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Abstract

A GALS (Globally Asynchronous, Locally Synchronous) system consists of several syn-
chronous components that evolve concurrently, each with its own pace, and communi-
cate altogether asynchronously. This thesis proposes a formal modelling and verification
framework dedicated to GALS systems, with a focus on the asynchronous behaviour.

As a cornerstone of our framework, we have designed a formal language, named GRL
(GALS Representation Language). GRL enables the behavioural specification of syn-
chronous components, asynchronous communication, and constraints involving both
component paces and the data carried by component inputs. To analyse GRL spec-
ifications, we took advantage of the CADP software toolbox for the verification of
asynchronous concurrent processes, using state space exploration techniques. For this
purpose, we have defined a translation from GRL to the LNT specification language sup-
ported by CADP. The translation has been implemented by a tool named GRL2LNT,
thus enabling state spaces to be automatically derived from GRL specifications.

To enable the formal verification of GRL specifications, we have designed a property
specification language, named muGRL, which is interpreted on GRL state spaces. The
muGRL language is based on a set of patterns capturing properties of concurrent and
GALS systems, which reduces the complexity of using full-fledged temporal logics. The
semantics of muGRL are defined by a translation into the MCL temporal logic supported
by CADP. Finally, we have illustrated how GRL, muGRL, and CADP can be applied
to model and verify concrete GALS applications, including industrial case-studies.
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Résumé

Un système GALS (Globalement Asynchrone, Localement Synchrone) est un ensemble
de composants synchrones qui évoluent en même temps, chacun à son propre rythme,
et qui communiquent de manière asynchrone. Cette thèse propose un environnement
formel de modélisation et de vérification dédié aux systèmes GALS, en se focalisant sur
le comportement asynchrone.

Notre environnement s’appuie sur un langage formel que nous avons conçu, appelé GRL
(GALS Representation Language). GRL permet la spécification comportementale des
composants synchrones, de la communication asynchrone, et des contraintes sur les
rythmes des composants ainsi que sur les valeurs que prennent les entrées des com-
posants. Pour analyser les spécifications GRL, nous utilisons CADP, une boîte à outils
logicielle permettant la vérification de processus concurrents asynchrones par des tech-
niques d’exploration d’espaces d’états. Dans ce but, nous avons défini une traduction de
GRL vers LNT, un langage de spécification supporté par CADP. La traduction est im-
plémentée dans un outil appelé GRL2LNT, permettant ainsi la génération automatique
d’espaces d’états à partir des spécifications GRL.

Pour permettre la vérification formelle des spécifications GRL, nous avons conçu un
langage de propriétés, appelé muGRL, qui s’interprète sur les espaces d’états de GRL.
Le langage muGRL est basé sur un ensemble de patrons qui capturent les propriétés des
systèmes concurrents et des systèmes GALS, réduisant ainsi la complexité d’utiliser les
logiques temporelles classiques. La sémantique de muGRL est définie par traduction vers
MCL, le langage de logique temporelle fourni par CADP. Enfin, nous illustrons l’usage
de GRL, muGRL et CADP pour modéliser et vérifier des applications GALS concrètes,
comprenant des études de cas industrielles.
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Chapter 1

Introduction

Constructing correct software and hardware systems is challenging. System quality re-
lies not only on good performance such as processing capacity, but also on the absence
of errors. For hardware systems, defects may have severe economic consequences. For
software used in safety-critical systems, a simple bug can have disastrous human con-
sequences. Concurrent systems, which are composed of several (hardware or software)
components possibly interacting with each other, are particularly vulnerable to errors.
The number of possible concurrency errors (that is, errors due to wrong ordering of
concurrent events) is exponential in the number of the concurrent components. Hence,
a major goal when constructing concurrent systems is their correctness despite their
complexity.

Formal methods provide languages, techniques, and tools to establish system correctness.
The mathematical rigour of formal methods favours an early integration of verification
in the design process. For example, they have been applied in the certification of avionics
software systems [DO-11, MLD+13] and railway systems [FFG14].

Model-based verification builds on models describing the system behaviour, i.e., what
the system may do during its execution, by means of events, in an abstract and precise
way. In practice, models are usually derived from high-level formalisms endowed with
precise semantics. Correctness properties, also written in high-level formalisms, can be
checked over models. The efficiency of the verification task relies on the adequacy of the
high-level formalisms with regards to the subtleties of intended systems.

Context
According to the nature of component composition and communication, concurrent sys-
tems can be classified into synchronous and asynchronous; for each class, well-adapted
formalisms are tailored to capture system behaviour.

Synchronous concurrent systems are composed of several components running in lockstep
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Chapter 1. Introduction

fashion and sharing a global clock. For these systems, synchronous languages, among
which Esterel [BG92], Lustre [HCRP91], and Signal [LGGLBLM91], are appropriate
modelling formalisms. They rely on the synchrony assumptions: a system is seen as a
deterministic and infinite loop, whose iterations represent the clock ticks; within each
loop iteration, computations and data-flow communication are assumed to occur in zero-
delay. The synchrony assumptions make the modelling and verification tasks easy.

Asynchronous concurrent systems are composed of several components running inde-
pendently without a global clock and interacting with each other. For these systems,
process algebras, among which CCS [Mil89], CSP [Hoa85], and LOTOS [BB87], are
appropriate modelling formalisms. They are equipped with built-in operators for asyn-
chronous parallel composition; they provide abstraction means (e.g., nondeterminism);
and they have equivalence relations to efficiently and precisely compare systems.

Correctness properties of concurrent systems include the absence of undesirable situa-
tions and the succession of events in time, which can be arbitrarily far from each other.
To express properties, temporal logics, among which LTL [Pnu77] and CTL [EC82], are
powerful means. They consist of a small set of temporal operators expressing the logical
precedence of events over time.

This thesis is about formally modelling and verifying GALS (Globally Asynchronous, Lo-
cally Synchronous) systems [Cha84], which are a class of concurrent systems. A GALS
system is composed of synchronous components running in asynchronous concurrency
without sharing their clocks. Communication between components is also asynchronous,
i.e., message exchange may take an arbitrary amount of time. For example, in a flight
control system, individual components are designed to run synchronously, but the dis-
tributed nature of the global system introduces asynchrony. Other GALS instances
include networks-on-chip and distributed PLCs (Programmable Logic Controllers).

In the general case, a GALS system may have arbitrary complexity. No assumption can
be made on clock synchronisation and component periods, nor on asynchronous commu-
nication media and their latency. Each GALS instance induces its own assumptions. In
particular, although synchronous components are generally deterministic, the absence
of a shared clock may introduce nondeterminism. Another source of nondeterminism is
unreliable communication media along which messages can be delayed, lost, duplicated,
or reordered. This makes system evolution unpredictable and unreproducible, entailing
a need for formal verification.

Motivation
The correctness of GALS systems relies on combining the verification approach for syn-
chronous systems and the one for asynchronous systems. Each approach, applied indi-
vidually, is unable to capture the behavioural subtleties for which the other approach is
devised. Languages and tools for synchronous systems are deterministic by nature, thus
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unadapted to analyse nondeterminism and asynchronous concurrency. Languages and
tools for asynchronous systems lack built-in constructs dedicated to address the pure
synchrony assumptions.

We have identified a relative lack of approaches dealing with asynchronous concurrency in
existing design processes of GALS systems, compared to the intensive use of approaches
dealing with synchrony. This lack is manifold. On the one hand, the GALS paradigm
takes its roots in the industries that already integrated synchronous languages and cor-
responding tools in their development process. Consequently, the focus has been shifted
towards pushing the limits of synchronous languages and tools to accommodate GALS
behaviours. On the other hand, synchrony is easier to master than asynchrony, owing
to the zero-delay assumption and determinism, which makes systems easy to design and
debug. Contrarily, asynchronous concurrent languages and temporal logics require a
substantial learning effort, which may discourage potential users. Last, the behaviour
of GALS systems involves asynchronous concurrency and data handling, which are two
major causes of combinatorial explosion (in the possible behaviours). Additional effort
should be put to make careful modelling decisions and to choose adequate algorithmic
approaches, e.g., compositional verification, to face combinatorial explosion.

To alleviate the use of verification tools for asynchronous systems, one needs to in-
troduce DSLs (Domain Specific Languages) [vDKV00]. GALS-specific languages serve
as intermediate format mapping GALS systems, whose synchronous components are
possibly modelled using synchronous languages, to verification tools for asynchronous
systems. Due to the different semantics and abstraction level, a direct connection from
(synchronous) design languages to asynchronous languages could be complex. Instead,
performing the translation in several steps reduces that complexity and enhances the
connection modularity.

As regards behavioural modelling, a DSL should provide a clear distinction between
synchronous components and the asynchronous ones defining their asynchronous com-
position and communication. Such a distinction enables to combine of verification tools
for synchronous systems and those for asynchronous systems to address separately the
DSL synchronous and asynchronous components. For synchronous components, possibly
obtained from translation of existing synchronous languages, the DSL can be a (minimal)
language used as target of back-end compilers for synchronous languages. To ensure the
practical usability of the DSL, it should enable a natural description of relevant aspects
of GALS behaviour, in a way close to the end-user intuition and expectation.

As regards correctness properties, their formulation in temporal logic can be difficult and
error-prone, even for users familiar with formal methods and verification. One needs
a formalism tailored to capture GALS behaviour and enabling a concise and natural
expression of properties.
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Chapter 1. Introduction

Contributions
This thesis proposes a formal framework to analyse GALS systems focusing on their
asynchronous behaviour. In this respect, we take advantage of the CADP software
toolbox [GLMS13] for the verification of asynchronous concurrent processes, using state
space exploration techniques.

As a cornerstone of our framework, we have designed a formal language, named GRL
(GALS Representation Language) [JLM14a]. GRL aims at offering a concise and mod-
ular description for the behaviour of GALS systems. Both traits of synchronous pro-
gramming (determinism, atomicity) and process algebra (nondeterminism, asynchronous
concurrency) are combined in one unified language, while keeping homogeneous syntax
and semantics. GRL builds upon the following three core constructs:

Blocks denote the synchronous part of GRL, in which the synchrony assumptions are
built-in. They provide a number of basic constructs to which synchronous language
constructs can be translated.

Mediums denote asynchronous components describing communication media. They
are provided with enough expressiveness to model general asynchronous commu-
nication, with different buffering mechanisms, including unreliable ones.

Environments denote asynchronous components abstracting the external environment
of blocks. Two kinds of constraints with different abstraction levels are considered.
Data constraints enable to express complex properties on the data carried by block
inputs. Activation constraints enable to control the execution of blocks, such as
relations between block paces, priorities, or failure. Furthermore, it is possible to
combine both kinds of constraints for enhanced usage, such as complex test case
scenarios.

All-in-one, GRL is intended to be sufficiently expressive and concise to model complex
GALS systems, which is an originality compared to state-of-the-art approaches.

We formalise the semantics of GRL, using structural operational semantics (SOS) rules,
in terms of lower-level models, i.e., state spaces. This enables rigorous specification of
GRL programs and paves the way for formal analysis. State spaces underlying GRL
are concise, exploiting the GALS assumptions such as the atomicity of synchronous
components. This enhances the efficiency of verification. Data and activation constraints
would also contribute to face combinatorial explosion.

After formally defining the syntax and semantics of GRL, we address its compilation into
state spaces. For this purpose, we design a translation from GRL into LNT [CCG+16],
the most recent specification language supported by CADP. LNT is a general-purpose
language implementing concurrency theory results and equipped with state space gen-
erators. We formalise the translation function from GRL into LNT, which is fully im-
plemented in a tool named GRL2LNT1.

1The GRL2LNT tool has been implemented, mainly not by the author, in the framework of an
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To analyse GRL specifications, we exploit the MCL language, a full-fledged temporal
logic supported by CADP. To leverage the expressiveness of MCL while reducing its com-
plexity of usage, we design a property description language, named muGRL. The muGRL
language builds upon a pattern system, following the general-purpose approach [DAC99],
which is also an originality of our approach. Patterns are high-level templates that cap-
ture frequently encountered situations in GALS applications, such as component halting
and idleness, and are translatable into temporal logics. The interpretation models of mu-
GRL are the state spaces generated by translating GRL specifications into LNT. The
muGRL semantics are defined by a translation into MCL. As such, muGRL is intended
to disseminate temporal logic power to potential GALS designers.

Last, we experiment our approach on concrete GALS applications, issued from academia
and industry. This reinforces our conviction that our approach can address a large
spectrum of GALS systems, ranging from deterministic applications to ones involving
arbitrary nondeterminism.

Thesis Outline
The remainder of this thesis is structured as follows. Chapter 2 surveys the state-
of-the-art concerning the formal modelling and verification of concurrent and GALS
systems. Chapter 3 constitutes a tutorial for the GRL language. It presents the formal
syntax of each GRL construct, its intuitive semantics, along with some illustrations.
Chapter 4 presents the formal dynamic semantics of GRL. It details the structural
operational semantic rules for the language constructs, stressing on the behavioural ones.
Chapter 5 presents the formal translation functions from GRL into LNT. Examples are
given for most of the functions, to enhance the readability and ease the comprehension.
Chapter 6 constitutes a tutorial for the muGRL language. Chapter 7 shows the way
GRL and muGRL can be applicable to concrete GALS applications. It also briefly
reports a primary industrial use of GRL. Chapter 8 concludes and offers some thoughts
on extensions to this work.

Parts of this manuscript have been published in conference proceedings and journals.
The article [JLM14a] presents an overview of an earlier version of GRL, the complete and
formal definition of GRL being available in an 82-pages research report [JLM14b]. Since
then, we have revised and enhanced the syntax of the language. The article [JLM16]
presents the latest version of GRL, including the material of chapters 3 and 4 as well as
an informal presentation of chapter 5.

industrial project, named Bluesky, of the Minalogic French competitiveness cluster (www.minalogic.com/
fr/projet/bluesky). The project addresses the design and validation of networks of PLCs (Programmable
Logic Controllers).
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Notations

We introduce some mathematical concepts and conventions used in this thesis.

General notations

A set is an ordered collection of objects, called its elements. The following operators
over sets are used:

Symbol Meaning

a1, . . . , an possibly empty finite sequence of elements of length n

a0, . . . , an non-empty finite sequence of elements of length n+1 (ε if empty)

{a1, . . . , an} possibly empty set of elements a1, . . . , an of size n

{a0, . . . , an} non-empty set of elements a0, . . . , an of size n+1 ({} if empty)

〈a1, . . . , an〉 possibly empty list of elements a1, . . . , an of size n (ε if empty)

〈a0, . . . , an〉 non-empty list of elements a0, . . . , an of size n+1

a ∈ A a is an element of the set A

A ⊆ B A is a subset of the set B

{a ∈ A | P (a)} the set which contains only elements of A satisfying property P

A×B the set of all ordered pairs (a, b) where a ∈ A and b ∈ B (Cartesian product)

1..n interval whose elements range from 1 to n

We use the operator ++ for list concatenation. For a set of lists {L0, ..., Ln}, we write
++

i∈0..n
Li as abbreviation for L0++ . . . ++Ln.

The following logical operators are used:

Symbol Meaning

¬ negation

∧ conjunction

∨ disjunction

⇒ implication
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For a set of elements {a0, . . . , an}, we write
∧

i∈0..n
ai and

∨
i∈0..n

ai as abbreviation for

a0 ∧ . . . ∧ an and a0 ∨ . . . ∨ an, respectively.

Syntactic description
This document defines and references several languages. Grammars of languages are
context-free. Syntactic definitions are presented in Extended Backus-Naur Form [Sta96],
i.e., as a set of so-called productions. Each production has the form “χ ::= ξ”, where χ is
a non-terminal symbol defined by the meta-expression ξ, which consists of non-terminal
symbols and terminal symbols composed using the following meta-operators:

Notation Operation Description

(ξ0 ) bracketing ξ0

[ξ0 ] option ξ0 or nothing

ξ0∗ possibly empty repetition ξ0 , zero, one, or several occurrences

ξ0 + non-empty repetition ξ0 , one, or several occurrences

ξ1 ξ2 concatenation ξ1 followed by ξ2

ξ1 | ξ2 alternative ξ1 or ξ2

Additionnaly, the following conventions are used:

• Non-terminal symbols and generic terminal symbols are written in italics and their
occurrences can be distinguished using subscripts.

• The terminal symbol are either keywords written in bold font or key symbols are
written in teletype font. For example, “[]”, “()”, and “|” denote terminal symbols
distinct from the meta-operators “[]”, “()”, and “|”.
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Chapter 2

Background and State of the Art

A GALS system combines characteristics of synchronous and asynchronous systems,
which both belong to the class of reactive systems [HP85, Ber89, Hal10]. These are
systems in permanent interaction with the outside world. In this chapter, we first in-
troduce reactive systems. We then present the synchronous and asynchronous approach
to formally model and verify reactive systems. We focus in particular on the use of
the CADP toolbox for verifying asynchronous concurrent systems. Finally, we present
existing approaches to the formal analysis of GALS systems.

2.1 Reactive systems
Hardware and software programs and systems interact with their environment, that is,
the outside world within which they evolve. They can receive inputs from their envi-
ronment and produce the appropriate outputs, which have effect on their environment.
A program is said transformational if it receives inputs and terminates after producing
outputs. Usually, the same inputs induce the same outputs, in which case the program
is said deterministic. A transformational program can be described as a mathematical
function that transforms inputs into outputs. Examples are compilers and optimisation
algorithms.

Not all systems and programs intend to yield a final result. A system might well aim to
maintain some interaction with its environment. The environment continuously prompts
the system by providing it with inputs and the system reacts by producing outputs.
Examples are operating systems, communication protocols, and database management
systems. Such systems are called reactive, and a computation of outputs from inputs is
called a reaction. Reactive systems may be subject to strict timing constraints, in which
case they are referred to as real-time systems. In a railroad-crossing control system, it
is crucial to block vehicle crossing as soon as a train approach is detected.

Concurrency is inherent in reactive systems. First, a reactive system together with its
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2.1. Reactive systems

environment form a concurrent system. Second, reactive systems are often decomposed
into several concurrent components or tasks that operate simultaneously. Concurrent
components are usually reactive themselves; they interact with their environment and
potentially with each other.

Nondeterminism is usually introduced by concurrency. Two different copies of the same
concurrent system are likely to operate differently, while given exactly the same inputs.
An example is when several components compete to acquire a resource and the resource
operates depending on which component has won the race.

Implementations of concurrent components are multiples. They may run sequentially, a
component finishing before the next starts, or in parallel, all components evolving at the
same time. Parallel components may run over a multi-core processor or a multi-processor
machine, to speed up computations. They may also run over spatially distant machines
exchanging data through a network, in which case components are called distributed.

Reactive systems cannot be described as mathematical functions taking inputs and
producing outputs, since they run continuously without necessarily terminating, they
Rather, they are described in terms of a set of infinite sequences of states and transi-
tions (or actions) between states. Such infinite sequences are usually called executions.
We define the behaviour of a system as the set of its possible executions. The behaviour
of a concurrent system is specified in terms of the behaviours of its components. Hence,
it is essential to understand the way states corresponding to component behaviours can
be combined and the consequences of such combinations.

To establish the correctness of reactive systems, one needs appropriate behavioural mod-
els on which formal verification can be performed using dedicated algorithms. An appro-
priate behavioural model should provide an abstract and modular description of both
a reactive system, its environment, and its concurrent components. The model should
provide a description of the interaction between the system and its environment as well
as between concurrent components. Last but not least, the model should provide a
suitable abstraction of time. In this thesis, we consider a discrete representation. Time
is an infinite series of discrete instants, which can (or not) be equally separated. When
discrete instants are not equally separated, we are considering logical time.

2.1.1 Formal models for reactive systems

This section surveys some existing formal models for reactive systems. In particular, we
focus on transition systems, in which a system is modelled in terms of states and actions.
Existing models differ in the way they abstract a system behaviour, each emphasising
certain aspects disregarding the others. We classify models according to the following
three dichotomies, which we believe adequate to the comprehension of this thesis.
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Chapter 2. Background and State of the Art

Linear-time versus branching-time [Lam80] In linear-time models, the system
behaviour is expressed as the set of its possible executions, i.e., linear sequences of
states and actions. This model is well suited to deterministic systems since at each
moment in time, the system has a unique future. In branching-time models, the system
behaviour is expressed as computation trees that structure the possible executions. This
model is adequate to capture nondeterministic behaviours, since at each moment in
time, the system can have several futures. The two models differ in the way they deal
with nondeterminism. As an illustration, consider two coffee machines [Hoa85]. The
first machine, once a coin is inserted, gives the user a choice between coffee and tea, and
serves the user’s choice. The second machine, once a coin is inserted, makes internally
a nondeterministic choice, and serves either coffee or tea. Both machines have the
same set of possible executions {coin, coffee} or {coin, tea}. The branching-time view
distinguishes the difference between the two machines while the linear-time view does
not.

Action-based versus state-based [DNV90] In the action-based setting, the con-
tents of states is abstracted away. The evolution of the system behaviour is encoded in
actions. Actions correspond to the interaction of the system with its environment, i.e.,
inputs received and outputs sent by the system, as well as internal transitions performed
by the system. Examples of action-based representations include labelled transition sys-
tems [Par81], Petri-nets [Pet62], and I/O automata [LT89]. The state-based setting is
the dual of the action-based one, from a theoretical point of view. The evolution of the
system behaviour is encoded inside states, by means of variables and other information
stored in memory. Only the internal contents of states can be observed. Examples of
state-based representations include Kripke structures [Kri63]. In practice, the action-
based representation can be seen as a “black box” view of a system and state-based
models as “white box” one.

Synchronous versus asynchronous concurrency Concurrent components can be
composed either in a synchronous or in an asynchronous way. Synchronous concur-
rent components evolve in a lockstep fashion, cadenced by a single central clock. Each
clock pulse prompts all concurrent components to react. The conjunction of component
actions at the same clock pulse constitutes an action of the whole system. This con-
currency model is mainly supported by synchronous languages, such as Esterel [BG92],
Lustre [HCRP91], and Signal [LGGLBLM91].

Asynchronous concurrent components evolve independently without clock sharing. A
first model for asynchronous concurrency is the so-called interleaving semantics [Mil89].
In this model, concurrency between components is reduced to a nondeterminism choice
between the possible sequences of the component actions. This model of concurrency is
mainly supported by process algebras, such as CCS [Mil89], CSP [Hoa85], ACP [BK85],
and LOTOS [BB87].

10



2.1. Reactive systems

Another model for asynchronous concurrency is the so-called true-concurrency [Mon92],
also called non-interleaving model. In this model, concurrency is a primitive notion
clearly distinguishable from sequential nondeterminism. The system behaviour is rep-
resented in terms of the causal relations among actions performed by components; two
actions are concurrent if they are not causally related. This model of concurrency is
mainly supported by Petri-nets and Kahn-nets [Kah74].

An illustration of the three models of concurrency (in an action-based setting) is given
in Figure 2.1. Actions A and B are concurrent. The synchronous composition of actions
A and B results in one action labelled AB. The interleaving semantics expresses that
either action A occurs followed by action B or action B occurs followed by action A.
The true-concurrency model can be understood as a system with two initial states, each
with an outgoing transition, since actions A and B are not causally related.

A B

      true
 concurrency

AB

A

AB

B

synchronous
concurrency

interleaving
 semantics

(synchronous product) (asynchronous product)

Figure 2.1: Models of concurrency in an action-based setting

2.1.2 Formal verification of reactive systems

To perform formal verification, one needs, in addition to a model describing all potential
behaviours of the system, to describe the set of properties that must hold on the system.
The verification problem consists in proving (automatically) that the model satisfies the
properties. We briefly introduce the common formal verification approaches:

• Static analysis consists in verifying programs, without executing them, relying on
the semantics of the language in which programs are written. The abstract inter-
pretation technique [CC77] consists in abstracting the model to a smaller one, in
such a way that if the desired property holds on the abstracted model, it must
hold on the original one. Among the static analysers based on abstract interpre-
tation, we cite Astrée [CCF+05] and Verasco [JLB+15]. Abstract interpretation is
used extensively in transformational systems such as in compiler optimisation and
sequential program verification. While being an automated technique, abstract
interpretation cannot achieve 100% precision in the general case.

• Theorem proving consists in modelling the system as a set of mathematical defi-
nitions. The desired properties of the system are derived as theorems that stem
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from those definitions. Proofs can be constructed either by hand or by using auto-
matic theorem provers and interactive proof checkers. Although it cannot be fully
automated, theorem proving is assisted by powerful proof assistant, among which
Coq [FHB+97] and Isabelle [Pau89]. Theorem proving techniques are particularly
useful in the case of general infinite-state reactive systems, e.g., systems containing
unbounded data structures. They have been used in the context of reactive and
real-time systems, but less for distributed concurrent systems.

• Model checking consists in modelling the system as a (finite) transition system that
describes all the possible executions of the system. The desired properties of the
system can be described by reasoning about the temporal ordering of events1. Tem-
poral logic formalisms have been introduced in the late seventies [Pnu77] for this
purpose. A temporal logic is a set of operators, expressing the logical precedence
either between states (state-based temporal logic) or between actions (action-based
temporal logic). Additionally, temporal logics can be interpreted either on linear-
time models, by specifying properties of individual execution sequences, or on
branching-time models, by taking into account the branching structure of the
state space. According to these two dichotomies, a lot of formalisms have been
proposed. The following table shows the most representative ones.

linear-time branching-time linear- and branching-time

state-based LTL [Pnu77] CTL [EC82] CTL∗ [EH86]
action-based ALTL [GM03] ACTL [DFGR93] ACTL∗ [DNV90]

Given a state space and a property, the model checking problem [CGP00] con-
sists in determining whether the state space satisfies the property or not. If the
property does not hold on the state space, it is desirable to obtain a diagnostic
(or counterexample) showing an undesirable behaviour present in the state space.
This problem is solved by model checking algorithms, which traverse the state
space and halt as soon as the truth value of the property has been determined.
State space traversing techniques are typically grouped in two classes:

– enumerative techniques consider each state of the system separately
– symbolic techniques manipulate sets of states represented using either decision
diagrams or logical formulas. The satisfiability of those representations is
determined using SAT and SMT solvers.

Another way to describe nontrivial properties is equivalence checking. It consists
in expressing a specification of the system in terms of input/output relations, then
deriving whether the system and its specification are behaviourally equivalent.

It is common to combine several verification techniques (e.g. [Hun93, HS96, Amj04]) to
exploit their best capabilities while reducing their shortcomings. In this thesis, we focus

1The term “temporal ordering” should not be confused with the real-time aspect of reactive systems.
The meaning here is the relative order of events, time being abstracted.
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on the model checking technique, adequate to address the subtleties of concurrency.

While transition systems are adequate to model concurrent components interacting with
each other, building them manually is complex and error-prone. Moreover, the slightest
modification in the specification may involve drastic changes in the structure of the
transition system, making it cumbersome to debug and modify. For these reasons,
transition systems are often derived from descriptions written in high-level formalisms,
by automatic translation. There are several high-level formalisms, each emphasising a
specific class of systems.

In the sequel, we present the synchronous approach, well-adapted to deal with sequential
and parallel systems such as hardware circuit designs and embedded systems. We also
present the asynchronous approach, well-adapted to deal with parallel and distributed
systems such as telecommunication protocols and distributed software.

2.2 The synchronous approach
A reactive system is synchronous if it reacts instantaneously to its environment and has
a deterministic behaviour.

A reaction is assumed instantaneous if on the arrival of some inputs from the environ-
ment, a system reacts fast enough to produce the corresponding outputs, before the
arrival of the next inputs. Hence, the system behaves as an infinite loop, called syn-
chronous loop, each iteration corresponding to a reaction. In the remainder of this thesis,
we will use the terms step to denote the reaction of a synchronous system and activation
its ability to perform a step at a specific logical instant.

Synchronous concurrent components composing the system are cadenced by its syn-
chronous loop. Component (micro-) steps may be idle, i.e., their inputs and outputs
keep the same values as in the previous step. Messages emitted by components are
received by other components in the same step; such communication is called instant
broadcast. Instantaneous computations and communication are usually called zero-delay
(or synchrony) assumptions.

A consequence of the synchrony assumptions is the determinism of the synchronous
loop: given the same initial state and sequence of inputs, the same sequence of outputs
will be produced. Determinism is desirable in safety-critical environments, in which
a simple bug can have extreme consequences. Another consequence of the synchrony
assumptions is the potential presence of temporal paradoxes, called causality problems.
Examples include instantaneous dependencies between inputs and outputs.

2.2.1 Synchronous languages

Theoretical foundations can (a priori) be traced back to R. Milner’s synchronous pro-
cess algebra SCCS (Synchronous Calculus of Communicating Systems) [Mil83], which
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extends CCS with primitives to encode synchrony. SCCS gave birth to other process
calculi such as Meije [AB84]. Several synchronous programming languages have followed
applying the synchronous approach. According to their programming style, synchronous
languages can be classified into imperative and declarative languages. We survey the most
representative ones of each class.

Synchronous imperative languages are inspired by classical imperative languages, i.e.,
in which the program structure reflects the order in which operations execute. They
allow a modular description of reactive systems that require complex control structures.
Esterel [BG92] has a textual syntax close to parallel programming languages such as
ADA and Occam. It provides, in addition to the classical algorithmic control structures,
concurrency primitives inspired by SCCS and Meije, as well as preemption structures.
Argos [Mar91] is a graphical language, based on the Statecharts [Har87] formalism. An
Argos program consists of hierarchical Mealy machines. These are finite-state automata
in which outputs and next-state are both determined by the current-state and the current
inputs.

Synchronous declarative languages are inspired by earlier studies on dataflow models
[Kah74, McG82]. They allow the description of reactive systems that perform intensive
data computation. Programs are described as networks of interconnected operators,
evolving in parallel, and triggered by input arrivals. Lustre [HCRP91] is a functional
language with textual syntax. A Lustre program is based on Mealy machines, the notion
of state being implicit, unlike Argos. Signal [LGGLBLM91] is a relational language,
defining relations between input and output flows (timed sequences of values), rather
than simple functions as in Lustre. Contrarily to other synchronous languages, Signal
programs are not necessarily deterministic. Each component induces its own constraints,
which restrict the nondeterminism of the program. The Signal compiler is able to check
the determinism of the conjunction of all constraints. This is the essence of the so-called
multiclock or polychronous semantic model.

Causality problems in synchronous languages are either forbidden using static constraints
(e.g., in Lustre) or resolved by the compilers using causality analysis algorithms. Exam-
ples of such algorithms are conditional dependence graph in Signal and computation of
fixpoints in Esterel. Additionally, most synchronous languages are equipped with delay
operators, which keep track of the values carried by expressions from one program step
to the next. Based on how delay operators are used in a program, the compiler builds
automatically an internal state.

Other proposals extend existing general-purpose languages with synchronous behaviour.
Reactive-C provides a programming style similar to the C language. SynchCharts
[And95] is a graphical language combining features from Esterel and Argos. Esterel-C
(ECL) [LS99] and Java-Esterel (Jester) [AFFSV01] combine Esterel-like constructs with
respectively C and Java languages. Lucid [WA85] is a higher-order functional language
combining Lustre-like constructs and built upon Ocaml (Objective Caml) [LDG+03].
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2.2.2 Functional verification

Due to the massive use of synchronous systems in safety-critical environments, many
analysis techniques have been exploited for synchronous systems encompassing auto-
mated test, model checking, SMT-Solving, and abstract interpretation. We focus here
on the techniques related to our work, namely the verification by model checking. Func-
tional properties that a synchronous system should satisfy fall into two classes: safety
properties, expressing that something bad will never happen; and bounded liveness prop-
erties, which are timing properties expressing that something good will happen within
a bounded future.

A convenient way to express properties is an application of [VW86], where the negation
of a property is described by an automaton. The synchronous product of this automaton
with the program ensures that no trace of the program is accepted by the automaton.
Since almost all synchronous languages synthesise finite automata (e.g., Mealy machines)
from programs and since the parallel composition in those languages is synchronous,
properties can be expressed directly in the synchronous language. These properties,
called synchronous observers [HLR93], are auxiliary programs which observe the inputs
and outputs of the program under verification and decide whether it is correct.

Many software verification tools have been developed to model check synchronous sys-
tems. Xeve [Bou98] is a model checker for Esterel programs. The tool compiles syn-
chronous programs into a finite state automaton over which properties such as deadlock
and starvation absence can be checked. Lesar [HR99] is a model checker, which com-
piles a Lustre program into a finite state automaton and implements the verification
by observers. Both model checkers interface with automata-based tools such as Auto
and Autograph [RdS90]. In [MRBS01], Signal programs are verified by means of equa-
tion systems, thus avoiding state space enumeration. Properties such as invariance and
reachability can be verified.

Model checking has been mainly used to verify properties depending only on logical
dependence between events. Traversing the set of control states of a validation program
can be either enumerative or symbolic. For properties involving numerical values, such
as bounded liveness properties, abstract interpretation techniques are seemingly more
appropriate [HPR97]. However general liveness properties involving unbounded future
are rarely addressed in synchronous languages. Expressing such properties requires more
expressive and complex formalisms such as temporal logics and Büchi automata.

2.3 The asynchronous approach
A reactive system is asynchronous if the time in which an event occurs and its duration
are considered of less concern.

While the asynchronous approach deliberately abstracts from the precise timing of
events, the order of some events (sequential composition) and their simultaneity can
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be described. This way of modelling provides asynchronous models with simplicity and
abstraction, making them appropriate for modelling distributed and concurrent systems.

2.3.1 Communication models

Communication mechanisms are required to enable interaction between concurrent com-
ponents, as the time in which input and output events occur is unspecified. Existing
communication mechanisms include shared memories and message-passing communica-
tion.

Shared memory communication, introduced by Dijkstra [Dij65], enables concurrent com-
ponents to communicate by altering the contents of shared locations. Languages adopt-
ing this mechanism include Java and C#. The access of concurrent components to
shared locations should be controlled, for example, by using mutual exclusion protocols.
Well-known examples of such protocols are Peterson’s and Dekker’s protocols.

Message-passing enables concurrent components to communicate with each other by
exchanging messages. Message exchange can be either synchronous or asynchronous.

Asynchronous message-passing takes arbitrary delay, i.e., the elapsed time between mes-
sage emission and reception is abstracted away. This requires the introduction of buffers
or channels as proposed by Dijkstra [Dij72] which serve to store messages before their
transmission. As such, asynchronous message-passing does not force participant com-
ponents to wait for each other to communicate. Message-passing channels has been
adopted by specification languages for communication protocols, such as the ITU stan-
dard SDL [BHS91] and Promela [Hol91]. In Promela, channels store messages in first-in
first-out order, by default. If synchronous communication is required, it can be modelled
by setting the channel size to zero.

Synchronous message-passing requires messages emitted by a component to be received
by other components at the same time instant. In the asynchronous abstraction of
time, this requires the introduction of communication events, called synchronisation
or rendezvous between the participant components. Synchronous message-passing is
intended to be independent of the medium used to communicate. The communication
medium, which may be a shared location, could itself be modelled as a subordinate
component that synchronises with emitters and receivers. Synchronisation is blocking,
i.e., it happens only when all participants are ready to communicate. As such, the
emitter component blocks until message reception, after which the different components
evolve independently. Beyond message exchange, (dataless) synchronisation can be used
to express the simultaneity of specific events of concurrent components. Synchronous
message-passing is the main interaction paradigm used in process algebras such as CCS
[Mil89], CSP [Hoa85], ACP [BK85], and LOTOS [BB87].

Hiding and nondeterminism operators, which are specific to some asynchronous lan-
guages, provide behavioural descriptions with high abstraction capability. The hiding
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operator is essentially present in process algebra. It transforms events into invisible
ones, i.e, event occurrence is neither detectable nor controllable by the environment.
Synchronisation on invisible events is forbidden.

Nondeterminism is aimed at accurately disregarding irrelevant aspects of the actual
system. Examples of situations in which nondeterminism is helpful are the following:

– Modelling concurrency by interleaving, thus abstracting from the speed of concur-
rent components.

– Abstracting from complex details of the physical environment.
– Abstracting from implementation details either because these are considered ir-
relevant or because the aim is to develop a simplified system meeting primary
specifications before refining it to meet more detailed ones.

2.3.2 Functional verification

State space exploration techniques, including reachability analysis and model checking,
are the most widespread approaches for dealing with concurrent systems containing
complex data structures. CADP [GLMS13] and Spin [Hol04] are seemingly the two oldest
model checkers that are still actively maintained and that benefit from a worldwide user
community. Both tools support on-the-fly techniques, which consist in constructing and
exploring state spaces on demand, guided by the verification task instead of generating
state spaces exhaustively and then performing verification. This provides a way to
fight against state space explosion, essentially caused by asynchronous concurrency and
complex data structures.

CADP supports several input specification languages, among which LNT [CCG+16],
LOTOS and FSP [MK06]. They rely on an action-based semantic model; by consider-
ing systems whose behavioural semantics can be represented using labelled transition
systems. Model checkers of CADP are based on branching-time logics, which are ade-
quate with bisimulation reductions and compositional verification. More details about
the CADP toolbox will follow in Section 2.4.

SPIN supports Promela as input language. Promela relies on a state-based semantic
model and considers systems whose behavioural semantics can be represented using
Kripke structures. Correctness properties can be specified as process invariants, using
assertions, as LTL formulas, or as formal Büchi automata.

Among other well-known tools, CWB [CPS89] (Concurrency Workbench) deals with CCS
process algebra. CWB-NC [CLS00] (Concurrency Workbench of the New Century) is the
continuation of research started in the Concurrency Workbench project. FDR [GABR14]
is a model checker for verifying systems modelled in CSP. The mCRL2 toolset [CGK+13]
is based on a variant of the ACP process algebra equipped with abstract data types.
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2.4 The CADP toolbox for the verification of asynchronous
systems

CADP is a modular software toolbox implementing the results of concurrency theory in
the context of asynchronous concurrent systems. Started in the mid 80s, CADP includes
today more than 50 tools and code libraries, among which compilers for various formal
specification languages, equivalence checkers, model checkers, compositional verification
tools, and performance evaluation tools. We focus here on some salient features of the
languages and tools related to our work and required to the comprehension of this thesis.

LNT (Lotos New Technology) [CCG+16] is a specification language derived from the
ISO standard E-Lotos [ISO01]. The LNT.OPEN tool translates LNT specifications
into LTSs, given in BCG (Binary Coded Graphs) file format, suitable for on-the-fly
exploration. Section 2.4.2 presents informally a subset of the LNT language.

MCL (Model Checking Language) [MT08] is an expressive temporal logic, extending
the alternation-free µ-calculus [EC82] with generalised regular expressions, data-based
constructs, and fairness operators. The EVALUATOR 4.0 model checker implements an
efficient on-the-fly model checking procedure for MCL. It also exhibits full diagnostics
(examples and counterexamples) as subgraphs of the LTS illustrating the truth value of
MCL formulas. Section 2.4.3 presents informally a subset of the MCL language.

LTS minimisation is possible by using equivalence checking, which collapses the equiv-
alent states in the LTS. Several equivalence relations are implemented in CADP, in-
cluding strong [Par81], branching [vGW89, vGW96], and divergence-sensitive branch-
ing [vGW89, vGW96] bisimulation relations. A definition of those relations together
with a formalisation of LTSs is given in Section 2.4.1.

SVL (Script Verification Language) [GL01, Lan02] is both a high-level scripting language
proposed to CADP end-users and a compiler that translates SVL scripts into Bourne
shell scripts. SVL enables to express complex verification scenarios, including property
specification, LTS minimisation, abstraction, comparison, which orchestrates calls to the
CADP tools.

2.4.1 Labelled Transition Systems (LTS)

Definition 2.1. (Labelled transition system) An LTS is a quadruple (S,L,→, s0)
where:

– S is a set of states.
– L is a set of labels.
– → ⊆ S× L× S is the labelled transition relation.
– s0 ∈ S is the initial state.

�
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We write s `−→ s′ as a shorthand for (s, `, s′) ∈ →. There exists a label, written τ or i,
called the invisible label, which denotes internal actions. All labels different from τ are
called the visible labels. An LTS is finite if its sets of states and transitions are both
finite.

LTS equivalences Several equivalence relations between LTSs are available in the
literature, differing mainly in the way they treat invisible labels. We focus on a few of
them, namely strong bisimulation, branching bisimulation and its divergence-sensitive
variant.

Definition 2.2. (Strong bisimulation) A strong bisimulation is a symmetric
relation R ⊆ S × S such that if (s1, s2) ∈ R, then for all s1

a−→ s′1:

– there exists s′2 such that s2
a−→ s′2, and

– (s′1, s′2) ∈ R.

Two states s1 and s2 are strongly bisimilar if there exists a strong bisimulation R such
that (s1, s2) ∈ R. Two LTSs are strongly bisimilar if their initial states are strongly
bisimilar. �

Definition 2.3. (Branching bisimulation) A branching bisimulation is a symmet-
ric relation R ⊆ S × S such that if (s1, s2) ∈ R, then for all s1

a−→ s′1:

– either a = τ and (s′1, s2) ∈ R, or
– there exists a sequence s2

τ∗−→ s′2
a−→ s′′2 such that (s1, s

′
2) ∈ R and (s′1, s′′2) ∈ R.

Two states s1 and s2 are branching bisimilar if there exists a branching bisimulation
R such that (s1, s2) ∈ R. Two LTSs are branching bisimilar if their initial states are
branching bisimilar. �

Branching bisimulation does not distinguish between inaction and a cycle of internal
actions. Divergence-sensitive branching bisimulation (or divbranching bisimulation for
short) is introduced to take into account cycles of internal actions.

Definition 2.4. (Divergence-sensitive branching bisimulation) A divbranching
bisimulation is a branching bisimulation R such that if (s0

1, s
0
2) ∈ R and there is an

infinite sequence s0
1
τ−→ s1

1
τ−→ s2

1
τ−→ . . . with (si1, s0

2) ∈ R for all i ≥ 0, then there is an
infinite sequence s0

2
τ−→ s1

2
τ−→ s2

2
τ−→ . . . such that (si1, s

j
2) ∈ R for all i, j ≥ 0.

Two states s1 and s2 are divbranching bisimilar if there exists a divbranching bisimula-
tion R such that (s1, s2) ∈ R. Two LTSs are divbranching bisimilar if their initial states
are divbranching bisimilar. �
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2.4.2 The LNT language

The LNT formal language is rooted in a core powerful language, combining mainstream
imperative and functional traits, which is smoothly extended with concurrency-related
primitives. LNT is endowed with formal operational semantics defined in terms of LTSs
(see [CCG+16] for a detailed presentation).

Types, statements, and functions

LNT provides constructed data types, statements built upon standard algorithmic con-
trol structures, and functions.

Types LNT types encompass basic types such as Boolean, integers, floating-point
numbers, and character strings, as well as user-defined (possibly unbounded) data types
such as records, unions, lists, sets, and arrays. The following is an example which defines
a simple enumerated LNT data type temperature:
1 type temperature i s
2 low , normal , high , very_high
3 with " !=" , "==" , "<" , "<=" , ">" , ">="
4 end type

The “with” clause specifies the predefined functions for type temperature.

Statements LNT statements build upon standard algorithmic control structures, such
as variable assignment, sequential composition, conditional (if-then-else), pattern match-
ing (case) statements, and loops (for, while). In particular, statement “var X: T in I
end var” declares variable X of type T in the scope of statement I . Hence, LNT dis-
sociates between variable declarations (between the keywords var and end var) and
variable modifications (inside I ).

The following is an example of a statement which declares a variable, to which it assigns
a value.
1 var ambient : temperature in −− dec la ra t i on
2 ambient := normal −− assignment
3 end var

Functions LNT functions can have in parameters (call by value), out parameters (call
by reference, the function being in charge of producing a value for the parameter), and
“in out” (call by reference, the function being allowed to read and update the parameter
value). Actual parameters are preceded by symbols “!”, “?”, and “!?”, respectively.
Functions are deterministic and execute atomically without producing transitions in the
generated LTS.
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The following is an example of a function check_temperature reading the ambient tem-
perature and raising an alarm if the temperature is high:

1 function check_temperature ( in ambient : temperature , out alarm : bool ) i s
2 i f ( ambient >= high ) then
3 alarm := true
4 else
5 alarm := fa l se
6 end i f
7 end function

The following is an example combining a call to the function check_temperature, with
the var operator and variable assignment.

1 var ambient : temperature , alarm : bool in
2 ambient := normal ;
3 eval check_temperature ( ambient , ?alarm )
4 end var

Note that LNT types, statements, and functions look similar to mainstream program-
ming languages, which favours the acceptance of the language by users compared to
classical process algebras.

Behaviours and processes

Processes include functions, with the addition of gates, which are used for communica-
tion, and other behaviours built upon gates and process algebraic operators, including
nondeterministic statements and parallel composition.

Nondeterministic assignment The behaviour “X := any T [ where V ]” assigns to
the variable X an arbitrary value of type T . The optional where clause with a Boolean
expression V , supposed to use X , enables to express Boolean constraints on the possible
values.

Nondeterministic choice The behaviour select B1 [] . . . [] Bn end select may
execute either B1 , ..., or Bn .

The following are two semantically equivalent examples of nondeterministic assignment
(left-hand side) and nondeterministic choice (right-hand side), involving type tempera-
ture:

1 ambient := any temperature
2 where ( ambient != very_high )

1 se lect
2 ambient := low
3 [ ] ambient := normal
4 [ ] ambient := high
5 end se lect
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Gate communication The behaviour “G (O1 . . . On)” defines a communication on
gate G. Offers O1 , ..., On describe the data exchanged during the communication. Each
offer is either an emission of some expression or a reception of some value in a variable,
in which case it is prefixed by ?. There exists an internal gate noted i, which must be
used without offer.

The following is an example of a behaviour for the coffee machine (Section 2.1.1, page 9),
where Coin, Coffee, andTea denote communication actions without offer. The behaviour
defines the LTS on the right-hand side.

1 Coin ; −− coin i n s e r t i o n
2 se lect −− dr ink se rv ing
3 Coffee
4 [ ] Tea
5 end se lect

Coffee Tea

Coin

The following is an example of a behaviour assigning to variable alarm, a nondetermin-
istically chosen value, which is emitted on gate Snd_Alarm. Such behaviour defines the
LTS on the right-hand side:

1 alarm := any Bool ;
2 Snd_Alarm ( alarm )

Snd_Alarm ! true Snd_Alarm ! false

Channels Similarly to a variable, a gate is typed by a channel, which defines its
profiles, i.e., the number and types of the values exchanged on the gate. There exists a
predefined channel channel none is () end channel, with which any gate intended for
dataless synchronisation can be declared. The following are some examples of channel
definition.

1 channel Bool i s ( Bool ) end channel
2 channel Temperature_Bool i s ( temperature , bool ) end channel

Hiding Similarly to variables, gates can be declared either as formal gates in the
process definition or locally inside a process. The behaviour “hide G0 : Γ0, . . . , Gn: Γn
in B end hide” declares gates G0 , ..., Gn of respective channels Γ0, ..., Γn that are only
visible in the scope of behaviour B, i.e., hidden from the environment of B. Actions on
hidden gates in the behaviour are substituted by the internal action i.

The following is an example of behaviour in which actions on gate Coin are hidden.

22



2.4. The CADP toolbox for the verification of asynchronous systems

1 hide Coin : none in
2 Coin ;
3 se lect
4 Coffee
5 [ ] Tea
6 end se lect
7 end hide

Coffee Tea

i

Parallel composition The behaviour “par G0 , . . . , Gn in B0 || . . . || Bm end par”
defines a parallel composition of behaviours B0 , . . ., Bm . Behaviours communicate by
rendezvous on the set of gates {G0 , . . ., Gn}, called synchronisation set. If the syn-
chronisation set is empty, no communication occurs, in which case behaviours are said
to execute in pure interleaving. Communication is blocking. If a behaviour is waiting
for a communication whose gate belongs to the synchronisation set, then this commu-
nication can happen only if all behaviours B0 , . . . , Bm can make this communication
simultaneously. The following is an example of two actions A and B in pure interleaving:

1 par
2 A
3 | | B
4 end par

A

AB

B

The following is an example of a parallel composition in which all behaviours synchronise
on gate A. Behaviours do not synchronise on gate B (line 7), since the gate does not
belong to the synchronisation set (line 1).

1 par A in
2 A (1)
3 | | var X: Nat in
4 A (?X)
5 end var
6 | | var X: Nat in
7 A (?X) ; B
8 end par
9 end par

A !1

B

Processes Processes allow behaviours to be named. A process can be parameterised
by both data variables and gates. The following is an example of a process modelling a
reactive system. Forever loops, which are absent in many traditional process algebras,
allow a simple implementation of reactive systems.
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1 process Check_Temperature [ Rec_Ambient : temperature ,
2 Snd_Alarm : bool ]
3 i s
4 var ambient : temperature , alarm : bool in
5 loop −− f o r eve r
6 −− r e ce i v e the ambient temperature
7 Rec_Ambient (?ambient ) ;
8 −− check the temperature value
9 eval check_temperature ( ambient , ?alarm ) ;

10 −− emit an alarm
11 Snd_Alarm ( alarm )
12 end loop
13 end var
14 end process

SND_ALARM !TRUE

SND_ALARM !FALSE

REC_AMBIENT !HIGH

REC_AMBIENT !VERY_HIGH

REC_AMBIENT !LOW

REC_AMBIENT !NORMAL

2.4.3 The MCL language

MCL enables a concise formulation of temporal properties, possibly parameterised by
data values. The interpretation model is an LTS whose actions (transition labels) contain
a gate name G followed by a list of values v1, ..., vn, exchanged during the rendezvous
on G. Three kinds of formulas can be defined.

Action formula MCL action formulas, noted A, characterise actions of the LTS. An
action formula is built from action patterns and the usual Boolean connectors. Action
pattern “{G ?X :T where V }” matches every action of the form “G v”, where v is
a value of type T that is assigned to variable X , provided the Boolean expression V
(which possibly uses X) evaluates to true. Variable X is exported to the enclosing
formula. Action pattern “{G !e}” matches every action of the form “G v” where v is
the value obtained by evaluating expression e. Action pattern “{G ?any}” denotes a
wildcard matching an arbitrary value regardless of its type.

Of course, it is possible to combine value matching (“!e”), value extraction (“?X :T”),
and wildcard in the same action formula, for matching actions containing several values.
Gate name G can also be extracted and manipulated as ordinary value of type String.

The following are some examples of action formulas.

The action formula: {Rec_Ambient ?ambient:String where ambient <> "very_high"}
matches actions: {Rec_Ambient !"low"}, {Rec_Ambient !"normal"}, and
{Rec_Ambient !"high"}, but does not match action: {Rec_Ambient !"very_high"}.

