
HAL Id: tel-01679323
https://theses.hal.science/tel-01679323v1

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed approach to design federations of agents in
an ecosystem of services
José Francisco Cervantes Alvarez

To cite this version:
José Francisco Cervantes Alvarez. A distributed approach to design federations of agents in an ecosys-
tem of services. Mobile Computing. Université Grenoble Alpes; Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional (Mexico), 2016. English. �NNT : 2016GREAM034�. �tel-
01679323�

https://theses.hal.science/tel-01679323v1
https://hal.archives-ouvertes.fr

INSERER LE LOGO DE
L’UNIVERSITE PARTENAIRE

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
préparée dans le cadre d’une cotutelle entre la
Communauté Université Grenoble Alpes et

Spécialité : Indiquer la spécialité qui figure sur votre carte
d’étudiant
Arrêté ministériel : le 6 janvier 2005 - 7 août 2006

Présentée par

« Prénom / NOM »

Thèse dirigée par « Prénom/NOM » et « Prénom/NOM »
codirigée par « Prénom/NOM » et « Prénom/NOM »

préparée au sein des Laboratoires

dans les Écoles Doctorales

Titre de la thèse en français

Thèse soutenue publiquement le « date de soutenance »,
devant le jury composé de :

Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)
Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)
Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)
Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)
Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)
Civilité, Prénom, NOM
Fonction et lieu de la fonction, rôle (Président, Rapporteur, Membre)

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
préparée dans le cadre d’une cotutelle entre la Communauté

Université de Grenoble Alpes et le CINVESTAV Unidad Guadalajara

Spécialité : Informatique

Arrêté ministérial : le 6 janvier 2005 - 7 août 2006

Présentée par

José Francisco CERVANTES ALVAREZ

Thèse dirigée par Michel OCCELLO et Félix RAMOS

et codirigée par Jean-Paul JAMONT

préparée au sein Laboratoire LCIS

dans l’Ecole Doctorale MSTII

Une Approche Décentralisée pour la
Conception de Fédérations d’Agents
dans un ÉcoSystème de Services

Thèse soutenue publiquement le 11/07/2016,

devant le jury composé de :

M. René Mandiau
Pr. Université de Valenciennes et du Hainaut-Cambrésis, Président

M. Olivier Boissier
Pr. Ecole Nationale Supérieure des Mines de Saint-Étienne, Rapporteur

M. Laurent Vercouter
Pr. Institut National Des Sciences Appliquées de Rouen, Rapporteur

M. Michel Occello
Pr. Université Grenoble Alpes, Directeur de thèse

M. Félix Ramos
Pr. CINVESTAV Unidad Guadalajara, Directeur de thèse

M. Jean-Paul Jamont
Dr. Université Grenoble Alpes, Co-Directeur de thèse

Résumé

L’objectif de cette thèse est la conception des fédérations d’agents dans un écosystème om-

niprésent de service hybride. Une approche distribuée basée sur une métaphore sociale d’un

écosystème naturel est proposé dans le but de construire des fédérations d’agent ouvert, où

les agents interagissent les uns avec les autres pour atteindre leurs objectifs grâce à la com-

position dynamique et l’adaptation des services. Dans cette approche, chaque agent régit

un appareil mobile sans fil. Chaque agent au sein de l’écosystème est intéressée, et ses

comportements sont basés uniquement sur des tâches d’interaction locales. L’interaction et

la coopération entre les agents sont guidés par un ensemble de normes sociales établies par

les membres de l’écosystème. Deux approches basées sur la satisfaction de contraintes ont

été conçues pour comparer les résultats des stratégies d’adaptation de service avec les pro-

positions existantes basées sur la reconfiguration des services à partir de zéro. La première

est basée sur un modèle distribué du problème de satisfaction de contraintes. La seconde est

une extension du modèle distribué pour aborder la dynamique des environnements ouverts.

Les simulations montrent les performances des algorithmes concernant la consommation

de temps et le nombre de messages requis pour la composition et l’adaptation des services.

Mots clés: systèmes multi-agents, écosystème de services, composition de service,

satisfaction de contraintes distribués.

i

Abstract

The objective of this thesis is the design of federations of agents in a pervasive hybrid ser-

vice ecosystem. A distributed approach based on a social metaphor of a natural ecosystem

is proposed with the aim of building open agent federations, where agents interact with

each other to achieve their goals through dynamic composition and adaptation of services.

In this approach, each agent governs a wireless mobile device. Each agent within the eco-

system is self-interested, and its behaviors are based only on local interaction tasks. The

interaction and cooperation among agents are guided by a set of social norms, established

by members of the ecosystem. Two approaches based on constraint satisfaction were de-

signed to compare the results of strategies of service adaptation with existing proposals

based on the reconfiguration of services from scratch. The first is based on a distributed

model of the constraint satisfaction problem. The second is an extension of the distributed

model to address the dynamics of open environments. The simulations show the perform-

ance of the algorithms regarding the consumption of time and the number of messages

required for the composition and adaptation of services.

Keywords: Multi-agent systems, service ecosystem, service composition, distributed

constraint satisfaction.

iii

Remerciements

Avant toutes choses, je tiens à remercier les membres de mon jury. Merci à Olivier Boissier

et à Laurent Vercouter qui m’ont fait l’honneur d’être rapporteurs de ma thèse. Je remercie

également René Mandiau pour l’honneur qu’il me fait d’être dans mon jury de thèse. Leurs

remarques m’ont permis d’envisager mon travail sous un autre angle. Pour tout cela je les

remercie.

Je tiens aussi à remercier les nombreuses personnes qui ont été présentes tout au long

de ma thèse et qui m’ont permis de la conclure. Il sera très difficile pour moi de remercier

tout le monde.

D’abord, je tiens à remercier grandement les directeurs et superviseurs de cette thèse;

Michel Occello, Felix Ramos et Jean-Paul Jamont, merci pour toute votre aide. Je suis ravi

d’avoir eu l’occasion de travailler avec vous, vous avez toujours été là pour me soutenir et

me donner des conseils lors de la préparation de cette thèse.

Les discussions que j’ai pu avoir durant les réunions d’équipe et en dehors m’ont beau-

coup apporté: Antonio, Sonia, Rodolfo, Clément, Daniel et Luis Fernando trouvez dans

ces quelques lignes l’expression de mes remerciements.

Je remercie aussi toutes les personnes avec qui j’ai partagé mes études et notamment

ces années de thèse : Ji Young Moon qui m’a permis de m’échapper de temps en temps

dans la France profonde; Kevin, Milena et Emanuel pour leur gentillesse; GianFranco pour

son inévitable rituel du midi et ses animations dans la cafétéria, qui m’ont soutenu jusqu’au

bout.

Je remercie ma femme Mary et mes enfants Valeria, Paco et Miguel Angel; vous m’avez

soutenu tout au long de cette aventure et vous avez fait preuve de beaucoup de compréhen-

sion les jours et nuits où je n’étais pas avec vous.

Encore un grand merci à tous pour m’avoir accompagné jusque ce jour mémorable.

v

Acknowledgements

Above all, I thank the members of my jury. Thank you Olivier Laurent Boissier and Ver-

couter who have done me the honor rapporteurs to be my thesis. I also thank René for

Mandiau the honor he made me be on my dissertation committee. Their remarks allowed

me to consider my work from another angle. For all that I thank them.

I also want to thank the many people who have been present throughout my thesis and

that allowed me to conclude. It will be very difficult for me to thank everyone.

First, I would like to greatly thank the managers and supervisors this thesis; Michel

Occello, Felix Ramos, and Jean Paul Jamont, thank you for all your help. I am delighted to

have had the opportunity to work with you, you have always been there to support me and

give me advice in the preparation of this thesis.

The discussions I have had during team meetings and outside brought me a lot Antonio,

Sonia, Rodolfo, Clement, Daniel Luis Fernando, there are in these lines the expression of

my thanks.

I also thank all the people with whom I shared my studies including the years of thesis:

Ji Young Moon which allowed me to escape from time to time in provincial France; Kevin,

Milena and Emanuel for their kindness; GianFranco to its inevitable ritual noon and enter-

tainment in the cafeteria, who supported me all the way.

I thank my wife Mary and my children Valeria, Paco, and Miguel Angel; you supported

me throughout this adventure and you have shown a great understanding of the days and

nights when I was not with you.

Another big thank you to all for having accompanied me until this day memorable.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Thesis Objectives . 4
1.4 Thesis Contributions . 4
1.5 Outline . 5

2 Ecosystem Vision of Pervasive Services 9
2.1 Services . 9
2.2 Toward Pervasive Service Ecosystems . 11
2.3 Classical Metaphors for Modeling Service Ecosystems 12

2.3.1 Physical Metaphor . 13
2.3.2 Chemical Metaphor . 15
2.3.3 Biological Metaphor . 16
2.3.4 Ecological Metaphor . 19

2.4 Key Differences between Ecosystem Metaphors 20
2.5 Conclusion . 20

3 Service Composition Approaches 23
3.1 Service Composition . 23
3.2 Classical Service Composition Approaches 24

3.2.1 Static Service Composition . 24
3.2.2 Dynamic Service Composition . 25
3.2.3 Classical Formalisms for Service Composition Specification 25

3.3 Service Composition as a Constraint Satisfaction Problem 27
3.3.1 Approach Taxonomy . 29
3.3.2 Distributed CSP Framework . 31
3.3.3 Distributed Constraint Satisfaction Problem Solving 31
3.3.4 Comparing the Main Features of DisCSP Solving Algorithms . . . 40

3.4 Conclusion . 41

4 An Ecosystem-Based Approach for Pervasive Hardware Services 43
4.1 A Social Metaphor . 43

4.1.1 Ecosystem Members and Species 44

ix

x CONTENTS

4.1.2 Social Interaction Norms . 46
4.1.3 Service Ecosystem Environment 46

4.2 A Conceptual Architecture for Pervasive Hardware Service Ecosystems . . 47
4.3 Crowd Evacuation: A scenario . 48
4.4 Conclusion . 49

5 Social Obligations for Agent Interaction in the Ecosystem 51
5.1 Agent Interaction . 51

5.1.1 Deterministic Finite-State Machines 52
5.1.2 Petri Nets . 52

5.2 Obligations . 53
5.2.1 Basic Operations on Obligations 54

5.3 Obligation Life Cycle . 59
5.4 Basic Acts for a Social ACL . 62

5.4.1 Assertive Acts . 63
5.4.2 Directive Acts . 63
5.4.3 Commissive Acts . 64
5.4.4 Declarative Acts . 65

5.5 Modeling a Protocol by Means of Obligations 65
5.5.1 Preliminaries . 66
5.5.2 Clustering-Based Protocol . 67

5.6 Conclusion . 68

6 An Approach for Pervasive Hardware Service Composition and Adaptation 71
6.1 Pervasive Hardware Service Composition 71
6.2 Problem Formulation . 72
6.3 Service Composition as a Distributed Constraint Satisfaction Problem (DisCSP)

Problem . 72
6.4 Pervasive Hardware Service Composition 73

6.4.1 Dynamic-disCSP Framework . 73
6.4.2 Formation of Candidate Agents 74
6.4.3 Pervasive Hardware Service Composition Algorithm 76

6.5 Adaptation from a Pervasive System Perspective 78
6.6 Dynamic-disCSP Framework . 82

6.6.1 A Service Adaptation Heuristic 83
6.7 Conclusion . 86

7 Implementation 87
7.1 MASH: A Tool to Tune Design and Deployment 87

7.1.1 Overview of the MASH Architecture 88
7.1.2 A Toy Problem . 89
7.1.3 Building a Solution . 89
7.1.4 Creating an Agent . 92
7.1.5 Agent Interaction in MASH . 92

7.2 Implementation of the Solution . 95

CONTENTS xi

7.2.1 Overview of the Solution: Service Ecosystem based on a Federa-
tion of Agents . 95

7.2.2 Formation of Candidate Agents 97
7.2.3 Composition and Adaptation of Services 99
7.2.4 Conclusion . 102

8 Evaluation 105
8.1 Pervasive Hybrid Service Composition . 105

8.1.1 Scenario Description . 105
8.1.2 Effects of Service Density . 106
8.1.3 Effects of Scaling . 107
8.1.4 Effects of Composition Order . 108

8.2 Pervasive Hybrid Service Adaptation . 108
8.2.1 Scenario Description . 109
8.2.2 Effects of Service Density . 110
8.2.3 Effects of Scaling . 111
8.2.4 Effects of Adaptation Order . 112
8.2.5 Effects of Mobility . 113
8.2.6 Conclusion . 114

9 Conclusions and Future Work 119
9.1 Work Context . 119
9.2 Contributions . 119
9.3 Perspectives . 120

Acronymes 136

Index 139

xii CONTENTS

List of Figures

1.1 Organization of the manuscript . 7

2.1 Architecture for service discovery based on a centralized approach 10
2.2 Ecosystem metaphors . 13
2.3 Abstract architecture of TOTA [34] . 14
2.4 A framework based on a chemical metaphor [37] 16
2.5 Abstract architecture based on a biological metaphor [45] 17
2.6 Abstract digital ecosystem based on a biological metaphor [39] 18
2.7 An architecture based on an ecological metaphor [41] 19

3.1 Basic idea of service composition . 24
3.2 The n-queen problem as a Constraint Satisfaction Problem (CSP) 28
3.3 Taxonomy of CSP solver approaches . 29
3.4 Example of constraint network . 33
3.5 ABT Messages between agents . 34
3.6 AWCS messages between agents . 36
3.7 Example of an Asynchronous Weak-Commitment Search (AWCS) algorithm

execution . 40

4.1 A Conceptual Architecture for Pervasive Hardware Service Ecosystems . . 47

5.1 Agent α1 has assumed an obligation β . 55
5.2 Agent α2 has accepted obligation β induced by agent α1 55
5.3 Agents have rejected (overlooked) the obligation induced by agent α1 . . . 56
5.4 Obligation β assumed by agent α1 is released 56
5.5 Obligation β is canceled by agent α1 . 57
5.6 Induced obligation β is canceled by agent α1 58
5.7 Three-state model for obligations . 59
5.8 Four-state model for obligations [110] . 60
5.9 Proposed model for obligation . 60
5.10 Conceptual Model for Managing Obligations 62
5.11 Clustering approach - a) Original connection graph, b) Possible organiza-

tion of species . 66

6.1 Matrix representation of a disCSP . 73
6.2 Conceptual model of a pervasive service ecosystem context 74

xiii

xiv LIST OF FIGURES

6.3 Agents in the local environment of the α0 agent (considering one hop) . . . 75
6.4 Candidate agent formation . 76
6.5 Service adaptation taxonomy . 80
6.6 Matrix representation of a Dynamic disCSP 82
6.7 New candidate choice for the service adaptation 84
6.8 Example of a possible service adaptation 85

7.1 Simplified architecture of MASH . 88
7.2 Toy problem example . 90
7.3 Setting MASH Preferences . 91
7.4 MASH Solution . 93
7.5 Main behaviors of our service ecosystem 96
7.6 Class view of the agent implementation 97
7.7 Package view of the MASH Context . 98

8.1 Number of messages with respect to service density 106
8.2 Composition time with respect to service density 107
8.3 Number of messages with respect to number of nodes 108
8.4 Composition time with respect to number of nodes 109
8.5 Number of messages with respect to composition length 110
8.6 Composition time with respect to composition length 111
8.7 Number of messages with respect to service density 112
8.8 Adaptation time with respect to service density 113
8.9 Number of messages with respect to number of nodes 114
8.10 Adaptation time with respect to number of nodes 115
8.11 Number of messages with respect to adaptation length 116
8.12 Adaptation time with respect to adaptation length 117
8.13 Number of messages with respect to mobility 117
8.14 Service availability with respect to adaptation length 118

Chapter 1

Introduction

1.1 Motivation

Today, the boundaries of pervasive computing have changed significantly. These are evolving

from closed systems with dedicated infrastructure to open dynamic systems with no ded-

icated infrastructure, such as dedicated servers and reliable communications networks [1]

[2] [3] [4]. This is due to the increasing number of devices in our daily lives that can

acquire and process data, and communicate with each other [5]. Moreover, new mobile

devices are revolutionizing the way we access and distribute services, and wireless net-

work paradigms are driving the concept of computing toward delay-tolerant networking [6]

[7]. The fact that mobile devices can be constantly network-connected and the increasing

availability of online services are prompting users to demand a transparent integration of

services with their lifestyles and daily activities. This is leading service-oriented comput-

ing and networks toward everyday objects such as cars, refrigerators, televisions, washing

machines and medical devices, and the concept of pervasive service is becoming a reality

[8]. From the Service Oriented Architecture (SOA) perspective, a service is defined as a

self-contained unit software that performs a specific task [9]. A pervasive service can be

defined as a user-centered service that is available anywhere and anytime.

We distinguish between two types of pervasive services: software and hardware ser-

vices. The former are services that require only data and processing to generate a result

that meets their goals; classical services usually fall into this category. Hardware services,

on other hand, have physical dependencies. For example, hardware services require the

availability of specific devices such as temperature sensors, Global Positioning System

(GPS) and radiators in their immediate physical environment in order to meet their goals

1

2 Chapter 1. Introduction

(i.e. the service has physical dependencies on its physical environment). Most research

work has focused on software services, and there has been little work in the domain of

hardware services.

Solutions based on SOAs are suitable to deploy services in closed and slightly dynamic

environments such as buildings with dedicated infrastructure that must always be avail-

able. It is necessary, however, to consider environments where services must be available

anywhere and anytime, and where SOAs-based solutions are therefore not suitable; these

environments call for a pervasive computing approach that focuses on users. Examples of

such environments include places where the user does not stay for a long time or that the

user does not frequent very often, such as airports, hospitals, shopping malls, or cafes. The

question is how devices can keep hardware services available while users move among such

environments. In general the strategy is to take advantage of distributed resources such as

sensors, actuators, memory, and communication interfaces available in the form of services

in the user’s vicinity.

1.2 Problem Description

From a pervasive computing perspective, the hardware services must be user-centered and

remain available while users perform their daily activities regardless of their displacement

among environments. These services must always be available by means of adapting to the

resources available on other devices in the users’ vicinity. The following scenario helps to

convey the idea of such a world.

Miguel is driving his car from his home to his work in the city of Guadalajara. He wants

to get to work as soon as possible. For this Miguel is assisted by his mobile device to choose

the best route. Internally the device uses its GPS and interacts regularly with systems that

provide the status of road traffic in the city. Suddenly the car suffers a mechanical failure,

and Miguel has a serious road accident. His car automatically reports the event to the

emergency systems. It triggers the cooperation between fire brigades, police officers and

the nearest ambulances to provide assistance to Miguel. Meanwhile, the traffic control

system modifies its signaling so that the help arrives soon. Concurrently all systems are

coordinated to continue assisting other drivers who also need to reach their destination

as quickly as possible. Once Miguel is in the ambulance, bio-medical devices transmit

all information about his health status to the hospital. Again, the traffic control system

coordinates its signaling so that the ambulance can reach the hospital quickly.

1.2. Problem Description 3

This scenario embodies many open issues in pervasive services. In order to achieve the

above vision, this dissertation addresses three main problems concerned with deploying

pervasive hardware services:

• Interaction mechanisms. Organizational models for deploying pervasive services

are commonly based on interaction mechanisms that are not suitable for open envir-

onments or that need previous knowledge of the global model of the environment,

for example, the semantic chemistry approach proposed by Viroli et al. [10]. This

increases the amount of a priori knowledge required to deploy hardware services.

However, mobile devices usually have limited resources due to non-functional re-

quirements such as energy limitations. Many organizational structures such as hier-

archies [11] [12] have been used to deploy pervasive services; however, most of

them provide a monolithic, hard-wired, rigid structure that limits the interaction to

previously defined and fixed patterns. Pervasive services need to adapt to dynamic

and unforeseen situations, requiring flexible and dynamic organizations to adjust the

system’s course of action in the pursuit of their objectives.

• Dynamic service composition. In pervasive computing, devices can be mobile, and

services can have physical dependencies. For example, in order to provide a hy-

pothetical medical service, a set of devices with certain resources must be in the

user’s vicinity. This underscores the complexity of service composition, in which no

single device has all the required resources and logic to succeed. Classical composi-

tion techniques such as SOA-based mechanisms [13] [14]) are not suitable to handle

hardware service composition; one of the main reasons is that SOA-based solutions

require dedicated infrastructure. Hence, suitable approaches are required.

• Service Adaptation. The primary objective of pervasive systems is to provide ser-

vices that are required by the user despite variations in his or her environment; this

is achieved by means of hardware service adaptation. Adaptation aims to make the

pervasive system capable of fulfilling requirements in spite of changes in its envir-

onment [15] [16]. Diverse techniques for service adaptation have been used, such

as dynamic service selection and dynamic coordination pattern selection. However,

most of these assume that resources are always available in closed environments, and

they only consider the dynamic degradation of service quality [17]; hence, a suitable

mechanism is required for the adaptation of hardware services in open environments.

4 Chapter 1. Introduction

1.3 Thesis Objectives

Pervasive systems based on the web and mobile devices are currently garnering consid-

erable attention due to their ability to provide users with services for data processing and

information. These pervasive systems naturally have an interest in multi-agent systems

because of certain features they offer, such as the autonomy of the agents, and their in-

teraction mechanisms. The use of multi-agent systems can provide service providers with

greater autonomy in making decisions; it is important because the autonomy improves how

these types of systems deal with dynamic scenarios. The thesis that we defend is that it is

possible to create ecosystems based on multi-agent systems capable of providing hardware

services that are adaptable to user needs and changes in their environment. For this, we pro-

pose to model hardware, software and resources as agents that provide pervasive services

within an ecosystem, using a social metaphor, for the purpose of creating flexible organ-

izations, unlike current pervasive hardware services that rely on organizations of limited

flexibility that restrict users’ mobility to closed environments.

We are interested more particularly in ecosystems comprising mobile devices with few

capabilities in terms of the number and types of services they can provide. Such devices

require the collaboration of other members of the ecosystem, in order to achieve the ob-

jectives for which they were designed. For this, we propose designing a framework for

supporting the dynamic composition of hardware services, with the goal of permitting ser-

vice composition in several environments through the use of resources that are close to

the user. The dynamic composition of services is common in SOA; however most of the

mechanisms used are not suitable for the deployment of hardware services in environments.

It is unlikely to assume that once the system has created a service, user needs and

environmental status will not change. Such composite services need to be able to adapt to

changes and fulfill the new requirements with little or no participation from the user. For

this, we propose an approach to adapt the functionality of hardware services provided by

agents that take advantage of the available resources and services of other agents in the

user’s vicinity.

1.4 Thesis Contributions

This dissertation proposes the modeling of an open and dynamic organizational model of

hardware services by means of an ecosystem metaphor . Members of the ecosystem interact

1.5. Outline 5

with each other in order to achieve their objectives. Social ecosystem metaphors have not

often been used to model and constrain behaviors of pervasive hardware services. In this

domain, the contributions of this dissertation are the following:

• Definition of an ecosystem of hardware services based on a social metaphor in order

to support the dynamism and openness of the environment. This aims to provide

a flexible organization for pervasive systems that will make it possible to offer ser-

vices in environments where there may be communication failures or intermittent

availability of resources. In addition, the ecosystem provides the framework for the

development of mechanisms for service composition and adaptation.

• Definition of an interaction model based on social obligations that regulates the be-

havior of agents in the ecosystem and their interaction with each other. Here, the

concept of adaptation on obligations is introduced, a concept that has not been ad-

dressed before in the state of the art.

• Definition of acts for an agent communication language based on obligations en-

dowed with social semantics that explicitly considers system autonomy and is suit-

able for open systems.

In the domain of services-oriented computing, the following contributions are made:

• For the purpose of modeling the distributed and dynamic composition process of per-

vasive services while the agents’ autonomy is preserved, we define the composition

process as a dynamic and distributed constraint satisfaction problem.

• With the aim of carrying out the composition and adaptation of services, through

solving constraint satisfaction problems, we have proposed decentralized and asyn-

chronous mechanisms.

1.5 Outline

This thesis is organized into three parts as described in Figure 1.

The general objective of the first part is to introduce the reader to the context within

which the research was conducted. This general objective is addressed in chapters two

and three. The particular objective of chapter 2 is to introduce the reader in our vision

of a pervasive system as an services’ ecosystem and it provides the basic concepts that

6 Chapter 1. Introduction

will be useful to understand and appreciate this document. Chapter 3 gives the reader an

overview of the various mechanisms for service composition, beginning with the classical

approaches and moving on to those based on constraint satisfaction.

The general objective of the second part, comprising chapters four, five and six, is to

present and describe in detail our proposal and to address the issues described in the first

chapter of this manuscript. The particular objectives of each of the chapters are as follows:

Chapter 4 introduces a new ecosystem approach based on a pervasive social metaphor for

providing services; each metaphor element is described and the chapter ends with a con-

ceptual architectural ecosystem. Chapter 5 introduces and describes in detail our approach

to the interaction of agents based on social obligations; it describes the obligations, their

life cycle, and operations for the management of these obligations; from basic operations

for defining the basic acts of communication to implementation of interaction protocols.

Chapter 6 presents the mechanisms proposed for the composition and adaptation of ser-

vices in our ecosystem; these mechanisms are implemented on the basic acts described in

the previous chapter.

The general objective of the third part, which includes chapters 7 and 8, is to show the

evaluation of the approach proposed in the previous chapters. As for particular objectives,

Chapter 7 describes the implementation of the proposal and the tools used for this pur-

pose, while Chapter 8 measures the performance of implementing interaction mechanisms

proposed for adapting the composition and ecosystem services.

Chapter 9 presents some concluding remarks and the future research direction in the

domain of pervasive hardware service ecosystems, and service composition and adaptation.

1.5. Outline 7

PERFORMANCE

WORK CONTEXT

Ecosystem vision of
pervasive services

Service composition
approaches

PERVASIVE SERVICE ECOSYSTEM

Ch 2 Ch 3

An ecosystem based
approach for pervasive

services

Social obligations for
agent interaction in an

ecosystem

An approach for pervasive
service composition and

adaptation

Implementation

Evaluation

Conclusions and future work
Ch 9

Ch 4 Ch 5

Ch 6

Ch 7

Ch 8

Figure 1.1: Organization of the manuscript

8 Chapter 1. Introduction

Chapter 2

Ecosystem Vision of Pervasive Services

This chapter introduces the core concepts and heart of the matter for the rest of chapters,

which is pervasive services. Additionally, this chapter presents a description of the main

metaphors for developing digital service ecosystems. A general vision of services as an

ecosystem is presented and particular care is paid to the dynamic aspect and open nature of

pervasive services. Lastly, a summary and discussion are provided setting the ideal of this

dissertation with respect to current challenges in the field of pervasive services.

2.1 Services

Nowadays, the term service is used in a broad range of domains, where different character-

istics have to be fullfilled by an entity in order to be called a service. Georgakoulos defines

a service as the fundamental unit of a logical solution, which exists as physically inde-

pendent software associated with a functional context [18]. Its functions can be invoked

by external software through service contracts. These contracts describe the service, and

define interaction requirements, constraints and other required service data. However, the

service paradigm goes beyond simple entities with public functionalities. According to Erl

in [19] a service must have the following main properties.

• Autonomy: from the SOA perspective, services are autonomous, which refers to the

independence with which a service can carry out its logic [20]. Therefore services

that make up a system can be performed independently, i.e., there is no need for

binary dependencies between services. Each service can be developed on a different

platform, using a different language and tools.

