
HAL Id: tel-01679643
https://theses.hal.science/tel-01679643

Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale interaction techniques for the interactive
visualization of execution traces

Rémy Dautriche

To cite this version:
Rémy Dautriche. Multi-scale interaction techniques for the interactive visualization of execution
traces. Other [cs.OH]. Université Grenoble Alpes, 2016. English. �NNT : 2016GREAM046�. �tel-
01679643�

https://theses.hal.science/tel-01679643
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Rémy Dautriche

Thèse dirigée par Alexandre Termier
et codirigée par Renaud Blanch et Miguel Santana

préparée au sein Laboratoire d’Informatique de Grenoble
et de l’Ecole Doctorale de Mathématiques, Sciences et Technologies
de l’Information, Informatique

Multi-scale Interaction Techniques
for the Interactive Visualization of
Execution Traces

Thèse soutenue publiquement le 20 Octobre 2016,
devant le jury composé de :

M. Bruno Raffin
Directeur de Recherche à l’INRIA Grenoble, Président
M. Emmanuel Pietriga
Directeur de Recherche à l’INRIA Saclay, Rapporteur
M. Yannick Prié
Professeur à l’Université de Nantes, Rapporteur
Mme. Karine Heydemann
Maı̂tre de Conférence à l’Université de Paris, Examinateur
M. Marc Plantevit
Maı̂tre de Conférence à l’Université de Lyon, Examinateur
M. Alexandre Termier
Professeur à l’Université de Rennes, Directeur de thèse
M. Renaud Blanch
Maı̂tre de Conférence à l’Université Grenoble Alpes, Co-Directeur de thèse
M. Miguel Santana
Directeur du centre SDT à STMicroelectronics, Co-Directeur de thèse

Abstract

Developing streaming multimedia applications on embedded systems becomes in-
creasingly complex over time. New multimedia standards reach the market to
support better resolutions and overall improved quality delivered to the end-user.
Consequently, hardware platforms complexify and developing the software to fully
exploit them becomes harder at each new generation. The traditional debugging
method for streaming applications is the usage of execution traces. However, the
amount of data generated by modern software largely increases and existing tools
do not allow an efficient debugging process as they become unable to tackle large
amounts of data. In this thesis, we focus on new interactive visualization tech-
niques enriched by results of data mining algorithms for a more efficient analysis of
execution traces for multimedia applications.

First, we introduce Slick Graphs, a binning and smoothing technique for time
series visualization. Slick Graphs mitigate the quantization artifacts, introduced
by the traditional smoothing techniques, by using the smallest possible binning
intervals, i.e. pixels. We compared Slick Graphs to traditional smoothing techniques
in a user study and show that the Slick Graphs are significantly faster and more
accurate when working with periodic data. We then propose a novel interaction
visualization framework, TraceViz, to explore the execution traces at different level
of details and integrate the Slick Graphs to provide a global overview of the trace.
With TraceViz, we also introduce a fast back-end to support the interactive browsing
of huge traces. We perform a performance analysis to show that the TraceViz back-
end outperforms the back-end used in state-of-the-art debugging tools for execution
traces. Execution traces contain meaningful information that can be computed using
data mining techniques.

A wide range of patterns can be computed and provide valuable information: for
example existence of repeated sequences of events or periodic behaviors. However,
while pattern mining approaches provide a deeper understanding of the traces, their
results is hard to understand due to the large amount of patterns that have to be
examined one by one. We propose a novel visual analytics method that allows to
immediately visualize hidden structures such as repeated sets/sequences and peri-
odicity, allowing to quickly gain a deep understanding of the trace. Finally, we also
show how our method can be applied with different types of data than execution
traces.

Résumé

Développer des applications de streaming multimedia pour systèmes embarqués de-
vient une tâche de plus en plus complexe. De nouveaux standards multimedia
apparaissent régulièrement sur le marché pour supporter de meilleures résolutions
et délivrer du contenu multimedia de meilleure qualité. Une conséquence est la com-
plexification des plateformes matérielles et du développement logiciel. La méthode
traditionnelle de débogage pour les applications de streaming multimedia est l’uti-
lisation de traces d’exécution. Cependant, la quantité de données générée par les
logiciels modernes augmente et les outils existants ne passent pas à l’échelle, ne
permettent plus un débogage efficace. Dans cette thèse, nous nous focalisons sur
de nouvelles techniques de visualisation enrichies par des résultats d’algorithmes de
fouille de données afin de permettre une analyse efficace des traces d’exécution.

Nous commençons par présenter les Slick Graphs, une technique de découpage et
de lissage pour la visualisation de séries temporelles. Les Slick Graphs minimisent
les artéfacts introduits par les techniques de lissage traditionnelles en utilisant le
plus petit intervalle possible: les pixels. A travers une étude utilisateur, nous
montrons que les Slick Graphs sont significativement plus rapides et plus précis
avec des données périodiques. Nous proposons ensuite un nouveau système de vi-
sualisation interactive, TraceViz, pour explorer les traces d’exécution à différents
niveaux de détails. Avec TraceViz, nous introduisons aussi un back-end permettant
l’exploration interactive de trace d’exécution de taille importante. Nous fournissons
une analyse de performance montrant que le back-end de TraceViz délivre des per-
formances significativement meilleures que les back-end utilisés dans les outils de
débogage disponibles aujourd’hui.

Les traces contiennent aussi de nombreuses informations importantes qui peu-
vent être calculées avec des algorithmes de fouille de données comme par exemple
l’existence de séquences d’événements répétées au cours de la trace ou des comporte-
ments périodiques. Cependant, même si les techniques de fouille de données per-
mettent d’avoir une meilleure compréhension des traces d’exécution, leurs résultats
sont difficiles à exploiter dû au grand nombre de motifs à examiner un par un
manuellement. Nous proposons une nouvelle méthode d’analyse visuelle qui permet
de visualiser les structures cachées dans une traces comme les séquences répétées
et la périodicité d’un ensemble d’événements, permettant de rapidement avoir une
compréhension fine de la trace. Enfin, nous montrons aussi comment notre méthode
peut être appliquées à différents types de données, autres que les traces d’exécution.

Acknowledgement

I received support from many people during these three years and I will try not to
forget anyone!

My first thanks go to Renaud Blanch, Alexandre Termier and Miguel Santana
for their advices and support they provided me during these three years of work.
They provided me a great environment to work on subjects that really interest me.

I also want to thank the members of my jury: Bruno Raffin, Emmanuel Pietriga,
Yannick Prié, Karine Heydemann and Marc Plantevit for reviewing my thesis and
their constructive feedback.

Many thanks go to the EHCI team with who I spent a huge amount of time
during this thesis. Colleagues at STMicroelectronics have also largely contributed
to make these three years great. Specially I would like to thank Jérôme and Julien
with who I spent most of my time at the company. I really appreciated our fruitful
and technical conversations.

Friends played a big role during this thesis. To name a few, many thanks to
Nico, Lucie, Benôıt, Bruno, Laurent, Joanna, Gabriel, Pierre, Thomas, Pauline,
Olivier for the great times, whether outside for skiing or hiking, whether at the pub
;) Special mention to Nico and Antoine for the hikes and biking rides even though
I could not go as often as I wanted!

My family provided me their full support during this three years journey and
largely contributed in helping me finishing this work. I am deeply thankful to my
dad and Véro for encouraging me and to my siblings, Pierrick, Maëlle and Armel
for all the moments we spent together.

Finally, I want to deeply thank Mi for her love, happiness, and endless support
specially during the difficult moments.

v

Contents

Abstract i

Résumé iii

Acknowledgement v

1 Introduction 1
1.1 Motivation and Approach . 2

1.1.1 Challenges in Embedded Systems and Multimedia Applications 2
1.1.2 Research Approach . 4

1.2 Contributions . 4
1.3 Scientific Context . 6
1.4 Thesis Outline . 7

I Background 9

2 Multimedia Applications on Embedded Systems 11
2.1 Evolution of Video Standards . 12
2.2 Evolution of the Embedded Systems 14
2.3 Focus on Hardware for Multimedia Decoding 15
2.4 Decoding Multimedia Streaming Applications 16
2.5 Debugging Multimedia Applications on Embedded Systems 17

2.5.1 Execution Traces . 18
2.5.2 Tracing Systems . 20

2.6 Conclusion . 21

3 Related Work 23
3.1 Time Series Visualization . 23

3.1.1 Time Representation . 25
3.1.2 Multiple Time Series Strategies 29
3.1.3 Large Time Series Exploration 33
3.1.4 Exploration of Large Collections of Time Series 37
3.1.5 Visual Mining of Time Series 40

vii

viii CONTENTS

3.2 Visualization of Execution Traces . 43
3.2.1 Overview of a Trace . 43
3.2.2 Detailed Visualization of a Trace 46
3.2.3 Summary: a Gap Between Overview and Detail Visualizations 51

3.3 Pattern Visualization . 52

4 Challenges for Trace Debugging 57
4.1 Inaccurate Time Series Rendering . 58
4.2 Large Gap Between Overview and Detailed View 58
4.3 Slow Back-end Performances . 59
4.4 Pattern Mining for the Visualization of Execution Traces 60

II Contributions 61

5 Research Approach and Evaluation Methodology 63
5.1 Research Approach . 63
5.2 Evaluation Methodology and Validation 64

5.2.1 Slick Graphs Evaluation . 64
5.2.2 TraceViz Evaluation . 64
5.2.3 Structures Visualization . 65

6 Slick Graphs: Slick Visualization of Time Series 67
6.1 Introduction . 68
6.2 Smoothing Techniques for Accurate Visualization Techniques 69

6.2.1 Smooth First, Bin and Aggregate Second 69
6.2.2 Bin and Aggregate First, Smooth Second 70

6.3 Study Case: ThemeRiver Smoothing Algorithm 70
6.3.1 Layer Building . 70
6.3.2 Legibility Problems . 71
6.3.3 Wrong period depiction . 73
6.3.4 Summary . 74

6.4 Slick Graphs . 74
6.4.1 Time Series as Data . 74
6.4.2 Slick Graphs Binning Algorithm 75
6.4.3 Slick Graphs Smoothing Algorithm 75
6.4.4 Encoding the Filtered-out Information 76
6.4.5 Use Case: Slick Graphs as a Low-Pass Filter 77

6.5 User Study: Evaluation of the SLG Smoothing Technique 78
6.5.1 Hypotheses . 78
6.5.2 Tasks . 78
6.5.3 Participants . 80
6.5.4 Experiment data . 81
6.5.5 Protocol . 81

CONTENTS ix

6.5.6 Results . 81
6.5.7 Discussion . 85

6.6 Integration with Existing Techniques 85
6.6.1 Stacked Graph . 85
6.6.2 Interactive Horizon Graph . 86

6.7 Conclusion . 89

7 TraceViz 91
7.1 Introduction . 91
7.2 Data . 92

7.2.1 Data Storage . 92
7.2.2 Statistics and Data Computation 95

7.3 TraceViz Design . 96
7.3.1 Design Rationale . 96
7.3.2 TraceViz Visualization Principles 97

7.4 TraceViz . 98
7.4.1 Layout . 98
7.4.2 Initial View Configuration . 99
7.4.3 Trace Exploration . 100
7.4.4 Pan and zoom . 101
7.4.5 Actor Selection and Aggregation 101
7.4.6 Hierarchy Reordering . 101
7.4.7 Implementation . 102

7.5 Industrial Use Cases . 102
7.5.1 Use Case 1: Zap . 103
7.5.2 Use Case 2: HDMI black-outs 104

7.6 Industrial Deployment . 106
7.6.1 STMicroelectronics Toolkit . 106
7.6.2 The FrameSoC platform . 108
7.6.3 TraceViz Architecture . 108

7.7 Conclusion . 110

8 Hidden Structures at a Glance 111
8.1 Introduction . 111
8.2 Definitions and Notations . 112

8.2.1 Basic Definitions . 113
8.2.2 Structure . 114

8.3 Structure Computation . 116
8.4 Structure Visualization . 117

8.4.1 Goals . 118
8.4.2 Structures Overview . 118
8.4.3 Visualizing Structure Details 119

8.5 Experiments . 121

x CONTENTS

8.5.1 Execution Traces . 121
8.5.2 CPython Git Repository . 123
8.5.3 Foundation Series . 125

8.6 Conclusion . 127

9 Study of an Integrated Debugging Workflow 129
9.1 Introduction . 129
9.2 Example of an Analysis Workflow . 130
9.3 Use case: TSRecord . 130
9.4 Conclusion . 134

10 Conclusion 135
10.1 Contributions . 135

10.1.1 A Smooth Visualization Technique for Time Series 136
10.1.2 A Visualization Framework for Execution Traces 136
10.1.3 Discovering Hidden Structures 137

10.2 Future Work . 137

Bibliography 139

III French Summary 151

1 Introduction 153

2 Contexte Industriel 157

3 Etat de l’Art 159

4 Challenges autour du Débogage de Traces 163

5 Approche de Recherche et Méthodologie d’Evaluation 165

6 Slick Graphs: Visualisation Lisse de Séries Temporelles 167

7 TraceViz 169

8 Structures 171

9 Etude d’un Environnement Intégré de Débogage 173

10 Conclusion 175

List of Figures

1.1 This work is at the crossing intersection between Information Visual-
ization, Data Mining and Embedded Systems. 5

2.1 Television standard resolutions (in pixels) and video formats 12
2.2 Block diagram of the STMicroelectronics Monaco MPSoC for set-top

boxes . 14
2.3 Simplified set-top box architecture for decoding multimedia stream . 15
2.4 GStreamer architecture overview [GStreamer, 2016] 16
2.5 Performance tool included in the Firefox development tools to analyze

the execution time of the different piece of Javascript embedded in a
web page. 18

3.1 Early version of a line graph and a bar chart 24
3.2 Famous charts made by the English scientist Joseph Priestley 24
3.3 Combination of a line graph and a bar chart by William Playfair in

1786 . 25
3.4 Paper-based visualization showing the loss of soldiers, their position

and the temperatures during Napoleon’s Russian Campaign. Made
by Charles Minard in 1886. 25

3.5 Enhanced Interactive Spirale [Tominksi and Schumann, 2008] 26
3.6 Circular Silhouette Graph [Harris, 1999] 27
3.7 Circos visualizes multivariate data mapping radially the time [Krzy-

winski et al., 2009] . 28
3.8 Time Curve folds a line graph to position closely similar points [Bach

et al., 2015] . 28
3.9 With shared-screen techniques, the graphs share the space and with

split-screen techniques, the space is equally divided between the graphs. 29
3.10 ThemeRiver. It visualizes topic density variations across time. [Havre

et al., 2000] . 30
3.11 Different layout algorithms to stack the time series [Thudt et al., 2016] 31
3.12 Construction method of a Braided Graph [Javed et al., 2010] 32
3.13 Horizon Graph. The original line graph has been sliced into four

bands below and above the baseline. The bands have been wrapped
to reduce the vertical space. [Heer et al., 2009] 32

xi

xii LIST OF FIGURES

3.14 Ripple Graphs, a multi-scale time series visualization technique [Cho
et al., 2014] . 33

3.15 SignalLens proposes a focus+context technique for time series [Kin-
caid, 2010] . 34

3.16 ChronoLenses is an interactive analytic tool based on lenses [Zhao
et al., 2011b] . 35

3.17 Stack Zooming [Javed and Elmqvist, 2010] 36

3.18 TimeNotes [Walker et al., 2016] . 37

3.19 Line Graph Explorer [Kincaid and Lam, 2006] 38

3.20 Stroscope [Cho et al., 2014] . 39

3.21 TimeSearcher [Buono et al., 2005] . 41

3.22 Relaxed Selection Query on Time Series [Holz and Feiner, 2009] . . . 42

3.23 Ocelotl provides a trace overview using hierarchical and temporal
aggregation [Pagano et al., 2013] . 44

3.24 ExplorViz is a treemap-based to visualize Java programs execution [Fit-
tkau et al., 2013] . 45

3.25 Outline View provided in KPTrace 46

3.26 With no aggregation technique, visual artifacts quickly appear when
working on huge traces with Gantt Chart. Here is an example of the
KPTrace view. 47

3.27 Smart Traces shows several Gantt charts simultaneously, one color
corresponding to a module [Osmari et al., 2014] 48

3.28 Multiple views configuration to visualize the differences between two
traces [Trümper et al., 2013] . 49

3.29 Flame Graph showing the call stacks during a program execution [Gregg,
2016a] . 50

3.30 ExtraViz is composed of a circular view that shows the method calls
and a vertical time [Cornelissen et al., 2007a] 51

3.31 Ravel. In (a) the events are ordered according to the logical time and
(b) is based on the physical time. The logical time clearly make more
apparent execution patterns. [Isaacs et al., 2014a] 52

3.32 Visualizing frequent itemsets [Yang, 2003] 53

3.33 Itemset visualizer using polylines (a) and lines (b), (c) and (d) [Carmichael
and Leung, 2010] . 54

3.34 Circular layout and edge bundling visualization technique for frequent
itemset. [Bothorel et al., 2013] . 55

3.35 Powerset Viewer visualizes frequent itemset [Munzner et al., 2005] . . 55

6.1 ThemeRiver layer building. The timeseries t is split into n time win-
dows of duration d. A statistic is computed for each time window.
It gives the data points p0, p1 and p2. Two consecutive data points
are linked using a Bézier curve. The control points pna, pnb are placed
horizontally on the time window boundaries. 71

LIST OF FIGURES xiii

6.2 The graph shows a local minimum instead of the local maximum
present in the input. The gray color is the histogram representing
the raw data. The blue curve is what the final user will see and is
the result of the smoothing method. The red dashed lines are the
boundaries of the time windows. 72

6.3 Impact of the position of the time windows on the shape of the curve.
The histogram represents the raw data. The blue curve is the result
of the smoothing method. The red dashed lines are the boundaries
of the time window. 72

6.4 Inaccurate representation of a periodic signal 73

6.5 Building of the histogram H for Slick Graph 75

6.6 Using a Gaussian as kernel, SLG can reveal low frequency patterns
by increasing the smoothing factor from (a) to (d). 77

6.7 Task Perception. The graph in the middle is a line graph. Top and
bottom graphs are either STG or SLG and their position is randomly
swapped at each trial. The three graphs represent the same data.
STG and SLG apply a smoothing that are equivalent. The red lines
follow the mouse and are vertically aligned to help the comparison
between graphs. 79

6.8 Task Same. Graphs are grouped in five blocks. In each block, the
graph of the top is the reference, duplicated five times in total. Among
the five other graphs, the participants had to find which represented
the same data than the reference. The graph that was currently
explored was highlighted. 80

6.9 Impact of the smoothing technique and of σ on the different depen-
dent variables for the Maximum task. Error bars are 95 % CIs. 82

6.10 Mean completion time for the Period task. 83

6.11 Mean value error for the Period task. 84

6.12 Mean completion time for the Same task. 84

6.13 Mean correctness for the Same task. 85

6.14 Data smoothed with (a) STG algorithm, and (b) SLG algorithm.
SLG reveal more details. 86

6.15 Narrow peak corresponds to a sudden number of tweets being emitted
at the end of the talk. 87

6.16 Stream Graphs visualizing the volume of tweets emitted during SOTU
2015 . 88

6.17 Impact of the smoothing factor σ on IHG. The time series becomes
very difficult to read when the zoom increases. Increasing σ details
are filtered out and the average angle of the slope decreases, making
the graph more legible. 89

7.1 Read time of 20000 events when filtering on the time window, the
actor and the event type. 93

xiv LIST OF FIGURES

7.2 TraceViz visualization principles. 97
7.3 Building of the histogram hista for an actor a 98
7.4 Overview of TraceViz. TraceViz interface consists of three main areas:

the tree view (a), the outline view (b), the timeline view (c) and the
links that connect the actors and their corresponding graphs (d). . . . 99

7.5 Initial View Configuration of TraceViz where the developer can filter
the actors to show or hide and which statistics to start with. 100

7.6 Patterns appearing on the timeline for the use case Zap 103
7.7 Outline with SLG shading. The shading helps to visualize the peri-

odicity of the behavior thanks to regularly spaced black bands. 104
7.8 TraceViz showing an execution when video blanks appeared. The

system is artificially loaded with heavy some I/O using the dd Unix
command, represented in orange. The task jbd2-sda1-8 is scheduled
directly after the dd task, causing delays on the treatment of the
VSync IRQ callback, in the red rectangles. 105

7.9 The jbd2/sda1-8 task is scheduled after the dd task (in brown). . . . 105
7.10 When the dd task (in brown) is unscheduled, the jbd2-sda1-8 task (in

blue) loads the CPU, causing a delay on the treatment of the callback
for the VSync IRQ on the main output (in purple). 106

7.11 SoC Traces & Profiling Toolkit (STPTK). Two views are shown: the
time chart (on the top) and the Outline View (on the bottom). 107

7.12 FrameSoC interface. It shows a statistics about the event producers
instances as a pie chart (top left) and a tabular view (top right). On
the bottom is the time chart provided by FrameSoC. 108

7.13 TraceViz architecture in STPTK and FrameSoC 109

8.1 Visualization of a structure. The root of the diagram is the itemset
X of the structure. Each branch corresponds to one of its specialized
sequence SX that occurs at least once in the dataset. The thickness
of the first and second segments respectively encode supp(SX) and
pX . The branch colored in red represents the structure currently
highlighted by the user while exploring the data. On the top left are
rendered all the items belonging to the itemset of the structure. . . . 120

8.2 Structures of an execution trace. 122
8.3 Periodic behavior of the interrupt 146 shown on the structure overview

and in details. 123
8.4 Structures extracted from Git repository of the CPython project . . . 124
8.5 Structure showing two developers committing at a high rate simulta-

neously. 125
8.6 Visualizing the structures in the “Foundation” series from Isaac Asimov126
8.7 Dominant structure at the beginning of the text involving the char-

acter Hari Seldon and the planet Trantor 127

9.1 Example workflow integrating TraceViz and the visual analytic tool. . 130

LIST OF FIGURES 1

9.2 TSRecord trace visualized in TraceViz. 131
9.3 TSRecord trace visualized in TraceViz after having filtered-out irrel-

evant actors. 132
9.4 Structures computed on the TSRecord trace. 133

6.1 Slick Graphs . 167

7.1 TraceViz . 169

8.1 Visualisation de structures dans une trace d’exécution 171

Chapter 1

Introduction

Contents
1.1 Motivation and Approach 2

1.2 Contributions . 4

1.3 Scientific Context . 6

1.4 Thesis Outline . 7

June 18th 2016, a Saturday unusually cold for this period of the year. This is the
second week of the men’s soccer European championship, a hugely popular sport
event followed by millions of people in Europe, here in France. It tracts a huge
attention from the media: the matches are widely broadcast on television and the
radio is flooded by comments on the players’ performance. With all this traction,
a no less mythic sport event is about to start in a much greater silence: 24 Hours
of Le Mans. At the start of the grid, the most powerful prototype cars, the LMP1
category, are crossing the start line at 5:00pm, beginning to race with an average
speed of 250 km/h during 24 hours. These cars are pushing the boundaries of the
automotive technology, packing a total of 1000 horsepowers where about half is
delivered by an electric powertrain in parallel of a more conventional combustion
engine, reducing consequently the gaz consumption. 23 hours 56 minutes later, a
Toyota car is leading, closely followed by a Porsche car and are about to start the
final lap. You carefully follow these last moments even though the Toyota car seems
to have won this race: the Porsche team is not going to take any risk and prefers
to secure the second place. Suddenly, audio and video glitches occur for a couple
of seconds. When the image comes back, the Toyota car is rolling slowly on the
side of the track, all lights off, letting the victory escaping with the Porsche car.
You missed the key moment of the race. To this point, it does not matter that
no problem occurred during the viewing of the whole race before. It also does not
count that you could follow the race during an almost complete day, sporadically
zapping on other channels to follow the scores of the different soccer matches. All
you remember are these couple of seconds of failure that spoiled the last moment of

1

2 CHAPTER 1. INTRODUCTION

the race, computers never work!
The cause of all this drama is no more than a bug in the software in charge

of decoding the multimedia stream received for the television. In this thesis, we
propose novel techniques to support the software developers in investigating and
resolving bugs on streaming multimedia applications on embedded systems.

1.1 Motivation and Approach

We explain in this section what motivates this thesis. First, we describe the modern
embedded systems for multimedia applications and the challenges the semiconduc-
tors have to tackle when developing them. Second, we present the research problems
raised by the industry and our approach to investigate them.

1.1.1 Challenges in Embedded Systems and Multimedia Ap-
plications

The scenario given in the introduction is a simple example of consuming multimedia
content. Nowadays, we have access to a very large collection of musics, videos and
games that are available online and reachable in only a couple of seconds or minutes
at most whether we are at our home or anywhere else with an Internet connection.
The quality of the contents has never been better and is constantly improving.
For instance, the 4k movies hit the market in early 2015 and then are becoming
increasingly popular since. Simultaneously our devices pack an incredible amount
of computational power while reducing their energy consumption and increasing
their battery life. The smartphones in our pockets are more powerful than the
computers we used couple of years ago and the borders between these devices are
blurring in terms of usage. At home, our set-top boxes have turned into a powerful
digital center not only able to watch high definition television and video-on-demand
but also to browse the web, to play video games with appealing graphics, to do video
chatting and more. All this technology also become much easier to use providing
more reliability and better user interfaces.

To achieve the level of performance required by modern applications, mobile
devices and set-top boxes are built upon highly integrated embedded systems. The
hardware become increasingly small (in terms of physical size) to be able to reduce
the energy consumption and the heat generation, thus rising the computational
power output and increasing the battery life. Before, a single chip was dedicated to
a single task. Now, modern systems use Multiprocessor System on Chip (MPSoC)
to push further the integration of the different hardware components.

A MPSoC embeds very heterogeneous types of chip such as a Central Processing
Unit (CPU), a Graphical Process Unit (GPU) used for games and 3D applications
but also dedicated chips for audio and video decoding and to manage the connectivity
of the system. MPSoC for mobile devices also pack different sensors such as an

1.1. MOTIVATION AND APPROACH 3

accelerometer, a gyroscope and a GPS receiver.
Each new generation of MPSoC are better in terms of performance and energy

consumption to enable the constructors such as Apple and Samsung to provide
innovative devices delivering a better experience to the end users. Consequently,
the hardware platforms become increasingly complex to design as time goes.

On the other hand, the software complexity grows significantly over time. Mod-
ern softwares have become heavily parallel to fully use the computational power of
the different cores of an MPSoC. An industrial consequence of complex hardware
and software products is the rising time and cost to develop and verify for such
systems.

Reducing the time-to-market is mandatory for the companies to be able to tackle
the aggressive time schedule needed to stay competitive in a rapidly evolving market.
Multimedia applications comes with several specificities: QoS properties have to be
satisfied to guarantee a smooth playback. Therefore, we distinguish two different
types of bugs that can appear on a multimedia application:

1. Functional bug. A functional bug corresponds to the case where the software
outputs an incorrect result according to a pre-defined specification.

2. Temporal bug. A temporal bug is typically a performance issue: the system
is not able to satisfy a given time constraint. In the case of a multimedia
application, 30 frames have to be decoded every second. A temporal bug
happens when the decoding application is slower than the specified output
frame rate.

While functional bugs can be solved using traditional debuggers, temporal bugs
are more challenging for two main reasons. First, the real-time properties they
have to respect makes irrelevant traditional debuggers which pause the execution,
completely breaking the QoS properties of the application. Second, temporal bugs
tend to appear in the last phase of the software development, during the integration.
Indeed, they mostly appear due to bad a synchronization and/or communication
between several components of the system, making them impossible to detect before
the integration step. For this reason, temporal bugs also appear after the delivery of
the development boards to the customers when they implement their own software
layer. Therefore, software developers in charge of solving the temporal bugs work
with a very limited amount of time and under a high level of pressure, put on one
side by the customer and on the other side by the semiconductor company. In this
context, developing bug free software becomes a very challenging task.

Therefore, having efficient development and debugging tools is critical for com-
panies to deliver to the market efficient and robust software in a short amount of
time.

4 CHAPTER 1. INTRODUCTION

1.1.2 Research Approach

As explained above, when debugging streaming multimedia applications, traditional
debuggers do not work as explained above. A better approach consists in profiling
the application at runtime and analyze the data after the execution. This process
is named tracing [Prada-Rojas et al., 2009; Castro et al., 2011]. All the events
that occurred during the execution of the applications are recorded and stored in
log file called execution trace. For each event, several pieces of information are
saved such as its timestamp and its type. Based on the information contained in
the execution trace, the developers look for the source of a temporal bug. This
debugging technique is not intrusive: the perturbations produced on the application
are minimal and the execution is run normally. However, when working with modern
systems, the amount of data generated during a single execution is huge and makes
the analysis of the trace slow and fastidious.

For an efficient debugging process, software developers need debugging tools
that allow them to quickly spot behavioral and temporal patterns. Doing so makes
possible to filter out redundant information to focus more quickly on suspicious data.
Two strategies are possible:

1. using automatic analysis techniques able to detect temporal anomalities based
on data mining. Examples of such approaches include the detection of periodic
behavior [Lopez Cueva et al., 2012] and QoS violations [Iegorov et al., 2015];
and

2. using visualization techniques to present to the developers meaningful insights
and to support them in the exploration of huge execution traces.

In this doctoral work, we are interested in providing novel interactive visualiza-
tion techniques for execution traces. Our goal is to propose new debugging tools
in which the behavioral and temporal patterns appear clearly. We also focus on
supporting the developers in the discovery of global and local trends in the data,
making easier the filtering process. To achieve this, we want to integrate data min-
ing results into the visualization tool to leverage their usage and being able to detect
temporal and behavioral patterns and outliers.

Therefore, this thesis is located at the intersection of three domains: data mining,
information visualization and embedded systems (Figure 1.1).

1.2 Contributions

In this thesis, we propose novel visualization and visual analytics techniques able to
tackle a huge amount of data to support the software developers in quickly gaining
insights on the execution of multimedia applications on embedded systems with ex-
ecution traces to spot temporal behavioral patterns and easily filter-out irrelevant
data.

1.2. CONTRIBUTIONS 5

Information
Visualization

Data
Mining

Embedded
System

Figure 1.1: This work is at the crossing intersection between Information Visualiza-
tion, Data Mining and Embedded Systems.

Our contributions consists in three points:

1. Slick Graphs. The software developers visualize time series to analyze exe-
cution traces, very frequently as an histogram showing the CPU load or the
event density. However, time series are often shown smoothed to make them
easier to read [Bar and Neta, 2006]. The related work shows that the tradi-
tional smoothing technique used by many visualizations for time-oriented data
relies on binning values in small numbers of time intervals and interpolating
smoothly between those values. It introduces many artifacts and makes the
visualization not suitable for precise rendering. When working with execution
traces or in a scientific context, a maximal visual precision is required: with
a high aliasing, periodic behavior may be hidden and local extrema may be
inaccurate. Our contribution, a novel visualization technique for smoothed
time series called Slick Graphs, mitigate those quantization artifacts by using
the smallest possible binning intervals, i.e. pixels. They nonetheless provide
smooth variations by using a convolution with a kernel.

2. TraceViz. There exists many visualization tools to analyze execution traces
but they have reached their limits with the amount of data generated by mod-
ern applications. They either provide a too generalized representation to be
useful, or they show too much details leading to a fastidious data exploration.
There is a huge need for an integrated debugging environment that enables
the developers to quickly browse, search and filter-out the huge amount of
data generated at each execution. We propose a novel interaction visualiza-
tion framework to address these problems. In particular, we present a new
fast back-end suitable for the interactive browsing of huge traces and a new
visualization technique to explore the trace at different levels of details. This
framework takes advantage of the performances of the back-end and integrates

6 CHAPTER 1. INTRODUCTION

a Slick Graph to achieve an accurate rendering, mandatory in such context to
not mislead the developer in making wrong assumptions.

3. A novel visual analytics method to visualize hidden structures in
execution traces. There is an increasing need to quickly understand the
content of execution traces to shorten the time of analysis due to the compet-
itive market of consumer electronics. A wide range of patterns can be com-
puted and provide valuable information: for example existence of repeated
sequences of events or periodic behaviors. However pattern mining techniques
often produce many patterns that have to be examined one by one, which is
time consuming for experts. On the other hand, visualization techniques are
easier to understand, but cannot provide the in-depth understanding provided
by pattern mining approaches. Our last contribution is to propose a novel vi-
sual analytics method that allows to immediately visualize hidden structures
such as repeated sets/sequences and periodicity, allowing to quickly gain a
deep understanding of the execution traces.

1.3 Scientific Context

This work is at the intersection of one industry and two research domains. Funded by
the ANRT as an industrial CIFRE thesis, the industrial work of this thesis has been
done in partnership with STMicroelectronics in the SDT group (Software Develop-
ment Tools) and the research activities, in the domains of information visualization
and data mining, have been respectively done at the Laboratoire d’Informatique
de Grenoble (LIG) in the Engineering Human-Computer Interaction (EHCI) group
and in the Scalable Information Discovery and Exploitation (SLIDE) group.

The SDT team is in charge of developing new tools for internal software devel-
opers as well as for consumers who bought STMicroelectronics platforms. Their
purpose is to provide efficient solution for debugging multimedia applications on
embedded systems. During most of the PhD, I worked in close collaboration with
the software engineers of the SDT team. STMicroelectronics took the decision early
2016 to stop the set-top box activity, thus closing the division Digital Product Group
in which the SDT team was belonging. From this point, the SDT team had to freeze
all its developments and release of the development tools. The software engineers
that were working on the streaming engine for set-top boxes were reallocated to
different divisions, only were kept to support the customers in bug resolutions on
previously sold products. These elements made impossible the integration of new
tools and increased the difficulty to reach any developers that was already high due
to several factors such as a heavy workload.

The research in information visualization has been carried out in the EHCI team
whose research themes include human-computer interaction and visualization. The
data mining work has been conducted with the SLIDE team that focus on efficient
large-scale data processing with pattern mining algorithms.

1.4. THESIS OUTLINE 7

1.4 Thesis Outline

The remaining of this manuscript is composed of eight chapters:
In Chapter 2, we present the evolution of the multimedia standards (Sec-

tion 2.1) and of the embedded systems for streaming applications (Section 2.2).
We give an overview of the hardware architecture involved for decoding multime-
dia streaming applications (Section 2.3) and then we describe the method to debug
streaming multimedia application with real-time constraints and the specificities of
debugging such applications (Section 2.4).

In Chapter 3, we present previous works done on the visualization of time series
(Section 3.1). Next we focus specifically on the research approaches for visualization
techniques for execution traces (Section 3.2) and patterns visualization (Section 3.3).

In Chapter 4, we summarize the main challenges discussed in related work that
need to be addressed to provide more efficient debugging tools for execution traces.

In Chapter 5, we explain the approach taken during this thesis and explain the
motivations behind the different choices we made to evaluate our contributions.

In Chapter 6, we introduce Slick Graphs, our novel technique for smooth and
accurate visualization of time series. We explain the different strategies available
for smoothing data in visualization (Section 6.2). We analyze the legibility issues
of previous approaches (Section 6.3) before proposing our smoothing algorithm for
accurate visualization of time series (Section 6.4). We present the user study to
evaluate the benefits of our technique (Section 6.5) and show how to integrate with
existing methods (Section 6.6).

In Chapter 7, we describe a new visualization framework for execution traces,
TraceViz. The algorithm developed for the Slick Graphs serves here as the founda-
tion building brick for TraceViz for its new representation of traces. We introduce a
new high performance back-end that enables interactive exploration of huge traces
(Section 7.2). We describe in Section 7.3 and 7.4 the tool built on top that pro-
vides an overview yet detailed enough to spot periodic and anomalous behaviors.
We present two real world use cases for which TraceViz provided relevant infor-
mation (Section 7.5) and how it has been integrated into the STMicroelectronics
development toolkit (Section 7.6).

In Chapter 8, we present a visual analytics method to discover hidden trends
and perturbations in logs. This work consists in giving an other type of overview
than the one provided by TraceViz. Both the technique presented in this chapter and
TraceViz can be seen as complementary visualization technique for trace analysis.
After having introduced and defined the notion of structure (Section 8.2), we explain
the algorithm to compute them (Section 8.3) and introduce the tool to visualize them
(Section 8.4). Section 8.5 of this chapter shows experiments on various types of data
to illustrate the relevance of our approach.

In Chapter 9, we show an example of integration of the works presented in
the previous chapters based on a use case. After having described the integration
and the potential workflow suitable for the use case in Section 9.2, we analyze the

8 CHAPTER 1. INTRODUCTION

execution trace to demonstrate how this workflow works in Section 9.3.

Part I

Background

9

Chapter 2

Multimedia Applications on
Embedded Systems

Contents

2.1 Evolution of Video Standards 12

2.2 Evolution of the Embedded Systems 14

2.3 Focus on Hardware for Multimedia Decoding 15

2.4 Decoding Multimedia Streaming Applications 16

2.5 Debugging Multimedia Applications on Embedded Sys-
tems . 17

2.6 Conclusion . 21

New video formats and higher resolutions provides a better video quality to con-
sumers. Nowadays, many devices, from set-top boxes to smartphones and tablets,
are able to decode high definition medias and allow the users to widen their usage.
On-the-go, mobile devices run games with high graphics quality, embed cameras
that can compete with dedicated cameras and enable video chatting. On the other
side, consumers request good battery life and very compact designs.

In this chapter, we show the evolution of the multimedia standards and the
modern usages that appeared recently (Section 2.1) and explain how it has impacted
the embedded systems architectures (Section 2.2). To ensure the delivery of good
performances, multimedia applications require specific hardware (Section 2.3) and
embedded software for streaming application has its own specificities (Section 1.4).
Therefore, traditional tools are not relevant and developers need specific tools to
test and debug these platforms (Section 2.4).

11

12 CHAPTER 2. MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS

7680× 4320 (UHDTV)

3840× 2160 (UHDTV)

1920× 1080 (HDTV)
1280× 720 (HDTV)
720× 576 (SDTV)

Figure 2.1: Television standard resolutions (in pixels) and video formats

2.1 Evolution of Video Standards

Smartphones, tablets, set-top boxes and connected televisions are some examples
of devices broadly used on a daily basis for an ever wider range of digital activi-
ties. Consumers now expect these devices to provide a high level of performance to
produce or consume multimedia contents (audio, videos, photographies) and to play
games with a high quality of graphics only achievable on a personal computer couple
of years ago. These applications push the hardware to its limits and need a lot of
energy to run. To guarantee the longest autonomy possible, mandatory for mobile
devices, embedded software has to be optimized for the underlying hardware.

