Known Boundary

Now we consider the case of an imperfectly known boundary. As in Section 3.3, let Ω be the unknown true domain with a smooth boundary ∂ Ω, and Ω be the computational domain with a smooth boundary ∂Ω. Accordingly, let { e j } E j=1 ⊂ ∂ Ω and {e j } E j=1 ⊂ ∂Ω be the real and computational electrodes, respectively and assume they satisfy the usual conditions discussed above. Then we introduce a sufficiently smooth orientation preserving forward map F : Ω → Ω, with a sufficiently smooth inverse F -1 : Ω → Ω, and we denote the restriction of F to the boundary ∂ Ω by f : ∂ Ω → ∂Ω. We write F -1 (x) = x + φ(x), where > 0 denotes the magnitude of the domain deformation. For simplicity, further, it is assumed that there is no further electrode movement apart from domain deformation, i.e., e j = f ( e j ), j = 1, . . . , E. With the frequency-dependent conductivity σ( x, ω) of the separable form (3.14) and input current I n ∈ R E , by (3.24), the quantity

( u n ( x, ω), U n (ω)) ∈ H ≡ H 1 ( Ω) × R E satisfies                        -∇ x • ( σ( x, ω)∇ x u n ( x, ω)) = 0 in Ω, e j ∂ u n ∂ ν σ d s = I n,j on e j , j = 1, 2, . . . , E, z j ∂ u n ∂ ν σ + u n = U n,j on e j , j = 1, 2, . . . , E ∂ u n ∂ ν σ = 0 on ∂ Ω \ ∪ E j=1 e j ,
(3.28)
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The weak formulation of the problem is given by: find

( u n ( x, ω), U n (ω)) ∈ H such that Ω σ( x, ω)∇ x u n ( x, ω) • ∇ x v( x)d x + E j=1 z -1 j e j ( u n ( x, ω) -U n,j (ω))( v( x) -V j )d s = E j=1 I n,j V j , ( v, V ) ∈ H.
In the experimental setting, on the computational domain Ω, the injected current I n ∈ R E on the electrodes {e j } E j=1 is known, and the corresponding voltage U n (ω) ∈ R E can be measured. The inverse problem is to recover the inclusion profiles {δ σ k } K k=0 from the measured electrode voltages { U n (ω)} M n=1 at a number of frequencies {ω q } Q q=1 . Now we can state the corresponding linearized inverse problem for the complete electrode model with an imperfectly known boundary. Consider the potential u n (•, ω) = u n (•, ω) • F -1 , and the associated electrode voltages

U n = U n .
Proposition 2. Let the reference solutions (v m , V m ) ∈ H be defined by (3.27) and the conductivity σ be of the form (3.14).

Set z = | det J S F -1 |, δσ k = δ σ k • F -1 for k = 0, 1, . . . , K and (v * m , V * m ) = s 0 (ω)(v m , V m ) for m = 1, .
. . , M . The linearized inverse problem on the computational domain Ω is given by for some smooth function Ψ : Ω → R d×d , which is independent of the frequency ω.

s 0 (ω) Ω Ψ∇v * n • ∇v * m dx + K k=0 s k (ω) Ω δσ k ∇v * n • ∇v * m dx = s 0 (ω) 2 E j=1 (I n,j V m,j -I m,j U n,j ) -s 0 (ω)
Proof. Proceeding as in the proof of Proposition 1, by a change of variables (and suppressing the variable ω), since e j = f ( e j ) we deduce

Ω σ( x)∇ x u n ( x) • ∇ x v( x)d x = Ω ( σ • F -1 )(x)(J t F • F -1 )(x)∇u n • (J t F • F -1 )(x)∇v(x)| det J F -1 (x)|dx. e j ( u n -U n,j )( v -V j )d s = e j (u n -U n,j )(v -V j )| det J S F -1 |ds, where v = v • F -1 ∈ H 1 (Ω) and V j = V j . Hence, the pair (u n (•, ω), U n (ω)) satisfies Ω σ(x, ω)∇u n (x, ω)•∇v(x)dx+ E j=1 z -1 j e j (u n -U n,j )(v-V j )z ds = E j=1 I n,j V j , (v, V ) ∈ H,
where the transformed conductivity σ(x, ω) is given by (3.19). By combining this identity with (3.27), we obtain

Ω (σ-σ 0 )∇u n •∇v m dx = E j=1 (I n,j V m,j -I m,j U n,j )+ E j=1 e j (z-1)(u n -U n,j ) ∂v m ∂ν σ 0 ds.
In view of [START_REF] Hettlich | Fréchet derivatives in inverse obstacle scattering[END_REF][START_REF] Hettlich | Erratum: Frechet derivatives in inverse scattering[END_REF] we can expand z as

z = 1 + (Divφ t -(d -1)Hφ ν ) + O( 2 ), (3.30) 
where Div denotes the surface divergence, φ t and φ ν denote the tangential and normal components of the vectorial function φ on the boundary ∂Ω, respectively, and H is the mean curvature of ∂Ω. In particular, z -

1 = O( ).
Therefore, by linearization we can write

e j (z-1)(u n -U n,j ) ∂v m ∂ν σ 0 ds ≈ e j (z-1)(v n -V n,j ) ∂v m ∂ν σ 0 ds = -z j e j (z-1) ∂v m ∂ν σ 0 2 ds.
Inserting this approximation in the above identity we obtain

Ω (σ-σ 0 )∇u n •∇v m dx = E j=1 (I n,j V m,j -I m,j U n,j )- E j=1 z j e j (z-1) ∂v m ∂ν σ 0 2 ds.
The rest of the proof follows as in Proposition 1, and thus it is omitted.

By proceeding as in the continuum model, we can rewrite (3.29) as All the preceding analysis easily carries forward to the case c j > 0, as we now discuss. Before treating the general case, let us consider the simple scenario where z ≡ 1 on the electrodes ∪ j e j .

s 0 (ω) Ω ( Ψ + δσ 0 )∇v * n • ∇v * m dx + K k=1 s k (ω) Ω δσ k ∇v * n • ∇v * m dx = s 0 (ω) 2 E j=1 (I n,j V m,j -I m,j U n,j ) -s 0 (ω) E j=1 c j e j (z - 
Example 5. Recall that z(x) = | det J S F -1 (x)| for x on the boundary ∂Ω. Physically, the factor z represents the length deformation relative to the map F -1 : ∂Ω → ∂ Ω, as we remarked earlier. Thus, it may be reasonable to assume that the parametrization of the electrodes {e j } E j=1 is known, which implies z ≡ 1 on the electrodes ∪ j e j . In such a case, we immediately obtain C m ≡ 0. whence

s 0 (ω) Ω ( Ψ+δσ 0 )∇v * n •∇v * m dx+ K k=1 s k (ω) Ω δσ k ∇v * n •∇v * m dx = s 0 (ω) 2 E j=1 (I n,j V m,j -I m,j U n,j ).
This identity is completely analogous to (3.23), and the same comments on the reconstruction procedure are valid here, since the right hand side is known. In particular, by applying any of the techniques discussed in Section 3.2 to multifrequency measurements, it is possible to eliminate the error coming from the domain perturbation Ψ, as this affects only the inclusion δσ 0 (corresponding to s 0 ). All the other inclusions δσ k , k = 1, . . . , K, may be successfully reconstructed.

Now we consider the general case when z ≡ 1 on the electrodes ∪ j e j . This corresponds to a situation where the length (or the area) of the electrodes is not precisely known. Thus, the additional error term s 0 (ω)C m in the linearized model (3.31) has to be taken into account. The key observation is that C m is independent of the frequency ω. The difference imaging method discussed in Section 3.2.2 may be directly applied here, provided that 0 / ∈ P, i.e., if the frequency profile s 0 (ω) does not vary substantially with respect to the frequency ω. Indeed, in this case the error term s 0 (ω)C m disappears upon differentiating the relation (3.31), and the inversion step may be performed as in Section 3.2.2.

The method of Section 3.2.1 (and, thus, the particular case discussed in Section 3.2.3) may be also directly applied, since the dependence of the error term s 0 (ω)C m with respect to the frequency ω follows exactly the spectral profile s 0 (ω). Namely, its influence on the reconstruction step can be essentially lumped into the component δσ 0 , like the conductivity perturbation Ψ discussed earlier. Thus, all the inclusions δσ k , k = 1, . . . , K, corresponding to the remaining frequency profiles s 1 , . . . , s K may be completely reconstructed. Alternatively, one may see this from the linear system as follows. When multiplying the right hand side of the system of equations associated to (3.31) by S -1 , the error term s 0 (ω)C m cancels out in all the systems M A k = Y k , for k = 1, . . . , K. This follows by elementary linear algebra, since

S -1 = C [s 0 (ω 1 ) , . . . , s 0 (ω Q )]    s 0 (ω 1 ) • • • s 0 (ω Q ) . . . . . . . . . s K (ω 1 ) • • • s K (ω Q )    -1 = [C , 0 , . . . , 0],
where the notation C denotes the column vector corresponding to the error terms C m (see Example 1 for the simple case when Q = 2 and K = 1).

Group Sparse Reconstruction Algorithm

For all the scenarios discussed in the previous sections, one arrives at a number of (decoupled) linear systems

M A k = Y k k = 0, . . . , K, (3.32) 
where M ∈ R J×L is the sensitivity matrix, A k ∈ R L are the unknown abundances, and Y k ∈ R J is a known piece of data. These linear systems are often under-determined, and severely ill-conditioned, due to the inherent ill-posed nature of the EIT inverse problem. Below we describe one strategy for the stable and accuracy solution of the linear system (3.32) based on the idea of regularization; we refer to [START_REF] Scherzer | Variational Methods in Imaging[END_REF][START_REF] Schuster | Regularization Methods in Banach Spaces[END_REF][START_REF] Ito | Inverse Problems: Tikhonov Theory and Algorithms[END_REF] for general discussions on regularization methods.

There are several natural aspects to take into consideration for the regularization term, especially sparsity, grouping, disjoint sparsity and bound constraints.

(1) For k = 0, 1, 2, . . . , K, we can assume that the abundances A k = (δσ k ) l ∈ R L are sparse with respect to the pixel basis (piecewise constant approximation). This suggests minimizing min

A k ∈Λ A k 1 subject to M A k -Y k ≤ k
for each k = 0, 1, . . . , K. Here • 1 denotes the 1 norm of a vector. The set Λ represents a box constraint on the unknown vector A k , since the conductivity σ remains bounded from below and above by positive constants, due to physical constraint, and k > 0 is an estimate of the noise level in the data Y k . This 1 optimization problem can be solved efficiently by many algorithms, e.g., iterative soft thresholding.

(2) In EIT applications, it is also reasonable to assume that each abundance A k is clustered, and this refers to the concept of group sparsity. The grouping effect is useful to remove the undesirable spikes typically observed for the 1 penalty alone. There are several different approaches to this task. The elastic net [START_REF] Jin | Elastic-net regularization: error estimates and active set methods[END_REF] is one simple way to realize grouping. In this work, we shall develop an approach easy to implement, inspired by the dynamic group sparsity proposed in [START_REF] Huang | Learning with dynamic group sparsity[END_REF].

It allows to dynamically realize group sparsity without knowing the supports of the A k s nor their sizes.

(3) The support of the inclusions A k are assumed to be disjoint from each other. The disjoint supports of A k s can be simply promoted by adding a term that penalizes the scalar product of the absolute values of the A k s, as was done in [START_REF] Vervier | On learning matrices with orthogonal columns or disjoint supports[END_REF].

Remark 3.5.1. Note that (1) and (2) refer to methods in which the abundances A k s are recovered separately, while (3) to methods in which all the A k s are reconstructed simultaneously.

Next we construct an efficient iterative algorithm, termed as group iterative soft thresholding, for achieving the goals outlined above. It combines the strengths of the classical iterative soft thresholding algorithm [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] and the grouping effect in the dynamical group sparse recovery [START_REF] Huang | Learning with dynamic group sparsity[END_REF]: the former is easy to implement and has a built-in regularizing effect, whereas the latter encourages the group sparsity pattern. In implementation, it is a simple modification of the classical iterative soft thresholding algorithm for 1 optimization (by omitting the subscript i in the abundance): given an initial guess A 0 , construct an approximation iteratively by A j+1 = S s j α (g j ),
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where the proxy g j is defined by

g j = A j -s j M t (M A j -Y ). (3.33) 
Observe that M t (M A j -Y ) is the gradient of the fitting term 1 2 M A -Y 2 at the current iterate A j , and hence g j is essentially a gradient descent update of the current reconstruction A j . The scalar α > 0 is a regularization parameter and s j > 0 is the step length. One simple choice of the step size s j is the constant one s j = 1/ M 2 , which ensures the convergence of the algorithm [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. The soft thresholding operator S λ for λ > 0 is defined by

S λ (t) = max(|t| -λ, 0) sign(t),
and it is applied componentwise when the argument is a vector.