9

10 Chapter 2. Ecosystem Vision of Pervasive Services

However, to deploy pervasive services in highly dynamic and open environments,

autonomy as conceived by SOA-based approaches is not sufficient. In these environ-

ments it is necessary for services to have the capability to make decisions, and their

functionality must not be governed or inhibited by external entities.

• Discoverability: it must be possible to search for and locate services. This implies

that services must be supplemented with communicative metadata by which they

can be effectively located and interpreted. In SOA-based approaches, services must

be registered and information about available services published (service’s registry).

This way the external software, named service’s consumer, can simply ask the re-

gistry for the needed service and get the details of a fitting service implementation;

subsequently, the service’s consumer can connect with the service’s provider in order

to invoke the service (see Figure 2.1).

Service's
Registry

Service's
Consumer

Service's
Provider

Discovery

Invocation

Registration

Figure 2.1: Architecture for service discovery based on a centralized approach

Since centralized approaches for service discovery in SOA such as Universal De-

scription, Discovery, and Integration (UDDI) are not scalable [21], several decentral-

ized approaches have been proposed, such as those presented in [22] [23] [24]. Most

decentralized SOA-based approaches manage the discovery of services by relying

on a distributed registry of services on powerful, reliable and dedicated infrastruc-

ture such as servers and reliable communication channels. Thus, discoverability as

considered by SOA-based approaches is not suitable for highly dynamic and open en-

vironments, because in these kinds of environments shaped by devices in Mobile and

Ad Hoc Networks(MANETs), resource availability is not guaranteed and communic-

ation channels are not always reliable. Therefore, appropriate discovery mechanisms

2.2. Toward Pervasive Service Ecosystems 11

must still be developed for these types of environments.

• Composability: composition enables software applications to provide complex ser-

vices based on the combination of simpler services. Sometimes, a single service is

not sufficient to fulfill the user’s requirement and often services are combined through

service composition to achieve a specific goal. For example, when a user wants to

travel, it is not sufficient to book a flight; she must also take care of reserving a hotel,

and so on. Services must be designed to participate as effective members of multiple

service compositions.

In the remainder of this chapter, the notion of pervasive services as members of ecosys-

tems will be explained, along with the main metaphors involved.

2.2 Toward Pervasive Service Ecosystems

Unlike traditional services that are aimed at the business level and have dedicated infra-

structure (such as reliable networks and servers with high processing capacity), pervasive

services focus on people moving between environments where normally there is no dedic-

ated infrastructure [25]. Pervasive services pose challenges to service-oriented computing:

requirements such as adaptability and self-management must be considered in the service

composition in environments without dedicated infrastructure.

Adaptability is the ability of a service to meet user requirements despite changes in the

environment; for example, changes in resource availability could change the service func-

tionality. Changes in services’ and users’ requirements and/or changes within the network

may require the use of mechanisms to deal with these changes. Moreover, adaptation is

necessary when a significant mismatch occurs between the provider and the request for a

service. As the service’s execution environment changes due to the user’s mobility, the

vital services need to be substituted by corresponding services in the new environment in

order to ensure continuous operation.

Self-management refers to a system entity’s ability to control and manage its resources,

functions, security and performance in the face of failures and changes, with little or no

human intervention. The complexity of future pervasive environments will be such that it

will be impossible for human administrators to manage configuration, performance, and

security. Instead, it will be necessary to resort to automation for most of these functions,

allowing humans to concentrate on the definition and supervision of high-level management

12 Chapter 2. Ecosystem Vision of Pervasive Services

policies, while the system itself takes care of the translation of these high-level policies into

automated control structures.

Usually pervasive services are available only in closed environments such as buildings,

especially if they have physical dependencies, usually because they may need specific re-

sources such as sensors, actuators, and communication interfaces. However, if the user

moves, he could move outside the range where the service is available and the service be-

comes unavailable. This means that pervasive systems are centered on isolated physical

spaces and are not centered on the users, who are nomadic by nature (i.e., they move from

one environment to another). Additionally, the service requirements may change over time

depending on the user’s context [26].

In order to deploy pervasive service and address its open challenges, several authors

such as [27] [28] [29] [30] have taken inspiration from natural systems. A brief description

of the main natural metaphors used to build service ecosystems is provided in the following

sections.

2.3 Classical Metaphors for Modeling Service Ecosystems

The proliferation of web-based services and the rapid adoption of service-oriented archi-

tecture have not only changed the perception of services; they have also changed the way

services are offered and consumed. An emerging development in this area is the notion of

service ecosystems [30]. An abstract definition, or meaning, of the ecosystem was provided

by Tansley [31]: the ecosystem is defined as a biotic community or assemblage and its as-

sociated physical environment in a specific place. This general definition has been applied

in several forms in different knowledge domains. In computation, the ecosystem is inter-

preted as a virtual space where digital entities interact with each other to achieve specific

objectives [27] [31]. Dynamicity is one of the desirable properties of a service ecosystem

because it allows services to appear and disappear at any time. It enables the creation of

dynamic solutions composed of various services [32].

The key difference between possible approaches to the realization of frameworks in-

spired by service ecosystems lies in the metaphor adopted to model the ecosystem. The

main metaphors that have been used are: physical [33] [34], chemical [29] [35] [36] [37],

biological [28] [38] [39], and ecological [40] [41] [42]. Each metaphor provides its own

interpretation for its residents, the environment in which they live, and its laws (see Figure

2.2).

2.3. Classical Metaphors for Modeling Service Ecosystems 13

Ecosystem

Environment

ResidentsLaws

Physical

Ecological

Chemical

Biological

- Universe
- Particles and waves
- Fields' gradient

- Spaces or niches
- Atoms and molecules
- Chemical reactions

- Landscapes
- Cells
- Morphogens

- Spaces
- Organisms
- Food web

Metaphor

Interpretation

Figure 2.2: Ecosystem metaphors

2.3.1 Physical Metaphor

Physical metaphors are based on the way particles in the universe move according to their

local environment, which is made up of gravitational and electromagnetic fields. Particles

interact weakly coupled way, using the fields, without the need for particles to know their

neighbors in the local environment. Fields (gravitational or electromagnetic) represent in-

formation about other particles in the system as summarized contextual information. This

information is distributed in fields and the local perception can lead what to do, simply

by following the local field’s gradient [34]. The physical metaphor considers the particles

as residents of the ecosystem. These particles refer to computer components living in the

network (i.e., their universe). Additional messages among computer components repres-

ent waves in their universe. Activities of particles are driven by laws that determine how

particles should be influenced by local gradients and the computational field. In particular,

based on the perceived fields, particles can change their status, move or exchange data by

means of navigation through such fields.

The physical metaphor has inspired the development of several proposals such as the

14 Chapter 2. Ecosystem Vision of Pervasive Services

one proposed by Crowcroft in [33]. Crowcroft adopted from physics the wave-particle

principles to define a network paradigm. In his proposal, a network with swarms of coded

content is viewed as dual packets. Here the waves mean traffic in the network and it is star-

ted by sources of content such as video and audio input, and sensors. This content spreads

by matching subscriptions and interests to content descriptions throughout the network at

rendezvous locations. Tuples On The Air (TOTA) [43] is another proposal inspired by a

physical metaphor. TOTA was developed to support adaptive context-aware activities in

pervasive computing scenarios. Here the universe is a computer network and its laws are

based on application-specific rules for representing contextual information and supporting

weakly coupled interactions between application components. The key idea of TOTA is to

rely on spatially distributed tuples, propagated across the computer network based on the

system’s laws. The system is organized into three principal parts (see Figure 2.3).

TOTA Engine

Application

Event Interface TOTA API

Local Tuples

Operating System
Network

Figure 2.3: Abstract architecture of TOTA [34]

TOTA Application Program Interface (API) is the main interface between the applic-

ation and the middleware. The API provides functionality to allow an application inject

new tuples into the system, retrieve tuples, and place subscriptions in the event interface.

The event interface is responsible for notifying the application about subscribed events.

The TOTA engine is the core of TOTA. It is responsible for storing references to nodes

and managing tuples’ propagation. In addition, each TOTA node is provided with a local

tuple space to store the tuples that reached that node during their propagation. TOTA has

2.3. Classical Metaphors for Modeling Service Ecosystems 15

been tested in application domain such as control algorithms for modular robots, and sensor

networks.

Motivated by spatial self-organization features, researchers have studied and applied

the physical metaphor in different knowledge domains, particularly due to its ability to

facilitate coherent behaviors, even in large scale-systems, for load balancing and data dis-

tribution. However, the physical metaphor is inappropriate when the system involves a

large variety of components and behaviors.

2.3.2 Chemical Metaphor

Chemical metaphors consider that the residents of the ecosystem are computational mo-

lecules, with properties described by some kind of semantic descriptions, which are the

computational counterpart to the description of the bonding properties of physical atoms

and molecules. The laws that govern the ecosystem’s behavior take the form of chemical

rules. They dictate how reactions and bonding between residents take place, and can lead to

the production of aggregated components or new composite components. In this case, the

environment is typically formed by a set of localities. These localities can be interpreted as

solutions in which chemical reactions can occur.

Chemical metaphors have been used in several application domains such as service

composition. Quitadamo et. al in [29]] proposed a composition model for pervasive com-

munication services. The key idea in their proposal is to exploit semantics as an over-

lay for service aggregation. Here, the authors confront the discovery and interoperability

problems: first, finding and organizing communication services into the environment, and

second, enabling them to interact when aggregated into more complex services. An im-

portant feature of this work is its focus on the environment (i.e., infrastructure) rather than

on a single service. In the environment, pervasive services are joined together by special

enzyme components distributed among nodes. Enzyme components are responsible for

handling service request messages to process referenced semantic concepts and try suitable

adaptation strategies. Using knowledge as the substrate for aggregation reactions, enzymes

enable the discovery and interoperability of communication services. An important issue

with enzymes is the degree of reasoning these enzymes must have. Napoli and Giord-

ano [35] [36] use a chemical approach to model the process of matching required service

functionalities to required conditions using higher-order chemical language [44]. They

propose decoupling the workflow instantation from its execution; thus instantation can be

16 Chapter 2. Ecosystem Vision of Pervasive Services

modeled as an independent, autonomous and running system. Angelis et al. propose in

[37] a chemical model for service composition operating in a pervasive system. The model

is grounded in Self-adaptive Pervasive Service Ecosystems (SAPERE) [10],which propose

a multi-agent framework for pervasive computing, and it is inspired by chemical reactions.

The main elements of the abstract model are tuples, services and/or applications, agents,

and chemical reactions (see Figure 2.4). Service/Application entities produce results by

processing data inputs. Each of these entities that want to request or provide information

must create an agent. Agents are used as interfaces to exchange data within the tuple space.

Tuples are passive entities located in a tuple space that represents a shared container. These

tuples are vectors of properties and are used to describe services, applications and contex-

tual information. Chemical reactions are defined by a set of rules governing the tuples and

are used to manipulate, update and delete them.

Service

Agent

Service

Agent

Application

Agent

Tuple 1
Tuple 3

Client Tuple

Chemical reactions (eco-laws)

BondAggregate Decay

Tuple Space

Figure 2.4: A framework based on a chemical metaphor [37]

2.3.3 Biological Metaphor

Biological metaphors typically focus on small biological organisms such as cells and their

interactions. The residents are therefore either simple cells or very simple unintelligent

organisms. These residents act on the basis of simple goal-oriented behaviors such as mov-

ing and eating. Additionally, their behaviors can be influenced by the strength of specific

chemical signals in their surroundings with which there is a match. As in physical systems,

2.3. Classical Metaphors for Modeling Service Ecosystems 17

residents are expected to be able to spread around and diffuse signals; thus they can in-

fluence the behavior of other residents. The laws, together with the spatial computational

landscape in which residents exist, determine how the signals should diffuse, and how they

can influence residents’ behavior and properties.

There are several applications of the biological metaphor. Shen et al. in [28] used

a biologically inspired method for controlling robot swarms. They have used a method

named digital hormone model as a control method for robot swarming behaviors and self-

organization. It is based on local communication, signal propagation, and stochastic re-

actions. The advantages of their approach include its locality, simplicity, robustness, and

self-organization.

C/R C/R C/R C/R C/R C/R

C/R C/R C/R C/R C/R C/R

N

M

M

M

M

Control/Reaction
Agents

Maintenance
Agents

Net AgentData bases

Figure 2.5: Abstract architecture based on a biological metaphor [45]

Flóres et al. in [45], inspired by the immunological system, presented an architecture

for intruder detection. The proposal is based on mechanisms that can detect the presence

of an intruder, which is a strange resident in the system. For this, the authors proposed us-

ing two types of agents: recognizers (lymphocytes-B) and macrophages (lymphocytes-T).

Figure 2.5 shows the abstract architecture of the bio-inspired agent-based model. Agents

have different roles: Control Reaction, Maintenance and Net. Control-Reactive agents

read information about activity, find patterns, trigger alarms and perform protection ac-

tions. Maintenance agents create or delete Control-Reaction agents, and eliminate redund-

ant data. Net agents create or delete Maintenance agents. These agents have a global vision

18 Chapter 2. Ecosystem Vision of Pervasive Services

of the network.

Coulter and Ehlers in [38] used a biologically-inspired model to develop a prototype

system oriented toward services. It recast distributed resource allocation in mobile multi-

agent systems as a variation of the clonal expansion immune algorithm [46]. Briscoe et

al. in [39] focus on the digital ecosystem, which provides applications as a counterpart to

biological ecosystems. Their proposal includes an optimization technique for the migration

of agents, which are distributed in the network; there is a second optimization phase based

on evolutionary computing and operating locally on each peer. This second optimization

aims to find solutions to satisfy local constraints.

Population

Genetic algorithm

Agent sequence
(application)

Population
(GA)

Habitat
Agent

Agent pool

Migrating
agent

Ecosystem:
Habitat
network

Figure 2.6: Abstract digital ecosystem based on a biological metaphor [39]

Figure 2.6 shows the abstract digital ecosystem proposed by Briscoe. Here we can see

habitats interconnected through a network. This connection creates the digital ecosystem

based on the agents, populations, agent migration, and the environment. Agents can mi-

grate peer-to-peer; in each habitat local optimization is performed using an evolutionary

algorithm, where the set of agents present in the habitat represents the search space.

2.3. Classical Metaphors for Modeling Service Ecosystems 19

Pervasive devices and spatial web information

Space
(middleware shaping the spatial structure of the system)

Laws
(search food, eat, produce and reproduce)

Species
(Service components)

Users
(consumers and producers)

Figure 2.7: An architecture based on an ecological metaphor [41]

2.3.4 Ecological Metaphor

Ecological metaphors focus on animals and their interactions. Usually, residents of the

ecosystem are goal-oriented agents of a specific agent class. These agents need search

resources to survive and prosper. The laws of the ecosystem are determined by the food

web, i.e„ the food web determines how and under which conditions agents are allowed to

search for food, eat, and possibly produce and reproduce. The space is organized around

a set of localities, and agent migration is possible between these localities. This metaphor

has been applied for several purposes. Peysakhov et al. in [40] proposed an ecology-based

simulation model for managing agent populations on MANETs, such as the wireless net-

work testbed of the Philadelphia urban area. Residents in the model are agents, whose

population can grow and/or migrate. Agents can perform roles as food producers or con-

sumers. In the context of deploying and executing pervasive services, Villalba et al. in [41]

argue how model and deploy services as natural systems. i.e., services as autonomous res-

idents, spatially situated with other services, data sources, and devices where all residents

act, interact, and evolve according to laws. Villalba proposed an architecture to frame the

conceptual structure for service ecosystems (see Figure 2.7).

The architecture is composed of four levels. The lowest, is that of networked devices

and information resources. That is the physical environment in which the ecosystem is de-

ployed. Over this, there is a middleware shaping the space of the ecosystem and it contains

the interaction rules (i.e. the ecosystem’s laws). The species’ level contains the living resid-

20 Chapter 2. Ecosystem Vision of Pervasive Services

ents of the ecosystem space: devices, services, data, events and information requests. They

will have different features from each other; thus they will belong to different species. At

the highest level, producers and consumers of services and data can access the framework.

2.4 Key Differences between Ecosystem Metaphors

The main metaphors to model service ecosystems were covered in this section: physical,

chemical, biological and ecological. Table 2.1 shows a comparison of their interpretations

of an ecosystem and their components.

Table 2.1: Overview of the interpretation of residents, their environment and its laws

Metaphor Environment Resident Laws Drawbacks/advantages
Physical The universe

represented
by a computer
network.

Particles and
waves represen-
ted by computer
components and
messages.

Fields determ-
ine navigation
and activities
of particles by
means of the
gradient.

It has been extensively studied for their spa-
tial self-organization features. It facilit-
ates coherent behaviors in large-scale sys-
tems.There are well-developed conceptual
tools for controlling spatial behaviors and
dynamics. However, it seems to fall short in
evolution and time adaptation. It seems un-
suitable to support the high heterogeneity of
components and residents in real scenarios.

Chemical Spaces represen-
ted by localities
of computer com-
ponents.

Atoms and
molecules rep-
resented by
semantic descrip-
tions and their
compositions.

Chemical reac-
tions by means
of semantic
descriptions’
matching.

It can effectively lead to local self-organizing
structures. It can accommodate many dif-
ferent components and composites with a
simple set of basic laws. As far as self-
management is concerned, can be used re-
agent components can be used to control the
dynamics of the ecosystem.

Biological Spaces represen-
ted by abstract
or physical scen-
arios.

Cells represented
by self-organized
computer com-
ponents.

Diffusion of
morphogens by
means of mes-
sages. Cells are
influenced in
their activities by
the strength of
specific signals.

These allow the formation of spatially loc-
alized activity and morphological patterns.
Although the number of patterns that can be
supported by the propagation of signals and
chemical reactions of simple residents seems
rather limited, they have been used in several
distributed applications. One of the main dif-
ficulties is to understand how to adequately
control the overall behavior.

Ecological Spaces represen-
ted by physical
localities.

Organisms rep-
resented by
agents, species
representing
agent’ classes
and resources
representing data.

Eat, produce, and
reproduce in or-
der to survive.

It promises to be suitable for local forms
of spatial self-organization. It is partic-
ularly suited for tolerating evolution over
time. However, unlike chemical systems, un-
derstanding how to control the equilibrium
of real ecological systems is hard. It would
probably be difficult also in their computa-
tional counterparts.

2.5 Conclusion

In this chapter basic concepts of pervasive services were introduced, and main metaphors

to develop digital ecosystems were described and discussed. Pervasive services and digital

ecosystems are not new, but previous efforts have focused generally within the context of

2.5. Conclusion 21

software services and closed environments, where there is dedicated infrastructure such

as servers with high processing capabilities and reliable communications networks. We

do not know how to address pervasive services within the context of services and open

environments where there is no dedicated infrastructure.

The main metaphors for modeling service ecosystems were covered in this chapter.

An overview of the principal features and different proposals based on these metaphors

have been presented. Most of the works inspired by these metaphors have focused on

very specific application scenarios; to our knowledge, they have not been implemented for

the study of real, open environments and general purposes. Others have simply proposed

forward-based systems such metaphors or simulation models.

Autonomous management and adaptability of pervasive services still have to be im-

proved. There are no proper mechanisms for the dynamic composition of adaptable ser-

vices. Service availability is limited to closed environments; thus user mobility is limited.

The way towards the deployment of usable and effective pervasive services still requires

designing interaction mechanisms for composition and adaptation of autonomous services,

with autonomy from the perspective of multi-agent systems and suitability for open envir-

onments.

Members’ autonomy is not explicitly considered in terms of the definition of members’

interaction in the classical ecosystem metaphors described in this chapter, contradicting the

agent paradigm. Furthermore, there is no suitable description and definition of interaction

protocols in the ecosystem metaphors.

We now turn our attention to multi-agent systems as a suitable paradigm to represent

residents in the ecosystems. Nowadays, the term agent is used in a board range of domains.

Wooldridge defines an agent as a "computer system that is situated in some environment,

and that is capable of autonomous action in this environment in order to meet its design

objectives" [47]. However, the agent paradigm goes beyond situated reactive entities in

an environment: cognitive capabilities are included, giving rise to rational agents. These

agents have four properties:

• Reactivity: agents perceive the environment and proceed accordingly.

• Proactiveness: agents are goal-oriented and act towards the achievement of their

objectives.

• Autonomy: agents are self-governed, i.e., not controlled by others.

22 Chapter 2. Ecosystem Vision of Pervasive Services

• Social ability: agents interact with other agents in order to reach their objectives.

The social aspect of agents gives rise to Multiagent Systems(MASs), which are a group

of agents that interact among themselves, with the aim of satisfying a global objective.

These agents can be either homogeneous or heterogeneous. A MAS should be provided

with interaction patterns that direct agents in a coherent manner towards MAS design ob-

jectives. Interaction protocols are what give MAS this coherence. An interaction protocol

is a set of rules that harmonizes the exchange of messages among agents in order to co-

ordinate their activities in the achievement of objectives. Interaction protocols establish the

roles that agents can play during the interaction. A role indicates an expected behavior for

each agent that participates in the interaction.

These properties make the agent-oriented paradigm appropriate to address the needs of

autonomy and adaptation presented by pervasive services. The integration of multi-agent

systems with SOA and web services has recently been investigated. Some researchers

focus on the communication between both models, whereas others focus on the integration

of distributed services, especially web services, in the agents’ structure.

Chapter 3

Service Composition Approaches

This chapter is intended to provide an overview of classical mechanisms for service com-

position and the suitability of using a CSP formalism to model the hybrid service compos-

ition.

3.1 Service Composition

Service requests sometimes include many related functionalities to be fulfilled by the ser-

vice. Usually, a service has a limited functionality which is not enough to meet the multiple

functional needs. The discovery of such services requests involving many tasks could fail

due to unavailability of suitable services advertised in the registry. In such scenario, arises

the need to compose services with available resources to satisfy the requested complex

functionality.

Reusing is an important characteristic of services when complex tasks are carried out

[48]. Indeed, composition is usually the reason why tasks are broken down in the first

place. A big thing is fragmented because there is a potential benefit in things having to do

with the individual pieces (for example reusing individual pieces to recompose different

services). Rules of composition describe how different services can be assembled into a

coherent global service. In particular, the order in which the services may or may not be

invoked is specified, along with the conditions under which a particular service.

Applying this approach establishes an environment where solution logic exists as com-

posable services. As a result, there is the opportunity to recompose the same service in

order to fulfill new tasks (see Figure 3.1).

23

24 Chapter 3. Service Composition Approaches

Task A

Task A.1

Task A.2

Task A.3

Task A.4

Task A.5

Sub problems

S

S

S

S

S

1

2

3

4

5

S3

S4

S1

S5

S2
Composed
service A

Atomic
Service

In order to fulfill the task A,
atomic services are
assembled in a specific
configuration.

Figure 3.1: Basic idea of service composition

3.2 Classical Service Composition Approaches

In workflow-based composition methods, it is possible to distinguish two main types. Static

composition means that the service requester must build a process model before the com-

position starts [49]; the model includes a set of tasks and their dependency. Each task has

a query statement that searches the service instance to accomplish the task. The dynamic

composition both creates a process model and selects atomic services automatically (or

with low user intervention) [49].

3.2.1 Static Service Composition

There are two principal approaches for static service composition. The first approach,

named service orchestration, combines available services by means of a central coordin-

ator (the orchestrator). The orchestrator is responsible for invoking and combining atomic

services. The second approach, named service choreography, does not assume the ex-

istence of a central coordinator. Service choreography defines complex services via the

conversation that must be carried out by each participant. Following this approach, the

service composition is achieved through peer-to-peer interactions among the collaborating

services. While several proposals exist for orchestration languages (e.g. Business Pro-

3.2. Classical Service Composition Approaches 25

cess Modeling Language (BPML) [50] and Business Process Execution Language (BPEL)

[51]), choreography languages are still in the preliminary stages of definition.

This type of composition is not flexible for the final user because most proposed static

composition techniques and languages are usable only by software developers, not by end

users. Moreover, static composition is not suitable for dynamic environments because ser-

vice composition is wired off line.

3.2.2 Dynamic Service Composition

Dynamic composition of services is a more challenging problem. When a functionality that

cannot be realized by the existing services is required, the existing services can be com-

bined to fulfill the request. Dynamic service composition requires the location of services

based on their capabilities and the recognition of the specific services that can be useful to

create a composed service [52]. The full automation of this process is still an open chal-

lenge. This type of composition is more flexible; however the drawback of this kind of

composition is that functionality is not guaranteed.

In the remainder of this chapter, several approaches for modeling service composition

will be explained.

3.2.3 Classical Formalisms for Service Composition Specification

In this section, we describe the main formalisms and languages that have been used for

modeling service composition; it considers the two approaches discussed in the previous

section.

3.2.3.1 Automata

An automata consists of a finite set of states, actions, labeled transitions between states and

initial states. The labels represent actions, and a transition label indicates the action that

causes the transition from state to state. The intuitive way in which an automata can model

a system’s behavior has led to a variety of automata-based specification models. Some

examples are Input/Output automata [53] [54] [55] and their many variants: timed automata

[56] [57], team automata [58] [59] and others. Automata-based models are being used more

and more to make formal descriptions and compositions, and to verify compositions of web

services.

26 Chapter 3. Service Composition Approaches

In [60] the authors provide an encoding of BPEL processes into web service timed

state transition systems, a formalism that is closely related to timed automata, and discuss

a framework in which timed assumptions can be model checked. The authors analyze

and verify properties of web service compositions of BPEL processes that communicate

via asynchronous Extensible Markup Language (XML) messages. Their approach first

translates the BPEL processes into a particular type of automata whose every transition is

equipped with a guard in the form of an XML Path Language (XPath) expression, after

which these guarded automata are translated into Process Meta Language (PROMELA),

the input language of the model checker Spin. Finally, Spin can be used to verify whether

web service compositions satisfy certain linear temporal logic properties.

3.2.3.2 Petri Nets

Petri nets were introduced as a framework to model concurrent systems in [61] . Their main

advantage is the natural way in which many basic aspects of concurrent systems are identi-

fied both mathematically and conceptually. Within a Petri Net, one distinguishes between

places and transitions. Transitions are connected to places and places to transitions, by

arcs. Hence, a net is a bipartite directed graph. In some models, certain elements may

be labeled. The dynamics of a net are given in the form of rules. These rules determine

when a transition can be fired and what its effects are on the current state. Several au-

thors have used Petri Networks to model service compositions. For example, Narayanan

and Mcllraith describe web service compositions in a Petri-net-based formalism, complete

with an operational semantics; they discuss the implementation of a tool to describe and

automatically verify the composition of web services [62]. In [63] a Petri-net-based design

and verification framework for service composition on the web was proposed.

The frameworks and tools described above have the advantage of allowing one to sim-

ulate and verify the behavior of one’s model at design time, thus enabling the detection and

correction of errors as early as possible. As such, these approaches help increase the reli-

ability of web service applications. However, they are not suitable for service composition

in runtime.

3.2.3.3 Process Algebra

Process algebra is a popular formalism to describe and reason about process behaviors.

