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Introduction

Constructing correct software and hardware systems is challenging. System quality relies not only on good performance such as processing capacity, but also on the absence of errors. For hardware systems, defects may have severe economic consequences. For software used in safety-critical systems, a simple bug can have disastrous human consequences. Concurrent systems, which are composed of several (hardware or software) components possibly interacting with each other, are particularly vulnerable to errors. The number of possible concurrency errors (that is, errors due to wrong ordering of concurrent events) is exponential in the number of the concurrent components. Hence, a major goal when constructing concurrent systems is their correctness despite their complexity.

Formal methods provide languages, techniques, and tools to establish system correctness. The mathematical rigour of formal methods favours an early integration of verification in the design process. For example, they have been applied in the certification of avionics software systems [DO-11, MLD + 13] and railway systems [START_REF] Fantechi | Formal methods for railway control systems[END_REF].

Model-based verification builds on models describing the system behaviour, i.e., what the system may do during its execution, by means of events, in an abstract and precise way. In practice, models are usually derived from high-level formalisms endowed with precise semantics. Correctness properties, also written in high-level formalisms, can be checked over models. The efficiency of the verification task relies on the adequacy of the high-level formalisms with regards to the subtleties of intended systems.

Context

According to the nature of component composition and communication, concurrent systems can be classified into synchronous and asynchronous; for each class, well-adapted formalisms are tailored to capture system behaviour.

Synchronous concurrent systems are composed of several components running in lockstep fashion and sharing a global clock. For these systems, synchronous languages, among which Esterel [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF], Lustre [START_REF] Halbwachs | The synchronous dataflow programming language LUSTRE[END_REF], and Signal [START_REF] Le | Programming Real-Time Applications with Signal[END_REF], are appropriate modelling formalisms. They rely on the synchrony assumptions: a system is seen as a deterministic and infinite loop, whose iterations represent the clock ticks; within each loop iteration, computations and data-flow communication are assumed to occur in zerodelay. The synchrony assumptions make the modelling and verification tasks easy.

Asynchronous concurrent systems are composed of several components running independently without a global clock and interacting with each other. For these systems, process algebras, among which CCS [START_REF] Milner | Communication and Concurrency[END_REF], CSP [START_REF] Hoare | Communicating Sequential Processes[END_REF], and LOTOS [START_REF] Bolognesi | Introduction to the ISO specification language LOTOS[END_REF], are appropriate modelling formalisms. They are equipped with built-in operators for asynchronous parallel composition; they provide abstraction means (e.g., nondeterminism); and they have equivalence relations to efficiently and precisely compare systems.

Correctness properties of concurrent systems include the absence of undesirable situations and the succession of events in time, which can be arbitrarily far from each other. To express properties, temporal logics, among which LTL [START_REF] Pnueli | The Temporal Logic of Programs[END_REF] and CTL [START_REF] Emerson | Using branching time temporal logic to synthesize synchronization skeletons[END_REF], are powerful means. They consist of a small set of temporal operators expressing the logical precedence of events over time.

This thesis is about formally modelling and verifying GALS (Globally Asynchronous, Locally Synchronous) systems [START_REF] Daniel | Globally-Asynchronous Locally-Synchronous Systems[END_REF], which are a class of concurrent systems. A GALS system is composed of synchronous components running in asynchronous concurrency without sharing their clocks. Communication between components is also asynchronous, i.e., message exchange may take an arbitrary amount of time. For example, in a flight control system, individual components are designed to run synchronously, but the distributed nature of the global system introduces asynchrony. Other GALS instances include networks-on-chip and distributed PLCs (Programmable Logic Controllers).

In the general case, a GALS system may have arbitrary complexity. No assumption can be made on clock synchronisation and component periods, nor on asynchronous communication media and their latency. Each GALS instance induces its own assumptions. In particular, although synchronous components are generally deterministic, the absence of a shared clock may introduce nondeterminism. Another source of nondeterminism is unreliable communication media along which messages can be delayed, lost, duplicated, or reordered. This makes system evolution unpredictable and unreproducible, entailing a need for formal verification.

Motivation

The correctness of GALS systems relies on combining the verification approach for synchronous systems and the one for asynchronous systems. Each approach, applied individually, is unable to capture the behavioural subtleties for which the other approach is devised. Languages and tools for synchronous systems are deterministic by nature, thus unadapted to analyse nondeterminism and asynchronous concurrency. Languages and tools for asynchronous systems lack built-in constructs dedicated to address the pure synchrony assumptions.

We have identified a relative lack of approaches dealing with asynchronous concurrency in existing design processes of GALS systems, compared to the intensive use of approaches dealing with synchrony. This lack is manifold. On the one hand, the GALS paradigm takes its roots in the industries that already integrated synchronous languages and corresponding tools in their development process. Consequently, the focus has been shifted towards pushing the limits of synchronous languages and tools to accommodate GALS behaviours. On the other hand, synchrony is easier to master than asynchrony, owing to the zero-delay assumption and determinism, which makes systems easy to design and debug. Contrarily, asynchronous concurrent languages and temporal logics require a substantial learning effort, which may discourage potential users. Last, the behaviour of GALS systems involves asynchronous concurrency and data handling, which are two major causes of combinatorial explosion (in the possible behaviours). Additional effort should be put to make careful modelling decisions and to choose adequate algorithmic approaches, e.g., compositional verification, to face combinatorial explosion.

To alleviate the use of verification tools for asynchronous systems, one needs to introduce DSLs (Domain Specific Languages) [START_REF] Van Deursen | Domain-Specific Languages: An Annotated Bibliography[END_REF]. GALS-specific languages serve as intermediate format mapping GALS systems, whose synchronous components are possibly modelled using synchronous languages, to verification tools for asynchronous systems. Due to the different semantics and abstraction level, a direct connection from (synchronous) design languages to asynchronous languages could be complex. Instead, performing the translation in several steps reduces that complexity and enhances the connection modularity.

As regards behavioural modelling, a DSL should provide a clear distinction between synchronous components and the asynchronous ones defining their asynchronous composition and communication. Such a distinction enables to combine of verification tools for synchronous systems and those for asynchronous systems to address separately the DSL synchronous and asynchronous components. For synchronous components, possibly obtained from translation of existing synchronous languages, the DSL can be a (minimal) language used as target of back-end compilers for synchronous languages. To ensure the practical usability of the DSL, it should enable a natural description of relevant aspects of GALS behaviour, in a way close to the end-user intuition and expectation.

As regards correctness properties, their formulation in temporal logic can be difficult and error-prone, even for users familiar with formal methods and verification. One needs a formalism tailored to capture GALS behaviour and enabling a concise and natural expression of properties.

Contributions

This thesis proposes a formal framework to analyse GALS systems focusing on their asynchronous behaviour. In this respect, we take advantage of the CADP software toolbox [START_REF] Garavel | CADP 2011: a toolbox for the construction and analysis of distributed processes[END_REF] for the verification of asynchronous concurrent processes, using state space exploration techniques.

As a cornerstone of our framework, we have designed a formal language, named GRL (GALS Representation Language) [START_REF] Jebali | GRL: A specification language for globally asynchronous locally synchronous systems[END_REF]. GRL aims at offering a concise and modular description for the behaviour of GALS systems. Both traits of synchronous programming (determinism, atomicity) and process algebra (nondeterminism, asynchronous concurrency) are combined in one unified language, while keeping homogeneous syntax and semantics. GRL builds upon the following three core constructs: Blocks denote the synchronous part of GRL, in which the synchrony assumptions are built-in. They provide a number of basic constructs to which synchronous language constructs can be translated. Mediums denote asynchronous components describing communication media. They are provided with enough expressiveness to model general asynchronous communication, with different buffering mechanisms, including unreliable ones. Environments denote asynchronous components abstracting the external environment of blocks. Two kinds of constraints with different abstraction levels are considered. Data constraints enable to express complex properties on the data carried by block inputs. Activation constraints enable to control the execution of blocks, such as relations between block paces, priorities, or failure. Furthermore, it is possible to combine both kinds of constraints for enhanced usage, such as complex test case scenarios.

All-in-one, GRL is intended to be sufficiently expressive and concise to model complex GALS systems, which is an originality compared to state-of-the-art approaches.

We formalise the semantics of GRL, using structural operational semantics (SOS) rules, in terms of lower-level models, i.e., state spaces. This enables rigorous specification of GRL programs and paves the way for formal analysis. State spaces underlying GRL are concise, exploiting the GALS assumptions such as the atomicity of synchronous components. This enhances the efficiency of verification. Data and activation constraints would also contribute to face combinatorial explosion.

After formally defining the syntax and semantics of GRL, we address its compilation into state spaces. For this purpose, we design a translation from GRL into LNT [CCG + 16], the most recent specification language supported by CADP. LNT is a general-purpose language implementing concurrency theory results and equipped with state space generators. We formalise the translation function from GRL into LNT, which is fully implemented in a tool named GRL2LNT1 .

To analyse GRL specifications, we exploit the MCL language, a full-fledged temporal logic supported by CADP. To leverage the expressiveness of MCL while reducing its complexity of usage, we design a property description language, named muGRL. The muGRL language builds upon a pattern system, following the general-purpose approach [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], which is also an originality of our approach. Patterns are high-level templates that capture frequently encountered situations in GALS applications, such as component halting and idleness, and are translatable into temporal logics. The interpretation models of mu-GRL are the state spaces generated by translating GRL specifications into LNT. The muGRL semantics are defined by a translation into MCL. As such, muGRL is intended to disseminate temporal logic power to potential GALS designers.

Last, we experiment our approach on concrete GALS applications, issued from academia and industry. This reinforces our conviction that our approach can address a large spectrum of GALS systems, ranging from deterministic applications to ones involving arbitrary nondeterminism.

Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 surveys the stateof-the-art concerning the formal modelling and verification of concurrent and GALS systems. Chapter 3 constitutes a tutorial for the GRL language. It presents the formal syntax of each GRL construct, its intuitive semantics, along with some illustrations. Chapter 4 presents the formal dynamic semantics of GRL. It details the structural operational semantic rules for the language constructs, stressing on the behavioural ones.

Chapter 5 presents the formal translation functions from GRL into LNT. Examples are given for most of the functions, to enhance the readability and ease the comprehension. Chapter 6 constitutes a tutorial for the muGRL language. Chapter 7 shows the way GRL and muGRL can be applicable to concrete GALS applications. It also briefly reports a primary industrial use of GRL. Chapter 8 concludes and offers some thoughts on extensions to this work.

Parts of this manuscript have been published in conference proceedings and journals.

The article [START_REF] Jebali | GRL: A specification language for globally asynchronous locally synchronous systems[END_REF] presents an overview of an earlier version of GRL, the complete and formal definition of GRL being available in an 82-pages research report [START_REF] Jebali | GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems (Syntax and Formal Semantics)[END_REF]. Since then, we have revised and enhanced the syntax of the language. The article [START_REF] Jebali | Formal Modelling and Verification of GALS Systems Using GRL and CADP[END_REF] presents the latest version of GRL, including the material of chapters 3 and 4 as well as an informal presentation of chapter 5.

industrial project, named Bluesky, of the Minalogic French competitiveness cluster (www.minalogic.com/ fr/projet/bluesky). The project addresses the design and validation of networks of PLCs (Programmable Logic Controllers).

Notations

We introduce some mathematical concepts and conventions used in this thesis.

General notations

A set is an ordered collection of objects, called its elements. The following operators over sets are used: We use the operator ++ for list concatenation. For a set of lists {L 0 , ..., L n }, we write ++ i∈0..n L i as abbreviation for L 0 ++ . . . ++L n .

The following logical operators are used:

Symbol Meaning ¬ negation ∧ conjunction ∨ disjunction ⇒ implication 6 
For a set of elements {a 0 , . . . , a n }, we write i∈0..n a i and i∈0..n a i as abbreviation for a 0 ∧ . . . ∧ a n and a 0 ∨ . . . ∨ a n , respectively.

Syntactic description

This document defines and references several languages. Grammars of languages are context-free. Syntactic definitions are presented in Extended Backus-Naur Form [START_REF] Standard | [END_REF], i.e., as a set of so-called productions. Each production has the form "χ ::= ξ", where χ is a non-terminal symbol defined by the meta-expression ξ, which consists of non-terminal symbols and terminal symbols composed using the following meta-operators: Additionnaly, the following conventions are used:

• Non-terminal symbols and generic terminal symbols are written in italics and their occurrences can be distinguished using subscripts.

• The terminal symbol are either keywords written in bold font or key symbols are written in teletype font. For example, "[]", "()", and "|" denote terminal symbols distinct from the meta-operators "[]", "()", and "|".

Chapter 2

Background and State of the Art

A GALS system combines characteristics of synchronous and asynchronous systems, which both belong to the class of reactive systems [START_REF] Harel | Logics and Models of Concurrent Systems[END_REF][START_REF] Berry | Real Time Programming: Special Purpose or General Purpose Languages[END_REF][START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF]. These are systems in permanent interaction with the outside world. In this chapter, we first introduce reactive systems. We then present the synchronous and asynchronous approach to formally model and verify reactive systems. We focus in particular on the use of the CADP toolbox for verifying asynchronous concurrent systems. Finally, we present existing approaches to the formal analysis of GALS systems.

Reactive systems

Hardware and software programs and systems interact with their environment, that is, the outside world within which they evolve. They can receive inputs from their environment and produce the appropriate outputs, which have effect on their environment. A program is said transformational if it receives inputs and terminates after producing outputs. Usually, the same inputs induce the same outputs, in which case the program is said deterministic. A transformational program can be described as a mathematical function that transforms inputs into outputs. Examples are compilers and optimisation algorithms.

Not all systems and programs intend to yield a final result. A system might well aim to maintain some interaction with its environment. The environment continuously prompts the system by providing it with inputs and the system reacts by producing outputs.

Examples are operating systems, communication protocols, and database management systems. Such systems are called reactive, and a computation of outputs from inputs is called a reaction. Reactive systems may be subject to strict timing constraints, in which case they are referred to as real-time systems. In a railroad-crossing control system, it is crucial to block vehicle crossing as soon as a train approach is detected.

Concurrency is inherent in reactive systems. First, a reactive system together with its environment form a concurrent system. Second, reactive systems are often decomposed into several concurrent components or tasks that operate simultaneously. Concurrent components are usually reactive themselves; they interact with their environment and potentially with each other.

Nondeterminism is usually introduced by concurrency. Two different copies of the same concurrent system are likely to operate differently, while given exactly the same inputs. An example is when several components compete to acquire a resource and the resource operates depending on which component has won the race.

Implementations of concurrent components are multiples. They may run sequentially, a component finishing before the next starts, or in parallel, all components evolving at the same time. Parallel components may run over a multi-core processor or a multi-processor machine, to speed up computations. They may also run over spatially distant machines exchanging data through a network, in which case components are called distributed.

Reactive systems cannot be described as mathematical functions taking inputs and producing outputs, since they run continuously without necessarily terminating, they Rather, they are described in terms of a set of infinite sequences of states and transitions (or actions) between states. Such infinite sequences are usually called executions.

We define the behaviour of a system as the set of its possible executions. The behaviour of a concurrent system is specified in terms of the behaviours of its components. Hence, it is essential to understand the way states corresponding to component behaviours can be combined and the consequences of such combinations.

To establish the correctness of reactive systems, one needs appropriate behavioural models on which formal verification can be performed using dedicated algorithms. An appropriate behavioural model should provide an abstract and modular description of both a reactive system, its environment, and its concurrent components. The model should provide a description of the interaction between the system and its environment as well as between concurrent components. Last but not least, the model should provide a suitable abstraction of time. In this thesis, we consider a discrete representation. Time is an infinite series of discrete instants, which can (or not) be equally separated. When discrete instants are not equally separated, we are considering logical time.

Formal models for reactive systems

This section surveys some existing formal models for reactive systems. In particular, we focus on transition systems, in which a system is modelled in terms of states and actions. Existing models differ in the way they abstract a system behaviour, each emphasising certain aspects disregarding the others. We classify models according to the following three dichotomies, which we believe adequate to the comprehension of this thesis.

Linear-time versus branching-time [Lam80]

In linear-time models, the system behaviour is expressed as the set of its possible executions, i.e., linear sequences of states and actions. This model is well suited to deterministic systems since at each moment in time, the system has a unique future. In branching-time models, the system behaviour is expressed as computation trees that structure the possible executions. This model is adequate to capture nondeterministic behaviours, since at each moment in time, the system can have several futures. The two models differ in the way they deal with nondeterminism. As an illustration, consider two coffee machines [START_REF] Hoare | Communicating Sequential Processes[END_REF]. The first machine, once a coin is inserted, gives the user a choice between coffee and tea, and serves the user's choice. The second machine, once a coin is inserted, makes internally a nondeterministic choice, and serves either coffee or tea. Both machines have the same set of possible executions {coin, coffee} or {coin, tea}. The branching-time view distinguishes the difference between the two machines while the linear-time view does not.

Action-based versus state-based [DNV90]

In the action-based setting, the contents of states is abstracted away. The evolution of the system behaviour is encoded in actions. Actions correspond to the interaction of the system with its environment, i.e., inputs received and outputs sent by the system, as well as internal transitions performed by the system. Examples of action-based representations include labelled transition systems [START_REF] Michael | Concurrency and Automata on Infinite Sequences[END_REF], Petri-nets [START_REF] Adam | Kommunikation mit Automaten[END_REF], and I/O automata [START_REF] Lynch | An introduction to input/output automate[END_REF]. The state-based setting is the dual of the action-based one, from a theoretical point of view. The evolution of the system behaviour is encoded inside states, by means of variables and other information stored in memory. Only the internal contents of states can be observed. Examples of state-based representations include Kripke structures [START_REF] Kripke | Semantical considerations on modal logic[END_REF]. In practice, the actionbased representation can be seen as a "black box" view of a system and state-based models as "white box" one.

Synchronous versus asynchronous concurrency

Concurrent components can be composed either in a synchronous or in an asynchronous way. Synchronous concurrent components evolve in a lockstep fashion, cadenced by a single central clock. Each clock pulse prompts all concurrent components to react. The conjunction of component actions at the same clock pulse constitutes an action of the whole system. This concurrency model is mainly supported by synchronous languages, such as Esterel [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF],

Lustre [START_REF] Halbwachs | The synchronous dataflow programming language LUSTRE[END_REF], and Signal [START_REF] Le | Programming Real-Time Applications with Signal[END_REF].

Asynchronous concurrent components evolve independently without clock sharing. A first model for asynchronous concurrency is the so-called interleaving semantics [START_REF] Milner | Communication and Concurrency[END_REF].

In this model, concurrency between components is reduced to a nondeterminism choice between the possible sequences of the component actions. This model of concurrency is mainly supported by process algebras, such as CCS [START_REF] Milner | Communication and Concurrency[END_REF], CSP [START_REF] Hoare | Communicating Sequential Processes[END_REF], ACP [START_REF] Bergstra | Algebra of Communicating Processes with Abstraction[END_REF], and LOTOS [START_REF] Bolognesi | Introduction to the ISO specification language LOTOS[END_REF].

Another model for asynchronous concurrency is the so-called true-concurrency [START_REF] Montanari | True Concurrency: Theory and Practice[END_REF], also called non-interleaving model. In this model, concurrency is a primitive notion clearly distinguishable from sequential nondeterminism. The system behaviour is represented in terms of the causal relations among actions performed by components; two actions are concurrent if they are not causally related. This model of concurrency is mainly supported by Petri-nets and Kahn-nets [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF].

An illustration of the three models of concurrency (in an action-based setting) is given in Figure 2.1. Actions A and B are concurrent. The synchronous composition of actions A and B results in one action labelled AB. The interleaving semantics expresses that either action A occurs followed by action B or action B occurs followed by action A.

The true-concurrency model can be understood as a system with two initial states, each with an outgoing transition, since actions A and B are not causally related. 

A B true concurrency

Formal verification of reactive systems

To perform formal verification, one needs, in addition to a model describing all potential behaviours of the system, to describe the set of properties that must hold on the system. The verification problem consists in proving (automatically) that the model satisfies the properties. We briefly introduce the common formal verification approaches:

• Static analysis consists in verifying programs, without executing them, relying on the semantics of the language in which programs are written. The abstract interpretation technique [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] consists in abstracting the model to a smaller one, in such a way that if the desired property holds on the abstracted model, it must hold on the original one. Among the static analysers based on abstract interpretation, we cite Astrée [CCF + 05] and Verasco [JLB + 15]. Abstract interpretation is used extensively in transformational systems such as in compiler optimisation and sequential program verification. While being an automated technique, abstract interpretation cannot achieve 100% precision in the general case.

• Theorem proving consists in modelling the system as a set of mathematical definitions. The desired properties of the system are derived as theorems that stem from those definitions. Proofs can be constructed either by hand or by using automatic theorem provers and interactive proof checkers. Although it cannot be fully automated, theorem proving is assisted by powerful proof assistant, among which Coq [FHB + 97] and Isabelle [START_REF] Paulson | The Foundation of a Generic Theorem Prover[END_REF]. Theorem proving techniques are particularly useful in the case of general infinite-state reactive systems, e.g., systems containing unbounded data structures. They have been used in the context of reactive and real-time systems, but less for distributed concurrent systems.

• Model checking consists in modelling the system as a (finite) transition system that describes all the possible executions of the system. The desired properties of the system can be described by reasoning about the temporal ordering of events1 . Temporal logic formalisms have been introduced in the late seventies [START_REF] Pnueli | The Temporal Logic of Programs[END_REF] for this purpose. A temporal logic is a set of operators, expressing the logical precedence either between states (state-based temporal logic) or between actions (action-based temporal logic). Additionally, temporal logics can be interpreted either on lineartime models, by specifying properties of individual execution sequences, or on branching-time models, by taking into account the branching structure of the state space. According to these two dichotomies, a lot of formalisms have been proposed. The following table shows the most representative ones. Given a state space and a property, the model checking problem [START_REF] Clarke | Model Checking[END_REF] consists in determining whether the state space satisfies the property or not. If the property does not hold on the state space, it is desirable to obtain a diagnostic (or counterexample) showing an undesirable behaviour present in the state space. This problem is solved by model checking algorithms, which traverse the state space and halt as soon as the truth value of the property has been determined. State space traversing techniques are typically grouped in two classes:

-enumerative techniques consider each state of the system separately -symbolic techniques manipulate sets of states represented using either decision diagrams or logical formulas. The satisfiability of those representations is determined using SAT and SMT solvers.

Another way to describe nontrivial properties is equivalence checking. It consists in expressing a specification of the system in terms of input/output relations, then deriving whether the system and its specification are behaviourally equivalent.

It is common to combine several verification techniques (e.g. [START_REF] Hungar | Combining Model Checking and Theorem Proving to Verify Parallel Processes[END_REF][START_REF] Havelund | Experiments in Theorem Proving and Model Checking for Protocol Verification[END_REF][START_REF] Hasan | Combining model checking and theorem proving[END_REF]) to exploit their best capabilities while reducing their shortcomings. In this thesis, we focus

The synchronous approach

on the model checking technique, adequate to address the subtleties of concurrency.

While transition systems are adequate to model concurrent components interacting with each other, building them manually is complex and error-prone. Moreover, the slightest modification in the specification may involve drastic changes in the structure of the transition system, making it cumbersome to debug and modify. For these reasons, transition systems are often derived from descriptions written in high-level formalisms, by automatic translation. There are several high-level formalisms, each emphasising a specific class of systems.

In the sequel, we present the synchronous approach, well-adapted to deal with sequential and parallel systems such as hardware circuit designs and embedded systems. We also present the asynchronous approach, well-adapted to deal with parallel and distributed systems such as telecommunication protocols and distributed software.

The synchronous approach

A reactive system is synchronous if it reacts instantaneously to its environment and has a deterministic behaviour.

A reaction is assumed instantaneous if on the arrival of some inputs from the environment, a system reacts fast enough to produce the corresponding outputs, before the arrival of the next inputs. Hence, the system behaves as an infinite loop, called synchronous loop, each iteration corresponding to a reaction. In the remainder of this thesis, we will use the terms step to denote the reaction of a synchronous system and activation its ability to perform a step at a specific logical instant.

Synchronous concurrent components composing the system are cadenced by its synchronous loop. Component (micro-) steps may be idle, i.e., their inputs and outputs keep the same values as in the previous step. Messages emitted by components are received by other components in the same step; such communication is called instant broadcast. Instantaneous computations and communication are usually called zero-delay (or synchrony) assumptions.

A consequence of the synchrony assumptions is the determinism of the synchronous loop: given the same initial state and sequence of inputs, the same sequence of outputs will be produced. Determinism is desirable in safety-critical environments, in which a simple bug can have extreme consequences. Another consequence of the synchrony assumptions is the potential presence of temporal paradoxes, called causality problems.

Examples include instantaneous dependencies between inputs and outputs.

Synchronous languages

Theoretical foundations can (a priori) be traced back to R. Milner's synchronous process algebra SCCS (Synchronous Calculus of Communicating Systems) [START_REF] Milner | Calculi for Synchrony and Asynchrony[END_REF], which extends CCS with primitives to encode synchrony. SCCS gave birth to other process calculi such as Meije [START_REF] Austry | Algèbre de Processus et Synchronisation[END_REF]. Several synchronous programming languages have followed applying the synchronous approach. According to their programming style, synchronous languages can be classified into imperative and declarative languages. We survey the most representative ones of each class. Other proposals extend existing general-purpose languages with synchronous behaviour.

Reactive-C provides a programming style similar to the C language. SynchCharts [And95] is a graphical language combining features from Esterel and Argos. Esterel-C (ECL) [START_REF] Lavagno | ECL: A Specification Environment for System-Level Design[END_REF] and Java-Esterel (Jester) [START_REF] Antoniotti | System-on-Chip Methodologies & Design Languages, chapter Jester[END_REF] combine Esterel-like constructs with respectively C and Java languages. Lucid [WA85] is a higher-order functional language combining Lustre-like constructs and built upon Ocaml (Objective Caml) [LDG + 03].

Functional verification

Due to the massive use of synchronous systems in safety-critical environments, many analysis techniques have been exploited for synchronous systems encompassing automated test, model checking, SMT-Solving, and abstract interpretation. We focus here on the techniques related to our work, namely the verification by model checking. Functional properties that a synchronous system should satisfy fall into two classes: safety properties, expressing that something bad will never happen; and bounded liveness properties, which are timing properties expressing that something good will happen within a bounded future.

A convenient way to express properties is an application of [START_REF] Moshe | An automata-theoretic approach to automatic program verification[END_REF], where the negation of a property is described by an automaton. The synchronous product of this automaton with the program ensures that no trace of the program is accepted by the automaton.

Since almost all synchronous languages synthesise finite automata (e.g., Mealy machines) from programs and since the parallel composition in those languages is synchronous, properties can be expressed directly in the synchronous language. These properties, called synchronous observers [START_REF] Halbwachs | Synchronous Observers and the Verification of Reactive Systems[END_REF], are auxiliary programs which observe the inputs and outputs of the program under verification and decide whether it is correct. 

The asynchronous approach

A reactive system is asynchronous if the time in which an event occurs and its duration are considered of less concern.

While the asynchronous approach deliberately abstracts from the precise timing of events, the order of some events (sequential composition) and their simultaneity can be described. This way of modelling provides asynchronous models with simplicity and abstraction, making them appropriate for modelling distributed and concurrent systems. Asynchronous message-passing takes arbitrary delay, i.e., the elapsed time between message emission and reception is abstracted away. This requires the introduction of buffers or channels as proposed by Dijkstra [START_REF] Wybe | Information streams sharing a finite buffer[END_REF] which serve to store messages before their transmission. As such, asynchronous message-passing does not force participant components to wait for each other to communicate. Message-passing channels has been adopted by specification languages for communication protocols, such as the ITU standard SDL [START_REF] Belina | SDL with Applications from Protocol Specification[END_REF] and Promela [START_REF] Holzmann | Design and Validation of Computer Protocols[END_REF]. In Promela, channels store messages in first-in first-out order, by default. If synchronous communication is required, it can be modelled by setting the channel size to zero.

Communication models

Synchronous message-passing requires messages emitted by a component to be received by other components at the same time instant. In the asynchronous abstraction of time, this requires the introduction of communication events, called synchronisation or rendezvous between the participant components. Synchronous message-passing is intended to be independent of the medium used to communicate. The communication medium, which may be a shared location, could itself be modelled as a subordinate component that synchronises with emitters and receivers. Synchronisation is blocking, i.e., it happens only when all participants are ready to communicate. As such, the emitter component blocks until message reception, after which the different components evolve independently. Beyond message exchange, (dataless) synchronisation can be used to express the simultaneity of specific events of concurrent components. Synchronous message-passing is the main interaction paradigm used in process algebras such as CCS [START_REF] Milner | Communication and Concurrency[END_REF], CSP [START_REF] Hoare | Communicating Sequential Processes[END_REF], ACP [START_REF] Bergstra | Algebra of Communicating Processes with Abstraction[END_REF], and LOTOS [START_REF] Bolognesi | Introduction to the ISO specification language LOTOS[END_REF].

Hiding and nondeterminism operators, which are specific to some asynchronous languages, provide behavioural descriptions with high abstraction capability. The hiding operator is essentially present in process algebra. It transforms events into invisible ones, i.e, event occurrence is neither detectable nor controllable by the environment. Synchronisation on invisible events is forbidden.

Nondeterminism is aimed at accurately disregarding irrelevant aspects of the actual system. Examples of situations in which nondeterminism is helpful are the following:

-Modelling concurrency by interleaving, thus abstracting from the speed of concurrent components. -Abstracting from complex details of the physical environment.

-Abstracting from implementation details either because these are considered irrelevant or because the aim is to develop a simplified system meeting primary specifications before refining it to meet more detailed ones.

Functional verification

State space exploration techniques, including reachability analysis and model checking, are the most widespread approaches for dealing with concurrent systems containing complex data structures. CADP [START_REF] Garavel | CADP 2011: a toolbox for the construction and analysis of distributed processes[END_REF] and Spin [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF] are seemingly the two oldest model checkers that are still actively maintained and that benefit from a worldwide user community. Both tools support on-the-fly techniques, which consist in constructing and exploring state spaces on demand, guided by the verification task instead of generating state spaces exhaustively and then performing verification. This provides a way to fight against state space explosion, essentially caused by asynchronous concurrency and complex data structures.

CADP supports several input specification languages, among which LNT [CCG + 16], LOTOS and FSP [START_REF] Magee | Concurrency -state models and Java programs[END_REF]. They rely on an action-based semantic model; by considering systems whose behavioural semantics can be represented using labelled transition systems. Model checkers of CADP are based on branching-time logics, which are adequate with bisimulation reductions and compositional verification. More details about the CADP toolbox will follow in Section 2.4.

SPIN supports Promela as input language. Promela relies on a state-based semantic model and considers systems whose behavioural semantics can be represented using Kripke structures. Correctness properties can be specified as process invariants, using assertions, as LTL formulas, or as formal Büchi automata. 

The CADP toolbox for the verification of asynchronous systems

CADP is a modular software toolbox implementing the results of concurrency theory in the context of asynchronous concurrent systems. Started in the mid 80s, CADP includes today more than 50 tools and code libraries, among which compilers for various formal specification languages, equivalence checkers, model checkers, compositional verification tools, and performance evaluation tools. We focus here on some salient features of the languages and tools related to our work and required to the comprehension of this thesis. LTS minimisation is possible by using equivalence checking, which collapses the equivalent states in the LTS. Several equivalence relations are implemented in CADP, including strong [START_REF] Michael | Concurrency and Automata on Infinite Sequences[END_REF], branching [START_REF] Van Glabbeek | Branching Time and Abstraction in Bisimulation Semantics (Extended Abstract)[END_REF][START_REF] Van Glabbeek | Branching Time and Abstraction in Bisimulation Semantics[END_REF], and divergence-sensitive branching [START_REF] Van Glabbeek | Branching Time and Abstraction in Bisimulation Semantics (Extended Abstract)[END_REF][START_REF] Van Glabbeek | Branching Time and Abstraction in Bisimulation Semantics[END_REF] bisimulation relations. A definition of those relations together with a formalisation of LTSs is given in Section 2.4.1.

LNT (Lotos

SVL (Script Verification Language) [GL01, Lan02

] is both a high-level scripting language proposed to CADP end-users and a compiler that translates SVL scripts into Bourne shell scripts. SVL enables to express complex verification scenarios, including property specification, LTS minimisation, abstraction, comparison, which orchestrates calls to the CADP tools.

Labelled Transition Systems (LTS)

Definition 2.1. (Labelled transition system) An LTS is a quadruple (S, L, →, s 0 ) where:

-S is a set of states.

-L is a set of labels.

-→ ⊆ S × L × S is the labelled transition relation.

s 0 ∈ S is the initial state.

The CADP toolbox for the verification of asynchronous systems

We write s -→ s as a shorthand for (s, , s ) ∈ →. There exists a label, written τ or i, called the invisible label, which denotes internal actions. All labels different from τ are called the visible labels. An LTS is finite if its sets of states and transitions are both finite.

LTS equivalences

Several equivalence relations between LTSs are available in the literature, differing mainly in the way they treat invisible labels. We focus on a few of them, namely strong bisimulation, branching bisimulation and its divergence-sensitive variant.

Definition 2.2. (Strong bisimulation)

A strong bisimulation is a symmetric relation R ⊆ S × S such that if (s 1 , s 2 ) ∈ R, then for all s 1 a -→ s 1 : -there exists s 2 such that s 2 a -→ s 2 , and -(s 1 , s 2 ) ∈ R.
Two states s 1 and s 2 are strongly bisimilar if there exists a strong bisimulation R such that (s 1 , s 2 ) ∈ R. Two LTSs are strongly bisimilar if their initial states are strongly bisimilar.

Definition 2.3. (Branching bisimulation)

A branching bisimulation is a symmet- ric relation R ⊆ S × S such that if (s 1 , s 2 ) ∈ R, then for all s 1 a -→ s 1 :
-either a = τ and (s 1 , s 2 ) ∈ R, or -there exists a sequence s 2

τ * -→ s 2 a -→ s 2 such that (s 1 , s 2 ) ∈ R and (s 1 , s 2 ) ∈ R.
Two states s 1 and s 2 are branching bisimilar if there exists a branching bisimulation R such that (s 1 , s 2 ) ∈ R. Two LTSs are branching bisimilar if their initial states are branching bisimilar.

Branching bisimulation does not distinguish between inaction and a cycle of internal actions. Divergence-sensitive branching bisimulation (or divbranching bisimulation for short) is introduced to take into account cycles of internal actions.

Definition 2.4. (Divergence-sensitive branching bisimulation)

A divbranching bisimulation is a branching bisimulation R such that if (s 0 1 , s 0 2 ) ∈ R and there is an infinite sequence s 0 1 τ -→ s 1 1 τ -→ s 2 1 τ -→ . . . with (s i 1 , s 0 2 ) ∈ R for all i ≥ 0, then there is an infinite sequence s 0 2 τ -→ s 1 2 τ -→ s 2 2 τ -→ . . . such that (s i 1 , s j 2 ) ∈ R for all i, j ≥ 0.
Two states s 1 and s 2 are divbranching bisimilar if there exists a divbranching bisimulation R such that (s 1 , s 2 ) ∈ R. Two LTSs are divbranching bisimilar if their initial states are divbranching bisimilar.

The LNT language

The LNT formal language is rooted in a core powerful language, combining mainstream imperative and functional traits, which is smoothly extended with concurrency-related primitives. LNT is endowed with formal operational semantics defined in terms of LTSs (see [CCG + 16] for a detailed presentation).

Types, statements, and functions

LNT provides constructed data types, statements built upon standard algorithmic control structures, and functions.

Types LNT types encompass basic types such as Boolean, integers, floating-point numbers, and character strings, as well as user-defined (possibly unbounded) data types such as records, unions, lists, sets, and arrays. The following is an example which defines a simple enumerated LNT data type temperature:

1 type temperature i s 2 low , normal , high , very_high 3 
with " !=" , "==" , "<" , "<=" , ">" , ">=" 4 end type

The "with" clause specifies the predefined functions for type temperature.

Statements LNT statements build upon standard algorithmic control structures, such as variable assignment, sequential composition, conditional (if-then-else), pattern matching (case) statements, and loops (for, while). In particular, statement "var X : T in I end var" declares variable X of type T in the scope of statement I . Hence, LNT dissociates between variable declarations (between the keywords var and end var) and variable modifications (inside I ).

The following is an example of a statement which declares a variable, to which it assigns a value. Functions LNT functions can have in parameters (call by value), out parameters (call by reference, the function being in charge of producing a value for the parameter), and "in out" (call by reference, the function being allowed to read and update the parameter value). Actual parameters are preceded by symbols "!", "?", and "!?", respectively. Functions are deterministic and execute atomically without producing transitions in the generated LTS.

The following is an example of a function check_temperature reading the ambient temperature and raising an alarm if the temperature is high: Note that LNT types, statements, and functions look similar to mainstream programming languages, which favours the acceptance of the language by users compared to classical process algebras.

Behaviours and processes

Processes include functions, with the addition of gates, which are used for communication, and other behaviours built upon gates and process algebraic operators, including nondeterministic statements and parallel composition.

Nondeterministic assignment

The behaviour "X := any T [ where V ]" assigns to the variable X an arbitrary value of type T . The optional where clause with a Boolean expression V , supposed to use X , enables to express Boolean constraints on the possible values. 

Nondeterministic choice

1 par 2 A 3 | | B 4 end par A A B B
The following is an example of a parallel composition in which all behaviours synchronise on gate A. Behaviours do not synchronise on gate B (line 7), since the gate does not belong to the synchronisation set (line 1). 

The MCL language

MCL enables a concise formulation of temporal properties, possibly parameterised by data values. The interpretation model is an LTS whose actions (transition labels) contain a gate name G followed by a list of values v 1 , ..., v n , exchanged during the rendezvous on G. Three kinds of formulas can be defined.

Action formula MCL action formulas, noted A, characterise actions of the LTS. An action formula is built from action patterns and the usual Boolean connectors. Action pattern "{G ?X :T where V }" matches every action of the form "G v", where v is a value of type T that is assigned to variable X , provided the Boolean expression V (which possibly uses X ) evaluates to true. Variable X is exported to the enclosing formula. Action pattern "{G !e}" matches every action of the form "G v" where v is the value obtained by evaluating expression e. Action pattern "{G ?any}" denotes a wildcard matching an arbitrary value regardless of its type.

Of course, it is possible to combine value matching ("!e"), value extraction ("?X :T "), and wildcard in the same action formula, for matching actions containing several values. Gate name G can also be extracted and manipulated as ordinary value of type String.

The following are some examples of action formulas.

The action formula: {Rec_Ambient ?ambient:String where ambient <> "very_high"} matches actions: {Rec_Ambient !"low"}, {Rec_Ambient !"normal"}, and {Rec_Ambient !"high"}, but does not match action: {Rec_Ambient !"very_high"}.

The action formula: {Snd_Alarm ?any} matches actions: {Snd_Alarm !true} and {Snd_Alarm !false}.

