
HAL Id: tel-01679344
https://theses.hal.science/tel-01679344

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trust and uncertainty in distributed environments :
application to the management of dataand data sources

quality in M2M (Machine to Machine) systems.
Mondi Ravi

To cite this version:
Mondi Ravi. Trust and uncertainty in distributed environments : application to the management
of dataand data sources quality in M2M (Machine to Machine) systems.. Other [cs.OH]. Université
Grenoble Alpes, 2016. English. �NNT : 2016GREAM090�. �tel-01679344�

https://theses.hal.science/tel-01679344
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE
ALPES
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Mondi RAVI

Thèse dirigée par Pr. Yves DEMAZEAU et
codirigée par Dr. Fano RAMPARANY

préparée au sein du Laboratoire Informatique de
Grenoble dans l'Ecole Doctorale Mathématiques,
Sciences et Technologies de I'Information,
Informatique

Confiance et incertitude
dans les environnements
distribués - application à
la gestion des données et
de la qualité des sources
de données dans les
systèmes M2M (Machine
to Machine)

2

Contents

Abstract 11

Résumé 13

Acknowledgment 15

1 Synopsis 17

2 Introduction 23

2.1 Problem statement . 25

2.2 Motivation . 26

2.3 Our hypothesis . 27

2.4 Use cases . 28

2.4.1 Intelligent Community 28

2.4.2 Smart City Garbage Collection 29

2.5 Success criteria . 31

2.6 Thesis outline . 31

3 State-of-the-Art 33

3.1 Trust . 33

3.1.1 Modeling trust . 34

3.1.2 Classification based on success criteria 42

3.1.3 Desired aspects of Trust for the IoT 43

3.2 Uncertainty . 44

3.2.1 Sources, types and the need for managing uncertainty 44

3.2.2 Modeling uncertainty 47

3.2.3 Propagation of uncertainty 50

3.3 Trust and uncertainty management in Distri-
buted Systems . 50

3.3.1 Crowdsourcing and Data Fusion 52

3.4 Truth Maintenance Systems 53

3.4.1 Assumption-based Truth Maintenance Systems 54

3.4.2 Distributed ATMS . 56

3.5 Classification of the State-of-the-Art 57

3

4 CONTENTS

4 Solution approach 59

4.1 Envisaging a distributed system as a MAS 59

4.2 Knowledge base . 61

4.2.1 Representation . 62

4.2.2 Rules and Reasoning 62

4.3 Modeling trust . 63

4.3.1 Eigen Trust . 64

4.3.2 Local and Global trust 64

4.3.3 Predefined trust . 65

4.3.4 Drawbacks of Eigen trust 65

4.3.5 β-reputation model . 65

4.4 Modeling uncertainty . 66

4.4.1 Possibilistic Logic . 66

4.4.2 Probability Theory . 68

4.5 Agent beliefs and their relation with trust 69

4.5.1 Interaction . 69

4.5.2 Beliefs . 70

4.6 Using trust measure as uncertainty 70

4.7 Assumption-based Truth Maintenance System 71

4.8 Reasoning with uncertainty 72

4.9 Discussion . 74

5 Implementation 77

5.1 Distribution aspect . 77

5.2 Data representation . 78

5.3 The agent . 81

5.3.1 The agent behaviors 83

5.3.2 The reasoner . 84

5.3.3 The rule base . 85

5.3.4 The ATMS . 85

5.4 A working example . 87

6 Applications 93

6.1 Intelligent Community . 93

6.1.1 Simulation setup . 94

6.1.2 Tests . 94

6.1.3 Experimentation . 96

6.1.4 Discussion on the trust and the uncertainty models . . 101

6.2 Smart City Garbage Collection 101

6.2.1 Analysis of the Data set 101

6.2.2 Dissimilarities of the data set to our initial use case . 103

6.2.3 Objectives of this application 103

6.2.4 Enhancements and assumptions in the data set 104

6.2.5 Simplified trust model 105

CONTENTS 5

6.2.6 Uncertainty model . 105
6.2.7 Experimentation . 106
6.2.8 Verification of the use case 108

6.3 Project FIWARE . 109
6.3.1 Introduction . 110
6.3.2 Home mood Scenario 110
6.3.3 Approach and architecture 111
6.3.4 Scenario implementation and experimentation 113

7 Conclusion and Discussion 117
7.1 Contributions and Achievements 117
7.2 Limitations and future enhancements 119
7.3 Extending beyond the explained applications 119

6 CONTENTS

List of Figures

2.1 Problem statement . 25

2.2 Intelligent community use case. 28

2.3 A smart garbage collection system 30

3.1 Example: How a conclusion can be derived 54

3.2 Example illustrating an ATMS 56

4.1 Architecture of an agent showing different components, knowl-
edge bases and the data flow 60

4.2 An example ontology of Intelligent Community use case . . . 62

4.3 Detailed figure of a reasoner and its relationship with the
belief base . 63

4.4 A transaction between querying agent Q and replying agent R 70

4.5 Reasoner and ATMS . 72

4.6 Dependency graph snapshots from the ATMS depicting possi-
ble cases in reasoning trust relations. A1, A2 are assumption
nodes while Z is a derived node. The corresponding labels of
the nodes are shown alongside. 74

5.1 Example from the Intelligent community use case. 78

5.2 JADE facilitating communication amongst agents in two con-
tainers. 79

5.3 TUM ontology. 82

5.4 ATMS class diagram. 88

6.1 Evolution of trust on two sources B and C, as computed by
A, and uncertainty of the decision taken for the corresponding
iterations . 96

6.2 Memory usage in a single container 100

6.3 The Smart city garbage collection data model (Source: A2I
Systems) . 102

6.4 Some remarks and the conclusions that can be derived from
them . 107

6.5 FLOD IoT Semantic Context Broker 112

7

8 LIST OF FIGURES

List of Tables

3.1 Classification of trust models 45
3.2 Classification of uncertainty models 51
3.3 Classification . 58

4.1 Transaction table for an agent A 64
4.2 A sample remarks and reasoned information table 69
4.3 Analysis of derivation of conclusion 75

5.1 The initial and after communication with M1 states of the
belief base and the ATMS of home A 91

5.2 The state of the belief base and the ATMS of home A af-
ter communication with the neighbor B for weather and soil
information. 92

6.1 Experimentation trust update 95
6.2 Statistics after 100 iterations 97
6.3 Statistics after 100 iterations for almost 50% accuracy of all

sources . 98
6.4 A snippet of DriverHistory table 104
6.5 Trust computation based on number of remarks 105
6.6 Remarks and their counts . 108
6.7 Remarks and different inferences 108

9

10 LIST OF TABLES

Abstract

Trust and uncertainty are two important aspects of many distributed sys-
tems. For example, multiple sources of information can be available for the
same type of information. This poses the problem to select the best source
that can produce the most certain information and to resolve incoherence
amongst the available information. Managing trust and uncertainty together
forms a complex problem and through this thesis we develop a solution to
this. Trust and uncertainty have an intrinsic relationship. Trust is primar-
ily related to sources of information while uncertainty is a characteristic of
the information itself. In the absence of trust and uncertainty measures, a
system generally suffers from problems like incoherence and uncertainty. To
improve on this, we hypothesize that the sources with higher trust levels
will produce more certain information than those with lower trust values.
We then use the trust measures of the information sources to quantify un-
certainty in the information and thereby infer high level conclusions with
greater certainty.

A general trend in the modern distributed systems is to embed reasoning
capabilities in the end devices to make them smart and autonomous. We
model these end devices as agents of a Multi Agent System (MAS). Major
sources of beliefs for such agents are external information sources that can
possess varying trust levels. Moreover, the incoming information and beliefs
are associated with a degree of uncertainty. Hence, the agents face two-fold
problems of managing trust on sources and presence of uncertainty in the
information. We illustrate this with three application domains: (i) The in-
telligent community, (ii) Smart city garbage collection, and (iii) FIWARE :
a European project about the Future Internet that motivated the research
on this topic. Our solution to the problem involves modeling the devices (or
entities) of these domains as intelligent agents that comprise a trust man-
agement module, an inference engine and a belief revision system. We show
that this set of components can help agents to manage trust on the other
sources and quantify uncertainty in the information and then use this to in-
fer more certain high level conclusions. We finally assess our approach using
simulated and real data pertaining to the different application domains.

12 ABSTRACT

Résumé

La confiance et l’incertitude sont deux aspects importants des systèmes dis-
tribués. Par exemple, de multiples sources d’information peuvent fournir le
même type d’information. Cela pose le problème de sélectionner la source la
plus fiable et de résoudre l’incohérence dans l’information disponible. Gérer
de front la confiance et l’incertitude constitue un problème complexe et
nous développons travers cette thèse, une solution pour y répondre. La
confiance et l’incertitude sont intrinsèquement liés. La confiance concerne
principalement les sources d’information alors que l’incertitude est une car-
actéristique de l’information elle-même. En l’absence de mesures de confi-
ance et d’incertitude, un système doit généralement faire face des problèmes
tels que l’incohérence et l’incertitude. Pour aborder ce point, nous émettons
l’hypothèse que les sources dont les niveaux de confiance sont élevés pro-
duiront de l’information plus fiable que les sources dont les niveaux de con-
fiance sont inférieurs. Nous utilisons ensuite les mesures de confiance des
sources pour quantifier l’incertitude dans l’information et ainsi obtenir des
conclusions de plus haut niveau avec plus de certitude.

Une tendance générale dans les systèmes distribués modernes consiste
intégrer des capacités de raisonnement dans les composants pour les ren-
dre intelligents et autonomes. Nous modélisons ces composants comme des
agents d’un système multi-agents (SMA). Les principales sources d’informa-
tion de ces agents sont les autres agents, et ces derniers peuvent posséder
des niveaux de confiance différents. De plus, l’information entrante et les
croyances qui en découlent sont associées un degré d’incertitude. Par
conséquent, les agents sont confrontés un double problème: celui de la
gestion de la confiance sur les sources et celui de la présence de l’incertitude
dans l’information. Nous illustrons cela avec trois domaines d’application:
(i) la communauté intelligente, (ii) la collecte des déchets dans une ville in-
telligente, et (iii) les facilitateurs pour les systèmes de l’internet du futur
(FIWARE - le projet européen n◦ 285248, qui a motivé la recherche sur nos
travaux). La solution que nous proposons consiste modéliser les composants
de ces domaines comme des agents intelligents qui incluent un module de
gestion de la confiance, un moteur d’inférence et un système de révision
des croyances. Nous montrons que cet ensemble d’éléments peut aider les
agents gérer la confiance aux autres sources, quantifier l’incertitude dans

14 RÉSUMÉ

l’information et l’utiliser pour aboutir certaines conclusions de plus haut
niveau. Nous évaluons finalement notre approche en utilisant des donnes la
fois simules et relles relatives aux diffrents domaines d’application.

Acknowledgment

There are a lot of people that I need to thank for having helped me in
different ways during this thesis. Without their help and support I would
never have finished my dissertation.

First and foremost are my advisors: Dr. Fano Ramparany and Pr. Yves
Demazeau. I would like to express my deepest gratitude to both of them.
Being my industrial advisor, Dr. Fano was really close to me. He guided
and helped me greatly with my research and writing of this thesis. His
motivation, patience, valuable suggestions, and his moral support is highly
appreciable. Pr. Yves, too helped me with his excellent guidance, care,
patience and precious remarks throughout the thesis. I feel lucky to have
found such wonderful researchers as my thesis advisors.

Orange Labs and the team “Smart Home and Access (SMA/COSY)”
is made up of smart, dedicated and helpful people. My thanks to them
for providing an exceptional and friendly environment for the research and
development. The interactions with different people and groups in Orange
Labs has led to the development of the use cases presented in the thesis.
My sincere thanks to everybody involved in these fruitful discussions. The
Odense Renovations Selskab (Odense Waste Collection Company, Denmark)
and Alireza Derakhshan, in particular, need a special word of thanks, who
agreed to share and explain the valuable data about the Odense city garbage
collection with us.

My lunch buddies: Michael, Kévin, Aimé, Ludovic, Willy, Julian, Kou-
their, Ding, Corentin and the members of the group 10 team have helped
me learn the French culture and the language. The diverse discussions that
we have had over the several lunches have broadened my knowledge about
the world. A sincere thanks to you.

Lastly a big thanks to my family. They have provided me great support
and motivation during my thesis. Sri Rama Rao and Srimati Annapurna (my
mom and dad), Srimati Simhachalam (my grandma), The Koppala’s (Sunita,
Pinky, Souma, Krisna) - my sister’s family and my brother Ravindra, have
always been a great source of inspiration. An addition to this list is my fiancé
(to-be) Ms. Geetha Pandiri, who, for the past year has been pampering me
with great love and care. Thank you Geethu.

My apologies to those that I may have missed. Thanks to all of you.

16 ACKNOWLEDGMENT

Chapter 1

Synopsis

A major problem of Distributed Systems today is having a good Quality
of Information (QoI). It is a characteristic of data. It comprises several
aspects of data such as accuracy, timeliness, trustworthiness, uncertainty
etc. With the advent of new technologies in computing and communica-
tion such as the Internet of Things, the domain of Distributed System has
grown tremendously. In this regard, our work focuses on improving the QoI
by managing two important aspects of a distributed system: trust on the
sources of information and uncertainty in the information. We illustrate the
problems of management of trust and uncertainty further with three real
world use cases. The first use case is called Intelligent Community. It ex-
plores a futuristic scenario where different homes in a neighborhood share
information about the weather and the soil conditions to benefit mutually
and operate their automated garden watering systems. The problem in this
use case lies in identifying trustworthy neighboring sources and decision to
take is when to turn on/off the gardening system. The second use case
is called Smart City Garbage Collection. It shows how a city administra-
tion can profit from the crowd as possible information source along with
the deployed sensor network. The crowd represents multiple sources with
varying levels of trust. The decision to send a team to a particular place
for garbage collection, is determined from inputs of the different sources.
The third one is the development of a generic enabler to manage trust and
uncertainty for a wide variety of applications. It permits the reuse of vari-
ous trust and uncertainty management algorithms that we developed in this
work. We evaluate our solution with respect to four key criteria: validity of
the hypothesis, genericity and applicability of the algorithms for more than
one domain, simplicity in terms of computations, robustness for large scale
application domain for different data sets of the domains.

In order to understand the problems of management trust and uncer-
tainty in distributed system, we need to understand how they function. In-
formation exchanges are a common phenomenon in the distributed systems.

17

18 CHAPTER 1. SYNOPSIS

All the more so in today’s world, where most of the devices are connected to
the Internet. Any device or person can act as an information source and they
can be heterogeneous. Upon receiving information from various sources, an
entity takes up the difficult challenge of reasoning about the information.
This process can be complex involving multiple levels of derivations, and
finally arriving at one or more conclusions. The entity, thus confronts with
the problem of selecting the best conclusion based on the available informa-
tion. Even with a single conclusion, it is unable to tell how certain it is. A
natural way to eliminate this problem would be to use trust and uncertainty
information. In our work, we propose to model trust for various information
sources, and use this as a measure of uncertainty in the information. We use
this further with uncertainty logics such as possibilistic and probabilistic to
propagate uncertainty towards the derived information. This enables us to
choose decisions that are more certain.

Trust is a subjective term and varies widely according to the domain
of interest. A general perception of trust is that someone or something is
trustworthy if one can delegate a task to him/her and that the task will
be completed with satisfaction. We examine trust management from a dis-
tributed system point of view, where entities interact amongst each other for
the exchange of information. Trust for an entity in such systems, is generally
computed as a cumulative value of satisfaction for the entity by others in
the system in the past and the present. In order to learn the performance
of such trust management algorithms and their suitability to the domain
of IoT, we studied a few important ones in the literature. We found two of
them namely: (i) Eigen Trust and (ii) β-reputation systems suitable in terms
of scalability and simplicity for our domain. Hence, they were our preferred
choices for experimentation. Of the two systems, we found the former to
scalable in domains that have distributed trust management components,
while the later is simple for systems having centralized trust management.

Uncertainty is a major cause of poor data quality. It arises from sev-
eral reasons: imprecise data, unreliable and untrustworthy sources, absence
of data, reasoning by abduction etc. Like trust, it has also been widely
researched. Some important theories of uncertainty calculus include Proba-
bility theory, Possibility theory and Dempster Shafer Theory. In our model
for uncertainty, we used Possibility theory as the data in our domain of ap-
plication is generally incomplete and associating probability measures may
not be possible. Dempster-Shafer, on the other hand has counter intuitive
results in certain cases. We found that the use of possibilistic logic is good
except for certain limitations such as computation of uncertainty for cases
where conclusions are supported by multiple sets of assumptions. Hence, we
have tried to study probabilistic model and Dempster-Shafer theory as an
alternative. Using trust measure for reasoning about uncertainty of infor-
mation is a relatively new domain of research. As these fields are themselves

19

quite vast, most of the researches have focused on to one of the two problem
domains. This motivated us to pursue with our thesis.

Distributed systems have evolved greatly over the years, from classical
client server architecture to peer-to-peer (P2P) to grid, cloud and ubiquitous
computing. The Internet of Things (IoT) is a relatively new technology that
facilitates distributed computing amongst devices that are heterogeneous,
deployed far-and-wide and intelligent. As explained above, trust and un-
certainty problems pose a big challenge for the entities or devices of such
systems.

All information that an entity considers true are called beliefs. A core
necessity for modeling an entity of the distributed system is proper man-
agement of the beliefs based on information from different sources. It must
be able to maintain a consistent set of beliefs for the entity. When a new
information arrives, it must add to its knowledge-base, derive any new infor-
mation, remove the ones that become inconsistent. In other words, it must
be able to maintain a dependency graph of how a belief was developed.
This is called Belief Revision System. Of the various types of such systems
available, we found Assumption-based Truth Maintenance System (ATMS)
most suited for our work as it can handle managing multiple contexts at
the same time. We classify the state-of-the-art along three major aspects of
the thesis: Trust, Uncertainty and Distribution and along two application
domains, Internet of Things and Internet of People. We find the need for
more research in the joint fields of trust and uncertainty and in the modern
domains of application such as the IoT.

Our approach involves modeling distributed systems as in the use cases,
as a Multi-Agent System. Each of the entity of this system is then an agent.
The information exchanges are modeled as the messages exchanged amongst
the agents. We add behavior to the agents describing how they should handle
the incoming messages, manage trust of the sources of information, how new
conclusions can be derived and what model to use to compute uncertainty of
the information. Thus, we model an agent to be consisting of the following
distinct components: (1) A Trust management module, (2) An uncertainty
management module, (3) An ATMS, (4) Incoming message handler, and (5)
A rule engine and a rule base.

The main idea of our solution is how we transform trust into uncertainty.
In most cases, data uncertainty does not accompany the data from sources.
We need to mine it out of the data, which requires off-line data processing to
compute the QoI values. This is undesirable for modern distributed systems
like our domain of application (e.g., Internet of Things, Internet of People),
as they can change rapidly and systems need to take decisions based on them.
Hence, for such systems, we propose to use a distributed trust management
system, that maintains trust levels of different sources of information. We
then obtain data uncertainty from trust of the information source using

20 CHAPTER 1. SYNOPSIS

our hypothesis that: “In the absence of any other information, the data
uncertainty is inversely proportional to the trust on the data source that
furnished it”. Having computed the uncertainty for the input data, we
propagate these values towards the derived information using uncertainty
models, to obtain uncertainty associated with them. Thus, at the end of the
reasoning and uncertainty propagation phase, we have conclusions and how
strongly are they supported by the different data sources. Our approach
thus makes two important improvements to the QoI of such systems: (i)
Able to tell how an information is derived from various sources (ii) Quantify
the uncertainty of different derivations. We used Eigen Trust and β-Trust
models for our experimentation as they fit our requirements of simplicity
of algorithms in terms of computation and scalability. Similarly, we used
Possibilistic logic for uncertainty propagation for Intelligent community use
case as other methods such as probability theory do not capture completely
the ignorance in the information. We, later used probabilistic method to
improve over drawbacks to possibilistic approach. The ATMS provides us a
mechanism to explore how an information can be derived and our trust and
uncertainty computation algorithm enables us to quantify uncertainty in the
information. This integration of ATMS along with our trust and uncertainty
management modules forms the core of our solution.

For implementation, we use Java Agent DEvelopement framework (JADE)
to instantiate a group of agents. This is a stable, open source and widely
known framework for Multi-Agent Systems. It supports a number of Foun-
dation for Intelligent Physical Agents (FIPA) communication protocols and
is highly modular and customizable for the needs of a research. In order
to remain simple, we chose JADE as our distribution framework. We used
linked open data in Resource Description Framework (RDF) format to repre-
sent the use cases. We developed an ontology for the domain and we assume
each of the agents share this same ontology. However, their instances differ
based upon the evolution of their knowledge bases. The domain specific
rules that the agents use for derivation of new inferences are modeled in
Semantic Web Rules Language (SWRL), as it is compatible with RDF. The
information exchange is based on FIPA query interaction protocol. The
agents seeking information do a query with a query-ref message, seeking
a specific information. The responding agent either accepts and sends the
inform-result or rejects the request. As we represent the data in terms
of RDF, we use SPARQL CONSTRUCT query string as content in the query
message. The inform-result message contains an RDF. There are other
advanced MAS models based on JADE, such as Jadex BDI Agent System
and BDI4Jade, but they specifically target modeling agents based on Belief-
Desire-Intention (BDI) architecture. BDI can be an interesting choice for
future extension of this work.

We evaluated our approach against three important success criteria; (1)

21

Validity of the hypothesis, (2) Genericity, (3) Simplicity, (4) Scalability, and
(5) Distribution of algorithms. We used two models for trust; the first based
on β-Reputation and the second based on EigenTrust, and Possibilistic logic
for uncertainty. Our first experimentation involved simulated data for the
Intelligent Community use case and our second experimentation involved
real-world data of city garbage collection. The results show that manag-
ing trust and using it as a measure of uncertainty in the information helps
devices make better decisions. FIWARE is a European project under the
umbrella of the Future Internet Public Private Partnership (FI-PPP) ini-
tiative. There are a number of generic enablers (GE) defined in FIWARE.
A GE offers some generic purpose functions via well-defined APIs. We ex-
posed our approach as one such enabler called TUM (Trust and Uncertainty
Management) that provides other applications to instantiate their system
by declaring the sources of information, the domain specific rules and the
models of trust and uncertainty to be used, and then achieve better QoI by
managing trust and uncertainty.

In conclusion, we studied and illustrated the challenges of incomplete,
vague, and uncertain information provided by different sources. Modeling
and quantification of the uncertainty in the information is utmost impor-
tant in order to distinguish between data quality of different data. From
the experimentation and evaluation, we can say that the trust measure of
a source can be used for quantifying uncertainty in the information. We
formalized distributed systems as MAS and we modeled an individual agent
and proposed various components needed by it to manage trust for other
agents in the network and then reason about uncertainty in the derived or
inferred information.

The Eigen-trust model that we used suffers from some limitations that
need to be addressed in future models. The model does not take into ac-
count the interactions relative to time i.e. it treats all interactions with
equal importance. This may not be preferable in cases where we need to
detect good sources turning to bad. Also, this model does not distinguish
between two sources: one that never interacted and the other that had only
negative interactions because of the normalization. The possibilistic logic
used in our first model too has limitations. For a conclusion supported by
multiple environments with different possibility or necessity values we do not
have a distinct solution. We have explored application domains related to
the Internet of Things (Intelligent Community) and the Internet of People
(Smart City Garbage Collection), and as a future work we wish to explore
the approach being applied to more domains.

22 CHAPTER 1. SYNOPSIS

Chapter 2

Introduction

Information exchanges are a common part of the distributed systems. More
so in today’s world, where most of the devices are connected to the In-
ternet. The exchanges are mainly related to either seeking of information
from a source or acting as a information source and providing information
to a seeking party. There is also a growing interest in making the devices
‘Smart’ i.e., make them able to reason about the context by seeking in-
formation from different sources. A smart device is an electronic device,
generally connected to other devices or networks via different protocols such
as Bluetooth, NFC, WiFi, 3G, etc., that can operate to some extent inter-
actively and autonomously. With this kind of setup, where smart devices
are connected to several possible sources of information, it is clear that the
devices can often run into situations where they need to seek information
from multiple sources. There are two major issues that they confront to at
this juncture.

1. How to choose between two or more sources for seeking an information?

2. How certain is the information provided by a source?

These questions, precisely form the problem statement of our work. It
relates to finding a solution for a distributed system where a peer (or an
agent) needs to take its decision based on inputs from different sources.

There are two possible answers for the first question. First, the device
can seek information from all sources, and then do a majority voting on
the received responses to obtain the possible correct information. Second,
the device can maintain trust levels on sources based on past similar expe-
riences and pick sources with the highest trust levels for the interaction, on
the grounds that trustworthy sources are better than the others. The prob-
lem with the first approach is that it is computationally infeasible in cases
where there are many sources. Sending many messages means consuming a

23

24 CHAPTER 2. INTRODUCTION

large chunk of resources of the distributed system for processing and syn-
chronization of messages. Also, majority consensus cannot always lead to
a correct information. So, we hypothesize that trust management module
can help devices in decision making. Our first objective is to explore differ-
ent trust algorithms in distributed systems and compare them for specific
domain such as the Internet of Things.