Like Petri nets, process algebras are precise and well-studied formalisms that allow the

3.3. Service Composition as a Constraint Satisfaction Problem 27

automatic verification of certain properties of their behaviors. Likewise, they provide a

rich theory of bisimulation analysis in order to establish whether two processes have equi-

valent behaviors. Such analyses are useful for establishing whether a service can substitute

another service in a composition or verifying the redundancy of a service. π-calculus is a

process algebra that has inspired composition languages such as BPEL and XML Language

(XLANG) that provide a formal model and theory for the automatic verification of proper-

ties of the behaviour of models. For example, in [64] the authors use process algebras to

describe services, compose services, and verify them with a particular focus on their inter-

actions. They present a case study in which they use Milner’s Calculus of Communicating

Systems(CCSs) to specify and compose web services as processes, and the concurrency

workbench to validate properties such as correct web service composition. As is the case

with Petri-net-based frameworks and tools, process-algebraic tools are also well-suited to

improve the reliability of web service development by simulating and verifying the beha-

vior of one’s model at design time.

The Automata, Petri Net and Process Algebra formalisms described above have dif-

ferent characteristics, advantages and disadvantages. Each of them allows us to model

different aspects of a problem as concurrency. However, these formalisms focus on the

simulation and analysis of problems, then subsequently implement the right solution for a

particular problem class. However, they are not suitable for deploying pervasive composite

services, because it is necessary to model and solve the composition problem in runtime.

Several authors from Yokoo [65] to Ghedira [66] have explored the constraint satisfac-

tion problem as an alternative formalism that allows us to model problems and solutions

in run-time. In this formalism, simulation is not necessarily indispensable to find suitable

solutions. In the following section the constraint satisfaction problem is described and

presented as an alternative formalism to model and solve the pervasive service composition

problem.

3.3 Service Composition as a Constraint Satisfaction Prob-

lem

Classical constraint-satisfaction-based problems can be expressed by using the CSP form-

alism [65]. A CSP is a triplet X ,D,C where X = {x1, ...,xn} is the set of variables to

instantiate, D = {D1, ...,Dm} is the set of domains, each variable xi is related to a domain

28 Chapter 3. Service Composition Approaches

of value, and C = {c1, ...,ck} is the set of constraints, which are relations between some

variables from X that constrain the values the variables can be simultaneously instantiated

to. Therefore, making a decision consists of finding a solution, for instance a complete and

consistent assignment of X .

Many problems of different domains can be solved by CSP, for example, planning,

scheduling and circuit analysis. Let us consider the typical toy problem of n-queens. In

this problem the goal is to put n queens on a chessboard of n*n size. On the chessboard,

none of the queens should be are able to attack any other. This problem is called CSP

because the goal is to find a configuration that satisfies the given constraints. In the case of

4-queens, we can model the problem using the CSP formalism as follows:

• X = {q1,q2,q3,q4}, each variable qi corresponds to the queen placed in the ith

column.

• D = {D(q1),D(q2),D(q3),D(q4)}, where D(qi) = 1,2,3,4∀i ∈ 1,2,3,4. The value

v∈D(qi) corresponds to the row where the queen representing the ith column can be

placed.

• C = {ci, j : (|qi− q j| 6= |i− j|)∧ (qi 6= q j) ∀ i, j ∈ {1,2,3,4} and i 6= j} is the set

of constraints between each pair of queens. These constraints forbid the involved

queens to be placed in the same row or diagonal line.

We can use a matrix to represent the 4-queen problem (see Figure 3.2): In the matrix,

columns represents the variables X and rows represents the values in D that could instantiate

each variable.

Variables

q q q q1 2 3 4

Va
lu
es

1
2
3
4

Figure 3.2: The n-queen problem as a CSP

CSP is a powerful formalism for modeling and solving problems. However, it is not

suitable for addressing pervasive service composition problems because CSP is based on a

3.3. Service Composition as a Constraint Satisfaction Problem 29

centralized approach, while the composition problem of pervasive services is a distributed

problem by nature. In order to address these problems several extensions of the original

CSP have been developed. In the next section, a brief description of these CSP extensions

is provided.

3.3.1 Approach Taxonomy

The original CSP framework has several limitations. For example, the original CSP as-

sumes that: the problem is static, there is a global state, the problem can be solved by

a single entity, and the problem’s constraints are categorical. Because of this, many ex-

tensions, such as Dynamic Constraint Satisfaction Problem (DynCSP), DisCSP, and Soft

Constraint Satisfaction Problem (SoftCSP), have been proposed. In each of these frame-

works, there are several approaches to solving constraint satisfaction problems (see Figure

3.3).

Taxonomy

Figure 3.3: Taxonomy of CSP solver approaches

The CSP framework has two main approaches to solve constraint satisfaction prob-

lems: search algorithms [67] and inference methods [68]. In general search algorithms can

30 Chapter 3. Service Composition Approaches

be classified as iterative and backtracking. In backtracking approaches algorithms build a

partial solution that satisfies all of the constraints within the subset. Then the partial solu-

tion is expanded by adding new variables one by one [69]. In iterative approaches, on the

other hand, there are not partial solutions: instead, a whole flawed solution is revised by

a hill-climbing search. In the inference-method approach, consistency is an example of

this kind of algorithms. This approach needs, pre-processing procedures that are invoked

before the search algorithm.

DynCSP allows problems of constraint satisfaction to be solved in dynamically chan-

ging environments, for example, dynamic scheduling where tasks arrive continuously, and

sensor networks where targets to be tracked move. There is a wide body of research on

these topics, for example [70] [71] [72] [73]. However, DynCSP does not support changes

in the number of problem constraints or in the elements involved in the construction of

the solution. Solution methods in DynCSP can be classified as reactive or proactive ap-

proaches. In the reactive approach, algorithms are based on three type of techniques:

solution reuse, reasoning reuse and solution-reusing reuse. [74] [75] [76] [77] are some

examples of proposals based on these techniques.

SoftCSP framework is a generalization of CSP in which the constraints are not categor-

ical [78]. SoftCSP enables modeling constraint satisfaction by considering aspects such as

preferences, costs, or probabilities [76]. Constraint use in CSP and DynCSP could be too

strict and not suitable for some problems. Because of this, there has been an interest in

using SoftCSP for modeling these problems. To name some examples, in [79] a SoftCSP

approach is proposed for modeling and reconciling non-functional requirements in web

services based on multiagent systems and the authors demonstrate the framework in the

potential-use case of a demand-driven supply network, and in [80] presents a constraint

satisfaction system for designing and manufacturing.

As a distributed problem, one possible way to represent service composition is the

DisCSP formalism, which considers a problem as a set of variables (required services) to

be assignes to a given set of constraints between the possible values (service instances)

for these variables [81]. The DisCSP framework has been introduced by Yokoo in [65].

Solving a problem is finding an assignment for each variable that respects the constraints.

There are several methods to solve CSPs in a centralized manner [66], but they are bey-

ond the scope of this study, since we will address specifically distributed problems. The

main distributed algorithms to solve DisCSPs can be classified in two types: synchron-

ous and asynchronous algorithms. Several of these are distributed versions of centralized

3.3. Service Composition as a Constraint Satisfaction Problem 31

algorithms such as backtracking and weak-commit search. Because events in pervasive ser-

vice composition are normally concurrent, in this work we are interested in asynchronous

algorithms. The following section describes the DisCSP framework and the main asyn-

chronous algorithms for solving DisCSP problems.

3.3.2 Distributed CSP Framework

In a DisCSP variables and constraints are distributed among a set of systems that have to

collectively solve the CSP. Each system is responsible for assigning one or more variables

by interacting with other systems. This does not imply that the solving process is decentral-

ized. In most approaches, systems behave concurrently during a loop consisting of waiting

for messages and reacting to received messages. Such messages contain information about

the chosen values, the conflictual values, the violated constraints or even organizational in-

formation such as priorities.The topology of a constraint-based problem can be represented

by a constraint network, in which vertexes represent variables, and edges represent binary

constraints between variables.

There are several methods to solve CSPs in a centralized manner [66].

3.3.3 Distributed Constraint Satisfaction Problem Solving

A DisCSP could be solved using centralized algorithms such as min-conflict backtracking

[82], breakout [83], and branch and bound [84]; however they are beyond the scope of

this study. Since the service composition problem is naturally distributed, we will address

specifically distributed problems, i.e., problems where a leader agent is selected among

all agents, and all the information about variables, variables’ domains and constraints is

gethered into the leader agent. Thus the leader agent can solve the CSP alone using cent-

ralized CSP algorithms. However, the cost of collecting all information about a problem

can be prohibitively high [65].

In this section, we classify constraint problem solving approaches and evaluate each

category with respect to the characteristics presented below in order to identify commonal-

ities and differences between categories.

• Global state is unknown: micro-level entities are not conscious of the global state

of the system, which is however valuable at the macro-level.

• Local actions: actions of a system are limited to its own limited neighborhood.

32 Chapter 3. Service Composition Approaches

• Decentralized decision: decentralization means that no system has the power or the

capability to decide for the others, or to solve the whole part of the problem, at a

given time.

• Problem distribution: this refers to the manner and the degree of distribution of the

problem among systems (for example one variable per system)

• Bounded known: a system cannot know the values of other systems.

We will further use these characteristics as an analysis matrix for determining whether

or not an existing approach can be used as a starting point for designing ecosystems of

pervasive services. We organize main existing methods for solving DisCSPs into three

categories: distributed local research methods, population-based methods, and complete

and asynchronous methods. These methods constitute an inspiration source for developing

composition mechanisms for pervasive services, even if they are partially relevant in a

dynamic and distributed context.

Distributed local research methods include Distributed Breakout Algorithm (DBA) and

Environment, Reactive Rules and Agents (ERA). These methods explore the search space

from state to state, from one complete assignment to another complete assignment (i.e.,

from one potential solution to another potential solution). The main advantage of this

anytime behavior is that it can naturally handle dynamics (added constraints, changing

values) because it always tends to improve the current state of the system, specifically

when the state has been altered by environmental disturbances. While often efficient, these

methods are not complete and require some subtle parameter tuning.

Population-based methods include Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO). In population-based approaches, agents use simple local rules to gov-

ern their actions, and via the interactions of the entire group, the population achieves its

objectives. The cooperative individual behavior leads to an emergent collective one. From

an engineering point of view, population-based algorithms are largely applied to optimiz-

ation problems. Each agent has the capability to find the solution of the global problem

autonomously, without following central orders or some global plan. The advantage of

these methods is their inspiration from natural phenomena adapted to dynamic environ-

ments, which may facilitate their applicability to dynamic problem solving contexts. How-

ever, they require more memory than the previous approaches since the search space is

explored concurrently at several states.

3.3. Service Composition as a Constraint Satisfaction Problem 33

We pay special attention to Asynchronous Back Tracking (ABT) and Asynchronous

Weak-Commitment Search (AWCS) algorithms because they are complete (i.e. if there is

a solution, they guarantee the finding of the solution) and they are the base of the main al-

gorithms to solve DisCSPs [65]. These methods rely mainly on an ordered organization. A

priority level is assigned to each member of the organization; that priority may be assigned

using a certain established policy, for example, seniority, amount of resources, confidence

level, among others. Within the organization agents only communicate with others agents

of lower priority for informing value changes and with the agent with directly higher pri-

ority for informing that there is a conflict in their variable assignments. The agent with the

highest priority is responsible for initiating the termination procedure. This priority order

is fixed in ABT. With this algorithm, a partial solution is never modified unless it is certain

that the partial solution cannot be a part of any complete solution.

X

X X

0

12

∝

∝ ∝a

b

c

≠ ≠

D(X) = {1, 2} D(X) = {1, 2}D(X) = {2}0 21

Figure 3.4: Example of constraint network

The ABT algorithm allows agents to run concurrently and asynchronously. Thus each

agent instantiates its variable and communicates the variable value to higher-order agents.

A constraint network can be used to represent a DisCSP (see Figure 3.4). In the constraint

network, nodes represent agents with one variable (for the sake of simplicity) and each

link represents a constraint. One agent is assigned that constraint, and receives the other

agent’s value. The links are directed between two agents: from the value-sending node to

the constraint-evaluating node. The ABT algorithm is driven by messages and each agent

can handle multiple messages concurrently. This algorithm uses two main messages: ok?

and noGood (see Figure 3.5). A brief description of the main idea of the ABT algorithm is

provided below:

34 Chapter 3. Service Composition Approaches

∝j ∝i

Figure 3.5: ABT Messages between agents

1. When an agent receives a message ok? from another agent, it asks whether the value

chosen is acceptable (see Algorithm 3.1).

when received (ok?, (x j, d j)) do
agentView.add(x j, d j);

checkAgentView();

end do

Algorithm 3.1 Agent behavior when receiving a message ok?

2. When a value-sending agent receives a noGood message, it indicates that the constraint-

evaluating agent has found a violation of some constraint. Algorithm 3.3 describes

the basic idea to managing noGood messages.

3.3. Service Composition as a Constraint Satisfaction Problem 35

when received (noGood, x j, nogood) do
noGoodList.add(nogood);

when (xk, dk) where xk 6∈ neighbors and

xk ∈ noGood do
neighbors.add(xk);

agentView.add(xk, dk);

end do
oldValue← currentValue;

checkAgentView();

when oldValue = currentValue do
send(ok?, (x j, currentValue)) to x j

end do
end do

Algorithm 3.2 Agent behavior when receiving a noGood message

3. Agent view is constituted by a set of values received from other agents that are con-

nected to it (see Algorithm 3.3). Thus, the evaluating agent adds the pair (x j,d j)

to its agent view and checks whether its own value assignment (xi,currenValue) is

consistent with its agent view.

checkAgentView()
when agentView and currentValue are inconsistent do

if 6 ∃ consistent(value) ∈ Di with agentView then
backtrack();

else
select d ∈ Di where agentView and consistent(d);

currentValue← d;

send (ok?, (xi, d)) to outgoings links;

end if
end do

Algorithm 3.3 CheckAgentView agent behavior

36 Chapter 3. Service Composition Approaches

∝j ∝i

Figure 3.6: AWCS messages between agents

backtrack()
noGoods← { V | V is inconsistent subset of agentView };

when an empty set is an element of noGoods do
broadcast to other agents that there is no solution;

terminates this algorithm;

end do
for each V ∈ noGoods do

select (x j,d j) where x j has the lowest priority in V;

send(nogood, xi,V) to x j;

remove(xi,d j) from agentView;

end do
checkAgentView();

end do

Algorithm 3.4 Backtrack agent behavior

4. A noGood is a subset of an agent view if the agent is not able to find any consistent

3.3. Service Composition as a Constraint Satisfaction Problem 37

value with the subset. If the agent finds a noGood, the assignments of other agents

must be changed. Therefore, the agent triggers a backtrack and sends a noGood

message to one of the other agents (see Algorithm 3.4).

In the AWCS algorithm, priority order changes at every conflict detection, in order not

to keep a part of the organization that is known to be incorrect. That is, in the AWCS

algorithm an agent can revise a bad decision without an exhaustive search by dynamically

changing the order of agents. Here each agent assigns a value to its variable, and sends the

variable value to other agents. Agents behaviors are driven by messages(see Figure 3.6).

A brief description of the AWCS algorithm is provided below:

1. In the AWCS algorithm, each agent sends its variable value to both lower and higher

neighbors. The priority value and the current value assignment are communicated

through the ok? message. When agent i receives this messages it executes the fol-

lowing behavior (see Algorithm 3.5).

when received (ok?, (x j, d j, priority)) do
agentView.add(x j, d j, priority);

checkAgentView();

end do

Algorithm 3.5 Agent behavior when receiving an ok? message

2. As in the ABT algorithm, here when a value-sending agent receives a noGood mes-

sage, it indicates that the constraint-evaluating agent has found a violation of some

constraint. Below a pseudocode shows the key idea to managing noGood messages

(see Algorithm 3.6).

when received (noGood, x j, nogood) do
noGoodList.add(nogood);

when (xk, dk, priority) where xk 6∈ neighbors

is contained in noGood do
neighbors.add(xk);

agentView.add(xk, dk, priority);

end do
checkAgentView();

end do

Algorithm 3.6 Agent behavior when receiving a noGood message

38 Chapter 3. Service Composition Approaches

3. The priority order is determined using communicated values. If the current value

is not consistent with the agentView, the agent changes its value so that the value is

consistent with the agentView, and also the value minimizes the number of constraint

violations with variables of lower-priority agents (see Algorithm 3.7).

checkAgentView()
when agentView and currentValue are inconsistent do

if !consistent(value) ∈ Di with agentView then
backtrack();

else
select d ∈ Di where agentView and consistent(d)

minimizes the number of constraint violations with lower

priority agents;

currentValue← d;

send (ok?, (xi, d, currentPriority)) to neighbors;

end if
end do

Algorithm 3.7 CheckAgentView agent behavior

4. When xi cannot find a consistent value with its agentView, xi sends noGood messages

to other agents, and increments its priority value. If xi has already sent an identical

noGood, xi will not change its priority value but will wait for the next message (see

Algorithm 3.8).

3.3. Service Composition as a Constraint Satisfaction Problem 39

backtrack()
noGoods← { V | V is inconsistent subset of agentView };

when an empty set is an element of noGoods do
broadcast to other agents that there is no solution;

terminates this algorithm;

end do
when no element of noGoods is included in noGoodSent do

for each V ∈ noGoods do
noGoodSent.add(V);

for each (x j, d j, p j) ∈ V do
send (nogood), xi, V) to x j

end do
for each
pmax← max(x j,d j,p j)∈agentView(p j)

currentPriority← 1 + pmax;

select d ∈ D where d minimizes the number

of constraint violations with lower priority agents;

currentValue← d;

send(ok?, (xi,d, currentPriority)) to neighbors;

end do

Algorithm 3.8 Backtracking agent behavior

We illustrate the AWCS algorithm by means of the distributed 4-queen problem. Figure

3.7 describes the initial scenario. Agents communicate these values with their neighbors.

The value within parentheses, over each Xi, represents the priority value (start with 0).

Because the priority value of all agents are equal, the order is defined by the alphabetical

order of the identifier. Thus, only the value of x4 is inconsistent with its agent view. Agent

x4 therefore sends noGood messages and increments its priority order. In this example, the

value minimizing the number of constraint violations is 3, because it conflicts only with x3.

Thus, x4 selects 3 and sends ok? messages to its neighbors (see Figure 3.7 (ii)).

Then, x3 tries to change its value. Since there is an inconsistent value, agent x3 sends

noGood messages and increments its priority order. In this case, the value that minimizes

the number of constraint violations is 1 or 2. In this example, x1 selects 1 and sends ok?

messages to the other agents (Figure 3.7 (iii)). After that, x1 changes its value to 2, and a

40 Chapter 3. Service Composition Approaches

solution is obtained (see Figure 3.7 (iiii)).

x x x x1 2 3 4

1

2

3

4
(i) (ii)

(0) (0) (0) (0)

1 2 3 4 1 2 3 4

(iii) (iiii)

x x x x1 2 3 4

(0) (0) (0) (1)

1

2

3

4

x x x x
(0) (0) (2) (1)

x x x x
(0) (0) (2) (1)

1

2

3

4

1

2

3

4

Figure 3.7: Example of an AWCS algorithm execution

For more details on these algorithms, we refer the reader to Bessiere’s article and

Yokoo’s article on DisCSP [85] [86].

3.3.4 Comparing the Main Features of DisCSP Solving Algorithms

Table 3.1 summarizes the main characteristics of the algorithms described above according

to the criteria described at the start of this section (global state, local actions, decentralized

decision, problem distribution and bounded known).

Table 3.1: Main characteristics of reviewed algorithms

ERA PSO ACO ABT AWCS

Global state is unknown l m m m m

Local actions l l l l l

Decentralized decision m m m m m

Problem distribution l l l l l

Bounded known m w m w w

l: Yes, m: No, w: Partially

3.4. Conclusion 41

Although all the algorithms described above are based on the distribution of the res-

olution process among the participants (for example, agents, systems, ants and particles),

these algorithms require centralization of some processes or data in one element of the

system. Therefore they can not be considered fully decentralized. For example, some al-

gorithms such as ACO and ERA centralize the data, while algorithms such as AWCS and

ABT centralize the consistency of the solution.

3.4 Conclusion

Two main topics were covered in this chapter: classical service composition approaches

and their formalisms, and the constraint satisfaction problem formalism as an alternative

approach to model service compositions. Both drawbacks and advantages were discussed.

First, the composition of services was described as a key feature for solving complex

problems using simple services; then, the static and dynamic composition approaches were

introduced; next, the main formalisms used for service composition were introduced: the

automata as a formalism for modeling the behavior of systems, then Petri Nets, which

make it possible to model synchronization and concurrency in system behavior, and finally,

process algebra to describe or reason about the behavior of processes. These formalisms

focus on simulation and analysis of problems, and then implement suitable solution for

a particular problem. This was the starting point to describe the constraint satisfaction

problem formalism as a tool to model service composition.

The above approaches and formalisms have generally been used to develop mechanisms

for the composition of services that are deployed in closed environments. Still pending is

the development of composition mechanisms that are appropriate for open environments

that do not have dedicated infrastructure, for example, environments with infrastructure

based on mobile devices and ad hoc networks.

The constraint satisfaction problem was presented as a formalism for service composi-

tion, and a set of approaches to solve DisCSP problems was described. There are distributed

versions of classical algorithms that still remain centralized, even though the execution and

the solving process are concurrent; for instance, several sub-processes solve sub-problems

of the whole problem in a parallel manner but are coordinated by a single system that may

fail.

In order to deploy pervasive services, automatic composition, scalability and exception

handling still have to be improved. Automatic composition means that the end user or ap-

42 Chapter 3. Service Composition Approaches

plication developer may request a task, and a composition engine should select adequate

services and provide the user with the composed service in a transparent fashion. Some of

the main open challenges remaining in automatic composition are how to identify poten-

tial services, how to compose them, and how to verify how closely they match a request.

Moreover, composing two services is not the same as composing hundreds of them. In the

real world, users would typically need to interact with several services while applications

may invoke possibly several hundred services. Therefore, one of the critical issues is the

scaling of the proposed approaches to the number of services involved. Finally, pervasive

service composition uses external services that are controlled by the service owner, so the

handling of exceptions during the process of invocation must be taken into account in case

external services do not respond.

The rest of this document will describe our distributed approach to designing service

ecosystems to address the issues described in the sections 2.5 and 3.4.

Chapter 4

An Ecosystem-Based Approach for
Pervasive Hardware Services

As stated in the introduction to this manuscript, our first goal is to develop a framework for

pervasive hardware service ecosystems. To this end, we define a conceptual architecture

around which to frame the main components of the service ecosystem inspired in a social

metaphor.

4.1 A Social Metaphor

The challenges to deploying pervasive hardware services in open and dynamic environ-

ments led us to take inspiration from natural systems, as other authors have done [33] [35]

[39] [37]. In our case we use the ecosystem concept to model a service ecosystem using a

social metaphor. As was seen above in chapter 2, an ecosystem can be defined as a loosely

coupled environment organized by species, where each species conserves the environment,

and is proactive and responsive for its own benefits [31]. There are two key elements in

an ecosystem: species and their environment. Species interact with each other and bal-

ance each other (even though some species might play a temporary leading role) and an

environment supports species’ ecological needs.

The development of a pervasive service ecosystem inspired by a social metaphor should

conceive of the species in it as the members of a society, each having the goal of reach-

ing its objectives by finding the appropriate resources while following social norms. The

social norms ruling the dynamics of the members’ interaction, and the organization of the

ecosystem (typically structured around spatially confined groups of members with similar

43

44 Chapter 4. An Ecosystem-Based Approach for Pervasive Hardware Services

goals) determine how the members of the ecosystem can look for and find resources.

In general, an ecosystem considers the presence of members with several skills and

objectives. These members may play one or more roles (such as provider and customer),

which are dynamic and refer to the behavioral expectations of the individuals in their re-

lations with others. A member of the ecosystem may play the role of customer when it

requires the assistance of another member of the ecosystem to achieve its goals. However,

it may also play the role of provider when it offers assistance to other members of the

ecosystem. Social interactions among ecosystem members (with heterogeneous skills and

resources) playing different roles drive them to reach their goals.

4.1.1 Ecosystem Members and Species

As presented in Chapter 2, there are several metaphors for the construction of ecosystem

services. Depending on the metaphor used, the characteristics of the environment may vary,

as well as the members of the ecosystem and how they interact. With the aim of establishing

an appropriate framework for our purpose, we have proposed a formal definition of each of

these elements.

4.1.1.1 Ecosystem Members

Members of the ecosystem are agent-managed devices. Device can be defined as a 3-

tuple < SR,HR,αi >, where SR = { f0, f1, ...} is its finite set of software resources (i.e. a

set of functionalities the device can provide); HR = {h0,h1, ...} is its finite set of hardware

resources over which the services are carried out; and α=<G,O,S,K > is the agent, where

G = {g0,g1, ...} is its finite set of goals (what the agent must fulfil), O = {o0,o1, ...} is its

finite set of obligations to search for a state of affairs (i.e. provide services), S = {s0,s1, ...}
is its finite set of device functionalities (S ⊆ SR) made public as services to be requested

by other agents, and K = {P, I,D} is its knowledge made up of the agent’s perceptions (P)

of its environment, internal states (I) and application domain knowledge (D).

4.1.1.2 Services

A service is considered as a computational wrapper around some set of functionalities. The

functionalities that are represented by the service can be abstract (e.g. algorithms for data

processing), or manage resources in the real world (e.g. sensors or actuators). A service

is able to represent these different kinds of resources by providing each resource with a

4.1. A Social Metaphor 45

well-defined interface. Formally a service can be defined as a 3-tuple s =< contract,F >

where contract describes the service interface, the set of assumptions that must hold in

order to perform the service, as well as the effects of performing the service, and F ⊆ SR is

the set of functionalities that make up the service. Computing devices typically have lim-

ited resources; therefore, providing complex services could require the cooperation among

devices managed by agents. In this context, there are two kind of services: atomic and

composite services. An atomic service is one in which all the required functionalities and

resources are in the same agent; and a composite service is one whose required functional-

ities and resources are distributed in two or more agents.

4.1.1.3 Species

Species are key elements in a natural ecosystem. A species can be defined as a collection

of ecosystem members who share common characteristics, abilities, needs and often goals.

For our purpose, the service ecosystem species are represented by groups of agents with

similar resources and functionality who are likely to provide common services. There-

fore, agents who are in a common environment (such as a room, a building or a city)

may be members of one service ecosystem. A service ecosystem is defined as a tuple

< CAG,GSR,SO >, where CAG denotes a collection of agent groups (i.e a species in the

ecosystem); GSR denotes social relations among agent groups; and, SO is set of social

norms. Below is a detailed definition of each element:

a) Species as a collection of agent groups(CAG): In this collection of agents groups,

each group is an association of agents with common interests that is regulated by

control mechanisms; these control mechanisms are provided by social norms (i.e.

rules governing agents’ behaviors). Formally an agent group is defined as a 5-tuple

AG =< R,M,rm,RS,GO >, where R = {r0,r1, ...} is the set of roles that an agent

can play, M = {α0,α1, ...} is the set of agent members of the AG group, rm ∈M is

the archetypical agent for its group called representative member of the AG group

(this agent has the best characteristics of its group), RS = {rsi|rsi = (αx,αy),x 6= y}
is the set of relationships (peer to peer) among members αx of the AG group, and GO

is the set of social norms for the AG group. This is the disjuntion of the social norms

of all αx that belonging to the group AG:

46 Chapter 4. An Ecosystem-Based Approach for Pervasive Hardware Services

GO =

|M|⋃
i=1

O(αi,s);

Where O(αi,s) is the obligation of agent αi to provide the service s in support of

another agent or for itself.

b) Social relations among agent groups (SR): a set of relationships (peer to peer)

among representative agents RM of AG groups. This allows interaction among agents

belonging to different groups. It is defined as

SR = {srsi|srsi = (rmx,rmy),x 6= y}.

c) Set of social norms in the society (SO): union of the sets of social norms of the

society groups, where N is the number of species in the ecosystem and GOi the set

of social norms (in terms of obligations) in each group.