Regular formula MCL regular formulas, noted R, characterise sequences of transitions in the LTS. A regular formula is built from action formulas and regular expression operators such as concatenation ("R 1 . R 2 "), choice ("R 1 | R 2 "), unbounded iterations ("R * " and "R + "), iterations bounded by counters ("R {n}"), etc.

For example, the regular formula: {Coin} . ( {Coffee} | {Tea} ) matches the following action sequences:

s 0 Coin ---→ s 1 Cof f ee ----→ s 2 and s 0 Coin ---→ s 1 T ea --→ s 2 .
State formula MCL state formulas, noted F , characterise states of the LTS by specifying (finite or infinite) tree-like patterns going out from these states. A state formula is built from Boolean connectors, possibility ("<R>F ") and necessity ("[R]F ") modalities containing regular formulas, minimal ("mu X .F ") and maximal ("nu X .F ") fixed point operators, and the infinite looping ("<R>@") and finite saturation ("[R]-|") operators.

The following are some examples of state formulas. Deadlock absence can be detected by the following property, stating that every state has at least one successor: [true * ]<true>true. Cycles of internal actions can be detected by the property: <tau>@.

Globally Asynchronous Locally Synchronous (GALS) systems

Both synchronous and asynchronous languages and their dedicated verification tools have been used to deal with GALS systems. In this section, we review some of the existing approaches in this context.

GALS systems in synchronous languages and dedicated tools

The synchrony assumptions are hard to maintain in many classes of applications. Examples include distributed embedded software and large hardware designs in which precise clock distribution is infeasible or overly expensive. While local components of such systems are best modelled under the synchrony assumptions, communication mediums introduce asynchrony in the behaviour of the global system. At the same time, design and verification frameworks for synchronous systems are efficient and already integrated in the design process of many industrial systems. Hence, the motivation of some research track is to maintain the well-established methods and tools for synchronous systems for most of the design process.

Theoretical work on addressing asynchrony using synchronous formalisms can be traced back to the early eighties, when Milner showed that SCCS can simulate CCS [START_REF] Milner | Calculi for Synchrony and Asynchrony[END_REF]. was the first language supporting the multiclock model, followed by Esterel giving birth to the Multiclock Esterel [START_REF] Berry | Multiclock Esterel. In Correct Hardware Design and Verification Methods[END_REF]. The CRP language (Communicating Reactive Processes) [START_REF] Berry | Communicating reactive processes[END_REF] was the result of earlier work combining Esterel and CSP. A translation of CRP into the Meije process calculus has been proposed, thus enabling verification to be performed.

Another track of research [BCG99, PBCB06, PBDSST09, BBS12, AL03] is the synthesis of semantic-preserving GALS systems from synchronous programs, foreseeing their distribution. This approach favours correct-by-construction deployment of synchronous programs over GALS architectures. Several theoretical results on this concern are already supported by the Signal compiler. The tools SynDEx2 and Ocrep3 enable the automatic generation of distributed implementations, starting from a specification written in a synchronous language. However, these approaches generally do not deal with the formal verification of GALS systems.

All the aforementioned approaches mainly address deterministic GALS systems in which communication media are reliable: all messages are delivered in the order in which they have been received. However, a wide range of modern applications support unreliable communication media, such as recent LTTA (Loosely Time-Triggered Architectures) [START_REF] Benveniste | A unifying view of loosely time-triggered architectures[END_REF][START_REF] Smeding | Verification of Weakly-Hard Requirements on Quasi-Synchronous Systems[END_REF], which tolerate bounded loss of messages. Message loss is encountered by using an LTTA protocol, which ensures correct message transmission. In addition, modelling GALS systems in synchronous languages requires real-time guarantees, such as bounded computations and communication delays. Such guarantees may be unknown in the general case, or at least difficult to synthesise in some distributed applications.

Examples of this kind are networks of PLCs, which evolve at arbitrary paces, the communication protocol (e.g., Modbus) being responsible of correct message transmission.

Last but not least, verification tools of synchronous languages do not support logics with sufficient expressiveness to capture general liveness and fairness properties, required for the verification of asynchronous concurrent systems. Synchronous model checkers (e.g., [START_REF] Halbwachs | Synchronous Observers and the Verification of Reactive Systems[END_REF][START_REF] Bouali | XEVE, an ESTEREL Verification Environment[END_REF]) can express safety and bounded response properties but not properties in which the expected response may occur within unpredictable delay, as was mentioned in the end of Section 2.2.2.

To address general GALS systems, whose synchronous components evolve at unrelated paces and communicate along unreliable media with no real-time guarantees, verification frameworks for asynchronous systems are more appropriate.

GALS systems in asynchronous languages and dedicated tools

Addressing GALS systems in asynchronous languages and their dedicated verification tools have genuine benefits. Asynchronous languages provide built-in parallel composition and abstraction operators to reason about asynchronous concurrent systems, abstractly and compositionally. Such operators enjoy useful compositionality properties such as congruence results. Hence, efficient state-space reduction techniques (e.g., partial order reduction) and compositional verification can be applied, for scaling to large systems. Compositional verification for asynchronous systems [START_REF] Garavel | Compositional Verification of Asynchronous Concurrent Systems Using CADP[END_REF] can be used to complement compositional verification approaches used for synchronous systems, such as assume-guarantee reasoning techniques (e.g., [START_REF] Backes | Requirements analysis of a quad-redundant flight control system[END_REF][START_REF] Glouche | A boolean algebra of contracts for assume-guarantee reasoning[END_REF]). On the other hand, verification tools for asynchronous systems support logics with sufficient expressiveness to capture complex properties. Examples are succession of events in time (arbitrarily far from each other), cycles denoting infinite executions, and general liveness properties.

We have identified two main approaches in the literature addressing GALS systems in design and verification frameworks for asynchronous languages. A first approach consists in translating a GALS-specific language into a process language.

A translation from CRSM (Communicating Reactive State Machines) [START_REF] Ramesh | Communicating reactive state machines: Design, model and implementation[END_REF], a visual language built upon CRP, into Promela is proposed in [RSD + 04]. Verification is achieved by means of distributed observers to get rid of using temporal logics. The reliance of CRSM on Esterel entails a lack of data-driven support in the language. Indeed, most of the data-handling part of Esterel is deferred to the host language (e.g., C, C++, Java).

SystemJ [START_REF] Malik | SystemJ: A GALS language for system level design[END_REF] The Signal-Promela approach, relying on state-based with linear-time semantics, is followed up by an approach combining the SAM synchronous language and the LNT asynchronous language in an action-based setting with branching-time semantics [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF].

In this approach, SAM automata, which are extended Mealy machines, are translated into LNT functions that are encapsulated into LNT wrapper processes. Atomicity of synchronous components is described in functions but not their wrapper processes. As a result, individual input and output actions of the different LNT wrappers can interleave arbitrarily. Furthermore, the asynchronous composition between processes is completely arbitrary, since no constraints are put on their executions, contrarily to the Signal-Promela approach. As such, the maximal degree of nondeterminism is considered. This approach is used to check that an airplane-ground communication protocol, based upon TFTP/UDP (Trivial File Transfer Protocol/User Datagram Protocol), ensures correct message transmission. Abstractions and compositional verification are used to cope with state space explosion. Verification by model checking and performance evaluation are applied by using CADP.

The Signal-Promela and SAM-LNT approaches address specific GALS applications with specific activation strategies and communication protocols. Hence, their usage is not transferable to general GALS systems. While both approaches pave the way for addressing GALS systems in verification tools for asynchronous systems, one may wonder if having two different modelling languages is easy to learn.

Chapter 3

The GRL Language for GALS Behavioural Description

This chapter presents the GRL language, a new formal language for the behavioural description of GALS systems. It serves as a tutorial for GRL, the semantics of which will be presented in chapter 4. We first present a running example. Then, we introduce the design choices of the synchronous and asynchronous models adopted in GRL. We present the formal syntax and intuitive semantics of GRL constructs. Finally, we compare the expressiveness of GRL with regards to some existing approaches in modelling GALS systems.

A GALS example

It is hard to learn the characteristics of a programming language by reading a formal definition of that language, until several examples have been studied

D. E. Knuth, 1967 In this section, we present an example of a GALS system. The example will serve to illustrate the formal syntax of GRL in subsequent sections. It consists of a car park management system, whose goal is to control the availability of a double-storey car park1 . The car park has one principal entrance and one principal exit gate. Each storey of the car park has also its own entrance gate. Gates are equipped with barrier systems enabling automatic vehicle detection. The car park availability is displayed to drivers via exterior lights mounted at the car park entrance.

The actual system comprises four Programmable Logic Controllers (PLCs) that communicate to each other the entrance and exit activity. An entrance PLC and an exit PLC manage the entrance and exit gates, respectively. Two storey PLCs manage the gates of the two storeys.

The behaviour of the system is as follows. 

Overview of GRL

GRL syntax is presented in Tables 3.1 (page 31) to 3.9 (page 51). The generic terminal symbols and non-terminal symbols are summarised in the following table. 

Modules

A GRL specification can be structured in several modules, allowing single monolithic specifications to be split into reusable pieces of manageable size. The syntax of modules is given by the grammar in Table 3 A module can contain the following constructs:

-types; named constants of any type; -blocks, which denote synchronous components; -mediums, which denote asynchronous communication mediums; -environments, which describe constraints of the external environment on blocks; and -systems, inside which are composed blocks, mediums, and environments.

The lexical scope of these constructs encompasses both the current module and its importing modules. In the sequel, blocks, mediums, and environments are called components. module ::= module P [ (P 0 , . . .

,P n ) ] is (type_definition | constant | block | medium | environment | system)* end module Table 3.1: Syntax of GRL modules Example 3.1.
The car park application can be described in GRL as follows (see Example 3.18 for excerpts of the system). Since each PLC has a synchronous behaviour, each of them will be described by a GRL block, named respectively Entrance, Storey1, Storey2, and Exit (see Figure 3.1 for a schematic view of block Exit and Example 3.7, page 42, for its corresponding GRL code).

PLCs are spatially distributed and communicate with each other. Thus, we will introduce two mediums, named Exit_to_Storey1 and Storey1_to_Entrance, to describe communication from Exit to Storey1 and from Storey1 to Entrance. Similarly, we will introduce mediums Exit_to_Storey2 and Storey2_to_Entrance (all mediums are instances of component Sampling, defined in Example 3.15, page 50).

A ticket given to a car contains two fields. Each field references a storey. We wish only one field to be selected in a ticket. We will describe this constraint in an environment Env_Storey (see Example 3.8, page 45). Finally, the same program will be implemented on both storey PLCs. This entails that both PLCs have nearly the same period. We will describe this constraint in an environment Quasi_Synch_2 (see Example 3.12, page 47).

Synchronous blocks

The synchronous model of GRL is rooted in imperative programming style with functional flavour. It provides a built-in definition of the synchronous loop (which is a deterministic infinite loop) and internal state notions. The discrete, logical model of time, adopted in synchronous programming, is considered. Synchronous concurrency is not supported. Communication is carried out by instantaneous broadcasting.

More concretely, the behaviour of a block is described as a (potentially unbounded) sequence of discrete deterministic steps. Throughout these steps, an internal state represented by state variables is maintained. Each step consists in first reading inputs, then computing outputs and the next internal state, which both depend on the inputs and internal state of the current step. These activities are performed simultaneously, making the step atomic, as is assumed in synchronous programming.

Blocks can be composed to interact with each other inside higher-level blocks, in a modular way. Modularity enables a textual description of hierarchical block compositions, as the one illustrated in Figure 3.1. Lower-level blocks are called subblocks. A block that is not a subblock of another block is called highest-level block. Composition of subblocks is synchronous, i.e., in every step of the enclosing block, each subblock performs a (micro-) step. To enable interaction between subblocks, inputs of some subblocks can be connected to outputs of preceding subblocks. Such interaction occurs instantaneously, as is assumed in synchronous programming. Accordingly, outputs produced by a subblock are consumed by the other ones in the same step of the enclosing block. This way, data is processed along causal dependencies between subblocks, making the behaviour of blocks deterministic.

Asynchronous composition of blocks

The asynchronous model of GRL is rooted in process algebras, while keeping the same imperative programming style as the synchronous model. The abstraction of time adopted at the synchronous level cannot be preserved anymore at the asynchronous level. Asynchronous concurrency is captured by the interleaving semantics. The basic model of communication is synchronous rendezvous. Asynchronous communication is enabled by means of dedicated components, i.e., mediums. Nondeterminism can be explicitly expressed through dedicated primitives. More concretely, highest-level blocks are composed inside systems in asynchronous concurrency. The atomic deterministic steps of concurrent blocks interleave arbitrarily, without causal dependency. Contrarily to subblock composition, synchronous interaction between highest-level blocks is forbidden to prevent them from constraining the steps of each other. By default, two consecutive steps of a block may occur arbitrarily far from each other, unless specified differently by using activation constraints (see Section 3.5.2). This abstraction makes GRL expressive enough to model general GALS systems, while abstracting away from implementation details.

Overview of GRL

Blocks interact synchronously with mediums and environments. Connections between components are made by means of channels, which are tuples of variables, over which rendezvous take place. Channels are unidirectional, i.e., a channel is used by a component either only for reception or only for emission of tuples of values. Interactions between components are necessarily initiated by blocks, to which environments and mediums respond. In this respect, environments and mediums are passive components, executing only if requested by blocks, which are active components. Communications between blocks occur through mediums and is thus asynchronous.

Environments and mediums provide GRL with enough expressiveness to model and reason about general GALS systems. First, both of them are definable by the user, similarly to blocks. In addition, their behaviour may exhibit nondeterminism, a key feature providing descriptions with accuracy and high abstraction capability.

Environments enable constraints on block behaviour to be expressed at different levels of abstraction. On the one hand, they provide inputs to blocks and react to their outputs. Connections between blocks and environments are carried out using input channels (sets of inputs) and output channels (sets of outputs). An output channel of a block can be connected to an input channel of an environment, and conversely. On the other hand, environments can adjust the degree of asynchronous concurrency in block composition by Mediums enable blocks to communicate asynchronously. Connections between blocks and mediums are carried out similarly to the ones between blocks and environments, but on dedicated channels called receive and send channels. A medium receives messages from or sends messages to its connected blocks whenever requested. Messages can be stored in the internal state of the medium, thus enabling message buffering. Additionally, nondeterminism allows behaviours such as message loss, duplication, or reordering to be described naturally.

In the following sections, we first introduce GRL basic structures. We then present the behavioural constructs of GRL.

Basic GRL

In this section, we present the types, expressions, statements, and constants of GRL.

Type definitions

The syntax of types is given by the grammar in Range types, defined using keyword range, denote finite intervals of numbers ranging from m to n, which must be literal constants of type type. Type type itself must be one of nat, nat16, nat32, int, int16, or int32. Here is an example which defines an interval of naturals from 0 to a value nb_max_cars, where nb_max_cars is a global constant assumed to be already defined (see Section 3.3.4). 

Basic GRL

Expressions

The syntax of GRL expressions is given by the grammar in Table 3 

Statements

The syntax of statements is given by the grammar in 

Global constant definitions

The syntax of constant definitions is given in 

Blocks

In this section, we first present how GRL blocks can be defined and composed inside other components. We then discuss some design choices that distinguish GRL blocks from classical synchronous languages.

Block definition

The syntax of blocks is given by the grammar in Receive and send parameters are introduced to make a clear distinction between synchronous interactions of a block with its environment on the one hand, and asynchronous communication with other blocks through mediums on the other hand. Accordingly, such parameters occur necessarily in highest-level blocks and cannot be used in subblocks inside other blocks. Conversely, a block having only input and output parameters cannot be used to communicate asynchronously with other highest-level blocks inside systems. If asynchronous communication is required, the block should be encapsulated inside another block having send and receive parameters.

Local variables are either temporary or static. The scope of both kinds of variables is limited to the enclosing block.

Temporary variables are preceded by keyword var and are optionally initialised at declaration time. Once a step starts, each temporary variable is first assigned its initialisation value (if any), which can be used in computations within the step. The updated value of the variable is lost at the end of the step, i.e, when returning from the block.

Static variables are preceded by keywords static var. Their initialisation at declaration time is mandatory, contrarily to temporary variables. When a block first step starts, each static variable is assigned its initialisation value. When the block subsequent steps start, each variable takes the value it had at the end of the previous step. In other words, the values of static variables updated within a step are kept stored for subsequent steps. Consequently, static variables are adequate to represent the internal state of the block.

The difference between static and temporary variables is their lifetime, which we illustrate in the listing below (left-hand side). The table on the right-hand side, shows the evaluation of variables x and y at the end of each of the first four steps of block B.

1 block B i s 2
s t a t i c var x : nat := 0 3 var y : nat := 0 4

x := x + 1 ; 5 y := y + 1 6 end block step 1 2 3 4 ...

x 1 2 3 4 ... y 1 1 1 1 ... Example 3.2.
Block B_Edge below encodes an edge detector. It observes a logic signal Logic_Signal and decides whether the signal value has changed since the last block step. The static variable Pre_Signal stores the last value carried by the signal.

Blocks

The block is parameterised to detect either rising or falling edges on Logic_Signal. The rising edge mode detects changes from false to true, and is activated by the constant parameter Rising_Mode. The falling edge mode detects changes from true to false, and is activated by the constant parameter Falling_Mode. According to the default setting of constant parameters, the rising edge mode is enabled by default. Alternatively, the behaviour of a block can be specified in an external language, a feature inspired by process languages (e.g., LNT and Promela). So far, the supported external languages are C and LNT. External C and LNT functions are declared using pragmas "!c" and "!lnt", respectively.

Example 3.3. To illustrate the use of external C code, consider the C function Shift below, which applies shift operations on a natural number. Type GRL_Int16 is used in the function interface (line 2, C code). Before using a parameter, it should be converted to the C domain. This is done by the predefined function GRL_Int16 _To_Signed_Char (line 4, C code). Then, before returning from the function, the result is converted to the GRL domain by using the predefined function GRL_Signed_Char_To_Int16 (lines 6-7, C code).

The C function is written in a file with extension ".c", which is imported in the current GRL module. So doing, it can be encapsulated inside block C_Shift.

1 --GRL f i l e importing the C f i l e named S h i f t 2 module External_C ( S h i f t ) i s 3 block C_Shift ( i n Num : int16 , out l e f t , r i g h t : int16 ) 4 i s 5 !c " S h i f t " 6 end block 7 . . . 8 end module 1 --C f i l e named " S h i f t . c " 2 void S h i f t ( GRL_Int16 Num, GRL_Int16 * l e f t , GRL_Int16 * r i g h t ) 3
{// co nve rt types to the C domain 4 unsigned char arg_number = GRL_Int16_To_Signed_Char (Num) ; 5 // compute outputs and r e c o n v e r t types to the GRL domain * l e f t = GRL_Signed_Char_To_Int16 ( arg_number << a r g _ b i t s ) ; 7 * r i g h t = GRL_Signed_Char_To_Int16 ( arg_number >> a r g _ b i t s ) ; 8 }

Example 3.4. The use of external LNT code is straightforward as illustrated by the code below. Function check_temperature is assumed to be defined in a file with extension ".lnt" that is imported in the current GRL module. Although including external code enhances user convenience, the external code should be defined to comply with GRL semantics. To enable functional verification, external C code should be side-effect-free, i.e., the same code called with the same input values in different contexts should return the same output values. In particular, blocks defined using external code must not have static variables. Fragments of external LNT code, however, have formal semantics and can thus be used safely, provided they do not use themselves external C code with side effects.

1 --GRL f i l e importing the LNT 2 --f i l e named

Subblock composition

A block can be invoked inside other components. Each invocation corresponds to an instance of the block. An instance is a copy of the block (and of a component in the general case) with a separate internal state. Instances of blocks invoked inside components are called subblocks.

At invocation time, actual parameters of subblocks are set. Actual output parameters are distinguished by a question mark. The question mark indicates that the parameter will have a value assigned when returning from the block. Underscores can be used as actual parameters. An underscore indicates that the actual parameter is presumed irrelevant for the caller component. For each constant and input parameter "_", the default value of the corresponding formal parameter in the block definition is used in each step. For each output parameter "?_", the value assigned to the corresponding formal parameter when returning from the block is just ignored.

Example 3.5. Example 3.6.

In the code below, Rising_Edge is an alias of block B_Edge with the default values of constant parameters. Falling_Edge is another alias of the block, parameterised to detect falling edges. In the current version of GRL, there is no synchronous parallel composition operator. Rather, subblocks are composed in a sequential way. Their invocation should follow a user-defined topological order, in accordance with the causal dependency between their input-output connections. Subblocks with no causal dependency can be invoked in an arbitrary order.

Example 3.7.

Block Exit below corresponds to the block composition depicted in Figure 3.1. The block implements a possible correct order for subblock invocations. For example, the actual output parameter "?Edge_Cmd_P1 " of block B_Edge (line 5) should be broadcast to subblocks B_And (line 6) and B_Or (line 11). Hence, B_Edge should be invoked before B_And and B_Or.

Actual parameters Cmd_P1, Cmd_P2, Open, Out_P1, and Out_P2 of subblocks B_Edge, B_And, and B_Or are declared as formal parameters of the enclosing block Exit. These parameters are intended to interact with the outside world of block Exit. Contrarily, actual parameters Edge_Cmd_P1 and Edge_Cmd_P2 are declared as temporary variables. They are used as input-output connections, internal to the block Exit. However, the following three programs are permitted, although programs 1 and 2 are not equivalent.

--program 1 s t a t i c var pre_x : t := e var y : t B1 ( pre_x , ?y ) ; B2 ( ?pre_x , y ) ;

1 --program 2 2 var x , y : t 3 x := e ; 4 B1 ( x , ?y ) ; 5 B2 ( ?x , y ) 1 --program 3 2 x := 1 ; 3 x := x + 1 ; 4 --" c

y c l i c " dependency permitted 5 --( i m p e r a t i v e s t y l e )

Discussion and related work

The initial intention for defining GRL is to have an intermediate format that maps GALS systems, whose synchronous components are modeled using synchronous languages, to verification tools for asynchronous systems. For this reason, GRL does not include a full-fledged synchronous language. Rather, it provides a minimal but sufficient number of core constructs, to which the built-in constructs of synchronous languages can be translated with reasonable effort. We discuss below the design decisions distinguishing GRL blocks from classical synchronous languages.

Blocks

Absence of parallel operators Synchronous languages are generally equipped with synchronous parallel operators while GRL is not. Composition between GRL blocks is sequential, requiring a correct order between blocks to be defined. If the GRL code was generated from a synchronous language, one would expect the front-end compiler to automatically provide such a correct order. This is reasonable since each compiler of a synchronous language implements a causality analysis algorithm.

We deliberately disallow synchronous concurrency. This enhances the integrability of GRL as back-end of various synchronous compilers as GRL cannot interfere with causality analysis algorithms that synchronous compilers implement. Also, most synchronous compilers generate efficient sequential code which can be usefully integrated in GRL.

Absence of delay operators

In GRL, delay operators are deliberately absent. Instead, GRL makes explicit the internal state of blocks by means of static variables. Accessing and updating the internal state of blocks is in charge of the GRL user. Of course, delay operators could be encoded in GRL libraries and imported in GRL modules.

We believe that GRL is expressive enough to implement delay operators with no difficulty. As an illustration, consider the Lustre node Counter below. The node uses the operator "pre" (for previous), which gives the last value carried by its operand N .

1 node Counter ( i n i t , i n c r : int , r e s e t : bool ) r e t u r n s (N: i n t ) ; 2 l e t 3 N = i n i t -> i f r e s e t then i n i t 4 e l s e pre (N) + i n c r 5 t e l

An implementation of that node in GRL is block Counter below. Variable preN implements the Lustre "pre (N)" expression, by storing the value to be used in the next step.

The Boolean variable first is used to emulate the Lustre operator "→" (followed by).

1 block Counter ( i n i n i t : int , i n c r : int , r e s e t : bool , out N: i n t ) i s 2 s t a t i c var preN : i n t := i n i t , f i r s t : bool := true 3 i f r e s e t or f i r s t then N := i n i t ; f i r s t := f a l s e 4 e l s e N := preN + i n c r 5 end i f ;

6 preN := N 7 end block
Explicit loops Another difference with standard synchronous languages is the presence of explicit computation loops in GRL. For and while loops are useful when used as iterators. Problems such as loop boundedness should be ensured by the front-end compiler and are out of the scope of GRL. If ensuring loop boundedness were necessary, bounded operators could be encoded in GRL libraries. Those libraries, once verified, can be used safely in GRL programs.

Environments

Environments provide block inputs and react to block outputs, thus putting constraints on the data carried by the blocks. Additionally, they define constraints on block activation, thus enabling the description of activation strategies.

The syntax of environments is given by the grammar in Table 3 

Data constraints

An environment interacts with a block either by reception (on input parameters) or by emission (on output parameters) of tuples of values; interactions are initiated by blocks. Each interaction being instantaneous (or synchronous), the parameters involved in the same interaction are grouped in channels of the form "in vars" or "out vars". Now, an environment may interact independently with several blocks, which trigger its execution in a nondeterministic way, according to the interleaving semantics. Hence, all the possible executions devoted to interaction on the different channels must be defined inside the environment. This requires additional communication primitives that guard the code (part) to be executed, whenever interactions on some channel occur. We introduce data signals as such communication primitives. A data signal, introduced by keyword when, is associated to each channel.

Example 3.8.

Environment Env_Storey ensures that a ticket, given to a car references exactly one storey. Values carried by outputs Cmd_P1 and Cmd_P2 are determined in a nondeterministic way. when Cmd -> i f ( not (Pre_Open ) ) then Cmd := any bool --a l l o w r e q u e s t 7 e l s e Cmd := not (Pre_Open) --d i s a l l o w r e q u e s t 8 end i f 9

end s e l e c t 10 end environment

The signal associated to each input channel "in X 0 :T 0 , . . . ,X n :T n " has the form "when ?<X 0 , . . . ,X n > -> I 0 ". If n = 0, angle brackets are optional. The code I 0 guarded by the signal is active (meaning that I 0 can be executed), whenever a block connected to the channel produces its own outputs X 0 , . . . ,X n . Then, the values of those variables, received on the channel, can be read only inside statement I 0 . In Example 3.9, the signal "when ?Open ->" defined at line 4 is active each time the block connected to channel "in Open" finishes a step. In this case, the value of Open is read and assigned to Pre_Open, when returning from the environment. Signal "when Cmd ->" defined at line 6 is not active during this execution of the environment.

The signal associated to each output channel "out Y 0 , . . . ,Y m " has the form "when <Y 0 , . . . ,Y m > -> I 0 ". If m = 0, angle brackets are optional. The code I 0 guarded by the signal is active, whenever a block connected to the channel reads its own inputs Y 0 , . . . ,Y m . This requires statement I 0 to assign values to those variables which are emitted on the channel. In Example 3.9, the signal "when Cmd ->" defined at line 6 is active each time the block connected to channel "out Cmd" starts a step. In this case, Cmd is assigned a value when returning from the environment. Signal "when ?Open ->" is not active during this execution of the environment.

Since interactions on a channel occur whenever requested by the connected block, there must be at least one reachable execution path in the environment containing the signal corresponding to the channel. So doing, environments do not prevent block executions.

In general, the code fragments guarded by the different signals are combined using nondeterministic choice, as illustrated in Example 3.9 (lines 3-9).

Besides, since exactly one signal is active during each environment execution, GRL semantics prohibit sequential composition of signals, loop statements containing signals, and nested signals. So doing, exactly one signal should be present in each execution path. Note, however, that the code associated to a given signal is not necessarily deterministic, which allows the environment to have a nondeterministic behaviour.

Static variables are particularly useful to keep track of past events, such as exchanged values or the history of block steps. This is illustrated in Example 3.9 where parameters Cmd and Open are intended to be connected to block Entrance input and output, respectively. The value carried by output Cmd depends on the last value that the input Open has carried. The information is stored in the static variable Pre_Open.

Activation constraints

Highest-level blocks evolve by default in arbitrary interleaving. Environments enable to control the level of asynchrony between block executions, by putting constraints on the activation of one or several blocks. The activation of blocks whose identifiers occur as activation parameters is intended to be constrained by the environment. Similarly to input and output channels, to each activation parameter of the form "B" is associated an activation signal of the form "enable B". The difference between activation signals and data signals is that the former are used only for synchronisation purposes and not for data exchange. An activation signal "enable B" implements the permission for a block (named B) to start a step. A block, whose activation is intended to be constrained by an environment, can execute only if there is at least one reachable execution path, containing its respective signal. Therefore, contrary to data signals, activation signals may be unreachable in certain execution contexts. In particular, if no signal is associated to a given activation parameter, the corresponding block is never activated. Hence, the unreachability of activation signals is equivalent to the "deactivation" of the corresponding block.

Example 3.10.

Let B be a highest-level block, connected to environment Disable, defined below. If the environment is invoked with the default value of C , block B will never execute since its corresponding activation signal is never reached. The default arbitrary interleaving between blocks is equivalent to the following activation strategy, where no constraint is put on block activations. Example 3.12. Environment Quasi_Synch_2 implements an activation strategy for two blocks evolving with nearly the same period but without sharing clocks. This example illustrates how to express relations between the paces of different blocks. In Example 3.12, activation signals are combined using if-then-else statements, to constrain the activation of connected blocks. The reachability of those signals depends on the internal state of the environment, i.e., its static variables, recording part of the history of block activations.

In general, activation constraints are a framework to abstract properties of real-time distributed systems in an asynchronous model. GRL enables to implement complex activation strategies involving priorities and arbitrary relations between the paces of synchronous components.

Combining data and activation constraints

Data and activation signals enable to constrain the behaviour of blocks at different levels of abstraction. The syntactic separation between both concepts makes the user intention clearer on how to fine-tune the system constraints. A data signal allows to constrain data carried by block inputs and outputs and cannot handle block activations. It must be reachable whenever required by a connected block. An activation signal allows to constrain the activation of blocks at specific moments in time and cannot handle input and output data. The reachability of activation signals induces the activation strategy of blocks.

The two kinds of signals can be combined to describe complex situations. In particular, test scenarios can be described in an elegant and modular way.

Example 3.13. The following environment describes a block crash.

1 environment Crash ( block B, out alarm : bool ) i s 2
--when a f a i l u r e i s detected , block B h a l t s and an alarm i s t r i g g e r e d 3 s t a t i c var f a i l u r e : bool := f a l s e 4 s e l e c t 5 i f not ( f a i l u r e ) then --no f a i l u r e has been detected 6 enable B; --a c t i v a t e block B normally 7 f a i l u r e := any bool --a f a i l u r e may occur

8 end i f 9 [ ] when alarm -> alarm := f a i l u r e --t

r i g g e r an alarm i n case of f a i l u r e end s e l e c t end environment

Example 3.14.

The following GRL code specifies a test scenario for the car park application. A car enters the car park and is given a ticket. The car tries to access the second storey, contrarily to what is indicated on its ticket. The access to the storey is then denied and the car parks in the first storey. Finally, the car leaves the car park. The enumerated type cases defines the scenario steps. Environment Scen_Act defines the order in which blocks should be activated.

1 environment Scen_Act ( block Entrance , Exit , Storey1 , Storey2 ) i s 2 s t a t i c var a c t i o n : c a s e s := Car_Park 3 case a c t i o n i s 4 Car_Park -> a c t i o n := Car_P2 ; enable Entrance 5 | Car_P2 -> a c t i o n := Car_P1 ; enable Storey2 6 | Car_P1 -> a c t i o n := Car_Ex ; enable Storey1 7 | Car_Ex -> a c t i o n := None ; enable E x i t 8
| any -> a c t i o n := None 9 end case end environment

Mediums

Environment Scen_Data defines the values that should be carried by the inputs of different blocks. 

the t i c k e t g i v e n to the car i n d i c a t e s s t o r e y 1 --a c c e s s to s t o r e y 1 w i l l be granted

Mediums

Mediums are intended to implement the asynchronous communication between highestlevel blocks. Their syntax is given by the grammar in Table 3.8. Medium specification is described similarly to environments, except that input and output channels are replaced by receive and send channels, and activation parameters are absent. A medium behaviour is defined by a nondeterministic statement, in which activation signals are not allowed. To enable an asynchronous message transmission between a pair of blocks, a medium should interact (synchronously) with both blocks on separate channels. To each channel is associated a data signal. The data signal must be reachable whenever required by a connected block, similarly to data signals inside environments. Nondeterministic choice is appropriate to combine data signals, since it does not lead to blocking situations. Static variables are particularly useful for message buffering.

Example 3.15.

The following code implements a unidirectional one-place buffer. Channel rec_msg is devoted to receive messages. A received message is buffered using the static variable buf_msg, waiting to be emitted on channel snd_msg. This model is used in Loosely Time-Triggered Architectures [START_REF] Benveniste | A unifying view of loosely time-triggered architectures[END_REF], in which the Bus behaves as a shared memory between components. Messages are sustained by the bus and are periodically refreshed. Such communication, said by sampling, is non blocking.

Example 3.16.

The following code implements an unreliable medium, supporting message loss. Example 3.17. The following code implements a FIFO queue. The queue is encoded by using a static variable (line 2) of type queue, which is an array of messages. Initially the queue is empty. When a message is received on channel rec_msg, it is inserted in the queue by using a subblock enqueue, which returns the updated queue. Similarly, when a message has to be emitted on channel snd_msg, subblock dequeue returns the first message inserted and updates the queue. 

Systems

Blocks, environments, and mediums are composed inside systems. We first present the definition of GRL systems. Then, we discuss the expressiveness of GRL.

System definition

The syntax of systems is given by the grammar in Table 3.9. A system specification consists of formal parameters, temporary variables, component aliasing, and a behaviour described as a composition of components. Formal parameters are either constants, thus enabling parameterised specification, or without mode, to compose actual channels of components. The following code describes the composition of the car park components. Details of the code will be given later. Highest-level block instances are introduced by keywords block list. Actual parameters of highest-level blocks have the same form as those in subblock invocation inside components. Additional parameters, called wildcards, can be used as input and receive actual parameters. Wildcards have the form "any T " and match any value of type T . They are semantically equivalent to actual parameters that are declared as temporary variables, but not used for interactions with other components. Actual parameters are grouped to compose channels. In each channel, parameters should have the same form, i.e., all parameters are either variables (of the form "<X 0 , . . . ,X n >" or "?<X 0 , . . . ,X n >"), wildcards (of the form "<any T 0 , . . . ,any T n >"), or unconnected (of the form "<_, . . . ,_>" or "?<_, . . . ,_>").

Environment and medium instances are introduced by keywords environment list and medium list, respectively. Their channels can be either tuples of variables or unconnected. If a channel is unconnected, the behaviour defined by its associated signal in the component definition is never executed. Actual activation parameters of environ-

Systems

ments should belong to the names of highest-level blocks. Note that if the activation of blocks in constrained, all blocks must have been already aliased. To prevent undesirable interferences that may occur when the activation of a block is constrained by several environments, actual activation parameters should be pairwise distinct in all environments.

Connections between components occur through channels. A channel may occur in exactly one pair of components. A block and an environment can be connected using a set of variables "X 0 , . . . ,X n " by passing "<X 0 , . . . ,X n >" as input channel to the block and "?<X 0 , . . . ,X n >" as output channel to the environment, or conversely (Example 3.18, lines 18 and 23). If n = 0, angle brackets are optional. Connections between mediums and blocks on receive and send channels are carried out similarly (Example 3.18, lines 18, 25, and 26).

Alternatively, channels may occur in a single component. In this case, for input or receive channels, arbitrary values are assigned to parameters. Channels whose parameters are declared as formal parameters of the system are observable by the system outside (Example 3.18, line 2), whereas channels whose parameters are declared as temporary variables are not (Example 3.18, line 14). Distinction between observable and non observable channels is a key device for abstraction, inspired by process algebra [START_REF] Milner | A Calculus of Communicating Systems[END_REF] and is essential for verification.

Blocks cannot be directly connected to each other using channels. This ensures arbitrary interleaving between their activations. Environments and mediums cannot be connected to each other, neither. They are intended to be passive components that need to be triggered by blocks.

The behaviour of the system is defined as follows. A block can execute only if permitted by the environment constraining its activation. Such environment, if any, is unique according to GRL semantics. In this case, the block starts a step by triggering the components connected to its input and receive channels, to obtain values. After carrying out internal computations, the block finishes the step by triggering the components connected to its output and send channels, to deliver values. Following this execution model, a block interacts with a given component in at most two moments (i.e., causal events) during the same step. Accordingly, the data exchanged with each component at the same moment should be grouped in one single channel. Consider Example 3.18. When block Exit starts a step, environment Env_Storey executes to provide the block inputs Exit_P1 and Exit_P2. When the block finishes a step, both mediums Exit_to_Storey1 and Exit_to_Storey2 execute to consume the block outputs S_Out1 and S_Out2, respectively. The combined execution of all components interacting during a block step is assumed to be instantaneous, thus preserving the zero-delay assumption of the block step.

Discussion and related work

This section summarises the GRL behavioural constructs and draws a comparison with some existing GALS approaches.

GRL blocks

Depending on the call context, GRL blocks may behave either in a synchronous or in an asynchronous way. Inside components, subblocks behave as synchronous components that are composed synchronously with other subblocks. Inside systems, highest-level blocks behave as deterministic and atomic asynchronous components that interleave with other highest-level blocks. This allows a smooth integration of synchronous components inside an asynchronous context without requiring additional components to interface the synchronous world with the asynchronous one.

Contrarily to GRL blocks, the SAM-LNT approach [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF] does not ensure the atomicity of LNT processes corresponding to synchronous components. Thus, inputs and outputs of different processes can interleave arbitrarily, leading to state explosion. In this respect, GRL enables a more concise representation than [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF] (see Section 5.10 for a detailed comparison). In the Signal-Promela [DMK + 06] approach, the atomicity of synchronous components is ensured by using the atomic construct of Promela. Both CRSM and SystemJ build upon the Esterel synchronous semantics, which make their synchronous part rich, compared to GRL. This is reasonable since they are design-oriented languages aiming to be used directly by users that are familiar with synchronous programming.

GRL mediums GRL mediums provide enough expressiveness to model general GALS systems. On the one hand, GRL does not fix any communication protocol, contrarily to some existing approaches. In the Signal-Promela approach [DMK + 06], an LTTA protocol is used. Specific hardware communication buses are abstracted as Promela one-place FIFO channels. In the SAM-LNT approach [GT09], a TFTP protocol is used. FIFO and bag mediums with fixed size buffers and supporting message loss are used. On the other hand, GRL mediums support nondeterministic statements, which are absent in SystemJ [START_REF] Malik | Formal semantics, compilation and execution of the GALS programming language DSystemJ[END_REF] and CRSM [START_REF] Ramesh | Communicating reactive state machines: Design, model and implementation[END_REF]. Nondeterminism allows to describe useful situations such as message loss and reordering in a succinct way.

GRL environments Data constraints are similar to, but more general than assertions in synchronous languages. The latter are Boolean expressions (e.g., invariances and relations on inputs) that are assumed to always hold inside the synchronous program. In GRL, data constraints can express more complex behaviours, possibly combining inputs and outputs of several blocks, and depending on their history. Such constraints combined with nondeterminism allow the user to fine-tune the system description and reduce the size of generated state spaces. We have found no equivalent to GRL data constraints in the Signal-Promela approach nor in the SAM-LNT approach.

