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Abstract

A GALS (Globally Asynchronous, Locally Synchronous) system consists of several syn-
chronous components that evolve concurrently, each with its own pace, and communi-
cate altogether asynchronously. This thesis proposes a formal modelling and verification
framework dedicated to GALS systems, with a focus on the asynchronous behaviour.

As a cornerstone of our framework, we have designed a formal language, named GRL
(GALS Representation Language). GRL enables the behavioural specification of syn-
chronous components, asynchronous communication, and constraints involving both
component paces and the data carried by component inputs. To analyse GRL spec-
ifications, we took advantage of the CADP software toolbox for the verification of
asynchronous concurrent processes, using state space exploration techniques. For this
purpose, we have defined a translation from GRL to the LNT specification language sup-
ported by CADP. The translation has been implemented by a tool named GRL2LNT,
thus enabling state spaces to be automatically derived from GRL specifications.

To enable the formal verification of GRL specifications, we have designed a property
specification language, named muGRL, which is interpreted on GRL state spaces. The
muGRL language is based on a set of patterns capturing properties of concurrent and
GALS systems, which reduces the complexity of using full-fledged temporal logics. The
semantics of muGRL are defined by a translation into the MCL temporal logic supported
by CADP. Finally, we have illustrated how GRL, muGRL, and CADP can be applied
to model and verify concrete GALS applications, including industrial case-studies.



Résumé

Un systeme GALS (Globalement Asynchrone, Localement Synchrone) est un ensemble
de composants synchrones qui évoluent en méme temps, chacun a son propre rythme,
et qui communiquent de maniere asynchrone. Cette these propose un environnement
formel de modélisation et de vérification dédié aux systéemes GALS, en se focalisant sur
le comportement asynchrone.

Notre environnement s’appuie sur un langage formel que nous avons congu, appelé GRL
(GALS Representation Language). GRL permet la spécification comportementale des
composants synchrones, de la communication asynchrone, et des contraintes sur les
rythmes des composants ainsi que sur les valeurs que prennent les entrées des com-
posants. Pour analyser les spécifications GRL, nous utilisons CADP, une boite a outils
logicielle permettant la vérification de processus concurrents asynchrones par des tech-
niques d’exploration d’espaces d’états. Dans ce but, nous avons défini une traduction de
GRL vers LNT, un langage de spécification supporté par CADP. La traduction est im-
plémentée dans un outil appelé GRL2LNT, permettant ainsi la génération automatique
d’espaces d’états a partir des spécifications GRL.

Pour permettre la vérification formelle des spécifications GRL, nous avons congu un
langage de propriétés, appelé muGRL, qui s’interpréte sur les espaces d’états de GRL.
Le langage muGRL est basé sur un ensemble de patrons qui capturent les propriétés des
systémes concurrents et des systemes GALS, réduisant ainsi la complexité d’utiliser les
logiques temporelles classiques. La sémantique de muGRL est définie par traduction vers
MCL, le langage de logique temporelle fourni par CADP. Enfin, nous illustrons 1'usage
de GRL, muGRL et CADP pour modéliser et vérifier des applications GALS concretes,
comprenant des études de cas industrielles.
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Chapter 1

Introduction

Constructing correct software and hardware systems is challenging. System quality re-
lies not only on good performance such as processing capacity, but also on the absence
of errors. For hardware systems, defects may have severe economic consequences. For
software used in safety-critical systems, a simple bug can have disastrous human con-
sequences. Concurrent systems, which are composed of several (hardware or software)
components possibly interacting with each other, are particularly vulnerable to errors.
The number of possible concurrency errors (that is, errors due to wrong ordering of
concurrent events) is exponential in the number of the concurrent components. Hence,
a major goal when constructing concurrent systems is their correctness despite their
complexity.

Formal methods provide languages, techniques, and tools to establish system correctness.
The mathematical rigour of formal methods favours an early integration of verification
in the design process. For example, they have been applied in the certification of avionics
software systems [DO-11, MLD"13] and railway systems [FFG14].

Model-based verification builds on models describing the system behaviour, i.e., what
the system may do during its execution, by means of events, in an abstract and precise
way. In practice, models are usually derived from high-level formalisms endowed with
precise semantics. Correctness properties, also written in high-level formalisms, can be
checked over models. The efficiency of the verification task relies on the adequacy of the
high-level formalisms with regards to the subtleties of intended systems.