The action formula: {Snd_Alarm ?any} matches actions: {Snd_Alarm !true} and
{Snd_Alarm !false}.
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Regular formula MCL regular formulas, noted R, characterise sequences of transi-
tions in the LTS. A regular formula is built from action formulas and regular expression
operators such as concatenation (“R1 . R2 ”), choice (“R1 | R2 ”), unbounded iterations
(“R∗” and “R+”), iterations bounded by counters (“R {n}”), etc.

For example, the regular formula: {Coin} . ( {Coffee} | {Tea} ) matches the following
action sequences: s0

Coin−−−→ s1
Coffee−−−−→ s2 and s0

Coin−−−→ s1
Tea−−→ s2.

State formula MCL state formulas, noted F , characterise states of the LTS by speci-
fying (finite or infinite) tree-like patterns going out from these states. A state formula is
built from Boolean connectors, possibility (“<R>F”) and necessity (“[R]F”) modalities
containing regular formulas, minimal (“mu X.F”) and maximal (“nu X.F”) fixed point
operators, and the infinite looping (“<R>@”) and finite saturation (“[R]-|”) operators.

The following are some examples of state formulas. Deadlock absence can be de-
tected by the following property, stating that every state has at least one successor:
[true∗]<true>true. Cycles of internal actions can be detected by the property: <tau>@.

2.5 Globally Asynchronous Locally Synchronous (GALS)
systems

Both synchronous and asynchronous languages and their dedicated verification tools
have been used to deal with GALS systems. In this section, we review some of the
existing approaches in this context.

2.5.1 GALS systems in synchronous languages and dedicated tools

The synchrony assumptions are hard to maintain in many classes of applications. Exam-
ples include distributed embedded software and large hardware designs in which precise
clock distribution is infeasible or overly expensive. While local components of such
systems are best modelled under the synchrony assumptions, communication mediums
introduce asynchrony in the behaviour of the global system. At the same time, design
and verification frameworks for synchronous systems are efficient and already integrated
in the design process of many industrial systems. Hence, the motivation of some research
track is to maintain the well-established methods and tools for synchronous systems for
most of the design process.

Theoretical work on addressing asynchrony using synchronous formalisms can be traced
back to the early eighties, when Milner showed that SCCS can simulate CCS [Mil83].
The main requirement is the ability to model a nondeterministic activation of syn-
chronous components. Following Milner’s approach, several other approaches [HB02,
GG03, HM06] emulate asynchrony in synchronous formalisms, for example by means
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of additional inputs used as activation conditions and to which arbitrary values are
assigned.

While Milner’s and related approaches adopt a single clock model, other authors pro-
pose a model with multiple loosely coupled clocks, called multiclock model. This model
has been used to deal with systems intended to run in asynchronous distributed imple-
mentations based on lossless message-passing [GG10, GTL03, GG07]. Signal [GTL03]
was the first language supporting the multiclock model, followed by Esterel giving birth
to the Multiclock Esterel [BS01]. The CRP language (Communicating Reactive Pro-
cesses) [BRS93] was the result of earlier work combining Esterel and CSP. A translation
of CRP into the Meije process calculus has been proposed, thus enabling verification to
be performed.

Another track of research [BCG99, PBCB06, PBDSST09, BBS12, AL03] is the synthe-
sis of semantic-preserving GALS systems from synchronous programs, foreseeing their
distribution. This approach favours correct-by-construction deployment of synchronous
programs over GALS architectures. Several theoretical results on this concern are al-
ready supported by the Signal compiler. The tools SynDEx2 and Ocrep3 enable the
automatic generation of distributed implementations, starting from a specification writ-
ten in a synchronous language. However, these approaches generally do not deal with
the formal verification of GALS systems.

All the aforementioned approaches mainly address deterministic GALS systems in which
communication media are reliable: all messages are delivered in the order in which
they have been received. However, a wide range of modern applications support unreli-
able communication media, such as recent LTTA (Loosely Time-Triggered Architectures)
[BBC10, Sme13], which tolerate bounded loss of messages. Message loss is encountered
by using an LTTA protocol, which ensures correct message transmission. In addition,
modelling GALS systems in synchronous languages requires real-time guarantees, such
as bounded computations and communication delays. Such guarantees may be unknown
in the general case, or at least difficult to synthesise in some distributed applications.
Examples of this kind are networks of PLCs, which evolve at arbitrary paces, the com-
munication protocol (e.g., Modbus) being responsible of correct message transmission.

Last but not least, verification tools of synchronous languages do not support logics with
sufficient expressiveness to capture general liveness and fairness properties, required for
the verification of asynchronous concurrent systems. Synchronous model checkers (e.g.,
[HLR93, Bou98]) can express safety and bounded response properties but not properties
in which the expected response may occur within unpredictable delay, as was mentioned
in the end of Section 2.2.2.

To address general GALS systems, whose synchronous components evolve at unrelated
paces and communicate along unreliable media with no real-time guarantees, verification

2http://www.syndex.org/
3http://pop-art.inrialpes.fr/~girault/Ocrep/
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frameworks for asynchronous systems are more appropriate.

2.5.2 GALS systems in asynchronous languages and dedicated tools

Addressing GALS systems in asynchronous languages and their dedicated verification
tools have genuine benefits. Asynchronous languages provide built-in parallel composi-
tion and abstraction operators to reason about asynchronous concurrent systems, ab-
stractly and compositionally. Such operators enjoy useful compositionality properties
such as congruence results. Hence, efficient state-space reduction techniques (e.g., par-
tial order reduction) and compositional verification can be applied, for scaling to large
systems. Compositional verification for asynchronous systems [GLM15] can be used to
complement compositional verification approaches used for synchronous systems, such
as assume-guarantee reasoning techniques (e.g., [BCMW15, GGTG10]). On the other
hand, verification tools for asynchronous systems support logics with sufficient expres-
siveness to capture complex properties. Examples are succession of events in time (ar-
bitrarily far from each other), cycles denoting infinite executions, and general liveness
properties.

We have identified two main approaches in the literature addressing GALS systems in
design and verification frameworks for asynchronous languages. A first approach consists
in translating a GALS-specific language into a process language.

A translation from CRSM (Communicating Reactive State Machines) [Ram98], a visual
language built upon CRP, into Promela is proposed in [RSD+04]. Verification is achieved
by means of distributed observers to get rid of using temporal logics. The reliance of
CRSM on Esterel entails a lack of data-driven support in the language. Indeed, most of
the data-handling part of Esterel is deferred to the host language (e.g., C, C++, Java).

SystemJ [MSRG10] extends Java with Esterel-like synchronous model and CSP-like
asynchronous model. Hence, unlike CRSM, it inherits the rich data-computation ca-
pabilities of Java. Components (called clock-domains) of SystemJ are deterministic and
their asynchronous composition introduces nondeterminism. Such nondeterminism is
still difficult to verify in the SystemJ framework. Efficient code can be automatically
generated from SystemJ programs, but relies on Java virtual machines as target. This
makes the language unsuitable for systems with limited resources. Recently [PMS15],
a translation has been defined from a subset of SystemJ to LTL formulas, from which
networks of Mealy automata are synthesised and translated into Promela, thus making
possible the verification using SPIN.

Another approach consists in combining synchronous languages and asynchronous pro-
cess languages. Synchronous components are encapsulated in asynchronous processes
(called wrappers) to interface with other components. Asynchronous behaviour is de-
scribed by introducing additional components, in the asynchronous language, to imple-
ment communication media.
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This approach has been first implemented in [DMK+06], where Signal modules are
compiled into C programs, which are encapsulated into Promela wrappers. Wrappers
describe an infinite loop of atomic steps, by using the atomic construct of Promela. In
each loop iteration, all possible values of inputs are generated; then, the C program
is invoked together with clock constraints; finally, only if the clock constraints are met,
outputs are computed. The asynchronous composition of wrappers is ensured via specific
hardware communication buses, based on an early version of an LTTA protocol. Buses
are abstracted as Promela finite FIFO channels, which are proven equivalent to one-place
channels. Verification is performed by using LTL (Linear Time Logic) formulas.

The Signal-Promela approach, relying on state-based with linear-time semantics, is fol-
lowed up by an approach combining the SAM synchronous language and the LNT asyn-
chronous language in an action-based setting with branching-time semantics [GT09].
In this approach, SAM automata, which are extended Mealy machines, are translated
into LNT functions that are encapsulated into LNT wrapper processes. Atomicity of
synchronous components is described in functions but not their wrapper processes. As
a result, individual input and output actions of the different LNT wrappers can in-
terleave arbitrarily. Furthermore, the asynchronous composition between processes is
completely arbitrary, since no constraints are put on their executions, contrarily to the
Signal-Promela approach. As such, the maximal degree of nondeterminism is considered.
This approach is used to check that an airplane-ground communication protocol, based
upon TFTP/UDP (Trivial File Transfer Protocol/User Datagram Protocol), ensures cor-
rect message transmission. Abstractions and compositional verification are used to cope
with state space explosion. Verification by model checking and performance evaluation
are applied by using CADP.

The Signal-Promela and SAM-LNT approaches address specific GALS applications with
specific activation strategies and communication protocols. Hence, their usage is not
transferable to general GALS systems. While both approaches pave the way for ad-
dressing GALS systems in verification tools for asynchronous systems, one may wonder
if having two different modelling languages is easy to learn.
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Chapter 3

The GRL Language for GALS
Behavioural Description

This chapter presents the GRL language, a new formal language for the behavioural
description of GALS systems. It serves as a tutorial for GRL, the semantics of which will
be presented in chapter 4. We first present a running example. Then, we introduce the
design choices of the synchronous and asynchronous models adopted in GRL. We present
the formal syntax and intuitive semantics of GRL constructs. Finally, we compare the
expressiveness of GRL with regards to some existing approaches in modelling GALS
systems.

3.1 A GALS example

It is hard to learn the characteristics of
a programming language by reading a
formal definition of that language, until
several examples have been studied

D. E. Knuth, 1967

In this section, we present an example of a GALS system. The example will serve to
illustrate the formal syntax of GRL in subsequent sections. It consists of a car park
management system, whose goal is to control the availability of a double-storey car
park1. The car park has one principal entrance and one principal exit gate. Each storey
of the car park has also its own entrance gate. Gates are equipped with barrier systems
enabling automatic vehicle detection. The car park availability is displayed to drivers
via exterior lights mounted at the car park entrance.

1This application is a toy example designed in the framework of the Bluesky project, with the help
of the industrial partners.
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The actual system comprises four Programmable Logic Controllers (PLCs) that commu-
nicate to each other the entrance and exit activity. An entrance PLC and an exit PLC
manage the entrance and exit gates, respectively. Two storey PLCs manage the gates of
the two storeys.

The behaviour of the system is as follows. The availability of the car park is managed
by the entrance PLC. The PLC checks continuously whether there still are unoccupied
parking spots, in which case a green light is maintained on; otherwise, a red light is
turned on. Once a car arrives and asks for entering, a request to open the gate is
detected by the entrance PLC. The request can be either granted or denied, depending
on the car park availability. If the access is granted, the PLC delivers a ticket indicating
a storey reference. Then, the entrance gate remains open for a fixed amount of time
and a yellow light is turned on until the gate closure. The car should go to the storey
referenced in the ticket. A storey PLC grants the access only if the car ticket indicates
the corresponding storey reference; otherwise, the car is informed that its destination
is wrong. When a car asks for leaving the car park, an exit request is detected by the
exit PLC, which opens the gate immediately. Once the car leaves, the exit PLC informs
the storey PLC referenced in the car ticket, which in turn informs the entrance PLC to
update the car park availability.

3.2 Overview of GRL
GRL syntax is presented in Tables 3.1 (page 31) to 3.9 (page 51). The generic terminal
symbols and non-terminal symbols are summarised in the following table.

Symbol Description

Generic terminal symbols

P module identifier
S system identifier
B block identifier
N environment identifier
M medium identifier
C constant identifier
F function identifier
f record field identifier
T type identifier
K literal constant
X variable

Non-terminal symbols E expression
I statement

3.2.1 Modules

A GRL specification can be structured in several modules, allowing single monolithic
specifications to be split into reusable pieces of manageable size. The syntax of modules
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is given by the grammar in Table 3.1. A module can import other modules, provided
there are no circular dependencies. For example, in the module:

1 module Car_Park ( Entrance , Storey1 , Storey2 , Ex i t ) i s
2 . . .
3 end module

none of the imported modules Entrance, Storey1, Storey2, Exit must import module
Car_Park, even when the import relation is extended to its transitive closure.

A module can contain the following constructs:

– types; named constants of any type;
– blocks, which denote synchronous components;
– mediums, which denote asynchronous communication mediums;
– environments, which describe constraints of the external environment on blocks;
and

– systems, inside which are composed blocks, mediums, and environments.

The lexical scope of these constructs encompasses both the current module and its
importing modules. In the sequel, blocks, mediums, and environments are called com-
ponents.

module ::= module P [ (P0 , . . . ,Pn) ] is
(type_definition
| constant
| block
| medium
| environment
| system)*

end module

Table 3.1: Syntax of GRL modules

Example 3.1. The car park application can be described in GRL as follows (see
Example 3.18 for excerpts of the system). Since each PLC has a synchronous behaviour,
each of them will be described by a GRL block, named respectively Entrance, Storey1,
Storey2, and Exit (see Figure 3.1 for a schematic view of block Exit and Example 3.7,
page 42, for its corresponding GRL code).

PLCs are spatially distributed and communicate with each other. Thus, we will in-
troduce two mediums, named Exit_to_Storey1 and Storey1_to_Entrance, to describe
communication from Exit to Storey1 and from Storey1 to Entrance. Similarly, we will
introduce mediums Exit_to_Storey2 and Storey2_to_Entrance (all mediums are in-
stances of component Sampling, defined in Example 3.15, page 50).
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A ticket given to a car contains two fields. Each field references a storey. We wish only
one field to be selected in a ticket. We will describe this constraint in an environment
Env_Storey (see Example 3.8, page 45). Finally, the same program will be implemented
on both storey PLCs. This entails that both PLCs have nearly the same period. We
will describe this constraint in an environment Quasi_Synch_2 (see Example 3.12,
page 47). �

3.2.2 Synchronous blocks

The synchronous model of GRL is rooted in imperative programming style with func-
tional flavour. It provides a built-in definition of the synchronous loop (which is a
deterministic infinite loop) and internal state notions. The discrete, logical model of
time, adopted in synchronous programming, is considered. Synchronous concurrency is
not supported. Communication is carried out by instantaneous broadcasting.

More concretely, the behaviour of a block is described as a (potentially unbounded)
sequence of discrete deterministic steps. Throughout these steps, an internal state rep-
resented by state variables is maintained. Each step consists in first reading inputs, then
computing outputs and the next internal state, which both depend on the inputs and
internal state of the current step. These activities are performed simultaneously, making
the step atomic, as is assumed in synchronous programming.

Blocks can be composed to interact with each other inside higher-level blocks, in a mod-
ular way. Modularity enables a textual description of hierarchical block compositions, as
the one illustrated in Figure 3.1. Lower-level blocks are called subblocks. A block that is
not a subblock of another block is called highest-level block. Composition of subblocks is
synchronous, i.e., in every step of the enclosing block, each subblock performs a (micro-)
step. To enable interaction between subblocks, inputs of some subblocks can be con-
nected to outputs of preceding subblocks. Such interaction occurs instantaneously, as
is assumed in synchronous programming. Accordingly, outputs produced by a subblock
are consumed by the other ones in the same step of the enclosing block. This way, data is
processed along causal dependencies between subblocks, making the behaviour of blocks
deterministic.

3.2.3 Asynchronous composition of blocks

The asynchronous model of GRL is rooted in process algebras, while keeping the same
imperative programming style as the synchronous model. The abstraction of time
adopted at the synchronous level cannot be preserved anymore at the asynchronous
level. Asynchronous concurrency is captured by the interleaving semantics. The ba-
sic model of communication is synchronous rendezvous. Asynchronous communication
is enabled by means of dedicated components, i.e., mediums. Nondeterminism can be
explicitly expressed through dedicated primitives.

32



3.2. Overview of GRL

B_Edge

B_And

B_And

B_Or

B_Edge

Cmd_P1

Cmd_P2

Edge_Cmd_P1

Edge_Cmd_P2

Open

Out_P2

Out_P1

Figure 3.1: Schematic representation of the exit PLC (car park application)

More concretely, highest-level blocks are composed inside systems in asynchronous con-
currency. The atomic deterministic steps of concurrent blocks interleave arbitrarily,
without causal dependency. Contrarily to subblock composition, synchronous interac-
tion between highest-level blocks is forbidden to prevent them from constraining the
steps of each other. By default, two consecutive steps of a block may occur arbitrar-
ily far from each other, unless specified differently by using activation constraints (see
Section 3.5.2). This abstraction makes GRL expressive enough to model general GALS
systems, while abstracting away from implementation details.

Blocks interact synchronously with mediums and environments. Connections between
components are made by means of channels, which are tuples of variables, over which
rendezvous take place. Channels are unidirectional, i.e., a channel is used by a com-
ponent either only for reception or only for emission of tuples of values. Interactions
between components are necessarily initiated by blocks, to which environments and
mediums respond. In this respect, environments and mediums are passive components,
executing only if requested by blocks, which are active components. Communications
between blocks occur through mediums and is thus asynchronous.

Environments and mediums provide GRL with enough expressiveness to model and
reason about general GALS systems. First, both of them are definable by the user,
similarly to blocks. In addition, their behaviour may exhibit nondeterminism, a key
feature providing descriptions with accuracy and high abstraction capability.

Environments enable constraints on block behaviour to be expressed at different levels of
abstraction. On the one hand, they provide inputs to blocks and react to their outputs.
Connections between blocks and environments are carried out using input channels (sets
of inputs) and output channels (sets of outputs). An output channel of a block can be
connected to an input channel of an environment, and conversely. On the other hand,
environments can adjust the degree of asynchronous concurrency in block composition by

33



Chapter 3. The GRL Language for GALS Behavioural Description

type ::= bool | nat | nat16 | nat32 | int int16 | int32 | char | string
| T

type_definition ::= type T is
type_expression

end type
type_expression ::= range m ... n of type

| enum C0 , . . . , Cn
| record f0 :type0 , . . . , fn:typen
| array [m...n] of type

Table 3.2: Syntax of GRL type definitions

setting constraints on block activations. This allows to master the possible interleavings
between blocks, e.g., a block cannot execute indefinitely in the detriment of the others.
Activation strategies can model, at a suitable level of abstraction, realistic situations
such as halting, priorities, and relative paces of synchronous components modeled as
highest-level blocks.

Mediums enable blocks to communicate asynchronously. Connections between blocks
and mediums are carried out similarly to the ones between blocks and environments,
but on dedicated channels called receive and send channels. A medium receives messages
from or sends messages to its connected blocks whenever requested. Messages can be
stored in the internal state of the medium, thus enabling message buffering. Additionally,
nondeterminism allows behaviours such as message loss, duplication, or reordering to be
described naturally.

In the following sections, we first introduce GRL basic structures. We then present the
behavioural constructs of GRL.

3.3 Basic GRL
In this section, we present the types, expressions, statements, and constants of GRL.

3.3.1 Type definitions

The syntax of types is given by the grammar in Table 3.2. GRL data types encom-
pass predefined types such as Booleans (bool) or naturals of different sizes (8-bit nat,
16-bit nat16, or 32-bit nat32). Types can also be defined by the user (non-terminal
type_definition). At the time of writing, types definable by the user are ranges, enu-
merations, records, and arrays.

Range types, defined using keyword range, denote finite intervals of numbers ranging
from m to n, which must be literal constants of type type. Type type itself must be
one of nat, nat16, nat32, int, int16, or int32. Here is an example which defines an
interval of naturals from 0 to a value nb_max_cars, where nb_max_cars is a global
constant assumed to be already defined (see Section 3.3.4).

34



3.3. Basic GRL

1 type t_capacity i s
2 range 0 . . . nb_max_cars
3 end type

Enumerated types, defined using keyword enum, denote finite and ordered sets of sym-
bolic values (identifiers) C0, . . . , Cn. Here is an example which defines an enumerated
type t_answer that could be used in the car park application. The type has three values
indicating the answer of the entrance PLC on the detection of an entrance request.
1 type t_answer i s
2 enum i d l e , granted , denied
3 end type

Record types, defined using keyword record, denote fixed-size tuples of elements indexed
by field names. Here is an example which defines a record type t_msg. The type stores
information about a message.
1 type t_msg i s
2 record cmd: bool , idx : nat , s ta t : t_capacity , ans : t_answer , f u l l : bool
3 end type

Array types, defined using keyword array, denote fixed-size sets of elements indexed
by natural numbers ranging from m to n, which must be literal naturals. Here is an
example which defines an array t_queue of records of type t_msg, where size_queue is
a global constant assumed to be already defined (see Section 3.3.4).
1 type t_queue i s
2 array [0 . . . size_queue ] of t_msg
3 end type

3.3.2 Expressions

The syntax of GRL expressions is given by the grammar in Table 3.3. Predefined
functions that can be used in a GRL module are unary operations, binary operations,
type conversion functions, functions on arrays, and functions on records. Consider for
example the record type t_msg (see Section 3.3.1). A predefined function t_msg is
automatically generated. The call to function t_msg below returns a record in which
each field is set to a value expression, where idx_pre, updated_cars, and cst_max_cars
are variables of type nat, bool, and bool, respectively.
1 t_msg ( true , idx_pre , 1 , fa lse , ( updated_cars == cst_max_cars ))

3.3.3 Statements

The syntax of statements is given by the grammar in Table 3.4. GRL statements are
inspired by LNT ones. They extend standard algorithmic control structures with sub-
block invocations, communication primitives, and nondeterministic statements. Sub-
block invocations and communication primitives will be explained at appropriate places
throughout the current chapter. Nondeterministic statements are similar to LNT ones.
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E ::= X variable
| (E0 ) parenthesised expression
| E0 .f record field access
| E1 [E0 ] array element access
| unary_operator E0 unary operation
| E1 binary_operator E2 binary operation
| K [ of type ] literal constant
| F (E0 , . . . ,En) predefined function

Table 3.3: Syntax of GRL expressions

I ::= null no effect
| X:=E assignment
| X[E0 ]:=E1 array element access
| X.f :=E record field access
| I0 ;I1 sequential composition
| if E0 then conditional

I0
elsif E1 then

I1 . . .
elsif En then

In
else

In+1
end if

| while E loop I0 end loop while loop
| for I0 while E by I1 loop I2 end loop for loop
| case E is case selection

K0 -> I0
| . . . |
Kn -> In
| [any -> In+1 ]

end case
| B [ {args} ] (args) subblock invocation

/* The following statements are forbidden in blocks
and reserved to environments and mediums */

| enable B activation signal
| when <X0 , . . . ,Xn> -> I0 emission data signal
| when ?<X0 , . . . ,Xn> -> I0 reception data signal
| X := any T [where E ] nondeterministic assignment
| select I0 [] . . . [] In end select nondeterministic choice

args ::= arg0 , . . . , argn
arg ::= E | _ | ?X | ?_ | any T

Table 3.4: Syntax of GRL statements

3.3.4 Global constant definitions

The syntax of constant definitions is given in Table 3.5. Constants are defined by keyword
const and are necessarily initialised. A constant defines a variable whose value, once
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initialised, can never be changed.

var ::= X0 , . . . ,Xm : type := E0
vars ::= var0 , . . . ,varn
constant ::= const vars

Table 3.5: Syntax of GRL constants

Here are examples of constants of record type t_msg and array type t_queue, respec-
tively.
1 const no_message : t_msg := t_msg ( fa lse , 0 , 0 , i d l e , fa l se )
2 const empty_queue : t_queue := t_queue (no_message)

3.4 Blocks
In this section, we first present how GRL blocks can be defined and composed inside
other components. We then discuss some design choices that distinguish GRL blocks
from classical synchronous languages.

3.4.1 Block definition

The syntax of blocks is given by the grammar in Table 3.6. A block specification consists
of formal parameters, local variables, subblock aliasing, and a statement I defining the
block behaviour. This statement must be deterministic, i.e., use only the constructs
described in the first 10 alternatives of the production defining I in Table 3.4. It consists
of subblock invocations combined with standard algorithmic control structures.

block ::= block B {varsc}
(in varsi0 , . . . , in varsim , out varso0 , . . . , out varson )
[receive varsr0 , . . . , receive varsrp, send varss0 , . . . , send varssq ]

is
alias B0 {args0 } as B′0 , . . . ,Bk {argsk} as B′k
static var varsp0 . . . static var varspr

var varst0 . . . var varsts

I
end block

| block B {varsc}(in varsi0 , . . . , in varsim , out varso0 , . . . , out varson ) is
!c string | !lnt string

end block

Table 3.6: Syntax of GRL blocks

Formal parameters are declared with types and possibly default values. They are clas-
sified into constant, input, output, receive, and send parameters. Constant parameters,
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enclosed in braces, denote configuration data. A constant parameter is read-only, i.e.,
its value should not be changed in the body I of the block. Input and output parameters
are preceded by keywords in and out. They enable blocks to interact either with other
blocks (for subblocks) or with the environment (for highest-level blocks). Receive and
send parameters are preceded by keywords receive and send. They enable highest-level
blocks to interact with mediums, and consequently to asynchronously communicate with
other highest-level blocks.

Receive and send parameters are introduced to make a clear distinction between syn-
chronous interactions of a block with its environment on the one hand, and asynchronous
communication with other blocks through mediums on the other hand. Accordingly, such
parameters occur necessarily in highest-level blocks and cannot be used in subblocks in-
side other blocks. Conversely, a block having only input and output parameters cannot
be used to communicate asynchronously with other highest-level blocks inside systems.
If asynchronous communication is required, the block should be encapsulated inside
another block having send and receive parameters.

Local variables are either temporary or static. The scope of both kinds of variables is
limited to the enclosing block.

Temporary variables are preceded by keyword var and are optionally initialised at decla-
ration time. Once a step starts, each temporary variable is first assigned its initialisation
value (if any), which can be used in computations within the step. The updated value
of the variable is lost at the end of the step, i.e, when returning from the block.

Static variables are preceded by keywords static var. Their initialisation at declaration
time is mandatory, contrarily to temporary variables. When a block first step starts,
each static variable is assigned its initialisation value. When the block subsequent steps
start, each variable takes the value it had at the end of the previous step. In other words,
the values of static variables updated within a step are kept stored for subsequent steps.
Consequently, static variables are adequate to represent the internal state of the block.

The difference between static and temporary variables is their lifetime, which we illus-
trate in the listing below (left-hand side). The table on the right-hand side, shows the
evaluation of variables x and y at the end of each of the first four steps of block B.

1 block B i s
2 s tat i c var x : nat := 0
3 var y : nat := 0
4 x := x + 1;
5 y := y + 1
6 end block

step 1 2 3 4 ...

x 1 2 3 4 ...
y 1 1 1 1 ...

Example 3.2. Block B_Edge below encodes an edge detector. It observes a logic
signal Logic_Signal and decides whether the signal value has changed since the last
block step. The static variable Pre_Signal stores the last value carried by the signal.
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The block is parameterised to detect either rising or falling edges on Logic_Signal. The
rising edge mode detects changes from false to true, and is activated by the constant
parameter Rising_Mode. The falling edge mode detects changes from true to false, and
is activated by the constant parameter Falling_Mode. According to the default setting
of constant parameters, the rising edge mode is enabled by default.
1 block B_Edge {Rising_Mode : bool := true , Falling_Mode : bool := f a l se }
2 ( in Logic_Signal : bool := true ,
3 out Edge_Detected : bool ) i s
4 s tat i c var Pre_Signal : bool := fa l se
5 var Rise , Fa l l : bool
6 Rise := Logic_Signal and not ( Pre_Signal ) ;
7 Fa l l := not ( Rise ) ;
8 Edge_Detected := (Rising_Mode and Rise ) or ( Falling_Mode and Fa l l ) ;
9 Pre_Signal := Logic_Signal

10 end block

�

Alternatively, the behaviour of a block can be specified in an external language, a feature
inspired by process languages (e.g., LNT and Promela). So far, the supported external
languages are C and LNT. External C and LNT functions are declared using pragmas
“!c” and “!lnt”, respectively.

Example 3.3. To illustrate the use of external C code, consider the C function Shift
below, which applies shift operations on a natural number. Type GRL_Int16 is used in
the function interface (line 2, C code). Before using a parameter, it should be converted
to the C domain. This is done by the predefined function GRL_Int16_To_Signed_Char
(line 4, C code). Then, before returning from the function, the result is converted to
the GRL domain by using the predefined function GRL_Signed_Char_To_Int16 (lines
6-7, C code).

The C function is written in a file with extension “.c”, which is imported in the current
GRL module. So doing, it can be encapsulated inside block C_Shift.
1 −− GRL f i l e importing the C f i l e named Sh i f t
2 module External_C ( Sh i f t ) i s
3 block C_Shift ( in Num : int16 , out l e f t , r i gh t : int16 )
4 i s
5 !c " Sh i f t "
6 end block
7 . . .
8 end module

1 −− C f i l e named " Sh i f t . c"
2 void Sh i f t (GRL_Int16 Num, GRL_Int16∗ l e f t , GRL_Int16∗ r i gh t )
3 {// convert types to the C domain
4 unsigned char arg_number = GRL_Int16_To_Signed_Char (Num) ;
5 // compute outputs and reconvert types to the GRL domain
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6 ∗ l e f t = GRL_Signed_Char_To_Int16 (arg_number << arg_bits ) ;
7 ∗ r i gh t = GRL_Signed_Char_To_Int16 (arg_number >> arg_bits ) ;
8 }

�

Example 3.4. The use of external LNT code is straightforward as illustrated by
the code below. Function check_temperature is assumed to be defined in a file with
extension “.lnt” that is imported in the current GRL module.

1 −− GRL f i l e importing the LNT
2 −− f i l e named Temperature
3 block LNT_check_temperature
4 ( in ambient : temperature ,
5 out alarm : bool )
6 i s
7 ! l n t "check_temperature"
8 end block

1 −− Excerpt of the LNT f i l e named Temperature
2 function check_temperature
3 ( in ambient : temperature ,
4 out alarm : bool )
5 i s
6 . . .
7 end function

�

Although including external code enhances user convenience, the external code should
be defined to comply with GRL semantics. To enable functional verification, external
C code should be side-effect-free, i.e., the same code called with the same input values
in different contexts should return the same output values. In particular, blocks defined
using external code must not have static variables. Fragments of external LNT code,
however, have formal semantics and can thus be used safely, provided they do not use
themselves external C code with side effects.

3.4.2 Subblock composition

A block can be invoked inside other components. Each invocation corresponds to an
instance of the block. An instance is a copy of the block (and of a component in
the general case) with a separate internal state. Instances of blocks invoked inside
components are called subblocks.

At invocation time, actual parameters of subblocks are set. Actual output parameters
are distinguished by a question mark. The question mark indicates that the parameter
will have a value assigned when returning from the block. Underscores can be used
as actual parameters. An underscore indicates that the actual parameter is presumed
irrelevant for the caller component. For each constant and input parameter “_”, the
default value of the corresponding formal parameter in the block definition is used in
each step. For each output parameter “?_”, the value assigned to the corresponding
formal parameter when returning from the block is just ignored.

Example 3.5. Below are three possible invocations of block B_Edge (see Exam-
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ple 3.2). Note that the last invocation is useless, since the block output is unconnected.
1 B_Edge {true , fa l se }( reset , ?detected )
2 B_Edge {_, _} (_, ?detected )
3 B_Edge {_, _} ( reset , ?_)

Correspondence between formal parameters of B_Edge and actual parameters used in
the three invocations is given in the following table.

Formal parameter Rising_Mode Falling_Mode Logic_Signal

Actual parameters
1 true false value of reset
2 true false true
3 true false value of reset

�

Subblocks can be aliased, i.e., assigned different names, by using keyword alias. If an
aliased subblock has constant parameters, the corresponding actual parameters should
be set at aliasing time instead of invocation time. This simplifies the presentation,
especially since constant parameters do not participate in subblock interaction.

Example 3.6. In the code below, Rising_Edge is an alias of block B_Edge with
the default values of constant parameters. Falling_Edge is another alias of the block,
parameterised to detect falling edges.
1 a l i a s B_Edge {_, _} as Rising_Edge
2 a l i a s B_Edge { fa lse , true} as Fall ing_Edge

�

In the current version of GRL, there is no synchronous parallel composition operator.
Rather, subblocks are composed in a sequential way. Their invocation should follow a
user-defined topological order, in accordance with the causal dependency between their
input-output connections. Subblocks with no causal dependency can be invoked in an
arbitrary order.

Example 3.7. Block Exit below corresponds to the block composition depicted
in Figure 3.1. The block implements a possible correct order for subblock invocations.
For example, the actual output parameter “?Edge_Cmd_P1” of block B_Edge (line 5)
should be broadcast to subblocks B_And (line 6) and B_Or (line 11). Hence, B_Edge
should be invoked before B_And and B_Or.

Actual parameters Cmd_P1, Cmd_P2, Open, Out_P1, andOut_P2 of subblocks B_Ed-
ge, B_And, and B_Or are declared as formal parameters of the enclosing block Exit.
These parameters are intended to interact with the outside world of block Exit. Contrar-
ily, actual parameters Edge_Cmd_P1 and Edge_Cmd_P2 are declared as temporary
variables. They are used as input-output connections, internal to the block Exit.
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1 block Exit ( in Cmd_P1, Cmd_P2: bool , out Open : bool )
2 [ send Out_P1 : bool , send Out_P2: bool ] i s
3 var Edge_Cmd_P1, Edge_Cmd_P2 : bool
4 −− i f a car parking in Storey1 a r r i v e s
5 B_Edge {true , fa l se }(Cmd_P1, ?Edge_Cmd_P1) ; −− does the car ask fo r l eav ing ?
6 B_And (Edge_Cmd_P1, Cmd_P1, ?Out_P1) ; −− inform Storey1
7 −− i f a car parking in Storey2 a r r i v e s
8 B_Edge {true , fa l se }(Cmd_P2, ?Edge_Cmd_P2) ; −− does the car ask fo r l eav ing ?
9 B_And (Edge_Cmd_P2, Cmd_P2, ?Out_P2) ; −− inform Storey2

10 −− i f a car asks fo r leav ing , open the gate
11 B_Or (Edge_Cmd_P1, Edge_Cmd_P2, ?Open)
12 end block

�

Due to the absence of synchronous parallel composition operators, there are no causality
problems in GRL. Undesirable cyclic dependencies between subblocks can be captured
by the following semantic rules:

1. variables are necessarily assigned values before being read.
2. static variables are necessarily initialised at declaration time.

For example, GRL semantics forbid the following program because variable x is used
without being initialised by B1.
1 block B i s
2 var x , y : t
3 B1 (x , ?y ) ;
4 B2 (?x , y )
5 end block

However, the following three programs are permitted, although programs 1 and 2 are
not equivalent.

1 −− program 1
2 s tat i c var pre_x : t := e
3 var y : t
4 B1 (pre_x , ?y ) ;
5 B2 (?pre_x , y ) ;

1 −− program 2
2 var x , y : t
3 x := e ;
4 B1 (x , ?y ) ;
5 B2 (?x , y )

1 −− program 3
2 x := 1;
3 x := x + 1;
4 −− " c y c l i c " dependency permitted
5 −− ( imperat ive s t y l e )

3.4.3 Discussion and related work

The initial intention for defining GRL is to have an intermediate format that maps GALS
systems, whose synchronous components are modeled using synchronous languages, to
verification tools for asynchronous systems. For this reason, GRL does not include a
full-fledged synchronous language. Rather, it provides a minimal but sufficient number
of core constructs, to which the built-in constructs of synchronous languages can be
translated with reasonable effort. We discuss below the design decisions distinguishing
GRL blocks from classical synchronous languages.
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Absence of parallel operators Synchronous languages are generally equipped with
synchronous parallel operators while GRL is not. Composition between GRL blocks is
sequential, requiring a correct order between blocks to be defined. If the GRL code
was generated from a synchronous language, one would expect the front-end compiler
to automatically provide such a correct order. This is reasonable since each compiler of
a synchronous language implements a causality analysis algorithm.

We deliberately disallow synchronous concurrency. This enhances the integrability of
GRL as back-end of various synchronous compilers as GRL cannot interfere with causal-
ity analysis algorithms that synchronous compilers implement. Also, most synchronous
compilers generate efficient sequential code which can be usefully integrated in GRL.

Absence of delay operators In GRL, delay operators are deliberately absent. In-
stead, GRL makes explicit the internal state of blocks by means of static variables.
Accessing and updating the internal state of blocks is in charge of the GRL user. Of
course, delay operators could be encoded in GRL libraries and imported in GRL mod-
ules.

We believe that GRL is expressive enough to implement delay operators with no diffi-
culty. As an illustration, consider the Lustre node Counter below. The node uses the
operator “pre” (for previous), which gives the last value carried by its operand N .
1 node Counter ( i n i t , i n c r : int , r e s e t : bool ) re turns (N: int ) ;
2 l e t
3 N = i n i t −> i f r e s e t then i n i t
4 else pre (N) + inc r
5 t e l

An implementation of that node in GRL is block Counter below. Variable preN imple-
ments the Lustre “pre (N)” expression, by storing the value to be used in the next step.
The Boolean variable first is used to emulate the Lustre operator “→” (followed by).
1 block Counter ( in i n i t : int , i n c r : int , r e s e t : bool , out N: int ) i s
2 s tat i c var preN : int := i n i t , f i r s t : bool := true
3 i f r e s e t or f i r s t then N := i n i t ; f i r s t := fa l se
4 else N := preN + inc r
5 end i f ;
6 preN := N
7 end block

Explicit loops Another difference with standard synchronous languages is the pres-
ence of explicit computation loops in GRL. For and while loops are useful when used
as iterators. Problems such as loop boundedness should be ensured by the front-end
compiler and are out of the scope of GRL. If ensuring loop boundedness were necessary,
bounded operators could be encoded in GRL libraries. Those libraries, once verified,
can be used safely in GRL programs.
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3.5 Environments
Environments provide block inputs and react to block outputs, thus putting constraints
on the data carried by the blocks. Additionally, they define constraints on block activa-
tion, thus enabling the description of activation strategies.

The syntax of environments is given by the grammar in Table 3.7. An environment
specification consists of formal parameters encompassing constant, input, and output
parameters; activation parameters prefixed by keyword block and denoting block iden-
tifiers; static and temporary variables; subblock aliasing used as routines; and a state-
ment I defining the environment behaviour. This statement can be nondeterministic. It
uses all the alternatives of the production defining I in Table 3.4, i.e., the same deter-
ministic statements as blocks can be used, extended with nondeterministic assignment,
nondeterministic choice, and signals.

blocks ::= B0 , . . . , Bn
env ::= environment N {varsc}

(in varsi0 , . . . , in varsim , out varso0 , . . . , out varson ,
block blocksb0 , . . . , block blocksbp)

is
alias B0 {args0 } as B′0 , . . . ,Bk {argsk} as B′k
static var varsp0 . . . static var varspr

var varst0 . . . var varsts

I
end environment

Table 3.7: Syntax of GRL environments

3.5.1 Data constraints

An environment interacts with a block either by reception (on input parameters) or
by emission (on output parameters) of tuples of values; interactions are initiated by
blocks. Each interaction being instantaneous (or synchronous), the parameters involved
in the same interaction are grouped in channels of the form “in vars” or “out vars”.
Now, an environment may interact independently with several blocks, which trigger its
execution in a nondeterministic way, according to the interleaving semantics. Hence,
all the possible executions devoted to interaction on the different channels must be
defined inside the environment. This requires additional communication primitives that
guard the code (part) to be executed, whenever interactions on some channel occur. We
introduce data signals as such communication primitives. A data signal, introduced by
keyword when, is associated to each channel.

Example 3.8. Environment Env_Storey ensures that a ticket, given to a car
references exactly one storey. Values carried by outputs Cmd_P1 and Cmd_P2 are
determined in a nondeterministic way.
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1 environment Env_Storey (out Cmd_P1, Cmd_P2: bool ) i s
2 when <Cmd_P1, Cmd_P2> −> Cmd_P1 := any bool ; −− s e l e c t Storey1
3 Cmd_P2 := any bool −− s e l e c t Storey2
4 where not (Cmd_P1 and Cmd_P2)
5 end environment

�

Example 3.9. Environment Cmd_Park ensures that no request to enter the car
park can be detected, if the entrance gate is already open. Details of the code will be
explained in the sequel.
1 environment Cmd_Park ( in Open : bool , out Cmd: bool ) i s
2 s tat i c var Pre_Open : bool := f a l se −− gate s tatus at the block l a s t step
3 se lect
4 when ?Open −> Pre_Open := Open −− s to re gate s tatus
5 [ ]
6 when Cmd −> i f (not (Pre_Open)) then Cmd := any bool −− al low request
7 else Cmd := not (Pre_Open) −− d i sa l l ow request
8 end i f
9 end se lect

10 end environment

�

The signal associated to each input channel “in X0 :T0 , . . . ,Xn:Tn” has the form
“when ?<X0 , . . . ,Xn> -> I0 ”. If n = 0, angle brackets are optional. The code I0
guarded by the signal is active (meaning that I0 can be executed), whenever a block
connected to the channel produces its own outputs X0 , . . . ,Xn . Then, the values of
those variables, received on the channel, can be read only inside statement I0 . In Ex-
ample 3.9, the signal “when ?Open ->” defined at line 4 is active each time the block
connected to channel “in Open” finishes a step. In this case, the value of Open is read and
assigned to Pre_Open, when returning from the environment. Signal “when Cmd ->”
defined at line 6 is not active during this execution of the environment.

The signal associated to each output channel “out Y0 , . . . ,Ym” has the form “when
<Y0 , . . . ,Ym> -> I0 ”. If m = 0, angle brackets are optional. The code I0 guarded by
the signal is active, whenever a block connected to the channel reads its own inputs
Y0 , . . . ,Ym . This requires statement I0 to assign values to those variables which are
emitted on the channel. In Example 3.9, the signal “when Cmd ->” defined at line 6 is
active each time the block connected to channel “out Cmd” starts a step. In this case,
Cmd is assigned a value when returning from the environment. Signal “when ?Open ->”
is not active during this execution of the environment.

Since interactions on a channel occur whenever requested by the connected block, there
must be at least one reachable execution path in the environment containing the signal
corresponding to the channel. So doing, environments do not prevent block executions.
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In general, the code fragments guarded by the different signals are combined using
nondeterministic choice, as illustrated in Example 3.9 (lines 3-9).

Besides, since exactly one signal is active during each environment execution, GRL
semantics prohibit sequential composition of signals, loop statements containing signals,
and nested signals. So doing, exactly one signal should be present in each execution path.
Note, however, that the code associated to a given signal is not necessarily deterministic,
which allows the environment to have a nondeterministic behaviour.

Static variables are particularly useful to keep track of past events, such as exchanged
values or the history of block steps. This is illustrated in Example 3.9 where parameters
Cmd and Open are intended to be connected to block Entrance input and output,
respectively. The value carried by output Cmd depends on the last value that the input
Open has carried. The information is stored in the static variable Pre_Open.

3.5.2 Activation constraints

Highest-level blocks evolve by default in arbitrary interleaving. Environments enable to
control the level of asynchrony between block executions, by putting constraints on the
activation of one or several blocks. The activation of blocks whose identifiers occur as
activation parameters is intended to be constrained by the environment. Similarly to
input and output channels, to each activation parameter of the form “B” is associated an
activation signal of the form “enable B”. The difference between activation signals and
data signals is that the former are used only for synchronisation purposes and not for
data exchange. An activation signal “enable B” implements the permission for a block
(named B) to start a step. A block, whose activation is intended to be constrained by
an environment, can execute only if there is at least one reachable execution path, con-
taining its respective signal. Therefore, contrary to data signals, activation signals may
be unreachable in certain execution contexts. In particular, if no signal is associated to
a given activation parameter, the corresponding block is never activated. Hence, the un-
reachability of activation signals is equivalent to the “deactivation” of the corresponding
block.

Example 3.10. Let B be a highest-level block, connected to environment Disable,
defined below. If the environment is invoked with the default value of C , block B will
never execute since its corresponding activation signal is never reached.

1 environment Disable {C: bool := true }( block B) i s
2 i f not C then enable B end i f
3 end environment

�

Example 3.11. Consider a system composed of highest-level blocks B1, . . . , Bn.
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The default arbitrary interleaving between blocks is equivalent to the following activation
strategy, where no constraint is put on block activations.
1 environment Default ( block B1, . . . , block Bn) i s
2 se lect
3 enable B1 [ ] . . . [ ] enable Bn
4 end se lect
5 end environment

�

Example 3.12. Environment Quasi_Synch_2 implements an activation strategy
for two blocks evolving with nearly the same period but without sharing clocks. This
example illustrates how to express relations between the paces of different blocks.
1 environment Quasi_Synch_2 ( block Comp_A, block Comp_B) i s
2 −− I n i t i a l l y , Comp_A and Comp_B can be act ivated
3 s tat i c var ok_A, ok_B: bool := true
4 se lect −− ac t i va te Comp_A once
5 i f (ok_A) then
6 enable Comp_A;
7 ok_A := fa l se
8 end i f
9 [ ] −− ac t i va te Comp_B once

10 −− . . .
11 end se lect ;
12 i f (not (ok_A) and not (ok_B)) then
13 −− r e i n i t i a l i s e
14 ok_A := true ; ok_B := true
15 end i f
16 end environment

�

In Example 3.12, activation signals are combined using if-then-else statements, to
constrain the activation of connected blocks. The reachability of those signals depends
on the internal state of the environment, i.e., its static variables, recording part of the
history of block activations.

In general, activation constraints are a framework to abstract properties of real-time
distributed systems in an asynchronous model. GRL enables to implement complex
activation strategies involving priorities and arbitrary relations between the paces of
synchronous components.

3.5.3 Combining data and activation constraints

Data and activation signals enable to constrain the behaviour of blocks at different levels
of abstraction. The syntactic separation between both concepts makes the user intention
clearer on how to fine-tune the system constraints. A data signal allows to constrain
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data carried by block inputs and outputs and cannot handle block activations. It must
be reachable whenever required by a connected block. An activation signal allows to
constrain the activation of blocks at specific moments in time and cannot handle input
and output data. The reachability of activation signals induces the activation strategy
of blocks.

The two kinds of signals can be combined to describe complex situations. In particular,
test scenarios can be described in an elegant and modular way.

Example 3.13. The following environment describes a block crash.

1 environment Crash ( block B, out alarm : bool ) i s
2 −− when a f a i l u r e i s detected , block B ha l t s and an alarm i s t r i gge red
3 s tat i c var f a i l u r e : bool := fa l se
4 se lect
5 i f not ( f a i l u r e ) then −− no f a i l u r e has been detected
6 enable B; −− ac t i va te block B normally
7 f a i l u r e := any bool −− a f a i l u r e may occur
8 end i f
9 [ ]

10 when alarm −> alarm := f a i l u r e −− t r i g g e r an alarm in case of f a i l u r e
11 end se lect
12 end environment

�

Example 3.14. The following GRL code specifies a test scenario for the car park
application. A car enters the car park and is given a ticket. The car tries to access the
second storey, contrarily to what is indicated on its ticket. The access to the storey is
then denied and the car parks in the first storey. Finally, the car leaves the car park.
The enumerated type cases defines the scenario steps.

1 type cases i s
2 enum Car_Park , Car_P1 , Car_P2 , Car_Ex , None
3 end type

Environment Scen_Act defines the order in which blocks should be activated.

1 environment Scen_Act ( block Entrance , Exit , Storey1 , Storey2 ) i s
2 s tat i c var act ion : cases := Car_Park
3 case act ion i s
4 Car_Park −> act ion := Car_P2 ; enable Entrance
5 | Car_P2 −> act ion := Car_P1 ; enable Storey2
6 | Car_P1 −> act ion := Car_Ex ; enable Storey1
7 | Car_Ex −> act ion := None ; enable Exit
8 | any −> act ion := None
9 end case

10 end environment
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Environment Scen_Data defines the values that should be carried by the inputs of
different blocks.
1 environment Scen_Data (out Cmd_Park : bool , out Cmd_P11, Cmd_P12: bool ,
2 out Cmd_P21, Cmd_P22: bool , out Exit_P1 , Exit_P2 : bool )
3 i s
4 se lect
5 −− a car ente r s the car park
6 when <Cmd_Park> −> Cmd_Park := true −− Entrance PLC data
7 −− the t i c k e t given to the car i nd i c a t e s storey1
8 −− access to storey2 w i l l be denied
9 [ ] when <Cmd_P11, Cmd_P12> −> Cmd_P11 := true ; −− Storey2 PLC data

10 Cmd_P12 := fa l se
11 −− the t i c k e t given to the car i nd i c a t e s storey1
12 −− access to storey1 w i l l be granted
13 [ ] when <Cmd_P21, Cmd_P22> −> Cmd_P21 := true ; −− Storey1 PLC data
14 Cmd_P22 := fa l se
15 −− a car parking in Storey1 asks to leave
16 [ ] when <Exit_P1 , Exit_P2> −> Exit_P1 := true ; −− Exit PLC data
17 Exit_P2 := fa l se
18 end se lect
19 end environment

�

3.6 Mediums
Mediums are intended to implement the asynchronous communication between highest-
level blocks. Their syntax is given by the grammar in Table 3.8. Medium specification
is described similarly to environments, except that input and output channels are re-
placed by receive and send channels, and activation parameters are absent. A medium
behaviour is defined by a nondeterministic statement, in which activation signals are not
allowed.

med ::= medium M {varsc}
[receive varsr0 , . . . , receive varsrm , send varss0 , . . . , send varssn ] is

alias B0 {args0 } as B′0 , . . . ,Bk {argsk} as B′k
static var varsp0 . . . static var varspr

var varst0 . . . var varsts

I
end medium

Table 3.8: Syntax of GRL mediums

A medium interacts with highest-level blocks either by reception (on receive channel)
or by emission (on send channel) of tuples of values, called messages in the sequel.
To enable an asynchronous message transmission between a pair of blocks, a medium
should interact (synchronously) with both blocks on separate channels. To each channel
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is associated a data signal. The data signal must be reachable whenever required by a
connected block, similarly to data signals inside environments. Nondeterministic choice
is appropriate to combine data signals, since it does not lead to blocking situations.
Static variables are particularly useful for message buffering.

Example 3.15. The following code implements a unidirectional one-place buffer.
Channel rec_msg is devoted to receive messages. A received message is buffered using
the static variable buf_msg, waiting to be emitted on channel snd_msg.

1 medium Sampling [ receive rec_msg : Bool , send snd_msg : Bool ] i s
2 s tat i c var buf_msg : Bool := fa l se −− memory shared by connected blocks
3 se lect
4 when ?rec_msg −> buf_msg := rec_msg −− message recept ion and bu f f e r i ng
5 [ ] when snd_msg −> snd_msg := buf_msg −− emiss ion of the bu f f e r content
6 end se lect
7 end medium

This model is used in Loosely Time-Triggered Architectures [BBC10], in which the Bus
behaves as a shared memory between components. Messages are sustained by the bus
and are periodically refreshed. Such communication, said by sampling, is non blocking.

