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Résumé de la thése

RESUME DE LA THESE

Introduction générale

En 1991, la diversité fongique sur la terre était estimée a 1,5 M espéeces, mais dix
ans plus tard était rapporté un nombre d’espéces fongiques trois fois plus important,
Disease Control and Prevention” (CDC), seulement 300 d'entre elles sont pathogénes pour
I'homme [4, 5]. Méme si quelques espéces seulement sont responsables de la plupart des
cas de mycoses, le nombre de champignons pathogénes émergents a I'origine des infections
invasives augmente régulierement. Par exemple, les espéces du genre Scedosporium
(mentionnés précédemment sous une autre nomenclature) qui ont été découvertes en 1889
en tant qu'agents d'otite humaine, n’ont été reconnues comme pathogénes humains qu‘a la
fin des années 1980, période ou la fréquence des maladies attribuées a ces champignons a
commencé a augmenter et ol ces pathologies ont commencé a se diversifier [6].

Les infections superficielles de la peau et des ongles causées par des champignons
sont estimées affecter 20 a 25% de la population mondiale [7]. Par ailleurs, on estime entre
autres a 10 millions le nombre de cas annuels de candidose orale chez les patients atteints
du VIH et a 2 millions le nombre de cas annuels d'infections de I'cesophage [8]. Méme si les
infections fongiques invasives sont beaucoup moins fréquentes que les infections
superficielles, le nombre de décés causés par les infections invasives est au moins égal,
sinon supérieur, au nombre de décés causés par Plasmodium falciparum ou par
Mycobacterium tuberculosis selon Brown et al. [8]. En dépit de leur importance en terme de
morbidité et de mortalité, les infections fongiques ne sont pas reconnues, et il n’existe
aujourd'hui encore pas de plan établi par des organismes comme I'Organisation mondiale de
la Santé pour lutter contre ces infections [8, 9].

Au cours des dernieres décennies, l'incidence des infections fongiques a augmenté
considérablement, notamment en raison de l'incidence croissante de nombreux cancers et
hémopathies malignes, du développement des soins intensifs et des techniques de
réanimation médicale et chirurgicale impliquant le recours a des procédures de plus en plus
agressives, du nombre croissant de patients immunodéprimés avec |'émergence de
I'épidémie de SIDA et le développement des greffes de moelle osseuse et transplantation
d'organes solides, de I'amélioration de la prise en charge de certaines pathologies chroniques
comme la mucoviscidose, de I'émergence de phénoménes de résistance des agents de
mycoses aux antifongiques ainsi que des changements climatiques [5, 10, 11, 12, 13].
Cette multitude de facteurs augmentant le nombre et la gravité des infections fongiques

montre la complexité de la situation. Une meilleure compréhension des mécanismes
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Résumé de la thése

pathogéniques des champignons est donc nécessaire pour identifier de nouvelles cibles
thérapeutiques.

Le complexe Scedosporium apiospermum comprend les agents étiologiques les plus
courants de mycétome cutanés et sous-cutanés. Mais ces champignons provoquent aussi des
infections disséminées chez des patients infectés par le VIH a un stade avancé, des patients
atteints d'hémopathies malignes ou ayant subit une transplantation, mais aussi des atteintes
des voies respiratoires supérieures et des infections pulmonaires. Ainsi, le complexe S.
apiospermum se situe au deuxiéme rang parmi les champignons les plus fréquemment isolés
dans les voies respiratoires des patients atteints de mucoviscidose. Ces espéces sont
réfractaires au traitement et a I'heure actuelle elles sont considérées comme un défi
diagnostique et thérapeutique [14].

Aujourd'hui, nos connaissances sur les mécanismes pathogéniques de ces
champignons sont encore trés limitées. Au cours de ce travail, nous avons donc étudié la
paroi cellulaire de Scedosporium boydii, I'une des deux espéces majeures de ce complexe,
puisque le paroi joue un role essentiel pour la survie du champignon dans le milieu extérieur
et sa pathogénicité, conditionnant en effet I'adhérence du champignon aux tissus de I'hote et
son échappement vis-a-vis des mécanismes de défense de I'héte. Les modifications qui se
produisent dans la paroi cellulaire ont été étudiées au cours de la maturation et la
germination des conidies en utilisant diverses approches pour tenter d'identifier les facteurs
potentiels de virulence (mélanine, hydrophobines, protéines a ancre GPI pour
glycosylphosphatidylinositol). Le premier génome séquencé pour l'un des membres de ce
complexe d'espéces (Scedosporium apiospermum) est également décrit. Un certain nombre
de voies métaboliques ont été identifiées dans le génome concernant le potentiel
biotechnologique de ces champignons dans la bioremédiation, ce qui corrobore un grand
nombre d'études expérimentales dans ce domaine. De plus, la connaissance du génome de
ces champignons facilitera la recherche fondamentale sur les mécanismes pathogéniques des

champignons du genre Scedosporium.

Etude I

Scedosporium boydii et S. apiospermum sensu stricto sont les deux espeéces
majeures du complexe S. apiospermum en pathologie humaine. Ce sont notamment les deux
espéces les plus fréquemment isolées des sécrétions respiratoires chez les patients atteints
de mucoviscidose [15]. Les mécanismes d'adhérence des conidies de ces champignons au
niveau des voies respiratoires sont encore inconnus. Bien que non démontré
expérimentalement, il est hautement probable que l'infection respiratoire débute par

l'inhalation de conidies aéroportées, suivie de |'adhérence des conidies aux cellules
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Résumé de la thése

épithéliales ou aux composants du mucus bronchique, et de leur différenciation en hyphes.
Toutes ces étapes sont régies par la paroi sporale qui constitue la premiére structure
fongique au contact des tissus de I'h6te, ou de composants de I'hote.

L'adhérence est régie par deux types de mécanismes, des interactions spécifiques de
type récepteur-ligand et des interactions non spécifiques, électrostatiques ou hydrophobes
[16]. En fonction du champignon, les interactions spécifiques peuvent impliquer des
polysaccharides (mannanes [17], glucanes ou galactosaminogalactannes [18]), des
glycoprotéines liées a la paroi cellulaire par le biais de liaisons covalentes ou non (par
exemple des hydrophobines [19, 20] ou des protéines a ancre GPI comme les adhésines
Pwp7p et Aedlp de Candida glabrata [21] et la CSPA d'Aspergillus fumigatus [22]). Les
interactions non spécifiques sont déterminées par les propriétés physiques de la surface
cellulaire telles que I'hydrophobicité et la charge électrostatique qui refletent la composition
biochimique de la paroi [23]. L'importance de ces interactions non spécifiques a été prouvée
dans plusieurs modéles fongiques y compris des levures [24, 25] et des champignons
filamenteux. La délétion du géne medA chez A. fumigatus, par exemple, entraine une
modification des propriétés physiques de la surface ainsi qu’une réduction de I'adhérence aux
cellules épithéliales et de la virulence [26].

Echapper & la reconnaissance par le systéme immunitaire et a la lyse qui en résulte
est un autre défi pour les agents pathogénes. Chez A. fumigatus, I'hydrophobine rodA
contribue a la viabilité du champignon in vivo en masquant certaines molécules
immunogéenes de paroi (PAMPs), empéchant ainsi la reconnaissance par Dectine-1 et
Dectine-2 [27]. Des études sur d’autres agents pathogénes fongiques, Pneumocystis
jirovecii et Cryptococcus neoformans, ont montré leur capacité a échapper a
I'immunosurveillance respectivement par modification de I'expression des glycoprotéines
majeures de surface [28] ou par l'intermédiaire d'une capsule qui recouvre les composants
antigéniques des propagules infectieuses et module la réponse immunitaire [29]. La
mélanine est un autre facteur de virulence utilisé par de nombreux champignons afin de
résister a la phagocytose et a l'action des espéces radicalaires dérivées de I'azote ou de
I'oxygéne. La mélanine fongique est connue pour limiter I'activation du complément, et pour
conférer une résistance aux agents antimicrobiens [30]. En outre, la modification ou
I'inhibition de I'expression de la mélanine ou de I’'nydrophobine rodA a des répercussions sur
les propriétés physiques de la surface cellulaire.

Chez S. boydii, seul un nombre limité de constituants de la paroi ont été caractérisés
a ce jour, notamment des peptidorhamnomannannes (PRM) et des alpha-glucanes [31]. Il a
notamment été démontré que les PRM jouent un rble dans l'adhérence de conidies aux

cellules épithéliales HEp2 in vitro [32], ainsi que dans l'activation des récepteurs de type
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Toll (TLR) 4 qui sont a l'origine de la sécrétion de cytokines par les macrophages [33].
D’autre part, les alpha-glucanes pourraient susciter la phagocytose et induire la sécrétion de
cytokines inflammatoires dans un mécanisme impliquant CD14, TLR 2 et MyD88 [34]. Des
activités phosphatase acide et phosphatase alcaline ont également été détectées dans la
paroi de S. boydii [35]. De méme, il a été mis en évidence la présence de céramides
monohexosides qui seraient essentiels dans la différenciation hyphale [36].

Dans cette premiére étude, nous avons donc examiné les changements temporels
dans les propriétés physiques de la paroi des conidies de S. boydii au cours de leur
maturation, et recherché la présence d’hydrophobines et de mélanine en tant que facteurs
potentiels de virulence.

Cette étude a été initiée devant I'nétérogénéité du marquage d'une spore a l'autre
aprés incubation des conidies d'une méme culture avec de la concanavaline A (Con A), une
lectine spécifique du mannose et du glucose couplée a l'isothiocyanate de fluorescéine
(FITC). Chez A. fumigatus, la germination des conidies est précédée d'une étape de
"swelling" qui se traduit par une augmentation importante de la taille des spores, un
amincissement de la paroi avec disparition de la couche pariétale externe, et une
vacuolisation du cytoplasme. L'étude morphologique et ulturastructurale des conidies au
cours de la germination montre que ce phénomeéne n’existe pas chez S. boydii. La paroi des
spores dormantes est tout a fait comparable a celle des cellules méres de tubes germinatifs,
et aucune vacuolisation n‘a été observée dans le cytoplasme; en outre, les conidies
intensément marquées par la Con A-FITC étaient d'une taille comparable a celle des conidies
non marquées. Une autre hypothése a donc été explorée pour expliquer I'hétérogénéité du
marquage aprés incubation avec la Con A : I'existence d'un processus de maturation des
conidies. Pour tester cette hypothése, nous avons étudié les variations des propriétés de la
surface des conidies provenant de cultures d'age variable (5, 9 et 14 jours). Les propriétés
physiques de surface refletent la composition biochimique de la paroi, et leurs variations
mettent en évidence les changements dans le taux ou l'accessibilité de ses composants. La
comparaison des conidies provenant de cultures agées de 5, 9 et 14 jours a montré des
variations importantes de I'hydrophobicité et la charge électronégative de surface avec un
maximum pour des spores provenant de cultures agées de 9 jours. Bien que I'ensemble des
composants de la paroi cellulaire participent aux propriétés physiques de surface des spores,
un réle plus prononcé de certains composants comme la mélanine a déja été démontré dans
d'autres especes fongiques comme A. fumigatus [37] et C. neoformans [38, 39]. Wang et
al. [40] ont montré que la mélanisation de C. neoformans augmente de maniére linéaire
pendant 14 jours. Nosanchuk et Casadevall [38] ont également analysé la charge de surface

des conidies en fonction de I'age des cultures et corrélé ses variations avec la mélanisation
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des spores. IIs ont constaté que I'augmentation de la charge électronégative en fin de phase
stationnaire était corrélée avec la mélanisation progressive des blastospores de C.
neoformans. De méme, certaines espéces du genre Trichoderma ont été étudiées par
Pokorny et al. [41]; leurs résultats montrent une variation de I'activité des laccases dans les
conidies en fonction de I'age de cultures, les laccases étant des enzymes responsables de la
derniére étape dans la synthése de la mélanine. En effet, cette activité atteint un maximum
dans les conidies provenant de cultures agées de 14 jours. Pour S. boydii, aucune étude
n‘avait été réalisée sur la synthése de mélanine. Nous avons donc précisé dans un premier
temps la voie de synthése de la mélanine produite par les conidies en incorporant des
inhibiteurs de la dihydroxynaphtaléne (DHN) ou de la dihydroxyphénylalanine (DOPA)-
mélanine dans le milieu de culture. Une nette différence a été observée dans la couleur des
conidies provenant de cultures réalisées en présence d'inhibiteurs de la DHN-mélanine,
suggérant que la synthése de la mélanine chez S. boydii s'effectue majoritairement par la
voie de la DHN-mélanine ce qui est confirmée par |'analyse par spectrophotométrie UV-
visible d'extraits de mélanine. La voie de synthése de la DHN-mélanine est une voie
métabolique complexe, qui fait intervenir chez A. fumigatus 6 génes organisés en cluster.
Nous avons pu identifier chez S. boydii deux de ces génes, codant respectivement une
polyketide synthase de type I (PKSI) et la tétrahydroxynaphtaléne réductase (4HNR).
L'analyse bioinformatique a montré une forte homologie des séquences nucléotidiques de ces
deux genes et des séquences en acides aminés prédites pour les protéines correspondantes
entre S. boydii et d'autres champignons proches qui synthétisent également de la DHN-
mélanine. L'expression de ces génes a également été démontrée dans des extraits d'ARN
obtenus a partir de cultures d'adge variable, mais nous n'avons pas trouvé de géne de
ménage dont I'expression soit stable dans nos conditions expérimentales, de sorte que nous
n‘avons pas pu évaluer I’évolution de I'expression de ces deux génes avec I'age des cultures.
Néanmoins, deux autres techniques nous ont permis de démontrer I'accumulation de la
mélanine avec l'age des cultures. Dans un premier temps, nous avons isolé des spores
provenant de cultures d’age variable, extrait la mélanine présente dans la paroi sporale et
les extraits ont été analysés par spectrophotométrie UV/visible, technique qui a montré une
augmentation de la quantité de mélanine avec I'age des cultures. Parallelement, nous avons
analysé par résonance paramagnétique électronique (RPE) des cellules entiéres provenant de
cultures d'age variable pour estimer les radicaux libres dont le taux refléte les intermédiaires
de synthése. Les intermédiaires de synthése de la mélanine générent naturellement des
radicaux libres qui peuvent étre détectés par un signal RPE [42]. De nombreuses études ont
déja associé les dommages exercés sur les spores in vitro, par exemple par exposition a un

rayonnement ionisant (UV), a la production de radicaux libres et donc a une augmentation

Sarah Ghamrawi | The cell wall of Scedosporium boydii XSG 5



Résumé de la thése

de l'intensité du signal RPE, suggérant un événement de dépolymérisation de la mélanine.
De méme, la mélanine est également connue pour ses propriétés anti-oxydantes. Elle piege
les espéces oxygénées réactives (ROS, reactive oxygen species), tels que les singulets
d'oxygéne 0%, le peroxyde d'hydrogéne H,0, et les anions superoxyde 0%, protégeant ainsi
les spores inhalées des réactions de défense de I'hote. L'équilibre entre les propriétés anti-
oxydantes et pro-oxydantes intrinseques de la mélanine détermine I'état d'oxydo-réduction
et le degré de polymérisation de la mélanine et donc son poids moléculaire [43, 44]. Dans
cette étude, nous avons démontré que I'augmentation de la quantité de mélanine avec I'age
des cultures chez S. boydii est accompagnée d'une diminution de I'intensité du signal RPE de
conidies, ce qui implique une polymérisation progressive de la mélanine avec la maturation
des conidies et I'acquisition d'une plus grande activité anti-oxydante.

Nos expériences ont par ailleurs montré le lien entre la teneur en mélanine et la
charge électronégative de surface. L'incorporation d'inhibiteurs de synthése de la DHN-
mélanine se traduit par une diminution importante de la charge électronégative de surface,
alors qu'elle est inchangée en présence d'inhibiteurs de synthése de la DOPA-mélanine. De
méme, l'examen des conidies en microscopie éléctronique a transmission montre que
I'épaisseur de la paroi sporale, qui est composée de deux couches superposées, une couche
interne transparente aux électrons et une couche externe dense aux électrons, n’est pas
affectée par I'incorporation d’inhibiteurs de synthése de la DOPA-mélanine dans le milieu de
culture. Par contre, la couche pariétale externe est plus fine, voire absente par endroits, si
I'on utilise un inhibiteur de synthése de la DHN-mélanine.

La maturation des conidies se traduit également par une augmentation de la teneur
en glycoconjugués riches en résidus mannose dans la paroi, mais ces glycoconjugués sont
masqués par la mélanine. En effet, I'analyse par cytométrie en flux de conidies incubées en
présence de Con A-FITC, ne montre pas de variations significatives de l'intensité moyenne
de fluorescence de surface des spores avec l'age des cultures. Néanmoins, lintensité
moyenne de fluorescence et le nombre des conidies fluorescentes augmentent
progressivement avec I'age des cultures pour des spores provenant de cultures réalisées en
présence d'inhibiteurs de synthése de la DHN-mélanine.

La mélanine et les hydrophobines de la paroi sporale constituent des systémes de
défense trés efficaces pour échapper a la reconnaissance par le systéme immunitaire et
lutter contre l'effet délétere des espéces oxygénées réactives. Chez S. boydii et
indépendamment de I'age des cultures, nous n'avons pas observé en microscopie de force
atomique (AFM) la présence d’hydrophobines organisées sous forme de rodlets (ou

batonnets), contrairement a ce qui est décrit pour les spores d'A. fumigatus pour lesquelles
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les hydrophobines se déposent en surface des spores sous forme de batonnets disposés
parallélement les uns aux autres et organisés en faisceaux.

En conclusion, les changements dans les propriétés de surface et la composition
biochimique de la paroi des conidies avec I'age de la culture mettent en évidence I'existence
d'un processus de maturation des conidies. L'ensemble de ces résultats démontre qu’il y a
polymérisation et accumulation progressive de la mélanine dans les spores avec I'dge des
cultures, ce qui est corrélé avec une augmentation de la charge électronégative de surface.
La DHN-mélanine est connue pour permettre I'échappement du champignon aux défenses
immunitaires de I'h6te en raison de ses propriétés anti-oxydantes. De plus, son accumulation
masque progressivement les glycoconjugués riches en résidus mannoses qui sont impliqués
dans la reconnaissance immunitaire, ce qui conforte le réle de la mélanine dans
I'établissement de la colonisation des voies respiratoires et le développement ultérieur de

I'infection.

Etude II

La germination des conidies inhalées et ['élongation progressive des filaments
mycéliens constituent des étapes essentielles dans la colonisation des voies respiratoires. En
tant qu'interface avec les structures de I'hote, la paroi joue la aussi un role majeur et une
meilleure connaissance des modifications structurales et biochimiques de la paroi au cours
de la germination constitue un préalable indispensable pour l'identification des mécanismes
pathogéniques du champignon. Le second volet de notre thése a donc porté sur I'étude des
modifications pariétales au cours de la germination des conidies de S. boydii. Ces
changements de la paroi cellulaire ont été mis en évidence a l'aide de différentes techniques
de microscopie (microscopie électronique a balayage ou a transmission, microscopie de force
atomique). Parallélement, nous avons analysé ['évolution des propriétés physiques de
surface (hydrophobicité de la surface cellulaire et charge électronégative, évaluation de la
fixation de la ferritine cationisée), et recherché des modifications de la composition
biochimique de la surface cellulaire par des méthodes indirectes (spectroscopie de force
chimique, cytométrie en flux aprés marquage des éléments fongiques avec des lectines
fluorescentes) ou directes (analyse protéomique apres extraction des protéines a ancre GPI).
Ainsi, nous avons montré que la paroi cellulaire de S. boydii subit des modifications
importantes au cours de la germination. Sur le plan ultrastructural, on assiste a un
remaniement de la couche externe dense aux électrons qui est compacte et d'épaisseur
réguliere pour les conidies dormantes et les cellules mére de tubes germinatifs, alors qu'elle
apparait irréguliére et plus lache pour la portion hyphale des tubes germinatifs. Par contre, a

la différence d’A. fumigatus pour lequel le processus de germination comprend une étape
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initale de gonflement, aucun changement majeur dans la taille des cellules n'est observé. De
méme, il n'y a pas de vacuolisation dans le cytoplasme.