Context

According to the nature of component composition and communication, concurrent sys-
tems can be classified into synchronous and asynchronous; for each class, well-adapted
formalisms are tailored to capture system behaviour.

Synchronous concurrent systems are composed of several components running in lockstep



Chapter 1. Introduction

fashion and sharing a global clock. For these systems, synchronous languages, among
which Esterel [BG92], Lustre [HCRP91], and Signal [LGGLBLM91], are appropriate
modelling formalisms. They rely on the synchrony assumptions: a system is seen as a
deterministic and infinite loop, whose iterations represent the clock ticks; within each
loop iteration, computations and data-flow communication are assumed to occur in zero-
delay. The synchrony assumptions make the modelling and verification tasks easy.

Asynchronous concurrent systems are composed of several components running inde-
pendently without a global clock and interacting with each other. For these systems,
process algebras, among which CCS [Mil89], CSP [Hoa85], and LOTOS [BB87], are
appropriate modelling formalisms. They are equipped with built-in operators for asyn-
chronous parallel composition; they provide abstraction means (e.g., nondeterminism);
and they have equivalence relations to efficiently and precisely compare systems.

Correctness properties of concurrent systems include the absence of undesirable situa-
tions and the succession of events in time, which can be arbitrarily far from each other.
To express properties, temporal logics, among which LTL [Pnu77] and CTL [EC82], are
powerful means. They consist of a small set of temporal operators expressing the logical
precedence of events over time.

This thesis is about formally modelling and verifying GALS ( Globally Asynchronous, Lo-
cally Synchronous) systems [Cha84], which are a class of concurrent systems. A GALS
system is composed of synchronous components running in asynchronous concurrency
without sharing their clocks. Communication between components is also asynchronous,
i.e., message exchange may take an arbitrary amount of time. For example, in a flight
control system, individual components are designed to run synchronously, but the dis-
tributed nature of the global system introduces asynchrony. Other GALS instances
include networks-on-chip and distributed PLCs (Programmable Logic Controllers).

In the general case, a GALS system may have arbitrary complexity. No assumption can
be made on clock synchronisation and component periods, nor on asynchronous commu-
nication media and their latency. Each GALS instance induces its own assumptions. In
particular, although synchronous components are generally deterministic, the absence
of a shared clock may introduce nondeterminism. Another source of nondeterminism is
unreliable communication media along which messages can be delayed, lost, duplicated,
or reordered. This makes system evolution unpredictable and unreproducible, entailing
a need for formal verification.

Motivation

The correctness of GALS systems relies on combining the verification approach for syn-
chronous systems and the one for asynchronous systems. Each approach, applied indi-
vidually, is unable to capture the behavioural subtleties for which the other approach is
devised. Languages and tools for synchronous systems are deterministic by nature, thus



unadapted to analyse nondeterminism and asynchronous concurrency. Languages and
tools for asynchronous systems lack built-in constructs dedicated to address the pure
synchrony assumptions.

We have identified a relative lack of approaches dealing with asynchronous concurrency in
existing design processes of GALS systems, compared to the intensive use of approaches
dealing with synchrony. This lack is manifold. On the one hand, the GALS paradigm
takes its roots in the industries that already integrated synchronous languages and cor-
responding tools in their development process. Consequently, the focus has been shifted
towards pushing the limits of synchronous languages and tools to accommodate GALS
behaviours. On the other hand, synchrony is easier to master than asynchrony, owing
to the zero-delay assumption and determinism, which makes systems easy to design and
debug. Contrarily, asynchronous concurrent languages and temporal logics require a
substantial learning effort, which may discourage potential users. Last, the behaviour
of GALS systems involves asynchronous concurrency and data handling, which are two
major causes of combinatorial explosion (in the possible behaviours). Additional effort
should be put to make careful modelling decisions and to choose adequate algorithmic
approaches, e.g., compositional verification, to face combinatorial explosion.

To alleviate the use of verification tools for asynchronous systems, one needs to in-
troduce DSLs (Domain Specific Languages) [vDKV00]. GALS-specific languages serve
as intermediate format mapping GALS systems, whose synchronous components are
possibly modelled using synchronous languages, to verification tools for asynchronous
systems. Due to the different semantics and abstraction level, a direct connection from
(synchronous) design languages to asynchronous languages could be complex. Instead,
performing the translation in several steps reduces that complexity and enhances the
connection modularity.