Set-top boxes are a typical example of widely used devices that have followed
a dramatic evolution in the last decade. Originally, a set-top box is a device that
receives a digital stream for television, decodes it and sends it to a display device
such as a television in most cases. During the last decade, television resolutions and
formats have improved quickly. Figure 2.1 depicts the evolution of the resolution
across time. At the beginning of the digital television, the set-top boxes had to
decode a stream compressed using the MPEG-2 standard before sending it to an
output device that will play it (i.e. a television or a monitor). The transition from
analog to digital television began in the early 2000s and was complete in most
developed countries in the early 2010s. Different low resolutions were supported by
the first generation, ranging from 640 × 480 to 720 × 576 pixels depending on the
countries, and were regrouped under the format named standard-definition television
(SDTV). Quickly, a new video format arrived to provide a better image quality
with higher resolutions: the high-definition television (HDTV) that supports the
1280 × 720 and 1920 × 1080 pixels resolutions, commonly named 720p and 1080p.
The latest evolution in this domain is the introduction of the ultra-high definition
television (UHDTV) that includes the 4k standard (3840× 2160), that reached the
consumer market in early 2014, and the 8k (7680× 4320 pixels) standard for which
the first highest-end televisions appeared on the market in early 2016.

2.1. EVOLUTION OF VIDEO STANDARDS 13

To support this evolution, new standards for compression algorithms and video
containers have been developed. For the HDTV video format, the MPEG-4 AVC
(Advanced Video Coding), or H.264, compression algorithm was introduced [Wie-
gand et al., 2003]. The H.264 has been designed to work with many different types
of application including online streaming and broadcasting. To achieve this, the
standard supports high and low bit rates and can work with lower than HD defini-
tions. Consequently, it is the most broadly spread video compression algorithm in
the industry, from BluRay discs, HDTV broadcasts and many different web content
providers such as Youtube [Youtube, 2016] and Vimeo [Vimeo, 2016]. The successor
of the H.264 is the newer H.265, or High Efficiency Video Coding (HEVC), video
encoding standard [Sullivan et al., 2013]. Compared to the H.264, the H.265 offers a
better video compression and supports the resolutions up to the 8k for the UHDTV.
It has reached the market in early 2016 but there exists few digital contents to take
advantage of this new standard at the moment of writing.

We briefly described the evolution of the standards for both the physical prop-
erties of the devices (i.e. the resolution) and for the video compression standards
to provide digital content with a better quality. These compression algorithms be-
come more sophisticated at each iteration. A direct consequence is the need of more
powerful hardware platforms and an increasing software complexity that are able
to tackle the real-time decoding of these multimedia streams and to implement the
latest standards. In parallel, the size of the television screens themselves has greatly
increased to take advantage of the new resolutions. They are nowadays providing a
great user experience when watching movies and for many different activities such
as gaming, video conference, etc. In a short amount of time, the activity of the
set-top boxes went from decoding a low resolution multimedia content to decoding
simultaneously several high resolution streams and broadcasting the media to differ-
ent outputs in the home. The set-top boxes also have to support gaming activities
and different other usages aforementioned. These activities will become even more
important in the upcoming year.

Set-top boxes are not the only devices that followed this evolution. Smartphones
have followed the same path to become mobile devices that pack the same amount of
computational power than the computers from a couple of years ago. More recently
the part of hardware and software embedded in cars has greatly increased. Modern
cars now pack new features to provide different levels of assistance such as parking
assistance or automatic door unlocking when the owner arrives at proximity. Few
has reached the market with even more advanced features such as fully automatic
parking and meeting point (i.e. the car is able to connect to the garage door, open
it, park and close it - it also comes with the capacity of analyzing the user’s calendar
and be warm and ready on time with no user actions) and with full autonomous
driving capacity1. Similarly to multimedia applications, embedded systems in cars
have to analyze in real-time a large amount of information, and more specifically
implement computer vision algorithms to analyze the video stream recorded by

1Tesla Motors: http://teslamotors.com

http://teslamotors.com

14 CHAPTER 2. MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS

Figure 2.2: Block diagram of the STMicroelectronics Monaco MPSoC for set-top
boxes. Each block represents a dedicated chip for a specialized task.
Source: http://hackerboards.com/set-top-box-socs-move-up-to-cortex-a9-ultrahd-hevc/

outside cameras, to be able to react quickly enough to guarantee a high-level of
reliability. These examples show the increasing need of efficient tools to develop and
debug real-time embedded softwares for more powerful hardware platforms.

2.2 Evolution of the Embedded Systems

The new usages and improved multimedia user experiences are supported by new
generations of hardware released every couple of years making the devices more pow-
erful with a lower energy consumption. These increased performances are possible
thanks to highly integrated MultiProcessor System-on-Chip (MPSoC) that embed
many specialized processing units for very specific tasks such as audio and video
decoding. The main components of a MPSoC are a Central Processing Unit (CPU),
memories, specialized hardware chips - or accelerators that can include a Graphics
Processing Unit (GPU), Digital Signal Processors (DSP) etc., external connectors
(Ethernet, USB, JTAG and so on) and a bus to connect these components. Wolf et
al. provides a deep explanation of the MPSoC technology and the challenges specific
to their design [Wolf et al., 2008].

The increasing complexity of MPSoC implies a higher cost and a longer devel-
opment time, increasing the time-to-market. To keep proposing efficient solutions in
a very competitive market, the conception methodologies has evolved. Nowadays,
rather than designing a MPSoC from scratch, semiconductor companies largely rely
on integrated circuit (IC) libraries. They use Intellectual Property (IP) cores on
their platform and only develop some specialized chips that they integrate with the

http://hackerboards.com/set-top-box-socs-move-up-to-cortex-a9-ultrahd-hevc/

2.3. FOCUS ON HARDWARE FOR MULTIMEDIA DECODING 15

USB

Ethernet

Disk

...

B
U

S
Demux

Video
decoder

Audio
decoder

Post
processing

Audio
device

Display
device

Figure 2.3: Simplified set-top box architecture for decoding multimedia stream

blocks available on the market into a single chip, a MPSoC. Several companies, such
as ARM, sell these IP cores and tend to become standards as the number of systems
integrating them increases.

STMicroelectronics designs and produces MPSoC for set-top boxes and develop
the software layer to exploit them. The last generation, the STiH412 ’Monaco’
series [STMicroelectronics, 2016b], is composed of many cores dedicated to a large
panel of different specific tasks to satisfy the modern usages (see Figure 2.2 for the
block diagram). The main processor, a dual or quad-core core ARM Cortex-A9 pro-
cessor [ARM, 2016b], is a general processor for set-top boxes, smartphones, tablets,
etc. delivering enough computing power to handle the different tasks executed con-
currently. The multimedia decoding activities are performed by several specialized
processors, each of them supporting one or several specific video formats and en-
codings. For example, the processor under the name Display pipe and 2160p30
compositor is in charge to decode in real-time a 4k stream from the television or
other sources available through Video-on-Demand (VoD) services (i.e. Netflix [Net-
flix, 2016], Vimeo [Vimeo, 2016], etc.). The HDTV streams are decoded by the
Multi-format video decoder processor. An other specificity of modern platforms
that reflect the expansion of the usages is the appearance of a dedicated processor
to encode videos for the purpose of video chatting (using Skype [Skype, 2016] or
Google Hangouts [Google, 2016]). As explained above, gaming is an other growing
activity on set-top boxes and a dedicated GPU is required. Here, an ARM Mali
400 GPU has been integrated [ARM, 2016c]. This GPU supports OpenGL ES 2.0
and provides enough power to provide a good gaming experience with appealing
graphics.

2.3 Focus on Hardware for Multimedia Decoding

Decoding a stream is a complex task that involves itself several processing units (see
Figure 2.3 for a simplified architecture of a basic set-top box). As aforementioned,
the multimedia sources can be of different nature. After reception, the first step

16 CHAPTER 2. MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS

Figure 2.4: GStreamer architecture overview [GStreamer, 2016]

consists in separating the audio and video data streams according to the video
format container. This step is performed by a demultiplexer and the media streams
are sent to the appropriate decoders. The audio and video decoders work in parallel.
The video decoder, for example the HEVC video decoder process unit on Figure 2.2
stores the frames into a buffer. When working with HEVC decoders, the video
frames need to be reordered before being sent to the post-processing step [Sullivan
et al., 2013]. Post-processing is in charge of scaling the frames and synchronizing
them with the audio. It is the final step before sending the decoded streams to the
output devices.

While this is a brief overwiew of a typical hardware architecture to decode a
multimedia stream, it still gives an idea of the complexity of the decoding process.

2.4 Decoding Multimedia Streaming Applications

To support the newest video compression standards and to fully use the potential
of the hardware platforms, the difficulty of developing the software layer constantly
raises and brings new challenges. Similarly than for the hardware design, developing
from scratch the multimedia applications for each platform became too expensive
and time consuming. Instead, developers rely on middleware that implements the
decoding pipeline, known as multimedia frameworks and adapt them for each MP-
SoC. Popular multimedia frameworks include Media Foundation [Microsoft, 2016]

2.5. DEBUGGING MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS17

and AV Foundation [Apple, 2016] both platform-dependent, proprietary and devel-
oped respectively by Microsoft and Apple. Famous free and cross-platform frame-
works include GStreamer [GStreamer, 2016], Phonon [Phonon, 2016] and the VLC
framework [VideoLAN, 2016]. All provide default implementations of the video stan-
dards and a plug-in mechanism facilitating the integration of the dedicated hardware
accelerators. Figure 2.4 shows an overview of the GStreamer architecture. The core
framework implements the decoding pipeline. It is the software implementation of
the pipeline shown in Figure 2.3, used as default. The support of different video
formats, encodings and so on is implemented through different plugins. Based on
the framework, the end-user applications are implemented independently of any of
the video parameters.

2.5 Debugging Multimedia Applications on Em-

bedded Systems

When developing an application, debugging is used for two different tasks: (1)
functional debugging and (2) temporal debugging.

First, the implementation has to respect a pre-defined behavior according a spec-
ification. When the behavior of the application does not respect the specification,
the developers perform a functional debugging to find the source of the problem.
The functional debugging workflow uses breakpoints. The execution stops at the
breakpoints from which the developer can investigate the state of the application.
Then, there are two different execution strategies available:

1. continue the execution normally. The analysis of the current state of the
execution is correct and the execution must continue to reach the bug.

2. enter in a step-by-step mode where the execution stops at each instruction.
The source of the problem is to be reached and a fine-grained analysis of the
state of the different variables is required.

Second, even if the application fulfills the specifications, the execution may be
slow. In this case, the debugging is used for performance tuning. It is called temporal
debugging. A common strategy is to instrument the source code with timers to
measure the execution time of critical components. This operation is called profiling.
The execution time can be simply output or displayed using a simple graph such
as a bar chart. Web browsers have democratized this technique by providing by
default profiling tools to measure the loading time of each component of a web page
(Figure 2.5).

For some applications, the functional debugging and the performance tuning can
be done separately. In this case, the developer first aims to implement the correct
behavior and then, improves the performance. However, when working with real
time constraint, the execution has to satisfy a maximal response time. Its behav-
ior is considered abnormal if the time constraint is not satisfied. In this context,

18 CHAPTER 2. MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS

Figure 2.5: Performance tool included in the Firefox development tools to analyze
the execution time of the different piece of Javascript embedded in a web page.

using breakpoints to debug the application would break the real time constraints,
modifying the behavior of the application.

As explained before, a multimedia application receives one or several encoded
streams and has to decode it in real time before sending it to a peripheral that will
display the content. The decoding process has to respect some QoS properties so
that no audio glitches or video artifacts appear [Bril et al., 2001]. More precisely,
to provide a smooth playback, each of the decoding steps has to satisfy some real
time constraints. For instance, to prevent video glitches, the decoder has to send
30 frames per second to the display device. Below this limit, a momentarily blank
screen may appear or a frame jump may occur, perturbing the user experience.
Therefore, traditional breakpoints do not allow to detect the root of a problem since
the decoding would be interrupted.

To circumvent this phenomenon, a popular technique is to use execution traces
to debug multimedia applications and more generally embedded softwares with real-
time constraints. Using traces allows to do a post-mortem analysis of the execution,
therefore not to break the QoS properties to respect at the execution time. On top
of being less intrusive than interactive debuggers, tracing systems are also widely
spread in the industry, leveraging the cost of this solution.

2.5.1 Execution Traces

Execution traces are text files in which the events that occurred during the program
execution are saved sequentially. Therefore, traces are time series: a collection of
time related events.

Definition 1. A trace T is a list of events E so that ∀ei, ej ∈ E, i < j if and only
if ei happens before ej.

In a trace, each event is unique and characterized by relevant information to
understand what occurred during the execution. It is typically composed of the
following fields:

� a timestamp when the event occurred.

2.5. DEBUGGING MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS19

� an actor that produced the event. In embedded systems, actors can be of
different nature. It can be a process, a kernel module, an interrupt or a
software interrupt.

� an event type. It indicates the nature of the event and includes context
switches, entry/exit of a system call, a user-land function or an entry/exit
of an interrupt.

� a variable number of arguments depending on the event type. For instance, in
the case of a context switch, the event can have two arguments: the old and
new process identifiers. When the event corresponds to the entry in a function,
the arguments can corresponds to the memory address of the function and the
arguments given to the function and so on.

Each event is recorded as an entry into the trace log. The developer can configure
which components will be traced to mitigate the number of events but in complex
application executions and target specific software modules. However, such events
occur many times resulting on a huge amount of data generated in a short period of
time (≈ 106 events per minute). Listing 1.1 shows an extract of a typical execution
trace. The trace is read as follows:

� Each line represents an event in the trace.

� The first column is the timestamps when each event has occurred. Here the
timestamps are measured in milliseconds.

� The second column is the identifier of the process (PID) that executed the
instruction.

� The event type is encoded on the third column. In the example, we have a
context switch (C), an entry (S) and an exit (s) in a software interrupt, an
entry (E) and an exit (X) of a system call and an entry (I) and an exit (i) of
an hardware interrupt.

Therefore, the first line represents a context switch from IDLE whose process id
(PID) is 0 to the process 3 at timestamp 943920468.728392. Then, the second and
third line are respectively an entry and an exit in a software interrupt located at
the address 0x8059c09c at timestamp 943920468.728405 and 943920468.728409. At
943920468.728430 ms, an other context switch happened from PID 3 to 2300 and
the process 2300 performed a system call at 943920468.728517 located at the address
0x801148b4 with one argument at 0x000001b6 in memory. The system call ended
at 943920468.728586 and returned −2 as result.

[. . .]
943920468.728392 0 C 0 3
943920468.728405 3 S 0 x8059c09c
943920468.728409 3 s

20 CHAPTER 2. MULTIMEDIA APPLICATIONS ON EMBEDDED SYSTEMS

943920468.728430 3 C 3 2300
943920468.728517 2300 E 0x801148b4 0x000001b6
943920468.728586 2300 X 0x801148b4 −2
943920468.728648 2300 E 0x80115a20 0 x0002c514
943920468.728697 2300 X 0x80115a20 0
943920468.728747 2300 E 0x801148b4 0x000001b6
943920468.728804 2300 X 0x801148b4 −2
943920468.728862 2300 E 0x80115a20 0 x0002c514
943920468.728907 2300 X 0x80115a20 0
943920468.728925 2300 E 0x80114924 0x00000002 0 x6f5e7494
943920468.728934 2300 X 0x80114924 0
943920468.729306 2300 C 2300 0
943920468.733731 0 I 34
943920468.733745 0 I 257
943920468.733771 0 i
943920468.733776 0 i

[. . .]

Listing 2.1: Extract of an execution trace

Traces are stored according a pre-defined format, standardize in the industry
to centralize the efforts on developing debugging tools. The Best Trace Format
(BTF) is an ASCII format based on CSV [Architects, 2016]. The Common Trace
Format (CTF) [EfficiOS, 2016b], a mutual efforts between industrials and the Linux
community and led by EfficiOS2, aims to become the reference trace format. In
parallel, an open source tool, BabelTrace, converts different trace formats into CTF
and is extensible through a plug-in system [EfficiOS, 2016a]. STMicroelectronics has
developed its own tracing system KPTrace [Prada-Rojas et al., 2009], that comes
with its trace format.

2.5.2 Tracing Systems

During the development of applications for embedded systems, development boards
provide features to support the developers during the testing and debugging tasks.
They come with a specific port (a JTAG or Serial port) used to get debugging
information and to control interactively the execution. This port is connected to an
external machine, called the host. Once the recording of a trace is completed, the
files are sent from the development board to the host through a dedicated debugging
port.

Running on the board, there are different softwares to capture traces. The Linux
kernel provides as standard its own tracing mechanism called KProbes [Krishnaku-
mar, 2005]. Perf is an other tool implemented in the Linux kernel oriented on
performance monitoring and system profiling [Carvalho de Melo, 2010]. Linux also

2EfficiOS: http://efficios.com

http://efficios.com

2.6. CONCLUSION 21

integrates a tracing utility named Ftrace and enables to collect events related to
the kernel activity [Ftrace, 2016]. There also exists higher level toolkits that allow
to collect and aggregate the information coming from different sources (KProbes,
Perf, external libraries, etc.). The Linux Trace Toolkit Next Generation, LTTng, is
a modern tracing software collections [LTTng, 2016]. It supports kernel-land and
user-land tracing while minimizing the system overhead. It makes it a suitable solu-
tion for performance analysis of real time embedded software. It also provides tools
to analyze the trace and support the CTF format.

STMicroelectronics has implemented its own stack, named KPTrace [Prada-
Rojas et al., 2009] and is able to capture kernel-land events such as context switches,
interrupts, system calls, etc. as well as user-land events that can be any function
call at the application level. KPTrace is also a bench of tools for traces analysis,
named SoC Traces & Profiling Toolkit (STPTK) [STMicroelectronics, 2016a].

2.6 Conclusion

In this chapter, we have presented the evolution of video formats and the need of
increasing computational power to support the newest video standards delivering a
better video quality. The widening panel of usages also imposes the platforms to
diversify their capacity to run different types of application. These factors led to
the democratization of MPSoC that provides a high-level of performance with a low
energy consumption.

A direct consequence is a significant complexification of the development of the
software. We have presented the specificities of multimedia applications and the
tools used during the debugging process: the execution traces. With more complex
hardware and software platforms, the amount of data to analyze for performance
tuning and to discover the cause of a bug becomes too large and will keep growing in
the future. Under these conditions, the existing analysis tools show their limitations
and do not allow an efficient debugging in a short time. Minimizing the time-to-
market of a product is fundamental for companies to stay competitive. In this
context, the software developers need a new generation of visualization tools able
to tackle these huge amounts of data and supporting them in the exploration of the
data and in the discovery of patterns and perturbations.

In the next chapter, we review the existing research in three domains related to
the visualization of execution traces. As seen above, traces are time series. There-
fore, we begin by presenting research work on time series visualization techniques
as a fundamental approach. Next, we focus more specifically on work about visual-
izing traces and describe the existing tools available in the industry. We highlight
their limitation when handling a large volume of data. Lastly, after explaining how
data mining helps in the analysis of traces, we review previous work on pattern
visualization.

Chapter 3

Related Work

Contents
3.1 Time Series Visualization 23

3.2 Visualization of Execution Traces 43

3.3 Pattern Visualization . 52

We saw that an execution trace can be seen as a time series. Indeed, we can model
a trace as a collection of multiple time series, one time series by actor. Visualizing
execution traces to debug multimedia applications requires to have powerful and
relevant visualization tools depending on the tasks to perform. Visualizing time
series and multiple time series is an active research theme. This chapter first explore
previous work on visualization tools for single and multiple time series. These works
will serve as background for this thesis.

Second, it is necessary to analyze visualization tools that have been designed
specifically for execution traces with the perspective of understanding the behavior of
the application across time. We draw a state-of-the-art of the techniques previously
developed in academia and in industry for this specific domain.

Proposing a powerful visualization tool is mandatory but integrating results com-
puted by automatic pattern detection algorithms will further support the developers
in the debugging process. In the last section of this chapter, we present previous
work on pattern visualization.

3.1 Time Series Visualization

Visualizing time series has the general purpose of helping to understand the evolu-
tion of data over time like detecting trends in data, finding recurrent patterns and
discovering anomalies. Playfair pioneered this domain in the 18th century [Playfair,
1786] by using the line charts in his work. Often considered as the creator of the
line graphs, a first prototype from the 17th century depicts the planetary movement
(Figure 3.1a). Earlier, in 1350, the philosopher and mathematician Nicole Oresme

23

24 CHAPTER 3. RELATED WORK

(a) Line graph from the 10th century (b) Bar chart from 13rd century

Figure 3.1: Early version of a line graph and a bar chart

(a) Biography chart made in 1765

(b) History chart made in 1769

Figure 3.2: Famous charts made by the English scientist Joseph Priestley

used an early version of bar charts to plot the velocity of objects accelerating over
time (Figure 3.1b).

The real development of these techniques happened during the 18th century.
Joseph Priestley, an English scientist, believed in the power of illustrations to trans-
mit ideas and educate people. Among numerous publications, he designed two
famous bar charts about important intellectuals (Figure 3.2a) and history (Fig-
ure 3.2b), respectively in 1765 and 1769.

In parallel, the mathematician and philosopher Johann Heinrich Lambert used a
line graph to illustrate physic laws in 1767. In 1786, William Playfair used heavily
bar and line charts and contributed to make them popular (Figure 3.3).

The stacked graph was invented in 1886 by Charles Minard, well-known for
his visualization realized in 1869 that pictures the disaster of Napoleon’s Russian
campaign using a sophisticated combination of line graphs to show different data
variables (Figure 3.4).

After its creation and first development, line charts have gradually gained in
popularity to become the most popular technique to visualize time series [Cleveland,
1993] thanks to their simplicity that makes them easy to understand. However, line

3.1. TIME SERIES VISUALIZATION 25

Figure 3.3: Combination of a line graph and a bar chart by William Playfair in 1786

charts have several drawbacks. Firstly, aspect ratio has a critical impact in the
perception of a line graph [Cleveland, 1993]. When representing huge time series
with a line graph, this implies to either having a very tiny height or forcing the
user to scroll horizontally, making the navigation tedious without some form of
aggregation. Secondly, drawing a huge amount of information using a line graph
results in a visualization that has a high spatial frequency, for which the human eye
is less sensitive. Under these conditions, the constraint given by the previous factor
cannot be respected. This results in a representation very difficult to read, and can
lead to a loss of perceived information.

Figure 3.4: Paper-based visualization showing the loss of soldiers, their position and
the temperatures during Napoleon’s Russian Campaign. Made by Charles Minard
in 1886.

3.1.1 Time Representation

When visualizing time-oriented data, correctly representing the time dimension of
the data has a critical impact on the final rendering of the visualization but also
on its efficiency for handling certain tasks. In their survey, Aigner et al. [Aigner
et al., 2011] classify those visualization techniques using three criteria: data, time
and visualization. They considered two visual arrangements for the time variable:
cyclic and linear.

26 CHAPTER 3. RELATED WORK

Figure 3.5: Enhanced Interactive Spirale [Tominksi and Schumann, 2008]

Cyclic Time Representation

Cyclic time representation leads to unique visualizations that are efficient for very
specific purposes but can require a learning process for the user to understand them.
Time can be represented either on a spiral or on a circle.

Spiral disposition Using a spiral enables the discovery of periodicity in the data.
This can be done by adjusting the period of the spiral interactively or automatically
using animation. Early works [Carlis and Konstan, 1998; Weber et al., 2001] propose
such approach and arrange time on a spiral and support interactive data exploration
for periodic patterns discovery. Spiral Display [Carlis and Konstan, 1998] arranges
the time dimension around a spiral and represents the data points as dots, color
spikes or charts. SpiralView [Bertini et al., 2007] applies the spiral layout for plotting
security events to detect network attacks. Enhanced Interactive Spiral [Tominksi
and Schumann, 2008] mixes Horizon Graphs [Saito et al., 2005] and Spiral Display
to implement the overview and detail principle (Figure 3.5). Helix Icons [Tominksi
et al., 2005] uses a 3D spiral (i.e a helix) to encode the temporal dimension on a 3D
map. Similar to the Spiral Display, the cycle of a helix can be adjusted to discover
periodic behaviors.

While disposing the time dimension on a spiral is very useful to discover patterns,
it does not scale well as the number of time series to visualize increases and is not
suitable when working with a large number of time series as it is the case with
execution traces.

3.1. TIME SERIES VISUALIZATION 27

Figure 3.6: Circular Silhouette Graph [Harris, 1999]

Circular Disposition Circular disposition is an other option for cyclic time rep-
resentation where the time dimension is mapped on a circle. As most of work built
using a spiral, Circular Silhouette Graphs also aims to discover periodicity in the
data but represents time on concentric circles for better periodicity detection [Har-
ris, 1999] (see Figure 3.6). Circular Silhouette Graph looks promising for execution
traces: it is suitable for periodic time data and is able to manage several time series
by assigning each one on a circle. However, with a large amount of time series, the
distortion induced by the curve of the circle makes difficult to read the values of the
different graphs. On top of that, the curvature varies depending how far the circle
is placed from the center.

Circos is an other proposition that maps the time on concentric circles. It has
been designed to visualize genomic data and has the particularity to work with mul-
tivariate data [Krzywinski et al., 2009]. A data variable is encoded with a concentric
data track, or band, using different techniques such as line graph, histograms, text,
etc. (Figure 3.7). The novelty of Circos is its ability to integrate several types of
visualizations into an integrated view. In the case of execution traces, the mul-
tiple time series need to be compared, thus have to be visualized with the same
technique. When used in this configuration, Circos has the same limitations than
Circular Silhouette Graphs, discussed above.

Summary Visualization techniques mapping the time dimension on a radial lay-
out performs well to discover periodic patterns in the data. However, for basic tasks
like reading or comparing values, the curvature of the time axis adds complexity
to the visualization and slows down the understanding process. In the context of
execution traces, working with multiple time series is fundamental. With a circular
time domain disposition, visualizing multiple time series becomes tedious. Once
again, the curvature of the axis encoding the time makes comparing different values
a difficult task.

28 CHAPTER 3. RELATED WORK

Figure 3.7: Circos visualizes multivariate data mapping radially the time [Krzywin-
ski et al., 2009]

Figure 3.8: Time Curve folds a line graph to position closely similar points [Bach
et al., 2015]

Linear Time Representation

Other visualization techniques for time series rely on a more classical time disposi-
tion by mapping the time dimension on the horizontal axis. In most cases, the events
are disposed from left to right, the first chronological event being of the left side.
It corresponds to the most popular representation of the time dimension. Most of
visualization techniques with linear time disposition are variations of the line charts
and aim to correct their defaults by integrating interactions and enriching their vi-
sual representations.

For example, Time Curve [Bach et al., 2015] is a technique based on line graph to
visualize patterns of evolution by folding a line graph to bring closer similar points
(Figure 3.8). To position the time points, a distance matrix is computed and serves

3.1. TIME SERIES VISUALIZATION 29

Shared-screen Split-screen

Figure 3.9: With shared-screen techniques, the graphs share the space and with
split-screen techniques, the space is equally divided between the graphs.

as input to the MDS algorithm that computes the final position in 2D. The authors
measure the distance between time points according to three criteria:

1. the rank distance that indicates how far are the points in time.

2. the curvilinear distance that also gives information about the temporal dis-
tance between points. However, the authors indicate it to be less precise as it
depends on the positioning algorithm.

3. the spatial distance that encodes the similarity between two points: the closer
two time points are, the more similar they are.

By locating closer similar points, Time Curve breaks the linear representation of
the time dimension, which makes much more difficult reading the temporal aspect
of the data. We refer to Aigner et al. [Aigner et al., 2011] for a complete review of
the existing techniques for time series visualization.

On a more fundamental perspective, graphical perception of line charts greatly
depends on their aspect ratio. Following this observation, Cleveland recommends
an average slope of 45 degrees for the line segments (banking to 45 degrees), thus
constraining the aspect ratio of the graph [Cleveland, 1993]. Heer et al. have pro-
posed multi-scale banking to 45 degree, an automatic method to produce graphs that
respect Cleveland’s approach [Heer and Agrawala, 2006]. When working with mul-
tiple time series, this factor has an even greater impact due to the limited amount
of space available.

3.1.2 Multiple Time Series Strategies

Many work have focused on the representation of multiple time series where the
classic line charts exhibit several limitations due to limited screen space. Javed
et al. [Javed et al., 2010] discuss the graphical perception of multiple time series
visualizations derived from the line graph and identified two categories that differs
on the screen space management: the split-screen and the shared-screen techniques.
The split-screen techniques rely on the principle of small multiples introduced by

30 CHAPTER 3. RELATED WORK

Figure 3.10: ThemeRiver. It visualizes topic density variations across time. [Havre
et al., 2000]

Tufte [Tufte, 1986]. It consists in splitting the screen space S into N smaller areas of
size S/N for each time series. The shared-screen techniques use a different approach:
the time series are all represented in the same space and are differentiated using the
color visual attribute. Javed et al. found that split-screen techniques are more
suitable for reading global values while shared-screen techniques are better when
working on local area of the graphs [Javed et al., 2010].

Shared-Screen Techniques

The shared-screen techniques display the time series on the same screen location
and the time series are made discernible using an other attribute (e.g. the color).
The multiple line charts are the most basic example consisting in rendering several
line charts on the same location with different colors. Minard developed the first
prototype of a stacked graph by stacking the time series that share the same unit and
time domain. The layer area graph [Harris, 1999] is a more modern version where
each time series is a layer in the visualization. ThemeRiver [Havre et al., 2000,
2002], based on this basic idea, propose a more sophisticated technique to visualize
the different topics in a document collection (Figure 3.10). A topic is encoded in a
layer whose height corresponds to the density variation of the topic across time while
the overall shape provides the global variation of the document collection. A layer is
also annotated to facilitate the reading. A 3D variant has been developed to encode

3.1. TIME SERIES VISUALIZATION 31

(a) Stacked area chart layout (b) ThemeRiver layout

(c) StreamGraph layout (d) Interactive ThemeRiver layout. Hovering
a layer straighten its baseline

Figure 3.11: Different layout algorithms to stack the time series [Thudt et al., 2016]

two data attributes instead of one using the extra third dimension [Imrich et al.,
2003]. A user evaluation demonstrates that this extension improves user reading.

Byron et al. [Byron and Wattenberg, 2008] improve the legibility and aesthetic
of the Stacked Graphs by introducing several algorithms to compute their layout
resulting in different rendering (Figure 3.11). Thank to their aesthetic appearance,
the Stacked Graphs has gained in popularity for casual visualizations. For example,
the New York Time exposed a Stream Graph on his website to show the evolution
of the box office [Bloch et al., 2008] and Twitter visualized the hashtags density
during an event using the origin ThemeRiver algorithm [Twitter, 2015]. Dork et al.
have integrated a Stacked Graph rendered with the original ThemeRiver technique
in a visualization tool and synchronized it with different views to explore the tweets
about a topic [Dork et al., 2010]. Thudt et al. have evaluated the readability of
the different layouts for the basic stacked charts, the ThemeRiver algorithm, the
StreamGraph and an interactive ThemeRiver layout that straightens the baseline of
layers in ThemeRiver [Thudt et al., 2016] (Figure 3.11d). Their results show that
a minimal distortion improves the readability and the interactions helps to increase
the correctness but slows down the users. These results also confirm a previous work
that highlighted the legibility issues due to the stacking [Heer et al., 2009].

Instead of stacking the time series, Braided Graphs represents each time series
by a silhouette graph (i.e a filled line graph) [Javed et al., 2010]. It slices the
area graphs according to their intersection points and sort the depth of the bins, the
highest value being the furthest to guarantee all the series remain visible. Figure 3.12
shows the construction process. The principal drawback of the Braided Graphs is
their lack of scalability as the number of time series to visualize increases due to a
high clutterness. User evaluation also shows that it never performs better than a
multiple line graph.

32 CHAPTER 3. RELATED WORK

Figure 3.12: Construction method of a Braided Graph [Javed et al., 2010]

Figure 3.13: Horizon Graph. The original line graph has been sliced into four bands
below and above the baseline. The bands have been wrapped to reduce the vertical
space. [Heer et al., 2009]

Split-Screen Techniques

Split-screen techniques result in applying the concept of small multiples developed
by Tufte [Tufte, 1986] who introduced the sparklines, a small multiple of line graphs.
Screen space is split into small areas, one for each time series.

The reduced line charts are a direct application of the small multiples: each time
series is represented by a separated line chart that have a limited amount of screen
space. The screen space available for each time series becomes very limited and
many work have investigated the legibility issues of line graphs in such configuration.
Horizon Graphs have been proposed to increase the user reading performance when
a large number of time series are displayed on the screen [Reijner, 2008; Few, 2008;
Heer et al., 2009]. It virtually increases the vertical resolution of the graph by slicing
a classic line graph into bands and wrapping them (Figure 3.13) with increasing color
saturation. Heer et al. [Heer et al., 2009] studied the reading performance and gave
recommendations on the visual settings of the Horizon Graphs: 2 bands for a height
of 6 or 12 pixels gives the best results. Javed et al. [Javed et al., 2010] compared the
Horizon Graph with other techniques using the recommended parameters using up to
8 time series. Perin et al. [Perin et al., 2013] introduced Interactive Horizon Graphs
by adding the pan and zoom interactions to control respectively the baseline and
the number of bands and evaluated the user reading performance [Perin et al., 2013]
showing their modifications decrease time completion while increase correctness.
The results also show that Interactive Horizon Graph scale up to 32 time series.

3.1. TIME SERIES VISUALIZATION 33

Figure 3.14: Ripple Graphs, a multi-scale time series visualization technique [Cho
et al., 2014]

.

Execution traces can contain a much higher number of time series that can
roughly be equal to the vertical resolution of a screen. Under these conditions, the
height of a line chart would be close to one pixel. Moreover, Cho et al. [Cho et al.,
2014] has shown that Horizon Graphs are not suitable for frequential analysis of
time series, making them irrelevant to visualize traces of streaming applications.

Instead, they introduced Ripple Graphs [Cho et al., 2014], a multi-scale visual-
ization where uncertainty appears. While there is no uncertainty in execution traces
since at any moment, we know which process is scheduled, this aspect is not interest-
ing for traces. Similarly to the (Interactive) Horizon Graphs, Ripple Graphs enable
the user to zoom on the values by defining a Region Of Interest that eliminate the
values outside of the of ROI (Figure 3.14). This feature makes the Ripple Graphs
able to show graphs as low as one pixel, an interesting property for execution traces.

Visualizing execution traces is challenging: they contain a large amount of events
and actors for which a time series is associated. An efficient visualization of traces
should handle both dimensions. We review in the following section related work
that explore large time series and that handle a large collection of time series.

3.1.3 Large Time Series Exploration

As discussed in the previous chapter, execution traces contain a large number of
events and will keep growing in the future. Providing efficient visualizations to ex-
plore and analyze large traces is critical for a more efficient debugging of traces. We
distinguish two approaches to visualize large time series: the multi-foci techniques
and the overview+details techniques.

Multi-foci Techniques

Kincaid proposed SignalLens [Kincaid, 2010] to better study an electronic signal
(Figure 3.15). It improves the navigation of an electronic signal by integrating
a lens to zoom in a particular time window of the time series while keeping the
remaining signal undistorted. They have implemented several lens functions (linear,
quadratic, cubic, hyperbolic, spherical and Gaussian) that handles the distortion.
The goal here is to address the readability problems to visualize electronic signals,

34 CHAPTER 3. RELATED WORK

Figure 3.15: SignalLens proposes a focus+context technique for time series [Kincaid,
2010]

containing a large number of time points, on a small screen. Coupled to the line
graph, a measurement track is provided to find more easily interesting features
in a large signal. The main limitation of SignalLens is that it does not support a
continuous interaction for setting the magnification factor. This is problematic when
working with traces from streaming multimedia applications since periodic patterns
can appear at different scales, thus at different levels of zoom.

ChronoLenses focuses on the interactive analysis of time series [Zhao et al., 2011b]
(Figure 3.16). Its novelty is to provide to the users a highly interactive analysis
pipeline based on lenses to explore the data, enabling the discovery of trends and
outliers. To create a lens, the user typically selects an interval on the time dimension.
From here, data points are transformed on-the-fly according to the type of the lens
and its parameters can be adjusted afterwards. The user can also create analytic
pipeline by combining several lenses together using different operators.

KronoMiner is an other flexible multi-foci visualization [Zhao et al., 2011a]. It
relies on a radial layout and proposes a hierarchical organization of the ROI. At
the center contains an overview of the dataset. To focus on an interval, the user
can brush the ROI and a hierarchical segment is created. To edit the hierarchy,
KronoMiner provides many interactions such as handles to adjust a segment.

BinX [Berry and Munzner, 2004] is a different technique that also provides an
abstraction of a time series defined by the user. To achieve this, the tool proposes a
single line graph visualization and allows the user to set the number of bins to use
for the aggregation.

Overview+Details Techniques

The concept of overview and details has initially been introduced for image brows-
ing [Plaisant et al., 1995] as an alternative to the scroll bar. It consists an overview
of the data giving the context to the user and a view focused on a specific subset of
the data.

Stack Zooming [Javed and Elmqvist, 2010] takes a different approach to provide
focus+context technique for time series. Instead of relying on a single view and
using distortion, a new line graph is added to the view showing a zoomed version
of a selected time window, called a strip (Figure 3.17). The newly create graph

3.1. TIME SERIES VISUALIZATION 35

Figure 3.16: ChronoLenses is an interactive analytic tool based on lenses [Zhao
et al., 2011b]

is then stacked below the original graph. From here, the user can zoom using the
same mechanisms by creating an other strip on the newly added graph, and so
on and so forth. Several strips can be created and the corresponding zoomed line
graphs are juxtaposed on the same line. In a following work, they have conducted a
user evaluation and have shown that stack zooming provides increased performances
compared to the overview and details techniques [Javed and Elmqvist, 2013].

TimeNotes [Walker et al., 2016] is a more recent technique that mixes the anal-
ysis features of ChronoLenses with a hierarchical zooming similar Stack Zooming.
It also provides new features such as overlay to compare easily different intervals of
the time series, bookmarks and a dynamic layout (Figure 3.18).

