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L'objectif de cette thèse est la conception des fédérations d'agents dans un écosystème omniprésent de service hybride. Une approche distribuée basée sur une métaphore sociale d'un écosystème naturel est proposé dans le but de construire des fédérations d'agent ouvert, où les agents interagissent les uns avec les autres pour atteindre leurs objectifs grâce à la composition dynamique et l'adaptation des services. Dans cette approche, chaque agent régit un appareil mobile sans fil. Chaque agent au sein de l'écosystème est intéressée, et ses comportements sont basés uniquement sur des tâches d'interaction locales. L'interaction et la coopération entre les agents sont guidés par un ensemble de normes sociales établies par les membres de l'écosystème. Deux approches basées sur la satisfaction de contraintes ont été conçues pour comparer les résultats des stratégies d'adaptation de service avec les propositions existantes basées sur la reconfiguration des services à partir de zéro. La première est basée sur un modèle distribué du problème de satisfaction de contraintes. La seconde est une extension du modèle distribué pour aborder la dynamique des environnements ouverts.

Les simulations montrent les performances des algorithmes concernant la consommation de temps et le nombre de messages requis pour la composition et l'adaptation des services.

Motivation

Today, the boundaries of pervasive computing have changed significantly. These are evolving from closed systems with dedicated infrastructure to open dynamic systems with no dedicated infrastructure, such as dedicated servers and reliable communications networks [1] [2] [3] [4]. This is due to the increasing number of devices in our daily lives that can acquire and process data, and communicate with each other [START_REF] Fahad | Smart places: Multiagent based smart mobile virtual community management system[END_REF]. Moreover, new mobile devices are revolutionizing the way we access and distribute services, and wireless network paradigms are driving the concept of computing toward delay-tolerant networking [START_REF] Musolesi | Car: Context-aware adaptive routing for delaytolerant mobile networks[END_REF] [7]. The fact that mobile devices can be constantly network-connected and the increasing availability of online services are prompting users to demand a transparent integration of services with their lifestyles and daily activities. This is leading service-oriented computing and networks toward everyday objects such as cars, refrigerators, televisions, washing machines and medical devices, and the concept of pervasive service is becoming a reality [START_REF] Manzalini | Autonomic nature-inspired eco-systems[END_REF]. From the Service Oriented Architecture (SOA) perspective, a service is defined as a self-contained unit software that performs a specific task [START_REF] Jones | Toward an acceptable definition of service [service-oriented architecture[END_REF]. A pervasive service can be defined as a user-centered service that is available anywhere and anytime.

We distinguish between two types of pervasive services: software and hardware services. The former are services that require only data and processing to generate a result that meets their goals; classical services usually fall into this category. Hardware services, on other hand, have physical dependencies. For example, hardware services require the availability of specific devices such as temperature sensors, Global Positioning System (GPS) and radiators in their immediate physical environment in order to meet their goals Solutions based on SOAs are suitable to deploy services in closed and slightly dynamic environments such as buildings with dedicated infrastructure that must always be available. It is necessary, however, to consider environments where services must be available anywhere and anytime, and where SOAs-based solutions are therefore not suitable; these environments call for a pervasive computing approach that focuses on users. Examples of such environments include places where the user does not stay for a long time or that the user does not frequent very often, such as airports, hospitals, shopping malls, or cafes. The question is how devices can keep hardware services available while users move among such environments. In general the strategy is to take advantage of distributed resources such as sensors, actuators, memory, and communication interfaces available in the form of services in the user's vicinity.

Problem Description

From a pervasive computing perspective, the hardware services must be user-centered and remain available while users perform their daily activities regardless of their displacement among environments. These services must always be available by means of adapting to the resources available on other devices in the users' vicinity. The following scenario helps to convey the idea of such a world.

Miguel is driving his car from his home to his work in the city of Guadalajara. He wants to get to work as soon as possible. For this Miguel is assisted by his mobile device to choose the best route. Internally the device uses its GPS and interacts regularly with systems that provide the status of road traffic in the city. Suddenly the car suffers a mechanical failure, and Miguel has a serious road accident. His car automatically reports the event to the emergency systems. It triggers the cooperation between fire brigades, police officers and the nearest ambulances to provide assistance to Miguel. Meanwhile, the traffic control system modifies its signaling so that the help arrives soon. Concurrently all systems are coordinated to continue assisting other drivers who also need to reach their destination as quickly as possible. Once Miguel is in the ambulance, bio-medical devices transmit all information about his health status to the hospital. Again, the traffic control system coordinates its signaling so that the ambulance can reach the hospital quickly.
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This scenario embodies many open issues in pervasive services. In order to achieve the above vision, this dissertation addresses three main problems concerned with deploying pervasive hardware services:

• Interaction mechanisms. Organizational models for deploying pervasive services are commonly based on interaction mechanisms that are not suitable for open environments or that need previous knowledge of the global model of the environment, for example, the semantic chemistry approach proposed by Viroli et al. [START_REF] Viroli | Pervasive ecosystems: A coordination model based on semantic chemistry[END_REF]. This increases the amount of a priori knowledge required to deploy hardware services. However, mobile devices usually have limited resources due to non-functional requirements such as energy limitations. Many organizational structures such as hierarchies [START_REF] Kalasapur | Resource adaptive hierarchical organization in pervasive environments[END_REF] [START_REF] Gu | A hierarchical service discovery framework for ubiquitous computing[END_REF] have been used to deploy pervasive services; however, most of them provide a monolithic, hard-wired, rigid structure that limits the interaction to previously defined and fixed patterns. Pervasive services need to adapt to dynamic and unforeseen situations, requiring flexible and dynamic organizations to adjust the system's course of action in the pursuit of their objectives.

• Dynamic service composition. In pervasive computing, devices can be mobile, and services can have physical dependencies. For example, in order to provide a hypothetical medical service, a set of devices with certain resources must be in the user's vicinity. This underscores the complexity of service composition, in which no single device has all the required resources and logic to succeed. Classical composition techniques such as SOA-based mechanisms [START_REF] Papazoglou | Service-oriented computing: concepts, characteristics and directions[END_REF] [START_REF] Papazoglou | Service-oriented computing: State of the art and research challenges[END_REF]) are not suitable to handle hardware service composition; one of the main reasons is that SOA-based solutions require dedicated infrastructure. Hence, suitable approaches are required.

• Service Adaptation. The primary objective of pervasive systems is to provide services that are required by the user despite variations in his or her environment; this is achieved by means of hardware service adaptation. Adaptation aims to make the pervasive system capable of fulfilling requirements in spite of changes in its environment [START_REF] Mckinley | Composing adaptive software[END_REF] [START_REF] Sousa | Task-based adaptation for ubiquitous computing[END_REF]. Diverse techniques for service adaptation have been used, such as dynamic service selection and dynamic coordination pattern selection. However, most of these assume that resources are always available in closed environments, and they only consider the dynamic degradation of service quality [START_REF] Chang | Video adaptation: Concepts, technologies, and open issues[END_REF]; hence, a suitable mechanism is required for the adaptation of hardware services in open environments.

Thesis Objectives

Pervasive systems based on the web and mobile devices are currently garnering considerable attention due to their ability to provide users with services for data processing and information. These pervasive systems naturally have an interest in multi-agent systems because of certain features they offer, such as the autonomy of the agents, and their interaction mechanisms. The use of multi-agent systems can provide service providers with greater autonomy in making decisions; it is important because the autonomy improves how these types of systems deal with dynamic scenarios. The thesis that we defend is that it is possible to create ecosystems based on multi-agent systems capable of providing hardware services that are adaptable to user needs and changes in their environment. For this, we propose to model hardware, software and resources as agents that provide pervasive services within an ecosystem, using a social metaphor, for the purpose of creating flexible organizations, unlike current pervasive hardware services that rely on organizations of limited flexibility that restrict users' mobility to closed environments.

We are interested more particularly in ecosystems comprising mobile devices with few capabilities in terms of the number and types of services they can provide. Such devices require the collaboration of other members of the ecosystem, in order to achieve the objectives for which they were designed. For this, we propose designing a framework for supporting the dynamic composition of hardware services, with the goal of permitting service composition in several environments through the use of resources that are close to the user. The dynamic composition of services is common in SOA; however most of the mechanisms used are not suitable for the deployment of hardware services in environments.

It is unlikely to assume that once the system has created a service, user needs and environmental status will not change. Such composite services need to be able to adapt to changes and fulfill the new requirements with little or no participation from the user. For this, we propose an approach to adapt the functionality of hardware services provided by agents that take advantage of the available resources and services of other agents in the user's vicinity.

Thesis Contributions

This dissertation proposes the modeling of an open and dynamic organizational model of hardware services by means of an ecosystem metaphor . Members of the ecosystem interact 1.5. Outline with each other in order to achieve their objectives. Social ecosystem metaphors have not often been used to model and constrain behaviors of pervasive hardware services. In this domain, the contributions of this dissertation are the following:

• Definition of an ecosystem of hardware services based on a social metaphor in order to support the dynamism and openness of the environment. This aims to provide a flexible organization for pervasive systems that will make it possible to offer services in environments where there may be communication failures or intermittent availability of resources. In addition, the ecosystem provides the framework for the development of mechanisms for service composition and adaptation.

• Definition of an interaction model based on social obligations that regulates the behavior of agents in the ecosystem and their interaction with each other. Here, the concept of adaptation on obligations is introduced, a concept that has not been addressed before in the state of the art.

• Definition of acts for an agent communication language based on obligations endowed with social semantics that explicitly considers system autonomy and is suitable for open systems.

In the domain of services-oriented computing, the following contributions are made:

• For the purpose of modeling the distributed and dynamic composition process of pervasive services while the agents' autonomy is preserved, we define the composition process as a dynamic and distributed constraint satisfaction problem.

• With the aim of carrying out the composition and adaptation of services, through solving constraint satisfaction problems, we have proposed decentralized and asynchronous mechanisms.

Outline

This thesis is organized into three parts as described in Figure 1.

The general objective of the first part is to introduce the reader to the context within which the research was conducted. This general objective is addressed in chapters two and three. The particular objective of chapter 2 is to introduce the reader in our vision of a pervasive system as an services' ecosystem and it provides the basic concepts that Chapter 1. Introduction will be useful to understand and appreciate this document. Chapter 3 gives the reader an overview of the various mechanisms for service composition, beginning with the classical approaches and moving on to those based on constraint satisfaction.

The general objective of the second part, comprising chapters four, five and six, is to present and describe in detail our proposal and to address the issues described in the first chapter of this manuscript. The particular objectives of each of the chapters are as follows:

Chapter 4 introduces a new ecosystem approach based on a pervasive social metaphor for providing services; each metaphor element is described and the chapter ends with a conceptual architectural ecosystem. Chapter 5 introduces and describes in detail our approach to the interaction of agents based on social obligations; it describes the obligations, their life cycle, and operations for the management of these obligations; from basic operations for defining the basic acts of communication to implementation of interaction protocols. Chapter 6 presents the mechanisms proposed for the composition and adaptation of services in our ecosystem; these mechanisms are implemented on the basic acts described in the previous chapter.

The general objective of the third part, which includes chapters 7 and 8, is to show the evaluation of the approach proposed in the previous chapters. As for particular objectives, Chapter 7 describes the implementation of the proposal and the tools used for this purpose, while Chapter 8 measures the performance of implementing interaction mechanisms proposed for adapting the composition and ecosystem services.

Chapter 9 presents some concluding remarks and the future research direction in the domain of pervasive hardware service ecosystems, and service composition and adaptation. 

Ecosystem Vision of Pervasive Services

This chapter introduces the core concepts and heart of the matter for the rest of chapters, which is pervasive services. Additionally, this chapter presents a description of the main metaphors for developing digital service ecosystems. A general vision of services as an ecosystem is presented and particular care is paid to the dynamic aspect and open nature of pervasive services. Lastly, a summary and discussion are provided setting the ideal of this dissertation with respect to current challenges in the field of pervasive services.

Services

Nowadays, the term service is used in a broad range of domains, where different characteristics have to be fullfilled by an entity in order to be called a service. Georgakoulos defines a service as the fundamental unit of a logical solution, which exists as physically independent software associated with a functional context [START_REF] Georgakoulos | Service-Oriented Computing[END_REF]. Its functions can be invoked by external software through service contracts. These contracts describe the service, and define interaction requirements, constraints and other required service data. However, the service paradigm goes beyond simple entities with public functionalities. According to Erl in [START_REF] Erl | SOA Principles of Service Design[END_REF] a service must have the following main properties.

• Autonomy: from the SOA perspective, services are autonomous, which refers to the independence with which a service can carry out its logic [START_REF] Rostampour | Measures of structural complexity and service autonomy[END_REF]. Therefore services that make up a system can be performed independently, i.e., there is no need for binary dependencies between services. Each service can be developed on a different platform, using a different language and tools.
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Chapter 2. Ecosystem Vision of Pervasive Services However, to deploy pervasive services in highly dynamic and open environments, autonomy as conceived by SOA-based approaches is not sufficient. In these environments it is necessary for services to have the capability to make decisions, and their functionality must not be governed or inhibited by external entities.

• Discoverability: it must be possible to search for and locate services. This implies that services must be supplemented with communicative metadata by which they can be effectively located and interpreted. In SOA-based approaches, services must be registered and information about available services published (service's registry).

This way the external software, named service's consumer, can simply ask the registry for the needed service and get the details of a fitting service implementation;

subsequently, the service's consumer can connect with the service's provider in order to invoke the service (see Figure 2.1).

Service's Registry

Service's Consumer Ad Hoc Networks(MANETs), resource availability is not guaranteed and communication channels are not always reliable. Therefore, appropriate discovery mechanisms 2.2. Toward Pervasive Service Ecosystems must still be developed for these types of environments.

• Composability: composition enables software applications to provide complex services based on the combination of simpler services. Sometimes, a single service is not sufficient to fulfill the user's requirement and often services are combined through service composition to achieve a specific goal. For example, when a user wants to travel, it is not sufficient to book a flight; she must also take care of reserving a hotel, and so on. Services must be designed to participate as effective members of multiple service compositions.

In the remainder of this chapter, the notion of pervasive services as members of ecosystems will be explained, along with the main metaphors involved.

Toward Pervasive Service Ecosystems

Unlike traditional services that are aimed at the business level and have dedicated infrastructure (such as reliable networks and servers with high processing capacity), pervasive services focus on people moving between environments where normally there is no dedicated infrastructure [START_REF] Ibrahim | A survey on service composition middleware in pervasive environments[END_REF]. Pervasive services pose challenges to service-oriented computing:

requirements such as adaptability and self-management must be considered in the service composition in environments without dedicated infrastructure.

Adaptability is the ability of a service to meet user requirements despite changes in the environment; for example, changes in resource availability could change the service functionality. Changes in services' and users' requirements and/or changes within the network may require the use of mechanisms to deal with these changes. Moreover, adaptation is necessary when a significant mismatch occurs between the provider and the request for a service. As the service's execution environment changes due to the user's mobility, the vital services need to be substituted by corresponding services in the new environment in order to ensure continuous operation.

Self-management refers to a system entity's ability to control and manage its resources, functions, security and performance in the face of failures and changes, with little or no human intervention. The complexity of future pervasive environments will be such that it will be impossible for human administrators to manage configuration, performance, and security. Instead, it will be necessary to resort to automation for most of these functions, allowing humans to concentrate on the definition and supervision of high-level management policies, while the system itself takes care of the translation of these high-level policies into automated control structures.

Usually pervasive services are available only in closed environments such as buildings, especially if they have physical dependencies, usually because they may need specific resources such as sensors, actuators, and communication interfaces. However, if the user moves, he could move outside the range where the service is available and the service becomes unavailable. This means that pervasive systems are centered on isolated physical spaces and are not centered on the users, who are nomadic by nature (i.e., they move from one environment to another). Additionally, the service requirements may change over time depending on the user's context [START_REF] -P. Caroline | Support of stateful services in pervasive environments[END_REF].

In order to deploy pervasive service and address its open challenges, several authors such as [START_REF] Wajid | Optimizing service ecosystems in the cloud[END_REF] [28] [29] [START_REF] Barros | The rise of web service ecosystems[END_REF] have taken inspiration from natural systems. A brief description of the main natural metaphors used to build service ecosystems is provided in the following sections.

Classical Metaphors for Modeling Service Ecosystems

The proliferation of web-based services and the rapid adoption of service-oriented architecture have not only changed the perception of services; they have also changed the way services are offered and consumed. An emerging development in this area is the notion of service ecosystems [START_REF] Barros | The rise of web service ecosystems[END_REF]. An abstract definition, or meaning, of the ecosystem was provided by Tansley [START_REF] Pickett | The ecosystem as a multidimensional concept: Meaning, model, and metaphor[END_REF]: the ecosystem is defined as a biotic community or assemblage and its associated physical environment in a specific place. This general definition has been applied in several forms in different knowledge domains. In computation, the ecosystem is interpreted as a virtual space where digital entities interact with each other to achieve specific objectives [27] [31]. Dynamicity is one of the desirable properties of a service ecosystem because it allows services to appear and disappear at any time. It enables the creation of dynamic solutions composed of various services [START_REF] Omicini | Nature-inspired coordination for complex distributed systems[END_REF].