SO =

|N|⋃
i=1

GOi

4.1.2 Social Interaction Norms

The way agents interact is determined by the set of fundamental social norms regulating

the ecosystem model. The enactment of social norms by agents will typically affect and

be affected by the local environment and by the other agents in the area. Chapter 5 will

address the question of interaction mechanisms between members of the ecosystem (i.e.,

agents).

4.1.3 Service Ecosystem Environment

There are several definitions and models of the environment, however, for our purposes, the

most appropriate definition is porposed by Bossier et al. in [87], where they define the en-

vironment as "the place in which it is possible to place services, resources, and institutions,

and it must contain support for processes such as service description and discovery of re-

sources." In our case, the service ecosystem environment is the location where it is possible

to situate the resources, services and agents; it should provide interaction mechanisms for

such processes as service composition and adaptation.

4.2. A Conceptual Architecture for Pervasive Hardware Service Ecosystems 47

Up to now, our model is restricted to environments that have at least one permanent

agent and some temporary agents who join later, at specified -itstart-times, and also leave

the environment at the expiration of their life-times. We look at these types of open systems

initially because in them, the social norms set by GO to build agent groups of a service

ecosystem can be kept constant (the temporary agents will build groups based on the same

GO as the permanent ones). In this way, our approach can focus solely on the changes

to the overall capacity (resulting from the temporary agents). Consequently, these open

environments represent distributed systems in which additional resources might be added

to extend agents’ functionalities. For this, the ecosystem organization is based on agents’

similarities, considering their skills, objectives and locations [88].

Distributed devices hosting

the infraestructures

Autonomous A
gents

and Social Norms

Pervasive hybrid
services

Interactions
Members

Species

Users

Resources and
functionalities

Figure 4.1: A Conceptual Architecture for Pervasive Hardware Service Ecosystems

4.2 A Conceptual Architecture for Pervasive Hardware

Service Ecosystems

In order to develop a framework for deploying pervasive hardware services, we have defined

a conceptual architecture based on the social metaphor of an ecosystem, an architecture

around which to frame the key components of an ecosystem. Figure 4.1 presents a con-

ceptual architecture view of the framework, which establishes a bridge between a group of

48 Chapter 4. An Ecosystem-Based Approach for Pervasive Hardware Services

distributed heterogeneous devices and the pervasive hardware services requested by users.

The lowest level is the concrete physical and digital ground on which the services will

be deployed, i.e., networked computing devices and data sources. Devices and data sources

are geographically distributed and interconnected through different type of networks; for

instance, devices at the edge can setup direct ad hoc connections without requiring the

involvement of a managed network. At the top level, users access the ecosystem in order

to consume hardware services, as well as to produce and deploy new hardware services

and data in the ecosystem or to make new devices available. At the lowest and top levels

openness and dynamics arise: new devices can join/leave the system at any time, and new

users can interact with the ecosystem and deploy new services and data items in it. At the

middle level are the abstract computational components of the ecosystem architecture.

4.3 Crowd Evacuation: A scenario

In order to fully understand the potential behind the pervasive hardware service ecosystem

approach, we now introduce the crowd evacuation case, an application scenario where the

proposed ecosystem architecture could potentially be applied.

The application scenario starts with the observation that today’s urban landscape is

becoming an intricate ecosystem where information, originating from a variety of hetero-

geneous sources is being gathered, stored, processed, and utilized by pervasive services. In

particular, such information is being generated by sensors embedded in the environment,

sensors available on mobile devices, mobile services, people on the web, people from the

mobile devices, etc. The common denominator of all this information is that it can be linked

(either directly or indirectly) to a specific geographical location or region; it is extremely

dynamic, since it reflects the social dynamics of an urban environment; and it is vast, as it

is originates from a huge number of sources.

Let’s now imagine a mobile user moving in a completely new urban setting, such as in

an international airport, and looking for the nearest exit because there is fire in the building.

This includes information and services related to the specific location of the nearest exits, to

the safest routes, etc. Luckily enough, the user has the Crowd Evacuation service installed

in his mobile device. The Crowd Evacuation service is a pervasive hardware service that is

able to retrieve, in real time, information about the emergency and safe evacuation routes

originating from a potentially unlimited number of sources (e.g., sensors, users, web, etc.),

to match this information to the user’s profile and situation (e.g., user capabilities, location,

4.4. Conclusion 49

age, etc.) and to deliver it in an interactive way. Proposing convenient evacuation routes for

the user and the possibility of directing him towards safe locations based on his personal

profile, situation and the fire’s evolution is one possible example. This scenario requires:

• Real-time data retrieval from a variety of heterogeneous sources.

• Dynamic linkage of user data (e.g., capabilities, age, location etc.) with the available

information and pervasive services in the local environment.

• Real-time processing of gathered data in order to extract a high-level interpretation

of the information and provide it as an independent service to third parties.

• Dynamic service composition for providing composite services to users.

Combining all these features into a dynamic hardware service delivery platform re-

quires a radical change in the way services are composed and provided at run-time, and

the way information is gathered and processed. State-of the-art technologies can barely

support all these features, since this requires architectural changes in which the complex-

ity is shared across the many distributed autonomous devices involved in the delivery of a

composite service.

Most existing approaches to the case described above provide monolithic solutions, in

which a single application is in charge of interfacing with various sources of information

as well as implementing the required algorithms for processing this information. Further-

more, limited support exists to fully exploit the environmental data, and to extend them

to an enlarged participative approach in which data are spontaneously and anonymously

provided by user devices to serve other users.

The proposed hardware service ecosystem starts from these considerations and defines

an architecture based on the concepts of autonomous agents, social-norm-based mechan-

isms, and distributed service composition, this in order to support a dynamic, adaptive

and run-time pervasive hardware service mash-up. Such interaction mechanisms, run-time

service composition, adaptation and delivery represent the key innovation of the proposed

service ecosystem.

4.4 Conclusion

In this chapter we defined a conceptual architecture around which to frame the key com-

ponents of the service ecosystem inspired in a social metaphor. The social metaphor of

50 Chapter 4. An Ecosystem-Based Approach for Pervasive Hardware Services

the ecosystem and its elements were introduced. The service ecosystem notion is not new,

but previous efforts have generally focused on the context of software services and closed

environments where there is dedicated infrastructure such as servers with high processing

capabilities and reliable communications networks. In the remainder of this document, a)

we define the interaction among ecosystem members by means of social obligations and in-

troduce an agent communication language based on these obligations, and b) we model the

hardware service composition process as a distributed constraint satisfaction problem; in

addition, we present a mechanism to compose hardware services; and c) we present an ex-

tension for modeling the hardware service adaptation process as a dynamic and distributed

constraint satisfaction problem.

Chapter 5

Social Obligations for Agent Interaction
in the Ecosystem

This chapter presents an Agent Communication Language Agent Communication Lan-

guage (ACL) based on social obligations for agent interaction that can provide and request

hybrid services in open environments. An open environment is a space in which computa-

tional devices, including sensors and actuators, can freely enter and leave. Computational

devices, which provide services for users, are considered physical agents. Typically, these

devices have limited resources to provide their services. In order to extend their resources

in open environments, we focus on the design of a service ecosystem based on social inter-

actions among agents. For this purpose, an ACL suitable for open organizations is required.

Therefore, we have used a socially inspired approach to propose an ACL based on obliga-

tions for physical agents in open environments.

5.1 Agent Interaction

The social ability of the ecosystem’ members (agent interaction) is fundamental for them

to reach their objectives. The ecosystem should be provided with interaction patterns that

direct agents towards the ecosystem’s design objectives. Interaction protocols allow agents

to do this in a consistent manner. An interaction protocol is a set of rules governing the

exchange of messages among agents in order to coordinate their actions for the achievement

of their objectives.

There are several formalism to model interaction protocols between agents; however,

Deterministic Finite State Machines(DFSMs) and Petri Nets (PN) deserve special attention

51

52 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

due to their mathematical background and graphical representation.

5.1.1 Deterministic Finite-State Machines

A DFSM is a directed graph whose nodes represent states of a protocol, and each edge

means the transition from one state to another [89]. Edges are labelled with the messages

that agents may communicate; subsequently, depending on the transmission of messages,

the interaction state evolves. In addition, a DFSM needs initial and end states, as well

a transition function. This function establishes how the protocol evolves, for a given se-

quence of messages. The use of DFSM has spread widely for the purpose of modeling in-

teraction [90] [91] [92]. Even though DFSMs provide a graphical formalism and a variety

of validation tools, statecharts are the most common instrument for modeling interaction

protocols. In fact, a modified version of statecharts becomes part of the Unified Modeling

Language (UML), which is the specification language used most often for software projects

[93].

The disadvantages of DFSMs-based approaches are related to their power of expression,

because only regular languages can be represented. This makes DFSMs unsuitable for

representing aspects of synchronization required for many interaction protocols.

5.1.2 Petri Nets

PN formalism provides both graphic and mathematical representations. A PN is a directed

graph with two types of nodes: transitions and places [61]. Places are connected with trans-

itions by means of output and input edges. Transitions represent the emission or reception

of messages. With regard to places, the number of tokens of all places represents the state

of the interaction. There are several variants of PN; however the most commonly used

to model interaction protocols is the Colored Petri Netss(CPNs). Tokens in a CPN have

a color, which is a data type; places only contain tokens of a particular color; arcs have

attached expressions, which receive tokens as input parameters and evaluate them in order

to enable transitions [94]. Usually, in a CPN that models a interaction protocol, transitions

represent the reception and execution of messages, and places provide the interaction state

of the protocol[95].

One disadvantage of CPNs-based approaches relates to their lack of specialization in

the modeling of interaction protocols. Even for simple interaction protocols, CPNs are

hard to read by designers, and for this reason, their further modification and adaptation to

5.2. Obligations 53

similar protocols is not trivial [96] [97].

In MAS, approaches for modeling agent interactions can be classified as mentalist or

socials. The best-known mentalist approach is based on the Beliefs, Desires and Intentions

(BDI) agent model [98]. The BDI model has been used by the Foundation for Intelligent

Physical Agents (FIPA) to provide interaction semantics and it has been adopted for spe-

cifying its agent communication languages [99].

Despite its acceptance in the multiagent research community, proposals based on BDI

semantics are only suitable for closed environments [100], where agents are homogeneous

with standardized beliefs. To address the open environment issues, there are proposals

such as [101], [102] and [103] for the use of ACLs based on social semantics to model

interactions by means of social norms [104]. Social norms are public by nature and suitable

for open environments; therefore, agents are aware of the norms they have to follow.

Even though there are ACLs based on social norms such as obligations, commitments,

prohibitions and permissions, they are implemented following mentalist approaches, which

prevents them from being suitable for open environments [100]. Some other proposals

focus on solutions that rely on an Internet connection and ignore the physical dependencies

of services. We propose a communication language based on social norms for supporting

the openness and dynamism of the environment in real scenarios, while preserving the

autonomy of agents. Additionally, devices must adapt their services constantly to meet

user requirements and preferences, as well as environmental changes. To deal with this, we

propose using an agent approach in order to provide devices with autonomy. Devices are

able to make decisions and modify their local environment with the least user intervention

as possible.

5.2 Obligations

Our service ecosystem is inspired by the social metaphor of a natural ecosystem, where

species are represented by agent groups. Thus the interaction among agents is governed

by social norms. Social norms can be modeled in terms of commitments, prohibitions,

permissions or obligations. Our proposal is based on obligations in order to support agent

interaction in open environments. Definitions of obligation, their life cycle and basic oper-

ations are provided.

Obligation are social impositions on oneself to provide a service. This notion is similar

to those presented in [105] and [106]. Using event calculus formalism, an obligation is

54 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

represented as O(α,β), which means that agent α is committed to providing service β (this

service can be atomic or composed). The motivation of agents to cooperate with each

other is based on the following assumption: an agent α with limited resources requires

help from another agents (e.g. from agent δ) to achieve its goals. To this end, agent α

accepts obligations induced from other agents with the intention of exchanging them for

the rights to induce obligations in other agents (e.g., on agent δ). Similarly, if agent α

receives support from agent δ, then agent α is bound to assist the agent δ.

In order to manage obligations, a set of basic operations is required. These operations

are defined by means of event calculus, which was selected for its intuitive management of

events. The main elements of a predicate in event calculus are events and fluents. In our

case, events represent sending or receiving messages, or a sensor activation. Fluents are

boolean properties that can be affected by events, and their values change over time. Here

we used a subset of the event calculus predicates presented by Shanahan in [107]. These

predicates are defined in table 5.1.

Table 5.1: Subset of event calculus predicates

Predicate Description
HoldsAt(f , τ) Fluent f holds at time τ.
Initiates(ε, f , τ) Fluent f holds after the execution of event ε at time τ

Terminates(ε, f , τ) Fluent f does not hold after the execution of event ε at time τ

Happens(ε, τ) Event ε is executed at time τ

For a detailed explanation of the calculation of events predicates the reader is referred

to [107] and [108].

5.2.1 Basic Operations on Obligations

Obligations can be created, released and canceled. This notion is akin to the one presented

in [109] and [106]. However, assuming that the environment is open, it is unlikely that an

obligation will remain static. For this reason we consider it necessary to add support for

adapting obligations after they are created. In the following sections, the operations for

managing obligations are defined:

5.2.1.1 Create

O(α,β), can be created only by the receiver agent (there could be the case of internal

messages, where the sender of the message is also the receiver). An obligation is created

5.2. Obligations 55

when an agent α generates an event ε (for example, a service request), denoted by ε(α), at

time τ. Figure 5.1 illustrates the interaction between agents:

CreateO(ε(α),O(α,β),τ) : {Happens(ε(α),τ)∧ Initiates(ε(α),O(α,β),τ)}

Figure 5.1: Agent α1 has assumed an obligation β

The occurrence of event ε commits agent α to providing service β at time τ. Obligations

can be induced from external agents; however, only the receptor agent can choose to accept

(see Figure 5.2) or reject (see Figure 5.3) these obligations; an induced obligation is defined

as:

CreateIO(ε(α), IO(δ,β,ω),τ) :

{Happens(ε(α),τ)∧ Initiates(ε(α), IO(δ,β,ω),τ)∧HoldsAt(δ,τ)}
where ω = AllowedBy(δ,O(δ,β))

Figure 5.2: Agent α2 has accepted obligation β induced by agent α1

56 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

Here, agent α induces an obligation in the physical agent δ, adding a necessary condi-

tion ω that corresponds to the predicate AllowedBy(δ,O(δ,β)), which must be evaluated

by receptor agent δ. The AllowedBy predicate means the decision of δ to accept or reject

the obligation.

Figure 5.3: Agents have rejected (overlooked) the obligation induced by agent α1

5.2.1.2 Release

An obligation O(α,β) is released by an agent α when service β has been provided. Figure

5.4 illustrates the interaction between agents:

ReleaseO(ε(α),O(α,β),τ) :

{Happens(ε(α),τ)∧ Initiates(ε(α),β,τ)∧Terminates(ε(α),O(α,β),τ)}

Figure 5.4: Obligation β assumed by agent α1 is released

5.2. Obligations 57

The release of an obligation means the occurrence of an event ε(α) that initiates service

β and terminates the obligation O(α,β). An induced obligation can only be released by the

receptor agent.

5.2.1.3 Cancel

An obligation O(α,β) can be canceled by agent α when the obligation is no longer required

or the agent is not available to provide service β; however, the cancellation of an obligation

must lead to the acquisition of compensatory obligations (Φ) in order to make up for the

cancellation of the obligation. In addition, the cancellation of an obligation implies the

cancellation of its linked obligations (Γ) that have a dependence on the canceled one. Figure

5.5 illustrates the interaction between agents. This is formally defined as follows.

CancelO(ε(α),O(α,β),τ) :

{Happens(ε(α),τ)∧Terminates(ε(α),O(α,β),τ)∧ Initiates(ε(α),φ,τ)∧
CancelO(ε(α),γ,τ)|γ ∈ Γ,φ ∈Φ}

Figure 5.5: Obligation β is canceled by agent α1

In the case of induced obligations, these can be canceled without collateral effects,

because they depend on the physical agents’ autonomy. In addition, the cancellation of an

induced obligation requires the occurrence of an event ε(α) that terminates the obligation

IO(α,β,δ) (see Figure 5.6); this is defined as follows:

CancelIO(ε(α), IO(δ,β,ω),τ) :

Happens(ε(α),τ)∧Terminates(ε(α), IO(δ,β,ω),τ)

58 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

Figure 5.6: Induced obligation β is canceled by agent α1

5.2.1.4 Adapt

Assuming that the world is dynamic, it is unlikely that an obligation will remain static over

time; for this reason adaptable obligations are required. As defined above O(α,β) means

that agent α is obligated to provide service β. Based on this definition, an adaptation’s

operation modifies the required service β. In obligation terms, the occurrence of an event

ε could commit agent α to adapting its original obligation O(α,β) to O(α,β′) at time τ;

however, the adaptation of an obligation could lead to the adaptation of linked obligations

(Λ). In addition, the adaptation of an obligation could means the acquisition of new oblig-

ations (Ξ) and the cancellation of some obligations(Γ) linked to it. This is formally defined

as follows.

AdaptO(ε(α),O(α,β),O(α,β′),τ) :

{Happens(ε(α),τ)∧CancelO(ε(α),O(α,β),τ)∧ Initiates(ε(α),O(α,β′),τ))∧
AdaptO(ε(α),λ,β′(λ),τ)∧ Initiates(ε(α),ξ,τ)∧CancelO(ε(α),γ,τ)|λ ∈ Λ,ξ ∈ Ξ,γ ∈ Γ}

An O(α,β) can be adapted only by the agent α that has assumed this obligation. How-

ever agent α can request the adaptation of induced obligations on another agent δ. In the

case of the adaptation of conditional obligations, these can be adapted without collateral

effects, because they depend on the agent autonomy; this is defined as follows:

AdaptIO(ε(α), IO(δ,β,ω), IO(δ,β′,ω),τ) :

{Happens(ε(α),τ)∧CancelIO(ε(α), IO(δ,β,ω),τ)∧CreateIO(ε(α), IO(δ,β′,ω),τ)}

A set of messages is not enough to enable agent cooperation, an agent communication

language is required. The next sections explains the obligation life cycle and basic acts of

the agent communication language.

5.3. Obligation Life Cycle 59

5.3 Obligation Life Cycle

As with other approaches, an interaction mechanism based on social norms expresses both

static and dynamic aspects of systems. The dynamic aspect arises from the interpretation

of such interaction mechanisms and the consequent acts on obligations by each agent in the

system. Thus, obligations have a life cycle in runtime. In previous works, as in [106], au-

thors consider that obligations may be acquired, released or canceled. That is, an obligation

can be in one of three possible states.

Acquired

Releasedachieved

Cancelled

Figure 5.7: Three-state model for obligations

In this model based on three states (see Figure 5.7) an obligation is created when the

condition for assuming it is true. Once the obligation is created, the state changes to

released when the obligation is achieved by the agent. The obligation state changes to

canceled when the agent is not able to achieve the obligation.

Other authors have proposed early obligation life-cycles (e.g. [110]) based on four

states: active, fulfilled, unfulfilled, and inactive . Thus, the life cycle of an obligation

is based on four states (see Figure 5.8). An obligation is created when the condition of

a rule is satisfied, and its initial state is active. The state becomes f ul f illed when the

obligation is achieved before the deadline. However, if the obligation is not achieved by

the agent before the deadline, then the status changes to un f ul f illed. Finally, the state of

the obligation changes to inactive when its trigger condition ceases.

60 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

Active

Fulfilled

Inactive

Unfulfilledcondition

condition

achieved

deadline

Figure 5.8: Four-state model for obligations [110]

Acquired

Active

Running

Waiting

Adapting

Released

Some event
or resource
is required

New
obligation

Event completion
and available

resource

Scheduler
dispatch Interrupted

obligation

Completed
adaptation

Change
or fault

Achieved
obligation

Unable to fulfill
the obligation

Adaptation is
not possible

event or resource
is required

Resources are available and
there is no dependence of

events

Cancelled

Unable to
fulfill the
obligation

Figure 5.9: Proposed model for obligation

Although the models described above define different states that allow an agent to

manage its obligations, they are not appropriate when considering the management du-

5.3. Obligation Life Cycle 61

ties within dynamic ecosystems in which the agents need to share resources in a dynamic

world.

In our case, based on the fact that an obligation means providing a service and a service

represents a set of functionalities to be performed in some order, then obligations cannot be

atomic. Furthermore, after an obligation is acquired and before it is released, there may be

changes in the environment and user requirements. Additionally, agents can enter and leave

the environment and even the availability of resources in agents may change. Therefore,

it is necessary to consider various intermediate states in the life cycle of an obligation.

Taking inspiration from the scheduler of an operating system for concurrent operations, we

propose a life cycle for obligations with seven possible states as defined in Figure 5.9 and

explained below.

1. An obligation Oi(α,β) for providing a service is acquired and created when an agent

α assumes the obligation.

2. Once the obligation is created, its initial state becomes active if the resources re-

quired to meet the obligation are available and there is no dependency on some event.

Otherwise, the initial state of the obligation changes to waiting.

3. When an obligation’s state is waiting, it can change to active if the resources required

to meet the obligation become available and there is no dependency on some event,

and cancelled if the agent is unable to fulfill its obligation before the deadline.

4. The obligation’s state changes from active to running according to a policy for deal-

ing with obligations; in our case, for the sake of simplicity we have chosen a non-

apprehensive First Input, First Output (FIFO) policy.

5. Once the running time for the obligation has finalized, the execution is interrupted

and the obligation’s states changes to released if the obligation was achieved before

its deadline, active if the obligation has not yet been achieved within its time limit,

cancelled if the agent was unable to fulfill its obligation before the deadline, and

adapting if there was a change in the environment or a failure in the system.

6. The obligation’s state changes from adapting to cancelled if the adaptation was not

possible, active when the adaptation is completed.

7. Obligation Oi(α,β) ends its life cycle in runtime when its state becomes released or

cancelled.

62 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

Unlike the models proposed by other authors, our proposal, inspired by early models

such as [110] and [106], defines a lifecycle for obligations that supports the use of shared

resources in dynamic environments. The objective sought with our model is to reduce the

time required to reach multiple obligations within an ecosystem of services where resources

can be shared and their availability is not guaranteed. This is achieved by allowing the

agents to interact and make collective decisions based on possible intermediate obligation

states (i.e. obligation states after being acquired and before being released). In order to

provide the proposed life cycle with support, we have implemented a Java package for

handling obligations, to be used by subsequent deployments agents (see the conceptual

model in Figure 5.10).

Environment Resource

Agent Scheduler

Society Obligation

1

0..*

1 0..*

1

1

1

1..*

1

1..*

1 1

1 1..*

is situated in

implements an

belongs to a

regulated by

m
an

ag
ed

 b
y

composed by

Event

composed by1

0..*

Figure 5.10: Conceptual Model for Managing Obligations

5.4 Basic Acts for a Social ACL

In this section, from the notion of obligation we derive a set of basic communicative acts

for a social agent communication language. The obligation-based agent communication

language is derived from speech act theory [111], comparable to the ones presented in

(Colombetti, 2000), (Fornara and Colombetti, 2002), and (Singh, 1999). The illocutionary

acts are defined by means of operations over the obligations of agents. The basic com-

municative acts are categorized as assertive, directive, commissive and declarative. Some

FIPA-ACL primitive acts (FIPA, 2002b) are used, but their BDI definition is replaced by

5.4. Basic Acts for a Social ACL 63

a definition based on obligations, which does not depend on the beliefs of agents. In the

following sections communicative acts are defined using the operations over obligations

presented in the previous section.

5.4.1 Assertive Acts

This type of act attempts to convince the receptor agent of a message that some fluent β

was achieved by the sender agent, i.e. an obligation was released. In f orm is our prototype

of assertive acts and it is defined as follows:

In f ormO(α,δ,β,κ)≡
ReleaseO(In f ormO(α,δ,β,κ),O(α,β),τ)

The symbols α and δ represent the sender and receptor of the message, respectively;

β means the service that was provided; the symbol κ is a set of domain data that results

from the performance of β. The message In f orm(α,δ,β,κ) means that the sender releases

a previously assigned obligation to provide service β.

5.4.2 Directive Acts

This type of act attempts to induce obligations in other agents. We are considering two

cases: a) an agent α requests another agent δ to accept an obligation to provide a service β

or b) an agent α requests another agent δ to accept one change of an obligation previously

induced to provide service β′. This is formalized using induced obligations, where only the

receptor agent can choose to accept or reject the creation of an obligation or the adaptation

of an induced obligation. This is stated with the predicate AllowedBy. RequestO and

RequestA are our prototypes of directive acts their definitions are as follows:

RequestO(α,δ,β)≡
CreateIO(RequestO(α,δ,β), IO(δ,β,ω),τ)

|ω = AllowedBy(δ,O(δ,β))

β is service to be induced as an obligation. The message RequestO means that an

induced obligation is created; however, the obligation is only active if the agent δ (receptor)

chooses to assume the obligation, i.e. agent δ evaluates the AllowedBy predicate as true.

64 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

RequestA(α,δ,β,β′)≡
AdaptIO(RequestA(α,δ,β,β′),

IO(δ,β,ω), IO(δ,β′,ω),τ)

|ω = AllowedBy(δ,O(δ,β′))

β is a service of a previously induced obligation that must be adapted to provide service

β′. The message RequestA means that an induced obligation is adapted; however, the

adapted obligation is only active if the agent δ (receptor) chooses to assume the adaptation

of the obligation, i.e. agent δ evaluates the AllowedBy predicate as true.

5.4.3 Commissive Acts

These types of acts are promises to provide a service. Commissive acts are part of small

protocols, where an agent α sends a RequestO or RequestA message to another agent δ and

the obligation is accepted or rejected according to decision ω of agent δ. To express this,

four communicative acts are defined:

AgreeO(δ,α,β)≡
CreateO(Agree(δ,α,β),O(δ,β),τ)∧HoldsAt(AllowedBy(δ,O(δ,β)) = true,τ)

Re jectO(δ,α,β)≡
CancelIO(Re ject(δ,α,β), IO(δ,β,ω),τ)∧HoldsAt(AllowedBy(δ,O(δ,β)) = f alse,τ)

After the reception of a RequestO message that attempts to induce an obligation, the

receptor agent can send an AgreeO (agent δ accepts the induced obligation) or Re jectO(

agent δ rejects the induced obligation) message. The AgreeO message means the induced

obligation is activated in the sender agent and an obligation is created in the receptor agent.

If agent δ rejects the induced obligation, it sends a Re jectO message that cancels the in-

duced obligation in the sender agent.