All of these techniques rely on line charts that do not provide a clear visualization
when there is a large number of time series to represent. It can be argued that a
different type of visualization can be used to represent the time series. While some
of the other techniques can certainly improve the scalability, it still would not be
efficient for traces with a large number of actors (recall that at each actor, we can
associate a time series). Indeed, the screen space is already used to show the zoomed
areas and cannot be used to split the time series on several visualizations. Therefore,
the only solution to visualize multiple time series with these approaches is to share

36 CHAPTER 3. RELATED WORK

Figure 3.17: Stack Zooming [Javed and Elmqvist, 2010]

the screen space between all the time series, an inefficient setting to study local area
of a graph (discussed below) as it is the case for execution traces.

Instead of relying on line charts, Hao et al. took a different approach by in-
troducing a space filling technique based on the notion of Degree of Interest of the
data [Hao et al., 2007]. It uses a matrix view where the color of the cells encode
the value. The matrix has different resolutions, assigning more space for the newer
time points. While the space filling technique is interesting, this multi-resolution
approach is not suitable to debug execution traces: a temporal bug can appear at
any moment during the execution and the same level of details is needed during
the analysis. It would also hides the periodicity of the data and makes harder the
detection of temporal bugs.

Summary

The main problem of these techniques when working with execution traces is their
lack of scalability with respect to the number of time series to analyze. They rely
on a line graph and to visualize several time series, the view will become cluttered
very quickly, belonging to the shared-screen category. We have seen above that
the shared-screen techniques perform well for local comparison but are not suitable
for global analysis of a time series, which is mandatory in the case of traces. For
instance, to understand the synchronization between different actors, we have to
understand their behavior across the whole execution. When cluttered, visualizing
whether an actor is scheduled or not is very tedious.

Before being able to analyze deeper the behavior of a process, the software
developers have first to get a global overview of the trace, therefore of many time
series. An in-depth analysis of an actor is possible only when isolated first although
it is rarely a necessity to analyze with such level of details the time series of an
actor. In this case, the aforementioned techniques would be usable in our context.

3.1. TIME SERIES VISUALIZATION 37

Figure 3.18: TimeNotes [Walker et al., 2016]

3.1.4 Exploration of Large Collections of Time Series

An other aspect to consider is the browsing of collection of time series. We described
the existing works for the exploration and analysis of time series containing a huge
amount of events. Due to their approach, they lack scalability when working with
many time series. We present here the previous research done to explore many time
series simultaneously.

Multi-scale visualization techniques have been largely investigated to visualize
many time series. Depending on the screen-space available, the level of aggregation
of the data varies, showing an abstracted or a detailed view. To spot interesting
patterns, the user explores the different levels of abstraction.

Based on Stack Zooming, Javed et al. have proposed TraXplorer [Javed and
Elmqvist, 2010] to explore a collection of time series. As explained before, this
approach is not suitable when working with many time series. Hao et al. have
introduced a tool based on a treemap [Hao et al., 2005]. The time series are visualized
as bar chart and their size depends on the importance they have in the dataset.
Using a treemap structure to organize the different time series makes the comparison
between the different graphs tedious due the different size and the misalignment of
their baseline.

Line Graph Explorer (Figure 3.19) relies on a focus+context technique to visual-
ize a large number of time series [Kincaid and Lam, 2006]. The novelty of this work
is the encoding of the data value in the color instead of using the y-dimension. By
doing so, it enables the vertical compression of the graphs down to one pixel while
keeping a good readability for an overview. The authors have also implemented a
clustering method to order the graphs and discover similarities between the time

38 CHAPTER 3. RELATED WORK

Figure 3.19: Line Graph Explorer [Kincaid and Lam, 2006]

series.
CloudLines also stacks vertically the time series and integrates a lens distortion

to better analyze a single time series [Krstajic et al., 2011]. It also introduces a new
compact visualization for the small multiples based on a kernel density estimation
to better spot the visual clusters. The downside of this technique is a decreased
capacity of handling a large number of time series compared to Line Graph Explorer
since the vertical axis is used to encode the values.

LiveRAC rather uses a matrix-based layout where a graph is displayed in each cell
and allows side-by-side comparisons of small multiples [McLachLan et al., 2008]. The
graphs supports semantic zooming to provide meaningful representation according
to the dedicated space they have in their cell.

Stroscope takes advantage of the Ripple Graphs presented earlier to visualize
the time series as small multiples [Cho et al., 2014], equally dividing the vertical
space between the graphs (Figure 3.20). It provides horizontal zooming interaction
as well as selecting a range of values on the graphs thank to the Ripple Graphs. In
a similar way than Line Graph Explorer, Stroscope provides a clustering method to
classify the time series and create groups. To further facilitate the analysis of the
dataset, Stroscope provides side-by-side comparison by juxtaposing either vertically
or horizontally two graphs and more powerful analytic features based on statistics
and clustering.

3.1. TIME SERIES VISUALIZATION 39

Figure 3.20: Stroscope [Cho et al., 2014]

Summary

All these works belong to the shared-screen techniques, suitable for global analysis.
They propose scalable approaches to tackle a large amount of time series and are
efficient to gain global insights on the dataset. Stroscope pushes further the analytic
features by providing a filtering mechanism to select a range of values [Cho et al.,
2014]. However, most of them lack interactions to explore the time dimension,
required in the case of time series containing a large number of events.

The strategies to manage the vertical space has been largely studied but the
horizontal space is still underexploited. Indeed, none of these works provide an
efficient aggregation strategy to bin and aggregate the time series. It can result
of visual artifacts due to over-plotting that negatively impact the precision of the
visualization. When working with potentially periodic time series, as it is the case
with execution traces, it becomes a critical problem.

Fuchs et al. have conducted a user study to evaluate the performances of the
different types of glyphs for small multiples of time series [Fuchs et al., 2013]. Their
results shows the line glyphs perform better to find local extrema and spot global
trends in the data. This is an other aspect to consider when designing analysis tool
for execution traces and indicates that line glyphs will give the best results.

40 CHAPTER 3. RELATED WORK

3.1.5 Visual Mining of Time Series

Visual mining of time-oriented data has been vastly investigated and several surveys
are available such as [Aigner et al., 2007]. One of the most common task is to find the
most frequent patterns in the time series. Many techniques have been proposed to
address this problem. Hao et al. introduced a visualization to frequently occurring
patterns in multivariate time series [Hao et al., 2012] using k-means clustering.
Based on the discovered patterns, the time series is condensed to offer a summarized
view. To analyze execution traces, we basically need to find the repetitive patterns
that correspond to the correct behavior of the application. For this, the approach
proposed by Hao et al. is very efficient. However, in our case, we also need to spot
the patterns that are responsible of bugs. It can be either a derivative of a regular
pattern or patterns that tend to be short (in terms of number of events) and happens
with a low frequency. Summarizing a trace based on the most frequent patterns is
not suitable here.

TimeClassifier classifies behavioral time series semi-automatically using labeled
data and user-defined template and provides interaction to browse large time se-
ries [Walker et al., 2015]. TimeClassifier has been developed to study animals’
movements and is designed for expert users. When working with execution traces,
the main limitation of this work is the absence of labels on the time series.

Other works took a different approach where the user has to provide an example
of the pattern to search in the time series. We distinguish two approaches.

First, QuerySketch enables the user draw freely the pattern on a blank canvas
to search on the time series [Wattenberg, 2001]. This approach can be difficult to
use if the pattern is complex to draw or the user have no idea of what to search.

Second, techniques have been proposed where instead of drawing freely a pattern
to query, the user selects it on the visualization and the tools finds its occurrences in
the dataset. TimeSearcher [Buono et al., 2005] enables the user to select a rectan-
gular area on a multi-line graph. It defines a Region Of Interest, called a TimeBox
widget [Hochheiser and Shneiderman, 2004], that specifies a time interval on the
horizontal axis and a value interval on the vertical axis. All the time series for
which every value in the time interval belongs to the value interval are selected.
The visual query can be adjusted by dragging and resizing the widget using han-
dles. Coupled to the TimeBox widget, TimeSearcher also integrates a SearchBox
that enables to query-by-example with the selection of a motif on a graph [Buono
and Simeone, 2008]. Then, a similarity is computed using an Euclidean distance and
a user-defined threshold. Finally, a angular query widget allows to filter the graphs
based on their slope. QueryLines [Ryall et al., 2005] proposes a similar approach
than TimeSearch that performing visual queries on the graph. However, instead of
specifying constraints through a rectangular widget, in QueryLines, the user draws
lines. The query can also be adjusted by modifying the lines but the degree of sim-
ilarity cannot be user-defined as in TimeSearcher, making the queries less flexible.

3.1. TIME SERIES VISUALIZATION 41

Figure 3.21: TimeSearcher [Buono et al., 2005]

Holz and Feiner have proposed a more flexible technique to perform visual queries
on graphs [Holz and Feiner, 2009]. In this work, the user can create a query by
sketching a pattern on the line graphs. Then, their tool finds similar occurrences
of the queried pattern in the dataset. Instead of defining a threadshold used to
compute the similarities as in TimeSearcher, here the tolerance depends on the
distance between the sketch and the graphs: the further to the sketch, the more
relaxed the query (Figure 3.22).

All of these works propose very powerful tools to find time series with similar
behavior and this approach can help to find groups of actors working together (such
as a couple of an interrupt and its handler). However, execution traces are large
and developers may have a little to no idea regarding where to begin their analysis.
Thus, specifying from scratch a region of interest may not be an easy task. This also
apply to techniques where the end user specifies precisely the pattern to find such
as with PatternFinder [Fails et al., 2006]. Here, the patterns are specified through
a query panel and while it does not rely on the visual shape of the pattern, it still
can be challenging to begin to query the dataset if the user does not know what to
search. Stoffel et al. [Stoffel et al., 2013] proposed an other visual analytic tool whose
goal is to detect anomalies in time series, applied to networks. The view shows ver-
tically aligned line charts. The time series are compared against a reference model
and the differences are highlighted in on the line charts. Similarly to the other tech-

42 CHAPTER 3. RELATED WORK

Figure 3.22: Relaxed Selection Query on Time Series [Holz and Feiner, 2009]

niques, the main difficulty for the developers remains in defining the reference model.

VizTree takes a different approach [Lin et al., 2004, 2005]. It first transforms
a time series into a symbol string and then encodes it into a tree whose branches
are the patterns. The frequency of a pattern is represented by the thickness of the
branch corresponding to it. While with VizTree it is possible to detect the frequent
patterns in a time series, it still requires an expert user to be able to exploit correctly
this tool.

Summary

We saw that different approaches exist to visually mine time-oriented data. One
relies on algorithm to automatically compute time series clusters [Hao et al., 2012]
and find frequent patterns [Lin et al., 2004, 2005]. These techniques often require
an expert user to understand how to exploit the results or to tune the algorithm
before computation as it is the case with the algorithm used in VizTree.

Other approaches take as input a pattern given by the user. This pattern can be
very precisely specified [Fails et al., 2006] or loosely defined through sketches drawn
either directly on the graphs [Buono et al., 2005; Hochheiser and Shneiderman, 2004;
Buono and Simeone, 2008; Ryall et al., 2005], either on a dedicated area [Holz and
Feiner, 2009]. We explained that in the context of debugging a streaming application
through execution traces, the software developers hardly have an idea of the patterns
to search. Thus, based on the proposed techniques, starting the analysis with these
tools can be very challenging as the query remains largely unknown.

Instead, we argue that a better approach is to take advantage of pattern min-
ing techniques that does not need any input query and then proposing an efficient
pattern visualization tool. After having presented the existing works on the vi-
sualization of execution traces, we review the pattern visualization techniques in
Section 3.3 and we highlight the challenges that raises this method.

3.2. VISUALIZATION OF EXECUTION TRACES 43

3.2 Visualization of Execution Traces

Isaacs et al. published a complete survey of performance visualization techniques [Isaacs
et al., 2014b] and maintain up-to-date an online website [Isaacs et al., 2016]. In their
work, they classify the goals that motivate visualizing performance data in general:

1. Global comprehension. When a problem occurs, several software compo-
nents may be implied and a developer may not understand the whole system
but a sub-part on which he is in charge. Under these conditions, tracing
systems can help to understand the global behavior and how the different
components communicate.

2. Problem detection. It aims to detect abnormal behavior. In the context
of multimedia application, it can refer to bottleneck, periodicity perturbation,
non-optimal scheduling and so on. It can be done with visualization techniques
or automatic tools based on data mining algorithms.

3. Diagnosis and attribution. Isaac et al. describe this goal as the next task
to perform after a bug has been found. Here, the developers go deeper in their
analysis and try to find more specifically the reason.

To debug an application using traces, the most basic task is to be able to un-
derstand what happened during the execution. Thus, in this section, we present the
previous works that allow to visualize the different events of an execution where the
time is encoded as a dimension (often as the horizontal axis). Many other research
have been undertaken on traces in general, particularly in the domain of High Per-
formance Computing (HPC) with different tasks than debugging. Their goal may
be to make apparent the software or the hardware architecture, the communications
and synchronization between the different components, etc. In these works, the time
dimension can be hidden or partially represented, not supporting the debugging of
parallel applications. Moreover, in our context, when debugging an application, the
developers are highly likely to know the architecture of the platform they are work-
ing on. Thus, we discard in the remaining of this chapter the research that aimed
to visualize the architecture of the platform.

Representing the events of an execution traces quickly raise the problem of screen
space: the number of events can be larger by several orders of magnitude than the
number pixels available on the screen. Providing an overview of the execution helps
the developers to understand the global behavior of the system and to target a spe-
cific time window. The details of the execution also brings important information for
a fine-grained analysis. We first present the work focusing on showing the overview
of the execution. We then describe techniques that visualize in details the traces.

3.2.1 Overview of a Trace

There exists many different tools that give a trace overview. To be meaningful, we
claim that the overview of an execution trace has to provide data aggregation for

44 CHAPTER 3. RELATED WORK

Figure 3.23: Ocelotl provides a trace overview using hierarchical and temporal ag-
gregation [Pagano et al., 2013]

both time and event producers hierarchy (e.g. processes, interrupts, etc.), to show
insights on the system load using well-known statistics and to provide user interac-
tions to support fast data exploration and filtering. We describe below the different
approaches and their drawbacks.

Ocelotl [Pagano et al., 2013; Dosimont et al., 2014] proposes a visualization that
aggregates both the actors and the time dimension to obtain an overview of the
execution (Figure 3.23). It comes with user interactions that allow to choose the
aggregation level enabling the analyst to explore the macro-behaviors at different
scales. It shows the trade-off between the level of aggregation of the loss of infor-
mation enabling the user to interactively choose the aggregation level that fits best
his need. However, it lacks interactions to navigate the trace and does not represent
meaningful statistics for the developers.

Viva [Lamarche-Perrin et al., 2014] has a similar approach by aggregating data
of both the actors and the time axis but uses a treemap to show both software and
hardware hierarchies. The time dimension is visualized using animation. ExploreViz
is an other treemap-based trace visualization for Java programs [Fittkau et al., 2013]
(Figure 3.24). Here, the cells represents the software structure (packages, classes,
etc.). The hierarchy can be interactively explored by opening and closing them. The
size of the cells represents the number of active instances at a given time, chosen
through a timeline located below the treemap.

While these approaches are suitable to spot load balancing issues, they are not

3.2. VISUALIZATION OF EXECUTION TRACES 45

Figure 3.24: ExplorViz is a treemap-based to visualize Java programs execution [Fit-
tkau et al., 2013]

appropriate in the context of multimedia applications where detecting synchroniza-
tion is crucial: the treemaps only show a fixed time of the execution and the dynamic
does not appear.

Other visualizations rely on statistics computed from the trace. KPTrace [Prada-
Rojas et al., 2009], with the Outline view (Figure 3.25), and Eclipse Trace Com-
pass [Compass, 2016] propose a bar chart where the whole trace has been aggregated
using a statistic like the event density or the CPU load. This kind of view perfectly
shows the overall behavior of the system across time and can be good to start the
analysis with. However, the actors details are completely hidden, preventing the
developer to observe the behavior of individual actor over time. This makes them
irrelevant for a fine-grained analysis of the trace and reduces the relevance of the
information they provide. These tools are coupled with other views to give the de-
tails of the statistic by actor. However the time space is also aggregated making the
exploration of the temporal dimension impossible.

Summary

We described different visualization techniques that provide an overview of an execu-
tion trace. They rely on several strategies, whether using sophisticated aggregation
algorithm, treemaps or domain-related statistics to provide high-level insights on
the execution and/or the structure of the software. However, whether because of
a lack of interactions or a too aggregated view, these tools do not provide enough

46 CHAPTER 3. RELATED WORK

Figure 3.25: Outline View provided in KPTrace

information to efficiently start the analysis of the execution and finding the source
of a temporal bug, potentially involving several actors.

The case of Ocelotl differs as Dosimont et al. have shown the capacity their
approach to support the debugging of application traces. However, in some cases,
it lacks interactions to apply their aggregation technique on different time intervals
in the trace.

3.2.2 Detailed Visualization of a Trace

A large panel of visualization tools for traces that provide details is based on Gantt
charts [Gantt, 1913]. When visualizing execution traces, the 2D time series visual-
ization puts the time dimension on the horizontal axis, the actors on the vertical
axis and represents the active time windows for each actor. It gives a detailed view
of the connections between the actors.

One of the earliest work to use Gantt chart for representing traces in paral-
lel systems is Paragraph [Heath and Etheridge, 1991] and many later work do so,
from proprietary industrial solution such as KPTrace [Prada-Rojas et al., 2009] and
Streamline [ARM, 2016a] to various open source projects like Eclipse Trace Com-
pass [Compass, 2016] and FrameSoC [Dosimont et al., 2014]. However, due to the
high visual clutters of Gantt charts, aliasing problems quickly arise as the amount
of information to represent on the screen increases (Figure 3.26). Visual artifacts
appear and without any aggregation technique, it quickly becomes impossible to
visualize correctly a huge trace in its whole.

Pajé [Chassin de Kergommeaux, 2000] and Eclipse Trace Compass [Compass,
2016] have implemented simple aggregation mechanisms to address this problem.
Aggregated temporal windows are encoded using different visual attributes such as
the shape or the color. By doing so, the developer can be misled in the analysis since
the algorithm only compute a visual aggregation instead of data aggregation, and
can result in information loss. On the other side, in case of absence of aggregation,
browsing large traces with Gantt charts is fastidious and behavioral patterns tend
to be difficult to spot.

3.2. VISUALIZATION OF EXECUTION TRACES 47

Figure 3.26: With no aggregation technique, visual artifacts quickly appear when
working on huge traces with Gantt Chart. Here is an example of the KPTrace view.

Smart Traces [Osmari et al., 2014] integrates several Gantt charts with multiple
views to show different hierarchical aggregations (threads, modules), minimizing the
limitations of the other tools. On Figure 3.27, Smart Traces shows several Gantt
charts for different modules. It enables the analysis of each module separately and
minimizes the aliasing by filtering the data.

Similarly to Smart Traces, ViewFusion [Trümper et al., 2012] is a tool based on
multiple views that synchronizes a timeline showing the overview of the trace, a
Flame Graph [Gregg, 2016a] that represents the activity and a treemap [Schneider-
man, 1992] depicting the structure of the software. Telea et al. [Trümper et al., 2013]
have also proposed a visualization technique to compare two execution traces. The
tool is composed of different views and shows the differences between two traces
using tubes whose width encodes the duration of a match and the color encodes
the start time difference, from red (past) to green (future) (Figure 3.28). Both
ViewFusion and the latter tool provide different level of details from an overview
to a detailed view but the aggregation gap between both views remains too large.
Moreover, the aggregation technique implemented for the overview is not clearly
described and can still mislead the users.

Flame Graphs [Gregg, 2016a,b] are an other popular visualization technique

48 CHAPTER 3. RELATED WORK

Figure 3.27: Smart Traces shows several Gantt charts simultaneously, one color
corresponding to a module [Osmari et al., 2014]

based on icicle plots [Kruskal and Landwehr, 1983]. Flame Graphs depict the call
stack of a program with the different call mapped vertically. Therefore, the deeper
the call stack, the higher the Flame Graph (see Figure 3.29). Further techniques have
been developed such as Differential Flame Graphs [Bezemer et al., 2015] inspired
from the Unix diff command tool to better compare to traces.

A particularity of this technique is that the horizontal axis has no particular
meaning. Instead, the different stacks are ordered alphabetically based on the name
of the first function of the stack. This approach can be counterintuitive when debug-
ging streaming applications and fragments the temporal patterns across the x-axis.
The color used for the different boxes are also chosen randomly. The authors made
this choice to easier the differentiation of the different boxes but can easily mislead
the user seeing a darker box meaning a high frequency of calls for instance.

Trümper et al. have introduced a visualization tool specially designed to un-
derstand multithreaded applications [Trümper et al., 2010]. It took a overview and
details approach by integrating a summarized view of the actors on which a time
interval can be chosen through time span markers. The detailed view is based on
an icicle plot and shows the call stack of the threads.

Cornelissen et al. introduced ExtraViz that provides a circular view showing the
method calls and a timeline view [Cornelissen et al., 2007a,b]. The circular view
shows the method calls that occurred during the execution. The components of the
application are visualized on the circumference of the view and are linked together
when a method call has occurred (see Figure 3.30). The links are grouped together
to mitigate the visual clutter and are rendered using a gradient indicating the calling
method. This view is synchronized with a time line where the time axis is vertical

3.2. VISUALIZATION OF EXECUTION TRACES 49

Figure 3.28: Multiple views configuration to visualize the differences between two
traces [Trümper et al., 2013]

and the software components are placed horizontally. It enables the user to select
on the circular view a time interval to visualize.

Ravel [Isaacs et al., 2014a] follows a different approach from all the works afore-
mentioned by taking in consideration the logical time instead of the physical time.
When working with physical time, the time point are mapped to position. It
gives an accurate representation with respect to the events start and end time
differences. Logical time reorganizes the events according to the Lamport clock
C, a function that assigns a number to each event event1 and event2 so that
C(event1) < C(event2) if event1 happened before event2. Using the logical time
loses the physical time representation but has the advantage to make more apparent
the execution patterns (Figure 3.31). This approach is interesting for high perfor-
mance computing debugging, however, in the context of performance analysis of
embedded multimedia applications, losing the different between the start time and
the end time of an event may result in making invisible synchronization troubles.
Thus, this approach is not possible in this context.

ThreadScope has been specially designed to detect synchronization problems in
multithreaded softwares using traces [Wheeler and Thain, 2010]. To achieve this,
ThreadScope represents the execution as a 2-dimensional graph where the vertices

50 CHAPTER 3. RELATED WORK

Figure 3.29: Flame Graph showing the call stacks during a program execu-
tion [Gregg, 2016a]

are either execution blocks or memory objects and the edges are special instructions
executed by threads such as joins. The main limitation of ThreadScope is its lack
of scalability with respect to the size of the trace. Neither aggregation mechanisms
for overview and interactions are implemented.

Summary

We presented different approaches to visualize in details execution traces. Some
tools such as the Gantt charts and its variations focus on providing a precise under-
standing of the sequence of events. Others (Flame Graph and ExploreViz) aim to
explicit the function calls or the hierarchy of the software by using treemaps. Using
all these tools, the software developers are able to understand in details the sequence
of events on a time interval. However, scalability problems arise when working with
huge traces. We showed that aliasing due to over-plotting can happen in Gantt
charts for instance. ExploreViz provides a timeline to limit the time interval visual-
ized, a solution also taken by various industrial tools such Trace Compass [Compass,
2016]. However, it makes the exploration of large traces tedious. Moreover, with
streaming applications, periodic behaviors exist at different levels, from behavioral
patterns composed of a couple of events to potentially large time interval involving
several actors. The aforementioned techniques do not show the patterns at different
scales due to the absence of aggregation technique based on data or simply because
the time dimension is not explicitly encoded, hiding the synchronization between

3.2. VISUALIZATION OF EXECUTION TRACES 51

Figure 3.30: ExtraViz is composed of a circular view that shows the method calls
and a vertical time [Cornelissen et al., 2007a]

the actors.

3.2.3 Summary: a Gap Between Overview and Detail Visu-
alizations

We described the existing techniques providing a trace overview, useful to gain a
global understanding of the execution but too abstracted to efficiently begin the
analysis, and the approaches for a detail representation of the data very informative
to study the local behaviors but not able to provide different levels of abstraction
making fastidious the discovery of non-local behavioral patterns. Therefore, a gap
exists between the overview and the detailed visualization techniques. While both
are necessary in the analysis, developers still lack a tool that provides an overview
of the execution yet with enough details to be able to quickly filter data and target
a specific subset to analyze more deeply. To efficiently address the requirements of
the debugging task, this tool should be able to provide a multi-scale exploration for

52 CHAPTER 3. RELATED WORK

Figure 3.31: Ravel. In (a) the events are ordered according to the logical time and
(b) is based on the physical time. The logical time clearly make more apparent
execution patterns. [Isaacs et al., 2014a]

multiple large time series. This tool would come as a complement between a very
abstracted and a very detailed visualization.

3.3 Pattern Visualization

Enriching visualization techniques with results from data mining algorithms will
provide developers a more powerful toolset for debugging. There exists many differ-
ent automatic techniques to find trends, outliers, abnormal behaviors, etc. However,
exploiting these results is often tedious and reserved to data mining experts. In or-
der for the developers to fully exploit them, it is necessary to leverage these results
by integrating them into visualizations tools.

Multimedia applications have a periodic behavior by nature. It implies that
repetitive structures will occur as well as dominant patterns. Discovering a break in
the periodicity may provide a good start for a deeper analysis. Providing a powerful
pattern visualization technique to the developers will further support the debugging
analysis.

Pattern mining is a topic of data mining, a set of algorithms built for detection
of relevant pattern inside a dataset without previous knowledge about the data.
A widely used technique, and also the earliest, is the Apriori algorithm [Agrawal
and Srikant, 1994] that mines frequent set of items, itemsets, in a dataset. Apriori
was initially designed for market analysis but due to its genericity, researchers have
applied this technique in many different fields. In the context of debugging streaming
applications on embedded systems, pattern mining techniques have been developed
to automatically detect periodic patterns [Lopez Cueva et al., 2012], periodicity
perturbations [Iegorov et al., 2015], congestion points [Lagraa et al., 2012], and so
on.

3.3. PATTERN VISUALIZATION 53

Figure 3.32: Visualizing frequent itemsets [Yang, 2003]

An field of research addresses the challenges of designing powerful visualizations
for the mined patterns. In this section, we present the existing works on pattern
visualizations and describe their limitations.

Mining frequent itemsets has been the first work in the domain of pattern min-
ing, logically posing the first problems related to pattern visualization. The initial
approach was based on using parallel coordinates [Yang, 2003, 2005] to visualize
association rules and frequent itemsets (Figure 3.32). An itemset with k items (a
k-itemset) is represented with curves linking k vertical axis. The thickness of the
links encodes the support of the itemset. The items are placed on vertical axis and
ordered by groups. Items belonging to the same group are ordered according their
frequency in the dataset. The number of vertical axis depends on the longest item-
set to represent. The different items are linked together by lines that connect the
vertical axis, thus, a line visually represents an itemset. The pre-ordering done on
the axis aims to improve the readability of the representation by minimizing inter-
sections between the lines. The main limitation using parallel coordinates is the lack
of scalability. When many patterns need to be visualized, the visualization becomes
too cluttered with a large number of crossing lines making difficult the reading of a
pattern.

CloseViz [Carmichael and Leung, 2010] adopts a different strategy. It visualizes
only closed patterns with a single line and represents the items using a circle. It
has the advantage of reducing significantly the amount of patterns to visualize. It
is based on previous works FIsViz [Leung et al., 2008a], WiFIsViz [Leung et al.,
2008b] and FpViz [Leung and Carmichael, 2009] (Figure 3.33).

FIsViz [Leung et al., 2008a] encodes the itemsets with polylines in a 2D rendering.
The horizontal axis has k nodes for a k-itemset. The support of the items are encoded
on the vertical axis. Similarly than with parallel coordinates, this technique quickly
becomes tedious to read with many line crossing. WiFIsViz [Leung et al., 2008b]
and FpViz [Leung and Carmichael, 2009] aim to solve this issue by grouping the
patterns using common prefixes and horizontal lines instead of polylines. While the
visualization benefits from these improvements, discovering relationships between
the patterns and insightful information about the dataset remains a difficult task.

Other visualization techniques use a radial layout. FP-Viz [Keim et al., 2008]
is a visualization tool for frequent itemsets. The items are placed on concentric

54 CHAPTER 3. RELATED WORK

Figure 3.33: Itemset visualizer using polylines (a) and lines (b), (c) and
(d) [Carmichael and Leung, 2010]

circles and are represented by circular segments whose length encode its frequency.
Therefore a k-itemset is rendered with k circular segments. The support of an
itemset is encoded using a color-scale from green to red. When working with a
large amount of itemsets, the information becomes tedious to read due to a high
clutterness.

Bothorel et al. [Bothorel et al., 2013] proposed an other technique based on a cir-
cular layout, placing the itemset on concentric circles instead of items (Figure 3.34).
The itemsets having the same cardinality are located on the same circle. The 1-
itemset are disposed on the external circle and the k-itemsets on the kth circle.
Then, the frequent itemsets of each two neighbor circles are linked together. To
improve the readability, an edge bundling algorithm is applied to simplify the graph
between all the consecutive circles.

PowerSet viewer [Munzner et al., 2005] is an other frequent itemset visualization
tool (Figure 3.35). The screen space is divided into horizontal bands, one band
contains the itemsets of a given cardinality, the 1-itemset being on the top. An
itemset is represented by a rectangle and its frequency is encoded in the color. This
technique allows to have an overview of the frequent itemsets in the data but lack
representation of the support, and is limited to a single type of pattern.

Note that there is a promising line of research in that field is to provide interactive
interfaces for navigating the space of patterns, such as MIME from Goethals et
al.[Goethals et al., 2011]. Such work are not directly related to ours as they are
designed around interactions with the user to explore a potentially huge space of
patterns, while we focus on a smaller space of patterns but aim at an immediate

3.3. PATTERN VISUALIZATION 55

Figure 3.34: Circular layout and edge bundling visualization technique for frequent
itemset. [Bothorel et al., 2013]

Figure 3.35: Powerset Viewer visualizes frequent itemset [Munzner et al., 2005]

understanding of the visualization.

Summary

All the previous work make the understanding of the individual items of the itemset
a priority. They also rely on the complete set of frequent itemsets. In chapter 6, we
propose a different approach: we consider patterns that are short (of a fixed length,
only 2 or 3 items) but we put the focus on the different structures organizing these
items: set, sequence, periodicity. The visualization technique is built around this
idea: the structures are the main information shown by the visualization, avoiding
combinatorial explosion while showing valuable and usually unseen information.

We present in the next chapter the challenges and research questions induced
by the related works to address the general problem of providing better debugging
tools for execution traces based on visualization techniques to shorten the analysis
of an execution trace.

Chapter 4

Challenges for Trace Debugging

Contents
4.1 Inaccurate Time Series Rendering 58

4.2 Large Gap Between Overview and Detailed View 58

4.3 Slow Back-end Performances 59

4.4 Pattern Mining for the Visualization of Execution Traces 60

In this chapter, we recall what is the general problem to address that motivated
this doctoral work and we summarize the different limitations of existing solutions
to analyze execution traces.

In Chapter 2, we saw how the hardware and software platforms have evolved
to deliver multimedia content with better quality, following the modern standards
(1080p, 4K). We explained why the MPSoC became the solution to develop the
powerful hardware needed for modern usage but introduced an increased hardware
complexity. We show how the software has been impacted, resulting here again in
an increased complexity coming from the new multimedia standards to support and
the more sophisticated hardware.

We also described the specificities of debugging streaming multimedia applica-
tions: real-time QoS constraints to satisfy and the usage of execution traces to
analyze the bugs as traditional debuggers are irrelevant in this context. A conse-
quence when working with modern platforms is that the existing debugging tools
are not able to tackle the huge amount of data in traces generated at the execution
time. To stay relevant in a competitive market, semi-conductors companies, such as
STMicroelectronics, have to keep the time-to-market as short as possible.

Under these conditions, the software developers are put under a huge pressure.
Within a constant to reduced development time, they have to develop and debug
increasingly complex multimedia applications using less and less relevant analysis
tools as time goes. The goal of this doctoral work is to propose new tools that
enable the developers to efficiently analyze execution traces to debug multimedia
application in a very short time.

57

58 CHAPTER 4. CHALLENGES FOR TRACE DEBUGGING

With this respect, we drew a state-of-the-art in time series visualization, pattern
visualizations and industrial tools used nowadays. We found several limitations of
the existing techniques and different challenges to solve in order to have efficient
visualization tools to analyze traces. We summarize them in the following sections.

4.1 Inaccurate Time Series Rendering

On a fundamental level of visualization, the related work show a lack of techniques
that provides a high visual precision, mandatory when working in a scientific or
industrial context. There exists a large panel of research that investigates various
aspect of temporal data visualization such as interaction techniques, different time
representation (linear or cyclic), statistical analysis through visualization tools, dif-
ferent strategies to represent multiple time series, etc. However, we noticed the
lack of work on how to draw a time series in itself, thus responding to the question
how to mitigate the visual artifacts while providing a smoothed visualization for time
series?.

Imprecise rendering can introduce visual artifact and produce inaccurate repre-
sentation and mislead the user to a wrong conclusion when performing a fine grained
analysis of the time series. In the context of this thesis, this would mean that the
developers would be troubleshooting a wrong piece of software or being stuck in
their debugging process, resulting in both cases in a waste of time and potentially
to the introduction of new bugs in the large code base of the application. When a
temporal bug occurred, it often concern a tiny number of events showing an abnor-
mal sequence of system or function calls. Finding such bugs among several millions
of other events is already a very time consuming and fastidious task. It is here
mandatory that the visualizations showing different aspect of the behavior of the
application are the most accurate possible. This represents one of the challenges to
address for an efficient temporal debugging.

4.2 Large Gap Between Overview and Detailed

View

For an efficient analysis of execution traces, it is mandatory to separate the different
actors (the interrupts, the processes, etc.). It allows to better study the synchroniza-
tion between the actors, their individual behavior, etc. Therefore, for an efficient
analysis, it is important to visualize the multiple time series contained in the trace,
one time series corresponding to an actor and containing all the events produced by
this actor.

Many research have been done on visualizing multiple time series (Section 3.1.2)
and two main strategies to represent several time series arise from these works: shar-
ing the screen-space with all the time series (the shared-screen approach) or splitting
it into a number of sub-regions, one per time series (the split-screen approach). Each

4.3. SLOW BACK-END PERFORMANCES 59

of these approaches has its pros and cons as discussed earlier and have been used
to propose new solutions to different problems such as finding a local or global
extrema among different time series. These strategies have been applied to trace vi-
sualization in different works presented in Section 3.2. Among all the existing tools,
whether they are research prototypes or industrial tools, we noticed a consequent
gap between the visualization tools that focus on giving a global overview of the
trace and those aiming to provide fine grained details about the trace. The former
one make hard to find temporal bugs involving a small sequence of events: they
provide a very summarized view of the trace with no possibility to get more details
on-demand. This kind of view is quite useful to have an abstract understanding
of the behavior such as the evolution of the CPU load during the decoding but
is not suitable for fine-grained analysis. The latter makes browsing large traces a
fastidious and slow task: each event is accurately represented on a timeline which
is the ideal representation to focus on a very specific sub-time window. However,
we saw how readability problems can arise as the number of events to visualize in-
crease. Existing tools falls in of these two categories leaving a gap in the developers
toolkits and raises the question: Which visualization techniques to develop for a tool
that provides enough information about the behavior of the application to begin the
investigation, yet high-level enough to be efficient at exploring the data?

One approach found in the industrial tools is to split the trace into pages with one
page containing a small portion of events of the trace. This had two advantages.
The first one is that the exploration of a detailed view is easier as only a small
amount of event are represented. It provided a workaround that was good enough
with older generations of multimedia decoding platforms. However, with the latest
generation, this approach has reached its limits and does not provide fluid trace
exploration as the number of pages can be up to thousands.

4.3 Slow Back-end Performances

The second advantage of slicing the trace in pages is that it guarantees that the
answers to queries made on the data are mostly contained in one page. It was an
advantage in the past since the disk access and the back-end solutions were much
slower than the recent ones. But the storage technologies have improved with the de-
mocratization of the Solid State Disks (SSD) that provide drastically faster reading
time. Therefore, constraining the visualization to perform queries targeting most of
the time a pre-defined part of the trace was a good workaround to leverage the time
to access the data but is no longer relevant on modern workstations. Moreover, as
the size of execution traces are dramatically increasing, the page mechanism raises
an other problem as the result of a query now spread very often across several pages.
Consequently, it makes some behaviors or patterns very hard to detect.

Indeed, the large amount of events generated by modern applications (≈ 106

per minute of execution) requires an efficient back-end to develop interactive tools.
More precisely, with the actual computational power of modern workstations, the

60 CHAPTER 4. CHALLENGES FOR TRACE DEBUGGING

back-end became the limiting factor of the visualization pipeline to interactively
browse a large amount of data. The challenge can be summarize as: How to develop
a back-end solution suitable for the interactive exploration of time series containing
millions of events?

4.4 Pattern Mining for the Visualization of Exe-

cution Traces

Among research and industrial tools, very few have investigated the integration of
data mining results into visualization techniques for execution traces. This can
accelerate the debugging process by providing insightful information to the devel-
opers, hardly visible or computable otherwise. By nature of the logged application
(a streaming multimedia application), the traces recorded during an audio and/or
video decoding containing many repetitive sequences of events. We described in
Chapter 2 why, by definition, decoding a multimedia content is a repetitive and
periodic activity. As a quick and very simple reminder, decoding a video consists
in decoding 30 frames per second. Therefore, tracing such application will produce
a trace that contains repetitive sequences of events that correspond to the piece of
software in charge of doing a particular task in the decoding process. Data mining
can be very useful in this context. More specifically, pattern mining can reveal very
useful information about the behavior of the application to the developer and makes
possible to automatically detect abnormal behaviors and filter irrelevant data. For
instance, we saw in the related works (see Section 3.3) that pattern mining ap-
proaches exist to mine periodic patterns in the trace [Lopez Cueva et al., 2012],
detect perturbations [Iegorov et al., 2015], etc. Using such information to build a
novel visualization or augmenting an existing one would result in more powerful
debugging toolkits for execution traces. While able to find insightful information,
these tools return the results as a long list of patterns, fastidious to analyze and
that often require some data mining knowledge to understand them.