Systems

Activation constraints make the degree of asynchrony between concurrent highest-level blocks controllable. On the one hand, they enable an accurate and abstract description of realistic situations such as failure and activation strategies. On the other hand, they participate to reduce the size of the system state space. Again, no equivalent to GRL activation constraints has been mentioned either in SAM-LNT or in CRSM and SystemJ. In the SAM-LNT approach, this causes a maximal degree of asynchrony leading to state space explosion. In the Signal-Promela approach, similar constraints, called clock constraints, are automatically generated from Signal. When clock constraints are not met, a stuttering step is executed leading to no change in input and output signals.

GRL systems Factoring a GALS description into blocks, environments, and mediums enhances the modularity and reduces the complexity of modelling. At early design stages, when system specifications are evolving frequently, one might well want to verify the behaviour of blocks separately or a primary system behaviour with simple communication mediums and test case scenarios. Afterward, the system behaviour can be refined to meet detailed communication schemes and constraints. This helps the user to make explicit her intention on how to precisely design the system behaviour. Quoting Dijkstra [START_REF] Wybe | On the role of scientific thought (EWD447)[END_REF] about the role of scientific thought: "The separation of concerns is yet the only available technique for effective ordering of one's thoughts. This is focusing one's attention upon some aspect.".

Chapter 4 Formal Dynamic Semantics of GRL

GRL is endowed with formal semantics, giving a rigorous specification of how correct programs behave. This improves our understanding of the finest details of the language and helps in tool construction. The dynamic semantics of GRL are defined in an operational style. The meaning of program phrases is defined in terms of their computation steps during the program execution and the possible state transformation they perform. In this chapter, we first introduce the basic notions needed to specify the operational semantics of GRL. We then present the semantics of GRL constructs, stressing on the behavioural ones. 

Preliminaries

Programs are assumed to have successfully passed all static analysis phases, including parsing, binding analysis, typing analysis, and variable initialisation analysis. In particular, we make the following assumptions:

-Each variable is assigned a distinct name. This prevents variable shadowing to occur, i.e., a variable declared within a certain scope with the same name as a variable declared in an outer scope. -Each component instance is assigned a distinct name. Thus, those names can be used when associating a separate internal state to each component instance. For simplicity, we assume that each component instance called in some context has been aliased earlier in the same call context.

In this section, we first present the main concepts used to define the formal semantics of GRL. These are stores, stacks, and memories. Second, we sketch how GRL programs can be interpreted in terms of LTSs (Labelled Transition Systems). Finally, we introduce auxiliary functions required to formally define those LTSs.

Stores

We define a store, written ρ, as a partial function from variables to values. For a store ρ mapping each variable X i to the corresponding value e i , where i ∈ 1..n, we write

ρ = [X 1 ← e 1 , ..., X n ← e n ] and ρ (X 1 ) = e 1 , . . . , ρ (X n ) = e n .
We define the domain of store ρ, written dom (ρ), as {X 1 , . . . , X n }. In particular, we write "[ ]" for the empty store and dom ([ ]) = { } for its domain. For a subset {Y 1 , . . . , Y p } ⊆ dom (ρ), we write ρ |{Y 1 , ..., Yp} for the restriction of

ρ to {Y 1 , . . . , Y p } defined by [Y 1 ← ρ(Y 1 ), ..., Y p ← ρ(Y p )].
We define the update of a store ρ 1 with a store ρ 2 , written ρ 1 ⊕ ρ 2 , as follows:

(ρ1 ⊕ ρ2)(X) =    ρ2 (X) if X ∈ dom(ρ2) ρ1 (X) if X / ∈ dom(ρ2) and X ∈ dom(ρ1) undefined otherwise
The notation i∈1..n ρ i stands for the sum ρ 1 ⊕ . . . ⊕ ρ n (note that ⊕ is an associative but not commutative operator).

Example 4.1. Here are some examples of store update.

[X ← 0] ⊕ [ ] = [X ← 0] [X ← 0] ⊕ [Y ← 1] = [X ← 0, Y ← 1] [X ← 0, Y ← 1] ⊕ [X ← 1, Y ← 1] = [X ← 1, Y ← 1] [X ← 0, Y ← 1] ⊕ [Y ← 0, Z ← 1] = [X ← 0, Y ← 0, Z ← 1]
For sets of stores, we define the update of a set S 1 with a set S 2 , written S 1 ⊕ S 2 , as follows:

S1 ⊕ S2 = {ρ1 ⊕ ρ2 | ρ1 ∈ S1 ∧ ρ2 ∈ S2}

Stacks

We define a stack, written σ, as a sequence of component instance identifiers. A stack is defined recursively, either as the empty sequence or as a non empty sequence of the form "σ .id" where σ is a stack and id is the name of a component instance pushed on top of the stack. We write σ 1 .σ 2 for the concatenation of stacks σ 1 and σ 2 , defined as:

σ1. σ1 σ1.(σ2.id) (σ1.σ2).id
where symbol means equal by definition.

We define function prefix which indicates whether a stack σ 1 is a prefix of a stack σ 2 as follows:

prefix (σ1, σ2) ∃ σ , σ1.σ = σ2
During program execution, a unique stack is associated to each component instance. This stack is the ordered sequence of the names of all its enclosing component instances, starting from the highest-level component (block, medium, or environment), down to the current component, transitively. GRL stacks are similar to call stacks in ordinary programming languages, except that they only contain component instance identifiers.

Stacks are finite and statically bounded, since recursion is forbidden in GRL.

Example 4.2.

Let "alias B as B " be the aliasing of a highest-level block inside a system S. The stack of B is .B . Now, let "alias B as B " be a subblock aliasing inside a medium M and let "alias M as M " be the medium aliasing inside the system S. The stack of M is .M and that of B in this call context is " .M .B ". In the sequel, we omit the initial in non empty stacks. For example, we write "M .B " instead of " .M .B ".

Memories

We define a memory, written µ, as a partial function from stacks to stores. Memories implement the internal state of components. For a memory µ mapping stacks σ i to stores ρ i , where i ∈ 1..n, we write µ = [σ 1 ← ρ 1 , . . . , σ n ← ρ n ] and µ (σ 1 ) = ρ 1 , . . . , µ (σ n ) = ρ n . Relation σ i ← ρ i means that ρ i defines the internal state of the component instance whose stack is σ i . We define the domain of memory µ, written dom(µ), as {σ 1 , . . . , σ n }.

Similarly to store update, we define the update of a memory µ 1 with a memory µ 2 , written µ 1 ⊕ µ 2 as follows:

(µ1 ⊕ µ2)(σ) =    µ2(σ) if σ ∈ dom(µ2) µ1(σ) if σ / ∈ dom(µ2) and σ ∈ dom(µ1) undefined otherwise
The notation i∈1..n µ i stands for the sum µ 1 ⊕ . . . ⊕ µ n (note that ⊕ is an associative but not commutative operator). We define a function mem which extracts from a memory µ the submemories corresponding to the component whose stack is σ and those of its subblocks. 

mem (µ, σ) = σ ∈ dom(µ) ∧ prefix (σ, σ ) [σ ← µ(σ )]
µ B_Edge_1 = [Exit . B_Edge_1 ← [P re_Signal ← f alse]] µ B_Edge_2 = [Exit . B_Edge_2 ← [P re_Signal ← f alse]]
Block Exit (Ex. 3.7, page 42) has no static variables. The memory of each of its instances is composed of the memories of its subblocks. In addition to subblocks B_Edge_1 and B_Edge_2, block Exit invokes instances of logical blocks B_And and B_Or. Such logical blocks neither have internal state nor invoke subblocks. Hence, each instance of block Exit is associated to a memory µ B_Edge_1 ⊕ µ B_Edge_2 .

LTSs of GRL systems

The behaviour of a GRL system is formally defined in terms of an LTS. States contain the sum of all memories of highest-level components, the initial state being the empty memory. Transitions between states denote block steps. With respect to a state µ, a step of some highest-level block B leads to a transition of the form: -----------------→ µ where:

µ B (ch 1 ,...,chm)[ch 1 ,...,ch n ]
µ updates µ with the values of variables composing the memories of both B and the components connected to B . -ch 1 , . . . , ch m map the values of actual input and output parameters to their respective formal parameters. Each ch i (i ∈ 1..m) is composed of a set of elements. Each element has the form "X = e", where X is an actual parameter and e its value in the current step, if X is observable. Otherwise, the element has the form "_". -ch 1 , . . . , ch n are defined similarly to ch 1 , . . . , ch m , but for receive and send parameters.

For example, the following transition corresponds to a step of block Exit:

µ 0 Exit (Cmd_P1 = true, Cmd_P2 = false, Open = true) [ Out_P1 = true, Out_P2 = false] -----------------------------------------------------------→ µ 1
More concretely, we are concerned with the behaviour of blocks as an external observer would see it: which block is executing and what are the values carried by its inputs and outputs. Since block steps are atomic, each step results in exactly one transition in the LTS. From one block step to another, the values of static variables composing its internal state are stored in the system state. The system state contains also the values of static variables composing the internal states of environments and mediums triggered by the block step.

Structural Operational Semantics (SOS)

The LTSs of GRL are formally defined by using the method advocated by Plotkin [START_REF] Plotkin | A Structural Approach to Operational Semantics[END_REF], in which evaluation and execution relations are specified by transition rules in a syntax-directed way. A transition rule has a set of zero (in which case the rule is called axiom) or more premises and a conclusion. It is commonly written as follows:

premises conclusion

The validity of all the premises implies the validity of the conclusion. Transition rules will be applied in derivations, such that the facts below the solid line are derived from the ones above.

Expressions

We define the evaluation of an expression E in a store ρ as a relation of the form {E} ρ → e e, where e is the resulting value. An excerpt of transition rules of GRL expressions are given in Table 4.1. A literal constant K is always evaluated with itself as value (rule R1). A variable X evaluates to the value recorded in the current store (rule R2). Both rules are axioms. For example, an application of rule R2 is:

{X } [X ← 1] → e 1
The evaluation result of the expression "F (E 0 , . . . ,E n )" is the returned value of calling the predefined function F with the values of E 0 , . . . , E n (rule R3). Record field access and array element access are considered as predefined functions. Predefined functions are standard; we do not provide here their formal semantics. 

(R1) {K } ρ →e K (R2) {X } ρ →e ρ (X ) (R3) (∀ i ∈ 0..n) {Ei} ρ →e ei {F (E0 , . . . ,En)} ρ →e F (e0 , . . . ,en)

Statements

The semantics of statements is defined by means of couples (store, memory). Stores serve to read and update local variables and parameters of the current component. Memories serve to read and update the internal states of subblocks, whose invocation is part of statements. To access those memories, the stack of the current component, inside which the statement executes, is required. In the sequel, we call current store and current memory the store and memory in which a statement will execute.

We define the execution of statements as a relation of the form {I} σ, ρ, µ -→ i ρ , µ where:

-I is the statement to execute σ is the stack of the current component instance inside which I executes ρ is the store defining parameters and variables of the current component µ is the memory defining the internal state of both the current component and its subblocks ρ and µ are the respective updates of ρ and µ with the computations performed by I -is a label having one of the following forms: I terminates and has encountered an activation signal "enable B0 " ? X1, . . . , Xn I terminates and has encountered a data signal "when ?<X1 , . . . , Xn>" X1, . . . , Xn I terminates and has encountered a data signal "when <X1 , . . . , Xn>"

In the sequel, we present some representative semantic rules of statement execution.

Basic statements

Table 4.2 gives the semantics rules of a subset of GRL statements. Rule R4 defines the semantics of deterministic assignment statement. An assignment statement terminates normally by assigning the value of expression E (right-hand side) in the current store to variable X (left-hand side). Note that this rule updates the store but not the memory even if X was defined as a static variable. Note also that the current memory µ is not used to evaluate the expression because store ρ is assumed to already contain a copy of the static variables that are local to the current component. Construction of store ρ and memory update are handled at the level of component invocation.

(R4) {E} ρ →e e {X := E} σ, ρ, µ -→i ρ ⊕ [X ← e], µ (R5) e ∈ T {E} ρ ⊕ [X ← e] →e true {X := any T where E} σ, ρ, µ -→i ρ ⊕ [X ← e], µ (R6) {I1 } σ, ρ, µ 1 -→i ρ , µ {I2 } σ, ρ , µ 2 -→i ρ , µ {I1 ;I2 } σ, ρ, µ 1 + 2 ----→i ρ , µ (R7) (∃k ∈ 1..n) {I k } σ, ρ, µ -→i ρ , µ {select I1 [] . . . []In end select} σ, ρ, µ -→i ρ , µ
Rule R5 defines the semantics of nondeterministic assignment statement. A nondeterministic assignment terminates normally after updating the store by assigning an arbitrary value of type T to variable X , provided condition E of the assignment evaluates to true in the updated store.

Rule R6 defines the semantics of a sequential composition of two statements I 1 and I 2 . The sequential composition starts by executing statement I 1 and updating the current store and memory. Then, I 2 is executed in the store and memory updated by I 1 . Symbol + denotes label concatenation; is the identity element, i.e., + = + = for every label . At least one of the labels 1 and 2 must be equal to , since sequential composition between signal statements is forbidden (see Section 3.5.1, page 44).

Rule R7 defines the semantics of a nondeterministic choice between I 1 , . . . , I n . Nondeterministic choice terminates normally after behaving either as I 1 , ..., or as I n . In both R6 and R7, note that memories µ and µ may differ from memories µ and µ , respectively, if (and only if) statement I 1 , I 2 , or I k invokes subblocks.

Example 4.4.

To illustrate the derivation of transition rules, we consider the execution of the GRL statements below in a stack , store [ ], and memory [ ].

1 X := any bool ; --statement 1 2 Y := not (X) --statement 2
Inspecting rule R6 (see Table 4.2), statement 1 should be executed before statement 2. The statement execution starts by assigning an arbitrary value of Boolean type to X (rule R5, Table 4.2). There are two possible rules, each corresponding to a value of the Boolean type. Only the rule corresponding to value false is presented here, for conciseness. The execution continues by assigning a value to Y (rule R4, Table 4.2), which depends on the evaluation of variable X. Here is the derivation of transition rules, where ff and tt are shorthands for Boolean values false and true.

ff ∈ bool

{X := any bool} , [], [] -→ i [X ← ff ], [] {X} [X ← ff ] -→e ff {not (X)} [X ← ff ] -→e tt {Y := not (X)} , [X ← ff ], [] -→ i [X ← ff , Y ← tt], [] { X := any bool; Y := not (X) } , [], [] -→ i [X ← ff , Y ← tt], []

Signals

The semantics of signals, given in Table 4.3, is inspired by the semantics of communication actions in process algebra. More concretely, the data signal "when ?<X 1 , . . . ,X n >" is first prepared to receive values for variables X 1 , . . . , X n from a block. The execution of the signal is then contingent on whether a connected block sends those values over the channel corresponding to the signal. To express such contingency, we label the transition defining the signal execution by "?<X 1 , . . . ,X n >" (rule R9 ). By construction, the values of variables X 1 , . . . , X n are available in the current store, when the signal executes.

(R8) {I0 } σ, ρ, µ -→ ρ , µ {when <X1 , . . . ,Xn> -> I0 } σ, ρ, µ X 1 ,...,Xn -------→i ρ , µ (R9) {I0 } σ, ρ, µ -→ ρ , µ {when ?<X1 , . . . ,Xn> -> I0 } σ, ρ, µ ? X 1 ,...,Xn --------→i ρ , µ (R10) {enable B0 } σ, ρ, µ B 0 --→i ρ, µ
Similarly, the semantics of the data signal "when <X 1 , . . . ,X n >" is prepared to send values on variables X 1 , . . . , X n to a block. The values of variables X 1 , . . . , X n are assumed to be assigned inside I 0 . The transition defining the signal execution is labelled by "<X 1 , . . . ,X n >" (rule R8 ).

An activation signal "enable B 0 " encodes the permission of a block to execute. The semantics of activation signals is defined by an axiom (rule R10 ). The execution of an activation signal yields a transition labelled by B 0 , i.e., the activation formal parameter corresponding to the block meant to be activated. The current store and memory remain unchanged.

Store construction at component invocation

This section is meant for future reference when writing down the transition rules of component invocation. We first present some auxiliary functions. Then, we present the way the global store, containing all global constants, is constructed. Finally, we present the way the current store and memory are updated at components invocation.

Auxiliary functions

We define a set of auxiliary functions.

Variable list Given a variable declaration list vars or an actual channel chan, function get_vars returns the ordered list of variable identifiers. For unconnected channels, the symbol denotes the empty list. By applying functions get_vars, get_types, and init, we have:

get_vars (C :nat := 3) = C get_vars (X1 ,X2 :nat := C + 1) = X1 , X2 get_types (C :nat := 3) = nat get_types (X1 ,X2 :nat := C + 1) = nat, nat init (X1 , X2 :nat := C + 1, [C ← 3]) = [X1 ← 4, X2 ← 4]
In the sequel, we will define and use functions on lists of actual parameters (non-terminal args in Table 3.4, page 36) and on actual channels (non-terminal chan in Table 3.9, page 51). We introduce a non-terminal acts to denote either args or chan, when such a distinction is unnecessary. Some functions concern either only constant, input, and receive parameters or only output and send parameters. We will write acts in as shorthand for constant, input, or receive actual parameters and vars in for the corresponding formal parameter list. Hence, acts in has one of the following forms:

-"arg 1 , . . . ,arg n ", where each parameter arg i is either a variable or an underscore.

-"<arg 1 , . . . ,arg n >", where parameters are either all variables, all underscores, or all wildcards.

Similarly, we will write acts out as shorthand for output and send actual parameters and vars out for the corresponding formal parameter list. Hence, acts out has one of the following forms:

-"arg 1 , . . . ,arg n ", where each parameter arg i has either the form "?X " or "?_".

-"?<arg 1 , . . . ,arg n >", where parameters are either all variables or all underscores.

Formal parameter assignment We define two functions assign and init_assign. Function assign copies the values of actual parameters into their respective formal parameters in the component definition. Only constant, input, and receive parameters are concerned. Actual parameters are assumed to be assigned values in a store ρ. Function assign returns a set of stores assigning to each formal parameter the evaluation of its corresponding actual parameter in ρ. When "any type" is used as actual parameter, the corresponding formal parameter is assigned an arbitrary value of type type. Because of this nondeterminism, there is no unique store. Note that the function is well-formed because operator ⊕ is defined on sets of stores (see page 57). 

assign (_, X , ρ) = {[]} assign (E, X , ρ) = {[X ← e] | var(E) ⊆ dom(ρ) ∧ {E} ρ →e e} assign (any type, X , ρ) = {[X ← e] | e ∈ T }
where function var returns the set of variables in an expression

Example 4.6. Here are some applications of function assign.

assign (_, W , [a ← 1, b ← 0]) = {[]} assign (a, X , [a ← 1, b ← 0]) = {[X ← 1]} assign (a+1, Y , [a ← 1, b ← 0]) = {[Y ← 2]} assign (any bool, Z , [a ← 1, b ← 0]) = {[Z ← f alse], [Z ← true]}
Function init_assign builds upon functions init and assign and is intended to prepare the store in which a component body will execute. It assigns values to formal parameters. First, to each formal parameter is assigned its default value in a store ρ, using function init. Then, the value of each formal parameter is updated with the value of its corresponding actual parameter in a store ρ , using function assign. According to function assign, the formal parameters having "_" as corresponding actual parameter are not updated.

Sometimes, input and receive actual parameters may be unavailable at invocation time, e.g., an environment triggered on an output signal. In such case, the function returns the empty store. 

init_assign ( _, a , X1 , X2 :nat := 0 , [], [a ← 3]) = init (X1 ,X2 :nat := 0 , []) ⊕ assign ( _, a , X1 , X2 , [a ← 3]) = [X1 ← 0, X2 ← 0] ⊕ [X2 ← 3] = [X1 ← 0, X2 ← 3]
Actual parameter update Function update allows the values of output and send formal parameters to be copied back into the actual parameters at the end of component invocation. Formal parameters are assumed to be assigned values in a store ρ.

Function update returns a store assigning to each actual parameter the evaluation of its corresponding formal parameter in store ρ.

Sometimes, output and send actual parameters may be unavailable at invocation time, e.g., an environment triggered on an input signal. In such case, the function returns the empty store. 

(?Y , X , ρ) = [Y ← ρ(X )] if X ∈ dom(ρ) [] otherwise update (?_, X , ρ) = [] Example 
:= 0 , Mem, [], []) = [X ← 0 ] static (X :nat := 0 , Mem, [], [Mem ← [X ← 1 ]) = [X ← 1 ]

Global store

Global constants can be used in the current module and its importing modules. Their values should be available in the stores in which components are invoked. For this purpose, a global store is constructed, assigning to each constant the value of its expression.

After binding analysis, global constants are assumed to be ordered according to their dependencies, cyclic dependencies being forbidden. Suppose X 1 , . . . , X n is the ordered set of global constants defined respectively with expressions E 1 , . . . , E n , such that:

var (E1 ) = ∅ (∀i ∈ 2..n) var (Ei) ⊆ {X1 , . . . , Xi-1 }
In such case, E 1 is a literal constant. The global store, written ρ glob , is constructed by assigning to each global constant X i the value of its expression E i in store ρ i-1 , as follows: The corresponding global store is constructed as follows:

ρ0 = [] ρ1 = [X1 ← 0] ρ2 = [X1 ← 0, X2 ← 1] ρ glob = [X1 ← 0, X2 ← 1]

Store and memory construction at component invocation

We are concerned with component invocations, regardless whether they are blocks, environments, or mediums. Hence, we will write C to denote a component and C → C to denote that C is an instance of C.

Consider the invocation of C → C, where σ is the stack of the caller, ρ and µ are the current store and memory. For actual parameter lists or channels in C and their corresponding formal parameter lists in C, we write: For conciseness, we assume that temporary and static variable lists are unified into one list for each kind of variables. We can then write vars v and vars sv for the list of temporary and static variables, respectively.

parameter
To write down the transition rules of C invocation, we define two functions:

-"body (args c , ++ Hence, the local store returned by function body can be defined as:

body (argsc, ++ k∈1..m actsin k , σ, ρ, µ) =ρ glob ⊕ ρc ⊕ ρin ⊕ ρsv ⊕ ρv
The body of C is executed in the local store and the current memory and terminates producing a store ρ ret and a memory µ ret . In this respect, the current store and memory are updated, using function return. In the sequel, we present applications of these computations on blocks and environments.

Blocks

For a concise presentation of the semantics of blocks, we consider blocks with no receive and send formal parameters. Receive (resp. send) formal parameters and their corresponding actual parameters are used in computations exactly as their input (resp. output) counterparts. We write I 0 for the body of a block B and consider the following aliasing and invocation of B:

alias B {argsc} as B B (actsin 1 , . . . , actsin m ,actsout 1 , . . . ,actsout n )
The semantics of such block invocation inside a component (subblock) and inside a system (highest-level blocks) can both be defined by rule R11 in Table 4.4. We illustrate the store and memory construction presented in Section 4.4.3 on block B_Edge. To this aim, we consider the aliasing and invocation of block B_Edge below (lines 13, 15) in the current store ρ and memory µ. Block B_Edge is invoked inside a system, meaning that σ = . Assume that: (i) ρ glob = [] and (ii) input Cmd_P1 takes value true in the first step, meaning that ρ(Cmd_P1 ) = true. The execution of B_Edge first step starts by constructing the following intermediates stores.

Blocks

ρc = [Rising_Mode ← true, Falling_Mode ← false] ρin = [Logic_Signal ← true] ρv = [] ρsv = [Pre_Signal ← false]
The sum of those stores, using function body, results in the following local store: The execution of B_Edge invocation terminates by producing the following store and memory.

return ( ?Edge_Cmd_P1 , B_Edge, ρret, µret) = ρ ⊕ [Edge_Cmd_P1 ← true] µ ⊕ [B_Edge ← [Pre_Signal ← true]]

Environments and mediums

For conciseness, we present only the semantics of environments. The semantics of mediums is defined in the same way as environments, except that input (resp. output) channels are replaced by receive (resp. send) channels and there are no activation parameters. The semantics of environments are defined in Table 4.5.

The execution of environments is guarded by signals. An environment is triggered only to execute a data signal, if an interaction on a channel occurs, or to execute an activation signal, constraining the activation of a block. If no interaction occurs, the environment never executes.

Rule R12 defines the semantics of an environment N when a connected block requests to interact on one input channel chan in i in chan in 1 , . . . , chan inm . Hence, contrarily to block semantics, only the actual parameters composing chan in i are assigned values in store ρ exec (premise P1 ). An execution path containing the signal associated to chan in i is selected by the body I 0 of N (premise P2 ). Such a signal is assumed to be both defined and reachable inside I 0 , according to GRL static semantics. Hence, label "?get_vars(vars i )" (premise P2 ), necessarily different from , indicates the signal 4.6. Environments and mediums (R12)

(P 1) i ∈ in 1 ..inm ρexec ∈ body (argsc, chan i , σ, ρ, µ) (P 2) {I 0 } σ.N , ρexec, µ ?get_vars(vars i ) -----------→ i ρret, µret (P 3) (ρ , µ ) = return ( , σ.N , ρ, ρret, µret) {N (chan in 1 , . . . ,chan inm ,chan out 1 , . . . ,chan outn ,B b 1 , . . . ,B bp )} σ, ρ, µ chan i ----→ i ρ , µ (R13) 
(P 1) i ∈ out 1 ..outn ρexec ∈ body (argsc, , σ, ρ, µ) Example 4.12. To illustrate the semantics of environments, consider the environment Disable below.

(P 2) {I 0 } σ.N , ρexec, µ get_vars(vars i ) ----------→ i ρret, µret (P 3) (ρ , µ ) = return (chan i , σ.N , ρ, ρret, µret) {N (chan in 1 , . . . ,chan inm ,chan out 1 , . . . ,chan outn ,B b 1 , . . . ,B bp )} σ, ρ, µ chan i ----→ i ρ , µ (R14) (P 1) i ∈ b 1 ..bp ρexec ∈ body (argsc, , σ, ρ, µ) (P 2) {I 0 } σ.N , ρexec, µ B i --→ i ρret, µret (P 3) (ρ , µ ) = return ( , σ.N , ρ, ρret, µret) {N (chan in 1 , . . . ,chan inm ,chan out 1 , . . . ,chan outn ,B b 1 , . . . ,B bp )} σ, ρ, µ B i --→ i ρ , µ
1 environment D i s a b l e {b : bool := true } ( block B) i s 2 i f not (b) then 3 enable B 4 end i f 5 end environment
Environment Disable can be used either to allow an arbitrary activation of a block B1 or to forever prohibit the activation of a block B2.

Let ρ and µ be the current store and memory and assume that ρ glob = []. The invocation of Disable with value false starts by constructing the following intermediates stores.

ρc = [b ← false] ρin = [] ρv = [] ρsv = []
The sum of those stores, using function body, results in the following local store:

body ( false , , , ρ, µ) = [b ← false]
The execution of the environment body terminates by producing the store [b ← false] and without updating the memory. The execution of Disable invocation terminates by producing the following store and memory.

return ( , Disable, ρ, [b ← false], µ) = (ρ ⊕ [b ← false], µ)
The derivation of transition rules defining Disable invocation is:

{ b } [b ← f alse] →e false    if not (b) then enable B end if    Disable, [b ← f alse], µ B -→i ρ ⊕ [b ← f alse], µ { Disable {false}(B1 ) } , ρ, µ B1 --→i ρ, µ
No derivation rule corresponds to the invocation of Disable with value true. Since signal "enable B" is never reachable (b=true), the environment never executes. Let ρ and µ be the current store and memory and assume that ρ glob = []. By applying functions body and return, we have:

body ( , , , ρ, µ) = [] return ( ?Cmd , Signal, ρ, ρ ⊕ [Cmd ← true], µret) = (ρ ⊕ [Cmd ← true], µ)

Systems

This section presents the semantics of systems. We first present some required sets and auxiliary functions. Then, we define the semantic rule of system execution. Finally, we discuss the semantic model of GRL with respect to related work.

Sets and auxiliary functions

Let S be a system. We write block_invoc, env_invoc, and med_invoc as shorthands for component invocations (see Table 3.9, page 51). Each component C in S is associated to a unique index. We write B i (resp. N i , M i ) for the name of the component whose invocation is block_invoc i (resp. env_invoc i , med_invoc i ). We write indices(S, block), indices(S, env), indices(S, med) for the set of indices of respectively blocks, environments, and mediums inside S.

Let mode be a partial function mapping actual parameters and channels to the set {in, out}.

mode (X0 ) = in mode (?X0 ) = out mode (_) = in mode (?_) = out mode (any type0 ) = in mode (<X0 , . . . ,Xn>)
= in mode (?<X0 , . . . ,Xn>)

= out mode (<_, . . . ,_>)

= in mode (?<_, . . . ,_>)

= out mode (any type0 , . . . ,any typen) = in Each channel used in S is associated to an index such that:

-Channels having the same non-empty set of variables are associated to the same index. In this case, we write mode (C , chan k ) for the mode of channel chan k in component C . For example, a channel <X 0 > of a block B i is associated to the same index as a channel ?<X 0 > of an environment N j . We also have "mode (B i , <X 0 >) = in" and "mode (N j , ?<X 0 >) = out". -Each other channel is associated to a unique index.

We write indices(C , chan) for the set of channel indices used in C invocation.

Example 4.14.

Consider system Main below. The table on the right-hand side summarises component and channel indexation. By applying function indices, we have:

indices (Main, block) = {1} indices (Main, env) = {2, 3} indices (Main, med) = {} indices (B_Edge, chan) = {1, 2} indices (Disable, chan) = {} indices (Signal, chan) = {1}
The execution of systems is guided by the execution of their active components, i.e., blocks. Let B i be a block such that i ∈ indices(S, block). The components connected to B i are identified by their indices. We define sets In, Out, Rec, and Snd containing the indices of components connected to respectively input, output, receive, and send channels of B i . Such sets are possibly empty; but if not empty, they are not necessarily singletons. Formally, they are defined as follows:

In (B i ) = {j ∈ indices(S, env) | ∃k, k ∈ (indices(B i , chan) ∩ indices(N j , chan)) ∧ mode(B i , chan k ) = in} Out (B i ) = {j ∈ indices(S, env) | ∃k, k ∈ (indices(B i , chan) ∩ indices(N j , chan)) ∧ mode(B i , chan k ) = out} Rec (B i ) = {j ∈ indices(S, med) | ∃k, k ∈ (indices(B i , chan) ∩ indices(M j , chan)) ∧ mode(B i , chan k ) = in} Snd (B i ) = {j ∈ indices(S, med) | ∃k, k ∈ (indices(B i , chan) ∩ indices(M j , chan)) ∧ mode(B i , chan k ) = out}
We also need to identify the environment constraining B i activation, if any. Let Act (B i ) be a set containing the index of such an environment. By applying function assign, we have:

assign_any (<X >, bool) = {[X ← false], [X ← true]}
To specify the labels of transitions, we define two functions channel and transition.

Function channel defines the labels of transition rules corresponding to component executions. Given a block B i , a component C j , and an element in {in, out}, function 4.7. Systems channel returns the channel of mode m in B i that is connected to C j . Note that GRL static semantics ensure that there is at most one such channel.

channel (B i , C j , m) = {chan k | k ∈ (indices(B i , chan) ∩ indices(C j , chan)) ∧ mode(B i , chan k ) = m}
Example 4.17.

Consider system Main defined in Example 4.14. By applying function channel, we have:

channel (B_Edge, Signal, in) = <X >
Function transition defines the label of transition rule corresponding to the system execution. The label is built upon the actual channels of blocks. 

Semantics of systems

The semantics of systems is given in Table 4.6. Rule R15 defines the execution of a block step together with its connected components.

Before the execution of a block B i , its activation should be granted and values should be assigned to all input and receive actual parameters. To this aim, the environment N j , where j ∈ Act (B i ), is executed in the empty store and in its own memory. This memory is extracted from the current memory µ, by using function mem (premise P1 ). It produces a store ρ A j and a memory µ A j . Store ρ A j is the empty store, since no output channel is involved in the environment execution.

Similarly, all environments and mediums whose indices are in In (B i ) ∪ Rec (B i ) are executed in the empty store and in their own memories (premises P2 and P3 ). A particular case is when an environment index is in In (B i ) ∩ Act (B i ), meaning that the environment not only constrains B i activation but also is connected to an input channel of B i . In such case, the environment memory is the one produced by its previous execution during the current step of B i , which is captured by the definition of µ I l (row (c)).

Hence, a local store ρ i , in which the block will execute, is constructed (row (b)). The store assigns to input and receive parameters of B i the values produced by the preceding

(R15) (P1) ∀j ∈ Act (B i ) {env_invoc j } , [], mem (µ, N j ) B i ---------------→ i ρ A j , µ A j (P2) ∀l ∈ In (B i ) {env_invoc l } , [], µ I l channel(B i , ,N l , in) ---------------→ i ρ I l , µ I l (P3) ∀k ∈ Rec (B i ) {med_invoc k } , [], mem (µ, M k ) channel(B i , M k , in) ---------------→ i ρ R k , µ R k (P4) {block_invoc i } , ρ i , mem (µ, B i ) ---------------→ i ρ i , µ i (P5) ∀m ∈ Out (B i ) {env_invocm} , ρ i , µ Om channel(B i , N m , out) ---------------→ i ρ Om , µ Om (P6) ∀n ∈ Snd (B i ) {med_invocn} , ρ i , µ Sn channel(B i , M n , out) ---------------→ i ρ Sn , µ Sn µ ----→ µ ⊕ j∈Act (B i ) µ A ⊕ l∈In (B i ) µ I ⊕ k∈Rec (B i ) µ R ⊕ m∈Out (B i ) µ O ⊕ n∈Snd (B i ) µ S ρany p∈Any (B i )
assign_any (argsp, types(varsp)) (a)

ρ i ρany ⊕ j∈Act (B i ) ρ A j ⊕ l∈In (B i ) ρ I ⊕ k∈Rec (B i ) ρ R (b) µ I l mem (µ, N l ) ⊕ j∈Act (B i ) mem (µ A j , N l ) (c) µ Om mem (µ, N m ) ⊕ j∈Act (B i ) mem (µ A j , N m ) ⊕ l∈In (B i ) mem (µ I l , N m ) (d) µ Sn mem (µ, M n ) ⊕ k∈Rec (B i ) mem (µ R k , M n ) (e) = B i (transition(chan 1 , ρ i ), . . . , transition(chanm, ρ i )) (f) [transition(chan 1 , ρ i ), . . . , transition(chan n , ρ i )]
Table 4.6: Sos rule of systems components. Part of those parameters are available in stores ρ R k (k ∈ Rec (B i )) and ρ I l (l ∈ In (B i )). For channels whose indices are in Any (B i ), a store ρ any is constructed, assigning arbitrary values to its variables (row (a)). The execution of block B i in store ρ i and its own memory, producing a store ρ i and a memory µ i (premise P4 ).

Last, all environments and mediums whose indices are in Out (B i )∪Snd (B i ) are executed in store ρ i and their own memories (premises P5 and P6, rows (d) and (e)). In particular, ρ Om = ρ i (∀m ∈ Out (B i )) and ρ Sn = ρ i (∀n ∈ Snd (B i )), because the values produced by B i execution are needed in component executions.

The execution of the system defines a transition updating the current memory µ with all the memories produced by the executed components. Such transition denotes a multiway synchronisation between a specific block and its connected environments and mediums. The transition label indicates which block is executing and which values the block channels have carried (row (f)). The whole system LTS is constructed by instantiating the semantic rule for any block. This leads to an interleaving of block executions.

Example 4.18.

Consider system Main defined in Example 4.14. See Examples 4.11, 4.12, and 4.13 for details about the execution of components B_Edge, Disable,

Systems

and Signal, respectively. The transition label is obtained by applying function transition, as follows:

transition (<X >, [X ← true, Y ← true]) = _ transition (?<Y >, [X ← true, Y ← true]) = Y = true
The transition rule defining the first execution of system Main in the empty memory is:

{ Disable (B_Edge) } , [], [] B_Edge ------→ i [], [] { Signal (?<X>) } , [], [] ?X ------→ i [X ← true], [] { B_Edge (<X>, ?<Y >) } , [X ← true], [] -----→ i X ← true, Y ← true , [B_Edge ← [Pre_Signal ← true]] [] B_Edge (_,Y =true) ---------------→ [B_Edge ← [Pre_Signal ← true]]
Remark 4.1. One might well aim to verify the behaviour of synchronous components before constructing the GALS system. The LTS corresponding to a block can be obtained by invoking the block inside a system with no other component. The following In particular, the internal state of block B_And is the empty memory. Thus, its LTS contains one state with several outgoing transitions. The number of the LTS transitions corresponds to the possible values taken by its two inputs, both of Boolean type. Block B_Edge defines one static variable of Boolean type. Thus, its LTS contains two states, each corresponding to a Boolean value.

Relation with existing work

We discuss the relation of GRL semantics to some existing work issued from the synchronous and asynchronous communities.

As regards synchronous semantics, the idea of associating one LTS transition to a synchronous component step is not new. It has been adopted by Esterel [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF], whose operational semantics are defined by means of LTSs. Transition labels in Esterel, like in GRL, are specified in terms of component inputs and outputs. Moreover, both GRL As regards asynchronous semantics, the dichotomy of GRL components into active (blocks) and passive (environments and mediums) deviates from the classical process algebraic view. Process algebra usually abstract from the composition of a system into a set of components. The only relevant information (i.e., visible on LTSs) is the different actions performed by components and their composition. In GRL, contrarily, the system composition plays a key role. Chapter 5

Translation from GRL into LNT

This chapter presents a syntax-directed translation from GRL into the process language LNT. We first give insights into the translation scheme. Then, for each GRL construct, we give an informal description, the formal translation functions, and some examples.

For an informal presentation of the translation, the reader can omit the formal definition of translation functions. Afterwards, we briefly present the GRL2LNT translator implementing the proposed translation. Finally, we compare the LTSs generated by the translation to the LTSs of GRL semantics and to related work.

Overview of the translation

We translate a GALS-specific language into a full-fledged process language for asynchronous processes. GRL types, expressions, and statements are inspired by LNT. Their translation is straightforward and is presented in Section 5.2. Global constants are translated to LNT functions. Their translation is presented in Section 5.3.

In GRL, interaction between (synchronous) subblocks inside components and between (asynchronous) components inside systems occurs through common variables. In LNT, however, communication between asynchronous processes occurs through gates. Moreover, GRL actual parameters and channels can be unconnected whereas no similar notion is present in LNT. The translation of variable declaration as well as actual parameters and channels is given in Sections 5.4.2, 5.4.3, and 5.4.4.

GRL blocks are translated to LNT functions, whose execution is deterministic and atomic. We propose an encoding of the mutable internal state in LNT (Section 5.4.5), where no such notion exists. For GRL subblocks, the corresponding LNT functions are encapsulated in other LNT functions, which implement one block step. For GRL highest-level blocks, the corresponding LNT functions are encapsulated in LNT wrapper processes, which implement the (implicit) synchronous loop of GRL blocks. Each wrapper process interacts with other asynchronous components using gate communica-tions, producing a transition sequence in the resulting LTS. To preserve the atomicity of those transition sequences, we propose a locking mechanism. The translation of blocks is presented in Section 5.5.