In the proposed group iterative soft thresholding algorithm, instead of performing the thresholding on the proxy g j directly, we take into account the neighboring influence. Following [START_REF] Huang | Learning with dynamic group sparsity[END_REF], this is easily achieved by computing a generalized proxy d j l of the lth element by

d j l = |g j l | 2 + k∈N l w lk |g j k | 2 , (3.34) 
where w lk are nonnegative weights, and N l denotes the neighborhood of the lth element. The weights w lk determine the strength of correlation between the components: The smaller the magnitude of w lk is, the weaker the correlation strength between the lth and the kth components is, and if w lk = 0 for all k ∈ N l , it does not encourage grouping at all. In our implementation, we take w lk = β, for some constant β > 0, for all neighboring elements. Physically, in EIT, the neighborhood N l of the lth element consists of all elements in the triangulation that share one edge with the lth element, and may be expanded to include also elements sharing one node. Then the vector d j is used to reweigh the thresholding step by

dj = max(d j ) -1 d j , (3.35) 
The quantity dj indicates a normalized grouping effect: the larger is dj l , the more likely the lth element belongs to the group, and thus the less thresholding should be applied to it. This can be easily achieved by rescaling the regularization parameter α to be inversely proportional to dj l , with

ᾱj l = α/ dj l , l = 1, . . . , L, (3.36) 
and last perform the projected thresholding with a spatially variable regularization parameter ᾱj

A j+1 = P Λ (S s j ᾱj (g j )). (3.37) 
where P Λ denotes the pointwise projection onto the constraint set Λ. The complete procedure is listed in Algorithm 3.5.1. Here N is the maximum number of iterations. Since the solution A is expected to be sparse, a natural choice of the initial guess A 0 is the zero vector. The regularization parameter α plays a crucial role in the performance of the reconstruction quality: the larger the value α is, the sparser the reconstructed abundance is. There are several strategies available for the classical iterative soft thresholding, e.g., discrepancy principle and balancing principle. In this work, we shall test the feasibility of the algorithm only with the regularization parameter α determined in a trial-and-error manner. One can terminate the algorithm by monitoring the relative change of the iterates. Compute the proxy g j by (3.33).

4:

Compute the generalized proxy d j by (3.34).

5:

Compute the normalized proxy dj by (3.35).

6:

Adapt the regularization parameter ᾱj by (3.36).

7:

Update the abundance A j+1 by the group thresholding (3.37).

8:

Check the stopping criterion. 9: end for Last, we note that the disjoint sparsity can be enforced conveniently in Algorithm 3.5.1. Specifically, we first compute the normalized proxy dk,j for the abundance A k separately according to (3.35), and then at each component l = 1, . . . , L, we update them by

dk,j l = dk,j l if k = k * l , ε otherwise, k * l = arg max k=0,...,K dk,j l ,
where ε > 0 is a small number to avoid numerical overflow. This step effectively only retains the most likely abundance component (with the likelihood for the kth abundance given by dk,j ), and sets to zero all the remaining ones. Hence, it enforces the disjoint sparsity as desired.

Numerical Experiments and Discussions

In this section we present some numerical results to illustrate the analytic study in Sections 3.2-3.4. We present results only for the complete electrode model (3.24), since the results for the simpler continuum model (3.1) are similar. The general setting for the numerical experiments below is as follows. The computational domain is taken to be the unit circle Ω = {(x 1 , x 2 ) :

x 2 1 + x 2 2 < 1}.
There are sixteen electrodes {e j } E j=1 (with E = 16) evenly distributed along the boundary ∂Ω, each of length π/16, thus occupying one half of the boundary ∂Ω; see Fig. 3.1(a) for a schematic illustration of the electrode placement. The contact impedances {z j } E j=1 on the electrodes {e j } E j=1 are all set to unit, and the background conductivity σ 0 is taken to be σ 0 ≡ 1. Further, we shall always assume that the spectral profile s 0 (ω) for the background is the constant one s 0 ≡ 1. This is not a restriction, since s 0 (ω) is always known, and one can rescale the spectral profiles so that s 0 ≡ 1. We measure the electrode voltages U for all 15 sinusoidal input currents. The complete electrode model (3.24) is discretized using a piecewise linear finite element method on a shape regular quasi-uniform triangulation of the domain Ω [START_REF] Gehre | An analysis of finite element approximation in electrical impedance tomography[END_REF]. The conductivity is represented on a coarser finite element mesh using a piecewise constant finite element basis. The electrode voltages are generated on a much finer mesh in order to avoid the inverse crime. Then the noisy data U δ is generated by adding componentwise Gaussian noise to the exact data U † := U (σ † ) corresponding to the true conductivity σ † (x, ω) as follows

U δ j = U † j + max l |U † l -U l (σ 0 )|ε j , j = 1, . . . , E,
where is the noise level, and ε j follow the standard normal distribution. We shall present the numerical results for the cases of known boundary and of imperfectly known boundary separately, and discuss only cases a) and b) with spectral profiles that are either fully known or have substantially different frequency dependence. Case c), corresponding to the case of partially known spectral profiles, will not be discussed, since the inversion is totally analogous to that of case a), except for simple algebraic manipulations. For the solutions of the underdetermined linear systems (3.32), we use the group iterative soft thresholding algorithm listed in Algorithm 3.5.1 with a constant step size. The regularization parameter α used in each separate reconstruction was determined by a trial-and-error manner, and it was set to 10 -2 for all examples presented below. We did not implement the disjoint sparsity, since in all the examples under consideration the reconstruction are already very satisfactory. However, it is expected that with higher noise levels or in the case of almost touching inclusions, enforcing disjoint sparsity might give enhanced reconstructions. The algorithm is always initialized with a zero vector. Numerically, we observe that it converges steady and fast. All the computations were performed using MAT-LAB 2013a on a 2.5G Hz and 6G RAM personal laptop.

Perfectly Known Boundary

First, we illustrate the approach in the case of a perfectly known boundary. Example 6. Consider three square inclusions; the two inclusions on the top share the same spectral profile s 1 (ω), and the one on the bottom has a second spectral profile s 2 (ω), cf. Fig. 3.2(a) for an illustration. In the experiments, we consider the following two cases: (i) The spectral profiles s 1 (ω) and s 2 (ω) are given by s 1 (ω) = 0.1ω + 0.1 and s 2 (ω) = 0.2ω.

(ii) The spectral profiles s 1 (ω) and s 2 (ω) are given by s 1 (ω) = 0.1ω + 0.1 and s 2 (ω) = 0.02ω.

In either case, we take measurements at Q = 3 frequencies, ω 1 = 0, ω 2 = 0.5 and ω 3 = 1. The numerical results for Example 6 with = 1% noise in the data are shown in Figs. 3.2 and 3.4 for cases (i) and (ii), respectively. In case (i), the two frequencies have about the same magnitude, and the (rectangular) spectral matrix S is nonsingular. Assuming the knowledge of the spectral profiles, the direct approach discussed in Section 3.2.1 separates well the two sets of inclusions thanks to their incoherent spectral profiles. The recovery is very localized within a clean background, the supports match closely the true supports (and are clearly disjoint from each other) and the magnitude of the inclusions are well retrieved. The latter observation is a distinct feature of the proposed group sparse recovery algorithm discussed in Section 3.5. Hence, if both profiles are known exactly and incoherent, then the two sets of inclusions can be fairly recovered. Case (ii) is similar, except that the variation of the spectral profile s 2 (ω) is now much smaller. The preceding observations remain largely valid, except that the inclusion corresponding to s 2 (ω) involves minor spurious oscillations. This is attributed to the presence of noise in the data: the noise level is comparable with effective contributions from the inclusion. Hence, for the accurate recovery of the inclusions separately, the data should be reasonably accurate, as expected.

The well-conditioning of the spectral profile matrix S implies the robustness of the direct approach with respect to perturbations of the spectral profiles, as mentioned in Section 3.2.1. To confirm this, we present in Fig. 3.3 the reconstructions using imprecisely known spectral profiles, where the spectral matrix is perturbed by additive Gaussian noise with a zero mean and standard deviation proportional to the entry magnitude. Even only with three modulating frequencies, the reconstructions remain fairly stable, up to 20% perturbation of the spectral profiles, indicating the robustness of the approach. This is consistent with the experimental findings in [START_REF] Malone | A reconstructionclassification method for multifrequency electrical impedance tomography[END_REF], where the feasibility of the abundance separation with imprecise spectral profiles was numerically demonstrated. Chapter 3. The Linearized inverse problem in multifrequency EIT With Example 6(ii), we also illustrate difference imaging discussed in Section 3.2.2. Since the variation of the frequency profile s 2 (ω) is small, this technique is also applicable, and the reconstruction of the first set of inclusions, in the absence of the knowledge of the spectral profiles, is shown in Fig. 3.4(d). The reconstruction recovers the inclusions up to a multiplicative constant very well, and it is almost completely free from spurious oscillations. This clearly shows the capability of difference imaging in Section 3.2.2 for spectral profiles with substantially different frequency dependence.

Example 7. Consider three rectangular inclusions on the top left, top right and bottom with spectral profiles s 1 (ω), s 2 (ω) and s 3 (ω), respectively, cf. Fig. 3.5a for an illustration. In the experiments, we consider the following two cases:

(i) The spectral profiles s 1 (ω), s 2 (ω) and s 3 (ω) are given by s 1 (ω) = 0.2ω + 0.2, s 2 (ω) = 0.1ω 2 , and s 3 (ω) = 0.2ω + 0.1, respectively.

(ii) The spectral profiles s 1 (ω), s 2 (ω) and s 3 (ω) are given by s 1 (ω) = 0.02ω + 0.02 and s 2 (ω) = 0.1ω 2 , and s 3 (ω) = 0.2ω + 0.1, respectively.

In either case, we take measurements at three frequencies, ω 1 = 0, ω 2 = 0.5 and ω 3 = 1.

The numerical results for Example 7(i) and 7(ii) are shown in Figs. 3.5 and 3.6, respectively. If all three spectral profiles are known, the use of three frequencies yields almost perfect separation of the three inclusions by using the method of Section 3.2.1: the recovered inclusions are well clustered in a clean background, and their supports and magnitudes are correctly identified. Note that in the case of Example 7(ii), the spectral profile s 1 (ω) is much smaller, and thus the recovery of the inclusion δσ 1 is more susceptible to noise, whereas the recovery of the remaining two are far more stable.

The results in Fig. 3.6 indicate that with known spectral profiles s 2 (ω) and s 3 (ω) and unknown s 1 (ω), since s 1 (ω) varies little with respect to ω, the difference imaging technique proposed in Section 3.2.2 can recover accurately both the magnitude and support of the inclusions δσ 2 and δσ 3 . These observations fully confirm the discussions in Section 3.2.2. 

Imperfectly Known Boundary

Now we illustrate the approach in the case of an imperfectly known boundary. In the first example, the unknown true domain Ω is an ellipse centered at the origin with semi-axes a and b, E a,b = {(x 1 , x 2 ) : x 2 1 /a 2 + x 2 2 /b 2 < 1}, and the computational domain Ω is taken to be the unit circle.

Example 8. Consider two square inclusions, on the top and on the bottom of the ellipse, with spectral profiles s 1 (ω) = 0.2ω + 0.2 and s 2 (ω) = 0.1ω 2 , respectively. We consider the following two cases:

(i) The true domain Ω is E a,b with a = 1.1 and b = 0.9;

(ii) The true domain Ω is E a,b with a = 1.2 and b = 0.8.

In either case, we take three frequencies, ω 1 = 0, ω 2 = 0.5 and ω 3 = 1. The numerical results are given in Figs. 3.7 and 3.8 with 0.1% noise in the data, for cases (i) and (ii), respectively. Even though not presented, we note that a direct application of the classical EIT imaging technique can only produce useless reconstruction, due to the presence of significant modelling errors. Numerically one can verify that for both cases, the contribution from domain deformation is actually one order of magnitude larger than that due to the genuine inclusions, which justify the much smaller noise level 0.1%. By exploiting the frequency incoherence, the multi-frequency EIT allows the separation of contributions from different abundances, and hence recovering each inclusion accurately. From Fig. 3.7, we observe that the difference imaging from Section 3.2.2 can recover the two inclusions accurately, and further, the two inclusions can be separated, due to their incoherent spectral profiles. However, the shape of the recovered inclusion tends to be slightly deformed and location slightly shifted. This is consistent with the discussions in Section 3.4: the unknown boundary induces a slightly deformed conductivity of the inclusions, in addition to the anisotropic component.