�

Example 3.16. The following code implements an unreliable medium, supporting
message loss.

1 medium Lossy [ receive rec_msg : t_msg , send snd_msg : t_msg ] i s
2 s tat i c var buf_msg : t_msg := empty_msg −− I n i t i a l l y , no message i s buf fe red
3 se lect
4 −− message recept ion
5 when ?rec_msg −> select
6 buf_msg := rec_msg −− message stored
7 [ ] nu l l −− message l o s t
8 end se lect
9 [ ] −− emiss ion of the bu f f e r content

10 when snd_msg −> snd_msg := buf_msg
11 end se lect
12 end medium

�

Example 3.17. The following code implements a FIFO queue. The queue is encoded
by using a static variable (line 2) of type queue, which is an array of messages. Initially
the queue is empty. When a message is received on channel rec_msg, it is inserted in
the queue by using a subblock enqueue, which returns the updated queue. Similarly,
when a message has to be emitted on channel snd_msg, subblock dequeue returns the
first message inserted and updates the queue.
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1 medium FIFO [ receive rec_msg : t_msg , send snd_msg : t_msg ] i s
2 s tat i c var queue : queue := queue (none)
3 se lect
4 when ?rec_msg −> enqueue (rec_msg , queue , ?queue )
5 [ ] when snd_msg −> dequeue (queue , ?queue , ?snd_msg)
6 end se lect
7 end medium

�

3.7 Systems
Blocks, environments, and mediums are composed inside systems. We first present the
definition of GRL systems. Then, we discuss the expressiveness of GRL.

3.7.1 System definition

The syntax of systems is given by the grammar in Table 3.9. A system specification
consists of formal parameters, temporary variables, component aliasing, and a behaviour
described as a composition of components. Formal parameters are either constants, thus
enabling parameterised specification, or without mode, to compose actual channels of
components.

chan ::= <X0 , . . . , Xn>
| <_, . . . ,_>
| <any T0 , . . . , any Tn>
| ?<X0 , . . . , Xn>
| ?<_, . . . ,_>

comp_alias ::= alias B {args} as B′
| alias N {args} as N ′
| alias M {args} as M ′

block_invoc ::= B′ (chan0 , . . . ,chanm)[chan′1 , . . . ,chan′n]
env_invoc ::= N ′ (chan0 , . . . ,chanm,B′1 , . . . ,B′n)
med_invoc ::= M ′ [chan0 , . . . ,chanm]

system ::= system S {varsc} (varsf ) is
comp_alias1 , . . . , comp_aliasm
var varst

block list
block_invoc0 , . . . , block_invocn

environment list
env_invoc0 , . . . , env_invocp

medium list
med_invoc0 , . . . , med_invocq

end system

Table 3.9: Syntax of GRL systems
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Example 3.18. The following code describes the composition of the car park
components. Details of the code will be given later.
1 system Main (−− parameters observable by the outs ide world
2 Cmd_P11, Cmd_P12, Cmd_P21, Cmd_P22, Exit_P1 , Exit_P2 : bool ,
3 −− other parameters
4 . . .
5 )
6 i s
7 −− component a l i a s i n g
8 a l i a s Storey {true , f a l se } as Storey1 ,
9 Storey { fa lse , true} as Storey2 ,

10 Sampling as Exit_to_Storey1 , Sampling as Exit_to_Storey2 ,
11 −− other components
12 . . .
13 −− parameters non−observable by the outs ide world
14 var S_Out1 , S_Out2 : bool
15 −− other parameters
16 . . .
17 block l i s t
18 Exit (<Exit_P1 , Exit_P2>, ?Out_Open) [ ?S_Out1 , ?S_Out2 ] ,
19 −− other blocks
20 . . .
21 environment l i s t
22 Quasi_Synch_4 ( Entrance , Exit , Storey1 , Storey2 ) ,
23 Env_Storey (?<Exit_P1 , Exit_P2>)
24 medium l i s t
25 Exit_to_Storey1 [S_Out1 , . . . ] ,
26 Exit_to_Storey2 [S_Out2 , . . . ] ,
27 −− other mediums
28 . . .
29 end system

�

Highest-level block instances are introduced by keywords block list. Actual parameters
of highest-level blocks have the same form as those in subblock invocation inside compo-
nents. Additional parameters, called wildcards, can be used as input and receive actual
parameters. Wildcards have the form “any T” and match any value of type T . They are
semantically equivalent to actual parameters that are declared as temporary variables,
but not used for interactions with other components. Actual parameters are grouped
to compose channels. In each channel, parameters should have the same form, i.e., all
parameters are either variables (of the form “<X0 , . . . ,Xn>” or “?<X0 , . . . ,Xn>”), wild-
cards (of the form “<any T0 , . . . ,any Tn>”), or unconnected (of the form “<_, . . . ,_>”
or “?<_, . . . ,_>”).

Environment and medium instances are introduced by keywords environment list and
medium list, respectively. Their channels can be either tuples of variables or uncon-
nected. If a channel is unconnected, the behaviour defined by its associated signal in
the component definition is never executed. Actual activation parameters of environ-
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ments should belong to the names of highest-level blocks. Note that if the activation
of blocks in constrained, all blocks must have been already aliased. To prevent unde-
sirable interferences that may occur when the activation of a block is constrained by
several environments, actual activation parameters should be pairwise distinct in all
environments.

Connections between components occur through channels. A channel may occur in
exactly one pair of components. A block and an environment can be connected using a set
of variables “X0 , . . . ,Xn” by passing “<X0 , . . . ,Xn>” as input channel to the block and
“?<X0 , . . . ,Xn>” as output channel to the environment, or conversely (Example 3.18,
lines 18 and 23). If n = 0, angle brackets are optional. Connections between mediums
and blocks on receive and send channels are carried out similarly (Example 3.18, lines
18, 25, and 26).

Alternatively, channels may occur in a single component. In this case, for input or
receive channels, arbitrary values are assigned to parameters.

Channels whose parameters are declared as formal parameters of the system are observ-
able by the system outside (Example 3.18, line 2), whereas channels whose parameters
are declared as temporary variables are not (Example 3.18, line 14). Distinction be-
tween observable and non observable channels is a key device for abstraction, inspired
by process algebra [Mil82] and is essential for verification.

Blocks cannot be directly connected to each other using channels. This ensures arbitrary
interleaving between their activations. Environments and mediums cannot be connected
to each other, neither. They are intended to be passive components that need to be
triggered by blocks.

The behaviour of the system is defined as follows. A block can execute only if permitted
by the environment constraining its activation. Such environment, if any, is unique
according to GRL semantics. In this case, the block starts a step by triggering the
components connected to its input and receive channels, to obtain values. After carrying
out internal computations, the block finishes the step by triggering the components
connected to its output and send channels, to deliver values. Following this execution
model, a block interacts with a given component in at most two moments (i.e., causal
events) during the same step. Accordingly, the data exchanged with each component at
the same moment should be grouped in one single channel.

Consider Example 3.18. When block Exit starts a step, environment Env_Storey ex-
ecutes to provide the block inputs Exit_P1 and Exit_P2. When the block finishes
a step, both mediums Exit_to_Storey1 and Exit_to_Storey2 execute to consume the
block outputs S_Out1 and S_Out2, respectively. The combined execution of all com-
ponents interacting during a block step is assumed to be instantaneous, thus preserving
the zero-delay assumption of the block step.
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3.7.2 Discussion and related work

This section summarises the GRL behavioural constructs and draws a comparison with
some existing GALS approaches.

GRL blocks Depending on the call context, GRL blocks may behave either in a
synchronous or in an asynchronous way. Inside components, subblocks behave as syn-
chronous components that are composed synchronously with other subblocks. Inside
systems, highest-level blocks behave as deterministic and atomic asynchronous compo-
nents that interleave with other highest-level blocks. This allows a smooth integration
of synchronous components inside an asynchronous context without requiring additional
components to interface the synchronous world with the asynchronous one.

Contrarily to GRL blocks, the SAM-LNT approach [GT09] does not ensure the atomicity
of LNT processes corresponding to synchronous components. Thus, inputs and outputs
of different processes can interleave arbitrarily, leading to state explosion. In this respect,
GRL enables a more concise representation than [GT09] (see Section 5.10 for a detailed
comparison). In the Signal-Promela [DMK+06] approach, the atomicity of synchronous
components is ensured by using the atomic construct of Promela. Both CRSM and
SystemJ build upon the Esterel synchronous semantics, which make their synchronous
part rich, compared to GRL. This is reasonable since they are design-oriented languages
aiming to be used directly by users that are familiar with synchronous programming.

GRL mediums GRL mediums provide enough expressiveness to model general GALS
systems. On the one hand, GRL does not fix any communication protocol, contrarily
to some existing approaches. In the Signal-Promela approach [DMK+06], an LTTA
protocol is used. Specific hardware communication buses are abstracted as Promela
one-place FIFO channels. In the SAM-LNT approach [GT09], a TFTP protocol is used.
FIFO and bag mediums with fixed size buffers and supporting message loss are used. On
the other hand, GRL mediums support nondeterministic statements, which are absent
in SystemJ [MGS12] and CRSM [Ram98]. Nondeterminism allows to describe useful
situations such as message loss and reordering in a succinct way.

GRL environments Data constraints are similar to, but more general than assertions
in synchronous languages. The latter are Boolean expressions (e.g., invariances and
relations on inputs) that are assumed to always hold inside the synchronous program.
In GRL, data constraints can express more complex behaviours, possibly combining
inputs and outputs of several blocks, and depending on their history. Such constraints
combined with nondeterminism allow the user to fine-tune the system description and
reduce the size of generated state spaces. We have found no equivalent to GRL data
constraints in the Signal-Promela approach nor in the SAM-LNT approach.
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Activation constraints make the degree of asynchrony between concurrent highest-level
blocks controllable. On the one hand, they enable an accurate and abstract description
of realistic situations such as failure and activation strategies. On the other hand, they
participate to reduce the size of the system state space. Again, no equivalent to GRL
activation constraints has been mentioned either in SAM-LNT or in CRSM and SystemJ.
In the SAM-LNT approach, this causes a maximal degree of asynchrony leading to
state space explosion. In the Signal-Promela approach, similar constraints, called clock
constraints, are automatically generated from Signal. When clock constraints are not
met, a stuttering step is executed leading to no change in input and output signals.

GRL systems Factoring a GALS description into blocks, environments, and medi-
ums enhances the modularity and reduces the complexity of modelling. At early design
stages, when system specifications are evolving frequently, one might well want to verify
the behaviour of blocks separately or a primary system behaviour with simple communi-
cation mediums and test case scenarios. Afterward, the system behaviour can be refined
to meet detailed communication schemes and constraints. This helps the user to make
explicit her intention on how to precisely design the system behaviour. Quoting Dijk-
stra [Dij82] about the role of scientific thought: “The separation of concerns is yet the
only available technique for effective ordering of one’s thoughts. This is focusing one’s
attention upon some aspect.”.
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Chapter 4

Formal Dynamic Semantics of
GRL

GRL is endowed with formal semantics, giving a rigorous specification of how correct
programs behave. This improves our understanding of the finest details of the language
and helps in tool construction. The dynamic semantics of GRL are defined in an oper-
ational style. The meaning of program phrases is defined in terms of their computation
steps during the program execution and the possible state transformation they perform.
In this chapter, we first introduce the basic notions needed to specify the operational
semantics of GRL. We then present the semantics of GRL constructs, stressing on the
behavioural ones.

It is not what you meant to say, but it
is what your saying meant.

Walter M. Miller Jr

4.1 Preliminaries
Programs are assumed to have successfully passed all static analysis phases, including
parsing, binding analysis, typing analysis, and variable initialisation analysis. In partic-
ular, we make the following assumptions:

– Each variable is assigned a distinct name. This prevents variable shadowing to
occur, i.e., a variable declared within a certain scope with the same name as a
variable declared in an outer scope.

– Each component instance is assigned a distinct name. Thus, those names can be
used when associating a separate internal state to each component instance. For
simplicity, we assume that each component instance called in some context has
been aliased earlier in the same call context.
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In this section, we first present the main concepts used to define the formal semantics
of GRL. These are stores, stacks, and memories. Second, we sketch how GRL programs
can be interpreted in terms of LTSs (Labelled Transition Systems). Finally, we introduce
auxiliary functions required to formally define those LTSs.

4.1.1 Stores

We define a store, written ρ, as a partial function from variables to values. For a store
ρ mapping each variable Xi to the corresponding value ei, where i ∈ 1..n, we write
ρ = [X1 ← e1, ..., Xn ← en] and ρ (X1) = e1, . . . , ρ (Xn) = en.

We define the domain of store ρ, written dom (ρ), as {X1, . . . , Xn}. In particular,
we write “[ ]” for the empty store and dom ([ ]) = { } for its domain. For a subset
{Y1, . . . , Yp} ⊆ dom (ρ), we write ρ|{Y1, ..., Yp} for the restriction of ρ to {Y1, . . . , Yp}
defined by [Y1 ← ρ(Y1), ..., Yp ← ρ(Yp)].

We define the update of a store ρ1 with a store ρ2, written ρ1 ⊕ ρ2, as follows:

(ρ1 ⊕ ρ2)(X) =


ρ2 (X) if X ∈ dom(ρ2)
ρ1 (X) if X /∈ dom(ρ2) and X ∈ dom(ρ1)
undefined otherwise

The notation
⊕

i∈1..n
ρi stands for the sum ρ1 ⊕ . . .⊕ ρn (note that ⊕ is an associative but

not commutative operator).

Example 4.1. Here are some examples of store update.
[X ← 0]⊕ [ ] = [X ← 0]
[X ← 0]⊕ [Y ← 1] = [X ← 0, Y ← 1]
[X ← 0, Y ← 1]⊕ [X ← 1, Y ← 1] = [X ← 1, Y ← 1]
[X ← 0, Y ← 1]⊕ [Y ← 0, Z ← 1] = [X ← 0, Y ← 0, Z ← 1]

�

For sets of stores, we define the update of a set S1 with a set S2, written S1 ⊕ S2, as
follows:

S1 ⊕ S2 = {ρ1 ⊕ ρ2 | ρ1 ∈ S1 ∧ ρ2 ∈ S2}

4.1.2 Stacks

We define a stack, written σ, as a sequence of component instance identifiers. A stack
is defined recursively, either as the empty sequence ε or as a non empty sequence of the
form “σ′.id” where σ′ is a stack and id is the name of a component instance pushed on
top of the stack. We write σ1.σ2 for the concatenation of stacks σ1 and σ2, defined as:

σ1.ε , σ1

σ1.(σ2.id) , (σ1.σ2).id
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where symbol , means equal by definition.

We define function prefix which indicates whether a stack σ1 is a prefix of a stack σ2 as
follows:

prefix (σ1, σ2) , ∃ σ′, σ1.σ
′ = σ2

During program execution, a unique stack is associated to each component instance.
This stack is the ordered sequence of the names of all its enclosing component instances,
starting from the highest-level component (block, medium, or environment), down to
the current component, transitively. GRL stacks are similar to call stacks in ordinary
programming languages, except that they only contain component instance identifiers.
Stacks are finite and statically bounded, since recursion is forbidden in GRL.

Example 4.2. Let “alias B as B′” be the aliasing of a highest-level block inside
a system S . The stack of B′ is ε.B′. Now, let “alias B as B′” be a subblock aliasing
inside a medium M and let “alias M as M ′” be the medium aliasing inside the system
S . The stack of M ′ is ε.M ′ and that of B′ in this call context is “ε.M ′.B′”. �
In the sequel, we omit the initial ε in non empty stacks. For example, we write “M ′.B′”
instead of “ε.M ′.B′”.

4.1.3 Memories

We define a memory, written µ, as a partial function from stacks to stores. Mem-
ories implement the internal state of components. For a memory µ mapping stacks
σi to stores ρi, where i ∈ 1..n, we write µ = [σ1 ← ρ1, . . . , σn ← ρn] and
µ (σ1) = ρ1, . . . , µ (σn) = ρn. Relation σi ← ρi means that ρi defines the in-
ternal state of the component instance whose stack is σi. We define the domain of
memory µ, written dom(µ), as {σ1, . . . , σn}.

Similarly to store update, we define the update of a memory µ1 with a memory µ2,
written µ1 ⊕ µ2 as follows:

(µ1 ⊕ µ2)(σ) =


µ2(σ) if σ ∈ dom(µ2)
µ1(σ) if σ /∈ dom(µ2) and σ ∈ dom(µ1)
undefined otherwise

The notation
⊕

i∈1..n
µi stands for the sum µ1⊕ . . .⊕µn (note that ⊕ is an associative but

not commutative operator).

We define a function mem which extracts from a memory µ the submemories corre-
sponding to the component whose stack is σ and those of its subblocks.

mem (µ, σ) =
⊕

σ′ ∈ dom(µ)
∧ prefix (σ, σ′)

[σ′ ← µ(σ′)]

58



4.1. Preliminaries

Example 4.3. Block C_Shift (Ex. 3.3, page 40) defines no static variables and no
subblocks. The memories of its instances are the empty memory [ ].

Block B_Edge (Ex. 3.2, page 39) has one static variable Pre_Signal. The block is
invoked twice inside Block Exit (Ex. 3.7, page 42). Let call B_Edge_1 and B_Edge_2
the names associated to the subblocks. The respective memories of the instances are
initially:

µB_Edge_1 = [Exit . B_Edge_1← [Pre_Signal← false]]
µB_Edge_2 = [Exit . B_Edge_2← [Pre_Signal← false]]

Block Exit (Ex. 3.7, page 42) has no static variables. The memory of each of its instances
is composed of the memories of its subblocks. In addition to subblocks B_Edge_1 and
B_Edge_2, block Exit invokes instances of logical blocks B_And and B_Or. Such
logical blocks neither have internal state nor invoke subblocks. Hence, each instance of
block Exit is associated to a memory µB_Edge_1 ⊕ µB_Edge_2. �

4.1.4 LTSs of GRL systems

The behaviour of a GRL system is formally defined in terms of an LTS. States contain
the sum of all memories of highest-level components, the initial state being the empty
memory. Transitions between states denote block steps. With respect to a state µ, a
step of some highest-level block B′ leads to a transition of the form:

µ
B′ (ch1,...,chm)[ch′1,...,ch′n]
−−−−−−−−−−−−−−−−−→ µ′

where:

– µ′ updates µ with the values of variables composing the memories of both B′ and
the components connected to B′.

– ch1 , . . . , chm map the values of actual input and output parameters to their
respective formal parameters. Each chi (i ∈ 1..m) is composed of a set of elements.
Each element has the form “X = e”, where X is an actual parameter and e its
value in the current step, if X is observable. Otherwise, the element has the form
“_”.

– ch′1 , . . . , ch′n are defined similarly to ch1 , . . . , chm , but for receive and send
parameters.

For example, the following transition corresponds to a step of block Exit:
µ0

Exit (Cmd_P1 = true, Cmd_P2 = false, Open = true) [ Out_P1 = true, Out_P2 = false]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ µ1
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More concretely, we are concerned with the behaviour of blocks as an external observer
would see it: which block is executing and what are the values carried by its inputs
and outputs. Since block steps are atomic, each step results in exactly one transition
in the LTS. From one block step to another, the values of static variables composing its
internal state are stored in the system state. The system state contains also the values
of static variables composing the internal states of environments and mediums triggered
by the block step.

4.1.5 Structural Operational Semantics (SOS)

The LTSs of GRL are formally defined by using the method advocated by Plotkin
[Plo81], in which evaluation and execution relations are specified by transition rules in a
syntax-directed way. A transition rule has a set of zero (in which case the rule is called
axiom) or more premises and a conclusion. It is commonly written as follows:

premises
conclusion

The validity of all the premises implies the validity of the conclusion. Transition rules
will be applied in derivations, such that the facts below the solid line are derived from
the ones above.

4.2 Expressions

We define the evaluation of an expression E in a store ρ as a relation of the form
{E} ρ →e e, where e is the resulting value. An excerpt of transition rules of GRL
expressions are given in Table 4.1. A literal constant K is always evaluated with it-
self as value (rule R1). A variable X evaluates to the value recorded in the current
store (rule R2). Both rules are axioms. For example, an application of rule R2 is:

{X} [X ← 1] →e 1

The evaluation result of the expression “F(E0 , . . . ,En)” is the returned value of calling
the predefined function F with the values of E0 , . . . ,En (rule R3). Record field access
and array element access are considered as predefined functions. Predefined functions
are standard; we do not provide here their formal semantics.

(R1) {K} ρ →e K (R2) {X} ρ →e ρ (X)
(R3) (∀ i ∈ 0..n) {Ei} ρ →e ei

{F (E0 , . . . ,En)} ρ →e F(e0 , . . . ,en)

Table 4.1: Sos rules of GRL expressions
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4.3 Statements

The semantics of statements is defined by means of couples (store, memory). Stores serve
to read and update local variables and parameters of the current component. Memories
serve to read and update the internal states of subblocks, whose invocation is part of
statements. To access those memories, the stack of the current component, inside which
the statement executes, is required. In the sequel, we call current store and current
memory the store and memory in which a statement will execute.

We define the execution of statements as a relation of the form {I} σ, ρ, µ `−→i ρ′, µ′

where:

– I is the statement to execute
– σ is the stack of the current component instance inside which I executes
– ρ is the store defining parameters and variables of the current component
– µ is the memory defining the internal state of both the current component and its
subblocks

– ρ′ and µ′ are the respective updates of ρ and µ with the computations performed
by I

– ` is a label having one of the following forms:
label meaning

ε I terminates without encountering any signal
B0 I terminates and has encountered an activation signal “enable B0”
?〈X1, . . . , Xn〉 I terminates and has encountered a data signal “when ?<X1 , . . . , Xn>”
〈X1, . . . , Xn〉 I terminates and has encountered a data signal “when <X1 , . . . , Xn>”

In the sequel, we present some representative semantic rules of statement execution.

4.3.1 Basic statements

Table 4.2 gives the semantics rules of a subset of GRL statements.

(R4) {E} ρ→e e
{X := E} σ, ρ, µ ε−→i ρ⊕ [X ← e], µ

(R5) e ∈ T {E} ρ⊕ [X ← e]→e true
{X := any T where E} σ, ρ, µ ε−→i ρ⊕ [X ← e], µ

(R6) {I1} σ, ρ, µ
`1−→i ρ

′, µ′ {I2} σ, ρ′, µ′
`2−→i ρ

′′, µ′′

{I1 ;I2} σ, ρ, µ
`1+`2−−−−→i ρ′′, µ′′

(R7) (∃k ∈ 1..n) {Ik} σ, ρ, µ
`−→i ρ

′, µ′

{select I1 [] . . . []In end select} σ, ρ, µ `−→i ρ′, µ′

Table 4.2: Sos rules of statements (Excerpts)
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Rule R4 defines the semantics of deterministic assignment statement. An assignment
statement terminates normally by assigning the value of expression E (right-hand side)
in the current store to variable X (left-hand side). Note that this rule updates the store
but not the memory even if X was defined as a static variable. Note also that the
current memory µ is not used to evaluate the expression because store ρ is assumed to
already contain a copy of the static variables that are local to the current component.
Construction of store ρ and memory update are handled at the level of component
invocation.

Rule R5 defines the semantics of nondeterministic assignment statement. A nondeter-
ministic assignment terminates normally after updating the store by assigning an arbi-
trary value of type T to variable X , provided condition E of the assignment evaluates
to true in the updated store.

Rule R6 defines the semantics of a sequential composition of two statements I1 and I2 .
The sequential composition starts by executing statement I1 and updating the current
store and memory. Then, I2 is executed in the store and memory updated by I1 .
Symbol + denotes label concatenation; ε is the identity element, i.e., ε + ` = ` + ε = `

for every label `. At least one of the labels `1 and `2 must be equal to ε, since sequential
composition between signal statements is forbidden (see Section 3.5.1, page 44).

Rule R7 defines the semantics of a nondeterministic choice between I1 , . . . , In . Non-
deterministic choice terminates normally after behaving either as I1 , ..., or as In . In
both R6 and R7, note that memories µ′ and µ′′ may differ from memories µ and µ′,
respectively, if (and only if) statement I1 , I2 , or Ik invokes subblocks.

Example 4.4. To illustrate the derivation of transition rules, we consider the
execution of the GRL statements below in a stack ε, store [ ], and memory [ ].

1 X := any bool ; −− statement 1
2 Y := not (X) −− statement 2

Inspecting rule R6 (see Table 4.2), statement 1 should be executed before statement
2. The statement execution starts by assigning an arbitrary value of Boolean type to
X (rule R5, Table 4.2). There are two possible rules, each corresponding to a value
of the Boolean type. Only the rule corresponding to value false is presented here, for
conciseness. The execution continues by assigning a value to Y (rule R4, Table 4.2),
which depends on the evaluation of variable X. Here is the derivation of transition rules,
where ff and tt are shorthands for Boolean values false and true.

ff ∈ bool
{X := any bool} ε, [], [] ε−→i [X ← ff ], []

{X} [X ← ff ] −→e ff
{not (X)} [X ← ff ] −→e tt

{Y := not (X)} ε, [X ← ff ], [] ε−→i [X ← ff , Y ← tt], []
{ X := any bool; Y := not (X) } ε, [], [] ε−→i [X ← ff , Y ← tt], []

�
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4.3.2 Signals

The semantics of signals, given in Table 4.3, is inspired by the semantics of communica-
tion actions in process algebra.

(R8) {I0} σ, ρ, µ
ε−→ ρ′, µ′

{when <X1 , . . . ,Xn> -> I0} σ, ρ, µ
〈X1,...,Xn〉−−−−−−−→i ρ′, µ′

(R9) {I0} σ, ρ, µ
ε−→ ρ′, µ′

{when ?<X1 , . . . ,Xn> -> I0} σ, ρ, µ
?〈X1,...,Xn〉−−−−−−−−→i ρ′, µ′

(R10)
{enable B0} σ, ρ, µ

B0−−→i ρ, µ

Table 4.3: Sos rules of signals

Rules R8 and R9 state that a signal, after executing the statement I0 in the current
store and memory, terminates normally by producing updated store and memory and
by passing a label to the context. According to static semantics, I0 does not contain a
signal statement, since nested signals are forbidden.

More concretely, the data signal “when ?<X1 , . . . ,Xn>” is first prepared to receive val-
ues for variables X1 , . . . , Xn from a block. The execution of the signal is then contingent
on whether a connected block sends those values over the channel corresponding to the
signal. To express such contingency, we label the transition defining the signal execution
by “?<X1 , . . . ,Xn>” (rule R9 ). By construction, the values of variables X1 , . . . , Xn are
available in the current store, when the signal executes.

Similarly, the semantics of the data signal “when <X1 , . . . ,Xn>” is prepared to send
values on variables X1 , . . . , Xn to a block. The values of variables X1 , . . . , Xn are
assumed to be assigned inside I0 . The transition defining the signal execution is labelled
by “<X1 , . . . ,Xn>” (rule R8 ).

An activation signal “enable B0 ” encodes the permission of a block to execute. The
semantics of activation signals is defined by an axiom (rule R10 ). The execution of an
activation signal yields a transition labelled by B0 , i.e., the activation formal parameter
corresponding to the block meant to be activated. The current store and memory remain
unchanged.

4.4 Store construction at component invocation
This section is meant for future reference when writing down the transition rules of
component invocation. We first present some auxiliary functions. Then, we present the
way the global store, containing all global constants, is constructed. Finally, we present
the way the current store and memory are updated at components invocation.
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4.4.1 Auxiliary functions

We define a set of auxiliary functions.

Variable list Given a variable declaration list vars or an actual channel chan, function
get_vars returns the ordered list of variable identifiers. For unconnected channels, the
symbol ε denotes the empty list.

get_vars (vars1 , . . . , varsn) = get_vars (vars1 )++ . . . ++get_vars (varsn)
get_vars (X1 , . . . ,Xm:type) = 〈X1 , . . . ,Xm〉
get_vars (X1 , . . . ,Xm:type := E) = 〈X1 , . . . ,Xm〉
get_vars (chan1 , . . . , chann) = get_vars (chan1 )++ . . . ++get_vars (chann)
get_vars (<X1 , . . . ,Xm>) = 〈X1 , . . . ,Xm〉
get_vars (?<X1 , . . . ,Xm>) = 〈X1 , . . . ,Xm〉
get_vars (<_, . . . ,_>) = ε

get_vars (?<_, . . . ,_>) = ε

get_vars (<any type1 , . . . ,any typem>) = ε

Type list Given a variable declaration list, function get_types returns the ordered list
of types with which variables are declared.

get_types (vars1 , . . . , varsn) = get_types (vars1 )++ . . . ++get_types (varsn)
get_types (X1 , . . . ,Xm:type) = 〈type, . . . , type︸ ︷︷ ︸

m

〉

get_types (X1 , . . . ,Xm:type := E) = 〈type, . . . , type︸ ︷︷ ︸
m

〉

Initialisation Function init assigns to parameters (resp. variables) their default val-
ues (resp. initialisation values). Given a variable declaration list vars and a store ρ,
function init returns a store assigning to each variable in vars the evaluation of its
default expression in store ρ.

init (〈vars1 , . . . , varsn〉, ρ) = init (vars1 , ρ)⊕ . . .⊕ init (varsn , ρ)
init (X1 , . . . ,Xm:type, ρ) = []
init (X1 , . . . ,Xm:type := E , ρ) = [X1 ← e, ...,Xm ← e] where {E} ρ→e e

Example 4.5. Consider the following GRL code excerpt.

1 const C: nat := 3 −− g loba l constant dec la ra t i on
2 block . . . i s
3 var X1, X2: nat := C + 1 −− va r i ab l e dec l a ra t i on
4 . . .
5 end block

By applying functions get_vars, get_types, and init, we have:
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get_vars (C:nat := 3) = 〈C 〉
get_vars (X1,X2:nat := C + 1) = 〈X1 , X2 〉

get_types (C:nat := 3) = 〈nat〉
get_types (X1,X2:nat := C + 1) = 〈nat, nat〉

init (X1, X2:nat := C + 1, [C ← 3]) = [X1← 4, X2← 4]

�

In the sequel, we will define and use functions on lists of actual parameters (non-terminal
args in Table 3.4, page 36) and on actual channels (non-terminal chan in Table 3.9,
page 51). We introduce a non-terminal acts to denote either args or chan, when such a
distinction is unnecessary.

Some functions concern either only constant, input, and receive parameters or only
output and send parameters. We will write actsin as shorthand for constant, input, or
receive actual parameters and varsin for the corresponding formal parameter list. Hence,
actsin has one of the following forms:

– “arg1 , . . . ,argn”, where each parameter argi is either a variable or an underscore.
– “<arg1 , . . . ,argn>”, where parameters are either all variables, all underscores, or

all wildcards.

Similarly, we will write actsout as shorthand for output and send actual parameters
and varsout for the corresponding formal parameter list. Hence, actsout has one of the
following forms:

– “arg1 , . . . ,argn”, where each parameter argi has either the form “?X” or “?_”.
– “?<arg1 , . . . ,argn>”, where parameters are either all variables or all underscores.

Formal parameter assignment We define two functions assign and init_assign.
Function assign copies the values of actual parameters into their respective formal pa-
rameters in the component definition. Only constant, input, and receive parameters are
concerned. Actual parameters are assumed to be assigned values in a store ρ. Function
assign returns a set of stores assigning to each formal parameter the evaluation of its
corresponding actual parameter in ρ. When “any type” is used as actual parameter,
the corresponding formal parameter is assigned an arbitrary value of type type. Because
of this nondeterminism, there is no unique store. Note that the function is well-formed
because operator ⊕ is defined on sets of stores (see page 57).

assign (<arg1 , . . . ,argn>, 〈X1 , . . . ,Xn〉, ρ) = assign (arg1 ,X1 , ρ)⊕ . . .⊕ assign (argn ,Xn , ρ)
assign (〈arg1 , . . . , argn〉, 〈X1 , . . . ,Xn〉, ρ) = assign (arg1 ,X1 , ρ)⊕ . . .⊕ assign (argn ,Xn , ρ)
assign (_,X , ρ) = {[]}
assign (E ,X , ρ) = {[X ← e] | var(E) ⊆ dom(ρ) ∧ {E} ρ →e e}
assign (any type,X , ρ) = {[X ← e] | e ∈ T}

where function var returns the set of variables in an expression
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Example 4.6. Here are some applications of function assign.

assign (_, W , [a← 1, b← 0]) = {[]}
assign (a, X , [a← 1, b← 0]) = {[X ← 1]}
assign (a+1, Y , [a← 1, b← 0]) = {[Y ← 2]}
assign (any bool, Z , [a← 1, b← 0]) = {[Z ← false], [Z ← true]}

�

Function init_assign builds upon functions init and assign and is intended to prepare
the store in which a component body will execute. It assigns values to formal param-
eters. First, to each formal parameter is assigned its default value in a store ρ, using
function init. Then, the value of each formal parameter is updated with the value of
its corresponding actual parameter in a store ρ′, using function assign. According to
function assign, the formal parameters having “_” as corresponding actual parameter
are not updated.

Sometimes, input and receive actual parameters may be unavailable at invocation time,
e.g., an environment triggered on an output signal. In such case, the function returns
the empty store.

init_assign ( ++
k∈1..m

actsink , ++
k∈1..m

varsink , ρ, ρ
′) ={ ⊕

k∈1..m
init (varsink , ρ) ⊕

⊕
k∈1..m

assign (actsink , get_vars(varsink ), ρ′) if ++
k∈1..m

actsink 6= ε

[] otherwise

Example 4.7. Consider the following GRL code excerpt.

1 block i s equa l ( in X1, X3: nat := 0 , out Y: bool ) i s
2 Y := (X1 == X2)
3 end block
4
5 block . . . i s
6 a := 3;
7 i s equa l (_, a , ?b)
8 end block

By applying function init_assign in stores ρ = [] and ρ′ = [a← 3], we have:

init_assign (〈_, a〉, X1, X2:nat := 0 , [], [a← 3])
= init (X1,X2:nat := 0 , []) ⊕ assign (〈_, a〉, 〈X1, X2 〉, [a← 3])
= [X1← 0, X2← 0] ⊕ [X2← 3]
= [X1← 0, X2← 3]

�
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Actual parameter update Function update allows the values of output and send
formal parameters to be copied back into the actual parameters at the end of compo-
nent invocation. Formal parameters are assumed to be assigned values in a store ρ.
Function update returns a store assigning to each actual parameter the evaluation of its
corresponding formal parameter in store ρ.

Sometimes, output and send actual parameters may be unavailable at invocation time,
e.g., an environment triggered on an input signal. In such case, the function returns the
empty store.

update ( ++
k∈1..n

actsoutk , ++
k∈1..n

varsoutk , ρ) ={ ⊕
k∈1..n

update (actsoutk , varsoutk , ρ) if ++
k∈1..n

actsoutk 6= ε

[] otherwise

update (?<arg1 , . . . , argn>, 〈X1 , . . . ,Xn〉, ρ) = update (?arg1 ,X1 , ρ)⊕ . . .⊕ update (?argn ,Xn , ρ)
update (〈arg1 , . . . , argn〉, 〈X1 , . . . ,Xn〉, ρ) = update (arg1 ,X1 , ρ) ⊕ . . .⊕ update (argn ,Xn , ρ)

update (?Y ,X , ρ) =
{

[Y ← ρ(X)] if X ∈ dom(ρ)
[] otherwise

update (?_,X , ρ) = []

Example 4.8. Consider the GRL code excerpt of Example 4.7. Variable Y evaluates
to false in store [X1← 0, X2← 3]. Hence, by applying function update we have:

update (〈?b〉, Y : bool, [Y ← false]) = [b← false]

�

Memory access As advanced in Section 4.3, computations on local variables, includ-
ing static ones, are performed in the current store. An intermediate store is then needed,
assigning values to static variables of the current component. This is done by function
static. The function returns a store assigning to each variable its corresponding value
in the current memory; if not such value exists, the variable is assigned the value of its
default expression.

static (vars, σ, ρ, µ) =
{

µ (σ) if σ ∈ dom (µ)
init (vars, ρ) otherwise

Example 4.9. Consider the following GRL code excerpt.
1 block Mem . . . i s
2 s tat i c var X: nat := 0
3 . . . −− X not updated here
4 X := X + 1
5 end block
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Assume the block is used as highest-level component (σ = ε) with no other component.
By applying function static in the first and second steps of block Mem, we have:

static (X:nat := 0 , Mem, [], []) = [X ← 0 ]
static (X:nat := 0 , Mem, [], [Mem ← [X ← 1 ]) = [X ← 1 ]

�

4.4.2 Global store

Global constants can be used in the current module and its importing modules. Their
values should be available in the stores in which components are invoked. For this pur-
pose, a global store is constructed, assigning to each constant the value of its expression.

After binding analysis, global constants are assumed to be ordered according to their
dependencies, cyclic dependencies being forbidden. Suppose X1 , . . . , Xn is the ordered
set of global constants defined respectively with expressions E1 , . . . , En , such that:

{
var (E1 ) = ∅
(∀i ∈ 2..n) var (Ei) ⊆ {X1 , . . . , Xi−1}

In such case, E1 is a literal constant. The global store, written ρglob, is constructed
by assigning to each global constant Xi the value of its expression Ei in store ρi−1, as
follows:

ρ0 = []
ρi+1 = ρi ⊕ [Xi+1 ← ei+1] where {Ei+1} ρi −→e ei+1 (∀i ∈ 0..n− 1)
ρglob = ρn

Example 4.10. Consider the following ordered list of constant declarations.

1 const X1: nat := 0
2 const X2: nat := X1 + 1

The corresponding global store is constructed as follows:

ρ0 = []
ρ1 = [X1← 0]
ρ2 = [X1← 0, X2← 1]
ρglob = [X1← 0, X2← 1]

�
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4.4.3 Store and memory construction at component invocation

We are concerned with component invocations, regardless whether they are blocks, en-
vironments, or mediums. Hence, we will write C to denote a component and C′ → C to
denote that C′ is an instance of C.

Consider the invocation of C′ → C, where σ is the stack of the caller, ρ and µ are
the current store and memory. For actual parameter lists or channels in C′ and their
corresponding formal parameter lists in C, we write:

parameter formal actual

constant varsc argsc

input / receive varsin1 , . . . , varsinm actsin1 , . . . , actsinm

output / send varsout1 , . . . , varsoutn actsout1 , . . . , actsoutn

blocks Bb1 , . . . ,Bbp B′b1 , . . . ,B
′
bp

For conciseness, we assume that temporary and static variable lists are unified into
one list for each kind of variables. We can then write varsv and varssv for the list of
temporary and static variables, respectively.

To write down the transition rules of C′ invocation, we define two functions:

– “body (argsc, ++
k∈1..m

actsink , σ, ρ, µ)” returns a local store in which the body of
C′ will execute.

– “return ( ++
k∈1..n

actsoutk , σ.C′, ρ, ρret, µret)” returns a couple (store, memory)
updating the current store and memory. Store ρret and memory µret are assumed
to be produced by the component invocation.

More precisely, during the execution of C′, store “body (argsc, ++
k∈1..m

actsink , σ, ρ, µ)”
is constructed. It assigns values to constant, input, and receive parameters as well as to
temporary and static variables. For this purpose, intermediate stores ρc, ρin, ρsv, and
ρv, are constructed as follows:

– Store ρc assigns values to formal constant parameters, using function init_assign.
Default expressions of constant parameters may depend on global constants, which
are assigned in store ρglob.

ρc ∈ init_assign (argsc, varsc, ρglob, ρ)

– Store ρin assigns values to formal input and receive parameters. Default expres-
sions of input parameters may depend both on global constants and constant
parameters of C, which are assigned in store ρglob ⊕ ρc.

ρin ∈ init_assign ( ++
k∈1..m

actsink , ++
k∈1..m

varsink , ρglob ⊕ ρc, ρ)
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– Store ρv assigns to temporary variables the evaluation of their respective initiali-
sation expressions. Such expressions may depend on global constants as well as on
constant and input parameters of C′, all of them assigned in store ρglob ⊕ ρc ⊕ ρin.

ρv = init (varsv, ρglob ⊕ ρc ⊕ ρin)

– Store ρsv assigns values to static variables. Each variable is assigned the value it
has in the end of the previous step of C′ and available in the store µ (σ.C′). An
exception is the first step, during which static variables are assigned the values of
their default expressions. Default expressions may depend on global constants and
the constant parameters of C′, which are both assigned in store ρglob ⊕ ρc.

ρsv = static (varssv, σ, ρglob ⊕ ρc, µ)

Hence, the local store returned by function body can be defined as:

body (argsc, ++
k∈1..m

actsink , σ, ρ, µ) =ρglob ⊕ ρc ⊕ ρin ⊕ ρsv ⊕ ρv

The body of C′ is executed in the local store and the current memory and terminates
producing a store ρret and a memory µret. In this respect, the current store and memory
are updated, using function return. The current store ρ is updated with the actual values
of output parameters assigned in ρret. The current memory µ is updated with the current
values of static variables of C′ assigned in ρret together with those of subblocks assigned
in µret.

return ( ++
k∈1..n

actsoutk , σ.C′, ρ, ρret, µret) =
(

ρ⊕ update ( ++
k∈1..n

actsoutk , ++
k∈1..n

varsoutk , ρret),

µret ⊕ [σ.C′ ← ρret|varssv
]

)

In the sequel, we present applications of these computations on blocks and environments.

4.5 Blocks
For a concise presentation of the semantics of blocks, we consider blocks with no re-
ceive and send formal parameters. Receive (resp. send) formal parameters and their
corresponding actual parameters are used in computations exactly as their input (resp.
output) counterparts. We write I0 for the body of a block B and consider the following
aliasing and invocation of B:

alias B {argsc} as B′

B′ (actsin1 , . . . , actsinm ,actsout1 , . . . ,actsoutn )

The semantics of such block invocation inside a component (subblock) and inside a
system (highest-level blocks) can both be defined by rule R11 in Table 4.4.
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(R11)

(P1) ρexec ∈ body (argsc, ++
k∈1..m

actsink , σ, ρ, µ)

(P2) {I0} σ.B′, ρexec, µ
ε−→i ρret, µret

(P3) (ρ′, µ′) = return ( ++
k∈1..n

actsoutk , σ.B
′, ρ, ρret, µret)

{B′ (actsin1 , . . . ,actsinm ,actsout1 , . . . ,actsoutn )} σ, ρ, µ ε−→i,s ρ′, µ′

Table 4.4: Sos rule of blocks

The execution of the invoked block starts by constructing a local store ρexec (premise
P1 ) in which the block body I0 will execute (premise P2 ). All actual input parameters
are required for block execution ( ++

k∈1..m
actsink 6= ε). The execution of the block invoca-

tion terminates by producing store ρ′ and memory µ′ (premise P3 ). All actual output
parameters are updated when the block returns ( ++

k∈1..n
actsoutk 6= ε). The label of the

transition is necessarily ε, since GRL static semantics prohibit the use of signals inside
blocks.

Example 4.11. We illustrate the store and memory construction presented in
Section 4.4.3 on block B_Edge. To this aim, we consider the aliasing and invocation of
block B_Edge below (lines 13, 15) in the current store ρ and memory µ.

1 block B_Edge {Rising_Mode : bool := true , Falling_Mode : bool := f a l se }
2 ( in Logic_Signal : bool := true ,
3 out Edge_Detected : bool ) i s
4 s tat i c var Pre_Signal : bool := fa l se
5 var Rise , Fa l l : bool
6 Rise := Logic_Signal and not ( Pre_Signal ) ;
7 Fa l l := not ( Rise ) ;
8 Edge_Detected := (Rising_Mode and Rise ) or ( Falling_Mode and Fa l l ) ;
9 Pre_Signal := Logic_Signal

10 end block
11
12 system . . . i s
13 a l i a s B_Edge {_, _} as B_Edge
14 . . .
15 B_Edge (Cmd_P1, ?Edge_Cmd_P1)
16 end system

Block B_Edge is invoked inside a system, meaning that σ = ε. Assume that: (i)
ρglob = [] and (ii) input Cmd_P1 takes value true in the first step, meaning that
ρ(Cmd_P1 ) = true. The execution of B_Edge first step starts by constructing the
following intermediates stores.
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ρc = [Rising_Mode← true, Falling_Mode← false]
ρin = [Logic_Signal← true]
ρv = []
ρsv = [Pre_Signal← false]

The sum of those stores, using function body, results in the following local store:

body (〈_, _〉, 〈Cmd_P1 〉, ε, ρ, µ) =
[
Rising_Mode← true, Falling_Mode← false,
Logic_Signal← true, Pre_Signal← false

]

The execution of B_Edge body terminates by producing a store ρret and a memory
µret given in the table below. Store ρret assigns values to temporary variables Rise and
Fall, output Edge_Detected, and updates the value of the static variable Pre_Signal.
Memory µret is equal to µ, since the block does not invoke subblocks.

ρret =
[

Rising_Mode← true, Falling_Mode← false, Logic_Signal← true,
Pre_Signal← true, Rise← true, Fall← false, Edge_Detected← true

]
µret = µ

The execution of B_Edge invocation terminates by producing the following store and
memory.

return (〈?Edge_Cmd_P1 〉, B_Edge, ρret, µret) =
(

ρ⊕ [Edge_Cmd_P1← true]
µ⊕ [B_Edge← [Pre_Signal← true]]

)

�

4.6 Environments and mediums
For conciseness, we present only the semantics of environments. The semantics of medi-
ums is defined in the same way as environments, except that input (resp. output)
channels are replaced by receive (resp. send) channels and there are no activation pa-
rameters. The semantics of environments are defined in Table 4.5.

The execution of environments is guarded by signals. An environment is triggered only
to execute a data signal, if an interaction on a channel occurs, or to execute an activation
signal, constraining the activation of a block. If no interaction occurs, the environment
never executes.

Rule R12 defines the semantics of an environment N ′ when a connected block requests
to interact on one input channel chanini in chanin1 , . . . , chaninm . Hence, contrarily
to block semantics, only the actual parameters composing chanini are assigned values
in store ρexec (premise P1 ). An execution path containing the signal associated to
chanini is selected by the body I0 of N ′ (premise P2 ). Such a signal is assumed to
be both defined and reachable inside I0 , according to GRL static semantics. Hence,
label “?get_vars(varsi)” (premise P2 ), necessarily different from ε, indicates the signal
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(R12)

(P1) i ∈ in1..inm ρexec ∈ body (argsc, chani , σ, ρ, µ)

(P2) {I0 } σ.N ′, ρexec, µ
?get_vars(varsi)
−−−−−−−−−−−→i ρret, µret

(P3) (ρ′, µ′) = return (ε, σ.N ′, ρ, ρret, µret)

{N ′ (chanin1 , . . . ,chaninm ,chanout1 , . . . ,chanoutn ,B′b1
, . . . ,B′bp

)} σ, ρ, µ chani−−−−→i ρ′, µ′

(R13)

(P1) i ∈ out1..outn ρexec ∈ body (argsc, ε, σ, ρ, µ)

(P2) {I0 } σ.N ′, ρexec, µ
get_vars(varsi)
−−−−−−−−−−→i ρret, µret

(P3) (ρ′, µ′) = return (chani , σ.N ′, ρ, ρret, µret)

{N ′ (chanin1 , . . . ,chaninm ,chanout1 , . . . ,chanoutn ,B′b1
, . . . ,B′bp

)} σ, ρ, µ chani−−−−→i ρ′, µ′

(R14)

(P1) i ∈ b1..bp ρexec ∈ body (argsc, ε, σ, ρ, µ)
(P2) {I0 } σ.N ′, ρexec, µ

Bi−−→i ρret, µret
(P3) (ρ′, µ′) = return (ε, σ.N ′, ρ, ρret, µret)

{N ′ (chanin1 , . . . ,chaninm ,chanout1 , . . . ,chanoutn ,B′b1
, . . . ,B′bp

)} σ, ρ, µ
B′

i−−→i ρ′, µ′

Table 4.5: Sos rules of environments

execution. No output actual parameters are updated by the rule, as denoted by the
symbol ε in function return (premise P3 ).

In a similar way, rule R13 defines the semantics of environment execution when a con-
nected block requests to interact on one output channel chanouti in chanout1 , . . . , chanoutn .
No input actual parameters are available, as denoted by the symbol ε in function body
(premise P1 ).

Rule R14 defines the semantics of an environment N ′ when a block whose identifier
B′bi

is in B′b1
, . . . ,B′bp wishes to perform a step (premise P1 ). The body of N ′ tries

to select an execution path containing the signal associated to B′bi
. If such execution

path is reachable, the body executes and the transition label indicates that the signal
associated to B′bi

has executed (premise P2 ); otherwise, N ′ does not execute. No input
neither output actual parameters are involved in rule R14, as suggest by symbol ε in
both functions body and return (premises P1 and P3 ).

Example 4.12. To illustrate the semantics of environments, consider the environment
Disable below.
1 environment Disable {b : bool := true} ( block B) i s
2 i f not (b) then
3 enable B
4 end i f
5 end environment

Environment Disable can be used either to allow an arbitrary activation of a block B1
or to forever prohibit the activation of a block B2.
1 Disable { fa l se }(B1) −− always execute B1
2 Disable {true} (B2) −− never execute B2
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Let ρ and µ be the current store and memory and assume that ρglob = []. The invocation
of Disable with value false starts by constructing the following intermediates stores.

ρc = [b← false]
ρin = []
ρv = []
ρsv = []

The sum of those stores, using function body, results in the following local store:
body (〈false〉, ε, ε, ρ, µ) = [b← false]

The execution of the environment body terminates by producing the store [b ← false]
and without updating the memory. The execution of Disable invocation terminates by
producing the following store and memory.

return (ε, Disable, ρ, [b← false], µ) = (ρ⊕ [b← false], µ)

The derivation of transition rules defining Disable invocation is:

{ b } [b← false]→e false
if not (b) then

enable B
end if

 Disable, [b← false], µ B−→i ρ⊕ [b← false], µ

{ Disable {false}(B1) } ε, ρ, µ B1−−→i ρ, µ

No derivation rule corresponds to the invocation of Disable with value true. Since signal
“enable B” is never reachable (b=true), the environment never executes. �

Example 4.13. Consider the definition and invocation of environment Signal below.
1 environment Signa l (out Cmd: bool ) i s
2 when Cmd −> Cmd := true
3 end environment
4 . . .
5 Signa l (?Cmd)

Let ρ and µ be the current store and memory and assume that ρglob = []. By applying
functions body and return, we have:

body (ε, ε, ε, ρ, µ) = []
return (〈?Cmd〉, Signal, ρ, ρ⊕ [Cmd← true], µret) = (ρ⊕ [Cmd← true], µ)

�

4.7 Systems
This section presents the semantics of systems. We first present some required sets and
auxiliary functions. Then, we define the semantic rule of system execution. Finally, we
discuss the semantic model of GRL with respect to related work.
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4.7.1 Sets and auxiliary functions

Let S be a system. We write block_invoc, env_invoc, and med_invoc as shorthands for
component invocations (see Table 3.9, page 51). Each component C′ in S is associated
to a unique index. We write B′i (resp. N ′i , M ′i) for the name of the component whose
invocation is block_invoci (resp. env_invoci , med_invoci). We write indices(S , block),
indices(S , env), indices(S ,med) for the set of indices of respectively blocks, environments,
and mediums inside S .