GRL environments and mediums are naturally translated to LNT processes. The translation of signals involves gate communications. In particular, the translation of activation signals cooperates with the locking mechanism in constraining the execution of wrapper processes. We present the translation of environments and mediums in Section 5.6.

GRL systems are translated to processes, called root processes. Inside a root process, the processes corresponding to GRL highest-level blocks, environments, and mediums are composed asynchronously. The translation of GRL systems is presented in Section 5.7.

Translation of variables, types, expressions, and statements

Each GRL variable X is translated to an LNT variable with the same name X The number of bits on which LNT numerical types Nat and Int are represented is set by default to 8. To enable the description of GRL numerical types represented on 16 and 32 bits, we set indeed such a number to 32, using the following pragmas: !nat_bits 32 !int_bits 32 Types are defined in one LNT module, named "GRL_V1 ", which is systematically imported by each generated LNT module. There is a special enumerated type, named block, introduced by the translation. Type block contains the names of all highest-level

Translation of global constants

blocks encapsulated inside the root process under translation. It will be used to translate activation parameters.

We write t2t and e2v for the translation function of GRL types and expressions to their LNT counterpart. We write i2s for the translation function of GRL statements to LNT statements and behaviours. Excerpts of function i2s will be given when translating subblock invocation (Section 5.5.2) and signals (Section 5.6.1).

Translation of global constants

We consider the following global constants.

const X 1 : type 1 := E 1 , . . . ,X n : type n := E n
The translation function, named c2f, of global constants is given in 

Translation of variable declarations, parameters, and internal states

This section is structured as follows. We first introduce some sets and functions that will be used in the translation functions. Afterwards, we present the translation of GRL variable declarations, actual parameters, and actual channels into LNT constructs. Finally, we present the translation of the internal state notion.

Preliminaries

We use the following notations. We write C → C to denote that C is an instance of component C, as in Chapter 4. We write C ⊂ C 1 to denote that C is a component instance used inside component C 1 . We write sub(C) for the set of subblocks

B k such that B k ⊂ C.
Let C be a component instance. C may be invoked either with actual parameter lists "args 1 , ..., args n " (inside another component) or with actual channels "chan 1 , ..., chan n " (inside a system). Each actual parameter (resp. actual channel) in C is associated to a unique index; and its corresponding formal parameter (resp. formal channel) is associated to the same index. We write indices(C , arg) (resp. indices(C , chan), similarly to Section 4.7.1) for the set of indices of actual parameters in C invocation, namely {1, ..., n}, where n is the number of parameters (resp. channels) in C .

Let connexion be a partial function mapping actual parameters and channels to the set {connected, unconnected, wildcard}. We have the following sets, where the last set stipulates that B is invoked inside a system.

indices(B , arg, in, unconnected) = {2} indices(B , arg, out, unconnected) = {4} indices(B , chan, connected) = {1, 3}
We will also use the following functions: By applying functions type, default, and variable, we have:

type (B , 1) = nat default (B, 1) = 0 type (B , 2) = bool variable (B , 2) = B _Y

Translation of variable declarations and activation parameters

Variable declarations may occur in GRL programs either as formal parameters, static variables, or temporary variables. Depending on its usage in the GRL program, a variable declaration list will be translated to several LNT constructs. We also consider activation parameters, which are untyped and do not take default values.

Unlike GRL, LNT separates variable declaration and assignment. Thus, GRL variable declarations are first translated to LNT variable declarations. In a second step, default values of parameters (resp. initialisation values of local variables) are assigned to the declared variables.

Additionnally, we will translate GRL variable declarations occurring as formal parameters in highest-level components to LNT gates and channels, in order to enable asynchronous communication in LNT. Translation into gate declaration Let dl2gate_dl be a function translating a GRL variable declaration list into gate declaration. The declared gates are typed by channels, which are assumed to be declared in the current LNT module. Channel names build upon the GRL types of formal parameters, corresponding to GRL actual channels. The construction of LNT channels will be presented in Section 5.7. where functions get_vars and get_types (see Section 4.4.1, page 64) return respectively the ordered list of variable identifiers and type identifiers in the variable declaration vars.

Translation to variable declarations

Example 5.5. Consider the following GRL code excerpt.

1 block ( i n X: nat := 0 , out Y1 , Y2 : bool ) i s 2 . . .

end block

By applying function dl2gate_dl, we have:

dl2gate_dl (in X : nat := 0 ) = Gate_X : Chan_Nat dl2gate_dl (out Y1 , Y2 : bool) = Gate_Y1 _Y2 : Chan_Bool_Bool

Translation of actual parameters

GRL actual parameters serve to describe synchronous interactions between subblocks. They will be translated to LNT actual parameters. For unconnected output parameters, additional "dummy" variables should be declared.

Translation into variable declaration

Let unconnected2var be a function declaring LNT variables for GRL unconnected output parameters in a component instance C . These parameters are identified by the set indices(C , arg, out, unconnected). For each parameter, an LNT variable is created. The variable name is built using function variable. The variable type is fetched in the component definition, using function type. Translation into actual parameters Let arg2ap be a function translating a GRL actual parameter to an LNT one. The translation of parameters of the form "E 0 " and "?X 0 " is straightforward. For each parameter of the form "_", the default value of the corresponding formal parameter is fetched in the block definition, using function default. For each parameter of the form "?_", a variable is assumed to be declared earlier in the caller body, using function unconnected2var. Similarly, for parameters of the form "any type", a variable is assumed to be declared and assigned a value earlier in the caller body.

arg2ap (C , arg1 , . . . , argn) = arg2ap (C , arg1 , 1), . . . , arg2ap (C , argn, n) arg2ap (C , E0 , k) = e2v (E0 ) arg2ap (C , ?X0 , k) = ?e2v (X0 ) arg2ap (C , _, k) = default (C, k) where C → C arg2ap (C , ?_, k) = ?variable (C , k) arg2ap (C , any type, k) = variable (C , k)
Example 5.6. Consider the following GRL code excerpt. By applying function unconnected2var, we have:

unconnected2var (Sub1 ) = Sub1 _Y : Bool arg2ap (Sub1 , a, 1 ) = a arg2ap (Sub1 , ?_, 2 ) = ?Sub1 _Y arg2ap (Sub2 , _, 1 ) = 0 arg2ap (Sub2 , ?b, 2 ) = ?b

Translation of actual channels

GRL actual channels serve to describe asynchronous communication between highestlevel blocks. They will be translated to LNT gate declaration, thus enabling commu-nication between LNT asynchronous processes. Sometimes, we do not need to declare gates for all the actual channels of GRL components, but only for connected ones. Additionally, GRL actual channels will be translated to variable declarations, to describe the data exchanged on gates. Finally, they will translated to behaviours, including gate instantiations.

Translation into variable declaration Let chan2var be a function translating a GRL actual parameter or channel of component instance C to an LNT declaration list. The function is defined for all actual parameters, except parameters of the form "_", whose indices are in the set indices(C , arg, in, unconnected). For each GRL actual parameter, the type is fetched in the component definition C, which serves to declare the corresponding LNT variable. The LNT variable has the same name as the GRL one, if any; otherwise, a variable name is created. 

= ++ k / ∈ indices(C , arg, in, unconnected) ∧ k ∈ 1..n chan2var (C , arg k , k) chan2var (C , X , k) = X :t2t (type (C , k)) chan2var (C , ?X , k) = X :t2t (type (C , k)) chan2var (C , ?_, k) = variable (C , k):t2t (type (C , k)) chan2var (C , any type, k) = variable (C , k):t2t (type)
Example 5.7. Consider the following GRL code excerpt. By applying function chan2var, we have: 

chan2var (Sub1 , a, 1 ) = a: Nat8 chan2var (Sub1 , ?_, 2 ) = Sub1 _Y : Bool chan2var (Sub2 , _, 1 ) = undefined chan2var (Sub2 , ?b, 2 ) = b: Bool chan2var (Sub3 , any nat, 1 ) = Sub3 _X : Nat8 chan2var (Sub3 , ?c, 2 ) = c: Bool
chan2gate_dl (Sub1 , a) = Gate_a: Chan_Nat8 chan2gate_dl (Sub1 , ?_) = Gate_Sub1 _Y : Chan_Bool chan2gate_dl (Sub2 , _) = Gate_Sub2 _X : Chan_Nat8 chan2gate_dl (Sub2 , ?b) = Gate_b: Chan_Bool chan2gate_dl (Sub3 , any nat) = Gate_Sub3 _X : Chan_Nat8 chan2gate_dl (Sub3 , ?c) = Gate_c: Chan_Bool
where the LNT channels Chan_Nat8 and Chan_Bool are defined as follows:

channel Chan_Nat8 is (Nat8 ) end channel channel Chan_Bool is (Bool) end channel
Let connected2gate and connected2gate_dl be the variants of functions chan2gate and chan2gate_dl for only connected channels. These channels are identified by the set indices(C , chan, connected).

connected2gate (C ) = ++ k∈indices(C ,chan,connected) chan2gate (C , chan k ) connected2gate_dl (C ) = ++ k∈indices(C ,chan,connected) chan2gate_dl (C , chan k )
where vars k is the formal parameter list corresponding to chan k .

Example 5.9.

Consider the GRL code excerpt given in Example 5.7. By applying connected2gate_dl, we have:

connected2gate_dl (Sub1 ) = Gate_a: Chan_Nat8 connected2gate_dl (Sub2 , ?b) = Gate_b: Chan_Bool connected2gate_dl (Sub3 , ?c) = Gate_c: Chan_Bool
Translation into behaviour Let chan2b be a function translating a GRL actual channel into an LNT behaviour. For each GRL connected channel <X 1 , . . . ,X n > or ?<X 1 , . . . ,X n >, an LNT gate is assumed to be declared in the caller body, using function chan2gate_dl; and variables X 1 , . . . , X n are assumed to be declared using function chan2var. In such case, function chan2b returns an LNT gate instantiation using variables X 1 , . . . , X n . For each wildcard channel, variables are assumed to be declared in the caller body, using function chan2var. In such case, function chan2b assigns a nondeterministically chosen value to each variable. For unconnected channels, the function returns the null statement. 

chan2b (Sub1 , a) = Gate_a (a) chan2b (Sub1 , ?_) = null chan2b (Sub2 , _) = null chan2b (Sub2 , ?b) = Gate_b (b) chan2b (Sub3 , any nat) = Sub3 _X := any Nat8 chan2b (Sub3 , ?c) = Gate_c (c)

Construction of the internal state

To illustrate how the internal state of GRL components is built, we consider the following running example: The function will be used only for subblocks, since at highest-level components, all subblock variables have already been renamed, transitively.

-Function get_state builds the internal state of a component C upon the internal states of its subblocks. To this aim, a recursive descent is done through the component subblocks and their static variable lists are synthesised in a bottom-up In the sequel, we present the translation functions from GRL behavioural constructs to LNT ones. For a concise presentation of functions, we will consider that each component has one formal parameter of each mode accepted by its syntax, one static (resp. temporary) variable list, and one subblock. The generalisation into 0 or n (n > 0) parameter lists, variable lists, and subblocks is straightforward.

Translation of blocks

The section is organised as follows. We start by presenting the translation of GRL block definitions into LNT functions. Afterwards, we give the translation of subblocks and highest-level blocks.

Block definition

The translation function, named b2f, from block definitions to LNT functions is given in Table 5.2. It uses functions dl2var and dl2ap (see Section 5.4.2), function get_state (see Section 5.4.5), and function i2s.

Blocks defined by the user They are translated to several LNT functions (see (a) in Table 5.2):

-an LNT function having the same name as the block, called definition function.

-and an LNT function for each subblock aliasing inside the block. This is done using function a2f, whose definition will be given in Section 5.5.2.

The translation of the block body is straightforward since GRL deterministic statements are inspired by LNT ones. Hence, the LNT statement implements one block step, computing outputs from inputs.

Each GRL constant, input, and receive parameter is translated to an LNT input parameter, using function dl2var. Similarly, each GRL output and send parameter is translated to an LNT output parameter. Default values of GRL formal parameters do not appear in 

Chapter 5. Translation from GRL into LNT b2f                   block B
a2f (B0 [args0 ] as B 0 , B) (a) b2f      block B {varsc} (in varsi, out varso) is !c string end block      = function B (in dl2var (varsc), in dl2var (varsi), out dl2var (varso)) is !implementedby "string%i" !external null end function (b) b2f      block B {varsc} (in varsi, out varso) is !lnt string end block      = ( * LN T f ile * ) function B (in dl2var (varsc), in dl2var (varsi), out dl2var (varso)) is string (dl2ap (varsc, in), dl2ap (varsi, in), dl2ap (varso, out)) end function (c)

Subblock aliasing and invocation

We consider the translation of the following subblock aliasing and invocation, where args i and args o denote actual input and output parameter lists, respectively:

alias B {argsc} as B B (argsi, argso)
We write vars i and vars o for the formal parameter lists corresponding to args i and args o in the definition of block B.

The translation functions of subblock aliasing and invocation are given in A subblock invocation is translated to a call to the LNT aliasing function5 , using function i2s (see Table 5.3). Unconnected output parameters are translated to auxiliary variables, which are declared, using function unconnected2var, and passed to the function call, using function dl2ap. See Section 5.4.3 for details about the translation of actual parameters.

Example 5.15.

The left-hand GRL block invocations below translate to the righthand LNT code. In particular, subblock Foot is invoked at line 1 without being aliased. Consequently, an LNT function named Foot_165 is generated by the translation. The synchronous assumptions are granted for free in the translation of a single GRL block. LNT functions are deterministic and execute atomically without producing transitions. This coincides with the assumption that computations and data processing are instantaneous in synchronous components.

Highest-level block aliasing and invocation

We consider the translation of the following highest-level block aliasing and invocation, where chan i , chan o , chan r , chan s denote respectively actual input, output, receive and send channels:

alias B {argsc} as B B (chani, chano)[chanr , chans]
The translation functions, given in Table 5 

Highest-level block aliasing

The aliasing of B is translated to an LNT wrapper process, using the translation function b2p. The process encapsulates the definition function named B to interface it with other processes. It receives values from processes, invokes function B with those values, and emits the values returned by the function to processes. This requires to translate GRL actual channels into both:

-gate communication to enable value exchange with other processes. Gates build upon the GRL actual channels of blocks, available at invocation time, and not upon formal parameters as for subblocks. This enables to translate actual channels depending on their form, using function connected2gate_dl. Since GRL unconnected and wildcard channels are unused in communications, the code is optimised by not generating useless transitions. Additional gates Start and Finish are declared, the usage of which will be given later.

- This way, gate Start starts the gate communication sequence in process B by acquiring the lock and gate Finish finishes it by releasing the lock, without interleaving with gate communications of other processes in between. More details about synchronisations between LNT processes will be given in Section 5.7.

Example 5.16. Consider the aliasing of block Foot in the left-hand side of the code below. Since the translation of block aliasing relies also on the block invocation, we present the invocation of block Foot. The translation generates the LNT process in the right-hand side. 

Highest-level block invocation

Finally, each highest-level block invocation is translated to the invocation of the corresponding wrapper process. This is done by using function b2b (see Table 5.4).

Example 5.19. The following GRL block invocations translate to the following LNT process invocations.

1 --GRL code 2 Dummy ( I ) 3 Large ( I , O) 4 Large (_, O) 1 --LNT code 2 S1_Dummy [ Gate_I , Start , F i n i s h ] 3 S2_Large [ Gate_I , Gate_O , Start , F i n i s h ] 4 S3_Large [ Gate_O , Start , F i n i s h ]

Translation of environments and mediums

This section is organised as follows. We first present the translation of signals. Then, we present the translation of environments and mediums.

Signals

Signals are translated using function i2s as given in The reception data signal "when ?<X 0 , . . . ,X n > -> I 0 " is translated to a gate waiting for value reception on variables X 0 , . . . , X n , followed by behaviour i2s(I 0 ). The emission data signal "when <X 0 , . . . ,X n > -> I 0 " is translated to behaviour i2s(I 0 ) followed by a gate emitting values on variables X 0 , . . . , X n .

Since GRL activation signals aim to constrain highest-level block activation, their translation should exploit gate Start, introduced by the locking mechanism. Hence, an activation signal "enable B 0 " is translated to a gate communication "Start (B 0 )". This translation enables three-party synchronisation on gate Start between:

1. the wrapper process named B 0 2. process Mutex 3. the process containing "Start (B 0 )" Therefore, a process of a block can acquire the Mutex only if (i) the Mutex is acquired by no other process and (ii) a process corresponding to a GRL environment proposes a synchronisation on gate Start with the block name. Since synchronisations in LNT are blocking, process B 0 will wait for other processes to be ready on gate Start. If the gate is unreachable in some process, then process B 0 will not execute, which is in accordance with GRL semantics.

Environments

The translation functions of environment definition, aliasing, and invocation are given in Table 5.6. They use functions dl2var, dl2s, dl2ap (see Section 5.4.2), functions chan2var, arg2ap, chan2gate, dl2gate_dl, chan2b (see Section 5.4.3), and functions build_state and get_state (see Section 5.4.5).

Environment definition An environment is translated to an LNT process, called definition process, using function n2p. Because GRL environments support nondeter-

n2p                 environment N {varsc} (in varsi, out varso, block blocks) is alias B0 {args c } as B 0 static var varssv var varsv I end environment                 = a2f (alias B0 {arg c } as B 0 )
process N [dl2gate_dl(varsi) ministic behaviours and signals, their definition could not be described by LNT functions, as for blocks.

Each GRL constant parameter is translated to an LNT input parameter, using function dl2var. Each GRL input and output channel is translated to an LNT typed gate, using function dl2gate. Each GRL activation parameter is translated to an LNT input parameter of type block, using function dl2var. When the GRL environment defines activation parameters, the corresponding LNT process should also declare gate Start. The internal state is translated similarly to blocks.

Example 5.20.

The following GRL environments (left-hand side) translate to the following LNT processes (right-hand side). 

Environment aliasing and invocation

We consider the translation of the following environment aliasing and invocation, where chan i , chan o , args b denote respectively actual input channel, output channel, and activation parameters:

alias N {argsc} as N N (chani, chano, args b )
Environment aliasing is translated to an LNT wrapper process, using function a2p (see Table 5.6). The wrapper process N encapsulates the definition process named N , similarly to the translation of highest-level blocks. It defines the same set of gates as N , but no formal parameters. Contrarily to the translation of blocks, gates build upon the formal channels of the GRL environment. This is required to call the definition process with appropriate number of actual gates. The execution of the process starts by defining and initialising state variables. Then, it invokes process N inside an infinite loop with:

-input parameters corresponding to GRL actual constant parameters, using function arg2ap -input parameters corresponding to GRL actual activation parameters, using function dl2ap in out parameters corresponding to the internal state of N , using function dl2ap

Example 5.21.

Consider the following aliasing and invocation of environments Default and Disable inside a system S4 . The LNT wrapper processes corresponding to those environments are the following. 

Mediums

Similarly to environments, each medium definition is translated to an LNT definition process, using a function m2p. Each medium aliasing is translated to a wrapper process, encapsulating the definition process, using function a2p (see Table 5.6). Each medium invocation is translated to a call to the wrapper process, using a function m2b. Functions m2p and m2b are identical to functions n2p and n2b, except that input (resp. output) parameters are replaced by receive (resp. send) parameters and translation of activation parameters is omitted.

Translation of systems

This sections presents the translation of systems. We first present some required sets and auxiliary functions. Then, we define the translation function of systems.

Sets and auxiliary functions

Let S be a system. As in Section ??, all the system components are assumed to be indexed such that each component C ⊂ S is associated to a unique index. We write block_invoc, env_invoc, and med_invoc (resp. block_alias, env_alias, and med_alias) as shorthands for component invocation (resp. aliasing) inside S. We write B j (resp. N j , M j ) for the component instance whose aliasing is block_alias j and invocation is block_invoc j (resp. env_alias j and env_invoc j , med_alias j and med_invoc j ).

We write indices(S, block), indices(S, env), indices(S, med) for the sets of indices of respectively blocks, environments, and mediums, inside S. We write indices(S, activ) for the set of indices of blocks whose activation is constrained by environments; thus, we have the invariant indices(S, activ) ⊆ indices(S, block).

Each channel used inside S is associated to a unique index. We write indices(C , chan) for the set of indices of channels used inside C invocation.

We define the following sets on channels:

-The set indices(S, unconnected) contains the indices of unconnected channels of environments and mediums, respectively6 .

indices(S, unconnected) = k∈indices(S,env)∪indices(S,med) 

indices(C k , unconnected) indices(C k , unconnected) = {j ∈ indices(C k , chan) | connexion(chanj) = unconnected}
indices(S, C k , unlinked) = {j ∈ indices(C k , chan) | connexion(chanj) = connected ∧ j / ∈ indices(S, linked)}
Additionally, we write indices(S, visible) for the set of channels in S whose variables are visible from the outside7 .

Translation function

The translation function, named s2p, of systems is given in Table 5.7. It uses functions a2f (see Table 5.3), a2p (see Table 5.6), b2b (see Table 5.4), n2p (see Table 5.6), m2b, chan2gate_dl and connected2gate_dl (see Section 5.4.4). A GRL system is translated to:

-the enumerated type Block, introduced previously.

-wrapper processes corresponding to blocks, environments, and mediums. These processes will be called block-, environment-, and medium processes, hereafter. -additional processes generated by the translation, which are process Mutex, introduced previously, and a process named Activation. -a root process, encapsulating all the aforementioned processes.

Gates Synchronisation between the encapsulated processes takes place on gates that are declared inside the root process. LNT gates build upon the GRL actual channels used in component invocations, rather than on variable declaration lists of the system. This is because variables are declared individually but grouped to form actual channels only at invocation time.

A gate is either visible or hidden. Visible gates are declared using function visible (see (a) in Table 5.7) and correspond to:

-GRL channels of blocks, environments, and mediums whose variables are declared as formal parameters in the GRL system -gate Start to visualise the activation policy of highest-level blocks Hidden gates are declared using function hidden (see (b) in Table 5.7) and correspond to:

-GRL channels whose variables are declared as temporary variables in the GRL system -gates corresponding to unconnected channels of environments and mediums -gate Finish since it is used only to release the Mutex and contains no information about block execution Parallel composition Inside the root process, wrapper processes corresponding to GRL components are composed using the parallel composition operator par. Block processes are composed in pure interleaving. This way, they cannot synchronise with each other, even on their common gates Start and Finish. Here is an excerpt of the translation function: Finally, all aforementioned parallel compositions are encapsulated inside a main parallel composition. The synchronisation set, defined by function synch, contains:

-Gate Start to enable synchronisations between: environment processes, block processes, and process Mutex. -Gates corresponding to GRL channels that are common to blocks and environments/mediums. These are gates whose indices are in indices(S, linked). -Gates corresponding to GRL channels of environments and mediums that are either unconnected or occur in exactly one environment or medium process. These are gates whose indices are in indices(S, unconnected) ∪ indices(S, unlinked). By putting these gates in the synchronisation set, the respective processes will wait infinitely for communication. As a result, the execution paths guarded by the gates are unfeasible, which complies with the semantics of GRL. Note however that the translation causes no blocking situations. Because each execution path of environment and medium processes contains at most one gate, the infinite waiting on a gate has no impact on other gates. Note also that while such gates are declared and used, no additional transition in the corresponding LTS is generated.

Here is an excerpt of the translation function, showing the main parallel composition:

par synch(S) in -main parallel composition par Start, Finish in -purely interleaved block processes with the locking mechanism ... end par || par -purely interleaved environment and medium processes ...

end par end par

Still, processes corresponding to blocks whose activation is not constrained cannot execute, since gate Start occurs in the synchronisation set of the main parallel composition. Such processes will block, waiting infinitely to synchronise on gate Start with an environment process. To prevent such undesirable situations, we introduce an additional process, named Activation, in parallel with processes corresponding to environments and mediums. Process Activation proposes permanently synchronisations on gate Start for blocks whose activation is not constrained. This is done by function activate (see (c) in Table 5.7). The translation algorithm does not introduce spurious deadlocks. As regards separate processes, medium and environment (without activation constraints) processes are by construction deadlock-free, and so are processes Activation and Mutex. In block processes, each synchronisation on gate Start is eventually followed by a synchronisation on gate Finish; all synchronisations in between are value-exchange communications with medium and environment processes, which always accept to communicate. As regards deadlocks produced by blocking communication, all communications on gates occurring in the synchronisation set of root processes and involving several processes are feasible. Still, the only source of deadlocks is unreachable Start gates in environment processes. These are equivalent to GRL deadlocks.

chan2gate_dl(M j ) (b) activate (B 0 , . . . , B n ) = select Start (B 0 ) []...[] Start (B n ) end select (c)                            system S (vars 1 , . . . , varsm) is block_alias 1 , . . . ,
                           = type Block is (B 1 , . . . ,

Tool support

Our translation algorithm is implemented in a tool named GRL2LNT, developed mainly by Éric Léo, a software engineer from 2012 to 2016 in the Convecs project, in which this thesis has taken place. GRL2LNT is developed by using the Syntax/Traian Lotos NT technology for compiler construction [START_REF] Garavel | Compiler Construction using LOTOS NT[END_REF]. It consists of about 30,000 lines of code and translates GRL specifications into LNT. A second tool named GRL.OPEN has been developed. GRL.OPEN encapsulates GRL2LNT and calls LNT.OPEN, thus connecting GRL to the on-the-fly verification tools of CADP.

GRL2LNT and GRL.OPEN are validated on more than 120 GRL specifications, corresponding to about 7,000 lines of GRL, which generates 18,000 lines of LNT. The increase in the number of generated lines is mainly caused by the translation of GRL constructs into several LNT constructs. This shows that GRL is closer to the GALS user's view, compared to LNT.

A part of the benchmark is dedicated to unit testing of GRL constructs. At least two examples are written for each GRL syntactic and static semantic rule. The first example violates the rule to check that GRL2LNT captures the error. The second example, which is a corrected version of the first one, checks that no error is raised by GRL2LNT. Another part of the benchmark consists of more elaborated examples covering different aspects of the language. First, the generated LNT programs are analysed manually to check their conformance with the translation algorithm. Then, the LTSs generated by using CADP, are checked either by visual checking (for small LTSs) or by interactive simulation and model checking (for large LTSs). Our industrial partner generates GRL code automatically from their synchronous programming software, and check the resulting LTSs, which is another validation form for the whole toolchain. Moreover, for each GRL specification, a set of correct-by-construction properties can be verified using model checking. Examples are:

-the atomicity of block steps -the occurrence of inputs before outputs in each step -the eventual release of the lock after being acquired -the absence of transitions corresponding to unconnected channels

LTSs of the translation vs. LTSs of GRL semantics

We address the relationship between the LTSs of GRL semantics (Chapter 4) and the LTSs of root processes generated by the translation (Section 5.7). We note "LTS GRL " and "LTS LNT ", respectively, those LTSs.

For a transition µ 0

B (ch 1 ,...,chm)[ch 1 ,...,ch n ]
----------------→ µ 1 in LTS GRL , our translation generates the following LNT transition sequence:

S0 Sm+n+2 Start !B ↓ ↑ Finish S1 G(ch 1 ) ----→ S2 → ... → Sm G(chm ) ----→ Sm+1 G(ch 1 ) ----→ Sm+2 → ... → Sm+n G(ch n ) ----→Sm+n+1
where G is a label transformation function defined as follows:

G (X 1 = e 1 , . . . , X p = e p ) = Gate_X 1 . . . _X p ! e 1 ! ... ! e p G (_, . . . , _) = i
The expansion caused by the translation is linear in the number of transitions, owing to the locking mechanism. In general, consider a GRL system S composed of n blocks B 1 , . . . , B n having m 1 , . . . , m n channels, respectively. We assume that B 1 , . . . , B n have respectively p 1 , . . . , p n transitions in LTS GRL . The table below summarises the number of transitions in LTS GRL and LTS LNT . Note that the number of transitions in LTS GRL is independent from the number of channels in blocks, contrarily to LTS LNT .

LTS LTS

GRL LTS LNT number of transitions n i=1 p i n i=1 (2 + m i × p i )
LTS GRL can be recovered from LTS LNT . Because the transformation from LTS GRL to LTS LNT is bijective, there is a one-to-one correspondence between GRL transitions and LNT transition sequences. The labels of LTS GRL transitions could be reconstructed from those of the corresponding LNT transition sequences in LTS LNT , by using function G -1 .

Comparison with related work

Then, in each transition sequence in LTS LNT , one transition can be renamed into the reconstructed label while hiding all other transitions. Finally, by applying a compression (e.g., τ -compression and τ -confluence) to remove hidden transitions, we obtain LTS GRL . This algorithm is implemented in GRL.OPEN, by using an option named merge.

Comparison with related work

We compare our encoding of GALS systems in LNT to the earlier work proposed in [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF], which also use LNT. Similarly to [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF], we encode synchronous components in LNT functions, which we encapsulate inside processes. However, our encoding outperforms [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF] in several aspects:

-Our approach is more general since is it not confined to Mealy machines to describe synchronous components. Not all compilers of synchronous languages are able to synthesise Mealy machines, in which case automatic translators should be developed, as argued by the authors in [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF]. -Our approach is more modular since it allows a wrapper process to define several reception and emission gates, through which the process could interact with several processes. In [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF], a wrapper process defines exactly one reception and exactly one emission gates; this limits the modularity of the approach. -Our approach leads to smaller LTS since the locking mechanism ensures the atomicity of synchronous components. This impacts the size of the corresponding LTS, as will be explained below.

We consider a GALS system composed of two synchronous components. Each component i (i ∈ 1..2) is represented by an LNT process with one input gate INi, one output gate OUTi, and no internal state. Gates are without value-exchange, for conciseness. In such a system, the only difference between our approach and [GT09, Thi11] is the locking mechanism. Figure 5.1 gives the LTS LNT of the GALS system and the LTS (noted LTS GT ) obtained by applying the approach [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF]. It shows that the locking mechanism removes sequences in which the input reading of some component i is followed by the input reading of another component j (j = i) before the output writing of component j. In our opinion, such situations are irrelevant for GALS systems; even in [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF][START_REF] Thivolle | Modern languages for modeling and verifying asynchronous systems[END_REF], removing such sequences seems to have no effect on the truth values of temporal logic formulas.

Furthermore, we increase the number of the concurrent synchonous components in the GALS system. Table 5.8 shows how the number of transitions in LTS GT grows exponentially with the number of components while the number of transitions in LTS LNT grows linearly. 

Conclusion

In this chapter, we have proposed a translation from GRL to LNT. However, the principles of our translation would be transferable to other process algebras as well, provided they allow type definitions, function definitions with multiple output parameters, and are equipped with an n-ary parallel composition operator enabling data exchange.

Although both GRL and LNT have formal semantics, we have not proven formally the correctness of the translation. This would be a long task due to the size of GRL, which is far from being a toy language. Nonetheless, we gave hints to the correction of the translation. These hints have been complemented by tests using the GRL and CADP tools.

Chapter 6

The muGRL Language for GALS Property Specification

Temporal logics are tailored to capture properties of concurrent systems, but they require expertise. For example, a property for the car park is: whenever a car leaves, the green light eventually turns on. Its formulation in MCL would be: Although the property is simple, its formulation is not easy to read and understand. This chapter proposes muGRL, a property specification language tailored to capture properties of GALS systems. muGRL is based on a system of patterns [START_REF] Matthew | Property specification patterns for finite-state verification[END_REF][START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF].

Patterns are high-level and parameterisable properties, aiming at reducing the complexity of using temporal logics. The semantics of muGRL are defined by a translation into MCL. The chapter is structured as follows. We first provide an overview of mu-GRL. Then, we present the frequently encountered properties in the scope of concurrent and GALS systems. In particular, we propose a definition of deadlocks, livelocks, and instability for GALS systems, as well as some discrete real-time properties.

Overview of muGRL

The language syntax is presented in Tables 6.1 (page 120) to 6.4 (page 122). The generic terminal symbols and non-terminal symbols are summarised in the table below. Action formulas enable action-based properties that involve data values to be specified. Regular formulas build upon action formulas and enable complex assertions over action sequences to be specified. Property patterns build upon regular formulas and enable both LTS states to be specified and LTS branching structure to be explored. Action formulas, regular formulas, and property patterns are interpreted over LTS LNT (see Section 5.9, page 114), as shown by the flow depicted in Figure 6.1. In particular, the GRL2LNT tool is enhanced with an option "-relabel" which enables to rename actions of the form "Start !B" into "B" and actions of the form "Gate_X 1 . . . _X p !e 1 ! ... !e p " into "X 1 = e 1 ,. . . ,X p = e p ". Hence, muGRL actions have one of the following forms: Remark 6.1. One would expect the property language to be interpreted over LTS GRL , as depicted by dashed box and arrows in Figure 6.1. We use LTS LNT as interpretation model for the sake of simplicity. It is cost effective, since one can use directly the CADP tools and techniques (hiding, minimisation, etc.) without needing to introduce 6.2. Offer formulas additional tools. Of course it is possible to write another property language (muGRL++, Figure 6.1) with LTS GRL as interpretation model, and define a translation from that language to muGRL. This is left for future work. Example 6.1. Throughout the current chapter, properties will be illustrated mainly on the car park application (see Section 3.1, page 29). We will consider the following subset of LTS LNT actions (after renaming), where e 0 , e 1 , ... are Boolean values:

-activation actions "Entrance", "Exit", "Storey1", and "Storey2" denote PLC execution. -data action "Cmd_P1 = e 1 , Cmd_P2 = e 2 " denotes a request of a car, parking in the first or the second storey, to leave the car park. -data action "Open_Park = e 0 " denotes the opening of the entrance gate on a car request. -data action "Open = e 0 " denotes the opening of the exit gate on a car request.

-data actions "Out_P1 = e 1 " and "Out_P2 = e 2 " denote the leaving of a car, parking in the first or the second storey, respectively. -data action "Green = e 1 , Yellow = e 2 , Red = e 3 " denotes the exterior lights mounted at the car park entrance. -data action "S_Out1 = e 0 " denotes a message sent by the exit PLC to the first storey PLC indicating whether a car has left. -data action "R_Out1 = e 0 " denotes a message sent by the first storey PLC to the entrance PLC indicating whether a car has left.

Offer formulas

Offer formulas, whose syntax is given in Table 6.1, characterise a couple "X = e" present on a data action. More precisely, an offer formula allows the value carried by an action variable to be matched and stored in a variable local to the formula:

-Offer formula "X 0 = e 0 " matches an action variable carrying a value identical to e 0 . -Offer formula "X 0 =? x 0 :T 0 " matches an action variable carrying any value of type T 0 and stores it in variable x 0 . We call local the variables used to store the values of action variables in formulas. -Offer formula "X 0 =? any" matches any value of any type.

Example 6.2.

Offer formula "Open = false" matches "Open = false" but does not match "Open = true". Offer formula "Open =? any" matches both "Open = false" and "Open = true". In the car park application, the action formula {Exit} matches the activation action Exit. The action formula {Cmd_P 1 = true, Cmd_P 2 =? any} matches the data actions "Cmd_P1 = true, Cmd_P2 = true" and "Cmd_P1 = true, Cmd_P2 = false" but does not match the data action "Cmd_P1 = false, Cmd_P2 = true".

O ::= X 0 = e 0 value matching | X 0 =? x 0 :T 0 value extraction | X 0 =?

Regular formulas

Regular formulas, whose syntax is given in Table 6.3, characterise regular execution sequences. A regular formula is built from action formulas using standard regular expression operators. In particular, action predicates with value extraction and matching enable to specify the propagation of values on execution sequences in the LTS. In the car park application, the following regular formula specifies a step of block Exit in which a request for leaving is detected. The regular formula matches the following action sequence:

R ::= A one-step sequence | NIL empty sequence | (R) parenthesised formula | R 1 . R 2 concatenation | R 1 | R 2 choice | R * iteration 0 or more times | R + iteration 1 or more times | R {m} iteration m times | R {m...n} iteration m to n times
s0 Exit ---→ s1 Cmd_P 1=true, Cmd_P 2=f alse ---------------------→ s2 Open=true -------→ s3 Out_P 1=true ---------→ s4 Out_P 2=f alse ----------→ s5

General property patterns

We consider the classification, first suggested by Lamport [START_REF] Lamport | Proving the Correctness of Multiprocess Programs[END_REF], partitioning properties into safety and liveness ones. A safety property asserts that something (bad) will not happen. A liveness property asserts that something (good) must happen. Additionally, we consider the class of fairness properties. Fairness is concerned with resolving nondeterminism and is often required to ensure liveness. For each of those classes, we present the frequently encountered patterns in the literature. A final section presents a translation of the presented patterns into MCL.

Patterns for safety properties

To express a safety property in the action-based setting, we proceed as follows. First, the undesirable execution sequences are characterised in terms of regular formulas R. Then, the occurrences of R in the LTS are forbidden by using the following pattern:

Never (R)

Example 6.5. The informal specification of the car park application (Section 3.1, page 29) states that: once a car asks for leaving the car park, an exit request is detected by the exit PLC, which opens the gate immediately. An undesirable execution sequence is then an exit request that is not followed by the gate opening. Such a situation is captured and forbidden by the safety property: Further safety patterns can be obtained by specialising the regular formula R in pattern Never. In practice, a frequently encountered pattern forbids the execution of an action A 2 after an action A 1 without the occurrence of an action A 3 in between:

Not_To_Unless (A 1 ,A 2 ,A 3 ) = Never (true * . A 1 . (not A 3 ) * . A 2 )
Example 6.6.

In the car park application, a valid safety property is: the exit gate cannot open unless an exit request is detected. Such a situation is captured and forbidden by the safety property: To conclude that a safety property is violated on an LTS, it suffices to have one (finite) execution sequence forbidden by the property but occurring in the LTS. For instance, the following execution sequence violates the property specified in Example 6.6:

s 0 ... -→ s 1 Open=f alse -------→ s 2 ... -→ s 3 ... -→ s 4 Cmd_P 1=f alse, Cmd_P 2=f alse ---------------------→ s 1 Open=true -------→
Note however that even though a safety property holds on an LTS, there is no proof about the existence of the actions referenced in the property. Property Never ({Open = false}) holds on an LTS containing no action Open. This is called the vacuity problem. In addition to a safety property holding on an LTS, one must check the existence of all actions referenced in the formula. This is possible using pattern Some (see Section 6.5.2).

Patterns for liveness properties

A system can fulfill all safety properties by forever doing nothing as this will never entail undesirable situations. In the car park application, it suffices that no car enters the car park to make the properties specified in Examples 6.5 and 6.6 hold on the corresponding LTS. Such behaviour is usually useless for a system. For this reason, safety properties need to be complemented by liveness properties, which express progress.

Reachability properties

A typical instantiation of progress properties is the reachability of an execution sequence. In terms of LTSs, such a property asserts that from the initial state, there is some outgoing execution sequence that satisfies a regular formula R. This is denoted by the following pattern: Some (R) A stronger progress pattern is the universal reachability, i.e., reachability on all execution sequences. It asserts that it is always possible for an action to be eventually reached. In terms of LTSs, such a property asserts that from each state, there is some outgoing execution sequence that satisfies a regular formula R. This is denoted by the following pattern:

Always_Some (R)

Example 6.7.