The second question is related to the information certainty or more gen-
erally what is known as “Quality of Information”. Information provided by
the sources are generally marred with uncertainty of different types: impre-
cision, vagueness, incompleteness etc. Information certainty quantifies the
closeness of the information to the true value. The absence of this means
that one cannot guarantee the truthfulness of an information. This forms the
second objective of our work where we try to model information uncertainty
using several modeling techniques.

Having demarcated trust and uncertainty, the main question for us now
is: ”How is the trust on the source related to the uncertainty in the informa-
tion provided by it?”. In order to answer this, we explore the relationship
between trust on information sources and information uncertainty. Our
hypothesis is that the trust on information source can be a measure of in-
formation certainty. Higher the level of trust on the information source,
higher is the certainty of the information provided by the source. Though,
information uncertainty can be due to several factors, for our work, we limit
this to be based upon the trustworthiness of the source.

A summary of the objectives of our work are:

1. To explore different trust management algorithms in distributed sys-
tems and compare them for specific domain such as the Internet of
Things.

2. To model information uncertainty using several modeling techniques.

3. To explore the relationship between trust on information sources and
information uncertainty.

4. To develop an integrated framework that uses trust as a measure of
uncertainty, and then is able to infer new information with certainty
using a model of uncertainty propagation.

So far, we introduced a global view of our work. The rest of the chapter is
divided into the following sections. In section 2.1, we introduce the precise
problems that we tackle in this work. Sections 2.2 and 2.3 present our
motivations for this work and the hypothesis that we try to prove. We
illustrate the problems of the thesis with the two use cases in 2.4 and then
reuse the algorithms in a third application to create a generic framework for
different projects. We, then explain the success criteria that we try to study

2.1. PROBLEM STATEMENT 25

S1 S2 Sn

I1 I2 ... In

Reasoner

C1 C2 ... Cm

Decisions

Figure 2.1: Problem statement

with our approach in section 2.5. Finally, we sketch the thesis outline in the
section 2.6.

2.1 Problem statement

Our work deals with tackling the problems of management of trust and un-
certainty in a distributed environment. To clarify the problems, we use the
Future Internet that comprises two major domains: the Internet of Things
(the interconnection of devices) and the Internet of People (the interconnec-
tion of the devices as well as people). The end point or the entity in such
domains are the devices. The Future Internet is envisioned as a world where
all devices are interconnected, accessible and manageable from wherever in
the world and also the devices are assumed to be Smart i.e. they can reason
and take decisions based on inputs from different sources. A general figure
depicting this scenario is shown in 2.1. The rectangular box represents a
smart device. There are n sources of information (S1, S2, ... , Sn) that may
be providing both homogeneous and/or heterogeneous types of information.
We call the information provided by these sources as I1, I2, ..., In respec-
tively. Based on these different information, the device must be capable of
derive a set of conclusions represented as C1, C2, ..., Cm respectively. In
this regard, a device faces the following major problems:

1. How to model the trust of the information sources in different domains
and how is the trust related to the uncertainty in the information? Can

26 CHAPTER 2. INTRODUCTION

quantification of the information with a degree of certainty help the
device resolve which decision to take?

2. How to choose amongst the different available information sources? At
any instance of time, a device can have a number of information sources
to select from. The sources can belong to different organizations and
can be located in diverse locations. An ideal scenario would be to
gather information from all the sources before reasoning and making
a decision, but for large number of sources, that may not be feasible,
both in terms of resource utilization and time constraints.

3. How certain is an information provided by a source? Many a time,
when only a piece of information is available, nothing can be told
about its certainty, unless specifically supported by additional infor-
mation. How can an entity obtain this information on certainty of an
information provided by another source?

4. How to infer a set of conclusions from the available information and
classify them so as to select the best decision out of many that may
be possible? If more than one conclusion can be derived from the
available information and only one needs to be opted, the device must
have criteria to select one.

5. How to deal with inconsistent information from the sources and contra-
dictory conclusions? In many cases, multiple sources of information
implies inconsistent information and conclusions. This can have an
adverse impact on the decision making process. Selecting one or the
other conclusion without supporting evidence can lead to an undesir-
able result.

Having pointed out the problems faced by a distributed system in the
absence of trust and uncertainty management mechanism, we present the
motivations for undertaking this thesis in the following section.

2.2 Motivation

The study of uncertainty and trust have attracted the attention of several
researchers all over the world with regards to different domains of applica-
tion. We are no exception. For us, there are two major motivations for this
thesis.

1. Theoretical motivation: As per our research, there has not been an
extensive study of trust and uncertainty together. The theoretical
motivation for this work can be explained in the following three points.

2.3. OUR HYPOTHESIS 27

(a) The growth of distributed systems and the Quality of Informa-
tion (QoI): In the past couple of decades, the field of distributed
systems has seen an immense growth. From millions of devices in
2000 to over 16 billion connected devices today1, we have come
a long way with the help of scalable protocols and the notion of
connecting everything to the Internet. But, a fundamental ques-
tion one needs to answer is : “Has the growth contributed to a
good QoI that exists on the Internet?”. With data uncertainty
present in most information systems the answer has to be no.

(b) Lack of mechanisms in to manage trust of sources and quantify
uncertainty in information: Trust and Uncertainty are two do-
mains that have been extensively studied. However, very few
have targeted to find a relationship between the two. It would
be interesting to quantify uncertainty in information based on
the trust of the information source. As per our knowledge, such
mechanism has not be studied together for distributed system like
the Internet of Things. So, this was one big motivation to pursue
with this work.

(c) Embedding intelligence in devices: The enhancements in dis-
tributed systems have led to extend the centralized intelligent
systems to spread out the intelligence to the end points or de-
vices. Such systems generally use rule-based engines, reasoning
with if-this-then-that type rules.

2. Applicative motivation: One of the projects that the funding of this
thesis is attached to is the project - FIWARE. It is a collection of
projects dealing with the Future Internet. The researchers in the vari-
ous sub projects within FIWARE studied the impacts of uncertainty in
distributed systems and contemplated having some uncertainty man-
agement framework for its several sub-projects. This gave birth to the
idea of managing uncertainty with the help of sources of the informa-
tion. The project FIWARE is explained in detail in section 6.3.

In the following section we present our hypothesis to solve the problems
that we introduced in the section 2.1.

2.3 Our hypothesis

In order to quantify the uncertainty in the information provided by a source,
we assume that we can have a mechanism in the device or in the system that
stores, provides and updates the trust levels of the information sources for
that device. Our hypothesis is that the sources with higher trust levels

1http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342

28 CHAPTER 2. INTRODUCTION

A B

C

D
Weather
Forecast

Soil

Soil

B & C are neighbors of
A; equipped with soil
sensors

Weather information
provider

Figure 2.2: Intelligent community use case.

will produce more reliable information than those with lower trust values.
Mathematically, at any point of time, the uncertainty in the information
provided by a source of information is inversely proportional to the trust
of the source. We further assume that the uncertainty of the information
thus obtained, can be used to infer high level conclusions supplemented with
uncertainty, and that such conclusions are better than those derived without
uncertainty.

2.4 Use cases

In this chapter we introduce the use cases that illustrate the problems of
management of trust and uncertainty in distributed domains. The first use
case described in section 2.4.1 presents a Smart Home based futuristic appli-
cation where a community of houses fitted with smart devices communicate
among themselves to manage their garden watering. The second use case de-
scribed in section 2.4.2, deals with the smart city garbage collection, where
inputs from citizens and sensors are used together to reliably predict the
presence of garbage at different places of a city. Apart from these use cases,
we have an extension of this work as a generic enabler for its reuse in a group
of other projects. We explain this in section 6.3.

2.4.1 Intelligent Community

The use case illustrated in figure 2.2, considers three homes A, B and C in a
neighborhood of a community and a weather forecast station D. Homes A,
B and C are smart, meaning that they are equipped with devices connected
to the Internet and thereby able to benefit from the services of different
information providers. A typical example of such a service is obtaining
weather information from weather forecast companies. Depending upon the

2.4. USE CASES 29

information, the devices can alert the users, or take the decision to activate
an actuator to control the garden watering system. In this use case, we
assume that home A is not equipped with any specific sensor and thereby
has to rely only on the weather forecast from D (in particular the chance of
rain) to control the garden watering system.

Homes B and C, that are the neighbors of A, on the other hand have sen-
sors such as soil moisture detector deployed for their use. Furthermore, the
owners of homes B and C are open to sharing soil moisture and humidity
readings with their neighbors. We try to explain how home A can lever-
age this additional information source to significantly improve its decision-
making ability about when to water his/her garden. Since, the homes are
located in close vicinity of each other, we assume that their soil and weather
conditions do not vary much and thus for home A, the neighboring homes
serve more or less as trustworthy sources of information.

2.4.2 Smart City Garbage Collection

Smart city is a modern concept where information sharing (from a crowd of
people, sensors or things) along with the existing physical infrastructure of
the city enables a sustainable economic development in the city, leading to
a well managed natural resources and high quality of life [CDBN11]. Some
examples include Smart energy management, Smart public transportation
system, Smart noise and pollution control etc. We consider one such smart
city application - “Smart Garbage Collection”, to explain the need of trust
and uncertainty management.

Usually an agency or a company is responsible for gathering all the
garbage from the city and for disposing it to an appropriate location. The
agency plans a static itinerary (daily, weekly) to send its vehicles and per-
sonnel to each and every corner of the city and collect the garbage. To
make this process smarter the agency makes use of “intelligent containers”2.
These containers have a specially designed wireless sensor that detects the
amount of garbage in them and relay the information in real-time to one
of data collector, which in turn relays it to the central information system.
Thus, these containers form a wireless sensor network. The information ob-
tained from this network allows the agency to plan a better itinerary and to
improve its efficiency for garbage collection. However, the sensor network
cannot be made omnipresent. Perhaps, because of the cost constraints or
because garbage may be thrown randomly on the streets. In some cases, the
citizen may be more careless and just let the garbage on the road, not even
close to the container.

In order to deal with the problem of omnipresence of the sensors, the
agency makes use of crowd-sourcing mechanism such as telephone calls from

2http://www.urbiotica.com/

30 CHAPTER 2. INTRODUCTION

citizens, or a web-portal to report the random garbage and/or garbage near
the garbage collection point. Thus, the problem of smart garbage collection
can be further aided by crowd-sourcing.

A

Sensors

System

B

Garbage info

Garbage info

Trash

Planned itinerary
for garbage collection

Trust on A = TA

Trust on B = TB

Trust on Sensors = TS

Figure 2.3: A smart garbage collection system

Figure 2.3 shows a block diagram of such a system. Citizens A and B
call the system and inform about garbage lying near their neighborhood.
Additionally, there may be some information from the deployed sensors S
in the streets. Based on the information received from the sources, the
system then instructs the garbage men to get the garbage collected from
that location.

The problem with such a setting is that there can be more than one
source reporting an information, there is always an uncertainty on which
information source to rely on to take a decision. Another issue is how does
the number of sources which report the same information affect the trust
of the agent on the information. We seek to find the solutions to these
problems in this work. So far in the chapter, we presented the problems
of management of trust and uncertainty, the motivation of our work, our
hypothesis and the use cases illustrating the problems. In the following
section, we describe the success criteria on the basis of which we assess our
solution.

2.5. SUCCESS CRITERIA 31

2.5 Success criteria

In this chapter, we have so far presented the problems pertaining to lack of
a proper mechanism to manage of trust of the sources and uncertainty in
the information with the help of the use cases. We also introduced the mo-
tivation for this work and the proposed hypothesis to resolve the problems.
We now present a list of success criteria that will help us assess our solution
and algorithms.

1. Validity of the hypothesis: We proposed a hypothesis that trust of
the source of information and the information certainty follow a pro-
portional relationship. This success criterion is to check whether the
hypothesis is true or not with respect to different application domains
and different data sets.

2. Genericity: Since, we intend to apply the solution to more than one
problem domain: one relating to the Internet of Things and the other
related to Internet of People, this criteria states that the proposed
trust model should be generic enough to be easily extended to newer
domains of application.

3. Simplicity: The application domains we introduced in 2.4 are time-
critical. Any trust and uncertainty management algorithm that is
computationally time-consuming is not preferable. They should be
simple enough so that they do not affect the performance of the system
as the number of entities in the domain increases. Hence, with this
success criteria, we intend to measure the performance of the trust and
uncertainty models when the number of entities in the system goes up.

4. Scalability: Our goal in this thesis is to resolve problems relating to
incoherent data or data sources. The model should be reliable enough
to be applicable to a situation involving incoherent data or data sources
at large scale. With this success criterion, we intend to measure the
performance of the overall solution when the number of entities in the
system goes up.

5. Distribution: This is a key aspect of the Internet of Things. With
this success criterion, we aim at verifying how the algorithms for the
management of trust and uncertainty can be distributed to the entities
of a distributed system.

2.6 Thesis outline

The remainder of this thesis is organized as follows:

32 CHAPTER 2. INTRODUCTION

• In Chapter 3, we present the state-of-the-art in the domains of trust
and uncertainty. We explore different models of trust and uncertainty
that can be applicable to the application domains. We classify the
interesting works with similar problem set based on whether they relate
to the Internet of Things or the Internet of People.

• We then explain our approach in Chapter 4. It includes envisaging the
application domains as Multi Agent Systems and incorporating several
components like the reasoner, the ATMS, the trust and uncertainty
models together to form smart agents that have ability to reason.

• We present the implementation of our work in Chapter 5. Here, we
discuss the details of how we realized the different components of an
agent and explain its working with an example.

• In chapter 6, we revisit the use cases and explain the different tests and
experimentations that we carried out to achieve our success criteria.
We also present the details of the Trust and Uncertainty Management
(TUM) module created as our contribution towards the project FI-
WARE.

• We finally conclude with Chapter 7, where we present our conclusions
and discussions.

Chapter 3

State-of-the-Art

Trust and Uncertainty have been widely studied research topics. The prob-
lems of management of trust and uncertainty have been associated with
respect to different domains of applications. Hence, there already exists a
huge literature and a plethora of models for trust and uncertainty. Our goal
in this thesis is to find a relation between trust and uncertainty, how trust
values of a source can be used as a measure of uncertainty in the information
provided by the source and how an entity of a Distributed System can reason
over it. Here, we present the state-of-the-art in the domains, that we found
interesting for distributed systems, in particular the Internet of Things.

In section 3.1, we begin by exploring the works that exist in the do-
main of Trust and examine them from the perspective of applying to the
Internet of Things (IoT) and the Internet of People (IoP) domains. We
then do the classification of different trust models that we found interesting
in section 3.1.2 and we present some aspects that we found necessary for
modeling trust for IoT and IoP in 3.1.3. Next, we present a survey in the
domain of uncertainty, its modeling and using its propagation in section 3.2.
In 3.3, we present some recent works that aim to manage uncertainty and
trust from crowdsourcing domain specifically. Belief revision is an impor-
tant aspect of modeling an autonomous/semi-autonomous entity such as an
agent of a Multi Agent System. In order to maintain a consistent set of
beliefs and generating explanations for conclusions, we study a specific class
of belief revision systems called the Assumption-based Truth Maintenance
Systems in section 3.4. We finally do a classification of all works that we
found interesting with respect to the domains of IoT and IoP in section 3.5.

3.1 Trust

Modern distributed systems consist of entities (homogeneous or heteroge-
neous) working in tandem, exchanging information to reason and take deci-
sions. As the entities may belong to different organizations, or because they

33

34 CHAPTER 3. STATE-OF-THE-ART

may be connected to sensors with different precision levels, the information
provided by them are not reliable to the same degree. Hence, it is utmost
important for the entities to maintain a quantitative value of trust for other
sources it has interacted with, depending upon the ratio of good to bad
interactions.

Quantitatively, trust is a value that someone or something bestows upon
other(s), for the accomplishment of a certain task. It can be imagined to
be composed of different components each reflecting different aspect as ex-
plained in the subsection 3.1.1. The list is not exhaustive, as we limit our-
selves to components that we think are useful for modeling the things of the
M2M systems.

3.1.1 Modeling trust

Like described earlier, Trust is multifaceted. It is interpreted differently in
different domains. As such, we explain here the different models that we
found in the literature. Broadly, we classify the models into three cate-
gories: (i) Computational models (ii) Socio-cognitive models and (iii) Secu-
rity based models. These models are explained in detail in the section 3.1.1.
In section 3.1.2, we compare these models in terms of our success criteria.
Based on this study, we then present different aspects of trust that are most
important from our applications perspective in section 3.1.3.

Computational models

These aspects enable easy quantitative representation of trust. Reputation,
recommendation, ratings etc. are some of the manifestations of such aspects.
Most models of computational trust assume the trust to be within a numer-
ical range say [0,1), and then normalize the value of trust of each entity in
the system relatively. Many models use reputation as a measure of trust.
Reputation is defined as a collective measure of trust put upon an entity by
the whole society. Generally, there is a centralized authority that collects,
stores and manages reputation of different entities in a system (e.g. online
marketplaces such as eBay, Amazon, StackOverflow). However, there are
also systems that need a distributed mechanism to store and manage repu-
tation (for instance, in Peer-to-Peer systems that lack a central authority).
From this point of view, trust can be seen of two distinct categories: Local
and Global trust. For distributed systems, an important aspect to consider
is how the trust is computed: either based on the experiences of an entity
that needs to compute the trust itself or all entities of the system.

• Local Trust : A local value of trust is one that is computed by the
involved parties for each other. A local trust value may or may not
be shared. Since, the local trust is obtained from personal experience
of an entity, it can rely on it completely. However, to have a local

3.1. TRUST 35

reputation value for all entities of the system, an entity needs to have
interactions with all other entities.

• Global Trust : A global value is an accumulation of all the transactions
that have ever occurred. All agents are free to query about the global
value of trust related to any other agent, we assume that the agents
will share this information. A global reputation value is available to
all, even if the querying agent is a newcomer to the society. It reflects
the global view about an agent, hence an agent’s personal view may
be overridden by the global trust.

Below, we present some important computational trust models.

1. Marsh’s model: Marsh’s work [Mar94] is one of the first in proposing
computational trust model. He presents trust as a continuous variable
over a specific range [-1, +1) +1 being blind trust (very high level of
trust) and -1 representing complete distrust. The work presents an
agent’s (trustee) trust on another agent (truster) to be composed of
following components:

- Basic trust: It is a representation of the general trusting disposition
of an agent. It signifies whether the agent is optimist, pessimist or
realist. It is obtained from all the past interactions of the agent
ranging within [-1, +1).

- General trust: Given two agents, x, y; Tx(y) denotes the trust agent
’x’ has on agent ’y’. It is within the range [-1, +1). It is not relative
to any specific situation.

- Situational trust: Denoted as Tx(y, α), this represents the trust the
agent ’x’ has on agent ’y’ specific to a situation ’alpha’. It takes
value within the interval [-1, +1).

- Importance: It is an agent-centered or subjective judgment of a
situation on the part of the agent concerned. It is represented as
Ix(α) and has values within the interval [0, +1].

- It also models other trust components such as utility of a delegated
task to the agent, the risk involved in accomplishing the task and
cost/benefit ratio. Further, the model also tries to model an agent’s
optimistic or pessimistic behavior in trust modeling.

However Marsh’s model does not present trust from the distribution
perspective i.e., how to compute and resolve trust in a distributed
environment. Hence, we searched for a trust model that fits distri-
bution aspect. Eigen trust is one such model that can be applied to
distributed domain. We present this in the following section.

36 CHAPTER 3. STATE-OF-THE-ART

2. Rahman’s model [ARH97]: Rahman’s trust model presents trust
from a distributed environment perspective, where one may need to
compute trust about other peers asking for recommendations for the
known peers. Three main points are put forward in this work: (i) A
decentralized approach to trust management of information sources in
a network, (ii) Generalization of trust beyond management of keys and
authentication (iii) A protocol for the exchange of trust information.
This model permits the computation of trust value of a source that
can be reached through a series of recommendations. In other words,
it models trust transitivity. A real world scenario can have any path
of recommendation from an entity to the other. Rahman’s model is a
good solution in such cases.

3. Eigen Trust [KSGM03]: Eigen Trust is a trust model that uses the
ratings of different interactions amongst the nodes to compute a quan-
titative value of trust. The goal of this work is to identify the sources
of inauthentic files and bias users against downloading them. The
method they employ is to give a trust value to a peer based on its
previous behavior. It distinguishes between:

(a) Local trust: The opinion that peer Q has of peer R based on
experiences based on its own experiences with R. Any interaction
betweenQ andR is given a value +1 or -1 depending on whether it
was good or bad. If Tr(Q,R) represents each of such interactions
then the local trust is given by:

sQR =
∑

Tr(Q,R) (3.1)

This sum can have a positive or a negative or a zero value. Since, a
negative value for trust does not make sense, the authors propose
to normalize this value so that it is within the range [0,1]. The
normalized local trust is obtained as follows.

cQR =
max(sQR, 0)∑
kmax(sQk, 0)

(3.2)

The normalization ensures that the sum of the trust values of all
the peers is equal to 1, i.e.,

∑i=n
i=1 ciR = 1.

(b) Global trust (ti): The trust that the entire system places on peer
i is the global trust of i. In order to obtain this, each peer asks all
its neighbors to provide their local trust information about every
other peer. This value of trust allows overcoming the problem of
limited experience.

If A, B and C are three peers in a system and tA, tB and tC are
the global values of trust on them respectively, then newer values

3.1. TRUST 37

can be obtained from the various local trust as follows:

tnewA = tB ∗ cBA + tC ∗ cCA (3.3)

tnewB = tA ∗ cAB + tC ∗ cCB (3.4)

tnewC = tB ∗ cBC + tA ∗ cAC (3.5)

where cij , i and j ∈ A,B,C are the local trust values of i on j and
tnewA , tnewB , tnewC are the new global trust values. In general, this
can be rearranged in the form of a matrix as shown in equation 3.6
below. Here, we assume that there are n peers in the system. The
Eigen vector of the matrix CT gives the global trust values of the
different peers, and hence the trust model is called Eigen Trust.


tnew1

...
tnewk

...
tnewn

 =


c11 ... ck1 ... cn1
...
c1k ... ckk ... cnk
...
c1n ... ckn ... cnn




t1
...
tk
...
tn


or,

~tnewi = CT ~ti (3.6)

If the peer seeks opinions the second time

~ti = (CT)2~ci (3.7)

and continues in this fashion for n times then,

~ti = (CT)n~ci (3.8)

If n is sufficiently large, this will converge to the same vector for ev-
ery peer i, yielding the Eigen trust values. The details of the whole
computation is presented in algorithm 1.

Further enhancements to Eigen Trust The algorithm presented
above in 1 has three major problems.

(a) Inactive peers or new ones’ join the system. So, such peers have
small or no values of trust.

(b) A group of peers in the system act malicious. The model pre-
sented does not have mechanism to scale down or nullify its effect.

(c) The convergence of trust values in algorithm 1 may take a long
time.

In order to deal with these problems, Eigen Trust introduces the no-
tion of Pre-Trusted peers. These may reflect the real world scenario

38 CHAPTER 3. STATE-OF-THE-ART

Algorithm 1: Basic EigenTrust

input : 1. ~e: An zero vector representing the initial trust of all the
nodes,
2. CT : The transpose of the matrix of local trust of all

nodes as shown in equation 3.6
3. ε: A threshold value below which the trust vector is

assumed to have converged.
output: ~t: A vector representing the global trust of all the nodes in

the system

1 ~t(0) = ~e
2 repeat

3
~t(k+1) = CT~t(k)

4 δ = ||t(k+1) − t(k)||
5 until δ < ε

where we know the reliability of the peers beforehand. If P is the set
of peers which are known to be pre-trusted, then, a function can be
defined that provides equal pre-trust weights to each of the pre-trusted
peers as:

pi =

{
1/|P | if i ∈ P
0 otherwise

and for the new and inactive peers

cij =

{
max(sij ,0)∑
kmax(sik,0)

1/|P | if
∑

kmax(sik, 0) 6= 0

pj otherwise

To counter the malicious peers and clusters, the authors introduce a
constant a which is less than 1.

~t(k+1) = (1− a)CT~t(k) + a~p (3.9)

The modified algorithm is presented in 2. As shown, the algorithm
uses a predefined vector to initialize trust of all the peers and the
trust update step in the loop uses the formula of equation 3.9. In
other words, the new values of trust of different peers obtained from
this method is a weighted mean of the trust computed using Eigen trust
explained before and the pre-trusted values assigned to the peers.

Though the Eigen trust is shown to be robust and scalable, it suffers
from some drawbacks. First, the trust values of the peers are normal-
ized, i.e., the values are relative to each other. This does not provide

3.1. TRUST 39

Algorithm 2: Basic EigenTrust using predefined trust values

input : 1. ~p: A pre-defined vector representing the initial trust of all
the nodes,
2. CT : The transpose of the matrix of local trust of all nodes as

shown in equation 3.6
3. ε: A threshold value below which the trust vector is assumed

to have converged.
output: ~t: A vector representing the global trust of all the nodes in the

system

1 ~t(0) = ~p
2 repeat

3
~t(k+1) = CT~t(k)

4
~t(k+1) = (1− a)CT~t(k+1) + a~p

5 δ = ||t(k+1) − t(k)||
6 until δ < ε

an absolute interpretation when needed in certain domains. Second,
the negative transactions are all considered as zero trust. So, we can-
not distinguish between two peers: one which has no transactions at
all and the other with all the negative transactions. And finally, Eigen
trust proposes to eliminate contribution of malicious peers by intro-
ducing predefined trust vector for the peers. This may not be realistic,
as trusted peers may become untrustworthy over time. In the follow-
ing section, we present another reputation based trust model that can
alleviate the problems of the Eigen Trust.