AgreeA(δ,α,β,β′)≡
CreateO(Agree(δ,α,β,β′),O(δ,β′),τ)∧HoldsAt(AllowedBy(δ,O(δ,β′)) = true,τ)

Re jectA(δ,α,β,β′)≡
CancelIO(Re ject(δ,α,β), IducedO(δ,β,ω),τ)∧CancelO(Re ject(δ,α,β),O(δ,β),τ)∧

HoldsAt(AllowedBy(δ,O(δ,β)) = f alse,τ)

5.5. Modeling a Protocol by Means of Obligations 65

After the reception of a RequestA message attempting to induce the adaptation of an

obligation, the receptor agent can send an AgreeA (agent δ agrees to adapt a previously

induced obligation) or Re jectA(agent δ refuses to adapt a previously induced obligation)

message. The AgreeA message means the induced obligation adaptation is activated in

the sender agent and an obligation is adapted in the receptor agent. If agent δ rejects

the induced obligation adaptation, it sends a Re jectA message that cancels the induced

obligation in the sender agent and also cancels the previously assumed obligation in the

receptor agent.

5.4.4 Declarative Acts

These types of acts are useful for making self-induced obligations public, i.e. declarative

acts notify other agents about the creation of self-induced obligations. Two primitive acts

are considered:

Con f irmO(α,δ,O(α,β))≡
CreateO(Con f irm(α,δ,O(α,β)),O(α,β),τ)

An agent α can sends a Con f irmO message to another agent δ to declare its obligation

to achieve a state of affairs. However, if some obligation was already released, agent α

sends a Discon f irmO message.

Discon f irmO(α,δ,Obligation(α,β))≡
ReleaseO(Discon f irm(α,δ,O(α,β)),O(α,β),τ)

5.5 Modeling a Protocol by Means of Obligations

This section describes the implementation of an interaction protocol by means of obliga-

tions enabling agent organization. The protocol is based on the acts described earlier in

this chapter. This protocol is based on the following idea: members of same species work

together to achieve common goals. We propose building species of agents (for the shake of

simplicity, each agent α represents a device) to provide services and achieve common aims.

However, the physical environment and functional requirements are constantly changing;

therefore it is false that the agents’ organization in an ecosystem must remain static. For

this reason we propose a clustering algorithm based on skills and locations to build initial

species, where each cluster is adapted on the basis of the current aims of each agent.

66 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

In the design of wireless networks, it is often necessary to connect the whole network

using the least amount of resources. However, our objective is to create suitable network

connections for pervasive hybrid services. Cluster-based control structures allow a more

efficient use of resources because a hierarchical view of the created network through clus-

tering decreases the complexity of the procedure for creating network. This is especially

true in mobile and ad hoc networks made up of a large number of individual devices.

On a topology level, our clustering is done by grouping devices (sharing current aims

and with similar skills) inside a certain transmission area (see figure 5.11). Members α of

each group AGi can play different roles such as participant and representative.

a)

b)

ParticipantCluster Representant

Cluster edge Non-cluster edge

Figure 5.11: Clustering approach - a) Original connection graph, b) Possible organization
of species

5.5.1 Preliminaries

Each participant is instantiated and represented by an agent; this agent has a unique iden-

tifier denoted by α. Each α has a set of skills to provide one or more services. In this

5.5. Modeling a Protocol by Means of Obligations 67

paper we assume the emergence of clusters based on a minimal percentage of similarity in

three dimensions: skills, locations and current aims. In the ecosystem of services, these

clusters mean agents working to provide services and achieve common aims. However,

these clusters are not fixed and may change over time.

In this work, it is beyond our scope to derive similarity functions. In this regard for

the shake of simplicity we assume the existence of three functions: (i) a similarity func-

tion based on agents’ skills that enables agents to determine distances between them, (ii)

a function to determine a similarity percentage between two aims and (iii) a function to

determine the geographical distance between two agents α and δ. Each cluster in the eco-

system should have a representative participant agent αR and some participant agents α.

The choice of the αR is based on the skills associated with each agent α and its location;

the agent α with best skills to represent a cluster plays the αR role. In order to achieve an

appropriate partition of initial clusters in the ecosystem, the clustering process must satisfy

the following properties:

• Each agent α has at least one agent αR as a neighbor (two agents α and δ are neigh-

bors if they belong to the same cluster).

• Each agent α must affiliate with the neighboring agent αR that has the greatest sim-

ilarity to it, based on skills, location and current aims.

• Two agents αR cannot be neighbors.

The clustering process is executed in all agents and each one decides its own role (αP,

αC or αR); depending only on the neighbors’ decisions. Thus initially, only the agent α

with the best skills will broadcast a message to its neighbors stating that it will be the αR.

When one or more of these messages are received, agent α will choose to join the cluster of

the agent αR with the best skills. If any message has been received by agent α from another

agent δ with higher skills, then α will send a message to promote itself as the new αR.

5.5.2 Clustering-Based Protocol

The process of creating and adapting clusters in the ecosystem, is driven by messages: a

specified behavior will be executed by the agents depending on the reception of the corres-

ponding message. The main messages used by agents in the clustering process are:

• In f ormO(α,δ,ChangeRPA,κ) is used by an agent α to inform its neighbors that it is

going to be the agent αR.

68 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

• In f ormO(α,δ,GoInto,κ), with which an agent α communicates to its neighbors that

it will be part of a cluster whose agent αR is a neighbor.

• In f ormO(α,δ,CurrentAim,κ) is used by an agent α to inform its neighbors that it

has a new aim. If its neighbors’ aims are similar to its current aim, then agent α

remains in the current cluster. Otherwise α finds, in its vicinity, another agent αR

with goals similar to its current aim. An agent α may have one or more current aims;

it can thus belong to more than one cluster.

• In f ormO(α,δ,AddRPA,κ) is used by an agent α to inform its neighbors that it will

be part of other clusters, but remain in the current cluster too.

• In f ormO(α,δ,NewPA,κ) is used by an agent α that has come to the ecosystem.

These messages start the clustering process based on three dimensions: skills, loc-

ation and aims. The priority of each dimension can be adjusted depending on the

problem domain.

• In f ormO(α,δ,LostPA,κ) is sent when an agent α detects a link failure with another

agent δ (we assume the existence of a low-level function to detect link failures).

All species in the ecosystem are dynamic and each agent α can belong to one or more

species at one time.

5.6 Conclusion

In this chapter, we extended the notion of obligation as social norm (presented in [103])

and introduced the adaptation of obligations and their life cycle. We defined an obligation-

based agent communication language, made up of a set of elocutionary acts with semantics

expressed in terms of obligations. The aim of the ACL is to provide semantics according

to the kind of message sent, and to establish an explicit link between messages and the

domain knowledge attached to them.

There are some approaches that are close to the one presented in this chapter. The

closest one is presented in [112], where a commitment-based ACL is defined, making use

of commitment objects to provide semantics for speech acts. Elocutionary acts are also

based on Searle’s taxonomy of acts [111]. The assertive speech act (inform) and the main

commissive speech act (promise) have the same explicit definition, leaving their differences

5.6. Conclusion 69

to the interpretation (i.e., there are ambiguous definitions). Another difference is the defin-

ition of a promised primitive act for commissives, while here, comissive acts are managed

as responses to the reception of directive acts.

Another approach that proposes commitment semantics for agent communication lan-

guages is presented in [113]; there, a commitment requires the participation of three agents:

a debtor, a creditor, and an authority, that validates the commitment. This meaning of com-

mitment has similarities with the concept of obligation that we present in this chapter, given

that obligations are self-commitments. In our approach, the debtor and the creditor are rep-

resented by the same agent. This extends the scope of the validity of obligations to all the

contexts of the agent’s interaction and not only to the context of its creditor, as in commit-

ments. Nevertheless, obligations require external mechanisms to guarantee the fulfillment

of the agents’ obligations. These mechanisms could be provided by the proprietor of the

organization (i.e., the representative agent).

70 Chapter 5. Social Obligations for Agent Interaction in the Ecosystem

Chapter 6

An Approach for Pervasive Hardware
Service Composition and Adaptation

Hardware services composition in ecosystems enables devices to use resources in the local

environment in order to provide pervasive services. Current work in the development of

service ecosystems on mobile and ad hoc networks has yet to address the dynamic com-

position of hybrid services. To address this issue, in this chapter, we model the service

composition as a distributed constraint satisfaction problem and a service relevance model.

Simulation results show the performance of our protocol in terms of messages and com-

position time. Finally an illustrative study case is discussed.

6.1 Pervasive Hardware Service Composition

An open challenge in achieving an ecosystem of pervasive hardware services is how to

allow for the automatic composition of hardware services (based on the services available

in the user’s local environment), in order to fulfill user requirements with limited human

intervention. Thus, the aim is to automate the composition process through the discovery of

new hardware services and to determine the required services based on current conditions

of the local environment. In this chapter we examine the possibility of performing hardware

service composition by modeling and solving it as a DisCSP.

Unlike traditional schemes, DisCSPs can be solved without the need for agents to dir-

ectly divulge complete and precise information about their domain and constraints. This

is relevant when it comes to hardware service composition for privacy and security reas-

ons, as there may be information pertinent to composition that an agent does not wish to

71

72
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

divulge.

The resulting contributions of this Chapter are a DisCSP model for hardware service

composition in ecosystems based on MANETs, and a hardware service composition pro-

tocol utilizing an asynchronous backtracking-based algorithm for solving the respective

DisCSP.

The rest of this chapter presents a model of the service composition process as a DisCSP

and DynCSP problem, and describes our proposed protocol for performing the service

composition as well as our heuristic for service adaptation.

6.2 Problem Formulation

We start by considering an ecosystem composed of mobile and fixed devices. These devices

are modeled by agents providing one or multiple services, able to be invoked by peer

agents. Deploying pervasive hardware service involves the composition of hardware ser-

vices provided by devices in the user’s local environment and offers a pervasive hardware

service to the user, satisfying an atomic task. Starting from a task we generate a STask as

3-tuple 〈T R,TC,T P〉 where T R = {tri|i = 1, ...,n} is the finite set of services needed to

fulfill the task; tri is a service requirement; TC = {tci|i = 1, ...,m} represents a finite set of

constraints over the set T P to allow the intended behavior of a composed pervasive service;

and T P = {t pi|i = 1, ...,q} is a finite set of task constraints managed by the user.

Our objective is to examine possible composition configurations in a user’s local en-

vironment and to identify the configuration that satisfies all service requirements, adheres

to all service constraints, and best caters to the user’s preferences. Complicating this pro-

cess is the fact that agents are autonomous and may be operating under different objectives

and behaviors used in making composition decisions. This makes centralized solutions or

methods involving high amounts of information sharing unsuitable for solving this prob-

lem. An acceptable solution is a distributed one, utilizing minimal information sharing and

providing efficient negotiation techniques.

6.3 Service Composition as a DisCSP Problem

Satisfying the objective outlined in the previous section, we model pervasive hardware ser-

vice composition in the form of a distributed constraint satisfaction problem disCSP. A

disCSP is represented as a 4-tuple 〈X ,D,C,A〉 where X = {xi|i = 1, ...,n} is a finite set of

6.4. Pervasive Hardware Service Composition 73

variables; xi is a variable corresponding to a service needed to satisfy a particular user re-

quirement; D= {Di|i= 1, ...,n}, such that for each xi there is a service option domain Di; C

is a finite set of constraints {C1,C2, ...,Cm} of the user requirement; and A is a set of agents

over which the variables and constraints are distributed. At any agent, the set of possible

values for variable xi is its current domain Di. Figure 6.1 shows a visual abstraction. The

matrix disCSP is constituted by agents αi and required services x j; each cell represents a

service that each agent αi can provide and its relevance.

X X X X1 2 3 4 X X X X1 2 3 4

1

2

3

4

∝

∝

∝

∝

1

2

3

4

∝

∝

∝

∝

disCSP disCSP'

Figure 6.1: Matrix representation of a disCSP

Having identified our constraint satisfaction problem, we apply an algorithm based on

the asynchronous backtracking algorithm [65] to solve the pervasive hardware service com-

position problem. That is, we transform the matrix disCSP into disCSP′).

6.4 Pervasive Hardware Service Composition

6.4.1 Dynamic-disCSP Framework

From our perspective, pervasive hardware services must be user-centered, with the services

remaining available despite user mobility through heterogeneous environments. Our ob-

jective is to examine possible pervasive service configurations in the user’s vicinity and

to identify a configuration that satisfies user requirements, and fulfills task constraints and

user preferences. Figure 6.2 shows the conceptual model of an ecosystem constituted by

devices (fixed and/or mobile) modeled by agents, connected by an ad hoc network and

providing one or more services (each of these services can have constraints) that may be

requested by peer agents, that is, with the aim of fulfilling one or more tasks (each task can

have requirements and preferences).

74
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

Agent

Task

ServiceConstraint

Requirement

is provided by ▶is imposed by ▶

is imposed by ▶

is
 in

cl
ud

ed
 in

 ▶

1..*

*

1

1..*1..*1..* 1

1..*

is composed by ▶

1
0..*

Preference

is imposed by ▶
0..*

1 is requested by ▶

1

1..*

Figure 6.2: Conceptual model of a pervasive service ecosystem context

Below we describe a protocol for the composition of pervasive hardware services. This

protocol comprises two phases: candidate agent formation and service composition.

6.4.2 Formation of Candidate Agents

The objective of the formation phase is to identify potential participant agents for the ser-

vice composition in the user local’s environment. Figure 6.3 shows an abstract scenario

modeled by agents devices. At this stage it is worth mentioning the existence of a max-

imum transmission range of the initiator (i.e. the agent that requires a service composition).

All agents that are within this range are possible participants in the construction of the solu-

tion. However, it must be considered that both the initiator and the participating agents can

move, so the pool of potential agents that can contribute to the solution may change. There-

fore, the solution must be adaptable (adaptation is discussed in future sections).

When a user requirement becomes active in the user device (for example, in figure 6.3 a

user requirement becomes active in the device managed by agent α0), the agent sends a task

request (TaskRequest) message containing the STask description to systems in the user’s

environment. The STask is used by receiving agents to decide whether they can contribute

at least one service to fulfill the STask. Agents that may contribute send a TaskReply

message to the system initiator. With the TaskReply messages the agent initiator builds

a candidate agent list, where each item of the list has its address and its relevance factor

to fulfill the STask. Once the list is made, the initiator agent sends it to all participating

agents. Figure 6.4 shows a possible message sequence example where a user requirement

6.4. Pervasive Hardware Service Composition 75

∝3

∝2

∝0

∝5

∝6

∝4

∝7

∝1

Initiator

Potential
participant

Transmission
range of
initiator

Figure 6.3: Agents in the local environment of the α0 agent (considering one hop)

becomes activated at agent α0.

The relevance RLi(αi) means the appropriateness of a service provided by an agent.

The relevance is determined by each agent αi, using evaluation function 6.1 to determine

the relevance of services provided by agents that model non-mobile devices, and evaluation

function 6.2 for services provided by agents that model mobile devices.

RL1(αi) = K1 ·R(αi)+K2 ·
1

WL(αi)
(6.1)

RL2(αi) = K1 ·
1

S(αi)
+K2 ·R(αi)+K3 ·

1
WL(αi)

(6.2)

K j ∈ R is a constant for tuning the relevance factors based on specific applications; its

value is limited by 0 < K j < 1. S(αi) is the device’s speed (in the case of mobile devices)

and it is inversely proportional to its relevance factor (i.e. devices with high speed have

low relevance for the service composition). R(αi) represents the amount of the agent’s

resources (depending on a specific application, each kind of resource may have a different

relevance), and WL(αi) means the current work load of αi; it is inversely proportional to

its relevance factor. The relevance factors can vary based on the application domain. The

76
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

∝2 ∝3 ∝5∝0 ∝6

TaskRequest (id, STask)

TaskReply (id, Services)

TaskRequest (id, STask)

TaskRequest (id, STask)

TaskReply (id, Services)

TaskReply (id, Services)

TaskRequest (id, STask)

TaskReply (id, Services)

∝7

TaskRequest (id, STask)

TaskRequest (id, Candidates)
TaskRequest (id, Candidates)

TaskRequest (id, Candidates)
TaskRequest (id, Candidates)

Figure 6.4: Candidate agent formation

relevance factor RL(αi) has two purposes: to improve the participant selection and to build

the agent order that will be required in the composition and adaptation phases.

6.4.3 Pervasive Hardware Service Composition Algorithm

Once the initiator agent has the list of participating agents, we apply the algorithm for

pervasive hybrid service composition (PHSC). This is based on the ABT algorithm used for

resolving distributed constraint satisfaction problems [114] [66]. Like several algorithms

for solving DisCSP, it requires a total ordering of the relevance of participating agents. For

each αi ⊆ A, agent α j has a higher relevance than αi if it appears before αi in the total

ordering (on the candidate agent list). On the other hand, α j has a lower relevance than αi

if it appears after α j in the total ordering (on the participating agent list). So, the total order

classifies all neighboring participating agents of αi, N(αi), into higher relevance neighbors,

N+(αi), and lower priority neighbors, N−(αi). In the real world, communication among

devices is not necessarily FIFO; therefore we used a time-stamp that is incremented only if

αi changes its assignments (thus each assignment has a label).

In order to solve a DisCSP, agents αi generate locally consistent assignments and ex-

change their new proposals with their neighbors N−(αi) to achieve a global consistency. As

6.4. Pervasive Hardware Service Composition 77

in the ABT algorithm, each αi stores assignments received from its neighbors in its agent

view and a list of no-goods. αi stores in its agent view the most up-to-date assignments of

its higher priority neighbors. αi stores in its no-good list no-goods justifying the removal

of values.

The main elements of the PHSC protocol that implement the idea set forth above are

described. In the initial procedure phsc(), each αi assigns a value to its variable and informs

its lower neighboring agents. Then, it loops in order to process the received messages.

Procedure checkAgentView checks whether the current value (ai) is consistent with the

AgentView. If ai is inconsistent with assignments of higher priority neighbors, αi tries

to select a consistent value. During this process, some values from D(xi) may appear as

inconsistent. Thus, no-goods justifying their removal are added to the no-good list of αi.

When two no-goods are possible for the same value, αi selects the best no-good. If a

consistent value exists, it is returned and then assigned to ai. Next, αi informs all agents in

N−(αi) about its new assignments through chk messages.

Otherwise, αi has to backtrack (using the backTrack() procedure). Whenever αi re-

ceives a chk message, it processes it by calling for procedure processAssign(msg). The

AgentView of αi is updated (updateAgentView) only if the received message contains an as-

78
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

signment that is more up-to-date than the one already stored for the sender, and all nogoods

become non-compatible when the AgentView of αi is removed.

Then, a consistent value for αi is sought after the change in the AgentView (checkAgentView).

When every value of αi is forbidden by its noGoodList, procedure backTrack() is called

for. In procedure backTrack(), αi resolves its no-goods, deriving a new no-good, newNoGood.

If newNoGood is empty, the problem has no solution. αi broadcasts the st p messages to all

agents and terminates the execution. Otherwise, the new no-good is sent in an ngd message

to the agent, say α j, owning the variable appearing in its lrl. Then, the assignment of α j is

deleted from the AgentView (updateAgentView). Finally, a new consistent value is selected

(checkAgentView).

Whenever αi receives an ngd message, procedure resolve is called for resolve the con-

flict. The no-good included in the ngd message is accepted only if its hrl is compatible

with assignments on the AgentView of αi. Next, the no-good is stored, acting as justi-

fication for removing the value on its lrl. A new consistent value for αi is then sought

(checkAgentView) if the current value was removed by the received no-good. If the no-

good is not compatible with the AgentView, it is discarded because it is obsolete. However,

if the value of ai was correct in the received no-good, αi resends its assignment to the

no-good sender by way of a chk message.

Afterward, αi sends its assignment through a chk message to the sender of the request

if its value is different from the one included in the received message.

6.5 Adaptation from a Pervasive System Perspective

In previous sections, we provide a disCSP model to hardware service composition and a

distributed service composition protocol suitable for pervasive hardware service compos-

ition. From a pervasive service perspective, hardware services should function in highly

6.5. Adaptation from a Pervasive System Perspective 79

dynamic environments occurring throughout a user’s daily encounters. The assumption

that a composed hardware service will remain static in nature once generated is false, as

the services and resources available in the user’s environment will be unpredictable. Nor-

mally, most of existing schemes for infrastructure-less hardware service composition and

management do not consider the need for adaptation. Some others consider the adaptation

of services based on a composition from scratch (i.e., it is every time a change occurs in the

environment). We present a heuristic influenced by the service relevance level model for

the adaptation, allowing the reuse of previous solutions, and through simulation we show

its performance.

The dynamic adaptation of hardware services enables systems to expand their func-

tionality by means leveraging resources in the user’s vicinity; this serves to extend the

availability of services in time and space. Most adaptation approaches based on ad hoc

networks use service adaptation from scratch; that is, each time the environment changes,

the system starts the composition process all over again, resulting in the depletion of sys-

tem resources and network capacity. In real scenarios devices managed by agents can leave

or enter, service availability in the ecosystem can change along with the environmental

conditions.

Adaptation has been an important topic in diverse fields, for example: simulation [115],

robotics [116] and graphics [117] [118]. In context of service-oriented systems [77] [119]

[120] [121] [122]. Research in this field follows several trends. One way to characterize

these trends is to organize them along several dimensions, where each dimension represents

one or more facets of the service-adaptation problem. In the literature addressing this

issue, there are several characterizations such as [123] [124] [125]. However, most of

these characterizations are focused on SOA (Service-Oriented Architecture) and do not

80
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

address issues involving the system’s environment and participants. Taking a perspective

of pervasive service as the starting point, and considering the dimensions proposed by

Cardellini in [125], we characterized the adaptation problem (figure 6.5 shows a taxonomy

of adaptation from a pervasive service perspective) by answering the following questions:

Design time

Runtime

Reactive

Proactive

Motivation
(Why?)

Adaptation time
(When?)

Quality requirement

Functional requirement

Environment
(Where?)

Static

Dynamic
Closed

Open

Governance
(How?)

Centralized

Distributed
Cooperative
Competitive
Hybrid

Participants
(Who?)

Fixed

Mobile
Subordinates & managers

Autonomous

Service
adaptation

Load time

Figure 6.5: Service adaptation taxonomy

• Why should a hardware service be adapted? The primary objective of pervasive

hardware service is to provide services that are required by the user, despite variations

in its environment; this is achieved by means of adaptation. Adaptation aims to make

the pervasive services able to fulfill functional and/or QoS requirements in spite of

changes in their environment [126] [127]. Our focus is on functional requirements

concerning the availability of services to fulfill user needs.

• When must adaptation actions be executed? Adaptation must be carried out at

6.5. Adaptation from a Pervasive System Perspective 81

different stages in a hardware service’s life cycle. Existing approaches can be placed

between design time and run-time stages [128] [129]. In the pervasive service do-

main, there is a special interest in performing the service adaptation during run-time

[130] [131] [132] [133]. Within this stage, we can distinguish between reactive and

proactive approaches. In the proactive approach, systems predict possible future

changes in order to perform the adaptation. In the reactive approach, systems are ad-

apted after the detection of changes. Currently our approach adopts a reactive mode

placed in run-time.

• Where does the adaptation occur? Broadly speaking, pervasive services may be

deployed in several kinds of environments: static or dynamic. In the pervasive ser-

vice domain, there is a growing emphasis on building services tolerant of unexpected

changes in their environment [134] [135] [136]. Within this type of dynamic environ-

ments, we may further distinguish between closed and open environments. In closed

environments, all participant systems are known at the stage of system design, while

in open environments, the participants may move from one environment to another.

The majority of adaptation approaches are designed for closed environments, using

servers for service registration, discovery, composition and adaptation, and assuming

reliable participanting systems, for example [125] [137] [138]. These approaches

often involve preconfigured adaptation managers. They do not cater to highly per-

vasive, mobile and ad hoc environments, leaving themselves brittle to issues such

as central point of failure, mobility, and fault management. This paper adopts an

adaptation approach for dynamic environments.

• Who participates in the adaptation process? This question has to do with the kind

of systems that participate during the adaptation process (for example; autonom-

ous participants (agents), or subordinate and manager systems), that is, the regime

that manages the service-adaptation process. In the case of multiple systems, their

adaptation can be under the control of a single authority or under the control of mul-

tiple authorities (they can be cooperative or/and competitive). We are interested in

cooperative autonomous participants, that is, devices managed by agents that need

to cooperate to achieve their objectives, while preserving their autonomy (i.e., each

agent is the only one that can decide whether to cooperate or not). In our approach,

each agent is motivated to cooperate with others due to its need for other agents to

cooperate with it.

82
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

Diverse approaches have been proposed for service adaptation, for example dynamic

service selection, dynamic coordination pattern selection, etc. However, most authors as-

sume that resources are always available and they only consider the dynamic degradation of

service quality. In this respect, this paper aims to achieve adaptation of hardware services

based on a mutual cooperation approach for a distributed selection of participant agents

and their services while preserving the principle of autonomy (i.e. any agent in the user

environment can be forced to be part of a hardware service composition and only each

participating system may decide whether or not to provide a service).

6.6 Dynamic-disCSP Framework

∝1

2

3

4

X1 X2 X3 X4

disCSP0

1

2

3

X1 X2 X3 X4

disCSP1

1

2

3

7

X1 X2 X3 X4

disCSP2

1

2

3

X1 X2 X3 X4

disCSP3

7

∝
∝
∝

∝
∝
∝

∝
∝
∝
∝

∝
∝
∝
∝

a
0.7

e
0.5

b
0.9

f
0.9

d
0.8

g
0.2

c
0.3

a
0.7

e
0.5

b
0.9

f
0.9

d
0.8

g
0.2

a
0.7

e
0.5

b
0.9

f
0.9

d
0.8

g
0.2

t
0.7

a
0.8

e
0.4

b
0.7

f
0.9

d
0.8

h
0.1

g
0.4

t
0.7

Figure 6.6: Matrix representation of a Dynamic disCSP

In order to meet the hardware service adaptation outlined in the previous section, we

model the service adaptation problem as a dynamic-disCSP. A dynamic-disCSP is a se-

quence of disCSPs 〈disCSP0,disCSP1, ...,disCSPn〉. A disCSP is represented as a 4-tuple

6.6. Dynamic-disCSP Framework 83

〈X ,D,C,SY S〉 where X = {xi|i = 1, ...,n} is a finite set of variables; xi is a variable cor-

responding to a service needed by an ecosystem member (i.e., an agent α) to satisfy a

particular user requirement; D = {Di|i = 1, ...,n}, such that for each xi there is a service

option domain Di; C is a finite set of constraints {C1,C2, ...,Cm} of the user requirement;

and A is a set of autonomous agents over which the variables and constraints are distrib-

uted. At any system, the set of possible values for variable xi is its current domain Di.

Each distCSPi results from a change in the previous one, disCSPi−1, and represents new

situations in the dynamic environment. Figure 6.6 shows a visual abstraction (each mat-

rix is constituted by participant agents αi and required services x j; each cell represents a

service that each participant can provide and its relevance) of a sequence of four disCSPs

〈disCSP0,disCSP1,disCSP2,disCSP3〉. In the sequence various changes can be observed,

such as:

• In disCSP1, α4 has left the group of participating agents (AG) with regard to disCSP0).

• In disCSP2, sys7 has joined the group of participating agents (AG) with regard to

disCSP1).

• In disCSP3, the relevance of the services provided by α1, α2 and α3 has changed with

regard to disCSP2.