In Fig. 3.8 we present the results related to Example 8(ii). The preceding observations on difference imaging still hold, cf. Fig. 3.8(a) and (b). The direct approach of Section 3.2.1 works equally well: the recovered δσ 1 and δσ 2 are fairly accurate in terms of the location and magnitude; and the results are comparable with those obtained by difference imaging. Surely, the recovered δσ 0 contains only the spurious conductivity induced by the domain deformation. Should there be any true inclusion δσ 0 corresponding to the spectral profile s 0 (ω), it will be washed away by the deformation error Ψ in (3.31). The preceding discussions fully confirm the analysis in Section 3.4: the multifrequency approach is capable of discriminating the perturbation due to domain deformation from the genuine inclusions by either the direct reconstruction in Section 3.2.1 or the difference imaging in Section 3.2.2. Last we present one example where the electrodes are misplaced, but the length of the electrodes do not change, i.e., the factor z in the boundary integral can be set to the unit (see Example 5). This is a special case of the imperfectly known boundary case, where the forward map F maps the domain Ω onto itself. However, the forward map is not the identity or a rotation operator, and thus it will induce an anisotropic conductivity, especially in the regions near the boundary.

Example 9. The true domain Ω is identical with the computational domain Ω, the unit circle, but every other electrode is shifted by an angle of π/32, while the length of each electrode remains unchanged; see Fig. 3.1(b) for a schematic illustration.

There are two rectangular inclusions, on the top and on the bottom of the ellipse, with spectral profiles s 1 (ω) = 0.2ω + 0.2 and s 2 (ω) = 0.1ω 2 , respectively. We take the measurement at three frequencies ω 1 = 0, ω 2 = 0.5 and ω 3 = 1. The numerical results for Example 9 are summarized in Fig. 3.9. The analysis in Section 3.3 and in §3.4.2 indicates that the conductivity perturbation due to the domain deformation can be limited to the background component δσ 0 , as above. The numerical results confirm the analysis: when using the direct approach discussed in §3.2.1, there are many pronounced perturbations around the boundary in the reconstructed δσ 0 , due to the domain deformation. However, the reconstructed δσ 1 and δσ 2 are fairly reasonable in location and size, albeit slightly deformed. The differentiation imaging can also remove the contributions due to unknown electrode locations and separate the contributions from the two inclusions. This is feasible since the frequency profiles are incoherent both before and after the differentiation.

In summary, as expected from the analysis of Sections 3.3 and 3.4.2, the mfEIT technique has significant potential in handling modelling errors. The inclusion δσ 0 corresponding to the background frequency profile s 0 may not be reconstructed. However, by using the multifrequency method, the remaining inclusions {δσ k } K k=1 can be correctly recovered by either the direct approach in Section 3.2.1 or the difference imaging approach in Section 3.2.2, provided that the corresponding spectral profiles (or their derivatives) are sufficiently incoherent.

Chapter 4

A method to image anisotropy conductivity

Introduction

In this chapter, we describe a novel method of reconstructing images of an anisotropic conductivity tensor distribution inside an electrically conducting subject in Magneto-acoustic Tomography with Magnetic Induction (MAT-MI).

MAT-MI is a new noninvasive modality for imaging electrical conductivity distributions of biological tissue [START_REF] Xu | Magnetoacoustic tomography with magnetic induction (MAT-MI)[END_REF][START_REF] Li | Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue[END_REF][START_REF] Mariappan | Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of mri magnet[END_REF][START_REF] Zhou | A reconstruction algorithm of magnetoacoustic tomography with magnetic induction for an acoustically inhomogeneous tissue[END_REF][START_REF] Li | Multi-excitation magnetoacoustic tomography with magnetic induction for bioimpedance imaging[END_REF][START_REF] Xia | Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction[END_REF][START_REF] Ma | Magnetoacoustic tomography with magnetic induction: A rigorous theory[END_REF]. In the experiments, the biological tissue is placed in a static magnetic field. A pulsed magnetic field is applied to induce an eddy current inside the conductive tissue. In the process, the tissue emits ultrasound waves which can be measured around the tissue. The first step in the MAT-MI imaging problem is to recover the acoustic source in the scalar wave equation from measurements at a set of locations around the object. This problem has been studied in many works, including [START_REF] Finch | Recovering a function from its spherical mean values in two and three dimensions[END_REF][START_REF] Haltmeier | Filtered backprojection for thermoacoustic computed tomography in spherical geometry[END_REF][START_REF] Hristova | Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media[END_REF][START_REF] Kuchment | Mathematics of thermoacoustic tomography[END_REF][START_REF] Stefanov | Thermoacoustic tomography with variable sound speed[END_REF]. The second step in the MAT-MI is to reconstruct the electrical conductivity distribution from knowledge of the acoustic source.

Considering the fact that most biological tissues are known to have anisotropic conductivity values [START_REF] Ammari | Spectroscopic imaging of a dilute cell suspension[END_REF][START_REF] Martinsen | Interface phenomena and dielectric properties of biological tissue[END_REF][START_REF] Tuch | Conductivity tensor mapping of the human brain using diffusion tensor MRI[END_REF], the primary goal of MAT-MI should be the imaging of an anisotropic conductivity tensor distribution. However, up to now, all techniques have assumed an isotropic conductivity distribution in the image reconstruction problem to simplify the underlying mathematical theory [5,[START_REF] Qiu | Analysis of the Magnetoacoustic Tomography with Magnetic Induction[END_REF]. In this chapter, we firstly formulate a new image reconstruction method of an anisotropic conductivity tensor distribution. We combine MAT-MI with Diffusion Tensor Imaging (DTI).

DTI is a non-invasive technique for characterizing the diffusion properties of water molecules in tissues (see e.g. [START_REF] Bihan | Imaging ofintravoxel Incoherent Motions -Application to Diffusion and Perfusion in Neurologic Disorders[END_REF] and the references therein). Imaging conductivity tensors in the tissue with DTI is based on the correlation property between diffusion and conductivity tensors [START_REF] Tuch | Conductivity tensor mapping of the human brain using diffusion tensor MRI[END_REF]. This linear relationship can be used to characterize the conductivity tensor. Once the conductivity directions of anisotropy are determined, one needs only to reconstruct a cross-property factor which is a scalar function. In [START_REF] Hoell | Current Density Impedance Imaging of an Anisotropic Conductivity in a Known Conformal Class[END_REF][START_REF] Kwon | Anisotropic conducticity tensor imaging in MREIT using directional diffusion rate of water molecules[END_REF], it is shown how to recover this factor in Current Density Impedance Imaging. In [START_REF] Ammari | Spectroscopic conductivity imaging of a cell culture[END_REF], a multifrequency electrical impedance approach is developed for estimating the ratio between the largest and the lowest eigenvalue of the electrical conductivity tensor. An iterative procedure for reconstructing anisotropic conductivities from internal current densities has been proposed in [START_REF] Seo | Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study[END_REF].

In the process of the MAT-MI experiment, the tissue is placed in a constant static magnetic background field B 0 = (0, 0, 1). A pulsed magnetic stimulation of the form B 1 u(t) is applied, where the vector field B 1 is constant and u(t) is the time variation. Let γ denote the conductivity, E γ denote electric field, and Ω be the domain to be imaged. Then the electric field satisfies the following Maxwell equations

   ∇ × E γ = B 1 in Ω, ∇ • (γE γ ) = 0 on Ω, γE γ • ν = 0 on ∂Ω. (4.1.1)
The second step of MAT-MI is to reconstruct γ from the known internal data ∇ • (γE γ × B 0 ) on Ω.

In this chapter, we will consider the anisotropic conductivity case with γ being a tensor. With DTI, one can measure the water self-diffusion tensor, which will characterize the electrical conductivity tensor [START_REF] Tuch | Conductivity tensor mapping of the human brain using diffusion tensor MRI[END_REF]. Then we can assume that the tensor γ is of the form

γ(x) = σ(x)D(x), (4.1.2) 
with the tensor D(x) being measured from DTI and the cross-property factor σ being a scalar function to be reconstructed. We will focus on the second step of MAT-MI combined with DTI, i.e., on reconstructing the crossproperty factor σ from the internal data given by ∇•(γE γ ×B 0 ) with known conductivity tensor D(x).

In the following, we assume that D(x) is a positive definite symmetric matrix everywhere and write it as D = T ΣT , where D = diag(e 1 , e 2 , e 3 ), e 1 ≥ e 2 ≥ e 3 are the eigenvalues of D(x). The columns of T are the corresponding eigenvectors. As we can always write σ = σ 0 e 1 T diag(1, e 2 /e 1 , e 3 /e 1 )T , we assume that e 1 = 1 hereinafter.

Notation and preliminaries

In this section, we introduce the notation for the mathematical analysis. Let Ω be a bounded Lipschitz domain in R 3 . A typical point x = (x 1 , x 2 , x 3 ) ∈ R 3 denotes the spatial variable. Throughout this chapter, the standard notation for Hölder and Sobolev spaces and their norms is used. If there is no confusion, we omit the dependence on the domain. Assumption 1. Let σ and D be positive functions belonging to C 1,β , β > 0 and assume that

c 1 ≤ σ(x) ≤ c 2 , ∀x ∈ Ω, (4.2.1 
)

and λ ξ 2 2 ≤ ξ Dξ ≤ ξ 2 2 , ∀ξ ∈ R 3 , (4.2.2)
for some constants λ, c 1 , c 2 > 0.

Here we state several useful results on elliptic partial differential equations with Neumann boundary conditions.

We say that u ∈ H 

∇u L 2 ≤ c -1 1 λ -1 E L 2 . (4.2.5)
Proof. The proof of the existence and uniqueness up to an additive constant is a standard result by the Lax-Milgram Theorem. We refer the readers to [START_REF] Taylor | Partial differential equations I[END_REF]. In the following, we prove the gradient estimate (4.2.5).

It follows from the ellipticity condition (4.2.2) that

c 1 λ ∇u 2 L 2 ≤ Ω σ∇u • D∇u dx.
Taking the test function ϕ in Definition 4.2.4 to be the solution u, we have that

Ω σD∇u • ∇u dx = - Ω E • ∇u dx.
Consequently, applying the Cauchy-Schwarz inequality, we obtain that

c 1 λ ∇u 2 L 2 ≤ - Ω E • ∇u dx ≤ ∇u L 2 E L 2 ,
and (4.2.5) follows.

Proposition 4. Let σ and D satisfy Assumption 1. Then the system (4.1.1) is uniquely solvable and there exists a constant C and C i (1 ≤ i ≤ 3) depending on λ, c 1 , c 2 and Ω, such that

E σD L 2 ≤ C 1 , (4.2.6) 
E σD L ∞ (Ω) ≤ C 2 , (4.2.7) 
E σD C 1,γ (Ω) ≤ C 3 . (4.2.8)
Moreover, if σ 1 and σ 2 satisfy Assumption 1, we have the following bound for the electric field difference,

E σ 1 D -E σ 2 D L 2 (Ω) ≤ C σ 1 -σ 2 L 2 (Ω) .
(4.2.9) 

E σ 1 D -E σ 2 D H 1 (Ω) ≤ C σ 1 -σ 2 H 1 (Ω) . ( 4 
∇(σ 1 -σ 2 ) L 2 (Ω) ≤ L σ 1 -σ 2 L 2 (Ω) , (4.3.3) then c σ 1 -σ 2 L 2 (Ω) ≤ F (σ 1 ) -F (σ 2 ) L 2 (Ω) (4.3.4)
holds for some positive constant c.

Proof.

We denote E i = E σ i D , i = 1, 2 and write the data difference as

F (σ 1 ) -F (σ 2 ) = ∇ • (σ 1 DE 1 × B 0 ) -∇ • (σ 2 DE 2 × B 0 ) = ∇ • ((σ 1 -σ 2 )DE 1 × B 0 ) + ∇ • (σ 2 D(E 1 -E 2 ) × B 0 ).
Then, we can rewrite F (σ 1 ) -F (σ 2 ) as

F (σ 1 ) -F (σ 2 ) = I 1 + I 2 + I 3 + I 4 ,
where

I 1 = ∇ • ((σ 1 -σ 2 )E 1 × B 0 ), I 2 = ∇ • (σ 2 (E 1 -E 2 ) × B 0 ), I 3 = ∇ • ((σ 1 -σ 2 )(D -I)E 1 × B 0 ), I 4 = ∇ • (σ 2 (D -I)(E 1 -E 2 ) × B 0 ),
where I is the identity matrix.

Next we multiply F (σ 1 ) -F (σ 2 ) by σ 1 -σ 2 and integrate over Ω. For I i , i = 1, 2, 3, 4, we can estimate the integrals Ω (σ 1 -σ 2 )I i separately. We have

Ω (σ 1 -σ 2 )I 1 dx = Ω (σ 1 -σ 2 )(σ 1 -σ 2 )∇ • (E 1 × B 0 ) +(σ 1 -σ 2 )∇(σ 1 -σ 2 ) • (E 1 × B 0 ) dx = 1 2 Ω (σ 1 -σ 2 )(σ 1 -σ 2 )∇ • (E 1 × B 0 )dx = 1 2 σ 1 -σ 2 2 L 2 (Ω) .
Here we use the equality ∇

• (E 1 × B 0 ) = 1 which can be easily checked from the identity ∇ • (E 1 × B 0 ) = B 0 • (∇ × E 1 ) -E 1 • (∇ × B 0 ) = 1. On the other hand, Ω (σ 1 -σ 2 )I 2 dx = Ω (σ 1 -σ 2 )∇σ 2 • ((E 1 -E 2 ) × B 0 ))dx ≤ KC σ 1 -σ 2 2 L 2 (Ω) .
Here the assumption (4.3.1) and inequality (4.2.9) have been used.