4. The β-Reputation System [JI02] The β-Reputation system is based
on using the beta probability density functions to combine feedback
and derive reputation values. The simplicity of the reputation model
makes it attractive for research on our domain of interest (IoT) where
scalability is of immense importance. According to the authors, pos-
terior probabilities of binary events can be represented as beta distri-
bution. The beta distribution is indexed by two parameters α and β
and can be expressed using the gamma function as

f(p|α, β) =
Γ(α+ β)

Γ(α) Γ(β)
pα−1 (1−p)β−1, where 0 ≤ p ≤ 1, α > 0, β > 0

(3.10)
For this the probability value p 6= 0, if α < 1 and p 6= 1, if β textless
1. The expectation of this beta distribution function is

E(p) =
α

α+ β
(3.11)

40 CHAPTER 3. STATE-OF-THE-ART

If a binary event x, x̄ is given and if r and s are their respective number
of occurrences, then probability density function of the occurrence of
the event x based on the past observations is given by

α = r + 1 and β = s+ 1 where r, s ≥ 0 (3.12)

Combining the above equations, the expectation value of the reputa-
tion function can be expressed as:

E(p|r, s) =
r + 1

r + s+ 2
(3.13)

The authors argue that the binary events can be used to represent
the positive and negative feedbacks for an interaction between two
entities. If X and T are two entities, then rXT and sXT represent the
number of positive and negative feedbacks provided by X about T ,
then the normalized trust value is called the Reputation rating and is
obtained as:

Rep(rXT , s
X
T) = (E(f(p|rXT , sXT)−0.5) . 2) =

rXT −sXT
rXT + sXT + 2

(3.14)

Like Eigen trust, this model too a suggests the need for normalization
of trust values. The range that the authors propose is [-1, +1]. Equa-
tion 3.14 is simple yet strong as it can model reputation in terms of
basic mathematic operations. Further, the authors also provide meth-
ods to combine reputations from two different entities and discounting
the reputations based on beliefs. β-Reputation can serve as a good
alternative for modeling trust. Though the authors do not explain the
trust computation from a decentralized perspective, they argue that it
can be updated without much change.

5. CertainLogic [RHMV11]: The paper proposes a model for the eval-
uation of propositional logic terms under uncertainty that is compli-
ant with the standard probabilistic approach and subjective logic. It
presents a method to calculate 1. the trustworthiness of the subsystems
and atomic components 2. the uncertainty associated to this informa-
tion. The authors call the logic to represent trust and uncertainty
as CertainLogic (for evaluating propositional logic subjected to uncer-
tainty). They provide definition for CertainTrust (CT), Expectation
value of CT, Operators OR, AND, NOT to calculate opinions about
truth of the given propositions, Commutativity and Associativity. CT
is defined to be composed of three parameters (i) average ratings, (ii)
certainty and (iii) initial expectation value. Thus, the model is useful
where the participating entities are related by logical operations.

3.1. TRUST 41

6. Behavioral trust In [GW11], Gligor and Wing try to differentiate
between computational and behavioral trust. They say that compu-
tational trust defines trust relations among devices, computers and
networks while behavioral trust is the trust among the people and or-
ganizations. Hence, for computational trust, the authors state that the
underlying communication model must be secure and possess mecha-
nism to verify the authenticity (correctness and trustworthiness) of
the end users or devices and fault-tolerance to recover from any harm
caused by malicious sources. For humans, the trust is much more than
computational trust. They present behavioral trust to model trust in
humans. They view this as a one-shot game between the trustor and
the trustee that includes a punishment for bad behavior. Though, the
work presents important points for management of trust, the imple-
mentation aspect is unclear.

7. Peer-2-Peer Trust Aberer et al. [AD01] present a trust model that
permits to manage and store the reputation of peers in a distributed
manner. The core of this work is the P-Grid: a distributed data stor-
age [Abe01]. It provides an infrastructure for efficient storage and
search of information in a peer to peer manner. The trust model pro-
posed by Aberer et al. is based on the behavioral information of the
different peers. It combines the complaints about a peer by other peers
for obtaining a value of trust of the peer. The authors suggest that the
trust thus modeled is highly scalable. However, it seems complicated
to be tested.

Thus, in this section, we presented some of the important computational
models that we found in our research. In the following subsections, we
present socio-cognitive and security based trust models, which are important
from the Internet of People type of application domain.

Socio-Cognitive models

These aspects include modeling behaviors such as: competence, willingness,
persistence, motivation of an entity for computing the trust values of the
agents. The seminal work of Castelfranchi and Falcone [CF01] is of great
importance in this respect. They present trust as composed of specific be-
liefs and goals, with special attention to evaluations and expectations. The
specific beliefs are related to the competence, willingness, motivation, benev-
olence of the agent to which a task is to be delegated to. Moreover, they
say trust on an agent is with regards to a goal and a context. The model
is extensive in the sense that it also includes the external conditions such
as dangers, opportunities, obstacles etc. that can arise due to the delega-
tion of a task. This model presents trust from several social and behavioral
perspectives. However, modeling of such aspects in a real implementation

42 CHAPTER 3. STATE-OF-THE-ART

is questionable. Also, modeling of such behaviors for domains involving
non-humans such as the IoT may be inappropriate.

A well known paradigm in socio-cognitive models is Belief-Desire-Inten-
tion (BDI) based models [GPP+98]. A BDI agent reasons based on its
mental attitudes: beliefs, desires and intentions. Beliefs represent the facts
about the world including the inference rules that allow obtaining new in-
formation. Desires are the motivational state of the agent or the objectives
of the agent. Intentions are the desires that the agent is committed to as
an execution plan. Various reasoning systems such as [DLG+04], [GI90] are
based on this. The major drawbacks of such models are: (i) lack of ability
to learn from the past behaviors, (ii) lack of mechanisms to be applied to
for interactions, in particular to Multi Agent Systems. (iii) lack of explicit
goal representation.

Security based models

Security is an important aspect of modern information systems. It is mea-
sured in terms of the underlying infrastructure of the systems to cope to en-
crypting information to guarantee properties such as authentication,privacy,
confidentiality, integrity and non repudiation. Such aspects include the se-
curing end to end communication channel between the entities under com-
munication. The better the communication channels, higher is trust on the
system.

In [Jøs96], Jøsang presents trust from information security perspective.
He gives real world examples about what trust is for humans and how hu-
mans reason based on it. He uses the same notion to represent trust for
a rational agent in a distributed system. The most essential component of
trust for him in the paper is the knowledge about the world. Trust of a
source can be assessed based on it. In [HG12], the authors present trust
and uncertainty from a mobile application user interface design perspective.
They discuss the design requirements of the applications. The explanations
they provide are very high level from the application point of view and a
user’s interaction with the application.

Since, we have mostly tried to cover important works in trust from
the Internet of Things perspective, we may have missed some literature.
Hence, we point out to some interesting surveys in trust that discuss it at
length and with regards to different application domains. Some of them
are [RHJ04], [VRAC10], and [HHRM12].

3.1.2 Classification based on success criteria

In the previous subsection, we described several trust models. Here, we
classify these models based on the various success criteria that we discussed
in section 2.5 and our desired application domains. The classification is

3.1. TRUST 43

shown in the table 3.1. As seen in the table, Eigen trust meets most of our
success criteria. β-reputation model and P2P trust also fit well.

3.1.3 Desired aspects of Trust for the IoT

As we presented in the earlier section, trust is multi faceted and there is
a vast literature in modeling trust for different domains of applications.
However, the IoT being relatively new innovation, trust for the IoT has not
been studied in depth. In [LS12], the authors present an overview of different
models of trust that may be interesting for the IoT and they include some
of the works that we described in the earlier sections. Hence, with the goals
of modeling trust for the IoT, we present here the aspects taken from our
research, that we think are important.

1. Reputation: With the capability of things or devices of the IoT possess-
ing the capability of storing experiences its interactions with others,
reputation as a trust measure seems to be the most fitting aspect. Stor-
ing all the transactions an entity has with others allows it to compute
a numerical value of reputation (as in Eigen trust or β-reputation).
However, in systems with frequent sharing of information, the trans-
actions can be large in number, and storing all of them may pose a
problem. In this regards, a policy to identify the importance of a
transaction may be needed, and then the entity can store the impor-
tant transactions only. A second issue to think about is whether the
reputation computed locally by an entity should be allowed to share
with the entire system or not or how should the system manage the
transactions of the entire system. In works like P2P Trust, Eigen Trust
etc., the authors suggest that trust can be stored in a distributed man-
ner, meaning that no one entity stores it own transactions but they
are stored by the system somewhere in the network.

2. Security: This is another important aspect that can determine how
trustworthy a system is. This is particularly important in domains that
include entities belonging to different organizations. Various mecha-
nisms such as Public Key Infrastructure, secure data transfer channels
are key to build a secure system. This aspect is particularly interesting
in domains like cloud computing where services are offered by different
service providers. Trust a service provider over other may mean how
secure the underlying infrastructure is compared to others.

3. Timeliness: Trust does not just depend on the quality of reply of the
responding entity but it depends also on when the response arrived.
Generally, a requesting entity waits for a certain period before which
it considers all arriving responses as futile even though they may be
of good quality. Thus, timeliness of data is an important factor. How

44 CHAPTER 3. STATE-OF-THE-ART

much should the window of time be before considering the arriving
data as useless depends on the application domain. Nonetheless, a
source that provides information in a timely fashion is preferable.

3.2 Uncertainty

Like trust, uncertainty is a widely researched domain. Quantitatively, uncer-
tainty is the parameter that measures the dispersion of a range of measured
values. Modern information systems produce a large amount of data. But,
many times, the data does not indicate how certain it is. There can be sev-
eral reasons as to why an information or the underlying data is uncertain.
Vagueness, unclear statements, untrustworthy sources etc. are some exam-
ples. Knowing uncertainty about an information can guide us to take better
actions and conclusions. In this work, we seek a way to quantify uncertainty
in information and explore how it can be used to derive new information
with a degree of certainty.

In this regard, we present a review of the works in the domain of uncer-
tainty. We begin by looking as the works that provide an insight to what
are the reasons for uncertainty and what are its different classes in subsec-
tion 3.2.1. Then, we present the well known modeling techniques to model
uncertainty in section 3.2.2. Propagation of uncertainty for inferring new
information is our interest in particular. So, we present how different models
of uncertainty can be used to achieve that in section 3.2.3.

3.2.1 Sources, types and the need for managing uncertainty

[MBF+12] is a white paper on sources and management of uncertainty. It
was published in conjunction with a European project FIWARE. The project
envisages the use of the Future Internet in a variety of areas such as Trans-
port, Smart Cities, Agrifood etc. The researchers found that data uncer-
tainty to be a big challenge and hence the need for proper management
mechanism across all domains. It explains the problems and sources of data
uncertainty, also called, the Quality of Information (QoI). The authors point
out nine specific factors that degrade QoI in various domains. They are listed
as follows:

1. Trustworthiness/credibility/reliability of data source: There is a need
to quantify the trustworthiness of different data sources. E.g., Trust
of various users that report information is not the same.

2. Accuracy of sensors: The sensors may or may not provide accurate
information for the domain because of various reasons like the sen-
sors are of poor quality, sensors are faulty etc. The accuracy of the
information may not be sufficient for the domain of application.

3.2. UNCERTAINTY 45

Table 3.1: Classification of trust models

Model

G
e
n

e
ri

c
it

y

S
im

p
li
c
it

y

D
is

tr
ib

u
ti

o
n

S
c
a
la

b
il
it

y

Pros Cons

Rahman’s
model

D + D Trust transitivity

Marsh’s model D +
Comprehensive,

generic

Unclear about
distribution and
computationally

complex

Eigen Trust D ++ D D

Simple,
Distributed,

Relative measure

No notion of
negative trust

β-reputation D +++
Simple, Based on

statistical
background

CertainLogic D +

GligorWing
Model

D

Models both: trust
for devices and

humans

Not an explicit
model as such

P2P Trust D + D D

Explicit
distribution, good
implementation

Complex to test

Socio-cognitive
models

Models mental
attitude,

applicable to
model human trust

Difficult to
model for devices

Security based
models

D

46 CHAPTER 3. STATE-OF-THE-ART

3. Timeliness of information: There may be a time lag between an oc-
currence of event and its storage in the actual system.

4. Uncertainty of data introduced due to the result of an abduction and
reasoning process: The available information gives an indication of
certain observation, but it is not a definitive conclusion.

5. Absence of data: Non-responding sensors or sensors not deployed in
the area of interest leads to the absence of data.

6. Discrepancy in information representation: The representation used
for storing the information may not be suitable for the domain of
application. E.g., the choice of 2D projection of the earth may or may
not suit the domain of application.

7. Fit for purpose: Data captured for a particular purpose may or may
not fit for other purposes.

8. Chain and propagation of uncertainties/noisiness of processing steps:
An information may have been derived from a number of processes.
At each process, additional uncertainty or noise may get added to the
existing values.

9. Belief and Plausibility of measurements and information: The plausi-
bility represents a measure of certainty for the occurrence of an event.
Though, we may have information from highly reputed source of in-
formation, there may be a need to quantify the information with plau-
sibility.

This document serves as a good motivation to find a solution for data un-
certainty. The various sources of uncertainty pointed out above can broadly
be grouped into three classes: (i) Imprecise measurements, (ii) Human error
and (iii) Uncertainty introduced due to data propagation.

Another work that explores the reasons for uncertainty and possible ways
to correct is [ABB+08]. This is a draft from a working group from Germany
that includes Universität Bremen, Deutsche Laboratories, Siemens and Uni-
versity of Illinois. It presents a list of desirable properties of trust represen-
tations, sources of uncertainty and research challenges in the field of uncer-
tainty and trust. The primary objective of the working group was to study
the relation between trust and uncertainty in distributed reputed systems.
Based upon their experiences, they list out some important characteristics
on Uncertainty and trust. According to them the sources of uncertainty are
as follows:

1. Uncertainty about the identity of the interaction partner.

3.2. UNCERTAINTY 47

2. Uncertainty in the behavior of the interaction partner: A partner may
behave in an unintended manner such as cheating which may lead to
severe problems like system crash.

3. Uncertainty in observation: Even if an interaction partner cooperates,
we may observe misbehavior due to noisy “sensors” and “channels”.

4. Second-hand experiences: Such experiences not only reduce uncer-
tainty, but also introduce additional uncertainty like: uncertainty about
the reliability of an experience provider, uncertainty about the inter-
pretation of an experience due to different system models and sub-
jective world view, uncertainty about the transferability/applicability
of an experience as the context of experience may be different, uncer-
tainty about the temporal accuracy of an experience since the behavior
of a transaction partner may change over time.

These are important notes on what are the causes of uncertainty. The
group further explains the need of a strong trust framework to counter un-
certainty. According to them, the desirable properties that trust represen-
tations must have are: (i) A trust representation should reflect/integrate
different “uncertainties”, (ii) A trust representation should allow for deci-
sion making, and (iii) Scalar vs. complex trust representation e.g.: a trust
representation must include complete explanation about the interaction con-
text so that the context is clear.

3.2.2 Modeling uncertainty

There are different types of uncertainty in Distributed Systems. In this
subsection, we explain them and their possible sources.

There are different ways of modeling uncertainty. In this subsection, we
list some common uncertainty modeling methods and explain our choice of
model for representing uncertainty.

Probabilistic Logic

This logic uses the theory of probability along with deductive logic to quan-
tify how certain or uncertain a conclusion is. E.g., we take a simple example
of garden watering system where the system needs to turn on the water tap
only if there is no rain prediction and that the soil is dry. We can represent
this with following propositional statements.

1. NoRain ∧DrySoil =⇒ WateringON

2. NoRain

3. DrySoil

48 CHAPTER 3. STATE-OF-THE-ART

Given propositions 1, 2 and 3, the deductive logic helps to deduce or entail
the proposition WateringON . The probabilistic logic extends this further
by assigning probability values to each of the propositions, and then using
the laws of probability to deduce the probability related to the conclusion.
This is the most widely accepted and used method to model uncertainty.

Possibilistic Logic

A possibility distribution assigns each element u of the universe of discourse
U , π(u) ∈ [0, 1]. The uncertainty in a possibilistic clause is represented by
two measures: Possibility (Π) and Necessity (N). For all p, q ∈ U , possibility
and necessity measures satisfy the following axioms:

1. Π(⊥) = N(⊥) = 0, Π(>) = N(>) = 1

2. Π(p ∨ q) = max(Π(p),Π(q))

3. N(p) = 1 − Π(p)

4. N(p ∧ q) = min(N(p), N(q))

5. N(p) ≤ Π(p)

Certainty Factor

The certainty factor (CF) model [Hec92] is a method for management of un-
certainty and is a standard method in rule-based systems. Like probability,
each event is assigned a measure of belief. The measures are usually in the
range[-1, +1]; +1 indicates with utmost certainty that the event or informa-
tion is true while -1 indicates that the contrary is certain. The model allows
assigning a belief value to the rules also. CF is computed from probabili-
ties using two measures: (i) Measure of belief (MB) (ii) Measure of disbelief
(MD). If a hypothesis H is supported by an evidence E then, these measures
can be computed as,

MB =

1, if p(H) = 1
max(p(H|E), p(H)) − p(H)

1 − p(H)
, p(H)<1

MD =

1, if p(H) = 0
min(p(H|E), p(H)) − p(H)

0 − p(H)
, p(H)>1

Both these values are within the range [0, 1]. These equations are in-
vented equations and not derived from any theory. The CF is of the hypoth-
esis H given the evidence E is then given by

CF (H,E) = MB − MD (3.15)

3.2. UNCERTAINTY 49

If E1 and E2 represent two evidences with certainty factor CF1 and CF2

respectively, then the combined certainty factor of the two evidences can be
obtained using the following formula.

CF (H,E1∧E2) =


CF1 + CF2 (1 − CF1), if CF1, CF2 > 0

CF1 + CF2 (1 + CF1), if CF1, CF2 < 0
CF1 + CF2

1 − min(|CF1|, |CF2|)
, if sign(CF1) 6= sign(CF2)

Certainty Factor is a simple model of uncertainty management and is
fairly easy to integrate with rule based systems. However, there have been
critics that argue the theoretical validity of the model. Further, the model
assumes that the conditions in a rule are always independent which is not
always true.

Subjective Logic

Subjective logic is an extension of probabilistic logic which combines un-
certainty represented in terms of probability with opinions about the un-
certainty about a given information. A binomial opinion about truth of a
proposition x represented as ωx is an ordered quadruple ωx = (b, d, u, a)
where:

• b: belief - is the belief that the proposition is true

• d: disbelief - is the disbelief that the proposition is false

• u: uncertainty about the proposition

• a: base rate - this determines in the absence of any evidence about a
given source, what level of trust to put in any source of the community.
a ∈ [0,1].

Here, b + d + u = 1, and b, d, u ∈ [0,1]. If r and s are the number
of positive and negative evidences about the proposition x, then opinion
parameters can be expressed as:

b = r/(r + s+ 2)

d = s/(r + s+ 2)

u = 2/(r + s+ 2)

Dempster-Shafer Theory

Dempster Shafer Theory [S+76] written in short as DST, is a classic way of
combining evidences originating from different sources. It assigns a belief
mass to each of the elements of the universe. It differs from Bayesian ap-
proach in the sense that the sum of a belief of a fact and its negation need
not be equal to 1. Both can be 0, which implies that there is no evidence for

50 CHAPTER 3. STATE-OF-THE-ART

or against the fact. Having assigned the probabilities to each of the elements
of the universe of discourse also called the belief masses or basic probability
assignment (bpa), the theory advocates computation of two measures of a
fact A: (i) Belief or bel(A): a sum of masses of elements which are subsets
of A (ii) Plausibility or pl(A): a sum of masses of the sets that intersect with
set A. Using these measure, the theory puts forward the use of a formula to
combine the evidences from two or more sources to compute the combined
belief.

Though, DST seems to has been widely known for data fusion from
multiple sources, there are critics who argue that it can be misleading to
interpret belief functions to represent “probabilities of an event” or “degree
of trust on a proposition” [Pea14]. In [Zad86], Zadeh explains with examples,
how DST can lead to counter-intuitive results in case of conflicts between
the information provided by the sources.

3.2.3 Propagation of uncertainty

During the process of reasoning low level of information is used for reason-
ing and decision making. The reasoning process may include multiple levels
and each level may involve logical operations between different information.
This section explains the details of how uncertainty of the derived or inferred
information can be computed from the inputs. As presented in 3.2.2, each of
the models has a specific formula for deriving conclusions from conjunctions
of a number of propositions. E.g., in possibility model, the possibility of
a conclusion is the maximum of the possibilities of the individual proposi-
tions. We present a classification of these models in the table 3.2 from the
perspective of our success criteria. We ignore distribution aspect here, as we
need uncertainty propagation mechanism within an entity. By scalability of
the model, we mean how the model performs as the number of propositions
from which we can derive a conclusion, increases.

As seen in the classification, we find possibilistic logic is particularly
interesting to us as the information exchanged is generally incomplete. This
is close to our use cases explained in section 2.4. Hence, in our first approach,
we studied how this can be used to model and compute uncertainties of the
various conclusions.

3.3 Trust and uncertainty management in Distri-
buted Systems

Trust provides a measure of the truthfulness of information source, while
uncertainty is a characteristic of the information itself. In the absence of
any other data, we can take the trust as an uncertainty measure. This aspect
of using trust as an measure of uncertainty interests us greatly, as we think

3.3. TRUST AND UNCERTAINTY MANAGEMENT IN DISTRI-BUTED SYSTEMS51

Table 3.2: Classification of uncertainty models

Model

G
e
n

e
ri

c
it

y

S
im

p
li
c
it

y

S
c
a
la

b
il
it

y

Pros Cons

Probabilistic
Logic

D ++ D Simple

Does not model
ignorance or

incompleteness in
information

Possibilistic
Logic

D +++ D

Simple min/max
arithmetic based,
Models ignorance

in information

Certainty
Factor

D + D
Applicable to rule

based systems

Lack of a proper
theory. Events must

be independent.

Subjective
Logic

D ++
Based on
statistical

background

Dempster
Shafer Theory

D ++
Useful for data

fusion
Counter-intuitive results

52 CHAPTER 3. STATE-OF-THE-ART

the different distributed domains can be enhanced to manage trust of the
various sources relatively easily without much change to the system. Though
there have been immense studies in modeling and resolving the problems of
managing trust and uncertainty individually, their study together has not
been exploited largely. However, there have been some recent work that
address this. In this section we present a list of researches that focus on
managing trust and uncertainty together.

3.3.1 Crowdsourcing and Data Fusion

One interesting domains of applications that has come up in the last decade
is crowdsourcing. It is the process of accomplishing a task by assigning
subtasks to a group of people or crowd, mostly an online community. Some
examples are Amazon mechanical turk, Wikipedia etc. In order to obtain
good results, the crowd is classified into a number of groups based on their
performance and expertise. Their reports is then fused together to make
the results reliable. Though, we are not directly interested in data fusion, it
would be good to understand what measures of trust/reliability/uncertainty
do the researchers use for the fusion. Below we present some important works
that are used for crowdsourcing and data fusion.

Venanzi’s model

Venanzi’s model [VRJ13] is a recent work that addresses the problem of
fusing untrustworthy reports provided from a crowd of observers, while si-
multaneously learning the trustworthiness of individuals. The authors use
trust parameters of the sources to scale uncertainty in the estimates reported
by them. They construct a likelihood model for computation of the trust
of sources and propose a data fusion algorithm based on trust. They apply
their work to cell tower localization in the OpenSignal project.

The use of trust measures to scale uncertainty is very relevant to our
work. However, the likelihood model for trust presented by the authors does
not take into account prior knowledge about user reliability. This can be a
major issue, as trust is a commodity that augments from the experiences.
Also, the work is presented from the point of view of a system that collects
report from the users. So, it is hard to tell how it can be applied to other
domains that need distribution.

DST based trust revision model

[SFP+13] is an important work that is based on Dempster Shafer’s Theory
(DST) to revise trust of different information sources. There are two major
contributions from this work: (i) Proposition of SDL-Lite, a framework that
combines Description Logic (DL) and DST to reason about uncertain infor-

3.4. TRUTH MAINTENANCE SYSTEMS 53

mation obtained from different sources (ii) Trust revision of the information
based on information from one or more information sources.

These two works ([VRJ13] and [SFP+13]) support the need for further
research on trust and uncertainty together.

3.4 Truth Maintenance Systems

An intelligent entity needs some mechanism to maintain a consistent set of
beliefs or information in its knowledge base. Along with that it must be
capable of explaining how and why an information can be reasoned. Belief
Revision Systems or Truth Maintenance Systems (TMSs) are component in
artificial intelligence that permits to do this. They allow the management of
information and its dependencies from which they may have been derived.
Hence, to model an entity of distributed systems such as IoT, we think a
TMS is an integral part.

There are many classes of TMSs, viz; Justification based Truth Main-
tenance System (JTMS), Assumption based Truth Maintenance System
(ATMS), Logical based Truth Maintenance System (LTMS). ATMS is supe-
rior to other variants of TMSs in the sense that it is capable of maintaining
and reasoning with a number of simultaneous and possibly incompatible sets
of assumptions. Hence, we explore further the working of ATMS. We are
particularly interested in how ATMS can be distributed amongst different
peers of the distributed system and how can it be extended further to use
uncertainty values along with maintaining consistent belief base.

