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Thèse dirigée par Frédéric Bihan
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M. Erwan Brugallé
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Résumé

Géométrie Tropicale et Systèmes Polynomiaux

Les systèmes polynomiaux réels sont omniprésents dans de nombreux domaines des math-
ématiques pures et appliquées. A. Khovanskii a fourni une borne fewnomiale supérieure sur le
nombre de solutions positives non-dégénérées d’un système polynomial réel de n équations à n
variables qui ne dépend que du nombre de monômes apparaissant dans les équations. Cette dernière
borne a été récemment améliorée par F. Bihan et F. Sottile, mais la borne résultante peut être
encore améliorée, même dans certains cas simples.

Le but de ce travail est d’aborder trois problèmes importants dans la théorie des Fewnomials.
Considérons une famille de systèmes polynomiaux réels avec une structure donnée (par exemple,
support ou le nombre de monômes). Un problème est de trouver de bonnes bornes supérieures pour
leurs nombres de solutions réelles (ou positives). Un autre problème est de construire des systèmes
dont le nombre de solutions réelles (ou positives) sont proches de la meilleure borne supérieure
connue. Lorsqu’une borne supérieure optimale est bien connue, qu’est ce qu’on peut dire dans le
cas où elle est atteinte?

Dans cette thèse, nous affinons un résultat de M. Avendaño en démontrant que le nombre de
points d’intersection réels d’une droite réelle avec une courbe réelle plane définie par un polynôme
avec au plus t monômes est soit infini ou ne dépasse pas 6t − 7. En outre, on montre que notre
borne est optimale pour t = 3 en utilisant les dessins d’enfant réels de Grothendieck. Cela montre
que le nombre maximal de points d’intersection réels d’une droite réelle avec une courbe trinomiale
réelle plane est onze.

Nous considérons ensuite le problème de l’estimation du nombre maximal de points d’intersection
transverses positifs d’une courbe plane trinomiale et d’une courbe plane t-nomiale. T-Y Li, J.-
M. Rojas et X. Wang ont montré que ce nombre est borné par 2t − 2, et récemment P. Koiran,
N. Portier et S. Tavenas ont trouvé la borne supérieure 2t3/3 + 5t. Nous fournissons la borne
supérieure 3 · 2t−2 − 1 qui est optimale pour t = 3 et est la plus petite pour t = 4, . . . , 9. Ceci est
réalisé en utilisant la notion de dessins d’enfant réels. De plus, nous étudions en détail le cas t = 3
et nous donnons une restriction sur les supports des systèmes atteignant la borne optimale cinq.

Un circuit est un ensemble de n+2 points dans Rn qui sont minimalement affinement dépendants.
Il est connu qu’un système supporté sur un circuit a au plus n+1 solutions positives non dégénérées,
et que cette borne est optimale. Nous utilisons les dessins d’enfant réels et le patchwork combi-
natoire de Viro pour donner une caractérisation complète des circuits supportant des systèmes
polynomiaux avec le nombre maximal de solutions positives non dégénérées.

Nous considérons des systèmes polynomiaux de deux équations à deux variables avec cinq
monômes distincts au total. Ceci est l’un des cas les plus simples où la borne supérieure optimale
sur le nombre de solutions positives non dégénérées n’est pas connue. F. Bihan et F. Sottile ont
prouvé que cette borne optimale est majorée par quinze. D’autre part, les meilleurs exemples
avaient seulement cinq solutions positives non dégénérées.

Nous considérons des systèmes polynomiaux comme avant, mais défini sur le corps des séries de
Puiseux réelles généralisées et localement convergentes. Les images par l’application de valuation
des solutions d’un tel système sont des points d’intersection de deux courbes tropicales planes. En
utilisant des intersections non transverses des courbes tropicales planes, on obtient une construc-
tion d’un système polynomial réel comme ci-dessus ayant sept solutions positives non dégénérées.

Mots clés— Géométrie Algébrique Réelle, Théorie des Fewnomials, Géométrie Tropicale,
Systèmes Polynomiaux



Abstract

Tropical Geometry and Polynomial Systems

Real polynomial systems are ubiquitous in many areas of pure and applied mathematics. A.

Khovanskii provided a fewnomial upper bound on the number of non-degenerate positive solutions

of a real polynomial system of n equations in n variables that depends only on the number of

monomials appearing in the equations. The latter bound was recently improved by F. Bihan and

F. Sottile, but the resulting bound still has room for improvement, even in some simple cases.

The aim of this work is to tackle three main problems in Fewnomial theory. Consider a family

of real polynomial systems with a given structure (for instance, supports or number of monomials).

One problem is to find good upper bounds for their numbers of real (or positive) solutions. Another

problem is to construct systems whose numbers of real (or positive) solutions are close to the best

known upper bound. When a sharp upper bound is known, what can be said about reaching it?

In this thesis, we refine a result by M. Avendaño by proving that the number of real intersection

points of a real line with a real plane curve defined by a polynomial with at most t monomials

is either infinite or does not exceed 6t − 7. Furthermore, we prove that our bound is sharp for

t = 3 using Grothendieck’s real dessins d’enfant. This shows that the maximal number of real

intersection points of a real line with a real plane trinomial curve is eleven.

We then consider the problem of estimating the maximal number of transversal positive in-

tersection points of a trinomial plane curve and a t-nomial plane curve. T-Y Li, J.-M. Rojas and

X. Wang showed that this number is bounded by 2t − 2, and recently P. Koiran, N. Portier and

S. Tavenas proved the upper bound 2t3/3 + 5t. We provide the upper bound 3 · 2t−2 − 1 that

is sharp for t = 3 and is the tightest for t = 4, . . . , 9. This is achieved using the notion of real

dessins d’enfant. Moreover, we study closely the case t = 3 and give a restriction on the supports

of systems reaching the sharp bound five.

A circuit is a set of n + 2 points in Rn that is minimally affinely dependent. It is known

that a system supported on a circuit has at most n + 1 non-degenerate positive solutions, and

that this bound is sharp. We use real dessins d’enfant and Viro’s combinatorial patchworking to

give a full characterization of circuits supporting polynomial systems with the maximal number of

non-degenerate positive solutions.

We consider polynomial systems of two equations in two variables with a total of five distinct

monomials. This is one of the simplest cases where the sharp upper bound on the number of non-

degenerate positive solutions is not known. F. Bihan and F. Sottile proved that this sharp bound

is not greater than fifteen. On the other hand, the best examples had only five non-degenerate

positive solutions. We consider polynomial systems as before, but defined over the field of real

generalized locally convergent Puiseux series. The images by the valuation map of the solutions

of such a system are intersection points of two plane tropical curves. Using non-transversal inter-

sections of plane tropical curves, we obtain a construction of a real polynomial system as above

having seven non-degenerate positive solutions.

Keywords— Real Algebraic Geometry, Theory of Fewnomials, Tropical Geometry, Polyno-

mial Systems
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Chapter 1

Introduction

One of the fundamental problems in mathematics is solving real polynomial equations since poly-

nomial systems arise naturally and ubiquitously in mathematics and many of its applications.

We see them appearing in such fields as control theory [Byr89], kinematics [BR90], chemistry

[GH02, MFR+16] and many others where it is mainly the real solutions that matter. In this intro-

duction we give a brief overview on solving polynomial equations and state the main results of this

thesis. For a more detailed exposition on solving polynomial equations, see for example [Sot11]

or [Stu02].

1.1 Univariate polynomials

Galois theory shows that for a univariate polynomial f with real coefficients and degree less or

equal to four, there exists a general formula that explicitly determines the complex roots of f in

terms of its coefficients. However this statement is false if f has degree larger than four. This

means that computing the roots of high-degree polynomials is not an easy task. Nevertheless, there

are many methods and results devoted especially to this problem (see for example [Stu02]). By

the Fundamental theorem of algebra, any univariate polynomial f has at least one complex root.

Moreover, the number of its complex roots (counted with multiplicities) is equal to its degree.

Unfortunately, in general the degree is a bad estimate for the number of real roots of f e.g.

1− x100 has 98 non-real roots and only two real ones. Descartes’ rule of sign [Des97], which dates

back to 1637, is one of the earliest results that gives a more accurate estimation for the number of

real roots of f . Suppose that we write the terms of f in increasing order of their exponents,

f(x) = b0x
k0 + b1x

k1 + · · ·+ bmxkm , (1.1.1)

where bi 6= 0 and k0 < · · · < km.

Theorem 1.1 (Descartes’ rule of sign). The number r of isolated positive roots of f , counted with

multiplicity, is at most the number of sign changes of its coefficients,

r ≤ {i | 1 ≤ i ≤ m and bi−1bi < 0}.

Theorem 1.1 also holds true for univariate polynomials with real exponents. The immediate

consequence for this rule is that the number of positive solutions of f is bounded from above by
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m. Moreover, replacing x by −x and applying Theorem 1.1 to the resulting polynomial gives a

similar estimation for the number of negative roots of f . Therefore, the number of non-zero real

roots of f is less or equal to 2m.

It is important to note that Descartes’ rule of sign, and thus the resulting Descartes’ bound, is

independent of the degree. This naturally brings about the question of generalizing Theorem 1.1

to a polynomial system.

1.2 Sparse polynomial systems

Consider a real polynomial system

f1(z1, . . . , zn) = · · · = fn(z1, . . . , zn) = 0. (1.2.1)

In general, we look for solutions of (1.2.1) in the complex torus (C∗)n since solutions in coordinate

hyperplanes are solutions in complex tori of smaller dimensions of truncated systems. A solution

ζ ∈ Cn of (1.2.1) is non-degenerate if the Jacobian of (1.2.1) evaluated at ζ has full rank.

Non-degenerate solutions are easier to manipulate since their number will not decrease after any

“slight” perturbation of the coefficients of the associated system.

1.2.1 Polyhedral bounds

Denote by di the total degree of fi. Bézout’s fundamental Theorem [Béz79] states that the number

of non-degenerate complex solutions of (1.2.2) is less or equal to d1 · · · dn. Moreover, this bound

is sharp. Polynomial systems that arise naturally may have some special structure, for instance in

terms of disposition of the exponent vectors or their number (cf. [Sot11]). However, a great part

of this combinatorial data is disregarded when using the degree to bound the number of complex

solutions, and thus the Bézout bound can be rough. In fact, there exist bounds that depend on

the polyhedral structure associated to the polynomial system that we describe now.

To any w = (w1, . . . , wn) ∈ Zn is associated a monomial zw ∈ R[z±1
1 , . . . , z±1

n ]. Consider a

Laurent polynomial f ∈ R[z±1
1 , . . . , z±1

n ] written as

f(z) :=
∑

w∈W

cwz
w, (1.2.2)

where cw 6= 0 for all w ∈ W. The set W is called the support of f . The support of a system (1.2.1)

is the union of the supports of f1, . . . , fn. The Newton polytope of f is the convex hull ∆W

of W . Write Vol(∆) for the Euclidean volume of a polytope ∆ ⊂ Rn. We have the following

fundamental result due to A. Kushnirenko [Kus75].

Theorem 1.2 (Kushnirenko). If (1.2.1) has support W, then it has at most n! Vol(∆W) isolated

solutions in (C∗)n, and exactly this number if the polynomials are generic among systems with

support W.

D. N. Bernstein [Ber75] refined this result taking the individual supports into account. Let

Wi denotes the support of the polynomial fi appearing in (1.2.1). The Minkowski sum of the

convex hulls of Wi for i = 1, . . . , n, is a pointwise sum

∆W1
+ · · ·+∆Wn

= {w1 + · · ·+ wn | w1 ∈ ∆W1
, . . . , wn ∈ ∆Wn

}.
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Minkowski (see [Ewa12]) showed that given convex bodies K1, . . . ,Kn in Rn and positive numbers

λ1, . . . , λn, the function Vol(λ1K1 + · · · + λnKn) is a homogeneous polynomial in λ1, . . . , λn of

degree n, so there exist coefficients V (Ki1 , . . . ,Kin) for i1, . . . , in ∈ [n] such that

Vol(λ1K1 + · · ·+ λnKn) =
∑

i1,...,in ∈[n]

V (Ki1 , . . . ,Kin)λi1 · · ·λin . (1.2.3)

The mixed volume, MV(K1, . . . ,Kn) of K1, . . . ,Kn is V (K1, . . . ,Kn). Now we state Bernstein’s

important generalization of Kushnirenko’s Theorem.

Theorem 1.3 (Bernstein). A system of n polynomials in n variables where the polynomials have

support W1, . . . ,Wn has at most MV (∆W1
, . . . ,∆Wn

) isolated solutions in (C∗)n, and exactly this

number when the polynomials are generic for their given supports.

It is worth noting that a non-degenerate solution of a system is an isolated one, thus both

Kuschnirenko and Bernstein Theorems give upper bounds for the number of non-degenerate so-

lutions in (C∗)n of a polynomial system. Although the degree and previous polyhedral bounds

hold true for the number of non-degenerate solutions in (R∗)n as well, the resulting bounds are

not always sharp. This typically happens when the total support W of (1.2.1) has few elements

comparatively to ∆W ∩ Zn.

1.2.2 Fewnomial bounds

Denote by W ⊂ Rn the support of (1.2.1). Multivariate generalizations of Descartes’ bound (The-

orem 1.1) for systems of multivariate polynomials are called Fewnomial bounds1. A particular

attention is paid to the positive solutions of (1.2.1), which are the solutions contained in the pos-

itive orthant of Rn. Indeed, assume that there exists a sharp upper bound NW on the number of

non-degenerate positive solutions of (1.2.1) that depends only on W. Then this NW also bounds

the number of solutions contained in any other orthant, and thus (1.2.1) will not have more than

2nNW solutions in (R∗)n. Recall that Descartes showed that we have NW = |W|−1 for n = 1, but

still, before Khovanskii’s book [Kho91], it was not clear that such NW even exists for any n ≥ 2.

Theorem 1.4 (Khovanskii). A system of n real polynomials in n variables involving n + k + 1

distinct monomials has fewer than

2(
n+k

2 )(n+ 1)n+k (1.2.4)

non-degenerate positive solutions.

The existence of a bound on the number of non-degenerate positive solutions that is indepen-

dent of the degrees of the polynomials was revolutionary and is the main point of Khovanskii’s

result. It also confirms Kushnirenko’s principle that the topological complexity of objects, de-

fined by real-valued polynomials, can be controlled by the complexity of the definition of these

polynomials rather than by degrees or by some characteristics of Newton polyhedra of equations.