Chapter 4. A method to image anisotropy conductivity Now we turn to the terms I 3 and I 4 . We have

Ω (σ 1 -σ 2 )I 3 dx = Ω (σ 1 -σ 2 )(σ 1 -σ 2 )∇ • ((D -I)E 1 × B 0 ) +(σ 1 -σ 2 )∇(σ 1 -σ 2 ) • ((D -I)E 1 × B 0 ))dx = - Ω (σ 1 -σ 2 )∇(σ 1 -σ 2 ) • ((D -I)E 1 × B 0 )dx ≤ ηLC σ 1 -σ 2 2 L 2 (Ω) .
In the last inequality we have used estimate (4.2.7) together with the assumptions (4.3.2) and (4.3.3). Finally, we have

Ω (σ 1 -σ 2 )I 4 dx = Ω (σ 1 -σ 2 )σ 2 ∇ • ((D -I)(E 1 -E 2 ) × B 0 ) +(σ 1 -σ 2 )∇σ 2 • ((D -I)(E 1 -E 2 ) × B 0 ))dx = - Ω σ 2 ∇(σ 1 -σ 2 ) • ((D -I)(E 1 -E 2 ) × B 0 )dx ≤ ηLC σ 1 -σ 2 2 L 2 (Ω) .
Here we have used the assumptions (4.3.2), (4.3.3) and inequality (4.2.9).

Let K and η be such that KC + 2ηLC < 1 2 . We obtain

Ω (σ 1 -σ 2 )(F (σ 1 ) -F (σ 2 )) ≥ c σ 1 -σ 2 2 L 2 (Ω) ,
for some constant c, which proves the theorem. Now we are ready to introduce a functional framework for which the inverse problem is well defined. We assume that σ is known on the boundary of Ω. In what follows, we let σ * , the true cross-property factor of Ω, belong to a bounded convex subset of C 1,β (Ω) given by S = {σ := σ 0 + α| α ∈ S}, where σ 0 is some positive function satisfying Assumption 1 and

S = {α ∈ C 1,β 0 (Ω)| c 1 ≤ α + σ 0 ≤ c 2 , |∇(α + σ 0 )| L ∞ ≤ K, ∇α L 2 (Ω) ≤ L α L 2 (Ω) , α L 2 (Ω) ≤ c 3 } (4.3.5)
with c 1 , c 2 , c 3 and c 3 being positive constants. In other words, we can write S = σ 0 + S.

It is clear that the distribution of the electric field E σD depends nonlinearly on the factor σ and ∇•(σDE σD ×B 0 ) is nonlinear with respect to σ. We first examine the Fréchet differentiability of the forward operator F . Then, some useful properties of the Fréchet derivative at σ, DF [σ], are presented. 

The reconstruction method 4.4.1 Optimization scheme

It is natural to formulate the reconstruction problem for σ * as a least-square problem. To find σ * we minimize the functional

J(σ) = 1 2 F (σ) -F (σ * ) 2 L 2 (Ω)
over σ ∈ S.

We can now apply the gradient descent method to minimize the discrepancy functional J. Define the iterates

σ n+1 = T [σ n ] -µDJ[T [σ n ]], (4.4.1) 
where µ > 0 is the step size and T [f ] is any approximation of the Hilbert projection from L 2 (Ω) onto S with S being the closure of S (in the L 2 -norm).

The presence of the projection T is necessary because σ n might not be in S.

Using the definition of J we can show that the optimal control algorithm (4.4.1) is nothing else than the following projected Landweber iteration [START_REF] Landweber | An iteration formula for Fredholm integral equations of the first kind[END_REF][START_REF] Hanke | A convergence analysis of the Landweber iteration for nonlinear ill-posed problems[END_REF][START_REF] De Hoop | An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints[END_REF] given by

σ n+1 = T [σ n ] -µDF * [T [σ n ]](F (T [σ n ]) -F (σ * )). (4.4.2) 
For completeness, we state the convergence result of Landweber scheme here without proof. We refer to [START_REF] Ammari | Admittivity imaging from multi-frequency micro-electrical impedance tomography[END_REF][START_REF] De Hoop | An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints[END_REF] for details. 

such that if T [σ 1 ] - σ * L 2 (Ω) < , then lim n→+∞ σ n -σ * L 2 (Ω) = 0.

A quasi-Newton method

It has been observed in [START_REF] Qiu | Analysis of the Magnetoacoustic Tomography with Magnetic Induction[END_REF] that the challenge of the Landweber iteration lies in the difficulty of evaluating the adjoint operator of the Fréchet derivative. To avoid taking too many derivatives, we introduce a more efficient way to reconstruct the conductivity. This is a generalization of the quasi-Newton method proposed in [START_REF] Qiu | Analysis of the Magnetoacoustic Tomography with Magnetic Induction[END_REF] for the anisotropic case with known conformal class. In the following, we describe this algorithm and prove its convergence in S.

Let σ be the scalar conductivity distribution function and let D be the known conformal class matrix-valued function. The forward operator is given by

F (σ) = ∇ • (σDE σD × B 0 ),
where E σ satisfies the system

     ∇ • (σDE σD ) = 0, in Ω, ∇ × E σD = B 1 , in Ω, σDE σD • ν = 0, on ∂Ω.
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The second term in the left hand side can be estimated as follows:

Ω (σ k+1/2 -σ * )∇ • ((σ k+1/2 -σ * )(D -I)E k × B 0 ) = Ω (σ k+1/2 -σ * ) 2 ∇ • ((D -I)E k × B 0 ) ≤ Cη σ k+1/2 -σ * 2 L 2 (Ω) .
Here the smallness of D -I and the C 1 property of E k (4.2.8) have been used.

For the right hand side, we have

Ω (σ k+1/2 -σ * )∇σ * • (D(E * -E k ) × B 0 ) ≤ CK σ k+1/2 -σ * L 2 (Ω) σ k -σ * L 2 (Ω) ,
and

Ω (σ k+1/2 -σ * )σ * ∇ • ((D -I)(E * -E k ) × B 0 ) ≤ Cη σ k+1/2 -σ * L 2 (Ω) σ k -σ * H 1 (Ω) ≤ C(L + 1)η σ k+1/2 -σ * L 2 (Ω) σ k -σ * L 2 (Ω) .
Here we have used property (4.2.10) and the fact that σ k ∈ S.

With the above estimates, as we did in Theorem 4.3.1, let KC + η(L + 2)C < 1 2 . We derive

σ k+1/2 -σ * L 2 (Ω) ≤ c σ k -σ * L 2 (Ω) , (4.4.8) 
where c is a constant smaller than 1. Hence,

σ k+1 -σ * L 2 (Ω) ≤ c σ k -σ * L 2 (Ω) , (4.4.9) 
which proves the theorem.

Numerical experiments

In this section, we present some numerical experiments to validate the reconstruction method proposed in Algorithm 4.4.1 and evaluate its robustness to measurement noise. To simplify the computation, we convert this three-dimensional problem into an equivalent two-dimensional problem assuming that the domain of interest is the cube [0, 1] 3 and the conductivity and the diffusion tensors are invariant along the third dimension. Moreover, we assume that the diffusion tensor D is of form We use a uniform finite element triangular mesh over the two-dimensional unit square. The number of cells is 256 in each direction. The total number of triangles and vertices are 2 17 and 257 2 , respectively. Both the elliptic equation with a Neumann boundary condition and the stationary advection-diffusion equation are solved using the finite element method of first order implemented with FEniCS [START_REF] Logg | Automated Solution of Differential Equations by the Finite Element Method[END_REF]. The internal data F (σ) used for the reconstruction are synthetic data that are generated using the same solver. These data are commonly used to refer to the "noise-free" data, although they may contain some numerical errors.

D =   d 11 d 12 0 d 21 d 22 0 0 0 1   , ( 4 
For all examples, we use the same initial guess, constant function 0.2, and the same true cross-property factor ( The effect of the anisotropy can be observed clearly. The error-decay of the reconstruction with the noise-free data is shown in Figure 4.4(a). The final error is smaller than 2 × 10 -3 . We only display the last iterate here.

This inverse problem bears a Lipschitz type stability and we avoid lowering the regularity of the cross-property factor using Algorithm 4.4.1. Therefore, the robustness of the reconstruction scheme to noisy data is expected. We perform the numerical tests with noisy data by perturbing the internal functional g in the following way:

g δ = g + δ g w w ,
where w is a function taking values uniformly distributed in [-1, 1] and δ is the noise level. Figure 4.3 shows the noisy data with noise level δ = 24% and the reconstructed cross-property factor. We do not use further regularization techniques since the regularization method may depend on the type of the noise in practical cases. But the projection onto the feasible space acts as a regularization scheme. 

Concluding remarks

In this chapter, we have considered the reconstruction of an anisotropic conductivity from MAT-MI data which is conformal to a known diffusion tensor measured from DTI. The data is the internal functional ∇ • (σE σ × B 0 ) throughout the domain. We have analyzed the linearization of the problem and the stability of the inversion. A local Lipschitz type stability estimate has been established for a certain class of anisotropic conductivities. A quasi-Newton type reconstruction method with projection has been introduced and its convergence has been proved. Numerical experiments demonstrate the effectiveness of the proposed approach and its robustness to noise. In light of the numerical experiments, we have the following observations.

1. The effect of the electrical anisotropy is remarkably significant and can not be neglected in the reconstruction of electrical conductivity in MAT-MI.

2. There is still a room for improvement of the admissible class of conductivities. The convergence of the proposed algorithm has been observed for more general cases.

3. For the inversion with noisy data, oscillation in the reconstructed conductivity is observed. Regularization methods prompting sparsity, such as total variation regularization may be employed for a more stable reconstruction.

Chapter 5

Analysis of cell model for electropermeabilization

Introduction

In this chapter, we give the analysis of the cell model for electropermeabilization and use a homogenization method to show the effects of cell parameter to the effective conductivity. The technique of electropermeabilization (formerly referred to as electroporation) is employed to make the chemotherapeutical treatment of cancer more efficient and avoid side-effects. Instead of spreading out drugs over the whole body, electropermeabilization makes it possible to focus drug application on special areas. The mechanism of electropermeabilization relies on careful exposition of biological tissue to electrical fields: this changes the membrane properties of the cells such that treatment can enter more easily just at precisely defined areas of the tissue [START_REF] Ivorra | Tissue electroporation as a bioelectric phenomenon: Basic concepts[END_REF][START_REF] Miklavčič | Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy[END_REF].

The local change in microscopic tissue properties, which electropermeabilization effects, occurs only with field strengths above a certain threshold. On the other hand, too strong fields result in cell death. One therefore thinks of electropermeabilization occurring within a certain threshold of intensity of the local electric field [START_REF] Dermol | Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination[END_REF].

For treatment planning in electropermeabilization, one is interested in the percentage of electroporated cells over the whole tissue to form decisions in the short term how to gear treatment [START_REF] Kranjc | In situ monitoring of electric field distribution in mouse tumor during electroporation[END_REF][START_REF] Dermol | Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination[END_REF][START_REF] Miklavčič | Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy[END_REF].

One would like supervise the electropermeabilization using measurements of the electric field distribution with image modalities like in [START_REF] Kranjc | In situ monitoring of electric field distribution in mouse tumor during electroporation[END_REF]. In that work, measurements of magnetic resonance electrical impedance tomography [START_REF] Seo | Magnetic resonance electrical impedance tomography (MREIT)[END_REF] have been employed to find the electrical field distribution. A threshold is then applied to find the electroporated cells.

Yet this approach is only the first step in a larger program:

• the electrical field distribution reconstructed by an imaging modality is a macroscopic quantity;

• the thresholding hypothesis is a simplification and should be refined [START_REF] Dermol | Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination[END_REF];

• the minimum transmembrane voltage governing electropermeabilization is determined by specific cell characteristics like the curvature of the cell membrane [START_REF] Kotnik | Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation[END_REF].

One solution to find about microscopic parameters from measurements is to take general models and do a specific parameter fitting with preselected Another model for σ m has been developed in [START_REF] Kavian | electropermeabilization modeling at the cell scale[END_REF]. Together with (5.2.6), (5.2.7), one uses the dynamics

∂ t N ([u], t) = max β([u])-N ([u],t) τep , β([u])-N ([u],t) τres with β(λ) = (1 + tanh(k ep (|λ| -V ep )))/2,
and given constants τ ep , τ res , and k ep .

Wellposedness of the electropermeabilization model

In this section, we treat the classical electropermeabilization model model (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) and study it in the form of an ODE on the membrane Γ.