As regards behavioural modelling, a DSL should provide a clear distinction between
synchronous components and the asynchronous ones defining their asynchronous com-
position and communication. Such a distinction enables to combine of verification tools
for synchronous systems and those for asynchronous systems to address separately the
DSL synchronous and asynchronous components. For synchronous components, possibly
obtained from translation of existing synchronous languages, the DSL can be a (minimal)
language used as target of back-end compilers for synchronous languages. To ensure the
practical usability of the DSL, it should enable a natural description of relevant aspects
of GALS behaviour, in a way close to the end-user intuition and expectation.

As regards correctness properties, their formulation in temporal logic can be difficult and
error-prone, even for users familiar with formal methods and verification. One needs
a formalism tailored to capture GALS behaviour and enabling a concise and natural
expression of properties.
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Contributions

This thesis proposes a formal framework to analyse GALS systems focusing on their
asynchronous behaviour. In this respect, we take advantage of the CADP software
toolbox [GLMS13]| for the verification of asynchronous concurrent processes, using state
space exploration techniques.

As a cornerstone of our framework, we have designed a formal language, named GRL
(GALS Representation Language) [JLM14a]. GRL aims at offering a concise and mod-
ular description for the behaviour of GALS systems. Both traits of synchronous pro-
gramming (determinism, atomicity) and process algebra (nondeterminism, asynchronous
concurrency) are combined in one unified language, while keeping homogeneous syntax
and semantics. GRL builds upon the following three core constructs:

Blocks denote the synchronous part of GRL, in which the synchrony assumptions are
built-in. They provide a number of basic constructs to which synchronous language
constructs can be translated.

Mediums denote asynchronous components describing communication media. They
are provided with enough expressiveness to model general asynchronous commu-
nication, with different buffering mechanisms, including unreliable ones.

Environments denote asynchronous components abstracting the external environment
of blocks. Two kinds of constraints with different abstraction levels are considered.
Data constraints enable to express complex properties on the data carried by block
inputs. Activation constraints enable to control the execution of blocks, such as
relations between block paces, priorities, or failure. Furthermore, it is possible to
combine both kinds of constraints for enhanced usage, such as complex test case
scenarios.

All-in-one, GRL is intended to be sufficiently expressive and concise to model complex
GALS systems, which is an originality compared to state-of-the-art approaches.

We formalise the semantics of GRL, using structural operational semantics (SOS) rules,
in terms of lower-level models, i.e., state spaces. This enables rigorous specification of
GRL programs and paves the way for formal analysis. State spaces underlying GRL
are concise, exploiting the GALS assumptions such as the atomicity of synchronous
components. This enhances the efficiency of verification. Data and activation constraints
would also contribute to face combinatorial explosion.

After formally defining the syntax and semantics of GRL, we address its compilation into
state spaces. For this purpose, we design a translation from GRL into LNT [CCGT16],
the most recent specification language supported by CADP. LNT is a general-purpose
language implementing concurrency theory results and equipped with state space gen-
erators. We formalise the translation function from GRL into LNT, which is fully im-
plemented in a tool named GRL2LNT?!,

'The GRL2LNT tool has been implemented, mainly not by the author, in the framework of an



To analyse GRL specifications, we exploit the MCL language, a full-fledged temporal
logic supported by CADP. To leverage the expressiveness of MCL while reducing its com-
plexity of usage, we design a property description language, named muGRL. The muGRL
language builds upon a pattern system, following the general-purpose approach [DAC99],
which is also an originality of our approach. Patterns are high-level templates that cap-
ture frequently encountered situations in GALS applications, such as component halting
and idleness, and are translatable into temporal logics. The interpretation models of mu-
GRL are the state spaces generated by translating GRL specifications into LNT. The
muGRL semantics are defined by a translation into MCL. As such, muGRL is intended
to disseminate temporal logic power to potential GALS designers.

Last, we experiment our approach on concrete GALS applications, issued from academia
and industry. This reinforces our conviction that our approach can address a large
spectrum of GALS systems, ranging from deterministic applications to ones involving
arbitrary nondeterminism.

Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 surveys the state-
of-the-art concerning the formal modelling and verification of concurrent and GALS
systems. Chapter 3 constitutes a tutorial for the GRL language. It presents the formal
syntax of each GRL construct, its intuitive semantics, along with some illustrations.
Chapter 4 presents the formal dynamic semantics of GRL. It details the structural
operational semantic rules for the language constructs, stressing on the behavioural ones.
Chapter 5 presents the formal translation functions from GRL into LNT. Examples are
given for most of the functions, to enhance the readability and ease the comprehension.
Chapter 6 constitutes a tutorial for the muGRL language. Chapter 7 shows the way
GRL and muGRL can be applicable to concrete GALS applications. It also briefly
reports a primary industrial use of GRL. Chapter 8 concludes and offers some thoughts
on extensions to this work.

Parts of this manuscript have been published in conference proceedings and journals.
The article [JLM14a] presents an overview of an earlier version of GRL, the complete and
formal definition of GRL being available in an 82-pages research report [JLM14b]. Since
then, we have revised and enhanced the syntax of the language. The article [JLM16]
presents the latest version of GRL, including the material of chapters 3 and 4 as well as
an informal presentation of chapter 5.

industrial project, named Bluesky, of the Minalogic French competitiveness cluster (www.minalogic.com/
fr/projet/bluesky). The project addresses the design and validation of networks of PLCs (Programmable
Logic Controllers).
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Notations

We introduce some mathematical concepts and conventions used in this thesis.

General notations

A set is an ordered collection of objects, called its elements. The following operators
over sets are used:

Symbol Meaning
A1,y ..., 0n possibly empty finite sequence of elements of length n
g, ..., 0n non-empty finite sequence of elements of length n+1 (e if empty)
{a1,...,an} possibly empty set of elements a1, ..., an of size n
{ao,...,an} non-empty set of elements ao, ..., an of size n+1 ({} if empty)
(aty...,an) possibly empty list of elements a1, ..., a, of size n (e if empty)
(agy...,an) non-empty list of elements ag, ..., an of size n+1
a€A a is an element of the set A
ACB A is a subset of the set B
{a € A| P(a)} the set which contains only elements of A satisfying property P
Ax B the set of all ordered pairs (a,b) where a € A and b € B (Cartesian product)
l.n interval whose elements range from 1 to n
We use the operator ++ for list concatenation. For a set of lists {Lo, ..., £, }, we write
++ [, as abbreviation for Lo++...++L,,.

1€0..n

The following logical operators are used:

Symbol Meaning

- negation

A conjunction
\Y disjunction
= implication




For a set of elements {ag,...,a,}, we write A a; and \/ a; as abbreviation for
1€0..n 1€0..n
agN\...Nay and ag V...V ay,, respectively.

Syntactic description

This document defines and references several languages. Grammars of languages are
context-free. Syntactic definitions are presented in Extended Backus-Naur Form [Sta96],
i.e., as a set of so-called productions. Each production has the form “y ::= £”, where x is
a non-terminal symbol defined by the meta-expression &, which consists of non-terminal
symbols and terminal symbols composed using the following meta-operators:

Notation Operation Description

(&o) bracketing &o

[£0] option &y or nothing

Eox possibly empty repetition &, zero, one, or several occurrences
o+ non-empty repetition &, one, or several occurrences

&1 &2 concatenation &, followed by &2

&1 &2 alternative & or e

Additionnaly, the following conventions are used:

e Non-terminal symbols and generic terminal symbols are written in italics and their
occurrences can be distinguished using subscripts.

e The terminal symbol are either keywords written in bold font or key symbols are

written in teletype font. For example, “[17, “()”, and “|” denote terminal symbols

distinct from the meta-operators “[]”, “()”, and “|”.



Chapter 2

Background and State of the Art

A GALS system combines characteristics of synchronous and asynchronous systems,
which both belong to the class of reactive systems [HP85, Ber89, Hall0]. These are
systems in permanent interaction with the outside world. In this chapter, we first in-
troduce reactive systems. We then present the synchronous and asynchronous approach
to formally model and verify reactive systems. We focus in particular on the use of
the CADP toolbox for verifying asynchronous concurrent systems. Finally, we present
existing approaches to the formal analysis of GALS systems.

2.1 Reactive systems

Hardware and software programs and systems interact with their environment, that is,
the outside world within which they evolve. They can receive inputs from their envi-
ronment and produce the appropriate outputs, which have effect on their environment.
A program is said transformational if it receives inputs and terminates after producing
outputs. Usually, the same inputs induce the same outputs, in which case the program
is said deterministic. A transformational program can be described as a mathematical
function that transforms inputs into outputs. Examples are compilers and optimisation

algorithms.

