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RÉSUMÉ EN FRANÇAIS

La répression catabolique désigne un mode de régulation très répandu chez
les bactéries, par lequel les enzymes nécessaires à l’import et la digestion de
certaines sources carbonées sont réprimées en présence d’une source carbonée
avantageuse, par exemple le glucose dans le cas de la bactérie E. coli . Nous pro-
posons une approche mathématique et expérimentale pour séparer et évaluer
l’importance des différents mécanismes de la répression catabolique. En parti-
culier, nous montrons que l’AMP cyclique et l’état physiologique de la cellule
jouent tous deux un rôle important dans la régulation de gènes sujets à la ré-
pression catabolique. Nous présentons également des travaux méthodologiques
réalisés dans le cadre de cette étude et contribuant à l’étude des réseaux de
régulation génique en général. En particulier, nous étudions l’applicabilité de
l’approximation quasi-stationnaire utilisée pour la réduction de modèles, et
présentons des méthodes pour l’estimation robuste de taux de croissance, ac-
tivité de promoteur, et concentration de proteines à partir de données bruitées
provenant d’expériences avec gènes rapporteur.

RÉSUMÉ SUBSTANTIEL EN FRANÇAIS

La répression catabolique est un mode de régulation génique ubiquitaire chez
les bactéries, faisant référence au fait qu’en présence d’une source carbonée
préférée, par exemple le glucose chez E. coli , les enzymes nécessaires à l’import
et la digestion de sources carbonées moins favorables sont réprimées. Plusieurs
mécanismes ont été identifiés comme étant les médiateurs de la répression
catabolique, en particulier l’exclusion de l’inducteur et la régulation tran-
scriptionnelle par le métabolite AMP cyclique et sa protéine réceptrice, CRP.
Cependant, l’importance de l’AMP cyclique dans la répression catabolique a
récemment été remise en cause par plusieurs revues de la littérature, et son
rôle fonctionnel pour la bactérie reste partiellement élucidé.

Bien que les mécanismes qui sous-tendent la répression catabolique soient
étudiés depuis des dizaines d’années, la grande variété de souches bactériennes
et milieux de cultures utilisés dans les différentes études rendent difficile de
tirer des conclusions à partir des données disponibles. De plus, la plupart de
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ces recherches ont porté sur des souches observées en croissance stationnaire, et
ne prennent donc pas en considération les dynamiques de régulation très par-
ticulières des gènes régulés par l’AMPc entre différentes phases de croissance.
L’influence de la concentration de CRP est également souvent négligée, et peu
de modèles tiennent compte des effets physiologiques reflétant l’abondance et
l’activité des ribosomes et de l’ARN polymérase.

Notre étude vise à quantifier, de manière systématique, l’importance de ces
différents niveaux de régulation. Nous suivons, au moyen de gène rapporteurs,
l’activité d’un gène exclusivement CRP-AMPc-dépendant conçu pour notre
étude, ainsi que les concentrations de CRP et d’AMP cyclique. Nous mesurons
aussi l’activité d’un promoteur constitutif, représentatif de l’état physiologique
de la cellule. Nous formulons un modèle de régulation simple pour l’activité du
promoteur synthétique, comprenant les variables CRP, AMPc, et l’état physi-
ologique de la cellule. Nous testons ce modèle en comparant ses prédictions à
des données recueillies sur plusieurs diauxies (glucose-glycerol, glucose-acétate,
glucose-fructose, etc.) ainsi que certaines expériences montrant les limites de
notre modèle, en particulier dans des conditions où l’addition d’AMP cyclique
au milieu de culture ne lève pas la répression catabolique.

La comparaison des prédictions du modèle à des données expérimentales
demande une analyse rigoureuse des mesures dynamiques d’expression génique.
Nous avons donc mené une analyse quantitative des différences entre les pré-
dictions découlant de modèles d’expression génique à deux étapes, et leurs
version simplifiée à une étape, qui sera utilisée dans cette étude. Nous présen-
tons également de nouvelles méthodes pour l’estimation de taux de croissance,
d’activités de promoteurs, et de concentrations de protéines à partir de gènes
rapporteurs, et montrons que ces méthodes sont moins biaisées et plus robustes
que les méthodes existantes.

TITLE IN ENGLISH

A dynamical study of the mechanisms underlying carbon catabolite
repression – From mathematical models to experimental data
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ABSTRACT IN ENGLISH

Carbon Catabolite Repression (CCR) is a wide-spread mode of regulation in
bacteria by which the enzymes necessary for the uptake and utilization of
some carbon sources are repressed in presence of a preferred carbon source,
e.g., glucose in the case of Escherichia coli . We propose a joint mathematical
and experimental approach to separate and evaluate the importance of the
different components of CCR. In particular, we show that both cyclic AMP
and the global physiology of the cell play a major role in the regulation of
the cAMP-dependent genes affected by CCR. We also present methodological
improvements for the study of gene regulatory networks in general. In partic-
ular, we examine the applicability of the Quasi-Steady-State-Approximation
to reduce mathematical gene expression models, and provide robust meth-
ods for the robust estimation of growth rate, promoter activity, and protein
concentration from noisy kinetic reporter experiments.

LONG ABSTRACT IN ENGLISH

Carbon Catabolite Repression (CCR) is an ubiquitous mode of regulation in
bacteria, referring to the observation that in the presence of a preferred car-
bon source, e.g., glucose in E. coli , the enzymes necessary for the uptake and
utilization of less favorable carbon sources are repressed. Several molecular
mechanisms have been identified as mediators of CCR, in particular inducer
exclusion and transcription regulation by the signaling metabolite cyclic AMP
(cAMP) and its receptor protein, CRP. Recent reviews of the literature, how-
ever, have questioned the importance of cAMP in CCR. The functional role of
cAMP in the regulation of carbon metabolism in bacteria remains incompletely
understood.

Even though the mechanisms underlying CCR have been studied for decades,
the variety of bacterial strains and growth media used in the different studies
make it difficult to draw conclusions from the available data. Furthermore,
most of this research has focused on steady-state conditions, overlooking the
singular dynamics of cAMP-dependent genes during phase transitions in di-
auxic growth. The influence of the concentration of CRP is also generally
ignored, and few models account for global physiological effects reflecting the
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abundance and activity of RNA polymerase and ribosome.
Our study aims at systematically quantifying the importance of these differ-

ent levels of regulation. By means of reporter gene experiments we experimen-
tally monitor the activity of an exclusively CRP-cAMP-dependent synthetic
promoter designed for the study, along with the concentrations of CRP and
cAMP. We also measure the activity of a constitutive promoter, representative
of the global physiological state of the cell. We formulate a simple regulation
model for the activity of the synthetic promoter, comprising the variables CRP,
cAMP, and the global physiological state of the cell, and we test this model
by comparing its predictions to dynamical data from several diauxic growth
experiments (glucose-glycerol, glucose-acetate, glucose-fructose, etc.), as well
as experiments showing the limits of the model, in particular conditions where
adding cAMP to a glucose-containing medium does not relieve CCR.

The comparison of model predictions to experimental data requires a rig-
orous analysis of these dynamical gene expression measurements. We have
therefore analyzed the differences of predictions derived from two-step mod-
els of gene expression (taking into account transcription and translation) and
their simplified, one-step counterparts, which are used in this study. We also
provide new methods for the estimation of growth rate, promoter activity and
protein concentration from reporter gene experiments data, and show that our
methods are more robust and less biased than the currently existing methods.
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Summary of Chapter 1

In this chapter we present a State of the Art on carbon catabolite repression, in
particular the different mathematical approaches and experimental techniques
used for its study.

We detail the different mechanisms by which the lac operon of E. coli is
repressed by glucose, and that some data from the literature can be quantita-
tively explained by a simple model in which this operon is regulated by both
cyclic AMP and global modulations of cell machinery activity.

What are the relative importance of cAMP, global physiological effects, and
other actors, in the expression of a cAMP-regulated gene ? Can simple model
staging cAMP, its receptor protein CRP, and global modulations, predict the
activity of a synthetic whose sole specific regulator is cAMP ?

We propose an approach based on the systematic observation of a collection
of isogenic strains, during perturbation experiments designed so as to separate
the effects of the different known mechanims of carbon catabolite repression.
These experiments are used to calibrate a mathematical model whose param-
eters give insights ont the relative importance of cAMP and other actors in
CCR (see Chapter 4).
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Résumé du Chapitre 1

Introduction. Ce chapitre présente un état de l’art sur la répression catabolique,
et notamment les modèles mathématiques et techniques expérimentales utilisés
pour son étude.

Nous détaillons les différents mécanismes par lesquels la présence de glu-
cose dans le milieu de culture réprime l’opéron lac, et montrons que certaines
observations de la littérature peuvent être quantitativement expliquées par un
modèle dans lequel la régulation de cet opéron dépend à la fois de l’AMP
cyclique et d’effets globaux reflétant l’activité de la machinerie cellulaire.

Quelles sont les importances relatives de l’AMP cyclique, des effets globaux
liés à la physiologie de la cellule, et d’autres acteurs, dans l’expression d’un
gène AMPc-dépendent ? Un simple modèle prenant en compte les variations
de concentration d’AMP cyclique, de sa protéine réceptrice CRP, et les modu-
lations globales de l’expression génique dues à la physiologie cellulaire, peut-il
prédire l’activité d’un gène synthétique dont le seul régulateur spécifique est
l’AMP cyclique ?

Pour répondre à ces questions nous proposons une approche reposant sur
l’observation systématique d’une collection de souches isogéniques, lors de
cinétiques conçues pour perturber les cellules tout en séparant les effets de
différents composants de la répression catabolique. Ces expériences permet-
tent de calibrer un modèle mathématique dont les paramètres donneront une
meilleure évaluation des influences respectives de l’AMP cyclique et des autres
acteurs dans la répression catabolique (voire Chapitre 4).



Chapter 1

Introduction

1.1 Context

1.1.1 Carbon Catabolite Repression: hierarchy of
nutrient utilization in bacteria

Bacteria are one of the most ubiquitous organisms on earth. Since their discov-
ery in the 17th century, they have been found in very different environments,
including the deep sea, volcanoes, and clouds (Brock et al., 1972; Bauer et al.,
2002). Bacteria also live as hosts in higher organisms. The human gut, for
instance, counts more bacteria than there are human cells in the entire body
(Steinhoff, 2005). In this work, we will focus on Escherichia coli , a rod-shaped,
2-micrometer long bacterium that makes up 0.1% of the human gut flora. Due
to its ability to grow rapidly in inexpensive and simple-to-prepare media, E.
coli is a favorite model organism in microbiology and is commonly used for the
industrial production of synthetic fuels or pharmaceutical molecules (Tsakrak-
lides et al., 2012; Escalante and Calderón, 2010). E. coli is one of the most
studied and best understood micro-organisms, even though the role of many
of its circa 4000 genes is still not understood.

In their natural environment, bacteria compete with other species for food
and space, and must adapt to the varying quality and availability of nutrients.
In the example of E. coli , the host receives new nutrients after each meal,

11



12 CHAPTER 1. INTRODUCTION

and is low in nutrients between meals. As a consequence, bacteria have devel-
oped the capacity to adapt to different environments, such as the identity of
the carbon source: E. coli can consume a range of sugars including glucose,
mannose, maltose, lactose, xylose, etc. Each carbon source enters the cell
through a dedicated transport system and is processed by specific enzymes
of the cell. In particular, glucose enters the cell through a specific transport
unit called phospho-transpherase system (PTS). Upon entrance, glucose takes
one phosphate group from a phosphorylated enzyme EIIB of the cell, to enter
the cell as Glucose-6-Phosphate (G6P) (Figure 1.1A). G6P is then processed
through a chain of chemical reactions called glycolysis, that breaks it down to
pyruvate and generates ATP and other co-factors such as NADH. Pyruvate
subsequently enters the Krebs cycle to yield even more reducing equivalents
and ATP.

The metabolite just upstream of pyruvate in the glycolytic pathway, phosphoenol-
pyruvate (PEP), donates the phosphate that will be transferred through a
chain of membrane enzymes EI, Hpr, EIIA and EIIB, to form of a new phos-
phorylated enzyme EIIB. An important consequence of that mechanism is
that the influx of glucose lowers the number of phosphorylated EIIB and EIIA
enzymes in the cell, and that the concentration of phosphorylated EII rises
quickly upon glucose exhaustion. We will see later in this section that these
enzymes are involved in the cellular response to changes in carbon source. Lac-
tose is metabolized by converting this disaccharide to glucose, which is phos-
phorylated and enters glycolysis. Lactose is imported through a specific trans-
porter called lactose permease, and transformed by the enzyme β-galactosidase
into one molecule of glucose and one molecule of galactose, which is in turn
tranformed into glucose by a chain of enzymatic reactions (Figure 1.1B).

Carbon Catabolite Repression (CCR) denotes the fact that bacteria such
as E. coli , in presence of several carbon sources, consume them sequentially,
generally starting with the carbon source ensuring the highest growth rate. A
typical example of CCR is the repression by glucose of the lac operon, a set
of genes coding for the lac permease and β-galactosidase. In the presence of
both glucose and lactose, bacteria will exhibit a diauxic growth (Monod, 1942)
consisting in a fast growth phase on glucose, followed by a slower growth phase
on lactose (Figure 1.2). This nutrient hierarchization enables the species to
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Figure 1.1: A. Schematic representation of the phospho-transpherase system
(PTS). B. Transport and digestion of glucose and lactose in E. coli .

optimize its growth rate at all times and confers a clear advantage in the com-
petition for food. For industrial purposes, however, it could be advantageous
to abolish CCR to enable a bacteria to co-utilize several carbon sources at
once and speed up the production of a product of interest (Tsakraklides et al.,
2012). Achieving this goal is no simple task, as the biological mechanisms
underlying CCR are still not fully understood even after decades of research.
We will see in the next sections that even the much-studied regulation of the
lac operon is still partly unexplained.

1.1.2 Regulation of the lac operon

The glucose-lactose diauxy observed in E. coli is a consequence of the low
levels of β-galactosidase and lactose permease in bacteria in the presence of
glucose, which prevent lactose import and digestion during this phase. In
this section we review the different factors influencing the concentration of
β-galactosidase, and the known mechanisms by which glucose impacts these
factors.

The lac operon comprises the gene lacZ , coding for β-galactosidase, the
gene lacY coding for Lactose Permease (also denoted LacY), and the gene
lacA, coding for trans-acetylase (also denoted LacA). Lactose metabolism re-
quires the first two genes, and we will focus on them from here on. The
expression and regulation of these two genes is schematically represented in
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Figure 1.2: Diauxic growth of E. coli in the presence of glucose and lactose
(Inada et al., 1996). The bacteria initially consume glucose (yellow shaded
area) and grow fast. After a short lag, necessary for producing the enzymes
responsible of lactose metabolism, such as β-galactosidase, the bacteria resume
growth on this less-preferred carbon source.

Figure 1.3. Bacterial genes are expressed in two primary steps: transcrip-
tion (synthesis of mRNA by RNA polymerase) and translation (synthesis of
proteins by the ribosomes, from the information contained in the mRNA).
In the case of the lac operon, the lac genes are included in an operon and
therefore transcribed together to form a single mRNA molecule encoding β-
galactosidase, LacY and LacA.

The proteins produced have a typical half-life of more than ten hours, which
represents several bacterial generations. Each time a cell divides, the proteins
pool is distributed over the two daughter cells. Therefore the intracellular
concentration of proteins in bacteria is determined not only by their synthesis
rate (quantity of protein synthesized per cell per minute), but also by the rate
at which they are degraded, and diluted through population growth. We will
assume that there is no specific degradation mechanism for the proteins we
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study and that this rate remains constant over time. The variations in time
of a protein concentration in a cell population, denoted p(t) and expressed
in moles per liter (M), is a function of the protein synthesis rate s(t), which
reflects the regulation of the gene and is expressed in M.min−1, the degradation
rate of the protein dp (in min−1), and the dilution rate (or growth rate) of the
bacterial population, denoted µ(t) (in min−1):

d

dt
p(t) = s(t)− (µ(t) + dp) p(t). (1.1)

At steady state, i.e. when the growth rate and all protein concentrations
in the bacterial population are constant, we deduce from Equation 1.1 the
relationship between the concentration p∗ of a given protein, its degradation
rate, its constant synthesis rate s∗, and the growth rate µ∗:

p∗ =
s∗

µ∗ + dp
. (1.2)

This equation shows the interplay between the synthesis rates and the dilution
rate in determining protein concentrations. Since β-galactosidase has a negli-
gible degradation rate its concentration at steady-state is mainly determined
by the rates of synthesis and dilution:

p∗ ' s∗

µ∗
. (1.3)

The protein synthesis rate s(t) of the lac operon, for which we will propose a
formula in Section 1.3.1, depends on the rates of transcription and translation.
The lac operon is regulated at the level of the lac promoter (plac), a DNA
sequence upstream of the lac genes (see Figure 1.3). This region can be bound
by proteins (called regulators) that will favor or disfavor the binding of RNA
polymerase to the promoter. The structure of the lac promoter is discussed in
more detail in Section 1.2. Transcription is repressed by protein LacI, which
binds to specific DNA sites and blocks transcription. When LacI is absent
or inactive, transcription is activated by the CRP-cAMP complex, formed by
the metabolite cAMP and its repector protein CRP. This complex binds to a
specific site of the lac promoter and facilitates binding of the RNA polymerase
to the promoter.
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Figure 1.3: Regulation of the lac operon. The transcription of the operon is
activated by the CRP-cAMP complex, that binds upstream of the promoter
and facilitates recruitment of RNA polymerase. The binding site of LacI over-
laps the promoter and the bound Lac repressor therefore sterically blocks RNA
polymerase binding and transcription. When bound to allolactose, the repres-
sor dissociates from the DNA.

The lac operon is regulated through different mechanisms represented
schematically in Figure 1.4. The mechanism most largely accepted as the ma-
jor factor of repression involves sensing of the presence of lactose by the lac
repressor (Inada et al., 1996; Görke and Stülke, 2008a). After entry in the cell,
lactose is transformed by β-galactosidase (which is always present at least at
basal levels) into allolactose, which binds LacI and prevents it from repress-
ing the lac operon. Therefore, lactose indirectly induces the production of
β-galactosidase and lac permease responsible for its own utilization by E. coli ,
a phenomenon called enzyme induction (Figure 1.4A). It has been shown that
either deleting the lacI gene or preventing it from binding to DNA using IPTG
(an allolactose analog that passively enters the cell and neutralizes LacI) in-
creases the activity of the lac operon several hundred folds (Kuo et al., 2003).
In addition to the relief of repression, an activation function also contributes
to enzyme induction. In presence of glucose, the intracellular concentration
of cAMP is low. As explained earlier, the entry of glucose through the PTS
lowers the pool of phosphorylated EIIA-P, an enzyme catalyzing cAMP syn-
thesis by adenylate cyclase. In the absence of cAMP, CRP does not bind to its
target site on the DNA and does not activate transcription of the lac operon.
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Cyclic AMP has long been seen as a major mediator of CCR (Epstein et al.,
1975; Kuo et al., 2003), not only in the case of the lac operon, but also for
the many genes responsible for the metabolism of other carbon sources, such
as mannose, maltose, or arabinose, which are not expressed in the absence of
cAMP. However, we will see in the next section that several paradoxical ob-
servations have raised questions about the role of cAMP in CCR. Yet another
mechanism, called inducer exclusion, prevents the expression of the lac operon
in the presence of glucose. The influx of glucose through the PTS increases
the pool of unphosphorylated enzyme EIIA, which inhibits the lac permease,
thus preventing the uptake of lactose, and repressing the lac operon by lack
of induction by lactose (Figure 1.4B).

The quality of the nutrients consumed by bacteria has a great influence on
their gene expression machinery (ribosomes, RNA polymerases) and the ener-
getic pool, and affects the expression of all genes at both the transcriptional
and translational levels. Global physiological effects have regained interest in
recent years, and it has been shown that the activities of many genes, reg-
ulated or not, are subject to these global modulations (Berthoumieux et al.,
2013; Gerosa et al., 2013) However, their influence on cAMP-dependent genes
has not yet been systematically studied. We show in Section 1.1.4 that tak-
ing into account the effects of cAMP and these global physiological effects can
help explain paradoxical data from the literature, which suggests that both ac-
tors are equally important for the understanding of the regulation of catabolic
genes.

1.1.3 Controversy over the role of Cyclic AMP in CCR

In my thesis, I will investigate in more details the roles of cAMP and of
global physiological effects in CCR. The role of cyclic AMP as a mediator
of Carbon Catabolite Repression has recently been debated over a body of
seemingly contradictory data (Crasnier-mednansky et al., 2008; Görke and
Stülke, 2008b; Narang, 2009a). In (Wanner et al., 1978), the authors show
that adding cAMP to the growth medium does not substantially increase the
activity of the lac operon in bacteria growing on glucose, even when LacI
is inactivated by saturating concentrations of IPTG in the growth medium



18 CHAPTER 1. INTRODUCTION

C

A B

D

Figure 1.4: Mechanisms of the regulation of the lac operon by glucose.
A. Enzyme induction by relief of repression. In the presence of lactose, LacI
dissociates from its binding sites overlapping the lac promoter. B. Unphospho-
rylated EIIA inhibits the activity of the lactose transporter. C. Modulation of
enzyme induction by the modulation of the concentration of cAMP. The pres-
ence of glucose prevents the accumulation of phosphorylated EIIA, necessary
for activating adenylate cyclase. CRP is therefore inactive and does not acti-
vate the lac operon. D. The carbon source modulates the global physiology
of the cell, in particular the growth rate and the concentration of ribosomes
and RNA polymerase, thereby modulating gene expression.

and enzyme induction by activation (Figure 1.4C) is the major mechanism
controlling the transcription of the lac operon. This result has been cited
in (Narang, 2009b) to support the view that the lowering of cAMP levels by
glucose is not a significant mechanism of CCR. We will study this phenomenon
more thoroughly in Chapter 4 and argue that the cAMP added to the growth
medium is most likely not imported in the cells during growth on glucose,
which would explain the absence of an effect on the expression of lac.

It has also been claimed that glucose repression remains in a mutant strain
expressing CRP∗, an allele of CRP which can bind CRP-cAMP binding sites
even in absence of cAMP (Dessein et al., 1978; Tagami et al., 1995). Even
though the relevance of these results is questionable, as it has been shown
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that strains expressing CRP∗ exhibit CRP∗-mediated down-regulation of crp∗

by glucose, they suggest that CCR could occur independently of cAMP, simply
by modulation of the concentration of CRP.

These observations, together with the fact that CCR is also implemented
through cAMP-independent mechanisms (like inducer exclusion in the case of
the lac operon), have led T. Hwa and co-workers to the conclusion that "the
true physiological function of cAMP signalling in E. coli remains open nearly
50 years after its discovery", and that "it is unclear to what extent cAMP
signalling is intended for implementing CCR" (You et al., 2013). Furthermore,
cAMP is produced from ATP at a high energetic cost for the bacteria, which
hints that it must have important functions, some of which still wait to be
discovered: in (You et al., 2013), for instance, the authors postulate that
cAMP is a sensor of the accumulation of metabolic precursors.

In the discussion of the data proving or disproving the role of cAMP in
CCR, we need to carefully consider the different protocols used and the inter-
pretation of the primary data. In the next section we discuss a recent study
(Narang, 2009b), that claims that some data, presented as evidence of the
role of cAMP, paradoxally tend to prove the contrary when interpreted rigor-
ously. We will show, as a preliminary result, that these paradoxical data do
not necessarily disprove the role of cAMP, and can be explained by taking into
account the effects of global regulations.

1.1.4 Possible explanation of paradoxical data with a
simple mathematical model

Most of the experimental data produced since the earliest work on Carbon
Catabolite Repression have been obtained in steady-state experiments (Kuo
et al., 2003; Dessein et al., 1978). In these studies cell cultures are grown
in chemostats or are observed in mid-exponential phase of a batch culture.
The bacteria are grown in minimal media supplemented either with different
concentrations of glucose, or with different carbon sources (glucose, maltose,
succinate, etc.), and IPTG is added to the growth medium in order to pre-
vent LacI from repressing the lac operon. When the bacterial cultures reach a
steady state growth, with a growth rate depending on the quality and quantity
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of the carbon source, they are sampled to estimate the intracellular concentra-
tion of cyclic AMP, and the specific β-galactosidase activity (in Miller units per
mg), which is proportional to the intracellular concentration of β-galactosidase.
Typical results from such experiments are presented in Figure 1.5: panels A
and B show data obtained with different sugars, while panels C and D show
results for different glucose concentrations. We see that the carbon source
has a strong impact on the activity of β-galactosidase (panel A) and that
this activity correlates with the intracellular level of cyclic AMP (panel B).
In cells grown with glucose as the sole carbon source, β-galactosidase activity
decreases with growth rate (black dots in panel C), as does the intracellular
cAMP level (in D). The authors see this as evidence of the role of cAMP in
CCR. However, as pointed out in (Narang, 2009b), cAMP is not expected to
directly influence the concentration of β-galactosidase, but rather its synthesis
rate, as the CRP-cAMP complex is an activator of the transcription of the
lac operon. This synthesis rate can be computed from the β-galactosidase
concentration (or activity) and the growth rate µ with the following formula
derived from Equation 1.3:

s = µ · [β-gal.] (1.4)

Figure 1.6A shows the synthesis rate computed from the data in Fig-
ure 1.5C using Equation 1.4. While we expected synthesis rate to be correlated
with the concentration of cAMP, we observe the opposite. This surprising anti-
correlation of cyclic AMP concentration and β-galactosidase synthesis rates led
Narang to the conclusion that the 10-fold variation of the β-galactosidase ac-
tivity with the cAMP level, attributed thus far to regulation of lac expression by
cAMP, is primarily due to dilution. He proposes that the CRP-cAMP levels
in the cell are always at near-saturation level for activating the lac promoter
– even during growth on glucose, where cAMP levels are low – and variations
of the concentration of cAMP have therefore little effect on the transcription
dynamics of lac operon.

Does cAMP have no importance in the regulation of the lac operon? Under
this hypothesis, we would expect that the expression profile of the lac pro-
moter ressembles the profile of a similar promoter that is independent of CRP.
In (Kuo et al., 2003) the authors also study such a promoter (called lacUV5 ),
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over a range of growth rates on glucose+IPTG. This promoter is a variant of
the lac promoter with a higher affinity for RNA polymerase. Binding of RNA
polymerase is therefore always maximal, in the presence or absence of CRP.
They observe a very different expression profile (white dots in Figure 1.5C).
The synthesis rate computed from these data, represented in Figure 1.6B, is
approximately proportional to the growth rate. Since the experiments are done
in presence of IPTG, which inactivates LacI, the expression of β-galactosidase
is constitutive in the lacUV5 strain, i.e. without any specific regulation, and
its synthesis rate can be supposed to reflect the availability or activity of the
gene expression machinery (ribosomes, RNA polymerases...). Such a propor-
tionality between constitutive synthesis rate and growth rate has been more
thoroughly studied in (Gerosa et al., 2013).

We can therefore extend the simple description and suppose that the syn-
thesis rate of the cAMP-dependent plac promoter of the wild-type strain de-
pends on both the concentration of cAMP, and the activity of the expression
machinery, which leads to the following regulation model:

s∗lac(µ) = kl · s∗c(µ∗) · [cAMP]∗(µ∗), (1.5)

where s∗lac(µ∗), denoting the growth-rate-dependent synthesis rate of β-galactosidase
in the wild-type strain at steady state (Figure 1.6A), is the product of the
intracellular cAMP level [cAMP](µ) (also Figure 1.6A) and sc(µ), the con-
stitutive synthesis rate measured for the placUV5 promoter, which we use
here as a proxy of the activity of the gene expression machinery. The propor-
tionality constant kl is estimated from the available data, and the resulting
fit (Figure 1.6C) shows that the simple model of Equation 1.5 can predict
the β-galactosidase synthesis rate in this experiment with very good accuracy
(r2 = 0.94). This analysis suggests that global regulations should be taken
into account when studying the activity of cAMP-dependent genes, and at the
same time confirms the important role of cAMP in CCR, as a factor counter-
balancing the modulation of global physiological effects. While the expression
of unregulated genes is 12 times lower in media with limiting carbon sources
due to a shortage of energy and machinery (Figure 1.6C), the expression of a
cAMP-dependent promoter is only 3-4 times lower, due to the activating effect
of cAMP that partially compensates the global decrease of gene expression at
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low growth rates. Physiologically, the increase of the cAMP concentration
is responsible for an increase of β-galactosidase concentration at lower growth
rates (black dots in Figure 1.5), whereas the concentration of a protein encoded
by a cAMP-independent gene remains relatively constant (white dots). This
explanation still holds that glucose has a negative influence, through cAMP,
on the pool of β-galactosidase.

More generally, this analysis shows how a simple mathematical model could
be used to propose a possible explanation of the available data and infer a
putative relationship between different biological variables, an approach that
has been increasingly used in the study of CCR, as we will see in the next
section.

1.1.5 Mathematical approaches to the study of Carbon
Catabolite Repression

Different mathematical formalisms have been used to model the interactions
between genes, metabolites and environmental factors as part of a broader
discipline called Systems Biology (de Jong, 2002; Alon, 2007; Klipp et al.,
2009). In this section we will focus on the mathematical modeling of Carbon
Catabolite Repression. A specificity of this subject is that changes in the
nutrient source are accompanied by an important modification of bacterial
physiology, from the composition of the membrane to the conformation of
the DNA and the concentration of hundreds of metabolites in the cytoplasm.
This multitude of effects makes it difficult to understand which ones of these
changes constitute a signal and which ones are a response to this signal, which
interactions are direct and significant and which ones are marginal or indirect.