Also, the bound in Theorem 1.4 is not sharp. In fact, Theorem 1.4 is a particular case of a

Khovanskii’s more general result involving solutions in Rn of polynomial functions in logarithms

of the coordinates and monomials (see [Kho91]). For example, when k = 0, the support W of the

system is a simplex, and there will be at most one real solution, which is smaller than 2(
n

2)(n+1)n.

1The term “Fewnomial” was coined by A. Kushnirenko, where he replaced the term “poly” of the word
“polynomial”, by the term “Few” (c.f. [Kus08])
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Although it was commonly believed that Khovanskii’s bound (1.2.4) was far from being sharp,

improving it turns out to be not an easy task.

Fewnomial theory was mainly initiated by Kushnirenko’s famous conjecture which was formu-

lated in the late 70’s as a tentative generalization of Descartes’ bound.

Conjecture 1.5 (Kushnirenko). A system of n real polynomials in n variables, where the polyno-

mials have supports W1, . . . ,Wn, has at most

n
∏

i=1

(|Wi| − 1)

non-degenerate positive solutions.

Constructing polynomial systems reaching Kushnirenko’s conjectured bound is not a difficult

task. Namely, such a construction might be for instance a system

gi(zi) = 0, for i = 1, . . . , n

consisting of univariate polynomials, where each gi has mi terms and mi − 1 non-degenerate

positive solutions (Descartes’ bound). In fact, the lack of efficient construction methods at the

time instigated Kushnirenko to establish his conjecture.

1.3 Results prior to this thesis

After the famous Khovanskii’s Theorem, there were many recent contributions dedicated to the

theory of Fewnomials, (c.f. [Sot11] for a survey). In this section, we give but a few of the many

results developed in this millennia. Most of these results are further investigated and in some cases

improved in this thesis.

1.3.1 Around Khovanskii’s bound

Consider a real polynomial system

f1(z) = · · · = fn(z) = 0 (1.3.1)

in n variables supported on a set W ⊂ Zn such that |W| = n+ k+1 for some k ≥ 1. In [BS07], F.

Bihan and F. Sottile significantly reduced Khovanskii’s fewnomial bound (1.2.4) by showing that

there are fewer than
e2 + 3

4
2(

k

2)nk (1.3.2)

non-degenerate positive solutions to (1.3.1). The method they used consists of reducing the original

system to a system of k equations in k variables, called Gale transform. This Gale transform

depends upon the vector configuration “Gale” dual to the exponents of the monomials in the

original system (see [BS08]). This reduction gives that an upper bound on the Gale transform

also holds true for the number of solutions of (1.3.1). The bound in (1.3.2) also holds true for

polynomials with real exponents. Moreover, the significance of it is that (1.3.2) is asymptotically

sharp in the sense that for fixed k, there are systems with O(nk) positive solutions [BRS08] .

The constant e2+3
4 appearing in (1.3.2) is artificial, its purpose is only to bound from above a

more complicated expression. Moreover, the authors in [BS07] believe that the term 2(
k

2) in (1.3.2)
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is considerably overstated. In fact, when k = 2, this smaller bound (1.3.2) is actually 2n2 +

⌊ (n+3)(n+1)
2 ⌋, and when n = 2 it is 15. Note that when plugging n = k = 2 in (1.2.4), we obtain

26 ·34 = 5184. Although the new bound 15 is a considerably smaller fewnomial bound for a system

where n = k = 2, the authors of [BS07] maintain that the sharp bound is still smaller. The

case n = k = 2 is the first case where we do not know much about. In fact, prior to this thesis,

the first known construction, giving a lot of non-degenerate positive solutions of a system of two

polynomials in two variables with five monomials was essentially that of B. Haas (1.3.5). Such a

construction gives five non-degenerate positive solutions, and shows that the sharp upper bound

on the number of non-degenerate positive solutions is greater or equal to 5. Later on, we will call

a system of two equations in two variables with 5 distinct monomials a system of type n = k = 2.

1.3.2 Using combinatorial patchworking

Consider a system

f1,t(z) = · · · = fn,t(z) = 0, (1.3.3)

where each polynomial of (1.3.3) is obtained from a polynomial
∑

w cwz
w of (1.3.1) by multiplying

each monomial cwz
w by some real power of t, where t is a positive parameter that will be taken

close to zero. Let V (fi,t) denote the zero set of fi,t in Rn. For any ǫ ∈ {±1}n, consider the orthant

(R>0)
ǫ := {x ∈ Rn | xiǫi > 0 i = 1, . . . , n},

and let Vǫ(fi,t) be the intersection of V (fi,t) with (R>0)
ǫ.

O. Viro’s Theorem states that one can construct combinatorially a space Qǫ together with a

simplicial complex Zǫ ⊂ Qǫ such that the couple (Qǫ, Zǫ) is homeomorphic to ((R>0)
ǫ, Vǫ(fi,t)) for

t > 0 small enough. From this, one can recover (up to homeomorphisms) the whole hypersurface

V (fi,t) (for t > 0 small enough) by gluing its different parts together with their ambient spaces.

This was generalized by B. Sturmfels [Stu94] for any complete intersection V (f1,t)∩· · ·∩V (fs,t),

with s ≤ n, given that the exponents of t are “sufficiently generic”. When s = n, this method

can be used to construct systems with many non-degenerate positive solutions and given supports.

Recently, F. Bihan [Bih14] gave a bound on the number of non-degenerate real solutions that are

constructed using Sturmfels’ generalization of Viro’s Theorem. This bound is given by the so-called

discrete mixed volume of the supports of fi,t. In fact, he proved that this bound is smaller than the

one given in Kushnirenko’s conjecture (see Subsection 1.3.4). When n = 2 and k = 1, the discrete

mixed volume is not larger than 3 and the corresponding bound is sharp (see Subsection 1.3.3).

When n = k = 2, it is easy to compute that the discrete mixed volume is not larger than 6 (see

Lemma 6.4 in Chapter 6), and it is not known if the corresponding bound is sharp.

1.3.3 Systems supported on a circuit

One of the first non-trivial cases arises when n ≥ 2 and k = 1, in which case the support W

of (1.3.1) is a set of n + 2 points in Rn. F. Bihan [Bih07] proved that any polynomial system

supported on such W has at most n+ 1 non-degenerate positive solutions and that this bound is

sharp. Moreover, if this bound is reached, then W is minimally affinely dependent, which means

that it is a circuit in Rn. Polynomial systems supported on a circuit in Zn whose all non-degenerate

complex solutions are positive have been studied in [Bih15] (such systems are called maximally

positive). As a main result, it is given for any positive integer n a finite list of circuits in Zn that
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can support maximally positive systems up to the obvious action of the group of invertible integer

affine transformations of Zn.

Also for the circuit case, F. Bihan and A. Dickenstein [BD16] presented the first multivariate

version of Descartes’ rule of signs to bound the number of positive real solutions of a system

supported on a circuit, in terms of the sign variation of a sequence associated to both the exponent

vectors and the given coefficients. In fact, it is also shown that the bound they gave is sharp and

is related to the signature of the circuit.

The first time that Grothendieck’s real dessins d’enfant, which are graphs embedded on the

Riemann sphere, were used in the fewnomial context was due to F. Bihan [Bih07]. Namely, he uses

dessins d’enfant to show the sharpness of the bound n+ 1 for the number of positive solutions of

a system supported on a circuit W ⊂ Rn. He also proves using the same technique the sharpness

of bounds for the number of real solutions of such systems. As it turns out, if one can reduce a

fewnomial system to a rational polynomial function CP 1 → CP 1, then one can hope to use real

dessins d’enfant in a fruitful way to closely study the original system. This technique gives an

interesting point of view on constructing polynomial systems with a large number of real solutions

(see Chapter 3), characterizing such systems (see Chapter 5) and even bounding the number of

positive solutions of sparse polynomial systems (see Chapter 4).

Sturmfels’ version of Viro’s combinatorial patchworking is yet another effective technique from

real algebraic geometry that can be used to construct polynomial systems with many real solutions.

This generalisation [Stu94] is for complete intersections of real algebraic hypersurfaces. Among

many other implementations in fewnomials, it was used by K. Phillipson and J.-M. Rojas [PR13,

proof of Lemma 1.8] to construct a polynomial system over local fields supported on a circuit that

has n+ 1 positive solutions.

1.3.4 Around Kuschnirenko’s conjecture

Consider the system (1.3.1), and for i = 1, . . . , n, denote by mi the number of points contained in

the support of fi. Recall that Kushnirenko’ Conjecture 1.5 states that (1.3.1) cannot have more

than
n
∏

i=1

(mi − 1)

non-degenerate positive solutions.

1.3.4.1 First counterexamples

The conjectural bound is not a bound on the number of isolated positive solutions. W. Fulton

gave a counterexample in [Ful13] that goes as follows (see also [Stu02]). Consider the system

m
∏

i=1

(z1 − i)2 +

m
∏

i=1

(z2 − i)2 = 0, z1(z3 − 1) = 0, z2(z3 − 1) = 0, (1.3.4)

where m ≥ 5. Kushnirenko’s Conjecture predicts that such a system has at most (4m+1− 1)(2−

1)(2 − 1) = 4m real positive solutions. However there are m2 positive solutions of (1.3.4) of the

form (i, j, 1), for i, j ∈ N∗ between 1 and m.

A particular case of A. Kuchnirenko’s conjecture states that when n = 2 and m1 = m2 = 3,

the system (1.3.1) has at most four non-degenerate positive solutions. In an effort to disprove this

conjecture, Haas had shown in [Haa02] that
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10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 (1.3.5)

has five non-degenerate positive solutions. Konstantin A. Sevastyanov, a colleague of Kushnirenko,

had found a similar counter-example much earlier. Unfortunately, this counterexample does not

seem to have been recorded and, tragically, Sevastyanov died before publishing his counterexample.

It was later shown in [LRW03] using a case by case analysis that when n = 2 and m1 = m2 = 3,

the sharp bound on the number of non-degenerate positive solutions is five. Moreover, it was proved

in the same paper that if this bound is reached, then the Minkowski sum of the associated Newton

polytopes ∆1 and ∆2 is an hexagon.

A simpler polynomial system

x6 + (44/31)y3 − y = y6 + (44/31)x3 − x = 0, (1.3.6)

that also has five positive solutions was discovered by A. Dickenstein, J.-M. Rojas, K. Rusek and

J. Shih [DRR07]. In addition, they showed that such systems are rare in the following sense. They

study the discriminant variety of coefficients spaces of the polynomial system

x2d + ayd − y = y2d + bxd − x = 0, (1.3.7)

with parameters (a, b, d), and show that the chambers (connected components of the complement)

containing systems with the maximal number of positive solutions are small.

1.3.4.2 A trinomial and a t-nomial

Real polynomial systems in two variables

f = g = 0, (1.3.8)

where f has t ≥ 3 non-zero terms and g has three non-zero terms have been studied by T.Y. Li,

J.-M. Rojas and X. Wang [LRW03]. They showed that such a system, allowing real exponents, has

at most 2t − 2 isolated positive solutions. The idea is to substitute one variable of the trinomial

in terms of the other, and thus one can reduce the system to an analytic function in one variable

h(x) =

t
∑

i=1

aix
ki(1− x)li ,

where all the coefficients and exponents are real. The number of positive solutions of (1.3.8) is

equal to that of h = 0 contained in ]0, 1[. The main techniques used in [LRW03] are an extension

of Rolle’s Theorem and a recursion involving derivatives of certain analytic functions. In fact, the

results of Li, Rojas and Wang [LRW03] are more general. Consider a polynomial system

f1 = · · · = fn = 0 (1.3.9)

in n variables, where the functions f1, . . . , fn−1 are trinomials and fn has t distinct monomials.

The authors in [LRW03] show that (1.3.9) has at most n+n2+ · · ·+nt−1 non-degenerate positive

solutions.
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The exponential upper bound 2t − 2 on the number of positive solutions of (1.3.8) has been

recently refined by P. Koiran, N. Portier and S. Tavenas [KPT15b] into a polynomial one. They

considered an analytic function in one variable

t
∑

i=1

m
∏

j=1

f
αi,j

j , (1.3.10)

where all fj are real polynomials of degree at most d and all the powers of fj are real. Using the

Wronskian of analytic functions, it was proved that the number of positive roots of (1.3.10) in an

interval I (assuming that fj(I) ⊂]0,+∞[) is equal to t3md
3 +2tmd+ t. As a particular case (taking

m = 2, d = 1 and I =]0, 1[), they obtain that h(x) =
∑t

j=1 aix
ki(1 − x)li has at most 2t3/3 + 5t

roots in I.

1.3.4.3 A plane curve and a line

Interestingly, when the trinomial g of (1.3.8) is a linear polynomial, then the sharp bound on the

number of non-degenerate real solutions of (1.3.8) is a linear function in t.

Namely, M. Avendaño showed in [Ave09] that such a system has either an infinite number

or at most 6t − 6 solutions in (R∗)2, where the latter ones are counted with multiplicities. In

particular, he proved that the number of non-degenerate positive solutions of the latter system is

at most 2t − 2. The method used in [Ave09] consists of substituting z2 by az1 + b in (1.3.8) for

some non-zero real numbers a and b. This way, with the help of Descartes’ rule of sign applied to

the resulting univariate polynomial, one eventually obtains the bound 2t− 2.

1.3.5 Around a polynomial-fewnomial conjecture

A. Kushnirenko also formulated the following conjecture (see [Kus08] for more background). Con-

sider a system

f(x, y) = g(x, y) = 0 (1.3.11)

of two equations in two variables, where g is a polynomial with t distinct monomial terms, and f

is a polynomial of degree d.

Conjecture 1.6. The system (1.3.11) has at most N(d, t) non-degenerate positive solutions, where

N(d, t) is a function depending only on the numbers d and t.

Sevostyanov showed in 1978 that such N(d, t) exists. However, his result (together with his

counterexample to Kushnirenko’s conjecture) was never published. According to [Sot11], this result

was the inspiration for Khovanskii to develop his theory of fewnomials.

Clearly, by Khovanskii and Bihan-Sottile bounds, this N(d, t) exists, however since (1.3.11)

is a very particular case of the generic system (1.2.1), bounds (1.2.4) and (1.3.2) (which are

exponential in d and t) might be too large. M. Avendaño’s previously-discussed bound [Ave09]

shows that N(1, t) ≤ 2t− 2, which turns out to be a sharp bound for t = 3 (see [BEH15]).