Some visualization techniques have been proposed to address this problem. How-
ever, as shown in the review of pattern visualization techniques, existing approaches
often require an expert user to understand what is visualized. Moreover, data min-
ing algorithms generate a large amount of patterns but pattern visualizations lack
scalability, quickly becoming cluttered as the number of patterns to show to the
end user increases. Here, the challenge to address is: how to exploit pattern mining
techniques to enrich debugging tools for execution traces?

From the existing works, we could identify different challenges to address in order
to provide new visualization tools to debug streaming multimedia applications using
execution traces. Doing so would help the more general industrial problem that is
to minimize the time-to-market of their multimedia platforms. In the second part
of this thesis, we present our different contributions to address this general problem
and propose solutions to the different challenges described in this chapter.

Part II

Contributions

61

Chapter 5

Research Approach and
Evaluation Methodology

Contents
5.1 Research Approach . 63

5.2 Evaluation Methodology and Validation 64

In this chapter, we introduce our research approach and the different contribu-
tions made during this doctoral work with respect to the different challenges sum-
marized in Chapter 4. Then, we describe the strategy we followed to conduct the
evaluation of our different works and give some context about STMicroelectronics
to better explain our choices.

5.1 Research Approach

We have identified several limitations and problems to solve in order to provide more
efficient debugging tools for execution traces. In this perspective, we address the
challenges presented in Chapter 4 in the following chapters.

First, we spotted a lack of technique to accurately visualize a time series. This
concerns a much broader domain than execution traces and touches a fundamental
aspect of time-oriented data visualization. Therefore, we begin in Chapter 6 by
focusing on this problem and propose a novel smoothing visualization technique
for time series. After an analysis of the visual artifacts that can appear in existing
temporal data representation, we propose a pixel-precise visualization for time series,
the Slick Graphs. We will use the Slick Graphs in the two other works presented in
this thesis as the basic brick for trace overview and smoothing.

The three other questions identified previously are more domain specific. We
saw that there is a huge gap between the tools giving an overview of the trace and
those giving many details. There also exists a limitation concerning the exploration
of huge traces: actual solutions do not allow an interactive browsing despite the

63

64CHAPTER 5. RESEARCH APPROACH AND EVALUATION METHODOLOGY

now broad usage of SSD and powerful workstations. We propose a solution to these
two questions in Chapter 7. We present a visualization framework called TraceViz.
This proposition brings two contributions: a new fast back-end to manage execution
traces and a novel visualization technique that provides an overview of the trace yet
with enough details to begin to understand the relations between the different actors
of the trace and to visually spot behavioral patterns. In this view, we used the pixel
mapping algorithm used in the Slick Graph to guarantee an accurate visualization.
We also integrated a global overview of the execution built using a Slick Graph.
Coupled to the back-end, the TraceViz visualization supports interactive exploration
of the trace.

Lastly, we noticed that pattern mining results are often difficult to exploit while
it can enrich debugging tools with meaning insights about the execution. In a third
chapter, we present a different type of overview than the one proposed in TraceViz.
Here, we use pattern mining techniques to find hidden structures in the trace such
as sequences of events, periodic sequences, which are the most frequent set of events
that occurred, etc. The goal of this work is still to provide new information about
the execution that would be hard and time consuming to find otherwise.

Through all these works, our goal is to provide new approaches for more effi-
cient debugging tools aiming to reduce the time needed to troubleshoot streaming
multimedia applications. First, by ensuring the visual representation of the trace is
as accurate as possible to avoid reasoning mistakes based on artifacts. Second, by
using our new pixel-based technique as the basis to build a novel type of overview.
Finally, by taking advantage of data mining algorithms to provide new insights.

5.2 Evaluation Methodology and Validation

We adopted different methods of evaluation for the different works, taking into
account the nature of the technique to evaluate and the industrial context in STMi-
croelectronics.

5.2.1 Slick Graphs Evaluation

The Slick Graphs visualization technique could be evaluated independently to the
application domain as it can be applied to visualize any type of time series. There-
fore, to measure the benefits of the Slick Graphs, we conducted a controlled user
evaluation in laboratory, detailed in Section 6.5.

5.2.2 TraceViz Evaluation

We took a different approach to evaluate TraceViz and proceed in two steps: one for
the back-end and one for the visualization. Concerning the back-end, we measured
reading and writing time under different conditions and compared these measure-
ments against SQLite, the most used database in debugging toolkit with traces.

5.2. EVALUATION METHODOLOGY AND VALIDATION 65

We detail the procedure and the results in Section 7.2. The visualization part of
TraceViz is obviously linked to the application domain. Here, software engineers
working on video decoding are mandatory to run a user study. However, develop-
ers at STMicroelectronics are difficult to reach and spread across different offices on
several sites. These conditions made impossible to conduct a formal user evaluation.
Instead, we took a different approach, in both the development of TraceViz and its
validation.

The development was made in collaboration with the software engineers in the
tools development team at STMicroelectronics. We had an iterative development
where we delivered several versions of the tool. Simultaneously, we had regular
discussions where we exposed the new concepts and they provided us their feedback
based on their experience and knowledge of the domain. During this phase, we also
evaluated how to use TraceViz on already solved use cases.

The validation of TraceViz consists in the integration of the visualization part
into the STMicrolectronics, as discussed in Section 7.6. STMicroelectronics was
also interested in migrating its complete suite of tools to the TraceViz back-end. It
could not be done simultaneously with the visualization part as it required signifi-
cantly more work and no resources where available at this moment to do this task.
Therefore, this development was initially planned for future releases of their tool but
never happened due to reasons explained below. From this point, we could follow
some real use cases where TraceViz successfully supported different bugs resolutions.
We present two of them in Section 7.5. These elements consist in the validation of
TraceViz.

5.2.3 Structures Visualization

The work presented in Chapter 8 took place last chronologically. At the moment
of its development and evaluation, the situation had changed due to a modifica-
tion of the STMicroelectronics strategy as explained in Section 1.3. In January
2016, STMicroelectronics has announced that the set-top box activity stops. Con-
sequently, the teams were dissolved and engineers reallocated to different activities
(more than 1000 employees impacted). While this process took several months, no
further development were made. This situation made impossible to follow a similar
work methodology than the one for TraceViz explained above and forced us to adapt
a different evaluation strategy.

We proceeded in two steps: (1) evaluating our approach on execution traces and
(2) using different types of traces to show how our method is not bounded to a single
application. In the case of execution traces, we took use cases solved in the past
at STMicroelectronics for which the traces and the bug explanation were available.
We ran our visualization on these traces and verified that the visualized results
were in adequation of the behaviors discovered by the engineers. To strengthen our
evaluation, we decided to apply our technique on other type of data and checked the
relevance of the visualized information. We present these evaluation in Section 8.5.

Chapter 6

Slick Graphs: Slick Visualization
of Time Series

Contents
6.1 Introduction . 68

6.2 Smoothing Techniques for Accurate Visualization Tech-
niques . 69

6.3 Study Case: ThemeRiver Smoothing Algorithm 70

6.4 Slick Graphs . 74

6.5 User Study: Evaluation of the SLG Smoothing Technique 78

6.6 Integration with Existing Techniques 85

6.7 Conclusion . 89

Representing accurately a time series is mandatory in a scientific or industrial
applications. As explained in Chapter 2, execution traces of multimedia streaming
applications contain many repetitive and periodic sets of events. An inaccurate
visual representation of the trace can lead to visual artifacts that modify or hide
the real behavior described by the events. This is not only true for execution traces
but for all types of temporal data. For instance, the same reasoning applies for
a time series representing the variations of temperature over several years. When
visualizing the whole dataset, inaccurate visualization may position peaks at wrong
positions, potentially mistakenly showing a warm month instead of a cold one.

In related works, we noticed a lack of precise technique to visualize a time series
and in Chapter 4, we stated this problem as being a research question to solve in
the domain of data visualization to improve the quality of debugging tools. In this
chapter, we focus on addressing the following question mentioned in Section 4.1:

How to mitigate the visual artifacts while providing a smoothed visualization for
time series?

67

68CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

6.1 Introduction

The simplest method to represent a time series is a line graph. While this technique is
widely used, it has many limitations to visualize huge time series due to two factors,
previously discussed in the related work (see Section 3.1). Briefly, the readability
of the graph greatly depends on its aspect ratio and on the average slope of its
segments. A solution to improve the legibility of the line graph is to smooth the
data: Bar et al. found that edges are harder to read than curves [Bar and Neta,
2006]. Bézier curves are popular in information visualization and more generally in
computer graphics to draw curved lines (see ThemeRiver [Havre et al., 2002], and
later works [Byron and Wattenberg, 2008; Dork et al., 2010] for examples of time
series visualizations using Bézier curves to smooth the data).

Many works improved the line chart using both visual techniques and new inter-
actions (see Section 3.1). However, there has been few research on the smoothing
technique for time series to improve the legibility of the line graphs while keeping a
high accuracy visualization. To address these problems, we introduce Slick Graphs,
a novel interactive visualization for time series that provides a high accuracy data
smoothing technique. Data is aliased at the pixel level, reaching the limit of per-
ception of the human eye on screens with high densities of pixels (more than 200
dots per inch). The Slick Graphs are accompanied with interactions to control the
smoothing factor allowing the discovery of trends in the data at different scales and
reducing the visual clutter on-demand to satisfy the Cleveland’s legibility condi-
tions of a line graph [Cleveland, 1993]. Slick Graphs are built upon line graphs, the
most common visualization technique for time series [Cleveland, 1993]. Thus, they
can easily be integrated with existing techniques (e.g. Interactive Horizon Graph,
Stacked Graphs, etc.) to bring them an efficient solution to support huge time series
and be more precise. We conducted a user study to evaluate the performance of
Slick Graphs for basic tasks on time series. It shows that Slick Graphs outperform
traditional smoothing technique used in visualization techniques.

We present two main contributions:

1. a binning and aggregating method that minimizes the aliasing to the pixel
level; and

2. a novel high accuracy smoothing technique that can be integrated with existing
visualizations for time-oriented data and we show examples to demonstrate
how to do it.

We begin to describe the different possible strategies to bin, aggregate and
smooth data in the goal of producing accurate visualizations of time series based
on line graphs (Section 6.2). Section 6.3 provides a detailed explanation of the
smoothing technique used in popular time series visualization and highlights the is-
sues raised by the binning. We present in Section 6.4 the Slick Graphs visualization
that comes with new binning and smoothing strategies based on pixels. Section 6.5

6.2. SMOOTHING TECHNIQUES FOR ACCURATE VISUALIZATION TECHNIQUES69

explains the controlled experiment we conducted to evaluate the efficiency of our
smoothing technique compared to the previous one and finally, we provide in Sec-
tion 6.6 examples of Slick Graphs integration with existing techniques and discusses
the benefits.

6.2 Smoothing Techniques for Accurate Visual-

ization Techniques

There exists a large panel of data smoothing techniques coming from various domains
such as signal processing and statistics. All have different mathematical properties
depending on the information of interest to extract by filtering-out the noise from
the input data. For example, smoothing a signal using a Gaussian kernel convolution
removes the high frequencies from the raw data as it behaves as a low-pass filter.

All these techniques can be used in visualizations to support information ex-
traction, or in a simpler goal, to produce smooth graphs. However, the resulting
rendering must be accurate by respecting the properties of the input and must
guarantee the extrema are precisely located. To achieve this, the resolution (i.e. the
number of pixels) of the output displaying the visualization has to be considered.

If the input has a smaller number of items than the resolution, the smoothing
pass can be directly applied on the data and the result can be plotted with no
transformation and be accurate. However, when the number of items contained
in the data is greater than the number of pixels, some binning and aggregations
techniques are mandatory. Two scenarios are possible: (1) perform the smoothing
on the raw input and then bin and aggregate the smoothed values or (2) bin and
aggregate the data before smoothing.

In the following paragraphs, we explore the two scenarios, give examples to better
illustrate the implication for rendering precise visualization and present an in-depth
analysis of an existing smoothing technique developed with the goal of producing
smooth graphs.

6.2.1 Smooth First, Bin and Aggregate Second

In this case, the method consists in smoothing the input first, then bin the smoothed
result and finally aggregate the data contained in each bin. Under these conditions,
the result of aggregation is directly plotted using a line graph to join the aggregated
points. This process does not guarantee the smoothness of the output graph as the
binning and aggregating steps breaks the continuity of the resulting curve. More
formally, the smoothness of a curve is measured using the geometric continuity Gn.
The eye sees a curve being smooth if it is G1 continuous (i.e when considering a point
on the curve, the tangent vectors of the segments on either side of the point share
the same direction). In our case, it can only happen when the aggregated values are
constant. This process must not be used for achieving smooth visualizations.

70CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

6.2.2 Bin and Aggregate First, Smooth Second

In this scenario, putting the smoothing step last guarantees the smoothness of the
rendering. The accuracy of the visualization now depends on the binning as it aliases
the data by nature.

Let consider a time series of statistical data. Binning the time series is typically
performed as follows. The time series is split into several time windows of equal
duration d. They are represented by twn in Figure 6.1 and their boundaries are the
dashed lines. The aggregation step consists in computing a statistic on the data
contained in each time window (i.e average, median, min, max, etc.). These are the
results used as input of the smoothing step. They correspond to p0, p1 and p2 in
Figure 6.1, respectively for the time windows tw0, tw1 and tw2.

To achieve a precise smoothed visualization of the time series, it is necessary to
minimize the aliasing introduced during the binning process. In the next section, we
provide an in-depth study of the smoothing technique introduced by ThemeRiver,
used in later work and based on arbitrary binning.

6.3 Study Case: ThemeRiver Smoothing Algo-

rithm

In this section, we analyze the smoothing technique of the ThemeRiver algorithm
as an example to highlight the impact of the binning process on the quality of a
visualization. We describe the visual artifacts that appear due to the aliasing to
better understand the role of the binning strategy and aggregation technique in the
final rendering.

The ThemeRiver technique stacks different layers corresponding to several time
series. As we focus on the binning technique, we do not consider the legibility issues
induced by stacking different layers. A study of these issues has been described by
Heer et al. [Heer et al., 2009].

6.3.1 Layer Building

The binning and aggregation steps of the ThemeRiver algorithm works as described
in paragraph 3.2. The size of the time windows are typically 10 pixels wide (10 to
50 pixels).

The smoothing step consists in linked together the points pn using a succession
of Bézier curves. At each data point a curve ends and another begins. Two control
points are placed to the left and to the right of each data point and are located on
the boundaries of their corresponding time window. The control points, represented
by pna and pnb in Figure 6.1, are aligned horizontally, ensuring that the global curve
have a smooth shape.

In the next paragraphs we describe the legibility problems introduced by such
construction method.

6.3. STUDY CASE: THEMERIVER SMOOTHING ALGORITHM 71

t

tw0 tw1 tw2

d d d

p0

p1

p2

p0a p0b

p1a p1b

p2a p2b

Figure 6.1: ThemeRiver layer building. The timeseries t is split into n time windows
of duration d. A statistic is computed for each time window. It gives the data points
p0, p1 and p2. Two consecutive data points are linked using a Bézier curve. The
control points pna, pnb are placed horizontally on the time window boundaries.

6.3.2 Legibility Problems

Arbitrary Aliasing

The direct effect of time quantization on the data is to introduce an artificial aliasing
that is directly correlated to the size and thus the number of time windows. The
number of points where the data is exactly represented is n with n being the number
of time windows. Most of the time, n is kept relatively small making the graph very
imprecise (e.g. 20 to 100 points with time windows of 10 to 50 pixels and a 1000
pixels wide graph). The information is conveyed by the other points: they only link
the aggregated values in a smooth manner but are no more representative of the
underlying data as a bar chart would be. This general problem has many specific
consequences detailed below.

Constrained Location of the Peaks

By construction, the peaks can only appear at the control points. A well-known
property of the Bézier curves is that they are contained in the convex hull defined
by their control points. From the position of the control points (see Figure 6.1), it
implies that it is impossible to have a peak at another point than in the middle of
a time window.

Visual Inaccuracy

The graph can be visually inaccurate, hiding the local extrema or showing them
shifted on the left or on the right. This is a direct consequence of the constrained
location of the peaks at the center of the time windows and of the binning, as stated
in the previous paragraph. Figure 6.2 shows an example where the position and
width of the time windows lead to such error of representation. In this case, the
smooth curve shows a local minimum instead of the local maximum that is present
in the raw data.

72CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

d d d

Figure 6.2: The graph shows a local minimum instead of the local maximum present
in the input. The gray color is the histogram representing the raw data. The blue
curve is what the final user will see and is the result of the smoothing method. The
red dashed lines are the boundaries of the time windows.

d d d d d

d d d d d

Figure 6.3: Impact of the position of the time windows on the shape of the curve.
The histogram represents the raw data. The blue curve is the result of the smoothing
method. The red dashed lines are the boundaries of the time window.

Furthermore, the shape of the curve greatly depends on the parameters of the
time windows. Figure 6.3 shows two histograms that represent the same data. The
time windows have the same duration d, and have just been shifted to the left by
one sample in the bottom histogram. The boundaries of the time windows are
represented by the red dashed lines. The shape of the blue curve is drastically
affected by this minor change: in the top graph, the local minimum clearly appears
while it remains barely visible in the bottom graph. This highlights the critical
impact of the position of the time windows.

This phenomenon can be very problematic when the user can interactively ma-
nipulate the width of the time window or pan the data, e.g. as in Visual Backchan-
nel [Dork et al., 2010]. The shape of the curve can greatly change while the user
is interacting with the view, breaking the visual continuity. This makes it very dif-
ficult for the user to build a mental model of the data, a crucial process for good
understanding.

6.3. STUDY CASE: THEMERIVER SMOOTHING ALGORITHM 73

correct period
perceived period

(a) Layer of a Stacked Graph showing the correct period.

correct period
perceived period

(b) Layer of a Stacked Graph showing the wrong period.

correct period
perceived period φ

(c) Layer of a Stacked Graph showing no period.

Figure 6.4: Inaccurate representation of a periodic signal

6.3.3 Wrong period depiction

When working with time related data, periodic data are common. Using the The-
meRiver algorithm to represent periodic data can be misleading. In Figure 6.4, the
histogram shows the raw data ; and periods (of width p = 27) are represented alter-
natively in black and red. In this case, six periods are represented. The blue curve
is the smoothed result. The duration of the time windows (green dashes) varies
between 4 (Figure 6.4a), 5 (Figure 6.4c), and 8 (Figure 6.4b).

Period is correctly represented.

It is possible to have the period correctly represented (see Figure 6.4a), if the width
of the time windows widthtw respects the condition p = n× widthtw where p is the
period of the signal and n is an integer.

A wrong period is represented.

Figure 6.4b shows an example where a period is not visualized correctly. The blue
curve shows a period q = 2×p where p is the period of the raw data. More generally,

74CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

a wrong period is represented by a layer when the width of the time windows is not
a multiple of the period, i.e. p 6≡ 0 (mod widthtw).

Period is hidden.

Figure 6.4c shows an example of a layer that hides a period. This case appears
under the same conditions than when a wrong period is represented.

6.3.4 Summary

We have presented the legibility problems related to the ThemeRiver algorithm.
These are consequences of the arbitrary aliasing that results from the low number
of time windows and their large width, accentuating the aliasing. The constrained
position of the local extrema, the visual inaccuracy, the instability of the shape of
the curve related to the parameters of the time bins and the wrong representation
of the period when working with a periodic data are all consequences to the time
quantization process and of the Nyquist frequency. The smoothing technique devel-
oped for ThemeRiver is irrelevant for periodic data and data that change at a high
frequency rate. However, the exposed problems have a small impact on data that
vary at a low frequency rate or that follow a Poisson distribution like the number
of Twitter posts about a particular topic [Dork et al., 2010], box office hits [Bloch
et al., 2008], or visualizing a single person’s history music listening [Byron, 2006].

In the following section, we introduce a new visualization technique that miti-
gates the visual artifacts introduced by the aliasing.

6.4 Slick Graphs

Related work suggests that the legibility of a line graph depends on the average
slope of the line segments and on the aspect ratio of the graph. These condi-
tions may not be respected when working with large scale and small scale variation
datasets. ThemeRiver [Havre et al., 2002] proposed a smoothing algorithm suitable
for large variations but irrelevant when working with small variations dataset. Slick
Graphs (SLG) aims to mitigate these issues by introducing a pixel-based binning
and smoothing techniques. By doing so, it reduces the aliasing up to the pixels, the
smallest visual discretization achievable on a screen. In this section, we formally de-
scribe the data and explain the time series properties used by the algorithm. Then,
we describe the algorithm implemented in SLG.

6.4.1 Time Series as Data

Data considered in SLG are time series consisting in collection of tuples (ti, vi) where
ti corresponds to the date when the event occurred and vi to the observed value at

6.4. SLICK GRAPHS 75

H

p0 p1 pi−1 pi pi+1 pn−2 pn−1

ti1

V = T [ti1 . . . ti2]

ti2 T

Figure 6.5: Building of the histogram H for Slick Graph

moment ti. We have 0 ≤ i < n with n being the number of events in the data. For
a given time series, we have: ∀i ∈ [0, n[, ti−1 < ti.

6.4.2 Slick Graphs Binning Algorithm

The SLG binning algorithm takes two parameters as entry point: a time series T
and the width in number of pixels p of the space available to display the graph.
The binning consists in building an histogram H of p bins, each bin corresponding
to a pixel (see Figure 6.5). For each pixel pi, we compute the two timestamps ti1
and ti2 at its boundaries and extract data contained in this time window. We have
V = T [ti1 . . . ti2]. Next, we compute H(pi) so that:

H(pi) = f(Vi, i1, i2)

with f being an aggregation function (i.e. average, median, min, max, etc.).
The output of the binning step is the histogram H. This computation of the

aggregated data outputs a result aliased at the pixel level. The visual artifacts
described in the previous section due to the aliasing are still present but are mitigated
to the pixel.

6.4.3 Slick Graphs Smoothing Algorithm

The smoothing step computes the smoothed values that will define the overall shape
of a Slick Graph. Since a timeseries have only one dimension, SLG basically con-
volves the histogram H with a 1D kernel function. Thus, for each pixel pi, we
have:

SLG(pi) = (H ∗K)(pi) =

w/2∑
n=−w/2

H(pi − n) ·K(n) (6.1)

with w being the kernel width. Table 6.1 shows different rendering of the same
input data smoothed with different kernels. The output graph produced by SLG
guarantees a minimal aliasing to the pixel level.

The width w of the kernel controls the smoothing strength applied to the aggre-
gated data: the smoothing increases as w increases. Giving the control of w to the
user allows to interactively change the smoothing without changing the aggregation.

76CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

Kernel BW = 1 BW = 2 BW = 4 BW = 8

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Epanechnikov

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2
Gaussian

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Triweight

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Uniform

Table 6.1: Slick Graph smoothing data using different kernel functions. The kernel
size is increasing from left to right and are respect equal to 1, 2, 4 and 8 pixels width.
The canonical bandwidth of the kernels have been adjusted to achieve equivalent
smoothing strength.

6.4.4 Encoding the Filtered-out Information

By definition, the smoothing process eliminates some information contained in the
data to give a more general tendency across time. The nature of the filtered-out
data depends on the kernel function used for the smoothing. To mitigate the loss of
information, SLG encodes the difference between the smoothed value SLG(i) and
the aggregated value H(pi) in the luminance channel Lpi of each pixel pi:

Li =


1

1 + SLG(pi)
H(pi)

if H(pi) 6= 0

0 if H(pi) = 0

It gives: 
Li = 0 if SLG(pi)� H(pi)
Li = 0.5 if SLG(pi) = H(pi)
Li = 1 if SLG(pi)� H(pi)

Thus, the local extrema appear at the exact position as bands of different shades
of gray, white being for the local minimum and black for the local maximum (see

6.4. SLICK GRAPHS 77

Figure 6.6: Using a Gaussian as kernel, SLG can reveal low frequency patterns by
increasing the smoothing factor from (a) to (d).

Table 6.1).

6.4.5 Use Case: Slick Graphs as a Low-Pass Filter

We consider here a Gaussian kernel to smoothing with SLG. In this particular case
the value of a pixel pi is computed as:

SLG(pi) = (H ∗G)(pi) =

d3σe∑
n=−d3σe

H(pi − n) ·G(n) (6.2)

with:

G(n) =
1√
2πσ

e−
n2

2σ2 .

Here, the Gaussian standard deviation σ is used as the smoothing parameter in
SLG: when σ is small, the smoothing is low. A well-known property of the Gaussian
kernel is to behave as a low-pass filter. Thus, smoothing using a Gaussian kernel
reduces the high frequencies components contained in the histogram H. When the
smoothing factor σ increases, the range of filtered out frequencies increases. More
information is removed from the shape of the graph making apparent patterns at low
frequency. The different shades of gray become lighter and darker as the difference
between the smoothed value SLG(pi) and H(pi) increases.

In this use case, we consider the specific task of finding the period of a signal.
With no smoothing, the raw histogram H is shown (e.g. Figure 6.6a). In this con-
figuration, it is very difficult to detect the period visually. Increasing progressively
the smoothing factor (Figure 6.6a to Figure 6.6d), the high frequency variations
disappear from the shape and the period at low frequency can be easily spotted on
the silhouette of the graph (Figure 6.6d). The gray shading of the graph shows the
high frequency patterns.

78CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

6.5 User Study: Evaluation of the SLG Smooth-

ing Technique

To evaluate the effectiveness of the SLG smoothing technique, we have conducted
a quantitative user experiment. We wanted to investigate the impact of the SLG
smoothing technique on user performance for basic tasks on time series and compare
it to the smoothing technique used by ThemeRiver and Stacked Graphs, referred to
STG smoothing technique in this section.

We used a Gaussian kernel for SLG during this experiment as it is the kernel
giving smoother silhouette of the graphs. In the Slick Graphs version, we removed
the encoding of the filtered-out information. In this study, we focus exclusively
on the quality of the smoothing between the two techniques. For this, we need
the user to validate his choices based on the silhouette of the graph only. Adding
the encoding of the filtered-out information would perturb the experiment as the
channel alpha could be used in addition of the silhouette.

6.5.1 Hypotheses

H1 Slick Graphs smoothing technique will be more precise. The arbitrary aliasing
and the visual inaccuracy of the STG smoothing technique will increase the
errors.

H2 Slick Graphs smoothing technique will make the user faster. The constrained
location of the peaks and the inconsistent shape of the curve —that depends
on the time bins parameters (see Figure 6.3)— creates visual discontinuity
when exploring the data that slows down the user.

6.5.2 Tasks

Participants were asked to perform various tasks. These tasks are typical of what is
relevant for time series.

Perception Task

This task is a derivative of the Perin et al.’s task Same [Perin et al., 2013]. Par-
ticipants are asked to choose between two graphs, smoothed respectively with SLG
and STG algorithm, which one represents best a reference time series. The refer-
ence, placed in the middle of the screen, shows the raw data using a line graph (no
smoothing is applied to the graph). The two other graphs, are placed randomly
above and below the reference (see Figure 6.7). The time series and the smoothing
factor are chosen from a set of nine pre-defined configurations and we calculated an
equivalent smoothing strength for both SLG and STG. Since we wanted to focus on
the perception factor, we did not provide any interaction on the time series other

6.5. USER STUDY: EVALUATION OF THE SLG SMOOTHING TECHNIQUE79

Figure 6.7: Task Perception. The graph in the middle is a line graph. Top and
bottom graphs are either STG or SLG and their position is randomly swapped
at each trial. The three graphs represent the same data. STG and SLG apply a
smoothing that are equivalent. The red lines follow the mouse and are vertically
aligned to help the comparison between graphs.

than a vertical cursor that follows the mouse cursor on each graph. Participants
were told that the time is not important in this task.

Maximum task

In this task, conceived by Lam et al. [Lam et al., 2007], the participants had to find
the maximal value on a graph, given a smoothing factor. We wanted to compare the
smoothing quality of SLG and STG by measuring how far on the horizontal axis the
smoothed maximum is from the real value. Participants were asked to be as precise
as possible.

Period Task

We wanted to quantify how the visual accuracy impacts the user performance (in
time and correctness) when evaluating the global shape of the data. Therefore,
we have designed a variant of the Slope task introduced by Adrienko et al. [An-
drienko and Andrienko, 2005] where the participant is asked to find the period of
the data. We provided a continuous interaction using the mouse wheel to control
the smoothing factor applied to the graph. To select the period perceived, the par-
ticipant highlights the corresponding time window with a drag and validates using
the keyboard. At the beginning of each trial, an arbitrary smoothing is applied to
the graph.

80CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

Figure 6.8: Task Same. Graphs are grouped in five blocks. In each block, the
graph of the top is the reference, duplicated five times in total. Among the five
other graphs, the participants had to find which represented the same data than the
reference. The graph that was currently explored was highlighted.

Same Task

Five time series are displayed simultaneously and the participants have to select the
exact same one than a reference time series. To generate the data, we added some
noise to the reference. With this task, we wanted to measure time and correctness.
Since we were not interested in performance of global comparison, the reference was
duplicated below each time series to minimize the time and difficulty induced by
doing a global comparison (see Figure 6.8). We provided the same interaction to
control the smoothing factor than for the Period task. Participants select a time
series with the mouse cursor and validate their choice with the keyboard as quickly
as possible. This task was inspired by Perin et al.’s Same task [Perin et al., 2013]
and is derivated from the Slope task introduced by Adrienko et al [Andrienko and
Andrienko, 2005].

6.5.3 Participants

Eighteen participants were recruited, 13 males and 5 females. 9 came from our uni-
versity, 9 were recruited outside. The average age of the participants was 29.5 (from
22 to 54, median 29). None of them had vision troubles to read on a screen and half
had a Computer Science background. All of them were familiar with reading a line
graph and one of them was familiar with other time series visualization techniques.

6.5. USER STUDY: EVALUATION OF THE SLG SMOOTHING TECHNIQUE81

6.5.4 Experiment data

We used a synthetic dataset during the experiment. For each task, we generated
a pool of three time series using a random walk. For the Perception, Maximum
and Period tasks, we also chose three different smoothing factors: 6, 30 and 150
pixels wide for the time window in STG, multiplied by 0.43 to have the equivalent
σ in SLG. These are the different smoothing conditions for the experiment. For the
Same task, we added 35% of noise to the reference time series at each trial. Using
a random walk algorithm allows us to have large scale and small scale variations in
the dataset with properties to mimicking real world data such as financial or sensors
data.

6.5.5 Protocol

We used a 24 inch LCD monitor display with a resolution of 3840 × 2160 pixels, a
mouse to interact with the graphs and a keyboard to validate the answers using the
SPACE key. The experiment was composed of two parts: a preliminary training
phase, and evaluation phase.

During the training phase, the participants were able to learn how to use the
STG and the SLG smoothing techniques. They could control the smoothing factor
using the mouse wheel. They were allowed to switch freely between the techniques
and to review the time series being visualized. This phase was not limited in time
and the participants were encouraged to ask questions.

The evaluation phase was divided into three blocks, one block for each task. At
the beginning of each block, the instructor described the task and the participants
could ask for clarifications. Then, they had a trial of training. After validating their
answer, a blank screen was displayed. The next trial began when the participant
pressed again the SPACE key. No feedback on the performance was provided during
the whole experiment.

For the Perception task, the participants were asked to study the different graphs
closely. They were told the time was not important and had 9 trials. The Maximum
task was composed of 9 trials ×2 techniques for a total of 18 trials. The participants
were instructed to be as fast as possible. For the Period and Same tasks, of 9
trials × 2 techniques for a total of 18 trials each, the participants had to complete
each trial within the shortest time. When all the tasks were finished, the instructor
asked questions on how confident the participants felt about their answers during an
informal discussion and collected feedbacks. The overall study included 9+18×3 =
63 trials and took an average time of forty minutes for each participant.

6.5.6 Results

We analyze the results of the experiment for each task.

82CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

M
ea

n
co

m
pl

et
io

n
tim

e
(s

ec
on

ds
)

0
2

4
6

8
10

12

●

●

●

●

●

●

Stream Graph
Slick Graph

STG SLG STG SLG STG SLG

σ=6 σ=30 σ=150

(a) Completion time

M
ea

n
po

si
tio

n
er

ro
r

(p
ix

el
s)

0
10

0
20

0
30

0
40

0
50

0
60

0

●

●

●

●

●
●

Stream Graph
Slick Graph

STG SLG STG SLG STG SLG

σ=6 σ=30 σ=150

(b) Position error

M
ea

n
va

lu
e

er
ro

r
(%

)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

●

●

●

●

●

●

Stream Graph
Slick Graph

STG SLG STG SLG STG SLG

σ=6 σ=30 σ=150

(c) Value error

Figure 6.9: Impact of the smoothing technique and of σ on the different dependent
variables for the Maximum task. Error bars are 95 % CIs.

Perception

Two dependent variables were measured in this task: the time and the participant
preference. None of them were significantly impacted by either the smoothing factor
σ or the time series. Results show that the smallest the smoothing factor is, the
most preferred SLG tends to be, but without statistical significance.

During the experiment, 44% of the participants reported that SLG seemed
smoother than STG, thus STG was a more accurate representation of the raw data
than SLG. They understood that the aliasing present in STG was details about the
data: “[SLG] looks the same but smoother”, “[SLG] is smoother, more progressive
but it seems to erase details quicker”, “[SLG] is less precise in the beginning of the
smoothing”.

By the introduction of a high aliasing, STG can mislead a user who can interpret
it as being real values in the data. This factor explains why the difference between
SLG and STG is not significant for the preference variable.

It is hard to draw any conclusion regarding our hypotheses with this task.

Maximum

For the Maximum task, the dependent variables used for analysis are: the errors
made by the participant, both in term of position (i.e. distance over the time axis
to the time of occurrence of the actual maximum) and in term of magnitude (i.e.
distance over the value axis to the actual maximum value); and the time taken by
the participant to do the selection. The 3 factors manipulated are the time series,
the smoothing factor, and the smoothing technique. Figure 6.9 summarizes the
impact of the smoothing techniques and of σ of dependent variables.

The time is only affected by the smoothing factor (F1,323 = 23.21, p < .0001),
and it decreases while the smoothing factor grows (see Figure 6.9a). This can be
explained by the fact that the smoothing reduces the number of candidates for the

6.5. USER STUDY: EVALUATION OF THE SLG SMOOTHING TECHNIQUE83

Mean completion time (seconds). Error bars are 95% CI.

0 5 10 15 20 25

●

●

STG

SLG Slick Graph
Stream Graph

Figure 6.10: Mean completion time for the Period task.

maximum.
Neither the smoothing techniques nor the smoothing factor σ affect the position

error (see Figure 6.9b). The position error is mainly affected by the time series.
This is normal since each series has its own set of large picks that are candidate
for the maximum. This dependent variable is thus not very pertinent to study the
performance of SLG vs. STG.

Finally, the value error is affected both by the technique (F1,323 = 11.15, p =
.0009) and the smoothing factor σ (F1,323 = 74.03, p < .0001) (see figure 6.9c). The
technique also interacts with the other two factors to affect the value error, which
make the interpretation of the results difficult. The value error actually grows
with the smoothing factor: the linear fit gives a positive coefficient (t322 = 8.08,
p < .0001). This is normal: the more the time series is smoothed, the less accurate
the value of picks will be, since they are averaged with their surrounding, which
are smaller by definition. The value error is also significantly larger when using
STG than when using SLG (F1,323 = 6.33, p < .0124). A closer inspection shows
that the difference between the two techniques varies depending on the time series.
SLG always perform better than STG, but the amount of the difference, and its
significance depends of the actual characteristics of the data.

This validates hypothesis H1: with SLG, users are more precise.

Period Task

For the Period task, the dependent variables used for analysis are: the time taken
by the participant to select a period; and the ratio between the duration of this
period and the actual period present in the data (i.e. selecting the real period will
lead to a ratio of 1, whereas selecting a period that covers 2 actual periods will lead
to a ratio of 2). Among the 3 factors manipulated (time series, smoothing factor,
smoothing technique), only the technique has a statistically significant impact on
the dependent variables.

The technique impacts significantly time (F1,323 = 63.55, p < .0001): the average
time is 7.29 s for SLG and 22.22 s for STG. SLG is thus basically used 3 times faster
than STG. Those averages, of course, differ significantly (t322 = 7.97, p < .0001).
Figure 6.10 shows their 95 % confidence intervals.

The correctness of the period detection (i.e. how close the ratio is from 1) is also
significantly impacted by the technique (F1,323 = 24.68, p < .0001). The average

84CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

Mean value error. Error bars are 95% CI.

0.0 0.5 1.0 1.5 2.0

●

●

STG

SLG Slick Graph
Stream Graph

Figure 6.11: Mean value error for the Period task.

Mean completion time (seconds). Error bars are 95% CI.

0 20 40 60 80

●

●

STG

SLG Slick Graph
Stream Graph

Figure 6.12: Mean completion time for the Same task.

ratio is 1.026 for SLG and 1.684 for STG. Their respective 95 % confidence intervals
are displayed in Figure 6.11. A closer look at the distributions of the ratio shows that
for SLG, most of the values (160/162) are very close to 1, while the two remaining
values are close to 2; whereas for STG, 118/162 values are centered on 1 (i.e. within
the [.5, 1.5] range), 24/162 are centered on 2, 12/162 are centered on 3, while the
remaining 8 ratios are above.

This shows that the legibility problems of STG described in Section 6.3 really
affect the performance of STG vs. SLG for the Period task since SLG is both sig-
nificantly faster and accurate. For this task, H1 and H2 are valid: users are more
precise and manage to do their judgment faster with SLG.

Same

The dependent variables analyzed for this task are the completion time and the
correctness.

The time is significantly impacted by the technique (F1,323 = 4.22, p = .0408).
The average completion time is 46.35 s for SLG and 53.98 s for STG with a 95%
confidence of [41.92, 50.78] and [48.14, 59.83] for respectively SLG and STG (see
Figure 6.12).