The informal specification of the car park application (Section 3.1, page 29) states that: if there still are unoccupied parking spots, ... a green light is maintained on; otherwise, a red light is turned on. Some reachability properties are the following:

Property Formalisation

The red light may be on Some (true * . {Green =? any, Yellow =? any, Red = true})

The green light may Always_Some ({Green = true, Yellow =? any, Red =? any}) always turn on

Response properties

Other frequent instantiations of liveness properties are the so-called response properties. They assert that whenever certain actions occur (request), they must be followed by other actions in the future (response). Depending on the way the response is requested to occur in the LTS, two typical response patterns can be distinguished: potentiality and inevitability.

Potentiality

The potentiality response pattern expresses the occurrence of the response on some execution sequence. It specifies that every execution sequence satisfying a regular formula R 1 is potentially followed by another execution sequence satisfying a regular formula R 2 . This is denoted by the following pattern:

After_Some (R 1 , R 2 ) Such a property is satisfied by a state of the LTS if: each of its outgoing execution sequences satisfying R 1 leads to another state, from which there is some outgoing execution sequence satisfying R 2 . A typical particular case of this pattern specifies that every action A is potentially followed by an action B. This is denoted by the following pattern:

After_Some (true * . A, true * . B) If this property is valid on an LTS, it means that from every state following an action A, there is at least one outgoing execution sequence leading to an action B. The pattern After_Some (A, B) is the action-based counterpart of the fair inevitability operator proposed in [START_REF] Queille | Fairness and Related Properties in Transition Systems -A Temporal Logic to Deal with Fairness[END_REF] in the state-based setting.

The dual pattern of After_Some specifies that there is an execution sequence satisfying R 1 , that leads to a state, from which the outgoing execution sequences satisfying R 2 are forbidden. This is denoted by the following pattern:

Some_Never (R 1 , R 2 ) = not After_Some (R 1 , R 2 )
Inevitability The inevitability response pattern expresses the occurrence of the response on all execution sequences. It specifies that every execution sequence satisfying the regular formula R 1 is eventually followed by another execution sequence satisfying the regular formula R 2 . This is denoted by the following pattern:

After_Inev (R 1 , R 2 )
Similarly, a useful specialisation of this pattern specifies that every action A is eventually followed by an action B:

After_Inev (true * . A, true * . B) If this property is valid on the LTS, it means that from every occurrence of action A, all execution sequences contains an action B. Example 6.8. For the car park application, we specify the properties summarised in the table below. The last one is extracted from the informal specification (Section 3.1, page 29) stating that: once the car leaves, the exit PLC informs the storey PLC referenced in the car ticket, which in turn informs the entrance PLC. To conclude that a liveness property is violated on an LTS, all (infinite) execution sequences should be visited to check that the execution sequence required by the property is absent in the LTS. Nonetheless, response properties exhibit no guarantee about the existence of requests. Accordingly, they are not violated by infinite execution sequences in which only responses occur but never requests (or finitely many requests).

Remark 6.2. The stronger response pattern After_Inev (true * . A, true * . B) may not hold on an LTS, unexpectedly, if there are cycles after an occurrence of A and before the subsequent occurrence of B. If these cycles correspond to unrealistic executions of the system, one may check the first version After_Some (true * . A, true * . B) of the response pattern. If the property holds, a scheduler (i.e., activation strategy) can be implemented, to avoid the unrealistic execution cycles.

Patterns for fairness properties

Fairness assumptions capture infinite behaviors that are considered unrealistic. In the car park application, a possible unfair scenario is the following: once a car leaves the car park, the entrance PLC waits infinitely long without receiving the information from the exit PLC (via a storey PLC). The availability of the car park is then never updated.

In the action-based setting, fairness can be specified by characterising the LTS cycles denoting infinite unfair execution sequences. The following property pattern specifies the existence of an infinite execution sequence satisfying the regular formula R: Looping (R) This is the action-based counterpart of the LTL property GFp expressing that a state property p occurs infinitely often [START_REF] Clarke | Model Checking[END_REF]. A useful particular case of the Looping pattern specifies the existence of an execution sequence on which an action A occurs infinitely often:

Looping ((not A) * . A) Example 6.9. For the car park application, we can specify that each PLC is executed infinitely often. Looping ({Entrance}) Looping ({Storey1 }) Looping ({Exit})

Looping ({Storey2 })

The dual pattern of Looping specifies that an execution sequence R can be repeated only a finite number of times: Saturation (R) = not Looping (R) This is the action-based counterpart of the LTL property FGp expressing the invariance of a state property p [START_REF] Clarke | Model Checking[END_REF]. As above, a useful particular case of the Saturation pattern specifies that all execution sequences may contain only a finite number of occurrences of actions different from A.

Saturation (true * . not A) Looping and saturation patterns can be combined with the response patterns to accomodate the presence or absence of certain infinite sequences after other execution sequences have occurred:

After_Looping (R 1 , R 2 ) After_Saturation (R 1 , R 2 )
The dual patterns are respectively:

Some_Saturation (R 1 , R 2 ) Some_Looping (R 1 , R 2 )
Fairness verification is of particular interest for nondeterministic systems by detecting whether a possible choice is consistently ignored. Asynchronous concurrent systems, among which GALS systems, are particularly concerned as concurrency is often modelled by interleaving behaviours. Further explanation on this concern will follow in the specific case of GALS systems.

Translation into MCL

The semantics of muGRL are defined by translation into MCL. Each muGRL expression has a one-to-one straightforward correspondence with its counterpart in MCL. We call e2mcl the translation function of muGRL expressions. Regular formula has a one-toone straightforward correspondence with its counterpart in MCL. We call r2mcl the translation function from muGRL regular expressions to their MCL counterparts.

The translation of offer formulas is given when translating action formulas. We need the following intermediate functions: The translation of action formulas is summarised in Table 6.5. Liveness property patterns. The translation of liveness properties, using function p2mcl, is summarised in Table 6.7. Potentiality pattern Some can be directly expressed using possibility modalities containing regular formulas. Potentiality response pattern After_Some can be expressed by combining necessity and possibility modalities operators. The Some_Never pattern is the dual of the After_Some one. The Al-ways_Some pattern can be expressed by specialising the After_Some pattern with a first argument matching all sequences. Finally, the inevitability response pattern can be expressed by combining necessity and possibility modalities together with a fixed point operator. More precisely, the MCL formula states that all execution sequences containing subsequences satisfying R must lead to states from which action A is reachable. The inevitable reachability of action A is ensured by the minimal fixed point operator binding variable X.

Pattern P

Translation into MCL p2mcl (P) Fairness property patterns. The translation of fairness properties, using function p2mcl, is summarised in Table 6.8. Fairness patterns are translated by using the infinite looping and finite saturation operators.

Some (R) < r2mcl (R) > true After_Some (R1, R2) [ r2mcl (R1) ]< r2mcl (R2) > true Some_Never (R1, R2) < r2mcl (R1) >[ r2mcl (R2) ] false Always_Some (R) [ true * ]< r2mcl (R) > true After_Inev (R, A) [ r2mcl (R

Deadlock, livelock, and instability

This section proposes a set of GALS-specific property patterns. The proposed patterns exploit the behaviour of GALS systems along two axis: activation strategies (activation patterns) and data handling (data patterns).

Activation deadlock (system halt)

Activation patterns may involve either one or several components or the whole system, i.e., all system components. Their interpretation is summarised in Table 6.9. 

Some_Alive (S) = S∈S Alive (S) All_Alive (S) = S∈S Alive (S)
This interpretation is less efficient than, while being semantically equivalent to, the one we chose, since it leads to MCL formulas with more operators4 . Each kleene-star operator denotes an implicit fix point operator as it requires to visit all the LTS states in the worst case.

A particularly interesting application of patterns Some_Alive and All_Alive concerns redundant systems, in which the same program is executed by several components. This way, the reliability of the application is increased by providing it with fault tolerance.

The system is considered operational whenever at least one among redundant components is working properly. If all redundant components fail, the entire system fails as well.

Example 6.11. We enhance the car park application by adding redundancy. The entrance gate is henceforth managed by two redundant PLCs, named Entrance1 and Entrance2. The exit gate is also managed by two redundant PLCs, named Exit1 and Exit2. Basically, the system function is ensured by primary PLCs Entrance1 and Exit1, secondary PLCs Entrance2 and Exit2 being not working. Such a redundancy is called cold. Once one of the primary PLCs fails, primary PLCs are both stopped and secondary ones started, instead. The following properties can be specified:

Property Formalisation

There is always some entrance and Some_Alive (Entrance1, Entrance2) some exit PLC working properly and Some_Alive (Exit1, Exit2)

The car park is always operational All_Alive (Entrance1, Exit1) or All_Alive ( Entrance2, Exit2) System deadlock and progress A GALS system comes to a halt when all its components do so. However, in a non-terminating GALS system, no conclusion can be derived about whether (or not) it contains halted components. Since (synchronous) components do not interlock the execution of each other, the halting of a component does not entail other components to halt. Assume the GALS system under study consists of a set of components, denoted S. Termination of the entire system is expressed by the following pattern:

Deadlock (S) In terms of LTSs, the pattern evaluates to true if there is a state from which all actions in S are unreachable. Hence, the LTS contains necessarily sink states, i.e., states without outgoing transitions. This coincides with the definition of deadlock in asynchronous concurrent systems, in which global deadlocks are terminal states from which no more action is possible.

The dual pattern of Deadlock expresses that always some component is executing. In terms of LTSs, it suffices to ensure that from each state, some action in S is reachable. This is done by following pattern:

Progress (S) Example 6.12. Consider a GRL system composed of two blocks B1 and B2, whose activation strategy is described by the LTS below. Property Deadlock (B1 , B2 ) evaluates to true while property Progress (B1 , B2 ) does not. The same verification results are transferable to the LTS corresponding to the whole GRL system (i.e., including data actions). Idleness is captured by property All_Idle (x, y) but not by Idle (B), which is equal to All_Idle (u, x, y). In general, to capture the idleness of synchronous components, it is more adequate to apply the pattern All_Idle to a well-chosen subset of inputs and outputs. In particular, only functional inputs, whose values are used to compute outputs, should be considered.

System idleness A GALS system is said idle if there is a state from which all its synchronous components are idle. In such case, no progress is made anymore by none of the components. For a GALS system composed of a set of components, denoted S, the idleness of the system is detected by the following pattern:

Idle (S)
Action, component, and system progress Instead of checking idleness, one might want to check that an action, a component, or a system makes progress. A data action is said to progress if its variables continue forever to carry different values. The following pattern indicates that it is always possible for an action to progress. Progress (X) We extend pattern Progress to encompass a set of actions, a component, and a set of components, similarly to idleness properties. For a set of actions (resp. components), the patterns Some_Progress and All_Progress assert the progress of some or all actions independently from each other. A GALS system is said to progress if some of its components progress as well.

Some_Progress (X) Progress (S) All_Progress (X) Progress (S)

Livelock

Informally speaking, a system is said to livelock (or diverge) if it continues to execute without doing the tasks for which it was designed. The presence of livelock may invalidate some verification results and is often due to a bug in the modelling. The absence of livelock ensures not only that the system execution is continuous but also that the execution is meaningful.

Several yet nonequivalent notions of livelock properties have been defined in the literature of concurrent systems. In process algebra, livelocks arise mainly from the use of the hiding operator. A livelock occurs if a process reaches a state from which it may execute indefinitely an infinite sequence of consecutive hidden actions, which cannot be observed from the process outside. Following this definition, livelock can be expressed by the following pattern: LIVELOCK = Some_Looping(true * , i)

In GRL models, the above described livelock occurs only if all the input and output actions of one or several blocks are hidden. In such case, livelock can be checked by a static analysis of the GRL specification. This analysis is very fast as it bypasses the generation of the LTS and its exploration by model checking. If we were to generate the LTS, livelock analysis would be carried out in time linear in the size of the LTS, which may however be exponential (or worse) in the code size of the GRL system.

Example 6.14. Consider the GRL system defined below. Its corresponding LTS contains a livelock (i-loop in state 0). In the general case, static livelock checking is an over-approximation, i.e., it may assert the presence of livelocks whereas the actual system is livelock-free. Another definition of livelock is the state-based view consisting in preventing a process from performing some particular actions [START_REF] Leue | A Livelock Freedom Analysis for Infinite State Asynchronous Reactive Systems[END_REF]. These actions, called progress actions, are generally intended to make the system progress, e.g., deliver outputs or respond to the environment and other components. In terms of LTSs, such a livelock specifies a state from which only non-progress actions are executed indefinitely. That is to say, all progress actions are repeated only a finite number of times. Let A be the set of progress actions. Such a livelock is expressed by the following pattern:

LIVELOCK (A) = not Looping (not ( A∈A A) * . A∈A A)
Example 6.15. The car park progresses by checking that there are continuously entry and exit traffic flows. The progress actions can be output Open_Park of the entrance PLC, indicating a car entry; and output Open of the exit PLC, indicating a car leaving.

LIVELOCK ({Open_Park = true}, {Open = true})

In addition to this general definition, we propose two specific cases for GALS systems. Activation livelock considers as progress actions the activation of components. Data livelock considers as progress actions the output actions of components.

Activation livelock (starvation)

Modelling concurrency by interleaving may introduce unfair strategies. An example is a component that is consistently ignored, thus never makes progress. Such a situation is called starvation. The interpretation of starvation patterns is summarised in Table 6.11.

Example 6.16.

Consider the activation policies of blocks Storey1 and Storey2, depicted in Figure 6.2. The left-hand LTS (noted LTS Default ) represents the default activation policy, i.e., without activation constraints. The right-hand LTS (noted LTS Quasi ) represents blocks evolving at the same pace (Example 3.12, page 47). In LTS Default , while each action can be selected infinitely often, the system can always choose only action STOREY1 or only action STOREY2. To remove such unfair strategies in GRL models, activation strategies should be implemented, as in LTS Quasi . We define the individual starvation of a component S by the execution of S only a finite number of times. Thus, unfair execution sequences are infinite sequences in which action S is continuously ignored. Thus, unfair situations are states from which actions S are continuously ignored. The absence of such situations is ensured by the following pattern:

Starvation_Freedom (S)
Example 6.17.

Consider the LTSs given in Figure 6.2. The individual starvation freedom property is satisfied by LTS Quasi but not LTS Default . For LTS Default , a counterexample is depicted in Figure 6.3. It indicates that the system can perform an action STOREY1 after which it performs indefinitely only action STOREY2 (state 1). The storey PLC of the first floor is thus in starvation situation. Similarly, the storey PLC of the second floor is in starvation situation in state 2 of the LTS. We call a data livelock of a component a state from which all output actions are idle. Such a situation is highly undesirable since the system does not progress anymore. There are two possible situations:

-Input idleness has caused output idleness. This situation is equivalent to component idleness, introduced in Section 6.6.1. -Inputs are not idle. This is (generally) symptomatic to a modelling error, as illustrated in Example 6.19.

Example 6.19. Consider the GRL block below. Condition pre_c > 0 is never satisfied, which pushes the block in a data livelock situation. We define consistency properties asserting that if one or several input actions continue to progress, the same must hold for one or several output actions. The interpretation of consistency patterns is summarised in Table 6.12.

Pattern Interpretation

Out_Consistent (X, Y ) After_Saturation ({Y =?y}, Check_X_Y) where Check_X_Y is a regular expression defined as follows: Check_X_Y = (not {X =?any} ∨ not {Y =?any}) * . {X=?x} .

(not {X =?any} ∨ not {Y =?any}) * . {Y = y} .

(not {X =?any} ∨ not {Y =?any}) * . {X = x} .

(not {X =?any} ∨ not {Y =?any}) Out_Consistent ( a, b ,c) The property is evaluated to false on the LTS corresponding to block Inconsistent.

* . {Y = y} Some_Consistent (X, Y ) X∈X Out_Consistent (X, Y ) All_Consistent (X, Y ) X∈X Out_Consistent (X, Y ) All_Consistent (X, Y ) Y ∈Y All_Consistent (X, Y )
Output consistency can be extended to encompass a set of input actions, whose variables are denoted X. The following Some_Consistent (resp. All_Consistent) pattern asserts that if some (resp. all) input actions continue to progress, the same holds for the output action:

Some_Consistent (X, Y ) All_Consistent (X, Y )

A set of output actions Y is consistent if the same holds for all the output actions.

All_Consistent (X, Y )

Instability

Another case of undesirable situations in synchronous components is instability. In a stable component, if there is a state from which the inputs remain idle, both the outputs and the internal state should stabilise in the future, i.e., become idle. Not only the progress of an unstable component is meaningless but also it is neither visible nor controllable by the environment. In [START_REF] Caspi | The quasi-synchronous approach to distributed control systems[END_REF], Caspi identifies stability as one of the robustness properties to guarantee a correct distribution of synchronous components.

The interpretation of stability property patterns is summarised in Table 6. 13. To detect such an undesirable divergence, we define the stability property asserting that the idleness of inputs should imply the idleness of outputs. In terms of LTSs, this can be expressed by first detecting the states after which all input actions are idle, then checking that the output actions progress only a finite number of times. This is expressed by the following pattern, where X and Y stand for the respective variables of a set of input actions and an output action: Stability (X, Y ) Stability can be extended to encompass a set of output actions, whose variables are denoted Y .

Stability (X, Y ) Example 6.22. Consider the block defined in Example 6.21. The stability of output x is specified as follows: Stability (u, x)

Discrete real-time properties

Any verification using model-based techniques is only as good as the model of the system.

Principles of Model Checking

A GALS system may depend on real-time constraints. In this case, its correctness depends, in addition to computational results, on the time at which results are produced. In a redundant system, it is vital that on failure detection, the function is passed from primary components to secondary ones shortly.

When real-time constraints are required, relative (discrete) time can be measured in terms of the number of component steps. In this section, we present two types of realtime properties. Component real-time properties involve individual components. System real-time properties involve several components. The interpretation of real-time patterns is summarised in Table 6.14.

Pattern Interpretation

Deadline (R, A 1 , A 2 , n) Never (R . (not A 1 ) * . (A 1 . (not (A 1 or A 2 )) * ){n + 1}) Sustain (R, A 1 , A 2 , n) [ R ] nu Count (c: nat := 1 ) . ( ((c < n) implies ([ A 2 ] false and [ A 1 ] Count (n + 1))) and [ not (A 1 or A 2 ) ] Count (c) ) From_To_Most (A 1 , A 2 , A 3 , n) Deadline (true * . A 1 , A 3 , A 2 , n) From_To_Least (A 1 , A 2 , A 3 , n) Sustain (true * . A 1 , A 3 , A 2 , n)
Table 6.14: Interpretation of real-time patterns

Component real-time properties

For an individual component, the time difference between any pair of actions can be interpreted as a multiple of the component steps. For example, consider the property: whenever a failure occurs, an alarm should be raised in at most 30 seconds. Assuming the component period is 5 seconds, the 30 second delay corresponds to 6 block steps.

A typical instantiation of component real-time properties is deadlines. A deadline property asserts that whenever a certain action occurs, it must be followed by another action in a bounded future. Consider (i) an action A 1 ; (ii) a natural number n, quantifying the deadline in terms of occurrences of A 1 ; (iii) an action A 2 , to occur necessarily before reaching the deadline; and (iv) a regular formula R specifying the condition triggering the countdown. The following pattern forbids the presence of execution sequences, in which there are subsequences satisfying R, followed by n + 1 occurrence of A 1 , without the occurrence of A 2 . Another instantiation of component real-time properties is the sustain of an event for a bounded time duration. Consider: (i) an action A 1 , corresponding to the event to sustain; (ii) a natural number n, quantifying the sustain duration in terms of occurrences of A 1 ; (iii) an action A 2 , to not occur before the end of the sustain duration; and (iv) a regular formula R specifying the condition triggering the sustain. The following pattern states that all execution sequences containing subsequences satisfying R must lead to action A 2 before n occurrences of action A 1 .

Deadline (R, A

Sustain (R, A 1 , A 2 , n) Example 6.24.
The informal specification of the car park application (Section 3.1, page 29) states that: If the access is granted, the entrance gate remains open for a fixed amount of time and a yellow light is turned on until the gate closure. The property can be expressed as follows, where n encodes the "amount of time": 

System real-time properties

The correctness of system real-time properties depends on the accuracy of activation constraints. The finest abstraction encountered in the literature to express activation constraints in a discrete model of time is the generalisation of the quasi-synchronous approach (see Chapter 7, section 7.1, for implementations in GRL and muGRL). In such systems, requirements match the pattern: within a given time-interval, some event should occur a bounded number of times. The notion "time-interval" is interpreted in terms of action occurrences. The following patterns assert that whenever an action A 1 occurs, an action A 2 may occur at least m (resp. at most m) times before the next occurrence of A 3 :

From_To_Least (A1 , A2, A3 , m)
From_To_Most (A1 , A2, A3 , m)

Conclusion

This chapter identifies an open-ended set of properties for GALS systems. We attempted to collect the most recurring properties in the literature of synchronous and asynchronous systems and to accommodate them to GALS systems. In particular, the proposed properties exploit the activation strategies and data-handling that a GALS system exhibit, as well as some discrete real-time aspects. We hope our study would contribute to the state-of-the-art verification of GALS systems. Its principles would be transferable to any temporal logic as well, provided the temporal logic supports regular expressions and data handling.

Properties are encoded by means of a system of patterns, muGRL. Our aim is to guide potential users in the verification task, cutting down the learning effort. As regards the implementation of muGRL, patterns with a fixed number of parameters can be encoded using MCL macros then stored in reusable libraries. This provides the user with templates whose parameters should be filled in. Here are some examples: 

Formal Modelling and Verification of GALS Applications

This chapter presents applications of GRL, muGRL, and CADP to model and verify concrete GALS systems. The first application is quasi-synchronous systems, which involve a bounded level of nondeterminism. In a related concern, we give insights on the way deterministic applications can be described. The second application is a simplified version of an AutoFlight Control System (AFCS), provided by Thales Avionics. We use the AFCS to illustrate various modelling, generation, and verification scenarios and techniques. Finally, we report our industrial experience with Crouzet Automatismes in the framework of the Bluesky industrial project.

Quasi-synchronous systems

A quasi-synchronous system is one whose synchronous components are not governed by a common clock but evolve almost at the same pace, or multiples of the same pace. The quasi-synchronous abstraction, first proposed by Caspi [START_REF] Caspi | The quasi-synchronous approach to distributed control systems[END_REF] in the 2000's then formalised in [START_REF] Halbwachs | Simulation and Verification of Asynchronous Systems by means of a Synchronous Model[END_REF], states that a component clock cannot tick more than twice before all other component clocks have ticked at least once. Stated differently, each component clock cannot deviate more than one tick. We use the term basic quasi-synchrony to denote this abstraction. Recent works [BMY + 14, BBP15] have studied generalisations of the quasi-synchronous abstraction. We consider a generalised version in which each component clock cannot tick more than an upper bound before all other component clocks have ticked at least once. We use the term generalised quasi-synchrony to denote this abstraction.

In GRL, without activation constraints, a block may perform infinitely many activations between two successive activations of another block. This situation becomes unrealistic when the aim is to describe clock constraints. For illustration, consider the activa-tion strategies depicted in Figure 7.1, where COMP_A, COMP_B, COMP_C, and COMP_D denote blocks.

-In case (a), no constraint is put on block activations. A block can execute arbitrarily often without any other block executing meanwhile. -In case (b), blocks COMP_A, COMP_B, and COMP_C are constrained so as to execute in this specific order but no constraint is put on the activation of block COMP_D. As a result, block COMP_D can execute arbitrarily often from each state in the LTS. -In case (c), constraints on the pair (COMP_A, COMP_B) and on the pair (COMP_C, COMP_D) are described independently, e.g., in different environments. Again, (COMP_A, COMP_B) can execute arbitrarily often between two successive executions of (COMP_C, COMP_D), and conversely. In the sequel, we propose two implementations of quasi-synchrony in GRL and discuss the relation between both implementations. To this aim, all blocks used in this section are instances of the following toy block:

1 block Bool_Id ( i n X: bool , out Y: bool ) i s 2 Y := X 3 end block

Primary implementation

This section proposes a primary implementation of quasi-synchrony, with a focus on the basic version. To this aim, we consider a system, named Basic_Two, encapsulating two blocks COMP_A and COMP_B. We also consider another system, named Basic_Three, with three blocks COMP_A, COMP_B, and COMP_C. situation is equivalent to the presence of an "abstract global clock", the ticks of which are represented by two successive occurrences of the central state when traversing the LTS. Due to the interleaving of block activations, each block may perform two steps between two successive steps of each other component. This is illustrated by the following action sequence in the left-hand LTS. 0 Verification results Checking that properties P1, ..., P5 hold on the LTSs depicted in Figure 7.2 is straightforward.

Property specification in muGRL

COM P _B -------→ 2 COM P _A -------→ 0 COM P _A -------→ 1 COM P _B -------→ 0

Refined implementation

This section proposes a refined implementation of quasi-synchrony.

Modelling in GRL Instead of considering an "abstract global clock" and counting the activations of each block w.r.t. clock ticks, we propose to count the activations of each block since the last activation of each other block. This is implemented in environment Refined_Quasi_2, given below, for two blocks. 

Discussion

We discuss the relation between our primary and refined implementations of quasisynchrony, proposed in the previous sections. Both of them are correct implementations of quasi-synchrony, according to the verification results. We exploit the equivalence between LTSs depicted in Figure 7.2 (noted LTS primary ) and Figure 7.3 (noted LTS refined ). Such equivalence, modulo branching bisimulation, is checked using the following SVL statement:

1 " Equiv_Quasi.bcg " = branching comparison " Quasi_Gen.bcg " == " Quasi_Basic.bcg " ;

The LTSs are not equivalent, unexpectedly. The counterexample, produced in file "Equiv_Quasi.bcg", states that the following transition sequence is present in LTS refined but absent in LTS primary .

0

COM P _A -------→ 1 COM P _B -------→ 2 COM P _A -------→ 3 COM P _A -------→ 4 COM P _B -------→ 5
Nonetheless, LTS primary is included in LTS refined . Such inclusion, modulo the preorder corresponding to branching bisimulation, is checked using the following SVL statement:

1 " Inclu_Quasi.bcg " = branching comparison " Quasi_Adv.bcg " >= " Quasi_Basic.bcg " ;

We conclude that LTS refined is more general than LTS primary and can be seen as a refinement of LTS primary .

Deterministic GALS systems

A deterministic GALS system is one in which messages are delivered in the order in which they have been received, without message loss.

In GRL, message loss, if not explicitly modelled (see Example 3.16, page 50), is caused by discrepancies between the rates of message submission by a block emitter and message delivery by a block receiver; such discrepancy is induced by the arbitrary activation of blocks. Consider two blocks evolving under basic quasi-synchrony (see Section 7.1) and communicating via reliable mediums with single-place buffers. Two successive activations of a block emitter, without the activation of the block receiver in between, causes message overwriting.

To model deterministic GALS systems in GRL, an activation strategy of blocks should be implemented. This entails bounded interleaving between block activations, making message loss also bounded. Then, a buffering mechanism with well-chosen dimensions sould be implemented. Such dimensions should comply with the activation strategy of blocks. For basic quasi-synchrony, at most two message submissions may occur between two message deliveries in each transmission, and conversely. Hence, a double-place FIFO is sufficient to ensure message transmission without loss.

AutoFlight Control System (AFCS)

This section reports our experience in modelling and verifying a simplified part of an AutoFlight Control System (AFCS). The system is provided by Thales Avionics in a collaboration with IRT-Saint Exupéry. Our goal here is not to model a complete AFCS, but to study the way such a system with stringent timing requirements can be abstracted in GRL. The part of the AFCS we address has been first studied in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF] using the Fiacre/Tina toolbox1 for Time Petri Nets.

In the sequel, we first present an overview of the target system. Then, we study the modelling, state-space generation, and verification phases of separate components and of the whole system.

Overview of the system

The AFCS improves the quality of flight and enhances the operational capability of the aircraft, e.g., by guiding the aircraft on a defined trajectory. The architecture of the AFCS is of type dual COM/MON. In such an architecture, each function is performed by two channels, in hot redundancy: a master channel and a slave channel, such that only the commands emitted by the master are taken into account by the rest of the system. If the master channel fails, it is deactivated and the commands emitted by the slave will be considered.

Each channel is itself divided into two channels: a command channel (COM), which implements the expected functionality, and a monitoring channel (MON), which checks whether the command channel operates correctly.

We focus on a simple use case: the altitude target acquisition. Our target system, depicted in Figure 7.4, comprises two parts:

-The FCP (Flight Control Panel) enables the pilot to interact with the system. FCP_COM and FCP_MON are cadenced by the same clock. -The AFS (Automatic Flight System) acquires the altitude target. AFS_COM and AFS_MON communicate asynchronously using an AFDX communication medium.

Components communicate by sampling, i.e., only the most recent message is read by the receiver, message queuing being not supported. Asynchronous communication mediums are assumed reliable.

The behaviour of the system is as follows. The pilot sets the target altitude by rotating a knob on the FCP. Two different simultaneous informations are sent from FCP to AFS:

-FCP_COM sends, via an A429 bus, a value quantifying the knob rotation to AFS_COM . In turn, AFS_COM computes an altitude order, based on the received value and sends the order to AFS_MON for validation purpose. -FCP_MON sends a Boolean value indicating a movement detection to AFS_MON , using a discrete signal. This information enables AFS_MON to check the validity of the altitude order received from AFS_COM and to provide it with a verdict. The order is considered valid if: (i) it didn't change from the previous step or (ii) it has changed and a movement has also been detected by FCP. In case of invalidity, a presumed correct value of the altitude order is considered.

Because of the asynchrony in the system architecture, AFS_MON may wrongly invalidate a correct order. To cope with such asynchrony, components FCP_MON and AFS_MON sustain the movement detection information during some specific amount of time, in order to make the information observable by other components, independently The block is parameterised with fcp_mvt_prolong, which represents the duration to sustain the movement detection information. Such duration is necessarily a multiple of the block period. We set the default value to 13.

We abstract the behaviour of the knob rotation using environment Knob below. For simplicity, only integers varying from -2 to 2 are considered to quantify the rotation. 

LTS generation

To generate and minimise the LTS corresponding to FCP, we encapsulate the block with environment Knob inside a parameterised system named Main_FCP. Once the LTS is constructed, we perform a minimisation modulo the divbranching bisimulation. All these steps are done by the following SVL script:

1 % g r l . o p e n -showall -root "Main_FCP (13 o f nat ) " FCP.grl g e n e r a t o r FCP_Orig.bcg 2 " FCP.div.bcg " = divbranching reduction of 3 t o t a l rename "GATE_\( . * \) " -> "\1" i n " FCP.Orig.bcg " ;

The LTS, produced in file FCP.Orig, is small enough to be generated directly. It contains 802 states and 1157 transitions with a deterministic behaviour for all actions. The LTS minimisation modulo divbranching bisimulation yields an LTS with 315 states and 640 transitions. [START_REF] Caspi | The quasi-synchronous approach to distributed control systems[END_REF], such delays can be modeled by a unit of the global clock, i.e., the shortest measurable delay in a synchronous discrete-time model. Thus, if a message has been emitted at an instant t of the global clock, the message will be received at instant t+1, which represents non-instantaneity. In GRL, the emission of a message by a block and its reception by another block are by default non-instantaneous. This is granted by asynchrony.

Property formalisation and verification results

LTS generation

We first generate the LTS corresponding to each AFS component separately then generate the one corresponding to the whole AFS. 

Property formalisation and verification results

Properties P1, P2, and P4 capture the observable behaviour of AFS, i.e., activation strategy and data carried by block inputs and outputs. All of them hold on the system LTS. Properties P10 and P11 capture the non-observable behaviour of AFS_MON , i.e., the internal computations. We address here the formalisation of P10 and P11.

To express such properties, we take inspiration from synchronous observers. Properties can be specified by means of additional GRL subblocks, which we call observers. For example, property P10 can be expressed as follows: The observer emits an alert, value false on output Ok, whenever the desired property is violated. Then, observers are invoked inside the block under verification to monitor its internal behaviour. Here is an excerpt of block AFS_MON after adding the invocations of observers; a schematic representation is given in Figure 7.7. To make the truth values of observers visible on the LTS, their outputs are connected to additional outputs of block AFS_MON . Finally, the validity of the properties encoded by observers can be simply determined by visual checking. It suffices to list the actions in the LTS of AFS, using a dedicated option in CADP, and check whether the observer outputs raise a problem. Below is an excerpt of the actions list of the system LTS. The whole list shows that variables ok_p10 and ok_p11, corresponding to observer outputs, never take value false, meaning that the respective properties hold on the LTS. Alternatively, the validity of properties P10 and P11 can be checked by formulation in muGRL:

Never ({ok_p10=false, ok_p11=?any} or {ok_p10=?any, ok_p11=false})

Remark 7.4. Writing down observers in GRL increases the size of the system LTS, since additional transitions are required to visualise the truth values of the properties.

For properties P10 and P11, Table 7.2 summarises the size of the LTSs of observers and their impact on the size of the system LTS. Note that the size of the system LTS after adding observers is independent of both the number of observers and the static variables they define. The reason is that observers have no effect on the enclosing block behaviour. In our example, property P11 requires static variables to store the information about the acquiring of movement detection information and the duration for which the information is sustained; property P10, contrarily, defines no static variables.

Non

Modelling and verifying the AFCS system

We study an AFCS system without redundancy, i.e., composed of one FCP and one AFS channels. We first consider the AFCS with the default values of fcp_mvt_prolong (13) and afs_mvt_prolong (6). Then, we parameterise the system, following [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF], to illustrate the way parameterised models can be automatically generated and verified, using SVL.

Default model

Blocks FCP, AFS_COM , and AFS_MON are composed as highest-level blocks inside a system, named Main, as depicted in Figure 7.8. All parameters of the system are made observable. The activation strategy of the blocks is modelled by environment AFCS_Act, following the primary implementation of quasi-synchrony (see Section 7.1.1). Once output interrupt of block AFS_MON takes value true, the activation of all blocks is prohibited, which corresponds to the deactivation of the current COM/MON channel (switch from the master to the slave channels in a system with redundancy). Then, we specialise the reduction for each class. For system data properties, we specialise the reduction with regards to each property. To this aim, we take advantage of the approach proposed in [START_REF] Mateescu | Property-dependent Reductions Adequate with Divergence-sensitive Branching Bisimilarity[END_REF]. It consists in first synthesising the maximal set of actions that can be hidden in the LTS, without changing the truth value of the property. After applying this maximal hiding, the LTS can be reduced modulo an adequate equivalence relation before checking the property. An illustration will be given later when addressing the parameterised model.

For block data properties, we extract the block LTS from the system LTS by hiding all actions corresponding to other blocks and reducing the resulting LTS. This is more efficient than generating one LTS for each property. For block FCP, this can be done as follows:

1 " AFCS.Orig.bcg " = 2 divbranching reduction of generation of 3 p a r t i a l hide a l l but 4 "GATE_PILOT_ROTATION_PILOT_MVT. * " , "GATE_ERROR_INJECTION. * " , 5 "GATE_TO_AFS_COM_ROTATION. * " , "GATE_TO_AFS_MON_MVT. * " 6 i n 7

" AFCS.Orig.bcg " 8 end hide ;

For activation properties, it suffices to generate the LTS corresponding to the activation strategy. The generation scenario suggested in Section 7.1.1 could be expensive in terms of time and memory, given the size of the system LTS. Alternatively, we generate the LTS corresponding to environment AFCS_Act, inside which all activation constraints are encoded. Since this is not possible in GRL (due to semantic restrictions), we use the corresponding LNT process named Main_AFCS_Act, as follows:

1 "AFCS_Act.bcg" = 2 divbranching reduction of generation of 3 hide Gate_Interrupt i n 4 " AFCS_System.lnt " : "Main_AFCS_Act" 5 end hide ;

The gate named Gate_Interrupt corresponds to input interrupt of AFCS_Act. It is hidden to keep only Start actions in the resulting LTS (line 3). Finally, a minimisation modulo divbranching bisimulation is achieved (line 2). The LTS is generated and reduced in few seconds and contains 55 states and 173 transitions, whereas the scenario suggested in Section 7.1.1 took around 20 minutes and generates an LTS containing 55 states and 118 transitions. The difference in LTS sizes is explained in Remark 7.5.

Remark 7.5. In the current AFCS, input interrupt is connected to block AFS_MON , which influences the activation strategy of the system. Hence, some states of environment AFCS_Act are never explored after component composition inside AFCS. Contrarily, in the above-considered scenario, input interrupt takes arbitrary values. The obtained LTS is then larger than (but includes) the current activation strategy of the system.

Verification It is preferable to check the activation strategy of the system in the beginning of the verification process. An erroneous activation strategy is likely to entail several other errors in message transmission between different components.

In the AFCS system, the formalisation of activation properties P1, ..., P3 is summarised in the table below. Property P1 and P2 hold on the system LTS whereas property P3 does not, meaning that interrupt never takes value true. In a second step, we checked that block data properties, specified in Sections 7.3.2 and 7.3.3, keep their truth values after component composition inside the system. Finally, we checked that system data properties hold on the system LTS.

Parameterised model

We vary the durations for which blocks FCP_MON and AFS_MON sustain the movement detection information. The verification task is to check for which durations properties P12 and P13 hold. To this aim, we parametrise LTS generation and verification.

Parameterised generation First, we export parameters fcp_mvt_prolong and afs_ mvt_prolong of FCP_MON and AFS_MON , respectively, to system level. Then, as suggested in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF], we vary fcp_mvt_prolong and afs_mvt_prolong from 1 to 6 periods of AFS_MON . Since fcp_mvt_prolong is expressed as a multiple of FCP period, which is twice as fast as AFS_MON , fcp_mvt_prolong should take the following values {2, 4, 6, 8, 10, 12}. These steps are achieved using the following SVL script:

1 % f o r i i n 2 4 6 8 10 12; do 2 % f o r j i n 1 2 3 4 5 6 ; do 3 % MODEL="AFCS_CP_${ i }_AFS_${ j }" 4 % g r l . o p e n -root "Main_Param ( $ i o f nat , $ j of nat ) " AFCS_System.grl 5 g e n e r a t o r "$MODEL.bcg" 6 % done 7 % done

The script enables the generation of 36 LTSs in around 48 hours. The average size of LTSs (without minimisation) is around 20 million states and 30 million transitions. In-

Verification results

For the values of fcp_mvt_prolong and afs_mvt_prolong satisfying "fcp_mvt_prolong/2 + afs_mvt_prolong < 9", properties P12 and P13 do not hold on both our model and in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF]. For all other values, properties hold in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF]. On our model, contrarily, the properties hold only for values satisfying "fcp_mvt_prolong/2 + afs_mvt_prolong > 12".