The different mathematical models proposed to study Carbon Catabolite
Repression differ in their scale (typically, the number of genes staged in the
model), and granularity (level of detail). A first class of models aims at quan-
titatively characterizing a small system, typically made up of a single gene,
by modelling its response as a function of different biological variables and
parameters. In (Kuhlman et al., 2007) the authors hypothesize, based on bi-
ological evidence and previous models, that in a strain lacking cAMP and
growing on glucose, the β-galactosidase activity in response to external cAMP
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Figure 1.5: Literature data on the relationship between growth rate, β-
galactosidase activity and cyclic AMP concentration. A. Activity of β-
galactosidase and concentration of cAMP for cell cultures growing on various
carbon sources (Epstein et al., 1975) B. β-galactosidase activity and genera-
tion time of cell cultures growing on various substrates. C. β-galactosidase
activity in a wild-type E. coli (black dots) and a lacUV5 mutant (white dots)
grown in continuous cultures on minimal medium with various concentrations
of glucose. D. Internal cAMP concentration measured in the populations of
panel C (Kuo et al., 2003).
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Figure 1.6: Synthesis rate of β-galactosidase as a function of the growth rate in
cells growing on glucose + IPTG. A. Synthesis of β-galactosidase in wild-type
E. coli (computed from data in Figure 1.5C) and intracellular concentration
of cAMP (as in Figure 1.5D) B. Synthesis of β-galactosidase in the lacUV5
strain (computed from data in Figure 1.5C).C. Comparison of the model of
Equation 1.5 and the observed β-galactosidase synthesis rate of panel A.

concentration can be modelled by

αcAMP =
1 + fcAMP ([cAMPext]/CcAMP )mcAMP

1 + ([cAMPext]/CcAMP )mcAMP
. (1.6)

In Equation 1.6, fcAMP represents the fold change between the lowest and
highest values of β-galactosidase activity, CcAMP represents a threshold of
external cAMP from which β-galactosidase is expressed at half its maximal
value, mcAMP expresses a possible non-linearity in the reponse to external
cAMP.

The calibration of this model from observations of αcAMP at different cAMP
concentrations yields mcAMP ' 1, which indicates weak or no cooperativity.
The authors also find that in a strain lacking the cAMP-phosphodiesterase
(PDE) the activation threshold CcAMP was lower, which shows that PDE
somehow isolates the cell from the influence of external cAMP.

In another study, (Kaplan et al., 2008) measure a set of catabolic genes
whose response depends on cAMP and another inducer (for instance arabi-
nose or maltose). They hypothesize that the response of these genes to exter-
nal cAMP and inducer could be modelled as the product of two independent
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responses:

αcAMP,Ind. =

(
[cAMP ]mcAMP

CcAMP + [cAMP ]mcAMP

)(
[Ind]mInd

CInd + [Ind]mInd

)
, (1.7)

and they calibrate this model for each gene over a range of cAMP and in-
ducer concentrations. Surprisingly, they observe that this model cannot fit
well the reponse of some genes to external cAMP, which is non-monotonous
(i.e., β-galactosidase activity is observed to decrease at high concentrations of
external cAMP). Their study also shows that, while different genes involved in
the metabolism of arabinose had a similar response, genes of the galactose and
maltose regulons have heterogeneous response profiles. This study shows how
difficult it can be to predict even the shape of a gene expression response. How-
ever, it should be kept in mind that the promoters studied here are embedded
in a complex cellular regulatory network and the regulation of transcription is
not the simple response to two signals, cAMP and the respective inducer.

Such small-scale models can be used as building blocks of larger ones to
study the interactions in a system of several genes and/or metabolites, using
differential-equations-based dynamical models (Bettenbrock, 2005). A diffi-
culty in handling large models is that they often require large amounts of
experimental data to be properly calibrated and validated. In practice, this
generally means pooling together data and parameters from different studies,
possibly acquired in different conditions, and using different strains. These
models have been used to analyse the dynamics of gene regulation and they
can help to understand which biological variables and parameters are essen-
tial for explaining a given phenomenon, or singular bacterial behaviours. For
instance, it has been noticed that within a population growing on a mix of
glucose and lactose, a minor fraction of the cells use lactose as a preferred
source. In (Ozbudak et al., 2004), the authors remark that the expression
of lacY is partly auto-amplified: lacY codes for the lac permease, which fa-
vorizes the entry of lactose in the cell, and therefore indirectly the expression
of lacY (see Figure 1.4A). In these conditions, a bistable behaviour is to be
expected: cultures grown on lactose for an extended period will continue to
prefer lactose even in presence of glucose, at least for some time. Interestingly,
their model manages to accurately predict the population response in different
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growth media with variable concentrations of TMG (a non-metabolized lactose
analog).

While the dynamics of inducer exclusion seem to have been well captured
by the current models (see (Santillán and Mackey, 2008) for a review), mathe-
matical approaches have until now failed to properly explain the role of cyclic
AMP, as several models staging different actors have been proposed and could
not be discriminated. For instance, in (Narang and Pilyugin, 2007) the au-
thors propose a model to explain nutrient preferences in which dilution through
growth is the main factor driving CCR: to each nutrient source corresponds
a specific growth rate which ensures that enzymes for the digestion of other
nutrients remain below their activation threshold. In another study (Zhuang
et al., 2011), the authors remark that the ATP yield and growth rate of bac-
teria could be accurately predicted over a range of different glucose uptake
rates using Flux Balance Analysis. Their model introduces an occupancy con-
straint imposing that the number of transporters in a bacterium is limited by
the surface area of its membrane. This limitation of the membrane obliges
bacteria to optimize the nature and relative proportion of its different trans-
porters (the authors speak of the economics of cell membrane) and leads to
the conclusion that the occupancy constraint [not gene regulation] may be a
fundamental governing constraint of cellular metabolism and physiology.

To date, no model has been proposed to specifically clarify the role of
cAMP and the gene machinery in the regulation of the lac operon and, despite
the many studies on CCR, the body of data gathered is insufficient to build,
validate and discriminate the different models. Some key biological variables
playing a role in CCR have been little observed, partly due to technological
limitations. Few studies focus on the variations of the concentration of CRP,
even though it has been shown that CRP can be a limiting factor in the
regulation of the lac operon (Ishizuka et al., 1993). And, although constitutive
promoters have been studied for decades, they have not been commonly used
as proxies of the activity of the gene machinery until very recently (Klumpp
et al., 2009; Berthoumieux et al., 2013; Gerosa et al., 2013). Finally, most
of the available data come from steady-state experiments, which are much
less informative than perturbation experiments, such as up- or downshift of
nutrients, that trigger a global re-organisation of cellular metabolism (Kao
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et al., 2005). In particular, cAMP has interesting dynamics during the growth
transition from glucose to a poorer carbon source, characterized by a rapid and
transient increase of the concentration of cAMP, yielding valuable information
about the regulation of the lac operon.

In conclusion, some of the most basic questions regarding carbon catabolite
repression are still unanswered despite the large amount of available data.
Elucidating the roles of cAMP and global regulations will require new, carefully
planned experiments, where the protocols and observed variables are chosen
so as to best calibrate and validate a tailor-made regulation model in order
to assess the relative importance of the different regulatory factors controlling
CCR.

1.2 Problem statement

The recent observations that the availability of energy and the abundance and
activity of gene machinery may play a significant role in the expression of all
bacterial genes could shed a new light on Carbon Catabolite Repression, and
in particular on our understanding of the role of cyclic AMP. The question
becomes: how can we dissect and evaluate the influence of CRP-cAMP and
global physiology on the activity of a cAMP-dependent promoter of E. coli?

As our biological model, we will observe the activity of a synthetic pro-
moter, plac∗, obtained by deleting the LacI binding sites of the lac operon,
leaving CRP-cAMP as the only known specific regulator (Oehler and Amouyal,
1994; Müller et al., 1996) (Figure 1.7). To which extent and in which condi-
tions can CRP-cAMP and physiological effects explain the observed dynamical
response of this promoter to different stimuli? And what is the contribution
of each factor to the physiological response, i.e., the final concentration of
β-galactosidase in the cell?

We have seen in Section 1.1.3 that steady-state activities of the lac operon
can be explained by a simple model staging both global regulations and cAMP.
But does a similar model also explain the dynamics of plac∗ activity during
growth transitions? In this thesis we propose and calibrate a dynamical model
describing quantitatively the regulations of a cAMP-dependent promoter over
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time. We assess to what extent this model is sufficient for explaining the
observations over a range of experiments, as well as the seemingly contradictory
results of the literature, or whether a third important actor of CCR is still
missing.

Figure 1.7: Synthetic cAMP-dependent promoter constructed for the study.
O1, O2, O3 denote LacI binding sites, as in (Oehler and Amouyal, 1994).
These sites are either deleted, partially deleted, or mutated, so as to disable
any influence of LacI on the promoter.The plasmids are derivatives of pUA66
and the activity of the promoter is assessed by measuring the fluorescence of
the gfp-mut2 gene replacing lacZ .

1.3 Approach

One difficulty in separating the effects of cAMP from global physiological ef-
fects is that both vary during growth transitions, along with many other bi-
ological variables. Measuring the relevant biological variables and separating
their effects on the plac∗ promoter requires therefore a systematic study with
a dedicated model and carefully chosen experiments. We will formalize our
biological question with a simple mathematical model, which will be be cali-
brated by means of perturbation experiments on a collection of isogenic strains
carrying expression and reporter plasmids.

1.3.1 Mathematical formulation of the problem

Assuming that CRP-cAMP and global physiological effects act independently
on the activity of the plac∗ promoter, denoted aplac∗(t) (in M.min−1), this
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activity can be represented as the product of independent factors:

aplac∗(t) = fa ac(t) ag(t), (1.8)

where fa denotes the maximal activity of the plac∗ promoter, and ac(t), ag(t),
both varying between 0 and 1, denote the modulations of the promoter activity
due to CRP-cAMP and global physiological effects, respectively.

Assuming that the concentration of cAMP is always much larger than
the concentration of CRP-cAMP complex, the concentration of CRP-cAMP
depends on the concentrations of intracellular cAMP and CRP as follows:

[CRP-cAMP](t) = [CRP](t)
[cAMP](t)mc

Kmc
c + [cAMP](t)mc

, (1.9)

where Kc is the dissociation constant of cAMP and CRP. The influence of an
activator on the activity of a gene is generally represented by a Hill function.
The influence ac(t) of the CRP-cAMP concentration on the activity of the
plac∗ promoter, is therefore modelled as follows:

ac(t) =
[CRP-cAMP](t)ma

Cma
c + [CRP-cAMP](t)ma

. (1.10)

In this equation Cc represents the activation threshold of the plac∗ promoter
(value of [CRP-cAMP] at which ac(t) is at half its theoretical maximum). This
corresponds also to the dissociation constant of CRP-cAMP for its binding site
upstream of the plac∗ promoter. Coefficient ma represents the cooperativity
between CRP-cAMP complexes in binding the promoter; the results from
(Kuhlman et al., 2007) mentioned in Section 1.1.5 ma ' 1 and mc ' 1.

The influence in time of global physiological effects, denoted ag(t), is esti-
mated by observing the time-dependent activity of the constitutive promoter
pRM, apRM(t) (in M.min−1; (Berthoumieux et al., 2013)). As different genes
may have different sensitivities to global regulations (Gerosa et al., 2013), we
will express ag(t) as follows:

ag(t) =
apRM(t)

KpRM + apRM(t)
. (1.11)

Everything combined, the model from Equation 1.8 becomes:

aplac∗(t) = fa

(
[CRP-cAMP](t)

Cc + [CRP-cAMP](t)

)(
apRM(t)

KpRM + apRM(t)

)
. (1.12)
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While very simple, this model will enable us, once tested and calibrated
with experimental data, to assess the importance of each variable in the regu-
lation of plac∗. If the estimated dissociation constant Kc is below the concen-
trations of cAMP observed during a given experiment, we can conclude that
[CRP-cAMP]'[CRP], meaning that the variations of [CRP-cAMP] are in fact
driven by variations of CRP, not cAMP. In the same way, if the estimate of Cc
is low, ac(t) ' 1, i.e. variations of [CRP-cAMP] have no effect on the activity
of plac∗, we can conclude that CRP-cAMP is always at saturating concen-
trations with respect to the promoter (a hypothesis formulated in (Narang,
2009b)). Finally, a low value of KpRM would indicate that global physiological
effects play no role in the regulation of plac∗ (ag(t) ' 1), while a high value
would mean that the activity of plac∗ is sensitive to global physiological effects
(ag(t) ' apRM(t)/KpRM).

Because the concentrations of CRP and cAMP, as well as global regulations,
vary abruptly during growth transitions, these coefficients cannot be identified
from a single kinetic experiment. Their estimation requires a set of separating
experiments, using isogenic strains and specific plasmids, that will allow us to
separate the different variables and create physiological conditions in which
this model can be further simplified and more easily calibrated.

1.3.2 Systematic study of isogenic strains

Despite the abundant literature on Carbon Catabolite Repression, the study of
(Kuo et al., 2003) presented in section Section 1.1.4 is the only work with mea-
surements, in the same conditions, of the concentration of intracellular cAMP,
cAMP-dependent β-galactosidase activity, and constitutive β-galactosidase ac-
tivity. More data would be required to calibrate our model of Equation 1.12,
but it was not possible to gather a coherent dataset from the literature because
the studies often differ by the protocols, growth media, and strains used.

We have therefore conducted a systematic study of isogenic strains (rep-
resented in Figure 1.8), obtained by gene deletion or plasmid insertion from
the same original BW25113 E. coli strain. This set of strains allows us to
monitor the different variables of our model, and create scenarii in which the
activity of plac∗ will only depend on one or two of its regulators. In wild-type
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Figure 1.8: Isogenic strains used in this thesis. Each line represents a collection
of strains obtained by insertion of reporter or expression plasmids into the
same mother strain, whose genotype is indicated in the first column. The first
strain represented on each line does not carry any reporter plasmid, and will be
used as a control of the bacterial autofluorescence. The ptet promoter of the
expression plasmids can be induced by adding ATc to the growth medium. The
plasmids used in this study are presented in more detail in section Section C2
of the appendix.

strains, all components of the model are present: CRP, cAMP, and global
regulation. In ∆cya strains, where the gene coding for adenylate cyclase is
deleted, cAMP is absent, unless added to the growth medium. This enables
us to observe the activity of plac∗ in absence of cAMP or in the presence of
defined concentrations of externally added cAMP. Finally, ∆cya ∆crp strains
produce neither CRP nor cAMP. These strains carry a gene coding for CRP∗

(which can directly bind to and activate plac∗ without any need for cAMP)
inserted downstream of a ptet promoter and located on an expression plas-
mid. Adding defined quantities of the inducer ATc (anhydro-tetracylcine) to
the medium allows a controlled expression of the cAMP-independent variant
of CRP, CRP∗. Under these conditions the activity of plac∗ should depend
solely on the concentration of CRP∗, and global regulations. In cells growing
exponentially on a single carbon source, we can expect that cell physiology
varies little, and the variations in the activity of plac∗ will mainly reflect the
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varying concentration of CRP∗. When CRP∗ concentrations are nearly con-
stant, however, the variations of aplac∗(t) should be mainly influenced by global
variations of the gene expression machinery. Thus we can separate and observe
the relative importance of each effect on the activity of the plac∗ promoter.

These strains will be continuously monitored in a series of microplate ex-
periments in well-controlled conditions and growth media. We will see in the
next section how the data gathered from these experiments are analyzed to
obtain estimated profiles of the relevant biological signals.

1.3.3 Estimation of biological signals from dynamic
experiments

The mathematical model proposed in Section 1.3.1 involves promoter activi-
ties (aplac∗ , apRM) and concentrations of molecules ([CRP],[cAMP]). In order to
compare model prediction with experiments we have to estimate these quanti-
ties from the measured time course of the expression of reporter genes. How-
ever these estimations are not trivial as they involve mathematical measure-
ment models and require pre-processing the data (noise filtering, background
correction, etc.). To this end, we have developed new methods of parameter
estimation from noisy experimental measurements. We will also compare these
new methods to other existing solutions.

The activity of aplac∗ , apRM , as well as [CRP](t) will be estimated by means
of fluorescent reporter genes in microplate experiments with frequent measure-
ments of the total fluorescence of the bacterial population. The fluorescence
data thus provide an estimate of the quantity R(t) of fluorescent proteins in
the population. At the same time we measure the absorbance, which provides
an estimate of the volume V (t) of the bacterial population, up to a propor-
tionality factor α. As will be explained more thoroughly in Chapters 2 and 3
of this thesis, the promoter activity a(t) of a gene of interest can be estimated
from the obversations of R(t) and V (t) using a measurement model of the form

d

dt
R(t) = αV (t)a(t)− dRR(t) (1.13)

where dR denotes the degradation rate of the reporter. While these experi-
ments yield data with good precision and high temporal resolution, one must
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be careful to avoid any artifacts that could lead to a biased estimation of
a(t). We use a low-copy plasmid whose copy number per cell has been found
to be constant in different conditions, and a long-lived fluorescent protein al-
lele (gfp-mut2, half-life ' 24h) with negligible problems of bleaching (Zaslaver
et al., 2006). Some studies of the lac operon, such as the ones discussed in
Section 1.1.3, rely on measurements of β-galactosidase activity, which is pro-
portional to the number of β-galactosidase enzymes that were present in the
cells from which the proteins were extracted. This technique is unintrusive
compared to reporter gene experiments, as the strain does not need to carry
a reporter plasmid, but it requires sampling the bacterial population and per-
form an enzymatic assay for every time point. Only the real-time reporter
gene experiments in an automated microplate reader offer the necessary time-
resolution for measuring transients during growth transitions.

Constitutive (i.e., unregulated) promoters have long been used in microbi-
ology, where they are generally created by removing or inactivating the reg-
ulators of a known promoter. For instance we have seen in Section 1.1.4
that placUV5 was made constitutive by adding IPTG to the growth medium,
thereby inactivating the repressor LacI. Constitutive genes have only recently
been used as indicators of the cell physiology. In (Gerosa et al., 2013) the au-
thors show that the expression profile of constitutive genes is highly correlated
with the profile of the growth rate (and thus with the global physiology of the
cell). The authors use genes whose known repressor gene has been deleted,
a technique that enabled the authors to test constitutive genes with different
expression strength, but requires using mutant strains. In our study, we will
use the pRM promoter from phage λ, which does not possess any known reg-
ulator in E. coli , and has already been used as an indicator of cell physiology
in (Berthoumieux et al., 2013).

While CRP is an important transcription factor of E. coli , its concentration
is rarely measured in the CCR studies. It is commonly assumed that the
variations of [CRP-cAMP] are driven by variations of cAMP. We will explicitly
verify this assumption in our study by monitoring (indirectly) the intracellular
concentration of CRP using reporter genes (as explained in Chapter 3). Other
possible techniques for estimating the concentration of CRP include mRNA
quantification using DNA microarrays or qRT-PCR(Enjalbert et al., 2013).
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Such measurements can be misleading, as we will see that the transcription
rate of crp can decrease but still lead to an increase of [CRP] due to a decreased
rate of dilution. Antibody-based Western blots have also been used to measure
the concentration of CRP in the cell (Inada et al., 1996). While they yield
a more direct estimation of CRP levels in the bacterial population, they do
not allow for measurements as precise and frequent as fluorescent reporter
genes (see (de Jong et al., 2010) for a comparison of the two techniques).
Finally, CRP concentrations can be estimated using mass-spectrometry-based
proteomics techniques, which offers good accuracy but currently weak time
resolution.

Estimating the concentration of intracellular cAMP is a difficult task, in
part because cAMP production can rise and fall several folds in a matter of
minutes upon addition or depletion of glucose. While there is no method
to date for reliably measuring the intracellular cAMP concentration directly,
it is possible to quantify the concentration of cAMP in the growth medium.
We measure external cAMP using a competitive ELISA assay with a specific
anti-cAMP antibody line in (Berthoumieux et al., 2013), where luminescence
intensities measured in microplate can be related to extracellular cAMP con-
centrations by means of a calibration curve. By measuring the cAMP con-
centration at several points in time during an experiment, we obtain a time
profile of the accumulation rate of cAMP in the growth medium. The rate
of export of cAMP from the cell has been shown to be proportional to the
intracellular cAMP concentration (see Figure 1.9). This leads to the following
equation, relating the observed external cAMP concentration to the internal
cAMP level and the volume V (t) of the bacterial population, estimated from
the absorbance:

d

dt
[cAMPext.](t) = CeV (t)[cAMPint.](t)− dcAMP [cAMPext.](t). (1.14)

In Equation 1.14 Ce (min−1) is an export rate and dcAMP (min−1) the degra-
dation rate of cAMP in the medium, which is assumed to be constant. This
equation, which is similar to Equation 1.13 for the estimation of promoter
activity, enables us to estimate the profile of [cAMPint.](t) from the observ-
ables [cAMPext.](t) and V (t) with a method similar to the one developped in
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Chapter 3. Some authors also measured intracellular cAMP by removing the
bacteria from their medium using fast filtering techniques, lysing the washed
bacteria and quantifying the released cAMP (Kuo et al., 2003). However, as
the concentration of cAMP inside bacteria can vary considerably over short
periods of time (Epstein et al., 1975), artifacts can arise from contamina-
tion with extracellular cAMP (Pastan and Sankar, 1976). This method also
requires to sample large volumes in order to obtain cAMP concentrations mea-
surable with a standard assay. As a final note, the use of FRET (Fluorescence
resonance energy transfer) techniques could provide precise, dynamical, and
non-intrusive quantification of the cAMP concentration in vivo in the future
(Sekar and Periasamy, 2003; Odaka et al., 2014).

A B

Figure 1.9: Relationship between intracellular cAMP and per-cell acculmula-
tion rate of cAMP in the growth medium. Panel A shows the data from (Fraser
and Yamazaki, 1979) for glucose, fructose and glycerol, which will be used in
our study, and correspond to numbers 4, 7, and 10 respectively in panel B,
from (Epstein et al., 1975). Both graphs show a linear relationship between
intracellular cAMP concentrations and the rate of accumulation of cAMP in
the growth medium.

1.4 Organisation of the thesis

The chapters of this thesis are organized as follows:



36 CHAPTER 1. INTRODUCTION

Chapter 2 - One-step and two-step models of gene expression This
chapter briefly presents a mathematical and experimental approach justifying
the common use of one-step differential equations when modeling gene expres-
sion with ordinary differential equations. The results in this chapter are the
subject of an article submitted for publication.

Chapter 3 - Estimation of dynamic biological signals by means of
linear inverse methods. This chapter focuses on the estimation of growth
rate, promoter activity, and protein concentration from dynamical absorbance
and reporter fluorescence data, which are the primary data of our study of
CCR. We present new mathematical methods for the treatment of data and
show that these novel techniques compare favorably with the existing meth-
ods in terms of robustness to noise, precision, and the ability to capture fast
changes during growth transitions. The results in this chapter are the subject
of an article submitted for publication.

Chapter 4 - Dissection of the regulations of a CRP-cAMP dependent
promoter In this chapter we present and discuss the results of our study of
CCR. The results in this chapter are the subject of an article in preparation.



Summary of chapter 2

The analysis of large regulatory networks requires gene expression to be mod-
eled in a simple and accurate way. Most models describe the synthesis of
proteins as either two sequential steps (transcription and translation) or as a
single, lumped step. While one-step models are easier to handle, their validity
in practice has been rarely studied.

We define the model reduction error as the relative difference between
the predicted protein concentration profiles in one-step and two-step Ordinary
Differential Equation models. We experimentally quantify the model reduction
error for the genes crp and acs, involved in carbon metabolism in Escherichia
coli, by means of fluorescent reporter genes. Although the two genes have quite
distinct dynamics during growth transitions, the one-step model was able to
reproduce the predictions of the two-step model with an error on the order of
a few percent for both genes (0.5-4%).

In bigger models these errors can amplified, notably through non-linearities
in the gene interactions. These results are consistent with our mathematical
analysis, which provides simple formulas for predicting the upper bound of
the model reduction error in a system of one gene or in a regulation chain.
Our study shows that for biologically plausible parameters this error will be
small compared to the observed biological variability. It also provides simple
rules to understand which genes of a network model should or should not be
modeled with one step.
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Résumé du Chapitre 2

Modèles d’expression génique à une et deux étapes. L’analyse de
grands réseaux de régulation génique nécessite de modéliser l’expression génique
de manière à la fois simple et numériquement précise. Les modèles dynamiques
utilisés décrivent généralement la synthèse de protéines comme un processus à
deux étapes (transcription et traduction), ou regroupent ces deux phénomènes
en un modèle simplifié à une seule étape. Si les modèles à une étape peuvent
être préférés pour leur simplicité (et en particulier leur moins grand nombre
de paramètres), leur validité est rarement testée en pratique.

Nous définissons l’erreur de réduction comme la différence relative entre les
prédictions de concentration de protéines de modèles basés sur des équations
différentielles à une et deux étapes respectivement. Nous quantifions cette
erreur expérimentalement dans le cas des gènes crp et acs impliqués dans le
métabolisme carboné d’Escherichia coli , à l’aide de gènes rapporteurs pour
suivre l’activité génique de ces gènes au cours du temps.

Bien que ces deux gènes aient des dynamiques assez distinctes au moment
des transitions de phase, le modèle simplifié à une étape s’est avéré capable
de produire les mêmes prédictions que le modèle à une étape pour ces deux
gènes, avec une erreur de seulement quelques pour-cents (0.5 − 4%). Dans le
cas de modèles impliquant plusieurs gènes ces erreurs peuvent être amplifiées.

Ces résultats sont consistants avec notre analyse mathématique, qui fournit
des formules simples pour les bornes de l’erreur de réduction dans un système
à un gène ou dans le cas d’une chaine de régulations. Notre étude montre que,
pour tous paramètres biologiquement acceptables, l’erreur de réduction sera
presque toujours très faible, ce qui justifie l’emploi de modèles à une étape dans
notre étude de la répression catabolique. Nous donnons également quelques
règles simples pour déterminer quels gènes d’un modèle devraient voire leur
expression modélisée en une seule étape afin de réduire le modèle.



Chapter 2

One-Step and Two-Step Models of
Gene Expression in Bacteria

2.1 Motivation

Protein synthesis is a complex process involving many biochemical reactions
and intermediate products. Most models of gene expression do not capture
the full complexity of this process, but rather distinguish two prime steps:
transcription and translation (Kremling, 2007; Bolouri, 2008; Mehra et al.,
2003). Transcription denotes the synthesis of messenger RNA (mRNA), while
translation is the process by which proteins are produced from the information
contained in the mRNA. Such two-step gene expression models are usually the
building blocks of larger models describing the interactions of several genes,
mRNAs, proteins, and metabolites. To make the network simpler to ana-
lyze and easier to handle computationally, it may be worthwhile to simplify
even further this two-step model, and lump the entire gene expression process
into a single step. This simplifying assumption underlies approximate models
like piecewise-linear differential equation (PLDE) and logical models (Thomas,
1973; Glass and Kauffman, 1973).

We will focus on Ordinary Differential Equations (ODE) models, for which
both two-step or one-step models of gene expression can be used. Examples of
well-characterized gene regulatory networks for which ODE models have been
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developed are the network controlling the early development of the Drosophila
embryo (von Dassow et al., 2000), the circadian clock in mammals and plants
(Goldbeter, 1996; Locke et al., 2005), and the expression of the lac operon
in E. coli (Santillán and Mackey, 2001). In the context of ODEs, the reduc-
tion of two-step models to one-step models is usually based on the assumption
that the mRNA concentrations are in quasi-steady state, in the sense that, on
the time-scale of variations in the protein concentrations, they adapt almost
instantaneously to changes in the promoter activity. This assumption, which
makes it possible to overlook the variations of the mRNA concentration, and
write the variations of the protein concentration directly as a function of the
promoter activity, is known as the quasi-steady-state approximation (QSSA).
Simplifications based on similar arguments have been extensively studied in
enzyme kinetics, notably in the context of the reduction of mass-action mod-
els to the Michaelis-Menten rate law (Borghans et al., 1996; Chen et al., 2010;
Roussel and Fraser, 2001; Segel and Slemrod, 1989). Gene expression mod-
els have been less studied from this point of view. Under which conditions
is it justified to simplify two-step models to one-step models, and to which
extent will this simplification influence the model predictions? In this paper
we address the above two questions with both an analytic and and experi-
mental approach. We characterize the difference over time of the predictions
of the one-step and the two-step model, which we will refer to as the model
reduction error. We provide mathematical propositions to easily predict upper
bounds for the model reduction error, and show how the time profile of this
error can be estimated from gene expression data obtained by means of fluo-
rescent reporter genes. As an application, we determine the model reduction
error for two genes involved in carbon metabolism of the enterobacterium E.
coli. The gene crp codes for the pleiotropic transcription factor Crp (Gosset
et al., 2004a; Kolb et al., 1993a), whereas acs encodes the enzyme acetyl-CoA
synthetase (Acs), catalyzing an important step in acetate metabolism. The
transcription of acs is regulated by the complex formed by Crp and the sig-
nalling metabolite cyclic AMP (cAMP), alongside other transcription factors
(Wolfe, 2005). The population-level expression dynamics of these genes are
measured in batch conditions during a typical growth-phase transition, when
the externally-supplied carbon source glucose is depleted. While the activity of
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the crp promoter exhibits slow variations, on the order of the doubling time of
the cells, the acs promoter is induced within minutes after the growth arrest.