The correctness is not significantly impacted by the technique (F1,323 = 2.34,
p < .13). However, SLG is more correct on average: correctness is 70.37% for SLG
with a 95% confidence interval of [63.07%, 77.67%] and 62.35% for STG with a 95%
confidence interval of [55.05%, 69.65%] (see Figure 6.13).

This confirms our hypothesis H2: the users are faster with SLG when the task
requires to explore the data. Visual discontinuity of the STG graph slows down the
user.

6.6. INTEGRATION WITH EXISTING TECHNIQUES 85

Mean correctness. Error bars are 95% CI.

0.0 0.2 0.4 0.6 0.8 1.0

●

●

STG

SLG Slick Graph
Stream Graph

Figure 6.13: Mean correctness for the Same task.

6.5.7 Discussion

The results show that SLG clearly outperforms STG in terms of both accuracy and
completion time when working with periodic data, making our technique particularly
suited for visualizing electronic signals, execution traces, etc. Indeed, we explained
how STG smoothing technique can show an incorrect period or totally hide the
data periodicity. With SLG, the users also read more accurately the extrema (max
task) while they tend to prefer the STG smoothed silhouette. With these insights,
we strongly recommend not using STG binning and smoothing technique with data
having a high variability, either small or large variation (i.e typically financial time
series, sensors data, traces, logs, etc.). STG hides or moves the local extrema and
introduce visual artifacts that the users interpret as being the correct representation
of the data.

The user evaluation also shows that the visual discontinuity that appear with
STG when changing the smoothing factor slows down the users: it breaks its cog-
nitive model. Therefore, we also discourage the usage of STG for interactive visu-
alization, independently of the property of the data visualized. STG is usable for
casual non-interactive visualizations for time series that follow a Poisson law such
as the number of tweets during an event, the box office entries, etc.

6.6 Integration with Existing Techniques

In this section, we used a Gaussian kernel for the smoothing pass. Hence, we refer
to the kernel width w as σ.

6.6.1 Stacked Graph

We applied the SLG algorithm to Stacked Graphs. We chose to compute the overall
shape of the graph with the original ThemeRiver algorithm (the baseline g0 is: g0 =
−1

2

∑n
i=1 fi with fi being the layers. See Byron et al. work for more details [Byron

and Wattenberg, 2008]).
While correcting the drawbacks of STG, integrating SLG with Stacked Graphs

has several other advantages. Using the SLG binning technique, the peaks are more
precisely located: the shifting effect due to the aliasing is minimized to the pixel,

86CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

(a) (b)

Figure 6.14: Data smoothed with (a) STG algorithm, and (b) SLG algorithm. SLG
reveal more details.

making extrema more accurately positioned and adjusting the smoothing factor for
the interactive exploration of high and low frequencies enable the user to visualize
data with more details.

As an example, we took a dataset of tweets during the State of Union Address
2015 presented by the president of the USA to the US citizen representation. The
dataset was built by the Twitter visualization team and they implemented an inter-
active visualization with it1. Figure 6.16 shows different rendering of Stacked Graph
using different smoothing algorithms. Figure 6.16a is rendered using the original
ThemeRiver algorithm1. SLG algorithm was used in Figures 6.16b and 6.16d with
different smoothing factors σ.

Using the SLG algorithm, the visualization can be more detailed. For instance,
Figure 6.14a shows a peak on the #jobs layer as seen in Stacked Graph. Figure 6.14b
is the same data being represented but the visualization has been computed using
the SLG algorithm. The peak is composed of two small peaks that correspond to the
beginning of two strong paragraphs: “21st century businesses, including small busi-
nesses need to sell more American products overseas” and “21st century businesses
will rely on American science, technology, research and development”1.

With a small smoothing factor, graph becomes very precise and local extrema
can be easily spotted. On Figure 6.16b, a narrow peak appears on the right (zoomed
on Figure 6.15), and corresponds to the end of the talk. This is an illustration of the
accuracy the SLG algorithm brings: this peak is not visible on the original Stacked
Graph visualization and this information is lost.

6.6.2 Interactive Horizon Graph

Horizon Graph (HG) is a visualization technique for multiple time series [Saito et al.,
2005; Reijner, 2008; Few, 2008] that belongs to the split-screen techniques. HG have
been designed to virtually augment the vertical resolution of the graph by dividing
it in bands and wrapping them around a baseline. Perin et al. brought interactions
to HG and introduced Interactive Horizon Graph (IHG) [Perin et al., 2013]. They
integrated two interactions: baseline panning and value zooming. When panning
the baseline, values on the graph moves up and down relatively to the position of

1#SOTU2015: See the State of the Union address minute by minute on Twitter, ¡http://
twitter.github.io/interactive/sotu2015¿, accessed on March 31st 2015.

http://twitter.github.io/interactive/sotu2015
http://twitter.github.io/interactive/sotu2015

6.6. INTEGRATION WITH EXISTING TECHNIQUES 87

Figure 6.15: Narrow peak corresponds to a sudden number of tweets being emitted
at the end of the talk.

the baseline and their color changes according to their current band. Zooming on
values corresponds to increasing the number of bands, thus the virtual resolution of
the graph increases.

When using the zoom, the aspect ratio of the graph virtually decreases, thus
increases the average slope. This effect has a huge impact on the legibility of the
graph. To demonstrate this, let us consider the case when working with a time
series that variates at a high frequency rate and suppose we want to explore the low
frequency behavior to find the general slope of the graph. Figure 6.17a shows an
example of such graph being represented with IHG at an initial configuration with
an arbitrary baseline position and no zoom on the values.

Using interactions provided by IHG, it is possible to progressively increase the
zoom factor to compare more easily the local extrema. Figures 6.17a, 6.17b and 6.17c
show different zoom values. The graph quickly become very hard to read due to a
large number of peaks appearing as many red and blue narrow bands.

To correct this problem, we propose to use the SLG smoothing algorithm with
IHG. On IHG, the left and right mouse buttons are used to control respectively the
value zooming and the baseline panning. To keep the interaction centralized on the
mouse, we used the mouse wheel to control the smoothing factor σ. In Figures 6.17c
to 6.17e, σ is progressively increased. The overall graph becomes easier to read,
the extrema can be more easily compared and the general slope of the graph is
encoded in the light shades. For a more coherent visualization, we also updated the
computation of the range ri of each band bi:

ri = [(yb + i
h

2K
)σ, (yb + (i+ 1)

h

2K
)σ]

with:


i ∈ [−dze, dze[
h = max(|yb − ym|, |yb − yM |)
K = z

.

When increasing the smoothing factor, the values of the graph decreases and the
highest band might not be used. Thus, we integrated σ into the computation of the
range of the bands so that it adapts correctly and all the bands are reached.

88CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

(a) Stream Graph computed with original smoothing algorithm.

(b) Stream Graph computed with SLG algorithm (σ = 1 pixel).

(c) Stream Graph computed with SLG algorithm (σ = 6 pixels).

(d) Stream Graph computed with SLG algorithm (σ = 30 pixels).

Figure 6.16: Stream Graphs visualizing the volume of tweets emitted during the
State of the 2015 Union Address Twitter dataset using different smoothing algo-
rithm: (a) Stream Graph1, (b, c, d) Stream Graph computed with SLG algorithm
(σ = 1, σ = 6 and σ = 30).

6.7. CONCLUSION 89

(a) yb = yM
2 , z = 1, σ = 1 pixel

(b) yb = yM
2 , z = 2.25, σ = 1 pixel

(c) yb = yM
2 , z = 10, σ = 1 pixel

(d) yb = yM
2 , z = 10, σ = 15 pixels

(e) yb = yM
2 , z = 10, σ = 30 pixels

(f) yb = yM
2 , z = 10, σ = 30 pixels, SLG bands

Figure 6.17: Impact of the smoothing factor σ on IHG. The time series becomes
very difficult to read when the zoom increases. Increasing σ details are filtered out
and the average angle of the slope decreases, making the graph more legible.

6.7 Conclusion

In this chapter, we proposed a solution to the research problem of representing ac-
curately a time series (see Section 4.1).

In Section 6.3, we described the problems introduced by the different smoothing
strategies, the visual artifacts that can appear due to the binning and highlighted
the consequences on the visual rendering of a time series. In Section 6.4, we have
introduced Slick Graphs, a novel visualization technique for time series that provides
an accurate binning and smoothing technique that minimizes the aliasing and visual
artifacts to the pixel. The starting point of the binning process are the pixels instead
of the data. This pixel oriented process guarantees that the data are aggregated on
the correct pixel, thus the peaks are visualized accurately. The histogram resulting
of the binning process is then smoothing using a kernel convolution where the kernel
is centered on the bins of the histogram, thus the pixels. It ensures that the final
rendering provides the best precision achievable with actual screen technologies,
where the aliasing effects are mitigated to the pixel. Filtered-out information is
encoded in level of gray for each pixel making the local maxima appear as black
bands on the graph and local minima as white bands.

We have demonstrated that the SLG smoothing technique produces a shape of

90CHAPTER 6. SLICK GRAPHS: SLICK VISUALIZATION OF TIME SERIES

the graph that allows users to be faster and more accurate than using the broadly
used STG algorithm. We have also shown examples of how to integrate SLG smooth-
ing with existing visualization techniques for time series (Interactive Horizon Graphs
and Stacked Graphs) and explain how the visual quality is improved.

Slick Graphs are a suitable visualization technique for an integration into an
industrial environment that requires a high level of precision. We have already
presented an example of how SLG can support the developers to detect a periodic
behavior if the kernel used for the convolution is the Gaussian kernel (Section 6.4.5).
Under some conditions, with an inaccurate binning strategy, the periodic patterns
can be hidden. Using SLG binning and aggregation algorithm as the basis for other
visualizations ensures that the aliasing is reduced to the pixel, thus the perceived
periodic behaviors are correctly rendered.

In the next chapter, we present a visualization framework for execution traces
that is built upon the SLG binning and aggregating algorithm and that integrates
a Slick Graph in one of its view.

Chapter 7

TraceViz

Contents
7.1 Introduction . 91

7.2 Data . 92

7.3 TraceViz Design . 96

7.4 TraceViz . 98

7.5 Industrial Use Cases . 102

7.6 Industrial Deployment . 106

7.7 Conclusion . 110

7.1 Introduction

In related work, we described in Section 3.2 that a gap exists between the tools
proposing an overview of the trace and the ones providing too much details. We
explained that the first ones do not allow to start the analysis of the trace correctly as
the data are too aggregated. On the other side, the second ones make the navigation
fastidious due to a large amount of events and the quantity of details rendered. They
also make difficult the possibility to spot behavioral patterns that implies a large
set of events: the user simply cannot remember sequences of events easily. Instead,
the visualization has to show him such information.

We also explained that the actual limiting factor to provide an interactive brows-
ing of large traces is the lack of an efficient data access despite the democratization
of SSD.

In this chapter, we address the two following questions, stated in Section 4.2
and 4.3:

1. Which visualization techniques to develop for a tool that provides enough in-
formation about the behavior of the application to begin the investigation, yet
high-level enough to be efficient at exploring the data?

91

92 CHAPTER 7. TRACEVIZ

2. How to develop a back-end solution suitable for the interactive exploration of
time series containing millions of events?

In this chapter, we introduce a novel visualization framework called TraceViz, to
tackle these two questions. TraceViz allows the developers to explore interactively
huge execution traces from high-level using aggregation techniques all the way down
to a single event. It makes possible to visually spot regular patterns and trends in
the trace, guiding the analyst in the filtering process. Enabling the software de-
velopers to quickly filter parts of trace, whether it is temporal windows or several
actors, is critical to accelerate the discovery of the reason of a bug. An execution
trace can easily contains hundreds of actors and several millions of events. When a
problem occurs during the decoding, most of the time, it implies a very small num-
ber of processes in specific temporal windows. Thus, efficiently filtering repetitive
part of the trace and irrelevant actors can reduce drastically the number of events
to investigate and shortening the time required for the trace analysis.

We based the visualization part of this work on the techniques introduced in the
previous chapter with Slick Graphs. The binning and aggregating algorithm is used
in the two different views developed in this work. One of them integrates a Slick
Graph to provide a global overview of the trace. The SLG algorithm ensures that
the visualized patterns on the time series are accurate and that the developers are
not investigating what seems to be a bug but is indeed an artifact.

The remaining of this chapter is organized as follows. We begin with a de-
scription the underlying back-end we have implemented for supporting interactive
exploration in TraceViz (Section 7.2). We continue by detailing its design principles
and goals (Section 7.3). Next, we describe the graphical interface and the user in-
teractions to efficiently explore the trace (Section 7.4). We finish by describing two
industrial use cases where TraceViz allows to identify patterns and was used to find
bugs (Section 7.5) and how we have integrated TraceViz into the STMicrolectronics
debuggin toolkit (Section 7.6).

7.2 Data

In this section, we describe the back-end developed for TraceViz and present its
performance measured with an experiment. We finish by detailing the statistics
implemented in TraceViz.

7.2.1 Data Storage

Execution traces contain huge amount of data. They are composed of a large series
of events. Each event has a timestamp at which it occurred, the actor which pro-
duced it, typically processes and interrupts, and a type. An event type can be an

7.2. DATA 93

Q
ue

ry
 T

im
e

(m
s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(a) Time Window
Q

ue
ry

 T
im

e
(m

s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(b) Actor

Q
ue

ry
 T

im
e

(m
s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(c) Event Type

Figure 7.1: Read time of 20000 events when filtering on the time window, the actor
and the event type.

entry/exit of a system call, an application function or an interrupt, a context switch,
etc. As seen previously, developers use an incremental workflow that involves many
tools where analysis of execution traces is part of it. In this context, traces need
to be stored in a efficient back-end that guarantees a minimal time for data access
and processing. Traditional tools use a SQLite database [Prada-Rojas et al., 2009;
Pagano et al., 2013]. With recent hardware platforms and increased trace size, such
database does not scale and developers experience slow data access. Deploying com-
plex architecture with powerful severs is also prohibited since it requires streaming
data over the network and remains too complex to achieve in the context of stream-
ing multimedia decoding applications on MPSoC. To address those constraints, we
have developed a back-end based on HDF5, Hierarchical Data Format [Folk et al.,
2011]. HDF5 allows to store huge files in a hierarchical format and comes with
powerful memory management for fast access to huge amount of data. Supported
by the the HDF Group1, HDF5 is widely used in scientific applications where high
performance and robustness is necessary like in meteorology2.

TraceViz stores a trace as follows:

� /events contains an array of all the events in the trace, chronologically sorted,

� /actors is an array of all the active actors,

� /types stores all the event types.

Running through the whole trace is done by accessing the array of events. The HDF5
driver handles the main memory and the page faults, providing a high performance
data access.

We study the TraceViz back-end performance for importing, reading and query-
ing a trace. We compare the results with an SQLite back-end largely used by analysis

1The HDF Group, ¡https://www.hdfgroup.org¿
2NASA scientific satellite Terra, ¡http://terra.nasa.gov¿

https://www.hdfgroup.org
http://terra.nasa.gov

94 CHAPTER 7. TRACEVIZ

tools for execution traces. We ran the experiment on a workstation equipped with
an quad-core i7 Intel CPU at 3 GHz, 16 GB of RAM and a 256 GB SSD. The design
of our experiment is largely inspired by the evaluation of the FrameSoC back-end
performance conducted by Pagano et al. [Pagano et al., 2013].

Trace size (MB) 2 21 150 431
TraceViz (s) 0.549 2.146 15.024 30.439
SQLite (s) 0.648 6.196 55.769 84.659

Table 7.1: Importation time for different trace size

Importation Performance Developers are used to analyze the traces with tex-
tual tools where the parsing time is hidden. A primordial tool adoption criterion is
to have a minimal preliminary parsing phase. We measured the importation time for
traces that range from 2 MB to 430 MB (20× 103 to 4× 106 events) (see Table 7.1).
The importation time keeps short (30 seconds) for huge traces and linearly increases
with the file size; a linear regression shows that the coefficient of determination R2

is equal to 0.98. This result proves that the importation time in TraceViz adds few
overheads compared to working with trace files in text format where there is no
importation and provides much better performance than SQLite.

Trace size (MB) 2 21 150 431
TraceViz BR (ms) 0.416 0.385 0.383 0.376
TraceViz RR (ms) 0.369 0.301 0.564 0.616
SQLite (ms) 62.09 312.77 1822.95 5800.63

Table 7.2: Read time of 10000 events for different trace size. The first row reports
the time to read a block of 10000 consecutive events (BR time). The second row
reports the time to read 10000 events randomly chosen in the trace (RR time). The
third row is the time to read a block of 10000 events in SQLite.

Reading Performance Since a long time, it is known that a system feels interac-
tive to the users for a response time inferior to 100 milliseconds. For delay superior
to 1 second, the users’ cognitive model is broken and the system loses users’ attention
for delay superior to 10 seconds [Miller, 1968; Card et al., 1991].

TraceViz aims to provide interactive exploring and filtering techniques for traces.
It largely depends on the back-end performance which has to respond in a delay in-
ferior to 100 milliseconds independently on the query. We measured the response
time of the data storage for both reading (Table 7.2) and querying operations to
study if this requirement is fulfilled.

7.2. DATA 95

We measured the reading time in traces of different sizes under two condition.
Firstly, we read blocks 10000 consecutive events in a randomly chosen part of the
trace. We repeated 10 times this step and compute the average time (BR time in Ta-
ble 7.2). SQLite performance has been measured under these conditions. Secondly,
to minimize the impact of the cache effect of HDF5 and to simulate the result of
complex queries we also measured the reading time of 10000 non-consecutive events
randomly chosen on the whole trace. (RR time in Table 7.2). We notice a slight
increase for bigger traces but the response time is still under the millisecond.

For both BR and RR measurements, the response time is constant at below 100
milliseconds. For SQLite, the response time grows linearly and shows it cannot
provide interactive read time. The performance of the TraceViz back-end allows to
browse the trace interactively.

Query Performance To better measure the back-end performance for filtering
tasks, we measured the time to read 20000 events in the result of a query on a time
window, an actor and an event type. The results are presented in Figure 7.1. Query-
ing a time window is constant in time (Figure 7.1a). This comes from the format
used to store the events: they are naturally sorted by their timestamp and indexed
by their location in the array, allowing to use fast search algorithms. This shows
that the back-end can support interactive pan and zoom. The query performance
on the actor and the event type are similar. Both of the query time increase linearly
with the trace size (Figure 7.1b and 7.1c), shown by a coefficient of determination
respectively equal to 0.99 and 0.97 for the actors and the event types. The response
time remains lower than a second under all the conditions, guaranteeing the users’
cognitive model remains unbroken.

Conclusion on Back-end Performance The results of the different benchmarks
shows that the back-end provides performance suitable for usage in an interactive
context. It guarantees an interactive response time for the exploration of a trace
and returns the result of a query in a time short enough so that it does not interfere
with the users’ understanding.

7.2.2 Statistics and Data Computation

Execution traces are a list of raw low-level events from which different metrics can
be computed according to the goal of the developers. During our collaboration with
the software developers at STMicroelectronics, we noticed that the analysis mainly
involves three metrics: the event density, the activity time and the delay between
events.

The event density describes the event distribution over time. Using this statistic,
the developers can spot an abnormal number of interrupts, system calls or function
calls in the application.

The activity time gives insight on the task scheduling on the CPU. For example,

96 CHAPTER 7. TRACEVIZ

the analysts can check if a task has been executed for a abnormally long period
blocking other processes. This can result in the violation of QoS constraints [Iegorov
et al., 2015].

The delay between events allows the checking of QoS constraints more accurately.
Using their domain knowledge, the developers know which calls or interrupts are
critical in the decoding process and can check their call frequency. As an example,
the video decoder has to decode 25 frames per second to avoid glitches or blanks.
Checking the call frequency of the function starting the decoding of a frame is a
simple way to approximate the frame rate before further checking.

In TraceViz, the developers can interactively switch between these statistics.
Each statistic is computed separately for every actor present in the execution trace.
While it already gives meaningful low-level insights, it is sometimes relevant to
perform the checking at higher level of abstraction, requiring to aggregate several
actors. The developers may need to check at a component level in charge in a
particular step of the decoding process. To do so, it is necessary to aggregate all the
actors of this component which can include tasks and interrupts. TraceViz provides
simple user interactions to create such aggregates before computing a chosen statistic
on its data.

7.3 TraceViz Design

Based on the related work and our observations in STMicroelectronics, we propose
TraceViz, a new interactive visualization tool for execution traces.

7.3.1 Design Rationale

� Provide an overview of the trace. Most of the time, developers begin to visu-
alize the global behavior of the system during the execution. TraceViz has to
provide an easily understandable overview, yet with enough details to begin
the filtering process.

� Support domain related statistics. When debugging, developers use well-established
statistics. It is primordial to integrate them into the tool to maximize the se-
mantic of the representation.

� Integrate well-known visualization techniques. To mitigate the learning curve,
we decided to use visualizations for time series based on line graphs, the most
widely used time series representation.

� Provide user interactions to explore and filter the data. For an efficient brows-
ing, TraceViz has to support interactive zooming, sorting, aggregating and
filtering.

7.3. TRACEVIZ DESIGN 97

actorm

actor2

actor1

p0 p1 p2 p3 pn−1 pn

Timeline area width W

H
m

H
m

H
m

T
im

el
in

e
ar

ea
h
ei

gh
t
H

time

T
im

el
in

e
O

u
tl

in
e

Figure 7.2: TraceViz visualization principles.

� Visualize behavioral patterns between actors. By nature, a streaming applica-
tion repeats the same operations on a regular period. Understanding which
actors are synchronized as well as visualizing the patterns will help the an-
alyst to quickly spot trends and abnormal behaviors without using complex
algorithms.

7.3.2 TraceViz Visualization Principles

Javed et al. stated that the users perform better for global tasks using split-
screen techniques and are more efficient for local tasks with shared-screen visualiza-
tions [Javed et al., 2010]. TraceViz mixes both to easily visualize overall behavior
and make local comparison between actors: it embeds a timeline view and an outline
view that share the same time axis (Figure 7.2).

The timeline area relies on the principle of small multiples [Tufte, 1986] and
belongs to the split-screen techniques. The goal of the timeline area is to visualize
the macro-behavior of each actor such as its periodicity or a particular behavioral
pattern. It also serves to represent the synchronization between different actors and
to spot potential patterns at component-level of the application. For m actors in
a trace T , m graphs are represented in the timeline view, one graph per actor (see
Figure 7.2). The vertical resolution H (in pixel) is splitted into m horizontal areas
of height H

m
pixels, where the graphs are rendered. The horizontal resolution W (in

pixels) gives the number of time slices to use to segment the trace. By doing so,
the data is aliased at pixel-level, the smallest aliasing achievable on current display
technologies. For each actor a, we compute an histogram hista of W bins, each bin
corresponding to a pixel (see Figure 7.3). For each pixel pi, we compute the two
timestamps ti1 and ti2 at its boundaries and extract data contained in this time
window. We have Va = Ta[ti1 . . . ti2] with Ta being all the events produced by the

98 CHAPTER 7. TRACEVIZ

hista

p0 p1 pi−1 pi pi+1 pn−2 pn−1

ti1

Va = Ta[ti1 . . . ti2]

ti2 Ta

Figure 7.3: Building of the histogram hista for an actor a

actor a in the trace T . Next, we compute hista[pi] so that:

hista[pi] = f(ti1, ti2, Vai)

with f being the statistics chosen by the analyst (event density, activity time or
delay between events).

The outline area provides a more general overview of the execution to spot
local peaks of activity on the system, hard to visualize on the timeline since the
information is spread over m graphs. Instead of being juxtaposed, the m graphs are
stacked so that the value at pixel pi is:

histoutline[pi] =
actorm∑
a=actor1

hista[pi]

The integration of the timeline and the outline views provides to the analyst
a global overview of the execution, yet with details on the actors while showing
temporal patterns. It combines the advantages of the existing high and low-level
tools. Using the already established statistics as basis for the computation of the
histograms minimizes the learning phase and ensures a good readability.

7.4 TraceViz

In this section, we present the user interface of TraceViz with its components and
describe the different interactions implemented.

7.4.1 Layout

The TraceViz interface, shown in Figure 7.4, consists of three main areas: the tree
view, the outline view and the timeline view.

The tree view shows the actors present in the trace initially ordered as a hierarchy
according their nature (hardware interrupts, software interrupts and tasks). To
visually make corresponding a graph and its label, links are placed between the tree
view and the timeline. Their visibility is automatically updated according to the
tree label to leverage the visual clutterness. Each category of the hierarchy has its
own color, reported on the links.

7.4. TRACEVIZ 99

Figure 7.4: Overview of TraceViz. TraceViz interface consists of three main areas:
the tree view (a), the outline view (b), the timeline view (c) and the links that
connect the actors and their corresponding graphs (d).

The outline view in the top area represents the overall activity of the system.
The details of actors statistic are represented using colors, each color encoding one
actor. The analyst can choose to switch to the SLG shading for a more precise
frequential analysis.

The timeline view visualizes the time series corresponding to the actors. Their
order is given by the hierarchy. All the graphs and the outline view have the same
time axis and are aligned on the timestamp of the first event of the trace by default.
At the start up, the timeline shows the whole trace: it begins on the left at the
timestamp of the first event of the trace and finishes on the right at the timestamp
of the last event.

The tool bar gives access to different configuration settings of the view such as
defining initial filter parameters, the statistic being used to compute the data and
the state of the visual functionalities such as the smoothing factor σ applied on the
outline view.

7.4.2 Initial View Configuration

At the beginning of the analytic process, a window appears to set up the initial view
(see Figure 7.5). The developer has to choose a statistic to compute the input data
used to feed the graphs in the timeline and outline views. The statistics implemented
are event density, activity time and delay between events, as described in section 4.2.
To improve the clarity of the timeline view and to increase the speed of the filtering
process, the developer can select which actors are hidden in the initial configuration

100 CHAPTER 7. TRACEVIZ

Figure 7.5: Initial View Configuration of TraceViz where the developer can filter
the actors to show or hide and which statistics to start with.

and which trace points to ignore. By doing so, the view will directly display the data
of interest. This filtering process is also quicker than navigating the tree hierarchy.

7.4.3 Trace Exploration

The hierarchy part of the view provides all the interactions to navigate, reorder,
hide, create groups and to aggregate elements. The timeline area provides all the
interactions to explore the data. Hovering the timeline area with the mouse cursor
updates the hierarchy area. When hovering a graph, the hierarchy automatically
scrolls to align the corresponding tree label and highlights it. When scrolling out, the
actors disappear but the labels and connection of the upper levels in the hierarchy
remain visible by stacking on the top and bottom. By doing so, the developer always
has visible indicators that show the vertical position of the tasks and the interrupts
in the timeline helping the exploration for large hierarchy sizes. When the graph of
an actor is highlighted, the value under the current pixel is noted in the time cursor.
Its corresponding layer in the outline and its label in the hierarchy are focused.

7.4. TRACEVIZ 101

7.4.4 Pan and zoom

Initially, the whole trace is displayed using filters defined in the configuration set-
tings. Depending on the trace size and duration, a pixel can encode a large time
window, making apparent high-level recurrent patterns in the behavior of the dif-
ferent actors. After having visually detected those patterns, the developer may be
interested to filter-out redundant data to focus on one of those patterns. We provide
a drag interaction using the right button to select a time window of interest that will
fit the view. It is also possible to continuously zoom in the trace using the mouse
wheel.

A drag interaction using the left button allows to pan in the trace. While using
those interactions, both the timeline and the outline views are refreshed to provide
a continuous feedback and to keep a consistent visualization.

The pan and zoom interactions provide a natural way to explore behavioral
patterns that can appear at high and low frequencies.

7.4.5 Actor Selection and Aggregation

When hovering the hierarchy, it behaves like a classical tree view with standard
interactions: left-click to hide a label and its graph, shift/mouse move to select
several consecutive labels, control/left-click to select non-consecutive labels, and
right-click to access to different actions such as grouping, aggregating and hiding
tree labels and their graphs.

After having selected actors, the user can create a group and name it. From
this point, different actions are possible when doing a right-click on the group’s tree
label: deleting the group, hiding it or aggregating it. When a group becomes hidden,
all the graphs of its children are also hidden on the timeline area. The remaining
graphs spans vertically, increasing the vertical resolution. To aggregate a group,
several operators are available: maximum, minimum, average and median. This
operator is used on each pixel to compute the resulting graphs of the aggregation.
From this point, the group behaves as any actor in the hierarchy.

7.4.6 Hierarchy Reordering

Besides execution patterns, actors’ graphs can reveal similar periodic behaviors. To
better compare their graphs, it is possible to place them side-by-side using a drag
interaction on their corresponding tree labels. While dragging, the hierarchy stops
scrolling automatically to ease the interaction and a visual feedback is displayed as
a blue line to indicate where the actor would be moved when the interaction is over.
The layer in the outline view are reordered according to the new position. TraceViz
provides the possibility to drag an actor, a group and an arbitrary selection of actors.

102 CHAPTER 7. TRACEVIZ

7.4.7 Implementation

TraceViz is implemented in Java 8 with JavaFX 8 as the interface toolkit. As
mentioned in section 4.1, HDF5 is used for the back-end and the data extraction
and filtering is implemented using the Stream API of the JDK 1.8.

An operational version of TraceViz has been deployed for the developers at STMi-
croelectronics. This version implements fewer interactions than presented in this
chapter as the back-end is an SQLite database for compatibility reasons. It has
been implemented as an Eclipse plug-in and is internally shipped as a tool of the
SoC Traces & Profiling Toolkit (STPTK)3. Part of the interface relies on the SWT
toolkit while the rendering still relies on JavaFX 8.

7.5 Industrial Use Cases

In this section, we present two use cases that happened in industrial environment
at STMicroelectronics.

We will see in the next section that we have integrated TraceViz into the STMi-
croelectronics toolkit to analyze execution traces. Therefore, the software engineers
have discovered TraceViz by themselves, reading the embedded documentation and
have used it to uncover some bugs in traces. None of the developers have been in
contact with a member of our tools development team to learn how to use TraceViz.

When STMicroelectronics sells a product for set-top box, it integrates the hard-
ware, the software and also provides a support for the developers of the customer
company. The software delivered by STMicroelectronics is composed of the operat-
ing system (STLinux), the multimedia layer in charge of the decoding and encoding
(Streaming Engine) and an API to access to the Streaming Engine. After having
received the board, the customers implement their own layer to provide a user-
friendly experience to the end-user and integrates their own features. During this
development phase, it is very common that bugs appear on the multimedia layer.

In this case, the customers contact the STMicroelectronics developers through
a bug tracker where they describe precisely their problem. A collaboration begins
between the two parts and eventually finishes when the problem has been solved. At
the end, STMicroelectronics provides a detailed explanation of the root of the prob-
lem to the customer and provides explanations to solve it. In between, a discussion
between the STMicroelectronics developers take place where they work collabora-
tively on the bug. When relevant, they join an execution trace to the bug tracker.

We explored this bug tracker and have extracted the use cases explained in this
section from it. Hence, these use cases have been real problems. We have chosen
those use cases because it demonstrates how TraceViz has been used by software

3SoC Traces & Profiling ToolKit (STPTK), ¡http://www.stlinux.com/devel/traceprofile/
kptrace#STPTK¿

http://www.stlinux.com/devel/traceprofile/kptrace#STPTK
http://www.stlinux.com/devel/traceprofile/kptrace#STPTK

7.5. INDUSTRIAL USE CASES 103

(a) Temporal periodic patterns. The white gaps corresponds to an interruption of the
decoding process.

(b) Execution patterns. At each zap, the decoding processes are forked and the children
begin to decode the new channel.

Figure 7.6: Patterns appearing on the timeline for the use case Zap

engineers without any interactions with us.

In the next sections, we describe two problems that have been reported by cus-
tomers on the bug tracker. Then, we explain how the developers have used TraceViz
to troubleshoot the problem based on the discussion and explanations found on the
bug tracker. Hence, this evaluation is based on usage of TraceViz in real produc-
tion situation with no guidance from us, and show its ability to help developers
uncovering bugs.

7.5.1 Use Case 1: Zap

In this use case, we show how TraceViz makes apparent patterns in a trace. The
streaming multimedia application is running under the STLinux4 operating system
on the STiH418 SoC for set-top boxes5. A multi-channel stream is received from
the network. The application decodes one of the channel and sends it to an external
display through the HDMI port. Changing the channel being decoded is called a zap.
It basically corresponds to the scenario when a user is changing of channel when

4STLinux, ¡http://stlinux.com¿
5STiH418 SoC description, ¡http://www.st.com/st-web-ui/static/active/en/resource/

technical/document/data_brief/DM00123853.pdf¿

http://stlinux.com
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/data_brief/DM00123853.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/data_brief/DM00123853.pdf

104 CHAPTER 7. TRACEVIZ

Figure 7.7: Outline with SLG shading. The shading helps to visualize the periodicity
of the behavior thanks to regularly spaced black bands.

watching the television, commonly called zapping. When recording the trace, we
performed 30 zaps consecutively, separated by a delay of 10 seconds. In Figure 7.4,
TraceViz all of the trace. At a glance, patterns appear.

Firstly, temporal patterns are represented on both the outline and the timeline.
On the outline, regular peaks of activity are apparent. They correspond to the
moments when a zap occurred. Abnormal zap executions are quickly detected thank
to a suddenly much higher event density. Using the SLG visualization, the zap
appear as black vertical bands (see Figure 7.7). The abnormal zaps appear as
larger black strips and local maximum on the curve. On the timeline, we can
visually recognize which actors are in charge of the decoding process: the decoding
is momentarily stopped when zapping and the involved processes are not scheduled
during these short periods. It appears as gaps on the timeline (see top rectangle in
Figure 7.4, zoomed in Figure 7.6a).

Secondly, behavioral patterns also appear on the timeline (see bottom rectangle
in Figure 7.4, zoomed in Figure 7.6b). When a zap occurs, some of the decoding
processes are forked. The children will decode the requested channel and the parents
which decoded the previous one will stop. This pattern appear 30 times on TraceViz
on the timeline.

Based on both the temporal and behavioral patterns, the developer is able to
efficiently compare different actors, time windows and to filter-out redundant data
to dramatically reduce the amount of data to analyze.

7.5.2 Use Case 2: HDMI black-outs

The application is running in the same environment that the previous use case. It
is in charge of decoding a multimedia stream and sending it on an external display
via the HDMI output. The issue is reported as sporadic audio and video blanking
becoming more frequent under heavy CPU load. It has been reported that the
troubleshot occurs independently of the source, whether it is the network or the
local hard drive.

After this observation, the issue has been artificially reproduced by decoding a
multimedia source from the local disk while loading it with some heavy I/O using the
Unix dd command. The execution trace has been recorded under these conditions.
As described in Section 2.2, the first step of the developer workflow is to open the
trace in a synthetic view to check the global system behavior. In Figure 7.8, the
trace has been opened in TraceViz. The visualization shows the event density over

7.5. INDUSTRIAL USE CASES 105

Figure 7.8: TraceViz showing an execution when video blanks appeared. The system
is artificially loaded with heavy some I/O using the dd Unix command, represented
in orange. The task jbd2-sda1-8 is scheduled directly after the dd task, causing
delays on the treatment of the VSync IRQ callback, in the red rectangles.

Figure 7.9: The jbd2/sda1-8 task is scheduled after the dd task (in brown).

the whole execution.
The second step consists in using a more detailed view. With TraceViz opened

and set to represent the event density, we instantly spot on the timeline view the
dd task loading the system at regular periods (see Figure 7.8). The task named
jbd2/sda1-8 appears to be scheduled on the CPU directly after the dd task and
heavily loads the system (see bottom rectangle in Figure 7.8 and Figure 7.9).

The interesting time windows are the periods when the dd task is not working.
When zooming in one of these time windows (see red rectangles in Figure 7.8 and
Figure 7.10), the task irq/140-vsync0 has its periodic behavior disturbed.

It is the callback of the interrupt request 140 (IRQ): the vertical synchronization
(VSync) IRQ on the main output. This thread is in charge of the main decoding
process. TraceViz shows an abnormal scheduling delay resulting in a delayed de-
coding of the stream. As consequence, it introduces a delay between the frames and
creates a starvation on the output to finally result as a black screen. Having found

106 CHAPTER 7. TRACEVIZ

(a) Event density

(b) Delay between events

Figure 7.10: When the dd task (in brown) is unscheduled, the jbd2-sda1-8 task (in
blue) loads the CPU, causing a delay on the treatment of the callback for the VSync
IRQ on the main output (in purple).

the source of the blackouts, the developers could continue the debugging process by
investigating the CPU scheduling, particularly on focusing the task jdb2/sda1-8.

Coupled with the developers’ domain knowledge, we showed how TraceViz has
helped the discovery of a delayed issue.

7.6 Industrial Deployment

We described TraceViz in the previous sections of this chapter. We now explain
how TraceViz has been deployed internally at STMicroelectronics as part of their
development tools and has been integrated into the platform FrameSoC.

These developments have been done in collaboration with the software engineers
Jérôme Correnoz and Julien Dehaudt and with Cyril Fisher who was hired as an
intern during six months in 2015. We adopted an agile methodology with two weeks
sprints and took the research prototype describe above as the starting point.

7.6.1 STMicroelectronics Toolkit

STMicroelectronics software developers use specific tools developed internally to
debug the software layer delivered with their hardware platforms for set-top boxes.
This toolkit is named SoCTraces & Profiling Toolkit (STPTK)6. It is the direct
concurrent of the ARM toolkit named DS-5 [ARM, 2016a] and the open source
Eclipse project Trace Compass7 developed by several partners including Ericsson.

6SoC Traces & Profiling Toolkit (STPTK): http://www.stlinux.com/devel/traceprofile/
kptrace#STPTK

7Trace Compass: http://tracecompass.org/

http://www.stlinux.com/devel/traceprofile/kptrace#STPTK
http://www.stlinux.com/devel/traceprofile/kptrace#STPTK
http://tracecompass.org/

7.6. INDUSTRIAL DEPLOYMENT 107

Figure 7.11: SoC Traces & Profiling Toolkit (STPTK). Two views are shown: the
time chart (on the top) and the Outline View (on the bottom).