Les propriétés physiques de la surface cellulaire sont également affectées par le
processus de germination. Les conidies sont plus hydrophobes et plus électronégatives que
les tubes germinatifs, comme en témoignent les techniques de partition de phase dans un
systeme eau/hexadécane et de microélectrophorése. La diminution de la charge
électronégative est confirmée par I'examen de tubes germinatifs en microscopie électronique
aprés marquage par la ferritine cationisée. Le marquage concerne essentiellement la surface
de la cellule mére des tubes germinatifs. Par ailleurs, aucun marquage n'est observé en
présence de ferritine native, ce qui confirme l'importance des charges électronégatives de
surface dans la fixation de la ferritine cationisée a la surface des cellules méres. Enfin, la
présence des acides sialiques a été recherchée car ils pourraient affecter la charge de
surface compte tenu de leur caractere électronégatif. De plus, il a été suggéré que les acides
sialiques contribuaient a la pathogénicité [45] et a I'adhérence des conidies aux cellules
épithéliales de I'h6te dans d'autres modeles fongiques [46]. Pour S. boydii, la dégradation
de ces molécules par la neuraminidase ne réduit pas l'intensité du marquage par la ferritine
cationisée suggérant que les acides sialigues ne sont pas impliqués dans la charge
électronégative de surface révélée dans ces expériences. A l'inverse, comme nous Il'avons vu
précédemment, l'inhibition de la synthése de la DHN-mélanine se traduit par une réduction
importante de la charge électronégative en surface des spores. Or S. boydii est un
hyphomycéte produisant des filaments mycéliens hyalins (non pigmentés). Il est donc
probable que la mélanine joue un réle majeur dans le caractére électronégatif de surface des
conidies et son absence en surface des hyphes, contrairement a la surface des spores
dormantes, serait a I'origine de la diminution de la charge et de I'hydrophobicité de la
surface cellulaire.

Précédemment, nous avons montré que la teneur de la paroi en glycoconjugués
riches en résidus mannose augmente avec la maturation des conidies [47], et que leur
accessibilité a la Con A était cependant entravée par I'accumulation de mélanine [47]. Avec
la germination des conidies, I'absence de mélanine dans la paroi des filaments produits
permet |'accessibilité de ces glycoconjugués riches en mannose ainsi que des polymeéres de
GlcNac, ce qui se traduit par une augmentation trés importante des capacités de fixation des
lectines fluorescentes Con A et wheat germ agglutinin (WGA).

Les interactions CH3/CH3 (forces d'adhésion hydrophobes dues aux glycoprotéines)
enregistrées en surface des conidies de S. boydii (1,8 £ 0,3 nN) sont significativement plus
faibles que celles enregistrées par Dague et al. [48] pour les conidies d’A. fumigatus (3 %

0,4 nN). Comme nous l'avons vu précédemment, les spores de S. boydii ne présentent pas
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de rodlets a leur surface, a la différence des conidies d'A. fumigatus pour lesquelles
I'agencement de la protéine rodA en batonnets disposés parallélement les uns aux autres
procure a la surface des spores une hydrophobicité homogéne [49]. L’évaluation des
interactions CH3/CH3 (hydrophobes) et OH/OH (hydrophiles) montre que la surface des
éléments fongiques comprend un mélange de composants hydrophobes et de composants
hydrophiles. Néanmoins, aprés germination, on constate une diminution des interactions
hydrophobes (CH3/CH3). L'inhibition de la synthése de la DHN-mélanine n'affecte pas ces
forces d'adhérence hydrophobes (données non présentées), suggérant que les interactions
ici mesurées ne sont pas liées a la mélanine. A l'inverse, l'intensité des interactions
hydrophiles (OH/OH) n’est pas modifiée par la germination.

Les changements dans la paroi cellulaire au cours de la germination ont également
été illustrés au niveau moléculaire par I'analyse des protéines a ancre GPI. Les protéines a
ancre GPI sont les principales protéines intégrales de la paroi des champignons et diverses
études ont montré qu'elles jouent un role clé dans la morphologie et la virulence dans
d'autres modeéles fongiques. L'analyse des extraits protéiques de la paroi des conidies et des
hyphes de S. boydii a révélé un total de 250 protéines, parmi lesquelles seulement 20
présentaient une ancre GPI prédite, et ceci en dépit de I'utilisation de protocoles déja
éprouvés pour la réalisation de la phase d'extraction. Néanmoins, la présence de protéines
dépourvues d'ancre GPI est également signalée dans de nombreuses études sur C. albicans
[50, 51, 52] pour lequel de telles protéines atypiques sont systématiquement rencontrées
dans les extraits de paroi, excepté dans les travaux de Groot et al. [53, 54].

Chez les levures et les champignons filamenteux, les protéines a ancre GPI peuvent
avoir deux localisations cellulaires différentes, puisqu'on distingue des protéines ancrées
dans la membrane plasmique (GPI-PMP) et des protéines localisées dans la paroi (GPI-CWP).
Les protéines de paroi sont caractérisées par un degré important de glycosylation (N- et O-
glycosylation), un peptide signal [55], et I'absence d'hélices transmembranaires, ce qui était
le cas pour 19 des 20 protéines a ancre GPI que nous avons identifiées. En outre, selon
Pittet et Conzelmann [56], les GPI-CWP ont des pls de 4,87 £ 0,22 alors que les GPI-PMP
ont des pls significativement plus élevés (pI de 6.67+0.95). Toutefois, une étude récente
réalisée sur Pichia pastoris n'a pas montré de différence dans leur pI entre les protéines a
ancre GPI de la paroi cellulaire et celles de la membrane plasmique [57]. Dix-neuf des 20
protéines a ancre GPI que nous avons identifiées, avaient un pl prédit inférieur a 5.

Il existe de plus en plus de preuves que les acides aminés a proximité du site
d’attachement de I'ancre GPI (appelé site w) exercent un effet important sur la localisation
finale de la protéine. La présence d'une forte proportion de sérine (S) et thréonine (T) en

amont du site w est largement reconnue comme une caractéristique importante des GPI-
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CWP [58, 59] car elle peut outrepasser l'influence des acides aminés dibasiques arginine
(R), histidine (H) et lysine (K) localisés en position w-1 et w-2, qui habituellement adressent
les protéines a ancre GPI a la membrane plasmique [60]. Pour les 20 protéines a ancre GPI
que nous avons identifiées, le contenu en S/T était supérieur a 10% apres exclusion des
séquences N- et C-terminales. En outre, nous n'avons pas retrouvé d'acides aminés
dibasiques simultanément en position w-1 et w-2. Par ailleurs, la présence de valine (V),
isoleucine (I) ou leucine (L) en position w-4 et w-5, ainsi que la présence de tyrosine (Y) ou
d'asparagine (N) en position w-2, a également été suggérée pour orienter I'adressage vers la
paroi selon Hamada et al. [61]. De tels acides aminés ne sont cependant pas rencontrés aux
positions correspondantes dans la séquence des protéines a ancre GPI que nous avons
identifiées. Toutefois, ces régles ne semblent pas s’‘appliquer pour les champignons
filamenteux, comme en témoigne la séquence de la protéine Mp1p d’A. fumigatus [62].

Toutes ces données suggérent une localisation pariétale pour 19 des protéines a
ancre GPI que nous avons détectées. Néanmoins, le réle des acides aminés voisins du site w
dans l'adressage des protéines a la paroi ou a la membrane plasmique demeure un sujet de
débat, d'autant qu'une méme protéine a ancre GPI peut étre présente a la fois dans les deux
compartiments cellulaires.

Enfin, les différentes familles auxquelles ces protéines appartiennent ont également
été recherchées. Parmi les 20 protéines a ancre GPI que nous avons identifiées, une n'a été
retrouvée que dans des extraits de conidies et 12 dans les extraits de tubes germinatifs
seulement, alors que les 7 autres protéines étaient présentes dans les deux extraits. La
protéine a ancre GPI détectée seulement dans les extraits de conidies (KEZ44265.1) a été
identifiée comme une Cu/Zn superoxyde dismutase. Les superoxide dismutases (SOD) sont
des enzymes anti-oxydantes impliquées dans la dégradation des anions super-oxyde. Douze
protéines a ancre GPI n'ont été détectées que dans des extraits de tubes germinatifs ; parmi
celles-ci, 4 appartiennent a des familles de protéines a ancre GPI connues pour intervenir
dans la synthése de la paroi cellulaire, une avait un domaine CFEM (Common in Fungal
Extracellular and Membrane) et les autres n'avaient aucune fonction connue. Le premier
groupe comprend une protéine similaire a des protéines Crhp (KEZ42985.1) dont on pense
qu'elles sont impliquées dans la liaison entre les polysaccharides de la paroi cellulaire B (1-6)
glucanes et chitine et qui appartiennent a la famille des glycoside hydrolases 16 (GH16)
selon la base de données CAZy (http://www.cazy.org/) [63, 64, 65]. Deux des autres
protéines a ancre GPI détectées dans I'extrait pariétal de tubes germinatifs sont similaires a
des protéines de la famille Gelp/Gasp (KEZ466191.1, KEZ46098.1). Il s'agit de protéines de
la famille des glycoside hydrolases 72 (GH72) qui seraient impliquées dans I'allongement du

polymere de B(1-3) glucane. Dans l'extrait pariétal préparé a partir de tubes germinatifs,
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une protéine similaire a des protéines de la famille Bgtp/Bglp a également été identifiée. Ces
protéines de la famille des glycoside hydrolases 17 (GH17) ont été étudiées chez S.
cerevisiae et A. fumigatus. Dans la paroi cellulaire, AfBgt2p est impliquée dans la
ramification des chaines de B-glucane, puisque cette enzyme catalyse le clivage de chaines
de B(1-3) glucane et le transfert a d'autres chaines de B(1-3) glucane avec une liaison B(1-
6) [66]. Une protéine ayant un domaine prédit CFEM a également été détectée dans I'extrait
fongique. Ce domaine comprend environ 60 acides aminés, majoritairement hydrophobe, et
huit résidus cystéine avec un espacement conservé [67]. De tels domaines se rencontrent
principalement dans les GPI-CWP et de nombreuses protéines contenant ce domaine sont
impliquées dans les interactions hote-pathogéne et la virulence.

Parmi les sept protéines communes aux deux extraits étudiés (conidies et tubes
germinatifs), 3 n'avaient aucune fonction ou domaine connu, 3 autres avaient un domaine
CFEM et la derniére était semblable a AfBgt2p.

Aucune hydrophobine n'a été identifiée dans nos extraits en utilisant le logiciel
proFasta pour detecter la séquence consensus constituée de 8 résidus cystéines. Plusieurs
hydrophobines sont décrites chez A. fumigatus, dont la protéine RodAp dont I'expression en
surface des spores est corrélée avec lintensité des interactions CH3/CH3 (interactions
hydrophobes). RodAp est une protéine modérément hydrophobe avec une valeur GRAVY de
0,245 (A. fumigatus Af293, numéro d’accession P41746.2) et une ancre GPI prédite [68].
Parmi les protéines a ancre GPI que nous avons identifiées, une seule provenant de |'extrait
de conidies présentait un caractére hydrophobe (GRAVY > 0). Fait intéressant, cette protéine
apparait deux fois plus hydrophobe que RodAp (GRAVY = 0,453) et elle présente un domaine
CFEM (numéro d’accession KEZ44163.1). Comme mentionné précédemment, le domaine
CFEM est un motif composé de huit résidus cystéine conservés, mais distinct du motif
caractérisant les hydrophobines. Des domaines CFEM sont communément identifiés dans les
protéines a ancre GPI extraites de la paroi, et les protéines de cette famille présentent une
forte proportion de résidus d'acides aminés hydrophobes dans leur séquence (32 a 45% des
acides aminés totaux) [67]. La protéine a domaine CFEM que nous avons identifiée (numéro
d’accession KEZ44163.1), était présente a la fois dans les extraits de conidies et de tubes
germinatifs, mais sa quantité relative par rapport a I'ensemble des protéines a ancre GPI que
nous avons détectées était deux fois plus élevée dans I'extrait de conidies (2.05%) que dans
I'extrait de tubes germinatifs (1.06 %). Ces résultats pourraient donc expliquer
I'hydrophobicité plus marquée de la surface des conidies face aux tubes germinatifs et la
diminution des interactions CH3/CH3 avec la germination.

Nous avons donc montré que la paroi chez S. boydii subit des changements

structurels avec la germination accompagnés d’une diminution du caractére hydrophobe, de
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la charge électrostatique de surface et du marquage par la ferritine cationisée. La
germination s'accompagne également d’une plus grande accessibilité des polysaccharides de
paroi aux lectines, et d’'une diminution de l'intensité des interactions hydrophobes. Nous
avons également extrait et identifié 20 protéines a ancre GPI, dont 12 sont présentes
uniquement dans la paroi des filaments contre une détectée seulement dans I'extrait de
conidies. Les protéines identifiées comprenaient des protéines similaires a des protéines
pariétales appartenant a des familles déja étudiées chez certaines levures et champignons
filamenteux comme les protéines Gelp/Gasp, les protéines Crhp ou celles de la famille
Bglp/Bgtp, ainsi qu’une superoxyde dismutase a ancre GPI.

Ces résultats mettent en évidence le remodelage de la paroi cellulaire pendant la
germination chez S. boydii. Il s'agit donc, comme pour d’autres modeles fongiques, d'une
structure hautement dynamique. Par ailleurs, avec l'identification d'un nombre important de
protéines pariétales a ancre GPI dont certaines sont exprimées spécifiquement par la phase
filamenteuse, nos résultats fournissent une base pour étudier le role de ces molécules dans
les interactions du champignon avec I'h6te et sa virulence. L'obtention de mutants invalidés
pour les genes codant ces protéines a ancre GPI et le couplage des données moléculaires a
la cartographie des interactions de surface pourraient s‘avérer trés utiles pour la

compréhension de la pathogénése.

Etude III

Au cours de ce travail, le séquencage du génome est apparu une étape indispensable
puisque le séquencage des genes PKS1 et 4HNR en vue de fournir un support génétique pour
I'étude de la synthése de la DHN-mélanine chez S. boydii s'est révélé une tache difficile. En
outre, les premiers essais d'analyse protéomique se sont avérés infructueux compte tenu de
I'absence de données génomiques pour notre champignon, et du fait qu’aucun champignon
suffisamment proche de S. boydii n'avait été séquencé jusqu'a présent. Un programme de
séquencage a donc été initié au sein du réseau international sur les infections respiratoires
fongiques au cours de la mucoviscidose (ECMM/ISHAM Working group Fungal respiratory
infections in Cystic Fibrosis) puisque le Pr. Wieland Meyer (Sydney, Australie), le Dr.
Laurence Delhaés (Lille, France) et le Dr. Christopher Thornton (Exeter, Royaume-Uni) ont
entrepris de séquencer le génome de S. aurantiacum, S. minutisporum et S. boydii,
respectivement. Nous nous sommes donc intéressés a S. apiospermum qui constitue avec S.
boydii 'une des deux especes majeures de ce complexe en pathologie humaine en Europe.
La souche IHEM 14462 isolée en 1998 a partir d'un produit d'expectoration d'un patient

atteint de mucoviscidose suivi dans le centre hospitalier de Tours (France) a été choisie.
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Le séquencage du génome a produit, aprés assemblage des données, 3744 contigs
formant 176 scaffolds avec une taille moyenne de 246 804 paires de bases représentant une
longueur totale de 43,4 Mbps. Une fonction a été assignée a 8 818 des 10 919 CDS identifiés
(80,75%).

Enfin, I'analyse des voies métaboliques prédites dans le génome de S. apiospermum
a l'aide de la base de données KEGG (http://www.genome.jp/kegg/) a permis d'identifier un
grand nombre d'enzymes potentiellement impliquées dans la dégradation de divers
polluants. Cet équipement enzymatique pourrait expliquer la capacité des espéces du
complexe S. apiospermum a s'adapter a différents environnements impactés par les activités
humaines, notamment les sols pollués par des hydrocarbures et les eaux fortement
contaminées [69] qui constituent des environnements particulierement favorables a la
prolifération de ces champignons et une source potentielle de contamination.

Les espéces du genre Scedosporium sont capables d'utiliser le benzoate de phényle
et du pétrole brut comme seules sources de carbone et d'énergie [70, 71]. Par ailleurs, il a
été montré qu'elles étaient capables de dégrader les hydrocarbures saturés [72], le phénol
et le p-crésol [73], ainsi que la dioxine [74, 75].

Aprés annotation du génome, il apparait que 23, 22 et 3 cadres de lecture ouverts
(ORF, open reading frame) codent pour des enzymes impliquées dans les voies de
dégradation du benzoate, de I'aminobenzoate et du fluorobenzoate, respectivement. Trente-
quatre ORFs codent pour des enzymes impliquées dans le métabolisme du méthane, 13
ORFs ont été identifiés pour coder des enzymes impliquées dans la dégradation de toluéene,
deux ORFs pour la dégradation du xyléne, 11 pour la dégradation du styréne, 13 pour la
dégradation du chlorohexane et du chlorobenzéne et 2 pour la dégradation des
polychlorobiphényles.

Claussen et Schmidt [73] ont montré que la dégradation du phénol par S.
apiospermum implique deux voies distinctes d’aprés la mesure des activités enzymatiques
correspondantes a chaque voie : les voies catéchol et hydroquinone. Nous avons pu identifier
dans le génome de S. apiospermum, les ORF codant pour des enzymes impliquées dans ces
deux voies métaboliques. Trois ORFs ont été identifiés pour la voie du catéchol, codant pour
des catéchol 1,2-dioxygénases (Enzyme Commission number (EC) 1.13.11.1) et trois autres
pour la voie de I'nydroquinone, codant I'une pour une 1,2-hydroxyquinol dioxygénase (EC
1.13.11.37) et les deux autres pour la maléylacétate réductase (EC 1.3.1.32). En outre,
deux génes ont été identifiés, codant pour deux phénol monooxygénases (EC 1.14.13.7),
enzymes impliquées dans |'étape d'hydroxylation commune aux deux voies [76].

En outre, de nombreuses enzymes fongiques non spécifiques sont connues pour

cataboliser les polluants organiques [77]. A titre d'exemple, le génome de S. apiospermum
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comprend 2 génes codant pour des laccases (EC 1.10.3.2), un géne codant une tyrosinase
(EC 1.14.18.1), ainsi que trois génes codant une chlorure peroxydase (EC 1.11.1.10), une
nitroréductase putative et une quinone réductase (EC 1.6.5.2). Enfin, parmi les 98 génes
identifiés codant pour des cytochromes P450, nous avons recherché des geénes impliqués
dans la dégradation des polluants appartenant notamment aux familles CYP52, CYP53 et
CYP504. Deux génes appartenant a la famille des cytochromes CYP53, connus pour dégrader
le benzoate et ses dérivés, ont été identifiés dans le génome de S. apiospermum (EC
1.14.13.12 et EC 1.14.14.1).

La disponibilité de ces données génomiques fournit donc un support moléculaire pour
les travaux en cours visant a utiliser des souches atténuées du champignon a des fins de
bioremédiation. En outre, elle ouvre la voie pour préciser les facteurs de pathogénicité des
espéces du complexe S. apiospermum, et notamment pour réaliser des expériences
d'invalidation de génes et étudier les répercussions phénotypiques in vitro ou dans un

modéle animal de scédosporiose disséminée.