Why ATMS?

To illustrate further the need of the ATMS, let us consider a small example
that depicts a scenario in a distributed system entity. It depends on other
sources of information to enrich its beliefs and take appropriate actions.
Based on the inputs and beliefs, a conclusion can be deduced in one or more
ways. As an example, let us consider a smart device that controls the garden
watering system. It may receive information from disparate sources about
the weather condition (the information about whether it will rain or not)
and about the current soil conditions (whether dry or wet). Let Dry soil

and No rain represent the actual values. Based on these information, the
device can infer to “Switch on watering”. This is shown in the figure 3.1. It
shows that “Switch on watering” can be derived by two ways. In general,
this can be large in real world cases and it can also be multi-leveled. Now, in
order to identify how certain a conclusion is, the device needs to know how
it was derived. This demonstrates the need of a mechanism to obtain the
explanations for a conclusion. Another need is the update of the existing
information. In the example, if the device knows with certainty that it will

54 CHAPTER 3. STATE-OF-THE-ART

No Rain Dry soil

Switch on watering

Figure 3.1: Example: How a conclusion can be derived

rain, it will need to update the derivations accordingly. These requirements
support the need for an ATMS, as it provides these features.

Having described why we need an ATMS, we now present details about
how it functions.

3.4.1 Assumption-based Truth Maintenance Systems

An Assumption-based Truth Maintenance System [DK86], also called Belief
Revision System, is a system for maintaining consistent set of beliefs in the
knowledge base of an agent.

ATMS keywords

1. Node: A node is associated with an instance of a data structure which
is being manipulated by the problem solver. The actual content of
datum is of no interest to ATMS. It is the problem solver that requests
ATMS to create an autonomous node, thereby informing ATMS that
it is reasoning with the associated data. The nodes are mainly of two
types. A premise node that represents a truth meaning the agent
believes in the information unconditionally. A second type of node is
called the assumption. The information contained in such node are
uncertain. There is another node called the derived node that can
be obtained from one or more premise(s), assumption(s) and/or other
derived node(s).

2. Justification: A justification is a statement indicating that the truth
of a conjunction of nodes is sufficient to conclude the truth of a node.

n1 ∧ n2 ∧ n3 ∧nk → nx (3.16)

where ni, i ∈ [1, k] are called antecedent nodes and nx is called the con-
sequent node as it is derived from the conjunction of the antecedents.

3. Assumption: Some nodes as decided by the PS, are called assumptions.
They are the nodes on which any datum ultimately depends. They are
considered true unless proven false.

3.4. TRUTH MAINTENANCE SYSTEMS 55

4. Environment: An environment is a set of assumptions representing the
conjunction of these assumptions. If an environment E = a1, a2, a3....am
is in the label of a node n, then the ATMS has already deduced that
¡a1 ∧ a2 ∧ a3 ∧ ...am → n¿ i.e., E → n

5. Label: As nodes, justifications and nogoods are added, the ATMS
maintains a label for each node. A label is a set of environments, repre-
senting their disjunction, which supports the associated node. A label
of a premise is an empty set {{}}. The label of an assumption node
is a set containing the information itself. E.g., if an information “The
weather is rainy” is represented as an assumption node RainyWeather,
its label is {{RainyWeather}}. A derived node has one or more en-
vironments in its label. E.g., {{RainyWeather}, {WetSoil}} repre-
sents the label of a node that can be derived from two environments
RainyWeather and WetSoil.

6. Nogood: A nogood is a set of nodes which cannot be all true at the
same time, i.e, a set of nodes derives False.

n1 ∧ n2 ∧ n3 ∧nk → False, where ni is a node.

Propagate and Weave Algorithms

Maintaining a consistent set of labels and constructing new labels for
new nodes are main tasks of an ATMS. Propagate and Weave are
the core algorithms that help perform these tasks. When a node is
derived from one or more nodes like one shown in the example in 6,
new environments need to be constructed to reflect the derivation of
new node. The label thus created for the node n should observe four
principles: (i) Minimality: No environment in the label of the node is
a proper subset any other. (ii) Completeness: Every environment in
the label of the node is a superset of some other environment. (iii)
Soundness: The node n holds in each of the environment of the label
and (iv) Consistency: All environments of the label of the node n are
not nogoods. A complete description of how these algorithms work
are explained in [DK86]. Below we present an example of how ATMS
manages information internally, along with the different concepts that
we have explained so far.

Example

To understand the working of the ATMS, let us reconsider the exam-
ple that we presented earlier in 3.4. Let us consider the information
that “it will not rain” and “Soil is dry” are represented by NoRain

56 CHAPTER 3. STATE-OF-THE-ART

{{}}

No Rain

{{Dry soil}}

Dry soil

{{Dry soil}}

Switch on watering

Figure 3.2: Example illustrating an ATMS

and DrySoil, and that we can derive another information “Switch
on watering” from these information. Further more, let us suppose
that NoRain is a premise, and DrySoil is an assumption. Then, these
information are input to the ATMS as follows.

(a) Declare NoRain as a premise and DrySoil as an assumption.

(b) Declare a justification that we can derive Switch on watering

from the two nodes declared above, i.e.,

NoRain ∧ DrySoil→ Switch on watering (3.17)

The labels and the derivation of the node in the ATMS is shown in the
figure 3.2. The NoRain node being a premise is represented by a label
with empty environment and the assumption node DrySoil is repre-
sented by itself as an environment. The derivation of the node Switch

on watering is done using the Weave and Propagate algorithm.

3.4.2 Distributed ATMS

The notion of distribution with respect to ATMS has existed for long. The
work of Kraetzschmar [Kra97] on Distributed ATMS (DATMS) is interest-
ing in this respect. He showed the use of ATMS for a distributed planning
problem use case. In the work, he assumes that all agents are honest and
whatever information is communicated about the assumptions are consid-
ered true. The difference here between a single ATMS and DATMS is:
viewing the ATMS to be composed of many instances that communicate
with each other and each of the DATMS unit maintains a difference be-
tween nodes created by itself and those that are communicated. In case of
an update to the assumption related to a communicated node, the DATMS
makes a callback thereby updating the assumption in the original DATMS.
For this, Kraetzschmar envisioned the classic ATMS to having three different
components: (i) A communication and control unit (CCU) that communi-
cates with other DATMS peers and saves the communicated information
(ii) A context management subsystem that manages context along with the

3.5. CLASSIFICATION OF THE STATE-OF-THE-ART 57

communicated knowledge (iii) A dependency network management subsys-
tem that manages the dependency network within the DATMS. This work
is interesting to this thesis as it involves distributed belief maintenance.
However, viewing DATMS as a single entity of a distributed environment
is debatable. An ATMS is basically a dependency network management
system and cannot be seen as a reasoning and communication/management
system itself. In order to be modular, it may be worthy to keep ATMS as
an independent entity and use it in components of the distributed system
when required.

3.5 Classification of the State-of-the-Art

In the earlier sections, we have described the various important aspects of
trust, uncertainty and distribution, and some important models of trust and
uncertainty existing in the literature. We studied these domains from the
perspective of our prospective applications concerning the Internet of Things
(IoT) and the Internet of People (IoP). Hence, here we classify the three
core domains of the thesis (Trust, Uncertainty and Distribution) against the
domains of application. The classification is presented in the table 3.3.

58 CHAPTER 3. STATE-OF-THE-ART

Table 3.3: Classification

Trust Uncertainty Distribution

IoP

[ARH97], [WS07],
[CF01], [TLRJ12],
[Mar94], [GW11],
[CG03], [JMP06],
[GYL12], [LY09],

[Jøs96], [RHMV11],
[HWS08], [VRJ13],

[Hal98],
[PS93],
[PM93],
[Zad86],

[RHMV11],

[MS01], [NNFM12],

IoT

[ARH97], [HG12],
[WS07], [Mar94],
[LS12], [GW11],

[RPGH08], [CG03],
[JMP06], [GYL12],

[LY09], [Jøs96], [XL02],
[HWS08], [VRJ13]

[Hal98],
[PS93],
[PM93],
[Zad86],
[P la12],

[CCB+06],

[MS01], [NNFM12],

[PPR11]

Others

[MBD12], [Hur06],
[RHJ04] – Survey,
[LS07] – Security,
[LV07] – Security,
[HG12] – Security,

[VRAC10] – Survey

[KKRMvK09],
[ABB+08],
[SKL09],
[BG10],
[EY09],
[YC05],

[MBF+12],
[WGE06],

Chapter 4

Solution approach

This chapter explains our approach to solve the problems of management
of trust and uncertainty in distributed domain. We envisage a distributed
system as a Multi Agent System (MAS). An overall functional diagram de-
picting different components of intelligent agent is shown in the figure 4.1.
The agents of the system store the information as propositional statements.
These are a set of beliefs that the agent develops from its interactions with
other agents of the system. A set of domain specific rules allow the agent to
derive new inferred statements. The statements are associated with uncer-
tainty derived from trust levels of the source of the information.

We begin the chapter by explaining the details about the representa-
tion used for the knowledge base of the agents in section 4.2. We then
illustrate how we model the trust of the sources and uncertainty in the in-
formation in sections 4.3 and 4.4 respectively. In section 4.5, we present
how the models of trust and uncertainty are used with agent’s beliefs. Sec-
tion 4.6 explains how and why we use trust measure as uncertainty in the
information. Assumption-based Truth Maintenance System (ATMS) is an
important component within the agent for computing the uncertainties of
several derived information. We explain the details of this in section 4.7.
In section 4.8, we present the reasoning process of an agent and finally we
conclude the chapter by a brief discussion.

4.1 Envisaging a distributed system as a MAS

The goal of our work is develop a framework for a distributed system (e.g.,
the Internet of Things) that enables the management of trust of different
information sources and quantification of uncertainty in the information de-
rived from them. Since, trust and uncertainty handling is inherent to each
entity of a distributed system, we need to model them from the perspective
of each entity. A question that needs to be answered at this point is: Is it
that the entities themselves manage their trust and assess information un-

59

60 CHAPTER 4. SOLUTION APPROACH

Validation
behavior

Transactions Trust module

Message
handling
behavior

Belief Trust table

RuleBase Reasoner

Belief
updater ATMS

AGENT

Justifications

Derived data
+ uncertainty

Rules

Believed
data

Updated
beliefs

External
beliefs

<Data,Source >

External
beliefs

External
beliefs

<Data,Source,Trust>

<Data,Source,Trust>

Other agent or
information source

Figure 4.1: Architecture of an agent showing different components, knowl-
edge bases and the data flow

4.2. KNOWLEDGE BASE 61

certainty, or is there a centralized entity to do this task specifically?. Our
approach needs to be flexible enough to take this into account. Moreover,
the entities can be heterogeneous and can be spread across multiple organi-
zations E.g., for a home in the use case 2.4.1, a weather information provider
represents a source that is different from its neighbors. So, we envisage a
distributed system as a Multi Agent System (MAS), where the entities can
be modeled as independent agents. This has additional advantages:

1. Simpler and scalable: The system can be divided into agents based
on the tasks they need to perform. New agents can be added easily
and the solution can scale up or down when needed without much
implementation changes.

2. Parallelism: The trust model can be distributed (e.g. Distributed
Eigen Trust) in nature. With MAS, the trust can be computed si-
multaneously in different agents, and a global view about the trust of
agents of the system can be achieved faster.

4.2 Knowledge base

Knowledge base is the memory of an agent. It consists the facts (true in
all interpretations), beliefs (knowledge that is true to a degree of belief)
and rules about the world to reasoning newer information from the existing
ones. We also use the word belief base synonymously as the beliefs form
the major part of the knowledge base of an agent. The beliefs of an agent
may develop from information obtained from different sources, and that
an agent may have different degrees of trust. Hence, not all information
are believed equally by an agent. To model this, we associate a degree
of uncertainty with information. Well-known facts and information from
highly trustworthy sources have high degree of belief associated with them
(In probabilistic terms, uncertainty ≈ 0) and vice versa. A belief base is,
thus, a collection of beliefs of an agent at any instance of time. The source of
beliefs in the belief base are mostly external information sources while some
beliefs are well known facts (universal truths) or facts learnt from the past.
At regular intervals of time, these beliefs in the belief base are validated.
The validation procedure is performed either by comparison of the belief
with true value of the information from a more trustworthy source (E.g., if a
belief suggests that it will rain in the next two hours, it will be validated by
available weather information in two hours) or by direct human intervention
(E.g., the agent proposes the user an action and the user accepts or rejects
it) or interaction with other agents. At the end of a validation process, the
beliefs are converted to transactions. For practical purposes, the beliefs that
have been converted into transactions can be safely disposed.

62 CHAPTER 4. SOLUTION APPROACH

Thing

Information InformationSource WateringDevice

WateringDeviceStatushasD
eviceStatus

N-aryRelationInformationTopic

isSpecializationOf

IsTrue Relation

hasIs
TrueR

ela
tio

n
hasIsTrueRelation Says Relation

hasSaysRelation

hasSaysV
alue

Belief Relation

h
asIn

form
ation

V
alu

e

Home

hasBeliefRelation

has
W

at
er

in
gD

ev
ice

Meteo

Figure 4.2: An example ontology of Intelligent Community use case

4.2.1 Representation

Many techniques exist when it comes to representing a knowledge base.
Logical representations such as Propositional logic, Predicate logic, semantic
graphs, production rules, ontology etc. We model the knowledge base as
ontology. The major advantages of representing knowledge as ontology over
other methods are:

• It is a well known standard and inter-operable in terms of expressing
any type of information.

• It is a decentralized and a distributed format, meaning the information
may be split amongst different agents and each of them understand it.

• It expresses relationship between different classes explicitly. Hence, it
provides a natural way to search, explore and filter a knowledge base
for related properties.

• It can be created easily from data i.e., It is data-driven.

An example ontology (Intelligent Community use case) is shown in the fig-
ure 4.2. The ellipses shown maroon and orange are subclasses of the “Thing”
class. The relationships amongst different classes are shown with dashed ar-
rows. The ellipses in blue are the instances of the class.

4.2.2 Rules and Reasoning

Rules are the mechanism to derive new information. A “Rule Engine” en-
ables to infer new information from existing ones and a “Reasoner” is a
component that uses a rule engine to chain two or more rules and/or in-
formation in the belief base to form a line of reasoning. A set of rules are
defined and stored in the Rule base. Based on these rules and the believed
data from the belief base, a reasoner is able to infer new information. A

4.3. MODELING TRUST 63

New Information

Newly inferred
 information

Belief base

Reasoner

Rule base

Rule Engine

Figure 4.3: Detailed figure of a reasoner and its relationship with the belief
base

detailed diagram of the reasoner and its relationship with the belief base is
shown in the figure 4.3. As illustrated in the figure, the components shown
in blue together form the Reasoner component. The reasoning process does
not just infer new information, but deduces uncertainty of this inferred in-
formation.

We represent the trust on the source of information and uncertainty in
the information by relationships named hasIsTrueRelation and hasNecessi-
tyValue respectively. The rules convert the trust associated with different
information sources to compute the uncertainty of the inferred information
based on the chosen uncertainty model (discussed in subsection 3.2.2). For
possibilistic model of uncertainty, if X and Y are two clauses whose con-
junction produces Z and that X and Y are given to be true with necessities
N1 and N2 respectively, then from the resolution principle, we can deduce
Z with a necessity value given by minimum of N1 and N2. Thus, reasoner
does not just infer the information Z, but computes the uncertainty of Z.

X ∧ Y → Z

hasNecessityV alue(X,N1)

hasNecessityV alue(Y,N2)

Z ∧ hasNecessityV alue(Z,min(N1, N2)) (4.1)

4.3 Modeling trust

From our detailed state-of-the-art study about the existing trust models, we
found that Eigen Trust [KSGM03] and β-Reputation are two models that

64 CHAPTER 4. SOLUTION APPROACH

Table 4.1: Transaction table for an agent A

Querying
Agent (Q)

Replying
Agent (R) Service (ψ)

Rating
Tri(Q,R,ψ)

A D WeatherInfo +1

A B SoilInfo −1

A C SoilInfo + 1

fit our requirements of being simple, scalable and applicable to distributed
domains. We present the details of Eigen Trust and β-reputation in subsec-
tions 4.3.1 and 4.3.5.

4.3.1 Eigen Trust

We reuse the notion of trust computation mechanism defined by Eigen-
Trust [KSGM03]. According to this work, the querying agents rate the
providing agents for the service offered. The value can be +1 or -1; +1 indi-
cates a satisfactory transaction while -1 indicates the opposite. We include
service type to emphasize that trust is dependent on the type of service of-
fered by the agent as an agent can offer many services. An illustration of the
table of transactions for an agent A is shown in the Table 4.1. The example
shows queries from the A to other agents B, C and D. The first row in the
table states that agent A queried D for WeatherInfo type of information for
which D was provided a rating +1, indicating a satisfactory transaction for
A. The second and the third rows are the transactions for SoilInfo type of
information out of which the transaction with C was satisfactory and the
transaction with B was unsatisfactory.

4.3.2 Local and Global trust

It is important to distinguish between local and global values of trust. A
local value of trust is one that is computed by the involved parties for each
other. A local trust value may or may not be shared. A global value is
an accumulation of all the transactions that have may ever occurred. All
agents are free to query about the global value of trust related to any other
agent, we assume that the agents will share this information. If Tri(Q,R,ψ)
represents ith transaction of the n transactions between a querying agent
Q, a responding agent R and about a type of service or information ψ, then
the local trust value is given by:

sQR,ψ =
∑

Tri(Q,R,ψ)

The normalized value of the local trust is given by:

cQR,ψ =
max(sQR,ψ, 0)∑
jmax(sQj,ψ, 0)

(4.2)

4.3. MODELING TRUST 65

4.3.3 Predefined trust

An application domain generally comprises of heterogeneous sources. Some
of them may be well-known, in the sense that they are owned by us, while
others may be external sources. In such scenarios, it is evident that trust
on the well known sources should be higher than the exterior sources. This
is modeled using Predefined trust.

4.3.4 Drawbacks of Eigen trust

Eigen trust model suffers from the following important drawbacks.

1. The model does not specify a method for calculation of trustworthi-
ness of an information when two or more sources provide the same
information.

2. The model does not take into account the interactions relative to time.
E.g., if a source has 3 positive interactions and 3 negative interactions;
the trust model doesn’t take into account when the interactions oc-
curred.

3. The model does not distinguish between two sources which have neg-
ative interactions and no interactions at all.

Overall, Eigen trust is a scalable trust management algorithm that seems
promising to be explored for the Internet of Things and M2M systems.

4.3.5 β-reputation model

To overcome the limitations of Eigen Trust mentioned in the section 4.3.4,
we studied the β-reputation model. [JBXC08] is a well-known trust model
proposed by Jøsang in 2002. The model is based on Bayesian Network and
beta probability function. In the pure beta reputation, users rank the trans-
actions in a binary mode which is either satisfied or unsatisfied. However
Jøsang extended the work to support float ranks that can model partly
satisfaction. The satisfactory and unsatisfactory transactions are counted
through two numeric variables r and s respectively. Then a statistical prob-
ability of being the next outcome satisfactory is estimated using beta density
function as follow:

Repx =
rx − sx

rx + sx + 2
(4.3)

rx and sx are the collected number of satisfactory and unsatisfactory tran-
sitions by x and Repx is the reputation score. The model also supports
forgetting factor and two operators for combining and discounting opinions.
Forgetting factor is to give recent transaction more weight. The purposes of
combining and discounting operations are respectively to combine opinions
from different sources and discount opinion received by a chain of advisors.

66 CHAPTER 4. SOLUTION APPROACH

4.4 Modeling uncertainty

Uncertainty represents the degree to which a piece of information is close
to the true value in the real world. The one that interests us in our work
is the uncertainty due to lack of trust on the information source (or incon-
sistent information) and uncertainty due to imprecise nature of the given
information (or incomplete information).

As discussed in the state of the art white paper on managing uncertainty
in section 3.2.1, there are various types and sources of uncertainty. There
are several uncertainty models. The choice of a model depends on the nature
of data that is handled. For the Intelligent community use case, we find that
the major problems of uncertainty are related to information inconsistency
arising from multiple sources, and imprecision in the shared information
(e.g., ”Soil is Dry” information shared by a neighbor is imprecise as degree
of dryness of the soil is not shared). An uncertainty model that suits such
information is Possibilistic Logic as it cannot only capture extreme forms
of partial knowledge like complete knowledge to total ignorance about an
information. We discuss this is the subsection 4.4.1.

The data from Smart City Garbage collection use case on the other hand
exhibits different nature of uncertainty. The information in the use case is
mostly precise as we already have logs of different drivers and garbageman
collecting the garbage from different locations in the city. The uncertainty
issue in this use case is to determine what course of action needs to be taken
from various reports of the drivers. Hence, we use Conditional Probability
model to determine the certainty of different actions to be taken. We discuss
this is the subsection 4.4.2.

These models of uncertainty provide a mechanism of propagating uncer-
tainty from low level information to a high level one. We further need a
mechanism to compare and decide amongst the different high level informa-
tion that is reasoned. We explain this in subsection 4.8.

4.4.1 Possibilistic Logic

Possibility theory is an uncertainty theory that is useful for the handling
of incomplete information. The classical uncertainty models such as the
probability theory is not able to capture partial ignorance about the infor-
mation. As will be seen from the definition, the theory makes it possible to
model uncertainties in the extreme cases. It differs from probability theory
by the use of a pair of dual set-functions called the possibility and necessity
measures instead of only one.

The possibility theory represents uncertainty by two measures: possibil-
ity and necessity. A possibility distribution is a mapping π from a set of
states of affairs S to a totally ordered scale such as the unit interval [0,1] .
The function π represents the knowledge of an agent (about the actual state

4.4. MODELING UNCERTAINTY 67

of affairs) distinguishing what is plausible from what is less plausible, what
is the normal course of things from what is not, what is surprising from what
is expected. It represents a flexible restriction on what the actual state of
affairs is, with the following conventions:

• π(s) = 0 means that state s is impossible,

• π(s) = 1 means that state s is totally possible, but the degree of
certainty with which it is possible is given by the necessity.

If the state space is exhaustive, at least one of its elements should be the
actual world, so that at least one state is totally possible and there can be
more than one value that may be simultaneously possible; given by possibil-
ity values being equal to 1. The theory is driven by the principle of minimal
specificity. It states that any hypothesis not known to be impossible cannot
be ruled out. The possibilistic framework can capture the two extreme forms
of partial knowledge:

• Complete knowledge: for some state s0, π(s0) = 1 and π(s) = 0 for
all other states s (only s0 is possible)

• Complete ignorance: π(s) = 1, ∀s ∈ S, (all states are totally possi-
ble).

A possibility theory assigns each element s of the universe of discourse
S, π(u) ∈ [0, 1]. The uncertainty in a possibilistic clause is represented by
two measures Possibility (Π) and Necessity (N). For all p, q ∈ U , possibility
and necessity measures satisfy the following axioms:

1. Π(⊥) = N(⊥) = 0, Π(>) = N(>) = 1

2. Π(p ∨ q) = max(Π(p),Π(q))

3. N(p) = 1 − Π(p)

4. N(p ∧ q) = min(N(p), N(q))

5. N(p) ≤ Π(p)

Why possibility theory?

We chose possibilistic logic to model uncertainty in the information because
of imprecise and vague nature of information that can be provided by the
information providers in the IoT. E.g., for a proposition that “it will rain
tomorrow” provided to an agent A by a weather station, the necessity of the
event occurring can be assumed to be equal to trust on the weather station.
Further more, the possibility theory is based on max-min arithmetic which
makes the computation simple. The issue with the theory is how do we
get the values of possibility and necessity for an event in our domain of
application.

68 CHAPTER 4. SOLUTION APPROACH

4.4.2 Probability Theory

In the smart city garbage collection use case, we have a different requirement
with regards to modeling uncertainty in the given information. Here, we
already have the prior information regarding the various remarks made by
the garbage men and the corresponding decisions taken. With this in view,
we think a conditional probability model fits this requirement. A conditional
probability measures the probability of occurrence of an event given that
some other event (an assumption, assertion) has already occurred. This is
governed by Bayes’ Theorem. It is stated as the following equation:

P (A|B) =
P (B|A)P (A)

P (B)
, (4.4)

where, A and B represent two events.

• P (A) and P (B) are the probabilities of A and B without regard to
each other.

• P (A|B), a conditional probability, is the probability of A given that
B is true.

• P (B|A), is the probability of B given that A is true.

Our problem in the use case is : “Given the remarks about the different
bins by the garbage men, what is the best action to be taken?”. In other
words, we want the system to propose us different actions with their corre-
sponding uncertainties based on the drivers’ remarks. Let C and R represent
a conclusion and a remark. If C can be derived from R, then P(C, R), that
is the probability of having the event C as conclusion and R as the remark,
can be expressed as

P (C,R) = P (R|C) . P (C) = P (C|R) . P (R) (4.5)

From this equation, the probability of the conclusion can be computed as:

P (C) =
P (C|R) . P (R)

P (R|C)
(4.6)

For a given remark R = ”WrongSorting” which represents the fact that
the bin was not sorted properly, the conclusion C = ”Replan”, meaning there
needs to be another pickup planned in the future, P (Replan|WrongSorting)
is equal to 1. This is because in the use case, remark WrongSorting always
leads to the conclusion Replan. A table showing some remarks along with the
corresponding reasoned information is shown in the table 4.2. It shows that
the remarks Wrong Sorting, Bin Not Put Forward and Additional Waste
lead to the conclusion Replan, while the remark Defective Container leads
to the conclusion Replace Bin.