The key difference between possible approaches to the realization of frameworks inspired by service ecosystems lies in the metaphor adopted to model the ecosystem. The main metaphors that have been used are: physical [33] [34], chemical [29] [35] [36] [START_REF] De Angelis | Selfcomposition of services in pervasive systems: A chemical-inspired approach[END_REF],

biological [START_REF] Shen | Hormone-inspired selforganization and distributed control of robotic swarms[END_REF] [38] [START_REF] Briscoe | Digital ecosystems: Ecosystem-oriented architectures[END_REF], and ecological [START_REF] Peysakhov | Stability and control of agent ecosystems[END_REF] [41] [START_REF] Villalba | Towards nature-inspired pervasive service ecosystems: Concepts and simulation experiences[END_REF]. Each metaphor provides its own interpretation for its residents, the environment in which they live, and its laws (see Figure 2.2). 

Physical Metaphor

Physical metaphors are based on the way particles in the universe move according to their local environment, which is made up of gravitational and electromagnetic fields. Particles interact weakly coupled way, using the fields, without the need for particles to know their neighbors in the local environment. Fields (gravitational or electromagnetic) represent information about other particles in the system as summarized contextual information. This information is distributed in fields and the local perception can lead what to do, simply by following the local field's gradient [START_REF] Mamei | Field-Based Coordination for Pervasive Multiagent Systems[END_REF]. The physical metaphor considers the particles as residents of the ecosystem. These particles refer to computer components living in the network (i.e., their universe). Additional messages among computer components represent waves in their universe. Activities of particles are driven by laws that determine how particles should be influenced by local gradients and the computational field. In particular, based on the perceived fields, particles can change their status, move or exchange data by means of navigation through such fields.

The physical metaphor has inspired the development of several proposals such as the Chapter 2. Ecosystem Vision of Pervasive Services one proposed by Crowcroft in [START_REF] Crowcroft | Toward a network architecture that does everything[END_REF]. Crowcroft adopted from physics the wave-particle principles to define a network paradigm. In his proposal, a network with swarms of coded content is viewed as dual packets. Here the waves mean traffic in the network and it is started by sources of content such as video and audio input, and sensors. This content spreads by matching subscriptions and interests to content descriptions throughout the network at rendezvous locations. Tuples On The Air (TOTA) [START_REF] Mamei | Programming pervasive and mobile computing applications with the tota middleware[END_REF] is another proposal inspired by a physical metaphor. TOTA was developed to support adaptive context-aware activities in pervasive computing scenarios. Here the universe is a computer network and its laws are based on application-specific rules for representing contextual information and supporting weakly coupled interactions between application components. The key idea of TOTA is to rely on spatially distributed tuples, propagated across the computer network based on the system's laws. The system is organized into three principal parts (see Figure 2.3). TOTA Application Program Interface (API) is the main interface between the application and the middleware. The API provides functionality to allow an application inject new tuples into the system, retrieve tuples, and place subscriptions in the event interface.

The event interface is responsible for notifying the application about subscribed events.

The TOTA engine is the core of TOTA. It is responsible for storing references to nodes and managing tuples' propagation. In addition, each TOTA node is provided with a local tuple space to store the tuples that reached that node during their propagation. TOTA has been tested in application domain such as control algorithms for modular robots, and sensor networks.

Motivated by spatial self-organization features, researchers have studied and applied the physical metaphor in different knowledge domains, particularly due to its ability to facilitate coherent behaviors, even in large scale-systems, for load balancing and data distribution. However, the physical metaphor is inappropriate when the system involves a large variety of components and behaviors.

Chemical Metaphor

Chemical metaphors consider that the residents of the ecosystem are computational molecules, with properties described by some kind of semantic descriptions, which are the computational counterpart to the description of the bonding properties of physical atoms and molecules. The laws that govern the ecosystem's behavior take the form of chemical rules. They dictate how reactions and bonding between residents take place, and can lead to the production of aggregated components or new composite components. In this case, the environment is typically formed by a set of localities. These localities can be interpreted as solutions in which chemical reactions can occur.

Chemical metaphors have been used in several application domains such as service composition. Quitadamo et. al in [START_REF] Quitadamo | The service ecosystem: Dynamic selfaggregation of pervasive communication services[END_REF] ] proposed a composition model for pervasive communication services. The key idea in their proposal is to exploit semantics as an overlay for service aggregation. Here, the authors confront the discovery and interoperability problems: first, finding and organizing communication services into the environment, and second, enabling them to interact when aggregated into more complex services. An important feature of this work is its focus on the environment (i.e., infrastructure) rather than on a single service. In the environment, pervasive services are joined together by special enzyme components distributed among nodes. Enzyme components are responsible for handling service request messages to process referenced semantic concepts and try suitable adaptation strategies. Using knowledge as the substrate for aggregation reactions, enzymes enable the discovery and interoperability of communication services. An important issue with enzymes is the degree of reasoning these enzymes must have. Napoli and Giordano [START_REF] Di Napoli | Adaptive instantiation of service workflows using a chemical approach[END_REF] [36] use a chemical approach to model the process of matching required service functionalities to required conditions using higher-order chemical language [START_REF] Banâtre | Generalised multisets for chemical programming[END_REF]. They propose decoupling the workflow instantation from its execution; thus instantation can be Chapter 2. Ecosystem Vision of Pervasive Services modeled as an independent, autonomous and running system. Angelis et al. propose in [START_REF] De Angelis | Selfcomposition of services in pervasive systems: A chemical-inspired approach[END_REF] a chemical model for service composition operating in a pervasive system. The model is grounded in Self-adaptive Pervasive Service Ecosystems (SAPERE) [START_REF] Viroli | Pervasive ecosystems: A coordination model based on semantic chemistry[END_REF],which propose a multi-agent framework for pervasive computing, and it is inspired by chemical reactions.

The main elements of the abstract model are tuples, services and/or applications, agents, and chemical reactions (see Figure 2.4). Service/Application entities produce results by processing data inputs. Each of these entities that want to request or provide information must create an agent. Agents are used as interfaces to exchange data within the tuple space.

Tuples are passive entities located in a tuple space that represents a shared container. These tuples are vectors of properties and are used to describe services, applications and contextual information. Chemical reactions are defined by a set of rules governing the tuples and are used to manipulate, update and delete them. 

Biological Metaphor

Biological metaphors typically focus on small biological organisms such as cells and their interactions. The residents are therefore either simple cells or very simple unintelligent organisms. These residents act on the basis of simple goal-oriented behaviors such as moving and eating. Additionally, their behaviors can be influenced by the strength of specific chemical signals in their surroundings with which there is a match. As in physical systems, residents are expected to be able to spread around and diffuse signals; thus they can influence the behavior of other residents. The laws, together with the spatial computational landscape in which residents exist, determine how the signals should diffuse, and how they can influence residents' behavior and properties.

There are several applications of the biological metaphor. Shen et al. in [START_REF] Shen | Hormone-inspired selforganization and distributed control of robotic swarms[END_REF] used a biologically inspired method for controlling robot swarms. They have used a method named digital hormone model as a control method for robot swarming behaviors and selforganization. It is based on local communication, signal propagation, and stochastic reactions. The advantages of their approach include its locality, simplicity, robustness, and self-organization.

C/R C/R C/R C/R C/R C/R C/R C/R C/R C/R C/R C/R N M M M M Control/Reaction Agents Maintenance Agents
Net Agent Data bases Figure 2.5: Abstract architecture based on a biological metaphor [START_REF] Flórez-Choque | A biologically motivated computational architecture inspired in the human immunological system to quantify abnormal behaviors to detect presence of intruders[END_REF] Flóres et al. in [START_REF] Flórez-Choque | A biologically motivated computational architecture inspired in the human immunological system to quantify abnormal behaviors to detect presence of intruders[END_REF], inspired by the immunological system, presented an architecture for intruder detection. The proposal is based on mechanisms that can detect the presence of an intruder, which is a strange resident in the system. For this, the authors proposed using two types of agents: recognizers (lymphocytes-B) and macrophages (lymphocytes-T). Coulter and Ehlers in [START_REF] Coulter | Biologically inspired obsolescence management in mobile agent systems: A dynamic, service oriented approach[END_REF] used a biologically-inspired model to develop a prototype system oriented toward services. It recast distributed resource allocation in mobile multiagent systems as a variation of the clonal expansion immune algorithm [START_REF] De Castro | Artificial immune systems: A new computational intelligence approach[END_REF]. Briscoe et al. in [START_REF] Briscoe | Digital ecosystems: Ecosystem-oriented architectures[END_REF] focus on the digital ecosystem, which provides applications as a counterpart to biological ecosystems. Their proposal includes an optimization technique for the migration of agents, which are distributed in the network; there is a second optimization phase based on evolutionary computing and operating locally on each peer. This second optimization aims to find solutions to satisfy local constraints. 

Ecological Metaphor

Ecological metaphors focus on animals and their interactions. Usually, residents of the ecosystem are goal-oriented agents of a specific agent class. These agents need search resources to survive and prosper. The laws of the ecosystem are determined by the food web, i.e" the food web determines how and under which conditions agents are allowed to search for food, eat, and possibly produce and reproduce. The space is organized around a set of localities, and agent migration is possible between these localities. This metaphor has been applied for several purposes. Peysakhov et al. in [START_REF] Peysakhov | Stability and control of agent ecosystems[END_REF] proposed an ecology-based simulation model for managing agent populations on MANETs, such as the wireless network testbed of the Philadelphia urban area. Residents in the model are agents, whose population can grow and/or migrate. Agents can perform roles as food producers or consumers. In the context of deploying and executing pervasive services, Villalba et al. in [START_REF] Villalba | A self-organizing architecture for pervasive ecosystems[END_REF] argue how model and deploy services as natural systems. i.e., services as autonomous residents, spatially situated with other services, data sources, and devices where all residents act, interact, and evolve according to laws. Villalba proposed an architecture to frame the conceptual structure for service ecosystems (see Figure 2.7).

The architecture is composed of four levels. The lowest, is that of networked devices and information resources. That is the physical environment in which the ecosystem is deployed. Over this, there is a middleware shaping the space of the ecosystem and it contains the interaction rules (i.e. the ecosystem's laws). The species' level contains the living resid-ents of the ecosystem space: devices, services, data, events and information requests. They will have different features from each other; thus they will belong to different species. At the highest level, producers and consumers of services and data can access the framework.

Key Differences between Ecosystem Metaphors

The main metaphors to model service ecosystems were covered in this section: physical, chemical, biological and ecological. Table 2.1 shows a comparison of their interpretations of an ecosystem and their components. It promises to be suitable for local forms of spatial self-organization. It is particularly suited for tolerating evolution over time. However, unlike chemical systems, understanding how to control the equilibrium of real ecological systems is hard. It would probably be difficult also in their computational counterparts.

Conclusion

In this chapter basic concepts of pervasive services were introduced, and main metaphors to develop digital ecosystems were described and discussed. Pervasive services and digital ecosystems are not new, but previous efforts have focused generally within the context of 2.5. Conclusion 21 software services and closed environments, where there is dedicated infrastructure such as servers with high processing capabilities and reliable communications networks. We do not know how to address pervasive services within the context of services and open environments where there is no dedicated infrastructure.

The main metaphors for modeling service ecosystems were covered in this chapter.

An overview of the principal features and different proposals based on these metaphors have been presented. Most of the works inspired by these metaphors have focused on very specific application scenarios; to our knowledge, they have not been implemented for the study of real, open environments and general purposes. Others have simply proposed forward-based systems such metaphors or simulation models.

Autonomous management and adaptability of pervasive services still have to be improved. There are no proper mechanisms for the dynamic composition of adaptable services. Service availability is limited to closed environments; thus user mobility is limited.

The way towards the deployment of usable and effective pervasive services still requires designing interaction mechanisms for composition and adaptation of autonomous services, with autonomy from the perspective of multi-agent systems and suitability for open environments.

Members' autonomy is not explicitly considered in terms of the definition of members' interaction in the classical ecosystem metaphors described in this chapter, contradicting the agent paradigm. Furthermore, there is no suitable description and definition of interaction protocols in the ecosystem metaphors.

We now turn our attention to multi-agent systems as a suitable paradigm to represent residents in the ecosystems. Nowadays, the term agent is used in a board range of domains.

Wooldridge defines an agent as a "computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives" [START_REF] Wooldridge | An Introduction to MultiAgent Systems[END_REF]. However, the agent paradigm goes beyond situated reactive entities in an environment: cognitive capabilities are included, giving rise to rational agents. These agents have four properties:

• Reactivity: agents perceive the environment and proceed accordingly.

• Proactiveness: agents are goal-oriented and act towards the achievement of their objectives.

• Autonomy: agents are self-governed, i.e., not controlled by others.

• Social ability: agents interact with other agents in order to reach their objectives.

The social aspect of agents gives rise to Multiagent Systems(MASs), which are a group of agents that interact among themselves, with the aim of satisfying a global objective. These agents can be either homogeneous or heterogeneous. A MAS should be provided with interaction patterns that direct agents in a coherent manner towards MAS design objectives. Interaction protocols are what give MAS this coherence. An interaction protocol is a set of rules that harmonizes the exchange of messages among agents in order to coordinate their activities in the achievement of objectives. Interaction protocols establish the roles that agents can play during the interaction. A role indicates an expected behavior for each agent that participates in the interaction.

These properties make the agent-oriented paradigm appropriate to address the needs of autonomy and adaptation presented by pervasive services. The integration of multi-agent systems with SOA and web services has recently been investigated. Some researchers focus on the communication between both models, whereas others focus on the integration of distributed services, especially web services, in the agents' structure.

Chapter 3 Service Composition Approaches

This chapter is intended to provide an overview of classical mechanisms for service composition and the suitability of using a CSP formalism to model the hybrid service composition.

Service Composition

Service requests sometimes include many related functionalities to be fulfilled by the service. Usually, a service has a limited functionality which is not enough to meet the multiple functional needs. The discovery of such services requests involving many tasks could fail due to unavailability of suitable services advertised in the registry. In such scenario, arises the need to compose services with available resources to satisfy the requested complex functionality.

Reusing is an important characteristic of services when complex tasks are carried out [START_REF] Weyns | Self-adaptation using multiagent systems[END_REF]. Indeed, composition is usually the reason why tasks are broken down in the first place. A big thing is fragmented because there is a potential benefit in things having to do with the individual pieces (for example reusing individual pieces to recompose different services). Rules of composition describe how different services can be assembled into a coherent global service. In particular, the order in which the services may or may not be invoked is specified, along with the conditions under which a particular service.

Applying this approach establishes an environment where solution logic exists as composable services. As a result, there is the opportunity to recompose the same service in order to fulfill new tasks (see Figure 3.1). 

Classical Service Composition Approaches

In workflow-based composition methods, it is possible to distinguish two main types. Static composition means that the service requester must build a process model before the composition starts [START_REF] Rao | A survey of automated web service composition methods[END_REF]; the model includes a set of tasks and their dependency. Each task has a query statement that searches the service instance to accomplish the task. The dynamic composition both creates a process model and selects atomic services automatically (or with low user intervention) [START_REF] Rao | A survey of automated web service composition methods[END_REF].

Static Service Composition

There are two principal approaches for static service composition. The first approach, named service orchestration, combines available services by means of a central coordinator (the orchestrator). The orchestrator is responsible for invoking and combining atomic services. The second approach, named service choreography, does not assume the existence of a central coordinator. Service choreography defines complex services via the conversation that must be carried out by each participant. Following this approach, the service composition is achieved through peer-to-peer interactions among the collaborating services. While several proposals exist for orchestration languages (e.g. Business Pro-
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cess Modeling Language (BPML) [START_REF] Thiagarajan | Bpml : a process modeling language for dynamic business models[END_REF] and Business Process Execution Language (BPEL) [START_REF] Pasley | How bpel and soa are changing web services development[END_REF]), choreography languages are still in the preliminary stages of definition. This type of composition is not flexible for the final user because most proposed static composition techniques and languages are usable only by software developers, not by end users. Moreover, static composition is not suitable for dynamic environments because service composition is wired off line.

Dynamic Service Composition

Dynamic composition of services is a more challenging problem. When a functionality that cannot be realized by the existing services is required, the existing services can be combined to fulfill the request. Dynamic service composition requires the location of services based on their capabilities and the recognition of the specific services that can be useful to create a composed service [START_REF] Kalasapur | Dynamic service composition in pervasive computing[END_REF]. The full automation of this process is still an open challenge. This type of composition is more flexible; however the drawback of this kind of composition is that functionality is not guaranteed.

In the remainder of this chapter, several approaches for modeling service composition will be explained.

Classical Formalisms for Service Composition Specification

In this section, we describe the main formalisms and languages that have been used for modeling service composition; it considers the two approaches discussed in the previous section.

Automata

An automata consists of a finite set of states, actions, labeled transitions between states and initial states. The labels represent actions, and a transition label indicates the action that causes the transition from state to state. The intuitive way in which an automata can model a system's behavior has led to a variety of automata-based specification models. Some examples are Input/Output automata [START_REF] Kaynar | Timed i/o automata: a mathematical framework for modeling and analyzing real-time systems[END_REF] [54] [START_REF] Mitra | Hybrid input output automata for composable conveyor systems[END_REF] and their many variants: timed automata [START_REF] Norström | Timed automata as task models for event-driven systems[END_REF] [57], team automata [START_REF] Sharafi | Extending team automata to evaluate software architectural design[END_REF] [59] and others. Automata-based models are being used more and more to make formal descriptions and compositions, and to verify compositions of web services.