Conclusion

La paroi fongique est une structure trés dynamique qui est soumise a des
changements et des modifications. Les résultats que nous avons obtenus pour S. boydii,
illustrent les modifications ultratructurales et biochimiques de la paroi démontrées dans
d'autres modeéles fongiques au cours de la maturation des conidies et de leur germination. Ils
auront des conséquences biologiques importantes puisque que I'équilibre entre les
composants de surface a des implications directes sur la pathogénicité, ainsi que sur la
résistance a des conditions environnementales défavorables. En outre, les données obtenues
sur le génome de S. apiospermum faciliteront I'annotation des données de séquence des
autres espéces du complexe, et ainsi la progression des connaissances sur les mécanismes
pathogéniques de ces champignons en permettant des approches de génomique

comparative, ainsi que des approches transcriptomiques, protéomiques et métabolomiques.
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INTRODUCTION

By 1991 the estimates for fungal diversity on earth were 1.5 M species but later in
2011 studies advocated numbers up to 5.1 M different fungal species [1, 2, 3]. According to
the Centers for Disease Control and Prevention (CDC), only 300 of these species are
pathogenic for humans [4, 5]. Even though few species are responsible for most cases of
mycoses, the number of emerging pathogenic fungi causing invasive infections that are
difficult to treat is increasing. Scedosporium species (previously mentioned as
Pseudallescheria species) were first discovered in the 1889 as agents of human otitis, but
were not recognized as human pathogens until the 1980s when the diseases ascribed to
these fungi started to increase and diversify [6].

Superficial infections (skin and nail) caused by fungi are estimated to affect 20 to 25%
of the world population [7]. Add to this, 10 million cases of oral thrush in HIV/AIDS patients
and 2 million cases of esophageal infections, among others, occur on an annual basis [8].
Even though invasive fungal diseases are far less frequent than superficial infections, the
number of deaths caused by invasive fungal diseases is at least the same if not higher than
the number of deaths due to malaria or tuberculosis according to Brown et al. [8]. Despite
all this, fungal infections are still not widely recognized, as no plans are yet implemented by
organizations like the World Health Organization (WHO) in this regard [8], [9].

Over the past several decades, the incidence of fungal infections has been increasing
and the factors responsible for this include the increasing incidence of many cancers and
hematological malignancies, the development of intensive care for critically ill patients and
the use of more and more aggressive procedures, the increasing number of
immunosuppressed patients in relation with the emergence of the AIDS epidemics and the
development of bone marrow and solid organ transplantation, the increase in life expectancy
in some chronic diseases like cystic fibrosis, genetic predisposition, the emergence of
antifungal resistance as well as climate changes [5, 10, 11, 12, 13]. This multitude of
factors that are boosting the number and gravity of fungal infections shows how complicated
the situation is. A better understanding of fungal pathogenesis is necessary to identify new
therapeutic targets and therefore limit the damages caused by these microorganisms.

Species of the Scedosporium apiospermum (S. apiospermum) complex are the most
common etiologic agents of cutaneous and subcutaneous mycetoma. They commonly cause
disseminated infections in patients with advanced human immunodeficiency virus (HIV)
infection, hematological malignancies, stem cell transplantation and others, but more
importantly they cause infections in the lung and upper respiratory tract. They are the

second most frequently isolated fungi from the respiratory tract of patients with cystic
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fibrosis. These species are refractory to therapy and at present they are considered as a
diagnostic and theurapeutic challenge [14].

Today, our knowledge about the pathogenic mechanisms of these fungi is still at its
infancy. This work aims to study the cell wall of Scedosporium boydii (S. boydii), one of the
two major species of the S. apiospermum complex, since this structure is essential for the
survival and pathogenesis of the fungus. Modifications occurring in the cell wall are
investigated during maturation and germination of conidia using various approaches in an
attempt to identify potential virulence factors (melanins, hydrophobins, GPI-anchored
proteins). The first published genome of a member of this species-complex (S. apiospermum
sensu stricto) is also reported. A number of interesting metabolic pathways were identified in
the genome regarding the biotechnological potential of these fungi in bioremediation, which
corroborates the bulk of previous experimental studies. Finally, this work is aimed at

accelerating fundamental research on Scedosporium species using molecular approaches.
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I. Biology and pathogenicity of Scedosporium boydii

I.1. Morphology and reproductive modes

Scedosporium boydii is a saprophytic filamentous fungus that can be readily isolated
from a variety of environmental sources. The fungus can grow on all culture media used for
mycological examination. On poor media like Malt agar it conidiates faster and more
frequently than on rich media like vyeast extract-peptone-dextrose (YPD) agar.
Scedosporium boydii tolerates temperatures up to 40°C [15]. Colonies are floccose and
initially white on the upper side (up to 3-4 days of culture), becoming progressively dark
grey or smoky brown with sporulation (Figure I.1). The reverse side is pale to brownish

with black zones.

Figure I.1. Scedosporium boydii IHEM 15155 on YPD agar (14 days, 37°C).

Surface (left) and reverse (right) sides of the colony.

Two modes of reproduction can be observed, sexual and asexual reproduction. In the
sexual reproduction (teleomorph), yellow-brown to black cleistothecia (100 to 300 ym in
diameter) can be seen toward the periphery of colonies especially on nutrient-poor media
like cornmeal agar, potato dextrose agar, pea agar, potato-carrot agar or plain water agar
(Figure I.2). However such structures are rarely produced by clinical isolates and an
incubation of two to three weeks is necessary for their formation. The ascocarp has a thin,
single layered, membranaceous wall composed of jigsaw-shaped brown cells. When mature,
the ascocarp bursts releasing globose asci that contain eight ascospores. Ascospores are
ovoid to ellipsoidal with a golden brown color. The presence of an internal oil droplet and the
absence of a truncated base are indicators of the sexual origin of spores with respect to

those produced asexually [6].
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Figure I.2. Scedosporium boydii cleistothecia liberating ascospores (X100).
Cortez et al. [6].

In asexual reproduction, two anamorphic states (synanamorphs) are described, one
called Graphium state that may or may not be produced depending on strains, and the other
that is a major type, invariably present and consisting of septate hyaline filaments with
lateral or terminal cylindrical conidiogenous cells (Figure I.3). Conidiogenesis occurs
through the solitary type of the thallic mode in which a young conidium starts to develop
only after being delimited from the filament with a septum [6]. Conidia are thick walled,
globose to subglobose, brown and sticky [16]. On the other hand, the Graphium state may
be produced at a later stage at the edge of colonies but is less commonly seen; it consists of
a bundle of hyphae cemented together forming a stiff erect olive-brown synnema that
terminates in a brush of conidiogenous cells (Figure I.3). The conidia of both forms are
typically truncated at their base (3 to 7 by 5 to 12 ym), oval for the major type, more
cylindrical for the Graphium state. The conidia of the major type are often formed singly

whereas those of the Graphium state are arranged in clusters at the apex of synnemata [6].

- e o e et ./ e, |6 a5 Y
Figure I.3. Asexual reproduction of S. boydii IHEM 15155 (14 days, YPD agar, 37°C).

Lactic blue stain was used. Conidiophore of the major type (left, X400) that is commonly seen in

S

culture. Synnema of the Graphium state, a rare image for this species (right, X100).
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I.2. Taxonomy

The history of taxonomy of the S. apiospermum complex is quite complicated. It dates
back to 1911 where Saccardo described the first isolate of the genus, obtained from a
patient with mycetoma that reproduced only asexually and called it Monosporium
apiospermum. In 1919, Castellani and Chalmers formally proposed the name Scedosporium
giving rise to the name S. aspiospermum. In 1922, Shear isolated from a mycetoma a new
fungus that produced cleistothecia and called it Allescheria boydii. At the time both entities
were considered different fungi causing the same disease, until 1944 when Emmons reported
that S. apiospermum was the anamorph of A. boydii. In 1970, Malloch proposed the name
Petriellidium boydii for the teleomorph but later on the genus Pseudallescheria was
considered synonymous to Petriellidium and the name Pseudallescheria boydii was finally
adopted for the teleomorph [6].

Until 2008, the anamorph (S. apiospermum) and the teleomorph (P. boydii) were
considered as two reproductive forms of the same fungus, therefore both names were
considered synonymous. In 2008, with the advent of molecular phylogeny, Gilgado et al.
[16] demonstrated after molecular and phenotypic comparisons of a large number of
isoaltes that S. apiospermum should be considered a different taxon from P. boydii.
However, the genus name (Pseudallescheria/Scedosporium) remained interchangeable to
indicate the teleomorph or the anamorph forms. Hereby, the Scedosporium/Pseudallescheria
complex comprised at least five distinct species: P. boydii (anamorph: S. boydii),
Pseudallescheria apiosperma (anamorph: S. apiospermum), Scedosporium aurantiacum,
Scedosporium dehoogii and Pseudallescheria minutispora. Scedosporium prolificans was
clearly distinct from the others and was not included in the complex [15, 16]. The
classification of smaller taxonomic entities (like Pseudallescheria ellipsoidea, Pseudallescheria
fusoidea, Pseudallescheria angusta, Pseudallescheria desertorum, and Scedosporium
deficiens) into separate species was not yet settled though.

In July 2014, the ECMM/ISHAM working group on Pseudallecheria/Scedosporium
infections published a new nomenclature due to the major changes in the International Code
of Nomenclature on the use of different names for sexual and asexual stages of fungi [17].
The new nomenclature suggested in 2011 (Amesterdam Declaration on Fungal
Nomenclature) is based on molecular phylogeny rather than on morphological and culture
techniques or sexual types of reproduction as in the old system [18]. In the new
nomenclature, the genus name “Pseudallescheria” was abandoned since “Scedosporium”
name is the oldest valid generic name, this implies, for example, the transfer of
Pseudallescheria boydii to Scedosporium boydii. The fungus S. boydii now belongs to the

order Microascales, family Microascaceae and genus Scedosporium. Scedosporium
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apiospermum and S. boydii are considered completely two different species but in terms of
pathology and antifungal susceptibility these two species have no medically significant
difference. Therefore in routine identification in the clinical laboratory these two closely
related siblings can be considered belonging to the “S. apiospermum complex” that now
comprises: S. apiospermum, S. boydii, S. aurantiacum, S. minutisporum and S. dehoogii.
However, the taxonomic status of the subgroups of S. boydii, Pseudallescheria angusta and
Pseudallescheria ellipsoidea is not yet resolved. Likewise, the taxonomic status of
Scedosporium deficiens that is very close to S. dehoogii is still debated. Finally, S. prolificans
was unambiguously separated from the other Scedosporium species. Therefore it now
belongs to a different genus named Lomentospora prolificans (Refer to Figure 1.4 for the
phylogenetic tree and to Table I.1 for the old and new nomenclatures as well as the
different structures formed by each specie).

Since this new nomenclature appeared only recently in july 2014 most of the studies
published so far were available under synonymous names (Table I.1) according to the
nomenclature prior 2014 (including the study by Ghamrawi et al. [19] presented in study I
of the experimental part of this thesis. Add to this, many studies even after 2008 used P.
boydii as synonymous to S. apiospermum especially in case reports. Therefore the
information included in this book may not always distinguish between the different species
and therefore “Scedosporium species” is often mentioned regrouping S. apiospermum, S.

boydii, S. aurantiacum, S. dehoogi and S. minutisporum (Table 1. 1).

I.3. Ecology and epidemiology

Scedosporium species are commonly found in temperate climates, less frequently in
tropical areas. These species have properties permitting their survival in polluted areas
where there is poor aeration and high osmotic pressure since they are thermo-tolerant and
capable of surviving in anaerobic conditions and at high salt concentrations (5% NaCl in
liquid cultures) [20]. They are ubiquitous eutrophic fungi commonly isolated from polluted
soil and water, agricultural areas, potted plants and human-impacted areas but extremely
infrequent in the air and indoor environment [14, 21, 22].

Ecological studies demonstrated variability in the abundance of the Scedosporium
species according to geographical areas and types of environments. In Austria, the most
frequent species in the environment was S. apiospermum followed by S. dehoogii and the
largest number of Scedosporium isolates was found in industrial areas, followed by urban
playgrounds and agricultural areas. In this study, a positive correlation was established
between the presence of Scedosporium species in Austria and the nitrogen concentration in

the soil as well as a pH range of 6.1 to 7.5 [23].
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Figure I.4. Phylogenetic overview of Microascaceae family using the Internal Transcribed Spacer
(ITS) region of rDNA for classification (Lackner et al. [17])
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Table I.1. Newly proposed nomenclature for Scedosporium/Pseudallescheria and the type of
reproductive structures identified for each species.
(ISHAM/ECMM 2014, adapted from Lackner et al. [17])

Order/ Genus name Epithet Commonly used Synanamorphs/Teleomorph
family synonymous names +/-

Microascales/  Lomentospora prolificans Scedosporium Scedosporium-like/-
Microascaceae prolificans,

Scedosporium inflatum

Scedosporium  apiospermum  Pseudallescheria Scedosporium, *Graphium’/+
apiosperma
aurantiacum - Scedosporium/-
boydii Allescheria boydii, Scedosporium, *Graphium’/+

Petriellidium boydii,
Pseudallescheria boydii,

Polycytella hominis

dehoogii - Scedosporium

minutisporum  Pseudallescheria Scedosporium/+
minutispora

desertorum Pseudallescheria arthroconidia
desertorum

In Australia, S. aurantiacum was found to be the most frequent species followed by S.
boydii and S. dehoogii (the last two species were isolated in low frequencies) and the highest
number of Scedosporium isolates was found associated with areas of high human activity.
Sampling at different times of the year showed no significant variations [24].

In France, the most abundant species was S. dehoogii (39%) followed S. boydii, S.
apiospermum and S. aurantiacum at equal frequencies (18 - 22% each). The highest
densities for the Scedosporium species in France were found in human-impacted areas
(agricultural areas, waste water treatment plants, playgrounds and industrial areas); no
isolates were found in acidic (forest soils) or basic pH (higher than 8.27) nor were they found
in enriched soil (high ammonium content) [25].

All these studies point out to the abundance of these species in human-impacted areas
which raises the question to whether there is a link between the high prevalence in certain
areas and Scedosporium epidemiology. Most species within the S. apiospermum complex are
considered to have a « dual ecology », as described by Lackner, since they can develop in
polluted areas acting as efficient agents of bioremediation and also in human hosts leading

to various diseases notably respiratory infections in cystic fibrosis (CF) patients [26, 27,

Sarah Ghamrawi | The cell wall of Scedosporium boydii @SS 27



Introduction

28]. While the environmental factors fortify the high frequencies of S. apiospermum and S.
aurantiacum in CF patients in Austria [23] and Australia [29] respectively, it fails to explain
the results seen with CF patients in France. Zouhair et al. [30] showed that the most
frequently isolated species from CF patients in France was S. boydii (62%), followed by S.
apiospermum (24%), S. aurantiacum (10%) and S. minutisporum (4%). Despite the fact
that S. dehoogii was highly abundant in French soils and was shown to be one of the most
virulent species in animal models [31], it was not recovered in a CF context in this study
[30]. This indicates that the geographical settings are not sufficient to explain the
frequencies of Scedosporium species in clinical cases and especially in the CF context.
Therefore a better understanding of how infection is established in different clinical settings

and the inherent virulence factors employed by each of these species is required.

I.4. The importance of studying S. boydii
I.4.1. Pathogenesis: From infection to treatment

a) Infections caused by Scedosporium species

Scedosporium species (particularly S. boydii, S. apiospermum and S. aurantiacum)
stand behind various infections in immunocompromised as well as immunocompetent
individuals (Figure I.5). These fungi are typical opportunists, in which the appearance of
clinical symptoms widely depends on the portal of entry and the patient’s clinical status but
no clinical syndromes are fully characteristic for the species. Infections caused by
Scedosporium can be localized after a trauma, in the form of symptomatic or asymptomatic
colonization of cavities or disseminated [14].

In the case of traumatic inoculations, the vast majority of infections are mycetomas
that occur in otherwise healthy individuals. Mycetoma is a chronic, progressive, destructive
morbid inflammatory disease usually involving the foot or the hand, but any part of the body
can also be affected. There exists two types of mycetoma infection. Actinomycetoma is
caused by microaerophilic gram-positive branching actinomycetes bacteria. This form
represents 60% of cases worldwide with the major causative agent being Nocardia
brasiliensis. The second type is eumycetoma caused by fungal organisms with the most
common causative agent being Madurella mycetomatis. At the site of inoculation, nodules
form and usually increase in size with time and can rupture and form secondary nodules with
fungal or bacterial granular drainage. Grains vary in color, depending on the etiologic agent
and type of infection. White grains indicate that the causative agent is S. apiospermum
complex, Aspergillus nidulans, or Acremonium kiliense, while black grains indicate Curvularia

lunata, Exophiala jeanselmei, Pyrenochaeta romeroi, Leptosphaeria senegalensis, Madurella
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grisea, or Madurella mycetomatis [32]. Of note, Scedosporium species are the most
prevalent agent of mycetoma in temperate, moist climate zones [33].

Other types of traumatic infections are cutaneous or subcutaneous or
lymphocutaneous and they include infections of the eye, skin, ear, nails, lungs, bones,

muscle and joints [6, 14].

. . Cavities colonisation .
Traumatic infections symptomatic or Systemic/invasive

asymptomatic)

Other
(lungs, skin,
ear eye...)

Patients with
severely impaired Near-drowning Endocarditis
immunity

Pulmonary
infections **

-Transplants (Lung transplants
for CF patients)

-Cancers
-Immunosuppressive therapy
-Advanced HIV disease

-More common Underlying diseases

in males - Cystic fibrosis **
Health

-Most common Y -Others : tuberculosis,

age 20-45 sarcoidosis...etc

Lung, CNS and
brain infection**

Figure I.5. Infections caused by Scedosporium species.
Stars indicate important disease entities. Dashed lines indicate possible routes for disease

progression [6, 34, 28].

Symptomatic or asymptomatic colonization of cavities is frequently caused by
Scedosporium species. The nasal septum or the ear might act as a portal of entry causing
sinusitis or otitis respectively, but such occurrences remain infrequent. The most frequent
infections with Scedosporium species are pulmonary diseases. Kantarcioglu et al. [35]
analysed all case reports of pulmonary pseudallescheriasis from 1955 to 2010; for 189 cases
studied, they found that the main clinical manifestations were pneumonia (47.0%), followed
by fungal balls (13.7%) and chest abscesses (9.5%). Invasive pulmonary pseudallescheriasis
was mostly related to patients with impaired immunity resulting in mortality rates of 57.2%.
Although colonization of the lungs of patients suffering from cystic fibrosis was
underestimated in the past [27, 28], CF is now recognised as the most common underlying
disease among pulmonary infections or colonization with Scedosporium species. Cystic
fibrosis is an autosomal recessive disease caused by a mutation in the Cystic Fibrosis
Transmembrane conductance Regulator (CFTR) gene; more than 1900 CFTR mutations
leading to a disease phenotype have been identified so far [36]. The gene codes for a

cAMP/PKA-dependent, ATP-requiring, membrane chloride ion channel that is generally found
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in the apical membranes of cells in many secreting epithelia. In the lungs, the key role of
this ion channel is to maintain homoeostasis of the airway surface liquid layer. The major
clinical characteristics of CF are progressive lung disease caused by thick dehydrated airway
mucus that entraps inhaled microorganisms, more oftenly bacteria (like Pseudomonas and
Staphylococcus) than fungi (like Candida, Aspergillus and Scedosporium, Exophiala). Recent
advances have lead to improved prevention and treatment of bacterial infections and thus to
a marked increase in life expectancy, however fungal infections remain problematic. Cystic
fibrosis is the most common autosomal recessive disease in Europe, it affects approximately
1 in 2500 live births among Caucasians and the significance of infections by Scedosporium
species in CF patients has gained these fungi their worldwide recognition in the last two
decades. Scedosporium apiospermum species are the second most frequently isolated fungi
from the respiratory tract of CF patients with a frequency ranging from 3.4% to 17.4% [25].
Scedosporium apiospermum complex can chronically colonize the respiratory tract of CF
patients. A recent study analysing S. apiospermum complex seroprevalence revealed that
9.4% of patients produced antibodies against the fungal complex [37]. It is important to
mention here that despite the high frequency of respiratory infections with S. apiospermum
species, these fungi are rarely isolated from air since they rank 49" over 52 detected fungal
genera in the air [21].