4.5. AGENT BELIEFS AND THEIR RELATION WITH TRUST 69

Table 4.2: A sample remarks and reasoned information table

Wrong
Sorting

Bin Not
Put Forward

Additional
Waste

Defective
Container

Replan 5 2 2 0

Replace Bin 0 0 0 6

The corresponding conditional probabilities for the event Wrong Sorting
given that the conclusion was Replan and Replace bin can be computed as
below.

P (WrongSorting|Replan) =
5

5 + 2 + 2 + 0
= 0.55 (4.7)

P (WrongSorting|ReplaceBin) =
0

5 + 2 + 2 + 0
= 0 (4.8)

4.5 Agent beliefs and their relation with trust

The basic function in Internet of Things (IoT) is exchange of information
amongst different interconnected things. It involves two agents - the infor-
mation provider and the information receiver. The providers can advertise
their ability of providing a specific type of information via a “Directory Fa-
cilitator” type of agent that maintains lists of all information providers and
their respective services.

A complete interaction where an information provider agent has pro-
vided a piece of information to the information receiver agent is called a
transaction. At the end of a transaction, each of the involved parties rate
each other about the way the transaction was made. The decision to rate
each other depends on numerous factors. One of the important factors is
the degree of closeness of the information provided by the provider and the
actual true value.

4.5.1 Interaction

As illustrated in 4.4, we model each interaction (Ir) as a 5-tuple. Ir =
{Q,R, α,Res, t}

• Q = Querying Agent

• R = Replying Agent

• α = Specific type of information being queried

• Res = Response provided by R with respect to α

• t = Time instance when the information Res is valid

70 CHAPTER 4. SOLUTION APPROACH

Q R
Rest

α

Figure 4.4: A transaction between querying agent Q and replying agent R

4.5.2 Beliefs

Beliefs are propositional statements that an agent considers as being true.
An agent develops beliefs on the basis of information received from outside
(other agents or the world). At the end of an interaction with an replying
agent R, a querying agent Q develops a belief on the question α it queried.
A belief is represented as Belief(α : Res, t, TQR), where TQR is the quanti-
tative value of trust of agent Q on agent R and it is computed by algorithms
presented in section 4.3.

An agent develops beliefs in its belief base in one of the following ways.

1. A piece of information arrives from an external source (other agent,
sensor etc.). E.g., if a weather information source says that it will
rain tomorrow to a home agent, it will develop a belief about weather
tomorrow.

2. A new information is inferred out of the available beliefs and the rules
in the rule base of the agent. For example, as in Intelligent Community
use case, if the agent has a rule that it should send a signal to stop its
watering device when it will rain, then the agent will infer a belief that
it should send a signal to stop the watering device. We call these beliefs
as “inferred” or “derived” beliefs. The process of inference is generally
triggered when the agent receives an information from exterior (other
agents or sources of information).

We associate a degree of certainty to each of the beliefs. This value is
obtained from the trust value of the source from which the belief was derived
from. We explain this further in the following section.

4.6 Using trust measure as uncertainty

When an information is provided by an information source, the information
uncertainty or the degree of truthfulness of the information is unknown often.
In such situations, we hypothesize that the certainty or truthfulness of the
information is proportional to the trust of the information source at that
instance of time. As presented in the section 4.3, the trust models permit
us to maintain quantitative measures of trust for various sources at any
instance of time. We normalize these trust measures to be within the range

4.7. ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEM 71

[0,1]. So, the trust measures are relative and an information source with a
measure close to 0 is untrustworthy and that close to 1 is highly trustworthy.
The advantage of such normalization is that the values can be directly used
as measure for uncertainty.

As an example, let us consider HomeA and HomeB be two homes. Let
us assume the trust HomeA has on HomeB and that HomeB provides in-
formation that the soil is dry. As shown in the evolution of beliefs below,
the applied rule converts the trust on the neighbor to uncertainty in step 7.

This interaction will be encoded in HomeA’s ontology as:
Initial relations in the ontology with regards to trust on HomeB.

1. hasIsTrueRelation(HomeB, isTrueRelationHomeB)

2. hasTrustModel(isTrueRelationHomeB, ”Eigen”)

3. hasTrustValue(isTrueRelationHomeB, 0.5)

After HomeA receives ”DrySoil” information.

4. says(HomeB, DrySoil)

After a rule Says(Neighbor, info) ->hasBelievesRelation(Me, info), hasUncer-
taintyModel(info, ”Possibilistic”), hasUncertaintyValue(info, Trust(Neighbor))

5. hasBelievesRelation(Me, beliefRelationSoil)

6. hasUncertaintyModel(beliefRelationSoil, ”Possibilistic”)

7. hasUncertaintyValue(beliefRelationSoil, ”0.5”)

4.7 Assumption-based Truth Maintenance System

An Assumption-based Truth Maintenance System is a system for maintain-
ing consistent set of beliefs in the knowledge base of an agent. It is attached
to a Rule Engine, which provides inputs to the ATMS in the form of justifi-
cations. It maintains a dependency network for different information nodes
and their dependencies on a set of assumptions.

For our work, the assumptions are mainly the trust relations of various
sources. So, the labels of several nodes, which is a set of environments
contain assumptions of trust relations the conjunction of which can derive
the nodes. At any instance of time, the agent’s ATMS helps it to keep track
of how newer beliefs are dependent upon the assumptions of trustworthiness
of the various sources. A diagram of how we use ATMS along with the
reasoner is illustrated in figure 4.5. For each inferred information, there are
set of rules in the rule base of the reasoner that derive it. This set of rules is
then fed to the ATMS as justifications. The ATMS algorithms enable us to
query for each proposition and the corresponding environments that derive

72 CHAPTER 4. SOLUTION APPROACH

New Information

Newly inferred
 information

Belief base

Label with uncertainties

as Justifications
Applied Rules

Query Label

ATMS

of a proposition

Reasoner

Figure 4.5: Reasoner and ATMS

along with their uncertainty values. The labels of the nodes in the ATMS
provide a basis for comparison of different conclusions. This is explained
further in the following section 4.8.

4.8 Reasoning with uncertainty

The beliefs of an agent can evolve in one of the two ways as explained in
the section 4.5.2. At a time instance t, when the existing beliefs of the
agent (beliefs − t), are actually validated by some mechanism (validation
mechanism is specific to domain), the validation outcome can either agree
or disagree with a derived belief. The trust update mechanism depends
on how the belief was developed (or derived). In general, a belief Z can
be developed as shown in one of the three ways in the figure 4.6. The
consideration of more assumptions will just be a duplication of cases (b) or
(c) or both (b) and (c). Here, A1 and A2 represent two different assumptions
about the trustworthiness of the same source (different type of information)
or different sources (of the same or different types of information). The
analysis of the trust update in each of these cases is explained below and in
the table 4.3.

(a) In figure 4.6.a, belief Z is derived from an assumption belief A1 as
illustrated by the labels of the nodes. The trust update in this case
is straightforward. The trust of the involved agent needs to be incre-
mented or decremented according to the validation response agreeing
or disagreeing with the belief. This is done by adding a rating to the
corresponding transaction between the interacting agents.

(b) The derivation shown in figure 4.6.b, illustrates a scenario where a
belief Z can be derived from a conjunction of two different assumption

4.8. REASONING WITH UNCERTAINTY 73

beliefs A1 and A2. If the outcome of the validation process of the
belief Z is in accordance with the belief, then this implies both the
assumptions are true and since the assumptions are basically related
to the trust of the sources their trust ratings can be incremented.
Conversely, nothing much can be reasoned in the other case when the
decision of validation is not in accordance with the belief since which
of the two assumptions is false is unknown.

(c) In the case depicted by figure 4.6.c, the belief Z is derived from
disjunction of assumptions A1 and A2. Like in case (b), reasoning is
not possible when the decision of validation is accordance with the
belief as it is not possible to reason which of the two assumptions A1

or A2 were true.

Algorithm 3: Algorithm for update of trust

t = the current time instance
beliefs = set of all beliefs of an agent
beliefs-t = subset of beliefs that need validation at time t
t = a variable that stores the current value of time passed since the
agent came into existence
transactions = a set of transactions related to beliefs-t

. Obtain beliefs-t.
At a time instance t, obtain a subset of beliefs that need validation at
that time.

for each b in beliefs-t do
Validate truthfulness of question α and response Res
Update the transaction(s) corresponding to b with a rating of +1
or -1 depending upon whether the validation step was acceptable
or not.

end

The mechanism of update of trust is explained in the algorithm 3. The
algorithm begins by computing the current time instance t. This is followed
by obtaining beliefs-t, a subset of all the beliefs of the agent that need valida-
tion at time t. For each of the beliefs in beliefs-t, the agent validates it. The
validation process either agrees with the belief, in which case the trust on
the source of the belief is incremented and vice versa. However, as explained
in the cases (b) and (c) above, the agent may arrive in a situation where it is
unable to reason about which of the sources of information was responsible
for an inferred belief. In such situation, the agent needs to further explore
and validate the individual assumptions to reason which of the sources are
true.

74 CHAPTER 4. SOLUTION APPROACH

A1 A2

Z

{{A1}} {{A2}}

{{A1, A2}}

A1 A2

Z

{{A1}} {{A2}}

{{A1}, {A2}}

(a) (b) (c)

A1

Z

{{A1}}

{{A1}}

Figure 4.6: Dependency graph snapshots from the ATMS depicting possible
cases in reasoning trust relations. A1, A2 are assumption nodes while Z is
a derived node. The corresponding labels of the nodes are shown alongside.

4.9 Discussion

This chapter presented our approach to resolve the issues of modeling and
management of trust and uncertainty in distributed systems of agents. We
presented two trust models; namely, Eigen Trust and β-Reputation, and two
uncertainty models; namely, Possibilistic logic and Probability theory. The
initial beliefs are associated with quantitative value of uncertainty depend-
ing upon the trust value of the source that furnished the information. The
reasoner executes the domain specific rules and the uncertainty model prop-
agates the uncertainty from propositions to the conclusion(s). The ATMS
coupled with the reasoner enables to know in how many ways a conclusion
may be derived and their corresponding uncertainty values. This allows us
to pick the events/actions that are more certain than others. Overall, we
presented the architecture from a particular agent’s perspective. With mul-
tiple agents, this behavior can be replicated as we show in the following
chapter.

4.9. DISCUSSION 75

Table 4.3: Analysis of derivation of conclusion

Label of belief
Z

Validation
response

Remarks

{{A1, A2}} Agree
Trust of both the sources of information

needs to be incremented

{{A1, A2}} Disagree
Either A1 or A2 or both A1 and A2 are false.

Hence, trust for which source needs to be
updated is not clear.

{{A1}, {A2}} Agree
Either A1 or A2 or both A1 and A2 are true.

Hence, trust for which source needs to be
updated is not clear.

{{A1}, {A2}} Disagree
Trust of both sources corresponding to A1

and A2 need to be decremented.

76 CHAPTER 4. SOLUTION APPROACH

Chapter 5

Implementation

This chapter discusses the implementation details of our approach. A generic
implementation for the use cases of our work consists three main aspects:
(i) Distribution aspect, (ii) The agent and the (iii) The data representation.
We discuss them in the sections 5.1, 5.3 and 5.2 respectively.

To further explain the sections and subsections of the chapter, we make
use of the following example from the Intelligent Community use case. As
depicted in figure 5.1, we consider two homes A and B in a neighborhood.
Homes A and B are smart meaning that they are equipped with devices
connected to the Internet and thereby benefiting from the services of dif-
ferent service providers. A typical example of such a service is obtaining
weather information from weather forecast companies. Depending upon the
information the devices can alert the users, or take a decision to activate an
actuator. We further assume that home A has no further sensor attached as
a source of information and thereby has to rely solely on the weather fore-
cast (particularly the chance of rain) to control the watering systems. Home
B, on the other hand, has sensors such as a soil moisture detector and a
humidity sensor deployed for it’s use in addition to the weather information
from the weather forecast company. Furthermore, the owner of home B is
open to sharing soil moisture and humidity readings with his/her neighbors.

5.1 Distribution aspect

As we explained in section 4.1, we envision a distributed environment as a
MAS and the entities of the system as MAS agents. There is an important
number of implementations in agent programming framework, based on Be-
lief Desire Intention (BDI), like BDI4JADE, JADEX, 2APL. However, we
disregarded this domain as we found that BDI architecture does not fit do-
mains that need learning and adapting their behavior [GPP+98]. Though
our domains are not completely related to learning, there is a need for updat-

77

78 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Example from the Intelligent community use case.

ing the trust of the various sources and adapting to their new values. Hence,
we use JADE, which is a robust and a highly customizable implementation
framework for a MAS. It is a standard framework for the implementation of
MAS. It is a stable, open source and widely known. It supports a number of
FIPA communication protocols and is highly modular and customizable for
the needs of a research. Once we define our agents, their behaviors and the
components they contain, we can easily instantiate them to form a MAS.

JADE provides an environment called “container” within which pro-
grammable agents can be created. Agents forming a MAS can be distributed
amongst multiple containers for scalability. An illustration of the use of
JADE for the Intelligent Community use case is shown in the figure 5.2.
Here, the agents HomeA, HomeB and HomeC exist in CONTAINER-1,
while HomeD and WeatherInfoProvder form the part of CONTAINER-2.
The interactions within agents of the same or different containers is fa-
cilitated by JADE. The arrows indicate the interactions between different
homes.

5.2 Data representation

We use Linked Open Data to represent the data and the knowledge base of
the agents. The data model used for Linked Data is called Resource Descrip-
tion Format (RDF). It is a structured way of representing information with
classes and their relations. An ensemble of such a data set is called an Ontol-
ogy. We developed an ontology (TUM-ontology) that defines the concepts
and the relationships used for management of trust and uncertainty (TUM).
Each of the agents that need the trust and management module, share this

5.2. DATA REPRESENTATION 79

CONTAINER−1

http://container−1:7778/acc

CONTAINER−2

http://container−2:7778/acc

JADE

HomeA

HomeC

HomeB

HomeD

Provider

Weather
Info

Figure 5.2: JADE facilitating communication amongst agents in two con-
tainers.

ontology. However, their contents differ based upon the application domain
and the evolution of their knowledge bases. The ontology also includes the
domain specific rules that the agents use for derivation of new inferences.
The rules are modeled in Semantic Web Rules Language (SWRL), as it is
compatible with RDF.

The complete ontology is depicted in the figure 5.3. The major classes
of the ontology are explained below.

1. Agent: This class represents the entities of the distributed system
under consideration. InformationSource is a subclass of this class,
that represents those agents that are providers of the information. For
the example in 5, HomeB can be an InformationSource for HomeA.

2. Information: For an agent, the messages received from other agent(s)
are information. We store them as instances of the class Information.
DrySoil and WetSoil that represent the soil conditions can be examples
of this class.

3. InformationTopic: We need to categorize the information as a source
of information can have different levels of trust for different categories
of information. We represent this using the class InformationTopic.
E.g., WeatherInfo and SoilInfo are be two different information topics
used in the example.

4. isTrue Relation: This is a reified class to represent that an informa-
tion source is trustworthy with respect to a particular InformationTopic.
It is related to two other classes TrustModel and TrustMeasure.

80 CHAPTER 5. IMPLEMENTATION

5. TrustModel: This class represents the model of trust used for repre-
senting the trust of the information sources. We used Eigen trust in
our work, hence it is the only subclass of this class. Any other model
for trust will be a subclass of this class.

6. TrustMeasure: This class is used for storing the numeric value of trust
for the sources based upon the model of trust used. EigenTrustMeasure
is a subclass of this class.

7. Uncertainty: The uncertainty in the information is represented by
this class. The two models of uncertainty that we studied in our work
form the two subclasses of this class ProbabilityUncertainty and
PossibilityUncertainty.

8. UncertaintyModel: Uncertainty in the information is modeled us-
ing a model, that is represented by this class. It has two subclasses
ProbabilityModel and PossibilityModel.

9. ConditionalProbability: This class is used to model the conditional
probability discussed in subsection 4.4.2.

The relationships between the different classes marked in blue in the
figure are explained below.

1. believes: This relation encodes the fact that an agent believes an
information.

2. says: We use this relation to represent that an exterior agent provided
an information to the agent under consideration. The agent under
consideration is implicit.

3. isAboutTopic: An information may be related to various categories
or topics. As we compute trust of an agent with respect to the topic
of the information, we need this relation. It relates Information to
InformationTopic.

4. has isTrue Relation: In order to represent an information like: “X
is trustworthy with respect to T type of information and the value of
V and a trust model M ” in terms of triples, we need an intermediary
class and intermediary relations. This is called Reification. We cre-
ated the class N-ary Relation to represent a reified relation. Thus,
the relation has isTrue Relation is the equivalent of one of the in-
termediary relations above. It relates an InformationSource to an
isTrue Relation.

5. isTrueAbout: An InformationSource may be trustworthy with re-
gards to different types (topics) of information. The isTrueAbout

5.3. THE AGENT 81

relation indicates, to what type of information (InformationTopic)
an InformationSource is trustworthy about.

6. hasTrustMeasure: This relation relates the reified isTrue Relation

to the TrustMeasure class, which holds a numeric measure for the
trust.

7. hasTrustModel: This relation indicates what model of trust the
isTrue Relation is possessing.

8. hasUncertainty: We quantify the uncertainty in a given information
by hasCertainty relation.

9. hasUncertaintyModel: We modeled the uncertainty in the informa-
tion using two models ProbabilityModel and PossibilityModel.
This relation specifies what uncertainty model does an Uncertainty

have.

10. hasConditionalProbability: This relation relates further an uncer-
tainty of ProbabilityModel to ConditionalProbabilty. By defini-
tion, the ConditionalProbability class has two relations associated
with an information. They are modeled using the hasInformation

and hasGivenInformation relations.

Example: The following expression shows how an agent encodes the
information that B informs A about the weather and the correspond-
ing uncertainty of the information. Here B, Rain, Weather, u1,
Possibility are the individuals of InformationSource, Information,
InformationTopic, Uncertainty and PossibilityModel classes of
the ontology respectively. hasUncertaintyValue is a data property
of the Uncertainty which stores the quantitative value of the uncer-
tainty of the information.

says(B, Rain),

isAboutTopic(Rain, Weather),

hasUncertainty(Rain, u1),

hasUncertaintyModel(u1, Possibility),

hasUncertaintyValue(u1, 0.65f)

5.3 The agent

The agent is an entity of the MAS. We model an agent consisting of different
behaviors and components as illustrated in the figure 4.1. JADE requires
the agent to be a subclass of the jade.core.Agent class from the JADE api.
For an agent to accomplish a certain task, they need to defined. In JADE,

82 CHAPTER 5. IMPLEMENTATION

N−ary_Relation

Uncertainty

Agent

isTrue_Relation

ProbabilityUncertainty

ProbabilityModel PossibilityModel

ConditionalProbability TrustMeasure TrustModel

InformationTopic

InformationSource

Information

isa

isa

isa isa

isa
isa

hasTrustMeasure
says

hasInformation

hasGivenInformation

hasUncertaintyModel

hasUncertainty

believes

isTrueAbout

isAboutTopic

hasTrustModel

has_isTrure_Relation

isa

ProbabilityType

hasConditionalProbability

PossibilityUncertaintyUncertaintyModel

Figure 5.3: TUM ontology.

5.3. THE AGENT 83

a task is called a behavior and is defined by extending the subclasses of
jade.core.behaviours. Several different types of behaviors are supported
by JADE like CyclicBehaviour, OneShotBehaviour, ParallelBehaviour
etc. For our purposes, OneShotBehaviour, which models the behavior to
be executed just once, is sufficient. Hence, the behaviors of the agent we
modeled, use OneShotBehaviour. Apart from them, the agent includes the
reasoner, the rule base, the ATMS, and the transactions and the trust ta-
ble. We discuss in detail, the behaviors of the agent in subsection 5.3.1,
the rule base in subsection 5.3.3, the reasoner in subsection 5.3.2 and the
implementation of the ATMS in subsection 5.3.4 respectively.

5.3.1 The agent behaviors

An agent may have different behaviors depending upon the application do-
main. For the domains that concern our work, we model the agent to have
three main behaviors: Message handling behavior, Validation behavior and
the belief update behavior. An illustration of how these behaviors fit into
the architecture of the agent is shown in the figure 4.1. Below, we explain
each of these behaviors with examples.

1. Message handling behavior: The message handling behavior deals with
the incoming messages, transforming them into Beliefs. The behavior
either uses the belief base to construct and respond to the request in
the messages or uses the response to form a belief. The information
exchange is based on FIPA query interaction protocol. The agents
seeking information do a query with a query-ref message, seeking a
specific information. The responding agent either accepts and sends
the inform-result or rejects the request. As we represent the data
in terms of RDF, we use SPARQL CONSTRUCT query string as content
in the query message. The inform-result message contains an RDF.

2. Validation behavior: The validation behavior is related to management
of trust of the sources of information. At regular intervals of time, an
agent validates whether the beliefs in its belief base are true. Depend-
ing upon the outcome of validation, the agent either increments (if the
belief was true) or decrements (if the belief was false) the trust of the
information source that furnished the information.

3. Belief update behavior: This behavior allows the agent to infer new be-
liefs from the current set of beliefs. The inferred information and their
respective uncertainty is obtained from the reasoner and the ATMS.
At the end of each inference, the reasoner inserts the explanations for
the inferred information and the uncertainties into the ATMS, which
then detect the inconsistencies in the derivation. The outcome of the
ATMS is then used to update the beliefs of the agent.

84 CHAPTER 5. IMPLEMENTATION

5.3.2 The reasoner

The reasoner infers new information from a set of rules and given informa-
tion. There are several implementations of reasoners available. But, when
we began our work, the criteria for selection of a reasoner for us was: (i) it
should be open source, preferably Java (for easy integration), (ii) it should
be semantic, i.e., able to handle data in RDF format and (iii) it should be
able to understand rules from a standard language such as Semantic Web
Rules Language (SWRL). So, with these criteria, we filtered out between
Pellet and FaCT++. We chose Pellet for its good documentation and avail-
ability as plugin in standard RDF managing tool, Protégé. Also, the Pellet
reasoner functions well rules in SWRL. Unfortunately, the creators of Pellet
have recently declared the latest version (Pellet 3.0) as closed source.

We use the Pellet reasoner for two main functions. First, inferring new
information from the existing set of rules and given facts/axioms. Sec-
ond, obtaining the explanations for the inferred information. The belief
validation behavior inputs these explanations to ATMS as justifications for
the inferred information. All the relations in the ontology are premises for
the ATMS except for the isTrueAbout relation. Based on the uncertainty
model, the uncertainty propagation of the information is included within the
rules. Hence, the inferred information from the reasoner is associated with
a corresponding value of uncertainty.

Example

If the reasoner applies the rule presented in section 5.3.3, WateringDevice-
Status, which is an individual of the class Information in the ontology,
is inferred. The Pellet reasoner API permits us to obtain the explanation
for the inferred information. For WateringDeviceStatus, the following ex-
planations are provided by the reasoner. As shown in the list of explanations
given below, the necessity of the inferred information WateringDeviceStatus

is u1, which has an uncertainty value of 0.7.