In [START_REF] Kazhamiakin | Timed modelling and analysis in web service compositions[END_REF] the authors provide an encoding of BPEL processes into web service timed state transition systems, a formalism that is closely related to timed automata, and discuss a framework in which timed assumptions can be model checked. The authors analyze and verify properties of web service compositions of BPEL processes that communicate via asynchronous Extensible Markup Language (XML) messages. Their approach first translates the BPEL processes into a particular type of automata whose every transition is equipped with a guard in the form of an XML Path Language (XPath) expression, after which these guarded automata are translated into Process Meta Language (PROMELA), the input language of the model checker Spin. Finally, Spin can be used to verify whether web service compositions satisfy certain linear temporal logic properties.

Petri Nets

Petri nets were introduced as a framework to model concurrent systems in [START_REF] Murata | Petri nets: properties, analysis and applications[END_REF] . Their main advantage is the natural way in which many basic aspects of concurrent systems are identified both mathematically and conceptually. Within a Petri Net, one distinguishes between places and transitions. Transitions are connected to places and places to transitions, by arcs. Hence, a net is a bipartite directed graph. In some models, certain elements may be labeled. The dynamics of a net are given in the form of rules. These rules determine when a transition can be fired and what its effects are on the current state. Several authors have used Petri Networks to model service compositions. For example, Narayanan and Mcllraith describe web service compositions in a Petri-net-based formalism, complete with an operational semantics; they discuss the implementation of a tool to describe and automatically verify the composition of web services [START_REF] Narayanan | Simulation, verification and automated composition of web services[END_REF]. In [START_REF] Yi | A cp-nets-based design and verification framework for web services composition[END_REF] a Petri-net-based design and verification framework for service composition on the web was proposed. The frameworks and tools described above have the advantage of allowing one to simulate and verify the behavior of one's model at design time, thus enabling the detection and correction of errors as early as possible. As such, these approaches help increase the reliability of web service applications. However, they are not suitable for service composition in runtime.

Process Algebra

Process algebra is a popular formalism to describe and reason about process behaviors.

Like Petri nets, process algebras are precise and well-studied formalisms that allow the automatic verification of certain properties of their behaviors. Likewise, they provide a rich theory of bisimulation analysis in order to establish whether two processes have equivalent behaviors. Such analyses are useful for establishing whether a service can substitute another service in a composition or verifying the redundancy of a service. π-calculus is a process algebra that has inspired composition languages such as BPEL and XML Language (XLANG) that provide a formal model and theory for the automatic verification of properties of the behaviour of models. For example, in [START_REF] Salaün | Describing and reasoning on web services using process algebra[END_REF] the authors use process algebras to describe services, compose services, and verify them with a particular focus on their interactions. They present a case study in which they use Milner's Calculus of Communicating Systems(CCSs) to specify and compose web services as processes, and the concurrency workbench to validate properties such as correct web service composition. As is the case with Petri-net-based frameworks and tools, process-algebraic tools are also well-suited to improve the reliability of web service development by simulating and verifying the behavior of one's model at design time.

The Automata, Petri Net and Process Algebra formalisms described above have different characteristics, advantages and disadvantages. Each of them allows us to model different aspects of a problem as concurrency. However, these formalisms focus on the simulation and analysis of problems, then subsequently implement the right solution for a particular problem class. However, they are not suitable for deploying pervasive composite services, because it is necessary to model and solve the composition problem in runtime.

Several authors from Yokoo [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF] to Ghedira [START_REF] Ghédira | Constraint Satisfaction Problems: CSP Formalisms and Techniques[END_REF] have explored the constraint satisfaction problem as an alternative formalism that allows us to model problems and solutions in run-time. In this formalism, simulation is not necessarily indispensable to find suitable solutions. In the following section the constraint satisfaction problem is described and presented as an alternative formalism to model and solve the pervasive service composition problem.

Service Composition as a Constraint Satisfaction Problem

Classical constraint-satisfaction-based problems can be expressed by using the CSP formalism [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF]. A CSP is a triplet X, D,C where X = {x 1 , ..., x n } is the set of variables to instantiate, D = {D 1 , ..., D m } is the set of domains, each variable x i is related to a domain Chapter 3. Service Composition Approaches of value, and C = {c 1 , ..., c k } is the set of constraints, which are relations between some variables from X that constrain the values the variables can be simultaneously instantiated to. Therefore, making a decision consists of finding a solution, for instance a complete and consistent assignment of X.

Many problems of different domains can be solved by CSP, for example, planning, scheduling and circuit analysis. Let us consider the typical toy problem of n-queens. In this problem the goal is to put n queens on a chessboard of n*n size. On the chessboard, none of the queens should be are able to attack any other. This problem is called CSP because the goal is to find a configuration that satisfies the given constraints. In the case of 4-queens, we can model the problem using the CSP formalism as follows:

• X = {q 1 , q 2 , q 3 , q 4 }, each variable q i corresponds to the queen placed in the ith column.

• D = {D(q 1 ), D(q 2 ), D(q 3 ), D(q 4 )}, where D(q i ) = 1, 2, 3, 4∀i ∈ 1, 2, 3, 4. The value v ∈ D(q i ) corresponds to the row where the queen representing the ith column can be placed. centralized approach, while the composition problem of pervasive services is a distributed problem by nature. In order to address these problems several extensions of the original CSP have been developed. In the next section, a brief description of these CSP extensions is provided.

• C = {c i, j : (|q i -q j | = |i -j|) ∧ (q i = q j ) ∀ i, j ∈ {1, 2,

Approach Taxonomy

The original CSP framework has several limitations. For example, the original CSP assumes that: the problem is static, there is a global state, the problem can be solved by a single entity, and the problem's constraints are categorical. Because of this, many extensions, such as Dynamic Constraint Satisfaction Problem (DynCSP), DisCSP, and Soft

Constraint Satisfaction Problem (SoftCSP), have been proposed. In each of these frameworks, there are several approaches to solving constraint satisfaction problems (see Figure 3.3). The CSP framework has two main approaches to solve constraint satisfaction problems: search algorithms [START_REF] Yang | Constraint networks: a survey[END_REF] and inference methods [START_REF] Castro | Binary csp solving as an inference process[END_REF]. In general search algorithms can Chapter 3. Service Composition Approaches be classified as iterative and backtracking. In backtracking approaches algorithms build a partial solution that satisfies all of the constraints within the subset. Then the partial solution is expanded by adding new variables one by one [START_REF] Nadel | Representation selection for constraint satisfaction: a case study using n-queens[END_REF]. In iterative approaches, on the other hand, there are not partial solutions: instead, a whole flawed solution is revised by a hill-climbing search. In the inference-method approach, consistency is an example of this kind of algorithms. This approach needs, pre-processing procedures that are invoked before the search algorithm.

Taxonomy

DynCSP allows problems of constraint satisfaction to be solved in dynamically changing environments, for example, dynamic scheduling where tasks arrive continuously, and sensor networks where targets to be tracked move. There is a wide body of research on these topics, for example [START_REF] Petcu | A Class of Algorithms for Distributed Constraint Optimization[END_REF] SoftCSP framework is a generalization of CSP in which the constraints are not categorical [START_REF] Ruttkay | Fuzzy constraint satisfaction[END_REF]. SoftCSP enables modeling constraint satisfaction by considering aspects such as preferences, costs, or probabilities [START_REF] Nicoleta | Constraint Satisfaction Techniques for Agent-Based Reasoning[END_REF]. Constraint use in CSP and DynCSP could be too strict and not suitable for some problems. Because of this, there has been an interest in using SoftCSP for modeling these problems. To name some examples, in [START_REF] Schmid | A soft constraints-based approach for reconciliation of non-functional requirements in web services-based multi-agent systems[END_REF] a SoftCSP approach is proposed for modeling and reconciling non-functional requirements in web services based on multiagent systems and the authors demonstrate the framework in the potential-use case of a demand-driven supply network, and in [START_REF] Young | A fuzzy constraint satisfaction system for design and manufacturing[END_REF] presents a constraint satisfaction system for designing and manufacturing.

As a distributed problem, one possible way to represent service composition is the DisCSP formalism, which considers a problem as a set of variables (required services) to be assignes to a given set of constraints between the possible values (service instances) for these variables [START_REF] Montanari | Networks of constraints: fundamental properties and applications to picture processing[END_REF]. The DisCSP framework has been introduced by Yokoo in [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF].

Solving a problem is finding an assignment for each variable that respects the constraints.

There are several methods to solve CSPs in a centralized manner [START_REF] Ghédira | Constraint Satisfaction Problems: CSP Formalisms and Techniques[END_REF], but they are beyond the scope of this study, since we will address specifically distributed problems. The main distributed algorithms to solve DisCSPs can be classified in two types: synchronous and asynchronous algorithms. Several of these are distributed versions of centralized algorithms such as backtracking and weak-commit search. Because events in pervasive service composition are normally concurrent, in this work we are interested in asynchronous algorithms. The following section describes the DisCSP framework and the main asynchronous algorithms for solving DisCSP problems.

Distributed CSP Framework

In a DisCSP variables and constraints are distributed among a set of systems that have to collectively solve the CSP. Each system is responsible for assigning one or more variables by interacting with other systems. This does not imply that the solving process is decentralized. In most approaches, systems behave concurrently during a loop consisting of waiting for messages and reacting to received messages. Such messages contain information about the chosen values, the conflictual values, the violated constraints or even organizational information such as priorities.The topology of a constraint-based problem can be represented by a constraint network, in which vertexes represent variables, and edges represent binary constraints between variables.

There are several methods to solve CSPs in a centralized manner [START_REF] Ghédira | Constraint Satisfaction Problems: CSP Formalisms and Techniques[END_REF].

Distributed Constraint Satisfaction Problem Solving

A DisCSP could be solved using centralized algorithms such as min-conflict backtracking [START_REF] Minton | Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems[END_REF], breakout [START_REF] Morris | The breakout method for pscaping from local minima[END_REF], and branch and bound [START_REF] Pearl | Heuristics: Intelligent Search Strategies for Computer Problem Solving[END_REF]; however they are beyond the scope of this study. Since the service composition problem is naturally distributed, we will address specifically distributed problems, i.e., problems where a leader agent is selected among all agents, and all the information about variables, variables' domains and constraints is gethered into the leader agent. Thus the leader agent can solve the CSP alone using centralized CSP algorithms. However, the cost of collecting all information about a problem can be prohibitively high [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF].

In this section, we classify constraint problem solving approaches and evaluate each category with respect to the characteristics presented below in order to identify commonalities and differences between categories.

• Global state is unknown: micro-level entities are not conscious of the global state of the system, which is however valuable at the macro-level.

• Local actions: actions of a system are limited to its own limited neighborhood.

• Decentralized decision: decentralization means that no system has the power or the capability to decide for the others, or to solve the whole part of the problem, at a given time.

• Problem distribution: this refers to the manner and the degree of distribution of the problem among systems (for example one variable per system)

• Bounded known: a system cannot know the values of other systems.

We will further use these characteristics as an analysis matrix for determining whether

or not an existing approach can be used as a starting point for designing ecosystems of pervasive services. We organize main existing methods for solving DisCSPs into three autonomously, without following central orders or some global plan. The advantage of these methods is their inspiration from natural phenomena adapted to dynamic environments, which may facilitate their applicability to dynamic problem solving contexts. However, they require more memory than the previous approaches since the search space is explored concurrently at several states.

We pay special attention to Asynchronous Back Tracking (ABT) and Asynchronous

Weak-Commitment Search (AWCS) algorithms because they are complete (i.e. if there is a solution, they guarantee the finding of the solution) and they are the base of the main algorithms to solve DisCSPs [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF]. These methods rely mainly on an ordered organization. A priority level is assigned to each member of the organization; that priority may be assigned using a certain established policy, for example, seniority, amount of resources, confidence level, among others. Within the organization agents only communicate with others agents of lower priority for informing value changes and with the agent with directly higher priority for informing that there is a conflict in their variable assignments. The agent with the highest priority is responsible for initiating the termination procedure. This priority order is fixed in ABT. With this algorithm, a partial solution is never modified unless it is certain that the partial solution cannot be a part of any complete solution. The ABT algorithm allows agents to run concurrently and asynchronously. Thus each agent instantiates its variable and communicates the variable value to higher-order agents.

A constraint network can be used to represent a DisCSP (see Figure 3.4). In the constraint network, nodes represent agents with one variable (for the sake of simplicity) and each link represents a constraint. One agent is assigned that constraint, and receives the other agent's value. The links are directed between two agents: from the value-sending node to the constraint-evaluating node. The ABT algorithm is driven by messages and each agent can handle multiple messages concurrently. This algorithm uses two main messages: ok? and noGood (see Figure 3.5). A brief description of the main idea of the ABT algorithm is provided below: We illustrate the AWCS algorithm by means of the distributed 4-queen problem. Figure 3.7 describes the initial scenario. Agents communicate these values with their neighbors.

The value within parentheses, over each X i , represents the priority value (start with 0).

Because the priority value of all agents are equal, the order is defined by the alphabetical order of the identifier. Thus, only the value of x 4 is inconsistent with its agent view. Agent

x 4 therefore sends noGood messages and increments its priority order. In this example, the value minimizing the number of constraint violations is 3, because it conflicts only with x 3 .

Thus, x 4 selects 3 and sends ok? messages to its neighbors (see Figure 3.7 (ii)).

Then, x 3 tries to change its value. Since there is an inconsistent value, agent x 3 sends noGood messages and increments its priority order. In this case, the value that minimizes the number of constraint violations is 1 or 2. In this example, x 1 selects 1 and sends ok?

messages to the other agents (Figure 3.7 (iii)). After that, x 1 changes its value to 2, and a solution is obtained (see Figure 3.7 (iiii)). 

Comparing the Main Features of DisCSP Solving Algorithms

Table 3.1 summarizes the main characteristics of the algorithms described above according to the criteria described at the start of this section (global state, local actions, decentralized decision, problem distribution and bounded known).

Table 3.1: Main characteristics of reviewed algorithms

ERA PSO ACO ABT AWCS Global state is unknown G H H H H Local actions G G G G G Decentralized decision H H H H H Problem distribution G G G G G Bounded known H Q H Q Q G: Yes, H: No, Q: Partially
Although all the algorithms described above are based on the distribution of the resolution process among the participants (for example, agents, systems, ants and particles), these algorithms require centralization of some processes or data in one element of the system. Therefore they can not be considered fully decentralized. For example, some algorithms such as ACO and ERA centralize the data, while algorithms such as AWCS and ABT centralize the consistency of the solution.

Conclusion

Two main topics were covered in this chapter: classical service composition approaches and their formalisms, and the constraint satisfaction problem formalism as an alternative approach to model service compositions. Both drawbacks and advantages were discussed.

First, the composition of services was described as a key feature for solving complex problems using simple services; then, the static and dynamic composition approaches were introduced; next, the main formalisms used for service composition were introduced: the automata as a formalism for modeling the behavior of systems, then Petri Nets, which make it possible to model synchronization and concurrency in system behavior, and finally, process algebra to describe or reason about the behavior of processes. These formalisms focus on simulation and analysis of problems, and then implement suitable solution for a particular problem. This was the starting point to describe the constraint satisfaction problem formalism as a tool to model service composition.

The above approaches and formalisms have generally been used to develop mechanisms for the composition of services that are deployed in closed environments. Still pending is the development of composition mechanisms that are appropriate for open environments that do not have dedicated infrastructure, for example, environments with infrastructure based on mobile devices and ad hoc networks.

The constraint satisfaction problem was presented as a formalism for service composition, and a set of approaches to solve DisCSP problems was described. There are distributed versions of classical algorithms that still remain centralized, even though the execution and the solving process are concurrent; for instance, several sub-processes solve sub-problems of the whole problem in a parallel manner but are coordinated by a single system that may fail.

In order to deploy pervasive services, automatic composition, scalability and exception handling still have to be improved. Automatic composition means that the end user or ap-plication developer may request a task, and a composition engine should select adequate services and provide the user with the composed service in a transparent fashion. Some of the main open challenges remaining in automatic composition are how to identify potential services, how to compose them, and how to verify how closely they match a request.

Moreover, composing two services is not the same as composing hundreds of them. In the real world, users would typically need to interact with several services while applications may invoke possibly several hundred services. Therefore, one of the critical issues is the scaling of the proposed approaches to the number of services involved. Finally, pervasive service composition uses external services that are controlled by the service owner, so the handling of exceptions during the process of invocation must be taken into account in case external services do not respond.

The rest of this document will describe our distributed approach to designing service ecosystems to address the issues described in the sections 2.5 and 3.4.

Chapter 4

An Ecosystem-Based Approach for

Pervasive Hardware Services

As stated in the introduction to this manuscript, our first goal is to develop a framework for pervasive hardware service ecosystems. To this end, we define a conceptual architecture around which to frame the main components of the service ecosystem inspired in a social metaphor.

A Social Metaphor

The challenges to deploying pervasive hardware services in open and dynamic environments led us to take inspiration from natural systems, as other authors have done [START_REF] Crowcroft | Toward a network architecture that does everything[END_REF] [35]

[39] [START_REF] De Angelis | Selfcomposition of services in pervasive systems: A chemical-inspired approach[END_REF]. In our case we use the ecosystem concept to model a service ecosystem using a social metaphor. As was seen above in chapter 2, an ecosystem can be defined as a loosely coupled environment organized by species, where each species conserves the environment, and is proactive and responsive for its own benefits [START_REF] Pickett | The ecosystem as a multidimensional concept: Meaning, model, and metaphor[END_REF]. There are two key elements in an ecosystem: species and their environment. Species interact with each other and balance each other (even though some species might play a temporary leading role) and an environment supports species' ecological needs.