STPTK provides an integrated environment specifically for debugging embedded
systems using execution traces. Therefore, it is possible to launch a trace recording
with specific settings such as the function to trace and then to analyze the trace with
the different integrated tools. Among them, the environment comes with different
visualization tools such as a time chart and a synthetic overview of the trace named
Outline View (Figure 7.11). STPTK is based on the Eclipse platform uses SQLite
as backend. A framework has been developed in Java to perform different types of
query on the trace: Trace Management Framework (TMF) and serves as a high-level
SDK to work with traces. TMF was designed to work with the STMicroelectronics
trace format: KPTrace. TraceViz has been integrated into STPTK and the first
released was delivered on July 2015.

STPTK is released on a regular basis to both internal and external developers.
While we have no precise statistics on the number of developers that have used
TraceViz at STMicroelectronics, there are hundreds of software engineers working
on the streaming engine and use STPTK as one of their tools. STPTK is also
delivered to the customers that bought STMicrolectronics solution to build their
set-top boxes. Here, there are potentially thousands of software developers that use
STPTK in different companies.

These large number of potential users show that the benefits brought by TraceViz
to the trace analysis were significant. Integrating TraceViz to this toolkit required
a high level of quality and code robustness.

108 CHAPTER 7. TRACEVIZ

Figure 7.12: FrameSoC interface. It shows a statistics about the event producers
instances as a pie chart (top left) and a tabular view (top right). On the bottom is
the time chart provided by FrameSoC.

7.6.2 The FrameSoC platform

Similarly to STPTK, FrameSoC is an infrastructure to manage and analyze traces.
It has been developed within the SoC-Trace project by several partners (INRIA,
Probayes and STMicroelectronics). FrameSoC is an open source project8 and has
made similar technology choices than STMicroelectronics with STPTK: it is based
on the Eclipse platform, developed in Java and uses SQLite as back-end. However,
FrameSoC support many trace formats such as the Common Trace Format (CTF),
KPTrace, Pajé, GStreamer and others. FramSoC has a modular architecture based
on Eclipse plug-ins. It provides an API for the trace importers and the different
analysis tools that are embedded as Eclipse plug-ins. Several tools are provided as
standard such as different trace importers and some views for basic statistics and
a time chart (Figure 7.12). In the context of this thesis, a KPTrace importer and
TraceViz has been delivered in December 2015.

7.6.3 TraceViz Architecture

To minimize the development time and effort and to be easily adaptable for potential
future STMicroelectronics requirements, TraceViz has been designed to be fully
extensible. For compliance reasons, we chose to implement TraceViz on top of the
Eclipse platform in Java as several Eclipse plug-ins. TraceViz has been implemented

8FrameSoC: http://soctrace-inria.github.io/framesoc/

http://soctrace-inria.github.io/framesoc/

7.6. INDUSTRIAL DEPLOYMENT 109

Figure 7.13: TraceViz architecture in STPTK and FrameSoC

using a Model-View-Controller (MVC) architecture and has internally a functional
core and a user interface.

The user interface, referred as Traceviz.UI on Figure 7.13, is as described pre-
viously with few restrictions due to technical reasons: we could not port the pan
and zoom interactions due to the SQLite back-end used in both projects. The
performance were too poor to support quick navigation in the trace.

The functional core implements two main components: a data model and a data
provider. Since TraceViz also had to execute on different infrastructures, whether
it is STPTK or FrameSoC, it was mandatory not to be bound to an API or a
trace format. To achieve this, TraceViz embeds its own generic trace model. It
provides different API to extend it (through Eclipse extension points) to support
other trace formats than KPTrace by default. This ensures a low coupling between
the functional core and external contributions and provides a flexible mechanism to
manage extensions since they are detected at runtime.

Following the same logic, we implemented an API to enable external developers
to enrich TraceViz with more statistics than the default ones (event density, activity
time and delay between events as discussed earlier in this chapter) and to provide
user interface (UI) synchronization with the views of each specific environment.
More precisely, we have integrated UI synchronization on TraceViz with both the
time charts in STPK and FrameSoC and have exposed all the possible user actions
through a public API. For instance, selecting a time window on TraceViz adjust
the time frame shown in the time chart and vice versa. The STMicroelectronics
implementation supports the search engine of STPTK to perform various queries on
the opened trace.

The data provider acts as a controller and is in charge of the communication
between the different components of TraceViz.

110 CHAPTER 7. TRACEVIZ

7.7 Conclusion

In this chapter, we addressed two research problems that were (1) filling the gap
between the tools providing a global overview of the execution trace and those
proposing a detailed visualization (see Section 4.2) and (2) a need of a fast back-end
to interactively explore large execution traces (see Section 4.3). To achieve this,
we have presented TraceViz, a novel interactive visualization framework to analyze
execution traces.

In Section 7.2, we described the back-end developed for TraceViz. We needed
a fast back-end able to respond in 100 milliseconds to be perceived as interactive
by the software developers. To achieve this, we chose to implement our solution on
top of HDF5 instead of SQLite, traditionally used in such application domain, and
took advantage of the naturally sorted property of a time series that enabled us to
implement binary search to find the time window to aggregate. We demonstrated
its performances through an experiment described in Section 7.5 and compared
them against the SQLite solution. The results show that our new back-end largely
outperforms the existing solutions and is able to support the interactive exploration
of huge execution traces. With our technique, we could propose an efficient solution
to the actual limitations of existing tools (see Section 4.3).

On top of this new back-end, we built a novel visualization technique described
in Section 7.3 and 7.4. The main goal was to develop a visualization that proposes
a trade-off between a too aggregated overview and a too detailed view. Therefore,
we introduced a tool that mixes two categories of visualization for time series, the
split-screen and the shared-screen techniques (Section 7.3.2), that maximizes the
efficieny of both local and global analysis, responding to the industrial need of such
a tool (see Section 4.2).

To guarantee a high visual accuracy, we have used the SLG technique introduced
in Chapter 6. The outline view is a Slick Graph. The timeline view is pixel-based
and relies on the SLG binning and aggregating algorithm.

TraceViz has been integrated to the STMicroelectronics toolkit for execution
traces, STPTK (Section 7.6). Since then, it has been used to solve real bugs that
happened during development process of the decoding application. We have pre-
sented two of them in Section 7.5. These two elements show that TraceViz addresses
correctly the industrial needs for such a tool. It has also proven that TraceViz was
mature enough for a large scale deployment. This quick adoption also demonstrates
that TraceViz is an efficient tool to reduce the analysis time of an execution trace
by revealing patterns hidden by the existing tools.

In the next chapter, we focus on visualizing hidden structures in the trace using
results from data mining algorithms. It will provide to the developers an other
perspective on the behavior of the systems, hard to spot otherwise.

Chapter 8

Hidden Structures at a Glance

Contents
8.1 Introduction . 111

8.2 Definitions and Notations 112

8.3 Structure Computation . 116

8.4 Structure Visualization . 117

8.5 Experiments . 121

8.6 Conclusion . 127

8.1 Introduction

In the previous chapter, we introduced TraceViz that provides a new type of overview
for execution traces. TraceViz and existing visualization tools providing an overview,
discussed in Section 3.2, exploit various aggregation techniques to show the raw data
of the trace in an understandable way while trying to minimize visual clutter. De-
pending on the level of abstraction chosen, some of these structures can be identified
by the user’s eye as demonstrated in Chapter 7. We described how behavioral pat-
terns of an actor or a group of actors can be spotted. This helped to filter the trace,
to target specific part of the trace and to find the root cause of some bugs explained
in Section 7.5. However, these methods do not explicitly show some of the structures
contained in the trace.

Possible analysis of execution traces can discover a repeated structure (main
“regime”, disruptions of this main regime, or changes between stable regimes). Un-
derstanding what constitutes a regime is not trivial: it consists of some patterns
of repetition in the events, and these patterns can, depending on the data and the
use case, be of arbitrary complexity. They can be as simple as a mere repetition
of a fixed set of events, or as complex as the respect of a complex sequencing of
the events combined with periodicity constraints in the repetition. It would be of

111

112 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

tremendous help to software developers analyzing execution traces to have a way to
view “at a glance” how such structures exist over the trace, with the most prominent
of those structures at each period of the trace as well their evolution over the trace.
Existing methods for analyzing traces fall short to these expectations.

On the other end of the spectrum are data mining methods, more precisely pat-
tern mining methods [Lopez Cueva et al., 2012; Lagraa et al., 2014]. Pattern mining
methods are designed to find repeated structures such as frequent itemsets, frequent
sequences of various kinds, or periodic patterns. Their output is served as a (long)
list, where results have to be examined one by one. The state-of-the-art of the pat-
tern visualization (see Section 3.3) showed that most visualization techniques for
pattern mining results focus on the problem offering a navigational interface over
the set of results and we are not aware of any approach showing different patterns
in context within the data, allowing an “at a glance” understanding of complex
structure evolution in the data. They often require an expert in data mining to
understand what is shown or do not scale correctly as the number of patterns grows
and become cluttered. The work presented in this chapter introduces a new pattern
visualization for execution trace and aims to address these problems (we provided
a deeper description in Section 4.4) by proposing a solution to the research question:

How to exploit pattern mining technique to enrich debugging tools for execution
traces?

The contribution of this chapter is to propose a novel visual analytics technique
to understand at a glance the main structures existing in the data, as well as their
evolution over time. This technique is designed for traces, and instead of letting the
developers visually discover temporal patterns, it combines a data visualization ap-
proach with techniques inspired from pattern mining, but simplified for the purpose
of making an understandable visualization.

Our experiments demonstrate the interest of our approach on three real use cases
of varied nature: the execution trace of an embedded system, the commit log of the
C implementation of the Python language GitHub repository, and the text of the
“Foundation” series from Isaac Asimov.

The chapter is organized as follows: Section 8.2 provides the main definitions
necessary for this work, and Section 8.3 describes our algorithm to compute the
structures. Section 8.4 explains our structure visualization technique. The interest
of our approach is demonstrated experimentally in Section 8.5, and Section 8.6
concludes this chapter.

8.2 Definitions and Notations

When analyzing execution traces or more generally time-oriented data, the goal is
to understand the global and local trends inside the data and to find the outliers.

8.2. DEFINITIONS AND NOTATIONS 113

A large panel of knowledge discovery and data mining (KDD) techniques focus on
searching frequent patterns for meaningful information with no previous knowledge
on the data. They return the results under the form of frequent patterns. Such
patterns can be itemsets [Cheng et al., 2008], periodic itemsets [Lopez Cueva et al.,
2012] or sequential patterns [Mooney and Roddick, 2013].

Depending on the nature of the pattern, the amount of information conveyed
vary. For instance, knowing the frequency of an itemset gives less information
about the dataset than knowing the frequency of a sequence which itself convey
less information than the frequency of a periodic sequence and so on. The more
complex is the nature of a pattern, the more information is given to the analyst.
Moreover, revealing how an itemset specializes into a sequence with the same items
can also indicate relevant information or help filtering-out some parts of the dataset.
In this section, we give basic definition in the context of mining execution traces
and introduce the notion of structure.

8.2.1 Basic Definitions

Recall that execution traces store a sequence of events. Each event has different
properties depending on the nature of the application and of the tracing system
used but common characteristics remain stable. All the events have an identifier,
noted as id(e) for the event e. Each event also has a timestamp that corresponds to
the moment when it has occurred. We note ts(e) the timestamp of the event e.

Each event has a type, noted as et(e). We note the set of event types as
T = {et0, et1, . . . , etn} and |T | is the total number of event types in the data. For
instance, in the case of web server logs, the event type can be the HTTP request
whether it is a GET, POST, etc. When working with execution traces, the event type
is the operation executed such as a context switch, an entry or exit of an interrupt
or a system call. Given an event e, we note its event type as et(e).

We also consider that events are generated by “event producers” that we call
actors. An actor is an entity that produces at least one event of the dataset. We
noteA = {a0, a1, . . . , an} the set of actors producing at least one event in the dataset.
When working with network logs, an actor can be an IP address. In the context
of debugging embedded systems using execution traces, an actor is an interrupt, a
process, a kernel module, etc. We note actor(e) the actor of the event e.

Our dataset D is a set of events contained in the execution trace chronologically
ordered {e0, e1, . . . , en}. Given an event e ∈ D, its identifier id(e) corresponds to its
position in the dataset. We have:

∀ei, ej ∈ D, ts(ei) < ts(ej)⇔ id(ei) < id(ej)

The set of items I = T ×A = {i0, i1, . . . , in} is the set of all the event types in the
data tagged by an actor. This ensures a finer-grained detailed patterns: it enables
to differentiate an event type et produced by the actor ai from an event type et
produced by the actor aj (i.e a system call performed by two different processes will

114 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

be differentiated in the set of items). An item x occurs in the dataset D if and only
if

∃e ⊆ D, actor(e) ⊆ A, et(e) ⊆ T , et(e)× actor(e) = x

An itemset, noted X = {x0, x1, . . . , xn} where xi is an item i.e. xi ∈ I is an
unordered set of items. The set of itemsets present in the dataset D is noted X . A
sequence, noted S = 〈x0, x1, . . . , xn〉, where xi is an item i.e. xi ∈ I, is an ordered
set of items.

Definition 1 (Specialization). A sequence S is a specialization of the itemset X
if and only if ∀xi ∈ S, xi ∈ X.

A sequence S occurs in the dataset D if and only if

∀xi, xj ∈ S, j − i = 1,
∃em, en ∈ D,
ts(em) < ts(en),
et(em)× actor(em) = xi, et(en)× actor(en) = xj

We can deduce that if a sequence S is a specialization of an itemset X ∈ X , then
S ∈ X . Also, an itemset X occurs in the dataset D if and only if there is at least
one sequence S that occurs in D so that S is a specialization of X.

8.2.2 Structure

The most basic information computable for an itemset X is its frequency i.e. its
number of occurrences in D. The support of an itemset X, noted supp(X), is the
total number of occurrences of its specialized sequences: supp(X) =

∑
i supp(Si),

with Si being a specialization of X and supp(Si) the number of occurrences of the
sequence Si in D.

A more sophisticated information about an itemset is the repartition of its spe-
cialized sequences. An itemset having k items, a k-itemset, contains k×k sequences
of k items.

For instance, the sequences 〈A,A〉, 〈A,B〉, 〈B,A〉 and 〈B,B〉 are all specializa-
tions of the 2-itemset {A,B}.

We define as dominant the sequence S that has the highest support supp(S)
among the specialized sequences of the itemset X. We note the dominant sequence
of an itemset X as SX . This information is important to understand time-oriented
data: when considering a couple of events ei and ej, it is insightful to know whether
ei occurs before ej in most cases or not. If not, none of these sequences brings more
information about the data than the itemset {ei, ej}.

Knowing whether a sequence is periodic or not also brings meaningful insights
about the trace. Given a sequence S, we compute its period p using a Fast Fourier
Transform. We define (S, p) the set of consecutive occurrences of S separated by
p items in the dataset. A sequence is periodic if |(S, p)| is strictly superior to a

8.2. DEFINITIONS AND NOTATIONS 115

minimum threshold ρ, set by default at supp(S)
2

. The coverage of a periodic sequence

is defined as |(S,p)|
supp(S)

.
This provides information about whether S is very periodic or occurs mostly at

irregular time intervals. Thus, for a given itemset X, we can compute the periodicity
coverage of each of its specialized sequences and determine what is the maximal
coverage among all the sequences of an itemsets, noted as pX . We have:

pX = max(
|Si, p|

supp(Si)
),∀Si ⊆ X

With the combination of the support of an itemset, the repartition of its sequences
with their periodicity coverage, it becomes possible to find the sub-parts of the
dataset that are mostly periodic as well as whether the dataset contains mainly
itemsets (no dominant sequences) or sequences.

We formalize this intuition with the concept of structure for an itemset. We
define a structure as follows:

Definition 2 (structure). A structure is a quintuple (X, supp(X), SX , supp(SX), pX)
with X ∈ X , supp(X) the support of the itemset X, SX the dominant sequence of
the itemset, supp(SX) the support of SX and pX the maximal periodicity coverage
among the specialized sequence of the itemset.

In the structure, we normalize supp(SX) by supp(X) and then supp(X) by the
total number of occurrences of all itemsets in the dataset. Note that in this chapter
we focus on the properties of itemset, sequence and periodicity coverage, but other
properties could easily be integrated in our tuple notation.

Example

Let compute the sequence for the 2-itemset {A,B} having the following dataset:

D = {A,B,A,B,C,A,B,A,A,B,B,A,B,C,C}

We have the set of items I = {A,B,C}. The following 2-itemsets present in D
are {A,B}, {B,C} and {C,A}.

To compute the structure for {A,B}, we need to compute the support of the
sequences 〈A,B〉 and 〈B,A〉. D contains 5 occurrences of 〈A,B〉 and 3 occurrences
of 〈B,A〉, giving supp(〈A,B〉) = 5 and supp(〈B,A〉) = 3. We have:

supp(〈A,B〉) > supp(〈B,A〉)

so the dominant sequence SX = 〈A,B〉. The support of the itemset {A,B} is:

supp{A,B} = supp(〈A,B〉) + supp(〈B,A〉) = 8

Finally, we compute pX , being the periodicity coverage of 〈A,B〉. Let consider
that the Fast Fourier Transform has computed a period p = 3, meaning that 〈A,B〉
begins every three events. We found that three occurrences of 〈A,B〉 are covered
using this period (highlighted in blue):

116 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

D = {A,B,A,B,C, A,B ,A, A,B ,B, A,B ,C,C}

It gives |SX , 3| = 3 and pX = |SX ,3|
supp(SX)

= 0.6. After the normalization of

supp({A,B}) by the total number of itemset occurrences in the dataset (here equal
to 11) and of supp(〈A,B〉) by the number of occurrences of the itemset {A,B} (here
equal to 8), we have the final structure ({A,B}, 0.73, 〈A,B〉, 0.625, 0.6).

In this work, we propose a novel interactive technique to visualize these struc-
ture, normally hidden to the users and show how it make apparent the underlying
structures in the data such as periodic behaviors and perturbations.

8.3 Structure Computation

In this section, we explain our algorithm to compute efficiently all the parameters of
the structures. The goal of our tool is to show information usually hidden with the
support of the structures. Therefore, it is important to keep the patterns as simple
as possible and being able to quickly compute all the information necessary for the
structures. Moreover, the computed results do not need to have an exact precision
since they will serve as the input of a visualization. To fulfill these constraints, we
designed an algorithm that computes the patterns in a naive way but in a time short
enough to be used in an interactive visualization.

Algorithm 1 Build structures

Input: DatasetD, itemset I, minimum sequence supportρ, number of time windows
W
Output: all the structures that occur in the time windows of D

function BuildStructures(D, I, ρ, W)
structs← []
TW ← sliceDataset(D, W)
for all w ∈ TW do . in parallel for each w

freqItems← buildFreqItems(w)
S ← buildSequences(freqItems)
seqOccs← findSeqOcc(W, S)
P ← findPeriod(seqOccs)
structsw ← buildStruct(seqOccs, P, ρ)
add(structs, structsw)

return structs

The function sliceDataset splits the dataset D into W time windows. Slicing
the dataset is an important parameter to set the precision of the results. It greatly
influences the nature of the patterns discovered by the algorithms. When working
with time-oriented data, the analysis becomes more local as the number of time

8.4. STRUCTURE VISUALIZATION 117

windows to slice the time dimension increases. The task of the analyst may be to
analyze globally the dataset to study the high-level properties of the structures. In
this case, the dataset will be sliced in a few number of time windows. In contrary,
comparing local behaviors can support the discovery of perturbations by detecting a
different sets of structures in a time window. For each time slice, all the parameters
of a structure described in section 8.4 are computed for all the possible itemsets.
Doing this produces local results detailed for each time slice and makes possible to
detect regular behavior across of the windows as well as perturbations that happened
in a time slice. The structures are computed for each time window in parallel.

The function buildFreqItems compute the number of occurrences for each
item xi ∈ I. It returns a set of items freqItems so that the occurrences of all
the items x ∈ freqItems covers 80% of the total number of the occurrences. By
doing so, we are able to discard a large number of items that occur a few times and
mitigates the computational time of the algorithm. Also, as the visualization aims
to show the tendency inside the data, the sequences having a very low support are
unlikely to be visible on the final rendering. Thus, discarding the least items that
occur the least in the dataset prevent the sequences whose support supp(S) is very
low.

The function buildSequences generates exhaustively all the possible sequences
from the items contained in freqItems. It returns a set S.

findSeqOcc find all the occurrences for the sequences in freqItems. This
function is the most time consuming task of the algorithm so an efficient algorithm
has to be used. We have implemented the SOG algorithm [Salmela et al., 2006]. It
is based on bit parallelism and q-Grams to perform exact multiple pattern matching
in linear time. In our case, the alphabet Σ is the set of items I, whose size |Σ| =
|I| = |T ×A|, can potentially be very large. The pattern to search in the dataset are
the sequences for which we limit their size to be small. We have selected the SOG
algorithm since it is the best performing algorithm for multiple pattern matching
with a large alphabet size and a small pattern length [Kouzinopoulos and Margaritis,
2014]. We use 2-gram in our implementation: benchmark shows that using 3-gram
is much slower and memory consuming than using 2-gram for up to 105 patterns.

The method findPeriod takes as parameter all the positions of the occurrences
for each sequence. For each sequence, it performs a Fast Fourier Transform (FFT)
and select the period p which allows to maximize |(S, p)|.

The final step, implemented in the function buildStruct is to construct the
structures from the results previously computed. It returns all the structures sorted
according to support of the itemsets.

8.4 Structure Visualization

Visualizing the structures as defined in the previous section can reveal meaning-
ful information about the underlying behavior hidden in the data. According to
Shneiderman [Shneiderman, 1996], a good visualization technique has to provide a

118 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

pipeline as Overview first, zoom and filter, then details-on-demand. When designing
our technique, we followed this guideline and integrated an overview to visualize all
the structures with a detailed representation of a single structure.

We begin by explaining which tasks the visualization tool has to support and
what are the benefits it brings to leverage the difficulty of analyzing the structures.
We continue with the description of the design of the visualization to render in
a clear way a huge amount of structures, providing an overview of the dataset to
understand the global trends and perturbations. The structure overview is coupled
with an overview, a stacked graph of the actors built with a Slick Graph. It is
identical to the overview provided with TraceViz. Finally, we explain how a structure
selected by the user is rendered in a detailed visualization. Figure 8.2 shows the
whole interface with the different views described below.

8.4.1 Goals

In this work, we propose a visualization technique to enable the user to quickly
understand the hidden structures in the data and designed to address the following
goals:

1. Quickly understand the underlying structures contained in the dataset. Data
mining algorithms provide a very large number of patterns in most cases.
These results contain meaningful insights to support the understanding of
the dataset. However, it is a very complex and time consuming task to take
advantage of them and this task requires an expert. Providing an intuitive
visualization technique is mandatory to harness the patterns and to shorten
the time needed for the analysis.

2. Simplified parameters settings. Data mining techniques have different param-
eters to tune their output. The visualization has to provide user interactions
to simplify the exploration of the parameter space.

To better support the understanding of the structures, the visualization has to
show the nature of the patterns whether it is an itemset, a sequential pattern and if
it is periodic. For a given itemset, the information about the sequences repartition
has also to be conveyed by the visual representation as well as if the sequences
are periodic or not. Therefore, the visualization takes as input the support of the
itemsets, the repartition of its sequences and the percentage of sequences covered
by its period if any.

8.4.2 Structures Overview

The algorithm to compute the structures takes as parameter a number of time
windows. Since the task cannot be pre-determined, this parameter is controlled
interactively by the user at the moment of the analysis. By enabling this interactions,

8.4. STRUCTURE VISUALIZATION 119

our tool supports the study of the evolution of behavioral patterns from a global to
a local point of view.

Many Structures Visualization

To provide a clear visualization that does not overwhelm the user by the amount
of information, a structure has to be represented in a compact yet clear way. Let
consider a structure S = (X, supp(X), SX , supp(SX), pX). The different components
of the structure are mapped on visual parameters. Figure 8.2a shows the structures
visualized below the overview.

A structure S is represented with a rectangle whose support supp(X) is encoded
in the height of the rectangle. The vertical space is completely filled with all the
itemset. Its width is constrained by the size of the time slice. In each time window,
the structures are ranked according to the support supp(X): the greater its support,
the higher its position. By doing so, more visual space is given for the most frequent
itemsets which are concentrated at the top of the rendering. It ensures that the
most active actors are quickly detected by the eye.

Next, the color encodes the information indicating whether an itemset has a
dominant sequence or not. We define a threshold ρ to determine if the itemset has
a dominant sequence. If ρ ≤ supp(SX), the itemset X has a dominant sequence. In
this case, the rectangle is rendered in blue otherwise, the rectangle of the itemset
is filled with black. Areas of the traces where the data are more structured can be
quickly spotted.

Lastly, we encode in the channel alpha (i.e. in the opacity) of the rectangle the
periodicity of the sequence SX , pX . The more a sequence is periodic, the more
transparent is the rectangle representing the structure. When working with dataset
where the structures are mostly periodic, it is important to fade out the periodic
data since it corresponds to the correct behavior. Table 8.1 shows different rendering
of an itemset depending on the value of the parameters.

When hovering a structure, all the rectangles representing SX become red (Fig-
ures 8.2b, 8.3) as well as the layer of the actors present in the sequence. This shows
the distribution of a single sequence over the whole dataset. A visualization of the
structure also appears next to the cursor to show a detailed representation of the
itemset, its sequences and periodicity.

8.4.3 Visualizing Structure Details

Following the Shneiderman’s guidelines, more details can shown when requested
by the user [Shneiderman, 1996]. When hovering a structure, a tooltip appears
representing all the values of the structures.

On the overview, to better make apparent the regular behavioral patterns, partial
information about the itemsets and their specialized sequences are shown, hiding
important information: how an itemset specializes into its sequences and what are
precisely the items.

120 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

Dominant sequence Periodic sequence Rendering
7 0%
7 40%
7 90%
3 0%
3 40%
3 90%

Table 8.1: Visual representations of a structure

Figure 8.1: Visualization of a structure. The root of the diagram is the itemset X
of the structure. Each branch corresponds to one of its specialized sequence SX that
occurs at least once in the dataset. The thickness of the first and second segments
respectively encode supp(SX) and pX . The branch colored in red represents the
structure currently highlighted by the user while exploring the data. On the top left
are rendered all the items belonging to the itemset of the structure.

The tooltip shows these information using a Sankey diagram (Figure 8.1). Tradi-
tionally used to represent flow of energy and resources, it encodes here the different
parameters of a structure. The figure represents the structure

(X = {C@2401, E@2401, C@Idle}, supp(X) = 0.62,
SX = 〈C@Idle, C@2401, E@2401〉,
supp(SX) = 0.53,
pX = 0.46)

On the top left of the tooltip, the items of X are listed next to a square filled
with the color of the actor used in the overview. The root of the diagram (on the
left) is the itemset X of the structure, in black to be consistent within the different
views as an itemset with no dominant sequence is rendered in black. The itemset
split into different branches, one branch per specialized sequence of the itemset that
has at least one occurrence in the dataset. The branch are colored according to the
user defined threshold ρ that set the minimum coverage of a periodic sequence and
their thickness encodes the support of the sequence. The branch corresponding to
the highlighted structure is colored in red. At the end of each branch, the sequence
is represented using one square per item. Each square is filled with the actor’s color
of the item and the event type is written on the square.

8.5. EXPERIMENTS 121

On Figure 8.1, the highlighted branch is half the height of the itemset since
supp(SX) = 0.5.

The last segment of the branches corresponds to pX . The wider the last segment,
the higher pX . It shows intuitively to the user how periodic the sequences are. In
our example, we have pX = 0.46, thus the last segment is 0.46× as wide as the
previous segment. Note that in the detailed visualization of a structure, the support
supp(X) of the itemset X is not encoded since to be meaningful, it needs to be put
into context, in the time window.

8.5 Experiments

In this section, we present three use cases with different data: (1) execution traces,
(2) the CPython Git repository and (3) text. For each of these, we begin by de-
scribing the input data, what are the events, the event producers, the actors and
how we built the dataset D. The experiments show that visualizing structures can
efficiently reveal structural behavior and perturbations quickly using very different
types of data.

8.5.1 Execution Traces

In this paragraph, the data are traces recorded during the execution of a streaming
multimedia applications used to play music and video. We provided a detailed
explanation of multimedia applications in Chapter 2.

Here, the dataset D contains all the events that occurred during the execution.
The set of actors A are the processes and interrupts that produced at least one event
during the execution, noted with their process id (PID) in the tool. The event types
T are the instructions executed. It can be a context switch (C), an entry (E) or exit
(X) of a system call, an entry or exit of an interrupt respectively noted as I and i

in the visualization. Examples of items contained in the set of items I = A×T are
C@1234 (a context switch on process 1234), E@4321 (a system call performed by the
process 4321) and i@Interrupt 567 (exit of the interrupt 567). In this use case,
we show how understanding the structures in the data supports the developers to
debug their application.

The stacked graph at the top represents the event density for each of these
producers, hence a peak on the graph shows a local increase of the number of
events on the system. In this use case, the execution trace has been recorded on an
embedded system that decodes a multimedia stream for the television. The stream
is received through the network on the Ethernet port.

During the execution, the user has changed three times the channel to decode
(channel zap). These moments correspond to the three peaks of activity that appear
on the stacked graph (see the overview on Figure 8.2).

On the structure overview (Figure 8.2), three horizontal areas appear: a gray
area on the top, a clear middle section and a mostly blue area at the bottom. The

122 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

Zap Zap Zap(?)

(a) Global visualization interface with the overview on the top and the structure overview
on the bottom.

(b) Dominant structure in the trace. It involves a single process whose PID is 2400 that
performs a huge number of system calls.

(c) Dominant structure during a zap channel. The process 1561 performs many system
calls.

Figure 8.2: Structures of an execution trace.

top gray bar shows that the most frequent structure on the whole trace is a structure
that has no dominant sequence and limited periodicity. It involves a single process
(the process 2400) that performs a huge amount of system calls (Figure 8.2b). The
itemset has no dominant sequence due to its small size (2 items) and a high frequency.
Its behavior is disturbed when a zap occurs: there is a much higher number of
frequent itemset involving different processes. The structures show that during a
zap, a single process mostly works, performing many system calls (Figure 8.2c).
No periodic sequence appears: this reflects the perturbation of periodic decoding
behavior when switching the stream to decode.

8.5. EXPERIMENTS 123

(a) Regular pattern on the General Interrupt Controller

(b) Visualization of the structure corresponding to the interrupt 146. The structure is
composed of only one sequence 〈I@Interrupt146, i@Interrupt146〉, that stands for entry
and then exit of interrupt 146. The sequence is very periodic.

Figure 8.3: Periodic behavior of the interrupt 146 shown on the structure overview
and in details.

A very periodic sequence occurs regularly among the most frequent structures
and appear as white bands on Figure 8.2, highlighted on Figure 8.3a. It shows a
behavioral pattern at a lower frequency involving an interrupt named GIC, namely
General Interrupt Controller (Figure 8.3). It consists in a general hardware resource
to manage the interrupts.

The visualization shows a periodic sequence: it consists in the entry and the exit
of the interrupt and shows a periodicity breaking by a blue bar (noted as (?) on
Figure 8.2a). It shows the developer that an abnormal behavior happened in this
time window.

The middle section contains a large amount of periodic structures. This is in-
duced by the nature of the application: decoding a multimedia stream is a very
periodic task: frames are decoded at a constrained rate (typically 25 frames per sec-
ond) to ensure a smooth video playback. On the bottom we have many sequences.
This is a normal behavior since the functions are called sporadically, generating
many entry/exit events in the trace.

8.5.2 CPython Git Repository

In this paragraph, we analyze a Git repository and show how the visualization of
the structures gives insights on the project organization.

To build the dataset D, we extracted the timestamp and the developer of each
commit of the Git repository creating one event per commit. The set of actors A
contains the developers that have committed in the repository and there is a unique
event type C that stands for commit, thus T = {C}. By doing so, we focus on the
commit behavior of the developers.

Figure 8.4a shows the structures with 3 items for the Git repository of the Python

124 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

(?)

(a) CPython 3-itemset

(b) Structures in which the core developer Victor Stinner is involved

Figure 8.4: Structures extracted from Git repository of the CPython project

implementation in C, CPython1. We extracted the commits from the complete
history of the project. A majority of the dominant structures are periodic sequences
involving one developer. It can be explained by the developers’ habits: it is common
practice that a developer performs several commits in a row when working on a piece
of software. When analyzing which developers are involved in the most frequent
structures, core developers are largely represented: they work more regularly on the
project than external developers. Figure 8.4b shows in red all the structures in which
the core developer Victor Stinner is included. It shows that this developer is highly
active, performing commits very frequently on a regular basis. The less regular
developers appear as non-periodic sequences: they do not commit often enough to
have a periodic behavior.

Among the most frequent structures, only one is an itemset, appearing in dark
grey (noted as (?) on Figure 8.4a). The structure (Figure 8.5) shows that two devel-
opers have been committing concurrently leading to interleaving commits: Victor
Stinner and Serhiy Storchaka, an other active core developer. Both have received

1Python: http://python.org

http://python.org

8.5. EXPERIMENTS 125

Figure 8.5: Structure showing two developers committing at a high rate simultane-
ously.

an award from the Python Software Foundation in July 20152.
Visualizing the structures related to the commits support the discovery of the

main developers of a project and the regularity of the commit habits.

8.5.3 Foundation Series

In this experiment, we describe how visualizing the structures provides relevant
insights about a story. As an example, we took the “Foundation” series from Isaac
Asimov.

We built the dataset D as follows: (1) we extracted all the characters and planets’
name from the whole story, (2) we created a log file such as it contains all the
occurrences of each characters and planets in the text and (3) we created an event
from each occurrence in the log. It results that the set of actors A contains all the
characters and planets of the series. We used an unique event type, named I for
intervention, giving T = {I}, the set of event types. We have |I| = |{T ×A}| = |A|.

Figure 8.6 shows the visualization of the structures using 2-itemsets. We in-
stantly notice that most of the least frequent structures have a dominant sequence.
As the structures become more frequent, the structures become very periodic (whiter)
and tend to have no dominant sequence.

The structure can be composed of a single character. It shows that the character
is very active and his name occurred many consecutive times in the text indicating
that at least a paragraph has been dedicated to the character. On Figure 8.6b,
all the structures containing the item trevize are highlighted. Golan Trevize is
the protagonist of the series starting from “Foundation's Edge”. The huge amount
of highlighted structures that are very frequent indicates that Trevize is a very
active character that interacts with many other protagonists and planets. This fits
the story since he travels across the galaxy to visit many different planets in his
quest to find the second Foundation. Trevize travels with the professor of ancient
history Janov Pelorat. Figure 8.6c shows the structures containing the itemset
{trevize, pelorat}. The visualization indicates that it is a very active structure with

2PSF Service Community Award, July 2015: https://www.python.org/community/awards/

psf-awards/#july-2015

https://www.python.org/community/awards/psf-awards/#july-2015
https://www.python.org/community/awards/psf-awards/#july-2015

126 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

(a) Structures using 2-itemset in the Foundation Series

(b) Dominant structure in the text. The character Golan Trevize is the main protagonist
starting from “Foundation's Edge”

(c) Dominant structure in the text involving the character Janov Pelorat and Golan Trevize

(d) Dominant structure in the text involving the character The Mule and the planet
Tazenda

Figure 8.6: Visualizing the structures in the “Foundation” series from Isaac Asimov

no dominant sequence: the two characters interact quite evenly.
The structure can be built with a character and a planet. This case is not very

frequent since the story involves many characters and planets. Figure 8.7 represents

8.6. CONCLUSION 127

Figure 8.7: Dominant structure at the beginning of the text involving the character
Hari Seldon and the planet Trantor

the most frequent structure on the first time window. It contains the items for the
character Hari Seldon and the planet Trantor. It fits with the story that begins at
Hari Seldon’s office at the Streeling University, located on the planet Trantor. The
background of the series is given to the reader: the psychohistory and the Seldon
Plan.

Figure 8.6d shows a structure that is locally the most frequent involving the
character The Mule and the planet Tazenda. It corresponds to the moment when
The Mule believes that the Second Foundation is located on Tazenda and decide to
blow up this planet.

We have shown in this experiment how visualizing the structures allows to un-
derstand the dynamic of a story and its main characters.

8.6 Conclusion

In this chapter, we addressed the question discussed in Section 4.4 that stated a
lack of understandable pattern visualization techniques for execution traces. For
this, we presented a novel visual analytic techniques that shows the hidden struc-
tures in traces. We simplified the patterns representation to make it scalable with
the number of patterns the parameter settings to leverage the usage of this tool to
non data mining expert users.

In Section 8.4, we formally defined a structure as being a combination of an
itemset, its dominant sequence, its support and the support of its most periodic se-
quence. Based on this notion of structure, we proposed a visual analytic technique
to enable the software engineers to understand “at a glance” the repetitive behaviors
that can be complex patterns involving sequences of events and periodicity. There-
fore, the regular behavior that implies repetitive structures are easily detected as
well as the perturbations over the trace.

In Section 8.5, we have described several use cases with different types of data
due to the industrial context (see Section 5.2.3) and to show the genericity of our
proposition. Among them, we have demonstrated how our approach supports the
analysis of an execution trace and how, with these insights, the software developers
can easily focus on a temporal window of the trace, for instance where anomalous
structures break the main regime. We also modeled a Git repository as a time series

128 CHAPTER 8. HIDDEN STRUCTURES AT A GLANCE

using the commits and the developers as input data and books using the locations
and characters of the story. In both cases, we showed how the structures have been
revealed such as the most active developers and potential groups among them. In
the second case, the major events could be identified as well as the structure of the
story such as the focus on two characters.

With TraceViz, presented in Chapter 7, this tool provides a complementary
solution to analyze the trace. TraceViz reveals more simple patterns spotted visually
by the developers and provides an interactive exploration of the trace. On the other
side, visualizing the hidden structures reveal more details about the events such as
their type, thus allowing a finer-grained analysis.

In the next chapter, we describe how the different techniques proposed in this
thesis can be used in combination to support an efficient debugging process.

Chapter 9

Study of an Integrated Debugging
Workflow

Contents
9.1 Introduction . 129

9.2 Example of an Analysis Workflow 130

9.3 Use case: TSRecord . 130

9.4 Conclusion . 134

9.1 Introduction

In the Contribution part of this thesis, we have presented three different works to
propose a global solution to the problem of improving the analysis tools for execu-
tion traces to shorten the time required for the debugging of streaming multimedia
applications.