The reduction of two-step to one-step models is usually based on the as-
sumption that mRNA half-life is much smaller than protein half-life (Polynikis
et al., 2009). Our theoretical study of the model reduction error partly con-
firms this, but more interestingly, indicates that slow variation of the promoter
activity is a sufficient condition for model reduction, independently of the pro-
tein half-life. The experimental data show that, for physiologically-relevant
parameter sets, the relative error induced by the model reduction of a gene
will remain below the observed biological variability, both for genes with fast
and slowly-varying promoter activities. In networks of several genes, however,
the model reduction is more problematic, since the error made on one gene
can cause large perturbations as it is propagated to the model elements down-
stream of that gene. Our study also shows that reducing the models of several
genes at once may quickly lead to large prediction errors. The theoretical cri-
teria developed in this paper provide guidelines for the choice of one-step or
two-step models when describing the dynamics of gene regulatory networks,
in bacteria and higher organisms.

2.2 Methods and materials

2.2.1 Strains and growth conditions

The E. coli strain used in this study is the strain BW25113 (Baba et al., 2006).
The strain was transformed with low-copy pUA66 plasmids from the Alon col-
lection (Zaslaver et al., 2006), bearing a gfp reporter gene and a kan resistance
marker. In particular, we used plasmids bearing a transcriptional fusion of the
crp and acs promoter regions with the gfp reporter and a promoterless vector
for background correction (see below). The reporter gene encodes a stable and
fast-folding version of the GFP reporter (GFPmut2).

Glycerol stocks (-80◦C) of the above-mentioned reporter strains were grown
overnight (about 15 h) at 37◦C, with shaking at 200 rpm, in M9 minimal
medium (Miller, 1972) supplemented with 0.3% glucose and mineral trace
elements. For plasmid-carrying strains, the growth medium was supplemented
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with 100 µg ml−1 kanamycin. The overnight cultures were strongly diluted
(1500-7000 fold) into a 96-well microplate, so as to obtain an adjusted initial
OD600 of 0.001. The wells of the microplate contain M9 minimal medium
supplemented with 0.3% glucose, mineral trace elements, and 1.2% of the
buffering agent HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
for maintaining physiological pH levels in the growth medium. No antibiotics
were added at this stage. The wells were covered with 60 µl of mineral oil to
avoid evaporation. The microplate cultures were then grown for about 24 h
at 37◦C, with agitation at regular intervals, in the Fusion microplate reader
(Perkin Elmer).

2.2.2 Fluorescent reporter gene measurements

The strains growing in the wells of the microplate express a fluorescent reporter
of the genes crp and acs. During a typical experimental run, we acquire about
120 readings each of absorbance (600 nm) and fluorescence (485-520 nm).
From the measured signal we remove the background signals of absorbance
and fluorescence measured on wells containing growth medium only and strains
carrying a promoterless reporter plasmid, respectively. The treatment of these
data is described in details in Section A7 of the Supplementary Information
(SI). We computed the promoter activities and model reduction error from the
resulting absorbance and fluorescence signals, as described in Section 2.3.4.

2.3 Results

2.3.1 One-step and two-step models of gene expression

Two-step models describe gene expression as two coupled processes: mRNA
synthesis by transcription of DNA, followed by protein synthesis by translation
of mRNA (Fig. 3.1). The processes can be mathematically described as follows.
Let m(t) [µM] and p(t) [µM] denote the time-varying concentrations of mRNA
and protein, respectively, with time t ∈ R+. The two-step model is a system
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of two ODEs for m(t) and p(t):
d

dt
m(t) = κm f(t)− (γm + µ(t))m(t), m(0) = m0, (2.1a)

d

dt
p(t) = κpm(t)− (γp + µ(t)) p(t), p(0) = p0, (2.1b)

with κm [M min−1] the maximum synthesis rate of mRNA, and κp [min−1]
the synthesis rate of protein per unit mRNA. The function f(t) : R+ → [0, 1]

describes the modulation over time of the rate of mRNA synthesis by transcrip-
tional regulators. Accordingly, κmf(t) is referred to as the promoter activity.
mRNA and protein are degraded in a first-order reaction with degradation
constants γm [min−1] and γp [min−1], respectively, and diluted through the
growth of the cell population, with growth rate µ(t) [min−1]. The degradation
constants are related to the half-lives of mRNA and protein, denoted by τm,1/2
and τp,1/2 respectively, as follows: τm,1/2 = ln 2/γm and τp,1/2 = ln 2/γp. The
growth rate of the cell population can be expressed in terms of the volume
V (t) [L] of the population:

µ(t) =
1

V (t)

d

dt
V (t), (2.2)

or alternatively in terms of the biomass, which is proportional to the volume
over a large range of growth rates (Volkmer and Heinemann, 2011). We refer
to m(t) and p(t) as the state variables of the model and µ(t) and f(t) as the
(time-varying) input variables.

The typical half-life of mRNA in bacteria (on the order of a few minutes
(Bernstein et al., 2002)) is small compared to the time-scale of other phenom-
ena like cell division (on the order of tens of minutes in rich media to hours in
minimal media (Schaechter et al., 1958; Andersen and von Meyenburg, 1980))
or protein degradation (on the order of hours for almost all proteins (Mosteller
et al., 1980; Larrabee et al., 1980b)). As a consequence, it is usually assumed
that mRNA concentrations relax to their steady state much faster than the
other variables do. That is, the mRNA concentration is always considered
at quasi-steady state with respect to the protein concentration (QSSA, quasi-
steady state approximation). This translates in terms of equations as

d

dt
m(t) = 0 = κm f(t)− (γm + µ(t))m(t),
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from which follows that

m(t) =
κm f(t)

γm + µ(t)
.

We can simplify this equation using the above-mentioned observation that
the growth rate is usually small compared to the degradation constant of
the mRNA, and write m(t) = κm f(t)/γm. Reinjecting this equality into the
first equation leads to an approximate system of a single ODE describing the
dynamics of the protein concentration with the same regulatory input f(t):

d

dt
p̂(t) =

κm κp
γm

f(t)− (γp + µ(t)) p̂(t), p̂(0) = p̂0. (2.3)

In Eq. 2.3 the transcription and translation processes are lumped into
one step. As a consequence, the ratio κmκp/γm can be treated as a single
phenomenological synthesis parameter, thus significantly reducing the number
of parameters of the model. An advantage of Eq. 2.3 is that the fast variable
m(t) is no longer explicitly considered, so that the model will be easier to solve
numerically (reduction of stiffness). The one-step model of gene expression is
schematically compared with the two-step model in Fig. 3.1.

A mathematical basis generally invoked for the application of the QSSA
is Tykhonov’s theorem for dynamical systems (Heinrich and Schuster, 1996;
Khalil, 2001). However, this theorem only gives a limit behavior of the system
when some scaling parameter converges to infinity. Moreover, it usually does
not consider input variables, which vary on a particular time-scale themselves.
This raises the question how well the one-step model approximates the two-
step model in a particular context, as defined by specific half-lives of mRNA
and protein, specific initial conditions, and a specific promoter activity and
population growth rate. In our study we will focus on the relative model
reduction error, which provides a measure of the quality of the approximation:

∆(t) =
| p(t)− p̂(t) |

p(t)
. (2.4)

We will show that this error can be estimated through reporter gene exper-
iments, and that its upper bound is linked in a simple way to the biological
parameters.
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Intensive variables (concentrations) Extensive variables (total amounts in the population volume)

acs and crp
m(t) mRNA concentration M(t) =

m(t)V (t)
Total amount of mRNA in the population

p(t) Protein concentration P (t) = p(t)V (t) Total amount of protein in the population
f(t) Promoter activity F (t) = f(t)V (t) Total activity of promoters in the population

gfp reporter
n(t) mRNA concentration N(t) =

m(t)V (t)
Total amount of mRNA in the population

q(t) Concentration of unfolded protein Q(t) = q(t)V (t) Total amount of unfolded proteins in the popula-
tion

r(t) Concentration of folded protein R(t) = r(t)V (t) Total amount of folded proteins in the population
(proportional to the emitted fluorescence)

Table 2.1: Intensive and extensive variables used in the models, with
units in terms of concentrations and total amounts summed over the cell pop-
ulation volume, respectively.

2.3.2 Computation of the model reduction error from
extensive variables

In order to better understand which parameters and which signals are relevant
for the applicability of the reduction of two-step to one-step models, we propose
a reformulation of Equation 2.1 and Equation 2.3 , based on a change of
variables.

The system described in Equation 2.1 undergoes two distinct external per-
turbations, f(t) and µ(t), reflecting the influences of transcriptional regulation
and changes in the cell population volume, respectively. It is possible to ag-
gregate these effects by introducing the following variables:

M(t) = V (t)m(t), P (t) = V (t) p(t), F (t) = V (t) f(t), P̂ (t) = V (t) p̂(t).

(2.5)
M(t), P (t), and P̂ (t), expressed in mole units, represent the amounts of mRNA
and protein summed over the volume of the cell population, while F (t) is the
cumulative activity of all promoters of the gene in the cell population, and has
the unit mole min−1. This change of variables allows the two-step model to
be rewritten as follows (Section A1):
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d

dt
M(t) = κm F (t)− γmM(t), (2.6a)

d

dt
P (t) = κpM(t)− γp P (t). (2.6b)

while the reduced model becomes

d

dt
P̂ (t) =

κmκp
γm

F (t)− γp P̂ (t). (2.7)

Notice that the growth-dilution terms have disappeared from the reformu-
lated models, as we do no longer consider concentrations but total amounts of
molecules in a (possibly) expanding volume. Table 2.1 illustrates the concep-
tual change underlying the reformulation of the model equations. Instead of
focusing on a unit volume and considering the rates of production, degrada-
tion and dilution of the mRNA and protein molecules within this volume, we
consider the amount of molecules produced and degraded within the total vol-
ume of the cell population. In physical terms, the reformulation of the model
implies a change from intensive to extensive variables.

In general a steady state in terms of the total amount of mRNA and pro-
tein, summed over the volume of the cell population, is not equivalent to a
steady state in terms of the mRNA and protein concentrations. Strictly speak-
ing, steady states for the systems with intensive variables (Equation 2.1 and
Equation 2.3 ) are equivalent to steady states of the systems with extensive
variables (Equation 2.6 and Equation 2.7 ), if and only if the growth rate is
0. However, when the volume does not vary much, the two notions of steady
state are close.

Conveniently, the model reduction error defined in Equation 2.4 can be
written as a function of the extensive variables as well:

∆(t) =
| P (t)− P̂ (t) |

P (t)
. (2.8)

In what follows, we study ∆(t) by means of the new systems of Equation 2.6
and Equation 2.7 . In this reformulation the relative error ∆(t) does not de-
pend on f(t) and µ(t) separately, but is affected by their joint influence on
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the variable F (t). Besides greatly simplifying the analysis of the systems,
this comes with interesting practical implications, as experimentally measur-
ing f(t) and µ(t) would require accurate measurements of the volume of the
cell population during a reporter experiment, while F (t) can be directly in-
ferred from the measured population-level fluorescence signals (Section 2.3.4).

Figure 2.1: Two-step, one-step, and reporter models for the acs gene.
The two-step model (top) includes transcription and translation processes,
whereas the one-step model (center) directly links protein synthesis to the
activity of the promoter of the gene. In the reporter model (bottom), the
gfp gene has the same activity f(t) as acs, as it has the same promoter region
pacs. The promoter activity modulates the production of a fluorescent protein
whose variations can be observed and used to estimate f(t).

2.3.3 Theoretical upper bounds for the model reduction
error

The following two properties give upper bounds for the model reduction error
∆(t) in the case of slow and fast variations of F (t), respectively. The first prop-
erty states that the error bound depends on the (maximum) relative change of
the cumulated promoter activity F (t) in the time-interval under consideration
(see Section A2 of the SI for the proof).
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Proposition 1. Assume that the systems of Eq. 2.6 and Eq. 2.7 verify

d

dt
M(0) =

d

dt
P (0) =

d

dt
P̂ (0) = 0.

Then for all t > 0,

∆(t) <
1

γm
sup
s<t

∣∣∣∣ 1

F (s)

d

ds
F (s)

∣∣∣∣, (2.9)

or equivalently, in terms of the original variables,

∆(t) <
1

γm
sup
s<t

∣∣∣∣µ(s) +
1

f(s)

d

ds
f(s)

∣∣∣∣. (2.10)

Note that in Proposition 1 the production constants κm, κp appear to play
no role in the formation of the approximation error: this can be considered
a general rule as long as we neglect the role of the initial conditions of the
systems (Section A1.3).

The second property states that, when the promoter activity f(t) suddenly
steps up or down from an initial steady-state level, the upper bound of the error
linearly depends on the activity fold change (see Section A3 for the proof).

Proposition 2. Assume that the systems of Eq. 1 and Eq. 3 are such that

d

dt
m(0) =

d

dt
p(0) =

d

dt
p̂(0) = 0.

If at t = 0 the promoter activity changes by a relative factor χ > −1 after
the initial state, i.e., f(t) = (1 + χ)f(0), t > 0, then under the assumption
that the growth rate is constant (µ(t) = µ), and bearing in mind that γm > γp,
it holds for all t > 0 that

∆(t) ≤ |χ| γp + µ

γm − γp
(1 +

µ

γm
) +

µ

γm
. (2.11)

For γm � µ, γp, Eq. 2.11 simplifies to

∆(t) ≤ |χ|γp + 2µ

γm
. (2.12)

The two propositions provide simple rules of thumbs to predict upper
bounds for the model reduction error in various situations. Proposition 1
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shows that the relative variations of the promoter activity and the volume
contribute to the error ∆(t) in an additive way. Moreover, they are of equal
importance, independently of the parameters characterizing the synthesis and
degradation processes. At steady state, when the promoter activity f(t) is
constant, the model reduction error is bounded by µ/γm. For a typical growth
rate of 0.01 min−1 (doubling time of 70 min) and a typical mRNA degradation
rate of 0.5 min−1 (half-life of 1.5 min), we are ensured that the model reduction
error will stay below 2%. If the promoter activity exhibits rapid variations,
however, Proposition 1 becomes little informative, as it will provide a rough
estimation of the upper bound. In this case, a long half-life of the proteins
will give high amounts of protein (or equivalently, concentrations), and slow
variations of these amounts (or concentrations), thus leading to small relative
errors. Proposition 2 demonstrates the antagonistic actions of the degradation
rates γm and γp on the model reduction error in the extreme case of a step
change in promoter activity. Were the promoter activity to instantly double
or vanish (in both cases |χ| = 1), then for a typical protein degradation rate
of 0.01 min−1 (half-life of 70 min) the approximation error would stay below
4-6%. This also ensures that high-frequency perturbations of small amplitude
(e.g., biological noise), which occur on a fast time-scale, have a very limited
impact on the approximation error ∆t.

In conclusion, Proposition 1 shows that having slow relative variations of
F (t) (as compared to the characteristic time-scale of the mRNA dynamics,
determined by γm) is a sufficient condition for a low error ∆(t). Were these
conditions not fulfilled, Proposition 2 shows that a small ratio γp/γm will buffer
the effect of fast variations of F (t) (or f(t)). These two last considerations
are supported by a qualitative analysis of the systems based on filter theory
(Section A4). We will assess the predictive power of these propositions in the
next sections, where we use experimentally measured promoter activities to
obtain a profile of ∆(t) for two genes of E. coli.
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2.3.4 Experimental quantification of the model
reduction error

We have shown in the previous previous section that the relative error ∆(t)

mainly depends on γp, γm, and the variations of the cumulative promoter activ-
ity F (t). We will show in this section how the temporal profile of the promoter
activity can be inferred from reporter gene experiments. This method will be
used in the next section to estimate the the ∆(t) profile for the two E. coli
genes.

Current reporter gene technologies, based on Green Fluorescent Proteins
(GFPs) and other fluorescent and luminescent reporter proteins, provide an
excellent means to measure promoter activities in vivo and in real time ((Giep-
mans et al., 2006; Tsien, 1998), Fig. 3.1). The underlying principle of the tech-
nology is to fuse the promoter region and possibly (part of) the coding region
of a gene of interest to a reporter gene. The expression of the reporter gene
generates a visible signal (fluorescence) that is easy to capture and reflects
the expression of a gene of interest. Measurement models allow biologically-
relevant quantities occurring in the models, such as f(t), F (t), p(t), and P (t),
to be reconstructed from the primary fluorescent data (see (de Jong et al.,
2010; Finkenstädt et al., 2008; Huang et al., 2008) and references therein).
In particular, measurement models separate the signal of interest from back-
ground noise and correct for systematic biases, such as different half-lives of
reporter and host proteins, folding times, photo-bleaching effects, etc.

In earlier work (de Jong et al., 2010), we developed and validated a mea-
surement model for the interpretation of fluorescence data. This model is a
variant of the two-step model, taking into account that the fluorescent activity
of GFP in response to light excitation depends on post-translational modifi-
cations, notably the folding of the protein to an appropriate conformation,
including the autocatalytic formation of the chromophore (Tsien, 1998). This
maturation process gives rise to an additional reaction step from inactive to
active GFP (Fig. 3.1). As a consequence, the state variables of the measure-
ment model are gfp mRNA (n(t) [µM]), inactive GFP (q(t) [µM]), and active
GFP (r(t) [µM]). The synthesis parameters κn and κq correspond to κm and
κp in the gene expression model of Eq. 2.1, respectively, while κl [min−1] is
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the GFP folding constant. The degradation constants of reporter mRNA and
of the folded and unfolded reporter proteins are denoted by γn, γr, and γq,
respectively. By construction, the promoter regions of the reporter gene and
the gene of interest are the same, so it is natural to assume that both have the
same promoter activity f(t).

d

dt
n(t) = κn f(t)− (γn + µ(t))n(t), (2.13a)

d

dt
q(t) = κq n(t)− (γq + κr + µ(t)) q(t), (2.13b)

d

dt
r(t) = κr q(t)− (γr + µ(t)) r(t). (2.13c)

While the degradation constants of the folded and unfolded GFP are iden-
tical (γq = γr), the degradation constants of the reporter mRNA and reporter
protein are different from the degradation constants for the products of the
gene of interest, that is, γq 6= γp and γn 6= γm. Following a change of variables,
replacing like in Section 2.3.2 concentrations by total amounts of molecules in
the cell population volume, we obtain the system

d

dt
N(t) = κnF (t)− γnN(t), (2.14a)

d

dt
Q(t) = κqN(t)− (γr + κr)Q(t), (2.14b)

d

dt
R(t) = κrQ(t)− γrR(t). (2.14c)

A summary of the model variables and their biological meaning is given in
Table 2.1.

In the model of Eq. 2.14, R(t) represents the total amount of fluorescent
protein in the cell population volume. This variable can be assumed propor-
tional to the experimentally observed reporter fluorescence I(t). Eq. 2.14
enables us to express F (t) directly as a function of R(t) and its derivatives, so
that the profile of F (t) can be inferred, up to a multiplicative constant, from
the fluorescence data (see Section A5 for the proof):
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Fe(t)
def.
= I(t) + a

d

dt
I(t) + b

d2

dt2
I(t) + c

d3

dt3
I(t) ∝ F (t), (2.15)

where

a =
1

γn
+

1

γr
+

1

γr + κr
, b =

1

γnγr
+

1

γn(γr + κr)
+

1

γr(γr + κr)
,

c =
1

γrγn(γr + κr)
.

Because Eq. 2.6 and Eq. 2.7 are linear systems, scaling the input F (t) with
an unknown multiplicative constant will scale the outputs P (t) and P̂ (t) by the
same factor, and thus not change the relative error. Therefore, using Fe instead
of F (t) will lead to the same result. Fe can be computed from the fluorescence
data in different ways, using smoothing splines, sliding windows, or a direct
inversion method (Bansal et al., 2012). Since all of these methods yield, up to
small differences, the same profiles for F (t) and ∆(t) (see Section A8), only
the results obtained from the splines method are reported below. We verified
that using different degrees of smoothing when treating the experimental data
did not impact the results, which is a consequence of the filtering behavior of
the gene expression system, as explained in Section A4.

To infer the model reduction error ∆(t) we injected the expression of Fe(t)
in the two-step and one-step systems given by Eq. 2.6 and Eq. 2.7, which we
supposed to be initially at steady state with initial value Fe(0) for all variables.
We numerically solved the equations and thus obtained profiles of P (t) and
P̂ (t), respectively, from which we computed ∆(t) according to Eq. 2.8. The
next section presents the results obtained for the genes acs and crp in E. coli.

2.3.5 Model reduction error for selected E. coli genes

Microorganisms like the enterobacterium E. coli use glucose and other carbon
sources for growth. External carbon sources are taken up by the cell and
converted by central carbon metabolism into precursors for the synthesis of
macromolecular constituents of the cell as well as the energy (ATP) required
for biosynthetic functions (Gottschalk, 1986). E. coli has intricate regulatory
mechanisms, on both the metabolic and genetic level, to adapt the functioning
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of metabolism to the availability of different carbon sources in the environment.
For instance, when a preferred (rich) carbon source like glucose is depleted,
it continues its growth on less preferred (poorer) carbon sources like acetate.
A change in carbon source is accompanied by a profound reorganization of
the metabolic flux distribution and of the expression of the genes encoding
enzymes of the metabolic reactions (Oh et al., 2002).

We consider here two genes that are typical for the kind of expression
patterns encountered during growth transitions. The gene crp encodes the
transcription factor Crp that is a pleiotropic regulator of the cell (Kolb et al.,
1993b). The complex Crp·cAMP regulates the transcription of hundreds of
genes in E. coli, many of them enzymes catalyzing reaction steps in car-
bon metabolism (Gosset et al., 2004a; Gutierrez-Ríos et al., 2007). The pro-
tein concentration has been shown to vary little during the transition phase
(Berthoumieux et al., 2013; Kuhlman et al., 2007). The second gene considered
here is acs, which is notably regulated by the Crp·cAMP complex, together
with other transcription factors (Wolfe, 2005). It encodes the enzyme acetyl-
CoA synthetase (Acs), which converts acetate to acetyl-CoA, a critical step in
acetate assimilation. The gene acs is expressed at a weak basal level in the
presence of glucose, but is strongly induced upon its depletion (Fig. 2.3A).

Based on the theoretical results of Section 2.3.3, one expects that a rapid
and strong change in promoter activity leads to a (transient) increase of the
model reduction error. On the other hand, weak variations of promoter activ-
ities are expected to keep the model reduction error low. We tested the above
predictions by means of a reporter gene experiment.

Batch cultures of E. coli were grown in a microplate at 37 ◦C in M9 minimal
medium supplemented with glucose, as described in Section 2.2.1. To measure
the expression of the genes of interest, we used strains transformed with re-
porter plasmids carrying a transcriptional fusion of a gfp reporter gene and the
promoter region of crp and acs, respectively (Zaslaver et al., 2006). By means
of an automated microplate reader, we monitored in real time and in vivo the
absorbance of the culture and the emitted fluorescence. The absorbance is not
strictly necessary for our study, as we have shown that the variable of interest,
∆(t), can be reconstructed from I(t) alone. However, the absorbance is used
as a measure for the population volume, in order to compute the variables
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p(t), p̂(t), and m(t), and to synchronize datasets from different wells on the
microplate.

Fig. 2.2 and Fig. 2.3 show the results obtained with the reporters of the
crp and acs reporters, respectively. For each gene we applied the methods
described in Section 2.3.4 to infer the cumulative promoter activity F (t), re-
construct the profiles of the total amount of protein P (t), and compute ∆(t).
We also provide the profiles of f(t), p(t), and p̂(t) for each gene, obtained by
dividing F (t), P (t) and P̂ (t) by the absorbance. The computation of the pro-
moter activities of crp and acs requires the degradation and folding constants
of the reporter system to be known. The GFP used in our study was shown
to have a half-life of about 17 h in our conditions (γq = 0.0007 min−1) and a
folding rate κr=0.3 min−1. For acs and crp we took half-lives measured in our
conditions for the gene fis as reference values for γp and γm (about 100 min
and 1.2 min, respectively, corresponding to γp = 0.0065 min−1 and γm = 0.56

min−1).
The promoter activities of crp and acs are seen to react in quite distinct

ways to the depletion of glucose. Fig. 2.2 shows that well before the growth
arrest, the promoter activity f(t) of crp starts to decrease and reaches a two-
fold lower stationary level. The expression of acs is negligible while glucose is
present, resulting in a fluorescence signal close to the background level (Section
A7). However, when glucose is exhausted the transcription of acs is strongly,
but transiently induced under the effect of Crp·cAMP (Fig. 2.3A-B).

One can see in Fig. 2.2 that the relative error stays below 1% in the case of
the gene crp. The growth of the total promoter activity, (1/F )dF/dt, is equal
to 0.013 during exponential phase. Proposition 1 then predicts an error inferior
to (1/γm)(1/F )dF/dt = 2.3%, which is verified. The approximation error is
much larger in the case of the gene acs, but only transiently. In this case
the promoter activity profile could be assimilated to a step function, like in
Proposition 2. However, this step has a very large amplitude as the promoter
activity starts from a negligible level. Therefore, Proposition 2 predicts a
rough and not very informative upper bound for ∆(t), far above the maximum
obtained (4%). In Fig. 2.2C and Fig. 2.3C the predictions of the one-step and
two-step models are almost superimposed: the difference induced by the model
reduction is much smaller than the variability of the predictions observed on
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biological replicates, which is on the order of 10%.
For longer-lived RNAs or shorter-lived proteins, larger errors can be ex-

pected. Fig. 2.4 shows the maximal approximation errors obtained when
performing the computations leading to Fig. 2.2D and Fig.2.3D using differ-
ent values of γp and γm. The inverse relationship between the maximal error
and γm, which was put forward in Propositions 1 and 2, is striking for both
acs and crp. Moreover, ∆(t) appears to be much more sensible to γm than
to γp in the parameter region considered. Even in the most disadvantageous
(and unlikely) case that γm = γp = 0.1, the approximation error remains below
10%.

2.3.6 Propagation of the approximation error

When gene expression systems such as described in Eq. 2.1 are part of bigger
models involving several genes and proteins, an error in the prediction of the
protein concentration p(t) can affect the prediction of other proteins regulated
by p. Even though the model reduction error will generally stay under 4% for
a system of a single gene, as shown in Sec. 2.3.4, it is possible that this error
will be amplified throughout the gene network, due to non-linearities in the
interactions between the genes.

To study the propagation of the error we consider a simple system in which
a gene g1 coding for a protein p1 is the activator of another gene g2 coding for
a protein p2. How will a model reduction error on p1 affect the predictions on
p2 ? And how will the predictions on p2 differ if we model both genes using one
step, or two steps ? We assume that the concentration p1(t) is driven by Eq.
2.1, while the concentration of p2(t) is driven by a similar system depending
on p1(t):

d

dt
m2(t) = κ′m f2 (p1(t))− (γ′m + µ(t))m2(t), m2(0) = m2,0, (2.16a)

d

dt
p2(t) = κ2m2(t)− (γ2 + µ(t)) p2(t), p2(0) = p2,0. (2.16b)

The function f2 describes the activation of g2 by p1, and is classically modelled
using a Hill function (Kuhlman et al., 2007):
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f2 (p1(t)) =
p1(t)

a

Ka + p1(t)a
, (2.17)

where a is a cooperativity constant and K represents the saturation threshold
of the promoter of g2 with respect to the protein p1. A large value of a indicates
a higher non-linearity in the action of protein p1 on the gene g2.

To understand how the parameters K and a influence the propagation
of the model reduction error we compared the outputs of three models with
different degrees of model reduction (as illustrated in Fig. 2.5). In the full
model, the gene expression systems of p1 and p2 are given by a two-step models
as in Eq. 2.1 and Eq. 2.16. The promoter activity of p1, as well as the
degradation rates γm, γp of the two genes, were chosen as for the experimentally
observed gene acs (Fig. 2.3). We denote p2(t) the output of the simulation. In
a second model, we reduced the expression model of g1 to one-step (as in Eq.
2.3), which led to an approximate output p̂2(t) in the two-genes system. In a
third model we simultaneously reduced the models of genes g1 and g2 to one
step, and we denote p̊2(t) the output of the simulations. We led simulations
of the three models for different values of K and a and after each round of
simulations we computed the maximal relative differences between p2(t) and
p̂2(t) (Fig. 2.6A) and between p2(t) and p̊2(t) (Fig. 2.6B). Thus, Fig. 2.6A
illustrates the propagation to another gene of a model reduction error on one
gene, while Fig. 2.6B shows the effect of multiple model reductions on the
output of a gene cascade.

We see on Fig. 2.6B that, in case of important non-linearities (i.e. for large
values of a), an amplification of the model reduction error can be expected.
This is mainly due to the fact that, in the particular experiment used for
simulations, p1 takes small values and is therefore in the non-linear region of
f2. A mathematical analysis (reported in Sec. A6) shows that the condition

min p1(t) ≥ K a
√
a− 1 (2.18)

is sufficient to ensure the non amplification of the model reduction error. This
condition means that the activity of gene g2 is at least at (1 − 1/a) of its
theoretical maximum, and can be generalized to min p1(t) ≥ 4K/3. We con-
clude that there are two categories of genes which will not amplify the model
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reduction error made on their regulator: genes whose regulator has a weak
cooperativity constant (a ≤ 1) and genes that are always activated at a high
level.

Applying a double-model reduction (Fig. 2.6B), where both the regulator
and the regulated genes are modelled with one step, led to a doubling of
the error in our example. An approximately three-fold multiplication can be
observed for a cascade of three genes (data not shown). Fig. 2.6C shows that,
in addition to being larger than the error on p1, the propagated error on p2
is also more persistent in time. Thus, although the model reduction results
in acceptable errors for systems of a single gene, as shown in the previous
sections, multiple model reductions can cause important accuracy losses in
gene networks, and one should select with care the genes of the network which
will have their model reduced.