The development of a pervasive service ecosystem inspired by a social metaphor should conceive of the species in it as the members of a society, each having the goal of reaching its objectives by finding the appropriate resources while following social norms. The social norms ruling the dynamics of the members' interaction, and the organization of the ecosystem (typically structured around spatially confined groups of members with similar 44 Chapter 4. An Ecosystem-Based Approach for Pervasive Hardware Services goals) determine how the members of the ecosystem can look for and find resources.

In general, an ecosystem considers the presence of members with several skills and objectives. These members may play one or more roles (such as provider and customer), which are dynamic and refer to the behavioral expectations of the individuals in their relations with others. A member of the ecosystem may play the role of customer when it requires the assistance of another member of the ecosystem to achieve its goals. However, it may also play the role of provider when it offers assistance to other members of the ecosystem. Social interactions among ecosystem members (with heterogeneous skills and resources) playing different roles drive them to reach their goals.

Ecosystem Members and Species

As presented in Chapter 2, there are several metaphors for the construction of ecosystem services. Depending on the metaphor used, the characteristics of the environment may vary, as well as the members of the ecosystem and how they interact. With the aim of establishing an appropriate framework for our purpose, we have proposed a formal definition of each of these elements. of its environment, internal states (I) and application domain knowledge (D).

Services

A service is considered as a computational wrapper around some set of functionalities. The functionalities that are represented by the service can be abstract (e.g. algorithms for data processing), or manage resources in the real world (e.g. sensors or actuators). A service is able to represent these different kinds of resources by providing each resource with a

A Social Metaphor

well-defined interface. Formally a service can be defined as a 3-tuple s =< contract, F > where contract describes the service interface, the set of assumptions that must hold in order to perform the service, as well as the effects of performing the service, and F ⊆ SR is the set of functionalities that make up the service. Computing devices typically have limited resources; therefore, providing complex services could require the cooperation among devices managed by agents. In this context, there are two kind of services: atomic and composite services. An atomic service is one in which all the required functionalities and resources are in the same agent; and a composite service is one whose required functionalities and resources are distributed in two or more agents.

Species

Species are key elements in a natural ecosystem. A species can be defined as a collection of ecosystem members who share common characteristics, abilities, needs and often goals.

For our purpose, the service ecosystem species are represented by groups of agents with similar resources and functionality who are likely to provide common services. Therefore, agents who are in a common environment (such as a room, a building or a city) may be members of one service ecosystem. A service ecosystem is defined as a tuple 

<

Social Interaction Norms

The way agents interact is determined by the set of fundamental social norms regulating the ecosystem model. The enactment of social norms by agents will typically affect and be affected by the local environment and by the other agents in the area. Chapter 5 will address the question of interaction mechanisms between members of the ecosystem (i.e., agents).

Service Ecosystem Environment

There are several definitions and models of the environment, however, for our purposes, the most appropriate definition is porposed by Bossier et al. in [START_REF] Boissier | Norms, organizations, and semantics[END_REF], where they define the environment as "the place in which it is possible to place services, resources, and institutions, and it must contain support for processes such as service description and discovery of resources." In our case, the service ecosystem environment is the location where it is possible to situate the resources, services and agents; it should provide interaction mechanisms for such processes as service composition and adaptation.

A Conceptual Architecture for Pervasive

Up to now, our model is restricted to environments that have at least one permanent agent and some temporary agents who join later, at specified -itstart-times, and also leave the environment at the expiration of their life-times. We look at these types of open systems initially because in them, the social norms set by GO to build agent groups of a service ecosystem can be kept constant (the temporary agents will build groups based on the same GO as the permanent ones). In this way, our approach can focus solely on the changes to the overall capacity (resulting from the temporary agents). Consequently, these open environments represent distributed systems in which additional resources might be added to extend agents' functionalities. For this, the ecosystem organization is based on agents' similarities, considering their skills, objectives and locations [START_REF] Cervantes | Toward self-adaptive ecosystems of services in dynamic environments[END_REF]. 

D

Service Ecosystems

In order to develop a framework for deploying pervasive hardware services, we have defined a conceptual architecture based on the social metaphor of an ecosystem, an architecture around which to frame the key components of an ecosystem. Figure 4.1 presents a conceptual architecture view of the framework, which establishes a bridge between a group of distributed heterogeneous devices and the pervasive hardware services requested by users.

The lowest level is the concrete physical and digital ground on which the services will be deployed, i.e., networked computing devices and data sources. Devices and data sources are geographically distributed and interconnected through different type of networks; for instance, devices at the edge can setup direct ad hoc connections without requiring the involvement of a managed network. At the top level, users access the ecosystem in order to consume hardware services, as well as to produce and deploy new hardware services and data in the ecosystem or to make new devices available. At the lowest and top levels openness and dynamics arise: new devices can join/leave the system at any time, and new users can interact with the ecosystem and deploy new services and data items in it. At the middle level are the abstract computational components of the ecosystem architecture.

Crowd Evacuation: A scenario

In order to fully understand the potential behind the pervasive hardware service ecosystem approach, we now introduce the crowd evacuation case, an application scenario where the proposed ecosystem architecture could potentially be applied.

The application scenario starts with the observation that today's urban landscape is becoming an intricate ecosystem where information, originating from a variety of heterogeneous sources is being gathered, stored, processed, and utilized by pervasive services. In particular, such information is being generated by sensors embedded in the environment, sensors available on mobile devices, mobile services, people on the web, people from the mobile devices, etc. The common denominator of all this information is that it can be linked (either directly or indirectly) to a specific geographical location or region; it is extremely dynamic, since it reflects the social dynamics of an urban environment; and it is vast, as it is originates from a huge number of sources.

Let's now imagine a mobile user moving in a completely new urban setting, such as in an international airport, and looking for the nearest exit because there is fire in the building.

This includes information and services related to the specific location of the nearest exits, to the safest routes, etc. Luckily enough, the user has the Crowd Evacuation service installed in his mobile device. The Crowd Evacuation service is a pervasive hardware service that is able to retrieve, in real time, information about the emergency and safe evacuation routes originating from a potentially unlimited number of sources (e.g., sensors, users, web, etc.), to match this information to the user's profile and situation (e.g., user capabilities, location, age, etc.) and to deliver it in an interactive way. Proposing convenient evacuation routes for the user and the possibility of directing him towards safe locations based on his personal profile, situation and the fire's evolution is one possible example. This scenario requires:

• Real-time data retrieval from a variety of heterogeneous sources.

• Dynamic linkage of user data (e.g., capabilities, age, location etc.) with the available information and pervasive services in the local environment.

• Real-time processing of gathered data in order to extract a high-level interpretation of the information and provide it as an independent service to third parties.

• Dynamic service composition for providing composite services to users.

Combining all these features into a dynamic hardware service delivery platform requires a radical change in the way services are composed and provided at run-time, and the way information is gathered and processed. State-of the-art technologies can barely support all these features, since this requires architectural changes in which the complexity is shared across the many distributed autonomous devices involved in the delivery of a composite service.

Most existing approaches to the case described above provide monolithic solutions, in which a single application is in charge of interfacing with various sources of information as well as implementing the required algorithms for processing this information. Furthermore, limited support exists to fully exploit the environmental data, and to extend them to an enlarged participative approach in which data are spontaneously and anonymously provided by user devices to serve other users.

The proposed hardware service ecosystem starts from these considerations and defines an architecture based on the concepts of autonomous agents, social-norm-based mechanisms, and distributed service composition, this in order to support a dynamic, adaptive and run-time pervasive hardware service mash-up. Such interaction mechanisms, run-time service composition, adaptation and delivery represent the key innovation of the proposed service ecosystem.

Conclusion

In this chapter we defined a conceptual architecture around which to frame the key components of the service ecosystem inspired in a social metaphor. The social metaphor of the ecosystem and its elements were introduced. The service ecosystem notion is not new, but previous efforts have generally focused on the context of software services and closed environments where there is dedicated infrastructure such as servers with high processing capabilities and reliable communications networks. In the remainder of this document, a)

we define the interaction among ecosystem members by means of social obligations and introduce an agent communication language based on these obligations, and b) we model the hardware service composition process as a distributed constraint satisfaction problem; in addition, we present a mechanism to compose hardware services; and c) we present an extension for modeling the hardware service adaptation process as a dynamic and distributed constraint satisfaction problem. 

Agent Interaction

The social ability of the ecosystem' members (agent interaction) is fundamental for them to reach their objectives. The ecosystem should be provided with interaction patterns that direct agents towards the ecosystem's design objectives. Interaction protocols allow agents to do this in a consistent manner. An interaction protocol is a set of rules governing the exchange of messages among agents in order to coordinate their actions for the achievement of their objectives.

There are several formalism to model interaction protocols between agents; however, Deterministic Finite State Machines(DFSMs) and Petri Nets (PN) deserve special attention 52 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem due to their mathematical background and graphical representation.

Deterministic Finite-State Machines

A DFSM is a directed graph whose nodes represent states of a protocol, and each edge means the transition from one state to another [START_REF] Arbib | Review of 'theory of automata' (salomaa, a[END_REF]. Edges are labelled with the messages that agents may communicate; subsequently, depending on the transmission of messages, the interaction state evolves. In addition, a DFSM needs initial and end states, as well a transition function. This function establishes how the protocol evolves, for a given sequence of messages. The use of DFSM has spread widely for the purpose of modeling interaction [START_REF] Barbuceanu | Cool -a language for describing coordination in multi-agent systems[END_REF] [91] [START_REF] Fernández | Abstract models for dialogue protocols[END_REF]. Even though DFSMs provide a graphical formalism and a variety of validation tools, statecharts are the most common instrument for modeling interaction protocols. In fact, a modified version of statecharts becomes part of the Unified Modeling Language (UML), which is the specification language used most often for software projects [START_REF] Chopra | Contextualizing commitment protocol[END_REF].

The disadvantages of DFSMs-based approaches are related to their power of expression, because only regular languages can be represented. This makes DFSMs unsuitable for representing aspects of synchronization required for many interaction protocols.

Petri Nets

PN formalism provides both graphic and mathematical representations. A PN is a directed graph with two types of nodes: transitions and places [START_REF] Murata | Petri nets: properties, analysis and applications[END_REF]. Places are connected with transitions by means of output and input edges. Transitions represent the emission or reception of messages. With regard to places, the number of tokens of all places represents the state of the interaction. There are several variants of PN; however the most commonly used to model interaction protocols is the Colored Petri Netss(CPNs). Tokens in a CPN have a color, which is a data type; places only contain tokens of a particular color; arcs have attached expressions, which receive tokens as input parameters and evaluate them in order to enable transitions [START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use[END_REF]. Usually, in a CPN that models a interaction protocol, transitions represent the reception and execution of messages, and places provide the interaction state of the protocol [START_REF] Mazouzi | Open protocol design for complex interactions in multi-agent systems[END_REF].

One disadvantage of CPNs-based approaches relates to their lack of specialization in the modeling of interaction protocols. Even for simple interaction protocols, CPNs are hard to read by designers, and for this reason, their further modification and adaptation to similar protocols is not trivial [96] [97].

In MAS, approaches for modeling agent interactions can be classified as mentalist or socials. The best-known mentalist approach is based on the Beliefs, Desires and Intentions (BDI) agent model [START_REF] O'brien | Fipa -towards a standard for software agents[END_REF]. The BDI model has been used by the Foundation for Intelligent Physical Agents (FIPA) to provide interaction semantics and it has been adopted for specifying its agent communication languages [START_REF] Fipa | Fipa communicative act library specification[END_REF].

Despite its acceptance in the multiagent research community, proposals based on BDI semantics are only suitable for closed environments [START_REF] Singh | Agent communication languages: Rethinking the principles[END_REF], where agents are homogeneous with standardized beliefs. To address the open environment issues, there are proposals such as [START_REF] Singh | A social semantics for agent communication languages[END_REF], [START_REF] Gaudou | A new semantics for the fipa agent communication language based on social attitudes[END_REF] and [START_REF] Gutiérrez | Multiagent systems interaction through social norms[END_REF] for the use of ACLs based on social semantics to model interactions by means of social norms [START_REF] Boissier | Norms, organizations, and semantics[END_REF]. Social norms are public by nature and suitable for open environments; therefore, agents are aware of the norms they have to follow.

Even though there are ACLs based on social norms such as obligations, commitments, prohibitions and permissions, they are implemented following mentalist approaches, which prevents them from being suitable for open environments [START_REF] Singh | Agent communication languages: Rethinking the principles[END_REF]. Some other proposals focus on solutions that rely on an Internet connection and ignore the physical dependencies of services. We propose a communication language based on social norms for supporting the openness and dynamism of the environment in real scenarios, while preserving the autonomy of agents. Additionally, devices must adapt their services constantly to meet user requirements and preferences, as well as environmental changes. To deal with this, we propose using an agent approach in order to provide devices with autonomy. Devices are able to make decisions and modify their local environment with the least user intervention as possible.

Obligations

Our service ecosystem is inspired by the social metaphor of a natural ecosystem, where species are represented by agent groups. Thus the interaction among agents is governed by social norms. Social norms can be modeled in terms of commitments, prohibitions, permissions or obligations. Our proposal is based on obligations in order to support agent interaction in open environments. Definitions of obligation, their life cycle and basic operations are provided.

Obligation are social impositions on oneself to provide a service. This notion is similar to those presented in [START_REF] Rob | The event calculus in classical logic -alternative axiomatisations[END_REF] and [START_REF] Gutierrez-Garcia | From obligations to organizational structures in multi-agent systems[END_REF]. Using event calculus formalism, an obligation is represented as O(α, β), which means that agent α is committed to providing service β (this service can be atomic or composed). The motivation of agents to cooperate with each other is based on the following assumption: an agent α with limited resources requires help from another agents (e.g. from agent δ) to achieve its goals. To this end, agent α accepts obligations induced from other agents with the intention of exchanging them for the rights to induce obligations in other agents (e.g., on agent δ). Similarly, if agent α receives support from agent δ, then agent α is bound to assist the agent δ.

In order to manage obligations, a set of basic operations is required. These operations are defined by means of event calculus, which was selected for its intuitive management of events. The main elements of a predicate in event calculus are events and fluents. In our case, events represent sending or receiving messages, or a sensor activation. Fluents are boolean properties that can be affected by events, and their values change over time. Here we used a subset of the event calculus predicates presented by Shanahan in [START_REF] Shanahan | The event calculus explained[END_REF]. These predicates are defined in table 5.1. Fluent f holds at time τ. Initiates(ε, f , τ)

Fluent f holds after the execution of event ε at time τ Terminates(ε, f , τ) Fluent f does not hold after the execution of event ε at time τ Happens(ε, τ) Event ε is executed at time τ For a detailed explanation of the calculation of events predicates the reader is referred to [START_REF] Shanahan | The event calculus explained[END_REF] and [START_REF] Miller | Some alternative formulations of the event calculus, in computational logic[END_REF].

Basic Operations on Obligations

Obligations can be created, released and canceled. This notion is akin to the one presented in [START_REF] Lopez | Modelling norms for autonomous agents[END_REF] and [START_REF] Gutierrez-Garcia | From obligations to organizational structures in multi-agent systems[END_REF]. However, assuming that the environment is open, it is unlikely that an obligation will remain static. For this reason we consider it necessary to add support for adapting obligations after they are created. In the following sections, the operations for managing obligations are defined:

Create

O(α, β), can be created only by the receiver agent (there could be the case of internal messages, where the sender of the message is also the receiver). An obligation is created The release of an obligation means the occurrence of an event ε(α) that initiates service β and terminates the obligation O(α, β). An induced obligation can only be released by the receptor agent.

Cancel

An obligation O(α, β) can be canceled by agent α when the obligation is no longer required or the agent is not available to provide service β; however, the cancellation of an obligation must lead to the acquisition of compensatory obligations (Φ) in order to make up for the cancellation of the obligation. In addition, the cancellation of an obligation implies the cancellation of its linked obligations (Γ) that have a dependence on the canceled one. Figure 5.5 illustrates the interaction between agents. This is formally defined as follows.

CancelO(ε(α), O(α, β), τ) : In the case of induced obligations, these can be canceled without collateral effects, because they depend on the physical agents' autonomy. In addition, the cancellation of an induced obligation requires the occurrence of an event ε(α) that terminates the obligation IO(α, β, δ) (see Figure 5.6); this is defined as follows:

{Happens(ε(α), τ) ∧ Terminates(ε(α), O(α, β), τ) ∧ Initiates(ε(α), φ, τ) ∧ CancelO(ε(α), γ, τ)|γ ∈ Γ, φ ∈ Φ}
CancelIO(ε(α), IO(δ, β, ω), τ) :

Happens(ε(α), τ) ∧ Terminates(ε(α), IO(δ, β, ω), τ) 

Adapt

Assuming that the world is dynamic, it is unlikely that an obligation will remain static over time; for this reason adaptable obligations are required. As defined above O(α, β) means that agent α is obligated to provide service β. Based on this definition, an adaptation's operation modifies the required service β. In obligation terms, the occurrence of an event ε could commit agent α to adapting its original obligation O(α, β) to O(α, β ) at time τ; however, the adaptation of an obligation could lead to the adaptation of linked obligations (Λ). In addition, the adaptation of an obligation could means the acquisition of new obligations (Ξ) and the cancellation of some obligations(Γ) linked to it. This is formally defined as follows.