We presented Slick Graphs in Chapter 6 to provide a precise visualization of
smoothed time series. Next, we introduced TraceViz, a visualization framework for
execution traces. We used the binning and aggregating algorithm as the basis of
the TraceViz timeline view. It offers an overview of the trace and make visible some
behavioral patterns related to the synchronization between the actors and their pe-
riodic execution. Finally, we introduced a different type of overview as a visual
analytic tool to show the underlying structures hidden in the trace. In both propo-
sition, we integrated a Slick Graph to visualize the global activity of the system.

In this chapter, we show how these tools can be used in a complementary way.
The definition of a methodology is critical to help the software engineers to fa-
miliarize themselves with tools that change their working habits. To support our
discussion, we study a bug that occurred at STMicroelectronics using a possible
combination of the different techniques introduced in this thesis. We describe the

129

130 CHAPTER 9. STUDY OF AN INTEGRATED DEBUGGING WORKFLOW

Execution
Trace

TraceViz
Structures

Visualization

Figure 9.1: Example workflow integrating TraceViz and the visual analytic tool.

methodology adopted for this use case in Section 9.2 and we analyze the trace of
the use case in Section 9.3.

9.2 Example of an Analysis Workflow

We describe a possible integration of TraceViz and the structures visualization de-
signed for the use case presented in Section 9.3. Figure 9.1 depicts the workflow of
the methodology used in this chapter.

After having recorded the trace during the decoding, the developers have in the
best cases a rough idea of what went wrong but most of the time have no idea where
to begin the analysis. Thus, we propose to start the analysis process by importing
the trace into the TraceViz back-end and open it in TraceViz. By doing so, it gives
the developers the possibility to begin to explore and filter the data through the
interactions described in Section 7.4. It also shows the behavioral patterns present
in the trace.

After having filtered the trace according to their knowledge and the patterns
discovered, the second step of the analysis consists in using the visual analytic tool
described in Chapter 8 to check whether some structures brings more information
or not. We brought the following modifications to the tool:

1. We plugged the algorithm to compute and rank the structures onto the Trace-
Viz back-end. By doing so, instead of taking as input the complete trace, the
filtered-out actors are ignored and the structures are computed only on the
time window of the trace visible in TraceViz.

2. The structure visualization replaces the timeline view of TraceViz when the
visual analytic tool is launched. However, the hierarchy of TraceViz is still
visible on the left side and hovering an actor in the hierarchy also highlights
all the structures where this particular actor is involved. Figure 9.2 shows the
resulting interface.

9.3 Use case: TSRecord

To illustrate this example of integration, we study a use case that occurred at
STMicroelectronics. However, instead of explaining the process undertaken by the

9.3. USE CASE: TSRECORD 131

Figure 9.2: TSRecord trace visualized in TraceViz.

software developers (as it was the case in Section 7.5), we describe in this section
one possible approach for the analysis, performed by ourselves.

TSRecord is an application that receives a multimedia stream from Internet and
is in charge of recording it on an external storage. It corresponds to the typical case
when the user wants to record a program on television and watch it later. Similarly
to for the previous use cases, TSRecord was running on the family of board, here
the STiH416 SoC, and under the STLinux operating system. In this use case, the
video was received through the Ethernet port of the set-top box and recorded on an
USB storage.

Here, the problem is that when playing the recorded content, some video blanking
and artifacts as well as audio scratches appear. This comes from some missing frames
and audio data.

After importation, the complete trace is visualized in TraceViz using the event
density statistic (see Figure 9.2). The trace contains a small number of actors
due to the relative simplicity of the application. Among them, several are of low
interest such as the kptrace* and klogd actors which are the KPTrace processes
in charge of recording the trace (see Section 2.5.2), the SSH processes, etc. Others
seem particularly interesting such as the processes 46 (usb storage) highlighted
in grey on Figure 9.2 and the process 1798 (ts record). Therefore, the first step
to do is to filter-out useless processes to better focus on the processes involved in the
TSRecord execution using the interaction provided by the TraceViz hierarchy 7.4.5.
We hid the actors related to the trace recording and basic system processes (sshd,
kptrace*, etc.) and ended up with the result shown in Figure 9.3.

After the filtering process, the interesting actors that remain are the following:

132 CHAPTER 9. STUDY OF AN INTEGRATED DEBUGGING WORKFLOW

Figure 9.3: TSRecord trace visualized in TraceViz after having filtered-out irrelevant
actors.

� Interrupt 168 (GIC eth0) and SoftIRQ (net * action). These interrupts
are related to the network. They appear to be the most active actors in
Figure 9.3. Indeed, we have chosen to visualize the event density and interrupts
related to the network occur when data is received, generating here a huge
number of events.

� Interrupt 182 (GIC ehci hcd:usb3) and 46 (usb-storage). As their name
indicates it, both are related to the USB storage management.

� 1798 (ts record)] The process corresponding to the execution of the TSRecord
application.

� 1060 (flush-8:0) and 1061 (flush-0:11) The kernel processes correspond-
ing to the pdflush kernel thread in charge of writing the data on the external
storage. We give more details below.

The process 46 (usb storage) is of particular interest. TraceViz reveals that
at the beginning of the execution, it had a periodic behavior and its periodicity go
disturbed at some point. Consequently, 46 usb storage has long periods of inac-
tivity that can be the reason why some data is missing in the recorded video. In
fact, 1798 ts record writes the data using the system call write. However, the
data are not physically written on the external storage at this moment. Instead, the
Linux kernel bufferizes these data into a special location of the main memory called
page cache. A thread kernel called pdflush is scheduled periodically, 5 milliseconds
by default, to write the data contained in the page cache to the external storage.

9.3. USE CASE: TSRECORD 133

(a) Structures of TSRecord after filtering-out irrelevant processes. The activity is mostly
periodic due to the nature of the application and the selected actors to compute the
structures. The structures involving the process 46 (usb-storage) have been highlighted

.

(b) Dominants structure in the trace. It involves the interrupts related to the network.

Figure 9.4: Structures computed on the TSRecord trace.

However, pdflush has a particular behavior: it locks the page cache until all the data
are correctly written. This is mandatory to avoid any kind of conflict with other
processes that invoke write.

The structures can confirm or infirm this analysis. On Figure 9.4, we can see that
the vast majority of the activity is periodic with the predominance of the white color.
This is normal considering the task performed by the TSRecord application and the
remaining actors to compute the structures. Figure 9.4b shows that the dominant
structures are related to the network activity. The outline view confirms it and
this is also in adequation with the fact that many interrupts occur while receiving
data over the network. By highlighting the structures involving the process 46

(usb-storage), that appear in red on Figure 9.4, it clearly shows that its behavior
is periodic but some perturbations occurred so that it remains inactive for large
periods of time. (Note that the structure diagram shows only one type of event:
a context switch. This is due to the fact that no tracepoint have been placed in
the code of 46 (usb-storage) and only the moment when this process has been

134 CHAPTER 9. STUDY OF AN INTEGRATED DEBUGGING WORKFLOW

scheduled are available in this trace). It confirms the analysis made using TraceViz.

Bug resolution With their own tools, the software developers at STMicroelec-
tronics have found the information. We explain here how they solved the problem.
TraceViz and the structures visualization have both shown large periods of inactiv-
ity of the process executing the system call write to store the data of the video.
This knowledge is enough to find the root of the bug. It comes from the behavior of
pdflush explained above that locks the page cache while writing physically the data
to the storage. This kernel thread is called every 5 milliseconds. 5 milliseconds of
video decoding generate a volume of data that can potentially take some time. We
saw that pdflush locks the page cache when writing the data. During this period, the
thread 46 (usb-storage) is waiting for the lock to be release when calling write,
blocking the complete decoding chain. In this situation, the packets keep arriving on
the Ethernet port but are not dequeued from the network buffers that can saturate
and drop some packets, causing some data missing in the recorded video.

The resolution of this bug was quite simple since modifying the scheduling period
of pdflush from 5 milliseconds to a shorter was enough to solve the problem. It also
confirms that the analysis made with TraceViz and the structures helped to find the
correct root of the bug.

9.4 Conclusion

In this chapter, we have presented an example of integration of the different works
introduced in the previous chapters. Based on this integration, we defined an exam-
ple of methodology to analyze execution traces that consisted in using TraceViz to
filter the data and begin the analysis before using the visual analytic tool to finish
the analysis. To illustrate this possible integration, we described a use case of the
analysis of an execution trace that happened at STMicroelectronics. However, in-
stead of describing how the developers have used our tools to solve the problem, we
made the analysis ourselves. We demonstrated that the methodology we have cho-
sen is efficient for this use case and that TraceViz and the structures bring different
insights of the data.

However, in some cases, using the visual analytic tool before TraceViz can be
more pertinent. We have shown here a simple example of integration to highlight
the complementarity of our tools but a field study with the software engineers needs
to be conducted to define the best workflow and integration.

Chapter 10

Conclusion

Contents
10.1 Contributions . 135

10.2 Future Work . 137

Multimedia devices are omnipresent in our life. Over the last years, their evo-
lution has been impressive and quick. We have now thin smartphones, tablets and
powerful set-top boxes that deliver a huge computational power while keeping a
low energy consumption to optimize their battery life. All of this would have been
impossible without a very competitive market composed of huge semiconductor com-
panies able to produce new generations of embedded systems in a very short period
of time.

The time-to-market of a product has to be the shortest possible with systems
always more sophisticated. The software layer is nowadays extremely complex and
efficient tools are required to keep efficient the development process.

Focusing on multimedia applications, QoS properties have to be satisfied in order
to guarantee a smooth audio and video decoding. However, the software is now com-
posed of several different bricks, integrated together at the end of the development
process. Temporal bugs appear at this moment and often come from synchroniza-
tion or communication problems between the different software components. Fixing
these bugs is done with execution traces. However, without efficient tools, analyzing
traces has always been tedious. Moreover, as the size of the traces increases when
debugging modern systems the existing debugging tools are reaching their limits
making the debugging process almost impossible to achieve in a reasonable time
without tools able to work with huge traces.

10.1 Contributions

During this study, we have proposed three main contributions in information visual-
ization domains, visual analytics and contributed to the STMicroelectronics indus-

135

136 CHAPTER 10. CONCLUSION

trial activities.

10.1.1 A Smooth Visualization Technique for Time Series

In Chapter 6, we focused on a novel interactive visualization technique based on
the pixels; the Slick Graphs. The goal of this doctoral work was to propose novel
debugging tools for execution traces relying on visualization techniques. Therefore,
having a precise visualization for time series suitable for a usage in a scientific and
industrial context was mandatory.

Slick Graphs bin the data into small time intervals that correspond to the pixels.
Next, our technique smooths the values using a kernel convolution and encodes the
information during the smoothing into the alpha channel of each pixel. We explained
our technique in Section 6.4. We have demonstrated in Section 6.5 the efficiency
of this techniques compared to the existing algorithm used in many visualization.
The results show that Slick Graphs are significantly faster than Stream Graphs
(+62%) and more accurate (+48%) for tasks such as finding a local extrema when
working with periodic data. Finally, we explained how our smoothing algorithm can
be applied to other visualization for time-oriented data to improve their accuracy
(Section 6.6).

10.1.2 A Visualization Framework for Execution Traces

In Section 3.2, we studied the existing visualization tools for execution traces and
have found a gap between the techniques providing a too summarized overview
versus the techniques that visualize too many details making the exploration of
large traces tedious. This motivated the work described in Chapter 7 where we
have introduced a visualization framework for execution traces: TraceViz. TraceViz
is a trade off between an overview too general to be useful and a view with too
much details so that the users become overwhelmed by the amount of information
represented on top of a slow trace exploration (Section 7.4). We have explained
how developers can visually detect temporal and behavioral patterns in the trace
(Section 7.5).

We also have built this tool on a new back-end based on HDF5 that provides per-
formances suitable for interactive browsing large execution traces (Section 7.2). In
particular, we have conducted benchmarks against the traditional back-end used in
trace analysis tools, SQLite. The results show that the TraceViz back-end provides
much better performance for both input and output operations.

TraceViz has been integrated into the STMicroelectronics debugging toolchain
(STPTK) and has been released to the STMicroelectronics software developers (Sec-
tion 7.6). Since then, a new version of TraceViz is released with each version of
STPTK. Simultaneously, TraceViz has been integrated into the SoC-Trace project
on the FrameSoC open source infrastructure for traces.

10.2. FUTURE WORK 137

10.1.3 Discovering Hidden Structures

We explained our third contribution in Chapter 8. We have proposed a novel visual
analytics method to visualize hidden structures in the execution traces. To achieve
this, we based our approach on data mining techniques to compute the different
patterns on the trace (Section 8.3) after having introduced the notion of structure
(Section 8.2). We introduce a new visualization technique to represent them in a
comprehensive way (Section 8.4). By doing so, hidden structures become apparent
to reveal the underlying behavior of the application. The main regime of the exe-
cution as well as the perturbations can be visually spotted very quickly. We have
illustrated the relevance of our approach with different types of data. First, we
showed that analyzing execution traces with our approach enables the developers
to gain meaningful insights, usually hidden (Section 8.5). Second, we adapted our
algorithm to work on a broader type of data. We took two examples: the software
repositories data and texts. In both cases, our method is able to clearly visualize
the underlying structures of the data.

10.2 Future Work

The analysis of execution traces and more broadly of computer logs and time-
oriented data is a rich area with many opportunities, not only in different research
domains but also in the industrial field. Following the work done in this thesis, we
believe the following perspectives are worth to be investigated:

Classification of actors As discussed in Chapter 7, for each actor in the trace,
there is a corresponding time series. In TraceViz, actors are organized according
to pre-defined categories given by the domain area. In addition of using this actor
organization, classifying the different event producers according to a hierarchical
clustering can bring meaningful insights and accelerate the debugging process. Dif-
ferent machine learning techniques exist to perform such classification such as the
approach proposed by Khah et al [Soheily-Khah et al., 2016]. Dendrogramix is a
interactive visualization technique for hierarchical clustering [Blanch et al., 2015]
and investigating how it can be integrated to TraceViz provides interesting research
questions in information visualization.

Anytime rendering for visualization of huge time series We have explained
that one of the challenge to analyze execution traces comes from the large amount of
data. We have developed a fast back-end based on HDF5 and couple it with search
algorithms to achieve interactive response time. This is only a part of the solution
to a larger problem that is the visualization of large datasets. At some point, any
algorithm and back-end will struggle to give a result in a 10 milliseconds time frame
with large-scale data. Instead of waiting to have an exact results expensive to result,
a different approach consists in perform early rendering with partial results. The

138 CHAPTER 10. CONCLUSION

first studies show that it gives promising results with the analysts being able to
work on their data from incremental rendering [Fisher et al., 2012]. A PhD study
is currently undertaken by Ali Jabbari, since October 2015, aiming to study this
approach for large time series1.

Studying the encoding of a data variable into several visual attributes
The norm in visualization is to map each data variable onto a unique visual attribute.
For instance, in Slick Graphs (Chapter 6, we encoded one data variable, the value
of the bin in the histogram, into two different visual attributes, the height of the
bar and the luminance channel of the pixel). It raises a more general visualization
research question: how to encode one data attribute into several visual attributes
to convey information hardly understandable otherwise?

Improving the structures computation We have introduced a method to com-
pute the structures in computer logs in Section 8.3. We identified two different
approaches to investigate. The first one is to integrate existing data mining al-
gorithm such as Clospan [Yan et al., 2003] to compute the frequent itemsets and
PerMiner [Lopez Cueva et al., 2012] for the periodic patterns. It would return more
precise results but it may not improve information conveyed by the visual render-
ing that shows an overview of the structures. It would also induce a much long
computation time and the impact on the tool would need to be analyzed. The
second interesting improvement is to implement the core of our method, the SOG
algorithm, using GPGPU techniques. The computation time would be significantly
shorter [Kouzinopoulos et al., 2015]. It would benefit to the developers to analyze
more quickly the trace by further integrating the structures with the visualization
tools, a step closer to leverage the usage of data mining algorithm.

Investigating more complex structures As discussed in Section 8.2, we define
the structure as being composed of itemsets, sequences and periodic sequences. In
fact, the concept of structure can be extended to other types of patterns. Another
type of data structure can include a graph for the study of structures in logs of
dynamic networks. For instance, this could be used to visualize the evolution of
structures in social networks such as Twitter or Facebook. The main challenge
relies in the mapping of a larger number of parameters of a structure onto visual
attributes while having an uncluttered rendering to keep visualizing such structure
“at a glance”.

1http://www.theses.fr/s136307

http://www.theses.fr/s136307

Bibliography

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB, pages 487–499.

Aigner, W., Miksch, S., Muller, W. an Schumann, H., and Tominski, C. (2007). Vi-
sualizing time-oriented data - a systematic view. Computers & Graphics, 31:401–
409.

Aigner, W., Miksch, S., and Schumann, H. andd Tominski, C. (2011). Visualization
of Time-Oriented Data. Springer Verlag, London, UK.

Andrienko, N. and Andrienko, G. (2005). Exploratory Analysis of Spatial and Tem-
poral Data: A Systematic Approach. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Apple (Accessed on May 9th, 2016). Av foundation. https://developer.apple.

com/av-foundation/.

Architects, T. (Accessed on May 8th, 2016). Btf specification. https:

//wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_

Auto_IWG.pdf.

ARM (Accessed on April 8th, 2016a). Arm ds-5 development studio. http://ds.

arm.com/ds-5.

ARM (Accessed on May 7th, 2016b). Cortex-a9 processor. http://www.arm.com/

cortex-a9.php.

ARM (Accessed on May 7th, 2016c). Mali-400 gpu. http://www.arm.com/

products/multimedia/mali-gpu/ultra-low-power/mali-400.php.

Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., and Dragicevic, P.
(2015). Time curves: Folding time to visualize patterns of temporal evolution in
data. IEEE Transactions on Visualization and Computer Graphics, PP(99):559–
568.

Bar, M. and Neta, M. (2006). Humans prefer curved objects. Psychological Science,
17(8):645–648.

139

https://developer.apple.com/av-foundation/
https://developer.apple.com/av-foundation/
https://wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
https://wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
https://wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
http://ds.arm.com/ds-5
http://ds.arm.com/ds-5
http://www.arm.com/cortex-a9.php
http://www.arm.com/cortex-a9.php
http://www.arm.com/products/multimedia/mali-gpu/ultra-low-power/mali-400.php
http://www.arm.com/products/multimedia/mali-gpu/ultra-low-power/mali-400.php

140 BIBLIOGRAPHY

Berry, L. and Munzner, T. (2004). Binx: Dynamic exploration of time series datasets
across aggregation levels. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis), pages 215–216.

Bertini, E., Hertzog, P., and Lalanne, D. (2007). Spiralview: Towards security
policies assessment through visual correlation of network ressources with evolution
of alarms. In Visual Analytics Science and Technology, 2007. VAST 2007. IEEE
Symposium on, pages 139–146.

Bezemer, C. P., Pouwelse, J., and Gregg, B. (2015). Understanding software per-
formance regressions using differential flame graphs. In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 535–539.

Blanch, R., Dautriche, R., and Bisson, G. (2015). Dendrogramix: a hybrid tree-
matrix visualization technique to support interactive exploration of dendrograms.
In Proceedings of the 8th IEEE Pacific Visualization Symposium (PacificVis 2015),
pages 31–38.

Bloch, M., Byron, L., Carter, S., and Cox, A. (2008). The ebb and flow of movies:
Box office receipts 1986-2007. http://nytimes.com.

Bothorel, G., Serrurier, M., and Hurter, C. (2013). Visualization of frequent item-
sets with nested circular layout and bundling algorithm. In Advances in Visual
Computing - 9th International Symposium, pages 396–405.

Bril, R. J., Hentschel, C., Steffens, E. F. M., Gabrani, M., van Loo, G., and Gelissen,
J. H. A. (2001). Multimedia qos in consumer terminals. In Signal Processing
Systems, 2001 IEEE Workshop on, pages 332–343.

Buono, P., Aris, A., Plaisant, C., Khella, A., and Shneiderman, B. (2005). Interac-
tive pattern search in time series.

Buono, P. and Simeone, A. L. (2008). Interactive shape specification for pattern
search in time series. In Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 480–481.

Byron, L. (2006). Listening history. http://www.leebyron.com/what/lastfm.

Byron, L. and Wattenberg, M. (2008). Stacked graphs: Geometry & aesthetics.
IEEE Transactions on Visualization and Computer Graphics, 14:1245–1252.

Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information
visualizer, an information workspace. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 181–186. ACM.

http://nytimes.com
http://www.leebyron.com/what/lastfm

BIBLIOGRAPHY 141

Carlis, J. V. and Konstan, J. A. (1998). Interactive visualization of serial periodic
data. In Proceedings of the 11th Annual ACM Symposium on User Interface
Software and Technology, New York, NY, USA. ACM.

Carmichael, C. L. and Leung, C. K.-S. (2010). Closeviz: Visualizing useful patterns.
In Proceedings of the ACM SIGKDD Workshop on Useful Patterns, pages 17–26.

Carvalho de Melo, A. (2010). The new linux ’perf’ tools.

Castro, M., Georgiev, K., Marangozova-Martin, V., Mehaut, J.-F., Fernandes, L. G.,
and Santana, M. (2011). Analysis and tracing of applications based on software
transactional memory on multicore architectures. In Parallel, Distributed and
Network-Based Processing (PDP), 2011 19th Euromicro International Conference
on, pages 199–206.

Chassin de Kergommeaux, J. (2000). Pajé, an interactive visualization tool for
tuning multi-threaded parallel applications. Parallel Computing, 26(10).

Cheng, J., Ke, Y., and Ng, W. (2008). A survey on algorithms for mining frequent
itemsets over data streams. Knowledge of Information Systems, 16:1–27.

Cho, M., Kim, B., Bae, H. J., and Seo, J. (2014). Stroscope: Multi-scale visualization
of irregularity measured time-series data. IEEE Transactions on Visualization and
Computer Graphics, 20:808–821.

Cleveland, W. (1993). Visualizing Data. Hobart Press.

Compass, E. T. (Accessed on April 8th, 2016). http://tracecompass.org.

Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J. J., and van
Deursan, A. (2007a). Understanding execution traces using massive sequence
view and hierarchical edge bundles. In 15th IEEE International Conference on
Program Comprehension (ICPC ’07), pages 49–58.

Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., and van
Wijk, J. J. (2007b). Execution trace analysis through massive sequence and cir-
cular bundle views. Journal of Systems and Software, 81:2252–2268.

Dork, M., Gruen, D., Williamson, C., and Carpendale, S. (2010). A visual backchan-
nel for large-scale events. IEEE Transactions on Visualization and Computer
Graphics, 16:1129–1138.

Dosimont, D., Pagano, G., Huard, G., and Marangozova-Martin, V. (2014). Efficient
analysis methodology for huge application traces. In International Conference on
High Performance Computing & Simulation, pages 951–958.

EfficiOS (Accessed on May 12th, 2016a). Babeltrace. http://diamon.org/

babeltrace.

http://tracecompass.org
http://diamon.org/babeltrace
http://diamon.org/babeltrace

142 BIBLIOGRAPHY

EfficiOS (Accessed on May 12th, 2016b). Common trace format. http://www.

efficios.com/ctf.

Fails, J. A., Karlson, A., Shahamat, L., and Shneiderman, B. (2006). A visual in-
terface for multivariate temporal data: Finding patterns of events across multiple
histories. In 2006 IEEE Symposium on Visual Analytics Science and Technology,
pages 167–174.

Few, S. (2008). Time on the horizon. http://perceptualedge.com/articles/

visual_business_intelligence/time_on_the_horizon.pdf.

Fisher, D., Popov, I., Drucker, S. M., and Schraefel, M. C. (2012). Trust me,
i’m partially right: Incremental visualization lets analysts explore large datasets
faster. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2012), pages 1673–1682.

Fittkau, F., Waller, J., Wulf, C., and Hasselbring, W. (2013). Live trace visualization
for comprehending large software landscapes: The explorviz approach. In Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on, pages 1–4.

Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). An
overview of the hdf5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47. ACM.

Ftrace (Accessed on April 8th, 2016). http://elinux.org/Ftrace.

Fuchs, J., Fischer, F., Mansmann, F., Bertini, E., and Isenberg, P. (2013). Evalua-
tion of alternative glyph designs for time series data in a small multiple setting. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 3237–3246.

Gantt, H. L. (1913). Work, Wages, and Profits. New York: The Engineering
magazine co.

Goethals, B., Moens, S., and Vreeken, J. (2011). MIME: a framework for interactive
visual pattern mining. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA,
August 21-24, 2011, pages 757–760.

Google (Accessed on May 9th, 2016). Google hangouts. http://hangouts.google.
com.

Gregg, B. (2016a). The flame graph. Queue, 14(2).

Gregg, B. (2016b). The flame graph. ACM Communications, 59:48–57.

GStreamer (Accessed on May 9th, 2016). http://gstreamer.freedesktop.org.

http://www.efficios.com/ctf
http://www.efficios.com/ctf
http://perceptualedge.com/articles/visual_business_intelligence/time_on_the_horizon.pdf
http://perceptualedge.com/articles/visual_business_intelligence/time_on_the_horizon.pdf
http://elinux.org/Ftrace
http://hangouts.google.com
http://hangouts.google.com
http://gstreamer.freedesktop.org

BIBLIOGRAPHY 143

Hao, M., Dayal, U., Keim, D., and Schrek, T. (2005). Importance-driven visualiza-
tion layouts for large time series data. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis 2005), pages 203–210.

Hao, M., Dayal, U., Keim, D., and Schrek, T. (2007). Multi-resolution techniques
for visual exploration of large time-series data. In Proceedings of the 9th Join
Eurographics (EuroVis), pages 27–34.

Hao, M., Marwah, M., Janetzko, H., Dayal, U., Keim, D., Patnaik, D., Ramakr-
ishnan, N., and Sharma, R. (2012). Visual exploration of frequent patterns in
multivariate time series. Information Visualization, 11:71–83.

Harris, R., L. (1999). Information Graphics: A Comprehensive Illustrated Reference.
Oxford University Press.

Havre, S., Hetzler, E., and Nowell, L. (2000). Themeriver: Visualizing theme changes
over time. In Proceedings of the IEEE Symposium on Information Visualization,
pages 115–124.

Havre, S., Whitney, P., and Nowell, L. (2002). Themeriver: Visualizing thematic
changes in large document collections. IEEE Transactions on Visualization and
Computer Graphics, 8:9–20.

Heath, M. T. and Etheridge, J. A. (1991). Visualizing the performance of parallel
programs. Software, IEEE, 8(5):29–39.

Heer, J. and Agrawala, M. (2006). Multi-scale banking to 45 degrees. IEEE Trans-
actions on Visualization and Computer Graphics, 12:701–708.

Heer, J., Kong, N., and Agrawala, M. (2009). Sizing the horizon: The effects of
chart size and layering on the graphical perception of time series visualizations.
In ACM Human Factors in Computing Systems (CHI).

Hochheiser, H. and Shneiderman, B. (2004). Dynamic query tools for time series
data sets: Timebox widgets for interactive exploration. Information Visualization,
3:1–18.

Holz, C. and Feiner, S. (2009). Relaxed selection techniques for querying time-series
graphs. In Proceedings of the 22nd Annual ACM Symposium on User Interface
Software and Technology, pages 213–222.

Iegorov, O., Leroy, V., Termier, A., Mehaut, J.-F., and Santana, M. (2015). Data
mining approach to temporal debugging of embedded streaming applications. In
2015 International Conference on Embedded Software (EMSOFT), pages 167–176.
IEEE Computer Society.

144 BIBLIOGRAPHY

Imrich, P., Mueller, K., Imre, D., Zelenyuk, A., and Zhao, W. (2003). Interactive
poster: 3d themeriver. Poster Compendium of IEEE Symposium on Information
Visualization.

Isaacs, K. E., Bremer, P. T., Jusufi, I., Gamblin, T., Bhatele, A., Schulz, M., and
Hamann, B. (2014a). Combining the communication hairball: Visualizing large-
scale parallel execution traces using logical time. IEEE Transactions on Visual-
ization and Computer Graphics, Proceedings of InfoVis’14, 20(12):2349–2358.

Isaacs, K. E., Giménez, A., Bhatele, A., Schulz, M., Hamann, B., and Bremer, P. T.
(2014b). State of the art of performance visualization.

Isaacs, K. E., Giménez, A., Bhatele, A., Schulz, M., Hamann, B., and Bremer,
P. T. (Accessed on May 13rd, 2016). Living digital library of state of the art of
performance visualization. http://idav.ucdavis.edu/~ki/STAR/.

Javed, W. and Elmqvist, N. (2010). Stack zooming for multi-focus interaction in time
series data visualization. In IEEE Pacific Visualization Symposium (PacificVis),
pages 33–40.

Javed, W. and Elmqvist, N. (2013). Stack zooming for multi-focus interaction in
skewed-aspect visual spaces. IEEE Transactions on Visualization and Computer
Graphics, 19:1362–1374.

Javed, W., McDonnel, B., and Elmqvist, N. (2010). Graphical perception of multiple
time series. IEEE Transactions on Visualization and Computer Graphics, 16:927–
934.

Keim, D. A., Schneidewind, J., and Sips, M. (2008). Fp-viz: Visual frequent pattern
mining. In IEEE Symposium on Information Visualization (InfoVis 05).

Kincaid, R. (2010). Signallens: Focus+context applied to electronic time series.
IEEE Transactions on Visualization and Computer Graphics, 16:900–907.

Kincaid, R. and Lam, H. (2006). Line graph explorer: Scalable display of line graphs
using focus+context. In Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 404–411.

Kouzinopoulos, C. S. and Margaritis, K. G. (2014). Multiple pattern matching:
Survey and experimental results. Neural, Parallel, and Scientific Computation,
22:563–593.

Kouzinopoulos, C. S., Michailidis, P. D., and Margaritis, K. G. (2015). Multiple
string matching on a gpu using cuda. Scalable Computing: Practice and Experi-
ence, 16(2):121–137.

Krishnakumar, R. (2005). Kernel korer: Kprobes - a kernel debugger. Linux Journal,
2005(133).

http://idav.ucdavis.edu/~ki/STAR/

BIBLIOGRAPHY 145

Krstajic, M., Bertini, E., and Keim, D. (2011). Cloudlines: Compact display of
event episodes in multiple time-series. IEEE Transactions on Visualization and
Computer Graphics, 17:2432–2439.

Kruskal, J. B. and Landwehr, J. M. (1983). Icicle plots: Better displays for hierar-
chical clustering. The American Statistician, 37:162–168.

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones,
S. J., and Marra, M. A. (2009). Circos: An information aesthetic for comparative
genomics. Genome Research, 19:1639–1645.

Lagraa, S., Termier, A., and Pétrot, F. (2014). Scalability bottlenecks discovery in
mpsoc platforms using data mining on simulation traces. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March
24-28, 2014, pages 1–6.

Lagraa, S., Termier, A., and Pétrot, F. (2012). Automatic congestion detection in
mpsoc programs using data mining on simulation traces. In 2012, 23rd IEEE
International Symposium on Rapid System Prototyping (RSP), pages 64–70.

Lam, H., Munzner, T., and Kincaid, R. (2007). Overview use in multiple visual infor-
mation resolution interfaces. IEEE Transactions on Visualization and Computer
Graphics, 13:1278–1285.

Lamarche-Perrin, R., Schnorr, L. M., and Vincent, J.-M. (2014). Evaluating trace
aggregation for performance visualization of large distributed systems. In Pro-
ceedings of the 2014 IEEE Internation Symposium on Performance Analysis of
Systems and Software.

Leung, C. K.-S. and Carmichael, C. L. (2009). Fpviz: A visualizer for frequent
pattern mining. In Proceedings of the ACM SIGKDD Workshop on Visual Ana-
lytics and Knowledge Discovery: Integrating Automated Analysis with Interactive
Exploration, pages 30–39.

Leung, C. K.-S., Irani, P. P., and Carmichael, C. L. (2008a). Fisviz: A frequent
itemset visualizer. In Advances in Knowledge Discovery and Data Mining, pages
644–652.

Leung, C. K.-S., Irani, P. P., and Carmichael, C. L. (2008b). Wifisviz: Effective
visualization of frequent itemset. In 2008 8th IEEE Conference on Data Mining,
pages 875–880.

Lin, J., Keogh, E., and Lonardi, S. (2005). Visualizing and discovering non-trivial
patterns in large time series databases. Information Visualization, 4:61–82.

146 BIBLIOGRAPHY

Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nystrom, D. M. (2004). Visually
mining and monitoring massive time series. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 460–469.

Lopez Cueva, P., Bertaux, A., Termier, A., Méhaut, J.-F., and Santana, M. (2012).
Debugging embedded multimedia application traces through periodic pattern min-
ing. In 2012 International Conference on Embedded Software (EMSOFT), pages
595–602.

LTTng (Accessed on April 8th, 2016). http://lttng.org.

McLachLan, P., Munzner, T., Koutsofios, E., and North, S. (2008). Liverac: Inter-
active visual exploration of system-management time-series data. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 1483–
1492.

Microsoft (Accessed on May 9th, 2016). Media foundation. https://msdn.

microsoft.com/en-us/library/ms694197.aspx.

Miller, R. B. (1968). Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I, pages 267–277. ACM.

Mooney, C. H. and Roddick, J. F. (2013). Sequential pattern mining – approaches
and algorithms. ACM Computer Survey, 45:19:1–19:39.

Munzner, T., Kong, Q., Ng, R. T., Lee, J., Klawe, J., Radulovic, D., and Leung,
C. K. (2005). Visual mining of power sets with large alphabets. Department of
Computer Science, The University of British Columbia, Vancouver, BC, Canada.

Netflix (Accessed on May 9th, 2016). http://netflix.com.

Osmari, D. K., Vo, H. T., Silva, C. T., Comba, J. L. D., and Lins, L. (2014).
Visualization and analysis of parallel dataflow execution with smart traces. In
27th Conference on Graphics, Patterns and Images (SIBGRAPI).

Pagano, G., Dosimont, D., Huard, G., and Marangozova-Martin, V. (2013). Trace
management and analysis for embedded systems. In Proceedings of the IEEE 7th

International Symposium on Embedded Multicore SoCs.

Perin, C., Vernier, F., and Fekete, J. D. (2013). Interactive horizon graphs: Im-
proving the compact visualization of multiple time series. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 3217–3226,
New York, NY, USA. ACM.

Phonon (Accessed on May 9th, 2016). http://phonon.kde.org.

http://lttng.org
https://msdn.microsoft.com/en-us/library/ms694197.aspx
https://msdn.microsoft.com/en-us/library/ms694197.aspx
http://netflix.com
http://phonon.kde.org

BIBLIOGRAPHY 147

Plaisant, C., Carr, D., and Shneiderman, B. (1995). Image-browser taxonomy and
guidelines for designers. IEEE Software, 12(2):21–32.

Playfair, W. (1786). The Commercial and Political Atlas. London.

Prada-Rojas, C., Riss, F., Raynaud, X., De Paoli, S., and Santana, M. (2009).
Observation tools for debugging and performance analysis of embedded linux ap-
plications. In Conference on System Software, SoC and Silicon Debug-S4D.

Reijner, H. (2008). The development of the horizon graph. http://www.stonesc.

com/Vis08_Workshop/DVD/Reijner_submission.pdf.

Ryall, K., Lesh, N., Lanning, T., Leigh, D., Miyashita, H., and Makino, S. (2005).
Querylines: Approximate query for visual browsing. In CHI’05 Extended Abstracts
on Human Factors in Computing Systems, pages 1765–1768.

Saito, T., Miyamura, H. N., Yamamoto, M., Saito, H., Hoshiya, Y., and Kaseda,
T. (2005). Two-tone pseudo coloring: Compact visualization for one-dimensional
data. In IEEE Symposium on Information Visualization, pages 173–180. IEEE
Computer Society.

Salmela, L., Tarhio, J., and Kytojoki, J. (2006). Multi-pattern matching with q-
grams. Journal of Experimental Algorithmics, 11:1–19.

Schneiderman, B. (1992). Tree visualization with tree-maps: 2d space-filling ap-
proach. ACM Trans. Graph., 11(1).

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for infor-
mation visualization. In Visual Languages, 1996. Proceedings., IEEE Symposium
on, pages 336–343.

Skype (Accessed on May 9th, 2016). http://skype.com.

Soheily-Khah, S., Douzal, A., and Gaussier, E. (2016). Generalized k-means-based
clustering for temporal data under weighted and kernel time wrap. Pattern Recog-
nition Letters, 75:63–69.

STMicroelectronics (Accessed on May 13rd, 2016a). Soc traces & profiling toolkit
(stptk). http://www.stlinux.com/devel/traceprofile/kptrace#STPTK.

STMicroelectronics (Accessed on May 7th, 2016b). Stih4 monaco series. http:

//www2.st.com/content/st_com/en/products/digital-set-top-box-ics/

uhd-set-top-box-processors.html?querycriteria=productId=SC2060.

Stoffel, F., Fischer, F., and Keim, D. A. (2013). Finding anomalies in time-series
using visual correlation for interactive root cause analysis. In Proceedings of the
10th Workshop on Visualization for Cyber Security, pages 65–72.

http://www.stonesc.com/Vis08_Workshop/DVD/Reijner_submission.pdf
http://www.stonesc.com/Vis08_Workshop/DVD/Reijner_submission.pdf
http://skype.com
http://www.stlinux.com/devel/traceprofile/kptrace#STPTK
http://www2.st.com/content/st_com/en/products/digital-set-top-box-ics/uhd-set-top-box-processors.html?querycriteria=productId=SC2060
http://www2.st.com/content/st_com/en/products/digital-set-top-box-ics/uhd-set-top-box-processors.html?querycriteria=productId=SC2060
http://www2.st.com/content/st_com/en/products/digital-set-top-box-ics/uhd-set-top-box-processors.html?querycriteria=productId=SC2060

148 BIBLIOGRAPHY

Sullivan, G., Ohm, J. R., Han, W., and Wiegand, T. (2013). Overview of the
high efficiency video coding (hevc standard). IEEE Transactions on Circuits and
Systems for Video Technology, 22(12):1649 – 1668.

Thudt, A., Walny, J., Perin, C., Rajabiyazdi, F., MacDonald, L., Vardeleon, R.,
Greenberg, S., and Carpendale, S. (2016). Assessing the readibility of stacked
graphs. In Proceedings of Graphics Interface 2016.