The smallest bound so far for any values d and t was discovered by P. Koiran, N. Portier and

S. Tavenas [KPT15a]. They showed that (1.3.11) has only O(d3t + d2t3) real solutions when it

has a finite number of real solutions. Moreover, if the set of real solutions is infinite then it has at

most O(d3t+ d2t3) connected components.
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1.4 Results of the thesis

We divide our main results into four chapters.

1.4.1 Chapter 3: Intersecting a sparse plane curve and a line

Chapter 3 is a joint work with F. Bihan [BEH15]. Consider a system

f(x, y) = ax+ b− y = 0, (1.4.1)

where f ∈ R[x, y], has t non-zero terms. In Chapter 3, all solutions in (R∗)2 are counted with

multiplicities. This reduces to counting the number of real roots of a polynomial f(x, ax + b),

where a, b ∈ R and f ∈ R[x, y] has at most t non-zero terms. Substituting y by ax + b in the

polynomial f reduces the problem of computing real solutions of (1.4.1) to computing the real

roots of f(x, ax+ b). M. Avendaño showed in [Ave09, Theorem 1.1] that (1.4.1) has at most 6t− 4

real solutions counted with multiplicities except for the possible roots 0 and −b/a. The question

of optimality was not addressed in [Ave09] and this was the motivation for the present work. We

prove the following result.

Theorem 1.7. Let f ∈ R[x, y] be a polynomial with at most t non-zero terms and let a, b be any

real numbers. Assume that the polynomial g(x) = f(x, ax+ b) is not identically zero. Then g has

at most 6t − 7 real roots counted with multiplicities except for the possible roots 0 and −b/a that

are counted at most once.

The methods used in proving the latter results are elementary, and constitute a refined version

of those used in [Ave09]. This might look as a small improvement of the main result of [Ave09].

In fact, this refinement is a non-trivial one, and the bound in Theorem 1.7 is optimal at least for

t = 3.

Theorem 1.8. The maximal number of real intersection points of a real line with a real plane

curve defined by a polynomial with three non-zero terms is eleven.

Explicitly, the real curve with equation

− 0.002404 xy18 + 29 x6y3 + x3y = 0 (1.4.2)

intersects the real line y = x+ 1 in precisely eleven points in R2.

The strategy to construct this example is first to deduce from the proof of Theorem 1.7 some

necessary conditions on the monomials of the desired equation. Then, the use of real Grothendieck’s

dessins d’enfant in a novel way helps to test the feasibility of certain monomials, since manipulating

this method gives a clear representation of the topology of the graph of x 7→ f(x, x+1). Ultimately,

computer experimentations lead to the precise equation (1.4.2).
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Figure 1.1: The blue curve represents the graph of x 7→ f(x, x + 1), and the red line
represents the first-coordinate axis. (Some parts of the curve is stretched vertically on
purpose for more clarity.)

1.4.2 Chapter 4: Positive intersection points of a trinomial and a t-

nomial curves

Consider a system (1.3.8) where f has t ≥ 3 non-zero terms and g has three non-zero terms.

Assume that the latter system has a finite number of solutions. Let S(3, t) denote the maximal

number of non-degenerate positive solutions a system (1.3.8) can have. We prove the following

result in Section 4.2.

Theorem 1.9. We have S(3, t) ≤ 3 · 2t−2 − 1.

Note that since the number of positive solutions of two trinomials in two variables is bounded

by five (see [LRW03]), the bound S(3, t) is sharp for t = 3. Moreover, for t = 4, . . . , 9, this new

bound is smaller than the bounds 2t − 2 and 2t3/3 + 5t, obtained in [LRW03] and [KPT15b]

respectively, and shows for example that 6 ≤ S(3, 4) ≤ 11.
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Recall that substituting one variable of the trinomial g of (1.3.8) in terms of the other reduces

the system to an analytic function in one variable

h(x) =

t
∑

i=1

aix
ki(1− x)li .

The number of positive solutions of (1.3.8) is equal to that of h = 0 contained in ]0, 1[. We

prove Theorem 1.9 using the same approach that was considered in [LRW03] i.e. we consider a

recursion involving derivatives of analytic functions in one variable associated to the system (1.3.8).

Beginning with the function f1 = h, at each step 1 < i < t, we are left with a function fi defined

as a certain number of derivatives of fi−1 multiplied by powers of x and of (1− x). Using Rolle’s

Theorem for each fi, one can bound the number of its roots contained in ]0, 1[ in terms of the

roots of fi−1 in the same interval. It turns out that at the step t− 2, we are reduced to bound the

number of roots in ]0, 1[ of the equation φ(x) = 1, where

φ(x) =
xα(1− x)βP (x)

Q(x)
,

α, β ∈ Q, and both P and Q are real polynomials of degree at most 2t−2 − 1.

The larger part of Chapter 4 is devoted to the proof in Section 4.3 of the following result.

Theorem 1.10. We have ♯{x ∈]0, 1[ |φ(x) = 1} ≤ degP + degQ+ 2.

Choosing m ∈ N such that both mα and mβ are integers, we get a rational function ϕ := φm :

CP 1 −→ CP 1. The inverse images of 0, 1, ∞ are given by the roots of P , Q, ϕ − 1, together

with 0 and 1 (if αβ 6= 0). These inverse images lie on the graph Γ := ϕ−1(RP 1) ⊂ CP 1, which

is an example of a Grothendieck’s real dessin d’enfant. Although this latter object Γ appears

in Chapter 4 as well, we use it this time in a yet another resourceful way. In fact, there are

many restrictions on the topology of the graph of ϕ that appear explicitly as restrictions on

Γ = ϕ−1(RP 1). Namely, critical points of ϕ correspond to vertices of Γ. The number of roots of

ϕ−1 in ]0, 1[ is controlled by the number of a certain type of critical points of ϕ called useful positive

critical points. By doing a delicate analysis on Γ, we bound the number of vertices corresponding

to these critical points in terms of degP and degQ.

We consider in Section 4.4 the case t = 3 i.e. the case of two trinomials in two variables. Recall

that when the maximal number of positive solutions is attained, the Minkowski sum ∆1+∆2 is an

hexagon (see [LRW03]). In terms of normal fans, this means that the normal fan of the Minkowski

sum ∆1 + ∆2, which is the common refinement of the normal fans of ∆1 and ∆2, has six 2-

dimensional cones (and six 1-dimensional cones). We give the following additional constraints on

the Minkowski sum of ∆1 and ∆2 when (1.3.8) has five positive solutions. We say that ∆1 and

∆2 alternate if every 2-dimensional cone of the normal fan of ∆1 contains a 1-dimensional cone of

the normal fan of ∆2 having only the origin as a common face. A further analysis of Γ in the case

t = 3 allows us to obtain the following result.

Theorem 1.11. If the system (1.3.8) has 5 positive solution, then ∆1 and ∆2 do not alternate.

The Newton triangles ∆1 and ∆2 do not alternate means that there exist two consecutive edges

of ∆1 +∆2 which are translate of two consecutive edges of either ∆1 or ∆2. Figure 7.2 illustrates

this theorem for the system (7.3.6), and we provide another example in Section 4.4.
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Figure 1.2: The Newton polytopes, their Minkowski sum and the associated normal fans
of (7.3.6).

1.4.3 Chapter 5: Characterization of circuits supporting polynomial

systems with the maximal number of positive solutions

Recall that a circuit W ⊂ Rn is a set of n+2 distinct points that are minimally affinely dependent.

A very recent generalization of Descartes’ rule of sign was developed by F. Bihan and A. Dickenstein

in [BD16]. This gave some conditions on both the circuit and the coefficient matrix that are

necessary for the system to have n + 1 non-degenerate positive solutions. More precisely, the

authors in [BD16] show that if such a system has n + 1 non-degenerate positive solutions, then

all maximal minors of the coefficient matrix are nonzero and any affine relation
∑n+2

i=1 λiwi = 0

on W has the same number (up to 1 if n is odd) of positive coefficients as that of negative ones.

In this chapter, we completely characterize the circuits which are supports of polynomial systems

with n+ 1 non-degenerate positive solutions.

Theorem 1.12. A circuit W in Rn supports a system with n+1 non-degenerate positive solutions

if and only if there exists a bijection

{1, . . . , n+ 2} −→ W

i 7−→ wi

such that every affine relation on W can be written as

s
∑

i=1

αiwi =

n+2
∑

s+1

αiwi,

where s = ⌊(n+ 2)/2⌋ and all αi are positive numbers which satisfy

r
∑

i=1

αi <

s+r
∑

i=s+1

αi <

r+1
∑

i=1

αi for r = 1, . . . , s− 1 if n is even

or
r

∑

i=1

αi <

s+r+1
∑

i=s+2

αi <

r+1
∑

i=1

αi for r = 1, . . . , s− 1 if n is odd.
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F. Bihan proved in [Bih15] that if a circuit in Zn supports a maximally positive system with n+1

non-degenerate positive solutions, then it has a primitive affine relation (i.e. affine relation with

coprime integer coefficients) as in Theorem 1.12 with α1 = αn+2 = 1 and all other coefficients are

equal to two. This can be seen as a consequence of Theorem 1.12 (see Example 5.13, Section 5.2).

Indeed, if W supports a maximally positive system with n + 1 non-degenerate positive solutions,

then the subgroup of Zn generated byW is Zn. Moreover, if
∑s

i=1 αiwi =
∑n+2

s+1 αiwi is a primitive

affine relation, then
∑s

i=1 αi =
∑n+2

s+1 αi = n + 1 (see [Bih15] for more details), which together

with inequalities in Theorem 1.12 imply the desired equalities. In order to prove Theorem 1.12,

one can reduce to the case where W ⊂ Zn (see the first part of Chapter 5). We prove the “only if”

part of Theorem 1.12 in the following way. Consider a polynomial system supported on a circuit

with n equations in n variables that has the maximal number of non-degenerate positive solutions.

We associate to it using Gale duality (see Section 5.1), a univariate function

ϕ(y) =

n+1
∏

i=1

Pλi

i ,

where Pi a polynomial of degree 1 that depends on the equations of the system,
∑n+1

i=1 λi(wi−w0)

is a linear relation on the vectors wi − w0 and the non-degenerate positive solutions of the initial

system are in bijection with solutions of ϕ(y) = 1 contained in

∆+ = {y ∈ R>0 | Pi(y) > 0, i = 1, . . . , n+ 1}.

The homogenization of ϕ is a rational map CP 1 → CP 1, so that the inverse image of RP 1 by this

homogenization is the real dessin d’enfant Γ (see Chapter 2). Since the valencies of the vertices

of Γ are controlled by the integers λi and the roots of Pi for i = 1, . . . , n + 1, by analysing Γ, we

obtain the inequalities of Theorem 1.12.

The solutions of ϕ(y) = 1 in ∆+ are roots of the Gale polynomial

G(y) =
∏

λi>0

Pλi

i (y)−
∏

λi<0

P−λi

i (y) (1.4.3)

in the same interval. In [PR13, proof of Lemma 1.8], K. Phillipson and J.-M. Rojas construct poly-

nomial systems supported on a circuit in Zn with n+1 non-degenerate positive solutions using Viro

polynomials Pi,t(y) = ai + tαibi, where ai, bi, αi ∈ R, and t > 0 is a parameter that will be taken

small enough. They apply the version of Viro’s combinatorial patchworking developed in [Stu94]

which involves mixed subdivision of Newton polytopes. Here, we also use Viro polynomials Pi,t,

and look directly at the roots of the corresponding Gale polynomial in ∆+. The inequalities in

Theorem 1.12 appear explicitly as being necessary to construct polynomial systems supported on

a circuit in Zn with n+ 1 non-degenerate positive solution using Viro polynomials Pi,t.

1.4.4 Chapter 6: Constructing polynomial systems with many positive

solutions

Tropical geometry is a new domain in mathematics that is situated at the junction of fields such

as toric geometry, complex or real geometry, and combinatorics [Mik06, MR05, MS15]. It turns

out, that Sturmfels’ generalization of Viro’s Theorem can be reformulated in the context of trop-

ical geometry (see [Mik04, Rul01]). This makes tropical geometry an effective tool to construct

polynomial systems with prescribed support and many positive solutions.
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Recall that the best known fewnomial bound on the number of non-degenerate positive solu-

tions for a real polynomial system of n equations in n variables supported on a set of n + k + 1

points for k, n ≥ 1 is equal to e2+3
4 2(

k

2)nk [BS07]. In fact, the same paper contains the better

upper bound 15 when n = k = 2. However, the best previously known constructions give 5 non-

degenerate positive solutions (c.f. [Haa02]). The motivation behind this chapter is to implement

Sturmfels’ version of Viro’s combinatorial patchworking and other tools and results (c.f. Chap-

ter 2, Subsection 2.2.6) developed in tropical geometry for constructing a system of two equations

in two variables and five monomials (a system of type n = k = 2 for short) having many positive

solutions.

Let K be the field of generalized locally convergent Puiseux series

a(t) =
∑

r∈R

αrt
r,

where R ⊂ R is a well ordered set and a(t) is a complex series convergent for t > 0 small enough.

This is an algebraically closed field. Consider the subfield RK of K of real generalized Puiseux

series, that is all αr appearing in a(t) are real numbers. We consider in this chapter a sparse

(Laurent) polynomial system

f1(z) = f2(z) = 0, (1.4.4)

with equations defined over RK. We assume that (1.4.4) has finitely many solutions, and all of

them are non-degenerate. A positive element a(t) of K is an element of RK∗ whose first-order

term has positive coefficient.

To a Laurent polynomial f(z) =
∑

w∈W cwz
w ∈ RK[z], one associates a tropical polynomial

ftrop(x) = “
∑

w∈W

val(cw)x
w”,

where val(cw) is minus the order (in the classical sense) of the Puiseux series cw, and the operations

are the tropical ones (the sum is the max, and the product is the classical sum). The associated

tropical hypersurface T is the corner locus of the piecewise-linear convex function Rn → Rn,

x 7→ ftrop(x). By Kapranov’s Theorem [Kap00] (see Subsection 2.2.2), the tropical hypersurface

T coincides with the closure of

Val ({z ∈ (K∗)n | f(z) = 0}) ,

where Val is the extension of the function val coordinate-wise. The positive part of T is the

closure of Val ({z ∈ (RK>0)
n | f(z) = 0}) .