Discussion

We confronted GRL, which is time-abstract, with systems involving strict real-time constraints. Hence, we attempted to over-approximate real-time constraints. On GRL synchronous blocks, they were described as multiples of block periods, using static variables; whereas on GRL asynchronous systems, they were described inside environments, using activation signals. For the latter, we experimented a primary implementation of quasi-synchrony to express block activation paces. We concluded that quasi-synchrony is appropriate to model the activation of realistic GALS systems.

The verification task was about timed aspects. As expected, we had less accurate results than in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF], which use the Tina toolbox. The reason is that we over-approximated real-time constraints in our framework where as such constraints were accurately described in [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF]. Our results are thus still reasonable. Nonetheless, we believe that the refined implementation of quasi-synchrony (see Section 7.1.2) would lead to better verification results, i.e., closer to [START_REF] Bourdil | Modelchecking real-time properties of an auto flight control system function[END_REF], since it is more accurate than the primary implementation. Unfortunately, we could not validate our intuition by experimentation, due to time pressure.

Reasoning about timed aspects of systems is known to be more detailed and complex than reasoning about untimed ones. To reduce this complexity, one could develop a system meeting a specification in which constraints are abstracted or over-approximated in the first design phases where errors are frequent. In a second phase, the system can be refined to meet precise real-time constraints.

Networks of Programmable Logic Controllers

This section reports our experience in early integration of GRL in the design process of PLCs. The experience is in collaboration with Crouzet Automatismes in the context of the industry-led Bluesky project. Crouzet has an internal software named em4soft for the design of PLCs. The software builds upon a synchronous dataflow language, with a graphical syntax based on block diagrams, and with no formal semantics. For example, the block diagram depicted in Figure 7.9 is the design sheet of the exit PLC in the car park application (See Example 3.7, page 42 for the corresponding GRL code).

The aim of the project is to distribute several PLCs and make them communicate via either wired or wireless network. This paves the way for distributed PLC-applications such as green buildings in which PLCs cooperate together to enhance energy management. Modelling aspects of the car park application have been introduced in Chapter 3 and the complete GRL model is available in Appendix B. In the sequel, we report few experiments on LTS generation and verification. Then, we briefly sketch the current status of the Bluesky project.

The car park application

Property specification The verification task concerns the following properties, which are formalised in muGRL in the table below: Verification results For the car park system involving only data constraints, properties P1 and P2 do not hold on the system LTS. For property P1, idleness was expected: when no car enters or leaves the car park, blocks do not progress and remain idle. Property P2 requires that each message sent by the exit PLC, indicating a car leaving, is received by the entrance PLC. The reason for which the property does not hold is twofold:

-No assumption is made on the relative paces of PLCs. Each PLC can then perform several steps before any other PLC could execute in the meanwhile. This situation can be captured by checking the starvation of Entrance, Storey1, and Storey2, as follows:

Starvation_Freedom (Entrance, Exit, Storey1 , Storey2 ) Starvation_Freedom (Storey1 , Exit) Starvation_Freedom (Storey2 , Exit)
-The message indicating the car leaving can be silently lost or duplicated due to medium unreliability.

An error management mechanism should then be implemented in the system, alerting the user as soon as a transmission failure occurs.

Industrial use of GRL

A connection from em4soft to GRL is automated. Basically, em4soft generates executable code to be embedded on the PLCs, after performing static analysis, including causality analysis. The em4soft compiler has been enhanced to also generate GRL models of blocks. Such connection is quite straightforward, once causality analysis has already been done. Additionally, GRL environments constraining the data of individual PLCs are automatically generated. This enables verification of synchronous components to be performed either by visual checking or by writing down temporal logic properties (mainly safety patterns).

Still, GRL mediums together with activation constraints should be encoded by hand by engineers, at the time being. The reason is that the software does not yet support multisheets enabling GALS design. As a future direction, the aim is to develop a catalogue of generic GRL environments and mediums, that can be automatically generated from em4soft. Crouzet investigates to invest in using GRL as a textual language with formal semantics for em4soft.

Chapter 8

Conclusion

GALS systems are composed of several synchronous components, interacting asynchronously. While asynchronous concurrency is a central topic in GALS modelling, the practical impact of the underlying verification techniques is still limited in many design processes. A main reason is the inherent complexity of asynchronous concurrency and dedicated techniques, resulting in a steep learning curve.

Summary of contributions

This thesis proposes a fresh look at formal modelling and verifying GALS systems, taking asynchronous concurrency as major subject. The main intent behind the proposed approach was twofold: (i) transferring verification techniques for asynchronous systems to GALS design (ii) studying the adequacy of these techniques with GALS behaviour. Our solution consists in devising specific languages matching the knowledge and intuition of GALS designers. To this aim, we defined a behavioural description language, GRL, and a property specification language, muGRL.

We originally designed GRL as an intermediate format that connects GALS design languages to formal verification tools. Synchronous blocks can be defined using a minimal set of core constructs to which synchronous languages can be translated. Asynchronous environments and mediums can be defined using built-in constructs to model arbitrarilycomplex GALS systems. The degree of asynchronous concurrency is by default maximal, enabling all possible behaviours to be modelled. It can be adjusted using environments to meet bounded nondeterministic and deterministic GALS applications or even yet sequential scenarios. Communication mediums with complex buffering mechanisms can be described. This enables to address the frequently occurring communication schemes in GALS systems, namely, communication by sampling and FIFO queues, which may be reliable or not.

We formally defined the semantics of GRL. Formal semantics improved our understanding of all the language subtleties and helped us in tool construction.

We defined a translation from GRL into LNT. An encoding of GALS behaviour in asynchronous process languages is proposed. In particular, the atomicity of blocks is preserved by a locking mechanism. Not only the locking mechanism reduces the resulting state spaces, but also is particularly useful to count block steps for verification purpose.

We designed muGRL to assist non-expert users in specifying system requirements. It builds on a collection of high-level and parameterisable patterns that capture recurring properties for GALS systems. Properties result from a pragmatic survey on the state-ofthe-art verification of synchronous and asynchronous systems. muGRL is implemented by a translation (not completely automated yet) into MCL.

We confronted GRL and muGRL with several case studies to explore their capability in addressing real-life systems. Case studies are issued from both academia and industry. An implementation of quasi-synchrony in an asynchronous model of time is proposed and its functional correctness is verified. In a collaboration with IRT-Saint Exupéry (Toulouse, France), the modelling and verification of an AutoFlight Control System with stringent timing requirements are studied. The quasi-synchrony implementation has been used for this system, leading to reasonable experimentation results. In the framework of the Bluesky project, networks of PLCs with a high degree of asynchronous concurrency are addressed.

We concluded that verification tools for asynchronous systems, including CADP, are adequate to address arbitrarily-complex GALS systems. The accuracy of verification results relies on suitable behavioural abstractions of the intended system.

Industrial feedback

Despite its young age, GRL appears to have a good acceptance by GALS designers.

From the outset of the Bluesky project, Crouzet provided us with significant amount of insights and feedback about both design choices and user-convenience of GRL and muGRL. An early integration of GRL in Crouzet's design process of PLCs has started and is under experimentation. At the time being, only synchronous blocks and generic environments can be automatically generated. Unfortunately, we could not explore the asynchronous aspects of GRL and muGRL because the current design process does not yet support GALS systems. Crouzet is still very optimistic about the usefulness and user-convenience of GRL and muGRL. A new PhD thesis is going to start as a continuation of this work.

Beyond the Bluesky project, our collaboration with IRT-Saint Exupéry was fruitful. Quoting them: "We are extremely interested by this work, because we believe it deals with an essential problem". GRL is currently evaluated in IRT-Saint Exupéry.

These experiences reinforce our conviction about the pressing need to deal with asynchronous concurrency in the construction of GALS systems. It also shows that domain-Chapter 8. Conclusion specific languages are an appropriate solution for disseminating asynchronous concurrency techniques to industry.

Directions for future work

The focus of this thesis was on designing GALS-specific languages and tools. While we achieved most of our objectives, we foresee several directions for future work.

From a language-design point of view, GRL could be extended with the following aspects:

Generic libraries. For the frequently used synchronous programming operators, activation strategies, and communication mediums, one could write libraries in a generic and reusable fashion. These libraries, once functionally verified, could be reused safely. Equivalence checking. A GALS system can be checked against a more abstract behaviour of the expected service. Work1 on this direction has started in the Bluesky project, but faced a lack of expressiveness in GRL. Service description requires to abstract from the system composition into components, which is not possible in the actual version of GRL. In this respect, GRL systems can be extended to ease the formalisation of services.

From a language-implementation point of view, proving formally the correctness of the translation from GRL to LNT is an ambitious task. GRL is still a young language in experimentation phase; it may undergo several changes in the future. We prefer to postpone the translation proof to more stable versions of GRL. In a nearer future, we foresee to fully automate the translation from muGRL into MCL and map verification diagnostics back to GRL.

The connection of GRL to CADP provides the user with various verification tools and techniques. The following would be useful for GALS systems:

Compositional verification. Asynchronous concurrency may lead to state-space explosion. In this respect, compositional verification techniques achieve promising reductions. These techniques are still inherently complex and rely on the target system architecture. Automatic generation of interfaces [KM97, Lan06] could be particularly interesting for GRL systems. This technique generates a component LTS by considering the behavioural restrictions imposed by the component neighborhood. Hence, the states that are never explored in the LTS of the whole system are eliminated in the component LTS. For more efficiency, automatic generation of interfaces could be combined with property-dependent reductions (Chapter 7). Probabilistic verification. Real-life GALS systems are subject to unreliable and unpredictable phenomena, such as message loss and component failure. We illustrated the way such stochastic phenomena could be modelled in GRL using nondeterminism. Once the GRL model is functionally verified, its LTS could be enriched by attaching probabilities to transitions. This way, transitions could be chosen probabilistically instead of nondeterministically. Probabilistic verification could be achieved on such LTSs. For example, one could estimate what is the failure rate of redundant components in fault-tolerant systems. ---------------------------------------------------------------------------- 

l i s h an a l t i t u d e t a r g e t based on the r e c e i v e d p o s i t i o n from CP COM --and send i t to AFS MON f o r v a l i d a t i o n

Compute_Alt ( cp_com_target_position , ?afs_mon_alt_target ) ; --a d e c i s i o n i s taken based on the v a l i d i d t y v e r d i c t i f ( mon_alt_target_valid ) then v a l i d a t e d _ t a r g e t := mon_alt_target_value ; l a s t _ v a l i d a t e d _ t a r g e t := v a l i d a t e d _ t a r g e t e l s e v a l i d a t e d _ t a r g e t := l a s t _ v a l i d a t e d _ t a r g e t end i f ---------------------------------------------------------------------------- ------------------------------------------------------------------------------ when <com_from_mon_afs_target_validated , com_from_mon_afs_target_isvalid> -> com_from_mon_afs_target_validated := v a l i d a t e d _ t a r g e t ; com_from_mon_afs_target_isvalid := i s v a l i d _ t a r g e t end s e l e c t end s e l e c t end medium --------------------------------------------------------------------------------Medium modelling communication from the monitoring to the command channels medium AFDX_MON_to_COM [ r e c ei v e mon_to_com_afs_target_validated : int , mon_to_com_afs_target_isvalid : bool , send com_from_mon_afs_target_validated : int , com_from_mon_afs_target_isvalid : bool ] i s s t a t i c var v a l i d a t e d _ t a r g e t : i n t := 0 , i s v a l i d _ t a r g e t : bool := f a l s e s e l e c t when ?<mon_to_com_afs_target_validated , mon_to_com_afs_target_isvalid> -> v a l i d a t e d _ t a r g e t := mon_to_com_afs_target_validated ; i s v a l i d _ t a r g e t := mon_to_com_afs_target_isvalid [ ] when <com_from_mon_afs_target_validated , com_from_mon_afs_target_isvalid> -> com_from_mon_afs_target_validated := v a l i d a t e d _ t a r g e t ; com_from_mon_afs_target_isvalid := i s v a l i d _ t a r g e t end s e l e c t end medium ------------------------------------------------------------------------------- ---------------------------------------------------------------------------- expected TRUE end property

--Block o b s e r v e r checking that a movement d e t e c t i o n i n f o r m a t i o n i s s u s t a i n e d --f o r a f i x e d duration , i f no new movement d e t e c t i o n has occurred e v e r s i n c e block

  Meaning a1, . . . , an possibly empty finite sequence of elements of length n a0, . . . , an non-empty finite sequence of elements of length n+1 ( if empty) {a1, . . . , an} possibly empty set of elements a1, . . . , an of size n {a0, . . . , an} non-empty set of elements a0, . . . , an of size n+1 ({} if empty) a1, . . . , an possibly empty list of elements a1, . . . , an of size n ( if empty) a0, . . . , an non-empty list of elements a0, . . . , an of size n+1 a ∈ A a is an element of the set A A ⊆ B A is a subset of the set B {a ∈ A | P (a)} the set which contains only elements of A satisfying property P A × B the set of all ordered pairs (a, b) where a ∈ A and b ∈ B (Cartesian product) 1..n interval whose elements range from 1 to n
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 3 Figure 3.1: Schematic representation of the exit PLC (car park application)

  type ::= bool | nat | nat16 | nat32 | int int16 | int32 | char | string | T type_definition ::= type T is type_expression end type type_expression ::= range m ... n of type | enum C 0 , . . . , C n | record f 0 :type 0 , . . . , f n :type n | array [m...n] of type

1

  block B_Edge {Rising_Mode : bool := true , Falling_Mode : bool := f a l s e } 2 ( i n Logic_Signal : bool := true , 3 out Edge_Detected : bool ) i s 4 s t a t i c var Pre_Signal : bool := f a l s e 5 var Rise , F a l l : bool 6 Rise := Logic_Signal and not ( Pre_Signal ) ; 7 F a l l := not ( Rise ) ; 8 Edge_Detected := ( Rising_Mode and Rise ) or ( Falling_Mode and F a l l ) ;

1 a l i a s

  B_Edge {_, _} as Rising_Edge 2 a l i a s B_Edge { f a l s e , true } as Falling_Edge

1

  environment D i s a b l e {C: bool := true }( block B) i s 2 i f not C then enable B end i f 3 end environment Example 3.11. Consider a system composed of highest-level blocks B1, . . . , Bn.

1 type c a s e s i s 2 enum

 2 Car_Park , Car_P1 , Car_P2 , Car_Ex , None 3 end type

1

  environment Scen_Data ( out Cmd_Park : bool , out Cmd_P11, Cmd_P12: bool , 2 out Cmd_P21, Cmd_P22: bool , out Exit_P1 , Exit_P2 : bool ) car e n t e r s the car park 6 when <Cmd_Park> -> Cmd_Park := true --Entrance PLC data 7 --the t i c k e t g i v e n to the car i n d i c a t e s s t o r e y 1 8 --a c c e s s to s t o r e y 2 w i l l be denied 9 [ ] when <Cmd_P11, Cmd_P12> -> Cmd_P11 := true ; --Storey2 PLC data Cmd_P12 := f a l s e -

  [ ] when <Cmd_P21, Cmd_P22> -> Cmd_P21 := true ; --Storey1 PLC data Cmd_P22 := f a l s e --a car parking i n Storey1 asks to l e a v e [ ] when <Exit_P1 , Exit_P2> -> Exit_P1 := true ; --E x i t PLC data Exit_P2 := f a l s e end s e l e c t end environment

  med ::= medium M {vars c } [receive vars r0 , . . . , receive vars rm , send vars s0 , . . . , send vars sn ] is alias B 0 {args 0 } as B 0 , . . . ,B k {args k } as B k static var vars p0 . . . static var vars pr var vars t0 . . . var vars ts I end medium

1

  medium Sampling [ r e c e iv e rec_msg : Bool , send snd_msg : Bool ] i s 2 s t a t i c var buf_msg : Bool := f a l s e --memory shared by connected b l o c k s 3 s e l e c t 4 when ?rec_msg -> buf_msg := rec_msg --message r e c e p t i o n and b u f f e r i n g 5 [ ] when snd_msg -> snd_msg := buf_msg --e m i s s i o n o f the b u f f e r content 6 end s e l e c t 7 end medium

1

  medium Lossy [ r e c e iv e rec_msg : t_msg , send snd_msg : t_msg ] i s 2 s t a t i c var buf_msg : t_msg := empty_msg --I n i t i a l l y , no message i s b u f f e r e d 3 s e l e c t 4 --message r e c e p t i o n 5 when ?rec_msg -> s e l e c t 6 buf_msg := rec_msg --message s t o r e d 7 [ ] n u l l --message l o s t 8 end s e l e c t 9 [ ] --e m i s s i o n o f the b u f f e r content when snd_msg -> snd_msg := buf_msg end s e l e c t end medium

1

  medium FIFO [ r e c ei v e rec_msg : t_msg , send snd_msg : t_msg ] i s 2 s t a t i c var queue : queue := queue ( none ) 3 s e l e c t 4 when ?rec_msg -> enqueue ( rec_msg , queue , ?queue ) 5 [ ] when snd_msg -> dequeue ( queue , ?queue ,

I

  terminates without encountering any signal B0

  init ( vars1 , . . . , varsn , ρ) = init (vars1 , ρ) ⊕ . . . ⊕ init (varsn, ρ) init (X1 , . . . ,Xm:type, ρ) = [] init (X1 , . . . ,Xm:type := E, ρ) = [X1 ← e, ..., Xm ← e] where {E} ρ →e e Example 4.5. Consider the following GRL code excerpt.

1

  const C: nat := 3 --g l o b a l constant d e c l a r a t i o n 2 block . . . i s 3 var X1 , X2 : nat := C + 1 --v a r i a b l e d e c l a r a t i o n 4 . . . 5 end block

  varsin k , ρ, ρ ) = k∈1..m init (varsin k , ρ) ⊕ k∈1..m assign (actsin k , get_vars(varsin k ), ρ ) if ++ Consider the following GRL code excerpt. 1 block i s e q u a l ( i n X1 , X3 : nat := 0 , out Y: bool ) i s 2 Y := (X1 == X2) By applying function init_assign in stores ρ = [] and ρ = [a ← 3], we have:

  ρi+1 = ρi ⊕ [Xi+1 ← ei+1] where {Ei+1} ρi -→e ei+1 (∀i ∈ 0..n -1) ρ glob = ρn Example 4.10. Consider the following ordered list of constant declarations.1 const X1 : nat := 0 2 const X2 : nat := X1 + 1

  k∈1..m acts in k , σ, ρ, µ)" returns a local store in which the body of C will execute.-"return ( ++ k∈1..n acts out k , σ.C , ρ, ρ ret , µ ret )" returns a couple (store, memory) updating the current store and memory. Store ρ ret and memory µ ret are assumed to be produced by the component invocation. More precisely, during the execution of C , store "body (args c , ++ k∈1..m acts in k , σ, ρ, µ)" is constructed. It assigns values to constant, input, and receive parameters as well as to temporary and static variables. For this purpose, intermediate stores ρ c , ρ in , ρ sv , and ρ v , are constructed as follows: -Store ρ c assigns values to formal constant parameters, using function init_assign. Default expressions of constant parameters may depend on global constants, which are assigned in store ρ glob . ρc ∈ init_assign (argsc, varsc, ρ glob , ρ) -Store ρ in assigns values to formal input and receive parameters. Default expressions of input parameters may depend both on global constants and constant parameters of C, which are assigned in store ρ glob ⊕ ρ c . ρin ∈ init_assign ( ++ k∈1..m actsin k , ++ k∈1..m varsin k , ρ glob ⊕ ρc, ρ) -Store ρ v assigns to temporary variables the evaluation of their respective initialisation expressions. Such expressions may depend on global constants as well as on constant and input parameters of C , all of them assigned in store ρ glob ⊕ ρ c ⊕ ρ in . ρv = init (varsv, ρ glob ⊕ ρc ⊕ ρin) -Store ρ sv assigns values to static variables. Each variable is assigned the value it has in the end of the previous step of C and available in the store µ (σ.C ). An exception is the first step, during which static variables are assigned the values of their default expressions. Default expressions may depend on global constants and the constant parameters of C , which are both assigned in store ρ glob ⊕ ρ c . ρsv = static (varssv, σ, ρ glob ⊕ ρc, µ)

  ρexec ∈ body (argsc, ++ k∈1..m actsin k , σ, ρ, µ) (P 2) {I0 } σ.B , ρexec, µ -→i ρret, µret (P 3) (ρ , µ ) = return ( ++ k∈1..n actsout k , σ.B , ρ, ρret, µret) {B (actsin 1 , . . . ,actsin m ,actsout 1 , . . . ,actsout n )} σ, ρ, µ -→i,s ρ , µ Table 4.4: Sos rule of blocks The execution of the invoked block starts by constructing a local store ρ exec (premise P1 ) in which the block body I 0 will execute (premise P2 ). All actual input parameters are required for block execution ( ++ k∈1..m acts in k = ). The execution of the block invocation terminates by producing store ρ and memory µ (premise P3 ). All actual output parameters are updated when the block returns ( ++ k∈1..n acts out k = ). The label of the transition is necessarily , since GRL static semantics prohibit the use of signals inside blocks. Example 4.11.

1

  block B_Edge {Rising_Mode : bool := true , Falling_Mode : bool := f a l s e } 2 ( i n Logic_Signal : bool := true , 3 out Edge_Detected : bool ) i s 4 s t a t i c var Pre_Signal : bool := f a l s e 5 var Rise , F a l l : bool 6 Rise := Logic_Signal and not ( Pre_Signal ) ; 7 F a l l := not ( Rise ) ; 8 Edge_Detected := ( Rising_Mode and Rise ) or ( Falling_Mode and F a l l ) ;

Example 4. 13 .

 13 Consider the definition and invocation of environment Signal below. 1 environment S i g n a l ( out Cmd: bool ) i s 2 when Cmd -> Cmd := true 3 end environment 4 . . . 5 S i g n a l ( ?Cmd)

  transition (<X1 , . . . , Xn>, ρ) = transition (X1 , ρ), . . . , transition (Xn, ρ) transition (?<X1 , . . . , Xn>, ρ) = transition (X1 , ρ), . . . , transition (Xn, ρ) transition (<any type1 , . . . , any typen>, ρ) = _, . . . ,_ transition (<_, . . . , _>, ρ) = _, . . . ,_ transition (?<_, . . . , _>, ρ) = _, . . . ,_ transition (X0 , ρ) = X0 = ρ(X0 ) if X0 ∈ visible (S) _ otherwise where visible (S) denotes the set of the visible parameters in S

  connexion (any type0 ) = wildcard connexion (<X1 , . . . ,Xn>) = connected connexion (?<X1 , . . . ,Xn>) = connected connexion (<_, . . . ,_>) = unconnected connexion (?<_, . . . ,_>) = unconnected connexion (any type1 , . . . ,any typen) = wildcard We will also use function mode (see Section 4.7.1, page 75), mapping actual parameters and channels to the set {in, out}. Functions connexion and mode allow us to define the following sets on actual parameters and channels: -The set indices(C , arg, in, unconnected) contains the indices of unconnected input an receive actual parameters. indices(C , arg, in, unconnected) = {k ∈ indices(C , arg) | mode(arg k ) = in ∧ connexion(arg k ) = unconnected} -The set indices(C , arg, out, unconnected) contains the indices of unconnected output and send actual parameters. -The set indices(C , chan, connected) contains the indices of connected actual channels. indices(C , chan, connected) = {k ∈ indices(C , chan) | connexion(chan k ) = connected} Example 5.2. Consider the following block invocation, either inside another component or inside a system. 1 B ' (X, _, ?Y, ?_)

  dl2gate_dl (vars) = gate(get_vars (vars)): channel(get_types (vars))

  arg,out,unconnected) unconnected2var (C , k) unconnected2var (C , k) = variable (C , k):t2t (type (C , k)) where C → C

  chan2var (C , <arg1 , . . . , argn>) = chan2var (C , arg1 , . . . , argn) chan2var (C , ?<arg1 , . . . , argn>) = chan2var (C , arg1 , . . . , argn) chan2var (C , arg1 , . . . , argn)

  chan2b (C , <X1 , . . . ,Xn>) = gate(X1 , . . . , Xn) (!X1 , . . . ,!Xn) chan2b (C , ?<X1 , . . . ,Xn>) = gate(X1 , . . . , Xn) (?X1 , . . . ,?Xn) chan2b (C , <any type1 , . . . ,any typen>) = variable (C , 1) := any t2t (type1 ); . . . ; variable (C , n) := any t2t (typen) chan2b (C , ?<_, . . . ,_>) = null chan2b (C , <_, . . . ,_>) = null Example 5.10. Consider the GRL code excerpt given in Example 5.7. By applying chan2b, we have:

way 3 .

 3 get_state (C) = static (C) ++ ++ B ∈ sub(C) ∧ B → B build_state (B , get_state (B))For blocks Sub and High: get_state (Sub) = X : bool := false get_state (High) = X : bool := false, Sub_X : bool := false

1

  --GRL code 2 Foot (_, ?X) ; --not a l i a s e d b e f o r e 3 Small (X, ?Not_X ) ;

1

  system S4 . . . i s 2 a l i a s Def ault as Default , D i s a b l e as D i s a b l e

-

  The set indices(S, linked) contains the indices of channels that are common between components. indices(S, linked) = k∈indices(S,block) indices(S, B k , linked) indices(S, B k , linked) = {j ∈ indices(B k , chan) | (∃p ∈ indices(S, env) ∧ j ∈ indices(N p , chan) ∨(∃q ∈ indices(S, med) ∧ j ∈ indices(M q , chan) -The set indices(S, unlinked) contains the indices of connected channels that are used in exactly one environment or medium. The set uses function connexion defined in Section 5.4.1 (page 84). indices(S, unlinked) = k∈indices(S,env)∪indices(S,med) indices(S, C k , unlinked)

  visible (S) = ++ j∈ indices(S, block) ∩indices(S, visible) connected2gate_dl(B j ), ++ j∈ indices(S, env) ∩indices(S, visible) chan2gate_dl(N j ), ++ j∈ indices(S, med) ∩indices(S, visible) chan2gate_dl(M j ) (a) hidden (S) = ++ j∈ indices(S, block) \indices(S, visible) connected2gate_dl(B j ), ++ j∈ indices(S, env) \indices(S, visible) chan2gate_dl(N j ), ++ j∈ indices(S, med) \indices(S, visible)

Figure 5 . 1 :

 51 Figure 5.1: LTSs describing LTS GT (left-hand side) and LTS LNT (right-hand side)

1

  [ true * . {Gate_OPEN ! true } ] 2 mu X. (<true> true and [ not ({Gate_GREEN_YELLOW_RED ! true ?any ?any}) ] X)

  Figure 6.1: Interpretation model of muGRL

  {Exit} . ({Cmd_P1 = true, Cmd_P2 = false} or {Cmd_P1 = false, Cmd_P2 = true}) . true . {Out_P1 =? out1 :bool} . {Out_P 2 =? out2 :bool where out1 <>out2 }

  {Cmd_P1 =? cmd1 :bool, Cmd_P2 =? cmd2 :bool where cmd1 <>cmd2 } . {Open = false}  

  {Open = true}, {Cmd_P1 =? cmd1 :bool, Cmd_P2 =? cmd2 :bool where cmd1 <>cmd2 }  

  park is full, a parking car eventually leaves After_Some true * . {Green =? any,Yellow =? any,Red = true}, {Open = true} The car park may never be full Some_Never true * , true * . {Green =? any,Yellow =? any,Red = true} A message sent by the exit PLC on a car leaving must be transmitted to the entrance PLC After_Inev true * . {S_Out1 = true}, true * . {R_Out1 = true}

  var (X0 = e0) = X0 var (X0 =? x0:T0) = X0 var (X0 =? any) = X0 val (X0 = e0) = !e0 val (X0 =? x0:T0) = ?x0:T0 val (X0 =? any) = ?any

  ) ] mu X . (< true > true and [ not a2mcl(A) ] X)

  Data patterns may involve one or several data actions of one or several components. Their interpretation is summarised in

  i n X: bool , out Y: bool )

Figure 6 . 2 :

 62 Figure 6.2: LTSs describing activation policies of Storey1 and Storey2

Figure 6 . 3 :

 63 Figure 6.3: Individual starvation of storey PLCs

1

  block I n c o n s i s t e n t ( i n a , b : nat , out c : nat ) i s 2 s t a t i c var pre_c : nat := 0 3 i f ( pre_c > 0) then 4 c := ba ; pre_c :

  * . {X = x} . true * . {X = x})) implies Saturation (true * . {Y = y} . true * . {Y = y}) Stability (X, Y ) ( X∈X Never (true * . {X = x} . true * . {X = x})) implies Y ∈Y Saturation (true * . {Y = y} . true * . {Y = y})

Sustain

  (true * . {Open_Park = true}, {Green =? any, Yellow = true, Red =? any}, {Green =? any, Yellow = false, Red =? any}, n)

1

  macro Not_To_Unless (A, B, C) = 2 [ true * . A. ( not (C) ) * . B] s t a i n (R, A1 , A2 , n) = [ R ] nu Counter ( c : nat := 1) . ( ( ( c < n) i m p l i e s ( [ A2 ] f a l s e and [ A1 ] Counter ( c + 1 ) ) ) and [ not (A1 or A2) ] Counter ( c ) ) end_macro At the time of writing, the complete translation into MCL is not yet automated.Chapter 7

Figure 7 . 1 :

 71 Figure 7.1: LTSs describing different activation strategies for a set of blocks

Figure 7

 7 Figure 7.2: LTS describing the activation strategy of basic quasi-synchrony (primary implementation)

1Figure 7

 7 Figure 7.3: LTS describing the activation strategy of basic quasi-synchrony (refined implementation)

Figure 7 . 4 :

 74 Figure 7.4: Architecture of the AFCS

Figure 7 . 5 :

 75 Figure 7.5: Schematic view of the FCP components

Figure 7 . 7 :

 77 Figure 7.7: Adding observers to AFS_MON

Figure 7 . 9 :

 79 Figure 7.9: Block diagram of the exit PLC (car park application)

(

  P1) The system composed of blocks Entrance, Storey1, Storey2, and Exit may be idle (P2) Each time a car leaves, the car park availability is updated Property Formalisation in muGRL P1 Idle (Entrance, Storey1 , Storey2 , Exit) P2 After_Inev (true * . {S_Out1 = true}, true * . {R_Out1 = true})

: i n t ] i s s t a t i c var

  ---Block modelling the command channel o f the AFS component block AFS_COM ( out v a l i d a t e d _ t a r g e t : i n t ) [ r e c ei v e cp_com_target_position : int , --r e c e i v e knob p o s i t i o n from CP_COM r e c ei v e mon_alt_target_value : int , --r e c e i v e t a r g e t v a l u e from AFS_MON mon_alt_target_valid : bool , --along with i t s v a l i d i l t y v e r d i c t send afs_mon_alt_target l a s t _ v a l i d a t e d _ t a r g e t : i n t := 0 --e s t a b

  Observer_P14 { d u r a t i o n : nat := default_afs_mvt_prolong } ( i n cp_mon_mvt , detected_mvt : bool , out ok : bool ) i s s t a t i c var counter : nat := 0 , pre_cp_mon_mvt : bool := f a l s e , t r i g g e r _ c o u n t : bool := f a l s e i f ( not (pre_cp_mon_mvt) and cp_mon_mvt) then --a movement i s detected t r i g g e r _ c o u n t := true end i f ; i f ( t r i g g e r _ c o u n t and ( counter < d u r a t i o n ) ) then ok := ( detected_mvt == true ) ; counter := counter + 1 e l s e ok := true ; t r i g g e r _ c o u n t := f a l s e end i f ; pre_cp_mon_mvt := cp_mon_mvt end block -

  ---Environment e n s u r i n g that two b l o c k s e v o l v e at m u l t i p l e s o f the same pace environmentAFS_Act {max_com : nat := 1 , max_mon: nat := 3} ( block AFS_COM, AFS_MON) i s s t a t i c var count_mon , count_com : nat := 0 s e l e c t i f ( count_com < max_com) then count_com := count_com + 1 ; enable AFS_COM end i f [ ] i f (count_mon < max_mon) then count_mon := count_mon + 1 ; enable AFS_MON end i f end s e l e c t ; i f ( count_com >= max_com) and (count_mon >= max_mon) then count_com :

-

  Medium modelling an AFDX medium AFDX [ r e c ei v e com_to_mon_afs_target_validation : int , send mon_from_com_afs_target_validation : int , r e c ei v e mon_to_com_afs_target_validated : int , mon_to_com_afs_target_isvalid : bool , send com_from_mon_afs_target_validated : int , com_from_mon_afs_target_isvalid : bool ] i s s t a t i c var a f s _ t a r g e t _ v a l i d a t i o n : i n t := 0 , A.1. The GRL model v a l i d a t e d _ t a r g e t : i n t := 0 , i s v a l i d _ t a r g e t : bool := f a l s e s e l e c t s e l e c t when ?<com_to_mon_afs_target_validation> -> a f s _ t a r g e t _ v a l i d a t i o n := com_to_mon_afs_target_validation [ ] when <mon_from_com_afs_target_validation> -> mon_from_com_afs_target_validation := a f s _ t a r g e t _ v a l i d a t i o n end s e l e c t [ ] s e l e c t when ?<mon_to_com_afs_target_validated , mon_to_com_afs_target_isvalid> -> v a l i d a t e d _ t a r g e t := mon_to_com_afs_target_validated ; i s v a l i d _ t a r g e t := mon_to_com_afs_target_isvalid [ ]

  ) macro Always_Some (A) = [ t r u e * ] < t r u e * . A> t r u e end_macro (

  ) macro Alive_A (A) = [ t r u e * . A] <t r u e * . A> t r u e end_macro (

  ) macro Deadline (R, A1 , A2 , n) = Never (R. ( not (A1) ) * . (A1 . ( not (A1 or A2) ) * ){n+1}) end_macro (

  ) macro Not_To_Unless_Most (A1 , A2 , A3 , n) = Deadline ( t r u e * . A1 , A3 , A2 , n) end_macro (

  ) macro S u s t a i n (R, A1 , A2 , n) = [ R ] nu Counter ( c : nat := 1) . ( ( ( c < n) i m p l i e s ( [ A2 ] f a l s e and [ A1 ] Counter ( c + 1 ) ) ) and [ not (A1 or A2) ] Counter ( c ) ) end_macro ( * ------------------------------------------------------------------------ * )

  Synchronous imperative languages are inspired by classical imperative languages, i.e., in which the program structure reflects the order in which operations execute. They allow a modular description of reactive systems that require complex control structures. Esterel[START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF] has a textual syntax close to parallel programming languages such as ADA and Occam. It provides, in addition to the classical algorithmic control structures, concurrency primitives inspired by SCCS and Meije, as well as preemption structures. Argos[START_REF] Maraninchi | The Argos Language: Graphical Representation of Automata and Description of Reactive Systems[END_REF] is a graphical language, based on the Statecharts[START_REF] Harel | Statecharts: A Visual Formalism for Complex Systems[END_REF] formalism. An Argos program consists of hierarchical Mealy machines. These are finite-state automata in which outputs and next-state are both determined by the current-state and the current inputs.

Synchronous declarative languages are inspired by earlier studies on dataflow models

[START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF][START_REF] Mcgraw | The VAL Language: Description and Analysis[END_REF]

. They allow the description of reactive systems that perform intensive data computation. Programs are described as networks of interconnected operators, evolving in parallel, and triggered by input arrivals. Lustre

[START_REF] Halbwachs | The synchronous dataflow programming language LUSTRE[END_REF] 

is a functional language with textual syntax. A Lustre program is based on Mealy machines, the notion of state being implicit, unlike Argos. Signal

[START_REF] Le | Programming Real-Time Applications with Signal[END_REF] 

is a relational language, defining relations between input and output flows (timed sequences of values), rather than simple functions as in Lustre. Contrarily to other synchronous languages, Signal programs are not necessarily deterministic. Each component induces its own constraints, which restrict the nondeterminism of the program. The Signal compiler is able to check the determinism of the conjunction of all constraints. This is the essence of the so-called multiclock or polychronous semantic model. Causality problems in synchronous languages are either forbidden using static constraints (e.g., in Lustre) or resolved by the compilers using causality analysis algorithms. Examples of such algorithms are conditional dependence graph in Signal and computation of fixpoints in Esterel. Additionally, most synchronous languages are equipped with delay operators, which keep track of the values carried by expressions from one program step to the next. Based on how delay operators are used in a program, the compiler builds automatically an internal state.

  Communication mechanisms are required to enable interaction between concurrent components, as the time in which input and output events occur is unspecified. Existing communication mechanisms include shared memories and message-passing communication.Shared memory communication, introduced by Dijkstra [Dij65], enables concurrent components to communicate by altering the contents of shared locations. Languages adopting this mechanism include Java and C#. The access of concurrent components to shared locations should be controlled, for example, by using mutual exclusion protocols.

Well-known examples of such protocols are Peterson's and Dekker's protocols.

Message-passing enables concurrent components to communicate with each other by exchanging messages. Message exchange can be either synchronous or asynchronous.

  New Technology) [CCG + 16] is a specification language derived from the ISO standard E-Lotos[START_REF]ISO/IEC. Enhancements to lotos (e-lotos). International Standard 15437[END_REF]. The LNT.OPEN tool translates LNT specifications into LTSs, given in BCG (Binary Coded Graphs) file format, suitable for on-the-fly exploration. Section 2.4.2 presents informally a subset of the LNT language.

MCL (Model Checking Language)

[START_REF] Mateescu | A Model Checking Language for Concurrent Value-Passing Systems[END_REF] 

is an expressive temporal logic, extending the alternation-free µ-calculus

[START_REF] Emerson | Using branching time temporal logic to synthesize synchronization skeletons[END_REF] 

with generalised regular expressions, data-based constructs, and fairness operators. The EVALUATOR 4.0 model checker implements an efficient on-the-fly model checking procedure for MCL. It also exhibits full diagnostics (examples and counterexamples) as subgraphs of the LTS illustrating the truth value of MCL formulas. Section 2.4.3 presents informally a subset of the MCL language.