Let mode be a partial function mapping actual parameters and channels to the set {in,
out}.

mode (X0 ) = in
mode (?X0 ) = out
mode (_) = in
mode (?_) = out
mode (any type0 ) = in

mode (<X0 , . . . ,Xn>) = in
mode (?<X0 , . . . ,Xn>) = out
mode (<_, . . . ,_>) = in
mode (?<_, . . . ,_>) = out
mode (any type0 , . . . ,any typen) = in

Each channel used in S is associated to an index such that:

– Channels having the same non-empty set of variables are associated to the same
index. In this case, we write mode (C′, chank) for the mode of channel chank in
component C′. For example, a channel <X0 > of a block B′i is associated to the same
index as a channel ?<X0 > of an environment N ′j . We also have “mode (B′i , <X0 >) =
in” and “mode (N ′j , ?<X0 >) = out”.

– Each other channel is associated to a unique index.

We write indices(C′, chan) for the set of channel indices used in C′ invocation.

Example 4.14. Consider system Main below. The table on the right-hand side
summarises component and channel indexation.

1 system Main (Y: bool ) i s
2 a l i a s B_Edge {_, _} as B_Edge,
3 Disable { fa l se } as Disable ,
4 Signa l as Signa l
5 var X : bool
6 block l i s t
7 B_Edge (<X>, ?<Y>)
8 environment l i s t
9 Disable (B_Edge) ,

10 Signa l (?<X>)
11 end system

component index

B_Edge 1
Disable 2
Signal 3
channel index

<X> 1
?<Y> 2
?<X> 1

By applying function indices, we have:

indices (Main, block) = {1}
indices (Main, env) = {2, 3}
indices (Main, med) = {}

indices (B_Edge, chan) = {1, 2}
indices (Disable, chan) = {}
indices (Signal, chan) = {1}

�
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The execution of systems is guided by the execution of their active components, i.e.,
blocks. Let B′i be a block such that i ∈ indices(S , block). The components connected
to B′i are identified by their indices. We define sets In, Out, Rec, and Snd containing
the indices of components connected to respectively input, output, receive, and send
channels of B′i . Such sets are possibly empty; but if not empty, they are not necessarily
singletons. Formally, they are defined as follows:

In (B′i) = {j ∈ indices(S , env) | ∃k, k ∈ (indices(B′i , chan) ∩ indices(N ′j , chan)) ∧mode(B′i , chank) = in}
Out (B′i) = {j ∈ indices(S , env) | ∃k, k ∈ (indices(B′i , chan) ∩ indices(N ′j , chan)) ∧mode(B′i , chank) = out}
Rec (B′i) = {j ∈ indices(S ,med) | ∃k, k ∈ (indices(B′i , chan) ∩ indices(M ′j , chan)) ∧mode(B′i , chank) = in}
Snd (B′i) = {j ∈ indices(S ,med) | ∃k, k ∈ (indices(B′i , chan) ∩ indices(M ′j , chan)) ∧mode(B′i , chank) = out}

We also need to identify the environment constraining B′i activation, if any. Let Act (B′i)
be a set containing the index of such an environment. The set is either singleton or
empty, since at most one environment can constrain a block activation, according to
static semantics.

Still, to the input and receive channels that are not connected to other components,
arbitrary values should be assigned. Let Any (B′i) be a set containing the indices of
B′i channels of the form <X1 , . . . , Xn> and not connected to other components. Let
assign_any be a function assigning arbitrary values to variables. The function returns
a set of stores, yielding nondeterminism.
assign_any (<X1 , . . . ,Xn>, 〈T1 , . . . ,Tn〉) = assign_any (X1 ,T1 )⊕ . . .⊕ assign_any (Xn ,Tn)
assign_any (X ,T) = {[X ← e] | e ∈ T}

Example 4.15. Consider system Main defined in Example 4.14. For block B_Edge,
we have:

In (B_Edge) = {3}
Out (B_Edge) = {}
Rec (B_Edge) = {}

Snd (B_Edge) = {}
Act (B_Edge) = {2}
Any (B_Edge) = {}

�

Example 4.16. Consider system Main_Edge below.
1 system Main_Edge (X, Y: bool ) i s
2 a l i a s B_Edge {_, _} as B_Edge
3 block l i s t
4 B_Edge (<X>, ?<Y>)
5 end system

By applying function assign, we have:
assign_any (<X>,bool) = {[X ← false], [X ← true]}

�

To specify the labels of transitions, we define two functions channel and transition.
Function channel defines the labels of transition rules corresponding to component ex-
ecutions. Given a block B′i , a component C′j , and an element in {in, out}, function
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channel returns the channel of mode m in B′i that is connected to C′j . Note that GRL
static semantics ensure that there is at most one such channel.

channel (B′i , C′j , m) = {chank | k ∈ (indices(B′i , chan) ∩ indices(C′j , chan)) ∧ mode(B′i , chank) = m}

Example 4.17. Consider system Main defined in Example 4.14. By applying
function channel, we have:

channel (B_Edge, Signal, in) = <X>

�

Function transition defines the label of transition rule corresponding to the system exe-
cution. The label is built upon the actual channels of blocks.

transition (<X1 , . . . ,Xn>, ρ) = transition (X1 , ρ), . . . , transition (Xn , ρ)
transition (?<X1 , . . . ,Xn>, ρ) = transition (X1 , ρ), . . . , transition (Xn , ρ)
transition (<any type1 , . . . ,any typen>, ρ) = _, . . . ,_
transition (<_, . . . , _>, ρ) = _, . . . ,_
transition (?<_, . . . , _>, ρ) = _, . . . ,_

transition (X0 , ρ) =
{

X0 = ρ(X0 ) if X0 ∈ visible (S)
_ otherwise

where visible (S) denotes the set of the visible parameters in S

4.7.2 Semantics of systems

The semantics of systems is given in Table 4.6. Rule R15 defines the execution of a
block step together with its connected components.

Before the execution of a block B′i , its activation should be granted and values should
be assigned to all input and receive actual parameters. To this aim, the environment
N ′j , where j ∈ Act (B′i), is executed in the empty store and in its own memory. This
memory is extracted from the current memory µ, by using function mem (premise P1 ).
It produces a store ρ′Aj and a memory µ′Aj . Store ρ

′
Aj is the empty store, since no output

channel is involved in the environment execution.

Similarly, all environments and mediums whose indices are in In (B′i) ∪ Rec (B′i) are
executed in the empty store and in their own memories (premises P2 and P3 ). A
particular case is when an environment index is in In (B′i)∩Act (B′i), meaning that the
environment not only constrains B′i activation but also is connected to an input channel
of B′i . In such case, the environment memory is the one produced by its previous
execution during the current step of B′i, which is captured by the definition of µIl (row
(c)).

Hence, a local store ρi, in which the block will execute, is constructed (row (b)). The
store assigns to input and receive parameters of B′i the values produced by the preceding
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(R15)

(P1) ∀j ∈ Act (B′i) {env_invocj} ε, [], mem (µ, N ′j)
B′

i−−−−−−−−−−−−−−−→i ρ′Aj
, µ′Aj

(P2) ∀l ∈ In (B′i) {env_invocl} ε, [], µIl

channel(B′
i , ,N

′
l , in)

−−−−−−−−−−−−−−−→i ρ′Il
, µ′Il

(P3) ∀k ∈ Rec (B′i) {med_invock} ε, [], mem (µ, M ′k)
channel(B′

i , M′
k , in)

−−−−−−−−−−−−−−−→i ρ′Rk
, µ′Rk

(P4) {block_invoci} ε, ρi, mem (µ, B′i)
ε−−−−−−−−−−−−−−−→i ρ′i, µ

′
i

(P5) ∀m ∈ Out (B′i) {env_invocm} ε, ρ′i, µOm

channel(B′
i , N′

m , out)
−−−−−−−−−−−−−−−→i ρ′Om

, µ′Om

(P6) ∀n ∈ Snd (B′i) {med_invocn} ε, ρ′i, µSn

channel(B′
i , M′

n , out)
−−−−−−−−−−−−−−−→i ρ′Sn

, µ′Sn

µ
`−−−−→ µ⊕

⊕
j∈Act (B′

i )
µ′A ⊕

⊕
l∈In (B′

i )
µ′I ⊕

⊕
k∈Rec (B′

i )
µ′R ⊕

⊕
m∈Out (B′

i )
µ′O ⊕

⊕
n∈Snd (B′

i )
µ′S

ρany ,
⊕

p∈Any (B′
i )

assign_any (argsp, types(varsp)) (a)

ρi , ρany ⊕
⊕

j∈Act (B′
i )
ρ′Aj
⊕

⊕
l∈In (B′

i )
ρ′I ⊕

⊕
k∈Rec (B′

i )
ρ′R (b)

µIl
, mem (µ, N ′l )⊕

⊕
j∈Act (B′

i )
mem (µ′Aj

, N ′l ) (c)

µOm , mem (µ, N ′m)⊕
⊕

j∈Act (B′
i )

mem (µ′Aj
, N ′m)⊕

⊕
l∈In (B′

i )
mem (µ′Il

, N ′m) (d)

µSn , mem (µ, M ′n)⊕
⊕

k∈Rec (B′
i )

mem (µ′Rk
, M ′n) (e)

` = B′i (transition(chan1 , ρ′i), . . . , transition(chanm , ρ′i)) (f)
[transition(chan′1 , ρ′i), . . . , transition(chan′n , ρ′i)]

Table 4.6: Sos rule of systems

components. Part of those parameters are available in stores ρ′Rk (k ∈ Rec (B′i)) and ρ′Il
(l ∈ In (B′i)). For channels whose indices are in Any (B′i), a store ρany is constructed,
assigning arbitrary values to its variables (row (a)). The execution of block B′i in store
ρi and its own memory, producing a store ρ′i and a memory µ′i (premise P4 ).

Last, all environments and mediums whose indices are in Out (B′i)∪Snd (B′i) are executed
in store ρ′i and their own memories (premises P5 and P6, rows (d) and (e)). In particular,
ρOm = ρ′i (∀m ∈ Out (B′i)) and ρSn = ρ′i (∀n ∈ Snd (B′i)), because the values produced
by B′i execution are needed in component executions.

The execution of the system defines a transition updating the current memory µ with
all the memories produced by the executed components. Such transition denotes a
multiway synchronisation between a specific block and its connected environments and
mediums. The transition label indicates which block is executing and which values
the block channels have carried (row (f)). The whole system LTS is constructed by
instantiating the semantic rule for any block. This leads to an interleaving of block
executions.

Example 4.18. Consider system Main defined in Example 4.14. See Exam-
ples 4.11, 4.12, and 4.13 for details about the execution of components B_Edge, Disable,
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and Signal, respectively. The transition label is obtained by applying function transition,
as follows:

transition (<X>, [X← true, Y← true]) = _
transition (?<Y >, [X← true, Y← true]) = Y = true

The transition rule defining the first execution of system Main in the empty memory is:

{ Disable (B_Edge) } ε, [], [] B_Edge−−−−−−→i [], []
{ Signal (?<X>) } ε, [], [] ?X−−−−−−→i [X← true], []

{ B_Edge (<X>, ?<Y >) } ε, [X← true], [] ε−−−−−→i

[
X← true,
Y← true

]
, [B_Edge← [Pre_Signal← true]]

[]
B_Edge (_,Y=true)
−−−−−−−−−−−−−−−→ [B_Edge← [Pre_Signal← true]]

�

Remark 4.1. One might well aim to verify the behaviour of synchronous components
before constructing the GALS system. The LTS corresponding to a block can be obtained
by invoking the block inside a system with no other component. The following table
summarises the sizes of the LTSs corresponding to a logical block B_And, B_Edge
(Example 3.2, page 39), and Exit (Example 3.7, page 42).

Block states transitions labels

B_And 1 4 4
B_Edge 2 4 4
Exit 4 16 10

In particular, the internal state of block B_And is the empty memory. Thus, its LTS
contains one state with several outgoing transitions. The number of the LTS transitions
corresponds to the possible values taken by its two inputs, both of Boolean type. Block
B_Edge defines one static variable of Boolean type. Thus, its LTS contains two states,
each corresponding to a Boolean value. �

4.7.3 Relation with existing work

We discuss the relation of GRL semantics to some existing work issued from the syn-
chronous and asynchronous communities.

As regards synchronous semantics, the idea of associating one LTS transition to a syn-
chronous component step is not new. It has been adopted by Esterel [BG92], whose
operational semantics are defined by means of LTSs. Transition labels in Esterel, like
in GRL, are specified in terms of component inputs and outputs. Moreover, both GRL
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and Esterel enjoy process algebra traits such as bisimulation reduction techniques.

As regards asynchronous semantics, the dichotomy of GRL components into active
(blocks) and passive (environments and mediums) deviates from the classical process
algebraic view. Process algebra usually abstract from the composition of a system into
a set of components. The only relevant information (i.e., visible on LTSs) is the differ-
ent actions performed by components and their composition. In GRL, contrarily, the
system composition plays a key role. Only blocks are of interest. Block identity, input
and output values, and interleaving between blocks are all visible on LTSs.

Related to the dichotomy into active and passive components is communication asym-
metry in GRL. Blocks do not define signals; they are self-activated. Their activation
triggers, through signals, medium and environment executions, which always accept to
interact. In the Sos rules, asymmetry is expressed by labels ε in block execution (see Ta-
ble 4.4, page 71) and labels ` 6= ε in medium and environment execution (see Table 4.5,
page 73). In process algebra, all components should define communication actions; and
communication is performed only if all participant components are ready.
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Translation from GRL into LNT

This chapter presents a syntax-directed translation from GRL into the process language
LNT. We first give insights into the translation scheme. Then, for each GRL construct,
we give an informal description, the formal translation functions, and some examples.
For an informal presentation of the translation, the reader can omit the formal defini-
tion of translation functions. Afterwards, we briefly present the GRL2LNT translator
implementing the proposed translation. Finally, we compare the LTSs generated by the
translation to the LTSs of GRL semantics and to related work.

5.1 Overview of the translation
We translate a GALS-specific language into a full-fledged process language for asyn-
chronous processes. GRL types, expressions, and statements are inspired by LNT. Their
translation is straightforward and is presented in Section 5.2. Global constants are trans-
lated to LNT functions. Their translation is presented in Section 5.3.

In GRL, interaction between (synchronous) subblocks inside components and between
(asynchronous) components inside systems occurs through common variables. In LNT,
however, communication between asynchronous processes occurs through gates. More-
over, GRL actual parameters and channels can be unconnected whereas no similar notion
is present in LNT. The translation of variable declaration as well as actual parameters
and channels is given in Sections 5.4.2, 5.4.3, and 5.4.4.

GRL blocks are translated to LNT functions, whose execution is deterministic and
atomic. We propose an encoding of the mutable internal state in LNT (Section 5.4.5),
where no such notion exists. For GRL subblocks, the corresponding LNT functions
are encapsulated in other LNT functions, which implement one block step. For GRL
highest-level blocks, the corresponding LNT functions are encapsulated in LNT wrap-
per processes, which implement the (implicit) synchronous loop of GRL blocks. Each
wrapper process interacts with other asynchronous components using gate communica-
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tions, producing a transition sequence in the resulting LTS. To preserve the atomicity of
those transition sequences, we propose a locking mechanism. The translation of blocks
is presented in Section 5.5.

GRL environments and mediums are naturally translated to LNT processes. The transla-
tion of signals involves gate communications. In particular, the translation of activation
signals cooperates with the locking mechanism in constraining the execution of wrapper
processes. We present the translation of environments and mediums in Section 5.6.

GRL systems are translated to processes, called root processes. Inside a root process, the
processes corresponding to GRL highest-level blocks, environments, and mediums are
composed asynchronously. The translation of GRL systems is presented in Section 5.7.

5.2 Translation of variables, types, expressions, and state-
ments

Each GRL variable X is translated to an LNT variable with the same name X1. Expres-
sions and statements have a direct, one-to-one, correspondence with their LNT counter-
parts; the only exception concerns signals. Signals are translated to behaviours involving
LNT communication actions. The imperative style of both GRL and LNT makes rather
straightforward such a translation.

GRL data types are translated with no difficulty into LNT, owing to the ability of LNT
to handle complex data types. GRL types bool, char, string and the user-defined ones
are translated to LNT types with the same name as the corresponding GRL types. The
translation of GRL numerical types is summarised in the following table:

GRL type LNT type Definition

nat Nat8 type Nat8 is range 0..255 of Nat end type
nat16 Nat16 type Nat16 is range 0..65535 of Nat end type
nat32 Nat Predefined in LNT

int Int8 type Int8 is range − 128..127 of Int end type
int16 Int16 type Int16 is range − 32768..− 32767 of Int end type
int32 Int Predefined in LNT

The number of bits on which LNT numerical types Nat and Int are represented is set
by default to 8. To enable the description of GRL numerical types represented on 16
and 32 bits, we set indeed such a number to 32, using the following pragmas:
!nat_bits 32
!int_bits 32
Types are defined in one LNT module, named “GRL_V1”, which is systematically
imported by each generated LNT module. There is a special enumerated type, named
block, introduced by the translation. Type block contains the names of all highest-level

1In practice, the translation must ensure that the GRL name is not an LNT keyword. This is handled
by the translator but we skip such low-level details in this presentation, for conciseness.
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blocks encapsulated inside the root process under translation. It will be used to translate
activation parameters.

We write t2t and e2v for the translation function of GRL types and expressions to their
LNT counterpart. We write i2s for the translation function of GRL statements to LNT
statements and behaviours. Excerpts of function i2s will be given when translating
subblock invocation (Section 5.5.2) and signals (Section 5.6.1).

5.3 Translation of global constants
We consider the following global constants.

const X1 : type1 := E1 , . . . ,Xn : typen := En

The translation function, named c2f, of global constants is given in Table 5.1. The
definition of each global constant is translated to an LNT function. The function name
corresponds to the GRL constant name. The function returns the value expression
assigned to the GRL constant.

c2f

(
const X1 : type1 := E1 , . . . ,Xn : typen := En

)
=

function X1 :t2t (type1 ) is
return e2v (E1 )

end function
. . .
function Xn:t2t (typen) is

return e2v (En)
end function

Table 5.1: Translation function of global constants

Example 5.1. Consider the following GRL constants:

1 −− GRL code
2 const nb_max_cars : nat := 4
3 const empty_queue : t_queue := t_queue (no_message)

These constants are translated to LNT as follows:

1 −− LNT code
2 function nb_max_cars : Nat8 i s
3 return 4 of Nat8
4 end function
5
6 function empty_queue : t_queue i s
7 return t_queue (no_message)
8 end function

�
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5.4 Translation of variable declarations, parameters, and
internal states

This section is structured as follows. We first introduce some sets and functions that
will be used in the translation functions. Afterwards, we present the translation of
GRL variable declarations, actual parameters, and actual channels into LNT constructs.
Finally, we present the translation of the internal state notion.

5.4.1 Preliminaries

We use the following notations. We write C′ → C to denote that C′ is an instance of
component C, as in Chapter 4. We write C′ ⊂ C1 to denote that C′ is a component
instance used inside component C1. We write sub(C) for the set of subblocks B′k such
that B′k ⊂ C.

Let C′ be a component instance. C′ may be invoked either with actual parameter lists
“args1 , ..., argsn” (inside another component) or with actual channels “chan1 , ..., chann”
(inside a system). Each actual parameter (resp. actual channel) in C′ is associated
to a unique index; and its corresponding formal parameter (resp. formal channel) is
associated to the same index. We write indices(C′, arg) (resp. indices(C′, chan), similarly
to Section 4.7.1) for the set of indices of actual parameters in C′ invocation, namely {1,
..., n}, where n is the number of parameters (resp. channels) in C′.

Let connexion be a partial function mapping actual parameters and channels to the set
{connected, unconnected, wildcard}.

connexion (X0 ) = connected
connexion (?X0 ) = connected
connexion (_) = unconnected
connexion (?_) = unconnected
connexion (any type0 ) = wildcard

connexion (<X1 , . . . ,Xn>) = connected
connexion (?<X1 , . . . ,Xn>) = connected
connexion (<_, . . . ,_>) = unconnected
connexion (?<_, . . . ,_>) = unconnected
connexion (any type1 , . . . ,any typen) = wildcard

We will also use function mode (see Section 4.7.1, page 75), mapping actual parameters
and channels to the set {in, out}. Functions connexion and mode allow us to define the
following sets on actual parameters and channels:

– The set indices(C′, arg, in, unconnected) contains the indices of unconnected input
an receive actual parameters.

indices(C′, arg, in, unconnected) = {k ∈ indices(C′, arg) |
mode(argk) = in ∧ connexion(argk) = unconnected}

– The set indices(C′, arg, out, unconnected) contains the indices of unconnected out-
put and send actual parameters.

indices(C′, arg, out, unconnected) = {k ∈ indices(C′, arg) |
mode(argk) = out ∧ connexion(argk) = unconnected}
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– The set indices(C′, chan, connected) contains the indices of connected actual chan-
nels.
indices(C′, chan, connected) = {k ∈ indices(C′, chan) | connexion(chank) = connected}

Example 5.2. Consider the following block invocation, either inside another compo-
nent or inside a system.
1 B’ (X, _, ?Y, ?_)

We have the following sets, where the last set stipulates that B′ is invoked inside a
system.

indices(B′, arg, in, unconnected) = {2}
indices(B′, arg, out, unconnected) = {4}
indices(B′, chan, connected) = {1, 3}

�

We will also use the following functions:

Function Purpose

type(C′, k) returns the type of the parameter whose index is k in compo-
nent instance C′

default(C, k) returns the default value of the formal parameter whose index
is k in component C

variable(C′, k) builds a unique variable name built upon the actual parameter
whose index is k in component instance C′

gate(X1 , . . . , Xn) builds a unique gate name, namely Gate_X1_..._Xn, upon
a variable identifier list. The function is an injection from
variable lists to gate names

channel(type1 , . . . , typen) builds a unique channel name, namely Chan_type1_..._typen,
upon a type identifier list. The function is an injection from
type lists to channel names

Example 5.3. Consider the following GRL code excerpt.
1 block B ( in X: nat := 0 , out Y: bool ) i s
2 . . .
3 end block
4 . . .
5 a l i a s B as B’

By applying functions type, default, and variable, we have:

type (B′, 1) = nat default (B, 1) = 0
type (B′, 2) = bool variable (B′, 2) = B′_Y

�
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5.4.2 Translation of variable declarations and activation parameters

Variable declarations may occur in GRL programs either as formal parameters, static
variables, or temporary variables. Depending on its usage in the GRL program, a
variable declaration list will be translated to several LNT constructs. We also consider
activation parameters, which are untyped and do not take default values.

Unlike GRL, LNT separates variable declaration and assignment. Thus, GRL variable
declarations are first translated to LNT variable declarations. In a second step, default
values of parameters (resp. initialisation values of local variables) are assigned to the
declared variables.

Additionnally, we will translate GRL variable declarations occurring as formal param-
eters in highest-level components to LNT gates and channels, in order to enable asyn-
chronous communication in LNT.

Translation to variable declarations Let dl2var be a function translating a GRL
variable declaration or activation parameter list to an LNT variable declaration list.
Activation parameters are translated to LNT parameters of type block (see Section 5.2).

dl2var (var1 , . . . , varn) = dl2var (var1 ), . . . , dl2var (varn)
dl2var (X1 , . . . ,Xm : type := E0 ) = X1 , . . . ,Xm : t2t(type)
dl2var (X1 , . . . ,Xm : type) = X1 , . . . ,Xm : t2t(type)
dl2var (B1 , . . . ,Bm) = B1 , . . . ,Bm : block

Translation to variable assignments Let dl2s be a function translating a GRL
variable declaration list to a sequence of LNT assignments.

dl2s (var1 , . . . , varn) = dl2s (var1 ); . . . ; dl2s (varn)
dl2s (X1 , . . . , Xm : type := E0 ) = X1 := e2v (E0 ); . . . ; Xm := e2v (E0 )
dl2s (X1 , . . . , Xm : type) = null

Example 5.4. By applying functions dl2var and dl2s, the left-hand GRL program
translates to the right-hand LNT program.

1 var X: nat := 0 1 var X: Nat8 in
2 X := 0

�

Sometimes, variable declarations and activation parameters need to be translated to
actual parameters, e.g., to encode the internal state or to translate subblock aliasing,
where actual input and output parameters are not yet available.
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Translation into actual parameters Let dl2ap be a function translating either a
GRL formal parameter list, a static variable list, or an activation parameter list to
an LNT actual parameter list according to its kind in {in, out, block, static}. GRL
input and activation parameters are translated to LNT input parameters. GRL output
parameters are translated to LNT output parameters. GRL static variable declarations
are translated to LNT “in out” parameters. Note that dl2ap is not defined for receive
and send parameters, since it is not used to translate highest-level components.

dl2ap (var1 , . . . , varn , kind) = dl2ap (var1 , kind), . . . , dl2ap (varn , kind)
dl2ap (X1 , . . . ,Xm : type := E0 , in) = X1 , . . . , Xm

dl2ap (X1 , . . . ,Xm : type, in) = X1 , . . . , Xm

dl2ap (X1 , . . . ,Xm : type, out) = ?X1 , . . . , ?Xm

dl2ap (B1 , . . . ,Bm , block) = B1 , . . . ,Bm

dl2ap (X1 , . . . ,Xm : type := E0 , static) = !?X1 , . . . , !?Xm

Translation into gate declaration Let dl2gate_dl be a function translating a GRL
variable declaration list into gate declaration. The declared gates are typed by channels,
which are assumed to be declared in the current LNT module. Channel names build
upon the GRL types of formal parameters, corresponding to GRL actual channels. The
construction of LNT channels will be presented in Section 5.7.

dl2gate_dl (vars) = gate(get_vars (vars)): channel(get_types (vars))

where functions get_vars and get_types (see Section 4.4.1, page 64) return respectively
the ordered list of variable identifiers and type identifiers in the variable declaration
vars.

Example 5.5. Consider the following GRL code excerpt.
1 block ( in X: nat := 0 , out Y1, Y2: bool ) i s
2 . . .
3 end block

By applying function dl2gate_dl, we have:

dl2gate_dl (in X: nat := 0 ) = Gate_X: Chan_Nat
dl2gate_dl (out Y1, Y2: bool) = Gate_Y1_Y2: Chan_Bool_Bool

�

5.4.3 Translation of actual parameters

GRL actual parameters serve to describe synchronous interactions between subblocks.
They will be translated to LNT actual parameters. For unconnected output parameters,
additional “dummy” variables should be declared.
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Translation into variable declaration Let unconnected2var be a function declar-
ing LNT variables for GRL unconnected output parameters in a component instance C′.
These parameters are identified by the set indices(C′, arg, out, unconnected). For each pa-
rameter, an LNT variable is created. The variable name is built using function variable.
The variable type is fetched in the component definition, using function type.

unconnected2var (C′) = ++
k∈indices(C′,arg,out,unconnected)

unconnected2var (C′, k)

unconnected2var (C′, k) = variable (C′, k):t2t (type (C′, k)) where C′ → C

Translation into actual parameters Let arg2ap be a function translating a GRL
actual parameter to an LNT one. The translation of parameters of the form “E0 ” and
“?X0 ” is straightforward. For each parameter of the form “_”, the default value of
the corresponding formal parameter is fetched in the block definition, using function
default. For each parameter of the form “?_”, a variable is assumed to be declared
earlier in the caller body, using function unconnected2var. Similarly, for parameters of
the form “any type”, a variable is assumed to be declared and assigned a value earlier
in the caller body.

arg2ap (C′, arg1 , . . . , argn) = arg2ap (C′, arg1 , 1), . . . , arg2ap (C′, argn , n)
arg2ap (C′, E0 , k) = e2v (E0 )
arg2ap (C′, ?X0 , k) = ?e2v (X0 )
arg2ap (C′, _, k) = default (C, k) where C′ → C
arg2ap (C′, ?_, k) = ?variable (C′, k)
arg2ap (C′, any type, k) = variable (C′, k)

Example 5.6. Consider the following GRL code excerpt.

1 block Sub ( in X: nat := 0 ,
2 out Y: bool )
3 i s
4 . . .
5 end block

1 Block High . . . i s
2 a l i a s Sub as Sub1 , Sub as Sub2
3 Sub1 (a , ?_) ;
4 Sub2 (_, ?b)
5 end block

By applying function unconnected2var , we have:

unconnected2var (Sub1 ) = Sub1_Y : Bool
arg2ap (Sub1 , a, 1 ) = a
arg2ap (Sub1 , ?_, 2 ) = ?Sub1_Y

arg2ap (Sub2 , _, 1 ) = 0
arg2ap (Sub2 , ?b, 2 ) = ?b

�

5.4.4 Translation of actual channels

GRL actual channels serve to describe asynchronous communication between highest-
level blocks. They will be translated to LNT gate declaration, thus enabling commu-
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nication between LNT asynchronous processes. Sometimes, we do not need to declare
gates for all the actual channels of GRL components, but only for connected ones. Ad-
ditionally, GRL actual channels will be translated to variable declarations, to describe
the data exchanged on gates. Finally, they will translated to behaviours, including gate
instantiations.

Translation into variable declaration Let chan2var be a function translating a
GRL actual parameter or channel of component instance C′ to an LNT declaration
list. The function is defined for all actual parameters, except parameters of the form
“_”, whose indices are in the set indices(C′, arg, in, unconnected). For each GRL actual
parameter, the type is fetched in the component definition C, which serves to declare the
corresponding LNT variable. The LNT variable has the same name as the GRL one, if
any; otherwise, a variable name is created.

chan2var (C′, <arg1 , . . . , argn>) = chan2var (C′, arg1 , . . . , argn)
chan2var (C′, ?<arg1 , . . . , argn>) = chan2var (C′, arg1 , . . . , argn)
chan2var (C′, arg1 , . . . , argn) = ++

k /∈ indices(C′, arg, in, unconnected)
∧ k ∈ 1..n

chan2var (C′, argk , k)

chan2var (C′, X , k) = X:t2t (type (C′, k))
chan2var (C′, ?X , k) = X:t2t (type (C′, k))
chan2var (C′, ?_, k) = variable (C′, k):t2t (type (C′, k))
chan2var (C′, any type, k) = variable (C′, k):t2t (type)

Example 5.7. Consider the following GRL code excerpt.

1 block Sub ( in X: nat := 0 , out Y: bool ) i s
2 . . .
3 end block
4
5 system Main . . . i s
6 a l i a s Sub as Sub1 , Sub as Sub2 , Sub as Sub3
7 block l i s t
8 Sub1 (a , ?_) ,
9 Sub2 (_, ?b) ,

10 Sub3 (any nat , ?c )
11 end system

By applying function chan2var , we have:

chan2var (Sub1 , a, 1 ) = a: Nat8
chan2var (Sub1 , ?_, 2 ) = Sub1_Y : Bool

chan2var (Sub2 , _, 1 ) = undefined
chan2var (Sub2 , ?b, 2 ) = b: Bool

chan2var (Sub3 , any nat, 1 ) = Sub3_X: Nat8
chan2var (Sub3 , ?c, 2 ) = c: Bool
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�

Translation into gate declaration Let chan2gate be a function building an LNT
gate name from a GRL actual channel. For connected channels, whose indices are
in indices(C′, chan, connected), the gate name builds upon the names of the variables
composing the channel. For other channels, the gate name builds upon the names of the
formal parameters corresponding to the GRL actual channel.

chan2gate (C′, chank) =
{

gate(get_vars(chank)) if k ∈ indices(C′, chan, connected)
gate(get_vars(varsk)) otherwise

where varsk is the formal parameter list corresponding to chank

Let chan2gate_dl be a function declaring typed LNT gates for GRL actual channels of
component instance C′. Those gates are typed by channels, which are assumed to be
declared in the current LNT module2.

chan2gate_dl (C′, chank) = chan2gate (C′, chank) : channel(get_types(varsk))
where varsk is the formal parameter list corresponding to chank

Example 5.8. Consider the GRL code excerpt given in Example 5.7. By applying
chan2gate_dl, we have:

chan2gate_dl (Sub1 , a) = Gate_a: Chan_Nat8
chan2gate_dl (Sub1 , ?_) = Gate_Sub1_Y : Chan_Bool
chan2gate_dl (Sub2 , _) = Gate_Sub2_X: Chan_Nat8
chan2gate_dl (Sub2 , ?b) = Gate_b: Chan_Bool
chan2gate_dl (Sub3 , any nat) = Gate_Sub3_X: Chan_Nat8
chan2gate_dl (Sub3 , ?c) = Gate_c: Chan_Bool

where the LNT channels Chan_Nat8 and Chan_Bool are defined as follows:

channel Chan_Nat8 is (Nat8) end channel
channel Chan_Bool is (Bool) end channel

�

Let connected2gate and connected2gate_dl be the variants of functions chan2gate and
chan2gate_dl for only connected channels. These channels are identified by the set
indices(C′, chan, connected).

connected2gate (C′) = ++
k∈indices(C′,chan,connected)

chan2gate (C′, chank)

connected2gate_dl (C′) = ++
k∈indices(C′,chan,connected)

chan2gate_dl (C′, chank)

2A preprocessing phase collects the ordered type lists used for parameter declaration lists of GRL
components in the current module and all imported modules. These type lists serve to build all the
channels, defining gate profiles, that will be used in the generated LNT code. Gate profiles must be
pairwise distinct, thus ensuring a unique channel for each gate profile.
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where varsk is the formal parameter list corresponding to chank .

Example 5.9. Consider the GRL code excerpt given in Example 5.7. By applying
connected2gate_dl, we have:

connected2gate_dl (Sub1 ) = Gate_a: Chan_Nat8
connected2gate_dl (Sub2 , ?b) = Gate_b: Chan_Bool
connected2gate_dl (Sub3 , ?c) = Gate_c: Chan_Bool

�

Translation into behaviour Let chan2b be a function translating a GRL actual
channel into an LNT behaviour. For each GRL connected channel <X1 , . . . ,Xn> or
?<X1 , . . . ,Xn>, an LNT gate is assumed to be declared in the caller body, using func-
tion chan2gate_dl; and variables X1 , . . . , Xn are assumed to be declared using function
chan2var. In such case, function chan2b returns an LNT gate instantiation using vari-
ables X1 , . . . , Xn . For each wildcard channel, variables are assumed to be declared in
the caller body, using function chan2var. In such case, function chan2b assigns a non-
deterministically chosen value to each variable. For unconnected channels, the function
returns the null statement.

chan2b (C′, <X1 , . . . ,Xn>) = gate(X1 , . . . ,Xn) (!X1 , . . . ,!Xn)
chan2b (C′, ?<X1 , . . . ,Xn>) = gate(X1 , . . . ,Xn) (?X1 , . . . ,?Xn)
chan2b (C′, <any type1 , . . . ,any typen>) = variable (C′, 1) := any t2t (type1 );

. . . ;
variable (C′, n) := any t2t (typen)

chan2b (C′, ?<_, . . . ,_>) = null
chan2b (C′, <_, . . . ,_>) = null

Example 5.10. Consider the GRL code excerpt given in Example 5.7. By applying
chan2b, we have:

chan2b (Sub1 , a) = Gate_a (a)
chan2b (Sub1 , ?_) = null
chan2b (Sub2 , _) = null

chan2b (Sub2 , ?b) = Gate_b (b)
chan2b (Sub3 , any nat) = Sub3_X := any Nat8
chan2b (Sub3 , ?c) = Gate_c (c)

�

5.4.5 Construction of the internal state

To illustrate how the internal state of GRL components is built, we consider the following
running example:
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1 block Sub . . . i s
2 s tat i c var X: bool := fa l se
3 . . .
4 end block

1 block High . . . i s
2 a l i a s Sub as Sub
3 s tat i c var X: bool := fa l se
4 . . .
5 end block

The state of a GRL system is composed of the internal states of its highest-level com-
ponents, static variables being syntactically prohibited in systems. The internal state
of a component C is defined by the component static variables concatenated with those
of its subblocks, transitively. Each instance C′ of C has its own copy of the component
internal state.

Intuitively, we implement the internal state in LNT by means of local variables, which we
call state variables. These variables are declared inside the LNT processes corresponding
to the GRL highest-level components. To allow state variables to be read and updated
by LNT functions corresponding to GRL subblocks, they are propagated through in
out parameters to those functions transitively.

Formally, to define the translation of the internal state, we need the following functions:

– Function static concatenates the declaration lists of a component static variables.
For example, if a component C defines the declaration lists: “static var vars1 ,
. . . , static var varsn” , then static (C) = vars1 , . . . , varsn . Contrarily, if C
defines no static variables, then static (C) = ε. For blocks Sub and High, we have:

static (Sub) = X: bool := false
static (High) = X: bool := false

– Function build_state builds the internal state of a component instance C′. Con-
cretely, the function creates a copy of the internal state of C, where C′ → C, in
which each variable is given a new unique name. This prevents name clashes,
e.g., occurring when several components, used in the same context, define static
variables with identical names.

build_state (C′, vars1 , . . . , varsn) =build_state (C′, vars1 ), . . . , build_state (C′, varsn)
build_state (C′, var1 , . . . , varn) =build_state (C′, var1 ), . . . , build_state (C′, varn)
build_state (C′, X1 , . . . , Xn:type := E)=variable(C′, X1 ), . . . ,variable(C′, Xm):type := E

For subblock Sub, we have: build_state (Sub,X: bool := false) = Sub_X: bool := false

The function will be used only for subblocks, since at highest-level components,
all subblock variables have already been renamed, transitively.

– Function get_state builds the internal state of a component C upon the internal
states of its subblocks. To this aim, a recursive descent is done through the com-
ponent subblocks and their static variable lists are synthesised in a bottom-up

92



5.5. Translation of blocks

way3.

get_state (C) = static (C) ++ ++
B′ ∈ sub(C)

∧ B′ → B

build_state (B′, get_state (B))

For blocks Sub and High:
get_state (Sub) = X: bool := false
get_state (High) = X: bool := false, Sub_X: bool := false

In the sequel, we present the translation functions from GRL behavioural constructs to
LNT ones. For a concise presentation of functions, we will consider that each component
has one formal parameter of each mode accepted by its syntax, one static (resp. tempo-
rary) variable list, and one subblock. The generalisation into 0 or n (n > 0) parameter
lists, variable lists, and subblocks is straightforward.

5.5 Translation of blocks
The section is organised as follows. We start by presenting the translation of GRL block
definitions into LNT functions. Afterwards, we give the translation of subblocks and
highest-level blocks.

5.5.1 Block definition

The translation function, named b2f, from block definitions to LNT functions is given
in Table 5.2. It uses functions dl2var and dl2ap (see Section 5.4.2), function get_state
(see Section 5.4.5), and function i2s.

Blocks defined by the user They are translated to several LNT functions (see (a)
in Table 5.2):

– an LNT function having the same name as the block, called definition function.
– and an LNT function for each subblock aliasing inside the block. This is done
using function a2f, whose definition will be given in Section 5.5.2.

The translation of the block body is straightforward since GRL deterministic statements
are inspired by LNT ones. Hence, the LNT statement implements one block step,
computing outputs from inputs.

Each GRL constant, input, and receive parameter is translated to an LNT input parame-
ter, using function dl2var. Similarly, each GRL output and send parameter is translated
to an LNT output parameter. Default values of GRL formal parameters do not appear in

3This can be performed statically, since the number of GRL components is finite and known. GRL
and LNT compilers forbid the dynamic creation of components to enable enumerative verification.

93



Chapter 5. Translation from GRL into LNT

b2f



block B {varsc}
(in varsi,
out varso)

[receive varsr,
send varss]

is
alias B0 {args0 } as B′0
static var varssv,
var varsv

I
end block


=

function B (in dl2var (varsc),
in dl2var (varsi),
out dl2var (varso),
in dl2var (varsr),
out dl2var (varss),
in out dl2var (get_state(B)))

is
var dl2var (varsv) in

dl2s (varsv);
i2s (I )

end var
end function

a2f(B0 [args0 ] as B′0 , B)

(a)

b2f


block B {varsc}

(in varsi, out varso)
is

!c string
end block

 =

function B (in dl2var (varsc),
in dl2var (varsi),
out dl2var (varso))

is
!implementedby "string%i"
!external
null

end function

(b)

b2f


block B {varsc}

(in varsi, out varso)
is

!lnt string
end block

 =

(∗ LNT file ∗)
function B (in dl2var (varsc),

in dl2var (varsi),
out dl2var (varso))

is
string (dl2ap (varsc, in),

dl2ap (varsi , in),
dl2ap (varso, out))

end function

(c)

Table 5.2: Translation functions of block definition
(a) blocks defined by the user (b) blocks defined by external C

code (c) blocks defined by external LNT code

the LNT function. They are deferred to the translation of block aliasing and invocation,
where those values are useful.

GRL temporary variables are translated to LNT local variables. Such LNT variables are
first declared, using function dl2var, then assigned to their initialisation values, using
function dl2s. GRL static variables cannot be translated similarly, since local variables
loose their values between subsequent executions of the function. Rather, the static
variables of B, and the internal state of subblock B′0 , are first captured using function
get_state; then, they are translated to LNT in out parameters, using functions dl2var.
This way, the internal state of B is stored by the caller, giving function B the ability of
read and update.

Example 5.11. In the following, blocks Foot and Dummy translate to the LNT
functions Foot and Dummy.
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GRL blocks LNT functions

1 block Foot {C: nat16 := 1}
2 ( in I : nat16 := 0 ,
3 out O: nat16 )
4 i s
5 O := I + C
6 end block

1 function Foot ( in C: Nat16 ,
2 in I : Nat16 ,
3 out O: Nat16)
4 i s
5 O := I + C
6 end function

1 block Dummy ( in I : nat ) i s
2 s tat i c var X: nat := 0
3 var Y: nat := 0
4 X := X + I ;
5 Y := Y + I
6 end block

1 function Dummy ( in I : Nat8 ,
2 in out X: Nat8)
3 i s
4 var Y: Nat8 in
5 Y := 0 ;
6 X := X + I ;
7 Y := Y + I
8 end var
9 end function

�

Blocks defined by external C code Their translation relies on the capability of LNT
to import external C code. In compliance with the reference manual of the Lnt2Lotos
compiler [CCG+16], a block defined by external C code is translated to:

– an LNT function having the same name as the block (see (b) in Table 5.2). Its
formal parameters are obtained as explained in the previous paragraph. The LNT
function B encapsulates the generated C code, by using pragmas !implement-
edby and !external. The !external pragma indicates the use of external C
functions in the generated LNT module, in which case the function body is neces-
sarily null. The !implementedby pragma gives the precise name of the function
to be used by the back-end compilers.

– an interface C function for each output of the GRL block returning the output
value. The name of each function is determined by expanding %i with the output
position in function B. The interface C functions are produced in a file with suffix
“.fnt”. We do not give a formal definition of this translation.

Example 5.12. Consider the following block C_Shift defined by the external C
function Shift.
1 −− GRL f i l e importing the C f i l e
2 block C_Shift ( in num : int16 , out l e f t , r i gh t : int16 )
3 i s
4 !c " Sh i f t "
5 end block

1 // C f i l e
2 void Sh i f t (GRL_Int16 num, GRL_Int16∗ l e f t , GRL_Int16∗ r i gh t )
3 {// convert types to the C domain
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4 unsigned char arg_number = GRL_Int16_To_Signed_Char (num) ;
5 // compute outputs and reconvert types to the GRL domain
6 ∗ l e f t = GRL_Signed_Char_To_Int16 (arg_number << arg_bits ) ;
7 ∗ r i gh t = GRL_Signed_Char_To_Int16 (arg_number >> arg_bits ) ;
8 }

The translation generates the LNT function C_Shift and two interface C functions Shift1
and Shift2, returning the respective values of outputs left and right.

1 −− LNT f i l e
2 function C_Shift ( in num : Int16 ,
3 out l e f t : Int16 ,
4 out r i gh t : Int16 )
5 i s
6 !implementedby " Sh i f t%i "
7 !external
8 nu l l
9 end function

1 // FNT f i l e
2 GRL_Int16 Sh i f t1 (GRL_INT16 num)
3 {
4 GRL_Int16 l e f t ; GRL_Int16 r i gh t ;
5 Sh i f t (num, &l e f t , &r i gh t ) ;
6 return l e f t ;
7 }
8 GRL_Int16 Sh i f t2 (GRL_INT16 num)
9 {
10 GRL_Int16 l e f t ; GRL_Int16 r i gh t ;
11 Sh i f t (num, &l e f t , &r i gh t ) ;
12 return r i gh t ;
13 }

�

Blocks defined by external LNT code Their translation is straightforward (see (c)
in Table 5.2). A block defined by external LNT code is translated to an LNT function
having the same name as the block. The function body consists of a call to the external
LNT function.

Example 5.13. The following GRL block LNT_Foot, defined by an external LNT
function named Foot, translates to the following LNT function.

1 −− GRL code
2 block LNT_Foot ( in C: nat16 ,
3 in I : nat16 ,
4 out O: nat16 )
5 i s
6 ! l n t "Foot"
7 end block

1 −− LNT code
2 function LNT_Foot ( in C: Nat16 ,
3 in I : Nat16 ,
4 out O: Nat16)
5 i s
6 Foot (C, I , ?O)
7 end function

�

5.5.2 Subblock aliasing and invocation

We consider the translation of the following subblock aliasing and invocation, where
argsi and argso denote actual input and output parameter lists, respectively:

alias B {argsc} as B′

B′ (argsi, argso)
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We write varsi and varso for the formal parameter lists corresponding to argsi and argso
in the definition of block B.

The translation functions of subblock aliasing and invocation are given in Table 5.3.
They use functions dl2var and dl2ap (see Section 5.4.2), functions build_state and
get_state (see Section 5.4.5), and function unconnected2var (see Section 5.4.3).

a2f
(

B{argsc} as B′
)

=

function B′ (in dl2var (varsi),
out dl2var (varso),
in out dl2var (build_state(B′, get_state(B)))

is
eval B (arg2ap (B′, argsc),

dl2ap (varsi , in),
dl2ap (varso, out),
dl2ap (build_state(B′, get_state(B)), static))

end function

i2s
(

B′ (argsi, argso)
)

=

var unconnected2var (B′) in
eval B′ (arg2ap (B′, argsi),

arg2ap (B′, argso)
dl2ap (build_state(B′, get_state(B)), static))

end var

Table 5.3: Translation functions of subblock aliasing (a2f) and invocation (i2s)

Subblock aliasing is translated to an LNT function, called aliasing function, using the
translation function a2f. The aliasing function has the same name4 as the GRL subblock
and declares:

– input and output parameters corresponding to those of block B. These parameters
will be used later to interact with functions corresponding to other subblocks.

– in out parameters, which are the state variables implementing the subblock in-
ternal state. This way, state variables can be synthesised in a bottom-up manner
up to the highest-level component.

Inside the aliasing function, the definition function named B is called with the declared
state variables and with the actual constant parameters of the subblock. In particular,
actual constant parameters are available at aliasing time and not used for interactions.
Hence, they are irrelevant when calling the aliasing function.

Example 5.14. Consider the following aliasing of block Foot.

1 a l i a s Foot {2} as Large , Foot {_} as Small

4To simplify the presentation of the translation functions, we consider that LNT functions and pro-
cesses corresponding to GRL component instances have the same names as their GRL components. In
practice, a unique name is given to each generated LNT component. This prevents name clashes, e.g.,
occurring when a subblock is aliased with the same name in different components.
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The translation generates the following functions:

1 function Large ( in I : nat16 ,
2 out O: nat16 )
3 i s
4 Foot (2 , I , ?O)
5 end function

1 function Small ( in I : Nat16 ,
2 out O: Nat16)
3 i s
4 −− de fau l t value of the constant
5 −− parameter i s passed
6 Foot (1 , I , ?O)
7 end function

�

A subblock invocation is translated to a call to the LNT aliasing function5, using func-
tion i2s (see Table 5.3). Unconnected output parameters are translated to auxiliary
variables, which are declared, using function unconnected2var, and passed to the func-
tion call, using function dl2ap. See Section 5.4.3 for details about the translation of
actual parameters.

Example 5.15. The left-hand GRL block invocations below translate to the right-
hand LNT code. In particular, subblock Foot is invoked at line 1 without being aliased.
Consequently, an LNT function named Foot_165 is generated by the translation.

1 −− GRL code
2 Foot (_, ?X) ; −− not a l i a s ed before
3 Small (X, ?Not_X) ;
4 Large (Not_X, ?_)

1 −− LNT code
2 eval Foot_165 (0 , ?X) ;
3 eval Small (X, ?Not_X) ;
4 var Dummy_O: Bool in
5 eval Large (Not_X, ?Dummy_O)
6 end var

�

Remark 5.1. The synchronous assumptions are granted for free in the translation
of a single GRL block. LNT functions are deterministic and execute atomically without
producing transitions. This coincides with the assumption that computations and data
processing are instantaneous in synchronous components. �

5.5.3 Highest-level block aliasing and invocation

We consider the translation of the following highest-level block aliasing and invocation,
where chani , chano, chanr , chans denote respectively actual input, output, receive and
send channels:

alias B {argsc} as B′

B′ (chani, chano)[chanr, chans]

5For subblocks invoked without being aliased, the translation automatically generates aliasing func-
tions, whose names are not always user-friendly.
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The translation functions, given in Table 5.4, use functions dl2var, dl2s, dl2ap (see
Section 5.4.2), functions chan2var, arg2ap, connected2gate, connected2gate_dl, chan2b
(see Section 5.4.3), and functions build_state and get_state (see Section 5.4.5).

b2p
(

alias B {argsc} as B′
)

=

process B′ [connected2gate_dl (B′),
Start:Block, Finish:none]

is
var chan2var (B′, argsc),

chan2var (B′, chani),
chan2var (B′, chano),
chan2var (B′, chanr),
chan2var (B′, chans),
dl2var (build_state(B′, get_state(B)))

in
dl2s (build_state(B′, get_state(B)));
loop
Start (B′);
chan2b (B′, chanr);
chan2b (B′, chani);
eval B (arg2ap (B′, argsc),

arg2ap (B′, chani),
arg2ap (B′, chano),
arg2ap (B′, chanr),
arg2ap (B′, chans),
dl2ap (build_state(B′, get_state(B)), static));

chan2b (B′, chano);
chan2b (B′, chans);
Finish

end loop
end var

end process

b2b
(

B′ (chani, chano)[chanr, chans]
)

= B′ [connected2gate (B′), Start, Finish]

Table 5.4: Translation functions of highest-level block aliasing and invocation

Highest-level block aliasing

The aliasing of B′ is translated to an LNT wrapper process, using the translation function
b2p. The process encapsulates the definition function named B to interface it with other
processes. It receives values from processes, invokes function B with those values, and
emits the values returned by the function to processes. This requires to translate GRL
actual channels into both:

– gate communication to enable value exchange with other processes. Gates build
upon the GRL actual channels of blocks, available at invocation time, and not upon
formal parameters as for subblocks. This enables to translate actual channels de-
pending on their form, using function connected2gate_dl. Since GRL unconnected
and wildcard channels are unused in communications, the code is optimised by not
generating useless transitions. Additional gates Start and Finish are declared, the
usage of which will be given later.
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– local variables, using function chan2var, to represent the values exchanged on
gates. An exception is unconnected input and receive channels, whose values are
fetched in the block definition and passed to the LNT function call (see function
arg2ap, Section 5.4.3).