As a preliminary step, let us prove the following representation of the pore density N . (5.3.1)

(ii) The pore density N , considered as a mapping v(x, t) → N (v(x, t), t)

C([0, T ], C(Γ)) × [0, T ] → C([0, T ], C(Γ)), (5.3.2) 
maps bounded sets to bounded sets.

Proof. Note that the solution to a linear inhomogeneous ordinary differential equation

∂ ∂t N (t) = A(t) N (t) + b(t) (5.3.3)
is given by [3, Thm. 5.14]

N (t) = U (t, 0) N 0 + t s U (t, s) b(s) ds, (5.3.4) 
where

U (t, s) = t s A(τ ) dτ.
Equation (5.2.8) is a special form of (5.3.3), and the coefficients A and b are In practice, it is clear that the potential v stays finite. One may therefore choose a real number M > 0 and work instead of N (v, t) with the function

A(t) = - α N 0 e (1-q) [u](t) Vep 
N M (v, t) := N (v M , t) with v M :=    |v| |v| ≤ M M |v| > M -M |v| < M .
(5.3.5)

For v L ∞ (Γ) < M , this cutoff preserves the pore density:

N M (v, t) = N (v, t). In Lemma 5.3.3, it is shown that the function v → N M (v, t)v M , considered in C((0, T ); L 2 (Γ))
, has a global Lipschitz property. 

Reduction to an ordinary differential equation

c , Λ e : H 1/2 (Γ) → H -1/2 (Γ) and Λ 0 : H 1/2 (∂Ω) → H -1/2 (Γ), Λ c f := ∂ n P 1 , Λ e f := ∂ n P 2 , Λ 0 f := ∂ n P 3 ,
where P i , i = 1, 2, 3 are solutions to

∆P 1 = 0 in Y i , P 1 = f on Γ, and    ∆P 2 = 0 in Y e , P 2 = 0 on ∂Y, P 2 = f on Γ,    ∆P 3 = 0 in Y e , P 3 = f on ∂Y, P 3 = 0 on Γ.
The following results hold. 

= (u i , v, u e ) on Y i ∪ Γ ∪ Y e is equivalent to solving the initial value problem c m δ ∂ t v + σ m δ (v, t)v + Λ c B -1 v = G, v(0) = ϕ, (5.3.6) 
for v on Γ, with the correspondence

u i = -B -1 (v + Λ -1 e Λ 0 g), u e = u i + v.
Here, B = Id + Λ -1 e Λ 0 , G = -Λ c B -1 Λ -1 e Λ 0 g, and σ m (v, t) = σ m0 (x) + βN (v, t).

(5.3.7)

Let us now state the well-posedness properties of our initial value problems on Γ. Theorem 5.3.1. Let G ∈ C 1 ((0, T ); H 1 (Γ)) and ϕ ∈ H 2 (Γ).

(i) The initial value problem in (5.3.12) has a unique global solution ṽ ∈ C([0, T ]; H 2 (Γ)).

(ii) For the initial value problem (5.3.6), there is a t 0 > 0 such that there exists a solution v ∈ C([0, t 0 [; H 2 (Γ)).

(iii) The solution in (ii) is unique on C([0, t 1 ], H 2 (Γ)) for any closed interval [0, t 1 ] ⊂ [0, t 0 [.

Proof. (i):

Let M > ϕ L ∞ be a constant and consider the initial value problem (5.3.12). Fix a number T > 0.

Due to the global Lipschitz property of N M v M shown in Lemma 5.3.3, one can apply the fixed point argument in [START_REF] Kavian | electropermeabilization modeling at the cell scale[END_REF]Thm.10]) to conclude that there exists a unique solution ṽ ∈ C([0, T ]; L 2 (Γ)) solving (5.3.12).

If one additionally assumes that G ∈ C 1 ([0, T ]; H 1 (Γ)) and ϕ ∈ H 2 (Γ), then one can likewise conclude ṽ ∈ C 1 ([0, T ]; H 2 (Γ)). Then we have that ∂ n u i ∈ L 2 (Γ). With such boundary regularity, we infer ũi ∈ H 3/2 (Y i ), similarly ũe ∈ H 3/2 (Y e ). Then ṽ = ũe -ũi ∈ C([0, T ]; H 1 (Γ)). Using this argument once again, we have that ṽ = ũe -ũi ∈ C([0, T ]; H 2 (Γ)).

(ii): We will now show that the solution ṽ to (5.3.12) found in point (i) solves locally the original problem (5. Define

t 0 := c m δ M -ϕ L ∞ C M .
Then, for t ≤ t 0 , one gets

ṽ(x, t) L ∞ (Γ) ≤ ϕ L ∞ + tC M , ≤ M.
But for ṽ ∞ < M , one has that ṽM = ṽ and N M (ṽ, t) = N (ṽ, t). Therefore, the expressions in (5.3.6) and (5.3.12) are the same, which implies that, locally, ṽ solves as well the original initial value problem (5.3.6).

(iii): Take two solutions v, w to (5.3.6) in C 1 ([0, t 1 ], H 2 (Γ)). Due to closedness of [0, t 1 ] and continuity of the norm . H 2 → R, there exists a M > 0 such that for every t ∈ [0, t 1 ], one has v(t) H 2 < M and w(t) H 2 < M.

But then the cutoff with respect to M does not change the functions: v M = v and w M = w. Therefore, v and w also solve (5.3.12). But for that ODE, one has a global uniqueness property. Therefore v = w on [0, t 1 ].

Homogenization

Let Ω be a bounded domain in R 2 , which carries a periodic structure made up by periodic open sets εY . The reference domain Y = Y i ∪ Y e ∪ Γ contains a cell inside with membrane Γ, where Y i is the intracellular domain and Y e is the extracellular domain. The whole domain Ω is thus composed of

Ω = Ω + ∪ Ω -∪ Γ ε ,
where Ω + is the collection of extracellular domains, Ω -is the collection of intracellular domains and Γ ε is the collection of membranes.

We write the thickness of the membrane of the cells εY in the form

δ = ε δ 0 ,
where is the scale of the cell and δ 0 is the reference cell membrane thickness for Y .

As in [START_REF] Ammari | Spectroscopic imaging of a dilute cell suspension[END_REF], we want to study behavior of the electrical field on this cell cluster and recover features of the microscopic cell model from tissue measurements. Considering the cell model in (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) for a domain Y , we first give the model equation for u ε in Ω:

∇ • (σ(x)∇u ε (x, t)) = 0 in Ω + , ∇ • (σ(x)∇u ε (x, t)) = 0 in Ω -, [σ∇u ε • n] = 0 on Γ ε , c m δ ∂ ∂t [u ε ] + 1 δ σ m ([u ε ] M , t)[u ε ] M = σ∂ n u - ε on Γ ε , [u ε ](x, 0) = S ε on Γ ε , u ε (x, t) = 0 on ∂Ω, (5.4.1) 
where S ε (x) = εS 1 (x, x ε ) + R(ε) and σ m = σ m0 + βN ([u ε ], t). The pore density N ([u ε ], t) is governed by (5.2.8).

Here, in the second equation on Γ ε , the quantity [u ε ] M is understood in the sense of the definition in (5. Given the physical observation that the voltage v stays bounded, it is reasonable that for proper M > 0, the system (5.4.1) is an accurate model for the real potential. Given Lemma 5.3.2 and Theorem 5.3.1, it is also wellposed. We want to explore the limit of the solution u ε as ε → 0. For this end, we start with an energy estimate on the solution u ε which will be needed later when investigating the limit. For now, let us formally assume that the solution u ε of (5.4.1) has the form u ε (x, t) = u 0 (x, t) + εu 1 (x, x ε , t) + o(ε).

(5.4.5)

We will calculate the equation for u 0 in Subsection 5.4.1 and then prove rigorously that u ε converges in an appropriate sense to u 0 in Subsection 5.4.2.

Formal calculation of the homogenization limit

To find the precise form of the terms in the ansatz (5.4.5), we can apply the arguments developed in [4]. For this end, it is required that for the membrane conductivity one has that σ m (0, t) = constant.

(see [4,Secs. 3.2 and 3.3]). This condition can be ensured for the model (5.2.6), together with (5.2.8): From (5.3.1), one can prove that N (0, t) = N 0 , and therefore σ m (0, t) = constant.

Before calculating the limit, we first give some definitions. Introduce the transform T : H 1/2 (Γ) → C([0, T ], H 1 p (Y )), where Proof. We have

H 1 p (Y ) = u is periodic in Y : u| Y i ∈ H 1 (Y i
σ m (0, t)[u ε ] -σ m ([u ε ] M , t) [u ε ] M = σ m (0, t)[u ε ] -σ m ([u ε ] M , t) [u ε ] + σ m ([u ε ] M , t) ([u ε ] -[u ε ] M ).
By the explicit form of N (v, t) in (5. The lemma then follows by the energy estimate (5.4.3).

Numerical experiments

In the preceding section, we have modeled macroscopic processes as homogenized quantities with specific effective material parameters. In this section we show the sensitivity of the effective parameters to microscopic properties relevant in electropermeabilization. We use FEM with mesh generator [START_REF] Persson | A simple mesh generator in MATLAB[END_REF] to implement all the numerical simulations. We present the numerical experiments from two aspects: First we will simulate the single cell model (5.3.6) and show the electropermeabilization at cell level. Next we show how the microscopic parameters affect effective parameters and anisotropy properties in the homogenized model (5.4.7). 

Electropermeabilization simulation for a single cell

We simulate the single cell model (5. All the parameters are given in Table 5.1. Figure 5.1 shows the results for the time evolution and the voltage after 2 µs .

Homogenization for electropermeabilization model

In this section, we show the sensitivity of the effective parameters σ 0 , A 0 , and A 1 in (5.4.7) to

• the conductivities σ o and σ i ;

• the shape of the cell with membrane Γ;

• the volume fraction f = vol(Y i ) vol(Y ) ;

• the lattice of the cells in the domain Ω. We perform four experiments, the results of which are found in Table 5.2.

Example 1. We fix the shape and size of the cell and change the ratio of the interior and exterior conductivities σ i and σ e .

Example 2. In this example, we show how the shape of the cell membrane produces different effective anisotropy properties. We fix conductivities and the volume fraction of the cell, but take as cell shapes ellipses with different excentricity a/b.

Example 3. We investigate the effect of different volume fractions of a cell with the same shape.

Example 4. In this example, we show how the angle of the lattice in which the cells are arranged affects the effective parameters.

For all these experiments, Table 5.2 presents the reactions of the effective conductivity σ 0 and the effective anisotropy properties A 0 and A 1 (0) to the microscopical change. One sees clearly that σ 0 , as well as A 0 and A 1 react to a change of cell and conductivity parameters. Most of the sensitivity functions are in fact monotonic.

The best contrast is seen in:

• the reaction of σ 0 to the change in conductivity σ i /σ e and to a change in the lattice angle φ;

• the reaction of both A 0 and A 1 to the cell shape.

The volume fraction alone does not show so much contrast in the anisotropy of the effective parameters.

Given the results of the sensitivity analysis, it is promising to infer shape parameters from macroscopic effective properties in electropermeabilization, as it was done in [START_REF] Ammari | Spectroscopic imaging of a dilute cell suspension[END_REF] from multifrequency admittivity measurements. effective conductivity σ 0 eigenvalues λ 1 /λ 2 of A 0 eigenvalues λ 1 /λ 2 of A 1 (0). 

Concluding remarks

We introduced a homogenization scheme relating critical microscopic and macroscopic quantities in electropermeabilization. The sensitivity analysis of the effective parameters showed this dependence and opens the door to solve the inverse problem to monitor those critical microscopic quantities in practice. While setup optimization for electropermeabilization has been studied using computer simulations, for instance, in [START_REF] Miklavčič | Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy[END_REF][START_REF] Sugibayashi | Electric field analysis on the improved skin concentration of benzoate by electroporation[END_REF][START_REF] Golberg | Towards electroporation based treatment planning considering electric field induced muscle contractions[END_REF][START_REF] Miklavčič | A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy[END_REF][START_REF] Miklavčič | The importance of electric field distribution for effective in vivo electroporation of tissues[END_REF], from our approach comes an additional constraint: for mapping of the effective parameters A 1 and A 0 , two currents have to be applied which are nowhere parallel. An electrode configuration providing this allows for unique reconstruction [START_REF] Kim | Uniqueness and convergence of conductivity imge reconstruction in magnetic resonance electrical impedance tomography[END_REF].

Concluding remarks

In this thesis, two different parts have been discussed. In many scientific and engineering applications involving partial differential equations, the input data such as sources or boundary conditions are usually given through the measurements which may be subject to random noises. We have considered two cases in the finite element method with observational data in Part I: the thin plate spline model and the elliptic boundary equations with uncertain boundary data. We have analyzed the stochastic convergence based on the empirical process theory and investigated the stochastic convergence of the FEM which characterizes the tail property of the probability distribution function of the finite element error.