Consider now again polynomials f1, f2 ∈ RK[z±1
1 , z±1

2 ] defining two tropical curves T1, T2 ⊂ R2.

Assume for the moment that T1 and T2 intersect transversally, which means that each intersection

point is isolated and contained in the relative interiors of one 1-dimensional linear piece of T1 and

one 1-dimensional linear piece of T2. Then by Sturmfels’ generalization of Viro’s theorem, each

intersection point of T1 and T2 contained in both positive parts (positive intersection point for

short) lifts to a unique solution of (1.4.4) in (RK>0)
2, which gives a positive solution of a real

system g1(z) = g2(z) = 0 by taking t > 0 small enough. Recall that in the case n = k = 2

(meaning that equations of T1 and T2 have a total of five monomials), the number of transversal

intersection points of T1 and T2 is bounded from above by six (see Subsection 1.3.2). We prove

that this bound is sharp and can be realized by positive intersection points.
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Proposition 1.13. There exist two plane tropical curves T1 and T2 defined by equations containing

a total of five monomials and which have six positive transversal intersection points.

Therefore, using Sturmfels’ generalization of Viro’s theorem (as explained above), this gives a

real system of type n = k = 2 having six non-degenerate positive solutions. In order to get a real

system of type n = k = 2 with more than six non-degenerate positive solutions, we thus consider

tropical curves T1 and T2 which do not intersect transversally.

Note that T1 ∩ T2 is piecewice-linear and its linear pieces are either isolated points or line

segments. Luckily, if a linear piece ξ ⊂ T1 ∩ T2 is an isolated point, then results in [Kat09, Rab12,

OP13] and [BLdM12] show that ξ lifts to a solution of (1.4.4) in (K∗)2, and then non-degenerate

positive solutions of (1.4.4) with valuation equal to ξ can be estimated by computing the real

reduced system of (1.4.4) with respect to ξ (see Chapter 2, Subsection 2.2.6). However, if such a

linear piece ξ has dimension 1, then ξ is an infinite set containing a finite (and possibly empty) set of

points that are valuations of non-degenerate positive solutions of (1.4.4). Locating such valuations

does not come easily. In fact, there is only one known method for achieving this, called tropical

modification (see [Mik06, BLdM12]). This problem is addressed in Section 6.2 of Chapter 6 using

another approach. Namely, for each linear piece ξ of dimension 1, we associate a univariate Viro

polynomial ft,ξ so that all the first-order terms of non-degenerate positive solutions of (1.4.4) with

valuations in the relative interior of ξ can be recovered from both the reduced system of (1.4.4)

with respect ξ, and the Viro polynomial ft,ξ.

We now consider a system (1.4.4) of type n = k = 2. Assume that no three points of the

support of the system belong to a line. We prove in Section 6.3 that one can associate to such a

system a new system
a0 + ym1

1 + a2y
m2

1 yn2

2 + a3t
αym3

1 yn3

2 = 0,

b0 + ym1

1 + b2y
m2

1 yn2

2 + b4t
βym4

1 yn4

2 = 0,
(1.4.5)

with polynomials in RK[y±1
1 , y±1

2 ], that has the same number of positive non-degenerate solutions

as (1.4.4), and satisfying that all ai, bj have zero order, all mi, ni belong to Z with m1, n2 > 0, and

both α, β are real numbers.

The two main results of Chapter 6 are the following.

Theorem 1.14. If (α, β) 6= (0, 0), then (1.4.5) has at most nine non-degenerate positive solutions.

We prove Theorem 1.14 in Section 6.5. Note that if (α, β) = (0, 0), then there is nothing that

can be done using tropical geometry. Indeed, the task of bounding the number of non-degenerate

positive solutions of (1.4.5) becomes equivalent to computing the number of positive solutions of

a real polynomial system of type n = k = 2.

Theorem 1.15. There exists a system (1.4.5) that has seven non-degenerate positive solutions.

The construction of a system (1.4.5) that has seven non-degenerate positive solutions is made

in Section 6.5. Namely, for any 0 < α < γ0, the system

−1 + y61 + y31y
6
2 − tαy−14

1 y72 = 0,

−1 + 0.36008tγ0 + y61 + (1− 0.36008tα)y31y
6
2 − (44/31)

5
6 tαy−12

1 y92 = 0,
(1.4.6)

has seven non-degenerate positive solutions.

We made a tedious case-by-case analysis to get necessary conditions for (1.4.5) to have more

than six non-degenerate positive solutions. As a by-product, we obtain in Sections 6.6 and 6.7 the

following result.
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Theorem 1.16. If (α, β) 6= (0, 0), and one of the following is true

1. For i = 0, 2, the coefficient of the first order term of ai is different from that of bi,

2. α 6= β,

3. α = β < 0,

then (1.4.5) has at most six non-degenerate positive solutions.



Chapter 2

Preliminaries

2.1 A brief introduction to real dessins d’enfant

For more details, see [Ore03, Bru06, Bih07] for example. Consider a real rational map ϕ =
P

Q
: C → C, where P and Q are two real polynomials. The degree of ϕ is the maximum

of the degrees of P and Q. We extend ϕ to a rational homogeneous function CP 1 → CP 1,

(x0 : x1) 7→ (1 : P/Q), that we denote again by ϕ. Define

Γ := ϕ−1(RP 1).

This is a real graph on CP 1 invariant with respect to the complex conjugation and which contains

RP 1. Any connected component of CP 1 \ Γ is homeomorphic to an open disk. Moreover, each

vertex of Γ has even valency, and the multiplicity of a critical point with real critical value of ϕ

is half its valency. The graph Γ contains the inverse images of (1 : 0), (0 : 1) and (1 : 1), which

are the sets of roots of P , Q and P/Q − 1 respectively. Denote by the same letter p (resp. q

and r) the points of Γ which are mapped to (1 : 0) (resp. (0 : 1) and (1 : 1)). Orient the real

axis on the target space via the arrows 0 → ∞ → 1 → 0 (orientation given by the decreasing

order in R), which is equivalent to orienting RP 1 via the arrows (1 : 0) → (0 : 1) → (1 : 1). Pull

back this orientation by ϕ, the graph Γ becomes an oriented graph, with the orientation given by

arrows p → q → r → p. A cycle of Γ is the boundary of a connected component of CP 1\Γ. Any

such cycle contains the same non-zero number of letters r, p , q (see Figure 2.1). We say that

a cycle obeys the cycle rule. The graph Γ is called real dessin d’enfant associated to ϕ. Since

Γ is invariant under complex conjugation, it is determined by its intersection with one connected

component H (for half) of CP 1 \ RP 1. Since ϕ is real, its degree is the sum of the degrees of its

restrictions to connected components of CP 1 \ Γ. To represent the real dessin d’enfant, we draw

a horizontal line corresponding to the real projective line and draw below one half HΓ of Γ, see

Figure 3.1 for instance.

Clearly, the arrangement of real roots of P , Q and P/Q− 1 together with their multiplicities

can be extracted from the graph Γ. We encode this arrangement together with the multiplicities

by what is called a root scheme.
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Figure 2.1: Cycles of Γ obeying the cycle rule.

Definition 2.1 ([Bru06, Ore03]). A root scheme is a k-tuple (l1,m1), . . . , (lk,mk) ∈ ({p, q, r}×

N)k. A root scheme is realizable by polynomials of degree d if there exist real polynomials P and Q

such that ϕ has degree d and if x1 < . . . < xk are the real roots of P , Q and P/Q− 1, then li = p

(resp. q, r) if xi is a root of P (resp. Q, P/Q− 1) and mi is the multiplicity of xi.

Conversely, suppose we are given a real graph Γ ⊂ CP 1 that is invariant under complex

conjugation, together with a real continuous map φ : Γ → RP 1. Denote the inverse images of 0,

∞ and 1 by letters p, q and r, respectively, and orient Γ with the pull back by φ of the above

orientation of RP 1. This graph is called a real rational graph [Bru06] if any vertex of Γ has even

valency and any connected component of CP 1 \Γ is homeomorphic to an open disk. Then, for any

connected component D of CP 1 \ Γ, the map φ|∂D is a covering of RP 1 whose degree dD is the

number of letters p (resp. q, r) in ∂D. We define the degree of Γ to be half the sum of the degrees

dD over all connected components of CP 1 \ Γ. Since φ is a real map, the degree of Γ is also the

sum of the degrees dD over all connected components D of CP 1 \ Γ contained in one connected

component of CP 1 \RP 1.

The following result [Ore03] explains the importance of real rational graphs in computing the

roots of P/Q− 1.

Proposition 2.2 (Orevkov). A root scheme is realizable by polynomials of degree d if and only if

it can be extracted from a real rational graph of degree d on CP 1.

We show now how to prove the if part in Proposition 2.2 (see [Bih07, Bru06, Ore03]). For each

connected component D of CP 1 \Γ, extend φ|∂D to a branched covering of degree dD (use the map

z 7→ zdD ) of one connected component of CP 1 \RP 1, so that two adjacent connected components

of CP 1 \ Γ project to different connected components of CP 1 \ RP 1. Then, it is possible to glue

continuously these maps in order to obtain a real branched covering φ : CP 1 → CP 1 of degree

d. The map φ becomes a real rational map of degree d for the standard complex structure on the

target space and its pull-back by φ on the source space. There exist then real polynomials P and

Q such that P/Q has degree d and φ = P/Q, so that the points p (resp. q, r) correspond to the

roots of P (resp. Q, P/Q− 1) and Γ = φ−1(RP 1).

2.2 A brief introduction to tropical geometry

The notations in this section are taken from [BLdM12, BB13, Ren15, GL15].
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2.2.1 Polytopes and subdivisions

Let Rn denote the n-dimensional Euclidean space, endowed with the standard inner product

〈 , 〉 : Rn ×R → R.

Definition 2.3. A rational polyhedron in Rn is a convex set of points x, defined by a finite

number of inequalities of type

〈x,w〉 ≤ c,

where w ∈ Zn and c ∈ Rn.

If a rational polyhedron is closed, then it is called an integer convex polytope. All polytopes

considered in Chapter 6 are integer convex.

Definition 2.4. A rational polyhedral complex is a finite set of rational polyhedra P = {∆i}i
such that

1. for every ∆ ∈ P, if ∆′ is a face of ∆, then ∆′ ∈ P, and

2. if ∆,∆′ ∈ P, then ∆ ∩∆′ is a face of both ∆ and ∆′.

Let F be a field of characteristic zero. For z = (z1, . . . , zn) ∈ Fn and w = (w1, . . . , wn) ∈ Rn,

set zw = zw
1

1 · · · zw
n

n . Consider a polynomial f =
∑

w∈W cwz
w ∈ F [z±1

1 , . . . , z±1
n ], with W 6= ∅ a

finite subset of Zn, and cw ∈ F ∗.

Definition 2.5. The Newton polytope ∆(f) of f is defined to be the convex hull Conv(W) of

W.

Definition 2.6. A polyhedral subdivision of an integer convex polytope ∆ is a set of integer

convex polytopes {∆i}i∈I such that

• ∪i∈I∆i = ∆, and

• if i, j ∈ I, then if the intersection ∆i∩∆j is non-empty, it is a common face of the polytope

∆i and the polytope ∆j.

Definition 2.7. Let ∆ be an integer convex polytope in Rn and let τ denote a polyhedral subdivision

of ∆ consisting of integer convex polytopes. We say that τ is regular if there exists a continuous,

convex, piecewise-linear function ϕ : ∆ → R which is affine linear on every simplex of τ .

Let ∆ be an integer convex polytope in Rn and let φ : ∆ ∩ Zn → R be a function. We denote

by ∆̂(φ) the convex hull of the graph of φ, i.e.,

∆̂(φ) := Conv
(

{(i, φ(i)) ∈ Rn+1 | i ∈ ∆ ∩ Zn}
)

.

Then the polyhedral subdivision of ∆, induced by projecting the union of the lower faces of ∆̂(φ)

onto the first n coordinates, is regular. In the following, we describe how we define φ using the

polynomials that we will be working with.
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2.2.2 Tropical polynomials and hypersurfaces

A locally convergent generalized Puiseux series is a formal series of the form

a(t) =
∑

r∈R

αrt
r,

where R ⊂ R is a well-ordered set, all αr ∈ C, and the series is convergent for t > 0 small enough.

We denote by K the set of all locally convergent generalized Puiseux series. It is naturally a field

of characteristic 0, which turns out to be algebraically closed.

Notation 2.8. Let coef(a(t)) denote the coefficient of the first term of a(t) following the increasing

order of the exponents of t. We extend coef to a map Coef : Kn → Rn by taking coef coordinate-

wise, i.e. Coef(a1(t), . . . , an(t)) = (coef(a1(t)), . . . , coef(an(t)))

An element a(t) =
∑

r∈R

αrt
r of K is said to be real if αr ∈ R for all r, and positive if a(t) is

real and coef(a(t)) > 0.

Denote by RK (resp. RK>0) the subfield of K composed of real (resp. positive) series. Since

elements of K are convergent for t > 0 small enough, an algebraic variety over K (resp. RK) can be

seen as a one parametric family of algebraic varieties over C (resp. R). The field K has a natural

non-archimedian valuation defined as follows:

val : K −→ R ∪ {−∞}

0 7−→ −∞
∑

r∈R

αrt
r 6= 0 7−→ −minR{r | αr 6= 0}.

The valuation extends naturally to a map Val : Kn → (R∪{−∞})n by evaluating val coordinate-

wise, i.e. Val(z1, . . . , zn) = (val(z1), . . . , val(zn)). We shall often use the notation val and Val

when the context is a tropical polynomial or a tropical hypersurface. On the other hand, define

ord := − val, with ord(0) = +∞, and use it as a notation when the context is an element in RK
n

or a polynomial in RK[z±1
1 , . . . , z±1

2 ].

Convention 2.9. For any s ∈ K, we have coef(s) = 0 ⇔ s = 0 and ord(s) = +∞ ⇔ s = 0

Consider a polynomial

f(z) :=
∑

w∈W

cwz
w ∈ K[z±1

1 , . . . , z±1
n ],

with W a finite subset of Zn and all cw are non-zero. Let Vf = {z ∈ (K∗)2 | f(z) = 0} be the zero

set of f in (K∗)n

The tropical hypersurface V trop
f associated to f is the closure (in the usual topology) of the

image under Val of Vf :

V trop
f = Val(Vf ) ⊂ Rn,

endowed with a weight function which we will define later. There are other equivalent definitions

of a tropical hypersurface. Namely, define

ν : W −→ R

w 7−→ ord(cw).
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Its Legendre transform is a piecewise-linear convex function

L(ν) : Rn −→ R

x 7−→ max
w∈W

{〈x,w〉 − ν(w)}.