AdaptO(ε(α), O(α, β), O(α, β ), τ) :

{Happens(ε(α), τ) ∧CancelO(ε(α), O(α, β), τ) ∧ Initiates(ε(α), O(α, β ), τ)) ∧ AdaptO(ε(α), λ, β (λ), τ) ∧ Initiates(ε(α), ξ, τ) ∧CancelO(ε(α), γ, τ)|λ ∈ Λ, ξ ∈ Ξ, γ ∈ Γ}
An O(α, β) can be adapted only by the agent α that has assumed this obligation. However agent α can request the adaptation of induced obligations on another agent δ. In the case of the adaptation of conditional obligations, these can be adapted without collateral effects, because they depend on the agent autonomy; this is defined as follows:

AdaptIO(ε(α), IO(δ, β, ω), IO(δ, β , ω), τ) : {Happens(ε(α), τ) ∧CancelIO(ε(α), IO(δ, β, ω), τ) ∧CreateIO(ε(α), IO(δ, β , ω), τ)}
A set of messages is not enough to enable agent cooperation, an agent communication language is required. The next sections explains the obligation life cycle and basic acts of the agent communication language.

Obligation

Obligation Life Cycle

As with other approaches, an interaction mechanism based on social norms expresses both static and dynamic aspects of systems. The dynamic aspect arises from the interpretation of such interaction mechanisms and the consequent acts on obligations by each agent in the system. Thus, obligations have a life cycle in runtime. In previous works, as in [START_REF] Gutierrez-Garcia | From obligations to organizational structures in multi-agent systems[END_REF], authors consider that obligations may be acquired, released or canceled. That is, an obligation can be in one of three possible states. In this model based on three states (see Figure 5.7) an obligation is created when the condition for assuming it is true. Once the obligation is created, the state changes to released when the obligation is achieved by the agent. The obligation state changes to canceled when the agent is not able to achieve the obligation.

Acquired

Other authors have proposed early obligation life-cycles (e.g. [START_REF] Hübner | A normative programming language for multi-agent organisations[END_REF] ) based on four states: active, fulfilled, unfulfilled, and inactive . Thus, the life cycle of an obligation is based on four states (see Figure 5.8). An obligation is created when the condition of a rule is satisfied, and its initial state is active. The state becomes f ul f illed when the obligation is achieved before the deadline. However, if the obligation is not achieved by the agent before the deadline, then the status changes to un f ul f illed. Finally, the state of the obligation changes to inactive when its trigger condition ceases. Although the models described above define different states that allow an agent to manage its obligations, they are not appropriate when considering the management du-ties within dynamic ecosystems in which the agents need to share resources in a dynamic world.

In our case, based on the fact that an obligation means providing a service and a service represents a set of functionalities to be performed in some order, then obligations cannot be atomic. Furthermore, after an obligation is acquired and before it is released, there may be changes in the environment and user requirements. Additionally, agents can enter and leave the environment and even the availability of resources in agents may change. Therefore, it is necessary to consider various intermediate states in the life cycle of an obligation.

Taking inspiration from the scheduler of an operating system for concurrent operations, we propose a life cycle for obligations with seven possible states as defined in Figure 5.9 and explained below.

1. An obligation O i (α, β) for providing a service is acquired and created when an agent α assumes the obligation.

2. Once the obligation is created, its initial state becomes active if the resources required to meet the obligation are available and there is no dependency on some event.

Otherwise, the initial state of the obligation changes to waiting.

3. When an obligation's state is waiting, it can change to active if the resources required to meet the obligation become available and there is no dependency on some event, and cancelled if the agent is unable to fulfill its obligation before the deadline.

4. The obligation's state changes from active to running according to a policy for dealing with obligations; in our case, for the sake of simplicity we have chosen a nonapprehensive First Input, First Output (FIFO) policy.

5.

Once the running time for the obligation has finalized, the execution is interrupted and the obligation's states changes to released if the obligation was achieved before its deadline, active if the obligation has not yet been achieved within its time limit, cancelled if the agent was unable to fulfill its obligation before the deadline, and adapting if there was a change in the environment or a failure in the system.

6. The obligation's state changes from adapting to cancelled if the adaptation was not possible, active when the adaptation is completed.

7. Obligation O i (α, β) ends its life cycle in runtime when its state becomes released or cancelled.

Unlike the models proposed by other authors, our proposal, inspired by early models such as [START_REF] Hübner | A normative programming language for multi-agent organisations[END_REF] and [START_REF] Gutierrez-Garcia | From obligations to organizational structures in multi-agent systems[END_REF], defines a lifecycle for obligations that supports the use of shared resources in dynamic environments. The objective sought with our model is to reduce the time required to reach multiple obligations within an ecosystem of services where resources can be shared and their availability is not guaranteed. This is achieved by allowing the agents to interact and make collective decisions based on possible intermediate obligation states (i.e. obligation states after being acquired and before being released). In order to provide the proposed life cycle with support, we have implemented a Java package for handling obligations, to be used by subsequent deployments agents (see the conceptual model in Figure 5.10). 
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Basic Acts for a Social ACL

In this section, from the notion of obligation we derive a set of basic communicative acts for a social agent communication language. The obligation-based agent communication language is derived from speech act theory [START_REF] Searle | Foundations of Illocutionary Logic[END_REF], comparable to the ones presented in (Colombetti, 2000), [START_REF] Fornara | Operational specification of a commitment-based agent communication language[END_REF], and (Singh, 1999). The illocutionary acts are defined by means of operations over the obligations of agents. The basic communicative acts are categorized as assertive, directive, commissive and declarative. Some FIPA-ACL primitive acts (FIPA, 2002b) are used, but their BDI definition is replaced by 5.4. Basic Acts for a Social ACL 63 a definition based on obligations, which does not depend on the beliefs of agents. In the following sections communicative acts are defined using the operations over obligations presented in the previous section.

Assertive Acts

This type of act attempts to convince the receptor agent of a message that some fluent β was achieved by the sender agent, i.e. an obligation was released. In f orm is our prototype of assertive acts and it is defined as follows:

In f ormO(α, δ, β, κ) ≡ ReleaseO(In f ormO(α, δ, β, κ), O(α, β), τ)
The symbols α and δ represent the sender and receptor of the message, respectively; β means the service that was provided; the symbol κ is a set of domain data that results from the performance of β. The message In f orm(α, δ, β, κ) means that the sender releases a previously assigned obligation to provide service β.

Directive Acts

This type of act attempts to induce obligations in other agents. We are considering two cases: a) an agent α requests another agent δ to accept an obligation to provide a service β or b) an agent α requests another agent δ to accept one change of an obligation previously induced to provide service β . This is formalized using induced obligations, where only the receptor agent can choose to accept or reject the creation of an obligation or the adaptation of an induced obligation. This is stated with the predicate AllowedBy. RequestO and RequestA are our prototypes of directive acts their definitions are as follows:

RequestO(α, δ, β) ≡ CreateIO(RequestO(α, δ, β), IO(δ, β, ω), τ) |ω = AllowedBy(δ, O(δ, β))
β is service to be induced as an obligation. The message RequestO means that an induced obligation is created; however, the obligation is only active if the agent δ (receptor) chooses to assume the obligation, i.e. agent δ evaluates the AllowedBy predicate as true.

After the reception of a RequestA message attempting to induce the adaptation of an obligation, the receptor agent can send an AgreeA (agent δ agrees to adapt a previously induced obligation) or Re jectA(agent δ refuses to adapt a previously induced obligation) message. The AgreeA message means the induced obligation adaptation is activated in the sender agent and an obligation is adapted in the receptor agent. If agent δ rejects the induced obligation adaptation, it sends a Re jectA message that cancels the induced obligation in the sender agent and also cancels the previously assumed obligation in the receptor agent.

Declarative Acts

These types of acts are useful for making self-induced obligations public, i.e. declarative acts notify other agents about the creation of self-induced obligations. Two primitive acts are considered:

Con f irmO(α, δ, O(α, β)) ≡ CreateO(Con f irm(α, δ, O(α, β)), O(α, β), τ)
An agent α can sends a Con f irmO message to another agent δ to declare its obligation to achieve a state of affairs. However, if some obligation was already released, agent α sends a Discon f irmO message.

Discon f irmO(α, δ, Obligation(α, β)) ≡ ReleaseO(Discon f irm(α, δ, O(α, β)), O(α, β), τ)

Modeling a Protocol by Means of Obligations

This section describes the implementation of an interaction protocol by means of obligations enabling agent organization. The protocol is based on the acts described earlier in this chapter. This protocol is based on the following idea: members of same species work together to achieve common goals. We propose building species of agents (for the shake of simplicity, each agent α represents a device) to provide services and achieve common aims. However, the physical environment and functional requirements are constantly changing; therefore it is false that the agents' organization in an ecosystem must remain static. For this reason we propose a clustering algorithm based on skills and locations to build initial species, where each cluster is adapted on the basis of the current aims of each agent.

Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

In the design of wireless networks, it is often necessary to connect the whole network using the least amount of resources. However, our objective is to create suitable network connections for pervasive hybrid services. Cluster-based control structures allow a more efficient use of resources because a hierarchical view of the created network through clustering decreases the complexity of the procedure for creating network. This is especially true in mobile and ad hoc networks made up of a large number of individual devices.

On a topology level, our clustering is done by grouping devices (sharing current aims and with similar skills) inside a certain transmission area (see figure 5 

Preliminaries

Each participant is instantiated and represented by an agent; this agent has a unique identifier denoted by α. Each α has a set of skills to provide one or more services. In this paper we assume the emergence of clusters based on a minimal percentage of similarity in three dimensions: skills, locations and current aims. In the ecosystem of services, these clusters mean agents working to provide services and achieve common aims. However, these clusters are not fixed and may change over time.

In this work, it is beyond our scope to derive similarity functions. In this regard for the shake of simplicity we assume the existence of three functions: (i) a similarity function based on agents' skills that enables agents to determine distances between them, (ii) a function to determine a similarity percentage between two aims and (iii) a function to determine the geographical distance between two agents α and δ. Each cluster in the ecosystem should have a representative participant agent α R and some participant agents α.

The choice of the α R is based on the skills associated with each agent α and its location;

the agent α with best skills to represent a cluster plays the α R role. In order to achieve an appropriate partition of initial clusters in the ecosystem, the clustering process must satisfy the following properties:

• Each agent α has at least one agent α R as a neighbor (two agents α and δ are neighbors if they belong to the same cluster).

• Each agent α must affiliate with the neighboring agent α R that has the greatest similarity to it, based on skills, location and current aims.

• Two agents α R cannot be neighbors.

The clustering process is executed in all agents and each one decides its own role (α P , α C or α R ); depending only on the neighbors' decisions. Thus initially, only the agent α with the best skills will broadcast a message to its neighbors stating that it will be the α R .

When one or more of these messages are received, agent α will choose to join the cluster of the agent α R with the best skills. If any message has been received by agent α from another agent δ with higher skills, then α will send a message to promote itself as the new α R .

Clustering-Based Protocol

The process of creating and adapting clusters in the ecosystem, is driven by messages: a specified behavior will be executed by the agents depending on the reception of the corresponding message. The main messages used by agents in the clustering process are:

• In f ormO(α, δ,ChangeRPA, κ) is used by an agent α to inform its neighbors that it is going to be the agent α R .

• In f ormO(α, δ, GoInto, κ), with which an agent α communicates to its neighbors that it will be part of a cluster whose agent α R is a neighbor.

• In f ormO(α, δ,CurrentAim, κ) is used by an agent α to inform its neighbors that it has a new aim. If its neighbors' aims are similar to its current aim, then agent α remains in the current cluster. Otherwise α finds, in its vicinity, another agent α R with goals similar to its current aim. An agent α may have one or more current aims; it can thus belong to more than one cluster.

• In f ormO(α, δ, AddRPA, κ) is used by an agent α to inform its neighbors that it will be part of other clusters, but remain in the current cluster too.

• In f ormO(α, δ, NewPA, κ) is used by an agent α that has come to the ecosystem.

These messages start the clustering process based on three dimensions: skills, location and aims. The priority of each dimension can be adjusted depending on the problem domain.

• In f ormO(α, δ, LostPA, κ) is sent when an agent α detects a link failure with another agent δ (we assume the existence of a low-level function to detect link failures).

All species in the ecosystem are dynamic and each agent α can belong to one or more species at one time.

Conclusion

In this chapter, we extended the notion of obligation as social norm (presented in [START_REF] Gutiérrez | Multiagent systems interaction through social norms[END_REF])

and introduced the adaptation of obligations and their life cycle. We defined an obligationbased agent communication language, made up of a set of elocutionary acts with semantics expressed in terms of obligations. The aim of the ACL is to provide semantics according to the kind of message sent, and to establish an explicit link between messages and the domain knowledge attached to them.

There are some approaches that are close to the one presented in this chapter. The closest one is presented in [START_REF] Fornara | Operational specification of a commitment-based agent communication language[END_REF], where a commitment-based ACL is defined, making use of commitment objects to provide semantics for speech acts. Elocutionary acts are also based on Searle's taxonomy of acts [START_REF] Searle | Foundations of Illocutionary Logic[END_REF]. The assertive speech act (inform) and the main commissive speech act (promise) have the same explicit definition, leaving their differences to the interpretation (i.e., there are ambiguous definitions). Another difference is the definition of a promised primitive act for commissives, while here, comissive acts are managed as responses to the reception of directive acts.

Another approach that proposes commitment semantics for agent communication languages is presented in [START_REF] Singh | Service-Oriented Computing[END_REF]; there, a commitment requires the participation of three agents: a debtor, a creditor, and an authority, that validates the commitment. This meaning of commitment has similarities with the concept of obligation that we present in this chapter, given that obligations are self-commitments. In our approach, the debtor and the creditor are represented by the same agent. This extends the scope of the validity of obligations to all the contexts of the agent's interaction and not only to the context of its creditor, as in commitments. Nevertheless, obligations require external mechanisms to guarantee the fulfillment of the agents' obligations. These mechanisms could be provided by the proprietor of the organization (i.e., the representative agent).

Chapter 6

An Approach for Pervasive Hardware

Service Composition and Adaptation

Hardware services composition in ecosystems enables devices to use resources in the local environment in order to provide pervasive services. Current work in the development of service ecosystems on mobile and ad hoc networks has yet to address the dynamic composition of hybrid services. To address this issue, in this chapter, we model the service composition as a distributed constraint satisfaction problem and a service relevance model.

Simulation results show the performance of our protocol in terms of messages and composition time. Finally an illustrative study case is discussed.

Pervasive Hardware Service Composition

An open challenge in achieving an ecosystem of pervasive hardware services is how to allow for the automatic composition of hardware services (based on the services available in the user's local environment), in order to fulfill user requirements with limited human intervention. Thus, the aim is to automate the composition process through the discovery of new hardware services and to determine the required services based on current conditions of the local environment. In this chapter we examine the possibility of performing hardware service composition by modeling and solving it as a DisCSP.

Unlike traditional schemes, DisCSPs can be solved without the need for agents to directly divulge complete and precise information about their domain and constraints. This is relevant when it comes to hardware service composition for privacy and security reasons, as there may be information pertinent to composition that an agent does not wish to The rest of this chapter presents a model of the service composition process as a DisCSP and DynCSP problem, and describes our proposed protocol for performing the service composition as well as our heuristic for service adaptation.

Problem Formulation

We start by considering an ecosystem composed of mobile and fixed devices. These devices are modeled by agents providing one or multiple services, able to be invoked by peer agents. Deploying pervasive hardware service involves the composition of hardware services provided by devices in the user's local environment and offers a pervasive hardware service to the user, satisfying an atomic task. Starting from a task we generate a STask as 3-tuple T R, TC, T P where T R = {tr i |i = 1, ..., n} is the finite set of services needed to fulfill the task; tr i is a service requirement; TC = {tc i |i = 1, ..., m} represents a finite set of constraints over the set T P to allow the intended behavior of a composed pervasive service;

and T P = {t p i |i = 1, ..., q} is a finite set of task constraints managed by the user.

Our objective is to examine possible composition configurations in a user's local environment and to identify the configuration that satisfies all service requirements, adheres to all service constraints, and best caters to the user's preferences. Complicating this process is the fact that agents are autonomous and may be operating under different objectives and behaviors used in making composition decisions. This makes centralized solutions or methods involving high amounts of information sharing unsuitable for solving this problem. An acceptable solution is a distributed one, utilizing minimal information sharing and providing efficient negotiation techniques.

Service Composition as a DisCSP Problem

Satisfying the objective outlined in the previous section, we model pervasive hardware service composition in the form of a distributed constraint satisfaction problem disCSP. A disCSP is represented as a 4-tuple X, D,C, A where X = {x i |i = 1, ..., n} is a finite set of variables; x i is a variable corresponding to a service needed to satisfy a particular user requirement; D = {D i |i = 1, ..., n}, such that for each x i there is a service option domain D i ; C is a finite set of constraints {C 1 ,C 2 , ...,C m } of the user requirement; and A is a set of agents over which the variables and constraints are distributed. At any agent, the set of possible values for variable x i is its current domain D i . Figure 6.1 shows a visual abstraction. The matrix disCSP is constituted by agents α i and required services x j ; each cell represents a service that each agent α i can provide and its relevance. Having identified our constraint satisfaction problem, we apply an algorithm based on the asynchronous backtracking algorithm [START_REF] Yokoo | Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-tiAgent Systems[END_REF] to solve the pervasive hardware service composition problem. That is, we transform the matrix disCSP into disCSP ).
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6.4 Pervasive Hardware Service Composition

Dynamic-disCSP Framework

From our perspective, pervasive hardware services must be user-centered, with the services remaining available despite user mobility through heterogeneous environments. Our objective is to examine possible pervasive service configurations in the user's vicinity and to identify a configuration that satisfies user requirements, and fulfills task constraints and user preferences. Figure 6.2 shows the conceptual model of an ecosystem constituted by devices (fixed and/or mobile) modeled by agents, connected by an ad hoc network and providing one or more services (each of these services can have constraints) that may be requested by peer agents, that is, with the aim of fulfilling one or more tasks (each task can have requirements and preferences). The relevance RL i (α i ) means the appropriateness of a service provided by an agent.