The wrapper process defines an infinite loop, which implements the implicit synchronous
loop of GRL highest-level blocks. Each loop iteration defines a step of the block. The
execution of the loop starts by computing input and receive values for the current step,
using function chan2b. Only for connected channels, a gate is instantiated to receive
values from other processes which are stored in dedicated local variables. Variables
corresponding to wildcard parameters are assigned to nondeterministically chosen values.
Then, those variables are passed as actual input parameters to function B. The function
provides actual output parameters, among which only parameters corresponding to GRL
connected channels are emitted through subsequent gates.

Locking mechanism A loop iteration of a wrapper process instantiates sequentially
several gate communications. This corresponds to a sequence of transitions in the gen-
erated LTS, each gate corresponding to a transition. Such sequences should be atomic,
i.e., individual sequences of transitions corresponding to different blocks should not in-
terleave, thus preserving the atomicity of block steps. For this purpose, we introduce
a locking mechanism. Additional gate communications, Start and Finish, are added at
the beginning and end of each process loop iteration, respectively. These gates enable
the process to synchronise with an additional process Mutex, defined as follows:

process Mutex [Start: Block, Finish: none] is
loop

Start (?any block);– Only the process named “block” can execute
Finish

end loop
end process

channel Block is – introduced by the translation
(block) – type enumerating the names of highest-level blocks, including B’

end channel

This way, gate Start starts the gate communication sequence in process B′ by acquiring
the lock and gate Finish finishes it by releasing the lock, without interleaving with gate
communications of other processes in between. More details about synchronisations
between LNT processes will be given in Section 5.7.

Example 5.16. Consider the aliasing of block Foot in the left-hand side of the code
below. Since the translation of block aliasing relies also on the block invocation, we
present the invocation of block Foot. The translation generates the LNT process in the
right-hand side.
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1 system S2 . . . i s
2 −− a l i a s i n g
3 a l i a s Foot {2} as Large
4 . . .
5 −− invocat ion
6 Large ( I , ?O)
7 end system

1 process S2_Large [ Gate_I : Chan_nat16 ,
2 Gate_O: Chan_nat16 ,
3 Start : Block ,
4 Fin i sh : None ] i s
5 var I : Nat16 , O: Nat16 in
6 loop
7 Start ( Large ) ;
8 Gate_I (? I ) ;
9 eval Foot (2 , I , ?O) ;

10 Gate_O (O) ;
11 Fin i sh
12 end loop
13 end var
14 end process

�

Example 5.17. The following aliasing of block Foot (left-hand side) translates to
the following LNT process (right-hand side). No gate in the LNT process is associated
to the GRL unconnected input.

1 system S3 . . . i s
2 −− a l i a s i n g
3 a l i a s Foot {2} as Large
4 −− invocat ion
5 Large (_, ?O)
6 end system

1 process S3_Large [Gate_O: Chan_nat16 ,
2 Start : Block ,
3 Fin i sh : None ]
4 i s
5 var O: Nat16 in
6 loop
7 Start ( Large ) ;
8 −− value 0 fetched in block d e f i n i t i o n
9 eval Foot (2 , 0 , ?O) ;

10 Gate_O (O) ;
11 Fin i sh
12 end loop
13 end var
14 end process

�

Translation of the internal state Contrarily to the translation of subblocks, the
internal state of highest-level blocks is implemented using LNT local variables (as antic-
ipated in Section 5.4.5). These state variables are declared, using function dl2var, and
initialised, using function dl2s, before starting the synchronous loop. State variables are
passed as in out parameters to the encapsulated function, thus propagated to functions
corresponding to subblocks, transitively. This way, each loop iteration of a wrapper
process starts by reading the values of state variables stored in the previous iteration of
the loop and finishes by updating those values.

Remark 5.2. Static variables could not have been translated in a modular way,
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i.e., independently of the call context of blocks. The corresponding LNT state variables
should be defined outside the synchronous loop of highest-level blocks. However, it is
worth noticing that the support of in out parameters by LNT enables an elegant and
controllable implementation of the state notion while keeping a functional flavour. �

Example 5.18. Consider the following aliasing and invocation of block Dummy
inside a system S1 .
1 system S1 . . . i s
2 a l i a s Dummy as Dummy
3 . . .
4 Dummy ( I )
5 end system

The translation generates the following wrapper process:
1 process S1_Dummy [ Gate_I : Chan_nat , Start : Block , F in i sh : none ] i s
2 var Dummy_X: Nat8 , −− i n t e r n a l s ta te dec l a ra t i on
3 I : Nat8
4 in
5 Dummy_X := 0 ; −− i n t e r n a l s ta te i n i t i a l i s a t i o n
6 loop
7 Start (Dummy) ;
8 GATE_I (? I ) ;
9 eval Dummy ( I , ! ?Dummy_X) ; −− i n t e r n a l s ta te read and update

10 Fin i sh
11 end loop
12 end var
13 end process

�

Highest-level block invocation

Finally, each highest-level block invocation is translated to the invocation of the corre-
sponding wrapper process. This is done by using function b2b (see Table 5.4).

Example 5.19. The following GRL block invocations translate to the following LNT
process invocations.
1 −− GRL code
2 Dummy ( I )
3 Large ( I , O)
4 Large (_, O)

1 −− LNT code
2 S1_Dummy [ Gate_I , Start , F in i sh ]
3 S2_Large [ Gate_I , Gate_O, Start , F in i sh ]
4 S3_Large [Gate_O, Start , F in i sh ]

�

5.6 Translation of environments and mediums
This section is organised as follows. We first present the translation of signals. Then,
we present the translation of environments and mediums.
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5.6.1 Signals

Signals are translated using function i2s as given in Table 5.5. It uses function gate (see
Section 5.4.1).

i2s
(

when ?<X0 , . . . ,Xn> -> I0
)

= gate(X0 , . . . , Xn) (?X0 , . . . ,?Xn);
i2s(I0 ) reception data signal

i2s
(

when <X0 , . . . ,Xn> -> I0
)

= i2s(I0 );
gate(X0 , . . . , Xn) (!X0 , . . . ,!Xn)

emission data signal

i2s
(

enable B0
)

= Start (B0 ) activation signal

Table 5.5: Translation of signals

Since GRL data signals are communication primitives enabling environments and medi-
ums to exchange values with blocks, their translation involves value-passing synchro-
nisations. The reception data signal “when ?<X0 , . . . ,Xn> -> I0 ” is translated to a
gate waiting for value reception on variables X0 , . . . ,Xn , followed by behaviour i2s(I0 ).
The emission data signal “when <X0 , . . . ,Xn> -> I0 ” is translated to behaviour i2s(I0 )
followed by a gate emitting values on variables X0 , . . . ,Xn .

Since GRL activation signals aim to constrain highest-level block activation, their trans-
lation should exploit gate Start, introduced by the locking mechanism. Hence, an ac-
tivation signal “enable B0 ” is translated to a gate communication “Start (B0 )”. This
translation enables three-party synchronisation on gate Start between:

1. the wrapper process named B0
2. process Mutex
3. the process containing “Start (B0 )”

Therefore, a process of a block can acquire the Mutex only if (i) the Mutex is acquired
by no other process and (ii) a process corresponding to a GRL environment proposes a
synchronisation on gate Start with the block name. Since synchronisations in LNT are
blocking, process B0 will wait for other processes to be ready on gate Start. If the gate
is unreachable in some process, then process B0 will not execute, which is in accordance
with GRL semantics.

5.6.2 Environments

The translation functions of environment definition, aliasing, and invocation are given in
Table 5.6. They use functions dl2var, dl2s, dl2ap (see Section 5.4.2), functions chan2var,
arg2ap, chan2gate, dl2gate_dl, chan2b (see Section 5.4.3), and functions build_state and
get_state (see Section 5.4.5).

Environment definition An environment is translated to an LNT process, called
definition process, using function n2p. Because GRL environments support nondeter-
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n2p



environment N
{varsc}
(in varsi,
out varso,
block blocks)

is
alias B0 {args′c} as B′0
static var varssv
var varsv

I
end environment


=

a2f (alias B0 {arg′c} as B′0 )

process N [dl2gate_dl(varsi),
dl2gate_dl(varso),
Start: Block]

(in dl2var (varsc),
in dl2var (blocks),
in out dl2var (get_state(N )))

is
var dl2var (varsv) in

dl2s (varsv);
i2s (I )

end var
end process

a2p
(

alias N {argsc} as N ′
)

=

process N ′ [chan2gate_dl (N ′, chani),
chan2gate_dl (N ′, chano),
Start: Block]

is
var

chan2var (N ′, argsc),
chan2var (N ′, argsb),
dl2var (build_state(N ′, get_state(N )))

in
dl2s (build_state(N ′, get_state(N )));
loop

N[gate (chani), gate (chano), Start]
(arg2ap (N ′, argsc),

arg2ap (N ′, argsb),
dl2ap (build_state(N ′, get_state(N )), static))

end loop
end var

end process

n2b
(

N ′ (chani, chano, argsb)
)

= N ′ [chan2gate (chani), chan2gate (chano), Start]

Table 5.6: Translation functions of environment definition
(n2p), aliasing (a2p), and invocation (n2b)

ministic behaviours and signals, their definition could not be described by LNT functions,
as for blocks.

Each GRL constant parameter is translated to an LNT input parameter, using function
dl2var. Each GRL input and output channel is translated to an LNT typed gate, using
function dl2gate. Each GRL activation parameter is translated to an LNT input param-
eter of type block, using function dl2var. When the GRL environment defines activation
parameters, the corresponding LNT process should also declare gate Start. The internal
state is translated similarly to blocks.

Example 5.20. The following GRL environments (left-hand side) translate to the
following LNT processes (right-hand side).

104



5.6. Translation of environments and mediums

GRL environments LNT processes

1 environment Default
2 ( block B1, B2)
3 i s
4 se lect
5 enable B1
6 [ ] enable B2
7 end se lect
8 end environment

1 process Default [ Start : Block ]
2 ( in B1, B2: block )
3 i s
4 se lect
5 Start (B1)
6 [ ] Start (B2)
7 end se lect
8 end process

1 environment Disable
2 (out Cmd: bool )
3 i s
4 when Cmd −> Cmd := fa l se
5 end environment

1 process Disable [Gate_Cmd: Chan_bool ]
2 i s
3 var Cmd: Bool in
4 Cmd := fa l se ;
5 Gate_Cmd (!Cmd)
6 end var
7 end process

�

Environment aliasing and invocation We consider the translation of the follow-
ing environment aliasing and invocation, where chani , chano, argsb denote respectively
actual input channel, output channel, and activation parameters:

alias N {argsc} as N ′

N ′ (chani, chano, argsb)

Environment aliasing is translated to an LNT wrapper process, using function a2p (see
Table 5.6). The wrapper process N ′ encapsulates the definition process named N , sim-
ilarly to the translation of highest-level blocks. It defines the same set of gates as N ,
but no formal parameters. Contrarily to the translation of blocks, gates build upon the
formal channels of the GRL environment. This is required to call the definition process
with appropriate number of actual gates. The execution of the process starts by defining
and initialising state variables. Then, it invokes process N inside an infinite loop with:

– input parameters corresponding to GRL actual constant parameters, using func-
tion arg2ap

– input parameters corresponding to GRL actual activation parameters, using func-
tion dl2ap

– in out parameters corresponding to the internal state of N ′, using function dl2ap

Example 5.21. Consider the following aliasing and invocation of environments
Default and Disable inside a system S4 .
1 system S4 . . . i s
2 a l i a s Default as Default , Disable as Disable
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3 . . .
4 Default (B1, B2) ,
5 Disable (Cmd)
6 end system

The LNT wrapper processes corresponding to those environments are the following.

1 process S4_Default [ Start : Block ]
2 i s
3 loop
4 Default [ Start ] (B1, B2)
5 end loop
6 end process

1 process S4_Disable [Gate_Cmd: Chan_bool ]
2 i s
3 loop
4 Disable [GATE_Cmd]
5 end loop
6 end process

�

Finally, each environment invocation is translated to the invocation of the corresponding
wrapper process. This is done by function n2b (see Table 5.6). GRL actual channels are
translated to LNT gates, using function chan2gate. GRL actual activation parameters
are translated to gate Start.

Example 5.22. The following GRL environment invocations (left-hand side) translate
to the following LNT process invocations (right-hand side).
1 −− GRL code
2 Default (B1, B2)
3 Disable (?Cmd)

1 −− LNT code
2 S4_Default [ Start ]
3 S4_Disable [Gate_Cmd]

�

5.6.3 Mediums

Similarly to environments, each medium definition is translated to an LNT definition
process, using a function m2p. Each medium aliasing is translated to a wrapper process,
encapsulating the definition process, using function a2p (see Table 5.6). Each medium
invocation is translated to a call to the wrapper process, using a function m2b. Functions
m2p and m2b are identical to functions n2p and n2b, except that input (resp. output)
parameters are replaced by receive (resp. send) parameters and translation of activation
parameters is omitted.

5.7 Translation of systems
This sections presents the translation of systems. We first present some required sets
and auxiliary functions. Then, we define the translation function of systems.

5.7.1 Sets and auxiliary functions

Let S be a system. As in Section ??, all the system components are assumed to be
indexed such that each component C′ ⊂ S is associated to a unique index. We write
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block_invoc, env_invoc, and med_invoc (resp. block_alias, env_alias, and med_alias)
as shorthands for component invocation (resp. aliasing) inside S . We write B′j (resp.
N ′j , M ′j) for the component instance whose aliasing is block_aliasj and invocation is
block_invocj (resp. env_aliasj and env_invocj , med_aliasj and med_invocj).

We write indices(S , block), indices(S , env), indices(S ,med) for the sets of indices of re-
spectively blocks, environments, and mediums, inside S . We write indices(S , activ) for
the set of indices of blocks whose activation is constrained by environments; thus, we
have the invariant indices(S , activ) ⊆ indices(S , block).

Each channel used inside S is associated to a unique index. We write indices(C′, chan)
for the set of indices of channels used inside C′ invocation.

We define the following sets on channels:

– The set indices(S , unconnected) contains the indices of unconnected channels of
environments and mediums, respectively6.

indices(S , unconnected) =
⋃

k∈indices(S,env)∪indices(S,med)
indices(C′k, unconnected)

indices(C′k, unconnected) = {j ∈ indices(C′k, chan) | connexion(chanj) = unconnected}

– The set indices(S , linked) contains the indices of channels that are common be-
tween components.

indices(S , linked) =
⋃

k∈indices(S,block)
indices(S ,B′k , linked)

indices(S ,B′k , linked) = {j ∈ indices(B′k , chan) |
(∃p ∈ indices(S , env) ∧ j ∈ indices(N ′p, chan)
∨(∃q ∈ indices(S ,med) ∧ j ∈ indices(M ′q, chan)

– The set indices(S , unlinked) contains the indices of connected channels that are
used in exactly one environment or medium. The set uses function connexion
defined in Section 5.4.1 (page 84).

indices(S , unlinked) =
⋃

k∈indices(S,env)∪indices(S,med)
indices(S , C′k, unlinked)

indices(S , C′k, unlinked) = {j ∈ indices(C′k, chan) |
connexion(chanj) = connected ∧ j /∈ indices(S , linked)}

Additionally, we write indices(S , visible) for the set of channels in S whose variables are
visible from the outside7.

6Unconnected channels of blocks are useless here since they have no corresponding LNT gates.
7In the formal definition of GRL, visible and hidden variables can compose the same actual channel.

Here, for simplicity, we stipulate that the variables composing a GRL channel should be either all visible
or all hidden.
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5.7.2 Translation function

The translation function, named s2p, of systems is given in Table 5.7. It uses functions
a2f (see Table 5.3), a2p (see Table 5.6), b2b (see Table 5.4), n2p (see Table 5.6), m2b,
chan2gate_dl and connected2gate_dl (see Section 5.4.4). A GRL system is translated
to:

– the enumerated type Block, introduced previously.
– wrapper processes corresponding to blocks, environments, and mediums. These
processes will be called block-, environment-, and medium processes, hereafter.

– additional processes generated by the translation, which are process Mutex, intro-
duced previously, and a process named Activation.

– a root process, encapsulating all the aforementioned processes.

Gates Synchronisation between the encapsulated processes takes place on gates that
are declared inside the root process. LNT gates build upon the GRL actual channels
used in component invocations, rather than on variable declaration lists of the system.
This is because variables are declared individually but grouped to form actual channels
only at invocation time.

A gate is either visible or hidden. Visible gates are declared using function visible (see
(a) in Table 5.7) and correspond to:

– GRL channels of blocks, environments, and mediums whose variables are declared
as formal parameters in the GRL system

– gate Start to visualise the activation policy of highest-level blocks

Hidden gates are declared using function hidden (see (b) in Table 5.7) and correspond
to:

– GRL channels whose variables are declared as temporary variables in the GRL
system

– gates corresponding to unconnected channels of environments and mediums
– gate Finish since it is used only to release the Mutex and contains no information

about block execution

Parallel composition Inside the root process, wrapper processes corresponding to
GRL components are composed using the parallel composition operator par. Block
processes are composed in pure interleaving. This way, they cannot synchronise with
each other, even on their common gates Start and Finish. Here is an excerpt of the
translation function:

par – purely interleaved block processes
b2b (block_invoc1 ) || . . . || b2b (block_invocp)

end par
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This parallel composition is itself encapsulated inside a higher-level parallel composition
to synchronise with process Mutex on gates Start and Finish. This enables individual
synchronisation between process Mutex and block processes. Here is an excerpt of the
translation function:

par Start, Finish in – locking mechanism
par – purely interleaved block processes

b2b (block_invoc1 ) || . . . || b2b (block_invocp)
end par
||
Mutex [Start, Finish]

end par

Similarly to the translation of blocks, environments and mediums processes are composed
in pure interleaving. Here is an excerpt of the translation function:

par – purely interleaved environment and medium processes
n2b (env_invoc1 ) || . . . || n2b (env_invocq) – environment processes

|| m2b (med_invoc1 ) || . . . || m2b (med_invocr) – medium processes
end par

Finally, all aforementioned parallel compositions are encapsulated inside a main parallel
composition. The synchronisation set, defined by function synch, contains:

– Gate Start to enable synchronisations between: environment processes, block pro-
cesses, and process Mutex.

– Gates corresponding to GRL channels that are common to blocks and environ-
ments/mediums. These are gates whose indices are in indices(S , linked).

– Gates corresponding to GRL channels of environments and mediums that are ei-
ther unconnected or occur in exactly one environment or medium process. These
are gates whose indices are in indices(S , unconnected) ∪ indices(S , unlinked). By
putting these gates in the synchronisation set, the respective processes will wait
infinitely for communication. As a result, the execution paths guarded by the gates
are unfeasible, which complies with the semantics of GRL. Note however that the
translation causes no blocking situations. Because each execution path of environ-
ment and medium processes contains at most one gate, the infinite waiting on a
gate has no impact on other gates. Note also that while such gates are declared
and used, no additional transition in the corresponding LTS is generated.

Here is an excerpt of the translation function, showing the main parallel composition:
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par synch(S) in – main parallel composition
par Start, Finish in – purely interleaved block processes with the locking mechanism
...
end par
||
par – purely interleaved environment and medium processes
...
end par

end par

Still, processes corresponding to blocks whose activation is not constrained cannot exe-
cute, since gate Start occurs in the synchronisation set of the main parallel composition.
Such processes will block, waiting infinitely to synchronise on gate Start with an en-
vironment process. To prevent such undesirable situations, we introduce an additional
process, named Activation, in parallel with processes corresponding to environments and
mediums. Process Activation proposes permanently synchronisations on gate Start for
blocks whose activation is not constrained. This is done by function activate (see (c) in
Table 5.7).

visible (S) = ++
j∈ indices(S, block)
∩indices(S, visible)

connected2gate_dl(B′j),

++
j∈ indices(S, env)
∩indices(S, visible)

chan2gate_dl(N ′j ),

++
j∈ indices(S,med)
∩indices(S, visible)

chan2gate_dl(M ′j )

(a)

hidden (S) = ++
j∈ indices(S, block)
\indices(S, visible)

connected2gate_dl(B′j),

++
j∈ indices(S, env)
\indices(S, visible)

chan2gate_dl(N ′j ),

++
j∈ indices(S,med)
\indices(S, visible)

chan2gate_dl(M ′j )

(b)

activate (B′0 , . . . ,B′n) = select
Start (B′0 )

[]...[]
Start (B′n)

end select

(c)
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s2p



system S (vars1 , . . . , varsm) is
block_alias1 , . . . ,block_aliasp
env_alias1 , . . . ,env_aliasq
med_alias1 , . . . ,med_aliasr
var vars′1 , . . . , vars′n

block list
block_invoc1 ,
, . . . ,
block_invocp

environment list
env_invoc1 ,
, . . . ,
env_invocq,

medium list
med_invoc1 ,
, . . . ,
med_invocr

end system



=

type Block is (B′1 , . . . , B′p) end type

a2f (block_alias1 ) . . . a2f (block_aliasp)
a2p (env_alias1 ) . . . a2p (env_aliasq)
a2p (med_alias1 ) . . . a2p (med_aliasr )

process Mutex . . . end process
process Activation [Start:Block] is

loop
activate( ++

k ∈ 1..p ∧
k /∈ indices(S, activ)

B′k)

end loop
end process

process S [visible(S), Start:Block] is
hide hidden(S), Finish:none in

par – main parallel composition
synch(S)

in
par Start, Finish in

par
b2b (block_invoc1 )

|| . . .

|| b2b (block_invocp)
end par

||
Mutex [Start, Finish]

end par
||

par
n2b (env_invoc1 )

|| . . .

|| n2b (env_invocq)
|| m2b (med_invoc1 )
|| . . .

|| m2b (med_invocr )
|| Activation [Start]

end par
end par

end hide
end process

Table 5.7: Translation of systems

Example 5.23. Below, the root LNT processes (right-hand side) correspond to GRL
systems (left-hand side).
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GRL systems LNT root processes

1 −− Sen and Rec communicate
2 −− through medium Buf
3 system S5 (Mr, Ms: bool )
4 i s
5 block l i s t
6 Sen [ ?Ms] ,
7 Rec [Mr]
8 medium l i s t
9 Buf [Ms, ?Mr]

10 end system

1 process S5 [Gate_Ms , Gate_Mr : Chan_bool ,
2 Start : Block ] i s
3 hide Fin i sh : None in
4 par
5 par Start , F in i sh in
6 Mutex [ Start , F in i sh ]
7 | | par
8 S5_Sen [Gate_Ms , Start , F in i sh ]
9 | | S5_Rec [Gate_Mr , Start , F in i sh ]

10 end par
11 end par
12 | |
13 S5_Buf [Gate_Ms , Gate_Mr ]
14 end par
15 end hide
16 end process

1 −− The ac t i va t i on of both
2 −− B1 and B2 i s constra ined
3 system S6 (O1, O2: bool )
4 i s
5 block l i s t
6 B1 (?O1) ,
7 B2 (?O2)
8 environment l i s t
9 Ctr l (B1, B2)

10 end system

1 process S6 [Gate_O1 , Gate_O2 : Chan_bool ,
2 Start : Block ] i s
3 hide Fin i sh : None in
4 par
5 par Start , F in i sh in
6 Mutex [ Start , F in i sh ]
7 | | par
8 S6_B1 [Gate_O1 , Start , F in i sh ]
9 | | S6_B2 [Gate_O2 , Start , F in i sh ]

10 end par
11 end par
12 | |
13 Ctr l [ Start ]
14 end par
15 end hide
16 end process

1 −− Only the ac t i va t i on of B1
2 −− i s constra ined
3 system S7 (O1, O2: bool )
4 i s
5 block l i s t
6 B1 (?O1) ,
7 B2 (?O2)
8 environment l i s t
9 Ctr l (B1)

10 end system

1 process S7 [Gate_O1 , Gate_O2 : Chan_bool ,
2 Start : Block ] i s
3 hide Fin i sh : None in
4 par
5 par Start , F in i sh in
6 Mutex [ Start , F in i sh ]
7 | | par
8 S7_B1 [Gate_O1 , Start , F in i sh ]
9 | | S7_B2 [Gate_O2 , Start , F in i sh ]

10 end par
11 end par
12 | |
13 Ctr l [ Start ]
14 | | Act ivat ion [ Start ]
15 end par
16 end hide
17 end process
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�

Deadlock freedom A deadlock in a GRL program leads to a deadlock in the corre-
sponding LNT program. Indeed, deadlocks in GRL occur if: (i) the activation of all
blocks is constrained by environments and (ii) no activation signal is reachable. Because
GRL statements (but signals) are the same as in LNT ones, the reachability of a GRL
activation signal implies the reachability of the corresponding LNT gate Start. If no
gate Start is reachable, no process can execute, which causes a deadlock in the LNT
program.

The translation algorithm does not introduce spurious deadlocks. As regards separate
processes, medium and environment (without activation constraints) processes are by
construction deadlock-free, and so are processes Activation and Mutex. In block pro-
cesses, each synchronisation on gate Start is eventually followed by a synchronisation on
gate Finish; all synchronisations in between are value-exchange communications with
medium and environment processes, which always accept to communicate. As regards
deadlocks produced by blocking communication, all communications on gates occurring
in the synchronisation set of root processes and involving several processes are feasible.
Still, the only source of deadlocks is unreachable Start gates in environment processes.
These are equivalent to GRL deadlocks.

5.8 Tool support
Our translation algorithm is implemented in a tool named GRL2LNT, developed mainly
by Éric Léo, a software engineer from 2012 to 2016 in the Convecs project, in which this
thesis has taken place. GRL2LNT is developed by using the Syntax/Traian Lotos NT
technology for compiler construction [GLM02]. It consists of about 30,000 lines of code
and translates GRL specifications into LNT. A second tool named GRL.OPEN has been
developed. GRL.OPEN encapsulates GRL2LNT and calls LNT.OPEN, thus connecting
GRL to the on-the-fly verification tools of CADP.

GRL2LNT and GRL.OPEN are validated on more than 120 GRL specifications, corre-
sponding to about 7,000 lines of GRL, which generates 18,000 lines of LNT. The increase
in the number of generated lines is mainly caused by the translation of GRL constructs
into several LNT constructs. This shows that GRL is closer to the GALS user’s view,
compared to LNT.

A part of the benchmark is dedicated to unit testing of GRL constructs. At least
two examples are written for each GRL syntactic and static semantic rule. The first
example violates the rule to check that GRL2LNT captures the error. The second
example, which is a corrected version of the first one, checks that no error is raised
by GRL2LNT. Another part of the benchmark consists of more elaborated examples
covering different aspects of the language. First, the generated LNT programs are
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analysed manually to check their conformance with the translation algorithm. Then, the
LTSs generated by using CADP, are checked either by visual checking (for small LTSs)
or by interactive simulation and model checking (for large LTSs). Our industrial partner
generates GRL code automatically from their synchronous programming software, and
check the resulting LTSs, which is another validation form for the whole toolchain.
Moreover, for each GRL specification, a set of correct-by-construction properties can be
verified using model checking. Examples are:

– the atomicity of block steps
– the occurrence of inputs before outputs in each step
– the eventual release of the lock after being acquired
– the absence of transitions corresponding to unconnected channels

5.9 LTSs of the translation vs. LTSs of GRL semantics
We address the relationship between the LTSs of GRL semantics (Chapter 4) and the
LTSs of root processes generated by the translation (Section 5.7). We note “LTSGRL”
and “LTSLNT”, respectively, those LTSs.

For a transition µ0
B (ch1 ,...,chm)[ch′1 ,...,ch′n ]
−−−−−−−−−−−−−−−−→ µ1 in LTSGRL, our translation generates the

following LNT transition sequence:

S0 Sm+n+2

Start !B ↓ ↑ Finish

S1
G(ch1 )−−−−→ S2 → ...→ Sm

G(chm)−−−−→ Sm+1
G(ch′

1 )
−−−−→ Sm+2 → ...→ Sm+n

G(ch′
n)

−−−−→Sm+n+1

where G is a label transformation function defined as follows:

G (X1 = e1, . . . , Xp = ep) = Gate_X1 . . ._Xp! e1! ... ! ep
G (_, . . . ,_) = i

The expansion caused by the translation is linear in the number of transitions, owing to
the locking mechanism. In general, consider a GRL system S composed of n blocks B1 ,
. . . , Bn having m1, . . . , mn channels, respectively. We assume that B1 , . . . , Bn have
respectively p1, . . . , pn transitions in LTSGRL. The table below summarises the number
of transitions in LTSGRL and LTSLNT. Note that the number of transitions in LTSGRL
is independent from the number of channels in blocks, contrarily to LTSLNT.

LTS LTSGRL LTSLNT

number of transitions
n∑
i=1

pi
n∑
i=1

(2 +mi × pi)

LTSGRL can be recovered from LTSLNT. Because the transformation from LTSGRL to
LTSLNT is bijective, there is a one-to-one correspondence between GRL transitions and
LNT transition sequences. The labels of LTSGRL transitions could be reconstructed from
those of the corresponding LNT transition sequences in LTSLNT, by using function G−1.
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Then, in each transition sequence in LTSLNT, one transition can be renamed into the
reconstructed label while hiding all other transitions. Finally, by applying a compression
(e.g., τ -compression and τ -confluence) to remove hidden transitions, we obtain LTSGRL.
This algorithm is implemented in GRL.OPEN, by using an option named merge.

5.10 Comparison with related work

We compare our encoding of GALS systems in LNT to the earlier work proposed in
[GT09, Thi11], which also use LNT. Similarly to [GT09, Thi11], we encode synchronous
components in LNT functions, which we encapsulate inside processes. However, our
encoding outperforms [GT09, Thi11] in several aspects:

– Our approach is more general since is it not confined to Mealy machines to de-
scribe synchronous components. Not all compilers of synchronous languages are
able to synthesise Mealy machines, in which case automatic translators should be
developed, as argued by the authors in [GT09, Thi11].

– Our approach is more modular since it allows a wrapper process to define several
reception and emission gates, through which the process could interact with several
processes. In [GT09, Thi11], a wrapper process defines exactly one reception and
exactly one emission gates; this limits the modularity of the approach.

– Our approach leads to smaller LTS since the locking mechanism ensures the atom-
icity of synchronous components. This impacts the size of the corresponding LTS,
as will be explained below.

We consider a GALS system composed of two synchronous components. Each component
i (i ∈ 1..2) is represented by an LNT process with one input gate INi, one output
gate OUTi, and no internal state. Gates are without value-exchange, for conciseness.
In such a system, the only difference between our approach and [GT09, Thi11] is the
locking mechanism. Figure 5.1 gives the LTSLNT of the GALS system and the LTS
(noted LTSGT ) obtained by applying the approach [GT09, Thi11]. It shows that the
locking mechanism removes sequences in which the input reading of some component i is
followed by the input reading of another component j (j 6= i) before the output writing
of component j. In our opinion, such situations are irrelevant for GALS systems; even
in [GT09, Thi11], removing such sequences seems to have no effect on the truth values
of temporal logic formulas.

Furthermore, we increase the number of the concurrent synchonous components in the
GALS system. Table 5.8 shows how the number of transitions in LTSGT grows exponen-
tially with the number of components while the number of transitions in LTSLNT grows
linearly.
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Figure 5.1: LTSs describing LTSGT (left-hand side) and
LTSLNT (right-hand side)

Component number 2 3 4 5 6 10

LTSLNT 7 10 13 16 19 31
LTSGT 12 54 217 811 2917 393,661

Table 5.8: The number of transitions in LTSLNT and LTSGT
depending on the number of components

5.11 Conclusion
In this chapter, we have proposed a translation from GRL to LNT. However, the princi-
ples of our translation would be transferable to other process algebras as well, provided
they allow type definitions, function definitions with multiple output parameters, and
are equipped with an n-ary parallel composition operator enabling data exchange.

Although both GRL and LNT have formal semantics, we have not proven formally the
correctness of the translation. This would be a long task due to the size of GRL, which
is far from being a toy language. Nonetheless, we gave hints to the correction of the
translation. These hints have been complemented by tests using the GRL and CADP
tools.
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Chapter 6

The muGRL Language for GALS
Property Specification

Temporal logics are tailored to capture properties of concurrent systems, but they require
expertise. For example, a property for the car park is: whenever a car leaves, the green
light eventually turns on. Its formulation in MCL would be:

1 [ true∗ . {Gate_OPEN ! true} ]
2 mu X. (<true> true and [ not ({Gate_GREEN_YELLOW_RED ! true ?any ?any}) ] X)

Although the property is simple, its formulation is not easy to read and understand. This
chapter proposes muGRL, a property specification language tailored to capture prop-
erties of GALS systems. muGRL is based on a system of patterns [DAC98, DAC99].
Patterns are high-level and parameterisable properties, aiming at reducing the complex-
ity of using temporal logics. The semantics of muGRL are defined by a translation
into MCL. The chapter is structured as follows. We first provide an overview of mu-
GRL. Then, we present the frequently encountered properties in the scope of concurrent
and GALS systems. In particular, we propose a definition of deadlocks, livelocks, and
instability for GALS systems, as well as some discrete real-time properties.

6.1 Overview of muGRL

The language syntax is presented in Tables 6.1 (page 120) to 6.4 (page 122). The
generic terminal symbols and non-terminal symbols are summarised in the table below.
Action formulas enable action-based properties that involve data values to be specified.
Regular formulas build upon action formulas and enable complex assertions over action
sequences to be specified. Property patterns build upon regular formulas and enable
both LTS states to be specified and LTS branching structure to be explored.
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Symbol Description

Non-terminal symbols

P property pattern
R regular formula
A action formula
O offer formula
E expression

Terminal symbols X action variable
x local variable
T type

Action formulas, regular formulas, and property patterns are interpreted over LTSLNT
(see Section 5.9, page 114), as shown by the flow depicted in Figure 6.1. In particular, the
GRL2LNT tool is enhanced with an option “-relabel” which enables to rename actions
of the form “Start !B” into “B” and actions of the form “Gate_X1. . . _Xp !e1 ! ... !ep”
into “X1 = e1,. . . ,Xp = ep”. Hence, muGRL actions have one of the following forms:

Action Form Meaning

Activation action S S denotes a block name

Data action X1 = e1, ..., Xn = en X1, ..., Xn are variables composing a block actual
channel and e1, ..., en are their respective values

Invisible action i

     GRL 
specification

   GRL.OPEN   
   muGRL 
properties

LTS
LNT

LTS
GRL

  muGRL++ 
properties

interpreted over

interpreted over

translation

Figure 6.1: Interpretation model of muGRL

Remark 6.1. One would expect the property language to be interpreted over LTSGRL,
as depicted by dashed box and arrows in Figure 6.1. We use LTSLNT as interpretation
model for the sake of simplicity. It is cost effective, since one can use directly the
CADP tools and techniques (hiding, minimisation, etc.) without needing to introduce
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additional tools. Of course it is possible to write another property language (muGRL++,
Figure 6.1) with LTSGRL as interpretation model, and define a translation from that
language to muGRL. This is left for future work. �

Example 6.1. Throughout the current chapter, properties will be illustrated mainly
on the car park application (see Section 3.1, page 29). We will consider the following
subset of LTSLNT actions (after renaming), where e0, e1, ... are Boolean values:

– activation actions “Entrance”, “Exit”, “Storey1”, and “Storey2” denote PLC exe-
cution.

– data action “Cmd_P1 = e1, Cmd_P2 = e2” denotes a request of a car, parking in
the first or the second storey, to leave the car park.

– data action “Open_Park = e0” denotes the opening of the entrance gate on a car
request.

– data action “Open = e0” denotes the opening of the exit gate on a car request.
– data actions “Out_P1 = e1” and “Out_P2 = e2” denote the leaving of a car,
parking in the first or the second storey, respectively.

– data action “Green = e1, Yellow = e2, Red = e3” denotes the exterior lights mounted
at the car park entrance.

– data action “S_Out1 = e0” denotes a message sent by the exit PLC to the first
storey PLC indicating whether a car has left.

– data action “R_Out1 = e0” denotes a message sent by the first storey PLC to the
entrance PLC indicating whether a car has left.

�

6.2 Offer formulas
Offer formulas, whose syntax is given in Table 6.1, characterise a couple “X = e” present
on a data action. More precisely, an offer formula allows the value carried by an action
variable to be matched and stored in a variable local to the formula:

– Offer formula “X0 = e0” matches an action variable carrying a value identical to
e0.

– Offer formula “X0 =? x0:T0” matches an action variable carrying any value of type
T0 and stores it in variable x0. We call local the variables used to store the values
of action variables in formulas.

– Offer formula “X0 =? any” matches any value of any type.

Example 6.2. Offer formula “Open = false” matches “Open = false” but does not
match “Open = true”. Offer formula “Open =? any” matches both “Open = false” and
“Open = true”. �
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O ::= X0 = e0 value matching
| X0 =? x0:T0 value extraction
| X0 =? any wildcard

Table 6.1: Syntax of offer formulas

6.3 Action formulas
Action formulas, whose syntax is given in Table 6.2, consist of action predicates combined
using standard Boolean operators. Action predicate {S}, where S is a string denoting
a component name1, matches the activation action S. Action predicate {O1 , . . . , On
[where E]} matches the data action “X1 = e1, ..., Xn = en” if: (i) each offer Oi matches
Xi = ei, and (ii) the Boolean expression E, possibly using local variables occurring in
O1 , . . . , On , evaluates to true.

For action predicates with value extraction, local variables can be exported outside
the action predicates. Hence, they can be used in the surrounding formula. This is a
generality of the action formulas first proposed in ACTL [DFGR93] in a dataless context.

A ::= {S} activation action
| {O1 , . . . ,On [where E]} data action
| i invisible action
| false unexisting action
| true every action
| (A) parenthesised action
| not A negation
| A1 or A2 disjunction
| A1 and A2 conjunction

Table 6.2: Syntax of action formulas

Example 6.3. In the car park application, the action formula {Exit} matches
the activation action Exit. The action formula {Cmd_P1 = true, Cmd_P2 =? any}
matches the data actions “Cmd_P1 = true, Cmd_P2 = true” and “Cmd_P1 = true,
Cmd_P2 = false” but does not match the data action “Cmd_P1 = false, Cmd_P2 =
true”. �

6.4 Regular formulas
Regular formulas, whose syntax is given in Table 6.3, characterise regular execution
sequences. A regular formula is built from action formulas using standard regular ex-
pression operators. In particular, action predicates with value extraction and matching

1In muGRL, the term component is used to denote a synchronous component.
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enable to specify the propagation of values on execution sequences in the LTS.

R ::= A one-step sequence
| NIL empty sequence
| (R) parenthesised formula
| R1 . R2 concatenation
| R1 | R2 choice
| R∗ iteration 0 or more times
| R+ iteration 1 or more times
| R {m} iteration m times
| R {m...n} iteration m to n times

Table 6.3: Syntax of regular formulas

Example 6.4. In the car park application, the following regular formula specifies a
step of block Exit in which a request for leaving is detected.

{Exit} . ({Cmd_P1 = true, Cmd_P2 = false} or {Cmd_P1 = false, Cmd_P2 = true}) .
true . {Out_P1 =? out1:bool} . {Out_P2 =? out2:bool where out1<>out2}

The regular formula matches the following action sequence:
s0

Exit−−−→ s1
Cmd_P1=true, Cmd_P2=false−−−−−−−−−−−−−−−−−−−−−→ s2

Open=true−−−−−−−→ s3
Out_P1=true−−−−−−−−−→ s4

Out_P2=false−−−−−−−−−−→ s5

�

6.5 General property patterns
We consider the classification, first suggested by Lamport [Lam77], partitioning proper-
ties into safety and liveness ones. A safety property asserts that something (bad) will
not happen. A liveness property asserts that something (good) must happen. Addition-
ally, we consider the class of fairness properties. Fairness is concerned with resolving
nondeterminism and is often required to ensure liveness. For each of those classes, we
present the frequently encountered patterns in the literature. A final section presents a
translation of the presented patterns into MCL.

6.5.1 Patterns for safety properties

To express a safety property in the action-based setting, we proceed as follows. First,
the undesirable execution sequences are characterised in terms of regular formulas R.
Then, the occurrences of R in the LTS are forbidden by using the following pattern:

Never (R)
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P ::= true
| false
| not P
| P1 or P2

| P1 and P2

| P1 implies P2

| Never (R)
| Not_To_Unless (A1 , A2 , A3 )
| Some (R)
| Always_Some (R)
| After_Some (R1 , R2 )
| Some_Never (R1 , R2 )
| After_Inev (R1 , R2 )
| Looping (R)
| Saturation (R)
| After_Looping (R1 , R2 )
| Some_Looping (R1 , R2 )
| After_Saturation (R1 , R2 )
| Some_Saturation (R1 , R2 )
| Deadlock (S)
| Alive (S)
| Some_Alive (S)
| All_Alive (S)
| Deadlock (S)
| Progress (S)
| Idle (X)

| Some_Idle (X)

| All_Idle (X)
| Idle (S)
| Idle (S)
| Progress (X)

| Some_Progress (X)

| All_Progress (X)
| Progress (S)
| Progress (S)
| Starvation_Freedom (S)
| Starvation_Freedom (S, S′)
| Starvation_Freedom (S, S′)
| Out_Consistent (X, Y )

| Some_Consistent (X, Y )

| All_Consistent (X, Y )

| All_Consistent (X, Y )

| Stability (X, Y )

| Stability (X, Y )
| Deadline (R, A1, A2, n)
| Sustain (R, A1, A2, n)
| From_To_Least (A1, A2, A3, m)
| From_To_Most (A1, A2, A3, m)

Table 6.4: Syntax of property patterns
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Example 6.5. The informal specification of the car park application (Section 3.1,
page 29) states that: once a car asks for leaving the car park, an exit request is detected
by the exit PLC, which opens the gate immediately. An undesirable execution sequence
is then an exit request that is not followed by the gate opening. Such a situation is
captured and forbidden by the safety property:

Never

 true∗ .
{Cmd_P1 =? cmd1:bool, Cmd_P2 =? cmd2:bool where cmd1<>cmd2} .
{Open = false}


�

Further safety patterns can be obtained by specialising the regular formula R in pattern
Never. In practice, a frequently encountered pattern forbids the execution of an action
A2 after an action A1 without the occurrence of an action A3 in between:

Not_To_Unless (A1,A2,A3) = Never (true∗ . A1 . (not A3 )∗ . A2)

Example 6.6. In the car park application, a valid safety property is: the exit gate
cannot open unless an exit request is detected. Such a situation is captured and forbidden
by the safety property:

Not_To_Unless

 {Open = false},
{Open = true},
{Cmd_P1 =? cmd1:bool, Cmd_P2 =? cmd2:bool where cmd1<>cmd2}


�

To conclude that a safety property is violated on an LTS, it suffices to have one (fi-
nite) execution sequence forbidden by the property but occurring in the LTS. For in-
stance, the following execution sequence violates the property specified in Example 6.6:

s0
...−→ s1

Open=false−−−−−−−→ s2
...−→ s3

...−→ s4
Cmd_P1=false, Cmd_P2=false−−−−−−−−−−−−−−−−−−−−−→ s1

Open=true−−−−−−−→

Note however that even though a safety property holds on an LTS, there is no proof about
the existence of the actions referenced in the property. Property Never ({Open = false})
holds on an LTS containing no action Open. This is called the vacuity problem. In
addition to a safety property holding on an LTS, one must check the existence of all
actions referenced in the formula. This is possible using pattern Some (see Section 6.5.2).

6.5.2 Patterns for liveness properties

A system can fulfill all safety properties by forever doing nothing as this will never entail
undesirable situations. In the car park application, it suffices that no car enters the car
park to make the properties specified in Examples 6.5 and 6.6 hold on the corresponding
LTS. Such behaviour is usually useless for a system. For this reason, safety properties
need to be complemented by liveness properties, which express progress.
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Reachability properties

A typical instantiation of progress properties is the reachability of an execution sequence.
In terms of LTSs, such a property asserts that from the initial state, there is some
outgoing execution sequence that satisfies a regular formula R. This is denoted by the
following pattern:

Some (R)
A stronger progress pattern is the universal reachability, i.e., reachability on all execution
sequences. It asserts that it is always possible for an action to be eventually reached.
In terms of LTSs, such a property asserts that from each state, there is some outgoing
execution sequence that satisfies a regular formula R. This is denoted by the following
pattern:

Always_Some (R)

Example 6.7. The informal specification of the car park application (Section 3.1,
page 29) states that: if there still are unoccupied parking spots, ... a green light is
maintained on; otherwise, a red light is turned on. Some reachability properties are the
following:

Property Formalisation

The red light may be on Some (true∗ . {Green =? any, Yellow =? any, Red = true})

The green light may Always_Some ({Green = true, Yellow =? any, Red =? any})
always turn on

�

Response properties

Other frequent instantiations of liveness properties are the so-called response properties.
They assert that whenever certain actions occur (request), they must be followed by
other actions in the future (response). Depending on the way the response is requested
to occur in the LTS, two typical response patterns can be distinguished: potentiality and
inevitability.

Potentiality The potentiality response pattern expresses the occurrence of the re-
sponse on some execution sequence. It specifies that every execution sequence satisfying
a regular formula R1 is potentially followed by another execution sequence satisfying a
regular formula R2. This is denoted by the following pattern:

After_Some (R1, R2)
Such a property is satisfied by a state of the LTS if: each of its outgoing execution
sequences satisfying R1 leads to another state, from which there is some outgoing ex-
ecution sequence satisfying R2. A typical particular case of this pattern specifies that
every action A is potentially followed by an action B. This is denoted by the following
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pattern:
After_Some (true∗ . A, true∗ . B)

If this property is valid on an LTS, it means that from every state following an action A,
there is at least one outgoing execution sequence leading to an action B. The pattern
After_Some (A, B) is the action-based counterpart of the fair inevitability operator
proposed in [QS83] in the state-based setting.

The dual pattern of After_Some specifies that there is an execution sequence satisfying
R1, that leads to a state, from which the outgoing execution sequences satisfying R2 are
forbidden. This is denoted by the following pattern:

Some_Never (R1, R2) = not After_Some (R1, R2)

Inevitability The inevitability response pattern expresses the occurrence of the re-
sponse on all execution sequences. It specifies that every execution sequence satisfying
the regular formula R1 is eventually followed by another execution sequence satisfying
the regular formula R2. This is denoted by the following pattern:

After_Inev (R1, R2)
Similarly, a useful specialisation of this pattern specifies that every action A is eventually
followed by an action B:

After_Inev (true∗ . A, true∗ . B)
If this property is valid on the LTS, it means that from every occurrence of action A,
all execution sequences contains an action B.

Example 6.8. For the car park application, we specify the properties summarised in
the table below. The last one is extracted from the informal specification (Section 3.1,
page 29) stating that: once the car leaves, the exit PLC informs the storey PLC refer-
enced in the car ticket, which in turn informs the entrance PLC.

Property Formalisation

If the car park is full, a park-
ing car eventually leaves

After_Some
(

true∗ . {Green =? any,Yellow =? any,Red = true},
{Open = true}

)

The car park may never be
full

Some_Never
(

true∗,
true∗ . {Green =? any,Yellow =? any,Red = true}

)

A message sent by the exit
PLC on a car leaving must
be transmitted to the en-
trance PLC

After_Inev
(

true∗ . {S_Out1 = true},
true∗ . {R_Out1 = true}

)

�

To conclude that a liveness property is violated on an LTS, all (infinite) execution
sequences should be visited to check that the execution sequence required by the property
is absent in the LTS. Nonetheless, response properties exhibit no guarantee about the
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existence of requests. Accordingly, they are not violated by infinite execution sequences
in which only responses occur but never requests (or finitely many requests).

Remark 6.2. The stronger response pattern After_Inev (true∗ . A, true∗ . B) may
not hold on an LTS, unexpectedly, if there are cycles after an occurrence of A and before
the subsequent occurrence of B. If these cycles correspond to unrealistic executions of
the system, one may check the first version After_Some (true∗ . A, true∗ . B) of the
response pattern. If the property holds, a scheduler (i.e., activation strategy) can be
implemented, to avoid the unrealistic execution cycles. �

6.5.3 Patterns for fairness properties

Fairness assumptions capture infinite behaviors that are considered unrealistic. In the
car park application, a possible unfair scenario is the following: once a car leaves the car
park, the entrance PLC waits infinitely long without receiving the information from the
exit PLC (via a storey PLC). The availability of the car park is then never updated.

In the action-based setting, fairness can be specified by characterising the LTS cycles
denoting infinite unfair execution sequences. The following property pattern specifies
the existence of an infinite execution sequence satisfying the regular formula R:

Looping (R)
This is the action-based counterpart of the LTL property GFp expressing that a state
property p occurs infinitely often [CGP00]. A useful particular case of the Looping
pattern specifies the existence of an execution sequence on which an action A occurs
infinitely often:

Looping ((not A)∗ . A)

Example 6.9. For the car park application, we can specify that each PLC is executed
infinitely often.

Looping ({Entrance}) Looping ({Storey1 })
Looping ({Exit}) Looping ({Storey2 })

�

The dual pattern of Looping specifies that an execution sequence R can be repeated only
a finite number of times:

Saturation (R) = not Looping (R)
This is the action-based counterpart of the LTL property FGp expressing the invariance
of a state property p [CGP00]. As above, a useful particular case of the Saturation
pattern specifies that all execution sequences may contain only a finite number of oc-
currences of actions different from A.