We have the fundamental Theorem of Kapranov [Kap00].

Theorem 2.10 (Kapranov). A tropical hypersurface V trop
f is the corner locus of L(ν).

The corner locus of L(ν) is the set of points at which it is not differentiable. Tropical hypersur-

faces can also be described as algebraic varieties over the tropical semifield (R∪{−∞}, “+”, “×”),

where for any two elements x and y in R ∪ {−∞}, one has

“x+ y” = max(x, y) and “x× y” = x+ y.

A multivariate tropical polynomial is a polynomial in R[x1, . . . , xn], where the addition and multi-

plication are the tropical ones. Hence, a tropical polynomial is given by a maximum of finitely many

affine functions whose linear parts have integer coefficients and constant parts are real numbers.

The tropicalization of the polynomial f is a tropical polynomial

ftrop(x) = max
w∈W

{〈x,w〉+ val(cw)}.

This tropical polynomial coincides with the piecewise-linear convex function L(ν) defined above.

Therefore, Theorem 2.10 asserts that V trop
f is the corner locus of ftrop. Conversely, the corner

locus of any tropical polynomial is a tropical hypersurface.

2.2.3 Tropical hypersurfaces and subdivisions

A tropical hypersurface induces a subdivision of the Newton polytope ∆(f) in the following way.

The hypersurface V trop
f is a (n−1)-dimensional piecewise-linear complex which induces a polyhedral

subdivision Ξ of Rn. We will call cells the elements of Ξ. Note that these cells have rational slopes.

The n-dimensional cells of Ξ are the closures of the connected components of the complement of

V trop
f in Rn. The lower dimensional cells of Ξ are contained in V trop

f and we will just say that they

are cells of V trop
f .

Consider a cell ξ of V trop
f and pick a point x in the relative interior of ξ. Then the set

Ix = {w ∈ ∆(f) ∩ Zn | ∃ x ∈ Rn, ftrop(x) = 〈x,w〉+ val(cw)}

is independent of x, and denote by ∆ξ the convex hull of this set. All together the polyhedra ∆ξ

form a subdivision τ of ∆(f) called the dual subdivision, and the cell ∆ξ is called the dual of ξ.

Both subdivisions τ and Ξ are dual in the following sense. There is a one-to-one correspondence

between Ξ and τ , which reverses the inclusion relations, and such that if ∆ξ ∈ τ corresponds to

ξ ∈ Ξ then

1. dim ξ + dim∆ξ = n,

2. the cell ξ and the polytope ∆ξ span orthogonal real affine spaces,

3. the cell ξ is unbounded if and only if ∆ξ lies on a proper face of ∆(f).
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Note that τ coincides with the regular subdivision of Definition 2.7 described in Subsection 2.2.1.

Indeed, let ∆̂(f) ⊂ Rn × R be the convex hull of the points (w, ν(w)) with w ∈ W and ν(w) =

ord(cw). Define

ν̂ : ∆(f) −→ R

x 7−→ min{y | (x, y) ∈ ∆̂(f)}.

Then, the the domains of linearity of ν̂ form the dual subdivision τ .

Consider a facet (face of dimension n−1) ξ of V trop
f , then dim∆ξ = 1 and we define the weight

of ξ by w(ξ) := Card(∆ξ ∩ Zn) − 1. Tropical varieties satisfy the so-called balancing condition.

Since in Chapter 6, we only work with tropical curves in R2, we give here this property only for

this case. We refer to [Mik06] for the general case. Let T ⊂ Rn be a tropical curve, and let v be a

vertex of T . Let ξ1, . . . , ξl be the edges of T adjacent to v. Since T is a rational graph, each edge

ξi has a primitive integer direction. If in addition we ask that the orientation of ξi defined by this

vector points away from v, then this primitive integer vector is unique. Let us denote by uv,i this

vector.

Proposition 2.11 (Balancing condition). For any vertex v, one has

∑

i=1

w(ξi)uv,i = 0.

2.2.4 Intersection of tropical hypersurfaces

Consider polynomials f1, . . . , fk ∈ K[z±1
1 , . . . , z±1

n ]. For i = 1, . . . , k, let ∆i ⊂ Rn (resp. Ti ⊂ Rn)

denote the Newton polytope (resp. tropical curve) associated to fi. Recall that each tropical curve

Ti defines a piecewise linear polyhedral subdivision Ξi of R
n which is dual to a convex polyhedral

subdivision τi of ∆i. The union of these tropical curves defines a piecewise-linear polyhedral

subdivision Ξ of Rn. Any non-empty cell of Ξ can be written as

ξ = ξ1 ∩ · · · ∩ ξk

with ξi ∈ Ξi for i = 1, . . . , k. We require that ξ does not lie in the boundary of any ξi, thus any cell

ξ ∈ Ξ can be uniquely written in this way. Denote by τ the mixed subdivision of the Minkowski

sum ∆ = ∆1 + · · ·+∆k induced by the tropical polynomials f1, . . . , fk. Recall that any polytope

σ ∈ τ comes with a privileged representation σ = σ1 + · · ·+ σk with σi ∈ τi for i = 1, . . . , k. The

above duality-correspondence applied to the (tropical) product of the tropical polynomials gives

rise to the following well-known fact (see [BB13] for instance).

Proposition 2.12. There is a one-to-one duality correspondence between Ξ and τ , which reverses

the inclusion relations, and such that if σ ∈ τ corresponds to ξ ∈ Ξ, then

1. if ξ = ξ1 ∩ · · · ∩ ξk with ξi ∈ Ξi for i = 1, . . . , k, then σ has representation σ = σ1 + · · ·+ σk

where each σi is the polytope dual to ξi.

2. dim ξ + dimσ = n,

3. the cell ξ and the polytope σ span orthonogonal real affine spaces,

4. the cell ξ is unbounded if and only if σ lies on a proper face of ∆.
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Notation 2.13. In what follows, we denote such a σ by ∆ξ and we say that each polytope ∆ξ a

mixed polytope of τ .

Definition 2.14. A cell ξ is transversal if it satisfies dim(∆ξ) = dim(∆ξ1) + · · · + dim(∆ξk),

and it is non transversal if the previous equality does not hold.

2.2.5 Generalized Viro theorem and tropical reformulation

An important direction in real algebraic geometry is the construction of real algebraic hypersurfaces

with prescribed topology (see [Ris92, Vir84] or [Vir89] for example). Central to these developments

is a combinatorial construction due to O.Ya. Viro, which is based on regular triangulations of

Newton polytopes. Using this technique, significant progress has been made in the study of low

degree curves in the real projective plane (Hilbert’s 16th problem). Since Chapter 6 of this thesis

concerns algebraic sets of dimension zero contained in (R>0)
n, we only describe in this section how

to use combinatorial patchworking in that orthant of Rn.

Following the description of B. Sturmfels [Stu94], we recall now Viro’s Theorem for hypersur-

faces. Let W ⊂ Zn be a finite set of lattice points, and denote by ∆ the convex hull of W. Assume

that dim∆ = n and let ϕ : W → Z be any function inducing a regular triangulation τϕ of the

integer convex polytope ∆ (see Definition 2.7). Fix non-zero real numbers cw, w ∈ W. For each

positive real number t, we consider a Laurent polynomial

ft(z1, . . . , zn) =
∑

w∈W

cwt
ϕ(w)zw. (2.2.1)

Let Bar(τϕ) denote the first barycentric subdivision of the regular triangulation τϕ. Each max-

imal cell µ of Bar(τϕ) is incident to a unique point w ∈ W. We define the sign of a maximal cell µ

to be the sign of the associated real number cw. The sign of any lower dimensional cell λ ∈ Bar(τϕ)

is defined as follows:

sign(λ) :=











+ if sign(µ) = + for all maximal cells µ containing λ,

− if sign(µ) = − for all maximal cells µ containing λ,

0 otherwise.

Let Z+(τϕ, f) denote the subcomplex of Bar(τϕ) consisting of all cells λ with sign(λ) = 0, and

let V+(ft) denote the zero set of ft in the positive orthant of Rn. Denote by Int(∆) the relative

interior of ∆.

Theorem 2.15 (Viro). For sufficiently small t > 0, there exists a homeomorphism (R>0)
n →

Int(∆) sending the real algebraic set V+(ft) ⊂ (R>0)
n to the simplicial complex Z+(τϕ, f) ⊂ Int(∆).

Naturally, a signed version of Theorem 2.15 holds in each of the 2n orthants

(R>0)
ǫ := {(x1, . . . , xn) ∈ (R∗)n | sign(xi) = ǫi for i = 1, . . . , n},

where ǫ ∈ {+,−}n. In fact, O. Viro proves a more general Theorem for Theorem 2.15, in which

he defines a set that is homeomorphic to the the zero set V (ft) ⊂ Rn (not only the positive zero

set V+(ft)) by means of gluing the zero sets of ft contained in all other orthants of Rn.

We now reformulate Theorem 2.15 using tropical geometry. We consider g := ft as a polynomial

defined over the field of real generalized locally convergent Puiseux series, where each coefficient
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cwt
ϕ(w) ∈ RK

∗ of g has only one term. Therefore coef(cwt
ϕ(w)) = cw, val(cwt

ϕ(w)) = −ϕ(w), and

we associate to g a tropical hypersurface V trop
g as defined in Subsection 2.2.2. Recall that V trop

g

induces a subdivision Ξg of Rn that is dual to τϕ. The tropical hypersurface V
trop
g is homeomorphic

to the barycentric subdivision Bar(τϕ). Indeed, τϕ is a triangulation, and thus Bar(τϕ) becomes

dual to τϕ in the sense of the duality described in Subsection 2.2.3.

We define for each n-cell ξ ∈ Ξg, dual to a 0-face (vertex) w of the triangulation τϕ, a sign

ǫ(w) ∈ {+,−}, to be equal to the sign of cw.

Definition 2.16. The positive part, denoted by V trop
g,+ , is the subcomplex of V trop

g consisting of

all (n−1)-cells of V trop
g that are adjacent to two n-cells of V trop

g having different signs. A positive

facet ξ+ is an (n− 1)-dimensional cell of V trop
g,+ .

The following is a Corollary of Mikhalkin [Mik04] and Rullgard [Rul01] results, where they

completely describe the topology of V (ft) using amoebas.

Theorem 2.17 (Mikhalkin, Rullgard). For sufficiently small t > 0, there exists a homeomorphism

(R>0)
n → Rn sending the zero set V+(ft) ⊂ (R>0)

n to V trop
g,+ ⊂ Rn.

B. Sturmfels generalized Viro’s method for complete intersections in [Stu94]. We give now a

tropical reformulation of one of the main Theorems of [Stu94].

Consider a system

f1,t(z1, . . . , zn) = · · · = fk,t(z1, . . . , zn) = 0, (2.2.2)

of k equations, where all ft,i are polynomial (2.2.1). For i = 1, . . . , k, we define as before gi := fi,t
as a polynomial in RK[z±1

1 , . . . , z±1
n ]. Let V+(f1,t, . . . , fk,t) ⊂ (R>0)

n denote the set of positive

solutions of (2.2.2).

Theorem 2.18 (Sturmfels). Assume that the tropical hypersurfaces V trop
g1

, . . . , V trop
gk

intersect

transversally. Then for sufficiently small t > 0, there exists a homeomorphism (R>0)
n → Rn send-

ing the real algebraic set Z+(f1,t, . . . , fk,t) ⊂ (R>0)
n to the intersection V trop

g1,+
∩ · · · ∩ V trop

gk,+
⊂ Rn.

Similarly to O. Viro’s work, B. Sturmfels generalizes Theorem 2.18 for the zero set

V (f1,t, . . . , fk,t) ⊂ Rn (see [Stu94, Theorem 5]).

2.2.5.1 Transversal intersection points and discrete mixed volume

Assume now that the number of polynomials in (2.2.2) is equal to that of variables (i.e. k =

n), and assume that the tropical hypersurfaces V trop
g1

, . . . , V trop
gn

intersect transversally. Then the

intersection set V trop
+ (g1, . . . , gn) := V trop

gi,+
∩ · · · ∩ V trop

gk,+
is a (possibly empty) set of points in

Rn. Each point p of V trop
+ (g1, . . . , gn) is expressed in a unique way as a transversal intersection

ξ1,+ ∩ · · · ∩ ξn,+, where for i = 1, . . . , n, the cell ξi,+ ⊂ V trop
gi,+

is a positive cell. Theorem 2.18

is a powerful tool for constructing polynomial systems (2.2.2) with many non-degenerate positive

solutions.

A consequence of F. Bihan’s more general result [Bih14] is a bound on the number of positive

mixed points for a system (2.2.2). For any number r of finite sets W1, . . . ,Wr in Rn, and for any

non-empty I ⊂ [r] = {1, 2, . . . , r}, write WI for the set of points
∑

i∈I wi over all wi ∈ Wi with

i ∈ I. The associated discrete mixed volume of W1, . . . ,Wr is defined as

D(W1, . . . ,Wr) =
∑

I⊂[r]

(−1)r−|I||WI |, (2.2.3)
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where the sum is taken over all subsets I of [r] including the empty set with the convention that

|W∅| = 1. Denote by Wi the support of gi for i = 1, . . . , n. Recall that the tropical hypersurfaces

associated to g1, . . . , gn intersect transversally.

Theorem 2.19 (Bihan). The number ♯{V trop
g1

∩ · · · ∩ V trop
gn

} is less or equal to the discrete mixed

volume D(W1, . . . ,Wn).

Obviously, we have

♯{V trop
g1,+

∩ · · · ∩ V trop
gn,+

} ≤ ♯{V trop
g1

∩ · · · ∩ V trop
gn

}

Moreover, Theorem 1.4 of [Bih14] states that for any finite sets W1, . . . ,Wr ⊂ Rn, we have

D(W1, . . . ,Wr) ≤
∏

i∈[r]

(|Wi| − 1).

Combining the latter result with Theorem 2.19 shows that Kushnirenko’s conjecture is true for

polynomial systems constructed by the combinatorial patchworking method of Viro, or equivalently,

for tropical polynomial systems given by transversal intersections of tropical hypersurfaces.