Systemic invasive infections. Both traumatic and pulmonary routes of infection with
Scedosporium species may ultimately lead to dissemination to the central nervous system
but morbidity increases when patients are immunocompromised or come from near drowning
incidents. Near-drowning is a term used to describe survival or temporary survival after
experiencing respiratory impairment from submersion/immersion in liquid (< 24 h survival is
considered drowning rather than near-drowning [38]). According to the latest updates by
the World Health Organisation (WHO, April 2014, [39]), there is an estimated 359,000
annual drowning deaths worldwide which accounts for nearly 10% of total global mortality
due to injuries. According to WHO, the real magnitude of the problem goes beyond that
especially that data reports are not uniformly collected from all countries. According to Ender
and Dolan [40], near-drowning cases should be 2 to 20 times higher than reported
drowning cases. Scedosporium apiospermum complex are recognized as the fungi the most
commonly implicated in invasive disease after near-drowning in polluted waters [6] and are
considered as main agents of near-drowning-related brain infection [38]. Near-drowning
related infections were much less reported with Aspergillus species and have not been
associated to Lomentospora prolificans (previously S. prolificans) [6, 42] . Buzina et al.
[42] indicated that a comatose period following aspiration of contaminated water is a

syndrome unique to the S. apiospermum complex [23, 42, 43]. The incubation period of
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these infections is 1 to 4 weeks before the appearance of symptoms [40]. Today, the
pathogenic mechanisms by which Scedosporium penetrates deep tissues and neurons remain
unknown.

Scedosporium species have a particular tropism for the central nervous system but the
majority of CNS infections was only seen in cases of patients with immunodeficiencies or in
the case of near drowning for otherwise healthy individuals. Karioglu et al. [44] reviewed all
reports of CNS infections from 1948 to mid-2007. For a total 99 case reports comprising
similar percentages of healthy and immunocompromised patients, he found that the main
clinical symptoms were brain abscess (69%), co-infection of brain tissue and /or spinal cord
with meninges (10%) and meningitis (9%) and the total mortality rate was 74%. In the case
of immunocompetent patients, CNS infection was preceded by near drowning or trauma and
had a 76% fatality rate. Invasive infections due to S. apiospermum complex were rarely
reported in CF patients after lung transplantation, nevertheless examples of therapeutic
failure do exist even with the use of voriconazole treatment [45, 46].

Dissemination and CNS implication in patients with advanced immunodeficiencies such
as acute lymphocytic or myelogenous leukemia, solid cancer, chronic granulomatous
disease, bone marrow or solid organ transplantation, or advanced HIV disease remain

problematic with poor prognosis [44, 47, 48].

b) Virulence factors

Even though extremely rare in the air, Scedosporium spp. are believed to disseminate
through conidia that enter into the respiratory tract and adhere to the host cells. After
incubation of Scedosporium cells with HEp2 epithelial cells for 2 h, conidia were shown to
germinate and penetrate the HEp2 epithelial cell membrane. This interaction was shown to
be partially mediated by the carbohydrate moiety of the major cell wall molecule
peptidorhamnomannan (PRM) that bound to a 25-kDa molecule on HEp2 epithelial cells
[48]. Unlike proteinase K treatment, the mannose treatment and de-O-glycosylation of PRM
were shown to inhibit the adherence. Thereafter, enzymes secreted by Scedosporium species
and capable of degrading the basement membrane molecules were also extracted from
mycelial supernatants. A 33-kDa serine proteinase belonging to the subtilisin family was
purified and characterized by Larcher et al. [49]. The enzyme resembled in its biochemical
and physical properties the major alkaline proteinase from Aspergillus fumigatus (A.
fumigatus); it was extracellular, non-glycosylated and able to degrade human fibrinogen.
Moreover, Silva et al. [50] also extracted from mycelial supernatants two
metallopeptidases with a mass of 28 kDa and 35 kDa. These enzymes showed a high

activity at acidic pH (5.5) and were able to cleave extracellular matrix proteins including
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laminin and fibronectin, IgG, mucins, fetuins and albumin. The ensemble of these peptidases
may act as an aggravating factor for chronic bronchopulmonary inflammation that CF
patients suffer from and therefore can help fungal cells to migrate into adjacent tissues.

During tissue invasion, the fungal cells are exposed to oxidative stresses generated by
immune cells which can alter membrane bound and other macromolecules leading to fungal
death. Gil-Lamaignere et al. [51] studied the phagocytosis of Scedosporium conidia by
polymorphonuclear leukocytes (PMNs), mononuclear leukocytes (MNCs) and monocyte
derived macrophages (MDMs). Two fungal isolates were subjected to phagocytosis by the
immune cells, one isolated from a fatal disseminated infection was resistant to amphotericin
B and the other isolated from a successfully treated localized subcutaneous infection was
susceptible to amphotericin B. Unlike the amphotericin B-susceptible strain, serum
opsonisation of the hyphae of the amphotericin B-resistant strain resulted in a higher level of
superoxide (0,*7) ion release by PMNs but lower hyphal damage by PMNs and MNCs. On the
contrary, MDMs phagocytic activities were unchanged towards both isolates. This showed
that the survival of the amphotericin B-resistant strain was maintaind through redox
homeostasis after being subjected to phagocytosis [51].

Furthermore, a study on interleukin (IL)-15, a cytokine similar to IL-2 known to
activate key cells of the innate immune system, showed that this molecule (IL-15) failed to
enhance damage and oxidative burst of S. apiospermum hyphae by PMN contrary to other
pathogenic fungi like Fusarium solani, Fusarium oxysporum, A. fumigatus, Aspergillus flavus
and L. prolificans [52]. Lima et al. [53] also purified a scavenger protein, the Cu,Zn
superoxide dismutase, that might protect mycelial cells during the oxidative burst. The
purified protein had an optimum pH activity at 7.0, a 72% identity rate with the Cu,Zn-SOD
from A. fumigatus and its synthesis was stimulated by iron starvation [53].

Scedosporium cell wall components and particularly the a-glucan were shown to play
a role in conidial phagocytosis by macrophages that was not the case of B-glucans. Alpha-
glucans were shown to stimulate the secretion of inflammatory cytokines by macrophages
and dendritic cells in a mechanism involving Toll-like receptor 2 (TLR2), CD14 and MyD88
that finally led to the Tumor Necrosis Factor-alpha (TNF-a) secretion [55, 56]. Moreover,
rhamnomannans that were previously shown to allow the adherence of conidia to epithelial
cells were also shown to play a role in the activation of TLR4 [56] as shown in Figure I.6.

Conidia and hyphae of Scedosporium spp. did not have the same induction pathways
for macrophages. While conidial recognition involved only TLR4, hyphal recognition was
dependent on both TLR2 and TLR4 pathway channels [57]. Other cell wall molecules, the
glucosyl ceramides (GlcCer), which belong to ceramide monohexosides (CMH), were

shown to interfere with the fungal phagocytosis by marcrophages since the addition of anti-
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CMH monoclonal antibody (MAb) significantly increased phagocytosis [58].
Ectophosphatases were also found on the cell walls that might hypothetically play a role in
the protection against acidic conditions, allow adhesion to host cells and be involved in the

endocytosis by vascular endothelial cells [59].

% conidia
a-glucan / \ ! rhamnomannan

cD14
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ey
cytokines
Figure I.6. Recognition of alpha-glucans and rhamnomannans of S. boydii by TLR2 and TLR4,

respectively.

From Figueiredo et al. [57].

The accessibility to iron during pathogenesis is primordial for pathogenic
microorganisms since it is involved in many cellular processes such as ergosterol synthesis,
respiration and detoxification of free radicals. In human hosts, iron is not easily accessible;
therefore microorganisms have developed numerous mechanisms to scavenge iron. For this,
Bertrand et al. [60] identified two hydroxamate siderophores from expectorations of
patients colonized by (or infected with) Scedosporium species and these are the dimerumic
acid and Na-methyl coprogen B.

Another factor contributing to the pathogenesis of Scedosporium species was described
by Raggam et al. [61] who studied the expression of a heat shock protein-60 (HSP-60). This
protein is considered as an immunodominant antigen involved in humoral and cellular
responses and in the induction of regulatory T cells by interaction with cells of the innate

immune system.
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The various elements contributing to the virulence of Scedosporium species are

summarized in Table I.2.

Table I.2. Summary of virulence factors produced by Scedosporium species.

Name Location Role during pathogenesis Ref
33-kDa serine proteinase Extracellular, Degradation of human fibrinogen [49]
secreted

28 and 35 kDa Extracellular, Cleavage of laminin and fibronectin  [50]

metallopeptidases secreted extracellular matrix proteins

Cu,Zn-S0OD Cytoplasmic Scavenging and protection during [53]
oxidative burst

a-glucans Cell wall TLR2 activation [54]

Rhamnomannans Cell wall Epithelial cell adhesion, activation of [49, 57]
TLR4

Glucosyl ceramides Cell wall Interfere against phagocytosis [58]

Siderophores: Extracellular, Iron scavenging [60]

Dimerumic acid and secreted

Na-methyl coprogen B

HSP-60 Mitochondrial * Immunomodulation, induction of [61]
Treg *
Ectophosphatases Cell wall Protection against acidic conditions, [59]

adhesion to host cells and
endocytosis by vascular endothelial

cells *

* Hypothetical

C) Diagnosis

Scedosporium species are fungi of increasing clinical importance, but their diagnosis at
present remains challenging mainly because of the similarities of clinical features and
histopathology with other relatively common hyaline hyphomycetes like Aspergillus or
Fusarium species. Today the detection of these species mainly relies on cultural methods,
but these techniques present many inconveniences since the type of culture medium used,
the temperature and duration of incubation might greatly affect the growth of fungi, thus
favoring the growth of some fast-growing fungi over others. Therefore, the use of semi-
selective media, like SceSel+, Scedo-Select III or others, is essential for the proper

detection in respiratory secretions [62].
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Other diagnostic techniques include histochemical staining, but again this technique
has its inconveniences since the cytopathology and/or histopathology in infections caused by
Scedosporium spp., Aspergillus spp., Fusarium spp., Petriella spp. and other hyaline
hyphomycetes are very similar. Scedosporium species may present hyphae with branching at
acute angles, dichotomous branching or more irregular branching. Scedosporium species
may also present terminal or intercalary chlamydospores that can be confused with yeasts
[6].

More efficient diagnostic techniques include serology, biochemical techniques and
molecular techniques. For serology, an interesting study by Thornton [63] described the
development of MAbs that bound an immunodominant 120 kDa carbohydrate epitope
present on the conidial and hyphal cell walls of S. boydii and closely related species. More
importantly, these MAbs did not react with L. prolificans, S. dehoogii, A. fumigatus, Candida
albicans, Cryptococcus neoformans, F. solani and Rhizopus oryzae. Further investment in the
development of such molecules can be a turning point for the detection of S. apiospermum
complex infections. Other studies also presented potential interesting antigens for the
development of specific antibodies like peptidorhamnomannans or pseudacyclins [65, 66,
67].

As an alternative to cultures, Bertrand et al. [67] described a potential biomarker of
the airway colonization by the S. apiospermum complex. This marker was a siderophore
named N°-methyl coprogen B, exclusively identified for the S. apiospermum complex. It was
identified in expectorations after being analysed with High Performance Liquid
Chromatography (HPLC) followed by positive electrospray ionization-mass spectrometry
[67].

Molecular techniques are particularly important for epidemiological studies, hereof
there exist two techniques for Scedosporium species detection in expectorations: PCR
amplification of internal transcribed spacer (ITS) sequences [68] or B-tubulin sequences
from total DNA extracts [69] and an oligonucleotide array using species-specific probes
[70].

Finally the unexpected diversification of pathogenic Scedosporium species and the
number of other pathogenic fungal agents that can complicate fungal identification,

necessitate early and specific diagnosis in order to improve treatments.

d) Treatment

Meletiadis et al. [71] investigated the susceptibilities of 13 clinical isolates of
Scedosporium species to a range of new and conventional antifungal agents belonging to

three classes of antifungals: the azoles (miconazole, itraconazole, voriconazole,
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posaconazole and UR-9825 which is now called albaconazole), polyenes (amphotericin B,
nystatin and liposomal nystatin), and allylamines (terbinafine). This study showed that the
highest growth-inhibitory activity was for voriconazole (MICyy 0.5 pg/ml), followed by
miconazole (MICgy 1 pg/ml), posaconazole (MICyg 2 pg/ml), UR-9825 (MICgqy 2 pg/ml),
itraconazole (MICyg 4 pg/ml) and amphotericin B (MICg 16 pg/ml) [71]. No statistically
significant difference in the antifungal activities after 48 h or 72 h of incubation was seen for
any of the drugs. These results were further confirmed by a recent study that compared the
antifungal susceptibilities of the different Scedosporium species (332 isolates) to
itraconazole, voriconazole, posaconazole, isavuconazole, caspofungin, micafungin,
anidulafungin and amphotericin B [72]. The study found that voriconazole and posaconazole
were the most promising drugs against all Scedosporium species whereas micafungin was
very promising if S. aurantiacum was excluded.

Despite the promising antifungal activity of voriconazole on Scedosporium species
based on MIC values, a recent study on 43 patients treated with voriconazole for a S.
apiospermum complex infection showed only 54% successful response rates in patients
[73]. Response rate was either lower in one study where 2 out of 6 patients (33%) infected
with S. apiospermum complex responded to voriconazole treatment [74], or higher in
another study where 5 patients out of 6 (83%) responded to voriconazole treatment [75].
Hereby, the mortality rates from infections with S. apiospermum complex after treatment
with voriconazole, our best antifungal so far, ranges between 17% and 67%. However such
values seem to resemble the worldwide mortality rates by other fungi like C. neoformans
(20-70%), C. albicans (46-75%) and A. fumigatus (30-95%) [8]. The resemblance of
mortality ranges incites the need for better antifungal drugs.

A  novel orally active antifungal molecule named E1210 that targets
glycosylphosphatidylinositol (GPI)-linked protein biosynthesis seems to hold promise for the
treatment of a wide range of medically relevant yeasts and molds like Candida spp. (MICyy of
< 0.008 to 0.06 pg/ml; except C. kruzei), A. fumigatus (MICyg 0.13 pg/ml), S. boydii (MIC
0.03 to 0.13 pg/ml) and L. prolificans (MIC 0.03 pug/ml) and C. neoformans (MIC 0.13 to 0.5
HMg/ml) among others. Antifungal activity of E1210 was generally either higher or comparable
to that of voriconazole. Cytotoxicity assays using human HK-2 cells showed low toxicities as
low as that of fluconazole. E1210 also demonstrated a consistent efficacy in murine models
of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated
fusariosis, its efficacy in vivo with other fungal infections remains to be determined. However
based on these results, E1210, which is first-in-class, is likely to be a promising antifungal
agent for the treatment of invasive fungal infections [77, 78]. Interestingly, another novel

molecule also inhibiting GPI anchor biosynthesis named gepinacin (for GPI acylation
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inhibitor) showed an increased immunogenicity of C. albicans, by disrupting the
mannoprotein outer layer of the cell wall and therefore unmasking the more immunogenic
inner B-glucan layer which might also explain the mechanism of action of E1210 [78].
Finally, GPI-linked mannoproteins components of the fungal cell wall remain interesting

targets for antifungal drugs.

1.4.2. Biotechnological applications

Despite the pathogenic nature of some of them, fungi have great benefits since early
historic times. The intricate and unique metabolic processing makes them one of the most
important groups of organisms in modern technology, where food and various metabolites
such as antibiotics, steroids, enzymes and alkaloids are produced on an industrial scale.
Moreover, fungi have a remarkable degradation capacity that helps in pollution control and
recycling.

In this context, a number of molecules have been discovered in Scedosporium species
as summarized in Table I1.3; their discovery will be henceforth explained in a chronological
order. The first molecules date back to 1985 where Maebayashi et al. [79] extracted two
metabolites from the fungus S. boydii IFM 4642 named Pseurotin A and PB-4 that had an
inhibitory effect on monoamine oxidase. Pseurotin A is produced also by other fungi like
Pseudeurotium ovalis or some aspergilli and it is already commercialized as an inhibitor of
IgE production, as a nematicidal molecule and a stimulator of neuritogenic activity
(neuritogenesis is the outgrowth of dendrites and axons from neuron cells which is important
for neuronal maturation during the development of CNS) [80].

In 1993, Kuroda et al. [81] extracted from Scedosporium sp. SPC 15549 a novel
inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT) named AS-183. ACAT is responsible
for cholesterol ester formation in atherogenesis and in cholesterol absorption from the
intestines. Therefore, inhibitors of ACAT are effective for the treatment of atherosclerosis
and hypercholesterolemia.

Tyroscherin and tyroscherin analogues were extracted in several Scedosporium
species in several studies. In 2004, there were two studies, the first one by Hayakawa et al.
[82] who extracted a tyroscherin molecule from Scedosporium sp., this molecule had an
inhibitory effect on insulin-like growth factor-1 (IGF-1) that is a receptor known to be
significant for tumor cell growth and survival. The second study was by Kamigri et al. [83]
who extracted a tyroscherin-analogue named YM-193221 from the fungus P. ellipsoidea
CBS 128.78 that presented a potent antifungal activity against C. albicans by the inhibition
of mannan synthesis. Later on, these two molecules were studied again by Katsuta et a/
[84] to improve extraction methods. In 2013, Nirma et al. [85] also identified two

molecules named Tyroscherin and N-methyltyroscherin from S. boydii SNB-CN73, both
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Table I.3. Summary of molecules produced by Scedosporium species with a biotechnological

application
Name Activity Application Fungus Ref
Pseurotin A Inhibitory of Inhibition of IgE production S. boydii IFM 4642 [79]
monoamine oxidase Nematicidal activity
Stimulation of neuritogenic
activity
PB-4 Inhibitory of NS S. boydii IFM 4642  [79]
monoamine oxidase
AS-183 Inhibitor of ACAT Treatment of atherosclerosis Scedosporium sp. [81]
and hypercholesterolemia SPC 15549
Tyroscherin Inhibits insulin-like  Antitumor activity against Scedosporium sp. [82]
growth factor-1 IGF-1 dependent cells
(IGF-1)
YM-193221 Inhibition of Antifungal against C. albicans  P. ellipsoidea CBS [83]
(Tyroscherin mannan synthesis 128.78
analogue)
Tyroscherin and NS Antifungals against C. S. boydii SNB-CN73  [85]
N-methyl albicans and T. rubrum
tyroscherin
Gliotoxins (1), NS Antibacterial activity against Scedosporium sp. [86]
(2) and (3) MRSA and MDRSA (MFB165)
Pseudallin Inhibit A. Antitumor activity against S. boydii TKF-4 [87]
brassicicola IGF-1 dependent cells Control [88]
black leaf spot disease of
cabbage plants
Ligninolytic Biological treatment  Improve the production of P. angusta MF4 [89]
enzymes of wood fibres wood-based composites
Botryorhodine F NS Antitumor activity against S. boydii NTOU2362 [90]
and C A549 non-small-cell lung
cancer cell line
Pseudaboydin A Moderate cytotoxic Moderate antitumor activity S. boydii (marine [91]

activity

against 3 cancer cell lines

strain)

NS: Not specified
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In 2006, three other metabolites were extracted from the strain Scedosporium sp.
MFB165 by Li et al. [86], the dioxopiperazine, dehydroxybisdethiobis(methylthio)gliotoxin
(1), the bisdethiobis(methylthio)gliotoxin (2) and gliotoxin (3) and these molecules
presented a potent antibacterial activity against the methicillin-resistant and multidrug-
resistant Staphylococcus aureus. Gliotoxin (3) had a significant radical scavenging activity.