2.4 Discussion

Mathematical models of cellular networks are composed of sub-models describ-
ing the synthesis and degradation of the products of individual genes (Karr
et al., 2012). In this paper we have compared classical two-step models of
gene expression, which explicitly distinguish transcription and translation and
which are themselves reduced versions of models describing individual reaction
steps in detail (Kremling, 2007; Morozova et al., 2012), with one-step models
lumping gene expression into a single step. This reduction is often motivated
by the distinct time-scales of the dynamics of mRNA and protein concentra-
tions, as a consequence of the large difference in half-life (minutes for mRNA,
hours for protein in bacteria). We have defined a measure of the time-varying
error incurred when approximating the two-step model by a one-step model,
and shown that this error depended mainly on the half-life of the mRNA and
the variation rate of the gene’s promoter activity. Moreover, we have shown
how the model reduction error can be experimentally quantified using fluores-
cent reporter gene data. This error was computed for two typical genes in E.
coli : the gene crp, encoding a global transcription regulator, and the gene acs,
encoding an enzyme of central metabolism.
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Probably the most interesting observation of this paper is that the model
reduction error is largely negligible over different growth phases, exponential
growth on glucose and growth arrest after glucose depletion. For crp the error
remains below 1%, while for acs it transiently rises to 4%, following the rapid
induction of this gene after growth arrest. However, even this transient peak
is well below the variability of experimental replicates (10%). This conclusion
is robust to different treatments of the primary fluorescent data and it remains
valid over a range of physiological values of the degradation constants (half-
lives) of mRNA and protein.

We presented theoretical results that give some deeper insights into the
factors that influence the magnitude of the model reduction error. For a system
that is initially in a non-growing steady state, we have shown that that the
model reduction error depends on the sum of the rate of change of the promoter
activity and the growth rate of the cell population (Proposition 1). If these
rates are small in comparison with the mRNA half-life, the model reduction
error will remain acceptably low, as illustrated for the gene crp. While a
rapid change in promoter activity acts as a perturbation driving the mRNA
concentration away from its quasi-steady-state value, thus increasing the model
reduction error, a short mRNA half-life favors a rapid return to the quasi-
steady state and avoids the accumulation of the error. In a different context,
Turányi et al. arrive at a similar conclusion when analyzing transient errors
occurring before the system approaches the slow manifold (Turanyi et al.,
1993). Proposition 2 predicts that after a rapid perturbation of the promoter
activity, for instance the accumulation of cAMP following the exhaustion of
glucose in the growth medium, which induces the transcription of acs, the
model reduction error is bounded by the activity fold change and the ratio
(γp + 2µ)/γm. Intuitively, like for Proposition 1, a higher activity fold change
drives the mRNA concentration away from its quasi-steady-state value, while
a shorter mRNA half-life curbs this effect. Notice that Proposition 1 only
applies when initially the systems of extensive variables, given by Eq. 2.6 and
Eq. 2.7, are at steady state. However, since the dependence of P (t) and P̂ (t)

on the initial conditions quickly becomes negligible with time (Section A4),
Proposition 1 can be used even when the initial steady-state conditions are
not strictly satisfied.
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The possibility to estimate the model reduction error a posteriori from
fluorescence data allows one to assess the appropriateness of using one-step or
two-step models for specific genes in a network model, given a predefined error
bound. If no experimental data are available but the degradation constants of
the proteins and mRNAs are (approximately) known, as well as upper bounds
on changes in promoter activity, then the Propositions 1 and 2 can provide a
(conservative) a priori estimation of the model reduction error.

The results of this paper suggest that, for a wide range of bacterial genes,
one-step models can safely replace two-step models. This may be beneficial
in practice, especially when dealing with networks having a large number of
genes. The approximation significantly reduces the number of parameters
to estimate and the time to simulate the system. Although replacing two-
step models by one-step models introduces a negligible error locally, this can
have a non-negligible effect on the global network dynamics. The extent to
which the errors are amplified will depend on the network structure, the non-
linearities, and the parameter values (Polynikis et al., 2009). We showed that,
in the special case of a regulatory cascade without feedback, replacing the two-
step model by a one-step model for a single upstream gene will amplify the
model reduction error in a way that depends on the parameters describing
the interaction between the two genes. In particular, we provided simple
conditions under which the model of a regulator gene can be simplified without
risk of error amplification in the genes it regulates. When applying the model
reduction to both the regulator and the regulated genes, the effect on the model
reductions is quasi-additive. Therefore, model reduction should be applied
selectively, and not systematically to all genes of the network. In large gene
networks, for a given experiment, some modules of genes may exhibit slow
variations (Tournier and Chaves, 2009), and be therefore particularly fit for
model reduction. Using the conditions provided in Sec. 2.3.6, one can first
model a gene network using simple one-step expression models, and then use
the parameters and dynamics estimated from this model in order to select
which genes should be modelled with two steps. Note, however, that these
conditions do not cover the cases of more complex network topologies like
feedback loops, which are known to lead to an explosion of the approximation
error through the network (Chen et al., 2010; Pedraza and van Oudenaarden,
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2005).
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Figure 2.2: Experimental estimation of the approximation error for
the gene crp. The profiles shown are computed from data obtained for
five different wells on the microplate. The bold profile corresponds to one of
these replicates (the same in the four panels). A. Observed fluorescence, after
background substraction (cf. Section 2.2.2). We provide the absorbance from
one well as a measure of the population volume. B. Promoter activities F (t)
and f(t), computed from the data in A, according to Eq. 2.15 . C. Estimated
profiles of the total amount of Crp in the cell population volume (P (t)) and the
protein concentration (p(t)). The profiles are reconstructed from the promoter
activities presented in B. Note that the reconstructed profiles for the different
replicates overlap to the point of being almost indistinguishable. D. Relative
error ∆(t) computed for the different replicates using the reconstructed Crp
profiles from C.
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Figure 2.3: Experimental estimation of the approximation error for
the gene acs . The profiles shown are computed from data obtained for
five different wells on the microplate. The bold profile corresponds to one
of these replicates (the same in the four panels). A. Observed fluorescence,
after background substraction (cf. Section 2.2.2). We provide the absorbance
from one well as a measure of the population volume. B. Promoter activities
f(t) and F (t). The activities are computed from the data in A. C. Estimated
profiles of the total amount of Acs in the cell population volume (P (t)) and the
protein concentration (p(t)). The profiles are reconstructed from the promoter
activities presented in B. Note that the reconstructed profiles for the different
replicates overlap to the point of being almost indistinguishable. D. Relative
error ∆(t) computed for the different replicates using the reconstructed Acs
profiles from C.
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Figure 2.4: Model reduction error as a function of degradation pa-
rameters γm and γp. The two-step and one-step models were simulated as
described in Section 2.3.4 using the estimated promoter activity of crp (Fig.
2.2) and acs (Fig. 2.3). The plots show the maximal value ‖ ∆ ‖∞ of the
model reduction error over the simulation interval, for different values of γp
and γm. The red dots indicate the parameter values used for the computation
of ∆(t) in Fig. 2.2 and Fig. 2.3.

Figure 2.5: Systems of two genes with no model reduction, one model reduction
applied to the first gene, and model reductions applied to both genes.
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Figure 2.6: Propagation of the model reduction error in a two-gene
system. A two-gene cascade was simulated using one or two model reductions,
as explained in Sec. 2.3.6, the maximal difference over time to the unreduced
model was plotted for different values of the parameters a and K. A. Maximal
relative difference over time between p2(t) and p̂2(t). The red region indicates
the parameter values for which the model reduction error on p̂1(t) (4%, see
Fig. 2.3) results in an even larger error in p̂2(t). The values of K were chosen
of the same order of magnitude as the mean value of p1(t), denoted p1. B.
Maximal relative difference over time between p2(t) and p̊2(t). C. Time profiles
of the relative errors p̂1(t), p̂2(t) and p̊2(t) for the parameter values a = 5, K =
20.



Summary of Chapter 3

Time-series observations from reporter gene experiments are commonly used
for inferring and analyzing dynamical models of regulatory networks. The
robust estimation of promoter activities and protein concentrations from pri-
mary data is a difficult problem due to measurement noise and the indirect
relation between the measurements and quantities of biological interest.

We propose a general approach based on regularized linear inversion to
solve a range of estimation problems in the analysis of reporter gene data, no-
tably the inference of growth rate, promoter activity, and protein concentration
profiles. We evaluate the validity of the approach using in-silico simulation
studies, and observe that the methods are more robust and less biased than
indirect approaches usually encountered in the experimental literature based
on smoothing and subsequent processing of the primary data. We apply the
methods to the analysis of fluorescent reporter gene data acquired in kinetic
experiments with Escherichia coli. The methods are capable of reliably recon-
structing time-course profiles of growth rate, promoter activity, and protein
concentration from weak and noisy signals at low population volumes. More-
over, they capture critical features of those profiles, notably rapid changes in
gene expression during growth transitions.

The methods described in this paper are made available as a Python pack-
age (LGPL licence) and also accessible through a web interface.

Résumé du Chapitre 3

Reconstruction robuste de profiles d’expression génique à partir de
données de gènes rapporteur, par inversion linéaire. Les modèles
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CHAPTER 2. ONE-STEP AND TWO-STEP MODELS OF GENE

EXPRESSION IN BACTERIA

dynamiques de réseaux de régulations géniques sont couramment calibrés et
validés à l’aide de séries temporelles d’absorbance et de fluorescence obtenues
lors d’expériences avec gènes rapporteurs.

Dans ce chapitre nous montrons comment certaines variables biologiques
d’intérêt (taux de croissance, taux de synthèse protéique, concentration de
protéine) peuvent être estimées à partir de ces données, par des méthodes
d’inversions linéaires.

Nous testons les méthodes proposées sur des données simulées et montrons
qu’elles permettent de correctement estimer les variations de ces signaux bi-
ologiques. En particulier, elles sont robustes au bruit de mesure, peu biaisées,
et capturent bien les variations rapides lors des transitions de phase, tout en ne
nécessitant quasiment aucun réglage de paramètre. Elles sont donc bien adap-
tées à une utilisation de routine pour le traitement de grands jeux de données
provenant, par exemple, d’expériences en micro-plaques. Nous appliquons ces
méthodes à l’étude de l’activité de différents gènes d’E. coli durant la réponse
à une augmentation puis diminution de la quantité de nutriments dans le mi-
lieu de culture. Ces méthodes seront également mises en œuvre dans notre
étude de la Répression Catabolique au Chapitre 4.



Chapter 3

Robust reconstruction of gene
expression profiles from reporter
gene data using linear inversion

3.1 Introduction

Over the past decade a variety of new experimental technologies have become
available for measuring gene expression over time. They provide valuable
information for the construction and validation of models of gene regulatory
networks, involving tasks like parameter estimation, hypothesis testing, and
model selection (Villaverde and Banga, 2014; Bansal et al., 2007; de Smet and
Marchal, 2010). A critical step in the exploitation of the experimental data
is the estimation of biologically relevant quantities, in particular promoter
activities, mRNA concentrations or protein concentrations, from the primary
data provided by the measurement instruments. This requires data analysis
procedures that are unbiased and robust to measurement noise.

Fluorescent reporter genes have become widely used for monitoring gene
expression in bacteria at high temporal resolution in a non-intrusive way (Chu-
dakov et al., 2010; Giepmans et al., 2006). The underlying principle is the
fusion of a natural gene of interest and/or the promoter region driving its ex-
pression with a gene encoding a fluorescent protein (Figure 3.1). A bacterial
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strain carrying the resulting reporter gene, either on the chromosome or on
a plasmid, emits a fluorescence signal proportional to the amount of reporter
protein in the cell. When reporter strains are grown in a microplate, the flu-
orescence as well as the absorbance (optical density) of the culture can be
automatically measured every few minutes, in a highly parallelized way. The
resulting data contain information on population-level gene expression that is
highly valuable for applications such as the inference and analysis of regula-
tory networks in bacterial cells (Berthoumieux et al., 2013; Gerosa et al., 2013;
Keren et al., 2013; Ronen et al., 2002; Stefan et al., 2015).

The extraction of useful information from reporter gene data is not easy
to achieve though, since it is often buried in noise, especially at low pop-
ulation volumes. Moreover, the fluorescence and absorbance measurements
are only indirectly related to promoter activities and protein concentrations,
requiring dynamical models of the expression of reporter genes for their inter-
pretation. Several methods have been proposed to process the fluorescence and
absorbance signals and estimate time-varying promoter activities and protein
concentrations from the data (Aïchaoui et al., 2012; Bansal et al., 2012; de
Jong et al., 2010; Finkenstädt et al., 2008; Leveau and Lindow, 2001; Lichten
et al., 2014; Porreca et al., 2010; Ronen et al., 2002; Wang et al., 2008). The
methods differ in the scope of the estimation problems considered, some being
restricted to the inference of promoter activities and others also considering
mRNA and protein concentrations. In addition, the approaches used to esti-
mate these quantities from the primary data are quite different. Some methods
are indirect, in the sense that they smoothen the data first and reconstruct
the profiles of interest via the measurement model only in a second step. This
results in a propagation of estimation errors that is difficult to control. Other
methods state a regularized data fitting problem directly in terms of the quan-
tities of interest, thus proceeding in a single and better controlled optimization
step.

In this paper we propose a general, comprehensive approach towards the
reconstruction of gene expression profiles from reporter gene data and solve
the estimation problems it comprises in a mathematically sound and practical
manner. We formulate the estimation problems in the classical framework of
regularized linear inversion (Bertero, 1989; Wahba, 1990; de Nicolao et al.,
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1997), which gives access to a range of powerful tools for robust estimation.
Contrary to the related work of (Bansal et al., 2012) and (Porreca et al.,
2010), we consider not only the inference of promoter activities, but also of
growth rates and protein concentrations. Moreover, no restrictions are imposed
that limit the practical applicability of the approach. We propose efficient
procedures for the implementation of the methods and show by means of an in-
silico simulation study under realistic conditions that they perform better than
the indirect approaches usually encountered in the experimental literature.
The algorithms have been implemented in a Python package and are also
accessible through a web application.

Our linear inversion methods have been tested on fluorescent reporter
gene data acquired in experiments with the model bacterium Escherichia coli.
These experiments aim at quantifying the dynamics of gene expression during
growth transitions induced by carbon upshifts and carbon depletion. We show
that linear inversion succeeds in robustly reconstructing growth rate, promoter
activity and protein concentration over the entire duration of the experiment,
in particular in the beginning of the experiment when the population den-
sity and thus the signal-to-noise ratio are low. Moreover, we show that our
methods reliably capture rapid changes in gene expression during the growth
transitions, when promoter activities may change ten to hundred-fold within
a dozen of minutes (Baptist et al., 2013; Enjalbert et al., 2013; Kao et al.,
2005). Reconstructing these transient gene expression profiles from the data
is highly important for increasing our understanding of the functioning of the
underlying regulatory networks, but is particularly difficult to achieve.

To the best of our knowledge, the methods and computer tools presented in
this paper provide the most comprehensive solution for analyzing reporter gene
data available to date. Although the application has focused on fluorescent
reporter gene data, the methods are directly applicable to the analysis of
luminescent reporter gene data or other time-series gene expression data sets.
In addition, the gene expression models underlying the methods are valid not
only for bacteria but also for higher organisms.
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Figure 3.1: Expression of the gene acs in Escherichia coli and the as-
sociated reporter gene pacs-gfp. acs and gfp mRNA are transcribed, and
translated into the proteins Acs and GFP (Green Fluorescent Protein), respec-
tively. Both mRNA and protein are degraded. Moreover, GFP is transformed
into a mature form in which it emits fluorescence when excited. Since acs and
its reporter have the same promoter region, the transcriptional regulation of
the two genes is identical. The variables are as defined in Equation 3.16 and
Equation 3.17 .

3.2 Linear inversion methods

In this section we review properties of linear ordinary differential equations
(ODEs) and linear relationships between different outputs driven by the same
input. This theoretical framework enables us to estimate growth rate, pro-
moter activity and reporter concentration using simple linear inversions in
Section 3.3.

3.2.1 Inversion of a linear ODE system

We consider the following linear ODE model with input u(t) ∈ R and output
y(t) ∈ R : 

d

dt
x(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),

x(0) = x0.

(3.1)

In this system, x(t) ∈ Rn is a vector of state variables, and A(t),B(t),C(t) are
known time-varying matrices with dimensions n×n, n×1, 1×n, respectively.
Given a set of noisy observations (ỹ(ti))1≤i≤Ny of y(ti), we wish to estimate the
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unknown input u(t) and initial conditions x0. The solution of Equation 3.1 at
time t with input u and initial conditions x0 can be formulated explicitly as:

y(t, u,x0) = C(t)

(
Φ(t, 0) x0 +

∫ t

0

Φ(t, τ) B(τ)u(τ) dτ

)
, (3.2)

where Φ(t, τ) is the state transition matrix (Chen, 1970). Notice that in
this equation y(t, u,x0) depends linearly on both the signal u and the initial
conditions x0, making the estimation of these variables from (ỹ(ti))1≤i≤Ny a
linear inversion problem (Bertero, 1989; Wahba, 1990; de Nicolao et al., 1997).

Under the classical assumption of Gaussian i.i.d. measurement noise, the
maximum likelihood solution of this problem can equivalently be written as

Find (û, x̂0) = argmin
(u,x0)

Err(u,x0), (3.3)

where

Err(u,x0) =

Ny∑
i=1

(y(ti, u,x0)− ỹ(ti))
2 .

Without further assumptions on u(t) this problem is ill-posed, i.e. there
are infinitely many equivalent solutions (û(t), x̂0), although these solutions
may present biologically unrealistic values or variations. The problem must
therefore be regularized by formulating new assumptions that lead to a unique,
acceptable solution.

To this end, we discretize the time space of the input into Nu intervals
of the form [τj, τj+1[, of equal length δτ . We assume that on this grid of
time intervals the input u(t) is sufficiently well approximated by a piecewise
constant input (u(τj))1≤j≤Nu :

u(t) =
Nu∑
j=1

u(τj)1[τj ,τj+1[(t). (3.4)

Because the output y(t) depends linearly on u, the values (y(ti, u,x0))1≤i≤Ny
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depend linearly on (u(τj))1≤j≤Nu . If we define the following vectors:

u =


u(τ1)

u(τ2)
...

u(τNu)

 , y =


y(t1, u,x0)

y(t2, u,x0)
...

y(tNy , u,x0)

 , ỹ =


ỹ(t1)

ỹ(t2)
...

ỹ(tNy)

 ,

and w =
(
x0 u

)T
, then there exists an observation matrix Hw with dimen-

sion (Nu + n)×Ny, such that

Hw w = y. (3.5)

The matrix Hw can be written as the juxtaposition of two matrices:

Hw =
(
Hx0 Hu

)
,

where Hx0 is a Ny ×n matrix describing the influence of the initial conditions
on y, and Hu a Ny × Nu matrix describing the influence of u on y. The
computation of Hw can be generally performed using a numerical ODE solver,
as explained in Section B3. However, for the cases of interest described in
Section 3.3, we provide more effective formulas for the computation of Hw.

Our inversion problem now writes as a multivariate linear regression prob-
lem:

Find

(
x̂0

û

)
= ŵ = argmin

w
‖Hww − ỹ‖22. (3.6)

This problem may also be ill-posed, in particular when Nu > Ny. Tikhonov
regularization on the first derivative consists in introducing a penalty on the
successive variations of u, whose importance is modulated by a regularization
parameter λ ≥ 0:

Find ŵ = argmin
w

‖Hww − ỹ‖22 + λ

Nu−1∑
j=1

(uj+1 − uj)
2 , (3.7)
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where uj and uj+1 denote the jth and (j + 1)th element of u, respectively.
Practically, this penalty is implemented by introducing a new (Nu + n) × 1-
vector v = Lww and a new (Nu + n)× (Nu + n)-matrix Hv = HwL−1w , where
Lw is a matrix of the form

Lw =

(
ωIn 0

0 Lu

)
.

In the formulation above, In is the n×n identity matrix, and ω ∈ R a small
but non-zero number ensuring that the values of x0 contribute negligibly to
the penalty term while keeping Lw invertible. Lu is the Nu × Nu discrete
differentiation matrix

Lu =


ε 0

−1 1
. . . . . .

0 −1 1

 .

In (Bansal et al., 2012) the parameter ε is chosen equal to 1, but this results in a
biased estimation of u0 as ε represents a penalty on this parameter. Section B1
discusses how to find an appropriate value for ε, typically 0 < ε� 1.

The inversion problem of Equation 3.7 can be reformulated in matrix form
as

Find

(
x̂0

û

)
= L−1w v̂, where (3.8)

v̂ = argmin
v

‖Hvv − ỹ‖22 + λ‖v‖22. (3.9)

For λ large enough, this problem admits a unique solution (Hoerl and
Kennard, 1970): (

x̂0

û

)
= ŵ = L−1w (HT

vHv + λI)−1HT
v ỹ. (3.10)

The regularization parameter λ can be set arbitrarily. However, λ too large
will lead to over-smoothed estimates of u(t), whereas λ too small will lead
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to under-smoothed (unstable) estimates of u(t). Many techniques have been
proposed to automatically select a proper λ to regularize a given problem. In
this article the choice of λ will always be based on generalized cross-validation
(GCV) (Golub et al., 1979), a fast procedure which aims at maximizing the
predictive power of the resulting estimate of u. It is also straightforward to deal
with additional linear constraints in the problem of Eqs 3.8-3.9, for instance
to ensure that the estimated input û is always positive (see Section B2 for
technical details).

3.2.2 Linear inversion involving ODE systems with
identical input

We now consider two linear ODE systems, defined as in Equation 3.1, sharing
the same input u(t), but having different variables x1(t) and x2(t), possibly
different parameters, different initial conditions x0,1 and x0,2, and different
outputs y1 and y2. The goal is to estimate the profile y1 from observations
of y2. This case will be found useful in Section 3.3.4 for computing protein
concentrations. We have seen in the previous section that there is a linear
relationship between u and y1 on one hand, and between u and y2 on the other
hand. This gives rise to linear inversion problems defined by the observation
matrices Hw1 and Hw2 , respectively (Figure 3.2):

Hw1

(
x0,1

u

)
= y1 and Hw2

(
x0,2

u

)
= y2.

When Hw1 is invertible (which can be enforced in many cases since the
times τi for the discretization of u can be chosen arbitrarily), it is possible to
relate y1 to y2 through a chain of linear transformations:

(
x0,2

y1

)
H1−→


x0,2

x0,1

u

 H2−→
(

x0,2

u

)
Hw2−−→ y2,

where matrices H1 and H2 are defined as follows:
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H1 =

(
In2 0

0 H−1w1

)
, H2 =

(
In2 0n2×n1 0

0 0Nu×n1 INu

)
,

and n1, n2 are the lengths of vectors x1(t),x2(t).
By lumping this chain into a single transformation matrix Hy = Hw2H2H1

we obtain

Hy

(
x0,2

y1

)
= y2,

and y1 can be estimated from observations of y2 using Tikhonov regularization
with generalized cross-validation, as explained in the previous section.

Figure 3.2: Schematic representation of the linear relationships be-
tween variables u, x0,1, x0,2, y1 and y2. Arrows indicate the linear rela-
tionships derived in Section 3.2.2.

3.3 Estimation of gene expression profiles from
fluorescent reporter gene data

In this section, we will show how recurring problems in the analysis of reporter
gene data, the estimation of growth rate, promoter activity, and protein con-
centration, can be mapped to the linear inversion problems formulated in the
previous section. We apply the resulting methods to the analysis of fluorescent
and absorbance signals measured in population-level experiments in E. coli,
in conditions involving strong time-varying changes in growth rate and gene
expression.
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Changes in the environment trigger responses on different levels in bacterial
cells, typically affecting intracellular metabolite pools within seconds and, on
a longer time-scale, protein concentrations and physical parameters like cell
size. The regulatory networks controlling these adaptations are complex and
only partially understood.

In this paper we consider four genes playing a key role in the adapta-
tion of E. coli to perturbations due to the sudden availability or depletion of
carbon sources in the medium. These genes are fis, encoding a global reg-
ulator responsible in particular for activating ribosomal RNA transcription
(Bradley et al., 2007); gyrA, coding for DNA gyrase which negatively super-
coils DNA (Travers and Muskhelishvili, 2005); crp, whose product regulates
the transcription of hundred of genes when activated by the secondary messen-
ger cyclic AMP (Gosset et al., 2004a); and acs, encoding an enzyme required
for acetate consumption (Wolfe, 2005). We used reporter strains obtained by
transforming the E. coli wild-type strain with reporter plasmids carrying a
transcriptional fusion of the promoter region of the aboves genes with a gfp
reporter gene. The reporter gene for acs codes for GFPmut2, a reporter with
a long half-live (19 h), whereas the other reporter genes code for GFPmut3,
with a short half-live of 1 h (see Section B4 for details on the plasmids and
strains used in this study).

Overnight stationary-phase cultures of the reporter strains were diluted
into the wells of a microplate containing minimal medium with glucose. The
bacteria were observed in a microplate reader up until a few hours after glucose
exhaustion (see Section B4 for details on the experimental conditions). The
carbon upshift provokes a strong activation of the expression of many genes,
while growth arrest following glucose exhaustion triggers the activation of so-
called catabolite genes, responsible for the assimilation of secondary carbon
sources, such as acetate secreted during rapid growth on glucose (Baptist et al.,
2013; Enjalbert et al., 2013; Kao et al., 2005). The absorbance (600 nm) and
fluorescence (485/520 nm) of the growing bacterial cultures was measured for
each of the 96 wells, typically one measurement per minute per well.

The absorbance (optical density) measurements are usually assumed pro-
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portional to the volume V (t) ∈ R+ of the growing cell population. More
precisely, for measurements made at time-points ti, we have the following
measurement model:

Ṽ (ti) = αV (ti) + νi, (3.11)

where Ṽ (ti) represents the absorbance measurement at ti, α ∈ R+ an un-
known proportionality coefficient, and νi measurement noise. Similarly, the
fluorescence measurements, after background correction (de Jong et al., 2010;
Lichten et al., 2014), can be assumed proportional to the total quantity of
active (mature) fluorescent protein R(t) in the growing cell population:

R̃(ti) = βR(ti) + ν ′i, (3.12)

where R̃(ti) represents the fluorescence measurement at ti, β ∈ R+ an unknown
proportionality coefficient, and ν ′i measurement noise.

The absorbance and fluorescent measurements that will be used in the
remainder of this paper are shown in the top row of Figure 3.3. The data
illustrate some of the difficulties encountered in the analysis, namely weak sig-
nals in the beginning of the experiment, when the volume of the cell population
is low, and rapid changes during growth transitions.

3.3.2 Estimation of growth rate

The exhaustion of glucose in the medium around 500 min is followed by im-
mediate growth arrest, causing a break in the absorbance curves (Figure 3.3).
In order to sharply distinguish the growth phases, it is important to precisely
estimate the growth rate of the population, defined by

µ(t) =
1

V (t)

d

dt
V (t). (3.13)

It is possible to compute µ(t) from the absorbance measurements Ṽ (ti) of
the volume V (t), by smoothing interpolation, subsequent differentiation, and
numerical resolution of Equation 3.13. However, this method is unstable when
the signal-to-noise ratio is low, especially in the early stages of the experiment.
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Figure 3.3: Fluorescence and absorbance data obtained from reporter
gene experiments in E. coli and estimations of growth rate, promoter
activity, and protein concentration from these data. The measured flu-
orescence and absorbance signals are shown in the top row. The estimations of
growth rate, promoter activity, and protein concentration are denoted by µ̂(t),
â(t), and p̂(t), respectively. The fluorescence signal, â(t), and p̂(t) have been
divided by their mean as they have different orders of magnitude for genes fis,
gyrA, crp, and acs. For each signal, four replicates are shown, corresponding
to different wells of the microplate.

As an alternative approach, we formulate the problem as a linear inversion
problem. We first rewrite Equation 3.13 as

d

dt
(αV )(t) = αV (t)µ(t) ' Ṽ (t)µ(t), (3.14)

where Ṽ (t) is an interpolated version of the measurements Ṽ (ti). Replacing the
volume by the experimentally measured absorbance signal has the advantage
of bringing the equation into the form of Equation 3.1, with



3.3. ESTIMATION OF GENE EXPRESSION PROFILES FROM
FLUORESCENT REPORTER GENE DATA 79

u(t) = µ(t), x(t) = αV (t), y(t) = αV (t)

A(t) = 0, B(t) = Ṽ (t), C(t) = 1.

That is, the growth rate is the input and the volume the output of a linear
system, so that the growth rate can be estimated by linear inversion from the
absorbance measurements.

The observation matrix Hw for this system can be computed as explained
in Section B3.1. Solving the problem of Eqs 3.8-3.9 by regularization, we
obtain the estimates µ̂ and V̂0 of the growth rate and the initial volume,
repectively. The growth rate estimations µ̂(t) are shown in the second row of
Figure 3.3. As can be seen, upon glucose exhaustion the growth rate steeply
drops from its maximum value to 0 within approximately one hour.

As our method relies on penalizing successive variations of µ(t), the ques-
tion arises whether this entails a strong bias. In particular, how well estimated
are the timing of the transition between the two growth phases, and the values
of the growth rate during each phase? We tested the method on simulated data
similar to the measurements in Figure 3.3, notably with equivalent sampling
densities and signal-to-noise ratios. The results are presented in Section B5.
They show that our estimation method is able to recover different growth-rate
profiles, with very small bias and moderate variance.