To our knowledge, we do not know if the discrete mixed volume bound is sharp for any poly-

nomial system with n equations in n variables satisfying that the associated tropical hypersurfaces

intersect transversally. An interesting direction to start, is to look at a system (2.2.2) such that

all polynomials of (2.2.2) have the same support W. For example, when |W| = 4, then the bound

of Theorem 2.19 is 3 and is sharp, see [Bih07].

When |W| = 5 and n = 2, we have D(W,W) = 6. We construct using combinatorial patch-

working (Theorem 2.18) a polynomial system of two equations in two variables having a total of

five distinct monomials and six non-degenerate solutions in (R>0)
2. Thus proving that the bound

of Theorem 2.19 is sharp when n = 2 and W1 = W2 = 5.

2.2.6 Reduced systems and non-transversal intersections

Theorem 2.18 is only adapted for the case where the tropical intersections are transverse. Therefore,

we need other machinery to locate the valuations of positive solutions.

2.2.6.1 Types of non-transversal cells

In Chapter 6 of this thesis, we only work with tropical hypersurfaces in dimension two. Therefore,

we classify the types of mixed cells ξ in the case where two tropical plane curves intersect non-

transversally at a cell ξ. Let
◦

ξ denote the relative interior of ξ. Note that ξ =
◦

ξ if ξ is a point.

Assume that ξ is non-transversal, we distinguish three types for such ξ.

• A cell ξ is of type (I) if dim ξ = dim ξ1 = dim ξ2 = 1.

• A cell ξ is of type (II) if one of the cells ξ1, or ξ2 is a vertex, and the other cell is an edge.

• A cell ξ is of type (III) if ξ1 and ξ2 are vertices of the corresponding tropical curves.
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Figure 2.2: The three types of non-transversal intersection cells.

2.2.6.2 Reduced systems

Recall that for an element a(t) ∈ K∗, we denote by coef(a(t)) the non-zero coefficient corresponding

to the term of α(t) with the smallest exponent of t.

Definition 2.20. Let f =
∑

w∈∆(f)∩Z2 cwz
w be a polynomial in K[z±1

1 , z±1
2 ] with cw ∈ K∗, and

let ξ denote a cell of V trop
f . The reduced polynomial f|ξ ∈ C[z±1

1 , z±1
2 ] of f with respect to ξ is

a polynomial defined as

f|ξ =
∑

w∈∆ξ∩W

coef(cw)z
w,

where W is the support of f .

We extend this definition to the following. Consider a system

f1(z) = f2(z) = 0, (2.2.4)

with f1, f2 in K[z±1
1 , z±1

2 ] defined as above. Assume that the intersection set T1 ∩ T2 of the

tropical curves T1 and T2 is non-empty, and consider a mixed cell ξ ∈ T1 ∩ T2. As explained in

Subsection 2.2.4, the mixed cell ξ is written as ξ1 ∩ ξ2 for some unique ξ1 ∈ T1 and ξ2 ∈ T2.

Definition 2.21. The reduced system of (2.2.4) with respect to ξ is the system

f1|ξ1 = f2|ξ2 = 0,

with fi|ξi is the reduced polynomial of fi with respect to ξi for i = 1, 2.

Let W1 and W2 denote the supports of f1 and f2 respectively, and write

f1(z) =
∑

v∈W1

avz
v and f2(z) =

∑

w∈W2

bwz
w.

The following result also generalizes to a polynomial system defined on the same field with n

equations in n variables.
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Proposition 2.22. If the system (2.2.4) has a solution (α, β) ∈ (K∗)2 such that Val(α, β) ∈
◦

ξ,

then (coef(α), coef(β)) is a real solution of the reduced system

f1|∆ξ1
= f2|∆ξ2

= 0. (2.2.5)

Proof. Assume that (2.2.4) has a solution (α, β) ∈ (K∗)2 such that Val(α, β) ∈
◦

ξ. Since Val(α, β)

belongs to the relative interior of each of ξ1 and ξ2, we have

max{〈Val(α, β), v〉+val(av), v ∈ W1 \ (W1 ∩∆ξ1)} < 〈Val(α, β), v〉+val(av) for v ∈ W1 ∩∆ξ1

and

max{〈Val(α, β), w〉+val(bw), w ∈ W2\(W2∩∆ξ2)} < 〈Val(α, β), w〉+val(bw) for w ∈ W2∩∆ξ2 .

Consequently, since ord = − val, we haveM := −〈Val(α, β), v〉−val(av) andN := −〈Val(α, β), w〉−

val(bw) are the orders of f1(α, β) and f2(α, β) respectively. Therefore, replacing (z1, z2) by
(

tord(α)z1, t
ord(β)z2

)

in (2.2.4), such a system becomes

f1
(

tord(α)z1, t
ord(β)z2

)

= tM
(

∑

v∈W1∩∆ξ1

coef(av)z
v + g1(z)

)

,

f2
(

tord(α)z1, t
ord(β)z2

)

= tN
(

∑

w∈W2∩∆ξ2

coef(bw)z
w + g2(z)

)

,

(2.2.6)

where all the coefficients of the polynomials g1 and g2 of RK[z±1
1 , z±1

2 ] have positive orders. Since

(α, β) is a non-zero solution of (2.2.5), the system (2.2.6) has a non-zero solution (α0, β0) with

ord(α0) = ord(β0) = 0 and Coef(α, β) = Coef(α0, β0). It follows that taking t > 0 small enough,

we get that Coef(α0, β0) is a non-zero solution of

∑

v∈W1∩∆ξ1

coef(av)z
v =

∑

w∈W2∩∆ξ2

coef(bw)z
w = 0.

Note that Proposition 2.22 holds true for any type of tropical intersection cell ξ. However, the

other direction does not always hold true when ξ is of type (I). Recall that a solution (α, β) ∈ (K∗)2

is positive if (α, β) ∈ (RK∗
>0)

2.

Proposition 2.23. Assume that dim ξ = 0 and that all solutions of (2.2.4) are non-degenerate.

If the reduced system of (2.2.4) with respect to ξ has a non-degenerate solution (ρ1, ρ2) ∈ (R∗
>0)

2,

then (2.2.4) has a non-degenerate solution (α, β) ∈ (RK∗
>0)

2 such that Val(α, β) = ξ and Coef(α, β) =

(ρ1, ρ2).

Proof. E. Brugallé and L. López De Medrano showed in [BLdM12, Proposition 3.11] (see also [Kat09,

Rab12, OP13] for more details for higher dimension and more exposition relating toric varieties

and tropical intersection theory) that the number of solutions of (2.2.4) with valuation ξ is equal

to the mixed volume MV(∆ξ1 ,∆ξ2) of ξ1 and ξ2 (recall that ∆ξ = ∆ξ1 +∆ξ2). Since we assumed

that (2.2.4) has only non-degenerate solutions in (K∗)2, we get MV(∆ξ1 ,∆ξ2) distinct solutions

of the system (2.2.4) in (K∗)2 with given valuation ξ. By Proposition 2.22, if f1(z) = f2(z) = 0

and Val(z) = ξ, then Coef(z) is a solution of the reduced system of (2.2.4) with respect to ξ. The

number of solutions of the reduced system in (C∗)2 is MV(∆ξ1 ,∆ξ2). Assuming that this reduced
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system has MV(∆ξ1 ,∆ξ2) distinct solutions in (C∗)2, we obtain that the map z 7→ Coef(z) induces

a bijection from the set of solutions of (2.2.4) in (K∗)2 with valuation ξ onto the set of solutions

in (C∗)2 of the reduced system of (2.2.4) with respect to ξ.

If z is a solution of (2.2.4) in (K∗)2 with Val(z) = ξ and Coef(z) ∈ (R∗)2, then z ∈ (RK∗)2

since otherwise, z, z̄ would be two distinct solutions of (2.2.4) in (K∗ \ RK∗)2 such that Val(z) =

Val(z̄) = ξ and Coef(z) = Coef(z̄).



Chapter 3

Intersecting a sparse plane curve

and a line

We prove in Section 3.2 the following result.

Theorem 3.1. Let f ∈ R[x, y] be a polynomial with at most t non-zero terms and let a, b be any

real numbers. Assume that the polynomial g(x) = f(x, ax+ b) is not identically zero. Then g has

at most 6t − 7 real roots counted with multiplicities except for the possible roots 0 and −a/b that

are counted at most once.

In Section 3.3, we construct the equation (3.3.4) proving the following.

Theorem 3.2. The maximal number of real intersection points of a real line with a real plane

curve defined by a polynomial with three non-zero terms is eleven.

3.1 Preliminary results

We present some results of M. Avendaño [Ave09] and add other ones. Consider a non-zero univari-

ate polynomial f(x) =
∑d

i=0 aix
i with real coefficients. Denote by V (f) the number of change signs

in the ordered sequence (a0, . . . , ad) disregarding the zero terms. Recall that the famous Descartes’

rule of signs asserts that the number of (strictly) positive roots of f counted with multiplicities

does not exceed V (f).

Lemma 3.3. [Ave09] We have V ((x+ 1)f) ≤ V (f).

The following result is straighforward.

Lemma 3.4. [Ave09] If f, g ∈ R[x] and g has t terms, then V (f + g) ≤ V (f) + 2t.

Denote by N (h) the Newton polytope of a polynomial h and by
◦
N (h) the interior of N (h).

Lemma 3.5. If f, g ∈ R[X], g has t terms and V (f + g) = V (f) + 2t, then N (g) is contained in
◦
N (f).



3.1. Preliminary results 38

Proof. Assume that N (g) is not contained in
◦
N (f). Writing f(x) =

∑s

i=1 aix
αi and g(x) =

t
∑

j=1

bjx
βj with 0 ≤ α1 < · · · < αs and 0 ≤ β1 < · · · < βt, we get β1 ≤ α1 or αs ≤ βt. Assume that

β1 ≤ α1 (the case αs ≤ βt is symmetric). Then, obviously

V (f(x) + g(x)) ≤ 1 + V (f(x) + g(x)− b1x
β1).

By Lemma 3.4 we have

V (f(x) + g(x)− b1x
β1) ≤ V (f) + 2(t− 1).

All together this gives V (f + g) ≤ 1 + V (f) + 2(t− 1) = V (f) + 2t− 1.

Proposition 3.6. [Ave09] If f ∈ R[x, y] has t non-zero terms, then

V (f(x, x+ 1)) ≤ 2t− 2.

Proof. Write f(x, y) =
∑n

k=1 ak(x)y
αk , with 0 ≤ α1 < · · · < αn and ak(x) ∈ R[x]. Denote by tk

the number of non-zero terms of ak(x). Define

fk(x, y) =

n
∑

j=k

aj(x)y
αj−αk , k = 1, . . . , n,

and fn+1 = 0. Then fk(x, x+ 1) = (x+ 1)αk+1−αkfk+1(x, x+ 1) + ak(x) for k = 1, . . . , n− 1 and

fn(x, x + 1) = an(x). Therefore, V (fk(x, x + 1)) ≤ V (fk+1(x, x + 1)) + 2tk by Lemma 3.3 and

Lemma 3.4. Finally, V (f(x, x+1)) ≤ V (f1(x, x+1)) since f(x, x+1) = (x+1)α1f1(x, x+1). We

conclude that V (f(x, x+ 1))) ≤ −2 + 2(t1 + · · ·+ tn) = 2t− 2.

Proposition 3.7. Let f ∈ R[x, y] be a polynomial with t non-zero terms. Write it as f(x, y) =
∑t

i=1 bix
βiyγi with 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γt. If V (f(x, x+ 1)) = 2t− 2, then

N (bix
βi(x+ 1)γi) ⊂

◦
N (btx

βt(x+ 1)γt)

(in other words, βt < βi ≤ βi + γi < βt + γt) for i = 1, . . . , t− 1.

Proof. We use the proof of Proposition 3.6 keeping its notations. Write f(x, y) =
∑n

k=1 ak(x)y
αk

with 0 ≤ α1 < · · · < αn and assume that V (f(x, x + 1)) = 2t − 2. It follows from the proof of

Proposition 3.6 that

V (fk(x, x+ 1)) = V (fk+1(x, x+ 1)) + 2tk , k = 1, . . . , n. (3.1.1)

Recall that fk(x, x+ 1) = (x+ 1)αk+1−αkfk+1(x, x+ 1) + ak(x) for k ≤ n− 1. By Lemma 3.5 and

(3.1.1) we get N (ak(x)) ⊂
◦
N ((x+ 1)αk+1−αkfk+1(x, x+ 1)) and thus

N (ak(x)(x+ 1)αk) ⊂
◦
N ((x+ 1)αk+1fk+1(x, x+ 1)) (3.1.2)
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for k = 1, . . . , n− 1. We now show by induction on n− k ≥ 1 that

◦
N ((x+ 1)αk+1fk+1(x, x+ 1)) ⊂

◦
N (an(x)(x+ 1)αn). (3.1.3)

Together with (3.1.2) this will imply N (ak(x)(x+1)αk) ⊂
◦
N (an(x)(x+1)αn) for k = 1, . . . , n− 1,

and thus N (bix
βi(x + 1)γi) ⊂

◦
N (btx

βt(x + 1)γt) for i = 1, . . . , t − 1. For n − k = 1 the inclusion

(3.1.3) is obvious. Since fk(x, x+1) = (x+1)αk+1−αkfk+1(x, x+1)+ak(x) and N (ak(x)) ⊂
◦
N ((x+

1)αk+1−αkfk+1(x, x + 1)), we get
◦
N (fk(x, x + 1)) =

◦
N ((x + 1)αk+1−αkfk+1(x, x + 1)). Assuming

(3.1.3) is true for k (hypothesis induction), this immediately gives
◦
N ((x + 1)αkfk(x, x + 1)) ⊆

◦
N (an(x)(x+ 1)αn) and thus (3.1.3) is proved for k − 1.