Saturation (true∗ . not A)
Looping and saturation patterns can be combined with the response patterns to accomo-
date the presence or absence of certain infinite sequences after other execution sequences
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have occurred:
After_Looping (R1, R2) After_Saturation (R1, R2)

The dual patterns are respectively:
Some_Saturation (R1, R2) Some_Looping (R1, R2)

Fairness verification is of particular interest for nondeterministic systems by detecting
whether a possible choice is consistently ignored. Asynchronous concurrent systems,
among which GALS systems, are particularly concerned as concurrency is often modelled
by interleaving behaviours. Further explanation on this concern will follow in the specific
case of GALS systems.

6.5.4 Translation into MCL

The semantics of muGRL are defined by translation into MCL. Each muGRL expression
has a one-to-one straightforward correspondence with its counterpart in MCL. We call
e2mcl the translation function of muGRL expressions. Regular formula has a one-to-
one straightforward correspondence with its counterpart in MCL. We call r2mcl the
translation function from muGRL regular expressions to their MCL counterparts.

The translation of offer formulas is given when translating action formulas. We need the
following intermediate functions:

var (X0 = e0) = X0
var (X0 =? x0:T0) = X0
var (X0 =? any) = X0

val (X0 = e0) = !e0
val (X0 =? x0:T0) = ?x0:T0
val (X0 =? any) = ?any

The translation of action formulas is summarised in Table 6.5.

Action formula A Translation into MCL a2mcl (A)

{S} {Start! S}
{O1, . . . ,On where E} {Gate_var(O1)_ . . ._var(On) !val(O1) . . . !val(On) where e2mcl(E)}
i i
false false
true true
(A) (a2mcl (A))
not A not a2mcl (A)
A1 or A2 a2mcl (A1) or a2mcl (A2)
A1 and A2 a2mcl (A1) and a2mcl (A2)

Table 6.5: Translation of action formulas

Safety property patterns. The translation of safety patterns, using function p2mcl,
is summarised in Table 6.6. Safety patterns can be naturally expressed using necessity
modalities containing regular formulas.
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Pattern P Translation into MCL p2mcl (P)

Never (R) [ r2mcl (R) ] false
Not_To_Unless (A1, A2, A3) [ r2mcl (true∗ . A1 . (not A3)* . A2) ] false

Table 6.6: Translation of safety patterns

Liveness property patterns. The translation of liveness properties, using function
p2mcl, is summarised in Table 6.7. Potentiality pattern Some can be directly expressed
using possibility modalities containing regular formulas. Potentiality response pat-
tern After_Some can be expressed by combining necessity and possibility modalities
operators. The Some_Never pattern is the dual of the After_Some one. The Al-
ways_Some pattern can be expressed by specialising the After_Some pattern with a
first argument matching all sequences. Finally, the inevitability response pattern can be
expressed by combining necessity and possibility modalities together with a fixed point
operator. More precisely, the MCL formula states that all execution sequences contain-
ing subsequences satisfying R must lead to states from which action A is reachable.
The inevitable reachability of action A is ensured by the minimal fixed point operator
binding variable X.

Pattern P Translation into MCL p2mcl (P)

Some (R) < r2mcl (R) > true
After_Some (R1, R2) [ r2mcl (R1) ]< r2mcl (R2) > true
Some_Never (R1, R2) < r2mcl (R1) >[ r2mcl (R2) ] false
Always_Some (R) [ true∗ ]< r2mcl (R) > true
After_Inev (R, A) [ r2mcl (R) ] mu X . (< true > true and [ not a2mcl(A) ] X)

Table 6.7: Translation of liveness patterns

Remark 6.3. Concerning inevitability patterns, we restrict the translation to the par-
ticular case After_Inev (R, A). The translation of the general case After_Inev (R1, R2)
into MCL is quite tedious, for the time being. �

Fairness property patterns. The translation of fairness properties, using function
p2mcl, is summarised in Table 6.8. Fairness patterns are translated by using the infinite
looping and finite saturation operators.

6.6 Deadlock, livelock, and instability
This section proposes a set of GALS-specific property patterns. The proposed patterns
exploit the behaviour of GALS systems along two axis: activation strategies (activation
patterns) and data handling (data patterns).
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Pattern P Translation into MCL p2mcl (P)

Looping (R) < r2mcl (R) > @
Saturation (R) [ r2mcl (R) ] -|
After_Looping (R1, R2) [ r2mcl (R1) ] < r2mcl (R2) > @
After_Saturation (R1, R2) [ r2mcl (R1) ] [ r2mcl (R2) ] -|
Some_Looping (R1, R2) < r2mcl (R1) > < r2mcl (R2) > @
Some_Saturation (R1, R2) < r2mcl (R1) > [ r2mcl (R2) ] -|

Table 6.8: Translation of fairness patterns

Activation patterns characterise activation actions corresponding to one (S) or several
(S1, ..., Sn) components. We write S as shorthand for the list 〈S1, ..., Sn〉.

Data patterns characterise one or several data actions corresponding to one or several
components. For a data action “X1 = e1, ..., Xn = en”, we write X as shorthand for
the list of its action variables 〈X1, ..., Xn〉. For several data actions, we write X as
shorthand for the list 〈X1, ..., Xn〉.

Sometimes, we will need to specify to which component a data action corresponds. To
this aim, we write X ∈ S, where S is a component name2. To denote all data actions of
component S, we write X ∼ S3.

We extend value matching and value extraction for a set of action variables as follows:

Symbol Meaning

X=e X1 =e1,...,Xn =en
X=?x:T X1 =?x1:T1,...,Xn =?xn:Tn
X 6= e X1 =?x1:T1,...,Xn =?xn:Tn where x1<>e1 or ... or xn<>en

X=? any X1 =?any,...,Xn =?any

The interpretation of patterns will be mostly given in muGRL, i.e., by specialising the
previously presented patterns. Sometimes, it will be given directly in MCL, when the
expression in muGRL is impossible (due to expressiveness limitation) or for more efficient
interpretation.

6.6.1 Deadlock

Since GALS components execute continuously, termination, called deadlock, is highly
undesirable and mostly symptomatic of design errors. An exception is the case in which
termination is deliberately modelled, e.g., to denote the end of finite scenarios or com-
ponent failure. We distinguish two cases of deadlock. Activation deadlock is concerned
with system halt. Data deadlock is concerned with computation termination.

2In terms of LTSLNT, this means that action S is the last activation action preceding the data action
“X1 = e1, ..., Xn = en”, where X = 〈X1, ..., Xn〉.

3In terms of LTSLNT, this means that X corresponds to all data actions following the activation
action S before the next occurrence of another activation action.
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Activation deadlock (system halt)

Activation patterns may involve either one or several components or the whole system,
i.e., all system components. Their interpretation is summarised in Table 6.9.

Pattern Interpretation

Deadlock (S) Some_Never (true∗, true∗ . {S})

Alive (S) Always_Some (true∗ . {S})

Some_Alive (S) [true∗]
∨
S∈S

(<true∗ . {S}> true)

All_Alive (S) [true∗]
∧
S∈S

(<true∗ . {S}> true)

Deadlock (S) <true∗>
∨
S∈S

([true∗ . {S}] false)

Progress (S) [true∗]
∨
S∈S

(<true∗ . {S}> true)

Table 6.9: Interpretation of activation deadlock patterns

Component halt and aliveness It is desirable to ensure that GALS components do
not halt. In terms of LTSs, a component S comes to a halt if there is a state from which
no action S can be reachable. This is detected by the following property pattern:

Deadlock (S)

The dual pattern of Deadlock expresses the continuity in component execution. A com-
ponent S is said alive if it executes continuously. In terms of LTSs, from each state,
there should be some execution sequence that leads to some action S. This is detected
by the following property pattern:

Alive (S)

Example 6.10. Consider a GRL system composed of two blocks B1 and B2, whose
activation strategy is described by the LTS below. The evaluation results of patterns
Deadlock and Alive on both blocks are summarised in the table below.

0

2

1

B1

B1

B2

B2
Deadlock Alive

B1 true false
B2 false true

�
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Component aliveness can be generalised to encompass a set of components S as follows:
Some_Alive (S) All_Alive (S)

Pattern Some_Alive asserts that some components in S are alive. In terms of LTSs, it
evaluates to false if there is a state from which, no component in S is alive. Pattern
All_Alive asserts that all components in S are alive. In terms of LTSs, it evaluates to
false if there is a state from which, at least one component in S comes to a halt.

Remark 6.4. Patterns Some_Alive and All_Alive could have been interpreted in
terms of pattern Alive as follows:

Some_Alive (S) =
∨
S∈S

Alive (S) All_Alive (S) =
∧
S∈S

Alive (S)

This interpretation is less efficient than, while being semantically equivalent to, the
one we chose, since it leads to MCL formulas with more operators4. Each kleene-star
operator denotes an implicit fix point operator as it requires to visit all the LTS states
in the worst case. �

A particularly interesting application of patterns Some_Alive and All_Alive concerns re-
dundant systems, in which the same program is executed by several components. This
way, the reliability of the application is increased by providing it with fault tolerance.
The system is considered operational whenever at least one among redundant compo-
nents is working properly. If all redundant components fail, the entire system fails as
well.

Example 6.11. We enhance the car park application by adding redundancy. The
entrance gate is henceforth managed by two redundant PLCs, named Entrance1 and
Entrance2. The exit gate is also managed by two redundant PLCs, named Exit1 and
Exit2. Basically, the system function is ensured by primary PLCs Entrance1 and Exit1,
secondary PLCs Entrance2 and Exit2 being not working. Such a redundancy is called
cold. Once one of the primary PLCs fails, primary PLCs are both stopped and secondary
ones started, instead. The following properties can be specified:

Property Formalisation

There is always some entrance and Some_Alive (Entrance1, Entrance2)
some exit PLC working properly and Some_Alive (Exit1, Exit2)

The car park is always operational All_Alive (Entrance1, Exit1)
or All_Alive ( Entrance2, Exit2)

�

4The complexity of model checking increases with the size of the formula, i.e., the number of logic
operators. Thus, it is desirable to verify formulas as small as possible to enhance the efficiency of model
checking.
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System deadlock and progress A GALS system comes to a halt when all its compo-
nents do so. However, in a non-terminating GALS system, no conclusion can be derived
about whether (or not) it contains halted components. Since (synchronous) components
do not interlock the execution of each other, the halting of a component does not entail
other components to halt.

Assume the GALS system under study consists of a set of components, denoted S.
Termination of the entire system is expressed by the following pattern:

Deadlock (S)
In terms of LTSs, the pattern evaluates to true if there is a state from which all actions in
S are unreachable. Hence, the LTS contains necessarily sink states, i.e., states without
outgoing transitions. This coincides with the definition of deadlock in asynchronous
concurrent systems, in which global deadlocks are terminal states from which no more
action is possible.

The dual pattern of Deadlock expresses that always some component is executing. In
terms of LTSs, it suffices to ensure that from each state, some action in S is reachable.
This is done by following pattern:

Progress (S)

Example 6.12. Consider a GRL system composed of two blocks B1 and B2, whose
activation strategy is described by the LTS below. Property Deadlock (B1 , B2 ) evalu-
ates to true while property Progress (B1 , B2 ) does not. The same verification results
are transferable to the LTS corresponding to the whole GRL system (i.e., including data
actions).

0

2

1

B1

B2

B1

B2

�

Data deadlock (idleness)

Data patterns may involve one or several data actions of one or several components.
Their interpretation is summarised in Table 6.10.

A component step can be idle, i.e., inputs and outputs5 carry the same values as in the
5The term input (resp. output) denotes a data action of a synchronous component corresponding

to inputs received (resp. outputs sent) from (resp. to) either the environment or other synchronous
components through the network.
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Pattern Interpretation

Idle (X) Never (true∗ . {X=?x} . true∗ . {X 6= x} )

Some_Idle (X)
∨
X∈X

Idle (X)

All_Idle (X)
∧
X∈X

Idle (X)

Idle (S) All_Idle (X) where X ∼ S

Idle (S)
∧
S∈S

Idle (S)

Progress (X) Always_Some (true∗ . {X=?x} . true∗ . {X 6= x})

Some_Progress (X)
∨
X∈X

Progress (X)

All_Progress (X)
∧
X∈X

Progress (X)

Progress (S) Some_Progress (X) where X ∼ S

Progress (S)
∨
S∈S

Progress (S)

Table 6.10: Interpretation of idleness and progress patterns

previous step. Performing indefinitely idle steps is useless for the system progress. In the
car park application, the idleness of the entrance PLC makes the car park inaccessible.

Action and component idleness A data action is said idle if there is a state from
which its variables, denoted X, carry indefinitely the same values. The following pattern
forbids the presence of execution sequences in an LTS, in which action variables X carry
different sets of data values:

Idle (X)

Property Idle can be extended to encompass a set of data actions, whose variables are
denoted X. Property Some_Idle (resp. All_Idle) holds on an LTS if one or several (resp.
all) actions are active.

Some_Idle (X) All_Idle (X)

A component S is said idle if it reaches a state from which all its inputs and outputs
are idle. Component idleness is a specialisation of property All_Idle applied to all input
and output actions of the component. This is detected by the following property:

Idle (S)

Example 6.13. In the car park example, the idleness of the exit PLC, written Idle
(Exit), is equivalent to the following property:
Idle (Cmd_P1, Cmd_P2) and Idle (Open) and Idle (Out_P1) and Idle (Out_P2)
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�

Remark 6.5. There may be situations in which property Idle (S) does not hold for
a component S whereas the component is functionally idle. For illustration, consider
the GRL block B below, where u represents the edges of a clock signal. The table in
the right-hand side shows the values of parameters u, x, and y during the first six steps.
Beyond the sixth step, x and y carry indefinitely the same values.

1 block B ( in u : bool ,
2 in x : nat ,
3 out y : nat )
4 i s
5 i f u then y := x
6 else y := 0
7 end i f
8 end block

u false true false true false true
x 1 1 0 0 0 0

y 0 1 0 0 0 0

The behaviour of the block is idle after its second step, even though u continues to carry
different values. The evaluation of idleness properties on the actions corresponding to
block B are given in the table below.

Property Evaluation

Idle (u) false
Idle (x) true
Idle (y) true

Property Evaluation

Some_Idle (u, x, y) true
All_Idle (x, y) true
Idle (B) false

Idleness is captured by property All_Idle (x, y) but not by Idle (B), which is equal
to All_Idle (u, x, y). In general, to capture the idleness of synchronous components,
it is more adequate to apply the pattern All_Idle to a well-chosen subset of inputs and
outputs. In particular, only functional inputs, whose values are used to compute outputs,
should be considered. �

System idleness A GALS system is said idle if there is a state from which all its
synchronous components are idle. In such case, no progress is made anymore by none
of the components. For a GALS system composed of a set of components, denoted S,
the idleness of the system is detected by the following pattern:

Idle (S)

Action, component, and system progress Instead of checking idleness, one might
want to check that an action, a component, or a system makes progress. A data action is
said to progress if its variables continue forever to carry different values. The following
pattern indicates that it is always possible for an action to progress.

Progress (X)
We extend pattern Progress to encompass a set of actions, a component, and a set of
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components, similarly to idleness properties. For a set of actions (resp. components), the
patterns Some_Progress and All_Progress assert the progress of some or all actions inde-
pendently from each other. A GALS system is said to progress if some of its components
progress as well.

Some_Progress (X)
Progress (S)

All_Progress (X)
Progress (S)

6.6.2 Livelock

Informally speaking, a system is said to livelock (or diverge) if it continues to execute
without doing the tasks for which it was designed. The presence of livelock may invali-
date some verification results and is often due to a bug in the modelling. The absence
of livelock ensures not only that the system execution is continuous but also that the
execution is meaningful.

Several yet nonequivalent notions of livelock properties have been defined in the literature
of concurrent systems. In process algebra, livelocks arise mainly from the use of the
hiding operator. A livelock occurs if a process reaches a state from which it may execute
indefinitely an infinite sequence of consecutive hidden actions, which cannot be observed
from the process outside. Following this definition, livelock can be expressed by the
following pattern:

LIVELOCK = Some_Looping(true∗, i)

In GRL models, the above described livelock occurs only if all the input and output
actions of one or several blocks are hidden. In such case, livelock can be checked by a
static analysis of the GRL specification. This analysis is very fast as it bypasses the
generation of the LTS and its exploration by model checking. If we were to generate the
LTS, livelock analysis would be carried out in time linear in the size of the LTS, which
may however be exponential (or worse) in the code size of the GRL system.

Example 6.14. Consider the GRL system defined below. Its corresponding LTS
contains a livelock (i-loop in state 0). In the general case, static livelock checking is
an over-approximation, i.e., it may assert the presence of livelocks whereas the actual
system is livelock-free.
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1 system Main (X1, Y1: bool ) i s
2 var X2, Y2: bool
3 block l i s t
4 B (X1, ?Y1) ,
5 B (X2, ?Y2)
6 end system
7
8 block B ( in X: bool , out Y: bool ) i s
9 Y := X

10 end block

0

1

2

3

X1 = FALSE

i

X1 = TRUE

i

Y1 = FALSE

Y1 = TRUE

�

Another definition of livelock is the state-based view consisting in preventing a process
from performing some particular actions [LcW06]. These actions, called progress actions,
are generally intended to make the system progress, e.g., deliver outputs or respond to
the environment and other components. In terms of LTSs, such a livelock specifies a
state from which only non-progress actions are executed indefinitely. That is to say, all
progress actions are repeated only a finite number of times. Let A be the set of progress
actions. Such a livelock is expressed by the following pattern:

LIVELOCK (A) = not Looping (not (
∨
A∈A

A)∗ .
∨
A∈A

A)

Example 6.15. The car park progresses by checking that there are continuously entry
and exit traffic flows. The progress actions can be output Open_Park of the entrance
PLC, indicating a car entry; and output Open of the exit PLC, indicating a car leaving.

LIVELOCK ({Open_Park = true}, {Open = true})

�

In addition to this general definition, we propose two specific cases for GALS systems.
Activation livelock considers as progress actions the activation of components. Data
livelock considers as progress actions the output actions of components.

Activation livelock (starvation)

Modelling concurrency by interleaving may introduce unfair strategies. An example is a
component that is consistently ignored, thus never makes progress. Such a situation is
called starvation. The interpretation of starvation patterns is summarised in Table 6.11.

Example 6.16. Consider the activation policies of blocks Storey1 and Storey2, de-
picted in Figure 6.2. The left-hand LTS (noted LTSDefault) represents the default acti-
vation policy, i.e., without activation constraints. The right-hand LTS (noted LTSQuasi)
represents blocks evolving at the same pace (Example 3.12, page 47). In LTSDefault,
while each action can be selected infinitely often, the system can always choose only

136



6.6. Deadlock, livelock, and instability

action STOREY1 or only action STOREY2. To remove such unfair strategies in GRL
models, activation strategies should be implemented, as in LTSQuasi.

0STOREY1 STOREY2 0

STOREY1

1 2

STOREY1

STOREY2 STOREY2

Figure 6.2: LTSs describing activation policies of Storey1 and Storey2

�

We define the individual starvation of a component S by the execution of S only a finite
number of times. Thus, unfair execution sequences are infinite sequences in which action
S is continuously ignored. Thus, unfair situations are states from which actions S are
continuously ignored. The absence of such situations is ensured by the following pattern:

Starvation_Freedom (S)

Example 6.17. Consider the LTSs given in Figure 6.2. The individual starvation
freedom property is satisfied by LTSQuasi but not LTSDefault. For LTSDefault, a coun-
terexample is depicted in Figure 6.3. It indicates that the system can perform an action
STOREY1 after which it performs indefinitely only action STOREY2 (state 1). The
storey PLC of the first floor is thus in starvation situation. Similarly, the storey PLC of
the second floor is in starvation situation in state 2 of the LTS. �

0

STOREY1 STOREY2

1

STOREY2

STOREY1

2

STOREY1

STOREY2

Figure 6.3: Individual starvation of storey PLCs

In addition to individual starvation, we define the starvation of a component w.r.t.
another component. This states that a component S′ is not indefinitely privileged over
another component S. In terms of LTSs, this can be expressed by the absence of an
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infinite execution sequence in which only action S′ is encountered but never action S.
The starvation of S′ w.r.t to S is expressed by the following pattern:

Starvation_Freedom (S, S′)
This pattern can be extended to encompass sets of components S and S′, as follows:

Starvation_Freedom (S, S′)

Example 6.18. In the car park application, the starvation of the exit PLC entails
that a car, once inside the car park, can never leave. �

Pattern Interpretation

Starvation_Freedom (S) Saturation (true∗. not {S})

Starvation_Freedom (S, S′) Saturation ((not {S})∗ . {S′})

Starvation_Freedom (S, S′) Saturation ((not
∨
S∈S

{S})∗ .
∨

S′∈S′

{S′})

Table 6.11: Interpretation of starvation patterns

Data livelock (non progress)

We call a data livelock of a component a state from which all output actions are idle.
Such a situation is highly undesirable since the system does not progress anymore. There
are two possible situations:

– Input idleness has caused output idleness. This situation is equivalent to compo-
nent idleness, introduced in Section 6.6.1.

– Inputs are not idle. This is (generally) symptomatic to a modelling error, as
illustrated in Example 6.19.

Example 6.19. Consider the GRL block below. Condition pre_c > 0 is never
satisfied, which pushes the block in a data livelock situation.
1 block I n cons i s t en t ( in a , b : nat , out c : nat ) i s
2 s tat i c var pre_c : nat := 0
3 i f ( pre_c > 0) then
4 c := b − a ; pre_c := c
5 else
6 c := pre_c
7 end i f
8 end block

�

We define consistency properties asserting that if one or several input actions continue
to progress, the same must hold for one or several output actions. The interpretation of
consistency patterns is summarised in Table 6.12.
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Pattern Interpretation

Out_Consistent (X, Y ) After_Saturation ({Y =?y}, Check_X_Y)
where Check_X_Y is a regular expression defined as follows:
Check_X_Y = (not {X =?any} ∨ not {Y =?any})∗ . {X=?x} .

(not {X =?any} ∨ not {Y =?any})∗ . {Y = y} .
(not {X =?any} ∨ not {Y =?any})∗ . {X 6= x} .
(not {X =?any} ∨ not {Y =?any})∗ . {Y = y}

Some_Consistent (X, Y )
∨
X∈X

Out_Consistent (X, Y )

All_Consistent (X, Y )
∧
X∈X

Out_Consistent (X, Y )

All_Consistent (X, Y )
∧
Y ∈Y

All_Consistent (X, Y )

Table 6.12: Interpretation of consistency patterns

The consistency of an output action, whose variables are denoted Y , w.r.t an input
action, whose variables are denoted X, is captured by the property pattern below. The
property pattern ensures the absence of infinite execution sequences in which the input
action progresses while the output action does not.

Out_Consistent (X,Y )

Example 6.20. Consider the block defined in Example 6.19. The consistency of
output c w.r.t. inputs a and b is specified as follows:

Out_Consistent (〈a, b〉,c)
The property is evaluated to false on the LTS corresponding to block Inconsistent. �

Output consistency can be extended to encompass a set of input actions, whose variables
are denoted X. The following Some_Consistent (resp. All_Consistent) pattern asserts
that if some (resp. all) input actions continue to progress, the same holds for the output
action:

Some_Consistent (X, Y ) All_Consistent (X, Y )

A set of output actions Y is consistent if the same holds for all the output actions.
All_Consistent (X, Y )

6.6.3 Instability

Another case of undesirable situations in synchronous components is instability. In
a stable component, if there is a state from which the inputs remain idle, both the
outputs and the internal state should stabilise in the future, i.e., become idle. Not
only the progress of an unstable component is meaningless but also it is neither visible
nor controllable by the environment. In [Cas00], Caspi identifies stability as one of the
robustness properties to guarantee a correct distribution of synchronous components.
The interpretation of stability property patterns is summarised in Table 6.13.
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Pattern Interpretation

Stability (X, Y ) (
∧
X∈X

Never (true∗ . {X = x} . true∗ . {X 6= x})) implies

Saturation (true∗ . {Y = y} . true∗ . {Y 6= y})

Stability (X, Y ) (
∧
X∈X

Never (true∗ . {X = x} . true∗ . {X 6= x})) implies∧
Y ∈Y

Saturation (true∗ . {Y = y} . true∗ . {Y 6= y})

Table 6.13: Interpretation of stability patterns

Example 6.21. Consider the GRL block Unstable below. Assume input u starts
changing and there exists a state from which it remains true forever. Even though u

remains unchanged, the output x indefinitely oscillates between values true and false.
Instability is illustrated by the cycle of states {1, 2, 6, 5} in the LTS below, corresponding
to block unstable.

1 block Unstable
2 ( in u : bool ,
3 out x : bool )
4 i s
5 s tat i c var pre_x := true
6 x := u and not pre_x ;
7 pre_x := x
8 end block

8

40 5

1

6

2

7

3

X=FALSE

U=FALSE
U=FALSE

U=TRUE

X=FALSE

X=TRUE

U=TRUE
U=TRUE

X=TRUE

�

To detect such an undesirable divergence, we define the stability property asserting that
the idleness of inputs should imply the idleness of outputs. In terms of LTSs, this can be
expressed by first detecting the states after which all input actions are idle, then checking
that the output actions progress only a finite number of times. This is expressed by the
following pattern, where X and Y stand for the respective variables of a set of input
actions and an output action:

Stability (X, Y )
Stability can be extended to encompass a set of output actions, whose variables are
denoted Y .

Stability (X, Y )

Example 6.22. Consider the block defined in Example 6.21. The stability of output
x is specified as follows:

Stability (u, x)
�
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6.7 Discrete real-time properties

Any verification using model-based
techniques is only as good as the model
of the system.

Principles of Model Checking

A GALS system may depend on real-time constraints. In this case, its correctness
depends, in addition to computational results, on the time at which results are produced.
In a redundant system, it is vital that on failure detection, the function is passed from
primary components to secondary ones shortly.

When real-time constraints are required, relative (discrete) time can be measured in
terms of the number of component steps. In this section, we present two types of real-
time properties. Component real-time properties involve individual components. System
real-time properties involve several components. The interpretation of real-time patterns
is summarised in Table 6.14.

Pattern Interpretation

Deadline (R, A1 , A2 , n) Never (R . (not A1 )∗ . (A1 . (not (A1 or A2 ))∗){n+ 1})

Sustain (R, A1 , A2 , n)

[ R ] nu Count (c: nat := 1) . (
((c < n) implies ([ A2 ] false and [ A1 ] Count (n+ 1)))
and [ not (A1 or A2 ) ] Count (c)

)

From_To_Most (A1 , A2 , A3 , n) Deadline (true∗ . A1 , A3 , A2 , n)

From_To_Least (A1 , A2 , A3 , n) Sustain (true∗ . A1 , A3 , A2 , n)

Table 6.14: Interpretation of real-time patterns

Component real-time properties

For an individual component, the time difference between any pair of actions can be
interpreted as a multiple of the component steps. For example, consider the property:
whenever a failure occurs, an alarm should be raised in at most 30 seconds. Assuming
the component period is 5 seconds, the 30 second delay corresponds to 6 block steps.

A typical instantiation of component real-time properties is deadlines. A deadline prop-
erty asserts that whenever a certain action occurs, it must be followed by another action
in a bounded future. Consider (i) an action A1; (ii) a natural number n, quantifying
the deadline in terms of occurrences of A1; (iii) an action A2, to occur necessarily before
reaching the deadline; and (iv) a regular formula R specifying the condition triggering
the countdown. The following pattern forbids the presence of execution sequences, in
which there are subsequences satisfying R, followed by n+ 1 occurrence of A1, without
the occurrence of A2.
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Deadline (R, A1, A2, n)

Example 6.23. Assume the exit PLC period is 1 second. The property: once a
car asks to leave the car park, the exit gate must open in less than 15 seconds can be
expressed as follows:

Deadline (true∗ . {Cmd_P1 =? cmd1:bool, Cmd_P2 =? cmd2:bool where cmd1<>cmd2},

{Exit},

{Open = true},

15)

�

Another instantiation of component real-time properties is the sustain of an event for
a bounded time duration. Consider: (i) an action A1 , corresponding to the event to
sustain; (ii) a natural number n, quantifying the sustain duration in terms of occurrences
of A1; (iii) an action A2 , to not occur before the end of the sustain duration; and (iv) a
regular formula R specifying the condition triggering the sustain. The following pattern
states that all execution sequences containing subsequences satisfying R must lead to
action A2 before n occurrences of action A1 .

Sustain (R, A1 , A2 , n)

Example 6.24. The informal specification of the car park application (Section 3.1,
page 29) states that: If the access is granted, the entrance gate remains open for a fixed
amount of time and a yellow light is turned on until the gate closure. The property can
be expressed as follows, where n encodes the “amount of time”:

Sustain (true∗. {Open_Park = true},

{Green =? any, Yellow = true, Red =? any},

{Green =? any, Yellow = false, Red =? any},

n) �

System real-time properties

The correctness of system real-time properties depends on the accuracy of activation
constraints. The finest abstraction encountered in the literature to express activation
constraints in a discrete model of time is the generalisation of the quasi-synchronous
approach (see Chapter 7, section 7.1, for implementations in GRL and muGRL). In
such systems, requirements match the pattern: within a given time-interval, some event
should occur a bounded number of times. The notion “time-interval” is interpreted in
terms of action occurrences. The following patterns assert that whenever an action A1
occurs, an action A2 may occur at least m (resp. at most m) times before the next
occurrence of A3:

From_To_Least (A1 , A2, A3 , m) From_To_Most (A1 , A2, A3 , m)
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Examples will follow in Chapter 7.

6.8 Conclusion
This chapter identifies an open-ended set of properties for GALS systems. We attempted
to collect the most recurring properties in the literature of synchronous and asynchronous
systems and to accommodate them to GALS systems. In particular, the proposed prop-
erties exploit the activation strategies and data-handling that a GALS system exhibit,
as well as some discrete real-time aspects. We hope our study would contribute to the
state-of-the-art verification of GALS systems. Its principles would be transferable to
any temporal logic as well, provided the temporal logic supports regular expressions and
data handling.

Properties are encoded by means of a system of patterns, muGRL. Our aim is to guide
potential users in the verification task, cutting down the learning effort. As regards
the implementation of muGRL, patterns with a fixed number of parameters can be
encoded using MCL macros then stored in reusable libraries. This provides the user
with templates whose parameters should be filled in. Here are some examples:
1 macro Not_To_Unless (A, B, C) =
2 [ true∗ . A. (not (C))∗ . B] fa l se
3 end_macro
4
5 macro always_some (A) =
6 [ true∗ ] <true∗ . A> true
7 end_macro
8
9 macro Sustain (R, A1, A2, n) =

10 [ R ] nu Counter ( c : nat := 1) . (
11 (( c < n) impl ies ( [ A2 ] fa l se and [ A1 ] Counter ( c + 1)))
12 and [ not (A1 or A2) ] Counter ( c )
13 )
14 end_macro

At the time of writing, the complete translation into MCL is not yet automated.
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Chapter 7

Formal Modelling and
Verification of GALS Applications

This chapter presents applications of GRL, muGRL, and CADP to model and verify
concrete GALS systems. The first application is quasi-synchronous systems, which in-
volve a bounded level of nondeterminism. In a related concern, we give insights on the
way deterministic applications can be described. The second application is a simplified
version of an AutoFlight Control System (AFCS), provided by Thales Avionics. We
use the AFCS to illustrate various modelling, generation, and verification scenarios and
techniques. Finally, we report our industrial experience with Crouzet Automatismes in
the framework of the Bluesky industrial project.

7.1 Quasi-synchronous systems
A quasi-synchronous system is one whose synchronous components are not governed by
a common clock but evolve almost at the same pace, or multiples of the same pace.
The quasi-synchronous abstraction, first proposed by Caspi [Cas00] in the 2000’s then
formalised in [HM06], states that a component clock cannot tick more than twice before
all other component clocks have ticked at least once. Stated differently, each component
clock cannot deviate more than one tick. We use the term basic quasi-synchrony to
denote this abstraction. Recent works [BMY+14, BBP15] have studied generalisations
of the quasi-synchronous abstraction. We consider a generalised version in which each
component clock cannot tick more than an upper bound before all other component
clocks have ticked at least once. We use the term generalised quasi-synchrony to denote
this abstraction.

In GRL, without activation constraints, a block may perform infinitely many activations
between two successive activations of another block. This situation becomes unrealistic
when the aim is to describe clock constraints. For illustration, consider the activa-
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tion strategies depicted in Figure 7.1, where COMP_A, COMP_B, COMP_C, and
COMP_D denote blocks.

– In case (a), no constraint is put on block activations. A block can execute arbi-
trarily often without any other block executing meanwhile.

– In case (b), blocks COMP_A, COMP_B, and COMP_C are constrained so as to
execute in this specific order but no constraint is put on the activation of block
COMP_D. As a result, block COMP_D can execute arbitrarily often from each
state in the LTS.

– In case (c), constraints on the pair (COMP_A, COMP_B) and on the pair
(COMP_C, COMP_D) are described independently, e.g., in different environ-
ments. Again, (COMP_A, COMP_B) can execute arbitrarily often between two
successive executions of (COMP_C, COMP_D), and conversely.

0

COMP_D

COMP_B

COMP_A

COMP_C

0

1

2 COMP_C COMP_DCOMP_D

COMP_A

COMP_D

COMP_B

0

1 2

3

COMP_BCOMP_C

COMP_C

COMP_A

COMP_B

COMP_D

COMP_DCOMP_A

(a) (b) (c)

Figure 7.1: LTSs describing different activation strategies for a
set of blocks

In the sequel, we propose two implementations of quasi-synchrony in GRL and discuss
the relation between both implementations. To this aim, all blocks used in this section
are instances of the following toy block:

1 block Bool_Id ( in X: bool , out Y: bool ) i s
2 Y := X
3 end block

7.1.1 Primary implementation

This section proposes a primary implementation of quasi-synchrony, with a focus on the
basic version. To this aim, we consider a system, named Basic_Two, encapsulating two
blocks COMP_A and COMP_B. We also consider another system, named Basic_Three,
with three blocks COMP_A, COMP_B, and COMP_C.
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Property specification in muGRL Basic quasi-synchrony with two blocks requires
the following properties to be fulfilled:

(P1) It is possible for action COMP_A (resp. COMP_B) to not occur between two
successive occurrences of action COMP_B (resp. COMP_A)

(P2) It is possible for action COMP_A (resp. COMP_B) to occur once between two
successive occurrences of action COMP_B (resp. COMP_A)

(P3) It is possible for action COMP_A (resp. COMP_B) to occur twice between two
successive occurrences of action COMP_B (resp. COMP_A)

(P4) Action COMP_A (resp. COMP_B) cannot occur more than twice between two
occurrences of action COMP_B (resp. COMP_A)

(P5) Actions COMP_A and COMP_B occur infinitely often

The formalisation of properties P1, P4, and P5 in muGRL is summarised in the following
table:

Property Formalisation

P1 Some (true∗ . {COMP_A} . (not {COMP_B})∗ . {COMP_A})
Some (true∗ . {COMP_B} . (not {COMP_A})∗ . {COMP_B})

P4 From_To_Most (true∗ . {COMP_A}, {COMP_A}, {COMP_B}, 2)
From_To_Most (true∗ . {COMP_B}, {COMP_B}, {COMP_A}, 2)

P5 Looping ((not {COMP_A})∗ . {COMP_A})
Looping ((not {COMP_B})∗ . {COMP_B})

Modelling in GRL A first way to implement basic quasi-synchrony has been pro-
posed in Example 3.12 (page 47). We give below an enhanced version, parameterised
with relative block paces (maxA and maxB). The default values correspond to basic
quasi-synchrony. When block A is activated maxA times, block B is activated maxB
times, in the meanwhile. The order in which block activations are achieved is arbitrary.
1 environment Primary_Quasi_2 {maxA: nat := 1 , maxB: nat := 1}
2 ( block A, B)
3 i s
4 −− maxA, maxB should be >= 1
5 s tat i c var countA , countB : nat := 0
6 se lect −− ac t i va te A, i f allowed , maxA times
7 i f (countA < maxA) then
8 enable A;
9 countA := countA + 1;

10 end i f
11 [ ] −− ac t i va te B, i f allowed , maxB times
12 i f (countB < maxB) then
13 enable B;
14 countB := countB + 1;
15 end i f
16 end se lect ;
17 i f (countA >= maxA) and (countB >= maxB) then −− r e i n i t i a l i s e
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18 countA := 0; countB := 0
19 end i f
20 end environment

We use environment Primary_Quasi_2 to implement basic quasi-synchrony inside a
system as follows:
1 system Basic_Two (X1, Y1, X2, Y2 : bool ) i s
2 a l i a s Bool_Id as Comp_A, Bool_Id as Comp_B
3 block l i s t
4 Comp_A (X1, ?Y1) ,
5 Comp_B (X2, ?Y2)
6 environment l i s t
7 Primary_Quasi_2 {_, _}(Comp_A, Comp_B) −− de fau l t va lues are cons idered
8 end system

Basic LTS generation To visualise block activations in a GRL system, the simplest
way is to first generate the system LTS. We use GRL.OPEN and the GENERATOR
tool of CADP, as given by the following Bourne shell command:
1 % gr l .open −showall −root "Basic_Two" Primary_Quasi.gr l generator Basic_Two.bcg

Remark 7.1. Basic LTS generation requires the generation of the system LTS to
succeed. We will propose, in Section 7.3.4, an alternative scenario, which can be used
when LTS generation fails or lasts too long. �

Remark 7.2. In the general case, activation constraints may be distributed in several
environments and combined with data constraints. Debugging the activation strategy
on the complete system LTS could be difficult and cumbersome, in particular when the
system LTS is large. It is then of interest to visualise the activation strategy of blocks,
regardless the data carried by their input and output actions. �

Since we focus on block activations, we consider only actions Start. In the LTS corre-
sponding to system Basic_Two, we hide all actions but Start and rename the remaining
actions by removing prefix “Start !” introduced by GRL2LNT. Finally, we reduce the
LTS modulo divbranching bisimulation to remove irrelevant hidden actions while pre-
serving the branching structure of the LTS. All these steps are performed using the
following SVL statement:
1 "Basic_Two.bcg" = divbranching reduction of
2 tota l rename "START !\( .∗ \)" −> "\1" in
3 gate hide a l l but "START" in "Basic_Two.bcg" ;

For systems Basic_Two and Basic_Three, Figure 7.2 depicts the activation strategy
of blocks. In both LTSs, there is a central state (state 0), from which all outgoing
and ingoing transition sequences contain exactly one activation of each block. This
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situation is equivalent to the presence of an “abstract global clock”, the ticks of which are
represented by two successive occurrences of the central state when traversing the LTS.
Due to the interleaving of block activations, each block may perform two steps between
two successive steps of each other component. This is illustrated by the following action
sequence in the left-hand LTS.

0 COMP_B−−−−−−−→ 2 COMP_A−−−−−−−→ 0 COMP_A−−−−−−−→ 1 COMP_B−−−−−−−→ 0

0

1 2

COMP_A
COMP_B

COMP_B COMP_A

4
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1

6
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3

COMP_B
COMP_A

COMP_C

COMP_A

COMP_C

COMP_B

COMP_C

COMP_B COMP_A

COMP_C

COMP_A COMP_B

two blocks three blocks

Figure 7.2: LTS describing the activation strategy of basic
quasi-synchrony (primary implementation)

Verification results Checking that properties P1, ..., P5 hold on the LTSs depicted
in Figure 7.2 is straightforward.

7.1.2 Refined implementation

This section proposes a refined implementation of quasi-synchrony.

Modelling in GRL Instead of considering an “abstract global clock” and counting the
activations of each block w.r.t. clock ticks, we propose to count the activations of each
block since the last activation of each other block. This is implemented in environment
Refined_Quasi_2, given below, for two blocks.
1 environment Refined_Quasi_2 {maxA: nat := 2 , maxB: nat := 2}
2 ( block A, B)
3 i s
4 s tat i c var A_since_B : nat := 0 ,
5 B_since_A : nat := 0
6 se lect
7 i f (B_since_A < maxB) then
8 enable B;
9 A_since_B := 0;
10 B_since_A := B_since_A + 1
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11 end i f
12 [ ]
13 i f (A_since_B < maxA) then
14 enable A;
15 B_since_A := 0;
16 A_since_B := A_since_B + 1
17 end i f
18 end se lect
19 end environment

The environment is parameterised with the maximal number of activations of a block
between two successive activations of the other block. The default configuration of
parameters corresponds to basic quasi-synchrony.

We use environment Refined_Quasi_2 to implement basic quasi-synchrony inside a
system as follows:

1 system Main (X1, Y1, X2, Y2: bool ) i s
2 a l i a s Bool_Id as Comp_A, Bool_Id as Comp_B
3 block l i s t
4 Comp_A (X1, ?Y1) ,
5 Comp_B (X2, ?Y2)
6 environment l i s t
7 Refined_Quasi_2 {_, _}(Comp_A, Comp_B)
8 end system

Property specification in muGRL The refined implementation of generalised quasi-
synchrony requires the following properties to be fulfilled:

(P6) There are at most maxA occurrences of action COMP_A between two successive
occurrences of action COMP_B

(P7) The activation strategy introduces no deadlock
(P8) Blocks COMP_A and COMP_B are always alive

The formalisation of these properties in muGRL is summarised in the following table:

Property Formalisation

P6 From_To_Least (true∗ . {COMP_B}, {COMP_B}, {COMP_A}, maxA)
From_To_Least (true∗ . {COMP_A}, {COMP_A}, {COMP_B}, maxB)

P7 Deadlock (COMP_A, COMP_B)

P8 All_Alive (COMP_A, COMP_B)

LTS generation and verification The activation strategy of blocks is given in Fig-
ure 7.3. Checking that properties P6, P7, and P8 hold on the LTS is straightforward.
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Figure 7.3: LTS describing the activation strategy of basic
quasi-synchrony (refined implementation)

7.1.3 Discussion

We discuss the relation between our primary and refined implementations of quasi-
synchrony, proposed in the previous sections. Both of them are correct implementations
of quasi-synchrony, according to the verification results. We exploit the equivalence be-
tween LTSs depicted in Figure 7.2 (noted LTSprimary) and Figure 7.3 (noted LTSrefined).
Such equivalence, modulo branching bisimulation, is checked using the following SVL
statement:
1 "Equiv_Quasi.bcg" = branching comparison "Quasi_Gen.bcg" == "Quasi_Basic.bcg" ;

The LTSs are not equivalent, unexpectedly. The counterexample, produced in file
“Equiv_Quasi.bcg”, states that the following transition sequence is present in LTSrefined
but absent in LTSprimary.

0 COMP_A−−−−−−−→ 1 COMP_B−−−−−−−→ 2 COMP_A−−−−−−−→ 3 COMP_A−−−−−−−→ 4 COMP_B−−−−−−−→ 5

Nonetheless, LTSprimary is included in LTSrefined. Such inclusion, modulo the preorder
corresponding to branching bisimulation, is checked using the following SVL statement:
1 " Inclu_Quasi.bcg " = branching comparison "Quasi_Adv.bcg" >= "Quasi_Basic.bcg" ;

We conclude that LTSrefined is more general than LTSprimary and can be seen as a
refinement of LTSprimary.

7.2 Deterministic GALS systems
A deterministic GALS system is one in which messages are delivered in the order in
which they have been received, without message loss.

In GRL, message loss, if not explicitly modelled (see Example 3.16, page 50), is caused
by discrepancies between the rates of message submission by a block emitter and mes-
sage delivery by a block receiver; such discrepancy is induced by the arbitrary activation
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of blocks. Consider two blocks evolving under basic quasi-synchrony (see Section 7.1)
and communicating via reliable mediums with single-place buffers. Two successive acti-
vations of a block emitter, without the activation of the block receiver in between, causes
message overwriting.

To model deterministic GALS systems in GRL, an activation strategy of blocks should
be implemented. This entails bounded interleaving between block activations, making
message loss also bounded. Then, a buffering mechanism with well-chosen dimensions
sould be implemented. Such dimensions should comply with the activation strategy of
blocks. For basic quasi-synchrony, at most two message submissions may occur between
two message deliveries in each transmission, and conversely. Hence, a double-place FIFO
is sufficient to ensure message transmission without loss.

7.3 AutoFlight Control System (AFCS)
This section reports our experience in modelling and verifying a simplified part of an
AutoFlight Control System (AFCS). The system is provided by Thales Avionics in a
collaboration with IRT-Saint Exupéry. Our goal here is not to model a complete AFCS,
but to study the way such a system with stringent timing requirements can be abstracted
in GRL. The part of the AFCS we address has been first studied in [BBJ14] using the
Fiacre/Tina toolbox1 for Time Petri Nets.

In the sequel, we first present an overview of the target system. Then, we study the
modelling, state-space generation, and verification phases of separate components and
of the whole system.

7.3.1 Overview of the system

The AFCS improves the quality of flight and enhances the operational capability of the
aircraft, e.g., by guiding the aircraft on a defined trajectory. The architecture of the
AFCS is of type dual COM/MON. In such an architecture, each function is performed
by two channels, in hot redundancy: a master channel and a slave channel, such that
only the commands emitted by the master are taken into account by the rest of the
system. If the master channel fails, it is deactivated and the commands emitted by the
slave will be considered.

Each channel is itself divided into two channels: a command channel (COM), which
implements the expected functionality, and a monitoring channel (MON), which checks
whether the command channel operates correctly.

We focus on a simple use case: the altitude target acquisition. Our target system,
depicted in Figure 7.4, comprises two parts:

1http://projects.laas.fr/tina/
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– The FCP (Flight Control Panel) enables the pilot to interact with the system.
FCP_COM and FCP_MON are cadenced by the same clock.

– The AFS (Automatic Flight System) acquires the altitude target. AFS_COM
and AFS_MON communicate asynchronously using an AFDX communication
medium.

Components communicate by sampling, i.e., only the most recent message is read by the
receiver, message queuing being not supported. Asynchronous communication mediums
are assumed reliable.

The behaviour of the system is as follows. The pilot sets the target altitude by rotating
a knob on the FCP. Two different simultaneous informations are sent from FCP to AFS :

– FCP_COM sends, via an A429 bus, a value quantifying the knob rotation to
AFS_COM . In turn, AFS_COM computes an altitude order, based on the re-
ceived value and sends the order to AFS_MON for validation purpose.

– FCP_MON sends a Boolean value indicating a movement detection toAFS_MON ,
using a discrete signal. This information enables AFS_MON to check the validity
of the altitude order received from AFS_COM and to provide it with a verdict.
The order is considered valid if: (i) it didn’t change from the previous step or (ii) it
has changed and a movement has also been detected by FCP. In case of invalidity,
a presumed correct value of the altitude order is considered.

Because of the asynchrony in the system architecture, AFS_MON may wrongly in-
validate a correct order. To cope with such asynchrony, components FCP_MON and
AFS_MON sustain the movement detection information during some specific amount of
time, in order to make the information observable by other components, independently

Figure 7.4: Architecture of the AFCS
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of the asynchronous execution of the system components.

In the sequel, we address the modelling and verification of the FCP and AFS components
along with the AFCS system. Instead of giving complete GRL code, which is available
in Appendix A, we give code excerpts and schematic representations.

We consider the following real-time constraints. Components FCP_MON , AFS_MON ,
and AFS_COM evolve at periods 25ms, 50ms, and 150ms, respectively. FCP (resp.
AFS_MON ) sustains the movement detection information for 13 (resp. 6) steps of FCP
(resp. AFS_MON ). Transmission delays between components are significantly shorter
than the periods of components.

To verify the AFCS , we specified the following properties:

(P1) Blocks do not halt
(P2) There is no block in starvation situation
(P3) The system may deadlock, i.e., both the master and the slave channels may fail
(P4) All input and output actions of components progress
(P5) No movement detection information is sent to AFS if no knob rotation has occurred
(P6) The movement detection information is sustained for at least 13 steps of FCP
(P7) The movement detection information is sustained for exactly 13 steps of FCP, if

no knob rotation has occurred ever since
(P8) A change in the knob position is always accompanied by a movement detection
(P9) A movement detection information sent by FCP is received by AFS
(P10) The countdown to sustain a movement detection information in AFS_MON is

always set to value 6 when a movement is detected
(P11) Movement detection information is sustained for 6 steps of AFS_MON , if no new

movement detection has occurred ever since
(P12) A movement detected in FCP is sustained enough to be observed by AFS_MON
(P13) No new altitude order is provided by AFS_COM unless a movement has been

detected in AFS_MON

7.3.2 Modelling and verifying component FCP

Modelling in GRL The FCP component is modelled by the GRL block FCP be-
low, a schematic view of which is given in Figure 7.5. Block FCP encapsulates three
subblocks corresponding to a movement encoder (subblock Encoder), the monitoring
channel (subblock CP_MON ), and the command channel (subblock CP_COM ). Ac-
cording to GRL semantics, those subblocks evolve by default at the same pace, the one
of the higher-level block FCP.

1 −− Default durat ion to sus ta in the movement detect ion informat ion
2 const default_fcp_mvt_prolong : nat := 13
3
4 block FCP {fcp_mvt_prolong : nat := default_fcp_mvt_prolong}
5 ( in p i l o t_rot : int ,

153



Chapter 7. Formal Modelling and Verification of GALS Applications

6 pilot_mvt : bool )
7 [ send to_afs_posit ion : int ,
8 send to_afs_mvt : bool ]
9 i s

10 var cl ick_nb : int ,
11 detected_mvt : bool
12 Encoder ( p i lot_rot , pilot_mvt ,
13 ?click_nb , ?detected_mvt ) ;
14 CP_COM ( click_nb , ? to_afs_posit ion ) ;
15 CP_MON {fcp_mvt_prolong} (detected_mvt , ?to_mon_mvt)
16 end block

to_afs_position

CP_MON

CP_COM

EncoderKnob

pilot_rot,
pilot_mvt 

click_nb

detect_mvt

to_afs_mvt

fcp_mvt_prolong

in / out

receive / send

constant

Figure 7.5: Schematic view of the FCP components

The block is parameterised with fcp_mvt_prolong, which represents the duration to
sustain the movement detection information. Such duration is necessarily a multiple of
the block period. We set the default value to 13.

We abstract the behaviour of the knob rotation using environment Knob below. For
simplicity, only integers varying from -2 to 2 are considered to quantify the rotation.

1 environment Knob (out click_number : int , mvt : bool ) i s
2 s tat i c var pre_click_number : int := 0
3 when <click_number , mvt> −>
4 se lect
5 −− The knob pos i t i on changes
6 click_number := any int where (( click_number <= 2) and ( click_number >= −2));
7 pre_click_number := click_number ; −− s to re pos i t i on
8 mvt := true
9 [ ] −− The knob pos i t i on does not change

10 click_number := pre_click_number ;
11 mvt := f a l se
12 end se lect
13 end environment
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LTS generation To generate and minimise the LTS corresponding to FCP, we encap-
sulate the block with environmentKnob inside a parameterised system namedMain_FCP.
Once the LTS is constructed, we perform a minimisation modulo the divbranching bisim-
ulation. All these steps are done by the following SVL script:
1 % gr l .open −showall −root "Main_FCP (13 of nat ) " FCP.grl generator FCP_Orig.bcg
2 "FCP.div.bcg" = divbranching reduction of
3 tota l rename "GATE_\( .∗ \)" −> "\1" in "FCP.Orig.bcg" ;

The LTS, produced in file FCP.Orig, is small enough to be generated directly. It contains
802 states and 1157 transitions with a deterministic behaviour for all actions. The LTS
minimisation modulo divbranching bisimulation yields an LTS with 315 states and 640
transitions.