The relevance is determined by each agent α i , using evaluation function 6.1 to determine the relevance of services provided by agents that model non-mobile devices, and evaluation function 6.2 for services provided by agents that model mobile devices.

RL 1 (α i ) = K 1 • R(α i ) + K 2 • 1 W L(α i ) (6.1) RL 2 (α i ) = K 1 • 1 S(α i ) + K 2 • R(α i ) + K 3 • 1 W L(α i ) (6.2) 
K j ∈ R is a constant for tuning the relevance factors based on specific applications; its value is limited by 0 < K j < 1. S(α i ) is the device's speed (in the case of mobile devices)

and it is inversely proportional to its relevance factor (i.e. devices with high speed have low relevance for the service composition). R(α i ) represents the amount of the agent's resources (depending on a specific application, each kind of resource may have a different relevance), and W L(α i ) means the current work load of α i ; it is inversely proportional to its relevance factor. The relevance factors can vary based on the application domain. The dynamic environments occurring throughout a user's daily encounters. The assumption that a composed hardware service will remain static in nature once generated is false, as the services and resources available in the user's environment will be unpredictable. Normally, most of existing schemes for infrastructure-less hardware service composition and management do not consider the need for adaptation. Some others consider the adaptation of services based on a composition from scratch (i.e., it is every time a change occurs in the environment). We present a heuristic influenced by the service relevance level model for the adaptation, allowing the reuse of previous solutions, and through simulation we show its performance.

The dynamic adaptation of hardware services enables systems to expand their functionality by means leveraging resources in the user's vicinity; this serves to extend the availability of services in time and space. Most adaptation approaches based on ad hoc networks use service adaptation from scratch; that is, each time the environment changes, the system starts the composition process all over again, resulting in the depletion of system resources and network capacity. In real scenarios devices managed by agents can leave or enter, service availability in the ecosystem can change along with the environmental conditions.

Adaptation has been an important topic in diverse fields, for example: simulation [START_REF] Chen | Parallel simulation of complex evacuation scenarios with adaptive agent models[END_REF],

robotics [START_REF] Ceriani | Reactive task adaptation based on hierarchical constraints classification for safe industrial robots[END_REF] and graphics [117] [118]. In context of service-oriented systems [START_REF] Sun | Decentralized execution of composite service in manets[END_REF] [119]

[120] [121] [START_REF] Choudhury | Mobility aware distributed service composition framework in soa based manet application[END_REF]. Research in this field follows several trends. One way to characterize these trends is to organize them along several dimensions, where each dimension represents one or more facets of the service-adaptation problem. In the literature addressing this issue, there are several characterizations such as [START_REF] Andersson | Modeling dimensions of self-adaptive software systems[END_REF] [124] [START_REF] Cardellini | Moses: A framework for qos driven runtime adaptation of service-oriented systems[END_REF]. However, most of these characterizations are focused on SOA (Service-Oriented Architecture) and do not different stages in a hardware service's life cycle. Existing approaches can be placed between design time and run-time stages [128] [129]. In the pervasive service domain, there is a special interest in performing the service adaptation during run-time [130] [131] [132] [START_REF] Avouac | Adaptable multimodal interfaces in pervasive environments[END_REF]. Within this stage, we can distinguish between reactive and proactive approaches. In the proactive approach, systems predict possible future changes in order to perform the adaptation. In the reactive approach, systems are adapted after the detection of changes. Currently our approach adopts a reactive mode placed in run-time.

• Where does the adaptation occur? Broadly speaking, pervasive services may be deployed in several kinds of environments: static or dynamic. In the pervasive service domain, there is a growing emphasis on building services tolerant of unexpected changes in their environment [START_REF] Hagen | Facing the unpredictable: Automated adaption of it change plans for unpredictable management domains[END_REF] [135] [START_REF] Maurel | fanfare: Autonomic framework for service-based pervasive environment[END_REF]. Within this type of dynamic environments, we may further distinguish between closed and open environments. In closed environments, all participant systems are known at the stage of system design, while in open environments, the participants may move from one environment to another.

The majority of adaptation approaches are designed for closed environments, using servers for service registration, discovery, composition and adaptation, and assuming reliable participanting systems, for example [START_REF] Cardellini | Moses: A framework for qos driven runtime adaptation of service-oriented systems[END_REF] [137] [START_REF] Zielinnski | Adaptive soa solution stack[END_REF]. These approaches often involve preconfigured adaptation managers. They do not cater to highly pervasive, mobile and ad hoc environments, leaving themselves brittle to issues such as central point of failure, mobility, and fault management. This paper adopts an adaptation approach for dynamic environments.

• Who participates in the adaptation process? This question has to do with the kind of systems that participate during the adaptation process (for example; autonomous participants (agents), or subordinate and manager systems), that is, the regime that manages the service-adaptation process. In the case of multiple systems, their adaptation can be under the control of a single authority or under the control of multiple authorities (they can be cooperative or/and competitive). We are interested in cooperative autonomous participants, that is, devices managed by agents that need to cooperate to achieve their objectives, while preserving their autonomy (i.e., each agent is the only one that can decide whether to cooperate or not). In our approach, each agent is motivated to cooperate with others due to its need for other agents to cooperate with it.

Chapter 6. An Approach for Pervasive Hardware Service Composition and Adaptation

Diverse approaches have been proposed for service adaptation, for example dynamic service selection, dynamic coordination pattern selection, etc. However, most authors assume that resources are always available and they only consider the dynamic degradation of service quality. In this respect, this paper aims to achieve adaptation of hardware services based on a mutual cooperation approach for a distributed selection of participant agents and their services while preserving the principle of autonomy (i.e. any agent in the user environment can be forced to be part of a hardware service composition and only each participating system may decide whether or not to provide a service).

6.6 Dynamic-disCSP Framework In order to meet the hardware service adaptation outlined in the previous section, we model the service adaptation problem as a dynamic-disCSP. A dynamic-disCSP is a sequence of disCSPs disCSP 0 , disCSP 1 , ..., disCSP n . A disCSP is represented as a 4-tuple 6.6. Dynamic-disCSP Framework 83 X, D,C, SY S where X = {x i |i = 1, ..., n} is a finite set of variables; x i is a variable corresponding to a service needed by an ecosystem member (i.e., an agent α) to satisfy a particular user requirement; D = {D i |i = 1, ..., n}, such that for each x i there is a service option domain D i ; C is a finite set of constraints {C 1 ,C 2 , ...,C m } of the user requirement; and A is a set of autonomous agents over which the variables and constraints are distributed. At any system, the set of possible values for variable x i is its current domain D i .

∝1 2 3 4 X 1 X 2 X 3 X 4 disCSP 0 1 2 3 X 1 X 2 X 3 X 4 disCSP 1 1 2 3 7 X 1 X 2 X 3 X 4 disCSP 2 1 2 3 X 1 X 2 X 3 X 4 disCSP 3 7 ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝
Each distCSP i results from a change in the previous one, disCSP i-1 , and represents new situations in the dynamic environment. Figure 6.6 shows a visual abstraction (each matrix is constituted by participant agents α i and required services x j ; each cell represents a service that each participant can provide and its relevance) of a sequence of four disCSPs disCSP 0 , disCSP 1 , disCSP 2 , disCSP 3 . In the sequence various changes can be observed, such as:

• In disCSP 1 , α 4 has left the group of participating agents (AG) with regard to disCSP 0 ).

• In disCSP 2 , sys 7 has joined the group of participating agents (AG) with regard to disCSP 1 ).

• In disCSP 3 , the relevance of the services provided by α 1 , α 2 and α 3 has changed with regard to disCSP 2 . These kinds of changes may affect the components in the problem definition: variables (additions or removals), domains (changes in the intentional definition, value additions or removals in the case of extensional definition), constraints (additions or removals), constraint scopes (variable additions or removals), or constraint definitions (changes in the intentional definition, tuple additions or removals in the case of extensional definition). As a result of such changes, the set of solutions of each disCSP i can potentially decrease (a restriction of the disCSP i ) or increase (a relaxation of the disCSP i ).

A Service Adaptation Heuristic

Starting from the fact that the environment has changed (for example, a service has become unavailable or a participant α has left the Agent Group (AG)), the AG may need to adapt its topology and functionality to meet user needs. In order for the AG to be able to withstand service adaptation, we propose a heuristic named Dynamic Partial Solution (DPS) that is based on the dynamic addition of new participating agents α to the AG. Adaptation For this, an identification phase begins to detect potential participant agents α for the AG in the user's vicinity. When an adaptation requirement becomes activated in the AG, an initiator agent sends a task request (TaskRequest) message, containing the STask description with the latest partial solution, to agents in the user's environment that are not participating in the current solution. The STask is used by receiving agents to decide whether they can contribute at least one service to fulfill the STask. Agents that may contribute send a TaskReply message to the system initiator. With the TaskReply messages the system initiator updates the candidate system list, where each new item on the list is assigned the address and most important factor in relation to candidates that contributed to the previous solution. Once the list is made, the initiator agent sends it to all participating agents. Figure 6.7 shows an example where an adaptation requirement becomes activated at agent α 1 . In order to achieve the adaptation, we start from the disCSP 0 that models the initial state of the AG. The moment a service fault is detected, the initiator agent starts the adaptation Adaptation

Conclusion

In this chapter we presented a dynamic DisCSP model for pervasive service composition in dynamic environments, and a heuristic for adapting partial solutions using an asynchronous backtracking algorithm for solving the dynamic DisCSP. The model provides a technique for adapting services without restarting the service composition process each time that a participating agent is unavailable or leaves the AG.

Most solutions designed for the composition of adaptive pervasive services are based on dedicated infrastructure. These solutions use notions such as central servers, stable nodes and reliable communications channels. These include proposals such as [START_REF] Casati | Adaptive and dynamic service composition in eflow[END_REF] [140] [START_REF] Rajaram | Template based soa framework for dynamic and adaptive composition of web services[END_REF]. Most of these approaches involve preconfigured composition mechanisms residing on dedicated machines with high resources. Some authors such as [START_REF] Maurel | fanfare: Autonomic framework for service-based pervasive environment[END_REF], [START_REF] Baldwin | Formation of collaborative system of systems through belonging choice mechanisms[END_REF] only consider the initial composition of pervasive services. Other authors have proposed protocols and frameworks for the adaptation of pervasive services in slightly dynamic environments;

for example Karmouch and Nayak [START_REF] Karmouch | A distributed constraint satisfaction problem approach to virtual device composition[END_REF] proposed a DisCSP model for service composition. They used a QoS-based approach to adapt the service composition (to determine the quality level, bandwidth, delay, loss and jitter were used in the network). However, the framework proposed by Karmouch assumes that all the components of the instance under consideration, such as variables, domains and constraints, are completely known before modeling and solving it, and do not change either during or after modeling and solving.

However, it has been observed for a long time that such assumptions do not hold true in many situations.

Multihop composition and adaptation was not considered in this research because one hop is enough to discover autonomous devices in the user's environment. However, even though the resources needed to provide a service may not be in the user's vicinity, the proposal could use them through a directed multihop broadcast.

Chapter 7 Implementation

A solution on the Multiagent Software Hardware Simulator (MASH) platform was designed so that service ecosystems can be built based on an agent federation. The solution allows us to build ecosystems of pervasive hybrid services. The overall solution consists broadly of four main elements: an agent group formation protocol, a candidate formation protocol, a service composition protocol and a service adaptation protocol. For this we have implemented the obligation-based ACL (described in chapter 5) to support agent interaction based on obligations and a package to model problems of constraint satisfaction.

This chapter introduces the MASH platform and provides an overview of our implemented solution.

MASH: A Tool to Tune Design and Deployment

There are several tools for simulations such as ns3 [START_REF] Riley | The ns-3 network simulator[END_REF], tinyOs [START_REF] Levis | Tinyos: An operating system for sensor networks[END_REF] and J-Sim [START_REF] Sobeih | J-sim: a simulation environment for wireless sensor networks[END_REF].

However, most of these tools were designed for network simulations and do not provide support for implementing multiagent systems (at least in a simple and transparent manner). MASH, on the other hand, is a tool that allows developers to simulate and execute embedded multiagent systems including real-world software/hardware agents [START_REF] Jamont | Decentralized intelligent real world embedded systems: A tool to tune design and deployment[END_REF]. This section provides the key features of this tool, and includes a short explanation of the MASH architecture and the basic aspects of initial setup, through scenario creation and agent setup. 

Creating an Agent

In accordance with the MASH package organization we must place the agents in a new package simulation.solutions.custom.NEW PACKAGE. In the case of our toy problem it must be simulation.solutions.custom.PoliceT hie fCitizen.

To create an agent, MASH provides an Agent class that our objects must extend and creates a constructor (MAS, Integer id, Float energy, Integer range). Each Agent will be run as a new thread, so we must override the run() method. In order to give a little time lapse until the construction of all the agents, it is recommended that our first line in the run method be a sleep. Here is an example of the PoliceAgent structure: It is important to remember that each Agent class (in our example, PoliceAgent, Thief-Agent and CitizenAgent) must be included in the Solution Item implementation. At this moment our agents are ready to be added on the scenario (see Figure 7.4); however, they are not able to interact with other agents yet, which brings us to the next section.

Agent Interaction in MASH

The MASH defines an interaction framework based on Messages and Frames. They represent the third and second layer of the OSI model. Frames will contain messages; therefore The interaction between agents in our toy problem is simple. The police look for a thief sending a HOW L message every time he moves (this message contains his position). If a thief hears the HOW L, he TURNS and runs in the opposite direction. The police hears the TURN with the thief's position and runs in that direction. When the police are very close to the thief, they send a CATCH message and finish their execution. The thief receives this message and finishes his execution too.

Here is the code of the PoliceT hie fCitizen Message and Frame classes: Considering the issues raised for the deployment of pervasive services, we have developed a solution for creating pervasive ecosystem services. Our proposal is based on a social ecosystem metaphor, the interaction between agents is based on obligations, and service composition is seen as a constraint satisfaction problem (distributed and dynamic). Figure 7.5 shows the expected behavior of the ecosystem through the major stages involved in the deployment of pervasive services.

According to the ecosystem description provided in 2, the main elements of an ecosys-solution. 

Formation of Candidate Agents

The formation of candidate agents is driven by messages and oriented to task requests.

Each agent, when receiving a TaskRequest message, must answer the following question:

Could I make a contribution for the requested task?. The following code is a part of the implementation for the formation of agent candidates. Chapter 8

Evaluation

This chapter shows the performance of our Pervasive Hardware Service Composition (PHSC)

protocol when system scale, mobility, service density, and composition order are varied. Our experimental scenario consists of agent-managed mobile devices that are able to provide one or more services. These devices are connected to each other using an ad hoc network. We considered compositions of several orders (in terms of number of the services needed in order to fulfill the task). We compare our results with those of Karmouch and

Nayak [START_REF] Karmouch | A distributed constraint satisfaction problem approach to virtual device composition[END_REF]. The aim of the comparison is to identify the improvement of the performance in message utilization and composition time using our PHSC protocol. At the same time we want to determine the effects of varying service density, composition order and scale on the same metrics.

Pervasive Hybrid Service Composition

Scenario Description

We built a pervasive hybrid service based on an ad hoc network and implemented both PHSC and Virtual Device Constraint Satisfaction Protocol (VDCSP) protocols using MASH.

Simulations were carried out over a set of agents in a previously delimited area, following a random-way-point mobility model [START_REF] Bettstetter | The node distribution of the random waypoint mobility model for wireless ad hoc networks[END_REF]. All broadcasts had a bounded hop count of one for the PHSC and VDCSP protocols. The simulation was done for service composition orders of three, five, seven and nine, and service densities from 10 to 100 percent (i.e., percentage of nodes that have one service required to fulfill a requested task). For each simulation, we identified the amount of time and number of messages consumed to achieve than VDCSP, and the time used for composition decreased by 0.92 percent compared to VDCSP (Figure 8.2). The performance of both protocols, PHSC and VDCSP, was affected by the service density. Although a high service density provides robustness to the ecosystem, it also has a negative effect: as the density of services increases, the number of participants for the composition also increases. This implies a greater number of messages required to find a solution. However, figures 8.1 and 8.2 show that the PHSC (in time and consumed messages) performed better than the protocol VDCSP.

Effects of Scaling

In order to study the effect of scaling on the performance of protocols, we set the service density at 50 percent, with a composition order of five services. Additionally, we progressively increased the number of agents involved in a spatial area of 50 m 2 . For each simulation, after the service composition we identified the number of messages consumed and the amount of time used to achieve the service composition. Results show that the performance of both protocols was affected by scalability issues. As the number of agents increased and the spatial environment area remained fixed, the time and number of messages required to achieve a service composition increased (figures 8.4 and 8.3). Simulations indicated that 

Effects of Composition Order

To examine the effects of composition order on the performance of the protocols, we set the service density at 50 percent, the number of agents at 50, and the composition order was progressively increased from three to five, to seven and to nine in a spatial area of 50 m 2 .