For comparison we also estimated the growth rate with the indirect method
described after Equation 3.13. In particular, we smoothed the absorbance
measurements Ṽ (ti) by means of smoothing splines in order to estimate the
volume and its derivative, and computed an estimate of µ(t) by means of
Equation 3.13. For simulated data shown in Figure 3.4A, the results in panel B
show that at the beginning of the experiment, when the absorbance signal
is low, the growth rate estimation is highly unstable. Additional numerical
experiments, shown in Section B5, indicate that increasing the smoothing
parameter to reduce the variance of the estimates introduces a strong bias on
the estimate, reflecting the well-known variance-bias trade-off. We conclude
that the proposed linear inversion method performs better than this indirect
approach.
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Notice that the estimation of growth rate and initial volume also leads to

a denoised estimation of the population volume by Equation 3.5:

α̂V = Hw

(
α̂V0 µ̂

)
, (3.15)

which will be used in the next sections for the estimation of promoter activity
and protein concentration.

3.3.3 Estimation of promoter activity

The interest of the use of reporter genes is that, by construction, they provide
information on the expression of a gene of interest. We will focus on transcrip-
tional fusions here, where the reporter gene and the gene of interest share the
same promoter region and their promoter activities can be considered identical,
possibly up to a multiplicative constant (Figure 3.1).

The relation between promoter activity and observed fluorescence and ab-
sorbance signals is indirect and models of the gene expression process are
needed to interpret the primary data. Several models have been proposed in
the literature (see the references in the introduction), but here we follow with
some modifications the model used in (de Jong et al., 2010). The expression of
a fluorescent reporter gene is modelled as a three-step process involving tran-
scription, translation, and maturation of the fluorescent protein (Figure 3.1).
The variables of the model are M(t), Ru(t), R(t) ∈ R+, denoting the total
quantity of gfp mRNA in a growing cell population and the total quantity of
immature and mature GFP, respectively (in mmol). In comparison with most
other models, we consider total quantities of molecules and not concentrations.
This has the advantage of simplifying the estimation of promoter activities,
since it omits terms due to growth dilution from the equations.

The rate of transcription drives the dynamics of gene expression and is
defined as km a(t)V (t), representing the total amount of mRNA produced
per time unit in the growing cell population (usually expressed in mmol ·
mL−1 · min−1). We will call a(t) ∈ R+, which is a dimensionless quantity
scaled between 0 and 1, the promoter activity, whereas km ∈ R+ represents
the maximum transcription rate. With the constants dM , kU , dR, kR ∈ R+
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(min−1), characterizing the degradation, translation, and maturation steps,
we obtain the following ODE system:

d

dt
M(t) = kM a(t)V (t)− dM M(t),

d

dt
Ru(t) = kU M(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t).

(3.16)

Notice that the transcription rate is modulated by the volume of the growing
cell population, which can be replaced by its estimate from Equation 3.15. As
a consequence, the first equation of the model writes

d

dt
M(t) = k′M a(t) α̂ V (t)− dM M(t),

where k′M = kM/α. The resulting gene expression model can be easily brought
into the form of Equation 3.1:

x(t) =


M(t)

Ru(t)

R(t)

 , A(t) =


−dM 0 0

kU −(dR + kR) 0

0 kR −dR

 ,

B(t) =


k′M α̂ V (t)

0

0

 , C(t) =


0

0

β

 , u(t) = a(t),

y(t) = βR(t).

This allows the promoter activity a(t) as well as the initial conditions M0,
Ru0 , R0 to be estimated from the measured fluorescence signal R̃(ti). Whereas
the degradation constants dR, dM and the maturation constant kR are usually
available, the other parameters are generally not known precisely. However,
we prove in Section B6 that setting β, kU , k′M to 1 still allows the time-varying
profile of a(t) to be estimated, up to some unknown multiplicative coefficient
(as usual in the literature).
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Section B3.2 provides an efficient procedure for computing the observation

matrix Hw for the above system. The efficiency and accuracy of the compu-
tation of the observation matrix can be further increased when gfp mRNA is
unstable and the maturation time is fast (i.e. for kR and dM large compared
to dR), which is the case for the reporter genes used in this study (de Jong
et al., 2010). This makes it possible to lump the gene expression model of
Equation 3.16 into a single step and thus simplifiy the regularized regression
problem.

The linear inversion method for computing the promoter activity was ap-
plied to the reporter gene data in Figure 3.3, resulting in the estimates shown
in the third row. We notice a sharp peak in the promoter activity of fis right af-
ter the nutrient upshift, which is consistent with previous reports (Azam et al.,
1999), and the same behavior is observed for gyrA. Whereas the activity of
the crp promoter shows little variation, consistent with the observation that
the Crp concentration does not change much across growth phases (Kuhlman
et al., 2007), upon glucose exhaustion the activity of acs shows a dramatic
increase, in large part due to sudden accumulation of cyclic AMP in the cell
(Berthoumieux et al., 2013; Wolfe, 2005). These examples illustrate that the
method correctly infers known fast changes in gene expression from the data,
while avoiding overfitting outside the transition region.

Like in Section 3.3.2, we used in-silico benchmarks resembling the actual
data to further evaluate the ability of the method to reconstruct promoter
activities, in particular the timing of the peak and its amplitude. The results
in Figure 3.4C and Section B5 show that the method is stable even when the
signal-to-noise ratio is low, and manages to capture the rapid variations in
promoter activity with high precision. Like in Section 3.3.2, we remark that
the method is robust, but nevertheless introduces some bias in extreme cases.
However, this bias is much smaller than that obtained by an indirect method
analogous in spirit to that outlined in the previous section (Figure 3.4C).

The estimation of the promoter activity is interesting in its own right, as
it gives insight into changes in the transcriptional activity of specific genes
during growth transitions. However, it can also be the first step towards the
estimation of the concentration of the regulators of a gene (Bansal et al., 2012;
Finkenstädt et al., 2008) or of the concentration of the protein encoded by the
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gene of interest (de Jong et al., 2010). In the next section, we will develop a
direct linear inversion method for addressing the latter problem.

3.3.4 Estimation of protein concentration

The expression of a gene of interest involves the same steps as the expression
of the reporter gene, without the maturation step (Figure 3.1). As explained
in the previous section, in the case of transcriptional fusions the promoter
activities a(t) are the same for the reporter gene and the gene of interest.
However the other parameters describing mRNA and protein synthesis and
degradation may be different.

In order to model the expression of the gene of interest, we introduce
new variables describing the total amount of mRNA and protein for the gene
of interest, denoted by N(t) and P (t) (mmol), respectively, and new kinetic
constants kN , dN , kP , dP (min−1). The concentration of the protein of interest
is given by p(t) = P (t)/V (t). This results in the following ODE system:


d

dt
N(t) = kN V (t) a(t)− dN N(t),

d

dt
P (t) = kP N(t)− dP P (t),

p(t) = P (t)/V (t).

(3.17)

Introducing the variables N ′(t) = αN(t) and P ′(t) = αP (t), the system of
Equation 3.17 becomes


d

dt
N ′(t) = kN αV (t) a(t)− dN N ′(t),

d

dt
P ′(t) = kP N

′(t)− dP P ′(t)
p(t) = P ′(t)/ (αV (t)) .

(3.18)

Like in the previous section, αV (t) can be replaced by the experimentally
measured absorbance signal α̂ V (t), yielding:
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x(t) =

(
N ′(t)

P ′(t)

)
, A(t) =

(
−dN 0

kP −dP

)
, u(t) = a(t),

B(t) =

(
k′N α̂ V (t)

0

)
, C(t) =


0

0

1/α̂ V (t)

 , y(t) = p(t).

For the estimation of the protein concentration p(t), the scheme outlined
in Figure 3.2 applies, with u(t) = a(t), y1(t) = p(t), and ỹ2(t) = R̃(t). This
allows an estimate of p(t) to be obtained from the experimental measurement
of R(t) as explained in Section 3.2.2. When the gene expression model in
Equation 3.18 can be reduced to a single step, the observation matrix of the
problem can be computed in an efficient way as explained in Section B3.4.

The protein concentrations estimated from the E. coli reporter gene data
by means of the above method are shown in the bottom row of Figure 3.3. The
degradation constant of Fis was measured (dP = 0.0065 min−1; (de Jong et al.,
2010)), whereas the other proteins were assumed to be long-lived (dP = 0.001

min−1), like most proteins in E. coli (Larrabee et al., 1980b). We observe that
the Fis concentration transiently increases after the nutrient upshift, which
is consistent with the role of Fis in activating the synthesis of stable RNAs
necessary for growth (Dennis et al., 2004). The concentration of Crp is stable
during growth on glucose and somewhat increases after glucose exhaustion, as
expected from the fact that Crp activates catabolic genes needed for growth
on poor carbon sources (Gosset et al., 2004b). Interestingly, this accumulation
cannot be simply inferred by looking at the fluorescence data, which show no
increase after glucose exhaustion. It illustrates the importance of taking into
account different half-lives for reporter proteins and proteins of interest.

We also tested this method on the simulated data. The results are reported
in Figure 3.4D and show that linear inversion is more stable and introduces
less bias than other approaches, notably indirect approaches based on the esti-
mation of a(t) and numerical integration of Equation 3.18 using this estimate.
Another advantage of the linear inversion method is that it does not need an
estimate of the initial conditions, which are often unknown. In conclusion, our
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direct method allows rich information on gene expression to be inferred from
the absorbance and fluorescence data under reasonable assumptions.

3.4 Software for applying linear inversion
methods

As they rely on few assumptions and require virtually no hand-tuning, the
linear inversion methods developed in this paper are suitable for routine treat-
ment of reporter data gene obtained in microplate experiments, which generate
a huge quantity of measurements (typically 104− 105 data points). The linear
inversion methods were implemented in the Python package WellFARE, rely-
ing on the scientific Python libraries NumPy and Scipy (Jones et al., 2001).
In addition, the package provides utilities for parsing data files and removing
possible outliers from the absorbance and fluorescence signals. The WellFARE
package is available under an LGPL license, but has also been integrated into
a web application called WellInverter, which provides a graphical user inter-
face allowing access to the linear inversion methods through a web browser
(Figure 3.5). The user can upload data files by means of WellInverter, remove
outliers and subtract background, and launch the procedures for computing
growth rates, promoter activities, and protein concentrations (Section B7).

3.5 Discussion

The inference of meaningful gene expression profiles from indirect experimental
data is a key step in the analysis of dynamical models in systems biology. As
reporter genes tend to become ubiquitous, it is important to develop reliable
methods for the automated treatment of the large amounts of data becoming
available. We have shown that the estimation of growth rate, promoter ac-
tivity, and protein concentration from reporter gene data can be expressed as
linear inversion problems using ODE-based measurement models and we pro-
posed efficient procedures to compute the observation matrices solving these
problems. The methods thus obtained were used to study the expression
dynamics of several genes of E. coli during growth transitions, where they
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confirmed their ability to handle critical issues in reporter gene data analysis:
low signal-to-noise ratios and rapid changes in gene expression in response to
environmental perturbations. The validity of these estimation procedures was
reinforced by tests on simulated data, which showed that the methods are
robust and little biased.

Several methods for the analysis of reporter gene data have been proposed
in the literature, all of which are implicitly or explicitly based on the same
or very similar measurement models for interpreting the data. The major dif-
ferences between the approaches lie in the information they extract from the
data and in the way the profiles are computed from the primary data. The
basic idea underlying the linear inversion methods presented here is that they
are direct, in the sense that they perform regularization on the quantity to be
estimated, rather than by plugging empirically smoothed versions of the data
into the measurement models (de Jong et al., 2010; Ronen et al., 2002). Our
results show that this improves the robustness of the estimation process. In
comparison with (Bansal et al., 2012), we extend the linear inversion meth-
ods to growth rates and protein concentrations, thus more fully exploiting the
information contained in reporter gene data. Moreover, we improve the prac-
tical applicability of the approach in that we do not need to make assumptions
that are often not realistic, such as zero initial promoter activities, constant
growth rate, and direct measurements of reporter concentrations. The lin-
ear inversion methods remain tractable when improving estimation through
the addition of linear constraints (e.g., to ensure positive promoter activities
and protein concentrations), the consideration of uncertainty on the data, or
the use of different regularizations (L1 regularization or regularization on the
second derivative) (de Nicolao et al., 1997).

The methods described in this paper are made available as a Python pack-
age and can also be accessed through a user-friendly web application. Other
tools for the analysis of reporter gene data are WellReader (Boyer et al., 2010)
and BasyLICA (Aïchaoui et al., 2012). While the Matlab program WellReader
uses the indirect approaches from (de Jong et al., 2010), BasyLICA is based
on the use of Kalman filters, which also directly estimate quantities of interest
from the reporter gene data by a Bayesian approach. In comparison with Ba-
syLICA, WellInverter estimates not only promoter activities but also protein
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concentrations from the data. In addition, WellInverter uses regularization
based on generalized cross-validation to avoid hand-tuning.

The generality of the techniques used in this paper suggests that they could
be applied to a much wider range of problems. A necessary condition for the
application of the linear inversion methods is that the measured data is linearly
related to the biological quantity of interest. Notice that this does not exclude
time-varying parameters in Equation 3.16 or Equation 3.17, for instance a
time-varying degradation constant of the protein, due to a change in half-live
after a growth transition (Hengge-Aronis, 2002). As long as the time-varying
parameters are known, for example when their profile has been measured, the
inversion problem remains linear. To some extent, this even allows nonlinear
estimation problems to be handled in our framework, as illustrated by the
growth-rate estimation in Section 3.3.2.

The methods proposed in this paper provide the most general and com-
prehensive treatment of the reconstruction of gene expression profiles form
reporter gene data available today, based on a solid mathematical founda-
tion and supported by user-friendly computer tools. The approach directly
carry over to luminescent reporter genes and may also apply to time-series
data obtained by completely different experimental technologies, like DNA
microarrays, RNA-Seq or quantitative proteomics. While we validated and il-
lustrated the methods by means of reporter gene data from bacterial kinetics,
the measurement models of Equation 3.16 and Equation 3.17 are sufficiently
general to apply to higher organisms as well.
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Figure 3.4: Comparison of different methods for the estimation of
growth rate and promoter activity from reporter gene data. In partic-
ular, we compare indirect approaches based on plugging empirically smoothed
versions of the data into measurement models with the direct linear inversion
methods proposed here (including a variant in which ε is set to 1). Additional
examples can be found in Section B5. A. Simulated noisy absorbance and
fluorescence data. B. Estimates of the growth rate µ(t) obtained with the
different methods. C. Estimates of promoter activity a(t). D. Estimates of
protein concentration p(t), using the direct method developed in this paper,
and an indirect method consisting in the estimation of a(t), followed by nu-
merical solution of Equation 3.17. Solid lines and shaded regions represent
the mean ± one standard deviation over 100 simulations. The direct methods
perform better than the indirect methods in that they yield estimates with
less bias and lower variance. The use of ε = 1 may introduce a bias.
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Figure 3.5: Screenshot of the web application WellInverter.
WellInverter allows reporter gene experiments to be analyzed online through a
web-based platform. The screenshot shows background-corrected absorbance
data and estimated promoter activities for three different wells (G7, G8 and
G9).





Summary of Chapter 4

In this chapter we present and discuss the results of our study of CCR, intro-
duced in Chapter 1. We show that in a strain expressing crp∗, the variations
of our synthetic plac∗ promoter are well explained by a model involving only
CRP∗ and global physiological effects. By adding cyclic AMP to this model
we were able to explain the activity profile of plac∗ during glucose-glycerol
and a glucose-acetate diauxies. Our model fails to predict what happens when
cAMP is added in large excess to the growth medium during growth on glucose.
We solve this discrepancy by showing that cAMP import is likely repressed in
presence of glucose

Once calibrated, our model enables us to assess the relative contribution
of each regulator over the course of a given experiment (cAMP, CRP, and
global physiological effects) by comparing the observed plac∗ activity and β-
galactosidase concentration to the hypothetical scenarios where these different
factors are kept constant over the time course of the experiment. We found
that while cAMP exhibits dramatic variations during growth transitions, its
contribution to the activity of plac∗ was actually of the same order of magni-
tude as CRP.

Résumé du Chapitre 4

Dans ce chapitre nous présentons et discutons les résultats de notre étude de
la répression catabolique, introduite au Chapitre 1. Nous montrons que dans
une souche exprimant crp∗, les variations de notre promoter synthétique plac∗

sont bien expliquées par un modèle mettant en jeu uniquement CRP∗ et des
effets physiologiques globaux. En amendant dans ce modèle pour prendre en
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compte l’action d’AMP cyclique, nous avons pu expliquer le profile d’activité
du promoteur plac∗ observé durant des diauxies glucose-glycerol and glucose-
acetate. Nous observons que notre modèle ne permet pas de prédire l’effet
de l’ajout d’AMP cyclique en large excès dans le milieu de culture lors d’une
croissance sur glucose. Nous montrons que cela peut-être expliqué par le fait
que l’import d’AMP cyclique est réprimé en présence de glucose.

Le modèle une fois calibré permet d’évaluer, pour expérience donnée, les
contributions relatives de chaque acteur (AMPc, CRP, et effets physiologiques
globaux) en comparant l’activité de plac∗ et la concentration de β-galactosidase
observées à leurs valeurs hypothétiques dans le cas ou chacun de ces ateurs
resterait constant dans le temps. Nous observons que bien que l’AMPc varie
dramatiquement entre deux phases de croissance, sa contribution à l’activité
du promoteur plac∗ reste du même ordre d’importance que la contribution de
CRP.



Chapter 4

Regulation dynamics of a
CRP-cAMP dependant promoter
in E. coli

4.1 Motivation

We have seen in the introduction of this thesis that the role of cAMP in E.
coli ’s Carbon Catabolite Repression, and in particular its role in the regulation
of the lac operon, remains controversial (Crasnier-mednansky et al., 2008;
Narang, 2009a). We showed in Section 1.1.4 that the activity (in number of
proteins produced per cell per minute) of a cAMP-dependent promoter can
be well explained by the product of cAMP-related effects and the influence of
global factors. We therefore postulated the following regulation model for the
synthetic plac∗ promoter, designed so as to be regulated by the CRP-cAMP
complex only.:

aplac∗(t) = fa ·
(

[CRP-cAMP](t)
Cc + [CRP-cAMP](t)

)
·
(

apRM(t)

KpRM + apRM(t)

)
, (4.1)

, where aplac∗(t) denotes the activity of plac∗ at time t. This promoter is in-
serted upstream of a gene coding for a fluorescent protein (gfp-mut2 ), allowing
us to infer promoter activity from fluorescence and absorbance measurements
as explained in Chapter 3. The promoter activity apRM(t) of a constitutive
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reporter gene (pRM-gfp) is used as a proxy of the physiological state of the
cell.

In a wild-type E. coli strain, changes in the activity and concentration of
the gene expression machinery occur during growth transitions, simultaneously
with important modulations of the cAMP and CRP pools. To calibrate the
model of Equation 4.1 and ensure that each parameter can be identified we
will need to separate the effects of the different regulators, i.e. use a set of
specifically designed strains to create conditions in which influences due to
the gene expression machinery dominate, and conditions in which the specific
regulations of plac∗ determine the activity of this promoter. We will verify
that the parameter estimates obtained in these conditions can also be used to
explain plac∗ activity during growth transitions in wild-type strains. Finally,
we will confront the calibrated model with paradoxical observations in which
the addition of cAMP to the growth medium has no effect on the activity of
plac∗ during growth on glucose.

4.2 Results

4.2.1 Regulation of a CRP-cAMP dependent promoter
by CRP∗

In a strain where the CRP-cAMP complex is replaced by a functionally anal-
ogous protein, CRP∗, the model of Equation 4.1 becomes:

aplac∗(t) = fa

(
[CRP∗ ]

Cc + [CRP∗ ]

)(
apRM(t)

KpRM + apRM(t)

)
, (4.2)

where we assume that the affinity constant Cc for the plac∗ promoter was the
same for CRP-cAMP and CRP∗. We thus obtain a simpler model, independent
of fluctuations of the concentration of cAMP, which can therefore be more
easily calibrated from experimental observations.

Mutant E. coli strains producing neither cAMP nor CRP (∆cya ∆crp
genotype), were transformed with different expression and reporter plasmids
in order to induce the synthesis of CRP∗ in the cells in a controlled way, and
simultaneously monitor the variations of aplac∗(t) and apRM(t) (Figure 4.1).
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A first strain was obtained by transforming ∆cya ∆crp cells with a plasmid
carrying crp∗ downstream of a ptet promoter, which allows crp∗ transcriptionto
be tuned by modulating the concentration of the inducer anhydro-tetracycline
(ATc) in the growth medium. In order to monitor crp∗ synthesis and estimate
the time-varying profile of intracellular CRP∗ concentration, other strains were
transformed with a plasmid carrying a ptet-crp∗-gfp construction, where the
genes crp∗ and gfp are transcribed together, as a consequence of which the
synthesis rate of gfp can be assumed equal to the synthesis rate of CRP∗. The
strain carrying the ptet-crp∗ induction plasmid was also transformed with
reporter plasmids plac∗-gfp or pRM-gfp to monitor the time course of aplac∗(t)

and apRM(t) over time.
Bacteria were grown overnight on glucose, then diluted 1/20 in minimal

media with different ATc concentrations and nutrient compositions (either
0.3% glycerol, or 0.3% glucose + fructose). Their growth and fluorescence were
monitored in a microplate reader in order to infer the activities of the different
promoters over time (dotted lines in Figure 4.2). The nutrient compositions
were chosen so as to yield different plac∗ activity profiles (panels G and H). The
ptet-crp∗-gfp construction makes it possible to estimate a synthesis rate profile
of CRP∗, denoted acrp∗(t). We see in panels A and B of Figure 4.2 that acrp∗(t)

increases at the beginning of the experiment due to the production of CRP∗.
The subsequent decrease in activity is due to the fact that ATc is degraded
in the growth medium (Politi et al., 2014), and the initial ATc concentrations
were chosen through trial and error to be slightly above the ptet activation
threshold. The concentration of CRP∗ resulting from this synthesis can be
computed using the following one-step expression model:

d

dt
[CRP∗ ](t) = acrp∗(t)− (dCRP − µ(t)) [CRP∗ ](t), (4.3)

where parameter dCRP is the degradation rate of CRP (which is assumed
equal to the degradation rate of CRP∗ since the two proteins are very sim-
ilar). As dCRP has never been measured (the only reported value, obtained
by fitting a large mathematical model to experimental data, is 0.01 min−1), it
was estimated using dedicated experiments, reported in Section C1 of the SI.
These experiments show that during growth on acetate, in conditions where the
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variations of aplac∗(t) depend essentially on the variations of [CRP∗ ], Equa-
tion 4.3 only yields [CRP∗ ] profiles matching the experimental data when
dCRP ' 0.0011 min−1, which indicates that CRP(∗) is a stable protein (half-
life of circa 11h).

Figure 4.1: Induction and reporter plasmids used in the ∆cya ∆crp E.
coli mutant experiments. Note that the strains carry at most one reporter
gene, so strains carrying a ptet-crp∗-gfp construction do not carry the plac∗-gfp
reporter plasmid.

Using this value of dCRP the profiles of the intracellular CRP∗ concentration
in the different conditions could be estimated from the of profiles of crp∗

activity (panels E and F of Figure 4.2). We see that in all conditions this
concentration increases during the first hours of the experiment, then decreases
as CRP∗ is not produced anymore, and is diluted through population growth
(the decrease due to degradation being negligible). These profiles enable us to
calibrate our model. We adjust the values of Cc and KpRM such that, in all
conditions, the profile of aplac∗ , given the profiles of apRM and [CRP∗ ], best
fits the experimental data. The best fit gives Cc = 48000 (arbitrary units) and
KpRM = 25 (a.u.), as shown in the first plot of Figure 4.3, and gives very good
predictions of aplac∗(t) (solid lines in panels G and H of Figure 4.2). The fact
that parameters Cc andKpRM are (most of the time) above the observed values
of, respectively, apRM(t) and [CRP∗ ](t) shows that plac∗ activity is sensitive
to both these variables. In particular, this establishes that plac∗ expression
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is controlled by global regulations (which can be clearly seen around t = 400

minutes in Figure 4.2F).
These results, which tend to prove the role of CRP and global effects in

the regulation of a CRP-cAMP-dependent gene, also indicate that the simple
model of Equation 4.2 is sufficient, in the sense that it captures well the ob-
served activity of plac∗, in a quantitative way, and no additional regulation
mechanism needs to be invoked. It can therefore be expected that the full
model of Equation 4.1 will be sufficient to explain the activity of plac∗ in a
wild-type strain.

4.2.2 Regulation of a cAMP-regulated promoter during
diauxic shifts

Catabolic genes are known to be transiently over-expressed during growth
transition towards a poorer carbon source (Wolfe, 2005; Inada et al., 1996;
Berthoumieux et al., 2013). Can the model of Equation 4.1, partly calibrated
in the previous section, quantitatively explain these variations of activity?

Bacterial strains carrying reporter plasmids pcrp-gfp, pRM-gfp and plac∗-
gfp were grown overnight on glucose, then rediluted (factor 1/1000) in fresh
minimal medium containing either 0.2% glucose or 0.2% glucose and 0.2%
glycerol. Their growth and fluorescence were monitored in the microplate
reader. The resulting promoter activities are represented in Figure 4.4. Dur-
ing the experiments, wells with strains containing plac∗ cells were sampled and
assayed for cAMP concentration in the medium. The intracellular cAMP con-
centration was inferred from these measurements as explained in Section 1.3.3
(black lines in Figure 4.4). The original data are presented in more detail in
Appendix C. We see that gene expression profiles have similar shapes in the
two diauxies (growth on glucose as the sole carbon source leads to a glucose-
acetate diauxie because acetate is secreted during fast growth on glucose), but
the amplitudes of the variations differ: the overshoot of the plac activity is at
least twice as large in the case of the glucose-glycerol diauxie, and the activity
of pRM(t) falls more rapidly in absence of glycerol (- 50 % between the values
at t = 550 min and t = 650 min) while it is maintained longer on glycerol
(- 10 % between t = 550 min and t = 650 min). This difference may be ex-
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Figure 4.2: Regulation of plac∗ by CRP∗ in a ∆cya ∆crp strain. Dot-
ted lines and shaded areas indicate the mean ± one standard deviation of at
least 4 promoter activity profiles observed in different microplate wells. All
observations in one column come from the same microplate. The production
of crp∗ in all strain was induced at t = 0 minutes by rediluting the cells in a
fresh medium containing a concentration of ATc indicated in panels A and B.
A,B. Promoter activity of the ptet-crp∗-gfp gene, induced by ATc at t = 0
minutes. C,D. Activity of pRM. E,F. Concentrations of CRP∗, estimated
from the activities in panels A and B. G,H. The activity of plac∗ is pre-
dicted from apRM(t) (panels C,D) and [CRP](t) (panels E,F) using the model
of Equation 4.2. The predictions (solid lines) are compared to the observed
data (dotted lines).
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Figure 4.3: Calibration of the plac∗ regulation model on observed
data. The parameters Cc, KpRM , and Kc are varied and the goodness of fit is
calculated for each parameter set. and The columns show calibration results
using different datasets. The left panel uses only the data from ∆cya ∆crp
strains represented in Figure 4.2. The column in the middle is based on the
data from diauxic shifts observations presented in Figure 4.4. The right column
uses data from both types of experiments. In all plots, triangles indicate the
best fit in the sense of the minimal squared error between model prediction and
observed data. Dark blue and dark red regions indicate parameters yielding
a squared error less than 5%, or more than twice larger than the error of the
best fit, respectively.
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plained by the fact that glycerol is a relatively rich carbon source, maintaining
a relatively high activity of machinery. In both diauxies we also observe a
decrease of acrp(t) during growth transitions, potentially due to global effects
(Berthoumieux et al., 2013).
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Figure 4.4: Promoter activities and cAMP concentration in E. coli
during diauxic shifts. The promoter activities were measured from ab-
sorbance and fluorescence data as explained in Chapter 3. The curves indicate
the mean and one standard deviation to the mean of at least 4 replicate wells.
Cyclic AMP concentrations (in arbitrary unit, scale not represented) were de-
duced from external measurements of cAMP concentration using an inversion
method, as explained in Chapter 1. The dashed line shows a representative
absorbance profile on a logarithmic scale.

These experiments alone lead to a very poor calibration of the model of
Equation 4.1 (middle column in Figure 4.3). In particular, these data do not
provide any reliable estimate for the saturation threshold Cc of plac∗ with
respect to CRP-cAMP, and they only yield a very rough estimate of KpRM ,
which does not even clearly allow to rule out the case KpRM = 0. In other
words, these data do not provide evidence that global regulations have an
effect on plac∗ (as was the case with the observation on mutants in the last
section). However, pooling these observations with those of Figure 4.2 en-
ables us to fully calibrate the model (right column in Figure 4.3). The best
fit corresponds to biological parameters close to the ones found with ∆crp



4.2. RESULTS 101

∆cya mutants (KpRM = 21, Cc = 42000 a.u.), meaning that the sensibility of
the plac∗ promoter to global modulations and to CRP-cAMP (or CRP∗) is
conserved between the different conditions. The calibrated model appears to
explain well the activity of plac∗ in both the wild-type strain and the mutant
strains (Figure 4.5).

Figure 4.5: Predictions of the calibrated model. CRP concentrations
were estimated from the crp∗ promoter activities shown in Figure 4.4, us-
ing Equation 4.4. CRP-cAMP concentrations were computed from CRP and
cAMP concentrations and the dissociation constant Kc estimated in Sec-
tion 4.2.2. Blue lines are predictions from the model for aplac∗(t), computed
from the CRP-cAMP estimations and apRM(t) profiles. The predictions of
the model are compared to the experimentally observed plac∗ activities (green
lines, same as in Figure 4.4). All promoter activities, predicted, and observed,
are normalized by their means to accentuate the similarity in fold change be-
tween the model predictions and the observed data.