The methods used in these two cases can be extended to other forward problems with random input. This gives a way to choose the optimal discrete size (mesh size or system's degree of freedoms) to balance the random error. Also in the case of the thin plate spline model it has been shown that the self-consistent iterative Algorithm 1.5.1 is quiet efficient for determining the smoothing parameter. This kind of algorithm might be applied to other similar problems in practice.

Another promising aspect of the thesis is inverse problems. With uncertain input data, inverse problems can be very unstable because of their inherent ill-posedness. The methods introduced in the first parts pave a way to improve these issues. Yet more work is needed in this direction.

In Part II, we have discussed two imaging methods: the linearized model in multi-frequency EIT and the imaging of anisotropic conductivity using Diffusion Tensor, for isotropic and anisotropic conductivity reconstruction respectively. We have also analyzed the well-posedness of the cell model for electropermeabilization and a dynamical homogenization scheme. The mathematical models in this part help us to understand the dependence of the conductivity of the tissue on the frequency and the microoaganisation of the cells.

For the first imaging method, we have systematically discussed mfEIT reconstruction in the following three different scenarios: known spectral profiles, partially known spectral profiles and unknown spectral profiles. This analysis generalizes the existing studies. It has very promising applications to other multi-frequency imaging problems and multi-wavelength problems.

The second imaging method gives a way to reconstruct anisotropic conductivity distributions with DIT. We have firstly formulated a new image reconstruction method of an anisotropic conductivity tensor distribution by combining the MAT-MI and the DTI techniques. But a more difficult and important problem is to reconstruct full anisotropy conductivity and to develop a stable imaging technique for such problems.

We have also analyzed the well-posedness of the cell model for electropermeabilization and proposed a dynamical homogenization scheme. in the proof of 2D case in Section 1.4 we have

|v h -q h | H m (K) ≤ Ch 2-m   K ∈M h (K) |v h | 2 H 2 (K )   1/2
, m = 0, 1, 2. (A.0.8) Next we expend q h -w h ∈ P 9 (K) in terms of the nodal basis functions of the C 0 -P 9 element. From the definition of the C 1 -P 9 and C 0 -P 9 elements, we have q h -w h = φ e + φ f in K, where the edge part of the function q h -w h is φ e (x) = 1≤i =j≤4 {k,l}∈{1,2,3,4}\{i,j},k =l

D(q h | K -w h | K )(a ij )(a k -a ij )p k ij (x) + D(q h | K -w h | K )(a ij )(a l -a ij )p l ij (x) + 1≤i =j≤4
{k,l}∈{1,2,3,4}\{i,j},k≤l

D 2 (q h | K -w h | K )(b ij )(a k -b ij , a l -b ij )p kl ij (x) + D 2 (q h | K -w h | K )(c ij )(a k -c ij , a l -c ij )q kl ij (x) ,
and the face part of the function q h -w h is

φ f (x) =
1≤i,j,k≤4,i =j,j =k,k =i {l}∈{1,2,3,4}\{i,j,k}

6 n=1 D(q h | K -w h | K )(a n ijk )(a l -a n ijk )p n ijk (x).
Since the tangential derivatives of q h -w h along the edges vanish, we obtain by the same argument as that in the proof of 2D case in Section 1.4 that

|φ e | H m (K) ≤ Ch 2-m   K ∈M h (K) |v h | 2 H 2 (K )   1/2
, m = 0, 1, 2.

(A.0.9)

On any face F of K, q h -w h -φ e ∈ P 9 (F ) and its nodal values at 3 vertices up to 4th order derivatives vanish, its first order normal derivative at the midpoint and two second order normal derivatives at two internal trisection points on 3 edges vanish, and the nodal value at the barycenter also vanishes. This implies q h -w h -φ e = 0 on any face of the element K. Let τ n ijk be the tangential unit vector on the face of vertices a i , a j , a k such that 
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 11 FIGURE 1.1: The degrees of freedom of 2D Morley (left) and 3D Morley (right) element.

FIGURE 1 . 2 :

 12 FIGURE 1.2: The degrees of freedom of Agyris element (left) and Hermite triangle of type (5) (right).
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 4 Stochastic convergence 25 Now inserting the above estimate into (1.44) we have

4 n ) and nλ d/ 4 n ≥ 1

 441 where we have used h = O(λ 1/in the last inequality. Thus
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 13 FIGURE 1.3: The surface plot of the exact solution u 0 .
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 14 according to Theorem 1.4.2.
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 141522 FIGURE 1.4: The empirical error u 0 -u h n for 11 different choices of λ n = 10 -k , k = 0, 1, • • • , 10. The mesh size h = λ 1/4 n .
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 14 . Figure 1.5 (a) shows clearly the linear dependence of the empirical error on λ 1/2

Figure 1 . 3 .

 13 5 (b) shows also the linear dependence of the empirical error on λ We test the efficiency of the Algorithm 1.5.1 to estimate the smoothing parameter λ n . We will show two experiments of different noise levels. In the first test we set e i , i = 1, 2, • • • , n, being independent normal random variables with variance σ = 1 and n = 2500.

  Figure 1.6 (a) and (b) show clearly that the sequence of {λ n,k } generated by Algorithm 1.5.1 converges. λ n,16 = 4.12 × 10 -6

FIGURE 1 . 6 :

 16 FIGURE 1.6: (a) The solution u h at the end of iteration for σ = 1. (b) The empirical error u 0 -u h n of each iteration for σ = 1. (c) The solution u h at the end of iteration for the combined random error e i = η i + α i . (d) The empirical error u 0 -u h n of each iteration for the combined random error e i = η i + α i .
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 3 Convergence of the finite element method 43 Thus by the theory of real interpolation of Sobolev spaces, e.g., [17, Proposition 12.1.5],

Figure 2 .

 2 3 shows the convergence rate of the error in the H 1 and L 2 norm for each choice of n.

FIGURE 2 . 2 :

 22 FIGURE 2.2: The uniform mesh for the unit circle with mesh size h = 0.1.

(a) H 1 FIGURE 2 . 3 :

 123 FIGURE 2.3: The log-log plot of the convergence rate on the unit circle.

Remark 3 . 3 . 1 .

 331 The factor | det J S F | has a certain physical interpretation. The current density on ∂ Ω is locally defined by J = I/area( A), where I is the current injected through a small surface A ⊆ ∂ Ω. ThusJ = I area( A) = I area(A) area(A) area( A) = J area(A) area( A) ,where J is the corresponding current density on A := F ( A) ⊆ ∂Ω. Therefore, the factor | det J S F | is nothing other than the infinitesimal version of area(A) area( A) as area( A) → 0. It is worth pointing out that the following relation holds trivially true:

(3. 27 )

 27 Like in the continuum model, in view of the relation (3.25), we can write Chapter 3. The Linearized inverse problem in multifrequency EIT

31 )

 31 When compared with the linearized model in the continuum case, cf. (3.23), we observe the presence of the additional error term s 0 (ω)C m , where C m (ω) :=the boundary deformation. The formula (3.31) is perfectly consistent with(3.23): in the continuum case, the contact impedance effect is not taken into account, and u n = U n on the electrodes, namely c j = 0, whence C m = 0.

Algorithm 3 . 5 . 1 .

 351 GROUP ITERATIVE SOFT THRESHOLDING.1: Input M , Y , W , N , α, N and A 0 . 2: for j = 1, . . . , N do 3:

FIGURE 3 . 1 :

 31 FIGURE 3.1: The electrode arrangement for the computational domain Ω and for an imperfectly known domain Ω (used in Example 9). The curved segments in red denote the electrodes. The electrodes in (a) are equally spaced, but those in (b) are not.
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 32 FIGURE 3.2: Numerical results for Example 6(i) with 1% noise in the data, and fully known spectral profiles. The reconstructions were obtained using the direct approach discussed in Section 3.2.1.
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 3334 FIGURE 3.3: Numerical results for Example 6(i) with 1% noise in the data, and imprecisely known spectral profiles. The reconstructions in (a) and (b) are obtained with the spectral matrix S perturbed by additive Gaussian noise with mean zero and standard deviation 10% of the entry magnitude, and those in (c) and (d) with 20% noise, both by the direct approach of Section 3.2.1.
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 35 FIGURE 3.5: Numerical results for Example 7(i) with 1% noise in the data, with fully known spectral profiles. The reconstructions are obtained by the direct approach in Section 3.2.1.

FIGURE 3 . 6 :

 36 FIGURE 3.6: Numerical results for Example 7(ii) with 1% noise in the data. Here (b)-(d) are the reconstructions with fully known spectral profiles, while for (e) and (f) only the spectral profiles s 2 (ω) and s 3 (ω) are known, and the reconstructions are obtained by difference imaging in Section 3.2.2.

FIGURE 3 . 7 :

 37 FIGURE 3.7: Numerical results for Example 8(i) with 0.1% noise in the data, fully known spectral profiles. The reconstructions are obtained using difference imaging technique in Section 3.2.2.

Chapter 3 .

 3 The Linearized inverse problem in multifrequency EIT

FIGURE 3 . 8 :

 38 FIGURE 3.8: Numerical results for Example 8(ii) with 0.1% noise in the data, fully known spectral profiles. The reconstructions in panels (b)-(c) are based on difference imaging technique in Section 3.2.2, and those in panels (d)-(f) are based on the direct approach in Section 3.2.1.

FIGURE 3 . 9 :

 39 FIGURE 3.9: Numerical results for Example 9 with 0.1% noise in the data, fully known spectral profiles. The reconstructions shown in panels (b)-(c) are based on difference imaging in Section 3.2.2, whereas those in panels (d)-(f) are based on the direct approach of the method discussed in Section 3.2.1.

.2. 10 )

 10 Proof. Let us first reduce the system (4.1.1) to a Neumann boundary value problem. Let Ẽ = 1 2 (-y, x, 0). We can readily check that ∇× Ẽ = B 1 . Hence ∇ × (E σD -Ẽ) = 0 and we can write E σD = Ẽ + ∇u. Substituting this into

Chapter 4 .

 4 A method to image anisotropy conductivity

Theorem 4 . 4 . 1 .

 441 The sequence defined in (4.4.2) converges to the true cross-property factor σ * of Ω in the following sense: there exists > 0

  .4.10) where d ij 's are constant plus some perturbations as shown in Figure 4.1. The non-zero part of the perturbation functions are used to characterize the anisotropy.

FIGURE 4 . 1 :

 41 FIGURE 4.1: Components of the diffusion tensor.

Figure 4

 4 r ≤ 0.12, 0.4s 3 (6s 2 -15s + 10) + 0.2, 0.12 < r < 0.46, 0.2, others , where r(x 1 , x 2 ) = (x 1 -0.5) 2 + (x 2 -0.5) 2 and s = 0.46-r 0.12 . The internal data generated with the diffusion tensor as in (4.4.10) is shown in Figure 4.2(b). We also produce the data in the isotropic case (Figure 4.2(c)).
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 42 FIGURE 4.2: Conductivity distribution and the internal data.

FIGURE 4 . 3 :

 43 FIGURE 4.3: Reconstruction with noisy data (δ = 24%).

( a )

 a Error decay with noise-free data. (b) Reconstruction error versus noise level.

FIGURE 4 . 4 :

 44 FIGURE 4.4: Reconstruction error.

Lemma 5 . 3 . 1 .

 531 (i) For [u] = v, the solution of the initial value problem in (5.2.7), (5.2.8) is N (x, t) = e

2 , 5 . 3 . 2 .

 2532 Wellposedness of the electropermeabilization modelInserting A and b into the general solution (5.3.4), we directly obtain the representation (5.3.1) in (i).Using the norm v C(Γ) = sup x∈Γ |v(x)|, the boundedness property in (ii) is then immediate. Remark 5.3.1.

  3.6). -Using the Sobolev embedding theorem one has thatΛ c B -1 ṽ ∈ C([0, T ]; H 1 (Γ)) → C([0, T ]; C(Γ)).Take a constant C M such that, for any t ≤ T , one hasσ m (ṽ M , t) δ ṽM + Λ c B -1 ṽ + G C(Γ) ≤ C M .

  3.5), i.e., [u ε ] M = sgn([u ε ]) min(|[u ε ]|, M ) for a constant M > 0.

Proposition 5 . 3 ) 5 . 1 ε t 0

 53510 (i) We have for u ε in (5.4.1) the energy estimatet 0 Ω σ|∇u ε | 2 dx dt + 1 ε Γε [u ε ] 2 (x, t)dS ≤ C. (5.4.2)(ii) In particular, the estimateΓε [u ε ] 2 dS ≤ Cε (5.4.Chapter Analysis of cell model for electropermeabilization holds.Proof. Multiply (5.4.1) by u ε , then integrate by parts to findt 0 Ω σ|∇u ε | 2 dx dt + α 2ε Γε [u ε ] 2 (x, t)dS + Γε σ m ([u ε ] M , τ )[u ε ][u ε ] M (x, t)dS dt = α 2ε Γε [S ε ] 2 (x)dS. (5.4.4)The statement is then derived from the fact thatσ m [u ε ][u ε ] M ≥ 0and S ε (x) = εS 1 (x, x ε ) + o(ε).