Not all systems and programs intend to yield a final result. A system might well aim to
maintain some interaction with its environment. The environment continuously prompts
the system by providing it with inputs and the system reacts by producing outputs.
Examples are operating systems, communication protocols, and database management
systems. Such systems are called reactive, and a computation of outputs from inputs is
called a reaction. Reactive systems may be subject to strict timing constraints, in which
case they are referred to as real-time systems. In a railroad-crossing control system, it
is crucial to block vehicle crossing as soon as a train approach is detected.

Concurrency is inherent in reactive systems. First, a reactive system together with its
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environment form a concurrent system. Second, reactive systems are often decomposed
into several concurrent components or tasks that operate simultaneously. Concurrent
components are usually reactive themselves; they interact with their environment and
potentially with each other.

Nondeterminism is usually introduced by concurrency. Two different copies of the same
concurrent system are likely to operate differently, while given exactly the same inputs.
An example is when several components compete to acquire a resource and the resource
operates depending on which component has won the race.

Implementations of concurrent components are multiples. They may run sequentially, a
component finishing before the next starts, or in parallel, all components evolving at the
same time. Parallel components may run over a multi-core processor or a multi-processor
machine, to speed up computations. They may also run over spatially distant machines
exchanging data through a network, in which case components are called distributed.

Reactive systems cannot be described as mathematical functions taking inputs and
producing outputs, since they run continuously without necessarily terminating, they
Rather, they are described in terms of a set of infinite sequences of states and transi-
tions (or actions) between states. Such infinite sequences are usually called ezecutions.
We define the behaviour of a system as the set of its possible executions. The behaviour
of a concurrent system is specified in terms of the behaviours of its components. Hence,
it is essential to understand the way states corresponding to component behaviours can
be combined and the consequences of such combinations.

To establish the correctness of reactive systems, one needs appropriate behavioural mod-
els on which formal verification can be performed using dedicated algorithms. An appro-
priate behavioural model should provide an abstract and modular description of both
a reactive system, its environment, and its concurrent components. The model should
provide a description of the interaction between the system and its environment as well
as between concurrent components. Last but not least, the model should provide a
suitable abstraction of time. In this thesis, we consider a discrete representation. Time
is an infinite series of discrete instants, which can (or not) be equally separated. When
discrete instants are not equally separated, we are considering logical time.

2.1.1 Formal models for reactive systems

This section surveys some existing formal models for reactive systems. In particular, we
focus on transition systems, in which a system is modelled in terms of states and actions.
Existing models differ in the way they abstract a system behaviour, each emphasising
certain aspects disregarding the others. We classify models according to the following
three dichotomies, which we believe adequate to the comprehension of this thesis.
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Linear-time versus branching-time [Lam80] In linear-time models, the system
behaviour is expressed as the set of its possible executions, i.e., linear sequences of
states and actions. This model is well suited to deterministic systems since at each
moment in time, the system has a unique future. In branching-time models, the system
behaviour is expressed as computation trees that structure the possible executions. This
model is adequate to capture nondeterministic behaviours, since at each moment in
time, the system can have several futures. The two models differ in the way they deal
with nondeterminism. As an illustration, consider two coffee machines [Hoa85]. The
first machine, once a coin is inserted, gives the user a choice between coffee and tea, and
serves the user’s choice. The second machine, once a coin is inserted, makes internally
a nondeterministic choice, and serves either coffee or tea. Both machines have the
same set of possible executions {coin, coffee} or {coin, tea}. The branching-time view
distinguishes the difference between the two machines while the linear-time view does
not.

Action-based versus state-based [DNV90] In the action-based setting, the con-
tents of states is abstracted away. The evolution of the system behaviour is encoded in
actions. Actions correspond to the interaction of the system with its environment, i.e.,
inputs received and outputs sent by the system, as well as internal transitions performed
by the system. Examples of action-based representations include labelled transition sys-
tems [Par81], Petri-nets [Pet62], and I/O automata [LT89]. The state-based setting is
the dual of the action-based one, from a theoretical point of view. The evolution of the
system behaviour is encoded inside states, by means of variables and other information
stored in memory. Only the internal contents of states can be observed. Examples of
state-based representations include Kripke structures [Kri63]. In practice, the action-
based representation can be seen as a “black box” view of a system and state-based
models as “white box” one.