  The following is an example combining a call to the function check_temperature, with the var operator and variable assignment.

		s
	2	i f ( ambient >= high ) then
	3	alarm := true
	4	e l s e
	5	alarm := f a l s e
	6	end i f
	7	end function
	1	var ambient : temperature , alarm : bool i n
	2	ambient := normal ;
	3	eval check_temperature ( ambient , ?alarm )
	4	end var

1

function check_temperature ( i n ambient : temperature , out alarm : bool ) i

  Gate communicationThe behaviour "G (O 1 . . . O n )" defines a communication on gate G. Offers O 1 , ..., O n describe the data exchanged during the communication. Each offer is either an emission of some expression or a reception of some value in a variable, in which case it is prefixed by ?. There exists an internal gate noted i, which must be used without offer. The following is an example of a behaviour for the coffee machine (Section 2.1.1, page 9), where Coin, Coffee, andTea denote communication actions without offer. The behaviour defines the LTS on the right-hand side.Parallel compositionThe behaviour "par G 0 , . . . , G n in B 0 || . . . || B m end par" defines a parallel composition of behaviours B 0 , . . ., B m . Behaviours communicate by rendezvous on the set of gates {G 0 , . . ., G n }, called synchronisation set. If the synchronisation set is empty, no communication occurs, in which case behaviours are said

		1	hide Coin : none i n	
		2	Coin ;		i
		3	s e l e c t	
		4 5	Coffee [ ] Tea		Coffee	Tea
		6	end s e l e c t	
		7	end hide	
	1	Coin ;	--c o i n i n s e r t i o n	
	2	s e l e c t	--d r i n k s e r v i n g	
	3	Coffee		Coffee	Tea
	4	[ ] Tea		
	5	end s e l e c t	
				Snd_Alarm ! true	Snd_Alarm ! false
		The following are two semantically equivalent examples of nondeterministic assignment
		(left-hand side) and nondeterministic choice (right-hand side), involving type tempera-
		ture:		
				1	s e l e c t
		1 2	ambient := any temperature where ( ambient != very_high )	2 3 4	ambient := low [ ] ambient := normal [ ] ambient := high
				5	end s e l e c t

The behaviour select B 1 [] . . . [] B n end select may execute either B 1 , ..., or B n . Coin The following is an example of a behaviour assigning to variable alarm, a nondeterministically chosen value, which is emitted on gate Snd_Alarm. Such behaviour defines the LTS on the right-hand side: 1 alarm := any Bool ; 2 Snd_Alarm ( alarm ) Channels Similarly to a variable, a gate is typed by a channel, which defines its profiles, i.e., the number and types of the values exchanged on the gate. There exists a predefined channel channel none is () end channel, with which any gate intended for dataless synchronisation can be declared. The following are some examples of channel definition. 1 channel Bool i s ( Bool ) end channel 2 channel Temperature_Bool i s ( temperature , bool ) end channel Hiding Similarly to variables, gates can be declared either as formal gates in the process definition or locally inside a process. The behaviour "hide G 0 : Γ 0 , . . . , G n : Γ n in B end hide" declares gates G 0 , ..., G n of respective channels Γ 0 , ..., Γ n that are only visible in the scope of behaviour B, i.e., hidden from the environment of B. Actions on hidden gates in the behaviour are substituted by the internal action i. The following is an example of behaviour in which actions on gate Coin are hidden. to execute in pure interleaving. Communication is blocking. If a behaviour is waiting for a communication whose gate belongs to the synchronisation set, then this communication can happen only if all behaviours B 0 , . . . , B m can make this communication simultaneously. The following is an example of two actions A and B in pure interleaving:

Chapter 2. Background and State of the Art

  

	This approach has been first implemented in [DMK + 06], where Signal modules are
	compiled into C programs, which are encapsulated into Promela wrappers. Wrappers
	describe an infinite loop of atomic steps, by using the atomic construct of Promela. In
	each loop iteration, all possible values of inputs are generated; then, the C program
	is invoked together with clock constraints; finally, only if the clock constraints are met,
	outputs are computed. The asynchronous composition of wrappers is ensured via specific
	hardware communication buses, based on an early version of an LTTA protocol. Buses
	are abstracted as Promela finite FIFO channels, which are proven equivalent to one-place
	channels. Verification is performed by using LTL (Linear Time Logic) formulas.
	extends Java with Esterel-like synchronous model and CSP-like
	asynchronous model. Hence, unlike CRSM, it inherits the rich data-computation ca-
	pabilities of Java. Components (called clock-domains) of SystemJ are deterministic and
	their asynchronous composition introduces nondeterminism. Such nondeterminism is
	still difficult to verify in the SystemJ framework. Efficient code can be automatically
	generated from SystemJ programs, but relies on Java virtual machines as target. This
	makes the language unsuitable for systems with limited resources. Recently [PMS15],
	a translation has been defined from a subset of SystemJ to LTL formulas, from which
	networks of Mealy automata are synthesised and translated into Promela, thus making
	possible the verification using SPIN.
	Another approach consists in combining synchronous languages and asynchronous pro-
	cess languages. Synchronous components are encapsulated in asynchronous processes
	(called wrappers) to interface with other components. Asynchronous behaviour is de-
	scribed by introducing additional components, in the asynchronous language, to imple-
	ment communication media.

  .1. A module can import other modules, provided there are no circular dependencies. For example, in the module:

	1	module Car_Park ( Entrance , Storey1 , Storey2 , E x i t ) i s
	2	. . .
	3	end module
	none of the imported modules Entrance, Storey1, Storey2, Exit must import module
	Car_Park, even when the import relation is extended to its transitive closure.

Table 3

 3 

	.2: Syntax of GRL type definitions
	setting constraints on block activations. This allows to master the possible interleavings
	between blocks, e.g., a block cannot execute indefinitely in the detriment of the others.
	Activation strategies can model, at a suitable level of abstraction, realistic situations
	such as halting, priorities, and relative paces of synchronous components modeled as
	highest-level blocks.

Table 3

 3 

	.2. GRL data types encom-

nat, bool, and bool, respectively.

  

	.3. Predefined
	functions that can be used in a GRL module are unary operations, binary operations,
	type conversion functions, functions on arrays, and functions on records. Consider for
	example the record type t_msg (see Section 3.3.1). A predefined function t_msg is
	automatically generated. The call to function t_msg below returns a record in which
	each field is set to a value expression, where idx_pre, updated_cars, and cst_max_cars
	are variables of type 1 t_msg ( true , idx_pre , 1 , f a l s e , ( updated_cars == cst_max_cars ) )

Table 3

 3 

	.4. GRL statements are

Table 3

 3 

	.4: Syntax of GRL statements

Table 3

 3 

	.5. Constants are defined by keyword

Table 3

 3 

	.6. A block specification consists

block ::=

block B {vars c } (in vars i0 , . . . , in vars im , out vars o0 , . . . , out vars on ) [receive vars r0 , . . . , receive vars rp , send vars s0 , . . . , send vars sq ] is alias B 0 {args 0 } as B 0 , . . . ,B k {args k } as B k static var vars p0 . . . static var vars pr var vars t0 . . . var vars ts I end block | block B {vars

  c }(in vars i0 , . . . , in vars im , out vars o0 , . . . , out vars on ) is Formal parameters are declared with types and possibly default values. They are classified into constant, input, output, receive, and send parameters. Constant parameters, enclosed in braces, denote configuration data. A constant parameter is read-only, i.e., its value should not be changed in the body I of the block. Input and output parameters are preceded by keywords in and out. They enable blocks to interact either with other blocks (for subblocks) or with the environment (for highest-level blocks). Receive and send parameters are preceded by keywords receive and send. They enable highest-level blocks to interact with mediums, and consequently to asynchronously communicate with other highest-level blocks.

	!c string | !lnt string
	end block
	Table 3.6: Syntax of GRL blocks

  Correspondence between formal parameters of B_Edge and actual parameters used in the three invocations is given in the following table.

	2	B_Edge {_, _}	(_,	? detected )
	3	B_Edge {_, _}	( r e s e t , ?_)	
		Formal parameter	Rising_Mode Falling_Mode Logic_Signal
				1	true	false	value of reset
		Actual parameters	2	true	false	true
				3	true	false	value of reset

Below are three possible invocations of block B_Edge (see Exam-3.4. Blocks ple 3.2). Note that the last invocation is useless, since the block output is unconnected. 1 B_Edge {true , f a l s e }( r e s e t , ? detected ) Subblocks can be aliased, i.e., assigned different names, by using keyword alias. If an aliased subblock has constant parameters, the corresponding actual parameters should be set at aliasing time instead of invocation time. This simplifies the presentation, especially since constant parameters do not participate in subblock interaction.

  .7. An environment specification consists of formal parameters encompassing constant, input, and output parameters; activation parameters prefixed by keyword block and denoting block identifiers; static and temporary variables; subblock aliasing used as routines; and a statement I defining the environment behaviour. This statement can be nondeterministic. It uses all the alternatives of the production defining I in Table3.4, i.e., the same deterministic statements as blocks can be used, extended with nondeterministic assignment, nondeterministic choice, and signals.

blocks ::= B 0 , . . . , B n env ::= environment N {vars c } (in vars i0 , . . . , in vars im , out vars o0 , . . . , out vars on , block blocks b0 , . . . , block blocks bp ) is alias B 0 {args 0 } as B 0 , . . . ,B k {args k } as B k static var vars p0 . . . static var vars pr var vars t0 . . . var vars ts I end environment

Table 3.7: Syntax of GRL environments

  Environment Cmd_Park ensures that no request to enter the car park can be detected, if the entrance gate is already open. Details of the code will be explained in the sequel.

		t Storey2
	4	where not (Cmd_P1 and Cmd_P2)
	5	end environment
	Example 3.9.

1 environment Env_Storey ( out Cmd_P1, Cmd_P2: bool ) i s 2 when <Cmd_P1, Cmd_P2> -> Cmd_P1 := any bool ; --s e l e c t Storey1 3 Cmd_P2 := any bool --s e l e c 1 environment Cmd_Park ( i n Open : bool , out Cmd: bool ) i s 2 s t a t i c var Pre_Open : bool := f a l s e --gate s t a t u s at the block l a s t s t e p 3 s e l e c t 4 when ?Open -> Pre_Open := Open --s t o r e gate s t a t u s 5 [ ] 6

Table 3 .

 3 8: Syntax of GRL mediumsA medium interacts with highest-level blocks either by reception (on receive channel) or by emission (on send channel) of tuples of values, called messages in the sequel.

  The memories of its instances are the empty memory [ ].Block B_Edge (Ex. 3.2, page 39) has one static variable Pre_Signal. The block is invoked twice inside Block Exit (Ex. 3.7, page 42). Let call B_Edge_1 and B_Edge_2 the names associated to the subblocks. The respective memories of the instances are initially:

	Example 4.3.	Block C_Shift (Ex. 3.3, page 40) defines no static variables and no
	subblocks.	

Table 4 .

 4 

1: Sos rules of GRL expressions

Table 4

 4 

.2: Sos rules of statements (Excerpts)

Table 4

 4 

.3: Sos rules of signals Rules R8 and R9 state that a signal, after executing the statement I 0 in the current store and memory, terminates normally by producing updated store and memory and by passing a label to the context. According to static semantics, I 0 does not contain a signal statement, since nested signals are forbidden.

  Type list Given a variable declaration list, function get_types returns the ordered list of types with which variables are declared.

	get_vars (vars1 , . . . , varsn)	= get_vars (vars1 )++ . . . ++get_vars (varsn)
	get_vars (X1 , . . . ,Xm:type)	=	X1 , . . . , Xm
	get_vars (X1 , . . . ,Xm:type := E)	=	X1 , . . . , Xm
	get_vars (chan1 , . . . , chann)	= get_vars (chan1 )++ . . . ++get_vars (chann)
	get_vars (<X1 , . . . ,Xm>)	=	X1 , . . . , Xm
	get_vars (?<X1 , . . . ,Xm>)	=	X1 , . . . , Xm
	get_vars (<_, . . . ,_>)	=	
	get_vars (?<_, . . . ,_>)	=	
	get_vars (<any type1 , . . . ,any typem>) =	

get_types (vars1 , . . . , varsn) = get_types (vars1 )++ . . . ++get_types (varsn) get_types (X1 , . . . ,Xm:type) = type, . . . , type m get_types (X1 , . . . ,Xm:type := E) = type, . . . , type m

Initialisation Function init assigns to parameters (resp. variables) their default values (resp. initialisation values). Given a variable declaration list vars and a store ρ, function init returns a store assigning to each variable in vars the evaluation of its default expression in store ρ.

  , . . . , varsin m actsin 1 , . . . , actsin m output / send varsout 1 , . . . , varsout n actsout 1 , . . . , actsout n blocks B b 1 , . . . , B bp B b 1 , . . . , B bp

		formal	actual
	constant	varsc	argsc
	input / receive	varsin 1	

  body ( _, _ , Cmd_P1 , , ρ, µ) = Rising_Mode ← true, Falling_Mode ← false, Logic_Signal ← true, Pre_Signal ← false The execution of B_Edge body terminates by producing a store ρ ret and a memory µ ret given in the table below. Store ρ ret assigns values to temporary variables Rise and Fall, output Edge_Detected, and updates the value of the static variable Pre_Signal. Memory µ ret is equal to µ, since the block does not invoke subblocks.

ρret = Rising_Mode ← true, Falling_Mode ← false, Logic_Signal ← true, Pre_Signal ← true, Rise ← true, Fall ← false, Edge_Detected ← true µret = µ
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.5: Sos rules of environments execution. No output actual parameters are updated by the rule, as denoted by the symbol in function return (premise P3 ).

In a similar way, rule R13 defines the semantics of environment execution when a connected block requests to interact on one output channel chan out i in chan out 1 , . . . , chan outn . No input actual parameters are available, as denoted by the symbol in function body (premise P1 ).

Rule R14 defines the semantics of an environment N when a block whose identifier B b i is in B b 1 , . . . , B bp wishes to perform a step (premise P1 ). The body of N tries to select an execution path containing the signal associated to B b i . If such execution path is reachable, the body executes and the transition label indicates that the signal associated to B b i has executed (premise P2 ); otherwise, N does not execute. No input neither output actual parameters are involved in rule R14, as suggest by symbol in both functions body and return (premises P1 and P3 ).

  The set is either singleton or empty, since at most one environment can constrain a block activation, according to static semantics.Still, to the input and receive channels that are not connected to other components, arbitrary values should be assigned. Let Any (B i ) be a set containing the indices of B i channels of the form <X 1 , . . . , X n > and not connected to other components. Let assign_any be a function assigning arbitrary values to variables. The function returns a set of stores, yielding nondeterminism.

		In (B_Edge) = {3}	Snd (B_Edge) = {}
		Out (B_Edge) = {}	Act (B_Edge) = {2}
		Rec (B_Edge) = {}	Any (B_Edge) = {}
	1	system Main_Edge (X, Y: bool ) i s
	2	a l i a s B_Edge {_, _} as B_Edge
	3	block l i s t
	4	B_Edge (<X>, ?<Y>)
	5	end system

assign_any (<X1 , . . . ,Xn>, T1 , . . . , Tn ) = assign_any (X1 , T1 ) ⊕ . . . ⊕ assign_any (Xn, Tn) assign_any (X , T ) = {[X ← e] | e ∈ T } Example 4.15. Consider system Main defined in Example 4.14. For block B_Edge, we have: Example 4.16. Consider system Main_Edge below.

  Only blocks are of interest. Block identity, input and output values, and interleaving between blocks are all visible on LTSs.Related to the dichotomy into active and passive components is communication asymmetry in GRL. Blocks do not define signals; they are self-activated. Their activation triggers, through signals, medium and environment executions, which always accept to interact. In the Sos rules, asymmetry is expressed by labels in block execution (see Table 4.4, page 71) and labels = in medium and environment execution (see Table4.5, page 73). In process algebra, all components should define communication actions; and communication is performed only if all participant components are ready.

  Table 5.1. The definition of each global constant is translated to an LNT function. The function name corresponds to the GRL constant name. The function returns the value expression assigned to the GRL constant.

			function X1 :t2t (type1 ) is
			return e2v (E1 )
			end function
			. . .
			function Xn:t2t (typen) is
			return e2v (En)
			end function
		Table 5.1: Translation function of global constants
	Example 5.1. Consider the following GRL constants:
	1 --GRL code	
	2	const nb_max_cars : nat	:= 4
	3	const empty_queue : t_queue := t_queue ( no_message )
	These constants are translated to LNT as follows:
	1	--LNT code	
	2	function nb_max_cars : Nat8 i s
	3	return 4 of Nat8	
	4	end function	
	5		
	6	function empty_queue : t_queue i s
	7	return t_queue ( no_message )
	8	end function	

c2f

const X1 : type1 := E1 , . . . ,Xn : typen := En =

  Translation into actual parameters Let dl2ap be a function translating either a GRL formal parameter list, a static variable list, or an activation parameter list to an LNT actual parameter list according to its kind in {in, out, block, static}. GRL input and activation parameters are translated to LNT input parameters. GRL output parameters are translated to LNT output parameters. GRL static variable declarations are translated to LNT "in out" parameters. Note that dl2ap is not defined for receive and send parameters, since it is not used to translate highest-level components.

	dl2ap (var1 , . . . , varn, kind)	= dl2ap (var1 , kind), . . . , dl2ap (varn, kind)
	dl2ap (X1 , . . . ,Xm : type := E0 , in)	= X1 , . . . , Xm
	dl2ap (X1 , . . . ,Xm : type, in)	= X1 , . . . , Xm
	dl2ap (X1 , . . . ,Xm : type, out)	= ?X1 , . . . , ?Xm
	dl2ap (B1 , . . . ,Bm, block)	= B1 , . . . ,Bm
	dl2ap (X1 , .		
		= null	
	Example 5.4.	By applying functions dl2var and dl2s, the left-hand GRL program
	translates to the right-hand LNT program.		
	1	var X: nat := 0	1 2	var X: Nat8 i n X := 0

Let dl2var be a function translating a GRL variable declaration or activation parameter list to an LNT variable declaration list. Activation parameters are translated to LNT parameters of type block (see Section 5.2). dl2var (var1 , . . . , varn) = dl2var (var1 ), . . . , dl2var (varn) dl2var (X1 , . . . ,Xm : type := E0 ) = X1 , . . . ,Xm : t2t(type) dl2var (X1 , . . . ,Xm : type) = X1 , . . . ,Xm : t2t(type) dl2var (B1 , . . . ,Bm) = B1 , . . . ,Bm : block Translation to variable assignments Let dl2s be a function translating a GRL variable declaration list to a sequence of LNT assignments. dl2s (var1 , . . . , varn) = dl2s (var1 ); . . . ; dl2s (varn) dl2s (X1 , . . . , Xm : type := E0 ) = X1 := e2v (E0 ); . . . ; Xm := e2v (E0 ) dl2s (X1 , . . . , Xm : type)

Sometimes, variable declarations and activation parameters need to be translated to actual parameters, e.g., to encode the internal state or to translate subblock aliasing, where actual input and output parameters are not yet available. . . ,Xm : type := E0 , static) = !?X1 , . . . , !?Xm

  Translation into gate declaration Let chan2gate be a function building an LNT gate name from a GRL actual channel. For connected channels, whose indices are in indices(C , chan, connected), the gate name builds upon the names of the variables composing the channel. For other channels, the gate name builds upon the names of the formal parameters corresponding to the GRL actual channel.Let chan2gate_dl be a function declaring typed LNT gates for GRL actual channels of component instance C . Those gates are typed by channels, which are assumed to be declared in the current LNT module 2 .

	chan2gate (C , chan k ) =	gate(get_vars(chan k )) if k ∈ indices(C , chan, connected) gate(get_vars(vars k )) otherwise
	where vars k is the formal parameter list corresponding to chan k

chan2gate_dl (C , chan k ) = chan2gate (C , chan k ) : channel(get_types(vars k ))

where vars k is the formal parameter list corresponding to chan k Example 5.8.

Consider the GRL code excerpt given in Example 5.7. By applying chan2gate_dl, we have:

  The state of a GRL system is composed of the internal states of its highest-level components, static variables being syntactically prohibited in systems. The internal state of a component C is defined by the component static variables concatenated with those of its subblocks, transitively. Each instance C of C has its own copy of the component internal state.Intuitively, we implement the internal state in LNT by means of local variables, which we call state variables. These variables are declared inside the LNT processes corresponding to the GRL highest-level components. To allow state variables to be read and updated by LNT functions corresponding to GRL subblocks, they are propagated through in out parameters to those functions transitively.

	1 2 3 4	block Sub . . . i s s t a t i c var X: bool := f a l s e . . . end block	1 2 3 4 5	block High . . . i s a l i a s Sub as Sub s t a t i c var X: bool := f a l s e . . . end block

Formally, to define the translation of the internal state, we need the following functions:

-Function static concatenates the declaration lists of a component static variables.

For example, if a component C defines the declaration lists: "static var vars 1 , . . . , static var vars n " , then static (C) = vars 1 , . . . , vars n . Contrarily, if C defines no static variables, then static (C) = . For blocks Sub and High, we have: static (Sub) = X : bool := false static (High) = X : bool := false -Function build_state builds the internal state of a component instance C . Concretely, the function creates a copy of the internal state of C, where C → C, in which each variable is given a new unique name. This prevents name clashes, e.g., occurring when several components, used in the same context, define static variables with identical names. build_state (C , vars1 , . . . , varsn) =build_state (C , vars1 ), . . . , build_state (C , varsn) build_state (C , var1 , . . . , varn) =build_state (C , var1 ), . . . , build_state (C , varn) build_state (C , X1 , . . . , Xn:type := E)=variable(C , X1 ), . . . ,variable(C , Xm):type := E For subblock Sub, we have: build_state (Sub, X : bool := false) = Sub_X : bool := false
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 5 GRL static variables cannot be translated similarly, since local variables loose their values between subsequent executions of the function. Rather, the static variables of B, and the internal state of subblock B 0 , are first captured using function get_state; then, they are translated to LNT in out parameters, using functions dl2var. This way, the internal state of B is stored by the caller, giving function B the ability of read and update. an interface C function for each output of the GRL block returning the output value. The name of each function is determined by expanding %i with the output position in function B. The interface C functions are produced in a file with suffix ".fnt". We do not give a formal definition of this translation.The translation generates the LNT function C_Shift and two interface C functions Shift1 and Shift2, returning the respective values of outputs left and right. The following GRL block LNT_Foot, defined by an external LNT function named Foot, translates to the following LNT function.

	.2: Translation functions of block definition
	(a) blocks defined by the user (b) blocks defined by external C
	code (c) blocks defined by external LNT code
	the LNT function. They are deferred to the translation of block aliasing and invocation,
	where those values are useful.
	GRL temporary variables are translated to LNT local variables. Such LNT variables are
	first declared, using function dl2var, then assigned to their initialisation values, using
	function dl2s.

Example 5.11.

In the following, blocks Foot and Dummy translate to the LNT functions Foot and Dummy.

Blocks defined by external C code

Their translation relies on the capability of LNT to import external C code. In compliance with the reference manual of the Lnt2Lotos compiler [CCG + 16], a block defined by external C code is translated to: -an LNT function having the same name as the block (see (b) in Table 5.2). Its formal parameters are obtained as explained in the previous paragraph. The LNT function B encapsulates the generated C code, by using pragmas !implementedby and !external. The !external pragma indicates the use of external C functions in the generated LNT module, in which case the function body is necessarily null. The !implementedby pragma gives the precise name of the function to be used by the back-end compilers. -Blocks defined by external LNT code Their translation is straightforward (see (c) in Table 5.2). A block defined by external LNT code is translated to an LNT function having the same name as the block. The function body consists of a call to the external LNT function. Example 5.13.
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	.3.

Table 5 .

 5 3: Translation functions of subblock aliasing (a2f ) and invocation (i2s) Subblock aliasing is translated to an LNT function, called aliasing function, using the translation function a2f. The aliasing function has the same name 4 as the GRL subblock and declares:-input and output parameters corresponding to those of block B. These parameters will be used later to interact with functions corresponding to other subblocks. in out parameters, which are the state variables implementing the subblock internal state. This way, state variables can be synthesised in a bottom-up manner up to the highest-level component.Inside the aliasing function, the definition function named B is called with the declared state variables and with the actual constant parameters of the subblock. In particular, actual constant parameters are available at aliasing time and not used for interactions. Hence, they are irrelevant when calling the aliasing function.

	Example 5.14. Consider the following aliasing of block Foot.
	1	a l i a s Foot {2} as Large , Foot {_} as Small

  .4, use functions dl2var, dl2s, dl2ap (see Section 5.4.2), functions chan2var, arg2ap, connected2gate, connected2gate_dl, chan2b (see Section 5.4.3), and functions build_state and get_state (see Section 5.4.5).

		process B [connected2gate_dl (B ),
			Start:Block, Finish:none]
		is	
		var chan2var (B , argsc),
			chan2var (B , chani),
			chan2var (B , chano),
			chan2var (B , chanr ),
			chan2var (B , chans),
			dl2var (build_state(B , get_state(B)))
		in	
			dl2s (build_state(B , get_state(B)));
			loop
			Start (B );
	b2p alias B {argsc} as B	=	chan2b (B , chanr );
			chan2b (B , chani);
			eval B (arg2ap (B , argsc),
			arg2ap (B , chani),
			arg2ap (B , chano),
			arg2ap (B , chanr ),
			arg2ap (B , chans),
			dl2ap (build_state(B , get_state(B)), static));
			chan2b (B , chano);
			chan2b (B , chans);
			Finish
			end loop
		end var
		end process
	b2b B (chani, chano)[chanr , chans] = B [connected2gate (B ), Start, Finish]

Table 5 .

 5 4: Translation functions of highest-level block aliasing and invocation

end loop end process channel Block is

  local variables, using function chan2var, to represent the values exchanged on gates. An exception is unconnected input and receive channels, whose values are fetched in the block definition and passed to the LNT function call (see function arg2ap, Section 5.4.3).The wrapper process defines an infinite loop, which implements the implicit synchronous loop of GRL highest-level blocks. Each loop iteration defines a step of the block. The execution of the loop starts by computing input and receive values for the current step, using function chan2b. Only for connected channels, a gate is instantiated to receive values from other processes which are stored in dedicated local variables. Variables corresponding to wildcard parameters are assigned to nondeterministically chosen values. Then, those variables are passed as actual input parameters to function B. The function provides actual output parameters, among which only parameters corresponding to GRL connected channels are emitted through subsequent gates.

Locking mechanism A loop iteration of a wrapper process instantiates sequentially several gate communications. This corresponds to a sequence of transitions in the generated LTS, each gate corresponding to a transition. Such sequences should be atomic, i.e., individual sequences of transitions corresponding to different blocks should not interleave, thus preserving the atomicity of block steps. For this purpose, we introduce a locking mechanism. Additional gate communications, Start and Finish, are added at the beginning and end of each process loop iteration, respectively. These gates enable the process to synchronise with an additional process Mutex, defined as follows:

process Mutex [Start: Block, Finish: none] is loop Start (?any block);-Only the process named "block" can execute Finish -introduced by the translation (block) -type enumerating the names of highest-level blocks, including B' end channel

end loop end var end process

  The following aliasing of block Foot (left-hand side) translates to the following LNT process (right-hand side). No gate in the LNT process is associated to the GRL unconnected input. Contrarily to the translation of subblocks, the internal state of highest-level blocks is implemented using LNT local variables (as anticipated in Section 5.4.5). These state variables are declared, using function dl2var, and initialised, using function dl2s, before starting the synchronous loop. State variables are passed as in out parameters to the encapsulated function, thus propagated to functions corresponding to subblocks, transitively. This way, each loop iteration of a wrapper process starts by reading the values of state variables stored in the previous iteration of the loop and finishes by updating those values. Static variables could not have been translated in a modular way, i.e., independently of the call context of blocks. The corresponding LNT state variables should be defined outside the synchronous loop of highest-level blocks. However, it is worth noticing that the support of in out parameters by LNT enables an elegant and controllable implementation of the state notion while keeping a functional flavour.

					1	process S2_Large [ Gate_I : Chan_nat16 ,
					2	Gate_O : Chan_nat16 ,
					3	S t a r t : Block ,
	1 2 3 4 5 6 Example 5.18. system S2 . . . i s --a l i a s i n g a l i a s Foot {2} as Large . . . --i n v o c a t i o n Consider the following aliasing and invocation of block Dummy 4 F i n i s h : None ] i s 5 var I : Nat16 , O: Nat16 i n 6 loop 7 S t a r t ( Large ) ; 8 Gate_I ( ? I ) ; 9 inside a system S1 . eval Foot (2 , I , ?O) ; Large ( I , ?O) 7 10 Gate_O (O) ; 1 system S1 . . . i s end system 11 F i n i s h 2 a l i a s Dummy as Dummy
	3	. . .			12	end loop
	4	Dummy ( I )		13	end var
	5	end system		14	end process
	The translation generates the following wrapper process:
	1	process S1_Dummy [ Gate_I : Chan_nat , S t a r t : Block , F i n i s h : none ] i s
	2	Example 5.17. var Dummy_X: Nat8 ,	--i n t e r n a l s t a t e d e c l a r a t i o n
	3		I	: Nat8
	4	i n		
	5	Dummy_X := 0 ;
					1	process S3_Large [ Gate_O : Chan_nat16 ,
					2	S t a r t : Block ,
					3	F i n i s h : None ]
					4	i s
		1	system S3 . . . i s	5	var O: Nat16 i n
		2	--a l i a s i n g	6	loop
		3	a l i a s Foot {2} as Large	7	S t a r t ( Large ) ;
		4	--i n v o c a t i o n	8	--v a l u e 0 f e t c h e d i n block d e f i n i t i o n
		5	Large (_, ?O)	9	eval Foot (2 , 0 , ?O) ;
		6	end system	10	Gate_O (O) ;
					11	F i n i s h
					12	end loop
					13	end var
					14	end process
		Translation of the internal state Remark 5.2.

--i n t e r n a l s t a t e i n i t i a l i s a t i o n 6 loop 7 S t a r t (Dummy) ; 8 GATE_I ( ? I ) ; 9 eval Dummy ( I , ! ?Dummy_X) ; --i n t e r n a l s t a t e read and update F i n i s h

  Table 5.5. It uses function gate (see Section 5.4.1).

	i2s when ?<X0 , . . . ,Xn> -> I0 =	gate(X0 , . . . , Xn) (?X0 , . . . ,?Xn); i2s(I0 )	reception data signal
	i2s when <X0 , . . . ,Xn> -> I0	=	i2s(I0 ); gate(X0 , . . . , Xn) (!X0 , . . . ,!Xn)	emission data signal
	i2s enable B0	= Start (B0 )	activation signal
	Table 5.5: Translation of signals	
	Since GRL data signals are communication primitives enabling environments and medi-
	ums to exchange values with blocks, their translation involves value-passing synchro-
	nisations.			
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	.6: Translation functions of environment definition
	(n2p), aliasing (a2p), and invocation (n2b)

  Finally, each environment invocation is translated to the invocation of the corresponding wrapper process. This is done by function n2b (see Table5.6). GRL actual channels are translated to LNT gates, using function chan2gate. GRL actual activation parameters are translated to gate Start.

	1	process S4_Default [ S t a r t : Block ]	1	process S4_Disable [ Gate_Cmd : Chan_bool ]
	2	i s			2	i s
	3	loop			3	loop
	4	D ef ault [ S t a r t ] (B1 , B2)	4	D i s a b l e [GATE_Cmd]
	5	end loop			5	end loop
	6	end process			6	end process
	1 --GRL code	1	--LNT code
	2	D e f a u l t (B1 , B2)	2	S4_Default [ S t a r t ]
	3	D i s a b l e ( ?Cmd)	3	S4_Disable [ Gate_Cmd ]

Example 5.22. The following GRL environment invocations (left-hand side) translate to the following LNT process invocations (right-hand side).

  This parallel composition is itself encapsulated inside a higher-level parallel composition to synchronise with process Mutex on gates Start and Finish. This enables individual synchronisation between process Mutex and block processes. Here is an excerpt of the translation function:Similarly to the translation of blocks, environments and mediums processes are composed in pure interleaving. Here is an excerpt of the translation function:

	par Start, Finish in -locking mechanism
	par -purely interleaved block processes
	b2b (block_invoc1 ) || . . . || b2b (block_invocp)
	end par
	||
	Mutex [Start, Finish]
	end par

par -purely interleaved block processes b2b (block_invoc1 ) || . . . || b2b (block_invocp) end par par -purely interleaved environment and medium processes n2b (env_invoc1 ) || . . . || n2b (env_invocq) -environment processes || m2b (med_invoc1 ) || . . . || m2b (med_invocr ) -medium processes end par

  block_aliasp env_alias 1 , . . . ,env_aliasq med_alias 1 , . . . ,med_aliasr var vars 1 , . . . , vars n

	block list
	block_invoc 1 ,
	, . . . ,
	block_invocp
	environment list
	env_invoc 1 ,
	, . . . ,
	env_invocq,
	medium list
	med_invoc 1 ,
	, . . . ,
	med_invocr
	end system

Tool support Deadlock freedom

  B p ) end type Below, the root LNT processes (right-hand side) correspond to GRL systems (left-hand side). A deadlock in a GRL program leads to a deadlock in the corresponding LNT program. Indeed, deadlocks in GRL occur if: (i) the activation of all blocks is constrained by environments and (ii) no activation signal is reachable. Because GRL statements (but signals) are the same as in LNT ones, the reachability of a GRL activation signal implies the reachability of the corresponding LNT gate Start. If no gate Start is reachable, no process can execute, which causes a deadlock in the LNT program.

		5.8.
	a2f (block_alias 1 ) . . . a2f (block_aliasp) a2p (env_alias 1 ) . . . a2p (env_aliasq) a2p (med_alias 1 ) . . . a2p (med_aliasr ) process Mutex . . . end process process Activation [Start:Block] is loop activate( ++ k ∈ 1..p ∧ k / ∈ indices(S, activ) B k ) end loop end process process S [visible(S), Start:Block] is hide hidden(S), Finish:none in par -main parallel composition synch(S) in par Start, Finish in par b2b (block_invoc 1 ) || . . . || b2b (block_invocp) end par || Mutex [Start, Finish] end par || par n2b (env_invoc 1 ) || . . . || n2b (env_invocq) || m2b (med_invoc 1 ) || . . . || m2b (med_invocr ) || Activation [Start] end par end par end hide end process Table 5.7: Translation of systems LNT root processes 1 process S5 [ Gate_Ms , Gate_Mr : Chan_bool , 2 S t a r t : Block ] i s 3 hide F i n i s h : None i n 4 par 5 par Start , F i n i s h i n 6 Mutex [ Start , F i n i s h ] 7 | | par 8 S5_Sen [ Gate_Ms , Start , F i n i s h ] 9 | | S5_Rec [ Gate_Mr , Start , F i n i s h ] 10 end par 11 end par 12 | | 13 S5_Buf [ Gate_Ms , Gate_Mr ] 14 end par 15 end hide 16 end process 2 --B1 and B2 i s c o n s t r a i n e d 1 --Sen and Rec communicate 2 --through medium Buf 3 system S5 (Mr, Ms: bool ) 4 i s 5 block l i s t 6 Sen [ ?Ms] , 7 Rec [Mr] 8 medium l i s t 9 Buf [Ms, ?Mr] 10 end system 1 --The a c t i v a t i o n o f both 3 system S6 (O1, O2: bool ) 4 i s 5 block l i s t 6 B1 ( ?O1) , 7 B2 ( ?O2) 8 environment l i s t 9 C t r l (B1 , B2) 10 end system 1 process S6 [ Gate_O1 , Gate_O2 : Chan_bool , 2 S t a r t : Block ] i s 3 hide F i n i s h : None i n 4 par 5 par Start , F i n i s h i n 6 Mutex [ Start , F i n i s h ] 7 | | par 8 S6_B1 [ Gate_O1 , Start , F i n i s h ] 9 | | S6_B2 [ Gate_O2 , Start , F i n i s h ] 10 end par 11 end par 12 | | 13 C t r l [ S t a r t ] 14 end par 15 end hide 16 end process 1 --Only the a c t i v a t i o n o f B1 2 --i s c o n s t r a i n e d 3 system S7 (O1, O2: bool ) 4 i s 5 block l i s t 6 B1 ( ?O1) , 7 B2 ( ?O2) 8 environment l i s t 9 C t r l (B1) 10 end system 1 process S7 [ Gate_O1 , Gate_O2 : Chan_bool , 2 S t a r t : Block ] i s 3 hide F i n i s h : None i n 4 par 5 par Start , F i n i s h i n 6 Mutex [ Start , F i n i s h ] 7 | | par 8 S7_B1 [ Gate_O1 , Start , F i n i s h ] 9 | | S7_B2 [ Gate_O2 , Start , F i n i s h ] 10 end par 11 end par 12 | | 13 C t r l [ S t a r t ] 14 | | A c t i v a t i o n [ S t a r t ] 15 end par Example 5.23. GRL systems 16 end hide
	17	end process
	112	
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 5 8: The number of transitions in LTS LNT and LTS GT depending on the number of components

	Component number	2	3	4	5	6	10
	LTS LNT	7	10	13	16	19	31
	LTS GT	12	54	217	811	2917	393,661

  Action formulas, whose syntax is given in Table6.2, consist of action predicates combined using standard Boolean operators. Action predicate {S}, where S is a string denoting a component name 1 , matches the activation action S. Action predicate {O 1 , . . . , O n [where E]} matches the data action "X 1 = e 1 , ..., X n = e n " if: (i) each offer O i matches X i = e i , and (ii) the Boolean expression E, possibly using local variables occurring in O 1 , . . . , O n , evaluates to true.For action predicates with value extraction, local variables can be exported outside the action predicates. Hence, they can be used in the surrounding formula. This is a generality of the action formulas first proposed in ACTL[START_REF] De | An Action-Based Framework for Verifying Logical and Behavioural Properties of Concurrent Systems[END_REF] in a dataless context.

		any	wildcard
		Table 6.1: Syntax of offer formulas
	6.3 Action formulas	
			data action
	|	i	invisible action
	|	false	unexisting action
	|	true	every action
	|	(A)	parenthesised action
	|	not A	negation
	|	A 1 or A 2	disjunction
	|	A 1 and A 2	conjunction
		Table 6.2: Syntax of action formulas
	Example 6.3.		

A ::= {S} activation action | {O 1 , . . . ,O n [where E]}

Table 6

 6 

	.3: Syntax of regular formulas
	Example 6.4.

  S} {O 1 , . . . ,On where E} {Gate_var(O 1 )_ . . . _var(On) !val(O 1 ) . . . The translation of safety patterns, using function p2mcl, is summarised in Table 6.6. Safety patterns can be naturally expressed using necessity modalities containing regular formulas. A2, A3) [ r2mcl (true * . A1 . (not A3) * . A2) ] false

	Action formula A {S} i false true (A) not A A 1 or A 2 A 1 and A 2 Never (R) Safety property patterns. Pattern P Translation into MCL a2mcl (A) {Start! !val(On) where e2mcl(E)} i false true (a2mcl (A)) not a2mcl (A) a2mcl (A 1 ) or a2mcl (A 2 ) a2mcl (A 1 ) and a2mcl (A 2 ) Table 6.5: Translation of action formulas Translation into MCL p2mcl (P) [ r2mcl (R) ] false Not_To_Unless (A1, Table 6.6: Translation of safety patterns

Table 6

 6 Concerning inevitability patterns, we restrict the translation to the particular case After_Inev (R, A). The translation of the general case After_Inev (R 1 , R 2 ) into MCL is quite tedious, for the time being.

	.7: Translation of liveness patterns
	Remark 6.3.

Table 6 .