Individual: <http://www.semanticweb.org/lpkc4220/ontologies/2015/3/

untitled-ontology-35#WateringDeviceStatus>

-- DataPropertyAssertion : hasStatus(WateringDeviceStatus, false)

Explanations are:

- believes(A, RainyWeatherInfo)

- hasWateringDevice(A, DeviceA)

- hasUncertainty(RainyWeatherInfo, u1)

- hasUncertaintyValue(u1, 0.70)

- believes(A, RainyWeatherInfo) ∧ hasWateringDevice(A, ?

wateringDeviceOfA) ∧ hasUncertainty(RainyWeatherInfo,?unc) ∧
hasUncertaintyValue(?unc, ?alpha) →

hasDeviceStatus(?wateringDeviceOfA, WateringDeviceStatus) ∧
hasUncertainty(WateringDeviceStatus, ?uncDerived) ∧
hasUncertaintyValue(?uncDerived, ?alpha) ∧

5.3. THE AGENT 85

hasStatus(WateringDeviceStatus, false)

5.3.3 The rule base

The rule base stores the rules of an agent. Semantic Web Rules Language
(SWRL) is a standard put forward by a W3C committee for expressing rules
and logic for the semantic web. SWRL is XML-based and is not human
readable. We need a software that can parse, code and encode a human
readable rule into XML. We created SWRL rules within the ontology using
Protégé which provides a prolog-like human-readable input interface and
converts it to SWRL compatible XML. The XML encoded rules are stored
within the ontology itself. The Pellet reasoner is able to pick rules from the
ontology. An example of one such rule in the rule base of A in the intelligent
community example is given below. The rule represents the fact that if the
agent A believes an ”RainyWeather” information with an uncertainty, it can
derive the fact that it needs to switch off its watering device with the same
uncertainty. Here, the terms that precede with a question mark represent
a variable, e.g.: ?wateringDeviceOfA is a variable that may be replaced
with a real instance from the ontology by the reasoner. Also, we notice that
the rule has a new relation hasDeviceStatus. It relates a watering device
type of object to the status it may have. This is specific to the domain
of Intelligent community application and hence it does not appear in the
generic ontology explained earlier.

believes(A, RainyWeatherInfo) ∧
hasWateringDevice(A, ?wateringDeviceOfA) ∧
hasUncertainty(RainyWeatherInfo, ?unc) ∧
hasUncertaintyValue(?unc, ?alpha) →
hasDeviceStatus(?wateringDeviceOfA, WateringDeviceStatus) ∧
hasUncertainty(WateringDeviceStatus, ?uncDerived) ∧
hasUncertaintyValue(?uncDerived, ?alpha) ∧
hasStatus(WateringDeviceStatus, false)

5.3.4 The ATMS

As we explained in section 3.4, the ATMS serves to maintain a consistent set
of beliefs for the agent and also obtain explanations for why a data node is
true or false. The ATMS we used in our implementation was developed from
scratch in Java. Though numerous implementations of DeKleer’s ATMS
exist in LISP, to the best of our knowledge, none was available in Java. We
developed this ATMS in Java in order to remain consistent with a single
programming language for the entire project. The implementation is based
on DeKleer’s paper [DK86]. The key function of ATMS is to maintain
a consistent set of labels for its different nodes. An true information is
represent by a node that is called a premise. It is represented by a label with

86 CHAPTER 5. IMPLEMENTATION

empty set {{}} meaning it can be derived by itself and does not depend on
any assumption(s). A non-empty label represents the environments that can
derive the node. E.g., a node with the label {{Rain, DrySoil}, {NoInfo}}
signifies that it is derivable under the condition Rain ∧ DrySoil or NoInfo.
When a new data is inserted into the ATMS, the weave and propagate

algorithms from [DK86], ensure that the labels of all the nodes are updated
into order to maintain the logical properties like consistency, soundness,
minimality and completeness. The various important terminologies used in
the ATMS are described in section 3.4.1.

We added the ATMS implementation to each of the agents in of the
distributed system for maintenance of each of the agents. A class diagram
of the implementation of the ATMS is shown in figure 5.4. As shown in the
figure, the ATMS API consists of six main Java classes that are described
below. The getters and setters have obvious meanings of getting and setting
an item and hence have been avoided.

1. ATMS: It contains all the functions pertaining to declaring the Justifi-
cation(s), Contradiction(s) in the system. The class comprises of
lists of TMSNode(s), Justification(s), Assumption(s), Contradic-
tion(s). All of them are indexed, so that each of their new item can
be referred by a counter value. Apart from these lists, it also contains
two hashtables envTable and nogoodTable. They store environments
and nogood environments respectively based on their numbers, i.e., an
environment with two assumptions is located in list of the hashtable
with a key “2”.

2. Justification: A Justification defines how a TMSNode can be de-
rived from other TMSNode(s). It consists of three parts: (i) a list of
antecedent TMSNode(s), an Informant and a consequent TMSNode.

3. Environment: In ATMS terms, an environment is a conjunction of
assumptions. The Environment class implements this notion and con-
tains a list of assumptions. A NoGOOD or an inconsistent environ-
ment is a special kind of environment that derives falsity.

4. Contradiction: A Contradiction represents an inconsistent TMSNode.
Upon discovery of a contradiction, the ATMS marks all environments
containing this contradiction and the algorithms (weave and propagate)
are rerun to obtain minimal consistent environments and reconstruct
the labels of various TMSNode.

5. TMSNode: A TMSNode is the basic element of the ATMS. It encapsulates
the information of a domain. The information is stored as a String

variable. An Assumption is a special kind of TMSNode.

6. Informant: This is a description about how a TMSNode is derived from
other TMSNode(s). We use a String variable to represent it.

5.4. A WORKING EXAMPLE 87

5.4 A working example

In this section, we explain the functioning of the agents with a working
example. We take the same example described earlier in the chapter and
explore how the belief base and the ATMS are updated from A’s perspective.
We assume that there are two interactions that occur in sequence: (i) A
inquires the weather station (say M1) about weather condition and receives
a response from it. (ii) A asks B about the soil and the weather information
and receives information from it. We show the contents of the belief base
and the ATMS at the initial state and after each with the weather provider
M1 and the neighboring home B. They are shown in the tables 5.1 and
5.2 respectively. The rules applied during each step, are mentioned in the
lower row of the corresponding table. The contents shown in green indicate
that they were created as a result of the information originating from an
external source, and those shown in blue specify that they were inferred by
the reasoner out of the available information and the rules in the rule base.

In the initial state, the ATMS is empty as no reasoning process has oc-
curred. As shown in the table, the belief base consists of a number of triples.
We assume that the home A has some initial values of trust for homes B
and the weather provider M1 ; they are: M1-weather=0.8, B-soil=0.85, B-
weather=0.55. These values are in fact, obtained by applying the trust
model to the trust table. The isTrueAbout relation is an ATMS assump-
tion, as we are uncertain of its truth. The numbers alongside each of the
assumptions shown in red, are the trust values of the respective sources of the
assumptions. Home A has a programmatically controllable watering device
denoted by WateringDeviceOfA. All these statements are represented by
the triples: isTrueAbout(M1, Weather), isTrueAbout(B, Weather), isTrue-
About(B, SoilInfo) and hasWateringDevice(A, WateringDeviceOfA) respec-
tively. We use Eigen Trust model and Possibility theory for management of
the trust and the uncertainty in this example. We obtain the values from
the trust table applying the Eigen Trust algorithm, and as explained in the
section 4.6, we assume this to be equal to the necessity of the assumption
for the possibilistic model of uncertainty propagation.

After communication with the weather provider M1, we assume that the
home A receives the information “It will rain”. It is encoded into a triple
as says(M1, RainyWeather). The MessageHandlingBehavior then fires the
reasoner, which then checks if any of the rules in the rule base are applicable.
In this case, the rules R2 and R3 are applied. As a result, home A infers that
it will rain and it needs to stop the watering device. This is represented by
the triples believes(A, RainyWeather) and hasStatus(WateringDeviceOfA,
false). The inferred triples and their explanations (how the triples were
inferred) are inserted into the ATMS as TMSNodes and their Justifications
respectively. The ATMS contains “M1 isTrueAbout Weather” in ellipse
indicating that it is an assumption; the others in rectangle specify that they

88 CHAPTER 5. IMPLEMENTATION

Figure 5.4: ATMS class diagram.

5.4. A WORKING EXAMPLE 89

are premises. The relation isTrueAbout is an assumption as we are not
certain about the truthfulness of the source. The necessity associated with
the inferred triples is obtained by possibilistic resolution as described in the
axiom 4 of the section 4.4.1.

For an ideal “Intelligent Community” type system, we assume that there
is a “service registrar” type of agent in the system. We make two assump-
tions about this agent: (i) It discovers new homes and the types of ser-
vices they can offer (ii) It can rank and recommend the querying agent,
the neighbors based on their global trust values for their services and their
separation (distance). We assume that the recommended agent for home
A, in this example, is home B. So, in the next step, the home A inquires
home B for soil and weather conditions. It receives DrySoil and NoRain in-
formation from B and hence it infers believes(A, DrySoil), believes(A,
NoRainyWeather), hasStatus(WateringDeviceOfA, true) with necessities
0.85, 0.55 and 0.55 respectively using the possibilistic resolution. The algo-
rithm of the ATMS yields two environments that are NOGOOD or incon-
sistent. They are: {isTrueAbout(B, Weather), isTrueAbout(M1, Weather)}
and {isTrueAbout(B, Weather), isTrueAbout(B,SoilInfo),
isTrueAbout(M1,Weather)}. This suggests that the agent has a conflict in
its knowledge base.

The conflicting decisions proposed by the system are to switch on and
to switch off the watering device which are represented by
hasStatus(WateringDeviceOfA, true) and hasStatus(WateringDeviceOfA, false).
In the application, we propose the conflicting actions: Watering Device ON
and Watering device OFF, with their corresponding certainty values to the
user and ask for a decision to be taken. In domains, where we need to resolve
the conflict and provide a single proposition, we program the agent such that
it removes the triple with the least necessity, which signifies removal of the
least certain of all assumptions we had initially. For the example above, it
would be the removal of the triple isTrueAbout(B, Weather) as it has the
least necessity associated with it, 0.55. The ATMS is reinitialized with the
other assumptions and premises, and a reduced set of decisions and higher
necessity values are obtained. This is continued till we have a single and the
most certain decision to propose.

The update of trust depends upon the validation step, i.e., the response
of the user for the proposed set of decisions. For example, above the agent
proposed the user two decisions: Watering device ON and Watering de-
vice OFF with necessities 0.55 and 0.8 respectively. If the user chooses to
go with the more certain decision and switches off the device, the trust of
the sources of the assumptions of the label of hasStatus(WateringDeviceA,
false) is incremented. Here, the label is M1 isTrueAbout Weather and it has
a single source M1. Hence, the result is increment of the trust of M1 for
weather. Similarly, the sources of the label of hasStatus(WateringDeviceA,

90 CHAPTER 5. IMPLEMENTATION

true) is decremented as it is against the decision taken by the user. The label
of hasStatus(WateringDeviceA, true) is B isTrueAbout SoilInfo, B isTrue-
About Weather. Here, the source of the assumptions is home B, and there
are two assumptions. As explained in section 4.8, we cannot distinguish
which of the two assumptions is false. Hence, we ignore decrementing the
trust levels of bad sources in this case.

5.4. A WORKING EXAMPLE 91

Table 5.1: The initial and after communication with M1 states of the belief
base and the ATMS of home A

State HomeA

Initial

Belief base
isTrueAbout(M1, Weather) 0.8

isTrueAbout(B, Weather) 0.55

isTrueAbout(B, SoilInfo) 0.85

hasWateringDevice(A, WateringDeviceOfA)

ATMS: Empty

After communi-
cation with the
weather infor-
mation provider
M1 for weather
forecast input

Belief base
isTrueAbout(M1, Weather) 0.8

isTrueAbout(B, Weather) 0.55

isTrueAbout(B, SoilInfo) 0.85

hasWateringDevice(A, WateringDeviceOfA)

says(M1, RainyWeather)

believes(A, RainyWeather) 0.8

hasStatus(WateringDeviceOfA, false) 0.8

ATMS

Rules applied
R2: hasValue(?informationtype, ?information), isTrueAbout(?source, ?informationtype),

says(?source, ?information) ⇒ believes(A, ?information)

R3: believes(A, RainyWeather), hasWateringDevice(A, ?wateringDeviceOfA)

⇒ hasStatus(?wateringDeviceOfA, false)

92 CHAPTER 5. IMPLEMENTATION

Table 5.2: The state of the belief base and the ATMS of home A after
communication with the neighbor B for weather and soil information.

HomeA

Belief base
isTrueAbout(M1, Weather) 0.8

isTrueAbout(B, Weather) 0.55

isTrueAbout(B, SoilInfo) 0.85

hasWateringDevice(A, WateringDeviceOfA) 0.8

says(M1, RainyWeather)

believes(A, RainyWeather) 0.8

hasStatus(WateringDeviceOfA, false)

says(B, DrySoil)

says(B, NoRain)

believes(A, DrySoil) 0.85

believes(A, NoRainyWeather) 0.55

hasStatus(WateringDeviceOfA, true) 0.55

ATMS

Rules applied
R1: believes(A, DrySoil), believes(A, NoRainyWeather),

hasWateringDevice(A, ?wateringDeviceOfA) ⇒ hasStatus(?wateringDeviceOfA, true)

R2: hasValue(?informationtype, ?information), isTrueAbout(?source, ?informationtype),

says(?source, ?information) ⇒ believes(A, ?information)

R3: believes(A, RainyWeather), hasWateringDevice(A, ?wateringDeviceOfA)

⇒ hasStatus(?wateringDeviceOfA, false)
Contradiction rules
R4: hasStatus(?wateringDeviceOfA, false), hasStatus(?wateringDeviceOfA, true) ⇒ false

R5: believes(A, RainyWeather), believes(A, NoRainyWeather) ⇒ false

Chapter 6

Applications

In this chapter, we illustrate the proposed theory in three application do-
mains. The first was is called the Intelligent Community that we describe in
detail in section 6.1. The second called the Smart City Garbage Collection
is presented in the section 6.2. The third is an extension of the work to a
scientific project called the FIWARE. It is presented in the section 6.3. For
each of the application domains we perform a set of experiments. We ex-
plain them in detail in the following sections. The third application domain
is an extension to an existing project called FIWARE as a generic trust and
uncertainty management (TUM) module. We explain this in detail in the
section 6.3

6.1 Intelligent Community

In this section, we present our experiments with regards to the Intelligent
Community use case, illustrated in 2.4.1. As described in the use case, we
have a number of a number of homes in the community that need to modeled
as agents. These homes are have different sensors for the information on the
weather conditions and the soil humidity. The use case presents two types of
information sources for a home: (i) it’s neighboring homes, (ii) the weather
information provider. It can query other homes in the neighborhood for soil
and weather information and a weather information provider for weather
information to predict the chances of rain. Based on inputs from sources a
home needs to decide whether to switch on or switch off its garden watering
system with a degree of certainty. The status of garden watering device is
ON or OFF depending upon the Rain and Soil conditions as illustrated in
the truth table below. These rules form the rule base of the various homes.

∧ Rain No Rain

Dry Soil OFF ON
Wet Soil OFF OFF

93

94 CHAPTER 6. APPLICATIONS

We obtain data for the experimentation of the use case from simulation. We
describe this in detail in the subsection 6.1.1.

6.1.1 Simulation setup

To experiment with our system explained in 2.4, we simulate the use case
by varying different parameters. Basically, the simulation represents the
generation of transactions amongst the different agents. In order to do
an extensive experimentation we define the following parameters for our
simulations.

1. The total number of agents in the system, m.

2. The set of possible query types amongst the different agents, α. E.g.,
α ∈ {Soil,Weather}

3. The agents, their corresponding services and the level of trust for the
services. E.g., {HomeB : Soil, 0.85}, {HomeB : Weather, 0.55} and
{M1 : Weather, 0.8}. The value 0.85 of trust for HomeA for Weather
service indicates that out of 100 transactions, it would provide 85
correct values. This is how the script generates different transactions.

4. The set of possible responses by the replying agent, Res for a ser-
vice. E.g., Res ∈ {DrySoil,WetSoil} for α = Soil; and Res ∈
{Rain,NoRain} for α = Weather.

5. The order in which the transactions occur. E.g., if HomeA interacts
with HomeB and M1, the interaction order may be HomeA−HomeB
and HomeA −M1 or the contrary. This parameter defines whether
the order in which the interactions occur should be fixed or random.
As we explained in 5.4, we assume that an agent knows which other
agent to query and the sequences.

6. The total number of transactions amongst the agents.

7. The trust model for update of the trust of the sources and the un-
certainty model for the propagation of uncertainty in the incoming
information to the uncertainty in the higher level derivations. For the
Intelligent Community work, we mostly worked with the Eigen Trust
and Possibility theory.

6.1.2 Tests

We need to experiment with the use case in the following aspects that were
our success criteria at the beginning of the thesis.

6.1. INTELLIGENT COMMUNITY 95

Table 6.1: Experimentation trust update

Source
Information

type
Trust Generation of data

B Soil 0.85
85 % of data is true

and 15 % of value false

Weather 0.55
55 % of data is true

and 45 % of value false

C Soil 0.60
60 % of data is true

and 40 % of value false

Weather 0.70
70 % of data is true

and 30 % of value false

1. The data must comply with our hypothesis that the uncertainty in the
information is proportional to the trust of the source that furnished it.

2. The implementation should be simple and generic.

3. It must be scalable in terms of increase in the number of entities in
the system.

4. The trust and uncertainty computation algorithms must be decentral-
ized from an entity to the other.

In order to comply with our hypothesis, we set the trust values of differ-
ent sources of information and generate a number of transactions amongst
the homes by simulation. We change the trust values (either increase or de-
crease) of the sources and generate another set of transactions. The system
infers decisions based on the simulated transactions and domain rules, and
the corresponding uncertainties. Intuitively, the case where the trust values
of the sources are higher, the inferred decision must be more certain than
the other case where the trust values are lower.

For the verification of simplicity and genericity of our approach, we
compare it with other existing and other solutions for such a domain.

For verifying the scalability of the approach, we increment the number
of agents in the experiment and also fix the various interactions and their
sequence. Then, we verify if the approach is robust enough to handle these
changes.

To verify, the fourth point that is listed above and deals with distribution
of algorithms, we verify if distributed trust management algorithms such as
the Eigen trust can be fitted within the different entities of the distributed
system or not.

96 CHAPTER 6. APPLICATIONS

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

T
ru

st

Number of iterations

B-Weather
C-Weather

C-Soil
B-Soil

(a) Trust evolution

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
n
ce

rt
ai

n
ty

Number of iterations

(b) Uncertainty evolution

Figure 6.1: Evolution of trust on two sources B and C, as computed by A,
and uncertainty of the decision taken for the corresponding iterations

6.1.3 Experimentation

In this subsection, we present the different experiments that we carried out
to verify the criteria mentioned above, and discuss their results. The first
experiment that we present below is pertaining to the validation of our
hypothesis.

Verifying hypothesis

For this experiment, we consider an Intelligent Community with three homes
A, B and C. As all homes are the same, validating our hypothesis from an
agent is sufficient. So, we do this from the point of view of home A. We
consider that A has a garden and is fitted with a watering device. It needs
information about soil and weather conditions and hence, queries B and C
for soil and weather types of information. We assume that B and C generate
true values of soil and weather information with 85% and 55% and, 60% and
70% respectively, as illustrated in the table 6.1.

The rules of deriving the conclusion to whether to switch on or switch off
the watering for home A are shown below. Here, Watering and NoWatering

represent the conditions to switch off and switch on of the device respec-
tively. Rain, No Rain represent the two possible cases of the weather and
DrySoil, WetSoil represent the possible cases for soil conditions.

Rain → NoWatering

No rain ∧ DrySoil → Watering

WetSoil → NoWatering

We fix the sequence of interactions as: B-Weather, B-Soil, C-Weather,

6.1. INTELLIGENT COMMUNITY 97

Table 6.2: Statistics after 100 iterations

% of total
decisions

% of decisions
suggested without conflict

% of decisions
suggested with conflict

Watering 61.00% (61) 26.00% (16) 73.00% (45)

NoWatering 39.00% (39) 46.00%, (18) 53.00% (21)

C-Soil; where B-Weather represents the interaction between A and B re-
garding the Weather information and so on. Then, we generate 100 trans-
actions for each of interactions based on these parameters. A transaction,
as explained in 4.3.1, contains the querying agent (here A), the replying
agent (either B or C) and the response with respect to the weather or soil.
We further fix the true values of the soil and weather conditions to be Dry

andNoRain so that the decision proposed by the agent should always be
Watering or “switch ON”. As the responses are based on the assumed trust
of the sources (table 6.1) and that we know the true value of the final out-
come, we can compute the appropriate rating +1, -1 depending on whether
the response was the same as the true value or not. Thus, the simulation
step yields a set of transactions of A with B and C.

In the experiment, we assume that at the end of each of the four interac-
tions of the above sequence, the agent A validates the information, in order
to compute the new values of trust for B and C. To start the experiment,
we consider that all three of the homes have no pre-defined trust associated
with them. So, initial trust values of B and C are equal to 0. With these
parameters, we instantiate our MAS to use Eigen trust model and Possi-
bilistic model for the propagation of uncertainty.

Results:

The summary of the transactions is shown in the table 6.2. The results
of the experiment confirm the fact that most of the time the system predicts
the correct decision (61%). Of the remaining 39% of the time when there
is a wrong decision predicted, 18% of the time both the sources provide a
wrong information. In conflict cases, where the agents provide contradictory
information, a correct decision is taken almost twice when compared to the
incorrect ones (45 compared to 21).

The trust evolution plot for the two agents B and C, from A’s perspective
is shown in figure 6.1.(a). It is evident from the plot that the trust values
follow Eigen trust, i.e., at any iteration point the sum of the trust values for
all other sources for a specific information type is equal to 1. An iteration is a
completion of the sequence of exchanges between A and B, and then between
A and C, as we described in 6.1.1 above. In the experiment, we generated
transactions with initial trust values of B and C for soil information equal

98 CHAPTER 6. APPLICATIONS

Table 6.3: Statistics after 100 iterations for almost 50% accuracy of all
sources

Percentage of total
suggested decisions

Percentage of decisions
suggested without conflict

Percentage of decisions
suggested with conflict

Watering 30.00% (30) 26.00% (8) 73.00% (22)

NoWatering 70.00% (70) 62.00%, (44) 37.00% (26)

to 85% and 60% respectively. The trust of A for BSoil and CSoil, initially
is 0 as indicated by the pink and blue lines in the figure, and as we had
not set any trust for the sources. Thereafter, as B is assumed more reliable
than C for soil, it provides the true values more often and in accordance
with our intuitive opinion the trust(BSoil) > trust(CSoil). Also their final
values after 100 iterations are 0.78 and 0.22, which are in accordance with
Eigen Trust where the trust measure is computed as (+85-15)/(70+20) =
7/9 and (60-40)/(70+20), respectively. We have the same result for the
weather information type too; trust(BWeather) > trust(CWeather).

The figure 6.1.(b) presents the uncertainty value of the most certain
of the decisions suggested for the agent A, at the end of each iteration.
Since, our rules were based on Possibility theory and that the measures
used for uncertainty were in terms of Necessity, we can obtain an estimate
for uncertainty as;

Uncertainty = 1−N (6.1)

where, N is the necessity of maximum of the necessities of all the derived
decisions. As seen in the figure, for the initial stages when the trust of the
sources is based only on a few interactions, the uncertainty hovers around
0.5. Thereafter, as the trust of the sources increases after a number of
interactions, the uncertainty is consistently below 0.5, between 0.2 and 0.3.
This supports our hypothesis that information from trustworthy sources
leads to less uncertainty in the derived conclusions.

To further prove the hypothesis, we take the trust for the services illus-
trated in 6.1 to be: B −Rain=0.5001, B − Soil=0.5002, C −Rain=0.5003
and C − Soil=0.5004. So, here we effectively consider all the sources to be
furnishing the true values with almost 50% accuracy. We use a slight differ-
ence, as Possibilistic logic uses min/max logic for computation of necessity
values, and hence it poses a problem. The statistics of the generated trans-
actions are shown in the table 6.3. We see that the percentage of correct
decisions Watering proposed is 30%. In fact, without any experiments, it
is obvious that the chances of correct decision ‘ON’ is 1 in 4 = 25%, given
the fact that it can only be deduced from DrySoil and NoRain. This shows
without a proper trust management of the sources, an agent will suffer more
than in the case where the agent has it.

6.1. INTELLIGENT COMMUNITY 99

Simplicity and genericity

With our approach, we envisioned the distributed system as a Multi Agent
System. This makes our implementation modular and simpler as the prob-
lem of developing a global trust view of the system can be difficult and will
suffer the same problem as a centralized trust management paradigm (e.g.,
single point of failure, bottleneck, performance etc.). Our implementation
is mostly modular. We separated the distributed entities into agents; their
knowledge base is identified by a common ontology with local beliefs; the
rules are written in a standard for semantic web (SWRL) and they contain
a third party reasoner (Pellet) to infer new information. An ATMS was
first developed and tested as an independent component and then hooked
to each of the agents to maintain a consistent local belief base. We assumed
the trust of the entities to be managed in terms of ratings. We created a
generic abstract class TrustModel declaring all abstract methods needed for
computation of trust of sources based on ratings. EigenTrust is its subclass
that we implemented. It uses the ratings of the transactions to compute
the trust value of the sources. For any other model of trust, we need to
implement the abstract methods in its proper subclass. The uncertainty
propagation is restricted to the ontology and the rules. For different models
of uncertainty, we need different resolution mechanism introduced into the
rules. We implemented Possibility theory resolution clause for this use case.
Thus, the implementation is generic. To further strengthen this point, we
extend the implementation to include newer improved models of trust and
uncertainty for an another application domain in section 6.2.

Scalability

Scalability is the ease with which the implementation can handle the growth
of the number of entities and the exchange of messages in the MAS. To
measure the scalability of the implementation, we study two aspects.

1. The memory consumption of a single JADE platform as a whole, as
we increase the number of pairs of agents (querying and replying) in
the system, using the Eigen trust model and Possibility uncertainty
theory.

2. For each pair of agents: a querying agent and a replying agent, the
variation of the average round trip time for the querying agent to send
a message to the replying agent and back and then then computation
of trust of the source and uncertainty in the information. We assume
the true value of the query is available to the querying agent as soon
as it receives response from the replying agent.

The graph of the consumption of memory for different numbers of pairs of
querying and replying agents is shown in the figure 6.2. The experiment was

100 CHAPTER 6. APPLICATIONS

100
200
300
400
500
600
700
800
900

1000
1100

0 200 400 600 800 1000

M
em

or
y

in
M

B

Number of pairs

Figure 6.2: Memory usage in a single container

performed on a single JADE container on a DELL Latitude E6420 laptop
with Intel c©Core(TM) i5-2520M CPU@2.50GHz, 4096 MB of ram, running
64-bit Ubuntu 12.04.5 LTS operating system, java version ”1.8.0 45”, Java
HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode) and JADE
version 4.3.0. We started with a pair of querying and replying agents and
kept the querying and inferring actions of in a CyclicBehavior. After each
validation, we cleared the belief base and the ATMS contents. The memory
footprint of the JADE environment was found to be 126.98 MB. This value
increased to 1048.58 MB for 768 pairs of querying and replying agents. The
functioning of the querying agent was found as desired. This demonstrates
that our agents that consist of several components are stable and the system
is scalable in terms of memory. Given the fact that JADE allows multiple
containers and multiple hosts, it can be assumed that our implementation
can scale horizontally as well.