In 2010, Ko et al. [87] isolated from the soil four S. boydii strains capable of inhibiting
the germination of Alternaria brassicicola and thus reducing the disease incidence of black
leaf spot of spoon cabbage caused by A. brassicicola. The potent fungistatic molecule was
then identified to be 6-6'-bis (2 H-pyran-3-carbaldehyde) ether that was named pseudallin
[88].

Later on, Guisado et al. [89] discovered a strain with high ligninolytic activity named
P. angusta MF4. The strain had a high production rate of ligninolytic enzymes in the presence
of inducers. Unlike A. flavus MF 20, this strain was capable of achieving the highest values of
growth after 21 days of incubation on sawdust without any additional nutrients. The
transformation of residual lignocellulosic materials into added-value products using
microorganisms is considered an environmentally friendly alternative to chemical treatments
for the manufacturing of composites.

Last year, Chang et al. [90] extracted nine molecules from a S. boydii strain
NTOU2362; among these molecules two of them, botryorhodine F and C, exhibited moderate
to potent growth inhibition activity on A549 non-small-cell lung cancer cell line with Glsg
values of 41.3 and 4.1 uM, respectively, in comparison with fluorouracil (GIsg = 3.6 uM).

Finally, few months ago, Lan et al. [91] extracted from a marine strain of S. boydii,
associated with the starfish Acanthaster planci two novel isobenzofuranone derivatives,
pseudaboydins A and B along with 5 other molecules. Pseudaboydin A showed moderate
cytotoxic against human nasopharyngeal carcinoma cells HONE1, human nasopharyngeal
carcinoma cells SUNE1 and human glandular lung cancer cells GLC82 with IC50 values of
37.1, 46.5 and 87.2 uM, respectively.

Other biotechnological applications were also proposed for Scedosporium species
concerning bioremediation, especially that these fungi are mainly isolated from polluted soil
and water. The first study on the growth of Scedosporium species on known pollutants dates
back to 1988 by Onodera et al. [92]. However, this topic will be discussed in detail in

another section of this thesis (General Discussion).
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II. The fungal cell wall

The discovery of the fungal cell wall dates back to the early 18th century. This
structure remained virtually ignored by researchers and was assumed to act merely as a
backbone that held together the internal organelles [93]. In the beginning of the 20th
century, research on cell walls, mainly in plants and bacteria, started to expand and later on,
the biotechnological industry employing fungi intensified the progress of scientific
investigations on fungal cell walls. This shift was a turning point for scientific research on
fungi since major classes of antifungal drugs currently in use or still under investigation
target the fungal cell wall components or biosynthesis (ergosterol, chitin, f 1,3 glucan B 1,6-
glucan and GPI-anchored proteins) [77, 95].

Our understanding of the fungal cell wall underwent major changes; it is now viewed
as a dynamic structure that evolves to fit vital needs while providing the fungal cell
structure. It acts like a modular gateway that protects the fungus from harmful chemical,
physical and biological aggressions. It maintains internal homeostasis, senses the external
stimuli and recognizes the external biological and inert surfaces. It also provides selective
permeability for molecules allowing the accumulation of those necessary for fungal survival
or those to be secreted to the outer medium [95]. This wide panel of functions provided by
the cell wall highlights the role of its components for the development of antifungal drugs,

the diagnosis of fungal infections and also for various biotechnological applications.

II.1. Components of the fungal cell walls and their functions

The general organization of the cell wall may vary between fungi or even in the same
fungal species during diverse morphological stages as revealed by electron microscopy
techniques.

The fungal cell wall is mainly composed of polysaccharides, proteins, melanin and lipids
that are cross-linked together, which renders it challenging to study. However the
development and the combination of microscopic (atomic force microscopy, electron
microscopy,...), immunological and molecular techniques provided critical information about
the location of different components within the wall, giving a picture of a carbohydrate-rich
inner cell wall layer and a protein-rich outer layer. The development of mass spectrometry
techniques (gas chromatography-mass spectrometry, GC-MS; nano liquid chromatography
with MS/MS, nano LC-MS/MS;...), nuclear magnetic resonance (NMR) and chromatography
techniques also allowed the identification and characterization of various cell wall
components. The different cell wall constituents and their functions will be a major focus of

this part.
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I1.1.1. Polysaccharides

Polysaccharides are the most abundant cell wall components in fungi, they make at
least 90% and 85% of the cell wall dry weight in A. fumigatus [96] and Saccharomyces
cerevisiae [97], respectively. The richness of fungal cell walls with polysaccharides is mainly

due to glucans and mannan-containing polymers.

a) Glucans

Glucans is a name given to a number of polysaccharides made solely of glucose
residues, but different types of linkages may occur; thus alpha glucans with a-1,3 bonds and
beta glucans with $-1,3, B-1,6 or B-1,4 bonds may be distinguished [96, 99].

B-1,3-Glucans constitute the major class of glucans found in the fungal cell walls with a
mass ranging from 30% in C. albicans to 87% in Neurospora crassa [96, 100, 101]. B-1,3-
Glucan is a branched polymer with B-1,6 inter-chain links and a coiled spring-like structure
that confers elasticity and tensile strength to the cell wall [97]. The glucan is synthesized by
B-1,3-glucan synthase. In A. fumigatus, C. neoformans, N. crassa, and C. albicans there is
one B-1,3-glucan synthase, called FKS1, while in S. cerevisiae and Schizosaccharomyces
pombe (S. pombe) there are 3 and 4 B-1,3-glucan synthases, respectively [99]. FKSI
mutations dramatically affect fungal morphology and growth, therefore such enzymes form
major targets for antifungal agents like drugs belonging to the echinocandin family that
induce cell swelling and lysis [100, 102]. Following synthesis, B-1,3-glucans undergo
remodeling inorder to be incorporated in the preexisting cell wall. An array of enzymes is
responsible for such remodeling in A. fumigatus including exof(1-3)glucanases (EXG1 to
EXG10), endof(1-3)glucanases (ENGL1 to ENGLS8), other exo-B-glucanases (EXG12 to
EXG21), branching enzymes (BGT1 to BGT3, SCW4 and SCW11), elongation enzymes (GEL1
to GEL7) and cross linking enzymes (CRH1 to CRH5) [102]. B-1,3-Glucans are well known
pathogen associated molecular pattern (PAMPS) molecules that can be recognized by Dectin-
1 and that induce strong pro-inflammatory responses by the innate immune system [103].

B-1,6-Glucan polymers are found in S. cerevisiae (10-15% of cell wall dry weight), C.
albicans (43-53% of cell wall dry weight) and C. neoformans but are absent in A. fumigatus,
N. crassa and S. pombe [99]. B-1,6-polymer is shorter than B-1,3-glucan, it is amorphous in
structure and forms covalent bonds with B-1,3-glucan, chitin, and cell wall mannoproteins,
which gives flexibility to the cell wall structures [98, 105]. In C. albicans, mutations in
KRE5, a gene involved in B-1,6-glucan synthesis, lead to mutants with severe cell wall
defects : mutants were unable to form hyphae on solid medium even in the presence of
serum, they showed 50% reduction in adhesion to human epithelial cells and were

completely avirulent in mouse models [105].
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The mixed B-1,3-/B-1,4-glucans were first discovered in A. fumigatus [106]. Chitin,
galactomannan and the linear f1-3/1-4 glucan were found covalently linked to the non-
reducing end of B-1,3-glucan side chains. Later on, 1,4-linked glucose was identified as one
of the major sugars in N. crassa suggesting presence of such mixed polymer [100].
However, the synthesis and function of this type of B-1,3-/B-1,4-glucans remain unknown
[99].

a-1,3-Glucans have been found in a number of fungal cell walls, in A. fumigatus (35-
46% of cell wall dry weight), S. pombe (18-28% of cell wall dry weight), C. neoformans
where they are necessary for anchoring the capsule to the cell wall and in the conidial wall of
N. crassa [99]. a-1,3-Glucans were found to be linked to virulence in many fungi. In A.
fumigatus, they were indirectly linked to virulence since the deletion of an a-1,3-glucan
synthase gene, AGS3, led to a hypervirulent mutant strain due to a compensation
mechanism consisting of an increased amount of melanin in the conidial cell wall which

resulted in a higher resistance to reactive oxygen species [107].

b) Mannose-containing polymers

Mannose polymers in the fungal cell wall are mostly in the form of carbohydrate moiety
of glycoproteins in C. albicans and S. cerevisiae. Mannan polymers also exist in the form of
heteropolysaccharides as galactomannans in A. fumigatus (20-25% of cell wall), N. crassa
(12% of cell wall), S. pombe (9-14% of cell wall) and C. neoformans or as rhamnomannans
in Sporothrix schenckii, Ceratocystis stenoceras, Ceratocystis ulmi and L. prolificans [65,
100, 109]. The majority of the cell wall mannan-containing polymers are found on cell wall
proteins as post-translational modifications, but in A. fumigatus galactomannan has also
been found linked to lipids. Synthesis of homo- or heteropolymers occurs through
mannosyltransferases, but other enzymes responsible for the addition of galatofuranose side
chains for example are yet to be identified [99].

Two types of linkages exist in mannoproteins between the mannan-containing chains
and the protein core, the O-glycosidic linkage between mannose and the hydroxyl group of
the amino acids serine and threonine, and the N-glycosidic bond. In this last case, a high
molecular weight and highly branched mannan chain is linked to the protein moiety at the
asparagine residues found in the context of Asn-X-Ser/Thr within the amino acid sequence of
the protein (X is any amino acid except proline) [99].

Mutational analysis shows that O-linked oligosaccharides are essential for growth,
morphology, and virulence of C. neoformans, C. albicans, A. fumigatus and N. crassa [100,

102, 110]. Given the fact that almost all cell wall proteins are extensively O-glycosylated,
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one might suspect that tempering with O-linkages would compromise the activity of attached
proteins or render them vulnerable to degradation.

Finally, mannoproteins are generally more abundant on the external leaflet of the cell
wall, thus covering both glucans and chitin [111, 112] and in C. albicans mannosides were
shown to have adhesive and immunomodulatory properties during infections which is
essential during the early stages of colonization as well as during the host tissue invasion
[112].

c) Chitin

Chitin is a linear polymer of B-(1,4)-linked N-acetylglucosamine. This polymer is less
abundant in fungal cells walls than B-glucans since it forms only 1-2% of the total cell wall
dry weight in S. cerevisiae, 2-6% in C. albicans, 7-15% in A. fumigatus, and 4% in N. crassa
[99]. The chains of chitin associate by hydrogen bonds to form microfibrils arranged in
different forms. Among the 3 structures known so far in nature, only the a-chitin has been
found in fungal cell walls where the sugar chains run antiparallel to each other. This ribbon-
like structure accounts for the extreme insolubility and great rigidity of these molecules,
which confers stretching resistance to fungal cell wall. In fact chitin has a tensile strength
higher than that of steel (4000 MPa vs. 2800 MPa) and is said to be the toughest molecule
found in nature [113]. Chitin deposition in the fungal cell wall is controlled spatially and
temporally [97]. Until now, seven different classes of chitin synthases are known in fungi
[114]. Even thought the functional significance of all these classes remains unknown, it is
believed they perform redundant roles in cell wall synthesis with class II enzymes being the
most consequential on cell viability. Chitin chains are covalently cross-linked to B(1,3)-
glucans. Immunogenicity of chitin seems to be dependent on the size of the molecule with
small ones being most immunogenic. Chitin provokes allergic immune responses by chitin-
degrading enzymes released by human host cells resulting in the accumulation of IL-4
expressing basophils, eosinophils and neutrophils in tissues and induces alternative
macrophage activation [114]. Immune responses to chitin are mediated by Reglllg, a C-

type lectin that is expressed in neutrophil-like Paneth cells [114].

d) Chitosan

Chitosan is a deacetylated form of chitin; it is a polymer of glucosamine that is
produced enzymatically by chitin deacetylases (EC 3.5.1.41) [115]. Chitosan is more
flexible and soluble than chitin allowing cell wall plasticity in response to various
environmental stimuli and during fungal growth. In C. albicans less than 5% of chitin is

deacetylated into chitosan while in C. neoformans more than two thirds of chitin is
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deacetylated and it can exceed the chitin content of the cell wall by ten folds [117, 118].
Mutations in chitin deacetylases in S. cerevisiae were not lethal while in C. neoformans such
deletions resulted in a “leaky melanin” where melanin molecules could no more be fully
retained in the cell wall. Of note, S. cerevisiae is a hon-melanized fungus and the amount of
chitosan present in its cell wall is lower than that in C. neoformans which would explain the
difference in the associated phenotype [115]. Chitosan can activate dendritic cells via a
TLR4-dependent mechanism but this does not lead to T-cells stimulation since no cytokine
production occurs. However, co-stimulation with other microbial PAMPS can override this

partial activation [118].

I1.1.2. Proteins

From a quantitative point of view, proteins are much less abundant than cell wall
polysaccharides forming about 3% to 20% of the cell wall dry weight only. Nevertheless,
they have extremely important roles in maintaining the cell shape, mediating adhesion for
cell migration and fusion, protecting the cell against foreign substances, mediating the
absorption of molecules, transmitting intracellular signals from external stimuli and
synthesizing and remodeling cell wall components [96, 120]. There exist two types of
fungal cell wall proteins: integral and non-integral proteins. Integral proteins are found
cross-linked to the fibrillar meshwork of polysaccharides (chitin and glucans) in the cell wall
while the non-integral proteins are found associated to the cell wall and can have important
functions like many hydrophobins.

Hydrophobins form amphiphatic layers on the surface of specific cells giving a
protective hydrophobic coating to filamentous fungi. They play a role in fungal growth, aerial
growth in particular, in the interaction of fungi with their environment and attachment to
solid supports as well as adherence to the host tissues [120]. By 2005, there were at least
70 unique hydrophobin gene sequences identified in fungi [120]. Hydrophobins are
moderately hydrophobic proteins with hydrophobicity indices (Grand Average of Hydropathy,
GRAVY) that vary between 0.01 and 0.6, but less than 20% of hydrophobins in Ascomycota
have hydrophobicities higher than 0.5 GRAVY values [121, 122]. Hydrophobins are all
secreted proteins with signal peptides; they have poor nucleotide sequence homology but a
conserved spacing of eight cystein residues and can be generally divided into two classes
(Figure I.7). However it is important to mention that a recent study on 9 genome
sequences of Aspergillus species showed that among 50 identified hydrophobins, 26 could
not be classified in either classes and showed intermediate forms [122]. Class 1
hydrophobins show a considerable cysteine-spacing variation unlike to Class II [123], they
form highly insoluble membranes in water, organic solvents and 2% SDS [121] and they

are present in both Basidiomycetes and Ascomycetes [120]. Class II hydrophobins can be
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dissolved in aqueous ethanol (60%) or SDS 2%, they lack the rodlet morphology of class I
hydrophobins [124] and they have only been identified in Ascomycetes. Hydrophobins have
been correlated to fungal pathogenicity, for example a class I hydrophobin, mpgl protein
identified in Magnaporthe grisea (M. grisea) has been shown to play a role during rice blast
disease symptom development and in the perception of inductive surfaces for the initiation of
appresorium development suggesting that it functions in the intimate association between
fungi and surfaces on which they are living on [125]. On the other hand, the deletion of the
class II hydrophobin cerato-ulmin in Ophiostoma novo-ulmi showed no reduction in
pathogenicity of this fungus during Dutch elm disease [126]. In A. fumigatus, 8
hydrophobins have been detected in the genome of multiple strains [127], the expression of
6 of which, named rodAp through rodFp, was reported by Beauvais et al. [128]. All 6
proteins belong to class I hydrophobins, but only one, rodAp, seems to be responsible for the
rodlet layer structure found on the surface of conidia [129]. RodAp plays a key role in
rendering conidia immunologically inert but it has a predicted GPI anchor which makes it an

integral cell wall protein.
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Figure 1.7. Regrouping hydrophobin (Class I and Class II) sequence alignments from
Ascomycota according to the taxonomical classifications
(adapted from Linder et al. [120]).
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The second type of cell wall proteins are those covalently linked to the cell wall
polysaccharide components and these are also divided into two classes. The first are Pir
(proteins with internal repeats) proteins and the second class that is more abundant, is
anchored to the cell wall through a glycosylphosphatidyl inositol (GPI) moiety.

Regarding the GPI-anchored proteins, it is important to note that they may be targeted
to the plasma membrane and/or to the cell wall. However it is not always easy to determine
the fate of these proteins since some proteins might be found in both compartments while
others might be restricted to one [130] and the categorization of these proteins to the cell
wall or plasma membrane remains a matter of ongoing research. Cell wall GPI-anchored
proteins play a role during pseudohyphal and invasive growth, iron and water retention,
sterol uptake, cell wall porosity, flocculation, recognition of mating partners, cell wall
maintenance, protection against environmental stressess, cell wall repair, adhesiveness and
hydrophobicity, cell-cell interactions, virulence, biofilm formation, antigenicity, iron uptake,
and various enzymatic functions [131]. The GPI anchor is added to proteins through a
transamidase complex, located at the lumenal side of the endoplasmic reticulum (ER). This
enzymatic complex recognizes a C-terminal signal in substrate proteins, cleaves the C-
terminal propeptide from the proprotein substrate and attaches a GPI moiety (a composite
structure including an inositol phospholipid and an oligosaccharide with, at least, one
phosphoethanolamine substitution) at the attachment site called w-site [132].

In 2003, de Groot, Hellingwerf and Klis [133] proposed an update to the consensus
sequence described by Caro et al. [134] in 1997 for the GPI attachment site and its
downstream region. The new algorithm based on analysis of 4 genomes was as follows:
[NSGDAC]-[GASVIETKDLF]-[GASV]-X(4,19)-[FILMVAGPSTCYWN](10)>, where > indicates
the C-terminal end of the protein and X denotes any amino acid, and the first brackets
correspond to the w-site, the second brackets correspond to the w+1, the third to w+2 and
the last brackets correspond to the hydrophobic tail that is necessary to retain the protein on
the membrane until GPI modification. However in 2004, a new software named "“Big-PI
fungal predictor” (accessible at: http://mendel.imp.ac.at/gpi/fungi_server.html) was
proposed by Eisenhaber et al. [132] for genome-wide GPI-anchor detection and the analysis
was based on more additional features. The new criteria permitted a more precise detection
of GPI-anchored proteins. Therefore the canonical sequence motif for the C-terminus of
proproteins was described as consisting of four necessary subsegments: (1) a polar, flexible
linker (w - 11... w - 1) without intrinsic secondary structural preference; (2) the volume-
constrained w-site region (w - 1... w + 2); (3) a moderately polar spacer (0w + 3... ® + 9);
and (4) a hydrophobic tail beginning with ® + 9 or ® + 10 up to the C-terminal end. It is

noteworthy that the algorithm in this software, although highly precise, has a less optimal
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sensitivity resulting in a false negative rate as high as 20% as suggested by de Groot and
Brandt [127]. Later on, a new software was also proposed, called proFasta (accessible at:
http://www.bioinformatics.nl/tools/profasta/) that allows pipeline filtering through
composition or pattern recognition and plI values. These and other filters can also be applied
on results obtained from Big PI, TMHMM (for the detection of transmembranal helixes) and
Signal IP (for the detection of signal peptides) and this software seems to be very promising
[127].