3.2 Proof of Theorem 3.1

We first recall the proof of the bound 6t − 4 in [Ave09]. Let f(x, y) =
∑t

i=1 bix
βiyγi ∈ R[x, y]

be a polynomial with at most t non-zero terms, and let a, b ∈ R. Set g(x) = f(x, ax + b). If

a = 0 or b = 0, then f has at most t non-zero terms and Descartes’ rule of signs implies that

either g = 0 or g has at most 2t − 1 ≤ 6t − 4 real roots (counted with multiplicities except for

the possible root 0). If ab 6= 0, then the real roots of f(x, ax + b) correspond bijectively to the

real roots of f(bx/a, b(x + 1)) = f̂(x, x + 1), where f̂(x, y) =
∑t

i=1 bia
−βibβi+γixβiyγi . Since this

bijection preserves multiplicities and maps the possible roots 0 and −b/a of g to the roots 0 and

−1 of f̂(x, x + 1), it suffices to consider the case a = b = 1, i.e. g(x) = f(x, x + 1). So we now

consider g(x) = f(x, x+ 1). Assume that g 6= 0 and denote by d the degree of g.

Descartes’ rule of signs and Proposition 3.6 imply that the number of positive roots of g

counted with multiplicities is at most 2t − 2. The roots of g in ] −∞,−1[ correspond bijectively

to the positive roots of g(−1 − x) = f(−1 − x,−x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Therefore,

by Proposition 3.6 the number of roots (counted with multiplicities) of g in ] − ∞,−1[ cannot

exceed 2t − 2. Finally, the roots of g in ] − 1, 0[ correspond bijectively to the positive roots of

(x+1)dg( −x
x+1 ) = (x+1)df( −x

x+1 ,
1

x+1 ) =
∑t

i=1 bi(−1)βixβi(x+ 1)d−βi−γi . Thus, by Proposition 3.6

there are at most 2t− 2 such roots.

All together, this leads to the conclusion that g has at most 3(2t − 2) + 2 = 6t − 4 real roots

counted with multiplicities except for the possible roots 0 and −1 that are counted at most once.

We now start the proof of Theorem 3.1.

Set I1 =]0,+∞[, I2 =]−∞,−1[ and I3 =]− 1, 0[. For h ∈ R[x] define

VI1(h) = V (h) , VI2(h) = V (h(−1− x)) and

VI3(h) = V
(

(x+ 1)deg(h)h
( −x

x+ 1

))

.

By Descartes’ rule of sign the number of roots of h in Ii does not exceed VIi(h). To prove

Theorem 3.1, it suffices to show that

VI1(g) + VI2(g) + VI3(g) ≤ 3(2t− 2)− 3 (3.2.1)

Define polynomials

h1(x) = xdh

(

1

x

)

, h2(x) = (x+ 1)dh
( −x

x+ 1

)

and h3(x) = h(−1− x)
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so that VI1(h1) = VI1(h), VI1(h2) = VI3(h) and VI1(h3) = VI2(h).

Lemma 3.8. For any i, j, k such that {i, j, k} = {1, 2, 3}, we have

VIi(hi) = VIi(h) and VIi(hj) = VIk(h)

Proof. We have h1(−x− 1) = (−1)d(x+ 1)dh
(

− 1
x+1

)

. Therefore

V (h1(−x− 1)) = V

(

(x−1 + 1)dh

(

−
1

x−1 + 1

))

, thus

V (h1(−x− 1)) = V

(

(

x+ 1

x

)d

h
(

−
x

x+ 1

)

)

= V
(

(x+ 1)dh
(

−
x

x+ 1

))

,

and we get VI2(h1) = VI3(h). We have (x+ 1)dh1

(

−
x

x+ 1

)

= (−x)dh(−1− x−1) from which we

obtain VI3(h1) = VI2(h).

Equalities VI2(h2) = VI2(h) and VI3(h2) = VI1(h) follow from

h2(−1− x) = (−x)dh(−1− x−1) and (x+ 1)dh2(−
x

x+1 ) = h(x).

Finally, VI2(h3) = VI1(h) comes from h3(−x−1) = h(x) and VI3(h3) = VI3(h) is a consequence

of (x + 1)dh3(−
x

x+1 ) = (x + 1)dh(− 1
x+1 ) and the equality V ((x + 1)dh(− 1

x+1 )) = VI3(h) shown

above.

We now proceed to the proof of (3.2.1). We already know that VIi(g) ≤ 2t−2 for i = 1, 2, 3. If

VIi(g) ≤ 2t− 3 for all i, then (3.2.1) is trivially true. With the help of Lemma 3.8, it suffices now

to show that if VI1(g) = 2t−2 then VI2(g) ≤ 2t−3, VI3(g) ≤ 2t−3, and VI2(g)+VI3(g) < 2(2t−3).

So assume VI1(g) = 2t− 2. Then by Proposition 3.7

βt < βi ≤ βi + γi < βt + γt, , i = 1, . . . , t− 1. (3.2.2)

We have g(−1−x) =
∑t

i=1 bi(−1)βi+γixγi(x+ 1)βi . Recall that VI2(g) = V (g(−x−1)) ≤ 2t−2 by

Proposition 3.6. From (3.2.2), we get γt > γi for i = 1, . . . , t− 1. It follows then from Proposition

3.7 that V (g(−x− 1)) ≤ 2t− 3.

Write g(−1−x) = g̃(−x−1)+bt(−1)βt+γtxγt(x+1)βt , and then g(−1−x)(x+1)−βt = g̃(−x−

1)(x+1)−βt +bt(−1)βt+γtxγt . We note that (3.2.2) implies βt < βi for i = 1, . . . , t−1, so that both

members of the previous equality are polynomials. Moreover, from (3.2.2) we also get βi−βt+γi <

γt, and thus γt does not belong to the Newton polytope of the polynomial g̃(−x − 1)(x + 1)−βt .

It follows that V (g(−1 − x)(x + 1)−βt) ≤ V (g̃(−x − 1)(x + 1)−βt) + 1. By Lemma 3.3 we have

V (g(−1− x)) ≤ V (g(−x− 1)(x+ 1)−βt). Therefore, V (g(−1− x)) ≤ V (g̃(−x− 1)(x+ 1)−βt) + 1.

On the other hand Proposition 3.6 yields V (g̃(−x− 1)(x+ 1)−βt) ≤ 2(t− 1)− 2 = 2t− 4.

Therefore, if V (g(−1− x)) = 2t− 3, then V (g̃(−x− 1)(x+1)−βt) = 2t− 4, and we may apply

Proposition 3.7 to g̃(−x− 1)(x+ 1)−βt in order to get

γi0 < γi ≤ γi + βi < γi0 + βi0 for all i = 1, . . . , t− 1 and i 6= i0, (3.2.3)

where i0 is determined by βi0 ≥ βi for i = 1, . . . , t− 1.

Starting with g1(x) = xdg(1/x) =
∑t

i=1 bix
d−βi−γi(x + 1)γi instead of g in the previous

computation, we obtain that if V (g1) = 2t− 2 then VI2(g1) ≤ 2t− 3 and if VI2(g1) = 2t− 3, then

the substitution of d− βi − γi for βi in (3.2.3) holds true:

γi1 < γi ≤ d− βi < d− βi1 for all i = 1, . . . , t− 1 and i 6= i1, (3.2.4)
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where i1 is determined by d− βi1 − γi1 ≥ d− βi − γi for i = 1, . . . , t− 1.

On the other hand, V (g) = V (g1) and V (g1(−x− 1)) = VI2(g1) = VI3(g) by Lemma 3.8. Thus

if V (g) = 2t − 2 then VI3(g) ≤ 2t − 3 and if VI3(g) = 2t − 3, then formula (3.2.4) holds true.

It turns out that (3.2.3) and (3.2.4) are incompatible. Indeed, if (3.2.3) and (3.2.4) hold true

simultaneously, then i0 = i1 but then (3.2.4) implies that γi0 +βi0 < γi+βi for all 1, . . . , t−1 with

i 6= i0 which contradicts (3.2.3). Consequently, if V (g) = VI1(g) = 2t − 2, then VI2(g) ≤ 2t − 3,

VI3(g) ≤ 2t− 3 and VI2(g) + VI3(g) < 2(2t− 3).

3.3 Optimality

We prove that the bound in Theorem 3.1 is sharp for t = 3 (Theorem 3.2). We look for a polynomial

P ∈ R[x, y] with three non-zero terms such that P (x, x+1) has nine real roots distinct from 0 and

−1. It follows from the previous section that if such P exists then, either P (x, x + 1) has three

roots in each interval I1, I2 and I3, or P (x, x + 1) has four roots in one interval, three roots in

another interval, and two roots in the last one. We give necessary conditions for the second case,

which thanks to Lemma 3.8 reduces to the case where P (x, x + 1) has four roots in I1 =]0,+∞[,

three roots in I3 =]− 1, 0[ and two roots in I2 =]−∞,−1[.

Multiplication of P by a monomial does not alter the roots of P (x, x + 1) in R \ {0,−1}, so

dividing by the smallest power of x, we may assume that P has the following form

P (x, y) = ayl1 + bxk2yl2 + xk3yl3 ,

where k2, k3, l1, l2, l3 are nonnegative integer numbers and a, b are real numbers.

Lemma 3.9. If P (x, x + 1) has four real positive roots, then k2 > 0, k3 > 0, l1 > l2 + k2 and

l1 > l3 + k3.

Proof. If P (x, x+1) has four real positive roots, then V (P (x, x+1)) = 4. Rewriting P (x, x+1) =
∑3

i=1 bix
βi(x + 1)γi with 0 ≤ γ1 ≤ γ2 ≤ γ3, Proposition 3.7 yields β3 < βi ≤ βi + γi < β3 + γ3

for i = 1, 2. Since k2 and k3 are nonnegative, we get β3 = 0, k2, k3 > 0 and β3 + γ3 = γ3 = l1, so

l1 > max(l2 + k2, l3 + k3).

Since l1 > l2 and l1 > l3, we may divide P (x, x+1) by (x+1)l2 or (x+1)l3 to get a polynomial

equation with the same solutions in R \ {0,−1}. So without loss of generality we may assume that

P (x, x+ 1) = a(x+ 1)l1 + bxk2(x+ 1)l2 + xk3 , (3.3.1)

where k2, k3 > 0, l2 ≥ 0, l1 > k2 + l2 and l1 > k3.

Lemma 3.10. Assume that the polynomial (3.3.1) has four roots in I1, and three roots in I3 or

I2. Then k3 does not belong to the interval [k2, k2 + l2]. Moreover, we have a < 0 and b > 0.

Proof. We prove that if k2 ≤ k3 ≤ k2 + l2, then (3.3.1) has at most two roots in I2 and in I3.

The roots in I2 are in bijection with the positive roots of

P (−x− 1,−x) = (−1)l1axl1 + (−1)k2+l2bxl2(x+ 1)k2 + (−1)k3(1 + x)k3 .

Recall that l2 ≥ 0. If k2 ≤ k3 ≤ k2 + l2 then Proposition 3.7 yields V ((−1)k2+l2bxl2(x + 1)k2 +

(−1)k3(1+ x)k3) ≤ 1. Now, since l1 > k2 + l2 and l1 > k3, we get V (P (−x− 1,−x)) ≤ 2, and thus

(3.3.1) has at most two roots in I2.
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The roots in I3 are in bijection with the positive roots of

(1 + x)l1P (
−x

x+ 1
,

−x

x+ 1
+ 1) = a+ b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3

From k3 ≤ k2 + l2, we get l1 − k2 − l2 ≤ l1 − k3. Thus, Proposition 3.7 together with k2 ≤

k3 yields V (b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3) ≤ 1. From k2, k3 > 0 we get

V ((1 + x)l1P ( −x
x+1 ,

−x
x+1 + 1)) ≤ 2, and thus (3.3.1) has at most two roots in I3.

Finally, if (3.3.1) has four positive roots, then obviously ab < 0. If k3 does not belong to

[k2, k2 + l2] and a > 0, then V ((x + 1)l1 + bxk2(x + 1)l2 + xk3) = V ((x + 1)l1 + bxk2(x + 1)l2)

(recall that k2 ≤ k2+ l2 < l1). But the second sign variation is a most two by Proposition 3.6. We

conclude that a < 0 and b > 0.

Lemma 3.11. Assume that the polynomial (3.3.1) has four roots in I1, two roots in I2 and three

roots in I3. Assume furthermore that k3 < k2. Then, l1 is odd, k2 is odd, k3 is even and l2 is

even.

Proof. Since (3.3.1) has exactly nine real roots counted with multiplicity, its degree l1 is odd. We

have already seen that if (3.3.1) has four roots in I1 =]0,+∞[, two roots in I2 =] − ∞,−1[ and

three roots in I3 =]− 1, 0[, then a < 0, b > 0, l1 > l2 and k3 /∈ [k2, k2 + l2]. Assume from now on

that k3 < k2.

Since (3.3.1) has two roots in I2 =]−∞,−1[, we have V (P (−x− 1,−x)) ≥ 2, where P (−x−

1,−x) = (−1)k3(1 + x)k3 + (−1)k2+l2bxl2(x+ 1)k2 + (−1)l1axl1 . But since k3 < k2 ≤ k2 + l2 < l1,

we get that (−1)k3 · (−1)k2+l2b < 0 and (−1)k2+l2b · (−1)l1a < 0. Using a < 0 and b > 0, we obtain

that k2 + l2 is odd and k3 is even.

Since (3.3.1) has three roots in I3 =] − 1, 0[, we have V ((1 + x)l1P ( −x
x+1 ,

−x
x+1 + 1)) ≥ 3,

where (1 + x)l1P ( −x
x+1 ,

−x
x+1 + 1) = a + b(−1)k2xk2(1 + x)l1−k2−l2 + (−1)k3xk3(1 + x)l1−k3−l3 . We

know that k3 is even and that b > 0. Thus in order to get coefficients with different signs in

b(−1)k2xk2(1+x)l1−k2−l2 +(−1)k3xk3(1+x)l1−k3−l3 , the integer k2 should be odd. Since we know

that k2 + l2 is odd, this gives that l2 is even.

Assume now that (3.3.1) has four roots in I1, two roots in I2 and three roots in I3. Then a < 0,

b > 0 and k3 does not belong to [k2, k2 + l2] by Lemma 3.10. Assume that k3 < k2. Then l1 is

odd, k2 is odd, k3 is even and l2 is even by Lemma 3.11. The roots of (3.3.1) are solutions to the

equation f(x) = −a, where f(x) = bxk2(1 + x)l2−l1 + xk3(1 + x)−l1 . Since the rational function f

has no pole outside {−1, 0}, by Rolle’s Theorem its derivative has at least three roots in I1, one

root in I2 and two roots in I3. We compute that f ′(x) = 0 is equivalent to Φ(x) = 1, where Φ is

the rational map

Φ(x) =
−bxk2−k3(1 + x)l2A1(x)

A2(x)
, (3.3.2)

with A1(x) = (k2+ l2− l1)x+k2 and A2(x) = (k3− l1)x+k3. From 0 < k3 < k2, l2 ≥ 0 and l1 > 0,

we obtain that the roots of A1 and A2 satisfy 0 < k3

l1−k3
< k2

l1−k2−l2
. Moreover, the roots of Φ are

−1 with even multiplicity l2, 0 with odd multiplicity k2 − k3 and the positive root of A1 (which is

a simple root of Φ). The poles of Φ are the positive root of A2 and the point at infinity which has

multiplicity deg(Φ)− 1 if we homogeinize Φ into a rational map from the Riemann sphere CP 1 to

itself.
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Figure 3.1: A real dessin d’enfant for ϕ.