  ) and u| Ye ∈ H 1 (Y e ), Y u = 0 , by T (s)(y, t) := v(y, t)with v being the solution to the following system with boundary data s:∇ • (σ(x)∇v) = 0 in Y i , ∇ • (σ(x)∇v) = 0 in Y e , [σ∇v • n] = 0 on Γ, c m δ 0 ∂ ∂t [v] + 1 δ 0 σ m (0, t)[v] = σ∂ n v - on Γ,[v](x, 0) = s on Γ.

3 . 1 ) 0 [u ε ] 2

 3102 and |v M | L ∞ ≤ M , there exists a constant L(M ) such that |N ([u ε ] M , t) -N (0, t)| 2 ≤ L(M ) t M ds,(5.4.10)and σ m ([u ε ] M , t) ≤ C(M ).Together with the fact thatT 0 [u ε ] -[u ε ] M ds ≤ T 0 [u ε ] 2 ds, we can thus conclude that T 0 Γε σ m (0, t)[u ε ] -σ m ([u ε ] M , t) [u ε ] M dS dt ≤ C(M )ε.

FIGURE 5 . 1 :

 51 FIGURE 5.1: (a) Evolution of the transmembrane potential (TMP) v at the pole of the cell. (b) TMP along the cell membrane after 2 µs .

  3.6) in a square domain [0, L]×[0, L], the cell is a circular in the center of the square with cell radius r. The parameter β in (5.2.8) is given by β = 2πr 2 p σ p δ πr p + 2δ . (5.5.1)

FIGURE 5 . 2 :

 52 FIGURE 5.2: Cell shapes used in numerical examples (see text and Table 5.2). Example 1 uses the first mesh. Example 2 uses the cells in the first row. Example 3 uses the cells in the second row. Example 4 uses the cells in the last row.

Example 1 :

 1 Difference in conductivity (ratio σ i /σ e of interior and exterior conductivity). Example 2: Difference in cell shape: change of the excentricity a/b (see Fig. 5.2, 1st row). Example 3: Difference in volume fraction of the cells (see Fig. 5.2, 2nd row). Example 4: Difference in angle φ of the lattice arrangement (see Fig. 5.2, 3rd row). TABLE 5.2: Changes in microscopic parameters and the reaction of the effective parameters in (5.4.7).

2 K 1 / 2 .

 212 a l -a n ijk = [(a l -a n ijk ) • τ n ijk ]τ n ijk + [(a l -a n ijk ) • ν]ν.Now by (A.0.4), (A.0.8)-(A.0.9), and the inverse estimate we have|D(q h | K -w h | K )(a n ijk )(a l -a n ijk )| ≤ |[(a l -a n ijk ) • τ n ijk ]Dφ e (a n ijk )τ n ijk | + |[(a l -a n ijk ) • ν]D(q h | K -w h | K )(a n ijk )ν| ≤ Ch 1/∈M h (K) |v h | 2 h 2 (K ) (A.0.10)

  2.1. 3.3 Numerical results for Example 6(i) with 1% noise in the data, and imprecisely known spectral profiles. The reconstructions in (a) and (b) are obtained with the spectral matrix S perturbed by additive Gaussian noise with mean zero and standard deviation 10% of the entry magnitude, and those in (c) and (d) with 20% noise, both by the direct approach of Section 3.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Numerical results for Example 6(ii) with 1% noise in the data.

	The reconstructions in panels (b) and (c) are obtained with
	fully known spectral profiles using the direct approach in
	Section 3.2.1, and that in panel (d) is obtained without know-

ing the spectral profiles, using difference imaging in Section 3.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Numerical results for Example 7(i) with 1% noise in the data, with fully known spectral profiles. The reconstructions are obtained by the direct approach in Section 3.2.1. . . . . . . .

  Jensen inequality, it is easy to check that X ψ is a norm. In the following we will use the X ψ 2 norm with ψ 2 (t) = e t 2 -1 for any t > 0.

	1.4. Stochastic convergence	21
	By using By definition we know that	
	P(|X| ≥ z) ≤ 2 e -z 2 / X 2 ψ 2 , ∀z > 0.	(1.36)
	The following lemma is from [112, Lemma 2.2.1]. It shows the inverse of
	this property.	
	Lemma 1.4.1. If there exist positive constants C, K such that P	
		.35)

Lemma 1.4.2. If

  {X t : t ∈ T } is a separable sub-Gaussian random process, then

	2 , ∀s, t ∈ T, z > 0.	(1.37)
	For a semi-metric space (T, d), an important quantity to characterize the
	complexity of the set T is the entropy which we now introduce. The cov-
	ering number N (ε, T, d) is the minimum number of ε-balls that cover T . A
	set is called ε-separated if the distance of any two points in the set is strictly
	greater than ε. The packing number D(ε, T, d) is the maximum number
	of ε-separated points in T . log N (ε, T, d) is called the covering entropy and
	log D(ε, T, d) is called the packing entropy. It is easy to check that [112, P.98]
	N (ε, T, d) ≤ D(ε, T, d) ≤ N (	ε 2	, T, d).	(1.38)
	The following maximal inequality [112, Section 2.2.1] plays an impor-
	tant role in our analysis.			
	sup			
	s,t∈T			

  where we have used the fact that h max ≤ Cn -1/d ≤ C. The lemma now follows from Lemma 1.4.3.

	The following lemma is proved by the argument in [112, Lemma 2.2.7].
	Lemma 1.4.5. {E n (u) := (e, u) n : u ∈ H 2 (Ω)} is a sub-Gaussian random
	process with respect to the semi-distance d(u, v) = u -v * n , where u * n

  For any v h ∈ V h , by Lemma 1.3.3, Π h v h ∈ H 2 (Ω) and thus by(1.3) 

	Chapter 1. FEM for the thin plate spline model
	d dε. (1.48)

  where M * h is the set of all elements having one curved edge. Obviously,|Ω * | ≤ Ch. By definition Φ h = Ψ K is identity for K ∈ M h \M * h .Then it is easy to check by using Lemma 2.3.1 that (cf. [70, Lemma 8]) for any v h , w h

  n . By Lemma 2.2.4 we know that the diameter of F h in terms of the semidistance d is bounded by 2C 2 B 4 (σn -1 ). By maximal inequality in Lemma 2.4.1 and (2.3) we have sup

  By (2.2), Theorem 2.4.2 implies that the probability of the L 2 -finite element error violating the convergence order O(h 2 | ln h|( u H 2

).

Inserting the above estimates into (2.7) shows (2.6) by taking p such that | ln h| < p ≤ | ln h| + 1.

  .1: The log-log plot of the convergence rate on the unit square.

	n	h	H 1 error	α	L 2 error	β
	8.8686 0.0125 24.3951 n = h -1 0.1000	0.4866	0.3978 0.1394	-0.5043
	n = h -2 0.1000 0.0125	2.8101 2.7125	-0.0170	0.1348 0.0167	-1.0037
	n = h -3 0.1000 0.0125	0.9637 0.3094	-0.5464	0.0537 0.0017	-1.6649
	n = h -4 0.1000 0.0125	0.6325 0.0838	0.0380 -0.9721 6.3816e-4 -1.9656

TABLE 2 .

 2 

1: The convergence rate α in the H 1 norm and β in the L 2 norm on the unit square.

Table 2 .

 2 [START_REF] Adler | Electrical Impedance Tomography[END_REF] shows the convergence rate α in the H 1

TABLE 2 .

 2 

2:

The convergence rate α in the H 1 norm and β in the L 2 norm on the unit circle.

  .19) Moreover, by (3.16) we have ∂ Ω f n vd s = ∂Ω f n vds. Therefore, in view of (3.15) the potential u n satisfies

	Ω

  Suppose that σ and D satisfy Assumption 1. For field E ∈ L 2 , the Neumann problem (4.2.3) has a solution u ∈ H 1 . The solution u is unique up to an additive constant and satisfies the estimate

	4.2. Notation and preliminaries			85
	if		
	σD∇u • ∇ϕ dx = -	E • ∇ϕ dx, ∀ϕ ∈ H 1 .	(4.2.4)
	Ω	Ω	
	We give a brief proof of the following regularity result and standard
	energy estimate.		
	Proposition 3.		
	1 is a weak solution of the Neumann boundary value
	problem		
	∇ • (σD∇u) (σD∇u + E) • ν = 0, = -∇ • E,	in Ω, on ∂Ω,	(4.2.3)

  Chapter 5. Analysis of cell model for electropermeabilization

	Given the condition		
	u(x, t) = u ref	on Y for t < 0,	(5.2.9)
	the initial value problem (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) is then solved on
	Y ×]0, T [.		

  Define solutions of Dirichlet boundary value problems and assign the Neumann data via the Stekhlov-Poincaré operators Λ

Definition 1 (Stekhlov-Poincaré operators). Let H s (Γ) be the standard Sobolev space on Γ of order s. Let f ∈ H 1 2 (Γ) be given.

TABLE 5 .

 5 1: Model parameters used for the numerical computations.

(a) computational domain Ω (b) imperfectly known domain Ω
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With the help of proposition 3, we get

From the standard L p estimate for elliptic equations [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Chapter 9] and the Sobolev Embedding Theorem, we know that E σD is a bounded function in W 2,p (Ω) for any p > 2. Hence, E σD is uniformly bounded by a constant C, which depends only on r 0 , λ, c 1 , c 2 , and Ω. Then (4.2.7) is proved.

With the assumption of C 1,γ property, we would obtain the C 2,γ Hölder continuity [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] of u, i.e., the C 1,γ continuity of E σD . Estimate (4.2.8) has been proven.

Next, we estimate the electric field difference. We denote E i = E σ i D , for i = 1, 2. Note that E 1 -E 2 is curl-free. We set

Then, u satisfies the equation

With the same argument for proving (4.2.6), we obtain that

Thus, we conclude from (4.2.7) that

From the standard theory of elliptic equations

which implies (4.2.10).

Uniqueness and stability

With the notation of the previous section, we will show the well-posedness of the inverse problem in a certain functional space.

We prove the following theorem on the stability of the inverse problem. . If there exist constants K, L and η such that

To introduce the Fréchet derivative, we consider the following Neumann boundary value problem

in Ω, (σD∇ϕ h + hDE σD ) • ν = 0, on ∂Ω, (4. 3.6) and

in Ω, (σD∇Φ g + σD(B 0 × ∇g)) • ν = 0, on ∂Ω, (4.3.7) where h ∈ S is the increment to the factor σ.

By the same arguments as those in [START_REF] Qiu | Analysis of the Magnetoacoustic Tomography with Magnetic Induction[END_REF], together with Theorem 4.3.1, it is natural to conclude the following result that insures the well-posedness of the inverse problem. 

where ϕ h solves (4.3.6). Meanwhile, DF [σ] * , i.e., the adjoint of DF [σ] is defined as below,

where Φ g solves (4.3.7). Furthermore, we have the following stability result,

for some constant C which depends on λ, c 

Then we are ready to compute DF [σ] * (g). We have

This proves (4.3.9). Step 0. Select an initial conductivity σ 1 ∈ S and set k = 1.

Step 1. Calculate the associated electric field E k by solving the boundary value problem

Step 2. Calculate the updated conductivity by solving the stationary advectiondiffusion equation with the inflow boundary condition:

where

where T is the Hilbert projection operator onto S. Set k = k + 1 and go to (4.4.3).

Convergence analysis

In the algorithm above, one updates the electric field E and then updates the cross-factor σ later. Using the same argument as for proving the wellposedness, we could get the following convergence results. 

(4.4.5)

Proof. Note that T is a projection and S is convex. Then, we have that T is nonexpansive and

Multiplying by σ k+1/2 -σ * and integrating over Ω yields

Integrating by parts gives

Chapter 5. Analysis of cell model for electropermeabilization cells like in [START_REF] Dermol | Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination[END_REF]. In clinical practice, though, a preselected cell population may be unavailable for the analysis.

In this chapter, we tackle the next step in electropermeabilization monitoring and investigate the question to determine microscopic parameters from macroscopic measurements. The modelling used stems from general physiological tissue models for cells, asymptotically simplified by Neu and Krassowska [START_REF] Neu | Asymptotic model of electroporation[END_REF]. Whereas the mathematical well-posedness of the model of that model is not available in the literature, there exists an investigation of well-posedness for a similar model in [START_REF] Kavian | electropermeabilization modeling at the cell scale[END_REF]. In this chapter, demonstrate the local well-posedness of the asymptotic cell model of [START_REF] Neu | Asymptotic model of electroporation[END_REF], as well as the absence of a blow up. A variant of the model is shown to be globally wellposed.

In order to describe the relation between macroscopic and microscopic quantities, we apply the homogenization scheme in [4] to the cell model of Neu and Krassowska [83]. This not only describes isotropic effective parameters such as classical theory [START_REF] Pavlin | Effective conductivitiy of cell suspensions[END_REF], but includes also anisotropy. We provide a convergence analysis for the homogenized solution.