These kinds of changes may affect the components in the problem definition: variables

(additions or removals), domains (changes in the intentional definition, value additions or

removals in the case of extensional definition), constraints (additions or removals), con-

straint scopes (variable additions or removals), or constraint definitions (changes in the

intentional definition, tuple additions or removals in the case of extensional definition). As

a result of such changes, the set of solutions of each disCSPi can potentially decrease (a

restriction of the disCSPi) or increase (a relaxation of the disCSPi).

6.6.1 A Service Adaptation Heuristic

Starting from the fact that the environment has changed (for example, a service has become

unavailable or a participant α has left the Agent Group (AG)), the AG may need to adapt its

topology and functionality to meet user needs. In order for the AG to be able to withstand

service adaptation, we propose a heuristic named Dynamic Partial Solution (DPS) that is

based on the dynamic addition of new participating agents α to the AG.

84
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

For this, an identification phase begins to detect potential participant agents α for the

AG in the user’s vicinity. When an adaptation requirement becomes activated in the AG, an

initiator agent sends a task request (TaskRequest) message, containing the STask descrip-

tion with the latest partial solution, to agents in the user’s environment that are not particip-

ating in the current solution. The STask is used by receiving agents to decide whether they

can contribute at least one service to fulfill the STask. Agents that may contribute send a

TaskReply message to the system initiator. With the TaskReply messages the system ini-

tiator updates the candidate system list, where each new item on the list is assigned the

address and most important factor in relation to candidates that contributed to the previous

solution. Once the list is made, the initiator agent sends it to all participating agents. Figure

6.7 shows an example where an adaptation requirement becomes activated at agent α1.

2 3 7∝1 9

TaskRequest (id, STask)

TaskReply (id, Services)

TaskRequest (id, STask)

TaskRequest (id, STask)

TaskReply (id, Services)

TaskReply (id, Services)

TaskRequest (id, STask)

TaskReply (id, Services)

TaskRequest (id, Candidates)
TaskRequest (id, Candidates)

TaskRequest (id, Candidates)
TaskRequest (id, Candidates)

∝ ∝ ∝ ∝

Figure 6.7: New candidate choice for the service adaptation

This heuristic allows AG to adapt services without starting from scratch. That is, with

the heuristic DPS, the algorithm PHSC can reuse the latest service composition knowledge.

Figure 6.8 shows an abstraction of an initial service composition (disCSPi) and the service

composition state after changes in the environment (disCSP′i) that can be used in the service

adaptation process. In this example α4 left the AG.

In order to achieve the adaptation, we start from the disCSP0 that models the initial state

of the AG. The moment a service fault is detected, the initiator agent starts the adaptation

6.6. Dynamic-disCSP Framework 85

∝1

2

3

4

X1 X2 X3 X4

disCSP i

1

2

3

X1 X2 X3 X4

disCSP' i

1

2

3

7

X1 X2 X3 X4

disCSP i+1

∝
∝
∝

∝
∝
∝

∝
∝
∝
∝

S1
0.9

S2
0.5

S3
0.4

S4
0.8

S5
0.6

S6
0.8

S7
0.9

S1
0.9

S2
0.5

S3
0.4

S4
0.8

S5
0.6

9∝

S1
0.9

S2
0.7

S3
0.4

S4
0.8

S5
0.6

S8
1.0

S9
0.5

4∝ left the AG

a)

b)

Figure 6.8: Example of a possible service adaptation

process. First, the AG attempts to reallocate the required services for the available parti-

cipating agent α. If it is not possible to find an assignment without violating constraints,

then the initiator agent sends a message TaskRequest message to all agents found in its

neighborhood in order to find new participating agent capable of contributing to the service

adaptation. Once the initiator agent α has located the potential agents δ, the DPS heuristic

is applied. This heuristic is based on the idea that current members of the AG are unable

to satisfy user requirements (i.e., it is not possible to find an assignment without violation

of constraints); therefore, it is necessary to give higher relevancy to the new participating

agents. In practical terms, this idea implies that the initial partial solution (partial compos-

ition of a service) should be adjusted according to the contributions of new participating

agents.

86
Chapter 6. An Approach for Pervasive Hardware Service Composition and

Adaptation

6.7 Conclusion

In this chapter we presented a dynamic DisCSP model for pervasive service composition in

dynamic environments, and a heuristic for adapting partial solutions using an asynchronous

backtracking algorithm for solving the dynamic DisCSP. The model provides a technique

for adapting services without restarting the service composition process each time that a

participating agent is unavailable or leaves the AG.

Most solutions designed for the composition of adaptive pervasive services are based

on dedicated infrastructure. These solutions use notions such as central servers, stable

nodes and reliable communications channels. These include proposals such as [139] [140]

[141]. Most of these approaches involve preconfigured composition mechanisms residing

on dedicated machines with high resources. Some authors such as [136], [142] only con-

sider the initial composition of pervasive services. Other authors have proposed protocols

and frameworks for the adaptation of pervasive services in slightly dynamic environments;

for example Karmouch and Nayak [143] proposed a DisCSP model for service composi-

tion. They used a QoS-based approach to adapt the service composition (to determine the

quality level, bandwidth, delay, loss and jitter were used in the network). However, the

framework proposed by Karmouch assumes that all the components of the instance under

consideration, such as variables, domains and constraints, are completely known before

modeling and solving it, and do not change either during or after modeling and solving.

However, it has been observed for a long time that such assumptions do not hold true in

many situations.

Multihop composition and adaptation was not considered in this research because one

hop is enough to discover autonomous devices in the user’s environment. However, even

though the resources needed to provide a service may not be in the user’s vicinity, the

proposal could use them through a directed multihop broadcast.

Chapter 7

Implementation

A solution on the Multiagent Software Hardware Simulator (MASH) platform was de-

signed so that service ecosystems can be built based on an agent federation. The solution

allows us to build ecosystems of pervasive hybrid services. The overall solution consists

broadly of four main elements: an agent group formation protocol, a candidate formation

protocol, a service composition protocol and a service adaptation protocol. For this we

have implemented the obligation-based ACL (described in chapter 5) to support agent in-

teraction based on obligations and a package to model problems of constraint satisfaction.

This chapter introduces the MASH platform and provides an overview of our implemented

solution.

7.1 MASH: A Tool to Tune Design and Deployment

There are several tools for simulations such as ns3[144], tinyOs[145] and J-Sim [146].

However, most of these tools were designed for network simulations and do not provide

support for implementing multiagent systems (at least in a simple and transparent man-

ner). MASH, on the other hand, is a tool that allows developers to simulate and execute

embedded multiagent systems including real-world software/hardware agents [147]. This

section provides the key features of this tool, and includes a short explanation of the MASH

architecture and the basic aspects of initial setup, through scenario creation and agent setup.

87

88 Chapter 7. Implementation

7.1.1 Overview of the MASH Architecture

MASH enables developers to simulate several agent nodes interacting with an environ-

mental component through an abstraction layer. Figure 7.1 shows the basic architecture of

MASH.

Individual Agent Manager

Society Manager

Environment Manager

Environment
Maps

Wave
Propagation

Model

Virtual Agent 1 Embedded Agent J+1Virtual Agent J Embedded Agent M

Events M
anager

Scenario

Journal

External
Modeling Tool

Figure 7.1: Simplified architecture of MASH

MASH supports the following four types of agents:

1. Software agents are traditional agents that can perceive and act on virtual environ-

ments.

2. Virtual agents are a type of software agent used to simulate the behavior of real-world

embedded agents.

3. Embedded agents are agents embedded in the real world that can perceive and act on

the physical environment. They are often constituted by a software part and a hard-

ware part. Soccer robots, autonomous vehicles and intelligent sensors are embedded

agents.

7.1. MASH: A Tool to Tune Design and Deployment 89

4. Avatar agents represent embedded agents in virtual societies. They enable embedded

agents to interact with software agents. They link the simulated MAS with behaviors

computed on physical devices.

Virtual agents and embedded agents are abstracted by an Individual Agent Manager

(IAM). The IAM enables the integration of virtual and real world agents in the simulation.

An agent can be implemented by a software agent (such as a java class) or its behavior

can be computed in a real-world embedded agent. In this case, an avatar translates the

logical call of methods and exchanged messages to its wrapped embedded agent. The

avatar make it possible to give a graphic representation of the real-world embedded agent

in MAS representation.

The Behavior component simulates the execution of software on a single device. It

processes messages received from the other agents. The Environment Manager and the

Society Manager enable agents to interact together and with their environment.

7.1.2 A Toy Problem

In this section we will to use a simple toy problem to describe the use of MASH. The

example is one extension of the predator-prey pursuit problem. In our case, predators are

replaced by police and the prey by a thief. The police must search for the thief and the thief

must run away from the police. (Figure 7.2).

7.1.3 Building a Solution

In MASH a solution is the abstraction of the project that is being simulated. It specifies the

agents that our project will manage, in order to ensure the cleanliness of the solution, and

is should follow a specific order. This section describes how to set up a solution correctly.

The first step in implementing a solution is to create the solution item. This item must to

be placed in simulation.solutions.custom, extend from the SolutionItem class and invoke

the method setSolution so that it can be displayed. In our Toy Problem it should be:

public class PoliceThiefCitizenSolution extends SolutionItem{

public PoliceThiefCitizenSolution() {

super();

try{

Vector<Class> agents = new Vector<Class>();

90 Chapter 7. Implementation

Figure 7.2: Toy problem example

agents.add(Class.forName(

"simulation.solutions.custom.PoliceThiefCitizen.ThiefAgent"));

agents.add(Class.forName(

"simulation.solutions.custom.PoliceThiefCitizen.PoliceAgent"));

agents.add(Class.forName(

"simulation.solutions.custom.PoliceThiefCitizen.CitizenAgent"));

super.setSolution(

new Solution(

new SolutionDescriber(

"Francisco Cervantes",

"francisco.cervantes@lcis.grenoble-inp.fr",

"University of Grenoble / CINVESTAV",

"Valence",

"France",

"PoliceThiefCitizen",

"1",

"Implementation of Police-Thief-Citizen model"),

agents

7.1. MASH: A Tool to Tune Design and Deployment 91

)

);

}catch(SolutionException e){

e.printStackTrace();

}catch(SolutionDescriberException e){

e.printStackTrace();

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

}

}

The next step is to configure MASH to recognize the new solution. Select Start MASH

Edit -> Pre f erences -> Existing Solutions and write the name of the solution item, in our

case PolizeT hieveCitizenSolution (Figure 7.3).

Figure 7.3: Setting MASH Preferences

92 Chapter 7. Implementation

7.1.4 Creating an Agent

In accordance with the MASH package organization we must place the agents in a new

package simulation.solutions.custom.NEWPACKAGE. In the case of our toy problem it

must be simulation.solutions.custom.PoliceT hie fCitizen.

To create an agent, MASH provides an Agent class that our objects must extend and

creates a constructor (MAS, Integer id, Float energy, Integer range). Each Agent will be

run as a new thread, so we must override the run() method. In order to give a little time

lapse until the construction of all the agents, it is recommended that our first line in the run

method be a sleep. Here is an example of the PoliceAgent structure:

public class PoliceAgent extends Agent implements

ObjectAbleToSendMessageInterface{

public PoliceAgent(MAS mas, int id, Integer range) {

this(mas, id, (float)1,range);

}

public void run() {

try{Thread.sleep(SLEEP_TIME_SLOT);}catch(Exception e){}

while(!isKilling() && !isStopping())

{

while(((isSuspending()) && (!isKilling() && !isStopping()))){

...

}

}

}

It is important to remember that each Agent class (in our example, PoliceAgent, Thief-

Agent and CitizenAgent) must be included in the Solution Item implementation. At this

moment our agents are ready to be added on the scenario (see Figure 7.4); however, they

are not able to interact with other agents yet, which brings us to the next section.

7.1.5 Agent Interaction in MASH

The MASH defines an interaction framework based on Messages and Frames. They repres-

ent the third and second layer of the OSI model. Frames will contain messages; therefore

7.1. MASH: A Tool to Tune Design and Deployment 93

Figure 7.4: MASH Solution

the Message class provides a method to be encapsulated into a byte sequence, and the

Frame class provides a method to unencapsulate messages so that they can be used in a

hybrid simulation. Here a correct implementation of Messages and Frames in MASH is

shown. According to the MASH package organization we must place our interaction classes

in simulation.solutions.custom.PoliceT hie fCitizen.Messages

The interaction between agents in our toy problem is simple. The police look for a thief

sending a HOWL message every time he moves (this message contains his position). If a

thief hears the HOWL, he TURNS and runs in the opposite direction. The police hears the

TURN with the thief’s position and runs in that direction. When the police are very close

to the thief, they send a CATCH message and finish their execution. The thief receives this

message and finishes his execution too.

Here is the code of the PoliceT hie fCitizen Message and Frame classes:

public class PoliceThiefCitizenMessage extends Message{

private static final long serialVersionUID = 1L;

private int senderID;

private int receiverID;

94 Chapter 7. Implementation

private IntegerPosition pos;

public byte type;

public static final byte HOWl=0;

public static final byte TURN=1;

public static final byte CATCH=2;

public PoliceThiefCitizenMessage(int sender, int receiver, byte

type,IntegerPosition pos){

senderID=sender;

this.receiverID=receiver;

this.type=type;

this.pos = pos;

}

public int getReceiver() {return receiverID;}

public int getSender() {return senderID;}

public IntegerPosition getPosition(){ return pos;}

public byte[] toByteSequence(){

if(type==CATH)

return

ByteBuffer.allocate(19).put(type).putInt(this.senderID).putInt(receiverID).putInt(0).putInt(0).array();

else

return

ByteBuffer.allocate(19).put(type).putInt(this.senderID).putInt(receiverID).putInt(pos.x).putInt(pos.y).array();

}

}

public class PoliceThiefCitizenFrame extends Frame {

private static final long serialVersionUID = 1L;

public PoliceThiefCitizenFrame(int sender, int receiver,byte[] data){

super(sender,receiver,data);

}

7.2. Implementation of the Solution 95

public PoliceThiefCitizenFrame(int sender, int receiver,Message msg){

super(sender,receiver,msg);

}

public Message getMessage(){

ByteBuffer buffer = ByteBuffer.wrap(this.getData());

byte type= buffer.get();

if(type == PoliceThiefCitizenMessage.CATCH)

return new PoliceThiefCitizenMessage(buffer.getInt(), buffer.getInt(),

type, null);

else if(type == PoliceThiefCitizenMessage.TURN)

return new PoliceThiefCitizenMessage(buffer.getInt(), buffer.getInt(),

type, new IntegerPosition(buffer.getInt(), buffer.getInt()));

else if(type == PoliceThiefCitizenMessage.HOWl)

return new PoliceThiefCitizenMessage(buffer.getInt(), buffer.getInt(),

type, new IntegerPosition(buffer.getInt(), buffer.getInt()));

System.out.println("Error in the encapsulation of the frame data");

return null;

}

}

7.2 Implementation of the Solution

7.2.1 Overview of the Solution: Service Ecosystem based on a Feder-
ation of Agents

Considering the issues raised for the deployment of pervasive services, we have developed

a solution for creating pervasive ecosystem services. Our proposal is based on a social

ecosystem metaphor, the interaction between agents is based on obligations, and service

composition is seen as a constraint satisfaction problem (distributed and dynamic). Figure

7.5 shows the expected behavior of the ecosystem through the major stages involved in the

deployment of pervasive services.

According to the ecosystem description provided in 2, the main elements of an ecosys-

96 Chapter 7. Implementation

ECOSYSTEM

Ecosystem Behaviors

Ta
sk

's
 R

eq
ue

st
s

Candidates Formation
(Matching & Filtering)

Dynamic Organization
(Species)

Participants
(Physical composition)

Service Delivery

En
vi

ro
nm

en
t S

ta
te

Changes

Changes

Agents within user's
environment

Candidates
Agents

Composite
Service

Ad
ap

ta
tio

n

Fault

Fault

Fault

Fault

Figure 7.5: Main behaviors of our service ecosystem

tem are the environment, the members (in our case modeled by agents) and the laws (i.e.

interaction mechanisms). It bears mentioning that these behaviors must emerge from the

local behavior of ecosystem member agents and the way interact with each other. There-

fore the behaviors observed in figure 7.5 – dynamic organization, candidates formation,

participants election, service delivery, and adaptation – are all implemented in each mem-

ber agent of the ecosystem as distributed and asynchronous mechanisms. In the rest of this

chapter, the main elements of our implementation are described.

The input into the system is a task requested by the user through a member of the

ecosystem and the output is the service (atomic or composed) provided by the ecosystem

members in order to fulfill the user request. As was described before, members of the

ecosystem are agents. Figure 7.6 shows a class view of the agent implemented in our

7.2. Implementation of the Solution 97

solution.

Figure 7.6: Class view of the agent implementation

As shown in Figure 7.6, agent definition uses classes such as CSPModel, DisCSPPro-

tocol, ACLO and EcosystemNorms in order to support agent interaction based on social

norms, to represent constraint satisfaction problems, and to provide the composition / ad-

aptation services through protocols that search for solutions to problems of satisfaction re-

strictions (ABT-based algorithm). In the MASH context (Figure 7.7) our solution is stored

in the subpackage "solution.customer".

7.2.2 Formation of Candidate Agents

The formation of candidate agents is driven by messages and oriented to task requests.

Each agent, when receiving a TaskRequest message, must answer the following question:

Could I make a contribution for the requested task?. The following code is a part of the

implementation for the formation of agent candidates.

if(taskRequests.size()>0){

if(isCandidate(taskRequests.get(0))==true){

agentTask=taskRequests.get(0);

taskCandidates=new TaskCandidates(1,

taskRequests.get(0).getAgentOwnerId());

sendMessage(taskRequests.get(0).getAgentOwnerId(),"TaskReply");

98 Chapter 7. Implementation

Figure 7.7: Package view of the MASH Context

}

taskRequests.remove(0);

}

public boolean isCandidate(AgentTask taskRequest){

boolean candidate=false;

for(Service s: agentServices){

for(Service r: taskRequest.getRequirements()){

if(s.getName().equals(r.getName())==true)

return true;

}

}

return candidate;

}

7.2. Implementation of the Solution 99

if(searchingCandidates==true){

searchingCandidates=false;

for (TaskReply tReply: taskReplies){

taskCandidates.addAgentCandidate(new AgentCandidate(tReply.getAgentId(),

tReply.getAgentRelevance()));

}

for(int index=0; index<taskCandidates.getSize();index++){

System.out.println("Agent " +

taskCandidates.getAgentCandidates().get(index).getAgentId());

}

readySolution=false;

timer.start();

timer.setON();

for (TaskReply tReply: taskReplies){

sendMessage(tReply.getAgentId(), "ACT");

}

taskReplies.clear();

}

7.2.3 Composition and Adaptation of Services

Composition and adaptation algorithms are driven by messages. After processing the acts

at the level of social obligations, the following partial code processes each command of the

protocols for composition and adaptation.

if(msg.type==ABTMessage.TaskRequest){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"TaskRequest"));

int senderID=frame.getSender();

ByteBuffer buffer = ByteBuffer.wrap(frame.getData());

byte type= buffer.get();

int senderId=buffer.getInt();

int receiverId=buffer.getInt();;

byte[] b=new byte[buffer.remaining()];

buffer.get(b);

try {

if (agentTask==null){

100 Chapter 7. Implementation

agentTask = (AgentTask)Serializer.deserialize(b);

taskRequests.add(agentTask);

}

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

if(msg.type==ABTMessage.TaskReply){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"TaskReply"));

int senderID=frame.getSender();

ByteBuffer buffer = ByteBuffer.wrap(frame.getData());

byte type= buffer.get();

int senderId=buffer.getInt();

int receiverId=buffer.getInt();

double relevance=buffer.getDouble();

taskReplies.add(new TaskReply(senderId, relevance));

}

if(msg.type==ABTMessage.ACT){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"ACT"));

int senderID=frame.getSender();

ByteBuffer buffer = ByteBuffer.wrap(frame.getData());

byte type= buffer.get();

int senderId=buffer.getInt();

int receiverId=buffer.getInt();;

byte[] b=new byte[buffer.remaining()];

buffer.get(b);

try {

taskCandidates = (TaskCandidates)Serializer.deserialize(b);

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

7.2. Implementation of the Solution 101

e.printStackTrace();

}

initialContribution();

}

if(msg.type==ABTMessage.CHK){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"CHK"));

int senderID=frame.getSender();

ByteBuffer buffer = ByteBuffer.wrap(frame.getData());

byte type= buffer.get();

int senderId=buffer.getInt();

int receiverId=buffer.getInt();;

byte[] b=new byte[buffer.remaining()];

buffer.get(b);

try {

newAssignments = (AgentAssignments)Serializer.deserialize(b);

processAssignments(newAssignments);

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

if(msg.type==ABTMessage.NGD){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"NGD"));

int senderID=frame.getSender();

ByteBuffer buffer = ByteBuffer.wrap(frame.getData());

byte type= buffer.get();

int senderId=buffer.getInt();

int receiverId=buffer.getInt();;

byte[] b=new byte[buffer.remaining()];

buffer.get(b);

try {

noGoods.add((NoGood)Serializer.deserialize(b));

} catch (ClassNotFoundException e) {

102 Chapter 7. Implementation

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

if(msg.type==ABTMessage.NOSOLUTION){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"NOSOLUTION"));

if(agentTask.getAgentOwnerId()==getUserId()){

readySolution=false;

}

else

clearTaskMemory();

}

if(msg.type==ABTMessage.SOLUTION){

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"SOLUTION"));

if(agentTask.getAgentOwnerId()==getUserId()){

this.notifyEvent(new ABTSolutionEvent(this.getSystemId(),"ABTSolution

(" + System.currentTimeMillis() + ")"));

readySolution=true;

timer.setOFF();

for(AgentCandidate candidate: taskCandidates.getAgentCandidates()){

sendMessage(candidate.getAgentId(), "STP");

}

}

}

if(msg.type==ABTMessage.STP){

clearTaskMemory();

this.notifyEvent(new ABTMessageEvent(this.getSystemId(),"STP"));

}

}

7.2.4 Conclusion

In this chapter, we present the MASH platform that allows us to simulate and evaluate our

proposal. Additionally we provide an overview of our implemented solution for deploying

7.2. Implementation of the Solution 103

ecosystems of pervasive services. Our proposal describes the expected behaviors of the

ecosystem that must emerge from agent’s local behaviors and the way they interact with

each other. Through these behaviors, we cover the four stages usually considered by other

authors for service composition. Furthermore, we provide support for changes in the en-

vironmental state and task requests, i.e., we have considered that the real world is dynamic

and services cannot remain static after their composition. In addition, the proposed solu-

tion also contemplates that there may be failures during the execution of each behavior.

The next chapter presents the evaluation of our proposal and the results obtained.

104 Chapter 7. Implementation

Chapter 8

Evaluation

This chapter shows the performance of our Pervasive Hardware Service Composition (PHSC)

protocol when system scale, mobility, service density, and composition order are var-

ied. Our experimental scenario consists of agent-managed mobile devices that are able

to provide one or more services. These devices are connected to each other using an ad hoc

network. We considered compositions of several orders (in terms of number of the services

needed in order to fulfill the task). We compare our results with those of Karmouch and

Nayak [143]. The aim of the comparison is to identify the improvement of the performance

in message utilization and composition time using our PHSC protocol. At the same time

we want to determine the effects of varying service density, composition order and scale on

the same metrics.

8.1 Pervasive Hybrid Service Composition

8.1.1 Scenario Description

We built a pervasive hybrid service based on an ad hoc network and implemented both

PHSC and Virtual Device Constraint Satisfaction Protocol (VDCSP) protocols using MASH.

Simulations were carried out over a set of agents in a previously delimited area, following

a random-way-point mobility model [148]. All broadcasts had a bounded hop count of one

for the PHSC and VDCSP protocols. The simulation was done for service composition

orders of three, five, seven and nine, and service densities from 10 to 100 percent (i.e.,

percentage of nodes that have one service required to fulfill a requested task). For each

simulation, we identified the amount of time and number of messages consumed to achieve

105

106 Chapter 8. Evaluation

the composition (values were the average of 100 simulations). In order to focus on the

performance of the protocols, we utilized predetermined similarity values (for comparing

services with each others) and random relevance levels for the services provided by each

agent. At this moment, we consider the changes to network conditions as noise in the

measurement of the performance of the protocols. Therefore, we do not consider the effect

of network conditions on the performance of the two protocols. However, it is possible to

consider the network conditions as factors to determine the relevance level of services.

20 40 60 80 100
Service density (%)

0

5000

10000

15000

20000

25000

M
es

sa
ge

s

PHSC
PHSC-DPS
VDCSP

Figure 8.1: Number of messages with respect to service density

8.1.2 Effects of Service Density

We used the concept of service density as the percentage of agents that have least one of

the required services to fulfill a requested task. In order to analyze the effects of service

density on the performance of each protocol, we used a scenario with 50 static devices

(this is because the mobility of the device may introduce noise into the effect of the ser-

vice density), and a composition length of five services. The simulation was carried out

using service densities of 10 - 100 percent in a spatial area of 50 m2. For each simulation,

we identified the number of messages consumed and the amount of time used to achieve

the service composition. Results indicated that per composition, the number of messages

consumed by PHSC (Figure 8.1) was an average of 2,132 messages (20.33 percent) lower

8.1. Pervasive Hybrid Service Composition 107

than VDCSP, and the time used for composition decreased by 0.92 percent compared to

VDCSP (Figure 8.2).

20 40 60 80 100
Service density (%)

2050

2100

2150

2200

2250

2300

Ad
ap

ta
tio

n
tim

e
(m

s)

PHSC
PHSC-DPS
VDCSP

Figure 8.2: Composition time with respect to service density

The performance of both protocols, PHSC and VDCSP, was affected by the service

density. Although a high service density provides robustness to the ecosystem, it also

has a negative effect: as the density of services increases, the number of participants for

the composition also increases. This implies a greater number of messages required to

find a solution. However, figures 8.1 and 8.2 show that the PHSC (in time and consumed

messages) performed better than the protocol VDCSP.

8.1.3 Effects of Scaling

In order to study the effect of scaling on the performance of protocols, we set the service

density at 50 percent, with a composition order of five services. Additionally, we progress-

ively increased the number of agents involved in a spatial area of 50 m2. For each simula-

tion, after the service composition we identified the number of messages consumed and the

amount of time used to achieve the service composition. Results show that the performance

of both protocols was affected by scalability issues. As the number of agents increased and

the spatial environment area remained fixed, the time and number of messages required to

achieve a service composition increased (figures 8.4 and 8.3). Simulations indicated that

108 Chapter 8. Evaluation

20 40 60 80 100
Number of nodes

0

5000

10000

15000

20000

25000

M
es

sa
ge

s

PHSC
PHSC-DPS
VDCSP

Figure 8.3: Number of messages with respect to number of nodes

per composition, the number of messages consumed by PHSC was an average of 9318.6

messages (14.13 percent) lower than VDCSP, and the time used for composition decreased

by 0.39 percent compared to VDCSP.

8.1.4 Effects of Composition Order

To examine the effects of composition order on the performance of the protocols, we set the

service density at 50 percent, the number of agents at 50, and the composition order was

progressively increased from three to five, to seven and to nine in a spatial area of 50 m2.

For each simulation, after the service composition we identified the number of messages

consumed and the amount of time used to achieve the service composition. Figures 8.5

and 8.6 show the negative effect of the order of composition over time and the number of

messages required to compose a service. Results show that the PHSC protocol performed

better than the VDCSP protocol (in terms of messages and time).