Decentralization of trust and uncertainty algorithms

One of our primary goals of the work was to decentralize the trust and
uncertainty management algorithms in order to be consistent with the needs
of the Intelligent Community type of domains. Hence, our implementation
included trust and uncertainty management components in each entity of
the distributed system. As such, we were able to implement the Eigen trust
model in a decentralized manner for each of the agents of the system. The
management of uncertainty in the information, too is specific to agents.

6.2. SMART CITY GARBAGE COLLECTION 101

6.1.4 Discussion on the trust and the uncertainty models

As obvious from the experimentation, the Eigen trust is simple, scales well
and provides a relative measure for the computation of local trust. However,
it does not fare well in certain aspects. First, Eigen trust is relative, and it
fails to distinguish between a source which never provided an information
and a source that has equal number of good and bad transactions. Also,
it does not consider transactions with respect to time. A very good source
of information may behave as malicious one for a short period, but still the
algorithm considers it as trustworthy because of its past achievements, and
vice versa.

We considered Possibility theory for information uncertainty propaga-
tion as it is most suited for domains where the information is plagued by
incompleteness. The max/min arithmetic of Possibility theory is simple yet
powerful. However, we found that in certain situations, this too is inconclu-
sive. For example, a decision has an label {{A1, A2}, {A3, A4}}, where A1,
A2, A3 and A4 are assumptions. Even if we know the necessities of all them,
we cannot reason about the necessity of the node as it is not sure which
environment derived the node.

6.2 Smart City Garbage Collection

This section describes the experimentation and verification steps done for
Smart City Garbage collection use case illustrated in 2.4.2. As illustrated,
our goal in the work is to apply the trust and uncertainty management
models to predict and help in creating an optimal itinerary for garbage
collection, thereby optimizing the usage of manpower and resources.

The use case presents an ideal scenario, encompassing the use of citizens
and sensors as the sources of information. However, the real world data
that we obtained (from Odense Renovations Selskab, The Odense Waste
Collection Company, Denmark) as a part of application of our trust and
uncertainty management models and algorithms is dissimilar in a handful of
ways to the use case that we portrayed. We first explain, the data set that
we obtained from the garbage company in section 6.2.1 and then present the
dissimilarities and enhancements needed to the data set in the section 6.2.2
respectively.

6.2.1 Analysis of the Data set

The data set contains an elaborate modeling of different aspects of garbage
collection for the city of Odense. The garbage collection company of Odense,
uses garbage trucks called Units for collecting garbage present in different
parts of the city. The citizens generally store the garbage in containers
called “bins”, present either outside their premises or in some cases within

102 CHAPTER 6. APPLICATIONS

Figure 6.3: The Smart city garbage collection data model (Source: A2I
Systems)

the households. The bins are of different types, e.g., some bins store only
paper while others store everything. The company deploys drivers and other
helpers for collecting the garbage from the bins. They perform different
tasks such as emptying the containers, verifying the conditions of the bins,
dredging the bins etc. Depending upon the tasks that they perform, they
provide a remark for the bin that is stored in the system in real time. The
garbage is then carried to the disposal site for disposing off. The itinerary
for garbage collection found in the data set seemed static, i.e., there were
garbage collection itinerary every week or every fortnight, or in some cases
every month.

The size of the entire data set in zip format is about 25 GB. Of the
different aspects of garbage data present in the data set, we need to model
the possible sources of information, the information about garbage in a par-
ticular location informed by sources, the rules that can be applied to infer
higher level information. Hence, we only require a subset of the entire data
set for the application of our models. We present the necessary subset of
the data set in the figure 6.3. A small description of the various tables in
the figure above are explained below.

1. Driver: This table stores the data pertaining to different drivers, their
ids and the organizational unit that they belong to.

2. DriverHistory: This table stores different events related to a driver,
such as: when did a particular driver sign into the system or signed
off the system.

3. Unit: This table represents a means of transport used for collection
the collection of garbage.

6.2. SMART CITY GARBAGE COLLECTION 103

4. Bin: This table stores the information regarding the garbage containers
present in the city. The type of bin and its location are stored in two
other tables BinType and BinLocation respectively.

5. BinRemark: This table stores the remarks given by drivers about a
bin. The bin remarks can be of several types that are stored in the
table BinRemarkType.

6.2.2 Dissimilarities of the data set to our initial use case

In this section, we present the dissimilarities of the available data set with
respect to our idealized use case in section 2.4.2. We conceived the idealized
use case with the help of on going works in the project FIWARE and discus-
sions with other research teams in Orange Labs working in diverse domains.
We later came in contact with Odense Garbage Management (OGM) com-
pany, who were kind enough to share their data set with us. Though the
basic intent of garbage collection in the use case conceived by us and that
of OGM are same, there exist a handful of dissimilarities. They are listed
below.

1. The idealized use case assumes the presence of sensors in the garbage
containers and the citizens of the city acting as possible sources of
information. However, the city of Odense has not yet implemented
such mechanisms. The only sources of information in the data set are
the drivers, who provide remarks about the conditions of the bins after
collection of garbage.

2. In our use case, we hypothesize that the values of uncertainty in the
information and the trust values of the various sources will help in
planning an ideal itinerary for garbage collection. But, with the real
world data set, we have the data of the garbage collected in the city
in the past year. Hence, we can only contemplate on computing trust
values of sources from the available data set and assigning uncertainty
measures for different high level information that can be derived from
there. But, we have no method to confirm it ourselves in true sense.

6.2.3 Objectives of this application

We have some specific objectives with regards to this work in addition to
those that we expressed in the beginning of the thesis.

1. Propose a trust model that fits the data of the data set.

2. Analyze different remarks about a bin, and based on the remarks,
reason a possible course of action to be taken. In other words, discover
the rules for the domain.

104 CHAPTER 6. APPLICATIONS

id unit driverLogin timestamp status

35144 11015 PEP 1342501038206 LOGIN

35145 11120 SBF 1342501076179 LOGIN

35148 11003 BOP 1342501249214 LOGOUT

Table 6.4: A snippet of DriverHistory table

3. Apply our approach, i.e., assigning uncertainty to a remark based on
the trust of the driver who provided the remark, and then infer higher
level information with corresponding uncertainty values.

4. Analyze the approach against the initial success criteria.

6.2.4 Enhancements and assumptions in the data set

The database schema in the data set seems to have been built with the ease
of storing the garbage collection information. In order to use the data set,
we needed to make the following enhancements and assumptions.

1. It is not evident from the data set about who the driver of a particular
unit is at a particular instance of time in the data set as illustrated
in the table 6.4. The table stores when the driver has logged into the
system and when the driver has logged out of the system and what
Units they were driving. So, to know about who the driver of a unit
was at an instance of time, we need to search for the driver who logged
in just prior to and just after, this time instance with the particular
unit. Further, the table was found to contain quite a few occurrences
of the cases where driver logged in, but never logged out and vice versa.
All such instances were cleaned from the table with the assumption
that they are faulty.

We need this information because it is a part of “A source says some
information about something at some time instance” statement used
in our approach. The remarks about the bins (BinRemark), on the
other hand, are related to the DriverHistory table via the Unit table
and the linking attributes are the unit name and the remark created
timestamp.

2. After analysis of the data, we found that the drivers leave a remark
about a bin after visiting and inspecting its location. Also, drivers
do this visit in a random manner: sometimes once in a week and
sometimes once in a couple of days and so on. This may be based on
calls from citizens of a particular locality. However, this information
is missing from the data set. Hence, to illustrate the fact that an
information can arrive from multiple sources, we ignore the time stamp

6.2. SMART CITY GARBAGE COLLECTION 105

Driver
Number of

remarks Trust

PEP 23 0.46

OVR 10 0.2

STA 5 0.1

LOP 12 0.24

Table 6.5: Trust computation based on number of remarks

in the information and take a block of one month period and assume
all remarks within this period for decision making. This way we have
multiple drivers visiting a bin location and providing different remarks,
thereby constituting multiple sources of information.

6.2.5 Simplified trust model

In our previous use case 6.1, we use Eigen trust as the trust model, as we have
different entities of the system that need to compute trust for themselves. In
Smart City Garbage Collection use case, however, we have a central admin-
istrative authority that is responsible for planning the itineraries of different
drivers and vehicles. The sources of information for this system are the
drivers who provide remarks about the various garbage bins. Furthermore,
there is no way of validating the remarks provided by the drivers. Hence,
the previous trust model does not fit this use case. As a result, we need
to model trust with respect to some other parameter available in the data.
From the analysis of the available data, we found that a possible method to
quantify trust of the drivers, who are the only information sources in the use
case, is the number of remarks that were provided by a driver, i.e., the more
the number of remarks, the more trustworthy he/she is. This is justifiable
as all drivers are known to the garbage company beforehand and the more
they provide comments means that they are more used to providing remarks
than others, and hence more trustworthy. An example of this is shown in the
table 6.5. We compute trust as a weighted sum of the number of remarks
provided by the driver. If we have n drivers in our data set the trust of ith

driver can be computed as:

Ti =

∑
Driver=i

remarks

n−1∑
Driver=0

remarks

(6.2)

6.2.6 Uncertainty model

As discussed in our approach in 4.6, we assign uncertainty to an incoming
information based upon the trust levels of the provider of the information.

106 CHAPTER 6. APPLICATIONS

We then use rule based inferencing to obtain different conclusions. The prop-
agation of uncertainty from the lower level information (e.g. the incoming
information) to the higher level information (the conclusions) is done using
a model of uncertainty. In the Intelligent Community use case, we used Pos-
sibilistic model for uncertainty propagation. As we pointed out in 6.1.4, it is
inconclusive in cases where an ATMS node has two or more environments.
So, we chose Probabilistic model as it is a widely accepted theory. Other
motivation for the use of Probabilistic model for uncertainty propagation
in this case is that we know all the remarks and the conclusions that can
be derived from these remarks beforehand. Conditional probability, which
measures the probability of an event given some other event has occurred,
fits perfectly to such scenario.

For this use case, some of the higher levels of conclusions that can be
derived from the remarks of the drivers are illustrated in the figure 6.4. The
boxes at the bottom of the figure are the conclusions and the information
in the boxes above are the possible remarks of the drivers. E.g., remarks
like ”Defective container” and ”block for bin” indicate a bin missing event,
so we can infer that the bin needs a replacement of a new installation (Re-
place/Install new bin).

6.2.7 Experimentation

In this section, we explain the details of how we obtained the subset of the
real world data set for experimentation and what experiments we carried
out with the data set.

The data set is a Microsoft SQL Server based database and contains sev-
eral aspects of garbage collection of the city of Odense. We joined several
tables to obtain the related information: Who are the drivers that provided
remarks about different bins in the city?. There are around 2038415 remarks
about the different bins of the city from 2011-03-28 to 2015-01-14. As ex-
plained in section 6.2.4, we ideally need multiple sources of information for
an event in our problem description. However, as this is not available in
the data set, we assume that all remarks about a bin, available during a
period of time (say a month), were available to us at once. This way we
have multiple remarks about a bin, possibly from different drivers. Also, as
not all the bins are visited equally regularly, we do not have same number
of remarks for all bins. So, to make the test uniform, we consider those
bins that are visited most by the drivers. For the first experimentation, we
considered the top 10 bins that were visited most by the drivers and the cor-
responding remarks given for the bin during the visit. We found that there
were in total 1772 remarks of these bins and the corresponding numbers for
each of the remarks is shown in the table 6.6. The various conclusions that
can be inferred from the remarks and their corresponding numbers in the
data set are shown in the table 6.7. From the table, it can be seen that

6.2. SMART CITY GARBAGE COLLECTION 107

Bottle container
Not emptied

Wrong sorting
Not pickedup

Bin not put
forward

Additional
Not picked up

Additional waste
Not picked up

Replan a pickup

Defective Container

Block for
bin

Replace a bin

Dredged and
emptied

Container
put forward

Garbage collected

Figure 6.4: Some remarks and the conclusions that can be derived from
them

majority of remarks infer Replan, while a few others infer Replace Bin and
Garbage collected. Using this table and the probability theory explained
in 4.4.2, we obtain different conditional probabilities needed for obtaining
the probability of the conclusions. The computed values of the probabilities
are as shown below. We use these values to obtain the probabilities of the
conclusion using the equation 4.6.

P (NotPutForward | Replan) = 1

P (Thecontainersetforth | Replan) = 0

P (Defective | Replan) = 0

P (Dredged | Replan) = 0

P (Suspended | Replan) = 0

P (NotPutForward | Replace) = 0

P (TheContainersetforward | Replace) = 0

P (Defective | Replace) = 0.6

P (Dredged | Replace) = 0

P (Suspended | Replace) = 0.4

P (NotPutForward | GC) = 0

P (TheContainersetforward | GC) = 0.6

P (Defective | GC) = 0

P (Dredged | GC) = 0.4

P (Suspended | GC) = 0

If we consider a subset of the 1772 remarks for each iteration. Here, an
iteration is where a number of drivers would ideally provide the remarks
about a particular bin before the system can plan a itinerary. As the data

108 CHAPTER 6. APPLICATIONS

Remark Count

Not put forward 1762

The container set forth (the reason) 3

Defective container (triggers an exchange) 3

Exhumed and emptied 2

Suspended for container 2

Table 6.6: Remarks and their counts

Not put
forward

The container
set forward Defective

Dredged &
Emptied Suspended

Replan 1762 0 0 0 0

Replace Bin 0 0 3 0 2
Garbage
Collected 0 3 0 2 0

Table 6.7: Remarks and different inferences

does not seem to be compliant with this, we assume the subset. Let for
instance we consider ten remarks to form an iteration. Then, of the ten
remarks, we can have ten different or same conclusions. The conclusions
follow one of the three cases explained in 4.8 and we resolve the conflict by
taking those conclusions which are most certain. Based on this, the system
can plan an effective itinerary. The data set we presented here is skewed for
the fact that majority of the remarks for the bins are “Not put forward”.
Hence, for this case, most of the conclusions that is deduced is “Replan”.

In the next section, we present the verification of the experiments that
we performed here.

6.2.8 Verification of the use case

Like the verification of the Intelligent Community use case, we verify this
use case against in two points. Firstly, we present the validation of the hy-
pothesis in section 6.2.8 and validation if our success criteria in section 6.2.8.

Verification of the hypothesis

Our hypothesis that trustworthy sources provide more certain information
and vice versa cannot be verified in the given data set as we lack information
regarding whether the reported remark was found true or false. The data
set contains only the remarks about different bins by the drivers at different
instants of time. But it does not contain information whether the remarks
were later confirmed.

6.3. PROJECT FIWARE 109

Verification of success criteria

1. Simplicity and genericity: The extension of our proposed solution to fit
the Smart City Garbage Collection use case was: to develop a domain
specific ontology using the generic ontology, to define the subclasses
and instances of Information and InformationSource and to de-
clare the domain specific rules for inferring higher level information.
The extension involved creation of a trust model specific to the data
of the smart city, computing the various conditional probabilities of
conclusions given the remarks of the drivers and probabilistic rules to
propagate uncertainty. Though the trust and uncertainty models we
used where simple, we had to alter them compared to what we used
in the first application. This was to suit the application domain and
the nature of available data.

2. Scalability: The data set we used for the experimentation had 80 dis-
tinct information providers (drivers) who provided over 200,000 re-
marks about bins in different localities of the city. The conditional
probability values about the remarks leading to various conclusions
were computed beforehand and later used by the agents to compute
their certainties. For the given data set, the models were found to be
scalable.

3. Decentralization of trust algorithms: The Smart City garbage collec-
tion is distinct, in the sense, the objective of the use case is managing
trust of the remark providers by a central authority. As such we did
not need a decentralization here.

6.3 Project FIWARE

FIWARE3 is a European project (Project No. 285248) that comes under
the umbrella of Future Internet - Public Private Partnership (FI-PPP4).
The goal of the project is to build the Core Platform of the Future Internet.
The project is aimed at building modular components that are reusable in a
number of different projects. They are called the Generic Enablers (GEs).
This way, different projects can reuse the enablers to achieve the desired
qualities. The precise definition of a GE is below.

A functional building block of FIWARE. Any implementation of
a FIWARE GE is made up of a set of components which together
supports a concrete set of Functions and provides a concrete set
of APIs and interoperable interfaces that are in compliance with
open specifications published for that GE.

3https://www.fiware.org
4https://www.fi-ppp.eu

110 CHAPTER 6. APPLICATIONS

As we explained in the section 1, and as presented in the work [MBF+12],
management of trust and uncertainty is an essential need of various projects
under FIWARE. Hence, through this work, we intend to create a GE for
resolving the issues of management of trust and uncertainty.

6.3.1 Introduction

Context awareness is considered as a key technology within the IT industry,
for its potential to provide a significant competitive advantage to services
providers and to give substantial differentiation among existing services.
According to a Gartner Inc. report [Lap09], “Context-aware computing
today stands where search engines and the web did in 1990”.

In parallel to this, the interest of the scientific community in the context
aware computing domain has gained a lot of momentum, due to the fact
that with the advent of the Internet of Thing (IoT) era, terabytes of data
are bound to be produced daily by sensors and equipments.

Such data, when correctly interpreted can enrich the description of the
context, which in turn makes it possible for services and applications to
become context-aware, and finally to improve their efficiency in terms of
personalization, and simplicity of use.

However, inherently to the multiplicity of data sources, it becomes nec-
essary to evaluate the quality of data. This issue arises because some sources
could be unreliable or untruthful. This is particularly true in domains where
adversity exists. For example, in intelligence warfare where false informa-
tion might be distilled by enemies to create confusion. This is also true in
today economic life, where due to intense competition, incorrect information
or hoaxes could be anonymously broadcasted by third parties to discredit
competitors. In our IoT domain, different environment sensors might be
unequally reliable, simply because some might occasionally malfunction. In
such cases they might deliver measurements in which we have different level
of confidence. Thus, we need a mechanism to quantify the trustworthiness
of the sources and manage its evolution over time. For this reason, we have
extended a IoT context broker [RGMSE14], with specific components to
handle trust and uncertainty management.

6.3.2 Home mood Scenario

People do care about their home, where they spend more than half of their
lifetime [atu]. When they are away from home they are concerned by the
comfort and protection of their family who are still there or by keeping their
home safe from burglary and any natural disaster if the home is empty.
Homes takes a important place in people’s heart and people has strong af-
fective links with their homes. Recent studies have investigated the use
of social network media such as facebook, twitter to establish a privileged

6.3. PROJECT FIWARE 111

connection between people and their home, like they do for their friends.
Thus, homes could chat, tweet and send selfies to keep people reassured
about their home and its occupants find references. In our work, we in-
vestigate mechanisms and strategies to infer high level concepts such “the
home is empty”, “most people are sleeping”, “the home is being broken into”
from low level data such as “move detection”, “temperature” and any data
produced by home automation devices. We call these high level concepts
“moods”, because they synthesize both a general state of the home to which
people generally associate positive or negative emotions (such as “fear of
intrusion”, “satisfaction of a quiet and peaceful atmosphere”)

In this preliminary work we address the problem of inferring information
about presence in the room based on raw data produced by the homelive
sensors deployed in the room. More specifically, our Home friend tells us
about the number of people it hosts. The possible outcome are enumerated
as the following:

• nobody’s there

• there’s at least one person here

• there’s at least two persons here

This information is displayed on a virtual wall such as that of the status
area of a facebook page, or could be provided by the Home friend if we send
it a text message asking “is somebody’s in?”

In the following section, we introduce the FIWARE Linked Open Data
(FLOD) enabler and its extension for managing trust and uncertainty.

6.3.3 Approach and architecture

The task of inferring high level information from low level data has been
investigated in the field of Artificial Intelligence and is still today an active
research topic. Iconic instances of that problem solving task include diag-
nosis in the medical domain, where an disease has to be identified based on
some observed symptoms and image understanding, where a person has to
be identified from an still image, or an human activity has to be recognized
from a video sequence.

There are alternative approaches for designing solutions to this type or
problem solving task. To the one that is using neural networks (NN), and
its popular variant called “deep learning”, we have preferred a symbolic
approach where inferences are based on domain expertise rules that are
triggered by a dedicated rule engine. We have made this choice because the
NN approach requires a preliminary stage of supervised learning, which itself
requires a lot of sensor data to be collected, stored and properly formated
and manually labeled with the different interpretation classes to be inferred.

112 CHAPTER 6. APPLICATIONS

In our previous work we have developed a context broker enabler called
FLOD which is dedicated to collect context data from any data source and
publish it to any application that could use this context data for adapting
its behavior to the current context. One salient feature of FLOD is that it
models context information using RDF which makes it compliant to a W3C
standard and makes possible the use of domain ontologies that constrains
RDF primitives to denote instances of classes or relations defined in the
ontologies. This additional feature ensures FLOD semantic interoperability
with its potential client applications and other Linked Open Data sources.
Semantic interoperability means that context data provided by FLOD to the
client application will be understood and correctly interpreted by the client
without requiring the client to agree with the data source about what the
data means, how the data is represented and structured, and where to find
the bits of interest to the client. Conversely, the data source will be able to
produce its data without anticipating or conjecturing ways this data will be
interpreted and used by the prospective client or data consumer.

Semantic Context Management Service (CMS) [RPS+07]. This has been
adapted to the IoT domain [FIW].

Figure 6.5: FLOD IoT Semantic Context Broker

As prescribed by cognitive engineering methodologies and good practices
in the domain, we have looked up existing ontologies that cover our universe
of discourse, i.e. the scope of concepts and issues that we need to model
in our application. We ended up using the [IoT] and [Unc] ontologies to
model IoT devices and data measurements and to model data uncertainty
management. We didn’t find any ontology for modeling trust management.
For this reason we developed our own trust ontology. In the figure 5.3,

6.3. PROJECT FIWARE 113

we depict the main classes from these three ontologies together with their
interrelationships.

In the next section, we illustrate how our extended enabler has been used
to implement a system which solves the scenario described in section 6.3.2.

6.3.4 Scenario implementation and experimentation

In this section, we describe the system in terms of functionality and software
architecture and main components. The architecture of the FLOD context
broker and our generic enabler is shown in the figure 6.5. It depicts the
implementation specific details of the enabler. The events from sensors of
a deployed scene are stored in a RDF triple store database. The data and
the sources of data are represented in terms of classes and individuals of
the ontology that we explained in 5.2. The enabler runs on top of JVM.
The trust and uncertainty management components (UMgmt and TMgmt),
and the ATMS are developed in Java. The virt-driver enables loading
and manipulation of the linked data as a JENA model. The domain specific
rules are input to the enabler as an external resource. Based on them and
the available triples about the domain, the pellet reasoner is then able to
load and execute the rules and infer new information. The explanations
for various inferred information are then fed to the ATMS to obtain the
uncertainties of the conclusions.

Sensors trust

In our scenario, there are no malicious data sources. All sensors have been
deployed by a reliable party, most of them have been indeed installed by
the home owner himself. Besides, we have checked that under nominal
operational state each sensor provide the correct measurement. The three
cases where the sensors provides outlying measurements are when they are
in defect state (mechanically or electronically damaged), when they lack
electric power supply (too low battery level) and finally when there’s a radio
connection loss. In our installation, there is a device management facility
that keep track of the battery level of each device and another that detects
sensor measurements outliers. For these reason, in our experimentation,
we assume that the only component of sensors reliability, or trust is the
quality of radio communication. Thus the trust we assign to each device is
proportional to how much the sensor is connected to the base. If in average,
a sensor experiences connection losses during a cumulated time δcl for a
cumulated time δcc of correct connection, its reliability is:

Reliability =
δcc

δcl + δcc
(6.3)

This reliability measure is the trust that our system assign to the sensor.

114 CHAPTER 6. APPLICATIONS

Presence inference

In our experimental setting, there is a unique entry door to access the room.
This door has an automatic door closer. This configuration enables us to
conjecture that if a sign of activity is detected in the room after the door
has been closed we can infer that there’s somebody in the room. There are
several such signs including, the opening or closing of a drawer or one of
the two fridge door, the detection of movement reported by any of the 5
motion detectors and the switching on or off of the TV or of the boiler. The
switching on/off of the coffee machine cannot be taken into account because
it is a programmable device which can switch on/off on its own through
programming.