Finally, data currently available on many yeast and mycelial genomes indicate that
members belonging to the Gas/Gel, Crh and other GPI-cell wall protein families are
widespread among the ascomycetous fungi, which is consistent with their specific roles. For
example Gas/Gel family members are involved in elongating B-1,3-glucan, a widespread cell
wall polysaccharide, while Crh family members are transglycosylases believed to be involved
in attaching chitin to B-glucan [103, 136]. Interestingly, this Crh family was not found in
the fission yeast S. pombe which is in agreement with the absence of chitin in its cell wall
[135].

As for the other less abundant class of integral cell wall proteins, the Pir proteins, they
consist of a putative N-terminal signal peptide, followed by a Kex2 endoprotease cleavage
site, an internal repeat region with a variable number of repeats of Q-[IV]-X-D-G-Q-[IVP]-Q
(Prosite format), and a C-terminal cysteine-based motif [98, 128]. Genome database
search allowed the detection of 76, 11, 5, 3 and 1 Pir proteins with two or more repeat units
in S. cerevisiae, C. glabrata, C. albicans, N. crassa and aspergillar species, respectively
[127]. In S. cerevisiae, Pir proteins are linked to B-1,3-glucan chains through a yet
unidentified mild-alkali-sensitive linkage, whereas GPI-anchored proteins can be released by
hydrofluoric acid treatment that cleaves the phosphodiester bond [136]. Current lines of
evidence in S. cerevisiae and Candida species indicate that the expression of these proteins
changes in response to environmental conditions suggesting a protective role [98, 138].

Finally, researchers working on cell wall protein extraction almost invariably find a set
of “cytosolic” proteins, even when the preparations are rigorously treated with alkali, high
salts, and boiling SDS solutions [138, 139, 140, 141, 142]. In S. cerevisiae, these
proteins were also found in the extracellular medium which suggests that they are released
by the cells and their detection is not due to contamination during cell lysis and isolation of

III

the cell wall [141]. These proteins are often referred to as "“noncanonical” or
“nonconventional” cell wall proteins. The mechanism by which these proteins get cross-
linked to the cell wall remains enigmatic, as well as whether they are true cell wall proteins
or not, and whether they have cell wall-specific functions. For now, most studies on the cell

wall largely disregard these proteins [99].
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I1.1.3. Melanins

The term “melanin” originates from the Greek word melanos- meaning black. Melanins
are high molecular weight pigments with a variety of biological functions. For more than 50
years, fungi were known to produce this pigment, but unlike other components of the fungal
cell wall, its molecular structure remains elusive [142]. Melanins are macromolecules
formed by oxidative polymerization of phenolic and/or indolic compounds. These pigments
are usually black or brown but other colors do exist. Melanins are generally defined based on
their properties since they are (i) insoluble in water and organic solvents, (ii) resistant to
concentrated acids and to bleaching by oxidizing agents as hydrogen peroxide and
hypochlorite ions and (iii) soluble in hot alkaline solutions, criteria that are useful for melanin
extraction. Nowadays, more advanced techniques are also used as the UV-visible
spectrophotometry (melanin absorbs in the UV region) and electron paramagnetic
resonance. Elemental analysis can be performed through Infra Red spectra and High
Performance Liquid Chromatography (HPLC) analysis after chemical degradation [143] as
well as Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass
spectrophotometry [144].

Dihydroxyphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)-melanin
are the predominant types of melanin in fungi (Figure I.8). DOPA-melanin is particularly
well studied in the pathogenic yeast C. neoformans, where it is found in the cell wall under
the capsule, next to the plasma membrane [145]. Melanin in C. neoformans is in the form
of granular particles of approximately 40- 130 nm in diameter based on NMR cryoporometry
and arranged in multiple concentric layers [145]. The synthesis of DOPA-melanin starts with
the hydroxylation or oxidation of L-tyrosine or L-DOPA, respectively, to dopaquinone (DOPA-
Q). This latter is a highly reactive intermediate; therefore in the absence of thiols, DOPA-Q
forms leucodopachrome which is then oxidized to dopachrome. Hydroxylation (and
decarboxylation) vyields dihydroxyindoles that polymerize to form DOPA-melanin. Unlike
mammalian cells, no evidence of pheomelanins has been found in C. neoformans, nor were
the enzymes tyrosinase-related proteins 1 (trpl) and 2 (trp2) found [146]. The synthesis of
DOPA-melanin can be inhibited by kojic acid and tropolone that have a strong inhibitory
effect on the tyrosinase acitivity [147] as well as glyphosate that interferes with the
shikimate pathway by inhibiting the enzyme 5-enolpyruvoylshikimate 3-phosphatesynthase
[148].

DHN-melanins are negatively charged hydrophobic molecules that are synthesized
through a complex metabolic pathway, the polyketide synthesis pathway [149]. DHN-
melanin synthesis involves a number of enzymes encoded by an equal number of genes

organized in clusters, there are 3 genes in Alternaria alternata [150] whereas 6 genes in A.
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fumigatus [149]. The 1,8-DHN-melanin pigment is synthesized from acetyl-CoA or malonyl-
CoA, and formation of 1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN) is catalysed by a
polyketide synthase (PKSp). Two successive reduction and dehydration reactions follow this
step to produce 1,8-DHN. The reduction of 1,3,6,8-tetrahydroxynaphthalene and 1,3,8-
trihydroxynaphthalene is catalyzed by 1,3,6,8-tetrahydroxynaphthalene reductase and
1,3,8-trihydroxynaphthalene reductase. Dehydration of scytalone and vermelone is
efficiently catalyzed by scytalone dehydratase (SCD). The enzymes catalyzing the reduction
steps can be inhibited by tricyclazole and pyroquilone, whereas the enzyme involved in

dehydration steps can be inhibited by carpropamid.
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Figure I.8. Melanin synthesis pathways in humans (A) plants (A) fungi (A and B) and bacteria (A
and C).
TYDC: Tyrosine decarboxylase; TYR: Tyrosinase; HPP: 4-Hydroxyphenyl pyruvate;
HGA: Homogentisic acid; BAA: Benzoquinone acetic acid; DOPA: 3,4-Dihydroxyphenylalanine;
DOPA-Q: DOPA-quinone ; PPO: Polyphenol oxidase; AHB: Alanyl-hydroxy-benzothiazine;
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ADHDB: Alanyl 5,6 dihydro-di-benzothiazine; DHI: 5,6-Dihydroxyindole ; DHICA: DHI-2-
carboxylic acid; DCT: DOPAchrome tautomerase ; DCE: DOPAchrome conversion enzyme;
TYRP: Tyrosinase-related protein; PKS-1: Polyketide synthase type 1; THN: 1,3,6,8-
Tetrahydroxynaphtalene; THR: Tetrahydroxynaphtalene reductase; SCD: Scytalone
dehydratase; DHN: 1,8-Dihydroxynaphtalene; HPQ: 1,4,6,7,9,12-Hexahydroxyperylene-3,10-
quinone (Source: Singh et al. [151]).

Melanins can be found either enmeshed within the cell wall or restricted to the outer
layer and they play an important role in protecting fungi against adverse conditions in the
environment, including toxic products like heavy metals [152], radiation (UV, gamma and
solar radiation), enzymatic degradation and heat [154, 155]. Eventhough melanins are
ubiquitous in nature, pathogenic fungi do employ these molecules to infect plants and
subjugate the human host defense mechanisms. In phytopathogenic fungi such as M. grisea
and Colletotrichum lagenarium, DHN-melanin plays an essential role in generating turgor for
plant appressoria to penetrate plant leaves [155]. The absence of melanin in human
pathogenic fungi often leads to a decrease in virulence. In S. schenkii, unmelanized conidia
were less resistant to phagocytosis and killing by human monocytes and murine
macrophages than were the wild-type strains showing that melanization protects against
oxidative antimicrobial compounds and killing during phagocytosis [156]. In Penicillium
marneffei, deletion of the PKS gene (ALB1) involved in the first step of melanin synthesis led
to strains of a significantly reduced virulence in a mouse model [157]. Other examples
include A. fumigatus where conidia having an ALB1 gene deletion were readily ingested by
human neutrophils, which was not the case for wild-type strain or ALBI-complemented
strains. Likewise, ALB1-disruptants were significantly less virulent in a murine model [158].
Taken together, these studies reinforce conclusions that melanins are effective in quenching
free radicals and enzymes, they aid in antifungal resistance, act as chelators for transition
metals, possibly compensate the decrease in superoxide dismutase and act as a redox
buffers. Finally, the radical concentration in melanin is known to respond to effectors like pH,
temperature and UV which alter the equilibrium between reduced and oxidized species. The
degree of polymerization or the molecular weight of the molecule would determine the ratio

of its pro-oxidant to anti-oxidant properties [159].

I1.1.4. Lipids

Lipids are the least studied molecules of the fungal cell wall as they have been long
been considered to be contaminants arising from the cell membrane. Lipids are generally
present in minor quantities in the fungal cell walls ranging from 1-10% of its dry weight

[95]. Cell wall lipids may be readily extractable with solvents, but some require primary step
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of hydrolysis, which suggests covalent linkage of these molecules to cell wall components.
Several types of lipids were identified in cell wall: free fatty acids, triglycerides, sterol, sterol
esters and phospholipids. Even though the role of lipids in the cell wall is still unknown, there
are some suggestions that they might be involved in growth, signaling, protection from
desiccation [95]. The presence of more complex lipid molecules has recently gained the
attention of researchers. Cerebrosides or ceramide monohexoside (CMH) seem to be present
in all fungal species studied so far except C. glabrata and S. cerevisiae [160]. CMHs are
neutral glycosphingolipids that usually contain glucose or galactose with B-glycosidic linkages
to the primary alcohol of an N-acyl sphingolipid base (ceramide) containing 9-methyl-4,8-
sphingadienine with amidic linkage to 16 or 18 carbon atom fatty acids (2-
hydroxyhexadecanoic or 2-hydroxyoctadecanoic acids). These molecules can be structurally
analysed using high-performance thin layer chromatography (HPTLC) and column
chromatography coupled to mass spectrometry (MS) techniques and NMR [161]. CMHs
appear to be involved in morphological transitions and fungal growth [162]. Recently, a
glucosyl ceramide was identified in S. apiospermum and treatment of conidia with the
monoclonal antibodies targetting this molecule significantly reduced fungal growth and

enhanced phagocytosis and killing of S. apiospermum by murine cells [163].

I1.2. The cell wall composition of Scedosporium boydii

The first study on the chemical composition of S. boydii cell wall was in 2001 by Pinto
et al. [64], who demonstrated that it was predominantly made up of rhamnopyranose
(Rhap) and mannopyranose (Manp) residues and traces of galactose and glucose. Further
analysis of peptidopolysaccharide extracts by NMR revealed a branched structure of a-Rhap-
(1-3)-a-Rhap- side chain epitope linked (1—3) to a (1—6)-linked a-Manp core as depicted
in Figure I.9-A. The carbohydrate content of these molecules was shown to be 70% and the
protein content was 15%. Among the other human pathogenic fungi, the presence of
peptidorhamnomannans was described only in the dimorphic fungus S. schenckii with a high
carbohydrate to protein ratio (90.5% carbohydrates and 14.2% protein) [164] and lately in
L. prolificans (62% carbohydrate, 35% protein in PRM) [108]. Rhamnose-containing
structures appear to be the immunodominant epitopes in the rhamnomannans of S. boydii,
L. prolificans, S. schenckii and C. stenoceras, particularly if they are present as (1->3)-linked
a-Rhap side-chain units [56]. The O-glycosidically terminated oligosaccharides may account
for a significant part (70-80%) of the PRM antigenicity similar to that of
peptidogalactomannans (50%) in A. fumigatus [165].

Another cell wall component was described in S. boydii, the a-glucans that consist of

linear 4-linked a-D-Glcp residues substituted at position 6 with a-D-Glcp branches (Figure
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I1.9-B). Infact, NMR analysis unravelled three types of residues (=2>4-aGlcp-(12>4)-),
(terminal aGlcp-(1>4)-), and (=24-aGlcp-(1->6)-), however the length of chains formed by
these residues as well as the extent of branching and whether there exists one backbone
remains unknown [54]. Paradoxically, S. schenckii that shares the peptidorhamnomannan

component with S. boydii does not have any a-glucans detected so far [164].
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Figure I.9. Cell wall components of S. boydii.

A: Structures of O-linked rhamnomannans B: Simplified structural diagram of a-glucans
showing three types of residues (24-aGlcp-(1>4)-), (terminal aGlcp-(1>4)-) and (>4-aGlcp-
(1>6)-). C: Structure of ceramide monohexosides (Diagrams are based on Lopes et al. [56],

Bittencourt et al. [54] and Pinto et al. [166])

Finally a glucosylceramide molecule was also characterized using a combination of
techniques: HPTLC, GC/MS, fast atom bombardment-mass spectrometry, and NMR. Analysis
of the extracted ceramide monohexosides allowed the identification of the molecule
(depicted in Figure I.9-C) as a glucose residue attached to 9-methyl-4,8-sphingadienine in
amidic linkage to 2-hydroxyhexadecanoic or 2-hydroxyoctadecanoic acids [166]. An
ectophosphatase activity was detected on S. boydii cell wall but no molecules in particular
were identified [59].
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EXPERIMENTAL PART

Study I

Cell wall modifications during conidial maturation of the human pathogenic fungus
Scedosporium boydii

Remark: The fungal name was changed to meet the latest recommendations for
nomenclature. The title and the text were originally published under the name

Pseudallescheria boydii which was changed here to Scedosporium boydii.

Study II

A multifaceted study of Scedosporium boydii cell wall during germination and identification of

some GPI-anchored proteins

Study III

Draft genome sequence of the pathogenic fungus Scedosporium apiospermum
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I.1. Abstract

Progress in extending the life expectancy of cystic fibrosis (CF) patients remains
jeopardized by the increasing incidence of fungal respiratory infections. Scedosporium boydii
(S. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated
from the respiratory secretions of CF patients. It is commonly believed that infection by this
fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the
adherence of Scedosporium to the host epithelial cells and its escape from the host immune
defenses remain largely unknown. Given that the cell wall orchestrates all these processes,
we were interested in studying its dynamic changes in conidia as function of the age of
cultures. We found that the surface hydrophobicity and electronegative charge of conidia
increased with the age of culture. Melanin that can influence the cell surface properties was
extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also
directly examined and compared using electron paramagnetic resonance (EPR) that
determines the production of free radicals. Consistent with the increased amount of melanin,
the EPR signal intensity decreased suggesting polymerization of melanin. These results were
confirmed by flow cytometry after studying the effect of melanin polymerization on the
surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A.
In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the
age of culture increased. Using atomic force microscopy, we were unable to find rodlet-
forming hydrophobins, molecules that can also affect conidial surface properties. In
conclusion, the changes in surface properties and biochemical composition of the conidial
wall with the age of culture highlight the process of conidial maturation. Mannose-containing
glycoconjugates that are involved in immune recognition, are progressively masked by
polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape

from the host immune defenses.
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I.2. Introduction

There has been an increase in the incidence of human infections due to fungi in the
Scedosporium species (S. boydii, S. apiospermum, S. aurantiacum, S. dehoogii and S.
minutispora) over recent years [1, 2, 3, 4]. Infections range from localized, such as
subcutaneous mycetoma in immunocompetent individuals, to disseminated infections in
immunocompromised patients.

In addition, S. boydii and the closely related species S. apiospermum are the most
common species recovered from the respiratory tract of patients with cystic fibrosis [5]. The
mechanisms of adherence and establishment of an infection by these fungi in the lung are
still largely unknown. It is thought that the infection process in the respiratory tract starts by
inhalation and adhesion of airborne conidia that differentiate into hyphae, with both
processes mediated by the spore cell wall since that acts as the interface between the fungus
and lung tissues.

Adherence is governed by two types of mechanisms, specific receptor-ligand and/or
non-specific cellular interactions [6]. Depending on the fungus, specific interactions can
involve polysaccharides (mannose polymers [7], glucans or galactosaminogalactan [8]),
proteins or glycoproteins bound to the cell wall through covalent or non-covalent bonds (ex.
hydrophobins [9, 10] or glycosylphosphatidylinositol-anchored proteins like Pwp7p and
Aedlp adhesins of Candida glabrata [11] and CspA of Aspergillus fumigatus). Non-specific
interactions involve cell surface properties such as electrostatic charge and surface
hydrophobicity which reflect the biochemical composition of the cell wall [12]. The
importance of such properties has been demonstrated in several fungal models including
yeasts [13, 14] and filamentous fungi. Deletion of the medA gene in A. fumigatus, for
example, leads to a modification in the surface physical properties along with impaired
adherence to epithelial cells and reduced virulence [15].

Escaping recognition and destruction by the immune system is another challenge for
fungal pathogens. In A. fumigatus, rodA hydrophobin contributes to fungal viability in vivo
by masking fungal pathogen-associated molecular patterns (PAMPs), thus preventing
recognition by Dectin-1 and Dectin-2 [16]. Other fungal pathogens, like Pneumocystis
jirovecii or Cryptococcus neoformans have been shown to evade immunosurveillance either
by changing the expression of major surface glycoproteins [17] or by means of a capsule
that cover the antigenic components of infective propagules and modulate the immune
response respectively [18]. Melanin is an additional virulence factor employed by many
fungi in order to resist phagocytosis and cellular damage secondary to nitrogen- or oxygen-
derived radical attack. Fungal melanin has been reported to limit complement activation, and

confer resistance to antimicrobial agents [19]. Modification or inhibition of the expression of
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melanin or rodA hydrophobins has repercussions on the cell surface physical properties in
fungi.

In S. boydii, only a limited number of cell wall constituents have been characterized so
far including peptidorhamnomannans (PRM) and alpha-glucans [20]. PRMs were
demonstrated to play a role in the adhesion of conidia to HEp2 epithelial cells in vitro [21]
as well as activation of Toll-like receptor (TLR) 4, responsible for cytokine induction in
macrophages [22]. Alpha-glucans were shown to partially elicit phagocytosis and to induce
secretion of inflammatory cytokines in @ mechanism involving CD14, TLR 2 and MyD88 [23].
On the hyphal wall, an acid and alkaline phosphatase activity was also detected [24], as
well as ceramide monohexosides suggested to be critical for fungal differentiation [25].

In this study, we investigate temporal changes in the physical properties of the conidial
wall of S. boydii, and we study the presence of rodlet structures and melanin as putative

virulence factors in the pathogen.

I.3. Materials and Methods

Strain and culture conditions

The filamentous fungus Scedosporium boydii IHEM 15155 (subgroup P. ellipsoidea),
isolated in 1990 from a bronchial aspirate in Angers University Hospital, was used
throughout this study. According to the classification of Gilgado et al. [3, 4, 18], this strain
was identified after sequencing the internal transcribed spacer (ITS) regions 1 and 2 of
ribosomal RNA genes (NCBI accession number EF441725) and the TUB region of the beta
tubulin gene (KJ566742).

The strain was routinely maintained on YPD (0.5% w/v yeast extract, 2% w/v glucose,
1% w/v peptone, 0.05% w/v chloramphenicol) agar plates. Conidia were harvested from
cultures grown for 5, 9 or 14 days at 37°C by flooding the agar surface with sterile water
followed by filtration on a 20-um pore size nylon filter. Conidia were washed twice with Milli-
Q™ water, centrifuged at 5000 g for 5 min at 4°C, and finally counted with a
hemocytometer.