8.2 Pervasive Hybrid Service Adaptation

This section evaluates the performance of our PHSC with the DPS heuristic by varying

scale, mobility and service density, as in the previous section, and instead of the order of

8.2. Pervasive Hybrid Service Adaptation 109

20 40 60 80 100
Number of nodes

2000

2050

2100

2150

2200

Ad
ap

ta
tio

n
tim

e
(m

s)

PHSC
PHSC-DPS
VDCSP

Figure 8.4: Composition time with respect to number of nodes

composition we will focus on the adaptation order. Service adaptation order means the

number of elements of the composite service to be adapted. This section also evaluates the

AG’s ability to adapt in order to deal with changes in the environment due to the agents’

mobility. Our experimental scenario consisted of agent-managed mobile devices that were

able to provide one or more services in a dynamic environment. These devices were con-

nected to each other using an ad hoc network. We considered adaptations of several orders

(in terms of the number of services that the AG needs to adapt in order to fulfill the task).

We compared the performance of our DPS heuristic in adapting services with the results

of using the PHSC and VDCSP algorithms. The aim of the comparison is to identify the

improvement of the performance in message utilization, composition time and adaptation

time when our PHSC protocol and DPS heuristic is used (in dynamic environments). At

the same time we want to determine the effects of varying the service density, adaptation

order, scale and mobility on the same metrics.

8.2.1 Scenario Description

We use the same scenario described previously in section 8.1. However, this time simu-

lation was done for a service composition length of five with adaptation orders from one

to four. For each simulation, we identified the amount of time taken and the number of

110 Chapter 8. Evaluation

20 40 60 80 100
Service density (%)

0

5000

10000

15000

20000

25000

M
es

sa
ge

s

PHSC (3)
PHSC (5)
PHSC (7)
PHSC (9)

Figure 8.5: Number of messages with respect to composition length

messages consumed to achieve the adaptation (values are the average of 100 simulations).

Again, as in the previous section 8.1, we utilized predetermined similarity values and did

not consider the effect of network conditions on the performance of the three protocols.

8.2.2 Effects of Service Density

In order to analyze effects of service density on the performance of each protocol, we used

a scenario with 50 static devices, a composition length of five services and an adaptation

order of one. For each simulation, after the service composition we turned off participating

agents that contributed to the composite service; then we identified the number of messages

consumed and the amount of time used to achieve the service adaptation. The simulation

was carried out using service densities of 10 - 100 percent in a spatial area of 50 m2.

Results indicated that per adaptation, the number of messages consumed by PHSC-DPS

(figure 8.7) was an average of 5,669 messages (54 percent) lower than PHSC, and the time

used for adaptation decreased by 2.1173 ms (2.27 percent) compared to PHSC (figure 8.8).

The reduction of consumed messages is because PHSC needs to restart the composition

process each time a participant agent is no longer available to provide its service (i.e. it

seeks the solution from scratch).

Although a high service density provides robustness to the ecosystem, it also has a

8.2. Pervasive Hybrid Service Adaptation 111

20 40 60 80 100
Service density (%)

1600

1800

2000

2200

2400

C
om

po
si

tio
n

tim
e

(m
s)

PHSC (3)
PHSC (5)
PHSC (7)
PHSC (9)

Figure 8.6: Composition time with respect to composition length

negative effect: as the density of services increases, the number of participating agents for

the composition and adaptation also increases. This implies a greater number of messages

required to find a solution. However, figure 8.7 and figure 8.8 show that the PHSC-DPS

(in time and consumed messages) performed better than the protocols PHSC and VDCSP

when the service density was high.

8.2.3 Effects of Scaling

In order to study the effect of scaling on the performance of adaptation, we set the service

density at 50 percent, a composition order of five services, and an adaptation order of one

service. For each simulation, after the service composition we turned off a participating

agent that contributed to the composite service; then we identified the number of messages

consumed and the amount of time used to achieve the service adaptation. In addition, we

progressively increased the number of autonomous devices involved in a spatial area of 50

m2.

Results show that as the number of autonomous agents increased and the spatial envir-

onment area remained fixed, the time and number of messages required to achieve service

composition and adaptation increased (figure 8.10 and 8.9), i.e., the performance the per-

formance of the three protocols was affected by scalability issues.

112 Chapter 8. Evaluation

20 40 60 80 100
Service density (%)

0

5000

10000

15000

20000

25000

M
es

sa
ge

s

PHSC
PHSC-DPS
VDCSP

Figure 8.7: Number of messages with respect to service density

8.2.4 Effects of Adaptation Order

To examine the effects of adaptation order on the performance of the protocols, we set the

service density at 50 percent, the number of autonomous devices at 50, and the composition

order at five services. In addition, we progressively increased the adaptation order from one

to four in a spatial area of 50 m2. For each simulation, after the service composition we

turned off a participating agent that contributed to the composite service; then we identified

the number of messages consumed and the amount of time used to achieve the service

adaptation. We repeated the last procedure, varying it by turning off two, three, and four

participants.

Figures 8.12 and 8.11 show the negative effect of the order of adaptation on time and

the number of messages required to adapt a service to changes in the environment. Results

show that the PHSC-DPS protocol performed better than the PHSC and VDCSP proto-

cols (in terms of messages and time). However, as the adaptation order went higher, the

performance of the PHSC-DPS protocol decreased. The performance of the VDCSP and

PHSC protocols remained almost the same because they did not include any strategy to

adapt the composed service when a participating agent became unavailable. Therefore, in

order to adapt the composed service, they restarted the service composition process from

8.2. Pervasive Hybrid Service Adaptation 113

20 40 60 80 100
Service density (%)

2050

2100

2150

2200

2250

2300

Ad
ap

ta
tio

n
tim

e
(m

s)

PHSC
PHSC-DPS
VDCSP

Figure 8.8: Adaptation time with respect to service density

scratch.

8.2.5 Effects of Mobility

In order to analyze the effects of mobility on the two protocols, we set the service density at

50 percent, the number of autonomous devices at 50, the composition order at five services

and a random way-point mobility model. In this case the network topology and adaptation

order could change (from one to five), and an autonomous agent randomly moved in an

area of 150 x 500 m. For the sake of simplicity and in order to have control over the

scenario, we configured the environment with 50 fixed devices and one mobile device. The

position of the mobile devices was randomly selected within a fixed area of 150 x 500 m

and then moved lineally to the selected position with a consistent random speed. For each

simulation we identified the percentage of time during which the service stayed available

(from the service composition until the end of the simulation). We repeated the experiments

for different travel speeds (1 - 10 m/s).

The results showed that mobility at high speed had an adverse effect (figure 8.14) on the

availability of the service, because the time during which the participating agents were in

the transmission range was small, while the number of messages required to continuously

114 Chapter 8. Evaluation

20 40 60 80 100
Number of nodes

0

5000

10000

15000

20000

25000

M
es

sa
ge

s

PHSC
PHSC-DPS
VDCSP

Figure 8.9: Number of messages with respect to number of nodes

adapt the composed service and maintain the service availability varied (figure 8.13) due

to random displacement of the autonomous devices in their environment. One issue con-

cerning the use of the random way-point mobility model for representing human mobility

behavior has to do with the sharp turn [149]. Sharp turn occurs whenever there is a direc-

tion change in the range of 90 - 180 degrees. This problem can be eliminated by allowing

past direction to affect future direction. The Gauss-Markov mobility model [150] solves

this problem by achieving more realistic movement of autonomous devices.

8.2.6 Conclusion

In this chapter we presented a dynamic DisCSP model for pervasive service composition

in dynamic environments, and a new heuristic useful for adapting partial solutions using an

asynchronous backtracking algorithm to solve the dynamic DisCSP. The model provides

a technique for adapting services without restarting the service composition process each

time that a participating agent is unavailable or leaves the AG. Through simulation, we

have shown that our protocol is able to maintain service availability despite the dynamism

of the environment. We have also discussed some drawbacks of the proposed protocol in

the context of network segmentation.

8.2. Pervasive Hybrid Service Adaptation 115

20 40 60 80 100
Number of nodes

2000

2050

2100

2150

2200

Ad
ap

ta
tio

n
tim

e
(m

s)

PHSC
PHSC-DPS
VDCSP

Figure 8.10: Adaptation time with respect to number of nodes

Our current research includes the design of composition techniques based on learning

with multihop broadcasting. Multihop composition was not considered in this paper be-

cause one hop is enough to discover autonomous devices in the user’s environment. How-

ever, even though the resources needed to provide a service may not be in the user’s vicinity,

the proposal can exploit them by using a directed multihop broadcast protocol. Moreover,

the knowledge acquired may be applied as we experiment with autonomous devices in the

real world.

Most solutions designed for the composition of adaptive pervasive services are based

on dedicated infrastructure. These solutions use notions such as central servers, stable

nodes and reliable communications channels, and include proposals as [139] [140] [141].

Most of these approaches involve preconfigured composition mechanisms residing on ded-

icated machines with high resources. Furthermore, some authors, such as [136], [142], only

consider the initial composition of pervasive services. Some other authors have proposed

protocols and frameworks for the adaptation of pervasive services in slightly dynamic en-

vironments; Karmouch and Nayak [143], for example, have proposed a disCSP model for

service composition. They used a Quality of Service (QOS)-based approach to adapt the

service composition (in order to determine the quality level, bandwidth, delay, loss and

jitter were used in the network). However, the framework proposed by Karmouch assumes

116 Chapter 8. Evaluation

3 4 5 6 7 8 9 10
Adaptation length

3500

4000

4500

5000

5500

N
um

be
r o

f m
es

sa
ge

s

PHSC
PHSC-DPS
VDCSP

Figure 8.11: Number of messages with respect to adaptation length

that all the components of the instance under consideration, such as variables, domains

and constraints, are completely known before it is modeled and solved, and do not change

either during or after the modeling and solving. However, it has long been observed that

such assumptions do not hold true in many situations.

In this paper we presented a dynamic DisCSP model for pervasive service composition

in dynamic environments, and a new heuristic useful for adapting partial solutions using an

asynchronous backtracking algorithm for solving the dynamic DisCSP. The model provides

a technique for adapting services without restarting the service composition process each

time that a participating agent is unavailable or leaves the AG. Through simulation, we

have shown that our protocol is able to maintain service availability despite the dynamism

of the environment. We have also discussed some drawbacks of the proposed protocol in

the context of network segmentation. Moreover, the knowledge acquired may be applied

as we experiment with real devices in the real world.

8.2. Pervasive Hybrid Service Adaptation 117

1 1.5 2 2.5 3 3.5 4
Adaptation length

1950

2000

2050

2100

2150

2200

Ad
ap

ta
tio

n
tim

e

PHSC
PHSC-DPS
VDCSP

Figure 8.12: Adaptation time with respect to adaptation length

2 4 6 8 10
Speed (m/s)

500

600

700

800

900

1000

1100

N
um

be
r o

f M
es

sa
ge

s

PHSC
PHSC-DPS

Figure 8.13: Number of messages with respect to mobility

118 Chapter 8. Evaluation

2 4 6 8 10
Speed (m/s)

20

30

40

50

60

70

Ti
m

e
(%

)

PHSC
PHSC-DPS

Figure 8.14: Service availability with respect to adaptation length

Chapter 9

Conclusions and Future Work

9.1 Work Context

The origin of this thesis is a relevant interest in problems within user-centered pervasive

systems and the composition of their hybrid services. Motivations include the work of

collaborative autonomous systems in the context of such booming areas as smart cities and

the internet of things, with applications such as security, target monitoring, traffic control

and health care. From the intersection of these two areas, two important issues emerge.The

first is a suitable technique for the dynamic composition of hybrid services in these user-

centered pervasive systems. SOA-based proposals, which are effectively addressed, do not

provide suitable mechanisms for dealing with services involving physical dependencies in

the user’s environment; they are limited mainly to software-only systems. The second issue

concerns the need for suitable architectures. Considering the physical elements of pervasive

systems as autonomous cooperating nodes of ad hoc networks is an attractive approach that

can lead to the decentralization and mobility of pervasive environments. Then we need

to provide an approach to provide suitable mechanisms for hybrid service adaptation in

dynamic environments.

9.2 Contributions

Concerning the first and second issues, this research has developed a model for the dynamic

composition and adaptation of hybrid services. As the pervasive hybrid service notion is

not yet well defined in the research literature, the first step towards this focus included a

literature study of service-oriented approaches and the various aspects of hybrid services.

119

120 Chapter 9. Conclusions and Future Work

More precisely, we aimed to address two principal issues: what are the requirements of

pervasive hybrid service composition and adaptation, and why it is difficult to satisfy these

composition and adaptation requirements with current approaches. The result of this phase

has been a survey of the main research directions in the area of service-oriented pervasive

computing, service composition and service adaptation. In view of the limitations identified

in current research, a novel approach to designing ecosystems of pervasive hybrid services

has been proposed. A summary of the main contributions of our research is given below.

• A novel model of a service ecosystem based on a social metaphor, formed as groups

of distributed devices, modeled by autonomous agents, all working towards the com-

position and adaptation of pervasive hybrid services. This model includes the basis

for an agent communication language based on social obligations that provides sup-

port in the design of interaction mechanisms suitable for flexible organizations such

as ecosystems.

• A distributed constraint satisfaction problem model for hybrid service composition

in mobile and ad hoc networks, and a distributed protocol for service composition

(i.e., for solving the respective distributed constraint satisfaction problem) utilizing

an asynchronous backtracking algorithm for solving. Simulation results show the

performance of our method in the composition of hybrid services.

• An extension to the distributed constraint satisfaction problem model that becomes

dynamic in mobile and ad hoc networks and a respective heuristic for adapting the

solution of the particular dynamic and distributed constraint satisfaction problem.

Capability adaptation is a requirement: the assumption that a composed hardware

service can remain static once generated is false, as the composed hardware service

needs to be reconfigured along with the resources available in the user’s environment.

Simulation results show the performance of the solution.

9.3 Perspectives

Research work is still needed to make our proposal a practically usable tool for the de-

velopment and deployment of pervasive hybrid services. Some of the most critical open

research issues we have identified include:

9.3. Perspectives 121

• Social Ecosystem Metaphor. Despite the promises of the ecosystem approach, the

way towards the deployment of usable and effective ecosystems of pervasive hybrid

services still requires answers to several challenging questions. How can an ecosys-

tem’s members and the social obligations lead to suitable, useful, and controllable

forms of organization? How can their dynamics be controlled to ensure continu-

ous service availability in open environments? Should ecosystem members have the

ability to learn? What shape should an actual software infrastructure have in order

to support learning by the ecosystem’s members? All of these, and many further

questions we may have overlooked, open up fascinating areas of research.

• Composing Pervasive Hybrid Services. Although in this thesis we provide a solution

for the composition of hybrid services based on resources within a user’s environ-

ment, no consideration was given to situations where there are available resources

and services but agents do not know how to interact to perform the service composi-

tion. Further research is required accounting for scenarios where agents need to learn

how to interact with each other in order to achieve some specific objective.

• Adapting Pervasive Hybrid Services. Although the solutions provided in this thesis

account for the adaptation of hybrid services based on resources within a user’s envir-

onment, no consideration was given to the problem of environment characterization

to achieve the most suitable adaptation. Further research is required to account for

scenarios where devices face new problems in unknown environments and need to

learn how to perform the adaptation.

The objective of this work was to propose the use of agent federations to provide hybrid

services in an ecosystem of pervasive services. The potential of multiagent systems and

ecosystem-inspired approaches to develop and deploy pervasive hybrid services is very

large and the topic is now open for achievements.

122 Chapter 9. Conclusions and Future Work

References

[1] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The internet
of things for ambient assisted living,” in Information Technology: New Generations
(ITNG), 2010 Seventh International Conference on, pp. 804–809, April 2010.

[2] C. Fischer and H. Gellersen, “Location and navigation support for emergency re-
sponders: A survey,” Pervasive Computing, IEEE, vol. 9, pp. 38–47, Jan 2010.

[3] Y. Chon and H. Cha, “Lifemap: A smartphone-based context provider for location-
based services,” Pervasive Computing, IEEE, vol. 10, pp. 58–67, April 2011.

[4] H. Cai, C. Peng, L. Jiang, and Y. Zhang, “A novel self-adaptive fault-tolerant
mechanism and its application for a dynamic pervasive computing environment,” in
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2012 15th IEEE International Symposium on, pp. 48–52, April 2012.

[5] M. Fahad, O. Boissier, P. Maret, N. Moalla, and C. Gravier, “Smart places: Multi-
agent based smart mobile virtual community management system,” Applied Intelli-
gence, vol. 41, no. 4, pp. 1024–1042, 2014.

[6] M. Musolesi and C. Mascolo, “Car: Context-aware adaptive routing for delay-
tolerant mobile networks,” Mobile Computing, IEEE Transactions on, vol. 8,
pp. 246–260, Feb 2009.

[7] D. Amendola, F. De Rango, K. Massri, and A. Vitaletti, “Neighbor discovery in delay
tolerant networking using resource-constraint devices,” in Wireless Days (WD), 2013
IFIP, pp. 1–3, Nov 2013.

[8] A. Manzalini, N. Brgulja, C. Moiso, and R. Minerva, “Autonomic nature-inspired
eco-systems,” in Transactions on Computational Science XV (M. Gavrilova, C. Tan,
and C.-V. Phan, eds.), vol. 7050 of Lecture Notes in Computer Science, pp. 158–191,
Springer Berlin Heidelberg, 2012.

[9] S. Jones, “Toward an acceptable definition of service [service-oriented architecture],”
Software, IEEE, vol. 22, pp. 87–93, May 2005.

[10] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson, “Pervasive ecosystems: A
coordination model based on semantic chemistry,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12, (Trento, Italy), pp. 295–302,
ACM, 2012.

123

124 REFERENCES

[11] S. Kalasapur and M. Kumar, “Resource adaptive hierarchical organization in pervas-
ive environments,” in Communication Systems and Networks and Workshops, 2009.
COMSNETS 2009. First International, pp. 1–8, January 2009.

[12] X. Gu, H. Shi, and J. Ye, “A hierarchical service discovery framework for ubiquitous
computing,” in Pervasive Computing and Applications, 2008. ICPCA 2008. Third
International Conference on, vol. 1, pp. 307–312, October 2008.

[13] M. Papazoglou, “Service-oriented computing: concepts, characteristics and direc-
tions,” in Web Information Systems Engineering, 2003. WISE 2003. Proceedings of
the Fourth International Conference on, pp. 3–12, Dec 2003.

[14] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented comput-
ing: State of the art and research challenges,” Computer, vol. 40, pp. 38–45, Nov
2007.

[15] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Composing adaptive software,”
Computer, vol. 37, pp. 56–64, July 2004.

[16] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw, “Task-based adaptation
for ubiquitous computing,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 36, pp. 328–240, May 2006.

[17] S.-F. Chang and A. Vetro, “Video adaptation: Concepts, technologies, and open is-
sues,” Proceedings of the IEEE, vol. 93, pp. 148–158, Jan 2005.

[18] D. Georgakoulos and M. P. Papazoglu., Service-Oriented Computing. Mas- Mas-
achusetts Institute of Technology, 2009.

[19] T. Erl, SOA Principles of Service Design. Prentice Hall, 2008.

[20] A. Rostampour, A. Kazemi, F. Shams, P. Jamshidi, and A. Azizkandi, “Measures of
structural complexity and service autonomy,” in Advanced Communication Techno-
logy (ICACT), 2011 13th International Conference on, pp. 1462–1467, Feb 2011.

[21] Y. Dai, Y. Feng, Y. Zhao, and Y. Huang, “A method of uddi service subscription
implementation,” in Software Engineering and Service Science (ICSESS), 2014 5th
IEEE International Conference on, pp. 661–666, June 2014.

[22] L. Wu, Y. He, D. Wu, and J. Cui, “A novel interoperable model of distributed uddi,”
in Networking, Architecture, and Storage, 2008. NAS ’08. International Conference
on, pp. 153–154, June 2008.

[23] N. Yulin, S. Huayou, L. Weiping, and C. Zhong, “Pdus: P2p-based distributed uddi
service discovery approach,” in Service Sciences (ICSS), 2010 International Confer-
ence on, pp. 3–8, May 2010.

REFERENCES 125

[24] A. Haseeb, M. Matskin, and P. Kungas, “Distributed web services discovery mid-
dleware for edges of internet,” in Web Services (ICWS), 2010 IEEE International
Conference on, pp. 680–682, July 2010.

[25] N. Ibrahim and F. L. Mouël, “A survey on service composition middleware in pervas-
ive environments,” IJCSI International Journal of Computer Science Issues, vol. 1,
pp. 1–12, Aug 2009.

[26] C. L.-P. Caroline Funk, Carolin Ehm, “Support of stateful services in pervasive envir-
onments,” in Proceedings of the Fifth Annual IEEE International Conference on Per-
vasive Computing and Communications Workshops(PerComW’07), Computer Soci-
ety, IEEE, 2007.

[27] U. Wajid, C. Marín, and N. Mehandjiev, “Optimizing service ecosystems in the
cloud,” in The Future Internet (A. Galis and A. Gavras, eds.), vol. 7858 of Lecture
Notes in Computer Science, pp. 115–126, Springer Berlin Heidelberg, 2013.

[28] W.-M. Shen, P. Will, A. Galstyan, and C.-M. Chuong, “Hormone-inspired self-
organization and distributed control of robotic swarms,” Autonomous Robots, vol. 17,
no. 1, pp. 93–105, 2004.

[29] R. Quitadamo, F. Zambonelli, and G. Cabri, “The service ecosystem: Dynamic self-
aggregation of pervasive communication services,” in In SEPCASE ’07: Proceedings
of the 1st International Workshop on Software Engineering for Pervasive Comput-
ing Applications, Systems, and Environments, (Washington, DC, USA,), p. 1, IEEE
Computer Society, 2007.

[30] A. Barros and M. Dumas, “The rise of web service ecosystems,” IT Professional,
vol. 8, pp. 31–37, Sept 2006.

[31] S. T. A. Pickett and M. L. Cadenasso, “The ecosystem as a multidimensional concept:
Meaning, model, and metaphor,” Ecosystems, vol. 5, no. 1, pp. 1–10, 2002.

[32] A. Omicini, “Nature-inspired coordination for complex distributed systems,” in Intel-
ligent Distributed Computing VI (G. Fortino, C. Badica, M. Malgeri, and R. Unland,
eds.), vol. 446 of Studies in Computational Intelligence, pp. 1–6, Springer Berlin
Heidelberg, 2013.

[33] J. Crowcroft, “Toward a network architecture that does everything,” Commun. ACM,
vol. 51, pp. 74–77, January 2008.

[34] M. Mamei and F. Zambonelli, Field-Based Coordination for Pervasive Multiagent
Systems. Springer Series on Agent Technology, Springer-Verlag New York, Inc.,
2005.

[35] C. Di Napoli, M. Giordano, Z. Németh, and N. Tonellotto, “Adaptive instantiation of
service workflows using a chemical approach,” in Euro-Par 2010 Parallel Processing
Workshops (M. Guarracino, F. Vivien, J. Träff, M. Cannatoro, M. Danelutto, A. Hast,

126 REFERENCES

F. Perla, A. Knupfer, B. Di Martino, and M. Alexander, eds.), vol. 6586 of Lecture
Notes in Computer Science, pp. 247–255, Springer Berlin Heidelberg, 2011.

[36] M. Giordano and C. Di Napoli, “A chemical evolutionary mechanism for instantiat-
ing service-based applications,” in Parallel Architectures and Bioinspired Algorithms
(F. Fernández de Vega, J. I. Hidalgo Pérez, and J. Lanchares, eds.), vol. 415 of Studies
in Computational Intelligence, pp. 267–286, Springer Berlin Heidelberg, 2012.

[37] F. De Angelis, J. Fernandez-Marquez, and G. Di Marzo Serugendo, “Self-
composition of services in pervasive systems: A chemical-inspired approach,” in
Agent and Multi-Agent Systems: Technologies and Applications (G. Jezic, M. Kusek,
I. Lovrek, R. J. Howlett, and L. C. Jain, eds.), vol. 296 of Advances in Intelligent
Systems and Computing, pp. 37–46, Springer International Publishing, 2014.

[38] D. Coulter and E. Ehlers, “Biologically inspired obsolescence management in mobile
agent systems: A dynamic, service oriented approach,” in Evolutionary Computation
(CEC), 2011 IEEE Congress on, pp. 2063–2070, June 2011.

[39] G. Briscoe, S. Sadedin, and P. De Wilde, “Digital ecosystems: Ecosystem-oriented
architectures,” Natural Computing, vol. 10, no. 3, pp. 1143–1194, 2011.

[40] M. D. Peysakhov, R. N. Lass, and W. C. Regli, “Stability and control of agent ecosys-
tems,” in Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’05, (New York, NY, USA), pp. 1143–
1144, ACM, ACM, 2005.

[41] C. Villalba, M. Mamei, and F. Zambonelli, “A self-organizing architecture for pervas-
ive ecosystems,” in Self-Organizing Architectures (D. eyns, S. Malek, R. de Lemos,
and J. Andersson, eds.), vol. 6090 of Lecture Notes in Computer Science, pp. 275–
300, Springer Berlin Heidelberg, 2010.

[42] C. Villalba and F. Zambonelli, “Towards nature-inspired pervasive service ecosys-
tems: Concepts and simulation experiences,” J. Network and Computer Applications,
vol. 34, no. 2, pp. 589–602, 2011.

[43] M. Mamei and F. Zambonelli, “Programming pervasive and mobile computing ap-
plications with the tota middleware,” in Pervasive Computing and Communica-
tions, 2004. PerCom 2004. Proceedings of the Second IEEE Annual Conference on,
pp. 263–273, March 2004.

[44] J.-P. Banâtre, P. Fradet, and Y. Radenac, “Generalised multisets for chemical pro-
gramming,” Mathematical. Structures in Comp. Sci., vol. 16, pp. 557–580, aug 2006.

[45] O. Flórez-Choque and E. Cuadros-Vargas, “A biologically motivated computational
architecture inspired in the human immunological system to quantify abnormal be-
haviors to detect presence of intruders,” in Biologically Inspired Cooperative Com-
puting (Y. Pan, F. Rammig, H. Schmeck, and M. Solar, eds.), vol. 216 of IFIP Inter-
national Federation for Information Processing, pp. 95–106, Springer US, 2006.

REFERENCES 127

[46] L. N. de Castro and J. Timmis, “Artificial immune systems: A new computational
intelligence approach,” Springer, 2002.

[47] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley and Sons Ltd,
2nd ed., 2009.

[48] D. Weyns and M. Georgeff, “Self-adaptation using multiagent systems,” Software,
IEEE, vol. 27, pp. 86–91, Jan 2010.

[49] J. Rao and X. Su, “A survey of automated web service composition methods,” in
Proceedings of the First International Conference on Semantic Web Services and
Web Process Composition, no. 12 in SWSWPC’04, (Berlin, Heidelberg), pp. 43–54,
Springer-Verlag, 2004.

[50] R. Thiagarajan, A. Srivastava, A. Pujari, and V. Bulusu, “Bpml : a process modeling
language for dynamic business models,” in Advanced Issues of E-Commerce and
Web-Based Information Systems, 2002. (WECWIS 2002). Proceedings. Fourth IEEE
International Workshop on, pp. 222–224, June 2002.