Then we study numerically the sensitivity of the effective parameters to:

• the conductivities of the extra-and intracellular media;

• the shape of the cell membrane;

• the volume fraction of the cells;

• the lattice structure of the cells.

We refer to research in [START_REF] Kotnik | Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation[END_REF][START_REF] Ivorra | Electrical modeling of the influence of medium conductivity on electroporation[END_REF][START_REF] Miklavčič | The importance of electric field distribution for effective in vivo electroporation of tissues[END_REF][START_REF] Pavlin | Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system[END_REF][START_REF] Pucihar | Numerical determination of transmembrane voltage induced on irregularly shaped cells[END_REF], where these critical parameters for electropermeabilization have been investigated, partly from an empirical or computer simulation point of view.

The structure of the chapter is as follows. In Section 5.2, we introduce the model of [START_REF] Neu | Asymptotic model of electroporation[END_REF] on the cellular scale. In Section 5.3, we investigate its wellposedness properties. In Section 5.4, we perform the homogenization and show the convergence of the homogenized solution. In Section 5.5, we provide a sensitivity analysis of the effective parameters, showing dependence on microscopic properties, summarized in Table 5.2. A discussion and final remarks in Section 5.6 conclude the article.

Modelling electropermeabilization on the cellular scale

Membrane model

Let Y R d be a bounded domain representing the cell, and let Γ ⊂ Y be the membrane of the cell. Let

where Y i (resp. Y e ) is be the inner (resp. the outer) domain. Let σ i (x) be the conductivity of the cell domain Y i , and σ e (x) be the conductivity outside the cells on Y e .

Modelling electropermeabilization on the cellular scale 99

Let u 0 be an imposed voltage on the boundary of Y . An electrostatic model for the electrical field u(x, t) on Y in the inner and outer domain is

)

Here and throughout this chapter, ∂ n denotes the normal derivative.

Electropermeabilization models

In addition to the membrane model, a time-varying conductivity σ m (x, t) for x ∈ Γ is taken account of. The general effect of electropermeabilization is described by relating σ m and the membrane thickness δ to the transmembrane potential (TMP) jump

Here, the vector n ¯is the outward normal to Γ, ∂ n is the normal derivative, the superscripts ± denote the limits for outside and inside Y i , and c m is a positive constant.

The membrane conductivity σ m in (5.2.4) is described by different models. In [START_REF] Ivorra | Electrical modeling of the influence of medium conductivity on electroporation[END_REF], Mir et al. propose a static model based on

for some constants σ m0 , K, and β, and used the model (5.2.1)-(5.2.4) and (5.2.5) as a boundary-value problem for an elliptic equation with nonlinear transmission conditions at the membrane.

The classical and more involved model for σ m due to Neu and Krassowska [START_REF] Neu | Asymptotic model of electroporation[END_REF] is explained in the following. It assumes that σ m is the sum of σ m0 and an electropermeabilization current. The latter is proportional to the pore density N , which in turn is governed by an ordinary differential equation:

where α, β, q, and N 0 are constants, V ep is the minimum transmembrane voltage for electropermeabilization, and T is the final time.
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where , L 2 is the scalar product on L 2 (Γ).

Proof. The reduction of the time-dependent model on Ω to the initial value problem on Γ in (5.3.6), using the Steklov-Poincaré operators, is the same as in [58, Lemma 9]. The property in (ii) is shown in [58, Lemma 8].

For establishing existence and uniqueness results (in Theorem 5.3.1), we use the following lemma on the Lipschitz property of the function N M introduced in Remark 5.3.1.

be the modified pore density defined by (5.3.5). Then

(5.3.9)

Using the boundedness of v M , (5.3.9) shows that it suffices to prove that

Consider the explicit form of N (v, t) in (5.3.1). As v M L ∞ ≤ M , there exists a constant L(M ) such that

(5.3.10) Therefore, we have Using Lemma 5.3.3, we now come to the well-posedness results. For this end, we introduce the following auxiliary problem. As a variant to (5.2.4), we consider

Using the same procedure as in Lemma 5.3.2, we find that the model (5.2.1)-(5.2.3),(4') and (5.2.6)-(5.2.9) is equivalent to solving

(5.3.12)

Wellposedness of the electropermeabilization model
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We now give a more detailed analysis of the terms in equation (5.3.6) to show that a solution cannot blow up in finite time (see Theorem 5.3.2).

Note that for σ m given by (5.2.6), there exists a C ∈ R such that one has for all v that

This immediately follows from the expression of the membrane conductivity in (5.2.6) and the fact that both the pore density N as well as N M in (5.3.5) are positive.

Proof. Take as an indirect assumption a blow up-sequence v(t k ) X → ∞ with t k → b. Without loss of generalization, we may choose

is then continuously differentiable. The sequence t k → b(x) having the Cauchy property, the slope of the secants satisfies

as well. We then will work with a sequence τ k such that

chosen by the mean-value theorem.

Consider equivalently to (5.3.6) the equation

Take the L 2 -scalar product with v and take account of

Then estimate the right-hand side with the Cauchy-Schwarz inequality and the accretivity property (5.3.8):

Divide by v L 2 to find

(5.3.15)

From (5.3.13), we already know that the left-hand side stays positive. Evaluate then expressions in inequality (5.3.15) for the sequence τ k in (5.3.14). The result is that the right-hand side would tend to -∞, which is impossible. This shows that no blow up of v in L 2 can occur.

We define next the cell problems χ 0 : Ω → R d and χ 1 : Ω × (0, T ) → R d . For this, let e ¯h be the h-th unit vector in R d . Then the component χ

The component χ 1 h is defined by

By a calculation analogous to [4, Sec.3], one finds that the candidate u 0 in equation (5.4.5) satisfies

(5.4.7) Here, the matrices A 0 , A 1 , and F ¯(x, t) are defined by

where σ i = σ| Y i and σ e = σ| Ye , with χ 0 h , χ 1 h and T given above.

Convergence

While in Subsection 5.4.1, we derived the formal limit (5.4.7) for the ansatz of the asymptotic expansion (5.4.5), we now state its convergence properties.

Theorem 5.4.1. For the periodic solution u ε in (5.4.1) and the homogenized solution u 0 in (5.4.7), we have the convergence

The proof relies on arguments developed in [4]. For the sake of a readability, we outline them in the appendix, and only prove here the crucial lemma needed for their adaption to our case. 

(5.4.9)

We have studied the effective parameters in a homogenization model as the next step to monitor the microscopic properties in clinical practice. We have numerically demonstrated the sensitivity of these effective parameters to critical microscopic parameters governing electropermeabilization. This opens the door to solve the inverse problem of reconstructing these parameters.

With these three chapters in Part II, we could better understand the effective conductivity and have better ways to image the isotropic or anisotropic conductivity distributions. Also, they show the challenging directions for improving our understanding of the corresponding fundamental problems.

Appendix A

Proof of Lemma 1.3.3 when d = 3

The proof is very similar to the proof for 2D case in Section 1.4. We will construct Π h v h by using the three dimensional C 1 element of Zhang constructed in [START_REF] Zhang | A family of 3D continuously differentiable finite elements on tetrahedral grids[END_REF] which simplifies an earlier construction of Zenisek [START_REF] Zenisek | Alexander polynomial approximation on tetrahedrons in the finite element method[END_REF]. For any tetrahedron K ∈ M h , the C 1 -P 9 element in [START_REF] Zhang | A family of 3D continuously differentiable finite elements on tetrahedral grids[END_REF] is a triple (K, P K , Λ K ), where P K = P 9 (K) and the set of degrees of freedom Λ K consists of the following 220 functionals: for any p ∈ C 2 (K),

on the edge with vertices a i , a j , 1 ≤ i = j ≤ 4, where ν k , k = 1, 2, are unit vectors perpendicular to the edge, and a ij = (a i + a j )/2, b ij = (2a i + a j )/3, c ij = (a i + 2a j )/3; (48 functionals) 3 • The nodal value p(a ijk ) and 6 normal derivatives ∂ ν p(a n ijk ) on the face with vertices a i , a j , a k ,

, where a ijk is the barycenter of the face and

functionals)

Let X h be the finite element space

It is known that X h ⊂ H 2 (Ω). We define the operator Π h as follows. For any

for the degrees of freedom at vertices a i ,

for the degrees of freedom on the edge with vertices a i , a j ,

for the degrees of freedom on the faces with vertices a i , a j , a k ,

(A.0.6) and finally for the degrees of freedom at the interior points

(A.0.7)

To show the desired estimate (1.18) in 3D we use the C 0 -P 9 element in [START_REF] Zhang | A family of 3D continuously differentiable finite elements on tetrahedral grids[END_REF] which is a triple (K, P K , Θ K ), where P K = P 9 (K) and the set of degrees of freedom Θ K is defined by replacing some of the degrees of freedom of the C 1 -P 9 element Λ K as follows:

1 • For the edge with vertices a i , a j , 1 ≤ i = j ≤ 4, replace the 2 edge first order normal derivatives by Dp(a ij )(a k -a ij ), Dp(a ij )(a l -a ij ) and denote the corresponding nodal basis functions p k ij (x), p l ij (x), where a k , a l are the other 2 vertices of K other than a i , a j ; 2 • For the edge with vertices a i , a j , 1 ≤ i = j ≤ 4, replace the 3 edge second order normal derivatives by

and denote the corresponding nodal basis functions p kl ij (x), q kl ij (x), where a k , a l are the other 2 vertices of K other than a i , a j ; 3 • For the face with vertices a i , a j , a k , 1 ≤ i, j, k ≤ 4, i = j, j = k, k = i, replace the face normal derivatives by Dp(a n ijk )(a l -a n ijk ) and denote the corresponding nodal basis functions p n ijk (x), where a l is the vertex of K other than a i , a j , a k , n = 1, 2 • • • , 6.

A regular family of this C 0 -P 9 element is affine-equivalent. For any v h ∈ V h , we also define an operator q h := Λ h v h in a similar way as the definition of Π h by replacing the average normal derivatives in (A.0.2)-(A.0.4) and (A.0.6) by the corresponding directional derivatives in the definition of degrees of freedom for the C 0 -P 9 element. By the same argument as that Since a regular family of C 0 -P 9 element is affine-equivalent, we have |p n ijk | H m (K) ≤ Ch 3/2-m , m = 0, 1, 2. Therefore, by (A.0.10) we obtain

, m = 0, 1, 2.

(A.0.11)

Combining (A.0.8), (A.0.9), (A.0.11) yields the desired estimate (1.18) in 3D since v h -w h = (v h -q h ) + φ e + φ f in K. The estimate (1.19) can be proved in the same way as the proof for the 2D case in Section 1.4. This completes the proof.

Appendix B

Convergence for homogenization B.1 Convergence for homogenization

We give here the outline of the method used in [4]. It shows how Lemma 5.4.1 is used to prove Theorem 5.4.1 for our application. Proof. From the estimate (5.4.2) we get, extracting subsequences if needed

Next, consider the weak formulation of system (5.4.1):

The general idea is to pass to the limit ε → 0 in this equation, and therefore to obtain the equation for u 0 . This is possible for special test functions ψ.

Choose for ψ the functions ϕ w ε h (x, t) for h = 1, . . . , d, where ϕ is a smooth with compact support on Ω, and w ε h is built by the cell functions χ 1 and χ 2 :

For this definition, given in [4, (5. 

The limits of K 1ε and K 2ε are the same as in [4, p.18], whereas for the limit K 3ε , one can show that K 3ε → 0 by Lemma 5.4.1. One can take then the limit ε → 0 in (B. 1.3) in order to obtain information on the specific form of the limit u 0 in (B.1.1). We get

with A 0 , A 1 , F ¯defined as in (5.4.8). Choosing ψ = ϕ x h in (B.1.2), combining with (B.1.5), and differentiating in T gives then expressions which show that u 0 ∈ L 2 ([0, T ], H 1 (Ω)) and that actually (5.4.7) is the correct equation of the limit u 0 . 

Résumé

Mots Clés

Méthode des éléments finis, données d'observation, imagerie de conductivité, multi fréquences, homogénéisation, électropermécanisme Abstract This thesis contains two different subjects. In first part, two cases are considered. One is the thin plate spline smoother model and the other one is the elliptic boundary equations with uncertain boundary data. In this part, stochastic convergences of the finite element methods are proved for each problem.

In second part, we provide a mathematical analysis of the linearized inverse problem in multifrequency electrical impedance tomography. We present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor using a novel technique called Diffusion Tensor Magneto-acoustography and propose an optimal control approach for reconstructing the cross-property factor relating the diffusion tensor to the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy. The cell model for Electropermeabilization is demonstrated. We study effective parameters in a homogenization model. We demonstrate numerically the sensitivity of these effective parameters to critical microscopic parameters governing electropermeabilization.