Property formalisation and verification results Properties P4, ..., P8 capture
the behaviour of FCP. The formalisation of properties P4, P6, and P8 in muGRL is
summarised in the table below. All properties hold on the system LTS.

Property Formalisation in muGRL

P4 Progress (pilot_mvt, pilot_rot)
Progress (to_afs_position)

Progress (to_afs_mvt)

P6 Sustain



true∗. {pilot_rot =? any, pilot_mvt = true}.
(not {pilot_rot =? any, pilot_mvt =? any})∗.
{pilot_rot =? any, pilot_mvt = false},
{afs_mon_mvt = true},
{afs_mon_mvt = false},
13



P8 Never


true∗. {pilot_rot =? rot1 :int, pilot_mvt =? mvt1 :bool}.
(not {pilot_rot =? any, pilot_mvt =? any})∗.
{pilot_rot =? rot2 :int, pilot_mvt =? mvt2 :bool where

(rot1 <> rot2 ) and (mvt2 = false)}



7.3.3 Modelling and verifying component AFS

Modelling in GRL The command and the monitoring channels of AFS are mod-
elled in GRL by blocks AFS_COM and AFS_MON, as depicted in Figure 7.6. Output
interrupt of block AFS_MON indicates whether, despite the absence of movement de-
tection by FCP, AFS_COM has computed a new target altitude. AFS_MON is three
times faster than AFS_COM . Such activation constraint is modelled in environment
AFS_Act, following the modelling proposed in Section 7.1.1. This is done as follows:
1 a l i a s Primary_Quasi_2 {3 , 1} as AFS_Act
2 . . .
3 AFS_Act (AFS_MON, AFS_COM)
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The AFDX communication bus is modelled by two GRL mediums AFDX_COM_to_
MON and AFDX_MON_to_COM. An additional medium Stub, given below, is con-
nected to AFS_COM . It simulates the behaviour of FCP_COM by producing integer
numbers ranging from -2 to 2. This enables a realistic modelling and helps to keep small
the state space of AFS .
1 medium Stub [ send from_cp_rot : int ] i s
2 when from_cp_rot −>
3 from_cp_rot := any int where (( from_cp_rot <= 2)
4 and ( from_cp_rot >= −2))
5 end medium

AFDX_COM_to_MON

AFS_MON AFS_COM

AFDX_MON_to_COM

Stub

AFS_Act

afs_mvt_prolong

interrupt validated_target
from_cp_rotfrom_cp_mvt

in / out

receive / send

constant

activation

Figure 7.6: Schematic view of the AFS components

Remark 7.3. Transmission delays between AFS_COM and AFS_MON are signifi-
cantly shorter than the component periods. According to observations of Caspi [Cas00],
such delays can be modeled by a unit of the global clock, i.e., the shortest measurable
delay in a synchronous discrete-time model. Thus, if a message has been emitted at an
instant t of the global clock, the message will be received at instant t+1, which repre-
sents non-instantaneity. In GRL, the emission of a message by a block and its reception
by another block are by default non-instantaneous. This is granted by asynchrony. �

LTS generation We first generate the LTS corresponding to each AFS component
separately then generate the one corresponding to the whole AFS . Table 7.1 reports the
size of LTSs in terms of number of states and transitions.

Note that the separate generation of system LTSs yields relatively large LTSs for blocks
AFS_MON and AFS_COM whereas the generation of the whole AFS at once leads
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Non-minimised Divbranching min.

States Transitions States Transitions

AFS_MON 929,281 68,691,969 265,227 17,043,978
AFS_COM 197,377 33,751,553 196,864 33,751,040
AFDX_MON_to_COM 513 263,169 512 262,656
AFDX_COM_to_MON 257 66,049 256 65,792
Stub 1 5 1 5
AFS_Act 7 10 7 10

AFS 6,867 8,370 577 750

Table 7.1: LTS sizes of AFS components and of whole AFS ,
before and after minimisation

to a much smaller LTS. Each block is constrained by its connected mediums and en-
vironments, which are themselves constrained by other connected blocks, and so on.
Accordingly, many states of components are never explored, since they are irrelevant for
the current AFS composition. For example, block AFS_MON defines a receive channel
containing a variable of type integer to be connected to AFS_COM , through medium
AFDX_COM_to_MON. The LTS of AFS_MON considers all possible values, while in
the current AFS only values ranging from -2 to 2 are used.

Property formalisation and verification results Properties P1, P2, and P4 cap-
ture the observable behaviour of AFS , i.e., activation strategy and data carried by block
inputs and outputs. All of them hold on the system LTS. Properties P10 and P11 cap-
ture the non-observable behaviour of AFS_MON , i.e., the internal computations. We
address here the formalisation of P10 and P11.

To express such properties, we take inspiration from synchronous observers. Properties
can be specified by means of additional GRL subblocks, which we call observers. For
example, property P10 can be expressed as follows:

1 −− Default durat ion to sus ta in the movement detect ion informat ion
2 const default_afs_mvt_prolong : nat := 6
3
4 block Observer_P10 { in it_count : nat := default_afs_mvt_prolong}
5 ( in cp_mon_mvt : bool , mvt_prolong : nat , out ok : bool )
6 i s
7 i f (cp_mon_mvt) then −− a movement i s detected
8 −− check counter "mvt_prolong" aga inst value " in it_count "
9 ok := (mvt_prolong == in i t_count )

10 else
11 ok := true
12 end i f
13 end block
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The observer emits an alert, value false on output Ok, whenever the desired property is
violated. Then, observers are invoked inside the block under verification to monitor its
internal behaviour. Here is an excerpt of block AFS_MON after adding the invocations
of observers; a schematic representation is given in Figure 7.7.
1 block AFS_MON ( . . . , out ok_P10 , ok_P11 : bool )
2 . . .
3 i s
4 . . . −− i n t e r n a l behaviour of AFS_MON
5 −− observers
6 Observer_P10 {afs_mvt_prolong}(cp_mon_mvt, detected_mvt , ?ok_P10 ) ;
7 Observer_P11 {afs_mvt_prolong}(cp_mon_mvt, countdown , ?ok_P11)
8 end block

To make the truth values of observers visible on the LTS, their outputs are connected
to additional outputs of block AFS_MON .

Observer_P10

Observer_P11

from_fcp_mon

to_afs_com

afs_mvt_prolong

in / out

receive / send

constant

from_afs_com

interrupt

ok_p10

ok_p11

Figure 7.7: Adding observers to AFS_MON

Finally, the validity of the properties encoded by observers can be simply determined
by visual checking. It suffices to list the actions in the LTS of AFS , using a dedicated
option in CADP, and check whether the observer outputs raise a problem. Below is an
excerpt of the actions list of the system LTS. The whole list shows that variables ok_p10
and ok_p11, corresponding to observer outputs, never take value false, meaning that
the respective properties hold on the LTS.

from_fcp_com = -2
from_fcp_com = -1
from_fcp_com = 0

from_fcp_com = 1
from_fcp_com = 2
from_fcp_mvt = false

from_fcp_mvt = true
interrupt = false
ok_p10 = true, ok_p11 = true

Alternatively, the validity of properties P10 and P11 can be checked by formulation in
muGRL:
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Never ({ok_p10=false, ok_p11=?any} or {ok_p10=?any, ok_p11=false})

Remark 7.4. Writing down observers in GRL increases the size of the system LTS,
since additional transitions are required to visualise the truth values of the properties.
For properties P10 and P11, Table 7.2 summarises the size of the LTSs of observers and
their impact on the size of the system LTS.

Non-minimised Divbranching min.

States Transitions States Transitions

Observer_P10 58 94 17 35
Observer_P11 6 517 3 514

AFS without observers 6867 8370 577 750
AFS with one (or both) observers 20421 24558 651 824

Table 7.2: Size of the LTSs corresponding to observers and to AFS

Note that the size of the system LTS after adding observers is independent of both the
number of observers and the static variables they define. The reason is that observers
have no effect on the enclosing block behaviour. In our example, property P11 requires
static variables to store the information about the acquiring of movement detection
information and the duration for which the information is sustained; property P10,
contrarily, defines no static variables. �

7.3.4 Modelling and verifying the AFCS system

We study an AFCS system without redundancy, i.e., composed of one FCP and one
AFS channels. We first consider the AFCS with the default values of fcp_mvt_prolong
(13) and afs_mvt_prolong (6). Then, we parameterise the system, following [BBJ14],
to illustrate the way parameterised models can be automatically generated and verified,
using SVL.

Default model

Blocks FCP, AFS_COM , and AFS_MON are composed as highest-level blocks inside
a system, named Main, as depicted in Figure 7.8. All parameters of the system are
made observable. The activation strategy of the blocks is modelled by environment
AFCS_Act, following the primary implementation of quasi-synchrony (see Section 7.1.1).
Once output interrupt of block AFS_MON takes value true, the activation of all blocks
is prohibited, which corresponds to the deactivation of the current COM/MON channel
(switch from the master to the slave channels in a system with redundancy).
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Figure 7.8: Schematic view of the AFCS system

Standard LTS generation We generate the system LTS; it contains 44,479,727 states
and 60,130,709 transitions. The minimisation modulo divbranching bisimulation yields
an LTS with 1,516,951 states, 2,848,395 transitions. The generation and minimisation
steps are achieved in 23 minutes on a 64-bit computer.

Property-dependent LTS reduction Since the LTS is relatively large, its reduc-
tion before checking properties improves the performance of model checking. Instead
of reducing the LTS modulo an equivalence relation or specialising the reduction with
regards to each property, we exploit the nature of properties. We first group proper-
ties into three classes: system data properties, block data properties, and activation
properties. The following table summarises property classification for the AFCS .

System data properties Block data properties Activation properties

FCP AFS_MON

P9, P12, P13 P4, P5, P6, P7, P8 P4, P10, P11 P1, P2, P3

Then, we specialise the reduction for each class. For system data properties, we specialise
the reduction with regards to each property. To this aim, we take advantage of the
approach proposed in [MW14]. It consists in first synthesising the maximal set of actions
that can be hidden in the LTS, without changing the truth value of the property. After
applying this maximal hiding, the LTS can be reduced modulo an adequate equivalence
relation before checking the property. An illustration will be given later when addressing
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the parameterised model.

For block data properties, we extract the block LTS from the system LTS by hiding
all actions corresponding to other blocks and reducing the resulting LTS. This is more
efficient than generating one LTS for each property. For block FCP, this can be done
as follows:
1 "AFCS.Orig.bcg" =
2 divbranching reduction of generation of
3 par t i a l hide a l l but
4 "GATE_PILOT_ROTATION_PILOT_MVT.∗" , "GATE_ERROR_INJECTION.∗" ,
5 "GATE_TO_AFS_COM_ROTATION.∗" , "GATE_TO_AFS_MON_MVT.∗"
6 in
7 "AFCS.Orig.bcg"
8 end hide ;

For activation properties, it suffices to generate the LTS corresponding to the activation
strategy. The generation scenario suggested in Section 7.1.1 could be expensive in terms
of time and memory, given the size of the system LTS. Alternatively, we generate the
LTS corresponding to environment AFCS_Act, inside which all activation constraints
are encoded. Since this is not possible in GRL (due to semantic restrictions), we use the
corresponding LNT process named Main_AFCS_Act, as follows:
1 "AFCS_Act.bcg" =
2 divbranching reduction of generation of
3 hide Gate_Interrupt in
4 "AFCS_System.lnt" : "Main_AFCS_Act"
5 end hide ;

The gate named Gate_Interrupt corresponds to input interrupt of AFCS_Act. It is
hidden to keep only Start actions in the resulting LTS (line 3). Finally, a minimisation
modulo divbranching bisimulation is achieved (line 2). The LTS is generated and reduced
in few seconds and contains 55 states and 173 transitions, whereas the scenario suggested
in Section 7.1.1 took around 20 minutes and generates an LTS containing 55 states and
118 transitions. The difference in LTS sizes is explained in Remark 7.5.

Remark 7.5. In the current AFCS , input interrupt is connected to block AFS_MON ,
which influences the activation strategy of the system. Hence, some states of environment
AFCS_Act are never explored after component composition inside AFCS . Contrarily,
in the above-considered scenario, input interrupt takes arbitrary values. The obtained
LTS is then larger than (but includes) the current activation strategy of the system.

�

Verification It is preferable to check the activation strategy of the system in the
beginning of the verification process. An erroneous activation strategy is likely to entail
several other errors in message transmission between different components.
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In the AFCS system, the formalisation of activation properties P1, ..., P3 is summarised
in the table below. Property P1 and P2 hold on the system LTS whereas property P3
does not, meaning that interrupt never takes value true.

Property Formalisation in muGRL

P1 All_Alive (FCP, AFS_MON, AFS_COM)

P2 Starvation_Freedom (FCP)
Starvation_Freedom (AFS_MON)
Starvation_Freedom (AFS_COM)

P3 Deadlock (FCP, AFS_MON, AFS_COM)

In a second step, we checked that block data properties, specified in Sections 7.3.2
and 7.3.3, keep their truth values after component composition inside the system. Fi-
nally, we checked that system data properties hold on the system LTS.

Parameterised model

We vary the durations for which blocks FCP_MON and AFS_MON sustain the move-
ment detection information. The verification task is to check for which durations prop-
erties P12 and P13 hold. To this aim, we parametrise LTS generation and verification.

Parameterised generation First, we export parameters fcp_mvt_prolong and afs_
mvt_prolong of FCP_MON and AFS_MON , respectively, to system level.
1 system Main_Param {fcp_mvt_prolong , afs_mvt_prolong : nat}
2 ( . . . )
3 i s
4 a l i a s FCP {fcp_mvt_prolong} as FCP,
5 AFS_MON {afs_mvt_prolong} as AFS_MON,
6 . . .
7 end system

Then, as suggested in [BBJ14], we vary fcp_mvt_prolong and afs_mvt_prolong from 1
to 6 periods of AFS_MON . Since fcp_mvt_prolong is expressed as a multiple of FCP
period, which is twice as fast as AFS_MON , fcp_mvt_prolong should take the following
values {2, 4, 6, 8, 10, 12}. These steps are achieved using the following SVL script:
1 % f o r i in 2 4 6 8 10 12; do
2 % f o r j in 1 2 3 4 5 6; do
3 % MODEL="AFCS_CP_${ i }_AFS_${ j }"
4 % gr l .open −root "Main_Param ( $ i of nat , $ j of nat ) " AFCS_System.grl
5 generator "$MODEL.bcg"
6 % done
7 % done

The script enables the generation of 36 LTSs in around 48 hours. The average size of
LTSs (without minimisation) is around 20 million states and 30 million transitions. In-
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terestingly, this corresponds to the average in state spaces generated by Tina in [BBJ14]
after minimisation.

Parameterised verification Property specification is also parameterised thanks to
SVL. The SVL statement below specifies property P12, parameterised by SPEC, which
is a BCG file name, and by RESULT, which is a variable storing the truth value of the
property. The LTS in the BCG file will be checked against the formula enclosed between
symbols “|=” and “;” and a diagnostic will be given in a BCG file named diag_SPEC.
1 property P12 (SPEC, RESULT)
2 "A movement detected in FCP i s susta ined enough to be observed by AFS_MON"
3 i s
4 "diag_${SPEC} .bcg " =
5 "${SPEC} .bcg " |=
6 NEVER (( not {TO_AFS_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !TRUE} .
7 ( not {FROM_CP_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !FALSE} .
8 ( not {TO_AFS_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !TRUE}
9 ) ;

10 resu l t "$RESULT"
11 expected TRUE
12 end property

Finally, the following SVL script automates the minimisation of all the generated LTSs,
after applying a maximal hiding, and checks property P12 on the reduced LTSs. When
the property does not hold on an LTS, meaning that variable RESULT evaluates to
false, the produced counter-example is reduced. Otherwise, a witness is provided, in
which case it is removed. All these steps are achieved by the following SVL script:
1 % f o r i in 2 4 6 8 10 12; do
2 % f o r j in 1 2 3 4 5 6; do
3 % MODEL="AFCS_CP_${ i }_AFS_${ j }"
4 "P12_${MODEL} .bcg " =
5 tota l branching reduction of
6 par t i a l hide a l l but "TO_AFS_MON_MVT.∗" , "FROM_CP_MON_MVT.∗"
7 in "${MODEL} .bcg " ;
8 check P12 ("P12_$MODEL" , "RESULT" ) ;
9 % i f [ "$RESULT" = FALSE ] ; then

10 "diag_P12_${MODEL} .bcg " =
11 tota l branching reduction of "diag_P12_${MODEL} .bcg " ;
12 % e l s e
13 % rm "diag_P12_${MODEL} .bcg "
14 % f i
15 % done
16 % done

Remark 7.6. For property P12, the maximal hiding set is large: only 4 actions out
of 85 must remain visible. In such a case, one could perform on-the-fly minimisation at
generation phase, i.e., using a forward traversal of the LTS to compute state successors
modulo the divbranching bisimulation reduction. �
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Verification results For the values of fcp_mvt_prolong and afs_mvt_prolong satis-
fying “fcp_mvt_prolong/2 + afs_mvt_prolong < 9”, properties P12 and P13 do not hold
on both our model and in [BBJ14]. For all other values, properties hold in [BBJ14]. On
our model, contrarily, the properties hold only for values satisfying “fcp_mvt_prolong/2
+ afs_mvt_prolong > 12”.

7.3.5 Discussion

We confronted GRL, which is time-abstract, with systems involving strict real-time con-
straints. Hence, we attempted to over-approximate real-time constraints. On GRL
synchronous blocks, they were described as multiples of block periods, using static vari-
ables; whereas on GRL asynchronous systems, they were described inside environments,
using activation signals. For the latter, we experimented a primary implementation of
quasi-synchrony to express block activation paces. We concluded that quasi-synchrony
is appropriate to model the activation of realistic GALS systems.

The verification task was about timed aspects. As expected, we had less accurate results
than in [BBJ14], which use the Tina toolbox. The reason is that we over-approximated
real-time constraints in our framework where as such constraints were accurately de-
scribed in [BBJ14]. Our results are thus still reasonable. Nonetheless, we believe that
the refined implementation of quasi-synchrony (see Section 7.1.2) would lead to better
verification results, i.e., closer to [BBJ14], since it is more accurate than the primary
implementation. Unfortunately, we could not validate our intuition by experimentation,
due to time pressure.

Reasoning about timed aspects of systems is known to be more detailed and complex
than reasoning about untimed ones. To reduce this complexity, one could develop a
system meeting a specification in which constraints are abstracted or over-approximated
in the first design phases where errors are frequent. In a second phase, the system can
be refined to meet precise real-time constraints.

7.4 Networks of Programmable Logic Controllers
This section reports our experience in early integration of GRL in the design process of
PLCs. The experience is in collaboration with Crouzet Automatismes in the context of
the industry-led Bluesky project. Crouzet has an internal software named em4soft for
the design of PLCs. The software builds upon a synchronous dataflow language, with a
graphical syntax based on block diagrams, and with no formal semantics. For example,
the block diagram depicted in Figure 7.9 is the design sheet of the exit PLC in the car
park application (See Example 3.7, page 42 for the corresponding GRL code).

The aim of the project is to distribute several PLCs and make them communicate via ei-
ther wired or wireless network. This paves the way for distributed PLC-applications such
as green buildings in which PLCs cooperate together to enhance energy management.
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Figure 7.9: Block diagram of the exit PLC (car park application)

Assumptions on the global behaviour of applications include the following. Periods of
individual PLCs are presumed with no influence on the expected service of applica-
tions. Communication is by sampling and is subject to message loss. Correct message
transmission is thus ensured by dedicated communication protocols, e.g., Modbus or
Publish-Subscribe protocols.

Modelling aspects of the car park application have been introduced in Chapter 3 and the
complete GRL model is available in Appendix B. In the sequel, we report few experiments
on LTS generation and verification. Then, we briefly sketch the current status of the
Bluesky project.

7.4.1 The car park application

Property specification The verification task concerns the following properties, which
are formalised in muGRL in the table below:

(P1) The system composed of blocks Entrance, Storey1, Storey2, and Exit may be idle
(P2) Each time a car leaves, the car park availability is updated

Property Formalisation in muGRL

P1 Idle (Entrance, Storey1, Storey2, Exit)

P2 After_Inev (true∗ . {S_Out1 = true}, true∗ . {R_Out1 = true})
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State space generation The car park capacity is set to 5. We first attempted the
generation of LTSs corresponding to highest-level blocks Entrance, Storey1, Storey2, and
Exit, independently. Table 7.3 reports the size of component LTSs. We have stopped the
generation of the LTS corresponding to block Entrance after around 11 hours. We then
attempted to generate the system LTS by composing the different blocks to communicate
with each other through mediums, without putting activation and data constraints. The
generation leads to state space explosion as well.

States Transitions

Entrance > 775,922,512 > 1,269,630,000
Exit 37 49
Storey1 55 83
Storey2 55 83

Table 7.3: LTS size of the car park components

In a second step, we fine-tuned the behaviour of the car park by adding the following
data constraints:

– a leaving request cannot occur if there is no car in the car park
– an entrance or exit request cannot occur in two successive steps of a PLC
– a ticket given to a car references exactly one storey

The generation of the system LTS succeeds leading to an LTS with 917,184 states and
1,178,349 transitions. As such, not only data constraints provide a realistic view of the
system behaviour but they also help to keep tractable the size of LTSs. Additionally, we
constrained the activation of the different blocks so that they evolve at the same pace.
The resulting LTS contains 2,194,731 states and 2,658,808 transitions, i.e., larger than
the LTS involving only data constraints. Table 7.4 illustrates the influence of the car
park capacity on the size of the system LTS.

Non-minimised Divbranching min.

Capacity States Transitions States Transitions

1 395,051 476,920 7,321 10,121
5 2,194,731 2,658,808 30,235 42,463
10 4,444,331 5,386,168 58,655 82,503
15 6,693,931 8,113,528 87,075 122,543
20 8,943,531 10,840,888 115,495 162,583
25 11,193,131 13,568,248 143,915 202,623

Table 7.4: LTS size for different capacities of the car park
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Verification results For the car park system involving only data constraints, proper-
ties P1 and P2 do not hold on the system LTS. For property P1, idleness was expected:
when no car enters or leaves the car park, blocks do not progress and remain idle.
Property P2 requires that each message sent by the exit PLC, indicating a car leaving,
is received by the entrance PLC. The reason for which the property does not hold is
twofold:

– No assumption is made on the relative paces of PLCs. Each PLC can then perform
several steps before any other PLC could execute in the meanwhile. This situation
can be captured by checking the starvation of Entrance, Storey1, and Storey2, as
follows:

Starvation_Freedom (Entrance, 〈 Exit, Storey1, Storey2 〉 )
Starvation_Freedom (Storey1, Exit)
Starvation_Freedom (Storey2, Exit)

– The message indicating the car leaving can be silently lost or duplicated due to
medium unreliability.

An error management mechanism should then be implemented in the system, alerting
the user as soon as a transmission failure occurs.

7.4.2 Industrial use of GRL

A connection from em4soft to GRL is automated. Basically, em4soft generates exe-
cutable code to be embedded on the PLCs, after performing static analysis, including
causality analysis. The em4soft compiler has been enhanced to also generate GRL
models of blocks. Such connection is quite straightforward, once causality analysis has
already been done. Additionally, GRL environments constraining the data of individual
PLCs are automatically generated. This enables verification of synchronous components
to be performed either by visual checking or by writing down temporal logic properties
(mainly safety patterns).

Still, GRL mediums together with activation constraints should be encoded by hand by
engineers, at the time being. The reason is that the software does not yet support multi-
sheets enabling GALS design. As a future direction, the aim is to develop a catalogue
of generic GRL environments and mediums, that can be automatically generated from
em4soft. Crouzet investigates to invest in using GRL as a textual language with formal
semantics for em4soft.
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Conclusion

GALS systems are composed of several synchronous components, interacting asyn-
chronously. While asynchronous concurrency is a central topic in GALS modelling,
the practical impact of the underlying verification techniques is still limited in many de-
sign processes. A main reason is the inherent complexity of asynchronous concurrency
and dedicated techniques, resulting in a steep learning curve.

Summary of contributions

This thesis proposes a fresh look at formal modelling and verifying GALS systems,
taking asynchronous concurrency as major subject. The main intent behind the proposed
approach was twofold: (i) transferring verification techniques for asynchronous systems
to GALS design (ii) studying the adequacy of these techniques with GALS behaviour.
Our solution consists in devising specific languages matching the knowledge and intuition
of GALS designers. To this aim, we defined a behavioural description language, GRL,
and a property specification language, muGRL.

We originally designed GRL as an intermediate format that connects GALS design lan-
guages to formal verification tools. Synchronous blocks can be defined using a minimal
set of core constructs to which synchronous languages can be translated. Asynchronous
environments and mediums can be defined using built-in constructs to model arbitrarily-
complex GALS systems. The degree of asynchronous concurrency is by default maximal,
enabling all possible behaviours to be modelled. It can be adjusted using environments
to meet bounded nondeterministic and deterministic GALS applications or even yet se-
quential scenarios. Communication mediums with complex buffering mechanisms can
be described. This enables to address the frequently occurring communication schemes
in GALS systems, namely, communication by sampling and FIFO queues, which may
be reliable or not.

We formally defined the semantics of GRL. Formal semantics improved our understand-
ing of all the language subtleties and helped us in tool construction.
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We defined a translation from GRL into LNT. An encoding of GALS behaviour in
asynchronous process languages is proposed. In particular, the atomicity of blocks is
preserved by a locking mechanism. Not only the locking mechanism reduces the resulting
state spaces, but also is particularly useful to count block steps for verification purpose.

We designed muGRL to assist non-expert users in specifying system requirements. It
builds on a collection of high-level and parameterisable patterns that capture recurring
properties for GALS systems. Properties result from a pragmatic survey on the state-of-
the-art verification of synchronous and asynchronous systems. muGRL is implemented
by a translation (not completely automated yet) into MCL.

We confronted GRL and muGRL with several case studies to explore their capability in
addressing real-life systems. Case studies are issued from both academia and industry.
An implementation of quasi-synchrony in an asynchronous model of time is proposed
and its functional correctness is verified. In a collaboration with IRT-Saint Exupéry
(Toulouse, France), the modelling and verification of an AutoFlight Control System
with stringent timing requirements are studied. The quasi-synchrony implementation
has been used for this system, leading to reasonable experimentation results. In the
framework of the Bluesky project, networks of PLCs with a high degree of asynchronous
concurrency are addressed.

We concluded that verification tools for asynchronous systems, including CADP, are
adequate to address arbitrarily-complex GALS systems. The accuracy of verification
results relies on suitable behavioural abstractions of the intended system.

Industrial feedback

Despite its young age, GRL appears to have a good acceptance by GALS designers.

From the outset of the Bluesky project, Crouzet provided us with significant amount
of insights and feedback about both design choices and user-convenience of GRL and
muGRL. An early integration of GRL in Crouzet’s design process of PLCs has started
and is under experimentation. At the time being, only synchronous blocks and generic
environments can be automatically generated. Unfortunately, we could not explore the
asynchronous aspects of GRL and muGRL because the current design process does
not yet support GALS systems. Crouzet is still very optimistic about the usefulness
and user-convenience of GRL and muGRL. A new PhD thesis is going to start as a
continuation of this work.

Beyond the Bluesky project, our collaboration with IRT-Saint Exupéry was fruitful.
Quoting them: “We are extremely interested by this work, because we believe it deals
with an essential problem”. GRL is currently evaluated in IRT-Saint Exupéry.

These experiences reinforce our conviction about the pressing need to deal with asyn-
chronous concurrency in the construction of GALS systems. It also shows that domain-
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specific languages are an appropriate solution for disseminating asynchronous concur-
rency techniques to industry.

Directions for future work

The focus of this thesis was on designing GALS-specific languages and tools. While we
achieved most of our objectives, we foresee several directions for future work.

From a language-design point of view, GRL could be extended with the following aspects:

Generic libraries. For the frequently used synchronous programming operators, ac-
tivation strategies, and communication mediums, one could write libraries in a
generic and reusable fashion. These libraries, once functionally verified, could be
reused safely.

Equivalence checking. A GALS system can be checked against a more abstract be-
haviour of the expected service. Work1 on this direction has started in the Bluesky
project, but faced a lack of expressiveness in GRL. Service description requires to
abstract from the system composition into components, which is not possible in
the actual version of GRL. In this respect, GRL systems can be extended to ease
the formalisation of services.

From a language-implementation point of view, proving formally the correctness of the
translation from GRL to LNT is an ambitious task. GRL is still a young language
in experimentation phase; it may undergo several changes in the future. We prefer to
postpone the translation proof to more stable versions of GRL. In a nearer future, we
foresee to fully automate the translation from muGRL into MCL and map verification
diagnostics back to GRL.

The connection of GRL to CADP provides the user with various verification tools and
techniques. The following would be useful for GALS systems:

Compositional verification. Asynchronous concurrency may lead to state-space ex-
plosion. In this respect, compositional verification techniques achieve promising
reductions. These techniques are still inherently complex and rely on the target
system architecture. Automatic generation of interfaces [KM97, Lan06] could be
particularly interesting for GRL systems. This technique generates a component
LTS by considering the behavioural restrictions imposed by the component neigh-
borhood. Hence, the states that are never explored in the LTS of the whole system
are eliminated in the component LTS. For more efficiency, automatic generation
of interfaces could be combined with property-dependent reductions (Chapter 7).

Probabilistic verification. Real-life GALS systems are subject to unreliable and un-
predictable phenomena, such as message loss and component failure. We illustrated

1This work is available under a project deliverable, which is not diffused publicly. The interested
reader may write to Radu.Mateescu@inria.fr for discussion or documentation.
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the way such stochastic phenomena could be modelled in GRL using nondeter-
minism. Once the GRL model is functionally verified, its LTS could be enriched
by attaching probabilities to transitions. This way, transitions could be chosen
probabilistically instead of nondeterministically. Probabilistic verification could
be achieved on such LTSs. For example, one could estimate what is the failure
rate of redundant components in fault-tolerant systems.
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Appendix A

The GRL Model and SVL
Verification Scripts of the AFCS

This appendix presents the GRL model and SVL verification script of the AutoFlight
Control Systems. Since muGRL is not fully implemented, properties are written in MCL.

A.1 The GRL model

A.1.1 Global constants

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Global constants
3 const default_fcp_mvt_prolong : nat := 13
4 const default_afs_mvt_prolong : nat := 6
5 const d i sab l e_e r ro r_ in j ec t i on : bool := f a l se
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.1.2 Component FCP

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− System to generate the LTS corresponding to the FCP component
3 system Main_FCP {fcp_mvt_prolong : nat}
4 ( e r r o r_ in j e c t i on : bool ,
5 p i l o t_ro ta t i on : int ,
6 pilot_mvt : bool ,
7 afs_com_rotation : int ,
8 afs_mon_mvt : bool )
9 i s

10 a l i a s FCP {fcp_mvt_prolong} as FCP,
11 Error_Enable as Error_Enable ,
12 Knob as Knob
13 block l i s t
14 FCP (<p i lo t_rotat ion , pilot_mvt>, e r r o r_ in j e c t i on )
15 [ ?afs_com_rotation , ?afs_mon_mvt ]
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16 environment l i s t
17 Error_Enable (? e r r o r_ in j e c t i on ) ,
18 Knob (?<p i lo t_rotat ion , pilot_mvt>)
19 end system
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 −− Block model l ing the FCP component
22 block FCP {−− durat ion to sus ta in movement detect ion
23 fcp_mvt_prolong : nat := default_fcp_mvt_prolong}
24 ( in knob_click_number : int ,
25 knob_mvt : bool ,
26 in e r r o r_ in j e c t i on : bool )
27 [ send afs_com_target_position : int ,
28 send afs_mon_mvt : bool ]
29 i s
30 var cp_click_number : int ,
31 detected_mvt : bool
32 Encoder ( e r ro r_ in j ec t i on , knob_click_number , knob_mvt ,
33 ?cp_click_number , ?detected_mvt ) ;
34 CP_COM ( cp_click_number , ?afs_com_target_position ) ;
35 CP_MON {fcp_mvt_prolong} (detected_mvt , ?afs_mon_mvt)
36 end block
37 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 −− Block model l ing the encoder behaviour
39 block Encoder ( in e r r o r_ in j e c t i on : bool ,
40 in knob_click_number : int ,
41 pilot_mvt : bool ,
42 out cp_click_number : int ,
43 detected_mvt : bool )
44 i s
45 s tat i c var permanent_fai lure : bool := f a l se
46 cp_click_number := knob_click_number ;
47 i f not ( permanent_fai lure ) then
48 permanent_fai lure := e r ro r_ in j e c t i on ;
49 detected_mvt := pilot_mvt
50 else
51 detected_mvt := fa l se
52 end i f
53 end block
54 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 −− Block model l ing the command channel of the FCP component
56 block CP_COM ( in click_number : int ,
57 out target_pos i t ion_afs : int )
58 i s
59 s tat i c var pre_click_number : int := 0
60 −− compute a new pos i t ion , to be sent to AFS
61 target_pos i t ion_afs := pre_click_number + click_number ;
62 pre_click_number := click_number −− s to re the computed pos i t i on
63 end block
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 −− Block model l ing the monitoring channel of the FCP component
66 block CP_MON {prolong_duration : nat := default_fcp_mvt_prolong}
67 ( in cp_mon_detected_mvt : bool ,
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68 out to_afs_detected_mvt : bool )
69 i s
70 s tat i c var countdown : nat := prolong_duration ,
71 i sde tec ted : bool := fa l se
72 i f (cp_mon_detected_mvt) then
73 −− a movement i s detected
74 i sde tec ted := true ; −− s to re detect ion informat ion
75 to_afs_detected_mvt := true ; −− inform AFS
76 countdown := prolong_duration − 1 −− t r i g g e r countdown
77 e l s i f ( i sde tec ted and (0 < countdown )) then
78 −− sus ta in s i gna l detect ion fo r durat ion " prolong_duration "
79 to_afs_detected_mvt := true ;
80 countdown := countdown − 1
81 else −− durat ion " prolong_duration " has e lapsed
82 to_afs_detected_mvt := fa l se ;
83 i sde tec ted := fa l se
84 end i f
85 end block
86 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 −− Environment model l ing the knob behaviour
88 environment Knob (out click_number : int ,
89 mvt : bool )
90 i s
91 s tat i c var pre_click_number : int := 0
92 when <click_number , mvt> −>
93 se lect
94 −− The knob pos i t i on changes . We cons ider va lues from −2 to 2
95 click_number := any int where (( click_number < 3) and ( click_number > −3));
96 pre_click_number := click_number ; −− s to re pos i t i on
97 mvt := true
98 [ ] −− The knob pos i t i on does not change
99 click_number := pre_click_number ;

100 mvt := f a l se
101 end se lect
102 end environment
103 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 −− Environment d i s ab l i ng the e r r o r i n j e c t i o n input of the FCP component
105 environment Error_Enable (out e r r o r_ in j e c t i on : bool ) i s
106 when e r r o r_ in j e c t i on −>
107 e r r o r_ in j e c t i on := d i sab l e_er ro r_ in j ec t i on
108 end environment
109 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.1.3 Component AFS

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− System to generate the LTS corresponding to the AFS components
3 system Main_AFS {afs_mvt_prolong : nat}
4 ( va l idated_target : int ,
5 i n t e r r up t : bool ,
6 cp_com_target_position : int ,
7 cp_mon_mvt : bool ,
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8 com_to_mon_afs_target_validation : int ,
9 mon_from_com_afs_target_validation : int ,

10 mon_to_com_afs_target_validated : int ,
11 mon_to_com_afs_target_isvalid : bool ,
12 com_from_mon_afs_target_validated : int ,
13 com_from_mon_afs_target_isvalid : bool )
14 i s
15 a l i a s AFS_COM as AFS_COM,
16 AFS_MON {afs_mvt_prolong} as AFS_MON,
17 AFS_Act {_, _} as Activat ion ,
18 Stub as Stub ,
19 AFDX_COM_to_MON as AFDX_COM_to_MON,
20 AFDX_MON_to_COM as AFDX_MON_to_COM
21 block l i s t
22 AFS_COM (?va l idated_target )
23 [ cp_com_target_position ,
24 <com_from_mon_afs_target_validated ,
25 com_from_mon_afs_target_isvalid>,
26 ?com_to_mon_afs_target_validation ] ,
27 AFS_MON (? i n t e r r up t )
28 [ cp_mon_mvt, mon_from_com_afs_target_validation ,
29 ?<mon_to_com_afs_target_validated , mon_to_com_afs_target_isvalid>]
30 environment l i s t
31 Act ivat ion (AFS_COM, AFS_MON)
32 medium l i s t
33 Stub [ ?cp_com_target_position ] ,
34 AFDX_COM_to_MON [ com_to_mon_afs_target_validation ,
35 ?mon_from_com_afs_target_validation ] ,
36 AFDX_MON_to_COM [<mon_to_com_afs_target_validated ,
37 mon_to_com_afs_target_isvalid>,
38 ?<com_from_mon_afs_target_validated ,
39 com_from_mon_afs_target_isvalid>]
40 end system
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 −− Block model l ing the command channel of the AFS component
43 block AFS_COM (out va l idated_target : int )
44 [ receive cp_com_target_position : int , −− r e ce i v e knob pos i t i on from CP_COM
45 receive mon_alt_target_value : int , −− r e ce i v e ta rget value from AFS_MON
46 mon_alt_target_valid : bool , −− along with i t s v a l i d i l t y ve rd i c t
47 send afs_mon_alt_target : int ]
48 i s
49 s tat i c var l a s t_va l idated_target : int := 0
50 −− e s t a b l i s h an a l t i t u d e target based on the rece ived pos i t i on from CP COM
51 −− and send i t to AFS MON for va l i d a t i on
52 Compute_Alt ( cp_com_target_position , ?afs_mon_alt_target ) ;
53 −− a dec i s i on i s taken based on the v a l i d i d t y ve rd i c t
54 i f ( mon_alt_target_valid ) then
55 va l idated_target := mon_alt_target_value ;
56 l a s t_va l idated_target := va l idated_target
57 else
58 va l idated_target := last_va l idated_target
59 end i f
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60 end block
61 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 block Compute_Alt ( in cp_com_target_position : int ,
63 out afs_mon_alt_target : int ) i s
64 afs_mon_alt_target := cp_com_target_position
65 end block
66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 −− Block model l ing the monitoring channel of the AFS component
68 block AFS_MON {afs_mvt_prolong : nat := default_afs_mvt_prolong}
69 (out i n t e r r up t : bool ) −− i n case of problem , r a i s e an a l e r t
70 [ receive cp_mon_mvt : bool ,
71 receive afs_com_alt_target : int ,
72 send afs_com_alt_target_value : int ,
73 afs_com_alt_target_valid : bool ]
74 i s
75 s tat i c var pre_alt_target : int := 0 , −− l a s t a l t i t u d e target from AFSCOM
76 pre_val id_alt_target : int := 0 , −− l a s t v a l i d a l t i t u d e target
77 countdown : nat := afs_mvt_prolong ,
78 i sde tec ted : bool := fa l se
79 var detected_mvt : bool
80 i f (cp_mon_mvt) then −− a movement i s detected
81 detected_mvt := true ;
82 i sde tec ted := true ; −− s to re detect ion informat ion
83 countdown := afs_mvt_prolong −− t r i g g e r countdown
84 e l s i f (( countdown > 0) and i sde tec ted ) then
85 −− sus ta in s i gna l detect ion fo r durat ion "afs_mvt_prolong"
86 detected_mvt := true ;
87 countdown := countdown − 1
88 else
89 detected_mvt := fa l se ;
90 i sde tec ted := fa l se
91 end i f ;
92 i f (( afs_com_alt_target == pre_alt_target ) −− va l i d
93 or (( afs_com_alt_target != pre_alt_target ) and detected_mvt ))
94 then
95 i n t e r r up t := f a l se ;
96 afs_com_alt_target_value := afs_com_alt_target ;
97 afs_com_alt_target_valid := true ;
98 pre_val id_alt_target := afs_com_alt_target
99 else −−i n v a l i d

100 i n t e r r up t := true ;
101 afs_com_alt_target_value := pre_val id_alt_target ;
102 afs_com_alt_target_valid := f a l se
103 end i f ;
104 pre_alt_target := afs_com_alt_target
105 end block
106 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 −− Block model l ing the monitoring channel of the AFS component and de f in ing
108 −− observers
109 block AFS_MON_Observ_P13_P14 {afs_mvt_prolong : nat := default_afs_mvt_prolong}
110 (out i n t e r r up t : bool ,
111 out OK_P13, OK_P14 : bool )
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112 [ receive cp_mon_mvt : bool ,
113 receive afs_com_alt_target : int ,
114 send afs_com_alt_target_value : int ,
115 afs_com_alt_target_valid : bool ]
116 i s
117 s tat i c var pre_alt_target : int := 0 ,
118 pre_val id_alt_target : int := 0 ,
119 countdown : nat := afs_mvt_prolong ,
120 i sde tec ted : bool := fa l se
121 var detected_mvt : bool
122 i f (cp_mon_mvt) then
123 detected_mvt := true ;
124 i sde tec ted := true ;
125 countdown := afs_mvt_prolong
126 e l s i f (( countdown > 0) and i sde tec ted ) then
127 detected_mvt := true ;
128 countdown := countdown − 1
129 else
130 detected_mvt := f a l se ;
131 i sde tec ted := f a l se
132 end i f ;
133 i f (( afs_com_alt_target == pre_alt_target ) −−va l i d
134 or (( afs_com_alt_target != pre_alt_target ) and detected_mvt ))
135 then
136 i n t e r r up t := fa l se ;
137 afs_com_alt_target_value := afs_com_alt_target ;
138 afs_com_alt_target_valid := true ;
139 pre_val id_alt_target := afs_com_alt_target
140 else −−i n v a l i d
141 i n t e r r up t := true ;
142 afs_com_alt_target_value := pre_val id_alt_target ;
143 afs_com_alt_target_valid := fa l se
144 end i f ;
145 pre_alt_target := afs_com_alt_target ;
146 −− observers
147 Observer_P13 {default_afs_mvt_prolong }(cp_mon_mvt, detected_mvt , ?OK_P13) ;
148 Observer_P14 {default_afs_mvt_prolong }(cp_mon_mvt, countdown , ?OK_P14)
149 end block
150 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 −− Block observer checking that the countdown to sus ta in a movement detect ion
152 −− in format ion i s always set to a predef ined value when a movement i s detected
153 block Observer_P13 {durat ion : nat := default_afs_mvt_prolong}
154 ( in cp_mon_mvt : bool , mvt_prolong : nat ,
155 out ok : bool )
156 i s
157 i f (cp_mon_mvt) then
158 ok := (mvt_prolong == durat ion )
159 else
160 ok := true
161 end i f
162 end block
163 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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164 −− Block observer checking that a movement detect ion informat ion i s susta ined
165 −− f o r a f i x ed duration , i f no new movement detect ion has occurred ever s ince
166 block Observer_P14 {durat ion : nat := default_afs_mvt_prolong}
167 ( in cp_mon_mvt, detected_mvt : bool ,
168 out ok : bool )
169 i s
170 s tat i c var counter : nat := 0 , pre_cp_mon_mvt : bool := fa lse ,
171 tr igger_count : bool := fa l se
172 i f (not (pre_cp_mon_mvt) and cp_mon_mvt) then −− a movement i s detected
173 tr igger_count := true
174 end i f ;
175 i f ( tr igger_count and ( counter < durat ion )) then
176 ok := ( detected_mvt == true ) ;
177 counter := counter + 1
178 else
179 ok := true ;
180 tr igger_count := f a l se
181 end i f ;
182 pre_cp_mon_mvt := cp_mon_mvt
183 end block
184 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 −− Environment ensur ing that two blocks evo lve at mu l t ip l e s of the same pace
186 environment AFS_Act {max_com: nat := 1 , max_mon: nat := 3}
187 ( block AFS_COM, AFS_MON)
188 i s
189 s tat i c var count_mon , count_com : nat := 0
190 se lect
191 i f (count_com < max_com) then
192 count_com := count_com + 1;
193 enable AFS_COM
194 end i f
195 [ ]
196 i f (count_mon < max_mon) then
197 count_mon := count_mon + 1;
198 enable AFS_MON
199 end i f
200 end se lect ;
201 i f (count_com >= max_com) and (count_mon >= max_mon) then
202 count_com := 0;
203 count_mon := 0
204 end i f
205 end environment
206 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
207 −− Medium model l ing an AFDX
208 medium AFDX [ receive com_to_mon_afs_target_validation : int ,
209 send mon_from_com_afs_target_validation : int ,
210 receive mon_to_com_afs_target_validated : int ,
211 mon_to_com_afs_target_isvalid : bool ,
212 send com_from_mon_afs_target_validated : int ,
213 com_from_mon_afs_target_isvalid : bool ]
214 i s
215 s tat i c var afs_target_va l idat ion : int := 0 ,
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216 va l idated_target : int := 0 ,
217 i s v a l i d_ta rge t : bool := fa l se
218 se lect
219 se lect
220 when ?<com_to_mon_afs_target_validation> −>
221 afs_target_va l idat ion := com_to_mon_afs_target_validation
222 [ ]
223 when <mon_from_com_afs_target_validation> −>
224 mon_from_com_afs_target_validation := afs_target_va l idat ion
225 end se lect
226 [ ]
227 se lect
228 when ?<mon_to_com_afs_target_validated , mon_to_com_afs_target_isvalid> −>
229 va l idated_target := mon_to_com_afs_target_validated ;
230 i s v a l i d_ta rge t := mon_to_com_afs_target_isvalid
231 [ ]
232 when <com_from_mon_afs_target_validated , com_from_mon_afs_target_isvalid>
233 −> com_from_mon_afs_target_validated := va l idated_target ;
234 com_from_mon_afs_target_isvalid := i s va l i d_ta rge t
235 end se lect
236 end se lect
237 end medium
238 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
239 −− Medium model l ing communication from the monitoring to the command channels
240 medium AFDX_MON_to_COM [ receive mon_to_com_afs_target_validated : int ,
241 mon_to_com_afs_target_isvalid : bool ,
242 send com_from_mon_afs_target_validated : int ,
243 com_from_mon_afs_target_isvalid : bool ]
244 i s
245 s tat i c var va l idated_target : int := 0 ,
246 i s v a l i d_ta rge t : bool := f a l se
247 se lect
248 when ?<mon_to_com_afs_target_validated , mon_to_com_afs_target_isvalid> −>
249 va l idated_target := mon_to_com_afs_target_validated ;
250 i s v a l i d_ta rge t := mon_to_com_afs_target_isvalid
251 [ ]
252 when <com_from_mon_afs_target_validated , com_from_mon_afs_target_isvalid>
253 −> com_from_mon_afs_target_validated := va l idated_target ;
254 com_from_mon_afs_target_isvalid := i s va l i d_ta rge t
255 end se lect
256 end medium
257 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
258 −− Medium model l ing communication from the command to the monitoring channels
259 medium AFDX_COM_to_MON [ receive com_to_mon_afs_target_validation : int ,
260 send mon_from_com_afs_target_validation : int ]
261 i s
262 s tat i c var afs_target_va l idat ion : int := 0
263 se lect
264 when ?com_to_mon_afs_target_validation −>
265 afs_target_va l idat ion := com_to_mon_afs_target_validation
266 [ ]
267 when mon_from_com_afs_target_validation −>
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268 mon_from_com_afs_target_validation := afs_target_va l idat ion
269 end se lect
270 end medium
271 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
272 −− Medium simualat ing the communication between the command channel of the
273 −− AFS component and the FCP component
274 medium Stub [ send cp_com_target_position : int ] i s
275 when cp_com_target_position −>
276 cp_com_target_position := any int
277 where (( cp_com_target_position < 3)
278 and ( cp_com_target_position > −3))
279 end medium
280 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.1.4 System AFCS