For some experiments, the fungus was grown in the presence of 1,8-
dihydroxynaphthalene (DHN) melanin inhibitors (tricyclazol, pyroquilon or carpropamid) or
3,4-dihydroxyphenylalanin (DOPA) melanin inhibitors (tropolone, kojic acid or glyphosate).
Inhibitors were diluted in ethanol and incorporated into YPD agar to a final concentration of
20 pg/ml, according to Cunha et al. [26]. All inhibitors were purchased from Sigma-Aldrich
(St. Louis, MI, USA).
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Fluorescence studies

Freshly harvested conidia (10%) were washed once with Tris buffer (0.5 mM Tris, 100
mM NaCl, 1 mM CaCl;, 1 mM MgCl,, pH 7.0), pelleted by centrifugation, and then
resuspended in fluorescein isothiocyanate (FITC)-labeled lectins (Sigma): concanavalin A
(Con A), Wheat Germ Agglutinin (WGA), or Peanut Agglutinin (PNA) at a final concentration
of 100 pg/ml in Tris buffer. After 30 min of incubation at 37°C with continuous agitation,
conidia were washed three times in Tris buffer and then fixed in 1% formaldehyde (v/v) in
phosphate buffered saline 0.15 M pH 7.2 (PBS). For controls the fluorescent lectin was
omitted or the condia were incubated in the presence of an excess (0.2 M) of methyl a-D-
mannopyranoside, N-acetyl glucosamine (GlcNac) or galactose for Con A, WGA and PNA
respectively, prior to the addition of the FITC-conjugated lectin. Samples were observed with
a fluorescence microscope (Leica DMR) using immersion oil at 1000x.

After labeling with FITC-Con A, fluorescence intensity was also quantified by flow
cytometry on a FACSCanto™ II cytofluorometer driven by the FACSDiva™ software (BD
Biosciences, Pont de Clay, France). The conidia were gated on the forward scatter/side
scatter (FSC/SSC) plots. Fifty thousand cells per sample were analyzed and the mean

fluorescence intensity was recorded. Flow-Jo software was used for histograms overlays.

Transmission electron microscopy (TEM)

Conidia were washed once in cacodylate buffer (0.1 M) and pelleted at 5000 g for 5
min at 4°C. After incubation in fixative solution (2.5% (w/v) glutaraldehyde, 2% (w/v)
paraformaldehyde, 0.1 M cacodylate buffer) for 24 hours at room temperature under
vacuum, they were washed with cacodylate buffer, and incubated for 24 hours in 2% KMnQO4
in cacodylate buffer at 4°C. After washing, fixed conidia were incubated for 2 hours at room
temperature in 2% osmium tetroxide, washed in Milli-Q™ water, and finally dehydrated
through a series of ethanol-water solutions (50, 70, 95% ethanol, 2 x 30 min each) followed
by 100% ethanol (3 x 20 min). The ethanol was finally substituted with propylene oxide (3 x
20 min). Conidia were impregnated overnight in a propylene oxide-Epon mixture (1:1 v/v),
then embedded in pure Epon for 16 hours and 8 hours. Polymerization was performed at
37°C for 24 hours, then at 45°C for 24 hours and finally at 60°C for 48 hours. Thin sections
were counter stained with uranyl acetate and lead citrate in the case of melanin inhibition
experiments, otherwise they were directly examined on a JEM-1400 transmission electron
microscope (Jeol, Paris, France) operating at 120 kV.

For gold-conjugated Con A labeling, conidia (10%) were incubated for 30 min at 37°C
with continuous shaking in the presence of 5 nm gold-conjugated Con A (Biovalley, Marne la
Vallée, France) diluted 1:50 in Tris buffer. Then conidia were washed three times in Tris

buffer. Two controls were also prepared, by omission of the lectin, or the inclusion of 0.2 M
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methyl a-D-mannopyranoside in Tris buffer added just prior to the addition of the gold-
conjugated lectin. Samples were prepared for TEM as previously indicated without

contrasting.

Surface physical properties

Zeta-potential. Conidia were washed once in Milli-QTM water containing 1 mM NaCl,
then resuspended in the same solution to a density of 106 conidia /ml. The electrophoretic
mobility of cells was measured with a zeta potential analyzer (Zetasizer Nano ZS; Malvern
Instruments Ltd, Malvern, UK) before being converted to zeta potentials using the
Smoluchowski equation. The measurements, performed at 25°C, were repeated three times
with ten to thirty cycles for each measurement. Experiments were repeated three times.

Two-phase partitioning. Cell surface hydrophobicity (CSH) was determined
essentially as described by Pihet et al. [27] with some modifications. Hexadecane (0.5 ml)
was dispensed onto a spore suspension (2.5 ml) prepared in PBS (5 x 107 conidia /ml). A
control of 1 ml conidia suspension without hexadecane was prepared and the test samples
were prepared in duplicates. Tubes were vortexed for 2 min, allowed to stand at room
temperature for 3 min before carefully transferring 1 ml of the aqueous phase (bottom) into
a new tube using a Pasteur pipette. The transferred material was vortexed again for 2 min,
and the optical density (OD) was read at 405 nm in triplicate on 200-pl aliquots. The
hydrophobic index (percentage of conidia that were excluded from the aqueous phase) was
calculated using the following equation:

(ODcontrol — ODrest) #100

oD

control

Atomic force microscopy (AFM) measurements

Conidial suspensions of S. boydii with different cell densities were prepared in PBS and
500 pl were added per well in a 24-well plate containing poly-L-lysine (0.1% (w/v) in
distilled water, Sigma-Aldrich)-coated 12 mm-diameter glass cover slips prepared according
to the manufacturer’s recommendations. Cells were incubated with the coated cover slips for
30 min at 37°C with gentle agitation. Afterwards, the cover slips were washed twice with
PBS (5 min each with agitation), then left to dry at ambient temperature and conserved at
4°C before analysis.

The surface of S. boydii conidia was imaged using a NanoWizard atomic force
microscope (JPK, Berlin, Germany) operating in intermittent contact mode under ambient

conditions. A standard rectangular cantilever (Nanosensors NCL-W) was used for imaging,
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with a free resonance frequency of 165 kHz and a typical spring constant of about 40 N/m.

The radius curvature of the tip was ~10 nm.

PCR conditions and gene sequencing

Genomic DNA extraction. Mycelium from 10 day-old culture in YPD broth was
harvested and ground in liquid nitrogen with a mortar and pestle. Intact genomic DNA was
obtained by the method of Moller et al. [28]. Briefly, the ground mycelium (150-300 mg)
was washed three times with methanol containing 0.1% B-mercaptoethanol. Dried pellet was
resuspended in 500 pl TES (100 mM Tris pH 8.0, 10 mM EDTA, 2% SDS) containing 5 pl
proteinase K (100 pg). After incubation for 1 hour at 60°C, 140 ul NaCl (5 M) and 65 pl of
10% CTAB (cetyltrimethylammoniumbromide) were added to the mixture which was then
incubated for 10 min at 65°C. An equal volume of chloroform: isoamylic alcool (24:1, v/v)
was then added. After incubation for 30 min on ice and centrifugation at 20,000 g for 10 min
at 4°C, the upper phase was transferred and gently mixed with 0.215 vol (approximately
130 pl) ammonium acetate. After a further 30-min incubation on ice and centrifugation, DNA
was precipitated by mixing the supernatant with 0.55 vol isopropanol and immediate cooling
on ice before centrifugation for 10 min at 20000 g. The pellet was washed twice with cold
70% ethanol, dried, and resuspended in 50 pl Tris-EDTA (10 mM Tris pH 8.0, 0.1 mM EDTA).
The DNA extract was finally treated with RNase.

Gene sequencing. The polyketide synthase type I (PKSI) and
tetrahydroxynaphthalene reductase (4HNR) genes were sequenced using degenerate primers
listed in Table E.4. Primers for PKSI were designed from the alignment of Colletotrichum
lagenarium polyketide synthase (Accession no. D83643) and a homologue of PKSI in the
genomic sequence database of S. boydii (C.R. Thornton, unpublished) using the Multalin
program [4] (http://multalin.toulouse.inra.fr/multalin/). Similarly, primers for PCR
amplification of an internal fragment of 4HNR gene were designed from the multi-alignment
of four fungal ortholog sequences or their corresponding cDNA: T4HR1 gene of
Colletotrichum orbiculare (Accession no. AB661336), 4HNR gene of Lomentospora prolificans
strain 3.1 (Accession no. JX861395), 1,3,6,8-tetrahydroxynaphthalene reductase gene of
Magnaporthe grisea (Accession no. AY846877) and hydroxynaphthalene reductase gene of
Ophiostoma floccosum (Accession no. AF285781).

The upstream and downstream regions of the amplified 4HNR gene fragment were
obtained by walking-PCR as described by Siebert et al. [29]. Briefly, genomic DNA (2.5 ug)
of S. boydii IHEM 15155 was digested overnight at 37°C with restriction enzymes EcoRV,
Nrul or PvUII according to the supplier's recommendations (New England Biolabs, Evry,
France). Then 10 pl of the obtained fragments (250 ng) were ligated to adaptors (1 pmol)

overnight at 14°C; afterwards the ligated products were used as template to amplify by
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nested PCR the flanking regions of the known gene fragment using outer primers directed
towards the adaptor APl and the end of the known fragment (indicated by F1 for
downstream sequence or R1 for upstream sequence in Table E.4). The second step of the
nested PCR was then performed using adaptor primer AP2 and inner primers also targeting
the known gene fragment (indicated by F2 or R2 in Table E.4).

PCR conditions were as follows: 5 min of denaturation at 95°C, followed by 30 cycles
of 30 s at 95°C for denaturation, 30 s at 55-60°C for annealing and 1 min at 72°C for
elongation, with a final elongation step of 10 min at 72°C. For walking-PCR, the first round
was performed as follows: 94°C for 3 min, then 35 cycles (94°C for 30 s, 55°C for 1 min,
72°C for 4 min) and finally 72°C for 15 min. For the second round, PCR conditions were the
same except for the number of cycles (25 instead of 35) and duration of final denaturation
(30 min instead of 15 min). Amplicons were excised from the gels and purified using
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Hoerdt, France), and then sent for
bidirectional Sanger sequencing at GATC Biotech Platform (GATC Biotech AG, Koln,
Germany). Sequence analysis was performed using the Translation tool in ExPASy SIB
Bioinformatics Resource Portal (http://web.expasy.org/translate/) and The Basic Local
Alignment Search Tool (BLAST) in NCBI.

Table E.4. Primers for sequencing genes involved in the melanin synthesis pathway.

Primers* Primer sequence 5'>3'(**) m

PKSI gene sequencing

F PKSI.29 ACMAACCAYTCTGCYGA 49°C
R PKSI.29 TAGATWGTATCGCTKGC

F PKSI.31 GTCGTTTGGGAATGCCTCA 55°C
R PKSI.31 GAGGATCAACGCCAGCCT

F PKSI.32 GTTATTGTTCAGCTCGGTCTTTG 55°C
R PKSI.32 GTGCTCCGTTGACAACATG

F PKSI.39 GAACTGATGAAGGCTTGCGGATGTA 60°C
R PKSI.39 GTAGAAGHAATGGCGGAGGCGGC

F PKSI.40 GCTTAACGAGAAATATCACGCCCAAG 60°C
R PKSI.40 GCTCTCCTTGTGGATTCTGAGGCTC

F PKSI.41 CTCAGTACCTGCGGCAATCATG 60°C
R PKSI.41 CAGTAGCAGTGGTCGGTCTTCT
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F PKSI.42 CATGTTGTCAACGGAGCACCAC 60°C
R PKSI.42 CTCCTCCCTCAGTCGCCCA

F PKSI.43 GGCGTTGTGGGTCAAATTAAGTTCC 60°C
R PKSI.43 GTAAGGTCCAGTTGGCTGTCGGCGT

F PKSI.44 CGCCACCAGCTATACCGAAATCG 60°C
R PKSI.44 CCAAGCGAGCCAAAAGACTAAGAC

F PKSI.50 CCTCACATACTTCTGTCGGGAG 55¢C
R PKSI.50 GGAGCTAAAGTTGGAGAATGCTC

F PKSI.51 CTCATATTTCAGGTCTGCGGAGAG 55¢C
R PKSI.51 GGAATCCATGTGTGTCCAACGA

4HNR gene sequencing

F 4HNR.70 GCCGAYATCAGCAAGCC 57°C
R 4HNR.70 CGTAGTGCCASGAGTTCTCG

4HNR primers and adaptor primers for Walking-PCR

F1.4HNR.74 CCGCATCATCCTCACCTCTTCC 60°C
F2.4HNR.74 CCACAATCATGCTCTCTACGCCG 60°C
F1.4HNR.83 AGCAGGTTACCGTCAACGCCATC 60°C
F2.4HNR.83 GATCATTGACCAGGGTCTTGCCAAC 60°C
R1.4HNR.75 GGAAGAGGTGAGGATGATGCGG 60°C
R2.4HNR.75 GGACCACACCTCAGTACCCGA 60°C
AP1 GGATCCTAATACGACTCACTATAGGGC 60°C
AP2 AATAGGGCTCGAGCGG 60°C

*Primers carrying the same number represent forward and reverse primers included in the same

amplification reaction. Tm of each amplification reaction is indicated in the same row next to the

forward primers.

**IUPAC-IUB symbols for nucleotide nomenclature: M = AorC; Y=CorT;, W=AorT;, K=Gor

T,andH=A,CorT.

Nucleotide sequences accession number. The sequences of the PKSI and 4HNR

genes of S. boydii IHEM 15155 were deposited in the GenBank database (Accession no.
KC440182 and KJ549637 respectively).
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Melanin extraction and quantification

Electron paramagnetic resonance (EPR). Freshly harvested conidia were washed
and resuspended in PBS (150 mM) to a final density of 1.0 x109 conidia/ml. Fungal
suspensions were aspired in 1 ml syringes and frozen by immersion in liquid nitrogen. EPR
spectra were recorded using a MiniScope MS200 EPR spectrometer (Magnettech, Berlin,
Germany) operating at X-band. Samples were held in a quartz immersion finger Dewar filled
with liquid nitrogen. Experimental parameters were as follows: modulation amplitude 1 G,
microwave power 0.1 mW, modulation frequency 100 kHz, microwave frequency 9.5 GHz,
number of scans averaged 3. Images were treated using Multiplot 2.0 [30].

Melanin extraction. Melanin was extracted according to the method of Gadd [31].
Scedosporium boydii conidia (5 x 109) were washed once with MilliQTM water, then with
NaOH (1 M) and centrifuged at 4500 g for 5 min at 4°C. The pellet was mixed with 5 ml
NaOH (1 M) and the pigments were extracted by boiling for 20 min followed by autoclaving
for 20 min at 115°C. Cell debris were removed by centrifugation at 12000 g for 5 min and
the supernatant was acidified to pH 2 with concentrated HCI. Melanin was precipitated after
centrifugation at 12000 g for 5 min, then the pellet was washed with MilliQTM water and
finally lyophilized.

UV-visible spectrum. Melanin pellets were reconstituted in 1 ml of NaOH 1 M, then
diluted to avoid saturation. A standard curve was designed based on the absorption spectra
of synthetic DOPA melanin (Sigma) that was solubilized in NaOH 1 M at different
concentrations ranging from 0.01 mg/ml to 1 mg/ml. Spectra for extracted and synthetic
melanin were recorded in the wavelength range 190-900 nm using a UV-visible

spectrophotometer (UV-2600; Shimadzu Scientific Instruments, Columbia, USA).

Statistical analysis

Statistical analysis was conducted using a non-parametric test Kruskal-Wallis one-way
analysis of variance (ANOVA) or two-way ANOVA with Bonferroni post-hoc test using
GraphPad Prism V5.0 software (GraphPad Software, San Diego, CA, USA). P-values were

considered significant if lower than 0.05.

1.4. Results

Surface accessibility of cell wall polysaccharides to fluorescent lectins

Spores from 5-day-old cultures were incubated with fluorescent lectins (Con A, WGA
and PNA) in order to detect mannose/glucose, GIcNAc and galactose residues, respectively.
No fluorescence was observed at the cell wall surface after incubation with FITC-WGA, which
only bound to the scar region that appears at the basis of the conidia after their release

(data not shown). In contrast, fluorescence of conidia labeled with Con A-FITC was highly
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heterogeneous. While a few conidia were intensely labeled (asterisks) and some others
faintly marked (arrows), the majority exhibited labeling exclusively on their release scar

(Figure E.10.A and B). Inhibition assays with methyl a-D-mannopyranoside confirmed the

specificity of labeling (Figure E.10.C and D). No fluorescence was observed after incubation
with FITC-PNA (results not shown).
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Figure E.10. Fluorescence labeling of cell wall mannan groups in S. boydii conidia.

Conidia recovered from 5-day-old cultures were incubated with concanavalin A conjugated to
fluorescein isothiocyanate (Con A-FITC), and examined under fluorescence microscopy. Whereas
a few conidia were highly fluorescent (asterisks) and some others were faintly labeled (arrows),
the majority exhibited labeling exclusively on their release scar (A) as demonstrated by
examination of the same field by phase-contrast microscopy (B). In (C) and (D), conidia
incubated with a large excess of the inhibitor methyl a-D-mannopyranoside prior labeling with

FITC-Con A showed no fluorescence, thus attesting the specificity of the labeling.

Effect of the age of culture on cell surface properties of conidia
Heterogeneity of the labeling with Con A-FITC suggested maturation of the conidia

with the ageing culture. To confirm this hypothesis, we first studied the impact of age of
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culture on the cell surface properties which reflects the entire composition of the cell wall.
Conidia were thus recovered from 5-, 9- and 14-day-old cultures and their surface
hydrophobicity and electrostatic charge were measured (Figure E.11). Conidia exhibited a
high electronegative charge that increased overtime, from - 39.0 mV on day 5 to - 49.3 mV
on day 14 (P < 0.05). Similarly, the surface hydrophobicity of spores markedly increased
after 5 days of culture as shown in Figure E.11.B (P < 0.001). The difference in CSH
between conidia from 9- and 14-day-old cultures was not significant according to Dunn’s

post-hoc test.
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Figure E.11. Influence of the age of the cultures on the physical surface properties of
conidia.
Surface electrostatic charge (A) and cell surface hydrophobicity (B) of conidia recovered from 5-,
9-, and 14-day-old cultures were significantly different among the three groups with a P < 0.01
for (A) and P < 0.001 for (B).

Melanin detection and changes in the melanin content of the conidial wall with the
age of cultures.

DHN-melanin in S. boydii. In order to identify the type of melanin synthesized in S.
boydii, inhibitors of DOPA- (tropolone, kojic acid and glyphosate) or DHN- (tricyclazol,
pyroquilon and carpropamid) melanin synthesis pathways were added to the culture medium
and melanin was extracted from conidia after 9 days of incubation of the cultures. Melanin
content in these extracts was investigated by UV-visible spectrophotometry over a wide
range of wavelengths from 190 nm to 900 nm (Figure E.12). Strong absorption was
detected in the UV region for conidia taken from cultures grown with or without DOPA-
melanin inhibitors, with an absorption maximum at about 226 nm, the same wavelength at
which maximum absorption of synthetic melanin occurs. Conversely, extracts of conidia

taken from cultures grown in the presence of DHN-melanin inhibitors had no detectable
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absorption in the UV region, which indicates that only DHN-inhibitors were able to suppress
the synthesis of melanin. These results were in accordance with the color of conidia that

turned from dark brown to cream color upon incubation with DHN-melanin inhibitors.
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Figure E.12. UV-visible spectrophotometry of melanin extracts.
Melanin extracts from control conidia or conidia recovered from cultures grown in the presence of
DOPA-melanin (kojic acid or glyphosate) or DHN-melanin (pyroquilon, tricyclazol or carpropamid)
inhibitors were examined under UV-visible spectrophotometry. A spectrum similar to synthetic
melanin (0.05 mg/ml) was obtained only for extracts from control conidia or conidia produced

with DOPA-melanin inhibitors.