We model this reasoning by defining a rule that infer a sign of activity
for each possible cause. Then we have a rule that infer presence from a com-
parison between the last activity reported and the last entry door closing.
As explained earlier if the last activity is anterior to the entry door closing,
the conclusion part of the rule specifies that there’s someone in the room.
We show one of the activity reporting as well as the presence inference rules
below:

says(?dev1, ?info1)

hasName(?dev1, "MLMove3"),

hasValue(?info1, MoveDetected),

timestamp(?info1, ?move3ts),

says(?dev2, ?info2)

hasName(?dev2, "MLDoor1"),

hasValue(?info2, DoorClosed),

timestamp(?info2, ?door1ts),

greaterThan(?move3ts, ?door1ts)

->

believes(MySelf,SomebodyIsInside)

This rule tells that if a door sensor and a motion sensor in a room detect
events in a close interval of time, we can infer that there is somebody in the
room. In order to infer the presence of more than one person, we analyze the
simultaneity of activities occurring in different places. For instance if one
fridge door is open at the same time than a move is detected in the living
room area, one single person cannot be responsible for these two activities.
We can conclude that there are at least two person in the room. We show
one of the activities simultaneity detection rule below:

says(?dev1, ?info1)

hasName(?dev1, "MLMove3"),

hasValue(?info1, MoveDetected),

timestamp(?info1, ?move3ts),

6.3. PROJECT FIWARE 115

says(?dev2, ?info2)

hasName(?dev2, "MLMove4"),

hasValue(?info2, MoveDetected),

timestamp(?info2, ?move4ts),

lessThan(abs(subtract(?move3ts, ?move4ts)), 500)

->

believes(MySelf,MoreThanOneInside)

Here, two motion detectors MLMove3 and MLMove4 deployed relatively
far from each other in the room, detect motions within 500 milliseconds.
From this, we can infer that there are more than two moving objects and/or
people. Once the presence of one, or two or more people is inferred this
presence information persists until the entry door is open again. Once the
door is opened, this presence information has to be removed because the
people inside could have exited the room.

Assessing presence information reliability

The trust level of sensors referred in rules (reference) and measured as ex-
plained in the paragraph (reference) is converted into uncertainty of the
sensor measurement. The ATMS is then used to propagate these uncer-
tainties into the activity detection conclusion and the presence information
inference if this rule is triggered. The uncertainty of presence then represent
the confidence we have that someone or more than two people are in the
room. If the rules are not triggered, it doesn’t mean that nobody in the
room. However, if no activity has been detected for a certain time, we could
hypothesize that there are nobody in the room.

We have experimentally tested our system by asking people to come and
go in the room and by submitting queries to the system about presence
information. The results are correct, if the time of the query is far enough
from the last time the door has been closed, which indeed is an expected
artifact. This promising results has yet to be consolidated through extensive
experimentation campaign.

116 CHAPTER 6. APPLICATIONS

Chapter 7

Conclusion and Discussion

This chapter presents the conclusions and discussions of this thesis. We
explain the achievements and contributions of our work in section 7.1. The
limitations and the future enhancements of the work are described in 7.2 and
finally we presents the perspectives from this work in 7.3 where we explain
how the approach can be extended beyond the use cases of this work.

Today, distributed systems and many other domains that deal with man-
agement of information from multiple sources face a challenge to classify and
select the best sources of information. Quantification of uncertainty in the
available information is yet another challenge. We assumed that trust mea-
sure of a source can be an indicator the quality of information provided by it.
Thus, our approach was to put them together to infer high level information
in an application domain was our approach. We applied this to two dis-
tinct application domains: Intelligent Community and Smart City Garbage
Collection. Different experiments and results supported our hypothesis for
these applications. As such, our major contributions and achievements of
this thesis are as follows.

7.1 Contributions and Achievements

The following section illustrates our achievements from the thesis.

1. Verification of the hypothesis: Our hypothesis was “In the absence of
any other information, the data uncertainty is inversely proportional to
the trust on the data source that furnished it”. From the experiments
in section 6.1.3, where we use Eigen Trust and Possibility theory as
trust and uncertainty models respectively, we see that as the trust
values of the sources increase over several iterations, the uncertainty
of the decision gets lowered. Also, the results in tables 6.1 and 6.3
show us that the system would have faltered far more in the absence
of trust and uncertainty values for decision making, which is in strong
support of our hypothesis.

117

118 CHAPTER 7. CONCLUSION AND DISCUSSION

2. Study of two trust and uncertainty models: As a part of the work, we
explored several trust models as discussed in the state of the art and
having analyzed them, we found two trust models most suited for our
application domains, namely the Eigen Trust and the β-reputation.
As the Smart City data set lacked the information about the quality
of remarks (good or bad), we could not apply β-reputation. We used
a simplified trust model based on the number of remarks as the basis
for modeling the trust. Similarly, we analyzed the use of Possibility
theory and Probability theory for inferring high level information in
the two applications respectively.

3. Linked data and SWRL for modeling information and domain rules:
We used ontologies for representation of the knowledge of the agents.
The generic ontology contains the definitions of the sources of informa-
tion, the models of trust and uncertainty and the relations between how
an information is transformed into beliefs of the agents and then into
the inferred conclusions. The ontologies of the application domain ex-
tend the generic ontology to represent the domain specific knowledge.
The rules to infer new information from the existing ones are encoded
in SWRL format in the domain ontology itself. Hence, extending our
approach to a new application domain is straightforward.

4. Agents with reasoning capabilities: We proposed and implemented
agents of the system augmented with reasoning capabilities. Each of
the agents contain a reasoner, a trust module, an ATMS and vari-
ous behaviors. The results have shown that such an amalgamation
of components is scalable, simple and generic to multiple application
domains. The domain intelligence is inserted into an agent via the
domain rules in the ontology.

Thus, in this thesis we illustrated the challenges of incomplete and uncer-
tain information provided by sources of information and the problems faced
by the current distributed systems that do not the use of the trust measures
of the sources of information. In particular, modeling and quantification of
the uncertainty in the information and its propagation while inferring high
level information is utmost important in order to know the enrich the con-
clusions with uncertainty. We used possibilistic and probabilistic models of
uncertainty for the use cases that we illustrated. For trust management,
we employed the EIGEN trust and a simplified trust models for the com-
putation of local trust for the two domains of applications. We put forward
various components needed by an agent to manage trust for other agents in
the network and then reason about uncertainty in the derived or inferred
information. We evaluated the functioning of agents against simulated data
and real data from a European smart city. We extended our work further
to use the algorithms as a generic enabler for other projects.

7.2. LIMITATIONS AND FUTURE ENHANCEMENTS 119

This section presented our contributions and achievements towards the
thesis and in the following section, we elucidate the limitations and future
enhancements of the thesis.

7.2 Limitations and future enhancements

This section describes the limitations and future enhancements of the work.
We list them as follows:

1. The main aim of the thesis was to develop a framework that could sup-
port our hypothesis. The study and comparison of different existing
trust and uncertainty models is not our intention; though we selected
the best fitting models for the application domains based on their re-
quirements. We intend to study more models of trust and uncertainty
as future enhancements.

2. In our work we have so far ignored the transactions related to the cases
described in 4.8. This is because we do not have sufficient information
to confirm which of the sources of information are either true or false
(depending on the cases). This may, many a time, form a considerable
chunk of transactions. A possible solution is to validate individual
environments that form the label of such derived nodes. We intend to
address these issues in our future work.

3. We applied our work to Intelligent Community use case which is a real
time hypothetical system. Hence, we had to verify the system against
simulated data. For, the Smart City use case on the other hand, we
had the data from the past year. Due to the lack of information, the
verification of this data was not possible. Hence, our approach needs
a verification against real time system with a real use case.

4. An interesting theory for combining evidences from multiple sources
and arriving at a conclusion with a degree of belief is Dempster Shafer
Theory (DST). It is based on theory of evidences. It would be an
exciting prospect to use this theory along with our approach. The
only drawback with DST is that in extreme cases, it may produce
counter intuitive results.

7.3 Extending beyond the explained applications

The connected world has evolved greatly over the past decade in terms of the
number and types of devices, the underlying technology and the use cases to
simplify the daily life of the humans. Sharing of information has become a
quintessential part of most of the present day applications and it continues

120 CHAPTER 7. CONCLUSION AND DISCUSSION

to grow as newer devices and domains are invented. For all distributed
domains, that involve sharing of information most certainly need a notion
of demarcating different sources of information based on their trust and
reason on that information. This is where our thesis can become a potential
solution. As such we contemplate of two interesting applications below.

1. Cloud computing: It can be broadly classified into three service mod-
els.

(a) Infrastructure as a Service (IaaS). e.g. RackSpace, Amazon, etc.

(b) Platform as a Service (PaaS). e.g. Heroku, Google AppEngine
etc.

(c) Software as a Service (SaaS). e.g. GMail, Google Drive etc.

All these service models primarily involve two parties: the cloud pro-
viders (CP) and the cloud consumers (CC). Some researches [HHRM12]
also include Cloud Brokers (CB), which do not provide the cloud ser-
vices directly nor are real cloud consumers but act as an intermediary
between the CB and the CP. Many CPs provide all three types of
services with further sub categorization in terms of the details of the
services. E.g., Google app engine can provide services for specific en-
vironments like: Python, Java etc. Thus, with Business-to-Business
(B2B) and Business-to-Consumer (B2C) business models in cloud com-
puting, the need for a consumer is to rate and select the best service
provider depending on different criteria. Some important ones’ are
trust, data privacy and security. Apart from these, a consumer also
takes into account factors like QoS (measured in terms of response
time, availability and elasticity), the price, various Service Level Agree-
ments (SLAs), third-party reputation or recommendation etc., before
making a selection of a provider. All these criteria can form the basis
of quantification of trust of the CP. Thus, cloud computing can be an
exciting application for our work.

2. Big data analysis: A major issue with the Big data applications is
improving quality of information (QoI). As we explained in the intro-
duction, QoI is measured in terms of different parameters; two of the
most important ones’ are trust of the source of information and the
uncertainty in the information. A possible extension of our work can
be enriching big data applications with trust and uncertainty values
thereby improving the QoI of the data.

Bibliography

[ABB+08] Hidir Aras, Clemens Beckstein, Sonja Buchegger, Peter Dit-
trich, Friederike Klan, Birgitta Knig-Ries, and Ouri Wolfson.
Uncertainty and Trust. In Proceedings of the Dagstuhl Invi-
tational Seminar 08421, pages 1–3, 2008.

[Abe01] Karl Aberer. P-grid: A self-organizing access structure for
p2p information systems. In Cooperative Information Sys-
tems, pages 179–194. Springer Berlin Heidelberg, 2001.

[AD01] Karl Aberer and Zoran Despotovic. Managing trust in a peer-
2-peer information system. In Proceedings of the Tenth In-
ternational Conference on Information and Knowledge Man-
agement, CIKM ’01, pages 310–317, New York, NY, USA,
2001. ACM.

[ARH97] Alfarez Abdul-Rahman and Stephen Hailes. A distributed
trust model. In Proceedings of the 1997 Workshop on New Se-
curity Paradigms, NSPW ’97, pages 48–60, New York, USA,
1997. ACM.

[atu] American time use survey. http://www.bls.gov/tus/

charts/. Accessed: 2015-11-15.

[BG10] Amandine Bellenger and Sylvain Gatepaille. Uncertainty in
ontologies: Dempster-Shafer theory for data fusion applica-
tions. Workshop on Theory of Belief Functions, 2010.

[CCB+06] MJ Carey, S Ceri, P Bernstein, U Dayal, C Faloutsos,
JC Freytag, G Gardarin, W Jonker, V Krishnamurthy,
MA Neimat, et al. Data-centric systems and applications.
2006.

[CDBN11] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart
cities in europe. Journal of urban technology, 18(2):65–82,
2011.

121

http://www.bls.gov/tus/charts/
http://www.bls.gov/tus/charts/

122 BIBLIOGRAPHY

[CF01] Cristiano Castelfranchi and Rino Falcone. Social Trust: A
Cognitive Approach. Trust and Deception in Virtual Soci-
eties, pages 55–90, 2001.

[CG03] Vinny Cahill and Elizabeth Gray. Using trust for secure col-
laboration in uncertain environments. IEEE Pervasive Com-
puting, 2003.

[DK86] Johan De Kleer. An assumption-based TMS. Artificial intel-
ligence, 28(2):127–162, 1986.

[DLG+04] Mark D’Inverno, Michael Luck, Michael Georgeff, David
Kinny, and Michael Wooldridge. The dMARS Architec-
ture: A Specification of the Distributed Multi-Agent Reason-
ing System. Autonomous Agents and Multi-Agent Systems,
9(1/2):5–53, 2004.

[EY09] Amira Essaid and BB Yaghlane. BeliefOWL: An Eviden-
tial Representation in OWL Ontology. Proceedings of the
Fifth International Workshop on Uncertainty Reasoning for
the Semantic Web (URSW 2009), pages 1–4, 2009.

[FIW] The project FIWARE. (Project No. 285248). https://www.
fiware.org. Accessed: 2015-11-15.

[GI90] Michael P Georgeff and Francois Felix Ingrand. Real-time
reasoning: The monitoring and control of spacecraft systems.
In Artificial Intelligence Applications, 1990., Sixth Confer-
ence on, pages 198–204. IEEE, 1990.

[GPP+98] Michael Georgeff, Barney Pell, Martha Pollack, Milind
Tambe, and Michael Wooldridge. Intelligent Agents V
Springer-Verlag Lecture Notes in AI. In Intelligent Agents
V: Agents Theories, Architectures, and Languages, pages 1–
10. Springer, 1998.

[GW11] Virgil Gligor and Jeannette M Wing. Towards a Theory of
Trust in Networks of Humans and Computers Humans and
Computers. 19th International Workshop on Security Proto-
cols, 2011.

[GYL12] Xi Gong, Ting Yu, and Adam J. Lee. Bounding trust in rep-
utation systems with incomplete information. Proceedings of
the second ACM conference on Data and Application Security
and Privacy - CODASKY ’12, page 125, 2012.

[Hal98] Joseph Y Halpern. A logical approach to reasoning about
uncertainty: a tutorial. Springer, 1998.

https://www.fiware.org
https://www.fiware.org

BIBLIOGRAPHY 123

[Hec92] David Heckerman. The certainty-factor model. Encyclopedia
of Artificial Intelligence, pages 131–138, 1992.

[HG12] Christina Hochleitner and Cornelia Graf. Making Devices
Trustworthy: Security and Trust Feedback in the Internet
of Things. Pervasive’12 Fourth International Workshop on
Security and Privacy in Spontaneous Interaction and Mobile
Phone Use, 2012.

[HHRM12] Sheikh Mahbub Habib, Sascha Hauke, Sebastian Ries, and
Max Mühlhäuser. Trust as a facilitator in cloud computing:
a survey. Journal of Cloud Computing: Advances, Systems
and Applications, 1:33, August 2012. Provisional version.

[Hur06] Robert F. Hurley. The Decision to Trust. Harvard Business
Review, 2006.

[HWS08] Chung-Wei Hang, Yonghong Wang, and Munindar P Singh.
An adaptive probabilistic trust model and its evaluation. In
Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 3, pages
1485–1488. International Foundation for Autonomous Agents
and Multiagent Systems, 2008.

[IoT] Internet of Things Architecture (IoT-A) Deliverable
D1.5 Final architectural reference model for the IoT
v3.0. www.iot-a.eu/public/public-documents/d1.5/at_

download/file. Accessed: 2015-11-15.

[JBXC08] Audun Jøsang, Touhid Bhuiyan, Yue Xu, and Clive Cox.
Combining trust and reputation management for web-based
services. In Trust, Privacy and Security in Digital Business,
pages 90–99. Springer, 2008.

[JI02] Audun Jøsang and Roslan Ismail. The Beta Reputation Sys-
tem. In Proceedings of the 15th Bled Electronic Commerce
Conference, volume 5, pages 2502–2511, 2002.

[JMP06] Audun Jøsang, Stephen Marsh, and Simon Pope. Explor-
ing Different Types of Trust Propagation. In Proceedings
of the 4th International Conference on Trust Management,
iTrust’06, pages 179–192, Berlin, Heidelberg, 2006. Springer-
Verlag.

[Jøs96] Audun Jøsang. The right type of trust for distributed sys-
tems. In Proceedings of the 1996 workshop on New security
paradigms, pages 119–131. ACM, 1996.

www.iot-a.eu/public/public-documents/d1.5/at_download/file
www.iot-a.eu/public/public-documents/d1.5/at_download/file

124 BIBLIOGRAPHY

[KKRMvK09] Christoph Koch, Birgitta König-Ries, Volker Markl, and
Maurice van Keulen. 08421 abstracts collection–uncertainty
management in information systems. In Dagstuhl Semi-
nar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2009.

[Kra97] Gerhard K Kraetzschmar. Distributed reason maintenance
for multiagent systems, volume 1229. Springer Science &
Business Media, 1997.

[KSGM03] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-
Molina. The eigentrust algorithm for reputation management
in p2p networks. In Proceedings of the 12th international
conference on World Wide Web, pages 640–651. ACM, 2003.

[Lap09] Anne Lapkin. Context-aware computing: A looming disrup-
tion. Research report, Gartner Inc., 24 August 2009.

[LS07] Huaizhi Li and Mukesh Singhal. Trust management in dis-
tributed systems. Computer, (2):45–53, 2007.

[LS12] Wolfgang Leister and Trenton Schulz. Ideas for a Trust In-
dicator in the Internet of Things. In The First Interna-
tional Conference on Smart Systems, Devices and Technolo-
gies, SMART, pages 31–34, 2012.

[LV07] Ching Lin and Vijay Varadharajan. A hybrid trust model
for enhancing security in distributed systems. In Availabil-
ity, Reliability and Security, 2007. ARES 2007. The Second
International Conference on, pages 35–42. IEEE, 2007.

[LY09] Adam J Lee and Ting Yu. Towards a dynamic and com-
posable model of trust. In Proceedings of the 14th ACM
symposium on Access control models and technologies, pages
217–226. ACM, 2009.

[Mar94] Stephen Paul Marsh. Formalising trust as a computational
concept. 1994.

[MBD12] Stephen Marsh, Anirban Basu, and Natasha Dwyer. Ren-
dering unto cæsar the things that are cæsars: Complex trust
models and human understanding. In Trust Management VI,
pages 191–200. Springer, 2012.

[MBF+12] Andreas Metzger, Adrie Beulens, Federico Facca, Fabiana
Fournier, Denis Havlik, Fano Ramparany, and Zoheir Sabeur.
Data and information uncertainty. s-cube-network.eu, 2012.

BIBLIOGRAPHY 125

[MS01] Yosi Mass and Onn Shehory. Distributed trust in open multi-
agent systems. In Trust in Cyber-societies, pages 159–174.
Springer, 2001.

[NNFM12] Z Noorian, Mahdi Noorian, Michael Fleming, and Stephen
Marsh. A strategic reputation-based mechanism for mobile
ad hoc networks. Advances in Artificial Intelligence, pages
1–12, 2012.

[Pea14] Judea Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann, 2014.

[P la12] Bart lomiej P laczek. Uncertainty-dependent data collection
in vehicular sensor networks. In Computer Networks, pages
430–439. Springer, 2012.

[PM93] Simon Parsons and EH Mamdani. On reasoning in networks
with qualitative uncertainty. In Proceedings of the Ninth
international conference on Uncertainty in artificial intel-
ligence, pages 435–442. Morgan Kaufmann Publishers Inc.,
1993.

[PPR11] Camille Persson, Gauthier Picard, and Fano Ram-
parany. A multi-agent organization for the governance of
machine-to-machine systems. In Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intel-
ligence and Intelligent Agent Technology-Volume 02, pages
421–424. IEEE Computer Society, 2011.

[PS93] Simon Parsons and Alessandro Saffiotti. Integrating uncer-
tainty handling formalisms in distributed artificial intelli-
gence. In Symbolic and Quantitative Approaches to Reason-
ing and Uncertainty, pages 304–309. Springer, 1993.

[RGMSE14] Fano Ramparany, Fermin Galan Marquez, Javier Soriano,
and Tarek Elsaleh. Handling smart environment devices, data
and services at the semantic level with the FI-WARE core
platform. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 14–20. IEEE, 2014.

[RHJ04] Sarvapali D Ramchurn, Dong Huynh, and Nicholas R Jen-
nings. Trust in multi-agent systems. The Knowledge Engi-
neering Review, 19(01):1–25, 2004.

[RHMV11] Sebastian Ries, Sheikh Mahbub Habib, Max Mühlhäuser, and
Vijay Varadharajan. Certainlogic: A logic for modeling trust
and uncertainty. In Trust and Trustworthy Computing, pages
254–261. Springer, 2011.

126 BIBLIOGRAPHY

[RPGH08] Maxim Raya, Panos Papadimitratos, Virgil D Gligor, and
Jean-Pierre Hubaux. On data-centric trust establishment in
ephemeral ad hoc networks. In INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, 2008.

[RPS+07] Fano Ramparany, Remco Poortinga, Maja Stikic, Jörg
Schmalenströer, and Thorsten Prante. An open Context
Information Management Infrastructure - the IST-Amigo
Project. In IET: Institution of Engineering and Technol-
ogy, editors, Proceedings of the 3rd IET International Con-
ference on Intelligent Environments (IE’07), pages 398–403,
Germany, september 24-25 2007. University of Ulm.

[S+76] Glenn Shafer et al. A Mathematical Theory of Evidence, vol-
ume 1. Princeton University Press, 1976.

[SFP+13] Murat Sensoy, Achille Fokoue, Jeff Z. Pan, Timothy J. Nor-
man, Yuqing Tang, Nir Oren, and Katia Sycara. Reasoning
about uncertain information and conflict resolution through
trust revision. In Proceedings of the 2013 International Con-
ference on Autonomous Agents and Multi-agent Systems,
AAMAS ’13, pages 837–844. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[SKL09] Myra Spiliopoulou, Maurice Van Keulen, and HJ Lenz. 08421
Working Group: Imprecision, Diversity and Uncertainty:
Disentangling Threads in Uncertainty Management. pages
1–3, 2009.

[TLRJ12] WT Luke Teacy, Michael Luck, Alex Rogers, and Nicholas R
Jennings. An efficient and versatile approach to trust and
reputation using hierarchical bayesian modelling. Artificial
Intelligence, 193:149–185, 2012.

[Unc] Uncertainty Reasoning for the World Wide Web. http://

www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/

Uncertainty.owl. Accessed: 2015-11-15.

[VRAC10] Meritxell Vinyals, Juan A Rodriguez-Aguilar, and Jesus
Cerquides. A survey on sensor networks from a multiagent
perspective. The Computer Journal, page bxq018, 2010.

[VRJ13] Matteo Venanzi, Alex Rogers, and Nicholas R Jennings.
Trust-based fusion of untrustworthy information in crowd-
sourcing applications. In Proceedings of the 2013 inter-
national conference on autonomous agents and multi-agent

http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/Uncertainty.owl
http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/Uncertainty.owl
http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/Uncertainty.owl

BIBLIOGRAPHY 127

systems, pages 829–836. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2013.

[WGE06] Segev Wasserkrug, Avigdor Gal, and Opher Etzion. A tax-
onomy and representation of sources of uncertainty in active
systems. In Next Generation Information Technologies and
Systems, pages 174–185. Springer, 2006.

[WS07] Yonghong Wang and Munindar P Singh. Formal trust model
for multiagent systems. In IJCAI, volume 7, pages 1551–
1556, 2007.

[XL02] Li Xiong and Ling Liu. Building trust in decentralized peer-
to-peer electronic communities. In The 5th International
Conference on Electronic Commerce Research., 2002.

[YC05] Yi Yang and Jacques Calmet. Ontobayes: An ontology-
driven uncertainty model. In Computational Intelligence for
Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and In-
ternet Commerce, International Conference on, volume 1,
pages 457–463. IEEE, 2005.

[Zad86] Lotfi A Zadeh. A simple view of the dempster-shafer theory
of evidence and its implication for the rule of combination.
AI magazine, 7(2):85, 1986.

	Abstract
	Résumé
	Acknowledgment
	Synopsis
	Introduction
	Problem statement
	Motivation
	Our hypothesis
	Use cases
	Intelligent Community
	Smart City Garbage Collection

	Success criteria
	Thesis outline

	State-of-the-Art
	Trust
	Modeling trust
	Classification based on success criteria
	Desired aspects of Trust for the IoT

	Uncertainty
	Sources, types and the need for managing uncertainty
	Modeling uncertainty
	Propagation of uncertainty

	Trust and uncertainty management in Distri-buted Systems
	Crowdsourcing and Data Fusion

	Truth Maintenance Systems
	Assumption-based Truth Maintenance Systems
	Distributed ATMS

	Classification of the State-of-the-Art

	Solution approach
	Envisaging a distributed system as a MAS
	Knowledge base
	Representation
	Rules and Reasoning

	Modeling trust
	Eigen Trust
	Local and Global trust
	Predefined trust
	Drawbacks of Eigen trust
	-reputation model

	Modeling uncertainty
	Possibilistic Logic
	Probability Theory

	Agent beliefs and their relation with trust
	Interaction
	Beliefs

	Using trust measure as uncertainty
	Assumption-based Truth Maintenance System
	Reasoning with uncertainty
	Discussion

	Implementation
	Distribution aspect
	Data representation
	The agent
	The agent behaviors
	The reasoner
	The rule base
	The ATMS

	A working example

	Applications
	Intelligent Community
	Simulation setup
	Tests
	Experimentation
	Discussion on the trust and the uncertainty models

	Smart City Garbage Collection
	Analysis of the Data set
	Dissimilarities of the data set to our initial use case
	Objectives of this application
	Enhancements and assumptions in the data set
	Simplified trust model
	Uncertainty model
	Experimentation
	Verification of the use case

	Project FIWARE
	Introduction
	Home mood Scenario
	Approach and architecture
	Scenario implementation and experimentation

	Conclusion and Discussion
	Contributions and Achievements
	Limitations and future enhancements
	Extending beyond the explained applications