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− System to generate the LTS corresponding to the AFCS system
3 system Main ( e r r o r_ in j e c t i on : bool ,
4 p i l o t_ro ta t i on : int ,
5 pilot_mvt : bool ,
6 to_afs_com_rotation : int ,
7 to_afs_mon_mvt : bool ,
8 va l idated_target : int ,
9 i n t e r r up t : bool ,
10 cp_com_target_position : int ,
11 from_cp_mon_mvt : bool ,
12 com_to_mon_afs_target_validation : int ,
13 mon_from_com_afs_target_validation : int ,
14 mon_to_com_afs_target_validated : int ,
15 mon_to_com_afs_target_isvalid : bool ,
16 com_from_mon_afs_target_validated : int ,
17 com_from_mon_afs_target_isvalid : bool )
18 i s
19 a l i a s FCP {_} as FCP,
20 AFS_MON {_} as AFS_MON,
21 AFS_COM as AFS_COM,
22 A429_COM as A429_COM,
23 Discrete_MON as Discrete_MON ,
24 AFDX as AFDX,
25 Error_Enable as Error_Enable ,
26 Knob as Knob ,
27 AFCS_Act {_, _, _} as Act ivat ion
28 block l i s t
29 FCP (<p i lo t_rotat ion , pilot_mvt>, e r r o r_ in j e c t i on )
30 [ ?to_afs_com_rotation , ?to_afs_mon_mvt ] ,
31 AFS_COM (?va l idated_target )
32 [ cp_com_target_position ,
33 <com_from_mon_afs_target_validated ,
34 com_from_mon_afs_target_isvalid>,
35 ?com_to_mon_afs_target_validation ] ,
36 AFS_MON (? i n t e r r up t )
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37 [ from_cp_mon_mvt ,
38 mon_from_com_afs_target_validation ,
39 ?<mon_to_com_afs_target_validated ,
40 mon_to_com_afs_target_isvalid>]
41 environment l i s t
42 Error_Enable (? e r r o r_ in j e c t i on ) ,
43 Knob (?<p i lo t_rotat ion , pilot_mvt>) ,
44 Act ivat ion ( in te r rupt , FCP, AFS_COM, AFS_MON)
45 medium l i s t
46 AFDX [<com_to_mon_afs_target_validation>,
47 ?<mon_from_com_afs_target_validation>,
48 <mon_to_com_afs_target_validated ,
49 mon_to_com_afs_target_isvalid>,
50 ?<com_from_mon_afs_target_validated ,
51 com_from_mon_afs_target_isvalid>] ,
52 A429_COM [ to_afs_com_rotation , ?cp_com_target_position ] ,
53 Discrete_MON [ to_afs_mon_mvt , ?from_cp_mon_mvt ]
54 end system
55 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 −− Parameterised system to generate the LTS corresponding to the AFCS system
57 system Main_Param {fcp_mvt_prolong , afs_mvt_prolong : nat}
58 ( e r r o r_ in j e c t i on : bool ,
59 p i l o t_ro ta t i on : int ,
60 pilot_mvt : bool ,
61 to_afs_com_rotation : int ,
62 to_afs_mon_mvt : bool ,
63 va l idated_target : int ,
64 i n t e r r up t : bool ,
65 cp_com_target_position : int ,
66 from_cp_mon_mvt : bool ,
67 com_to_mon_afs_target_validation : int ,
68 mon_from_com_afs_target_validation : int ,
69 mon_to_com_afs_target_validated : int ,
70 mon_to_com_afs_target_isvalid : bool ,
71 com_from_mon_afs_target_validated : int ,
72 com_from_mon_afs_target_isvalid : bool )
73 i s
74 a l i a s FCP {fcp_mvt_prolong} as FCP,
75 AFS_MON {afs_mvt_prolong} as AFS_MON,
76 AFS_COM as AFS_COM,
77 A429_COM as A429_COM,
78 Discrete_MON as Discrete_MON ,
79 AFDX as AFDX,
80 Error_Enable as Error_Enable ,
81 Knob as Knob ,
82 AFCS_Act {_, _, _} as Act ivat ion
83 block l i s t
84 FCP (<p i lo t_rotat ion , pilot_mvt>, e r r o r_ in j e c t i on )
85 [ ?to_afs_com_rotation , ?to_afs_mon_mvt ] ,
86 AFS_COM (?va l idated_target )
87 [ cp_com_target_position ,
88 <com_from_mon_afs_target_validated ,
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89 com_from_mon_afs_target_isvalid>,
90 ?com_to_mon_afs_target_validation ] ,
91 AFS_MON (? i n t e r r up t )
92 [ from_cp_mon_mvt ,
93 mon_from_com_afs_target_validation ,
94 ?<mon_to_com_afs_target_validated ,
95 mon_to_com_afs_target_isvalid>]
96 environment l i s t
97 Error_Enable (? e r r o r_ in j e c t i on ) ,
98 Knob (?<p i lo t_rotat ion , pilot_mvt>) ,
99 Act ivat ion ( in te r rupt , FCP, AFS_COM, AFS_MON)

100 medium l i s t
101 AFDX [<com_to_mon_afs_target_validation>,
102 ?<mon_from_com_afs_target_validation>,
103 <mon_to_com_afs_target_validated ,
104 mon_to_com_afs_target_isvalid>,
105 ?<com_from_mon_afs_target_validated ,
106 com_from_mon_afs_target_isvalid>] ,
107 A429_COM [ to_afs_com_rotation>, ?cp_com_target_position ] ,
108 Discrete_MON [ to_afs_mon_mvt , ?from_cp_mon_mvt ]
109 end system
110 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
111 −− Medium model l ing A429 communication
112 medium A429_COM [ receive from_cp_com : int ,
113 send to_afs_com : int ]
114 i s
115 s tat i c var from_cp_com_to_afs_com : int := 0
116 se lect
117 when ?from_cp_com −>
118 from_cp_com_to_afs_com := from_cp_com
119 [ ]
120 when to_afs_com −>
121 to_afs_com := from_cp_com_to_afs_com
122 end se lect
123 end medium
124 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
125 −− Medium model l ing d i s c r e t e communication
126 medium Discrete_MON [ receive from_cp_mon : bool ,
127 send to_afs_mon : bool ]
128 i s
129 s tat i c var from_cp_mon_to_afs_mon : bool := f a l se
130 se lect
131 when ?from_cp_mon −> from_cp_mon_to_afs_mon := from_cp_mon
132 [ ]
133 when to_afs_mon −> to_afs_mon := from_cp_mon_to_afs_mon
134 end se lect
135 end medium
136 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
137 −− Environment ensur ing that :
138 −−−− three blocks evo lve at mu l t ip l e s of the same pace
139 −−−− blocks are halted i f a f a i l u r e occurs
140 environment AFCS_Act {max_fcp : nat := 10 ,
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141 max_afs_com : nat := 1 ,
142 max_afs_mon : nat := 3}
143 ( in i n t e r r up t : bool ,
144 block FCP, AFS_COM, AFS_MON)
145 i s
146 s tat i c var count_fcp , count_afs_com , count_afs_mon : nat := 0
147 s tat i c var f a i l u r e : bool := fa l se
148 se lect
149 −− FCP
150 i f (( count_fcp < max_fcp) and not ( f a i l u r e )) then
151 enable FCP;
152 count_fcp := count_fcp + 1
153 end i f
154 [ ]
155 −− AFS_COM
156 i f (( count_afs_com < max_afs_com) and not ( f a i l u r e )) then
157 enable AFS_COM;
158 count_afs_com := count_afs_com + 1
159 end i f
160 [ ]
161 −− AFS_MON
162 i f (( count_afs_mon < max_afs_mon) and not ( f a i l u r e )) then
163 enable AFS_MON;
164 count_afs_mon := count_afs_mon + 1
165 end i f
166 [ ]
167 when ? i n t e r r up t −> f a i l u r e := in t e r rup t
168 end se lect ;
169 −− r e i n i t i a l i s e
170 i f (( count_fcp >= max_fcp) and
171 (count_afs_com >= max_afs_com) and
172 (count_afs_mon >= max_afs_mon))
173 then
174 count_fcp := 0;
175 count_afs_com := 0;
176 count_afs_mon := 0
177 end i f
178 end environment
179 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.2 The SVL verification script
A.2.1 Generation and verification script
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− User parameters
3 % MODEL=$1
4 % GENERATE_MODELS=1
5 % FCP_MVT_PROLONG=13
6 % AFS_MVT_PROLONG=6
7 % GENERATE_PARAMETRISED_AFCS=0
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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9 −− CADP parameters
10 % DEFAULT_VERIFY_TOOL=" eva luator4 "
11 % CADP_TIME="memtime"
12 % DEFAULT_MCL_LIBRARIES=" l i b r a r y . m c l "
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 −− Scr ip t parameter v e r i f i c a t i o n
15 % i f t e s t "$MODEL" != "FCP_Component" && te s t "$MODEL" != "AFS_Component"
16 && tes t "$MODEL" != "AFCS_System"
17 % then
18 % echo "\nThis SVL s c r i p t r equ i r e s the name of a GRL model as argument"
19 % echo "The name should belong to the set : "
20 % echo "FCP_Component , AFS_Component , AFCS_System\n"
21 % e x i t
22 % f i
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 −− Parameter s e t t i ng to execute GRL models
25 % case "$MODEL" in
26 % "FCP_Component" ) \
27 % eva l "PARAM=${FCP_MVT_PROLONG}"
28 % echo "\ nVe r i f i c a t i on of the FCP component"
29 % ; ;
30 % "AFS_Component" ) \
31 % eva l "PARAM=${AFS_MVT_PROLONG}"
32 % echo "\ nVe r i f i c a t i on of the AFS component"
33 % ; ;
34 % "AFCS_System" ) \
35 % eva l "PARAM1=${FCP_MVT_PROLONG}"
36 % eva l "PARAM2=${AFS_MVT_PROLONG}"
37 % echo "\ nVe r i f i c a t i on of the AFCS system"
38 % ; ;
39 % esac
40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 −− Generation of LTSs
42 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 % i f [ "${GENERATE_MODELS}" = "1" ]
44 % then
45 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 −− Or ig ina l LTS generat ion
47 % echo "\nLTS genenrat ion : LTS w i l l be given in f i l e ${MODEL} .Or ig .bcg "
48 % case "$MODEL" in
49 % "FCP_Component" | "AFS_Component" ) \
50 % gr l .open −showall −root "Main_${MODEL} ($PARAM of nat ) " ${MODEL} . g r l
51 generator ${MODEL} .Or ig .bcg
52 % ; ;
53 % "AFCS_System" ) \
54 % i f [ "${GENERATE_PARAMETRISED_AFCS}" = "0" ]
55 % then
56 % gr l .open −showall −root "Main_Param ($PARAM1 of nat , $PARAM2 of nat ) "
57 ${MODEL} . g r l generator ${MODEL} .Or ig .bcg
58 % e l s e
59 % f o r i in 3 7 10 13 17 20
60 % do
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61 % f o r j in 1 2 3 4 5 6
62 % do
63 % MODEL="AFCS_CP_${ i }_AFS_${ j }"
64 % gr l .open −root "Main_Param ( $ i of nat , $ j of nat ) " AFCS_System.grl
65 generator "$MODEL.bcg"
66 "$MODEL.bcg" = tota l rename "GATE_\( .∗ \)" −> "\1" in
67 tota l divbranching reduction of "$MODEL.bcg" ;
68 % done
69 % done
70 % f i
71 % ; ;
72 % esac
73 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 −− Data and ac t i va t i on LTS ext rac t ion
75 "${MODEL} .Data.bcg " = tota l divbranching reduction of
76 tota l rename
77 "GATE_\( .∗ \)" −> "\1" ,
78 "START !GRL_\( .∗ \)" −> "\1"
79 in
80 "${MODEL} .Or ig .bcg " ;
81 "${MODEL} .Act.bcg " = tota l divbranching reduction of
82 tota l rename "START !GRL_\( .∗ \)" −> "\1" in
83 par t i a l hide a l l but ".∗START.∗" in
84 "${MODEL} .Or ig .bcg " ;
85 % echo "\nThe reduced LTS i s given in f i l e ${MODEL} .Data.bcg "
86 % echo "The ac t i va t i on s t ra tegy i s given in f i l e ${MODEL} .Act.bcg\n"
87 % f i
88 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 −− Proper t i e s s p e c i f i c a t i o n
90 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91 −− Deadlock absence in components bahaviour
92 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 property FCP_Deadlock_Absence (MODEL)
94 "Check that the behaviour of FCP i s deadlock−free "
95 i s
96 "Diag.FCP_Deadlock_Absence.bcg" =
97 "${MODEL} .Act.bcg " |=
98 Always_Some ({FCP} ) ;
99 expected TRUE

100 end property
101 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 property AFS_COM_Deadlock_Absence (MODEL)
103 "Check that the behaviour of AFS_COM i s deadlock−free "
104 i s
105 "Diag.AFS_COM_Deadlock_Absence.bcg" =
106 "${MODEL} .Act.bcg " |=
107 Always_Some ({AFS_COM} ) ;
108 expected TRUE
109 end property
110 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
111 property AFS_MON_Deadlock_Absence (MODEL)
112 "Check that the behaviour of AFS_MON i s deadlock−free "
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113 i s
114 "Diag.AFS_MON_Deadlock_Absence.bcg" =
115 "${MODEL} .Act.bcg " |=
116 Always_Some ({AFS_MON} ) ;
117 expected TRUE
118 end property
119 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120 −− Progress of components inputs and outputs
121 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 property Progress_PILOT_ROTATION_PILOT_MVT (MODEL)
123 "Check that channel <p i lo t_rotat ion , pilot_mvt> continue to progress "
124 i s
125 "Progress_PILOT_ROTATION_PILOT_MVT.bcg" =
126 "${MODEL} .Data.bcg " |=
127 Always_Some ( t rue∗ .
128 {PILOT_ROTATION_PILOT_MVT ? rot1 : i n t ? mvt1 : bool} .
129 t rue∗ .
130 {PILOT_ROTATION_PILOT_MVT ? rot2 : i n t ?mvt2 : bool
131 where (( rot2 <> rot1 ) and (mvt2 <> mvt1))}
132 ) ;
133 expected TRUE
134 end property
135 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 property Progress_AFS_COM_ROTATION (MODEL)
137 "Check that channel afs_com_rotation continue to progress "
138 i s
139 "Progress_AFS_COM_ROTATION.bcg" =
140 "${MODEL} .Data.bcg " |=
141 Always_Some ( t rue∗ .
142 {AFS_COM_ROTATION ? rot1 : i n t} .
143 t rue∗ .
144 {AFS_COM_ROTATION ? rot2 : i n t where rot2 <> rot1}
145 ) ;
146 expected TRUE
147 end property
148 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
149 property Progress_AFS_MON_MVT (MODEL)
150 "Check that channel afs_mont_mvt continue to progress "
151 i s
152 "Progress_AFS_MON_MVT.bcg" =
153 "${MODEL} .Data.bcg " |=
154 Always_Some ( t rue∗ .
155 {AFS_MON_MVT ?mvt1 : bool} .
156 t rue∗ .
157 {AFS_MON_MVT ?mvt2 : bool where mvt2 <> mvt1}
158 ) ;
159 expected TRUE
160 end property
161 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
162 property Progress_VALIDATED_TARGET (MODEL)
163 "Check that channel va l idated_target continue to progress "
164 i s
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165 "Progress_VALIDATED_TARGET.bcg" =
166 "${MODEL} .Data.bcg " |=
167 Always_Some ( t rue∗ .
168 {VALIDATED_TARGET ? targ1 : i n t} .
169 t rue∗ .
170 {VALIDATED_TARGET ? targ2 : i n t where ( targ2 <> targ1 )}
171 ) ;
172 expected TRUE
173 end property
174 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 property Progress_CP_COM_TARGET_POSITION (MODEL)
176 "Check that channel cp_com_target_position continue to progress "
177 i s
178 "Progress_CP_COM_TARGET_POSITION.bcg" =
179 "${MODEL} .Data.bcg " |=
180 Always_Some ( t rue∗ .
181 {CP_COM_TARGET_POSITION ?pos1 : i n t} .
182 t rue∗ .
183 {CP_COM_TARGET_POSITION ?pos2 : i n t where ( pos2 <> pos1 )}
184 ) ;
185 expected TRUE
186 end property
187 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
188 property Progress_CP_MON_MVT (MODEL)
189 "Check that channel cp_mon_mvt continue to progress "
190 i s
191 "Progress_CP_MON_MVT.bcg" =
192 "${MODEL} .Data.bcg " |=
193 Always_Some ( t rue∗ .
194 {CP_MON_MVT ?mvt1 : bool} .
195 t rue∗ .
196 {CP_MON_MVT ?mvt2 : bool where (mvt2 <> mvt1)}
197 ) ;
198 expected TRUE
199 end property
200 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
201 property Progress_COM_TO_MON_AFS_TARGET_VALIDATION (MODEL)
202 "Check that channel com_to_mon_afs_target_validation continue to progress "
203 i s
204 "Progress_COM_TO_MON_AFS_TARGET_VALIDATION.bcg" =
205 "${MODEL} .Data.bcg " |=
206 Always_Some ( t rue∗ .
207 {COM_TO_MON_AFS_TARGET_VALIDATION ? targ1 : i n t} .
208 t rue∗ .
209 {COM_TO_MON_AFS_TARGET_VALIDATION ? targ2 : i n t
210 where ( targ2 <> targ1 )}
211 ) ;
212 expected TRUE
213 end property
214 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
215 property Progress_MON_FROM_COM_AFS_TARGET_VALIDATION (MODEL)
216 "Check that channel mon_from_com_afs_target_validation continue to progress "

187



Appendix A. The GRL Model and SVL Verification Scripts of the AFCS

217 i s
218 "Progress_MON_FROM_COM_AFS_TARGET_VALIDATION.bcg" =
219 "${MODEL} .Data.bcg " |=
220 Always_Some ( t rue∗ .
221 {MON_FROM_COM_AFS_TARGET_VALIDATION ? targ1 : i n t} .
222 t rue∗ .
223 {MON_FROM_COM_AFS_TARGET_VALIDATION ? targ2 : i n t
224 where ( targ2 <> targ1 )}
225 ) ;
226 expected TRUE
227 end property
228 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
229 property Progress_MON_TO_COM_AFS_TARGET_VALIDATED (MODEL)
230 "Check that channel <mon_to_com_afs_target_validated , "
231 "mon_to_com_afs_target_isvalid> continue to progress "
232 i s
233 "Progress_MON_TO_COM_AFS_TARGET_VALIDATED.bcg" =
234 "${MODEL} .Data.bcg " |=
235 Always_Some (
236 t rue∗ .
237 {MON_TO_COM_AFS_TARGET_VALIDATED_MON_TO_COM_AFS_TARGET_ISVALID
238 ? targ1 : i n t ? va l i d1 : bool} .
239 t rue∗ .
240 {MON_TO_COM_AFS_TARGET_VALIDATED_MON_TO_COM_AFS_TARGET_ISVALID
241 ? targ2 : i n t ? va l i d2 : bool where
242 (( targ2 <> targ1 ) and ( va l i d2 <> va l i d1 ))}
243 ) ;
244 expected TRUE
245 end property
246 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
247 property Progress_COM_FROM_MON_AFS_TARGET_VALIDATED (MODEL)
248 "Check that channel <com_from_mon_afs_target_validated , "
249 "com_from_mon_afs_target_isvalid> continue to progress "
250
251 i s
252 "Progress_COM_FROM_MON_AFS_TARGET_VALIDATED.bcg" =
253 "${MODEL} .Data.bcg " |=
254 Always_Some (
255 t rue∗ .
256 {COM_FROM_MON_AFS_TARGET_VALIDATED_COM_FROM_MON_AFS_TARGET_ISVALID
257 ? targ1 : i n t ? va l i d1 : bool} .
258 t rue∗ .
259 {COM_FROM_MON_AFS_TARGET_VALIDATED_COM_FROM_MON_AFS_TARGET_ISVALID
260 ? targ2 : i n t ? va l i d2 : bool where
261 (( targ2 <> targ1 ) and ( va l i d2 <> va l i d1 ))}
262 ) ;
263 expected TRUE
264 end property
265 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
266 −− Funct ional p rope r t i e s
267 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
268 property Movement_Detection_Causality (MODEL)
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269 "Check that no movement detect ion informat ion i s sent to AFS"
270 " un les s the knob i s rotated "
271 i s
272 "Movement_Detection_Causality.bcg" =
273 "${MODEL} .Data.bcg " |=
274 Not_To_Unless ({AFS_MON_MVT !FALSE} ,
275 {AFS_MON_MVT !TRUE} ,
276 {PILOT_ROTATION_PILOT_MVT ?any !TRUE}
277 ) ;
278 expected TRUE
279 end property
280 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
281 property Rotation_and_Movement_Detection (MODEL)
282 "Check that a knob rota t ion i s accompanied by a movement detect ion "
283 i s
284 "Movement_Detection.bcg" =
285 "${MODEL} .Data.bcg " |=
286 Never ({PILOT_ROTATION_PILOT_MVT ? rot1 : i n t ?mvt1 : bool} .
287 not ({PILOT_ROTATION_PILOT_MVT ?any ?any}) .
288 {PILOT_ROTATION_PILOT_MVT ? rot2 : i n t ?mvt2 : bool
289 where (( rot2 <> rot1 ) and (mvt2 = FALSE))}
290 ) ;
291 expected TRUE
292 end property
293 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 property Movement_Correlation (MODEL)
295 "A new knob pos i t i on informat ion sent to AFS_COM should be accompanied"
296 "by a movement detect ion informat ion sent to AFS_MON"
297 i s
298 "Movement_Detection.bcg" =
299 "${MODEL} .Data.bcg " |=
300 Never ( t rue∗ .
301 {AFS_COM_ROTATION ?mvt1 : i n t} .
302 not ({AFS_COM_ROTATION ?any}) ∗ .
303 {AFS_COM_ROTATION ?mvt2 : i n t where mvt2 <> mvt1} .
304 not ({AFS_MON_MVT ?any}) .
305 {AFS_MON_MVT !TRUE}
306 ) ;
307 expected TRUE
308 end property
309 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
310 property Movement_Detection_Sending (MODEL)
311 "Check that whenever the knob i s rotated , a movement detect ion "
312 " informat ion i s sent to AFS"
313 i s
314 "Movement_Detection_Sending.bcg" =
315 "${MODEL} .Data.bcg " |=
316 Never ( t rue∗ .
317 {PILOT_ROTATION_PILOT_MVT ?any !TRUE} .
318 not ({AFS_MON_MVT ?any}) ∗ .
319 {AFS_MON_MVT !FALSE}
320 ) ;
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321 expected TRUE
322 end property
323 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
324 property Movement_Detection_Sustain_FCP_1 (MODEL, FCP_MVT_PROLONG)
325 "Check that the detect ion movement informat ion i s maintained TRUE"
326 " fo r ${FCP_MVT_PROLONG} cyc l e durat ion "
327 i s
328 "Movement_Detection_Sustain_1.bcg" =
329 "${MODEL} .Data.bcg " |=
330 Sustain ( t rue∗ .
331 {PILOT_ROTATION_PILOT_MVT ?any !TRUE} .
332 not ({PILOT_ROTATION_PILOT_MVT ?any ?any}) ∗ .
333 {PILOT_ROTATION_PILOT_MVT ?any !FALSE} ,
334 {AFS_MON_MVT !TRUE} ,
335 {AFS_MON_MVT !FALSE} ,
336 ${FCP_MVT_PROLONG}
337 ) ;
338 expected TRUE
339 end property
340 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
341 property Movement_Detection_Sustain_FCP_2 (MODEL, FCP_MVT_PROLONG)
342 "Check that the movement s i gna l informat ion i s not maintained TRUE"
343 " fo r more than FCP_MVT_PROLONG cyc le durat ion i f no knob rota t ion "
344 "has occured in the meanwhile"
345 i s
346 "Movement_Detection_Sustain_2.bcg" =
347 "${MODEL} .Data.bcg " |=
348 Never ( t rue∗ .
349 {PILOT_ROTATION_PILOT_MVT ?any !TRUE} .
350 (( not ({PILOT_ROTATION_PILOT_MVT ?any ?any})) ∗ .
351 {PILOT_ROTATION_PILOT_MVT ?any !FALSE} .
352 ( not ({AFS_MON_MVT ?any}
353 or {PILOT_ROTATION_PILOT_MVT ?any ?any})) ∗ .
354 {AFS_MON_MVT !TRUE}
355 ){${FCP_MVT_PROLONG}}
356 ) ;
357 expected TRUE
358 end property
359 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
360 property Fault_Tolerance (MODEL)
361 "Check that the system i s f a u l t to l e r an t "
362 i s
363 " Diag.Fault_Tolerance.${MODEL} .bcg " =
364 "${MODEL} .bcg " |=
365 Never ( t rue∗ . {FAULT_TOLERANCE ! "FALSE"} ) ;
366 expected TRUE
367 end property
368 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
369 property System_Movement_Observation (MODEL, RESULT)
370 "Check that a movement detected in FCP i s susta ined enough to be observed "
371 "by AFS_MON"
372 i s
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373 "Diag.System_Movement_Observation.${MODEL} .bcg " =
374 "${MODEL} .bcg " |=
375 NEVER (( not {TO_AFS_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !TRUE} .
376 ( not {FROM_CP_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !FALSE} .
377 ( not {TO_AFS_MON_MVT !TRUE}) ∗ . {TO_AFS_MON_MVT !TRUE}
378 ) ;
379 resu l t "$RESULT" expected TRUE
380 end property
381 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
382 property System_Movement_Detection (MODEL, RESULT)
383 "No new a l t i t u d e order i s provided by AFS_COM unless a movement has been"
384 " detected in AFS_MON"
385 i s
386 "Diag.System_Movement_Detection.${MODEL} .bcg " =
387 "${MODEL} .bcg " |=
388 Not_to_Unless ({MON_FROM_COM_AFS_TARGET_VALIDATION ? targ1 : i n t} ,
389 {MON_FROM_COM_AFS_TARGET_VALIDATION ? targ2 : i n t
390 where targ1 <> targ2} ,
391 {FROM_CP_MON_MVT ! "TRUE"}
392 ) ;
393 resu l t "$RESULT" expected TRUE
394 end property
395 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
396 −− V e r i f i c a t i o n of LTSs
397 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
398 % case "$MODEL" in
399 % "FCP_Component" | "AFCS_System") \
400 check FCP_Deadlock_Absence ( "$MODEL" ) ;
401 check Progress_PILOT_ROTATION_PILOT_MVT ("$MODEL" ) ;
402 check Progress_AFS_COM_ROTATION ("$MODEL" ) ;
403 check Progress_AFS_MON_MVT ("$MODEL" ) ;
404 check Movement_Detection_Causality ( "$MODEL" ) ;
405 check Rotation_and_Movement_Detection ( "$MODEL" ) ;
406 check Movement_Correlation ( "$MODEL" ) ;
407 check Movement_Detection_Sending ( "$MODEL" ) ;
408 check Movement_Detection_Sustain_FCP_1 ("$MODEL" , "$FCP_MVT_PROLONG" ) ;
409 check Movement_Detection_Sustain_FCP_2 ("$MODEL" , "$FCP_MVT_PROLONG" ) ;
410 % ; ;
411 % "AFS_Component" | "AFCS_System") \
412 check AFS_COM_Deadlock_Absence ( "$MODEL" ) ;
413 check AFS_MON_Deadlock_Absence ( "$MODEL" ) ;
414 check Progress_VALIDATED_TARGET ("$MODEL" ) ;
415 check Progress_CP_COM_TARGET_POSITION ("$MODEL" ) ;
416 check Progress_CP_MON_MVT ("$MODEL" ) ;
417 check Progress_COM_TO_MON_AFS_TARGET_VALIDATION ("$MODEL" ) ;
418 check Progress_MON_FROM_COM_AFS_TARGET_VALIDATION ("$MODEL" ) ;
419 check Progress_MON_TO_COM_AFS_TARGET_VALIDATED ("$MODEL" ) ;
420 check Progress_COM_FROM_MON_AFS_TARGET_VALIDATED ("$MODEL" ) ;
421 % ; ;
422 % "AFCS_System" ) \
423 check Fault_Tolerance ( "$MODEL" ) ;
424 check System_Movement_Observation ( "$MODEL" , "RESULT" ) ;
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425 check System_Movement_Detection ( "$MODEL" , "RESULT" ) ;
426 % i f [ "$CHECK_PARAMETRISED_MODEL" = "1" ]
427 % then
428 % f o r i in 3 7 10 13 17 20
429 % do
430 % f o r j in 1 2 3 4 5 6
431 % do
432 % MODEL="AFCS_CP_${ i }_AFS_${ j }"
433 check System_Movement_Observation ( "$MODEL" , "RESULT" ) ;
434 % i f [ "$RESULT" = FALSE ]
435 % then
436 "Diag.System_Movement_Observation.${MODEL} .bcg " =
437 tota l safety reduction of
438 par t i a l hide a l l but
439 "MON_FROM_COM_AFS_TARGET_VALIDATION.∗" ,
440 "FROM_CP_MON_MVT.∗"
441 in "Diag.System_Movement_Observation.${MODEL} .bcg " ;
442 % f i
443 check System_Movement_Detection ( "$MODEL" , "RESULT" ) ;
444 % i f [ "$RESULT" = FALSE ]
445 % then
446 "Diag.System_Movement_Detection.${MODEL} .bcg " =
447 tota l safety reduction of
448 par t i a l hide a l l but
449 "TO_AFS_MON_MVT.∗" ,
450 "FROM_CP_MON_MVT.∗"
451 in "Diag.System_Movement_Detection.${MODEL} .bcg " ;
452 % f i
453 % done
454 % done
455 % f i
456 % ; ;
457 % esac
458 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.2.2 Property patterns

1 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
2 (∗ F i l e l i b r a r y . mcl ∗)
3 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
4 macro Never (A) =
5 [A] f a l s e
6 end_macro
7 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
8 macro Not_TO_Unless (A, B, C) =
9 [ t rue∗ . A. ( not (C))∗ . B] f a l s e
10 end_macro
11 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
12 macro After_Inev (A, B) =
13 [ t rue∗ . A] inev (B)
14 end_macro
15 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
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16 macro inev (A) =
17 mu X . ( <t rue> t rue and [ not (A) ] X )
18 end_macro
19 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
20 macro Always_Some (A) =
21 [ t rue∗ ] < t rue∗ . A> t rue
22 end_macro
23 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
24 macro Alive_A (A) =
25 [ t rue∗ . A] <t rue∗ . A> t rue
26 end_macro
27 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
28 macro Deadline (R, A1, A2, n) =
29 Never (R. ( not (A1))∗ . (A1. ( not (A1 or A2))∗){n+1})
30 end_macro
31 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
32 macro Not_To_Unless_Most (A1, A2, A3, n) =
33 Deadline ( true∗ . A1, A3, A2, n)
34 end_macro
35 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
36 macro Sustain (R, A1, A2, n) =
37 [ R ] nu Counter ( c : nat := 1) . (
38 (( c < n) imp l i e s ( [ A2 ] f a l s e and [ A1 ] Counter ( c + 1)))
39 and [ not (A1 or A2) ] Counter ( c )
40 )
41 end_macro
42 (∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗)
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Appendix B

The GRL Model of the Car Park
Application

This appendix presents the GRL model of the car park application.

B.1 Global constants
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Global constants
3 const Park_Size : int16 := 5
4 const Cst_Bool_Empty_Buffer : bool := f a l se
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.2 Subblocks modelling function blocks
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Numerical constant block
3 block B_Num {Numeric_Constant : int16}
4 (out Numeric_Value : int16 )
5 i s
6 Numeric_Value := Numeric_Constant
7 end block
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 −− Logic And block (2 inputs )

10 block B_And ( in Left : bool := true ,
11 in Right : bool := true ,
12 out Res : bool )
13 i s
14 Res := ( Left and Right )
15 end block
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 −− Logic And block (4 inputs )
18 block B_And_4 ( in In1 : bool := true ,
19 in In2 : bool := true ,
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20 in In3 : bool := true ,
21 in In4 : bool := true ,
22 out Res : bool )
23 i s
24 Res := ( In1 and In2 and In3 and In4 )
25 end block
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 −− Logic Or block
28 block B_Or ( in Left : bool := fa lse ,
29 in Right : bool := fa lse ,
30 out Res : bool ) i s
31 Res := ( Left or Right )
32 end block
33 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 −− Logic Not block
35 block B_Not ( in Input : bool := fa lse ,
36 out Res : bool )
37 i s
38 Res := not ( Input )
39 end block
40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 −− Timer block
42 block B_Edge {Rising_Mode : bool := true , Falling_Mode : bool := f a l se }
43 ( in Logic_Signal : bool := true ,
44 out Edge_Detected : bool ) i s
45 s tat i c var Pre_Signal : bool := fa l se
46 var Rise , Fa l l : bool
47 Rise := Logic_Signal and not ( Pre_Signal ) ;
48 Fa l l := not ( Rise ) ;
49 Edge_Detected := (Rising_Mode and Rise ) or ( Falling_Mode and Fa l l ) ;
50 Pre_Signal := Logic_Signal
51 end block
52 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 −− Comparator block
54 block B_Compare {Mode : Type_Comparison := Equal}
55 ( in Val idat ion : bool := true ,
56 in Left , Right : int16 := 0 , out Res : bool )
57 i s
58 case Mode i s
59 Equal −> Res := ( Left == Right )
60 | St r i c l t y_Super io r −> Res := ( Left > Right )
61 | Super ior −> Res := ( Left >= Right )
62 | S t r i c t l y _ I n f e r i o r −> Res := ( Left < Right )
63 | I n f e r i o r −> Res := ( Left <= Right )
64 | Not_Equal −> Res := ( Left != Right )
65 end case ;
66 Res := Res and Val idat ion
67 end block
68
69 type Type_Comparison i s
70 enum Equal , St r i c l ty_Super io r , Superior ,
71 S t r i c t l y _ I n f e r i o r , I n f e r i o r , Not_Equal
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72 end type
73 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 −− Counter block
75 block B_UpDown_Count ( in Inc rease : bool := fa lse ,
76 in Decrease : bool := fa lse ,
77 in Reset : bool := fa lse ,
78 in Preset : bool := fa lse ,
79 in Preset_Value : int16 := 0 ,
80 out Output : bool ,
81 out Current_Value : int16 ) i s
82 s tat i c var Pre_Current_Value : int16 := 0 ,
83 Pre_Increase : bool := fa lse ,
84 Pre_Decrease : bool := fa l se
85 i f ( Reset ) then
86 Current_Value := 0;
87 Output := fa l se
88 else
89 i f ( Preset ) then
90 Current_Value := Preset_Value ;
91 Output := fa l se
92 else
93 i f (( Inc rease ) and not ( Pre_Increase )
94 and ( Pre_Current_Value < Preset_Value )) then
95 Current_Value := Pre_Current_Value + 1
96 else
97 Current_Value := Pre_Current_Value
98 end i f ;
99 i f (( Decrease ) and not ( Pre_Decrease )

100 and ( Pre_Current_Value > −32768)) then
101 Current_Value := Current_Value − 1
102 else
103 Current_Value := Current_Value
104 end i f ;
105 i f ( Current_Value == Preset_Value ) then
106 Output := true
107 else
108 Output := f a l se
109 end i f
110 end i f
111 end i f ;
112 Pre_Current_Value := Current_Value ;
113 Pre_Increase := Increase ;
114 Pre_Decrease := Decrease
115 end block
116 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.3 Highest-level blocks modelling PLCs
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Block model l ing the e x i t PLC
3 block Exit ( in Cmd_P1, Cmd_P2: bool , out Open : bool )
4 [ send Out_P1 : bool , send Out_P2: bool ] i s
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5 var Edge_Cmd_P1, Edge_Cmd_P2 : bool
6 −− i f a car parking in Storey1 a r r i v e s
7 B_Edge {true , f a l se }(Cmd_P1, ?Edge_Cmd_P1) ; −− does the car ask fo r l eav ing ?
8 B_And (Edge_Cmd_P1, Cmd_P1, ?Out_P1) ; −− inform Storey1
9 −− i f a car parking in Storey2 a r r i v e s

10 B_Edge {true , f a l se }(Cmd_P2, ?Edge_Cmd_P2) ; −− does the car ask fo r l eav ing ?
11 B_And (Edge_Cmd_P2, Cmd_P2, ?Out_P2) ; −− inform Storey2
12 −− i f a car asks fo r leav ing , open the gate
13 B_Or (Edge_Cmd_P1, Edge_Cmd_P2, ?Open)
14 end block
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 −− Block model l ing a storey PLC
17 block Storey {Id_P1 , Id_P2 : bool}
18 ( in Cmd_P1, Cmd_P2: bool ,
19 out Open , Err : bool )
20 [ receive Car_Left_from_exit : bool ,
21 send Car_Left_to_entrance : bool ] i s
22 a l i a s B_Edge {true , fa l se } as Edge_Cmd_P1; Edge_Cmd_P2,
23 B_And as B2_And; B3_And; B5_And; B6_And,
24 B_Or as B7_Or; B8_Or
25 var edge1 , edge2 , edge1_P1 , edge1_P2 , edge2_P1 , edge2_P2 : bool
26 Edge_Cmd_P1 (Cmd_P1, ?edge1 ) ;
27 B2_And (edge1 , Id_P1 , ?edge1_P1 ) ;
28 B3_And (edge1 , Id_P2 , ?edge1_P2 ) ;
29 Edge_Cmd_P2 (Cmd_P2, ?edge2 ) ;
30 B5_And (edge2 , Id_P2 , ?edge2_P2 ) ;
31 B6_And (edge2 , Id_P1 , ?edge2_P1 ) ;
32 B7_Or (edge1_P1 , edge2_P2 , ?Open ) ;
33 B8_Or (edge1_P2 , edge2_P1 , ?Err ) ;
34 Car_Left_to_entrance := Car_Left_from_exit
35 end block
36 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 −− Block model l ing the entrance PLC
38 block Entrance {Size : int16 := Park_Size}
39 ( in Cmd: bool ,
40 out Green , Yellow , Red : bool ,
41 out Open , P1, P2 : bool )
42 [ receive Out1 : bool , receive Out2 : bool ] i s
43 a l i a s B_Edge {true , fa l se } as B1,
44 B_And_4 as B2,
45 B_Num {Size} as B3,
46 B_Compare { S t r i c t l y _ I n f e r i o r } as B4,
47 B_UpDown_Count as B5,
48 B_Not as B6,
49 B_Not as B7,
50 B_And as B8,
51 B_And as B9,
52 B_And_4 as B10 ,
53 B_Compare { S t r i c t l y _ I n f e r i o r } as B11 ,
54 B_UpDown_Count as B12 ,
55 B_Not as B13 ,
56 B_Not as B14 ,
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57 B_And as B15 ,
58 B_And as B16 ,
59 B_And as B17 ,
60 B_Or as B18 ,
61 B_Not as B19 ,
62 B_And as B20 ,
63 B_Or as B21
64 s tat i c var pre_c5 : bool := true ,
65 pre_c9 : bool := true ,
66 pre_c10 : bool := true
67 var c1 , c2 , c3 , c4 , c5 , c7 , c9 , c10 , c11 , c12 , c13 , c14 , c15 , c16 : bool ,
68 c6 , c8 : int16
69 B1 (Cmd, ?c1 ) ;
70 B2 (c1 , pre_c9 , pre_c10 , _, ?c4 ) ;
71 B3 (?c6 ) ;
72 B5 (c4 , Out1 , _, _, c6 , ?c7 , ?c8 ) ;
73 B4 (_, c8 , c6 , ?c9 ) ;
74 P1 := c4 ;
75 B6 (P1, ?c10 ) ;
76 B8 (c7 , c10 , ?c12 ) ;
77 B7 (c7 , ?c11 ) ;
78 B9 (c11 , c10 , ?c14 ) ;
79 B10 (c1 , pre_c5 , pre_c10 , not (P1) , ?c2 ) ;
80 B12 (c2 , Out2 , _, _, c6 , ?c7 , ?c8 ) ;
81 B11 (_, c8 , c6 , ?c5 ) ;
82 P2 := c2 ;
83 B13 (P2, ?c3 ) ;
84 B15 (c7 , c3 , ?c13 ) ;
85 B14 (c7 , ?c11 ) ;
86 B16 (c11 , c3 , ?c15 ) ;
87 B17 (c12 , c13 , ?Red ) ;
88 B18 (P1, P2, ?Open ) ;
89 B21 (c14 , c15 , ?c16 ) ;
90 B20 (c16 , not (Open) , ?Green ) ;
91 Yellow := Open ;
92 B19 (Open , ?c10 ) ;
93 pre_c5 := c5 ;
94 pre_c9 := c9 ;
95 pre_c10 := c10
96 end block
97 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.4 Environments
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Environment ensur ing that :
3 −−−− a l eav ing request cannot occur i f there i s no car in the car park
4 −−−− an entrance or e x i t request cannot occur in two succes s i ve steps of a PLC
5 −−−− a t i c k e t given to a car r e f e r ence s exact l y one storey
6 environment Env_Cmd ( in Park_Open , Park_P1 , Park_P2 : bool ,
7 in Out_Open : bool ,
8 out Cmd: bool ,
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9 out Exit_P1 , Exit_P2 : bool ,
10 out Cmd_P11, Cmd_P12: bool ,
11 out Cmd_P21, Cmd_P22: bool
12 )
13 i s
14 s tat i c var Pre_Cmd, Pre_Exit , Pre_Cmd_1, Pre_Cmd_2: bool := fa lse ,
15 Nb_Car : nat := 0
16 se lect
17 when Cmd −> i f Pre_Cmd then
18 Cmd := fa l se
19 else
20 Cmd := any bool
21 end i f ;
22 Pre_Cmd := Cmd
23 [ ]
24 when <Exit_P1 , Exit_P2> −> i f ((Nb_Car == 0) or Pre_Exit ) then
25 Exit_P1 := fa l se ;
26 Exit_P2 := fa l se
27 else
28 Exit_P1 := any bool ;
29 Exit_P2 := any bool
30 where not (Exit_P1 and Exit_P2)
31 end i f ;
32 i f (Exit_P1 or Exit_P2) then
33 Pre_Exit := true
34 end i f
35 [ ]
36 when <Cmd_P11, Cmd_P12> −> i f ((Nb_Car == 0) or Pre_Cmd_1) then
37 Cmd_P11 := fa l se ;
38 Cmd_P12 := fa l se
39 else
40 Cmd_P11 := any bool ;
41 Cmd_P12 := any bool
42 where not (Cmd_P11 and Cmd_P12)
43 end i f ;
44 i f (Cmd_P11 or Cmd_P12) then
45 Pre_Cmd_1 := true
46 end i f
47 [ ]
48 when <Cmd_P21, Cmd_P22> −> i f ((Nb_Car == 0) or Pre_Cmd_2) then
49 Cmd_P21 := fa l se ;
50 Cmd_P22 := fa l se
51 else
52 Cmd_P21 := any bool ;
53 Cmd_P22 := any bool
54 where not (Cmd_P21 and Cmd_P22)
55 end i f ;
56 i f (Cmd_P21 or Cmd_P22) then
57 Pre_Cmd_2 := true
58 end i f
59 [ ]
60 when ?<Park_Open , Park_P1 , Park_P2> −> i f (Park_Open) then
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61 Nb_Car := Nb_Car + 1
62 end i f ;
63 Park_P1 := Park_P1 ;
64 Park_P2 := Park_P2
65
66 [ ]
67 when ?Out_Open −> i f (Out_Open) then
68 Nb_Car := Nb_Car − 1
69 end i f
70 end se lect
71 end environment
72 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 −− Environment ensur ing that two blocks evo lve at the same pace
74 environment Quasisynch_2 ( block Storey1 , Storey2 ) i s
75 s tat i c var ok1 , ok2 : bool := true −− permiss ion fo r b locks to execute
76 se lect
77 i f (ok1) then −− execut ion of Storey1 i f permitted
78 enable Storey1 ;
79 ok1 := f a l se
80 end i f
81 [ ]
82 i f (ok2) then −− execut ion of Storey2 i f permitted
83 enable Storey2 ;
84 ok2 := f a l se
85 end i f
86 end se lect ;
87 −− i f both blocks have been executed once , r e i n i t i a l i z e permiss ions
88 i f (not (ok1) and not (ok2 )) then
89 ok1 := true ;
90 ok2 := true
91 end i f
92 end environment
93 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 −− Environment ensur ing that four blocks evo lve at the same pace
95 environment Quasisynch_4 ( block B1, B2, B3, B4) i s
96 s tat i c var ok1 , ok2 , ok3 , ok4 : bool := true
97 se lect
98 i f (ok1) then
99 enable B1;

100 ok1 := f a l se
101 end i f
102 [ ]
103 i f (ok2) then
104 enable B2;
105 ok2 := f a l se
106 end i f
107 [ ]
108 i f (ok3) then
109 enable B3;
110 ok3 := f a l se
111 end i f
112 [ ]
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113 i f (ok4) then
114 enable B4;
115 ok4 := f a l se
116 end i f
117 end se lect ;
118 i f (not (ok1) and not (ok2) and not (ok3) and not (ok4 )) then
119 ok1 := true ;
120 ok2 := true ;
121 ok3 := true ;
122 ok4 := true
123 end i f
124 end environment
125 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
126 −− Environments desc r ib ing scenar io s between blocks
127 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128 type cases i s
129 enum Car_Park , Car_P1 , Car_P2 , Car_Ex , None
130 end type
131 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 environment Scen_Act ( block Entrance , Exit , Storey1 , Storey2 ) i s
133 s tat i c var act ion : cases := Car_Park
134 case act ion i s
135 Car_Park −> act ion := Car_P2 ; enable Entrance
136 | Car_P2 −> act ion := Car_P1 ; enable Storey2
137 | Car_P1 −> act ion := Car_Ex ; enable Storey1
138 | Car_Ex −> act ion := None ; enable Exit
139 | any −> act ion := None
140 end case
141 end environment
142 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 environment Scen_Data (out Cmd_Park : bool , out Cmd_P11, Cmd_P12: bool ,
144 out Cmd_P21, Cmd_P22: bool , out Exit_P1 , Exit_P2 : bool )
145 i s
146 se lect
147 when <Cmd_Park> −> Cmd_Park := true −− Entrance data
148 [ ] when <Cmd_P21, Cmd_P22> −> Cmd_P21 := true ; −− Storey1 data
149 Cmd_P22 := fa l se
150 [ ] when <Cmd_P11, Cmd_P12> −> Cmd_P11 := true ; −− Storey2 data
151 Cmd_P12 := fa l se
152 [ ] when <Exit_P1 , Exit_P2> −> Exit_P1 := true ; −− Exit data
153 Exit_P2 := fa l se
154 end se lect
155 end environment
156 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.5 Mediums
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Medium model l ing a l o s s y communication
3 medium Buffer_Bit [ receive Input : bool ,
4 send Output : bool ]
5 i s
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6 s tat i c var Buffer : bool := Cst_Bool_Empty_Buffer
7 se lect
8 when ? Input −> select
9 Buffer := Input

10 [ ] nu l l
11 end se lect
12 [ ]
13 when Output −> i f ( Buffer == Cst_Bool_Empty_Buffer ) then
14 Output := Cst_Bool_Default_Value
15 else
16 Output := Buffer ;
17 Buffer := Cst_Bool_Empty_Buffer
18 end i f
19 end se lect
20 end medium
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.6 Systems
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− System to generate the LTS corresponding to the entrance PLC
3 system Main_Entrance {Size : int16 := 1}
4 (Cmd: bool , Green , Yellow , Red : bool ,
5 Open , P1, P2 : bool , Out1 : bool , Out2 : bool )
6 i s
7 block l i s t
8 Entrance {Size }(Cmd, ?<Green , Yellow , Red>, ?<Open , P1, P2>) [ Out1 , Out2 ]
9 end system

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 −− System to generate the LTS corresponding to storey PLCs
12 system Main_Storey (Cmd_P11, Cmd_P21 : bool , R_Out1, S_Out1 : bool ,
13 Open1 : bool , Err1 : bool )
14 i s
15 a l i a s Storey {true , fa l se } as Storey
16 block l i s t
17 Storey (<Cmd_P11, Cmd_P21>, ?<Open1 , Err1>)
18 [R_Out1, ?S_Out1 ]
19 end system
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 −− System to generate the LTS corresponding to the e x i t PLC
22 system Main_Exit (Cmd_P1, Cmd_P2: bool , Open : bool , Out_P1: bool , Out_P2: bool )
23 i s
24 block l i s t
25 Exit (<Cmd_P1, Cmd_P2>, ?Open ) [ ?Out_P1, ?Out_P2]
26 end system
27 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 −− System to generate the LTS corresponding to a scenar io of the car park
29 system Main_Scen (Cmd_Park, Park_P1 , Park_P2 : bool ,
30 Cmd_P11, Cmd_P12, Cmd_P21, Cmd_P22, Exit_P1 , Exit_P2 : bool ,
31 Green , Yellow , Red : bool ,
32 Park_Open , Open1 , Open2 , Out_Open : bool ,
33 Err1 , Err2 : bool ) i s
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34 a l i a s Storey {true , fa l se } as Storey1 ,
35 Storey { fa lse , true} as Storey2 ,
36 Entrance {Park_Size} as Entrance ,
37 Exit as Exit ,
38 Scen_Data as Scen_Data ,
39 Scen_Act as Scen_Act ,
40 Buffer_Bit as Med1; Med2; Med3; Med4
41 var S_Out1 , S_Out2 , R_Out1, R_Out2 : bool ,
42 S_Full1 , S_Full2 , R_Full1 , R_Full2 : bool
43 block l i s t
44 Exit (<Exit_P1 , Exit_P2>, ?<Out_Open>) [ ?S_Out1 , ?S_Out2 ] ,
45 Storey1 (<Cmd_P11, Cmd_P12>, ?<Open1 , Err1>) [R_Out1, ?S_Full1 ] ,
46 Storey2 (<Cmd_P21, Cmd_P22>, ?<Open2 , Err2>) [R_Out2, ?S_Full2 ] ,
47 Entrance (Cmd_Park, ?<Green , Yellow , Red>,
48 ?<Park_Open , Park_P1 , Park_P2>)
49 [ R_Full1 , R_Full2 ]
50 environment l i s t
51 Scen_Act ( Entrance , Storey1 , Storey2 , Ex i t ) ,
52 Scen_Data (?<Cmd_Park>, ?<Cmd_P11, Cmd_P12>, ?<Cmd_P21, Cmd_P22>,
53 ?<Exit_P1 , Exit_P2>)
54 medium l i s t
55 Med1 [S_Out1 , ?R_Out1] ,
56 Med2 [S_Out2 , ?R_Out2] ,
57 Med3 [ S_Full1 , ?R_Full1 ] ,
58 Med4 [ S_Full2 , ?R_Full2 ]
59 end system
60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 −− System to generate the LTS corresponding to a car park with quasi−synchrony
62 −− and cons t ra in t s on block inputs
63 system Main_Quasi {Size : int16}
64 (Cmd_Park, Park_P1 , Park_P2 : bool ,
65 Cmd_P11, Cmd_P12, Cmd_P21, Cmd_P22, Exit_P1 , Exit_P2 : bool ,
66 Green , Yellow , Red : bool ,
67 Park_Open , Open1 , Open2 , Out_Open : bool ,
68 Err1 , Err2 : bool )
69 i s
70 a l i a s Storey {true , f a l se } as Storey1 ,
71 Storey { fa lse , true} as Storey2 ,
72 Entrance {Park_Size} as Entrance ,
73 Exit as Exit ,
74 Quasisynch_4 as Env_Act ,
75 Env_Cmd as Env_Data ,
76 Buffer_Bit as Med1; Med2; Med3; Med4
77 var S_Out1 , S_Out2 , R_Out1, R_Out2 : bool ,
78 S_Full1 , S_Full2 , R_Full1 , R_Full2 : bool
79 block l i s t
80 Exit (<Exit_P1 , Exit_P2>, ?Out_Open) [ ?S_Out1 , ?S_Out2 ] ,
81 Storey1 (<Cmd_P11, Cmd_P12>, ?<Open1 , Err1>) [R_Out1, ?S_Full1 ] ,
82 Storey2 (<Cmd_P21, Cmd_P22>, ?<Open2 , Err2>) [R_Out2, ?S_Full2 ] ,
83 Entrance (Cmd_Park, ?<Green , Yellow , Red>,
84 ?<Park_Open , Park_P1 , Park_P2>)
85 [ R_Full1 , R_Full2 ]
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86 environment l i s t
87 Env_Act ( Exit , Storey1 , Storey2 , Entrance ) ,
88 Env_Data (<Park_Open , Park_P1 , Park_P2>, Out_Open, ?Cmd_Park,
89 ?<Exit_P1 , Exit_P2>, ?<Cmd_P11, Cmd_P12>, ?<Cmd_P21, Cmd_P22>)
90 medium l i s t
91 Med1 [S_Out1 , ?R_Out1] ,
92 Med2 [S_Out2 , ?R_Out2] ,
93 Med3 [ S_Full1 , ?R_Full1 ] ,
94 Med4 [ S_Full2 , ?R_Full2 ]
95 end system
96 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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