Parameters Kc, Cc and KpRM characterize the sensibility of the plac∗ pro-
moter to the different variables. We observe that the estimated value of the
CRP-cAMP dissociation constant Kc is of the same order of magnitude as
cAMP concentrations during growth on glucose, which was also the conclu-
sion drawn from in-vitro experimental data in (Narang, 2009b). Higher cAMP
concentrations will saturate CRP: at the apex of the transient cAMP peak,
almost 100% of the CRP molecules are bound by cyclic AMP, as can be seen
in both plots of Figure 4.5. Thus, the dramatic increase of cAMP concentra-
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tion at transitions (by a factor of 20) results in relatively mild variation of
the CRP-cAMP concentration and plac∗ activity (by a factor of three in the
glucose-glycerol diauxy).

The concentration of CRP in the cells, shown in Figure 4.5, was estimated
from acrp(t) using an expression model similar to Equation 4.3:

d

dt
[CRP](t) = αacrp(t)− (dCRP + µ(t)) [CRP](t), (4.4)

where α = 1/5 is a correction factor reflecting the fact that the plasmid carry-
ing the pcrp-gfp reporter is present in approximately 5 copies per cells. This
correction makes it possible to compare the obtained CRP concentration (in
arbitrary units) to the CRP∗ concentration found in Section 4.2.1, where we
assumed that the transcription rate of gene gfp equals that of crp∗ in the ptet-
crp∗-gfp construction. A somehow paradoxical consequence of the stability of
CRP (small dCRP ) is that even though the synthesis rate of crp decreases upon
glucose exhaustion (Figure 4.4), the growth arrest causes CRP concentrations
to actually increase: for both diauxies, [CRP] increases by approximately 50%
between t = 500 min. and t = 700 min. The affinity constant Cc of the CRP-
cAMP complex for the plac∗ promoter was found to be much higher than the
observed CRP-cAMP concentration, which means that the plac∗ promoter is
fully sensitive to the variations of the CRP-cAMP concentration. Since this
concentration is proportional to the concentration of CRP, we conclude that
the increase of CRP concentration after exhaustion of glucose increases the
activity of plac by the same amplitude.

We also find KpRM = 21. Since the values of apRM(t) measured in both
diauxies are most of the time well above this value, we conclude that the
modulations of plac∗ activity by global effects during growth transitions are
less pronounced than the (already mild) variations of pRM activity (shown in
Figure 4.4).

In order to understand the functional role of each regulator, we calculated
their relative importance for setting the concentration of β-galactosidase (or
any other cAMP-induced enzyme) in the cells, as this concentration deter-
mines the capacity of the cell to grow on secondary carbon sources. We can
assume that the activity profiles of the plac∗ promoter observed here is equiv-
alent to the activity of the lac operon in presence of IPTG. We have seen
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in Section 1.1.3 that this concentration was related to the activity of the lac
promoter as follows:

d

dt
[β-Gal.](t) = alac(t)− µ(t)[β-Gal.](t), (4.5)

which enables us to obtain an estimation of [β-Gal](t) using aplac∗(t) as a
(proportional) estimate of alac(t). Table 4.1 shows the importance of the dif-
ferent variables in determining the activity of plac∗ and therefore the intra-
cellular β-galactosidase concentration after glucose exhaustion: we used the
calibrated model to predict what would be the height of the plac∗ activity peak
at growth transition (aplac∗(t = 650)) and the concentration of β-galactosidase
after growth transition, at t = 750, if one of the variables [cAMP], [CRP],
or apRM , were to be kept constant after t = 500 minutes, i.e., if it played no
role in determining the value of aplac∗(t). These simulated experiments give
an estimate of the fold change in plac activity and β-galactosidase concen-
tration due to each actor, relative to the hypothetical situation where this
actor does not play any role, all other things being equal. As expected, we
see that cAMP stands out as the main cause of the peak of aplac∗ . Variations
of [CRP] were found to have a smaller yet comparable importance, while the
action of global regulations was found to be marginal in these experiments. In
terms of influence on the β-galactosidase concentration after the growth tran-
sition, however, all these regulations seem to have a very moderate effects. In
particular, the important overshoot of cAMP concentration only increases β-
galactosidase activity by 24% compared to the scenario in which intra-cellular
cAMP concentration would stay constant.

These results would need to be confirmed with other diauxies. We present
in Appendix C a study of two additional diauxies on glucose-xylose, and
glucose-fructose. The model calibrated in this section predicts relatively well
the response of plac∗ on xylose. However, the present calibration failed to cor-
rectly explain the particular dynamics observed on fructose. This discrepancy
may be due to the poor quality of the cAMP concentrations measurements for
this diauxie.
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Glucose Glucose-Glycerol

aplac∗(t = 650min.) [β-Gal.]t=750min. aplac∗(t = 650min.) [β-Gal.]t=750

[cAMP] +37% +8% +62% +24%
[CRP] +33% +13% +24% +13%
apRM -14% -9% -16% -14%

Table 4.1: Effect of the different regulators on the activity of a CRP-
cAMP dependent gene and β-galactosidase concentrations after the
transition.

4.2.3 Effect of external cAMP on the activity of a
cAMP-regulated promoter

In (Wanner et al., 1978) the authors remark that adding cAMP to the growth
medium does not have a large impact on the steady-state activity of the
lac operon (Figure 4.6A). This is interpreted in (Narang, 2009b) to mean
that cAMP levels on glucose, while lower than on other carbon sources, are
nonetheless at near-saturation levels with respect to CRP. Our observation of
the glucose-glycerol diauxy, as well as our calibrated model, corroborate this
interpretation. However, our data suggest that a significant increase of the
intracellular cAMP concentration could potentially amplify plac∗ activity by
at least 3-fold, which is not observed in Wanner’s data.

It has been suggested in (Ishizuka et al., 1994) that the CRP-cAMP com-
plex down-regulates the expression of crp. Thus, higher intracellular cAMP
concentrations could result in lower CRP concentrations and overall unchanged
CRP-cAMP concentrations. This hypothesis is supported by the observation
in (Ishizuka et al., 1993) that adding external cAMP has the expected up-
regulatory effect on the lac promoter, provided that crp is over-expressed.

Another, even simpler explanation of the lack of any effect of external
cAMP on the activity of the lac operon is that cAMP does not enter the
cell. This hypothesis is rejected by the authors of (Wanner et al., 1978), who
point out that cAMP addition to the growth medium has a clear impact in
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some conditions, such as growth rate recovery on some sugars in ∆cya cells.
However this does not rule out the possibility that cAMP import (or absence of
import) depends on the carbon source used by the bacteria, and in particular
that cAMP import is blocked on rich carbon sources.

Figure 4.6B presents a series of experiments in which the activity of our
plac∗ promoter was observed during growth on glucose and until a few hours
after glucose exhaustion, without cAMP into the medium, and with the ad-
dition of 2mM cAMP in the medium. We observe that in a wild-type strain,
adding cAMP in the medium has no effect during growth on glucose: the only
notable difference occurs during growth transition, where a transiently ∼30%
higher activity can be observed for cells growing in presence of external cAMP.
This observation suggests that the cells are oblivious to external cAMP during
growth on glucose. In a strain lacking cAMP (∆cya) placed in a cAMP sup-
plemented medium, it could be expected that the external cAMP, by entering
the cell, would re-establish the original phenotype. Instead, we observe that
the activity of plac∗ remains negligible during growth on glucose and the pro-
moter is suddenly activated upon glucose exhaustion, which is further evidence
of the absence of cAMP import during growth on glucose. A possible reason is
that glucose inhibits the cAMP import system, which would be coherent with
the fact that cAMP is not stricly needed by E. coli during this growth phase.
Levels of phosphodiesterase (which catalyzes cAMP degradation) could also
play a role in screening external cAMP (Kuhlman et al., 2007). As an addi-
tional control we observed that inducing CRP∗ in the cells at the beginning
of the experiment resulted in a 2-fold increase of plac∗ activity on glucose,
confirming that the inaction of external cAMP is a problem specific to cAMP
import, and not due to a repression of the plac∗ promoter during growth on
glucose.

In conclusion, the data presented in (Wanner et al., 1978) should be inter-
preted with care, and not be seen as an indication of the sensitivity of the lac
promoter to cAMP, as the addition of 5mM external cAMP may in fact result
in different (and unknown) intracellular concentrations of cAMP, depending
on the growth substrate.
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A B

Figure 4.6: Effect of cAMP addition to the medium on the regulation
of plac∗. A. Steady-state observations of β-galactosidase activity in an IPTG-
supplemented medium, on a range of subtrates (glucose, glycerol, acetate, etc.)
with and without addition of 5mM cAMP (Wanner et al., 1978). B. Activity
of plac in E. coli growing on glucose. The curves from different experiments
(indicating the mean and standard deviation from at least 4 replicates) are
synchronized with respect to the entry into stationnary phase.

4.3 Discussion

While the lac operon has been studied for decades and in many different con-
ditions, most studies only consider steady-state experiments, and overlook the
very particular dynamics of the cAMP pool and cAMP-dependent gene activi-
ties during transitions. We found that the overshoot of cAMP was responsible
for an up to 30% increase in enzyme concentration a few hours after glucose
exhaustion. While this increase may seem mild compared to the hundred-
fold modulations of gene activity caused by LacI repression, it contributes
to maintain high enzymatic levels in the cells hours after glucose exhaustion
(as enzymes like β-galactosidase are very stable). The observation that the
expression of cAMP-dependent genes is also sensitive to the cells’ physiology
could explain the observed cAMP overproduction at early stationary phase:
as the activity of the gene expression machinery decreases shortly after glu-
cose exhaustion, it is interesting for the bacteria to maximize the production
of enzymes before energy exhaustion. Using our calibrated model, we found
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that, had the peak of cAMP concentration occured two hours later in the
glucose-glycerol diauxy, the resulting peak of β-galactosidase synthesis would
have been 30% smaller, due to the lower value of apRM(t) in this time interval.
This suggests that the reason of why we found that global regulations had a
weak influence on the peak of cAMP in our experiments is that the peak oc-
curs soon enough to avoid the global decrease of all gene expression following
glucose exhaustion.

While CRP is necessary for the regulation of CRP-cAMP-dependent pro-
moters, it is seldom considered as a modulator of gene activity, and the varia-
tions of its concentration during a diauxy had never been precisely quantified.
We have shown here that the activity of plac∗ was fully sensitive to the concen-
tration of CRP. We have established that CRP is stable, and, as a consequence
accumulates in the cells after glucose exhaustion, thus increasing plac activ-
ity by up to 50% a few hours after phase transition. This suggests that one
possible mechanism by which glucose could lower plac∗ activity is by lowering
CRP concentrations through dilution.

The pivotal role of cyclic AMP in Carbon Catabolite Repression has been
postulated decades ago. Yet, on carbon limited cultures, the action of cAMP
on catabolic genes appears mild compared to the action of specific regulators,
such as LacI in the case of the lac operon. It is still unclear whether cAMP
is intended for increasing the activity of these genes, or if it has another,
more important functional role (Görke and Stülke, 2008a; You et al., 2013).
A difficulty in the study of the role of cAMP is the estimation of intracellular
cAMP concentrations, as the assays are expensive, difficult to perform in a
normal laboratory setting, and can only give extracellular concentrations for
a limited number of time points. The intracellular concentration must then
be deduced, using a measurement model. Furthermore cAMP import, export
and degradation in the cell are largely not understood. We have shown that
by creating biological conditions in which plac∗ expression was independent
of cAMP it was possible to estimate key biological parameters indicating the
sensitivity of this promoter to (seemingly) all other regulators but cAMP, and
that these parameters could be used to estimate the contribution of each actor,
including cAMP, to the activity of the plac∗ promoter and β-galactosidase
concentration in a wild-type strain. In this sense, our study shows the interest
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of carefully planned perturbation experiments in order to characterize a small
regulatory system.



Chapter 5

Conclusion

The inference and analysis of bacterial gene regulatory networks is a difficult
task. Many mathematical formalisms and methods have been developed to
model regulatory interactions and extract relevant information from experi-
mental observations, but sometimes the available data are simply not infor-
mative enough to reach a conclusion. This is the case for carbon catabolite
repression, for which the different studies have, until now, failed to produce a
complete and coherent picture. One reason is that steady-state experiments
provide only scarce data, and the data from different studies cannot be pooled
due to differences in protocols and strains.

Dynamic perturbation experiments, in which we observe bacteria as they
adapt to changes in their environment, provide a richer source of information
than steady-state experiments. They enable us to observe, during a single
experiment, a multitude of transition states that could not be observed dur-
ing steady-state experiments. Since bacteria re-adapt in a matter of minutes,
this approach has greatly benefited from the development of high-throughput
technologies. In particular, fluorescent reporter genes offer a convenient and
non-invasive way to monitor the expression of a gene of interest with much
precision and high time resolution (on the order of minutes). These new tech-
nologies call for a reassessment of the mechanisms underlying CCR.

In this thesis I have developed mathematical methods for the inference of
regulatory networks and the estimation of biological signals, with an applica-
tion to the dynamical study of growth transitions in E. coli . We first provide
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simple rules of thumbs for the reduction of gene expression models from two
steps (transcription, translation) to one step. Such a reduction makes the
model simpler to analyze and to identify (as it has less parameters) and faster
to simulate. However, not taking into account transcription leads to a sim-
plification error. We provide theoretical and experimentally-measured upper
bounds for this error, and provide guidelines for the reduction of larger models
involving several genes.

A second contribution is the development of robust methods for the anal-
ysis of fluorescent reporter gene data. We have shown how the relevant bi-
ological variables can be linked in a linear way to the observed data, and
we have developed estimation procedures that were rigorously tested for bias
and robustness. They constitute, to our knowledge, the most comprehensive
and practical approaches to extract biological signals from reporter gene data
acquired in kinetic experiments in a microplate reader.

We carried out a systematic characterization of the regulation of a cAMP-
dependent promoter in E. coli . Through carefully designed experiments we
could show that this promoter is affected by global regulations, and we eval-
uated the contribution of each actor (cAMP, CRP, and global effects) to the
activity of this promoter during growth transitions. The kinetic parameters
estimated in this study were shown to be conserved across experimental con-
ditions. Therefore they can be used in larger models of CCR involving several
catabolic genes and their regulators. We also showed that CRP is a limiting
factor in the expression of our CRP-cAMP-dependent promoter, and that this
key regulator accumulates in the cells upon growth arrest, thus having a sig-
nificant positive role in the activity of the CRP-cAMP promoter. Notice that
the accumulation of CRP in the cell is not due to any particular up-regulation
mechanism, but simply to growth arrest. Since growth arrest influences the
concentration of all proteins, it can be seen as a global post-transcriptional reg-
ulation signal. Finally, we enhanced our understanding of why adding cAMP
in large excess to the growth medium does not affect the activity of a cAMP-
dependent gene. The analysis of our dynamical experiments show that cAMP
does not enter bacteria in the presence of glucose.



Conclusion en Français

L’inférence et l’analyse de réseaux de régulation génique est une tache difficile.
De nombreux formalismes et méthodes mathématiques ont été développés pour
modéliser les intéractions entre gènes et extraire des informations pertinentes
des données expérimentales. Mais il arrive que les données expérimentales ne
soient simplement pas suffisament informatives pour mener à une conclusion.
C’est le cas pour la répression catabolique, dont les différentes études n’ont pas
pu, jusqu’à présent, donner une image complète et cohérente. Une des raisons
est que les expériences en régimes stationnaire produisent peu de données, et
les données provenant de différentes études ne peuvent être utilisées ensemble
de par les différences de souches et de protocoles.

Les expériences de perturbation dynamiques, où l’on observe des bactéries
durant leur adaptation à des changements environementaux, fournissent une
meilleur source d’information que les expériences en régime stationnaire. Elles
permettent d’observer, sur une seule expérience, une multitude d’états transi-
toires qui seraient inobservable dans une expérience en régime stationnaire.
Comme les bactéries s’adaptent à un nouvel environement en l’espace de
quelques minutes seulement, cette approache a grandement bénéficié du ré-
cent développement de technologies à haut débit. En particulier, les gènes
rapporteurs fournissent un moyen simple et non-invasif de suivre l’expression
d’un gène d’intérêt durant une expérience, avec une grand présolution et réso-
lution temporelle (de l’ordre de la minute). Ces nouvelles technologies invitent
à une réévaluation des méchanismes de la répression catabolique.

Dans cette thèse nous avons développé plusieurs méthodes mathématiques
pour l’inférence de réseaux de régulation géniques et l’estimation de signaux
biologiques, que nous avons appliqué à l’étude dynamique des transitions chez
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E. coli . Nous avons énoncé des règles pratiques pour la réduction de modèles
d’expression génique de deux étapes (transcription, traduction) à une étape.
Une telle réduction rend l’analyse du modèle plus simple (puisqu’il y a moins
de paramètres) et sa simulation plus rapide. Cependant, ne pas prendre en
compte l’étape de transcription conduit à une erreur de simplification. Nous
donnons des bornes supérieures, théoriques et mesurées expérimentallement,
pour cette erreur, ainsi que des instructions pour la réduction de modèles
d’expression génique dans des plus grands réseaux de gènes.

Une deuxième contribution de cette thèse est le développement de méth-
odes robustes pour l’analyse de données de gène rapporteur fluorescent. Nous
avons montré comment certaines variables biologiques d’intérêt étaient reliées
linérairement aux données expérimentales, et avons développé des procédures
d’estimations dont nous avons rigoureusement évalué la robusteté et d’éventuel
biais. Ces procédures constituent, à notre connaissance, l’approche la plus
complète et pratique pour extraire des signaux biologiques de données de
gène rapporteur fluorescent acquises durant des cinétiques en lecteur de mi-
croplaque.

Nous avons caractérisé de façon systématique les régulations d’un promo-
teur cAMP-dépendant chez E. coli . Grâce à des expériences soigneusement
conçues nous avons pu montrer que ce promoteur subissait l’influence d’effets
physiologiques globaux, et nous avons évalué la contribution de chaque acteur
(cAMP, CRP, et les effets physiologiques globaux) à l’activité de ce promoter
durant des transitions vers l’état stationnaire. Nous avons que les paramètres
cinétiques estimés dans cette étude sont conservé à travers les différents scé-
narii expérimentaux. Ils peuvent donc être utilisés dans des modèles plus larges
de la répression catabolique, impliquant plusieurs gènes cataboliques et leurs
régulateurs. Nous avons également montré que CRP était un facteur limitant
dans l’expression de notre promoteur régulé par CRP-AMPc, et que ce régula-
teur clé s’accumule dans les bactéries lors d’un arrêt de croissance, ayant donc
un important effet positif fur l’activité d’un gènes régulés pas CRP-cAMP.
Remarquons que cette accumulation de CRP n’est pas due à un régulateur
particulier, mais simplement à l’arrêt de croissance. Comme cet arrêt affecte
la concentration de toutes les proteines, il peut être vu comme un signal global
de régulation au niveau post-traductionel. Finalement, nous avons contribué
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à la compréhension de l’absence d’effet de l’AMP cyclique lorsque celui-ci est
ajouté au milieu de culture, en montrant par des expériences en dynamique
que l’AMP cyclique n’est pas importé par des bactéries en présence de glucose





Appendix A

Supplementary Information on
Chapter 2

A1 Reformulation of the models

The following proposition explains the transition between the equation system
expressed in terms of concentrations and the system formulated in terms of
extensive variables.

Proposition 1. Eq. 2.1 and Eq. 2.6 in main text are equivalent.

Proof. The computations below show the equivalence of Eq. 2.1a and Eq.
2.6a. The computations for Eq. 2.1b and Eq. 2.6b are similar.

d

dt
m(t) = κm f(t)− (γm + µ(t))m(t)

d

dt

(
M(t)

V (t)

)
= κm

F (t)

V (t)
− (γm + µ(t))

M(t)

V (t)

1

V (t)

d

dt
M(t)− M(t)µ(t)

V (t)
= κm

F (t)

V (t)
− (γm + µ(t))

M(t)

V (t)

d

dt
M(t) = κm F (t)− γmM(t).
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A1.1 Further simplification of the equation systems

In this section we present a simpler yet equivalent formulation of Eq. 2.6 and
Eq. 2.7. The equation systems thus obtained will be used as a basis for the
proofs given in the next sections. We introduce the following dimensionless
variables, which can be seen as normalized versions of the extensive variables
F , M , and P :

F(t) =
F (t)

F (0)
, M(t) =

γm
κmF (0)

M(t),

P(t) =
γmγp

κmκpF (0)
P (t), P̂(t) =

γmγp
κmκpF (0)

P̂ (t).

Note that by definition, F(0) = 1. When substituting the above variables
into Eq. 2.6, we obtain the following two-step model:

d

dt
M(t) = γm (F(t)−M(t)), (A1a)

d

dt
P(t) = γp (M(t)− P(t)). (A1b)

The one-step model of Eq. 2.7 transforms into

d

dt
P̂(t) = γp(F(t)− P̂(t)), (A2)

which, incidentally, happens to be the model that one would obtain by directly
reducing the system of Eq. A1 using the QSSA. This second reformulation also
conserves the relative error:

∆(t) =
| P(t)− P̂(t) |

P(t)
, (A3)

and we will use Eq. A1 and Eq. A2 as a basis for further discussion in this
appendix.
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A1.2 Influence of the parameters κm and κp

The production constants κm and κp do not play any role in the dynamics of
Eq. A1 and Eq. A2. This can be explained by the fact that κm and κp influence
the amplitude of the variations of M and P , but not the time-scale on which
these variations occur. Moreover, under the assumptions of Propositions 1 and
2,

d

dt
M(0) =

d

dt
P (0) =

d

dt
P̂ (0) = 0,

we haveM(0) = P(0) = 1, independently of the values of κm and κp. Under
different initial conditions, κm and κp appear in the definition of the initial
conditions ofM, P and P̂ , and thus influence ∆(t), but we show in the next
section that the initial conditions play a limited role in the determination of
∆(t). This explains that κm and κp are not further discussed in our study.

A1.3 Influence of the initial conditions

The analytical solution of Eq. A2 1 is

P̂(t) = P̂(0)e−γpt + γpe
−γpt

∫ t

0

eγpxF(x)dx.

We can see here that the initial condition P̂(0) is vanishing with a char-
acteristic time γp. This means that, if the protein production rate is not null,
then the initial conditions do not impact the value of P̂ after a few intervals of
duration γp. In many cases where the population is growing with growth rate
µ (i.e., the volume verifies V (t) = eµt), the quantity of protein grows as well,
and is grossly proportional to eµt. Therefore the relative weight of the initial
condition P̂(0) in P̂(t), given by P̂(0)e−γpt/P̂(t), will decrease in e−(γp+µ)t.
This vanishing effect of the initial conditions hold for Eq. A1, and follows

1 The general equation dy(t)/dt = a(t)y(t) + b(t) has the solution:

y(t) = y(0)e
∫ t
0
a(x)dx +

∫ t

0

e
∫ t
x
a(u)dub(x)dx.
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from the fact that these equation systems are linear filters (see Section A4 for
further discussion).

A2 Proof of Proposition 1

We have seen in the previous section that the model reduction error ∆(t) can
be expressed as a function of the reformulated variables P and P̂ . Moreover,
as the reformulated variable F is proportional to F , we have for all t,

1

F (t)

d

dt
F (t) =

1

F(t)

d

dt
F(t).

As a consequence, proving

∆(t) ≤ 1

γm
sup
s≤t

∣∣∣∣ 1

F (s)

d

dt
F (s)

∣∣∣∣
under the conditions

d

dt
P (0) =

d

dt
M(0) =

d

dt
P̂(0) = 0

is equivalent to proving the formula written in terms of the new variables

|P(t)− P̂(t)|
P(t)

≤ 1

γm
sup
s≤t

∣∣ 1

F(s)

d

dt
F(s)

∣∣ (A4)

under the conditions

d

dt
P(0) =

d

dt
M(0) =

d

dt
P̂(0) = 0.

We will prove this in two steps. First we will prove that

|P(t)− P̂(t)|
P(t)

≤ sup
s≤t

∣∣∣∣F(s)−M(s)

M(s)

∣∣∣∣, (A5)

and then we will prove that

sup
s≤t

∣∣∣∣F(s)−M(s)

M(s)

∣∣∣∣ ≤ 1

γm
sup
s≤t

∣∣ 1

F(s)

d

dt
F(s)

∣∣. (A6)
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To prove Eq. A5 we denote δ(t) = P(t) − P̂(t). By subtracting Eq. A2
from Eq. A1b the differential equation

d

dt
δ(t) = γp

(
(M(t)−F(t))− δ(t))

is obtained, whose analytic solution writes (see footnote 1)

δ(t) = δ(0)︸︷︷︸
0

e−γpt + γpe
−γpt

∫ t

0

(M(u)−F(u))eγpudu. (A7)

We now find an upper bound for the integral. It is clear that, for all
u ∈ [0, t]

|M(u)−F(u)|
M(u)

≤ sup
s≤t

∣∣∣∣M(s)−F(s)

M(s)

∣∣∣∣
or written otherwise

|M(u)−F(u)| ≤ M(u) sup
s≤t

∣∣∣∣M(s)−F(s)

M(s)

∣∣∣∣.
By injecting this into Eq. A7 we obtain

|δ(t)| ≤
(

sup
s≤t

∣∣∣∣F(s)−M(s)

M(s)

∣∣∣∣)γpe−γpt ∫ t

0

M(u)eγpudu. (A8)

Now, by solving Eq. A1b we obtain

P(t) = P(0)e−γpt + γpe
−γpt

∫ t

0

M(u)eγpudu ≥ γpe
−γpt

∫ t

0

M(u)eγpudu,

and therefore by dividing both sides of Eq. A8 by P(t) we obtain

|δ(t)|
P(t)

≤
(

sup
s≤t

∣∣∣∣F(s)−M(s)

M(s)

∣∣∣∣)γpe−γpt
∫ t
0
M(u)eγpudu

P(t)

≤ sup
s≤t

∣∣∣∣F(s)−M(s)

M(s)

∣∣∣∣.
which was the first point to prove.
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The proof of the second point is quite similar. We denote

δM(t) =M(t)−F(t).

By subtracting d
dt
F(t) from both sides of Eq. A1a we obtain

d

dt
δM(t) = − d

dt
F(t)− γmδM(t),

whose analytic solution (see footnote 1): is

δM(t) = δM(0)︸ ︷︷ ︸
0

e−γmt + e−γmt
∫ t

0

eγmu
d

dt
F(u)du.

So we have

|δM(t)| ≤
(

sup
s≤t

∣∣∣∣ 1

F(s)

d

dt
F(s)

∣∣∣∣)e−γmt ∫ t

0

eγmuF(u)du.

Now, by solving Eq. A1a we obtain

M(t) =M(0)e−γmt + γne
−γmt

∫ t

0

eγmuF(u)du ≥ γme
−γmt

∫ t

0

eγmuF(u)du.

So by dividing each side byM(t) in the previous equation we obtain

|δM(t)|
M(t)

≤ 1

γm
sup
s≤t

∣∣∣∣ 1

F(s)

d

dt
F(s)

∣∣∣∣.
This proves Eq. A6. Together with Eq. A5, this proves Proposition 1 in

the main text.

A3 Proof of Proposition 2

Because the extensive variables F ,M, P and P̂ are more suitable for math-
ematically analyzing the gene expression system, we first present a lemma
similar to Proposition 2 in the main text, but formulated in terms of these
variables. We then provide a lemma that build on the result of this first
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lemma, but is expressed in terms of intensive variables (molecular concentra-
tions). Finally, we prove Proposition 2 by some adjustments of the second
lemma.

A3.1 A lemma on the extensive variables

Lemma 1. Under the conditions

d

dt
P(0) =

d

dt
M(0) =

d

dt
P̂(0) = 0,

and assuming that the function F is of the form

F(t) =

{
1 , t ≤ 0,

1 + χ , otherwise,

where χ >= −1, and assuming γm > γp, we have

∆(t) <
γp

γm − γp
|χ|. (A9)

Proof. Due to the initial steady-state hypothesis, P(0) = M(0) = P̂(0) = 1.
For all t > 0, Eq. A1 writes

d

dt
M(t) = γm(1 + χ−M(t)), (A10a)

d

dt
P(t) = γp (M(t)− P(t)) . (A10b)

Eq. A10a leads to

M(t) = 1 + χ− χe−γmt,

and Eq. A10b leads to
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P(t) = P(0)e−γpt + γp

∫ t

0

eγp(u−t)M(u)du

= e−γpt + γpe
−γpt

∫ t

0

eγpu
(
1 + χ− χe−γmu

)
du

= e−γpt + γpe
−γpt

∫ t

0

eγpu
(
1 + χ

)
du− γpe−γpt

∫ t

0

χe(γp−γm)udu

= e−γpt + γp
(
1 + χ

)
e−γpt

∫ t

0

eγpudu− γpχe−γpt
∫ t

0

e(γp−γm)udu

= e−γpt +
(
1 + χ

)
e−γpt(eγpt − 1)− γp

γp − γm
χe−γpt(e(γp−γm)t − 1)

= 1 + χ− χe−γpt − γp
γp − γm

χ(e−γmt − e−γpt)

= 1 + χ− χe−γpt + χ
γp

γm − γp
(e−γmt − e−γpt)

The reduced system writes

d

dt
P̂(t) = γp

(
1 + χ− P̂(t)

)
,

from which we deduce
P̂(t) = 1 + χ− χe−γpt.

So, with the definition of ∆(t) in Eq. A3, and taking into account that
γm > γp, we have

∆(t) = |χ| γp
γm − γp

e−γpt − e−γmt
1 + χ− χe−γpt + χ γp

γm−γp (e−γmt − e−γpt) .

For χ = 0, Lemma 1 is obviously true. In what follows we consider the
case χ 6= 0. To simplify this formula we define z = e−γpt and α = γm/γp. Note
that when t varies between 0 and +∞, z varies between 1 and 0, and that by
hypothesis α > 1. Moreover,

e−γmt = e−(γm/γp)γpt = (e−γpt)γm/γp = zα
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and
γp

γm − γp
=

1

γm/γp − 1
=

1

α− 1
.