 6 9: Interpretation of activation deadlock patternsComponent halt and aliveness It is desirable to ensure that GALS components do not halt. In terms of LTSs, a component S comes to a halt if there is a state from which no action S can be reachable. This is detected by the following property pattern:Deadlock (S)The dual pattern of Deadlock expresses the continuity in component execution. A component S is said alive if it executes continuously. In terms of LTSs, from each state, there should be some execution sequence that leads to some action S. Consider a GRL system composed of two blocks B1 and B2, whose activation strategy is described by the LTS below. The evaluation results of patterns Deadlock and Alive on both blocks are summarised in the table below.Pattern Some_Alive asserts that some components in S are alive. In terms of LTSs, it evaluates to false if there is a state from which, no component in S is alive. Pattern All_Alive asserts that all components in S are alive. In terms of LTSs, it evaluates to false if there is a state from which, at least one component in S comes to a halt. Patterns Some_Alive and All_Alive could have been interpreted in terms of pattern Alive as follows:

	This is detected

  Table 6.10. A component step can be idle, i.e., inputs and outputs 5 carry the same values as in the Never (true * . {X=?x} . true * . {X = x} ) . {X=?x} . true * . {X = x})

	Pattern		Interpretation
	Idle	(X)	
	Some_Idle	(X)	Idle (X)
			X∈X
	All_Idle	(X)	Idle (X)
			X∈X
	Idle	(S)	All_Idle (X) where X ∼ S
	Idle	(S)	Idle (S)
			S∈S
	Progress Always_Some (true Some_Progress (X) (X) Progress (X)
			X∈X
	All_Progress	(X)	Progress (X)
			X∈X
	Progress	(S)	Some_Progress (X) where X ∼ S
	Progress	(S)	

* S∈S Progress (S)

Table 6 .

 6 10: Interpretation of idleness and progress patterns previous step. Performing indefinitely idle steps is useless for the system progress. In the car park application, the idleness of the entrance PLC makes the car park inaccessible.A component S is said idle if it reaches a state from which all its inputs and outputs are idle. Component idleness is a specialisation of property All_Idle applied to all input and output actions of the component. This is detected by the following property: In the car park example, the idleness of the exit PLC, written Idle (Exit), is equivalent to the following property: Idle (Cmd_P1, Cmd_P2) and Idle (Open) and Idle (Out_P1) and Idle (Out_P2) There may be situations in which property Idle (S) does not hold for a component S whereas the component is functionally idle. For illustration, consider the GRL block B below, where u represents the edges of a clock signal. The table in the right-hand side shows the values of parameters u, x, and y during the first six steps. Beyond the sixth step, x and y carry indefinitely the same values.The behaviour of the block is idle after its second step, even though u continues to carry different values. The evaluation of idleness properties on the actions corresponding to block B are given in the table below.

	Action and component idleness A data action is said idle if there is a state from
	which its variables, denoted X, carry indefinitely the same values. The following pattern
	forbids the presence of execution sequences in an LTS, in which action variables X carry
	different sets of data values:	
	Idle (X)	
	Property Idle can be extended to encompass a set of data actions, whose variables are
	denoted X. Property Some_Idle (resp. All_Idle) holds on an LTS if one or several (resp.
	all) actions are active.	
	Some_Idle (X)	All_Idle (X)
	Idle (S)	
	Example 6.13.	

  t. another component. This states that a component S is not indefinitely privileged over another component S. In terms of LTSs, this can be expressed by the absence of an infinite execution sequence in which only action S is encountered but never action S. The starvation of S w.r.t to S is expressed by the following pattern:Starvation_Freedom (S, S ) This pattern can be extended to encompass sets of components S and S , as follows: In the car park application, the starvation of the exit PLC entails that a car, once inside the car park, can never leave.

	Starvation_Freedom (S, S )	
	Example 6.18.		
	Pattern	Interpretation	
	Starvation_Freedom (S)	Saturation (true * . not {S})	
	Starvation_Freedom (S, S )	Saturation ((not {S}) * . {S })	
	Starvation_Freedom (S, S )	Saturation ((not	{S })
		S ∈S	

S∈S

{S}) * .

Table 6
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	.11: Interpretation of starvation patterns
	Data livelock (non progress)

Table 6 .

 6 12: Interpretation of consistency patternsThe consistency of an output action, whose variables are denoted Y , w.r.t an input action, whose variables are denoted X, is captured by the property pattern below. The property pattern ensures the absence of infinite execution sequences in which the input action progresses while the output action does not. Consider the block defined in Example 6.19. The consistency of output c w.r.t. inputs a and b is specified as follows:

	Out_Consistent (X,Y )
	Example 6.20.

Table 6

 6 Consider the GRL block Unstable below. Assume input u starts changing and there exists a state from which it remains true forever. Even though u remains unchanged, the output x indefinitely oscillates between values true and false. Instability is illustrated by the cycle of states {1, 2, 6, 5} in the LTS below, corresponding to block unstable.

		.13: Interpretation of stability patterns
	Example 6.21.					
	block Unstable					
	( i n u : bool ,	8	3		1	X=FALSE	2
		out x : bool )					
	i s			U=TRUE			
	s t a t i c var pre_x := true	U=FALSE	X=FALSE	X=TRUE	U=FALSE	U=TRUE	U=TRUE
	x	:= u and not pre_x ;					
	pre_x := x	0	7		4		5	X=TRUE	6
	end block					

  1 , A 2 , n) Assume the exit PLC period is 1 second. The property: once a car asks to leave the car park, the exit gate must open in less than 15 seconds can be expressed as follows:

	Example 6.23.
	Deadline (true * . {Cmd_P1 =? cmd1 :bool, Cmd_P2 =? cmd2 :bool where cmd1 <>cmd2 },
	{Exit},
	{Open = true},
	15)

  Basic quasi-synchrony with two blocks requires the following properties to be fulfilled: (P1) It is possible for action COMP_A (resp. COMP_B) to not occur between two successive occurrences of action COMP_B (resp. COMP_A) (P2) It is possible for action COMP_A (resp. COMP_B) to occur once between two successive occurrences of action COMP_B (resp. COMP_A) (P3) It is possible for action COMP_A (resp. COMP_B) to occur twice between two successive occurrences of action COMP_B (resp. COMP_A) (P4) Action COMP_A (resp. COMP_B) cannot occur more than twice between two occurrences of action COMP_B (resp. COMP_A) (P5) Actions COMP_A and COMP_B occur infinitely often The formalisation of properties P1, P4, and P5 in muGRL is summarised in the following table:

		Property Formalisation
	P1 Some (true 1 environment Primary_Quasi_2 {maxA: nat := 1 , maxB: nat := 1}
	2	( block A, B)
	3	i s
	4	--maxA, maxB should be >= 1
	5	s t a t i c var countA , countB : nat := 0
	6	s e l e c t --a c t i v a t e A, i f allowed , maxA times
	7	i f ( countA < maxA) then
	8	enable A;
	9	countA := countA + 1 ;
		end i f
		[ ] --a c t i v a t e B, i f allowed , maxB times
		i f ( countB < maxB) then
		enable B;
		countB := countB + 1 ;
		end i f
		end s e l e c t ;

* . {COM P _A} . (not {COM P _B}) * . {COM P _A}) Some (true * . {COM P _B} . (not {COM P _A}) * . {COM P _B}) P4 From_To_Most (true * . {COM P _A}, {COM P _A}, {COM P _B}, 2) From_To_Most (true * . {COM P _B}, {COM P _B}, {COM P _A}, 2) P5 Looping ((not {COM P _A}) * . {COM P _A}) Looping ((not {COM P _B}) * . {COM P _B})

Modelling in GRL A first way to implement basic quasi-synchrony has been proposed in Example 3.12 (page 47). We give below an enhanced version, parameterised with relative block paces (maxA and maxB). The default values correspond to basic quasi-synchrony. When block A is activated maxA times, block B is activated maxB times, in the meanwhile. The order in which block activations are achieved is arbitrary. i f ( countA >= maxA) and ( countB >= maxB) then --r e i n i t i a l i s e

3 Modelling and verifying component AFS Modelling in GRL The

  Properties P4, ..., P8 capture the behaviour of FCP. The formalisation of properties P4, P6, and P8 in muGRL is summarised in the table below. All properties hold on the system LTS. command and the monitoring channels of AFS are modelled in GRL by blocks AFS_COM and AFS_MON, as depicted in Figure7.6. Output interrupt of block AFS_MON indicates whether, despite the absence of movement detection by FCP, AFS_COM has computed a new target altitude. AFS_MON is three times faster than AFS_COM . Such activation constraint is modelled in environment AFS_Act, following the modelling proposed in Section 7.1.1. This is done as follows:The AFDX communication bus is modelled by two GRL mediums AFDX_COM_to_ MON and AFDX_MON_to_COM. An additional medium Stub, given below, is connected to AFS_COM . It simulates the behaviour of FCP_COM by producing integer numbers ranging from -2 to 2. This enables a realistic modelling and helps to keep small the state space of AFS. Transmission delays between AFS_COM and AFS_MON are significantly shorter than the component periods. According to observations of Caspi

	1	medium Stub [ send from_cp_rot : i n t ] i s
	2	when from_cp_rot ->		
	3		from_cp_rot := any i n t where ( ( from_cp_rot <= 2)
	4					and ( from_cp_rot >= -2))
	5	end medium			
				afs_mvt_prolong
							AFDX_COM_to_MON
				from_cp_mvt	AFS_MON	interrupt	Stub from_cp_rot	AFS_COM	validated_target
			Property				Formalisation in muGRL AFDX_MON_to_COM
			P4				Progress (pilot_mvt, pilot_rot)
							Progress (to_afs_position)
							Progress (to_afs_mvt) AFS_Act in / out true  receive / send
			P6	Sustain	      	constant activation	      
							
			 Figure 7.6: Schematic view of the AFS components true 
	P8 Remark 7.3.	Never	  		  
		7.3.1 a l i a s Primary_Quasi_2 {3 , 1} as AFS_Act
		2	. . .			
		3	AFS_Act (AFS_MON, AFS_COM)

* . {pilot_rot =? any, pilot_mvt = true}. (not {pilot_rot =? any, pilot_mvt =? any}) * . {pilot_rot =? any, pilot_mvt = false}, {af s_mon_mvt = true}, {af s_mon_mvt = false}, 13 * . {pilot_rot =? rot1 :int, pilot_mvt =? mvt1 :bool}. (not {pilot_rot =? any, pilot_mvt =? any}) * . {pilot_rot =? rot2 :int, pilot_mvt =? mvt2 :bool where (rot1 <> rot2 ) and (mvt2 = false)}

Table 7 .

 7 Table 7.1 reports the size of LTSs in terms of number of states and transitions.Note that the separate generation of system LTSs yields relatively large LTSs for blocks AFS_MON and AFS_COM whereas the generation of the whole AFS at once leads 1: LTS sizes of AFS components and of whole AFS, before and after minimisation to a much smaller LTS. Each block is constrained by its connected mediums and environments, which are themselves constrained by other connected blocks, and so on. Accordingly, many states of components are never explored, since they are irrelevant for the current AFS composition. For example, block AFS_MON defines a receive channel containing a variable of type integer to be connected to AFS_COM , through medium AFDX_COM_to_MON. The LTS of AFS_MON considers all possible values, while in the current AFS only values ranging from -2 to 2 are used.

		Non-minimised	Divbranching min.
		States Transitions	States Transitions
	AFS_MON	929,281 68,691,969	265,227 17,043,978
	AFS_COM	197,377 33,751,553	196,864 33,751,040
	AFDX_MON_to_COM	513	263,169	512	262,656
	AFDX_COM_to_MON	257	66,049	256	65,792
	Stub	1	5	1	5
	AFS_Act	7	10	7	10
	AFS	6,867	8,370	577	750

Table 7 .

 7 2: Size of the LTSs corresponding to observers and to AFS

			-minimised	Divbranching min.
		States Transitions	States Transitions
	Observer_P10	58	94	17	35
	Observer_P11	6	517	3	514
	AFS without observers	6867	8370	577	750
	AFS with one (or both) observers 20421	24558	651	824

  We generate the system LTS; it contains 44,479,727 states and 60,130,709 transitions. The minimisation modulo divbranching bisimulation yields an LTS with 1,516,951 states, 2,848,395 transitions. The generation and minimisation steps are achieved in 23 minutes on a 64-bit computer.Property-dependent LTS reductionSince the LTS is relatively large, its reduction before checking properties improves the performance of model checking. Instead of reducing the LTS modulo an equivalence relation or specialising the reduction with regards to each property, we exploit the nature of properties. We first group properties into three classes: system data properties, block data properties, and activation properties. The following table summarises property classification for the AFCS.

				fcp_mvt_prolong
	to_afs_mon_mvt	FCP	to_afs_com_rot
	Discrete_Line			A429
	from_cp_mon_mvt				from_cp_com_rot
				AFS_Act
			AFDX_COM_to_MON
	AFS_MON	interrupt		AFS_COM	validated_target
	afs_mvt_prolong	AFDX_MON_to_COM	in / out receive / send
					constant
	activation Figure 7.8: Schematic view of the AFCS system
	Standard LTS generation System data properties		Block data properties	Activation properties
			FCP	AFS_MON
	P9, P12, P13	P4, P5, P6, P7, P8 P4, P10, P11	P1, P2, P3

-

  Medium modelling communication from the command to the monitoring channels medium AFDX_COM_to_MON [ r e c ei v e com_to_mon_afs_target_validation : int , "Check that no movement d e t e c t i o n i n f o r m a t i o n i s s e n t to AFS"" u n l e s s the knob i s r o t a t e d "

	i s	
	" Movement_Detection_Causality.bcg " =
	"${MODEL}.Data.bcg " |=	
	Not_To_Unless ({AFS_MON_MVT !FALSE} ,
	{AFS_MON_MVT !TRUE} ,
	{PILOT_ROTATION_PILOT_MVT ?any !TRUE}
	) ;	
	expected TRUE	
	end property	
	-	
	send	mon_from_com_afs_target_validation : i n t ]
	i s	
	s t a t i c var a f s _ t a r g e t _ v a l i d a t i o n : i n t := 0
	s e l e c t	
	when ?com_to_mon_afs_target_validation ->
	a f s _ t a r g e t _ v a l i d a t i o n := com_to_mon_afs_target_validation
	[ ]	
	when mon_from_com_afs_target_validation ->

  property Rotation_and_Movement_Detection (MODEL) "Check that a knob r o t a t i o n i s accompanied by a movement d e t e c t i o n " i s

" Movement_Detection.bcg " = "${MODEL}.Data.bcg " |= Never ({PILOT_ROTATION_PILOT_MVT ? r o t 1 : i n t ?mvt1 : bool} . not ({PILOT_ROTATION_PILOT_MVT ?any ?any}) . {PILOT_ROTATION_PILOT_MVT ? r o t 2 : i n t ?mvt2 : bool where ( ( r o t 2 <> r o t 1 ) and (mvt2 = FALSE) ) } ) ;

  property Movement_Detection_Sending (MODEL)"Check that whenever the knob i s rotated , a movement d e t e c t i o n " " i n f o r m a t i o n i s s e n t to AFS" macro i n e v (A) = mu X . ( <t r u e> t r u e and [ not (A) ] X ) end_macro (

	i s
	" Movement_Detection_Sending.bcg " =
	"${MODEL}.Data.bcg " |=
	Never ( t r u e * .
	{PILOT_ROTATION_PILOT_MVT ?any !TRUE} .
	not ({AFS_MON_MVT ?any}) * .
	{AFS_MON_MVT !FALSE}
	) ;

The GRL2LNT tool has been implemented, mainly not by the author, in the framework of an

The term "temporal ordering" should not be confused with the real-time aspect of reactive systems. The meaning here is the relative order of events, time being abstracted.

http://www.syndex.org/

http://pop-art.inrialpes.fr/~girault/Ocrep/

This application is a toy example designed in the framework of the Bluesky project, with the help of the industrial partners.

D i s a b l e { f a l s e }(B1) --always execute B1

D i s a b l e { true } (B2) --never execute B2

In practice, the translation must ensure that the GRL name is not an LNT keyword. This is handled by the translator but we skip such low-level details in this presentation, for conciseness.

indices(C , arg, out, unconnected) = {k ∈ indices(C , arg) | mode(arg k ) = out ∧ connexion(arg k ) = unconnected}

A preprocessing phase collects the ordered type lists used for parameter declaration lists of GRL components in the current module and all imported modules. These type lists serve to build all the channels, defining gate profiles, that will be used in the generated LNT code. Gate profiles must be pairwise distinct, thus ensuring a unique channel for each gate profile.

This can be performed statically, since the number of GRL components is finite and known. GRL and LNT compilers forbid the dynamic creation of components to enable enumerative verification.

To simplify the presentation of the translation functions, we consider that LNT functions and processes corresponding to GRL component instances have the same names as their GRL components. In practice, a unique name is given to each generated LNT component. This prevents name clashes, e.g., occurring when a subblock is aliased with the same name in different components.

For subblocks invoked without being aliased, the translation automatically generates aliasing functions, whose names are not always user-friendly.

Unconnected channels of blocks are useless here since they have no corresponding LNT gates.

In the formal definition of GRL, visible and hidden variables can compose the same actual channel. Here, for simplicity, we stipulate that the variables composing a GRL channel should be either all visible or all hidden.

In muGRL, the term component is used to denote a synchronous component.

In terms of LTS LNT , this means that action S is the last activation action preceding the data action "X1 = e1, ..., Xn = en", where X = X1, ..., Xn .

In terms of LTS LNT , this means that X corresponds to all data actions following the activation action S before the next occurrence of another activation action.

The complexity of model checking increases with the size of the formula, i.e., the number of logic operators. Thus, it is desirable to verify formulas as small as possible to enhance the efficiency of model checking.

The term input (resp. output) denotes a data action of a synchronous component corresponding to inputs received (resp. outputs sent) from (resp. to) either the environment or other synchronous components through the network.

http://projects.laas.fr/tina/

This work is available under a project deliverable, which is not diffused publicly. The interested reader may write to Radu.Mateescu@inria.fr for discussion or documentation.
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< r2mcl (R1) > < r2mcl (R2) > @ Some_Saturation (R1, R2) < r2mcl (R1) > [ r2mcl (R2) ] -| Table 6.8: Translation of fairness patterns Activation patterns characterise activation actions corresponding to one (S) or several (S 1 , ..., S n ) components. We write S as shorthand for the list S 1 , ..., S n .

Data patterns characterise one or several data actions corresponding to one or several components. For a data action "X 1 = e 1 , ..., X n = e n ", we write X as shorthand for the list of its action variables X 1 , ..., X n . For several data actions, we write X as shorthand for the list X 1 , ..., X n .

Sometimes, we will need to specify to which component a data action corresponds. To this aim, we write X ∈ S, where S is a component name 2 . To denote all data actions of component S, we write X ∼ S 3 . We extend value matching and value extraction for a set of action variables as follows: The interpretation of patterns will be mostly given in muGRL, i.e., by specialising the previously presented patterns. Sometimes, it will be given directly in MCL, when the expression in muGRL is impossible (due to expressiveness limitation) or for more efficient interpretation.

Deadlock

Since GALS components execute continuously, termination, called deadlock, is highly undesirable and mostly symptomatic of design errors. An exception is the case in which termination is deliberately modelled, e.g., to denote the end of finite scenarios or component failure. We distinguish two cases of deadlock. Activation deadlock is concerned with system halt. Data deadlock is concerned with computation termination. countA := 0 ; countB := 0 end i f end environment

We use environment Primary_Quasi_2 to implement basic quasi-synchrony inside a system as follows: Basic LTS generation To visualise block activations in a GRL system, the simplest way is to first generate the system LTS. We use GRL.OPEN and the GENERATOR tool of CADP, as given by the following Bourne shell command:

1 % g r l . o p e n -showall -root "Basic_Two" Primary_Quasi.grl g e n e r a t o r Basic_Two.bcg Remark 7.1. Basic LTS generation requires the generation of the system LTS to succeed. We will propose, in Section 7.3.4, an alternative scenario, which can be used when LTS generation fails or lasts too long.

Remark 7.2. In the general case, activation constraints may be distributed in several environments and combined with data constraints. Debugging the activation strategy on the complete system LTS could be difficult and cumbersome, in particular when the system LTS is large. It is then of interest to visualise the activation strategy of blocks, regardless the data carried by their input and output actions.

Since we focus on block activations, we consider only actions Start. In the LTS corresponding to system Basic_Two, we hide all actions but Start and rename the remaining actions by removing prefix "Start !" introduced by GRL2LNT. Finally, we reduce the LTS modulo divbranching bisimulation to remove irrelevant hidden actions while preserving the branching structure of the LTS. All these steps are performed using the following SVL statement:

1 " Basic_Two.bcg " = divbranching reduction of 2 t o t a l rename "START ! \ ( . * \) " -> "\1" i n 3 gate hide a l l but "START" i n " Basic_Two.bcg " ;

For systems Basic_Two and Basic_Three, Figure 7.2 depicts the activation strategy of blocks. In both LTSs, there is a central state (state 0), from which all outgoing and ingoing transition sequences contain exactly one activation of each block. This end i f [ ] i f ( A_since_B < maxA) then enable A; B_since_A := 0 ; A_since_B := A_since_B + 1 end i f end s e l e c t end environment

The environment is parameterised with the maximal number of activations of a block between two successive activations of the other block. The default configuration of parameters corresponds to basic quasi-synchrony.

We use environment Refined_Quasi_2 to implement basic quasi-synchrony inside a system as follows: of the asynchronous execution of the system components.

In the sequel, we address the modelling and verification of the FCP and AFS components along with the AFCS system. Instead of giving complete GRL code, which is available in Appendix A, we give code excerpts and schematic representations.

We consider the following real-time constraints. Components FCP_MON , AFS_MON , and AFS_COM evolve at periods 25ms, 50ms, and 150ms, respectively. FCP (resp. AFS_MON ) sustains the movement detection information for 13 (resp. 6) steps of FCP (resp. AFS_MON ). Transmission delays between components are significantly shorter than the periods of components.

To verify the AFCS, we specified the following properties:

(P1) Blocks do not halt (P2) There is no block in starvation situation (P3) The system may deadlock, i.e., both the master and the slave channels may fail (P4) All input and output actions of components progress (P5) No movement detection information is sent to AFS if no knob rotation has occurred (P6) The movement detection information is sustained for at least 13 steps of FCP (P7) The movement detection information is sustained for exactly 13 steps of FCP, if no knob rotation has occurred ever since (P8) A change in the knob position is always accompanied by a movement detection (P9) A movement detection information sent by FCP is received by AFS (P10) The countdown to sustain a movement detection information in AFS_MON is always set to value 6 when a movement is detected (P11) Movement detection information is sustained for 6 steps of AFS_MON , if no new movement detection has occurred ever since (P12) A movement detected in FCP is sustained enough to be observed by AFS_MON (P13) No new altitude order is provided by AFS_COM unless a movement has been detected in AFS_MON

Modelling and verifying component FCP

Modelling in GRL

The FCP component is modelled by the GRL block FCP below, a schematic view of which is given in Figure 7.5. Block FCP encapsulates three subblocks corresponding to a movement encoder (subblock Encoder), the monitoring channel (subblock CP_MON ), and the command channel (subblock CP_COM ). According to GRL semantics, those subblocks evolve by default at the same pace, the one of the higher-level block FCP. Parameterised verification Property specification is also parameterised thanks to SVL. The SVL statement below specifies property P12, parameterised by SPEC, which is a BCG file name, and by RESULT, which is a variable storing the truth value of the property. The LTS in the BCG file will be checked against the formula enclosed between symbols "|=" and ";" and a diagnostic will be given in a BCG file named diag_SPEC. ) ; r e s u l t "$RESULT" expected TRUE end property Finally, the following SVL script automates the minimisation of all the generated LTSs, after applying a maximal hiding, and checks property P12 on the reduced LTSs. When the property does not hold on an LTS, meaning that variable RESULT evaluates to false, the produced counter-example is reduced. Otherwise, a witness is provided, in which case it is removed. All these steps are achieved by the following SVL script: Remark 7.6. For property P12, the maximal hiding set is large: only 4 actions out of 85 must remain visible. In such a case, one could perform on-the-fly minimisation at generation phase, i.e., using a forward traversal of the LTS to compute state successors modulo the divbranching bisimulation reduction.

State space generation

The car park capacity is set to 5. We first attempted the generation of LTSs corresponding to highest-level blocks Entrance, Storey1, Storey2, and Exit, independently. Table 7.3 reports the size of component LTSs. We have stopped the generation of the LTS corresponding to block Entrance after around 11 hours. We then attempted to generate the system LTS by composing the different blocks to communicate with each other through mediums, without putting activation and data constraints. The generation leads to state space explosion as well. -----------------------------------------------------------------------------A.1.2 Componentnvironment d ------------------------------------------------------------------------------A -------------------------------------------------------------------------------

States

A.1 The GRL model

i s a b l i n g the e r r o r i n j e c t i o n i n p u t o f the FCP component environment

.1.3 Component AFS

-System to generate the LTS c o r r e s p o n d i n g to the AFS components system Main_AFS {afs_mvt_prolong

: nat} ( v a l i d a t e d _ t a r g e t : int , i n t e r r u p t : bool , cp_com_target_position : int , cp_mon_mvt : bool , end block ----------------------------------------------------------------------------- ------------------------------------------------------------------------------- 

t o r e d e t e c t i o n i n f o r m a t i o n countdown := afs_mvt_prolong --t r i g g e r countdown e l s i f ( ( countdown > 0) and i s d e t e c t e d ) then --s u s t a i n s i g n a l d e t e c t i o n f o r d u r a t i o n " afs_mvt_prolong "

detected_mvt := true ; countdown := countdown -1 e l s e detected_mvt := f a l s e ; i s d e t e c t e d := f a l s e end i f ; i f ( ( afs_com_alt_target == p r e _ a l t _ t a r g e t ) --v a l i d or ( ( afs_com_alt_target != p r e _ a l t _ t a r g e t ) and detected_mvt ) ) then i n t e r r u p t := f a l s e ; afs_com_alt_target_value := afs_com_alt_target ; afs_com_alt_target_valid := true ; p r e _ v a l i d _ a l t _ t a r g e t := afs_com_alt_target e l s e --i n v a l i d i n t e r r u p t := true ; afs_com_alt_target_value := p r e _ v a l i d _ a l t _ t a r g e t ; afs_com_alt_target_valid := f a l s e end i f ; p r e _ a l t _ t a r g e t := afs_com_alt_target end block ------------------------------------------------------------------------------- -------------------------------------------------------------------------------Block o -----------------------------------------------------------------------------mon_from_com_afs_target_validation := a f s _ t a r g e t _ v a l i d a t i o n end s e l e c t end medium --------------------------------------------------------------------------------Medium -----------------------------------------------------------------------------A ------------------------------------------------------------------------------- --------------------------------------------------------------------------------Parameterised ----------------------------------------------------------------------------- ------------------------------------------------------------------------------- --------------------------------------------------------------------------------Environment e 

b s e r v e r checking that the countdown to s u s t a i n a movement d e t e c t i o n --i n f o r m a t i o n i s always s e t to a p r e d e f i n e d v a l u e when a movement i s detected block

.1.4 System AFCS

n s u r i n g that : ----t h r e e b l o c k s e v o l v e at m u l t i p l e s o f the same pace ----b l o c k s are h a l t e d i f a f a i l u r e occurs environment AFCS_Act {max_fcp

: nat := 10 , max_afs_com : nat := 1 , max_afs_mon : nat := 3} ( i n i n t e r r u p t : bool , block FCP, AFS_COM, AFS_MON) i s s t a t i c var count_fcp , count_afs_com , count_afs_mon : nat := 0 s t a t i c var f a i l u r e : bool := f a l s e s e l e c t --FCP i f ( ( count_fcp < max_fcp ) and not ( f a i l u r e ) ) then enable FCP; count_fcp := count_fcp + 1 end i f [ ] --AFS_COM i f ( ( count_afs_com < max_afs_com) and not ( f a i l u r e ) ) then enable AFS_COM; count_afs_com := count_afs_com + 1 end i f [ ] --AFS_MON i f ( ( count_afs_mon < max_afs_mon) and not ( f a i l u r e ) ) then enable AFS_MON; count_afs_mon := count_afs_mon + 1 end i f [ ] when ? i n t e r r u p t -> f a i l u r e := i n t e r r u p t end s e l e c t ; --r e i n i t i a l i s e i f ( ( count_fcp >= max_fcp ) and ( count_afs_com >= max_afs_com) and ( count_afs_mon >= max_afs_mon ) ) then count_fcp := 0 ; count_afs_com := 0 ; count_afs_mon := 0 end i f end environment ------------------------------------------------------------------------------A

.2 The SVL verification script

A.2.1 Generation and verification script

a l u a t o r 4 " % CADP_TIME="memtime" % DEFAULT_MCL_LIBRARIES=" l i b r a r y . m c l " --------------------------------------------------------------------------------S c r i p t parameter v e r i f i c a t i o n % i f t e s t "$MODEL" != "FCP_Component" && t e s t "$MODEL" != "AFS_Component" && t e s t "$MODEL" != "AFCS_System" % then % echo "\nThis SVL s c r i p t r e q u i r e s the name of a GRL model as argument " % echo "The name should belong to the s e t : " % echo "FCP_Component , AFS_Component , AFCS_System\n" % e x i t % f i - -------------------------------------------------------------------------------Parameter s e t t i n g to execute GRL models

e v a l "PARAM1=${FCP_MVT_PROLONG}" % e v a l "PARAM2=${AFS_MVT_PROLONG}" % echo "\ n V e r i f i c a t i o n o f the AFCS system " % ; ; % esac --------------------------------------------------------------------------------Generation o f LTSs ------------------------------------------------------------------------------% -------------------------------------------------------------------------------O r i g i n a l LTS g e n e r a t i o n % echo "\nLTS g e n e n r a t i o n : LTS w i l l be g i v e n i n f i l e ${MODEL} . O r i g . b c g " % case "$MODEL" i n % "FCP_Component" | "AFS_Component" ) \ % g r l . o p e n -showall -root "Main_${MODEL} ($PARAM o f nat ) " ${MODEL} . g r l g e n e r a t o r ${MODEL} . O r i g . b c g % ; ; -------------------------------------------------------------------------------Data and a c t i v a t i o n LTS e x t r a c t i o n "${MODEL}.Data.bcg " = t o t a l divbranching reduction of t o t a l rename "GATE_\( . * \) " -> "\1" , "START !GRL_\( . * \) " -> "\1" i n "${MODEL} . O r i g . b c g " ; "${MODEL}. A c t . b c g " = t o t a l divbranching reduction of t o t a l rename "START !GRL_\( . * \) " -> "\1" i n p a r t i a l hide a l l but ". * START. * " i n "${MODEL} . O r i g . b c g " ; % echo "\nThe reduced LTS i s g i v e n i n f i l e ${MODEL}.Data.bcg " % echo "The a c t i v a t i o n s t r a t e g y i s g i v e n i n f i l e ${MODEL}. A c t . b c g \n" % f i - -------------------------------------------------------------------------------P --------------------------------------------------------------------------------Deadlock absence i n components bahaviour ------------------------------------------------------------------------------property FCP_Deadlock_Absence (MODEL)

r o p e r t i e s s p e c i f i c a t i o n

"Check that the behaviour of FCP i s deadlock-free " i s " Diag.FCP_Deadlock_Absence.bcg " = "${MODEL}. A c t . b c g " |= Always_Some ({FCP} ) ; expected TRUE end property -----------------------------------------------------------------------------property AFS_COM_Deadlock_Absence (MODEL) "Check that the behaviour of AFS_COM i s deadlock-free " i s "Diag.AFS_COM_Deadlock_Absence.bcg" = "${MODEL}. A c t . b c g " |= Always_Some ({AFS_COM} ) ; expected TRUE end property -----------------------------------------------------------------------------property AFS_MON_Deadlock_Absence (MODEL) "Check that the behaviour o f AFS_MON i s deadlock-free " i s "Diag.AFS_MON_Deadlock_Absence.bcg" = "${MODEL}. A c t . b c g " |= Always_Some ({AFS_MON} ) ; expected TRUE end property --------------------------------------------------------------------------------Progress o f components i n p u t s and outputs - ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- --------------------------------------------------------------------------------F ------------------------------------------------------------------------------property Movement_Detection_Causality (MODEL) expected TRUE end property ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -----------------------------------------------------------------------------property Fault_Tolerance (MODEL) "Check that the system i s f a u l t t o l e r a n t " i s " Diag.Fault_Tolerance.${MODEL}.bcg " = "${MODEL}.bcg " |= Never ( t r u e * . {FAULT_TOLERANCE ! "FALSE"} ) ; expected TRUE end property ------------------------------------------------------------------------------property System_Movement_Observation (MODEL, RESULT)

u n c t i o n a l p r o p e r t i e s

"Check that a movement detected i n FCP i s s u s t a i n e d enough to be observed " "by AFS_MON" i s " Diag.System_Movement_Observation.${MODEL}.bcg " = "${MODEL}.bcg " |= NEVER ( ( not {TO_AFS_MON_MVT !TRUE}) * . {TO_AFS_MON_MVT !TRUE} .

( not {FROM_CP_MON_MVT !TRUE}) * . {TO_AFS_MON_MVT !FALSE} .

( not {TO_AFS_MON_MVT !TRUE}) * . {TO_AFS_MON_MVT !TRUE} ) ; r e s u l t "$RESULT" expected TRUE end property ------------------------------------------------------------------------------property System_Movement_Detection (MODEL, RESULT)

"No new a l t i t u d e o r d e r i s provided by AFS_COM u n l e s s a movement has been " " detected i n AFS_MON" i s " Diag.System_Movement_Detection.${MODEL}.bcg " = "${MODEL}.bcg " |= Not_to_Unless ({MON_FROM_COM_AFS_TARGET_VALIDATION ? targ1 : i n t } , {MON_FROM_COM_AFS_TARGET_VALIDATION ? targ2 : i n t where targ1 <> targ2} , {FROM_CP_MON_MVT ! "TRUE"} ) ; r e s u l t "$RESULT" expected TRUE end property --------------------------------------------------------------------------------V ------------------------------------------------------------------------------% case "$MODEL" i n % "FCP_Component" | "AFCS_System" ) \ check FCP_Deadlock_Absence ( "$MODEL" ) ; check Progress_PILOT_ROTATION_PILOT_MVT ( "$MODEL" ) ; check Progress_AFS_COM_ROTATION ( "$MODEL" ) ; check Progress_AFS_MON_MVT ( "$MODEL" ) ; check Movement_Detection_Causality ( "$MODEL" ) ; check Rotation_and_Movement_Detection ( "$MODEL" ) ; check Movement_Correlation ( "$MODEL" ) ; check Movement_Detection_Sending ( "$MODEL" ) ; check Movement_Detection_Sustain_FCP_1 ( "$MODEL" , "$FCP_MVT_PROLONG" ) ; check Movement_Detection_Sustain_FCP_2 ( "$MODEL" , "$FCP_MVT_PROLONG" ) ; % ; ; % "AFS_Component" | "AFCS_System" ) \ check AFS_COM_Deadlock_Absence ( "$MODEL" ) ; check AFS_MON_Deadlock_Absence ( "$MODEL" ) ; check Progress_VALIDATED_TARGET ( "$MODEL" ) ; check Progress_CP_COM_TARGET_POSITION ( "$MODEL" ) ; check Progress_CP_MON_MVT ( "$MODEL" ) ; check Progress_COM_TO_MON_AFS_TARGET_VALIDATION ( "$MODEL" ) ; check Progress_MON_FROM_COM_AFS_TARGET_VALIDATION ( "$MODEL" ) ; check Progress_MON_TO_COM_AFS_TARGET_VALIDATED ( "$MODEL" ) ; check Progress_COM_FROM_MON_AFS_TARGET_VALIDATED ( "$MODEL" ) ; % ; ; % "AFCS_System" ) \ check Fault_Tolerance ( "$MODEL" ) ; check System_Movement_Observation ( "$MODEL" , "RESULT" ) ; check System_Movement_Detection ( "$MODEL" , "RESULT" ) ; ----------------------------------------------------------------------------A ----------------------------------------------------------------------- * * ------------------------------------------------------------------------ * * ------------------------------------------------------------------------ * * ------------------------------------------------------------------------ * )

e r i f i c a t i o n o f LTSs

Appendix B

The GRL Model of the Car Park Application

This appendix presents the GRL model of the car park application. -----------------------------------------------------------------------------B.2 Subblocks modelling function blocks 1 ----------------------------------------------------------------------------- -----------------------------------------------------------------------------9 --Logic And block (2 i n p u t --------------------------------------------------------------------------------Logic And block (4 i --------------------------------------------------------------------------------Logic -------------------------------------------------------------------------------Logicbool := true var c1 , c2 , c3 , c4 , c5 , c7 , c9 , c10 , c11 , c12 , c13 , c14 , c15 , c16 : bool , c6 , c8 : int16 B1 (Cmd, ?c1 ) ; B2 ( c1 , pre_c9 , pre_c10 , _, ?c4 ) ; B3 ( ?c6 ) ; B5 ( c4 , Out1 , _, _, c6 , ?c7 , ?c8 ) ; B4 (_, c8 , c6 , ?c9 ) ; P1 := c4 ; B6 (P1 , ?c10 ) ; B8 ( c7 , c10 , ?c12 ) ; B7 ( c7 , ?c11 ) ; B9 ( c11 , c10 , ?c14 ) ; B10 ( c1 , pre_c5 , pre_c10 , not (P1) , ?c2 ) ; B12 ( c2 , Out2 , _, _, c6 , ?c7 , ?c8 ) ; B11 (_, c8 , c6 , ?c5 ) ; P2 := c2 ; B13 (P2 , ?c3 ) ; B15 ( c7 , c3 , ?c13 ) ; B14 ( c7 , ?c11 ) ; B16 ( c11 , c3 , ?c15 ) ; B17 ( c12 , c13 , ?Red ) ; B18 (P1 , P2 , ?Open ) ; B21 ( c14 , c15 , ?c16 ) ; B20 ( c16 , not (Open ) , ?Green ) ; Yellow := Open ; B19 (Open , ?c10 ) ; pre_c5 := c5 ; pre_c9 := c9 ; pre_c10 := c10 end block ----------------------------------------------------------------------------- ------------------------------------------------------------------------------- -------------------------------------------------------------------------------Environment -------------------------------------------------------------------------------Environment -------------------------------------------------------------------------------Environments d -----------------------------------------------------------------------------type c a s e s i s enum Car_Park , Car_P1 , Car_P2 , Car_Ex , None end typeystem to generate the LTS c o r r e s p o n d i n g to the e x i t PLC system Main_Exit (Cmd_P1, Cmd_P2: bool , Open : bool , Out_P1 : bool , Out_P2 : bool ) i s block l i s t E x i t (<Cmd_P1, Cmd_P2>, ?Open ) [ ?Out_P1 , ?Out_P2 ] end system - ------------------------------------------------------------------------------ Med4 [ S_Full2 , ?R_Full2 ] end system --------------------------------------------------------------------------------System to generate the LTS c o r r e s p o n d i n g to a car park with quasi-synchrony --and c o n s t r a i n t s on block i n p u t s system Main_Quasi { S i z e : int16 } (Cmd_Park , Park_P1 ----------------------------------------------------------------------------

B.1 Global constants

B.3 Highest-level blocks modelling PLCs

B.4 Environments

-Environment e n s u r i n g that : ----a l e a v i n g r e q u e s t cannot occur i f t h e r e i s no car i n the car park ----an entrance or e x i t r e q u e s t cannot occur i n two s u c c e s s i v e s t e p s o f a PLC ----a t i c k e t g i v e n to a car r e f e r e n c e s e x a c t l y one s t o r e y environment

e s c r i b i n g s c e n a r i o s between b l o c k s

B.5 Mediums

B.6 Systems