We find exact values of coefficients and exponents of (3.3.2) in the following way. Note that

the exponents of (3.3.2) are independent of l1. We first choose small values k2 = 5, k3 = 2, l2 = 2

satisfying the above parity conditions. Then, we look for a function

ϕ(x) =
cx3(x+ 1)2(x− ρ1)

x− ρ2
, (3.3.3)

such that c is some real constant, 0 < ρ2 < ρ1 and ϕ(x) = 1 has three solutions in I1, one solution

in I2 and two solutions in I3.

The existence of such a function ϕ is certified by Figure 3.1 thanks to Proposition 2.2. Figure

3.1 shows HΓ contained in one connected component of CP 1 \RP 1. From Figure 3.1, we see that

0 < ρ2 < ρ1 and that ϕ has the desired number of inverse images (letters r) of 1 in each interval

Ii.

Now we want to identify (3.3.3) and (3.3.2). Recall that k2 = 5, k3 = 2, l2 = 2 are fixed. We

look at the function x3(x+1)2(x−ρ1)
x−ρ2

, where ρ1 = k2

l1−k2−l2
and ρ2 = k3

l1−k3
, and increase l1 so that

some level set of this function has three solutions in I1, one solution in I2 and two solutions in

I3. It turns out that l1 = 17 is large enough and the level set gives the value 29 for b. Finally,

integrating Φ and choosing a = −0, 002404, we get

− 0.002404(x+ 1)17 + 29x5(x+ 1)2 + x2 (3.3.4)

for (3.3.1). This polynomial has four roots in I1, two roots in I2 and three roots in I3. This has

been computed using SAGE version 6.6 which gives the following approximated roots: 0.18859,

0.22206, 0.25196, 0.44416 in I1, −3.96032, −1.15048 in I2, and −0.61459, −0.58528,−0.03594 in

I3.

Multiplying this polynomial by x(x + 1) gives a polynomial of the form P (x, x + 1) (where

P ∈ R[x, y] has three non-zero terms) having eleven real roots.





Chapter 4

Positive intersection points of a

trinomial and a t-nomial curves

4.1 Introduction and statement of the main results

Consider a system

f = g = 0, (4.1.1)

where f has t ≥ 3 non-zero terms and g has three non-zero terms. We assume in this chapter

that (4.1.1) has a finite number of solutions, and denote by S(3, t) the maximal number of non-

degenerate positive solutions such a system can have. We prove the following result in Section 4.2.

Theorem 4.1. We have S(3, t) ≤ 3 · 2t−2 − 1.

Consider now a function

φ(x) =
xα(1− x)βP (x)

Q(x)
,

where α, β ∈ Q, and both P and Q are real polynomials. Using real dessins d’enfant, we prove in

Section 4.3 the following result.

Theorem 4.2. We have ♯{x ∈]0, 1[ |φ(x) = 1} ≤ degP + degQ+ 2.

We say that two triangles ∆1 and ∆2 in R2 alternate when any two consecutive edges of

their Minkowski sum ∆1 + ∆2 are not translate of two consecutive edges of ∆1 or of ∆2 (see

Definition 4.30). We prove in Section 4.4 the following result.

Theorem 4.3. If a system of two trinomials in two variables has 5 positive solutions, then the

Newton triangles of the respective equations do not alternate.

4.2 Proof of Theorem 4.1

Define the polynomials f and g of (4.1.1) as
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f(u, v) =

t
∑

i=1

aiu
αivβi and g(u, v) =

3
∑

j=1

bju
γjvδj , (4.2.1)

where all ai and bi are real.

We suppose that the system (4.1.1) has positive solutions, thus the coefficients of g have

different signs. Therefore without loss of generality, let b1 = −1, b2 > 0 and b3 > 0. Since

we are looking for positive solutions of (4.1.1) with non-zero coordinates, one can assume that

γ1 = δ1 = 0. Furthermore, the monomial change of coordinates (u, v) → (x, y) of (C∗)2 defined

by b2u
γ2vδ2 = x and b3u

γ3vδ3 = y preserves the number of positive solutions. Therefore, we are

reduced to a system

t
∑

i=1

cix
kiyli = −1 + x+ y = 0, (4.2.2)

where ci is real for i = 1, · · · , t, and all ki and li are rational numbers.

We now look for the positive solutions of (4.2.2). It is clear that since both x and y are positive,

then x ∈]0, 1[. Substituting 1− x for y in (4.2.2), we get

F (x) :=

t
∑

i=1

cix
ki(1− x)li , (4.2.3)

so that the number of positive solutions of (4.1.1) is equal to that of roots of F in ]0, 1[. For any

d ∈ N, denote by Rd[x] the set of real polynomials of degree at most d.

Lemma 4.4. Consider a function defined by h(x) =
s
∑

i=1

bix
mi(1−x)nihi,d(x), where h1,d, . . . , hs,d ∈

Rd[x]. Then for all r ∈ N, there exist h1,d+r, . . . , hs,d+r ∈ Rd+r[x] such that the r-th derivative of

h is defined by

h(r)(x) =

s
∑

i=1

xmi−r(1− x)ni−rhi,d+r(x).

Proof. One computes that

(xm(1− x)nh(x))
′
= xm−1(1− x)n−1 · [((n−m)x+m)h(x) + x(1− x)h′(x)] .

Define f1, . . . , ft inductively by f1(x) = x−k1(1− x)−l1F (x) and

fj+1(x) = xkj−kj+1+2j−1

· (1− x)lj−lj+1+2j−1

· f
(2j−1)
j (x) , j = 1, . . . , t− 1.

Lemma 4.5. For j = 1, . . . , t, there exist polynomials hj,dj
, . . . , ht,dj

∈ Rdj
[x] such that dj =

2j−1 − 1,

fj(x) = hj,dj
(x) +

t
∑

i=j+1

xki−kj (1− x)li−ljhi,dj
for j = 1, . . . , t− 1 (4.2.4)

and ft = ht,dt
(x).
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Proof. This follows easily from Lemma 4.4.

Let Nj denote the value ♯{x ∈]0, 1[ | fj(x) = 0} for j = 1, . . . , t. Note that N1 = ♯{x ∈

]0, 1[ | F (x) = 0}. Rolle’s Theorem implies directly that

Nj ≤ Nj+1 + 2j−1 for j = 1, . . . , t− 1. (4.2.5)

Moreover, Nt ≤ dt = 2t−1 − 1 by Lemma 4.5. Consequently, we get

♯{x ∈]0, 1[ | F (x) = 0} = N1 ≤

t−2
∑

j=1

2j−1 +Nt−1 = 2t−2 − 1 +Nt−1. (4.2.6)

By (4.2.5), we have Nt−1 ≤ Nt + 2t−2 ≤ 2t−1 − 1 + 2t−2 (since Nt ≤ 2t−1 − 1), which together

with (4.2.6) gives

♯{x ∈]0, 1[ | F (x) = 0} ≤ 2t − 2.

This is the bound obtained in [LRW03]. The sharper bound that we give is obtained by improving

the bound on Nt−1. This improvement uses the fact that fm
t−1 is a rational function for some

m ∈ N, thus one can use a different approach to get a sharp bound on Nt−1. We have already seen

that

ft−1(x) = −Q(x) + xkt−kt−1(1− x)lt−lt−1P (x),

where P,Q ∈ Rdt−1
[x] with dt−1 = 2t−2 − 1. We have

ft−1(x) = 0 ⇐⇒
xkt−kt−1(1− x)lt−lt−1P (x)

Q(x)
= 1.

Therefore applying Theorem 4.2, we get Nt−1 ≤ 2t−1 − 2 + 2 = 2t−1. Finally, by (4.2.5), we get

♯{x ∈]0, 1[ | f(x) = 0} ≤ 2t−1 + 2t−2 − 1 = 3 · 2t−2 − 1,

which finishes the proof of Theorem 4.1 assuming Theorem 4.2.

4.3 Proof of Theorem 4.2

Consider the function

φ(x) =
xα(1− x)βP (x)

Q(x)
,

where α, β ∈ Q and P,Q ∈ R[x]. Let m be a positive integer such that mα and mβ are integers.

Then ϕ := φm is a rational function. Here and in the rest of this chapter, we see the source and

target spaces of ϕ as the affine charts of CP 1 given by the non-vanishing of the first coordinate of

homogeneous coordinates and denote with the same symbol ϕ the rational function from CP 1 to

CP 1 obtained by homogenization with respect to these coordinates. In what follows, we apply the

theory of Groethendieck’s dessin d’enfant to the rational function ϕ.

Denote by Γ := ϕ−1(RP 1). Since the graph is invariant under complex conjugation, it is

determined by its intersection with one connected component H (for half) of CP 1 \RP 1. In most

figures we will only show one half part H ∩Γ together with RP 1 = ∂H represented as a horizontal

line. Moreover, for simplicity, we omit the arrows. The reader may refer to Chapter 2 for more

details on real dessins d’enfant.
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Definition 4.6. Any root or pole of ϕ is called a special point (of ϕ), and any other point of Γ

is called non-special.

4.3.1 Reduction to a simpler case

We first need a definition.

Definition 4.7. Let a, b be two critical points of ϕ i.e. vertices of Γ. We say that a and b are

neighbours if there is a branch of Γ \ RP 1 joining them such that this branch does not contain

any special or critical points of ϕ other than a or b.

In this section, we show how to reduce to the case where ϕ satisfies the following properties

(i) All roots of P and Q are special points of ϕ with the same

multiplicity m.

(ii) Each non-special critical point of ϕ has multiplicity two and is not

a solution of ϕ = 1.

(iii) All real non-special critical points of ϕ are neighbours to real critical

points of ϕ.

(4.3.1)

We will introduce an algorithm that transforms any dessin d’enfant Γ of ϕ to a dessin d’enfant

Γ′ of a function satisfying the three properties mentioned above. Moreover, this transformation

does not reduce the number of real letters r of ϕ. Therefore, to prove Theorem 4.2, it suffices to

consider a function ϕ satisfying (4.3.1).

This algorithm is a series of transformations which are devided into two types. The first type,

called type a), reduces the valencies of all critical points so they verify the conditions (i) and (ii).

The second type, called type b), transforms a couple of conjugate points p (resp. q, r, non-special

critical points) into a point p (resp. q, r, non-special critical point) which belongs to RP 1.

4.3.1.1 Transformation of type a)

Consider a critical point α of ϕ, which does not belong to {0, 1,∞}.

• Assume that α ∈ RP 1. Let Uα be a small neighborhood of α in CP 1 such that Uα \ {α} does

not contain letters r, critical points or special points.

Assume that α is a special point (a root or a pole of ϕ). Then the valency of α is equal to

2km for some natural number k. We transform the graph Γ inside Uα as in Figure 4.1. In the

new graph Γ′, the neighborhood Uα contains two real special points and a real non-special critical

point of ϕ (and no other letters p, q, r and vertices). If α is a root (resp. pole) of ϕ then both

special points are roots (resp. poles) of ϕ with multiplicities m and (k − 1)m. Moreover, the new

non-special critical point has multiplicity 2. It is obvious that the resulting graph Γ′ is still a real

dessin d’enfant.

Assume that α is a non-special critical point that is a letter r (a root of ϕ−1). Then the valency

of α is equal to 2k for some natural number k ≥ 2. We transform the graph Γ as in Figure 4.2.

In the new graph Γ′, the neighborhood Uα contains two letters r of multiplicity 2(k − 1) and 1

respectively, and one non-special critical point of multiplicity 2, which is not a letter r (and no

other letters p, q, r or vertices).
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Assume that α is a non-special critical point that is not a letter r. Then the valency of α

is equal to 2k for some natural number k ≥ 3. We transform the graph Γ such that in the new

graph Γ′, the neighborhood Uα contains two non-special critical points, which are not letters r,

with multiplicities 2 and (k − 1) (and no other letters p, q, r or vertices).

• Assume now that α /∈ RP 1. Consider a small neighborhood Uα of α and the corresponding

neighborhood of its conjugate ᾱ (the image of Uα by the complex conjugation). Assume that both

neighborhoods are disjoint and both Uα \ {α} and Uᾱ \ {ᾱ} do not contain letters r, critical points

or special points. Recall that the valency of α is even. Choose two branches of Γ∩Uα starting from

α such that the complement of these two branches in Uα has two connected components containing

the same number of branches of Γ ∩ Uα. We transform Γ ∩ Uα similarly as in the case α ∈ RP 1

and do the corresponding transformation of the image of Γ ∩ Uα by the complex conjugation.

Assume that α is a special point (a root or a pole of ϕ). We transform the graph Γ inside Uα

as in Figure 4.3. In Uα, the resulting graph Γ′ contains two special points of ϕ with multiplicities

m and (k − 1)m respectively, and one non-special critical point with multiplicity 2 (and no other

letters p, q, r or vertices), all of which belong to the previously chosen two branches.

Assume that α is a non-special critical point that is a letter r (a root of ϕ − 1). Then the

valency of α is equal to 2k for some natural number k ≥ 2. In the new graph Γ′, the neighborhood

Uα contains two letters r of multiplicity 2(k − 1) and 1 respectively, and one non-special critical

point of multiplicity 2, which is not a letter r (and no other letters p, q, r or vertices), all of which

belong to the previously chosen branches.

Assume that α is a non-special critical point that is not a letter r. Then the valency of α is

equal to 2k for some natural number k ≥ 3. We transform the graph Γ such that in the new graph

Γ′, the neighborhood Uα contains two non-special critical points, which are not letters r and which

belong to the previously chosen two branches, with multiplicities 2 and (k − 1) respectively (and

no other letters p, q, r or vertices).

Figure 4.1: A transformation of type a) where α is a real root of P , k = 3 and m = 4.