We now rewrite ∆(t) as a function of the variable z:

∆(z) = |χ|
( 1

α− 1

) z − zα
1 + χ− zχ+ χ 1

α−1(zα − z)

=
|χ|
χ

( 1

α− 1

) z − zα
χ−1 + 1− z + 1

α−1(zα − z)

=
|χ|
χ

z − zα
(α− 1)(χ−1 + 1)− (α− 1)z + (zα − z)

=
|χ|
χ

z − zα
(α− 1)(χ−1 + 1)− αz + zα

def.
=
|χ|
χ

num(z)

den(z)

If χ > 0, then differentiating the functions num and den and looking for
global maxima and minima of these functions leads to the following inequalities
for all z ∈ [0, 1]:

0 < num(z) < (α− 1)α−
α
α−1 ,

0 < χ−1(α− 1) < den(z),

from which we deduce that

sup
t≥0

∆(t) = sup
z∈[0,1]

∆(z) ≤ |χ|α− α
α−1 . (A11)

Since α > 1, this inequality can be relaxed to :

∆(t) ≤ |χ|α− α
α−1 < |χ|α−1 < |χ|(α− 1)−1 =

γp
γm − γp

|χ|,

which proves Lemma 1 for χ > 0.
We now consider the case χ ∈ [−1, 0[. Notice that in this case |χ|/χ < 0,

so that proving Lemma 1 comes to proving that, for all z ∈ [0, 1],

χ

α− 1
≤ num(z)

den(z)
≤ 0. (A12)
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Since

|χ|
χ

num(z)

den(z)
= ∆(z) ≥ 0,

we have
num(z)

den(z)
≤ 0,

In what follows we prove the second part of Eq. A12. For any z ∈ [0, 1],
the function

g : u 7−→ z − u
(1 + χ−1)(α− 1)− αz + u

is an increasing function of u, since

g′(u) =
− ((1 + χ−1)(α− 1)− αz + u)− (z − u)(

(1 + χ−1)(α− 1)− αz + u

)2

=
(α− 1)(−1− χ−1) + (α− 1)z(

(1 + χ−1)(α− 1)− αz + u

)2

=
(α− 1)(z − 1− χ−1)(

(1 + χ−1)(α− 1)− αz + u

)2 ≥
(α− 1)z(

(1 + χ−1)(α− 1)− αz + u

)2 ≥ 0.

This indicates that, for all z ∈ [0, 1], g(zα) > g(0), which translates into

z

(1 + χ−1)(α− 1)− αz <
z − zα

(1 + χ−1)(α− 1)− αz + zα
=
num(z)

den(z)
. (A13)

Now, notice that the function

h : u 7−→ u

(1 + χ−1)(α− 1)− αu
is a decreasing function of u since

h′(u) =
(1 + χ−1)(α− 1)(

(1 + χ−1)(α− 1)− αu
)2 < 0.
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So, for all z ∈ [0, 1], h(z) ≥ h(1), i.e.

z

(1 + χ−1)(α− 1)− αz ≥
1

(1 + χ−1)(α− 1)− α =
χ

α− 1− χ >
χ

α− 1
.

(A14)
Equating Eq. A13 and Eq. A14 yields

num(z)

den(z)
≥ z

(1 + χ−1)(α− 1)− αz ≥
1

(1 + χ−1)(α− 1)− α =
χ

α− 1− χ >
χ

α− 1
,

which proves the lemma.

Note that, although we came to the upper bound of Eq. A9 through a
series of successive upper bounds, it appears to be almost optimal for moderate
values of χ and large values of γm/γp, as shown in Fig. A1.

A3.2 A lemma on intensive variables

The lemma proven in this section considers concentrations, and it is therefore
closer to Proposition 2 in the main text. However, it considers a variable p̂2
that is slightly different from the variable p̂ in the main text, for reasons that
will become clear in the next section, where Proposition 2 is proven.

Suppose that µ is constant, so that Eq. 1 in the main text can be written
as

d

dt
m(t) = κm f(t)− γ′mm(t), m(0) = m0, (A15a)

d

dt
p(t) = κpm(t)− γ′p p(t), p(0) = p0. (A15b)

where
γ′m = γm + µ, γ′p = γp + µ.

We then introduce the variable p̂2(t), defined by the equation

d

dt
p̂2(t) =

κmκp
γ′m

f(t)− γ′p p̂2(t), p̂2(0) = p̂2,0. (A16)
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Upper bound from simulations
Upper bound predicted by Lemma 1

Figure A1: Predicted and actual upper bounds of the model reduction
error. Eq. A1 and Eq. A2 were computationally simulated in the conditions
specified in Lemma 1, using various values of χ, in order to compute the upper
bound of ∆(t). For this example we used γp = 0.01 and γm = 0.5. The result
is compared with the upper bound predicted by the same lemma.

Lemma 2. Under the conditions

d

dt
p(0) =

d

dt
m(0) =

d

dt
p̂2(0) = 0,

we have for all t ≥ 0,

|p̂2(t)− p(t)|
p(t)

< |χ| γ′p
γ′m − γ′p

. (A17)

Proof. Eq. A15a and Eq. A16 are of the same form as the systems of extensive
variables in Eq. 6 and Eq. 7 of the main text. Therefore, the proof of lemma
2 is in all points similar to that of Lemma 1.
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A3.3 Proof of Proposition 2

With µ constant, and using γ′p as defined above, the differential equation defin-
ing p̂ writes

d

dt
p̂(t) =

κmκp
γm

f(t)− γ′p p̂(t). (A18)

We see that p̂(t) and p̂2(t) are defined by similar equations whose synthesis
rates differ by a factor γ′m/γm. As Eq. A16 and Eq. A18 describe linear
differential equations, they have the following property (which can be proven
by solving the systems analytically). Under the condition

d

dt
p̂(0) =

d

dt
p̂2(0) = 0,

we have

p̂(t)

p̂2(t)
=
γ′m
γm

= 1 +
µ

γm
,

which leads to

p̂(t)− p̂2(t)
p̂2(t)

=
µ

γm
.

Finally, the following computations use Lemma 2 to prove Proposition 2:
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|p(t)− p̂(t)|
p(t)

=
|p(t)− p̂2(t) + p̂2(t)− p̂(t)|

p(t)

=

∣∣∣∣p(t)− p̂2(t)p(t)
+
p̂2(t)− p̂(t)

p(t)

∣∣∣∣
=

∣∣∣∣p(t)− p̂2(t)p(t)
+
p̂2(t)

p(t)

p̂2(t)− p̂(t)
p̂2(t)

∣∣∣∣
=

∣∣∣∣p(t)− p̂2(t)p(t)
+

(
1− p(t)− p̂2(t)

p(t)

)(
− µ

γm

) ∣∣∣∣
=

∣∣∣∣p(t)− p̂2(t)p(t)
(1 +

µ

γm
)− µ

γm

∣∣∣∣
≤
∣∣∣∣p(t)− p̂2(t)p(t)

∣∣∣∣ (1 +
µ

γm
) +

µ

γm

≤ |χ| γ′p
γ′m − γ′p

(
1 +

µ

γm

)
+

µ

γm

= |χ| γp + µ

γm − γp

(
1 +

µ

γm

)
+

µ

γm
.

A4 A filter-theoretical view of the model
reduction error

Equation systems A1 and A2 describe linear low-pass filters: if F(t) is a
sinusoidal signal of the form F(t) = A cos(ωt), with A a constant, then the
variableM(t), once a stationary behavior is reached, possibly after a transition
period, will be a sinusoidal signal of amplitude AH(ω), where

H(ω) =
1√

( ω
γm

)2 + 1
.

This shows that the system is a low-pass filter with cut-off angular fre-
quency (CAF) ωc = γm, meaning that all components of the spectrum of the
input signal F which correspond to an angular frequency larger than γm will
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be severely damped in the output M. In a schematic view, the spectrum of
M can be seen as a truncated version of the spectrum of F .

The same considerations hold for the systems represented by Eq. A1 and
Eq. A2. Here, one can see P(t) as the image of F(t) after passing the signal
through two low-pass band filters with CAFs γm and γp, according to the two-
step system of Eq. A1, while in the one-step system of Eq. A2, P̂(t) is the
image of F(t) after filtering once with a CAF γp (as illustrated in Fig. A2).

Let us now study different situations, illustrated in Fig. A3 :

• If γm lies above the spectrum of F(t) (Fig. A3A), thenM(t) is a non-
filtered version of F(t), i.e. M(t) ' F(t). As a consequence, P ' P̂ ,
independently of the value of γp, since they are the image of roughly the
same signal passing through a filter with CAF γp.

• If γm lies in the spectrum of F(t), thenM(t) is a filtered version of F(t).

– If γp < γm (Fig. A3B), then the spectrum ofM(t) is further trun-
cated at CAF γp to give P̂ . Both P and P̂ are then filtered responses
to the signal F with the same CAF γp. Hence, we have P ' P̂ .

– If γp > γm (Fig. A3C), then P and P̂ are in fine filtered responses
to the signal F with CAFs γm and γp, respectively, and they may
differ significantly. The difference can be estimated using the part
of the spectrum of F that lies between γm and γp.

From these considerations we can conclude, qualitatively, that the model
reduction will be valid if the characteristic time constant of F is small com-
pared to γm, or if γp � γm. This is consistent with Propositions 1 and 2 in
the main text.
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Figure A2: Filter-theoretical representation of the two-step and the
one-step models. In the two-step model, the output P(t) is the result of
filtering F(t) twice, through filters with cut-off frequencies γm and γp, respec-
tively. In the one-step system, the signal P̂(t) is the filtered response to F(t)
involving a single filter with cut-off frequency γp.

A5 Proof of Eq. 2.15 in main text

Eq. 2.14c yields

Q(t) =
1

κr

(
d

dt
R(t) + γrR(t)

)
,

and therefore
d

dt
Q(t) =

1

κr

(
d2

dt2
R(t) + γr

d

dt
R(t)

)
.

In the same way, we have by Eq. 2.14b

N(t) =
1

κq

(
d

dt
Q(t) + (γr + κr)Q(t)

)
=

1

κrκq

(
d2

dt2
R(t) + (2γr + κr)

d

dt
R(t) + γr(γr + κr)R(t)

)
,

and
d

dt
N(t) =

1

κrκq

(
d3

dt3
R(t) + (2γr + κr)

d2

dt2
R(t) + γr(γr + κr)

d

dt
R(t)

)
.

Finally, Eq. 2.14a gives

F (t) =
1

κn

(
d

dt
N(t) + γnN(t)

)
=
γr(γr + κr)γn

κnκqκr

(
R(t) + a

d

dt
R(t) + b

d2

dt2
R(t) + c

d3

dt3
R(t)

)
,
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A

B

C

Figure A3: Output spectra of the one-step and two-step filters. SF ,
SM, SP , and SP̂ denote the spectra of F ,M, P , and P̂ respectively. A: The
spectrum of F lies entirely below γm, in which case P and P̂ have similar
spectra whatever the value of γp. B: The spectrum of F is cut above γp in
both the one-step and two-step models, so that P and P̂ have similar spectra,
independently of γp. C: γp > γm. In this last case, the ouputs P and P̂ differ.
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where a, b and c are defined like in the main text. Assuming that R(t) = kI(t)

(where the constant k is unknown) and denoting

Fe(t) =
κnκqκr

γr(γr + κr)γnk
F (t),

it follows that Fe is proportional to F and verifies Eq. 2.15 in the main text.
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A6 Propagation of the model reduction error

In this section we prove our claim from Sec. 2.3.6 that if protein p1 regulates
the activity of the gene coding for protein p2 through the regulation function

f2 (p1(t)) =
p1(t)

a

Ka + p1(t)a
, (A19)

then the condition
min
t≥0

p1(t) ≥ K a
√
a− 1 (A20)

is sufficient for ensuring that the error on protein p1 will result in a not-larger
error on the p1-dependant protein p2.

We will first show that under this condition a variation of x% in p1(t) will
result in a variation of at most x% in f2 (p1(t)) (Lemma 3). We will then
show that a relative variation of at most x% in f2 will lead to a variation
of at most x% in the prediction of the protein concentration p2(t) (Lemma
4). At the end of the section we reformulate this condition and loosen it to
(min p1(t) > 4K/3).

For convenience we define a class of regulation functions f which conserve
the relative error on p:

Definition 1. We denote by C the class of functions f : R+ 7→ R+ defined for
p > 0, such that for all p1, p2

|f(p1)− f(p2)|
f(p1)

≤ |p1 − p2|
p1

.

We will prove that the functions in C ensure that the relative error on p1
will not be amplified on its target p2. But we first show that the Hill function
in Eq. A19 belongs to C under the condition that for all t, p1(t) > K a

√
a− 1.

Lemma 3. The restriction of f2 (as defined in Eq. A19) to the interval
p > K a

√
1− a belongs to the class C.

Proof. We consider x, y with 0 < x ≤ y and we will show that the lemma is
true for the couples (x, y) and (y, x), i.e.

|f2(x)− f2(y)|
f2(x)

=
f2(y)− f2(x)

f2(x)
≤ y − x

x
=
|x− y|
x

, (A21)
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and
|f2(y)− f2(x)|

f2(y)
=
f2(y)− f2(x)

f2(y)
≤ y − x

y
=
|y − x|
y

(A22)

For Eq. A21, we first notice that

f2(y)− f2(x)

f2(x)
=
Ka(ya − xa)
xa(Ka + ya)

=
Ka
∫ y
x
aua−1du

xa(Ka + ya)
<
Kaaya−1(y − x)

xa(Ka + ya)
=

Kaaya−1

xa−1(Ka + ya)

y − x
x

.

We denote φ(y) = Kaaya−1

xa−1(Ka+ya)
. It is clear from the above computations

that Eq. A21 is verified when φ(y) ≤ 1. If a < 1, this will always be the case,
as

φ(y) = a
Ka

(Ka + ya)

(y
x

)a−1
< 1 ∗ 1 ∗ 1 = 1.

For a > 1 we have

dφ

dy
(y) =

1

xa−1
aKaya−2 (aKa −Ka − ya)

k2a + 2Kaya + y2a
,

which shows that φ is maximal for ymax = k(a− 1)1/a and its value is then

φ(ymax) =
(K a
√
a− 1

x

)a−1
,

therefore φ(y) < 1 for all y, if x ≥ K a
√
a− 1.

For Eq. A22,

f2(y)− f2(x)

f2(y)
=
Ka(ya − xa)
ya(Ka + xa)

=
Ka
∫ y
x
aua−1du

ya(Ka + xa)
<
Kaaya−1(y − x)

ya(Ka + xa)
=

Kaa

(Ka + xa)

y − x
y

,

so Eq. A22 is verified when

Kaa

(Ka + xa)
≤ 1

which also leads to x ≥ K a
√
a− 1
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Note that a relative error on f2(t) is equivalent to the same relative error
on its extensive equivalent F2(t) = V (t)f2(t) or on the its standardized version
F2(t) = F2(t)/F2(0) . The same way, a relative error on p2 is equivalent to a
relative error on P2(t) = V (t)p2(t) or P2(t). Therefore, we will show that a
relative prediction error on F2(t) will lead to a non-larger relative prediction
error on P2(t) (and therefore on p2(t)).

Lemma 4. We consider the two-step expression model of the protein p2, ex-
pressed with global standardized variables:

d

dt
M2(t)(t) = γm (F2(t)−M2(t)(t)) , (A23)

d

dt
P2(t) = γp (M2(t)− P2(t)) , (A24)

P2(0) =M2(0) = F2(0), (A25)

where M2 represents the standardized total quantity of mRNA and P2 the
standardized total quantity of protein p2.

We call P2,a(t) and P2,b(t) the profiles of P2(t) obtained using two different
input functions for F2(t): F2,a(t) and F2,b(t). Then we have

sup
t≥0

|P2,a(t)− P2,b(t)|
P2,a(t)

< sup
t≥0

|F2,a(t)−F2,b(t)|
F2,a(t)

.

Proof. We will only need to show that

sup
t≥0

|M2,a(t)−M2,b(t)|
M2,a(t)

< sup
t≥0

|F2,a(t)−F2,b(t)|
F2,a(t)

. (A26)

Since P2 depends ofM2 the same way thatM2 depends on F2, the proof
will be exactly of the same form for the inequality

sup
t≥0

|F2,a(t)−F2,b(t)|
F2,a(t)

< sup
t≥0

|M2,a(t)−M2,b(t)|
M2,a(t)

, (A27)

and therefore will be omitted. Eq. A26 and A27 together prove the lemma.
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The variablesM2,a andM2,b verify the following systems :

d

dt
M2,a(t) = γm

(
F2,a(t)−M2,a(t)

)
(A28)

d

dt
M2,b(t) = γm

(
F2,b(t)−M2,b(t)

)
(A29)

We define

δM2(t) =M2,a(t)−M2,b(t)

δF2(t) = F2,a(t)−F2,b(t)

By substracting Eq. A29 to Eq. A28 we obtain the differential equation

d

dt
δM2(t) = γm

(
δF2(t)− δM2(t)

)
(A30)

By analytically solving Eq. A30 and A28 we obtain

M2,a(t)−M2,b(t)

M2,a(t)
=
δM2(t)(t)

M2,a(t)
=
δM2(0)e−γt + γe−γt

∫ t
0
δF2(u)eγudu

F2,a(0)e−γt + γe−γt
∫ t
0
F2,a(u)eγudu

(A31)

We have

|δM2(0)| = |M2,a(0)−M2,b(0)| = |F2,a(0)−F2,b(0)| ≤ F2,a(0)

(
sup
t≥0

|F2,a(t)− F2(t)|
F2,a(t)

)
,

and for all u < t

−F2,a(u)

(
sup
t≥0

|F2,a(t)−F2,b(t)|
F2,a(t)

)
≤ δF2(t) ≤ F2,a(u)

(
sup
t≥0

|F2,a(t)− F2(t)|
F2,a(t)

)
therefore, from Eq. A31 follows

|M2,a(t)−M2,b(t)|
M2,a(t)

≤ sup
t≥0

|F2,a(t)−F2,b(t)|
F2,a(t)

which proves the result.
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A6.1 Corollaries

Notice that

f2(K
a
√
a− 1) =

Ka(a− 1)

Ka(a− 1) +Ka
=
a− 1

a
= 1− 1/a.

Therefore, the condition

min
t≥0

p1(t) ≥ K a
√
a− 1

can be reformaluted as
min
t≥0

f2(t) ≥ 1− 1/a,

which means thatthe activity of the gene coding for p2 remains above 1− 1/a

of its highest possible value at all t.
Moreover, a quick analysis of the expression a

√
a− 1 shows that this ex-

pression admits a maximum when a varies between 0 and +∞. It seems that
this maximum has no simple expression. Numerically we found it to be ap-
proximately 1.32110, i.e. smaller that 4/3. Therefore the condition on p1(t)

can be generalized for all values of a. We obtain the quick tule of thumbs

min
t≥0

p1(t) ≥ 4K/3.

A7 Background correction of the data

In this part we discuss in more detail the processing of the data which led to
the corrected fluorescence curves reported in Fig. 2.2 and Fig. 2.3 of the main
text.

A non-negligible part of the experimentally measured fluorescence signal is
not due to the GFP fluorescence. Thus, the measured fluorescence does not
give direct information on the quantity of GFP proteins inside a cell popula-
tion. Among the components of the signal that are not related to the quantity
of GFP inside the cells, some can be removed using control wells:

• A small, uncorrelated noise is due to perturbations at the instrument
level. We found that a part of this noise was the same for all wells of the
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plate and could therefore be removed by subtracting from each well of the
plate the fluorescence signals measured on a well containing only growth
medium and no bacteria. This operation considerably reduces the noise
but does not affect much the value of the fluorescence intensities, so that
the result of this operation will still be called measured fluorescence in
what follows.

• The natural fluorescence of the bacterial population (autofluorescence),
which is mainly due to the production of fluorescent proteins, like flavins,
by the cells.

The autofluorescence is generally non-negligible and its removal demands
special care. We show in Fig. A4 and Fig. A5 the fluorescence and absorbance
measured on replicate wells containing wild-type E. coli and a strain contain-
ing a promoterless plasmid, respectively, as explained in the main text. No
noticeable difference exists between the strains (in other experiments, the data
perfectly superimpose) and we found that both could be used for autofluores-
cence subtraction, giving approximately the same results. It appears that the
fluorescent curves obtained from replicate wells differ by a small multiplicative
factor, possibly due to small differences in culture volume. These curves, when
normalized by the area under the curve, exhibit good reproducibility.

Fig. A6 and Fig. A7 show the absorbance and fluorescence obtained for
strains carrying reporter plasmids of the genes acs and crp. The signal in
the strain carrying a pcrp-gfp reporter plasmid is well above the autofluores-
cence background. Removing the autofluorescence from each well gives the
corrected fluorescence signals reported in Fig. 2.2 of the main text. For the
strain transformed with the pacs-gfp reporter plasmid, the observed fluores-
cence signal does not differ from the autofluorescence signal during growth on
glucose, which indicates that the expression of acs is negligible during this
period. The induction of the gene upon glucose exhaustion is clearly notice-
able, as the fluorescence signal separates from the autofluorescence signal at
t = 700 min. For these wells, the removal of autofluorescence is more delicate
and requires special care, such as synchronization of the curves by means of
the measured absorbance signals. This results in the corrected fluorescence
curves of Fig. 2.3 in the main text.
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A8 Using an inversion method to evaluate the
promoter activity

In the main text we showed that the time profile of the synthesis rate of
GFP can be computed from the fluorescence signal. To this end, the fluores-
cence signal needs to be approximated through regression splines, which allows
the time-derivatives of the signal to be computed. An inconvenience of this
approach is that, due to noise, the resulting evaluation of the promoter activ-
ity may exhibit biologically irrelevant, typically negative values. In (Bansal
et al., 2012) the authors describe another method, very similar in principle,
but which enables one to directly formulate constraints on the promoter ac-
tivity. The main idea is to optimize a parametric time profile of the promoter
activity, so that the resulting fluorescence, predicted using the GFP expression
model described in the main text, will optimally fit the data. We applied this
method, with some adjustments, notably to allow non-null initial values for
the variables, and found that it led to the same results as the regression spline
methods, as shown in Fig. A8 and Fig. A9.

A9 Software

All numerical computations in the main text and the Supplementary Infor-
mation have been performed using the Python scientific computing library
Scipy (Jones et al., 2001). In addition, our implementation of the inversion
method described in section A8 makes use of the Python optimization package
cvxopt (Andersen et al., 2012) (see also Chapter 3 of this thesis).

B1 Sensitivity of the estimation results to the
value of the parameter ε

Section 3.2.1 of the main text describes the practical implementation of the
regularization parameter λ, involving the introduction of a parameter ε in the
discrete differentiation matrix Lu. When the value of ε is not carefully cho-
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Figure A4: Fluorescence signal measured for the E. coli BW25113
strain. Shown is the measured fluorescence (equal to the autofluorescence of
the cells), before (left) and after (right) normalization by the area under the
curve.
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Figure A5: Fluorescence signal measured for the BW25113 strain
carrying a promoterless reporter plasmid. Shown is the measured flu-
orescence (equal to the autofluorescence of the cells), before (left) and after
(right) normalization by the area under the curve.

sen, it introduces an unwanted penalty on the initial values of the variable to
estimate. This may modify the range of values of λ for which the matrix is
invertible and thus influence the estimation results. In this section we investi-
gate the sensitivity of the estimation results to the value of ε and suggest how
to proceed in finding an appropriate value.
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Figure A6: Fluorescence and absorbance signals measured for the
BW25113 strain carrying a pcrp-gfp reporter plasmid. The autofluo-
rescence and absorbance measured on a strain carrying a promoterless plasmid
are provided for comparison. The fluorescence curves in the middle plot have
been obtained by shifting the fluorescence curves in the left plot over a time
interval obtained by synchronizing the absorbance curves (right plot).
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Figure A7: Fluorescence and absorbance signals measured for the
BW25113 strain carrying a pacs-gfp reporter plasmid. See caption of
Fig. A6.

As an illustration, we solved the growth rate estimation problem presented
in Figure B1 for several different values of ε. The simulated data (in green in
panel A) represent the bacterial population volume obtained from the growth
rate (dashed line in the same panel), with added noise having the same prop-
erties as in the reporter gene data set in Figure 3.3. For ε = 1, we observe as
expected that the estimation of µ0 is negatively biased. The penalization pa-
rameter λ = λgcv, chosen by generalized cross-validation, minimizes the error
ErrReg(λ) associated with the regularized problem, defined as the right-hand
side of Equation 3.9 in the main text (dashed vertical line in panel F). For
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Figure A8: Experimental estimation of the approximation error for
the gene acs . The promoter activities have been obtained using an inversion
method, as described in Section A8. See caption of Fig. 2.3 in the main text
for details.

ε between 10−2 and 10−5, the estimation is unbiased and corresponds well to
the real input (panels B-C). The estimation is not sensible to ε in this interval
and the value of λgcv is of the same order of magnitude as for the case ε = 1.
However, for even lower values of ε (panels D-E), the same value of λgcv makes
the problem ill-posed (hence the peaks in ErrReg(λ) in panels I-J). As a con-
sequence, the value of λgcv is aberrant and the resulting estimations are off the
mark.

Throughout the paper we used ε = 10−5 and verified in each instance the
appropriateness of this choice by a sensitivity analysis of the type shown in
Figure B1. This procedure is recommended more generally.
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Figure A9: Experimental estimation of the approximation error for
the gene crp. The promoter activities have been obtained using an inversion
method, as described in Section A8. See caption of Fig. 2.2 in the main text
for details.

B2 Linear inversion problems with linear
constraints

It can be useful to impose constraints on the values of the estimated w, to
ensure that they are comprised between certain bounds. Equation 3.7 in the
main text can be reformulated as follows, using the definition of the discrete
derivation matrix Lw in the same section:
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Figure B1: Effect of parameter ε on growth rate estimation from in-
silico data. The simulated data (in green) for known input µ(t) (dashed
line) shown in A. The estimation results (solid line) for different values of ε
are shown in A-E. The corresponding error profile for the regularized problem,
ErrReg(λ), and the minimal value λgcv for different choices of ε are shown in
F-J.

ŵ = argmin
w

‖Hww − ỹ‖22 + λ‖Lww‖22
= argmin

w
(Hww − ỹ)T (Hww − ỹ) + λ(Lww)T (Lww)

= argmin
w

wTHT
wHww − 2ỹTHww + ỹT ỹ + λwTLT

wLww

= argmin
w

wT (HT
wHw + λLT

wLw)w − 2ỹTHww.

To this quadratic minimization problem we can add a set of linear con-
straints of the form

G1w = c, (B1)

G2w ≤ 0, (B2)
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where G1,G2 are constant matrices and c a constant vector. In this paper
we want to ensure that the initial conditions (which represent quantities of
molecules or volumes) and the input variable (which represents a growth rate,
promoter activity, or protein concentration in Section 3.3 of the main text) is
positive. This corresponds to setting

(G1, c,G2) = (0,0, I).

Several solvers have been proposed for the general quadratic programming
problem, and in particular for the special case of ensuring positive solutions. In
this paper we used the solver cvxopt.solvers.qp from the Python mod-
ule cvxopt, which is well adapted to large-scale problems (Andersen et al.,
2012). Notice that it is not possible to use generalized cross-validation on the
constrained problem. Therefore, we first used GCV on the unconstrained prob-
lem to select the regularization parameter λ, and then solved the constrained
problem for that particular value of λ.

B3 Computation of observation matrices

The computation of the observation matrix Hw =
(
Hx0 Hu

)
defined in

Section 3.2.1 of the main text can be achieved in a straightforward way. The
jth column of Hx0 is the vector of values obtained by solving Equation 3.1 at
times (ti)1≤i≤Ny , using u(t) = 0 and

x0 = (0, · · · , 0, 1︸︷︷︸
x0[j]

, 0, · · · , 0).

The jth column of matrix Hu is obtained by solving the same system with
x0 = 0 and

u(t) = 1[τj ,τj+1[(t).

The computation of Hw can be performed using a numerical differential
equation solver, but this is usually time-consuming because of the large number
of ODE integrations required (n + Nu). An alternative is to use the explicit
solution of Equation 3.2 and exploit the specific form that Equation 3.1 takes



146APPENDIX A. SUPPLEMENTARY INFORMATION ON CHAPTER 2

when estimating growth rate, promoter activity, and protein concentration.
The latter approach will be further developed in the remainder of this section.

B3.1 Explicit formula for the observation matrix for
growth rate estimation

In section Section 3.3.2 we proposed the following model as a basis for the
estimation of µ(t):

d

dt
(αV )(t) = Ṽ (t)µ(t). (B3)

This model admits the following general solution:

αV (t) = αV (0) +

∫ t

0

Ṽ (σ)µ(σ) dσ. (B4)

The observation matrix is of the form Hw =
(
Hx0 Hu

)
. Hx0 has dimen-

sions 1 × Ny and its values are obtained by computing Equation B4 at the
different observation times (ti)1≤i≤Ny , with αV (0) = 1 and µ(t) = 0 for all t.
Therefore, we have

Hx0 =


1
...

1

 .

The element of Hu at position [i, j] is computed by evaluating Equation B4
at time ti with αV (0) = 0 and

µ(t) = 1[τj ,τj+1[(t).

This leads to

Hu[i, j] =

∫ ti

0

Ṽ (σ) 1[τj ,τj+1[(σ) dσ =

{
0 if ti < τj,∫ min(ti,τj+1)

τj
Ṽ (σ) dσ otherwise.