For each simulation, after the service composition we identified the number of messages consumed and the amount of time used to achieve the service composition. Figures 8.5 

Pervasive Hybrid Service Adaptation

This section evaluates the performance of our PHSC with the DPS heuristic by varying scale, mobility and service density, as in the previous section, and instead of the order of composition we will focus on the adaptation order. Service adaptation order means the number of elements of the composite service to be adapted. This section also evaluates the AG's ability to adapt in order to deal with changes in the environment due to the agents' mobility. Our experimental scenario consisted of agent-managed mobile devices that were able to provide one or more services in a dynamic environment. These devices were connected to each other using an ad hoc network. We considered adaptations of several orders (in terms of the number of services that the AG needs to adapt in order to fulfill the task).

We compared the performance of our DPS heuristic in adapting services with the results of using the PHSC and VDCSP algorithms. The aim of the comparison is to identify the improvement of the performance in message utilization, composition time and adaptation time when our PHSC protocol and DPS heuristic is used (in dynamic environments). At the same time we want to determine the effects of varying the service density, adaptation order, scale and mobility on the same metrics.

Scenario Description

We use the same scenario described previously in section 8.1. However, this time simulation was done for a service composition length of five with adaptation orders from one to four. For each simulation, we identified the amount of time taken and the number of Again, as in the previous section 8.1, we utilized predetermined similarity values and did not consider the effect of network conditions on the performance of the three protocols.

Effects of Service Density

In order to analyze effects of service density on the performance of each protocol, we used a scenario with 50 static devices, a composition length of five services and an adaptation order of one. For each simulation, after the service composition we turned off participating agents that contributed to the composite service; then we identified the number of messages consumed and the amount of time used to achieve the service adaptation. The simulation was carried out using service densities of 10 -100 percent in a spatial area of 50 m 2 .

Results 3) PHSC ( 5) PHSC ( 7) PHSC ( 9) 

Effects of Scaling

In order to study the effect of scaling on the performance of adaptation, we set the service density at 50 percent, a composition order of five services, and an adaptation order of one service. For each simulation, after the service composition we turned off a participating agent that contributed to the composite service; then we identified the number of messages consumed and the amount of time used to achieve the service adaptation. In addition, we progressively increased the number of autonomous devices involved in a spatial area of 50

m 2 .
Results show that as the number of autonomous agents increased and the spatial environment area remained fixed, the time and number of messages required to achieve service composition and adaptation increased (figure 8.10 and 8.9), i.e., the performance the performance of the three protocols was affected by scalability issues. 

Effects of Adaptation Order

To examine the effects of adaptation order on the performance of the protocols, we set the service density at 50 percent, the number of autonomous devices at 50, and the composition order at five services. In addition, we progressively increased the adaptation order from one to four in a spatial area of 50 m 2 . For each simulation, after the service composition we turned off a participating agent that contributed to the composite service; then we identified the number of messages consumed and the amount of time used to achieve the service adaptation. We repeated the last procedure, varying it by turning off two, three, and four participants. show that the PHSC-DPS protocol performed better than the PHSC and VDCSP protocols (in terms of messages and time). However, as the adaptation order went higher, the performance of the PHSC-DPS protocol decreased. The performance of the VDCSP and PHSC protocols remained almost the same because they did not include any strategy to adapt the composed service when a participating agent became unavailable. Therefore, in order to adapt the composed service, they restarted the service composition process from 

Effects of Mobility

In order to analyze the effects of mobility on the two protocols, we set the service density at 50 percent, the number of autonomous devices at 50, the composition order at five services and a random way-point mobility model. In this case the network topology and adaptation order could change (from one to five), and an autonomous agent randomly moved in an area of 150 x 500 m. For the sake of simplicity and in order to have control over the scenario, we configured the environment with 50 fixed devices and one mobile device. The position of the mobile devices was randomly selected within a fixed area of 150 x 500 m and then moved lineally to the selected position with a consistent random speed. For each simulation we identified the percentage of time during which the service stayed available (from the service composition until the end of the simulation). We repeated the experiments for different travel speeds (1 -10 m/s).

The results showed that mobility at high speed had an adverse effect (figure 8.14) on the availability of the service, because the time during which the participating agents were in the transmission range was small, while the number of messages required to continuously behavior has to do with the sharp turn [START_REF] Ariyakhajorn | A comparative study of random waypoint and gauss-markov mobility models in the performance evaluation of manet[END_REF]. Sharp turn occurs whenever there is a direction change in the range of 90 -180 degrees. This problem can be eliminated by allowing past direction to affect future direction. The Gauss-Markov mobility model [START_REF] Liang | Predictive distance-based mobility management for pcs networks[END_REF] solves this problem by achieving more realistic movement of autonomous devices.

Conclusion

In this chapter we presented a dynamic DisCSP model for pervasive service composition in dynamic environments, and a new heuristic useful for adapting partial solutions using an asynchronous backtracking algorithm to solve the dynamic DisCSP. The model provides a technique for adapting services without restarting the service composition process each time that a participating agent is unavailable or leaves the AG. Through simulation, we have shown that our protocol is able to maintain service availability despite the dynamism of the environment. We have also discussed some drawbacks of the proposed protocol in the context of network segmentation. with multihop broadcasting. Multihop composition was not considered in this paper because one hop is enough to discover autonomous devices in the user's environment. However, even though the resources needed to provide a service may not be in the user's vicinity, the proposal can exploit them by using a directed multihop broadcast protocol. Moreover, the knowledge acquired may be applied as we experiment with autonomous devices in the real world.

Most solutions designed for the composition of adaptive pervasive services are based on dedicated infrastructure. These solutions use notions such as central servers, stable nodes and reliable communications channels, and include proposals as [START_REF] Casati | Adaptive and dynamic service composition in eflow[END_REF] [140] [START_REF] Rajaram | Template based soa framework for dynamic and adaptive composition of web services[END_REF].

Most of these approaches involve preconfigured composition mechanisms residing on dedicated machines with high resources. Furthermore, some authors, such as [START_REF] Maurel | fanfare: Autonomic framework for service-based pervasive environment[END_REF], [START_REF] Baldwin | Formation of collaborative system of systems through belonging choice mechanisms[END_REF], only consider the initial composition of pervasive services. Some other authors have proposed protocols and frameworks for the adaptation of pervasive services in slightly dynamic environments; Karmouch and Nayak [START_REF] Karmouch | A distributed constraint satisfaction problem approach to virtual device composition[END_REF], for example, have proposed a disCSP model for service composition. They used a Quality of Service (QOS)-based approach to adapt the service composition (in order to determine the quality level, bandwidth, delay, loss and jitter were used in the network). However, the framework proposed by Karmouch assumes In this paper we presented a dynamic DisCSP model for pervasive service composition in dynamic environments, and a new heuristic useful for adapting partial solutions using an asynchronous backtracking algorithm for solving the dynamic DisCSP. The model provides a technique for adapting services without restarting the service composition process each time that a participating agent is unavailable or leaves the AG. Through simulation, we have shown that our protocol is able to maintain service availability despite the dynamism of the environment. We have also discussed some drawbacks of the proposed protocol in the context of network segmentation. Moreover, the knowledge acquired may be applied as we experiment with real devices in the real world. concerns the need for suitable architectures. Considering the physical elements of pervasive systems as autonomous cooperating nodes of ad hoc networks is an attractive approach that can lead to the decentralization and mobility of pervasive environments. Then we need to provide an approach to provide suitable mechanisms for hybrid service adaptation in dynamic environments.

Contributions

Concerning the first and second issues, this research has developed a model for the dynamic composition and adaptation of hybrid services. As the pervasive hybrid service notion is not yet well defined in the research literature, the first step towards this focus included a literature study of service-oriented approaches and the various aspects of hybrid services. More precisely, we aimed to address two principal issues: what are the requirements of pervasive hybrid service composition and adaptation, and why it is difficult to satisfy these composition and adaptation requirements with current approaches. The result of this phase has been a survey of the main research directions in the area of service-oriented pervasive computing, service composition and service adaptation. In view of the limitations identified in current research, a novel approach to designing ecosystems of pervasive hybrid services has been proposed. A summary of the main contributions of our research is given below.

• A novel model of a service ecosystem based on a social metaphor, formed as groups of distributed devices, modeled by autonomous agents, all working towards the composition and adaptation of pervasive hybrid services. This model includes the basis for an agent communication language based on social obligations that provides support in the design of interaction mechanisms suitable for flexible organizations such as ecosystems.

• A distributed constraint satisfaction problem model for hybrid service composition in mobile and ad hoc networks, and a distributed protocol for service composition (i.e., for solving the respective distributed constraint satisfaction problem) utilizing an asynchronous backtracking algorithm for solving. Simulation results show the performance of our method in the composition of hybrid services.

• An extension to the distributed constraint satisfaction problem model that becomes dynamic in mobile and ad hoc networks and a respective heuristic for adapting the solution of the particular dynamic and distributed constraint satisfaction problem.

Capability adaptation is a requirement: the assumption that a composed hardware service can remain static once generated is false, as the composed hardware service needs to be reconfigured along with the resources available in the user's environment.

Simulation results show the performance of the solution.

Perspectives

Research work is still needed to make our proposal a practically usable tool for the de- • Composing Pervasive Hybrid Services. Although in this thesis we provide a solution for the composition of hybrid services based on resources within a user's environment, no consideration was given to situations where there are available resources and services but agents do not know how to interact to perform the service composition. Further research is required accounting for scenarios where agents need to learn how to interact with each other in order to achieve some specific objective.

• Adapting Pervasive Hybrid Services. Although the solutions provided in this thesis account for the adaptation of hybrid services based on resources within a user's environment, no consideration was given to the problem of environment characterization to achieve the most suitable adaptation. Further research is required to account for scenarios where devices face new problems in unknown environments and need to learn how to perform the adaptation.

The objective of this work was to propose the use of agent federations to provide hybrid services in an ecosystem of pervasive services. The potential of multiagent systems and ecosystem-inspired approaches to develop and deploy pervasive hybrid services is very large and the topic is now open for achievements.
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  [START_REF] Wallace | Stable solutions for dynamic constraint satisfaction problems[END_REF] [72][START_REF] Bessiere | Arc-consistency for non-binary dynamic csps[END_REF]. However, DynCSP does not support changes in the number of problem constraints or in the elements involved in the construction of the solution. Solution methods in DynCSP can be classified as reactive or proactive approaches. In the reactive approach, algorithms are based on three type of techniques: solution reuse, reasoning reuse and solution-reusing reuse.[START_REF] Fukunaga | An improved search algorithm for minperturbation[END_REF] [75][76] [77] are some examples of proposals based on these techniques.

  categories: distributed local research methods, population-based methods, and complete and asynchronous methods. These methods constitute an inspiration source for developing composition mechanisms for pervasive services, even if they are partially relevant in a dynamic and distributed context. Distributed local research methods include Distributed Breakout Algorithm (DBA) and Environment, Reactive Rules and Agents (ERA). These methods explore the search space from state to state, from one complete assignment to another complete assignment (i.e., from one potential solution to another potential solution). The main advantage of this anytime behavior is that it can naturally handle dynamics (added constraints, changing values) because it always tends to improve the current state of the system, specifically when the state has been altered by environmental disturbances. While often efficient, these methods are not complete and require some subtle parameter tuning. Population-based methods include Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). In population-based approaches, agents use simple local rules to govern their actions, and via the interactions of the entire group, the population achieves its objectives. The cooperative individual behavior leads to an emergent collective one. From an engineering point of view, population-based algorithms are largely applied to optimization problems. Each agent has the capability to find the solution of the global problem
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 111 Ecosystem MembersMembers of the ecosystem are agent-managed devices. Device can be defined as a 3tuple < SR, HR, α i >, where SR = { f 0 , f 1 , ...} is its finite set of software resources (i.e. a set of functionalities the device can provide); HR = {h 0 , h 1 , ...} is its finite set of hardware resources over which the services are carried out; and α =< G, O, S, K > is the agent, where G = {g 0 , g 1 , ...} is its finite set of goals (what the agent must fulfil), O = {o 0 , o 1 , ...} is its finite set of obligations to search for a state of affairs (i.e. provide services), S = {s 0 , s 1 , ...} is its finite set of device functionalities (S ⊆ SR) made public as services to be requested by other agents, and K = {P, I, D} is its knowledge made up of the agent's perceptions (P)

  CAG, GSR, SO >, where CAG denotes a collection of agent groups (i.e a species in the ecosystem); GSR denotes social relations among agent groups; and, SO is set of social norms. Below is a detailed definition of each element: a) Species as a collection of agent groups(CAG): In this collection of agents groups, each group is an association of agents with common interests that is regulated by control mechanisms; these control mechanisms are provided by social norms (i.e. rules governing agents' behaviors). Formally an agent group is defined as a 5-tuple AG =< R, M, rm, RS, GO >, where R = {r 0 , r 1 , ...} is the set of roles that an agent can play, M = {α 0 , α 1 , ...} is the set of agent members of the AG group, rm ∈ M is the archetypical agent for its group called representative member of the AG group (this agent has the best characteristics of its group), RS = {rs i |rs i = (α x , α y ), x = y} is the set of relationships (peer to peer) among members α x of the AG group, and GO is the set of social norms for the AG group. This is the disjuntion of the social norms of all α x that belonging to the group AG:GO = |M| i=1 O(α i , s);Where O(α i , s) is the obligation of agent α i to provide the service s in support of another agent or for itself. b) Social relations among agent groups (SR): a set of relationships (peer to peer) among representative agents RM of AG groups. This allows interaction among agents belonging to different groups. It is defined asSR = {srs i |srs i = (rm x , rm y ), x = y}.c) Set of social norms in the society (SO): union of the sets of social norms of the society groups, where N is the number of species in the ecosystem and GO i the set of social norms (in terms of obligations) in each group.
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 41 Figure 4.1: A Conceptual Architecture for Pervasive Hardware Service Ecosystems
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 5 Obligations for Agent Interaction in the Ecosystem This chapter presents an Agent Communication Language Agent Communication Language (ACL) based on social obligations for agent interaction that can provide and request hybrid services in open environments. An open environment is a space in which computational devices, including sensors and actuators, can freely enter and leave. Computational devices, which provide services for users, are considered physical agents. Typically, these devices have limited resources to provide their services. In order to extend their resources in open environments, we focus on the design of a service ecosystem based on social interactions among agents. For this purpose, an ACL suitable for open organizations is required. Therefore, we have used a socially inspired approach to propose an ACL based on obligations for physical agents in open environments.
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 726 An Approach for Pervasive Hardware Service Composition and Adaptation divulge. The resulting contributions of this Chapter are a DisCSP model for hardware service composition in ecosystems based on MANETs, and a hardware service composition protocol utilizing an asynchronous backtracking-based algorithm for solving the respective DisCSP.
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 6 Figure 6.8 shows an abstraction of an initial service composition (disCSP i ) and the service composition state after changes in the environment (disCSP i ) that can be used in the service adaptation process. In this example α 4 left the AG.
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  public class PoliceAgent extends Agent implements ObjectAbleToSendMessageInterface{ public PoliceAgent(MAS mas, int id, Integer range) { this(mas, id, (float)1,range); } public void run() { try{Thread.sleep(SLEEP_TIME_SLOT);}catch(Exception e){} while(!isKilling() && !isStopping()) { while(((isSuspending()) && (!isKilling() && !isStopping())
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 8 [START_REF] Musolesi | Car: Context-aware adaptive routing for delaytolerant mobile networks[END_REF] show the negative effect of the order of composition over time and the number of messages required to compose a service. Results show that the PHSC protocol performed better than the VDCSP protocol (in terms of messages and time).
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 8 Figures 8.12 and 8.11 show the negative effect of the order of adaptation on time and the number of messages required to adapt a service to changes in the environment. Results
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 121 velopment and deployment of pervasive hybrid services. Some of the most critical open research issues we have identified include: Social Ecosystem Metaphor. Despite the promises of the ecosystem approach, the way towards the deployment of usable and effective ecosystems of pervasive hybrid services still requires answers to several challenging questions. How can an ecosystem's members and the social obligations lead to suitable, useful, and controllable forms of organization? How can their dynamics be controlled to ensure continuous service availability in open environments? Should ecosystem members have the ability to learn? What shape should an actual software infrastructure have in order to support learning by the ecosystem's members? All of these, and many further questions we may have overlooked, open up fascinating areas of research.

  

Table 2 .

 2 1: Overview of the interpretation of residents, their environment and its laws

	Metaphor	Environment	Resident		Laws		Drawbacks/advantages
	Physical	The	universe	Particles	and	Fields	determ-	It has been extensively studied for their spa-
		represented	waves represen-	ine	navigation	tial self-organization features. It facilit-
		by a computer	ted by computer	and	activities	ates coherent behaviors in large-scale sys-
		network.		components and	of particles by	tems.There are well-developed conceptual
				messages.		means of the	tools for controlling spatial behaviors and
							gradient.	dynamics. However, it seems to fall short in
									evolution and time adaptation. It seems un-
									suitable to support the high heterogeneity of
									components and residents in real scenarios.
	Chemical	Spaces represen-	Atoms		and	Chemical reac-	It can effectively lead to local self-organizing
		ted by localities	molecules rep-	tions by means	structures. It can accommodate many dif-
		of computer com-	resented		by	of	semantic	ferent components and composites with a
		ponents.		semantic descrip-	descriptions'	simple set of basic laws. As far as self-
				tions and their	matching.	management is concerned, can be used re-
				compositions.				agent components can be used to control the
									dynamics of the ecosystem.
	Biological	Spaces represen-	Cells represented	Diffusion	of	These allow the formation of spatially loc-
		ted by abstract	by self-organized	morphogens by	alized activity and morphological patterns.
		or physical scen-	computer com-	means of mes-	Although the number of patterns that can be
		arios.		ponents.		sages. Cells are	supported by the propagation of signals and
							influenced	in	chemical reactions of simple residents seems
							their activities by	rather limited, they have been used in several
							the strength of	distributed applications. One of the main dif-
							specific signals.	ficulties is to understand how to adequately
									control the overall behavior.
	Ecological	Spaces represen-	Organisms rep-	Eat, produce, and
		ted by physical	resented		by	reproduce in or-
		localities.	agents, species	der to survive.
				representing			
				agent'	classes		
				and	resources		
				representing data.		