Tominksi, C., Schulze-Wollgast, P., and Schumann, H. (2005). 3d information visu-
alization for time dependent data on maps. In Ninth International Conference on
Information Visualization (IV’05), pages 175–181.

Tominksi, C. and Schumann, H. (2008). Enhanced interactive spiral display. In
Proceedings of the Annual SIGRAD Conference, Special Theme: Interactivity,
pages 53–56.

Trümper, J., Döllner, J., and Telea, A. (2013). Multiscale visual comparison of
execution traces. In 21st International Conference on Program Comprehension
(ICPC), pages 53–62.

Trümper, J., Telea, A., and Döllner, J. (2012). Viewfusion: Correlating structure
and activity views for execution traces. In Theory and Practive of Computer
Graphics.

Trümper, J., Bohnet, J., and Döllner, J. (2010). Understanding complex multi-
threaded software systems by using trace visualization. In Proceedings of the 5th

International Symposium on Software Visualization, pages 133–142.

Tufte, E. R. (1986). The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, USA.

Twitter (Accessed on March 31st, 2015). Visualization of station of the union 2015.
http://twitter.github.io/interactive/sotu2015.

VideoLAN (Accessed on May 9th, 2016). Vlc multimedia framework. http://

videolan.org.

Vimeo (Accessed on May 9th, 2016). http://vimeo.com.

Walker, J., Borgo, R., and Jones, M. W. (2016). Timenotes: A study on effective
chart visualization and interaction techniques for time-series data. IEEE Trans-
actions on Visualization and Computer Graphics, 22:549–558.

Walker, J. S., Jones, M. W., Laramee, R. S., Bidder, O. R., William, H. J., Scott,
R., Shepard, E. L., and Wilson, R. P. (2015). Timeclassifier: A visual analytic
system for the classification of multi-dimensional time series data. The Visual
Computer, 31:1067–1078.

http://twitter.github.io/interactive/sotu2015
http://videolan.org
http://videolan.org
http://vimeo.com

BIBLIOGRAPHY 149

Wattenberg, M. (2001). Sketching a graph to query a time-series database. In CHI’01
Extended Abstracts on Human Factors in Computing Systems, pages 381–382.

Weber, M., Alexa, M., and Müller, W. (2001). Visualizing time series on spirals.
In Proceedings of the IEEE Symposium on Information Visualization (InfoVis),
pages 7–13. IEEE Computer Society.

Wheeler, K. B. and Thain, D. (2010). Visualizing massively multithreaded applica-
tions with threadscope. Concurrency and Computation: Practice and Experience,
22:45–67.

Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra, A. (2003). Overview of
the h.264/avc video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576.

Wolf, W., Jerraya, A. A., and Martin, G. (2008). Multiprocessor system-on-chip
(mpsoc) technology. In IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, pages 1701–1713.

Yan, X., Han, J., and Afshar, R. (2003). Clospan: Mining closed sequential patterns
in large datasets. In Proceedings of the 2003 SIAM International Conference on
Data Mining, pages 166–177.

Yang, L. (2003). Visualizing frequent itemsets, association rules, and sequential
patterns in parallel coordinates. In Computational Science and Its Applications -
ICCSA 2003, pages 21–30.

Yang, L. (2005). Pruning and visualizing generalized association rules in parallel
coordinates. IEEE Transactions on Knowledge and Data Engineering, 17:60–70.

Youtube (Accessed on May 9th, 2016). http://youtube.com.

Zhao, J., Chevalier, F., and Balakrishnan, R. (2011a). Kronominer: Using multi-
foci navigation for the visual exploration of time-series data. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 1737–1746.

Zhao, J., Chevalier, F., Pietriga, E., and Balakrishnan, R. (2011b). Exploratory
analysis of time-series with chronolenses. IEEE Transations on Visualization and
Computer Graphics, 17:2422–2431.

http://youtube.com

Part III

French Summary

151

Chapter 1

Introduction

Les dispositifs mobiles et les set-top box sont aujourd’hui de plus en plus performants
et permettent de consommer de contenus multimédia de qualité croissante avec le
temps tout en couvrant un panel d’utilisation toujours plus large comme jouer à
des jeux video, naviguer sur Internet, etc. Tout ceci est possible grâce la puissance
délivrée par les dernières générations de systèmes embarqués, nommés Multiple-
Processor-System-on-Chip (MPSoC) intégrant dorénavant différentes puces dédiées
à des tâches spécifiques. Un MPSoC embarque différents types de puces très hétérogènes
comme un processeur (Central Process Unit, CPU), un processeur graphique (Graphic
Process Unit, GPU) et aussi des processeurs spécialisés dédiés au décodage audio
et video, gérant la connectivité du système et plusieurs types de capteurs tels qu’un
accéléromètre, un gyroscope, un GPS, etc.

A chaque nouvelle génération, de meilleures performances ainsi qu’une consom-
mation électrique plus modérée permettent aux constructeurs comme Apple et Sam-
sung de développer des dispositifs innovants avec une meilleure expérience utilisa-
teur. Une conséquence directe de la complexification des plateformes matérielles est
une augmentation du temps et du coût de développement et de vérification de ces
systèmes, qu’il est indispensable de minimiser pour les constructeurs afin de rester
compétitif.

Les applications de décodage multimédia ont la particularité de devoir respecter
des contraintes temps réels afin de garantir une lecture fluide du contenu. Par
exemple, un film doit être décodé à 30 images par seconde. On distingue deux
catégories de bogues pouvant impacter ces applications :

� Les bogues fonctionnels qui correspondent à un mauvais résultat logiciel

� Les bogues temporels qui apparaissent lorsqu’un résultat n’est pas retourné
suffisamment rapidement.

A la différence des bogues fonctionnels qui peuvent être résolus à l’aide des débogueurs
traditionnels, les bogues temporels requièrent une approche différente pour deux
raisons. Premièrement, l’utilisation des débogueurs qui suspendent l’exécution de

153

154 CHAPTER 1. INTRODUCTION

l’application conduisent automatiquement à un non-respect des contraintes tem-
porelles. Deuxièment, les bogues temporels apparaissent la plupart du temps en fin
du cycle de développement, au moment de la phase d’intégration. En effet, la plu-
part sont dûs à un problème de communication ou de synchronisation entre différents
composants logiciels, les rendant impossible à détecter avant la phase d’intégration.
Pour cette raison, il est très fréquent que ce genre de bogues apparaissent après la
livraison au client, mettant les développeurs sous pression d’un côté par le client,
de l’autre par le fournisseur. Dans ce contexte, des outils de débogage efficaces sont
primordiaux.

L’utilisation des débogueurs traditionnels étant inappropriée, la technique pour
déboguer des applications multimedia est d’enregistrer dans un log, appelée trace,
les évènements apparus au cours de l’exécution et d’analyser a posteriori le com-
portement du système avec la trace d’exécution. Chaque évènement de la trace
contient plusieurs informations telles que la date à laquelle l’évènement a eu lieu,
son type et l’entité qui l’a produit. Basé sur ces informations, les développeurs peu-
vent alors identifier la source potentielle des bogues temporels. Deux strategies sont
alors possibles pour l’analyse de la trace:

� utiliser des techniques de fouille de données

� utiliser des techniques de visualisation de données

Avec la complexification des plateformes modernes, le nombre d’évènements générés
devient très important rendant l’analyse des traces lente et fastidieuse. Dans ce
travail de thèse, notre but est de proposer de nouveaux outils d’analyse de traces
d’exécution faisant apparaitre clairement les comportements récurrents ainsi que les
motifs temporels afin de réduire le temps d’analyse. Pour atteindre cet objectif, nous
allons intégrer des techniques de fouille de données et des techniques de visualisation
pour être capable de détecter les tendances ainsi que les motifs aberrants. Nous
proposons trois contributions à travers cette thèse :

1. Slick Graphs. Une nouvelle technique de visualisation pour séries temporelles
qui minimise les artefacts visuels au pixel près, contrairement aux techniques
existantes, comme nous le montrons dans l’etat de l’art.

2. TraceViz. Un framework de visualisation de traces d’exécution interactif et
multi-échelles. En particulier, nous proposons un nouveau système de stock-
age de traces permettant l’exploration interactive de traces volumineuses ainsi
qu’une technique de visualisation pour naviguer interactivement dans la trace
à différentes echelles.

3. Visualisation des Structures. Un nouvel outil d’analyse qui permet de visu-
aliser les structures cachées dans les traces telles que des ensembles et séquence
d’évènements et leur périodicité afin de gagner rapidement une compréhension
approfondie des traces d’exécution.

155

La suite de cette thèse est composée de huit chapitres. Dans le chapitre 2,
nous expliquons l’évolution des standards multimedia ainsi que des plateformes
matérielles et logicielles. Nous continuons par décrire les travaux existants sur la
visualisation de séries temporelles, de traces et de motif dans le chapitre 3, résumons
les questions de recherche auxquelles nous nous intéressons dans le chapitre 4 et ex-
pliquons notre démarche scientifique dans le chapitre 5. Les Slick Graphs, TraceViz
et l’outil d’analyse sont respectivement présentés dans les chapitres 6, 7 et 8. Nous
finissons ce manuscrit avec une étude de cas illustrant la complementarité de nos
travaux dans le chapitre 9.

Chapter 2

Contexte Industriel

Nous nous intéressons dans cette thèse à l’analyse de traces d’exécution pour appli-
cations multimédia sur systèmes embarqués. Les applications multimédia, concer-
nant l’encodage et le décodage de contenus multimédia dans le cadre de ce travail,
ont certaines particularités. D’une part, ces applications sont soumises à des con-
traintes temps réel et sont périodiques. Par exemple, lors du décodage d’une vidéo,
l’application exécute de façon périodique les opérations pour décoder une image
et doit être capable de décoder 30 images par seconde pour garantir une lecture
fluide. D’autre part, ces applications tirent parti des plateformes matérielles mod-
ernes composées de plusieurs puces spécialisées, nécessitant plusieurs fils d’exécution
parallèles.

Par conséquent, les méthodes de débogage classiques ne fonctionnent pas dans ce
cadre. Les débogueurs typiquement utilisés interrompent l’exécution et permettent
aux développeurs d’étudier l’état des différents composants logiciels et de continuer
l’exécution au pas à pas. Lors de la pause de l’exécution, les propriétés temps réel
de l’application ne sont plus respectées, empêchant l’étude de potentiels problèmes
temporels.

Une solution proposée par l’industrie est l’utilisation de traces d’exécution. Cette
technique de débogage consiste à laisser l’exécution se dérouler et à enregistrer tous
les évènements ayant eu lieu sur le système, au niveau matériel (interruptions),
du système d’exploitation (changement de contexte, appels systèmes, etc.) et des
applications (appels de fonction), dans un fichier appelé trace d’exécution. Une fois
l’exécution terminée, les développeurs étudient son déroulement à travers l’analyse
de la trace.

La problématique actuelle autour des traces est l’augmentation significative du
nombre d’évènements générés par les systèmes modernes. Ceci est la conséquence
d’une part de la complexification des plateformes matérielles impliquant une com-
plexification de la couche logicielle afin de maximiser l’usage du matériel. Les
systèmes modernes génèrent de l’ordre de 106 évènements par minute avec plusieurs
centaines de processus actifs. Les outils actuels d’analyse de traces ne passent pas
à l’échelle, ne permettant pas de faire une analyse efficace de traces volumineuses.

157

158 CHAPTER 2. CONTEXTE INDUSTRIEL

La problématique actuelle consiste à proposer de nouveaux outils permettant
l’étude des traces d’exécution générées sur les systèmes modernes. Nous travaillons
sur deux axes autour de cette problématique : la proposition de nouveaux outils
de visualisation de traces d’exécution et l’intégration de résultats de technique de
fouille de données pour la découverte automatique de motifs dans les traces.

Chapter 3

Etat de l’Art

Visualisation de Séries Temporelles

Dans ce chapitre, on s’intéresse à trois corpus de travaux : la visualisation de séries
temporelles, la visualisation de traces d’exécution et enfin la visualisation de motifs.

Nous avons vu que les traces d’exécution contiennent un grand nombre d’évènements
et un grand nombre d’acteurs (processus, interruptions, etc.). Une trace d’exécution
peut se modéliser par une série temporelle, une suite d’évènement triée par ordre
chronologique. De nombreux travaux se sont focalisés sur la représentation de la
dimension temporelle et plusieurs approches ont été proposées.

La solution la plus classique et répandue consiste à encoder la dimension tem-
porelle sur l’axe horizontal de la visualisation, en disposant le premier évènement
chronologique le plus à gauche. La plupart de ces techniques de visualisation util-
isant une représentation linéaire du temps sont des dérivés du line graph et ont pour
but de corriger leurs défauts en y intégrant des interactions et en enrichissant leurs
représentations visuelles.

Une autre solution consiste à encoder le temps sous forme cyclique, selon une
disposition en spirale ou circulaire. Ces différentes représentations du temps con-
duisent à des visualisations uniques, spécifiques à des tâches bien précises mais
peuvent nécessiter un temps d’apprentissage à l’utilisateur. La représentation cy-
clique du temps est performante pour la découverte de motifs périodiques dans les
données. En revanche, pour les tâches plus basiques, comme la lecture et la com-
paraison de valeurs, la courbure de l’axe du temps ajoute de la complexité et ralentit
le processus de compréhension des données. Dans cette configuration, la difficulté
pour comparer les valeurs a pour conséquence de rendre la visualisation de plusieurs
séries une tâche compliquée.

Visualiser de multiples séries temporelles est un domaine de recherche actif. Deux
stratégies ont été identifiées pour la gestion de l’espace écran : les split-screen et les
shared-screen techniques [Javed et al., 2010]. Les techniques split-screen reposent
sur le principle de small multiples introduit par Tufte [Tufte, 1986]. Elles consis-
tent à diviser l’espace écran S and N régions de taille S/N , une région par série

159

160 CHAPTER 3. ETAT DE L’ART

temporelle. Les techniques shared-screen ont une approche différente : les séries
temporelles sont toutes représentées dans le même espace et sont différenciées en
utilisant la couleur. Les techniques split-screen sont plus performantes pour lire des
valeurs globales tandis que les techniques shared-screen sont meilleures pour étudier
de façon locale les séries temporelles [Javed et al., 2010].

Nous avons vu dans le chapitre précédent que les traces d’exécution contiennent
un grand nombre d’évènements et vont continuer à grossir dans le futur. Pour une
analyse efficace de telles traces, il est nécessaire d’avoir des outils de visualisation
capables de gérer de telles quantités de données. L’étude de l’existant montre qu’il
existe deux méthodes pour visualiser de larges séries temporelles : les techniques
multi-foci et celles fournissant une vue globale et détaillées (overview+details). La
limitation principales de ces différentes approches réside néanmoins dans le pas-
sage à l’échelle par rapport au nombre de séries temporelles à visualiser. Les tech-
niques existantes reposent sur des variantes de graphes qui deviennent rapidement
sur-chargées quand plusieurs séries sont à visualiser. Dans le contexte des traces
d’exécution, avant d’être capable d’étudier en profondeur le comportement d’un
acteur, les développeurs doivent d’abord comprendre le comportement global du
système et donc visualiser plusieurs séries temporelles. Les techniques existantes
pour l’exploration d’une grande série temporelles deviennent pertinentes unique-
ment pour étudier le comportement d’un acteur en particulier.

Les techniques de visualisation d’une grande collection de séries temporelles ont
aussi été largement investiguées. Il résulte que bien qu’elles proposent des solutions
efficaces pour analyser de façon globale les séries, les techniques existantes man-
quent d’interactions pour explorer la dimension temporelle, nécessaire lorsque les
séries comportent un grand nombre d’évènements.

Une des tâches les plus importantes lors de la visualisation de séries temporelles
est l’identification de motifs fréquents. De nombreuses techniques d’analyses vi-
suelles ont été proposées [Aigner et al., 2007]. Certaines techniques reposent sur des
algorithmes qui calculent de façon automatique les motifs. Leur limitation réside
dans le fait qu’elles nécessitent la plupart du temps un utilisateur expert capable
de paramétrer correctement l’algorithme et de comprendre les résultats. D’autres
approches prennent en entrée un motif défini par l’utilisateur et cherchent à trouver
les différentes instances de ce motif dans les données. Cette approche n’est pas appli-
cable dans le cas de l’analyse de traces d’exécution: les développeurs ne connaissent
pas a priori les motifs à chercher qui pourraient correspondre à des comportements
anormaux pendant l’exécution.

161

Visualisation de Traces d’Exécution

Les travaux existants sur la visualisation de traces d’exécution sont catégorisables
en deux familles : les techniques proposant une vue globale de l’exécution et les
techniques permettant l’analyse fine de l’exécution.

Les visualisations existantes qui fournissent une vue globale sur l’exécution re-
posent sur plusieurs stratégies en utilisant soit un algorithme d’aggrégation, des
treemaps ou des statistiques spécifiques au domaine métier. Bien que les informa-
tions montrées à l’utilisateur soient pertinentes, leur manque d’interactions et une
vue trop aggrégées ont pour conséquence de ne pas fournir suffisamment d’information
aux développeurs pour commencer efficacement l’analyse de l’exécution et trouver
la source de bogues temporels qui impliquent potentiellement plusieurs acteurs.

D’autres travaux proposent des visualisations détaillées de traces d’exécution et
permettent aux développeurs de comprendre en détails les séquences d’évènements
sur un intervalle de temps. Cependant, un problème de passage à l’échelle apparâıt
avec les traces contenant un grand nombre d’évènements. D’une part, des problèmes
d’aliasing peuvent apparâıtre. D’autre part, dans le cas d’applications multimedia,
des motifs temporels peuvent apparâıtre à plusieurs échelles temporelles mais les
techniques existantes ne permettent pas de les visualiser dû à l’absence d’aggrégation
des données ou parce que la dimension temporelle n’est pas explicitement encodés,
cachant la synchronisation entre différents acteurs.

Un gap important existe entre les techniques proposant une vue aggrégée de la
trace trop abstraite pour commencer efficacement l’analyse et celles proposant une
vue détaillée pertinente pour une analyse locale des comportements mais fastidieuse
pour la découverte de motifs à différentes échelles plus globales. En complément de
ces approches, les développeurs ont besoin d’un outil intéractif multi-échelle four-
nissant une vue globale de l’exécution mais gardant suffisamment de détails pour
filtrer de façon efficace les données avant de commencer une analyse plus fine d’une
zone particulière de la trace.

Visualisation de Motifs

Les techniques de visualisation de motifs existantes cherchent à montrer l’ensemble
des motifs fréquents appartenant à un domaine particulier (itemset, séquences, etc.)
et à fournir des interactions permettant leur exploration. Elles nécessitent souvent
un utilisateur expert. Dans le chapitre 6, nous proposons une approche différente:
nous considérons les motifs courts (de taille fixe avec seulement 2 ou 3 items) mais
nous nous concentrons sur les différentes structures qui organisent ces items: les en-
sembles, les séquences et leur périodicité. Notre technique de visualisation est con-
struite à partir de cette idée : les structures sont l’information principale montrée par
notre technique, évitant ainsi une explosion combinatoire des motifs à représenter
mais aussi en visualisant des informations qui demeurent souvent cachées dans les
techniques existantes.

Chapter 4

Challenges autour du Débogage de
Traces

Représentation imprécises des séries temporelles

L’étude des techniques de visualisation de données temporelles a montré un manque
de techniques fournissant une grande précision visuelle, obligatoire dans un con-
texte scientifique ou industriel. En particulier, nous avons observé un manque de
travaux sur le rendu d’une série temporelle à proprement parler qui répondraient à
la question suivante : comment minimiser les artéfacts visuels tout en produisant
une représentation lisse de séries temporelles ?

Un rendu imprécis peut introduire des artéfacts visuels et induire l’utilisateur
en erreur dans ses conclusions. Dans le contexte de cette thèse, une mauvaise
représentation des traces pourrait mener les développeurs à modifier une mauvaise
partie du code de l’application ou être bloqués dans leur processus de débogage.
Trouver un bogue temporel dans une trace d’exécution comportant un nombre im-
portant d’évènements est une tâche fastidieuse. Il est ici primordial que les visuali-
sations montrent les différents aspects du comportement de l’application de façon la
plus précise possible. Ceci représente un des challenges à adresser pour un débogage
temporel efficace.

Gap important entre les vues globales et les représentations détaillées

Nous avons vu dans le chapitre précédent que les visualisations existantes sont soit
trop agrégées, soit trop détaillées, soulevant la question suivante : quelle est la
technique de visualisation à développer pour fournir un outil proposant suffisamment
d’information sur le comportement de l’application pour commencer l’analyse tout
en restant suffisamment aggrégé pour permettre une exploration efficace des données
?

163

164 CHAPTER 4. CHALLENGES AUTOUR DU DÉBOGAGE DE TRACES

Performances insuffisantes des outils de stockage utilisés

Les outils existants reposent sur une stratégie de découpe arbitraire de la trace en
un certain nombre de tranches de temps, appelées pages. Cette technique permet
de réduire le temps d’accès au disque en limitant les requêtes uniquement à la page
courante et a été développée à un moment où les disques étaient bien plus lents mais
rend fastidieux l’exploration de traces comportant plusieurs millions d’évènements.
Les disques modernes fournissent un temps d’accès aux données largement réduit
avec l’utilisation de Solid State Disks (SSD). Un challenge à adresser serait de tirer
parti de leurs performances pour fournir des outils interactifs : comment développer
une solution permettant l’exploration interactive de séries temporelles comportant
plusieurs millions d’évènements ?

Fouille de données pour la visualisation de traces d’exécution

Il existe des techniques de fouille de données capable de détecter automatiquement
les comportements anormaux dans les traces d’exécution. Par exemple, Lopez Cueva
et al. [Lopez Cueva et al., 2012] ont proposé une technique pour détecter les motifs
périodiques dans la trace, et Iegorov et al. [Iegorov et al., 2015] ont développé un
algorithme pour détecter les perturbations. Utiliser ces résultats pour enrichir les
visualisations résulterait dans des outils de débogage bien plus performants. Ici, le
challenge à adresser est le suivant : comment exploiter les techniques de fouille de
données pour enrichir les outils de débogage de traces d’exécution ?

Chapter 5

Approche de Recherche et
Méthodologie d’Evaluation

Dans l’état de l’art, nous avons remarqué un manque de techniques de visualisa-
tion pour représenter de façon précise les séries temporelles. Ce problème concerne
un domaine plus large que la visualisation de traces d’exécution et touche un as-
pect fondamental de la visualisation de données temporelles. Par conséquent, nous
commençons au Chapitre 6 par nous concentrer sur ce problème où nous proposons
une nouvelle technique de visualisation pour séries temporelles, les Slick Graphs, qui
minimisent les artéfacts visuels au niveau du pixel. Nous utiliserons les Slick Graphs
comme brique de base pour les travaux présentés dans les chapitres suivants. Nous
évaluerons les Slick Graphs à travers une évaluation utilisateur contrôllée afin de
mesurer précisément les bénéfices de notre approche.

Au chapitre 7, nous introduisons une solution, TraceViz, pour réduire le gap
existant dans les outils d’analyse de traces, à savoir l’uns étant trop aggrégés pour
commencer l’analyse de la trace, les autres étant trop détaillés et empêchent une ex-
ploration efficace de traces volumineuses. TraceViz a été développé en collaboration
avec les équipes de développement d’outils d’analyse de traces à STMicroelectronics
et a été intégré et déployés aux développeurs internes ainsi qu’aux clients STMi-
croelectronics. Ceci constitue une validation industrielle, montrant que TraceViz
répond à un réel besoin utilisateur.

Dans le chapitre 8, nous proposons une nouvelle vue globale de la trace mon-
trant les structures d’exécution cachées. Les structures sont calculées à partir de
techniques de fouille de données et apportent aux développeurs une nouvelle per-
spective sur l’exécution, difficilement trouvables avec les outils existants.

165

Chapter 6

Slick Graphs: Visualisation Lisse
de Séries Temporelles

Figure 6.1: Slick Graphs

Dans ce chapitre, nous introduisons les Slick Graphs 6.1, une technique de visual-
isation pour séries temporelles. Les séries temporelles sont souvent montrées lissées
pour permettre une lecture plus facile. Les techniques de lissage traditionnelles
utilisées par de nombreuses visualisations pour des données temporelles reposent
sur un découpage des valeurs en un petit nombre d’intervalles de temps et interpo-
lent de façon lisse ces valeurs, ce qui peut introduire de nombreux artéfacts visuels.
Les Slick Graphs minimisent ces artéfacts en utilisant les plus petits intervalles de
temps possibles, les pixels. Ils fournissent néanmoins un rendu final lisse en applicant
une convolution avec un noyau statistique sur les valeurs obtenues. Les informations
filtrées, qui peuvent être perdues par le lissage, sont encodées dans la luminosité des
pixels. Nous comparons les Slick Graphs aux techniques de lissage traditionnelles
à travers une étude utilisateur qui contient de nombreuses tâches de comparaison.
Les résultats montrent que les Slick Graphs sont plus performants que l’algorithme
de lissage référent : l’algorithme introduit avec ThemeRiver. En particulier, les
utilisateurs sont significativement plus rapides (+62%) et plus précis (+48%) avec
les Slick Graphs en travaillant sur des données temporelles périodiques. Enfin, nous
montrons comment utiliser les découpages des données en se basant sur les pixels
ainsi que la méthode de lissage des Slick Graphs s’intègrent efficacement avec les
techniques de visualisation existantes pour séries temporelles.

167

Chapter 7

TraceViz

Figure 7.1: TraceViz

Dans l’état de l’art, nous avons montré qu’un gap existe entre les outils proposant
une vue globale de la trace et ceux fournissant trop de détails. Nous avons expliqué
que les premiers ne permettent pas de commencer l’analyse de la trace correctement
dû à une aggrégation trop importante des données. Les seconds rendent la navi-
gation de traces volumineuses fastidieuse à cause du trop grand nombre de détails
visualisés. Nous proposons dans ce chapitre TraceViz, un framework de visualisation
multi-échelle qui permet aux développeurs d’explorer de façon interactive des traces
avec un nombre important d’évènements en partant d’une vue très aggrégée jusqu’à
avoir le détail d’un unique évènement. TraceViz est composé de deux composants
principaux : un nouveau système de gestion des données et une nouvelle technique
de visualisation multi-échelles. Les outils existants utilisent SQLite pour stocker les

169

170 CHAPTER 7. TRACEVIZ

traces. Cette solution atteint ses limites en travaillant avec les traces modernes pou-
vant contenir jusqu’à plusieurs millions d’évènements. Pour permettre un passage
à l’échelle et fournir une exploration interactive de la trace, nous avons développé
un nouveau système de stockage de traces basés sur HDF5 et prenant avantage des
disques SSD modernes. Nous avons mesuré les performances de notre solution et les
résultats montrent que notre approche permet un temps de réponse suffisamment
court pour garantir l’interactivité des outils. Le second composant de TraceViz est
un nouvel outil de visualisation prenant appui sur le système de stockage développé
et basé sur les Slick Graphs afin de garantir une visualisation précise des données
(Figure 7.1).

TraceViz a été développé en collaboration avec STMicroelectronics et a servi à
la résolution de plusieurs bogues rencontrés en situation réelle. TraceViz a aussi été
intégré dans les outils de STMicroelectronics, fournis aux développeurs internes ainsi
qu’aux clients des solutions STMicroelectronics. TraceViz est donc potentiellement
accessible à plusieurs milliers de développeurs.

Chapter 8

Visualisation des Structures
Cachées Dans la Trace

Figure 8.1: Visualisation de structures dans une trace d’exécution

Dans ce chapitre, nous proposons une nouvelle technique d’analyse visuelle pour
comprendre rapidement les principales structures existantes dans les données ainsi
que leur évolution au cours du temps. A la place de laisser les développeurs découvrir
visuellement les motifs temporels, comme avec TraceViz par exemple, nous pro-
posons une approche qui combine les techniques de visualisation de données avec
des méthodes de fouille de données simplifiées dans le but de fournir une visualisation
finale compréhensible par un utilisateur non-expert. Nous introduisons la notion de
structure, qui regroupe différentes informations sur un itemset telles que son support,
sa séquence dominante, le support de cette séquence ainsi que sa périodicité. Nous

171

172 CHAPTER 8. STRUCTURES

calculons exhaustivement toutes les structures de la trace sur plusieurs tranches de
temps et procédons ensuite à un classement afin de faire ressortir quelles sont les
structures dominantes. Basée sur ces résultats, nous avons conçu un outil de visu-
alisation des structures sur la trace montrant quelles sont les structures dominantes
sur chacune des tranches de temps préalablement définies (Figure 8.1). Chaque
structure est représentée avec un rectangle dont la couleur indique s’il s’agit d’un
itemset (noir) ou d’une séquence (bleu). La périodicité est encodée dans le channel
alpha du rectangle, plus la structure est périodique, plus la couleur est transparente.

Nous avons appliqué notre méthode aux traces d’exécution et les premiers résultats
montrent que les structures récurrentes dans l’exécution ainsi que les perturbations
apparaissent dans la visualisation. Nous avons aussi appliqué notre méthode sur
différents jeux de données : du texte et des logs de Git. En utilisant du texte comme
entrée, nous pouvons voir apparâıtre la structure du roman analysé, les différentes
phases de l’histoire. L’analyse des commits Git permettent de faire ressortir les
équipes de développeurs ainsi que les comportements récurrents dans les commits.

Chapter 9

Etude d’un Environnement
Intégré de Débogage

Nous proposons dans ce chapitre un exemple d’intégration des différentes contri-
butions faites dans cette thèse afin de montrer comment les différentes approches
proposées sont complémentaires et peuvent être combinées. Pour illustrer notre
propos, nous montrons comment un bogue peut être résolu. Nous avons proposé
dans les chapitres précédents TraceViz et un outil d’analyse visuel pour identifier
les structures dominantes de la trace. Nous proposons ici de commencer l’analyse
de traces avec TraceViz afin de commencer par explorer et filtrer efficacement les
données. En procédant ainsi, les développeurs sont capables de rapidement cibler
des parties de la trace qu’ils jugent intéressantes. Une fois la trace filtrée, il est
possible de faire une analyse locale plus poussée à l’aide de l’outil d’analyse visuel
présenté dans le chapitre précédent. Le développeur pourra ainsi se concentrer sur
les structures dominantes et identifier les perturbations dans les zones préalablement
sélectionnées avec TraceViz.

Dans ce chapitre, nous montrons un exemple d’intégration de nos outils mais une
étude avec les développeurs est nécessaire afin de définir la meilleure méthodologie
de travail ainsi que l’intégration optimale des techniques présentées au cours de cette
thèse.

173

Chapter 10

Conclusion

Au cours de cette thèse, nous avons proposé trois contributions dans les domaines
de la visualisation d’information et contribué aux activités industrielles de STMicro-
electronics. Le but de cette thèse était de proposer de nouveaux outils de débogage
pour traces d’exécution basés sur des techniques de visualisation et de la fouille de
données. Ainsi, avoir une visualisation précise de séries temporelles utilisable en
contexte scientifique et industriel est primordial. Nous avons vu que les techniques
existantes introduisaient des artéfacts visuels conduisant à un rendu imprécis des
données temporelles. Par conséquent, nous avons présenté les Slick Graphs, une
nouvelle technique de visualisation interactive basée sur les pixels qui permet de
visualiser les séries temporelles de façon fidèle.

La deuxième contribution de cette thèse a été TraceViz, un framework de visu-
alisation pour traces d’exécution. TraceViz est un compromis entre une vue globale
trop générale pour être utile et une vue montrant un niveau de détails trop élevés
pour être compris par l’utilisateur. Nous avons montré comme les développeurs peu-
vent détecter visuellement les motifs temporels et comportementaux dans la trace.
TraceViz a été intégré à la suite d’outils STMicroelectronics.

La troisième contribution de cette thèse est une nouvelle méthode d’analyse vi-
suelle permettant de visualiser les structures cachées dans les traces d’exécution.
Pour ceci, nous avons basé notre approche sur des techniques de fouille de données
pour calculer les différents motifs dans la trace. Nous avons proposé une technique
de visualisation pour représenter ces structures de façon compréhensible pour des
utilisateurs non-experts. De cette façon, le régime principal de l’application peut
être visualisé ainsi que les différentes perturbations ayant eu lieu.

Suite à ces travaux de thèse, les perspectives suivantes constituent des pistes de
travail intéressantes. Dans TraceViz, à chaque acteur de la trace correspond une série
temporelle et les acteurs sont organisés par défaut selon une hiérarchie préalablement
définie. En parallèle de cette organisation, les acteurs pourraient être classés avec
un clustering hiérarchique ce qui permettrait d’accélérer le processus de débogage en
faisant apparâıtre des motifs communs aux acteurs. Il existe différentes techniques

175

176 CHAPTER 10. CONCLUSION

de visualisation pour explorer un clustering hiérarchique. Leur intégration avec
TraceViz amènerait des questions de recherche intéressantes dans le domaine de la
visualisation d’information.

Avec TraceViz, nous avons proposé l’utilisation un nouveau stockage de données
permettant l’exploration interactive des traces d’exécution volumineuses actuelles.
Cependant, tout système de stockage et algorithme atteind sa limite avec des données
suffisamment volumineuses. Une approche différente consiste à visualiser des résultats
partiels au cours du calcul. Les premières études ont montré que les analystes
sont capables de raisonner avec des résultats même partiels, montrant que le rendu
incrémental est une piste encourageante.

La norme en visualisation d’information est de représenter chaque variable dans
les données par un unique attribut visuel mais une approche différente peut être
considérée. Par exemple, dans les Slick Graphs, nous avons encodé une valeur de
l’histogramme sur deux attributs : la hauteur et le canal alpha du pixel. Ceci
soulève une question de recherche plus générale : comment encoder une variable des
données sur plusieurs attributs visuels pour visualiser des informations difficilement
compréhensibles autrement ?

Nous avons introduit une méthode pour calculer les structures dans les traces
au Chapitre 8. Deux pistes de travail s’ouvrent. D’une part, il serait intéressant
d’intégrer des algorithmes de fouille de données existants pour avoir des résultats
plus précis. D’autre part, une autre amélioration serait d’implémenter notre méthode
de calcul des structures sur GPU afin de réduire le temps de calcul et de tendre vers
un outil interactif.

Nous avons utilisé dans nos structures des itemsets, des séquences et des séquences
périodiques mais le concept de structure peut être étendu à d’autres types de motifs
comme par exemple des graphes. Ceci permettrait de visualiser l’évolution des struc-
tures dans des réseaux sociaux comme Twitter ou Facebook. La difficulté principale
serait de faire correspondre tous les paramètres des structures sur des attributs vi-
suels tout en gardant une visualisation claire pour une compréhension rapide de ces
structures.

177

	Abstract
	Résumé
	Acknowledgement
	Introduction
	Motivation and Approach
	Challenges in Embedded Systems and Multimedia Applications
	Research Approach

	Contributions
	Scientific Context
	Thesis Outline

	I Background
	Multimedia Applications on Embedded Systems
	Evolution of Video Standards
	Evolution of the Embedded Systems
	Focus on Hardware for Multimedia Decoding
	Decoding Multimedia Streaming Applications
	Debugging Multimedia Applications on Embedded Systems
	Execution Traces
	Tracing Systems

	Conclusion

	Related Work
	Time Series Visualization
	Time Representation
	Multiple Time Series Strategies
	Large Time Series Exploration
	Exploration of Large Collections of Time Series
	Visual Mining of Time Series

	Visualization of Execution Traces
	Overview of a Trace
	Detailed Visualization of a Trace
	Summary: a Gap Between Overview and Detail Visualizations

	Pattern Visualization

	Challenges for Trace Debugging
	Inaccurate Time Series Rendering
	Large Gap Between Overview and Detailed View
	Slow Back-end Performances
	Pattern Mining for the Visualization of Execution Traces

	II Contributions
	Research Approach and Evaluation Methodology
	Research Approach
	Evaluation Methodology and Validation
	Slick Graphs Evaluation
	TraceViz Evaluation
	Structures Visualization

	Slick Graphs: Slick Visualization of Time Series
	Introduction
	Smoothing Techniques for Accurate Visualization Techniques
	Smooth First, Bin and Aggregate Second
	Bin and Aggregate First, Smooth Second

	Study Case: ThemeRiver Smoothing Algorithm
	Layer Building
	Legibility Problems
	Wrong period depiction
	Summary

	Slick Graphs
	Time Series as Data
	Slick Graphs Binning Algorithm
	Slick Graphs Smoothing Algorithm
	Encoding the Filtered-out Information
	Use Case: Slick Graphs as a Low-Pass Filter

	User Study: Evaluation of the SLG Smoothing Technique
	Hypotheses
	Tasks
	Participants
	Experiment data
	Protocol
	Results
	Discussion

	Integration with Existing Techniques
	Stacked Graph
	Interactive Horizon Graph

	Conclusion

	TraceViz
	Introduction
	Data
	Data Storage
	Statistics and Data Computation

	TraceViz Design
	Design Rationale
	TraceViz Visualization Principles

	TraceViz
	Layout
	Initial View Configuration
	Trace Exploration
	Pan and zoom
	Actor Selection and Aggregation
	Hierarchy Reordering
	Implementation

	Industrial Use Cases
	Use Case 1: Zap
	Use Case 2: HDMI black-outs

	Industrial Deployment
	STMicroelectronics Toolkit
	The FrameSoC platform
	TraceViz Architecture

	Conclusion

	Hidden Structures at a Glance
	Introduction
	Definitions and Notations
	Basic Definitions
	Structure

	Structure Computation
	Structure Visualization
	Goals
	Structures Overview
	Visualizing Structure Details

	Experiments
	Execution Traces
	CPython Git Repository
	Foundation Series

	Conclusion

	Study of an Integrated Debugging Workflow
	Introduction
	Example of an Analysis Workflow
	Use case: TSRecord
	Conclusion

	Conclusion
	Contributions
	A Smooth Visualization Technique for Time Series
	A Visualization Framework for Execution Traces
	Discovering Hidden Structures

	Future Work

	Bibliography

	III French Summary
	Introduction
	Contexte Industriel
	Etat de l'Art
	Challenges autour du Débogage de Traces
	Approche de Recherche et Méthodologie d'Evaluation
	Slick Graphs: Visualisation Lisse de Séries Temporelles
	TraceViz
	Structures
	Etude d'un Environnement Intégré de Débogage
	Conclusion