The size of the intervals [τi, τi+1[, denoted by δτ , can be chosen arbitrarily
small, so we will suppose that the volume is constant on each interval. This
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allows the expression above to be simplified and we obtain the following ap-
proximate expression of Hu[i, j], which is used for the estimation of the growth
rate in the figures of the main text, and in the WellFARE package:

Hu[i, j] ' Ṽ (τj) max (0,min(ti − τj, δτ)) .

B3.2 Efficient computation of the observation matrix
for promoter activity estimation

In the main text we presented the following ODE model for the expression of
the reporter gene:


d

dt
M(t) = kM a(t)V (t)− dM M(t) = k′M a(t)αV (t)− dM M(t),

d

dt
Ru(t) = kU M(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t),

where k′M = kM/α.
The observation matrix is of the form Hw =

(
Hx0 Hu

)
. The element of

Hu at position [i, j] is computed by solving the ODE system, with
(
M(0) Ru(0) R(0)

)
=

0 and
a(t) = 1[τj ,τj+1[(t),

and then evaluating R(t) at time-point ti. We can reformulate this as follows,
using the input-output system notation from Section 2.1 of the main text
(Chen, 1970):

Hu[i, j] = R(ti,1[τj ,τj+1[,0).

Computing Hu in this way, however, would require the solution of as many
ODE systems as there are intervals [τj, τj+1[, typically on the order of 1000.

A more efficient procedure for computing Hu can be obtained by choosing
a suitable approximation. Assume that the intervals [τj, τj+1[ are of equal
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length δτ and small compared to the characteristic variation time of V (t). As
a consequence, V (t) can be supposed constant over the interval [τj, τj+1[, and
we can use the following approximated system to compute the [i, j]th element
of Hu: 

d

dt
M(t) ' k′M αV (τj) 1[τj ,τj+1[(t)− dM M(t),

d

dt
Ru(t) = kU M(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t).

(B5)

It is easy to see that this system is linear in αV , so that we can write

R(ti,1[τj ,τj+1[,0) = αV (τj)R1(ti,1[τj ,τj+1[,0),

where R1 is the output of the system of Equation B5 with αV (τj) set to 1.
Because the coefficients of this system are time-invariant, we also have that

R1(ti,1[τj ,τj+1[,0) =

{
0 if ti < τj,

R1(ti − τj,1[0,δτ [,0) otherwise.

This leads to the following approximation of Hu[i, j]:

Hu[i, j] = R(ti,1[τj ,τj+1[,0) '
{

0 if ti < τj,

Ṽ (τj)R1(ti − τj,1[0,δτ [,0) otherwise.

The advantage of this approximate method for computing Hu is that it requires
the ODE system of Equation B5 to be solved only once, replacing the term
αV (τj) 1[τj ,τj+1[(t) by 1[0,δτ [(t) and evaluating the output at all time-points ti,
instead of solving Nu ODEs.

B3.3 Computation of the observation matrix for
promoter activity estimation in a reduced gene
expression model

In Section 3.3.3 of the main text, the production of mature GFP proteins was
described as a three-step process (transcription, translation, and maturation).
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In this section we consider a simplified version of this model, which allows us to
explicitly formulate the observation matrix Hw as a function of the measured
signal

(
Ṽ (ti)

)
1≤i≤Ny

and the degradation constant dR.

When both transcription and maturation are fast as compared to the other
processes involved in the expression of the reporter gene, it can be assumed
that their effect on the dynamics of the folded reporter is negligible. In this
case, the entire process of synthesizing mature GFP can be lumped into a
single step and Equation 3.16 in the main text becomes:

d

dt
R(t) = k′R αV (t) a(t)− dRR(t), (B6)

where k′R denotes a lumped protein synthesis parameter.
The quantity of reporter protein R(t) can be explicitly formulated as a

function of a(t) by solving Equation B6:

R(t) = R(0) e−dRt + e−dRt
∫ t

0

edRσk′R αV (σ) a(σ) dσ. (B7)

In other words, the promoter activity is linearly related to the amount of re-
porter protein. In what follows, we set k′R = 1, which allows the promoter
activity to be estimated up to an unknown proportionality constant (Sec-
tion B6).

The observation matrix Hw for the corresponding linear inversion problem
is of the general form Hw =

(
Hx0 Hu

)
, where Hx0 is given by:

Hx0 =


e−dRt0

e−dRt1

...

e−dRtNy

 .

The element of Hu at position [i, j] is computed by evaluating Equation B7
at time ti for R(0) = 0 and a(t) = 1[τj ,τj+1[(t). This leads to

Hu[i, j] =

{
0 if ti < τj,

e−dRti
∫ min(τj+δτ,ti)

τj
edRσαV (σ) dσ otherwise,

(B8)
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where δτ denotes the length of the time-interval [τj, τj+1[. We can exploit the
fact that δτ can be chosen arbitrarily small to simplify the integral by assuming
that the volume is approximately constant over the time-interval considered:

∫ min(τj+δτ,ti)

τj

edRσαV (σ) dσ ' αV (τj)

∫ min(τj+δτ,ti)

τj

edRσdσ

=
1

dR
αV (τj)

(
edRmin(τj+δτ,ti) − edRτj

)
' 1

dR
Ṽ (τj)

(
edRmin(τj+δτ,ti) − edRτj

)
.

As a consequence,

Hu[i, j] '
{

0 if ti < τj,
1
dR
Ṽ (τj)

(
edRmin(τj+δτ,ti) − edRτj

)
otherwise.

(B9)

The latter expression is used to compute promoter activities in the WellFARE
package.

B3.4 Explicit formula for the observation matrix for
protein concentration estimation in a reduced
gene expression model

In the main text we have presented the production of a protein of interest
and its reporter as multistep processes. The observation matrix allowing the
estimation of the protein concentration p(t) from the absorbance and fluores-
cence data can be computed by means of the procedure in Section 3.2.2. In
this section, like in Section B3.3, we will simplify the problem by consider-
ing single-step gene expression models, enabling an explicit formulation of the
observation matrix.

Using the same notation as in Section B3.3, P ′(t) (defined in Section 3.3.4)
and R(t) are driven by the following one-step gene expression models:
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d

dt
P ′(t) = k′P αV (t) a(t)− dP P ′(t), (B10)

d

dt
R(t) = k′R αV (t) a(t)− dRR(t), (B11)

p(t) = P ′(t)/ (αV (t)) (B12)

where k′P and k′R denote lumped protein synthesis parameters. Notice that the
degradation constants of the protein of interest (dP ) and the reporter protein
(dR) are different a priori.

This model enables R(t) to be directly expressed as a function of P ′(t).
We first derive the following expression of αV (t) a(t) from Equation B10:

αV (t) a(t) =
1

k′P

(
dP P

′(t) +
d

dt
P ′(t)

)
,

and then inject this expression into Equation B11:

d

dt
R(t) = K

(
dP P

′(t) +
d

dt
P ′(t)

)
− dRR(t),

where K = k′R/k
′
P . The above differential equation for R(t), with input P ′(t),

can be solved exactly, yielding

R(t) = K P ′(t)︸ ︷︷ ︸
A(t)

+K (dR − dP ) e−dRt
∫ t

0

edRσ P ′(σ) dσ︸ ︷︷ ︸
B(t)

+ (R(0)−K P ′(0)) e−dRt︸ ︷︷ ︸
C(t)

.

(B13)
The terms A(t), B(t), C(t) in Equation B13 admit a simple interpretation.
A(t) shows that R(t) will, at least partly, follow the variations of P ′(t). This
is to be expected, as P ′(t) and R(t) are driven by the same promoter activity
a(t). B(t) is a correction term accounting for the difference in degradation
constants of the reporter protein and the protein of interest. C(t) accounts
for the differences in initial conditions P ′(0) and R(0). Equation B13 can be
rewritten as
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R(t) = R(0) e−dRt +K

(
αV (t) p(t)− αV (0) p(0)e−dRt

+(dR − dP ) e−dRt
∫ t

0

edRσ p(σ)αV (σ) dσ

)
.

(B14)

Note that this formulation shows the linear relationship between the output
R(t), the input p(t), and initial condition R(0), which correspond respectively
to y2(t), u(t), and x0,2 in Section 3.2.2 of the main text. Like in Section B3.3,
we assume that k′R = k′P = 1 to simplify computations and obtain a propor-
tional estimator for p(t) (Section B6).

The observation matrix for the estimation problem is of the general form
Hw =

(
Hx0 Hu

)
, where

Hx0 =


e−dRt0

e−dRt1

...

e−dRtNy

 ,

obtained by setting p(t) = 0 for all t and R(0) = 1. The element of Hu at
position [i, j] is computed by evaluating Equation B14 at time ti for R(0) = 0

and p(t) = 1[τj ,τj+1[(t). This leads to

Hu[i, j] =


0 if ti < τj,

α V (ti) + (dR − dP ) e−dRti
∫ ti
τj
edRσ αV (σ) dσ if τj ≤ ti < τj+1,

(dR − dP ) e−dRti
∫ τj+1

τj
edRσ αV (σ) dσ if ti ≥ τj+1.

(B15)
In this expression we can use Ṽ instead of αV , and approximate the inte-

gral, like in Section B3.3. This results in an approximate but practical formula
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for Hu[i, j]:

Hu[i, j] =


0 if ti < τj,

Ṽ (τj)

(
1 +

dR − dP
dR

(1− edR(τj−ti))
)

if τj ≤ ti < τj+1,

Ṽ (τj)
dR − dP
dR

(edR(τj+1−ti) − edR(τj−ti) if ti ≥ τj+1.

(B16)

The latter expression is used to compute protein concentrations in the WellFARE
package.

B4 Reporter gene experiments: materials and
methods

The E. coli wild-type strain used in this study is the strain BW25113 (Baba
et al., 2006). The reporter strains were obtained by transforming the wild-type
strain with a reporter plasmid, bearing a transcriptional fusion of the crp, fis,
gyrA and acs promoter regions with the gfp reporter gene, and a promoter-
less vector for background correction (Table A.1). The reporter gene codes
either for a stable and fast-folding version of the GFP reporter (GFPmut2)
or for a less stable allele (GFPmut3). More information on the half-live and
maturation time can be found in (Berthoumieux et al., 2013).

Plasmid Characteristics Reference or source

pZEgfp Ampr, colE1 ori, gfpmut3 (de Jong et al., 2010)
pZEfis-gfp Ampr, colE1 ori, pfis-gfpmut3 (de Jong et al., 2010)
pZEcrp-gfp Ampr, colE1 ori, pcrp-gfpmut3 (Berthoumieux et al., 2013)

pZEgyrA-gfp Ampr, colE1 ori, pgyrA-gfpmut3 (Boyer et al., 2010)
pUA66gfp Kanr, pSC101 ori, gfpmut2 (Zaslaver et al., 2006)

pUA66acs-gfp Ampr, pSC101 ori, pacs-gfpmut2 (Baptist et al., 2013)

Table A.1: Reporter plasmids used in this study.

Glycerol stocks (-80◦C) of the above-mentioned reporter strains were grown
overnight (about 15 h) at 37◦C, with shaking at 200 rpm, in M9 minimal
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medium (Miller, 1972) supplemented with 0.3% glucose and mineral trace
elements. For plasmid-carrying strains, the growth medium was supplemented
with 100 µg ml−1 ampicilin or kanamycin. The overnight cultures were diluted
into a 96-well microplate, so as to obtain an adjusted initial OD600 of 0.1. The
wells of the microplate contain M9 minimal medium supplemented with 0.3%
glucose, mineral trace elements, and 1.2% of the buffering agent HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid) for maintaining physiological
pH levels in the growth medium. No antibiotics were added at this stage.
The wells were covered with 60 µl of mineral oil to avoid evaporation. The
microplate cultures were then grown for about 24 h at 37◦C, with agitation at
regular intervals, in the Fusion microplate reader (Perkin Elmer).

During a typical experimental run, we acquire about 110 readings each of
absorbance (600 nm) and fluorescence (485/520 nm). From the measured sig-
nal we remove the background signals of absorbance and fluorescence measured
on wells containing growth medium only and strains carrying a promoterless
reporter plasmid, respectively.

B5 Numerical evaluation of the linear
inversion methods

In this section we test the ability of the proposed linear inversion methods
to correctly estimate different shapes of growth rate, promoter activity, and
protein concentration profiles. We generated 100 absorbance and fluorescence
data sets for defined growth rate and promoter activity profiles, similar to those
observed for the gene acs in the reporter gene experiments in Section 3.3.1 of
the main text (Figure 3.3). In panel A the ability of the method to reconstruct
different growth rate profiles is tested, whereas panels B and C consider differ-
ent promoter activity and protein concentration profiles (with absorbance data
from panel A1), respectively. In every case considered, the methods succeed
in providing an almost unbiased estimate of the gene expression quantities.

We also compared the linear inversion methods with other methods, in
particular indirect approaches that plug empirically smoothed versions of the
data into the measurement models (Figure 3.4 in the main text). Below we
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Figure B2: In-silico experiments for testing the ability of the lin-
ear inversion methods to correctly estimate different growth rate,
promoter activity, and protein concentration profiles. The estima-
tion results for growth rate, promoter activity, and protein concentration are
shown in panels A-C, respectively. The dotted lines show the profiles used
for generating the 100 data sets, the grey solid lines example absorbance and
fluorescence time-series data, and the red solid line and the shaded area the
mean ± one standard deviation of the 100 estimations, respectively.

extend this analysis, for the estimation of the growth rate from absorbance
measurements, by showing that increasing the smoothing parameter to reduce
the variance of the estimates introduces a strong bias (Figure B3). The growth
rate is shown as the dotted curve and the absorbance data are the same as in
Figure 3.4 in the main text.
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Figure B3: Growth rate estimation by smoothing of the absorbance
measurements. The growth rate was computed from smoothed absorbance
measurements of the volume by means of Equation 3.13 in the main text. The
plots show the true value of the growth rate (dotted line), used to generate 100
absorbance data sets, and the mean (solid red line) ± one standard deviation
(shaded area) of the growth rate estimations. Different levels of smoothing of
the absorbance data were considered, using sliding windows of different length
(80, 160, and 240 data points), corresponding to the panels A-C, respectively.

B6 Linear inversion when parameters in the
gene expression model are unknown

Equation 3.16 in the main text describes the gene expression model on which
the estimation methods are based:

d

dt
M(t) = k′Ma(t)α̂V (t)− dMM(t),

d

dt
Ru(t) = kUM(t)− (dR + kR)Ru(t),

d

dt
R(t) = kRRu(t)− dRR(t),

and we remind that R̃(ti) = βR(t) + ν (Equation 3.11 in the main text). The
constants k′M , kU , and β are generally unknown. In this section we show that
the profile of the promoter activity can still be estimated, up to an (unknown)
proportionality constant, using a linear inversion.

We consider the following transformed variables:

R∗(t) = βR(t), R∗u(t) = βRu(t), M∗(t) = kUβM(t), a∗(t) = kUk
′
Mβa(t).
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Replacing the variables M,Ru, R, a in the ODE system above by their
starred counterpart we obtain the following system:

d

dt
M∗(t) = a∗(t)α̂V (t)− dMM∗(t),

d

dt
R∗u(t) = M∗(t)− (dR + kR)R∗u(t),

d

dt
R∗(t) = kRR

∗
u(t)− dRR∗(t).

Moreover, R̃(ti) = R∗(t) + ν. This system is equivalent to Equation 3.16 in
the main text when β = kU = k′M = 1 and can thus be used to estimate the
profile a∗(t), which is proportional to a(t) (the proportionality constant being
unknown).

The same approach can be applied to the gene expression system of Equa-
tion 3.17 in the main text to show that it is possible to obtain an estimator or
the profile of the protein concentration p(t) (up to an unknown proportionality
constant) in the absence of reliable values for the parameters kN and kP .

B7 Software implementation of the linear
inversion methods

The linear inversion methods discussed in this article have been implemented
in the Python library WellFARE and are available online through the web
application WellInverter . In this section we briefly describe WellFARE
and WellInverter , and we refer to the dedicated web pages for more in-
formation.

B7.1 The WellFARE Python Package

WellFARE (well Fluorescence Analysis for Reporter Experiments) is a Python
library released under an LGPL licence, implementing the methods for growth
rate, promoter activity and protein concentration estimation developed in the
main text. In addition, the library provides practical tools for the treatment
of data from reporter experiments, such as automated outlier removal, data
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synchronization, and parsing of Excel files generated by the TECAN Infinite
Pro microplate reader. WellFARE uses extensively the Python core scientific
library SciPy (Jones et al., 2001). The treated data can be exported in the
form of JSON objects (Crockford, 2006). Source code, documentation and
installation instructions for the WellFARE library and its command-line and
JSON interfaces are available at the following address:

https://github.com/ibis-inria/wellfare

The code used to generate the figures of the main text is available in the
examples folder of the library.

B7.2 The WellInverter web application

The WellInverter web application provides online access to the linear in-
version methods without having to install the software locally. The server part
of WellInverter is based on the Python library WellFARE, the computa-
tional core of the application. It also provides methods for managing experi-
mental and user data as well as storing analysis parameters in JavaScript Ob-
ject Notation (JSON) format (Crockford, 2006). The client part of WellInverter
is the graphical user interface of the application, accessible through a web
browser. It allows the user to upload, analyze, and visualize the results of a
reporter gene experiment as well as downloading the results for further treat-
ment. The client part is written in Javascript, and communicates with the
server using Ajax (Asynchronous JavaScript and XML) calls (Garrett, 2006).
More information on access to WellInverter and a tutorial are available at
the following address:

https://team.inria.fr/ibis/wellinverter

A test account has been opened with username guest and password guest2015.
The reporter gene data set on the server has been used in the main text.
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Supplementary Information on
Chapter 4

C1 Estimation of the CRP(∗) degradation rate

In order to estimate the degradation rate dCRP , bacteria were grown in condi-
tions similar to Section 4.2.1 in the main text, where the only carbon source
in the medium was acetate, which ensures a slow, steady growth of the pop-
ulation. In these conditions we found that activity of the pRM promoter was
constant during the major part of the experiment (data not shown), which
leads to a very simple model in which the observed modulations alac∗(t) (dot-
ted lines in Figure C1C) depend only on [CRP∗ ] and can be predicted from
the observed acrp∗(t) (Figure C1A) given the unknown parameters dCRP , Cc,
and fa: 

alac∗(t) = fa
[CRP ∗]

Cc + [CRP ∗]
d

dt
[CRP ∗](t) = acrp∗(t)− (dCRP − µ(t)) [CRP ∗](t)

(C1)

We call a[fa, dCRP , Cc](t) the profile of alac∗(t) corresponding to the set
of parameters (fa, dCRP , Cc). As fa is simply a multiplication coefficient, the
optimal fa given dCRP and Cc, in the sense of the least of the least squares is
given by the ratio between the mean of the observed activities âlac∗(t) and the

159
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activities predicted for the case fa = 1 :

fa,est. =
¯̂alac∗

ālac∗ [1, dCRP , Cc]

We fitted the parameters by evaluating the squared error between predic-
tions and observation over a grid of values of dCRP and Cc. The results are
shown in Figure C1D. We see that taking dCRP = 0.001 enables to predict well
the activity of plac∗ at different levels of induction. More generally any value
of dCRP under 0.001 leads to a good fit, so it really is important to assume
that CRP is a stable protein in E. coli . The decrease of [CRP∗ ] concentration
observed in Figure C1B is not due to CRP∗ degradation but to the dilution of
CRP∗ through population growth.

C2 Plasmids used in this study

C2.1 Reporter plasmids

All reporter plasmids used in this study are derived from a pUA66 low-copy
plasmid (Zaslaver et al., 2006). The pRM-gfp plasmid is as described in
(Berthoumieux et al., 2013). For the plac∗-gfp and pcrp-gfp plasmids, we
replaced the kanamycin resistance gene of pUA66 by the bla gene, coding for
resistance to ampicillin. The pcrp sequence was amplified from the chromo-
some of E. coli BW25113, to ensure that the entire regulatory region as well
as the 3’5’-UTR were exactly as on the natural chromosome. The 99-bp long
plac∗ was synthetized using two primers with a 21-bp homology between them,
and with each a 20-bp homology on the plasmid, as shown in Figure C2. All
other constructions were made using Gibson Assembly. All the plasmids were
sequenced. The sequences of the pcrp, plac∗ and pRM promoters are shown
in Table B.1.

C2.2 Induction plasmids

The plasmids for CRP∗ induction were constructed as indicated in Figure C3.
The crp∗ gene was cloned from the chromosome of a mutant strain carrying



C2. PLASMIDS USED IN THIS STUDY 161

pcrp

CCACTGCGTCAATTTTCCTGACAGAGTACGCGTACTAACCAAATCGCGCA
ACGGAAGGCGACCTGGGTCATGCTGAAGCGAGACACCAGGAGACACAAAG
CGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGATGTAC
TGCATGTATGCAAAGGACGTCACATTACCGTGCAGTACAGTTGATAGCCC
CTTCCCAGGTAGCGGGAAGCATATTTCGGCAATCCAGAGACAGCGGCGTT
ATCTGGCTCTGGAGAAAGCTTATAACAGAGGATAACCGCGC

plac∗
ATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTAT
GCTTCCGGCTCGTATGTTGTGTGCAATTTACATCCTCCGCTAGGTTCACT
TTAAGAAGGAGATATACAT

pRM TCGAGCCTATCACCGCCAGAGGTAAAATAGTCAACACGCACGGTGTTAGAT
ATTTATCCCTTGTGGTGATAGATTTAACGTATCAGCACAAAAAAGAAACC

Table B.1: Sequences of the promoters used in the reporter constructions
of this study. The schematic representations below each sequence show the
regulatory elements contained in the promoter. These promoter fragments
were cloned into pUA-Amp using Gibson Assembly or the method presented
in Figure C2. The transcription start site is in bold.
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this allele instead of the natural crp (Eppler and Boos, 1999), and inserted
into the induction plasmid pZA which allows the gene to be controlled by the
extracellular concentration of anhydro-tatracycline (ATc). The induction plas-
mid used as a template originally induced the gene lux , coding for luciferase,
which made it easy to screen for valid colonies (an absence of luminescence
meaning that the lux gene has been successfully replaced by crp∗). Finally,
the gfp gene (along with its 5’3’ UTR) from the plac∗-gfp construction was
inserted downstream of crp∗ on the pZA plasmid.

We also constructed versions of the plasmids with the natural crp allele
instead of crp, but those were not used in this study.

C3 M9 minimal medium

Table B.2 indicates the composition of the minimal growth medium used in
this study for all the overnights and kinetic experiments. The glucose was
replaced by another carbon depending on the experiment.

C4 Original Data

C5 Cyclic AMP measurements

During each of the diauxies presented in Figure 4.4a nd Figure C4, the mi-
croplates were regularly sampled over the course of the experiment. We took
one sample per hour before stationary phase and one sample every 20 min-
utes during stationary phase. The samples were placed at -80◦C directly after
sampling. After analysis of the fluorescence data, twelve samples were selected
for cAMP dosage in order to get an estimation of the cAMP concentration in
the cells before and in the few hours following glucose exhaustion.

The estimation of cAMP in these samples is as in (Berthoumieux et al.,
2013). The total amount of cAMP in the growth medium is measured using
competitive ELISA Figure C5.
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M9 + 0.03% glucose (50 mL)
H20 to 50 mL

CaCl2 1M 5 µL
MgSO4 1M 100 µL
20% glucose 750µL
1000x traces 45 µL
Fe solution 5µL

1% Thiamine 25µL
5x salts 10 mL

5x Salts (10 mL)
H2O 10ml

Na2HPO42H20 425 mg
KH2HPO4 150 mg

NaCl 25 mg
NH4Cl 50 mg

1000x traces (1 mL)
H2O 200µL

Na2EDTA 2H2O 100µL
ZnSO4 7H2O 100µL
CaCl2 6H2O 100µL
MnCl2 4H2O 100µL

H3BO3 100µL
Na2MoO4 2H2O 100µL
CuSO4 5H2O 100µL

Fe Solution
H20 1 mL

FeSO4 30 mg
20% glucose (10mL)

H20 10 mL
D-glucose 2 g

Table B.2: Recipe for the minimal medium M9.

l([cAMP]) = d+
a

1 + (x/b)c

This enables to estimate cAMP concentration from luminescence in the
samples using the inverse formula

[cAMP](l) = b

(
a

l − d − 1

)1/c

C5.1 Treatment of reporter gene data

This section presents the experimental data used in Chapter 4.
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Removal of outliers

The microplate reader used in this study yields data of very good precision.
However, the beads added to the wells (in order to enhance the stirring and
oxygenation) can corrupt up to in 80% of the measurements, possibly because
they deviate of the excitation light rays emitted by the plate reader, leading to
less excitation of the GFP in the wells during the fluorescence measurements,
and less light reaching the detectors in absorbance measurements. The result-
ing outliers are therefore almost all positively biased in the absorbance curves
and negatively biased in the fluorescence curves (Figure C6A).

The high frequency of outliers makes classical filtering techniques useless,
but the fact that they are mostly one-sided in each curve enables us to remove
them using an ad-hoc procedure. The different steps are illustrated in Fig-
ure C6. In a first step we use the fact that, as they tend to produce bumps
in the curve, outliers are point of very low or high second-order derivative.
Therefore we first remove the points where this derivative is high in the flu-
orescence curve or low in the absorbance curve. The (discrete) second-order
derivative of a discrete signal (ti, yi)1≤i≤N is computed by differentiating the
curve two times according to the formula

dy

dt
(ti) =

yi+1 + yi
ti+1 − ti

.

The points of the curves corresponding to the 50% higher (for the fluores-
cence) or lower (for the absorbance) values are removed. For better efficiency
this filtering is carried over several times. The resulting data (Figure C6B) is
generally very conservative, in the sense that many sound data points have
been excluded as outliers. The next steps will aim at retrieving these points.
We first smooth the data remaining after the first step using a moving window
smoothing, in order to obtain a trend and an estimation of the standard de-
viation of the measurement noise (Figure C6C). The measurements conserved
in the final curve (Figure C6D) are the ones whose value is less than three
standard deviations away from the trend.
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C5.2 Raw data

This section presents the original data behind Figure 4.2 and Figure 4.4 of
the main text.
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Figure C1: Estimation of the degradation rate dCRP through an in-
duction experiment. Line colors in panels A,B,C refer to different initial
concentrations of ATc in the growth medium, given in panel A. In panels A
and C, dotted lines and shaded regions indicate the mean ± one standard de-
viation of at least 4 replicates. A. Observed synthesis rate of CRP∗ proteins as
as function of the ATc concentration in the medium. The population volume
(OD) is indicated by the grey line. B. Intracellular concentration of CRP∗
estimated from the activity and volume profiles of panel A, using the coeffi-
cient dCRP estimated in panel D. C. Oberved activity of the plac∗ promoter
(dotted lines) and profiles predicted from the concentrations in panel B and
the parameter Cc estimated in panel D. D. Sum-of-squares error for different
values of dCRP and Cc. The red dot indicates the best fit, the dark red region
indicates parameters yielding a squared error at least twice as large as the best
fit.
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A B C

Figure C2: Steps of the construction of the plac∗-gfp reporter gene. A.
Two primers carrying the sequence of the plac∗ promoter are used to amplify
the pUA66 template B. The linearized plasmid obtained in A is injected into
E. coli NM100 (expressing naturally the λ-red recombinase) where the two
homologous ends recombine to form a closed circle. C. Final plasmid, with a
synthetic plac∗ reporter upstream of GFP.
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Figure C3: Construction steps of the induction plasmids. The plasmid
pZA carries a constitutively expressed tet repressor gene and the luciferase
operon downstream of the ptet promoter (left). We amplified the crp∗ gene
from the chromosome and inserted this fragment into pZA in place of the
luciferase operon (center). In a similar manner, we inserted gfp into pZA
downstream of the ptet promoter (right). In a final step, we placed gfp, in-
cluding the strong RBS of pZA, downstream of the ATc-inducible pZA-crp∗
plasmid (bottom).
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Figure C4: Predictions of the model calibrated in Chapter 4 in the
case of glucose-fructose and glucose-xylose diauxies.
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Figure C5: Dosage of cAMP for the different diauxies discussed in this
thesis. Assays are performed in microplates by batches of ∼70. To be able to
make triplicates measurements for each data point, we made separate assays
for the diauxies on glucose(-acetate) and glucose-glycerol on one hand (first
line), and glucose-fructose, glucose-xylose on the other hand (second line).
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treatment is indicated in the upper right corners.



170APPENDIX B. SUPPLEMENTARY INFORMATION ON CHAPTER 4

0

5000

Fl
u
o
re

sc
e
n
ce

ptet-crp ∗ -gfp pRM-gfp

atc (ng/mL)
49

66

132

plac ∗ -gfp

0.0

0.2

A
b
so

rb
a
n
ce

0.000

0.005

G
ro

w
th

 r
a
te

0

5000

C
o
rr

e
ct

e
d

fl
u
o
re

sc
e
n
ce

0 200 400 600
t (min)

0

200

P
ro

m
o
te

r
a
ct

iv
it

y

0 200 400 600
t (min)

0 200 400 600
t (min)

Figure C7: Analysis of the raw experimental data for the growth on glycerol
shown in Figure 4.2.
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Figure C8: Analysis of the raw experimental data for the glucose-fructose
diauxy shown in Figure 4.2.
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Figure C9: Experimental data corresponding to growth on glucose
in Figure 4.4 of the main text. The corrected fluorescence profiles are
obtained by subtracting the fluorescence of a wild-type strain carrying no
reporter plasmid (black lines) to the observed fluorescence profiles. Promoter
activities in the fourth panel are computed from absorbance and fluorescence
data as explained in Chapter 3.
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Figure C10: Experimental data used for the Glucose-glycerol diauxy shown in
Figure 4.4. See Figure C9 for details.
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