[51] J. Pasley, “How bpel and soa are changing web services development,” Internet Com-
puting, IEEE, vol. 9, pp. 60–67, May 2005.

[52] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic service composition in pervas-
ive computing,” Parallel and Distributed Systems, IEEE Transactions on, vol. 18,
pp. 907–918, July 2007.

[53] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “Timed i/o automata: a math-
ematical framework for modeling and analyzing real-time systems,” in Real-Time
Systems Symposium, 2003. RTSS 2003. 24th IEEE, pp. 166–177, Dec 2003.

[54] M. Capiluppi, L. Schreiter, P. Fiorini, J. Raczkowsky, and H. Woern, “Modeling
and verification of a robotic surgical system using hybrid input/output automata,” in
Control Conference (ECC), 2013 European, pp. 4238–4243, July 2013.

[55] S. Mitra and S. Sastry, “Hybrid input output automata for composable conveyor sys-
tems,” in Automation Science and Engineering, 2009. CASE 2009. IEEE Interna-
tional Conference on, pp. 29–29, August 2009.

[56] C. Norström, A. Wall, and W. Yi, “Timed automata as task models for event-driven
systems,” in Real-Time Computing Systems and Applications, 1999. RTCSA ’99.
Sixth International Conference on, pp. 182–189, 1999.

[57] M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-robot planning : a timed automata
approach,” in Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, vol. 5, pp. 4417–4422, April 2004.

[58] M. Sharafi, “Extending team automata to evaluate software architectural design,”
in Computer Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE
International, pp. 393–400, July 2008.

128 REFERENCES

[59] C. Herrero and J. Oliver, “Extended cooperating automata,” in Systems, Man and
Cybernetics, 2003. IEEE International Conference on, vol. 1, pp. 402–408, Oct 2003.

[60] R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed modelling and analysis in web
service compositions,” in Availability, Reliability and Security, 2006. ARES 2006.
The First International Conference on, p. 7 pp., April 2006.

[61] T. Murata, “Petri nets: properties, analysis and applications.,” in Proceedings IEEE,
vol. 77(4), pp. 541–580, 1989.

[62] S. Narayanan and S. Mcllraith, “Simulation, verification and automated composi-
tion of web services,” in In Proceedings of the 11th International World Wide Web
Conference, (New York, NY, USA), pp. 77–88, ACM Press, 2002.

[63] X. Yi and K. Kochut, “A cp-nets-based design and verification framework for web
services composition,” in Proceedings of the IEEE International Conference on Web
Services (J. H., L. L., and Z. L.-J., eds.), (San Diego, CA.), pp. 756–760, Computer
Society Press, 2004.

[64] G. Salaün, L. Bordeaux, and M. Schaerf., “Describing and reasoning on web services
using process algebra,” in Proceedings of the IEEE International Conference on Web
Services, (Los Alamitos, C.A.), pp. 43–50, IEEE Computer Society Press, 2004.

[65] M. Yokoo, Distributed Constraint Satisfaction: Foundations of Cooperation in Mul-
tiAgent Systems. Springer Series on Agent Technology, Berlin: Springer, 2001.

[66] K. Ghédira, Constraint Satisfaction Problems: CSP Formalisms and Techniques.
John Wiley, 2013.

[67] C. Yang and M.-H. Yang, “Constraint networks: a survey,” in Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE Interna-
tional Conference on, vol. 2, pp. 1930–1935, Oct 1997.

[68] C. Castro, “Binary csp solving as an inference process,” in Tools with Artificial Intel-
ligence, 1996., Proceedings Eighth IEEE International Conference on, pp. 462–463,
Nov 1996.

[69] B. Nadel, “Representation selection for constraint satisfaction: a case study using
n-queens,” IEEE Expert, vol. 5, pp. 16–23, June 1990.

[70] A. Petcu, A Class of Algorithms for Distributed Constraint Optimization. IOS Press,
2009.

[71] R. Wallace and E. C. Freuder, “Stable solutions for dynamic constraint satisfaction
problems.,” in In Proceedings of CP98, 1998.

[72] G. Verfaillie and T. Schiex., “Solution reuse in dynamic constraint satisfaction prob-
lems,” in In Proceedings of the National Conference on Artificial Intelligence, AAAI-
94, 1994.

REFERENCES 129

[73] C. Bessiere., “Arc-consistency for non-binary dynamic csps.,” in In Proc. of the 10th
ECAI, 1992.

[74] A. Fukunaga, “An improved search algorithm for minperturbation,” in Lecture Notes
in Computer Science, Springer, 2013.

[75] A. Horvath and D. Varro, “Dynamic constraint satisfaction problems over models,”
Software Systems Model, 2012.

[76] N. Nicoleta, Constraint Satisfaction Techniques for Agent-Based Reasoning.
Springer, 2005.

[77] W. Sun, Z. Zhang, W. Chen, B. Peng, and Y. Xu, “Decentralized execution of com-
posite service in manets,” in Asia-Pacific Services Computing Conference, 2008.
APSCC ’08. IEEE, pp. 355–360, Dec 2008.

[78] Z. Ruttkay, “Fuzzy constraint satisfaction,” in Fuzzy Systems, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the Third IEEE Confer-
ence on, vol. 2, pp. 1263–1268, Jun 1994.

[79] A. Schmid, S. Padmanabhuni, and A. Schroeder, “A soft constraints-based approach
for reconciliation of non-functional requirements in web services-based multi-agent
systems,” in Web Services, 2007. ICWS 2007. IEEE International Conference on,
pp. 711–718, July 2007.

[80] R. Young, R. Giachetti, and D. Ress, “A fuzzy constraint satisfaction system for
design and manufacturing,” in Fuzzy Systems, 1996., Proceedings of the Fifth IEEE
International Conference on, vol. 2, pp. 1106–1112, Sep 1996.

[81] U. Montanari, “Networks of constraints: fundamental properties and applications to
picture processing,” Information Sciences, vol. 7, pp. 95–132, 1974.

[82] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems,” Artifi-
cial Intelligence, vol. 58, no. 1-3, pp. 161–205, 1992.

[83] P. Morris, “The breakout method for pscaping from local minima.,” in In Proceedings
of the Eleventh National Conference on Artificial Intelligence, 1993.

[84] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Weley, 1984.

[85] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer, “Asynchronous backtracking
without adding links: A new member in the abt family,” Artificial Intelligence,
vol. 161, pp. 7–24, January 2005.

130 REFERENCES

[86] M. Yokoo, “Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems,” in Principles and Practice of Constraint Programming
— CP ’95 (U. Montanari and F. Rossi, eds.), vol. 976 of Lecture Notes in Computer
Science, pp. 88–102, Springer Berlin Heidelberg, 1995.

[87] O. Boissier, M. Colombetti, M. Luck, J. C. Meyer, and A. Polleres, “Norms, organiz-
ations, and semantics,” Knowledge Engineering Review, vol. 28, no. 1, pp. 107–116,
2013.

[88] F. Cervantes, M. Occello, F. Ramos, and J.-P. Jamont, “Toward self-adaptive eco-
systems of services in dynamic environments,” in Advances in Systems Science -
Proceedings of the International Conference on Systems Science 2013 (J. Swiatek,
A. Grzech, P. Swiatek, and J. M. Tomczak, eds.), vol. 240, pp. 671–680, Springer,
2013.

[89] M. A. Arbib, “Review of ’theory of automata’ (salomaa, a.; 1969).,” IEEE Transac-
tions on Information Theory, vol. 16, no. 5, pp. 652–653, 1970.

[90] M. Barbuceanu and M. S. Fox, “Cool - a language for describing coordination in
multi-agent systems,” In Proceedings of the First International Conference on Mul-
tiagent Systems, pp. 17–24, 1995.

[91] A. Fukada, A. Nakata, J. Kitamichi, T. Higashinoz, and A. Cavalli, “A conformance
testing method for communication protocols modeled as concurrent dfsms. treat-
ment of non-observable non-determinism,” in Information Networking, 2001. Pro-
ceedings. 15th International Conference on, pp. 155–162, 2001.

[92] R. Fernández and U. Endriss, “Abstract models for dialogue protocols,” Journal of
Logic, Language and Information, vol. 16, no. 2, pp. 121–140, 2007.

[93] A. K. Chopra and M. P. Singh, “Contextualizing commitment protocol,” in 5th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems AAMAS
2006), Hakodate, Japan, May 8-12, 2006, pp. 1345–1352, 2006.

[94] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. London, UK, UK: Springer-Verlag, 1995.

[95] H. Mazouzi, A. E. F. Seghrouchni, and S. Haddad, “Open protocol design for com-
plex interactions in multi-agent systems,” in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, AAMAS
’02, (New York, NY, USA), pp. 517–526, ACM, 2002.

[96] J.-L. KONING, “Operational semantics rules as a computational coordination mech-
anism in multi-agent systems,” International Journal of Intelligent Control and Sys-
tems, vol. 12, pp. 167–178, June 2007.

REFERENCES 131

[97] S. Paurobally, J. Cunningham, and N. R. Jennings, “Developing agent interaction
protocols using graphical and logical methodologies,” in PROMAS (M. Dastani,
J. Dix, and A. E. Fallah-Seghrouchni, eds.), vol. 3067 of Lecture Notes in Computer
Science, pp. 149–168, Springer, 2003.

[98] P. D. O’Brien and R. C. Nicol, “Fipa - towards a standard for software agents,” BT
Technology Journal, vol. 16, pp. 51–59, jul 1998.

[99] FIPA, “Fipa communicative act library specification.”

[100] M. P. Singh, “Agent communication languages: Rethinking the principles,” Com-
puter, vol. 31, pp. 40–47, dec 1998.

[101] M. P. Singh, “A social semantics for agent communication languages,” Issues in
Agent Communication, pp. 31–45, 2000.

[102] B. Gaudou, A. Herzig, D. Longin, and M. Nickles, “A new semantics for the fipa
agent communication language based on social attitudes,” Proceedings of the 2006
Conference on ECAI 2006: 17th European Conference on Artificial Intelligence Au-
gust 29 – September 1, 2006, Riva Del Garda, Italy, pp. 245–249, 2006.

[103] O. Gutiérrez, “Multiagent systems interaction through social norms,” Disertation,
2009.

[104] O. Boissier, M. Colombetti, M. Luck, J.-J. Meyer, and A. Polleres, “Norms, or-
ganizations, and semantics,” The Knowledge Engineering Review, vol. 28, no. 1,
pp. 107–116, 2013.

[105] M. Rob and M. Shanahan, “The event calculus in classical logic - alternative axio-
matisations,” Electron. Trans. Artif. Intell. 3(A), pp. 77–105, 1999.

[106] J. O. Gutierrez-Garcia, F. F. Ramos-Corchado, and J.-L. Koning, “From obligations
to organizational structures in multi-agent systems,” Proceedings of the 11th Pacific
Rim international Conference on Multi-Agents: intelligent Agents and Multi-Agent
Systems., vol. 5357, pp. 206–213, 2008.

[107] M. Shanahan, “The event calculus explained,” Artificial Intelligence Today, pp. 409–
430, 1999.

[108] R. Miller and M. Shanahan, “Some alternative formulations of the event calculus, in
computational logic,” Logic Programming and Beyond: Essays in Honour of Robert
A. Kowalski, Part II, A.C. Kakas and F. Sadri, Eds., Lecture Notes in Computer
Science, vol. 2408, pp. 452–490, 2002.

[109] F. Lopez and M. Luck, “Modelling norms for autonomous agents,” in Proceedings
of Fourth Mexican International Conference on Computer Science, pp. 238 – 245,
IEEE Computer Society, 2003.

132 REFERENCES

[110] J. F. Hübner, O. Boissier, and R. H. Bordini, “A normative programming language
for multi-agent organisations,” Annals of Mathematics and Artificial Intelligence,
vol. 62, no. 1-2, pp. 27–53, 2011.

[111] J. R. Searle and D. Vanderveken, Foundations of Illocutionary Logic. Cambridge
University Press, Cambridge, 1985.

[112] N. Fornara and M. Colombetti, “Operational specification of a commitment-based
agent communication language,” In Proceedings of the First international Joint Con-
ference on Autonomous Agents and Multiagent Systems: Part 2, pp. 536–542, 2002.

[113] M. P. Singh and M. N. Huhns, Service-Oriented Computing; Semantics, Processes,
Agents. John Wiley and Sons Ltd, 2005.

[114] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara, “The distributed constraint satis-
faction problem: formalization and algorithms,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 10, pp. 673–685, Sep 1998.

[115] D. Chen, L. Wang, A. Y. Zomaya, M. Dou, J. Chen, Z. Deng, and S. Hariri, “Par-
allel simulation of complex evacuation scenarios with adaptive agent models,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, pp. 847–857, March 2015.

[116] N. M. Ceriani, A. M. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson, “React-
ive task adaptation based on hierarchical constraints classification for safe industrial
robots,” IEEE/ASME Transactions on Mechatronics, vol. 20, pp. 2935–2949, Dec
2015.

[117] H. Kim, Y. Yoon, and H. Park, “Adaptation method for level of detail (lod) of 3d
contents,” in Network and Parallel Computing Workshops, 2007. NPC Workshops.
IFIP International Conference on, pp. 879–884, Sept 2007.

[118] L. F. G. Preciado, S. E. Vargas, J. F. C. Alvarez, G. T. Blanco, and F. F. R. Corchado,
“Simplifying the design of interactive simulations of deformable objects,” IEEE
Latin America Transactions, vol. 14, pp. 391–397, Jan 2016.

[119] W. Chen, Y. Jing, J. Wu, and W. Sun, “A dynamic execution path selection approach
for composite services in manets,” in Wireless Communications, Networking and
Mobile Computing, 2008. WiCOM ’08. 4th International Conference on, pp. 1–4,
Oct 2008.

[120] W. Chen, Z. He, G. Ren, and W. Sun, “Service recovery for composite service in
manets,” in Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM ’08. 4th International Conference on, pp. 1–4, Oct 2008.

[121] S. Han and Y. Zhang, “Design and implementation of service composition protocol
based on dsr,” in Parallel and Distributed Computing, Applications and Technologies
(PDCAT), 2010 International Conference on, pp. 323–328, Dec 2010.

REFERENCES 133

[122] P. Choudhury, P. Dutta, S. Nandi, and N. Debnath, “Mobility aware distributed ser-
vice composition framework in soa based manet application,” in Industrial Informat-
ics (INDIN), 2012 10th IEEE International Conference on (July, ed.), pp. 1016–1021,
2012.

[123] J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Modeling dimensions of
self-adaptive software systems,” in Software Engineering for Self-Adaptive Systems
(B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, eds.), vol. 5525 of
Lecture Notes in Computer Science, pp. 27–47, Springer Berlin Heidelberg, 2009.

[124] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a taxonomy
of software change: Research articles,” J. Softw. Maint. Evol., vol. 17, pp. 309–332,
sep 2005.

[125] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola,
“Moses: A framework for qos driven runtime adaptation of service-oriented sys-
tems,” Software Engineering, IEEE Transactions on, vol. 38, pp. 1138–1159, Sept
2012.

[126] N. Taylor, P. Robertson, B. Farshchian, K. Doolin, I. Roussaki, L. Marshall,
R. Mullins, S. Drüsedow, and K. Dolinar, “Pervasive computing in daidalos,” Per-
vasive Computing, IEEE, vol. 10, pp. 74–81, Jan 2011.

[127] C. Baladron, J. Aguiar, B. Carro, L. Calavia, A. Cadenas, and A. Sanchez-
Esguevillas, “Framework for intelligent service adaptation to user’s context in next
generation networks,” Communications Magazine, IEEE, vol. 50, pp. 18–25, March
2012.

[128] V. W.-M. Kwan, F. C.-M. Lau, and C.-L. Wang, “Functionality adaptation: a context-
aware service code adaptation for pervasive computing environments,” in Web In-
telligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on,
pp. 358–364, Oct 2003.

[129] V. Schwartze, “An interactive user interface adaptation process,” in Pervasive Com-
puting and Communications Workshops (PERCOM Workshops), 2012 IEEE Interna-
tional Conference on, pp. 546–547, March 2012.

[130] E. de Lara, Y. Chopra, R. Kumar, N. Vaghela, D. Wallach, and W. Zwaenepoel,
“Iterative adaptation for mobile clients using existing apis,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 16, pp. 966–981, Oct 2005.

[131] M. Williams, Y. Yang, N. Taylor, S. McBurney, E. Papadopoulou, F. Mahon, and
M. Crotty, “Personalized dynamic composition of services and resources in a wire-
less pervasive computing environment,” in Wireless Pervasive Computing, 2006 1st
International Symposium on, pp. 1–6, Jan 2006.

134 REFERENCES

[132] C. Funk, A. Schultheis, C. Linnhoff-Popien, J. Mitic, and C. Kuhmunch, “Adaptation
of composite services in pervasive computing environments,” in Pervasive Services,
IEEE International Conference on, pp. 242–249, July 2007.

[133] P.-A. Avouac, P. Lalanda, and L. Nigay, “Adaptable multimodal interfaces in per-
vasive environments,” in Consumer Communications and Networking Conference
(CCNC), 2012 IEEE, pp. 544–548, Jan 2012.

[134] S. Hagen and A. Kemper, “Facing the unpredictable: Automated adaption of it
change plans for unpredictable management domains,” in Network and Service Man-
agement (CNSM), 2010 International Conference on, pp. 33–40, Oct 2010.

[135] J. Cervino, E. Kalyvianaki, J. Salvachua, and P. Pietzuch, “Adaptive provisioning of
stream processing systems in the cloud,” in Data Engineering Workshops (ICDEW),
2012 IEEE 28th International Conference on, pp. 295–301, April 2012.

[136] Y. Maurel, S. Chollet, V. Lestideau, J. Bardin, P. Lalanda, and A. Bottaro, “fanfare:
Autonomic framework for service-based pervasive environment,” in Services Com-
puting (SCC), 2012 IEEE Ninth International Conference on, pp. 65–72, June 2012.

[137] S. Komorita, M. Ito, H. Yokota, C. Makaya, B. Falchuk, D. Chee, and S. Das,
“Loosely coupled service composition for deployment of next generation service
overlay networks,” Communications Magazine, IEEE, vol. 50, pp. 62–72, January
2012.

[138] K. Zielinnski, T. Szydlo, R. Szymacha, J. Kosinski, J. Kosinska, and M. Jarzab,
“Adaptive soa solution stack,” Services Computing, IEEE Transactions on, vol. 5,
pp. 149–163, April 2012.

[139] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. chien Shan, “Adaptive and
dynamic service composition in eflow,” in Proceedings of the 12th International Con-
ference on Advanced Information Systems Engineering, CAiSE ’00, (London, UK,
UK), pp. 13–31, Springer-Verlag, 2000.

[140] F. Cicirelli, A. Furfaro, and L. Nigro, “Integration and interoperability between jini
services and web services,” in Services Computing, 2007. SCC 2007. IEEE Interna-
tional Conference on, pp. 278–285, July 2007.

[141] K. Rajaram and C. Babu, “Template based soa framework for dynamic and adaptive
composition of web services,” in Networking and Information Technology (ICNIT),
2010 International Conference on, pp. 49–53, June 2010.

[142] W. Baldwin, T. Ben-Zvi, and B. Sauser, “Formation of collaborative system of sys-
tems through belonging choice mechanisms,” Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, vol. 42, pp. 793–801, July 2012.

[143] E. Karmouch and A. Nayak, “A distributed constraint satisfaction problem approach
to virtual device composition,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 23, pp. 1997–2009, Nov 2012.

REFERENCES 135

[144] G. Riley and T. Henderson, “The ns-3 network simulator,” in Modeling and Tools for
Network Simulation (K. Wehrle, M. Güneş, and J. Gross, eds.), pp. 15–34, Springer
Berlin Heidelberg, 2010.

[145] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system for
sensor networks,” in Ambient Intelligence (W. Weber, J. Rabaey, and E. Aarts, eds.),
pp. 115–148, Springer Berlin Heidelberg, 2005.

[146] A. Sobeih, W.-P. Chen, J. Hou, L.-C. Kung, N. Li, H. Lim, H. ying Tyan, and
H. Zhang, “J-sim: a simulation environment for wireless sensor networks,” in Simu-
lation Symposium, 2005. Proceedings. 38th Annual, pp. 175–187, April 2005.

[147] J.-P. Jamont, M. Occello, and E. Mendes, “Decentralized intelligent real world em-
bedded systems: A tool to tune design and deployment,” in Advances on Prac-
tical Applications of Agents and Multi-Agent Systems (Y. Demazeau, T. Ishida,
J. Corchado, and J. Bajo, eds.), vol. 7879 of Lecture Notes in Computer Science,
pp. 133–144, Springer Berlin Heidelberg, 2013.

[148] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random waypoint
mobility model for wireless ad hoc networks,” Mobile Computing, IEEE Transac-
tions on, vol. 2, pp. 257–269, July 2003.

[149] J. Ariyakhajorn, P. Wannawilai, and C. Sathitwiriyawong, “A comparative study of
random waypoint and gauss-markov mobility models in the performance evaluation
of manet,” in Communications and Information Technologies, 2006. ISCIT ’06. In-
ternational Symposium on, Oct 2006.

[150] B. Liang and Z. Haas, “Predictive distance-based mobility management for pcs net-
works,” in INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1377–1384, Mar
1999.

136 Acronymes

Acronyms

ABT Asynchronous Back Tracking. 22, 56, 57
ACL Agent Communication Language. 34, 36, 49, 68
ACO Ant Colony Optimization. 23
AG Agent Group. 64, 65, 89, 96, 98
AWCS Asynchronous Weak-Commitment Search. 22

BDI Beliefs, Desires and Intentions. 36
BPEL Business Process Execution Language. 17–20
BPML Business Process Modeling Language. 17

CCS Calculus of Communicating System. 20
CPN Colored Petri Nets. 35
CSP Constraint Satisfaction Problem. 16, 20, 21

DBA Distributed Breakout Algorithm. 22
DFSM Deterministic Finite State Machine. 35
DisCSP Distributed Constraint Satisfaction Problem. v,

21, 22, 51–53, 56, 57, 96, 98
DPS Dynamic Partial Solution. 64, 65, 89, 91, 93, 94

ERA Environment, Reactive Rules and Agents. 22

FIPA Foundation for Intelligent Physical Agents. 36

IAM Individual Agent Manager. 70

MANET Mobile and Ad Hoc Network. 9, 52
MAS Multiagent System. 14, 35, 70
MASH Multiagent Software Hardware Simulator. 68–

70, 73, 85

PHSC pervasive hybrid service composition. 56, 57, 64,
85, 87–89, 91, 93, 94

PN Petri Nets. 35

137

138 Acronyms

PROMELA Process Meta Language. 19
PSO Particle Swarm Optimization. 23

QOS Quality of Service. 98

SOA Service Oriented Architecture. 3, 4, 7, 8, 14

UDDI Universal Description, Discovery, and Integra-
tion. 8

UML Unified Modeling Language. 35

VDCSP Virtual Device Constraint Satisfaction Protocol.
85, 87–89, 91, 93, 94

XLANG XML Language. 20
XML Extensible Markup Language. 18
XPath XML Path Language. 19

Annexes

139

Publications of the author

Articles
1. Context Sensitive Ecosystem of Intelligent Environments

Francisco Cervantes, Rodolfo Ostos, Félix Ramos, 8th International Conference on
Digital Intelligent Environments, México, IEEE, 2012.

2. Toward Self-Adaptive Ecosystems of Services in Dynamic Environments
Francisco Cervantes, Michel Occello, Félix Ramos, Jean-Paul, Advances in Intelli-
gent Systems and Computing, Polone, Springer International Publishing, 2013.

3. Designing the Web of Things as a Society of Autonomous Real/Virtual Hybrid
Entities
Francisco Cervantes, Michel Occello, Félix Ramos, Jean-Paul, International Work-
shop on Web Intelligence and Smart Sensing, France, ACM, 2014.

4. Simplifying the Design of Interactive Simulations of Deformable Objects
L. F. Gutierrez, F. Cervantes, S. Vargas, G. Torres, and Félix Ramos, IEEE Latin
America Transactions, Vol. 14, No. 1, Jan. 2016.

Book chapter
1. Coordinación Distribuida en Espacios Inteligentes Heterogéneos

Rodolfo Ostos, Francisco Cervantes, Félix Ramos, La medicina como arte, ciencia,
humanismo e investigación: XXXII Jornada Médica ISSSTE-UAEM, Universidad
Autónoma del Estado de México, 2014.

141

	Introduction
	Motivation
	Problem Description
	Thesis Objectives
	Thesis Contributions
	Outline

	Ecosystem Vision of Pervasive Services
	Services
	Toward Pervasive Service Ecosystems
	Classical Metaphors for Modeling Service Ecosystems
	Physical Metaphor
	Chemical Metaphor
	Biological Metaphor
	Ecological Metaphor

	Key Differences between Ecosystem Metaphors
	Conclusion

	 Service Composition Approaches
	Service Composition
	Classical Service Composition Approaches
	Static Service Composition
	Dynamic Service Composition
	Classical Formalisms for Service Composition Specification

	Service Composition as a Constraint Satisfaction Problem
	Approach Taxonomy
	Distributed CSP Framework
	Distributed Constraint Satisfaction Problem Solving
	Comparing the Main Features of DisCSP Solving Algorithms

	Conclusion

	 An Ecosystem-Based Approach for Pervasive Hardware Services
	A Social Metaphor
	Ecosystem Members and Species
	Social Interaction Norms
	Service Ecosystem Environment

	A Conceptual Architecture for Pervasive Hardware Service Ecosystems
	Crowd Evacuation: A scenario
	Conclusion

	 Social Obligations for Agent Interaction in the Ecosystem
	Agent Interaction
	Deterministic Finite-State Machines
	Petri Nets

	Obligations
	Basic Operations on Obligations

	Obligation Life Cycle
	Basic Acts for a Social ACL
	Assertive Acts
	Directive Acts
	Commissive Acts
	Declarative Acts

	Modeling a Protocol by Means of Obligations
	Preliminaries
	Clustering-Based Protocol

	Conclusion

	An Approach for Pervasive Hardware Service Composition and Adaptation
	Pervasive Hardware Service Composition
	Problem Formulation
	Service Composition as a DisCSP Problem
	Pervasive Hardware Service Composition
	Dynamic-disCSP Framework
	Formation of Candidate Agents
	Pervasive Hardware Service Composition Algorithm

	Adaptation from a Pervasive System Perspective
	Dynamic-disCSP Framework
	A Service Adaptation Heuristic

	Conclusion

	Implementation
	MASH: A Tool to Tune Design and Deployment
	Overview of the MASH Architecture
	A Toy Problem
	Building a Solution
	Creating an Agent
	Agent Interaction in MASH

	Implementation of the Solution
	Overview of the Solution: Service Ecosystem based on a Federation of Agents
	Formation of Candidate Agents
	Composition and Adaptation of Services
	Conclusion

	 Evaluation
	Pervasive Hybrid Service Composition
	Scenario Description
	Effects of Service Density
	Effects of Scaling
	Effects of Composition Order

	Pervasive Hybrid Service Adaptation
	Scenario Description
	Effects of Service Density
	Effects of Scaling
	Effects of Adaptation Order
	Effects of Mobility
	Conclusion

	Conclusions and Future Work
	Work Context
	Contributions
	Perspectives

	Acronymes
	Index