Synchronous versus asynchronous concurrency Concurrent components can be
composed either in a synchronous or in an asynchronous way. Synchronous concur-
rent components evolve in a lockstep fashion, cadenced by a single central clock. Each
clock pulse prompts all concurrent components to react. The conjunction of component
actions at the same clock pulse constitutes an action of the whole system. This con-
currency model is mainly supported by synchronous languages, such as Esterel [BG92],
Lustre [HCRP91], and Signal [LGGLBLMO91].

Asynchronous concurrent components evolve independently without clock sharing. A
first model for asynchronous concurrency is the so-called interleaving semantics [Mil89].
In this model, concurrency between components is reduced to a nondeterminism choice
between the possible sequences of the component actions. This model of concurrency is
mainly supported by process algebras, such as CCS [Mil89], CSP [Hoa85], ACP [BKS85],
and LOTOS [BBS87].
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Another model for asynchronous concurrency is the so-called true-concurrency [Mon92],
also called non-interleaving model. In this model, concurrency is a primitive notion
clearly distinguishable from sequential nondeterminism. The system behaviour is rep-
resented in terms of the causal relations among actions performed by components; two
actions are concurrent if they are not causally related. This model of concurrency is
mainly supported by Petri-nets and Kahn-nets [Kah74].

An illustration of the three models of concurrency (in an action-based setting) is given
in Figure 2.1. Actions A and B are concurrent. The synchronous composition of actions
A and B results in one action labelled AB. The interleaving semantics expresses that
either action A occurs followed by action B or action B occurs followed by action A.
The true-concurrency model can be understood as a system with two initial states, each
with an outgoing transition, since actions A and B are not causally related.

) <> | |5

synchronous interleaving true
concurrency semantics  concurrency

(synchronous product) (asynchronous product)

Figure 2.1: Models of concurrency in an action-based setting

2.1.2 Formal verification of reactive systems

To perform formal verification, one needs, in addition to a model describing all potential
behaviours of the system, to describe the set of properties that must hold on the system.
The verification problem consists in proving (automatically) that the model satisfies the

properties. We briefly introduce the common formal verification approaches:

e Static analysis consists in verifying programs, without executing them, relying on
the semantics of the language in which programs are written. The abstract inter-
pretation technique [CC77] consists in abstracting the model to a smaller one, in
such a way that if the desired property holds on the abstracted model, it must
hold on the original one. Among the static analysers based on abstract interpre-
tation, we cite Astrée [CCF105] and Verasco [JLBT15]. Abstract interpretation is
used extensively in transformational systems such as in compiler optimisation and
sequential program verification. While being an automated technique, abstract
interpretation cannot achieve 100% precision in the general case.

e Theorem proving consists in modelling the system as a set of mathematical defi-
nitions. The desired properties of the system are derived as theorems that stem
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from those definitions. Proofs can be constructed either by hand or by using auto-
matic theorem provers and interactive proof checkers. Although it cannot be fully
automated, theorem proving is assisted by powerful proof assistant, among which
Coq [FHB'97] and Isabelle [Pau89]. Theorem proving techniques are particularly
useful in the case of general infinite-state reactive systems, e.g., systems containing
unbounded data structures. They have been used in the context of reactive and
real-time systems, but less for distributed concurrent systems.

e Model checking consists in modelling the system as a (finite) transition system that
describes all the possible executions of the system. The desired properties of the
system can be described by reasoning about the temporal ordering of events'. Tem-
poral logic formalisms have been introduced in the late seventies [Pnu77] for this
purpose. A temporal logic is a set of operators, expressing the logical precedence
either between states (state-based temporal logic) or between actions (action-based
temporal logic). Additionally, temporal logics can be interpreted either on linear-
time models, by specifying properties of individual execution sequences, or on
branching-time models, by taking into account the branching structure of the
state space. According to these two dichotomies, a lot of formalisms have been
proposed. The following table shows the most representative ones.

linear-time branching-time linear- and branching-time
state-based ~ LTL [Pnu77] CTL [EC82] CTL* [EH86]
action-based ALTL [GMO03] ACTL [DFGR93] ACTL* [DNV90]

Given a state space and a property, the model checking problem [CGPO00] con-
sists in determining whether the state space satisfies the property or not. If the
property does not hold on the state space, it is desirable to obtain a diagnostic
(or counterexample) showing an undesirable behaviour present in the state space.
This problem is solved by model checking algorithms, which traverse the state
space and halt as soon as the truth value of the property has been determined.
State space traversing techniques are typically grouped in two classes:

— enumerative techniques co