  If the agent finds a noGood, the assignments of other agents must be changed. Therefore, the agent triggers a backtrack and sends a noGood message to one of the other agents (see Algorithm 3.4).In the AWCS algorithm, priority order changes at every conflict detection, in order not to keep a part of the organization that is known to be incorrect. That is, in the AWCS algorithm an agent can revise a bad decision without an exhaustive search by dynamically changing the order of agents. Here each agent assigns a value to its variable, and sends the variable value to other agents. Agents behaviors are driven by messages(see Figure3.6).A brief description of the AWCS algorithm is provided below:1. In the AWCS algorithm, each agent sends its variable value to both lower and higher neighbors. The priority value and the current value assignment are communicated The priority order is determined using communicated values. If the current value is not consistent with the agentView, the agent changes its value so that the value is consistent with the agentView, and also the value minimizes the number of constraint violations with variables of lower-priority agents (see Algorithm 3.7).
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	checkAgentView(); end do checkAgentView(); currentValue ← d; Algorithm 3.1 Agent behavior when receiving a message ok? when received (noGood, x j , nogood) do noGoodList.add(nogood); when (x k , d k ) where x k ∈ neighbors and x k ∈ noGood do neighbors.add(x k ); agentView.add(x k , d k ); end do oldValue ← currentValue; checkAgentView(); when oldValue = currentValue do send(ok?, (x j , currentValue)) to x j end do end do ∝ j backtrack() noGoods ← { V | V is inconsistent subset of agentView }; 3. checkAgentView() when agentView and currentValue are inconsistent do if !consistent(value) ∈ D i with agentView then backtrack(); end if end do Algorithm 3.7 CheckAgentView agent behavior when an empty set is an element of noGoods do broadcast to other agents that there is no solution; terminates this algorithm; end do when no element of noGoods is included in noGoodSent do for each V ∈ noGoods do noGoodSent.add(V); for each (x j , d j , p j ) ∈ V do send (nogood), x i , V) to x j end do for each ∝ end do p
	send (ok?, (x i , d)) to outgoings links; 4. When x i cannot find a consistent value with its agentView, x i sends noGood messages end do end do
	2. When a value-sending agent receives a noGood message, it indicates that the constraint-end if Algorithm 3.4 Backtrack agent behavior checkAgentView(); to other agents, and increments its priority value. If x i has already sent an identical
	evaluating agent has found a violation of some constraint. Algorithm 3.3 describes end do end do noGood, x i will not change its priority value but will wait for the next message (see
	the basic idea to managing noGood messages. Algorithm 3.3 CheckAgentView agent behavior Algorithm 3.6 Agent behavior when receiving a noGood message Algorithm 3.8).

when received (ok?, (x j , d j )) do agentView.add(x j , d j ); Algorithm 3.2 Agent behavior when receiving a noGood message 3. Agent view is constituted by a set of values received from other agents that are connected to it (see Algorithm 3.3). Thus, the evaluating agent adds the pair (x j , d j )

to its agent view and checks whether its own value assignment (x i , currenValue) is consistent with its agent view. checkAgentView() when agentView and currentValue are inconsistent do if ∃ consistent(value) ∈ D i with agentView then backtrack(); else select d ∈ D i where agentView and consistent(d); i Figure 3.6: AWCS messages between agents backtrack()

noGoods ← { V | V is inconsistent subset of agentView };

when an empty set is an element of noGoods do broadcast to other agents that there is no solution; terminates this algorithm; end do for each V ∈ noGoods do select (x j , d j ) where x j has the lowest priority in V; send(nogood, x i ,V ) to x j ; remove(x i , d j ) from agentView; 4. A noGood is a subset of an agent view if the agent is not able to find any consistent value with the subset. through the ok? message. When agent i receives this messages it executes the following behavior (see Algorithm 3.5).

when received (ok?, (x j , d j , priority)) do agentView.add(x j , d j , priority); checkAgentView(); end do Algorithm 3.5 Agent behavior when receiving an ok? message 2. As in the ABT algorithm, here when a value-sending agent receives a noGood message, it indicates that the constraint-evaluating agent has found a violation of some constraint. Below a pseudocode shows the key idea to managing noGood messages (see

Algorithm 3.6)

.

when received (noGood, x j , nogood) do noGoodList.add(nogood); when (x k , d k , priority) where x k ∈ neighbors is contained in noGood do neighbors.add(x k ); agentView.add(x k , d k , priority); else select d ∈ D i where agentView and consistent(d) minimizes the number of constraint violations with lower priority agents; currentValue ← d; send (ok?, (x i , d, currentPriority)) to neighbors; max ← max (x j ,d j ,p j )∈agentView (p j ) currentPriority ← 1 + p max ; select d ∈ D where d minimizes the number of constraint violations with lower priority agents; currentValue ← d; send(ok?, (x i , d, currentPriority)) to neighbors; end do Algorithm 3.8 Backtracking agent behavior

Table 5 .

 5 1: Subset of event calculus predicates

	Predicate	Description
	HoldsAt( f , τ)	

  indicated that per adaptation, the number of messages consumed by PHSC-DPS (figure 8.7) was an average of 5,669 messages (54 percent) lower than PHSC, and the time used for adaptation decreased by 2.1173 ms (2.27 percent) compared to PHSC (figure 8.8).
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	The reduction of consumed messages is because PHSC needs to restart the composition
	process each time a participant agent is no longer available to provide its service (i.e. it
	seeks the solution from scratch).			
	Although a high service density provides robustness to the ecosystem, it also has a
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RequestA(α, δ, β, β ) ≡ AdaptIO(RequestA(α, δ, β, β ), IO(δ, β, ω), IO(δ, β , ω), τ)

β is a service of a previously induced obligation that must be adapted to provide service β . The message RequestA means that an induced obligation is adapted; however, the adapted obligation is only active if the agent δ (receptor) chooses to assume the adaptation of the obligation, i.e. agent δ evaluates the AllowedBy predicate as true.

Commissive Acts

These types of acts are promises to provide a service. Commissive acts are part of small protocols, where an agent α sends a RequestO or RequestA message to another agent δ and the obligation is accepted or rejected according to decision ω of agent δ. To express this, four communicative acts are defined: AgreeO(δ, α, β) ≡ CreateO(Agree(δ, α, β), O(δ, β), τ) ∧ HoldsAt(AllowedBy(δ, O(δ, β)) = true, τ) Re jectO(δ, α, β) ≡ CancelIO(Re ject(δ, α, β), IO(δ, β, ω), τ) ∧ HoldsAt(AllowedBy(δ, O(δ, β)) = f alse, τ)

After the reception of a RequestO message that attempts to induce an obligation, the receptor agent can send an AgreeO (agent δ accepts the induced obligation) or Re jectO( agent δ rejects the induced obligation) message. The AgreeO message means the induced obligation is activated in the sender agent and an obligation is created in the receptor agent.

If agent δ rejects the induced obligation, it sends a Re jectO message that cancels the induced obligation in the sender agent. Below we describe a protocol for the composition of pervasive hardware services. This protocol comprises two phases: candidate agent formation and service composition.

Formation of Candidate Agents

The objective of the formation phase is to identify potential participant agents for the service composition in the user local's environment. Figure 6.3 shows an abstract scenario modeled by agents devices. At this stage it is worth mentioning the existence of a maximum transmission range of the initiator (i.e. the agent that requires a service composition).

All agents that are within this range are possible participants in the construction of the solution. However, it must be considered that both the initiator and the participating agents can move, so the pool of potential agents that can contribute to the solution may change. Therefore, the solution must be adaptable (adaptation is discussed in future sections).

When a user requirement becomes active in the user device (for example, in figure 6.3 a user requirement becomes active in the device managed by agent α 0 ), the agent sends a task request (TaskRequest) message containing the STask description to systems in the user's environment. The STask is used by receiving agents to decide whether they can contribute at least one service to fulfill the STask. Agents that may contribute send a TaskReply message to the system initiator. With the TaskReply messages the agent initiator builds a candidate agent list, where each item of the list has its address and its relevance factor to fulfill the STask. Once the list is made, the initiator agent sends it to all participating agents. Figure 6.4 shows a possible message sequence example where a user requirement Adaptation the agent order that will be required in the composition and adaptation phases.

Pervasive Hardware Service Composition Algorithm

Once the initiator agent has the list of participating agents, we apply the algorithm for pervasive hybrid service composition (PHSC). This is based on the ABT algorithm used for resolving distributed constraint satisfaction problems [114] [66]. Like several algorithms for solving DisCSP, it requires a total ordering of the relevance of participating agents. For each α i ⊆ A, agent α j has a higher relevance than α i if it appears before α i in the total ordering (on the candidate agent list). On the other hand, α j has a lower relevance than α i if it appears after α j in the total ordering (on the participating agent list). So, the total order classifies all neighboring participating agents of α i , N(α i ), into higher relevance neighbors, N + (α i ), and lower priority neighbors, N -(α i ). In the real world, communication among devices is not necessarily FIFO; therefore we used a time-stamp that is incremented only if α i changes its assignments (thus each assignment has a label).

In order to solve a DisCSP, agents α i generate locally consistent assignments and exchange their new proposals with their neighbors N -(α i ) to achieve a global consistency. As 6.4. Pervasive Hardware Service Composition 77 in the ABT algorithm, each α i stores assignments received from its neighbors in its agent view and a list of no-goods. α i stores in its agent view the most up-to-date assignments of its higher priority neighbors. α i stores in its no-good list no-goods justifying the removal of values.

The main elements of the PHSC protocol that implement the idea set forth above are described. In the initial procedure phsc(), each α i assigns a value to its variable and informs its lower neighboring agents. Then, it loops in order to process the received messages.

Procedure checkAgentView checks whether the current value (a i ) is consistent with the AgentView. If a i is inconsistent with assignments of higher priority neighbors, α i tries to select a consistent value. During this process, some values from D(x i ) may appear as inconsistent. Thus, no-goods justifying their removal are added to the no-good list of α i .

When two no-goods are possible for the same value, α i selects the best no-good. If a consistent value exists, it is returned and then assigned to a i . Next, α i informs all agents in N -(α i ) about its new assignments through chk messages.

Otherwise, α i has to backtrack (using the backTrack() procedure). Whenever α i receives a chk message, it processes it by calling for procedure processAssign(msg). The AgentView of α i is updated (updateAgentView) only if the received message contains an as-Chapter 6. An Approach for Pervasive Hardware Service Composition and Adaptation signment that is more up-to-date than the one already stored for the sender, and all nogoods become non-compatible when the AgentView of α i is removed.

Then, a consistent value for α i is sought after the change in the AgentView (checkAgentView).

When every value of α i is forbidden by its noGoodList, procedure backTrack() is called for. In procedure backTrack(), α i resolves its no-goods, deriving a new no-good, newNoGood.

If newNoGood is empty, the problem has no solution. α i broadcasts the st p messages to all agents and terminates the execution. Otherwise, the new no-good is sent in an ngd message to the agent, say α j , owning the variable appearing in its lrl. Then, the assignment of α j is deleted from the AgentView (updateAgentView). Finally, a new consistent value is selected (checkAgentView).

Whenever α i receives an ngd message, procedure resolve is called for resolve the conflict. The no-good included in the ngd message is accepted only if its hrl is compatible with assignments on the AgentView of α i . Next, the no-good is stored, acting as justification for removing the value on its lrl. A new consistent value for α i is then sought (checkAgentView) if the current value was removed by the received no-good. If the nogood is not compatible with the AgentView, it is discarded because it is obsolete. However, if the value of a i was correct in the received no-good, α i resends its assignment to the no-good sender by way of a chk message.

Afterward, α i sends its assignment through a chk message to the sender of the request if its value is different from the one included in the received message.

Adaptation from a Pervasive System Perspective

In previous sections, we provide a disCSP model to hardware service composition and a distributed service composition protocol suitable for pervasive hardware service composition. From a pervasive service perspective, hardware services should function in highly Adaptation address issues involving the system's environment and participants. Taking a perspective of pervasive service as the starting point, and considering the dimensions proposed by

Cardellini in [START_REF] Cardellini | Moses: A framework for qos driven runtime adaptation of service-oriented systems[END_REF], we characterized the adaptation problem (figure 6.5 shows a taxonomy of adaptation from a pervasive service perspective) by answering the following questions: • Why should a hardware service be adapted? The primary objective of pervasive hardware service is to provide services that are required by the user, despite variations in its environment; this is achieved by means of adaptation. Adaptation aims to make the pervasive services able to fulfill functional and/or QoS requirements in spite of changes in their environment [START_REF] Taylor | Pervasive computing in daidalos[END_REF] [START_REF] Baladron | Framework for intelligent service adaptation to user's context in next generation networks[END_REF]. Our focus is on functional requirements concerning the availability of services to fulfill user needs.

• When must adaptation actions be executed? Adaptation must be carried out at process. First, the AG attempts to reallocate the required services for the available participating agent α. If it is not possible to find an assignment without violating constraints, then the initiator agent sends a message TaskRequest message to all agents found in its neighborhood in order to find new participating agent capable of contributing to the service adaptation. Once the initiator agent α has located the potential agents δ, the DPS heuristic is applied. This heuristic is based on the idea that current members of the AG are unable to satisfy user requirements (i.e., it is not possible to find an assignment without violation of constraints); therefore, it is necessary to give higher relevancy to the new participating agents. In practical terms, this idea implies that the initial partial solution (partial composition of a service) should be adjusted according to the contributions of new participating agents. Virtual agents and embedded agents are abstracted by an Individual Agent Manager (IAM). The IAM enables the integration of virtual and real world agents in the simulation.

An agent can be implemented by a software agent (such as a java class) or its behavior can be computed in a real-world embedded agent. In this case, an avatar translates the logical call of methods and exchanged messages to its wrapped embedded agent. The avatar make it possible to give a graphic representation of the real-world embedded agent in MAS representation.

The Behavior component simulates the execution of software on a single device. It processes messages received from the other agents. The Environment Manager and the Society Manager enable agents to interact together and with their environment.

A Toy Problem

In this section we will to use a simple toy problem to describe the use of MASH. The example is one extension of the predator-prey pursuit problem. In our case, predators are replaced by police and the prey by a thief. The police must search for the thief and the thief must run away from the police. (Figure 7.2).

Building a Solution

In MASH a solution is the abstraction of the project that is being simulated. It specifies the agents that our project will manage, in order to ensure the cleanliness of the solution, and is should follow a specific order. This section describes how to set up a solution correctly.

The first step in implementing a solution is to create the solution item. This item must to be placed in simulation.solutions.custom, extend from the SolutionItem class and invoke the method setSolution so that it can be displayed. In our Toy Problem it should be: [START_REF] Erl | SOA Principles of Service Design[END_REF].put(type).putInt(this.senderID).putInt(receiverID).putInt(0 else return ByteBuffer.allocate [START_REF] Erl | SOA Principles of Service Design[END_REF].put(type).putInt(this.senderID).putInt(receiverID). interaction mechanisms). It bears mentioning that these behaviors must emerge from the local behavior of ecosystem member agents and the way interact with each other. Therefore the behaviors observed in figure 7.5 -dynamic organization, candidates formation, participants election, service delivery, and adaptation -are all implemented in each member agent of the ecosystem as distributed and asynchronous mechanisms. In the rest of this chapter, the main elements of our implementation are described.

The input into the system is a task requested by the user through a member of the ecosystem and the output is the service (atomic or composed) provided by the ecosystem members in order to fulfill the user request. As was described before, members of the ecosystem are agents. Figure 7.6 shows a class view of the agent implemented in our 

Conclusion

In this chapter, we present the MASH platform that allows us to simulate and evaluate our proposal. Additionally we provide an overview of our implemented solution for deploying 7.2. Implementation of the Solution 103 ecosystems of pervasive services. Our proposal describes the expected behaviors of the ecosystem that must emerge from agent's local behaviors and the way they interact with each other. Through these behaviors, we cover the four stages usually considered by other authors for service composition. Furthermore, we provide support for changes in the environmental state and task requests, i.e., we have considered that the real world is dynamic and services cannot remain static after their composition. In addition, the proposed solution also contemplates that there may be failures during the execution of each behavior.

The next chapter presents the evaluation of our proposal and the results obtained.

Chapter 8. Evaluation the composition (values were the average of 100 simulations). In order to focus on the performance of the protocols, we utilized predetermined similarity values (for comparing services with each others) and random relevance levels for the services provided by each agent. At this moment, we consider the changes to network conditions as noise in the measurement of the performance of the protocols. Therefore, we do not consider the effect of network conditions on the performance of the two protocols. However, it is possible to consider the network conditions as factors to determine the relevance level of services.