The effect of melanin inhibitors on the structure of the cell wall in conidia was also
examined in TEM (Figure E.13). The outer electron-dense cell wall layer became markedly
thinner, fragmented and sometimes detached for conidia recovered from cultures grown in
the presence of pyroquilon in comparison to the thick uniform outer cell wall layer of control
spores or spores recovered from cultures with glyphosate.

Sequencing of genes involved in the DHN-melanin biosynthesis pathway. The
search for enzymes in the synthesis pathway of DHN-melanin lead to the identification of
genes encoding polyketide synthase type I (PKSI) and tetrahydroxynaphtalene reductase
(4HNR) (Figure E.14). Genes were sequenced after multiple sequence alignment of
homologous genes in other taxonomically close fungi. Function of the corresponding proteins
was confirmed by identification of predicted functional domains after translation. Similarly to
Colletotrichum lagenaria and Ophiostoma piceae, PKSI gene in S. boydii had 2 introns, while
homologous genes in Verticillium dahliae and Magnaporthe oryzae had 3 introns. As for the
4HNR gene, S. boydii, C. orbiculare, O. floccosum and M. grisea all shared one short intron
unlike L. prolificans that lacked any. Expression of these genes has also been confirmed by

analysis of mRNA extracts from conidia (results not shown), however attempts to perform
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quantitative real time-PCR failed due to the incapacity to normalize the expression of PKSI
and 4HNR genes in our experimental conditions. Four reference genes were chosen based on
the work of Fang and Bidochka [32] and Raggam et al. [33], i.e. beta-tubulin, tryptophan
biosynthesis enzyme, actin and glyceraldehyde 3-phosphate dehydrogenase, but all showed

high delta Ct values when conidia from 5-day-old cultures were taken as reference.

Figure E.13. Transmission electron microscopy examination of conidia from cultures
grown with or without melanin inhibitors.

Control conidia (A) or conidia recovered from cultures grown with the melanin inhibitors
glyphosate (B) or pyroquilon (C) examined by transmission electron microscopy (scale bar = 200

nm).

Comparison of melanin extracts with UV-visible spectrophotometry. Melanin
was extracted from conidia recovered from 5-, 9- and 14-day-old cultures, and the
maximum absorbance at 226 nm was recorded for all samples analyzed in triplicate (Figure
E.15.A). The mean ranks of absorption were significantly different among the three groups
of conidia: melanin content in extracts from conidia increased after 5 days of culture (P <

0.05). The mean absorbance values obtained for melanin extracts of conidia taken from 9-
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and 14-day-old cultures were not significantly different according to Dunn’s comparison test

(post-hoc analysis).
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Figure E.14. Analysis of PKSI and 4HNR gene sequences and predicted protein
sequences.

Alignment of protein and nucleotide sequences for polyketide synthase type I of the fungi
(Accession number): Scedosporium boydii (KC440182, this work), Colletotrichum lagenaria
(BAA18956.1), Verticillium dahliae (EGY13508.1), Magnaporthe oryzae (ELQ39536.1),
Ophiostoma piceae (ABD47522.2). Alignment of protein and nucleotide sequences for
tetrahydroxynaphtalene reductase of the fungi (Accession number): Scedosporium boydii
(KJ549637, this study, previously P. boydii), Colletotrichum orbiculare (AB661336), Ophiostoma
floccosum (AF285781), Magnaporthe grisea (AY846877), and Lomentospora prolificans
(previously S. prolificans) strain 3.1 (JX861395). Protein functional domains were predicted by

conserved domain search in NCBI.

EPR spectroscopy comparison of S. boydii conidia taken from cultures of
different age. Conidia taken from cultures of different age showed a diminishing EPR signal
intensity as the age of culture increased (Figure E.15.B). Experiments were repeated three
times and similar regressions were obtained each time. A decrease in the EPR signal

intensity was also found with a wild-type strain of A. fumigatus (CBS 113.26) when conidia
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isolated from 3- or 8-day-old cultures were compared (data not shown). No EPR signal was
observed for PBS buffer alone, or with conidia from a mutant strain of A. fumigatus (strain
IHEM 9860) blocked in the early steps of melanin synthesis [27].
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Figure E.15. Changes in melanin amount in conidia as the age of culture progresses.

Melanin amount in the conidial wall changed with the age of culture as revealed by UV-visible
spectrophotometry (A) or electron paramagnetic resonance (B). (A) The mean rank of the
quantity of melanin extracted from conidia was significantly different among cultures of different
age (P < 0.05). (B) EPR spectra of S. boydii conidia taken from cultures of different age (5, 9 and
14 days). The spectra were recorded at a microwave power of 30 db. Spectra are representative

of three independent experiments.

Melanin masks mannose-containing glycoconjugates and affects the
electrostatic charge of the conidial surface. Conidia recovered from cultures containing
the DOPA-melanin inhibitor glyphosate were incubated with FITC-conjugated Con A. No
significant changes were observed by flow cytometry in the mean fluorescence intensity of
these conidia compared to cells from control cultures of the same age (P > 0.05). In
contrast, conidia recovered from cultures grown in the presence of pyroquilon showed a
significant increase (P < 0.001) in fluorescence intensity as the age of culture progressed
suggesting an increase in the amount of mannose-containing glycoconjugates in the conidial
wall (Figure E.16).

The presence of melanin is commonly known to affect the surface electrostatic charge
in fungi [34]. In order to test this, conidia were recovered from 9-day-old cultures with or
without melanin inhibitors. Conidia taken from cultures with pyroquilon showed a marked
decrease (P = 0.001) in the surface electronegative charge with respect to conidia taken

from cultures with glyphosate or control cultures without any inhibitor (Figure E.17).
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Figure E.16. Repercussion of the increased melanin synthesis on the surface labeling of
conidia with concanavalin A.

(A) Trasmission electron microscopy showing conidia labeled with gold-conjugated concanavalin A
(Con A; 5-nm gold particle). Scale bar = 200 nm. (B, C) Quantitative analysis by flow cytometry
of fluorescence at the surface of conidia treated with fluorescein isothiocyanate (FITC)-ConA. (B)
Comparison of mean specific fluorescence intensity of conidia recovered from 5-, 9-, or 14-day-
old cultures grown with or without glyphosate or pyroquilon. Contrary to conidia with glyphosate
treatment, conidia with pyroquilon treatment showed a significant increase in labelling with
respect to their counterparts from 9- or 14-day-old control cultures grown without any melanin
inhibitor (P < 0.001). Specific fluorescence was obtained after normalizing against the
fluorescence in conidia untreated with FITC-ConA or conidia treated with methyl a-D-
mannopyranoside prior to the addition of FITC-Con A. (C) Fluorescence frequency distribution
histograms: the blue-lined histogram represents the relative signal of conidia from cultures grown
without any melanin inhibitor, whereas the red- or green-lined histograms represent the relative
signal of conidia treated with pyroquilon or glyphosate, respectively (number of fungal cells in the
y-axis versus relative fluorescence intensity in the x-axis expressed as arbitrary units on a

logarithmic scale).
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Figure E.17. Changes in the physical properties of the conidial surface induced by
melanin inhibition.

The surface electronegativity of conidia recovered from cultures grown with pyroquilon was
markedly reduced with respect to conidia recovered from control cultures or cultures grown with

glyphosate (P = 0.0010).

Absence of rodlets on conidia of S. boydii.
As illustrated in Figure E.18 for conidia taken from 9-day-old cultures, AFM analysis of
conidia from 5-, 9- or 14-day-old cultures showed the absence of rodlet layer at the cell

surface whatever the age of culture was (data not shown).

Figure E.18. Atomic force microscopy image of the surface of S. boydii conidia.
Conidia recovered from 9-day-old cultures examined by AFM in the tapping mode showed a

smooth surface without any rodlet layer of hydrophobins (10 yum x 10 pm image).
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I.5. Discussion

Knowledge of the chemical composition and structural modifications of the fungal cell
wall is crucial to understanding how infectious propagules interface with host tissues during
early the stages of morphogenesis and pathogen establishment. To date, our knowledge of
S. boydii is largely restricted to taxonomical studies and medical case reports. Interest in the
molecular genetics, biochemistry and cellular physiology of this fungus is still in its infancy
and so the present study set out to investigate cell wall modifications during maturation of
the S. boydii conidium, the infectious propagule of this emerging human pathogen. Our
interest in studying conidial maturation came from the observation that conidia from the
same culture labeled with mannose/glucose-specific lectin Con A showed an unexpected
heterogeneity in the surface fluorescence intensity from one spore to another. It is well
known that the cell wall in S. boydii comprises peptidorhamnomannan as the main structural
component, and this molecule was shown to activate TLR4 and to mediate adherence to
HEp2 epithelial cells [21, 22]. The observed variability of fluorescence between cells could
not be explained by swelling, as is the case with A. fumigatus, since conidia that were
intensely labeled with FITC-conjugated Con A were of a similar size to unstained conidia.
Likewise, thickness of the outer cell wall layer was unaltered and no cytoplasm vacuolization
was observed. Therefore, to explain the variability among conidia taken from the same
culture, we hypothesised that they were undergoing maturation. To test this, we
investigated variations in cell surface physical properties in conidia taken from 5-, 9- and 14-
day-old cultures. Examining surface physical properties provides a general overview of the
cell surface reflecting the properties of its components and highlights the changes in the
biochemical composition of the cell wall. Comparison of conidia showed a marked increase
after day 5 in both CSH and the surface electronegative charge. Although the ensemble of
cell wall components are implicated in giving conidia their surface physical property
signature, a prominent role of certain components, such as melanin on the surface
electrostatic charge for example, has previously been demonstrated in other fungal species
like A. fumigatus [27] and C. neoformans [35, 36]. Wang et al. [37] showed that
melanization of C. neoformans increases in an approximately linear rate over the course of a
14-day growth period. Nosanchuk and Casadevall [35] also performed a time course
analysis of melanization and modification in the surface charge of conidia. They found that
an increase in the electronegative charge in late stationary phase paralleled a progressive
melanization in C. neoformans cells. Similarly, in Trichoderma species, Pokorny et al. [38]
found that the activity of laccase, an enzyme responsible for the final step of DOPA-melanin
synthesis, varied in conidia according to the age of cultures. Indeed, this activity reached a

maximum in conidia taken from =14-day-old cultures. In S. boydii, no previous studies were
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available about melanin synthesis. Therefore we investigated the type of melanin produced
by conidia by incorporating DHN- or DOPA-melanin inhibitors in the culture medium. A clear
difference could be seen in the color of conidia isolated from cultures grown in the presence
of DHN-melanin inhibitors after 9 days of incubation. UV-visible spectrophotometry analysis
of melanin extracts confirmed that DHN-melanin is a major pathway for the production of
melanin in S. boydii. Enzymes involved in the DHN-melanin synthesis pathway were also
found in mMRNA extracts. Melanin amount in extracts from conidia progressively increased
after day 5. Our experiments demonstrated that melanin synthesis influences the
ultrastructure of the condial wall and that its presence affects the zeta potential of cells.
Inhibition of melanin synthesis by the addition of pyroquilon led to a marked decrease in the
electronegative charge of the conidial surface.

Melanins naturally contain unpaired electrons that can be detected by EPR as a free
radical signal [39]. Synthesis intermediates, capable of generating free radicals through a
reversible reaction, polymerize to form melanin polymers. Although phenolic subunits have
in some instances been discovered in melanin polymers, the exact arrangement of these
subunits in the polymer remains unknown [40]. Numerous studies have previously
associated damage to melanin, by ionizing radiation for example, to the production/liberation
of free radicals and an increase in the EPR signal intensity suggesting a depolymerization
event. On the other hand, melanin is also known for its antioxidant properties. Melanin
scavenges reactive oxygen species (ROS), such as singlet oxygen hydroxyl radicals and
superoxide anions, thus conferring protection against oxidative stress inside human host
cells. The balance between the intrinsic anti-oxidant and pro-oxidant properties of melanin
determines it redox status and its degree of polymerization or the molecular weight of the
melanin polymer [41, 30]. In this study we demonstrated that the increasing quantity of
melanin in S. boydii is accompanied by a decrease in EPR signal intensity in conidia, which
implies that melanin tends to polymerize with time and potentially gains a higher antioxidant
activity.

Finally, to conclude on our primary observation that conidia did not show a
homogeneous labeling with fluorescent Con-A lectin, we demonstrated in this study that the
time-dependent increase in melanin amount at the conidial surface during maturation of the
spores progressively masks the cell wall mannose-containing glycoconjugates, thus
diminishing the accessibility of the conidial surface components to the lectin.

Melanin and hydrophobins provide efficient systems to evade recognition by the
immune system and counteract the deleterious effect of reactive oxygen species. In S.
boydii, we didn't find any rodlet layer on the surface of conidia with AFM analysis irrespective

of culture age. However, the absence of such structures does not mean that hydrophobins
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are absent at the cell surface. In A. fumigatus there are different class I hydrophobins but
unlike rodAp, rodBp does not form rodlets. Furthermore class II hydrophobins, which are
frequent in the order Sordariomycetes (to which S. boydii belongs), were never seen to form
rodlets at the surface of fungal entities [42]. Identifying and sequencing hydrophobins by
nucleotide homology was not possible since protein sequences in fungi have very poor
homology except for eight cystein residues and few other amino acid residues characteristic

of class I or class II hydrophobins.

I.6. Conclusion

The conidial wall is a highly dynamic structure and is subject to changes and
modifications with culture age. These findings have important biological consequences since
the fine balance between immunogenic molecules at the cell surface, such as cell wall
carbohydrates, versus molecules that mask these such as DHN-melanin, needs to be taken
into consideration for future studies aimed to understand fungal pathogenicity. All these
components conspire to influence the adherence process and the evasion from host immune
defenses. Culture conditions should be strictly standardized for all studies concerned with the
adherence mechanisms, evasion from host immune defenses or virulence in animal models.
Moreover, elucidation of the melanin biosynthesis pathway in S. boydii and identification of
two of the genes involved offer new opportunities to establish the role of melanin in
protecting the fungus against stresses it may be exposed to in the host or in the natural
environment. For instance, species of the S. boydii/S. apiospermum complex are ubiquitous
fungi that are particularly common in highly polluted soils and waters, and melanin at the
conidial surface would likely be required to protect spores against toxic agents such as
aromatic compounds or heavy metals. Fungicides targeting the synthesis of DHN-melanin

may be useful to reduce the dispersal of these pathogens.
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II.1. Abstract

Scedosporium boydii is a filamentous fungus of increasing clinical importance in
individuals with underlying diseases like cystic fibrosis. The development of new therapeutic
strategies targeting this fungus necessitates a better understanding of its physiology and the
identification of new molecular targets. Here we studied the ultrastructural and biochemical
cell wall modifications during conidium to germ tube transition using a variety of microscopic
(scanning and transmission electron and atomic force microscopy), physical (two-phase
partitioning, microelectrophoresis, and cationized ferritin labeling), chemical (chemical force
spectroscopy, lectin labeling), and molecular (extraction and identification of cell wall
glycosylphosphatidylinositol (GPI)-anchored proteins) techniques. We demonstrated that the
cell wall undergoes structural changes with germination accompanied with a lower
hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes
during germination also included a higher accessibility of some cell wall polysaccharides to
lectins, less CHs3/CHs5 interactions (hydrophobic adhesion forces mainly due to some
glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall
of S. boydii, among which one was detected only in the conidial wall extract and 12 only in
the mycelial wall extract. The identified proteins included some proteins similar to cell wall
proteins belonging to families already studied in some yeast and filamentous fungal species
like Gelp/Gasp, Crhp, Bglp/Bgtp families and also one extracellular GPI-anchored superoxide
dismutase. These results highlighted the cell wall remodeling during germination in S. boydii
with the identification of a substantial number of cell wall GPI-anchored proteins in conidial
and hyphal forms, which provides a basis to investigate the role of these molecules in the

host-pathogen interaction and fungal virulence.
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II1.2. Introduction

Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of
human infections, notably respiratory complications in patients with cystic fibrosis [1]. The
increasing frequency of these infections and their high mortality rate in immunocompromised
patients such as lung transplant recipients call for a better understanding of the fungal
biology in order to define new strategies for the improvement of treatments. One of the most
attractive targets for antifungal agents is the cell wall, mainly because of the uniqueness of
many of its components with respect to mammalian cells [2]. The cell wall plays a critical
role during morphogenesis and fungal growth since it changes accordingly to fit survival
needs [3]. It protects the fungus from a wide range of environmental stresses such as
desiccation, osmotic stresses and temperature variations. In pathogenic fungi it also
provides the means to sustain fungal presence inside the human host by allowing adherence
to the host tissues and evasion from the host immune response.

In S. boydii, the conidial and mycelial cell walls were shown to contain N- and O-
linked peptidorhamnomannans (PRM) having a branched structure of a-Rhap-(1->3)-a-Rhap-
side chain epitope linked (1>3) to a (1>6)-linked a-Manp core [4]. Unlike alpha-glucans,
isolated from both conidial and hyphal cell walls of S. boydii, glucosylceramides could only be
obtained from mycelial samples [5], [6]. However a more recent study again showed that
glucosylceramides were also detectable on the conidial surface of the fungus [7].

We previously demonstrated that the conidial cell wall of S. boydii contains
dihydroxynaphtalene (DHN)- melanin and that the cell wall content in melanin and mannose-
rich glycoconjugates increased during maturation of conidia along with the cell surface
physical properties [8]. In this study, we track the cell wall changes during the germination
process using various approaches, including investigation, at the molecular level, of
glycosylphosphatidylinositol (GPI)-anchored proteins in conidial and hyphal walls as these
integral cell wall proteins (CWPs) play a major role in normal morphology and virulence in
other fungal models [9, 10, 11].

II.3. Materials and methods

Strain and culture conditions

The fungal strain S. boydii IHEM 15155 (subgroup P. ellipsoidea, previously named
Pseudallescheria boydii) was used throughout this study. It was maintained on YPD (0.5%
w/v yeast extract, 2% w/v glucose, 1% w/v peptone, 0.05% w/v chloramphenicol) agar

plates.
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Cultures were incubated for 7 days at 37°C, then conidia were harvested by flooding
the agar surface with sterile Milli-Q™ water and filtered through a 20-um pore size nylon
filter. Conidia were washed twice, pelleted at 5000 X g for 5 min at 4°C, resuspended in 10

ml sterile water and finally counted with a hemocytometer.

Kinetics of germination

To study the kinetics of germination, three conditions were tested: the effect of age of
cultures, culture medium and incubation temperature. First, cultures on YPD agar medium
were incubated at 37°C for 5, 9 and 14 days, afterwards conidia were isolated and
resuspended in YPD liquid medium (20 ml per Petri dish) at a concentration of 2 x 10°
conidia/ml and kept at 37°C. To study the effects of culture medium, the same settings were
applied except that the fungus was cultivated on Malt (1.5% w/v malt extract, 0.05% w/v
chloramphenicol) or YPD agar and then conidia were resuspended in Malt or YPD liquid media
which were incubated at 37°C. Finally, for the incubation temperature, conidia taken from
cultures on YPD agar at 37°C were resuspended in YPD liquid medium which was incubated
at 20°C, 25°C, or 37°C. In all cases, germination in liquid media was monitored over 8 h and
five pictures were taken every 2 h, the presence of mycelia was also checked after 16 h. The
percentage of germination was determined after counting at least 100 cells from each

picture.

Scanning and transmission electron microscopy

Conidia or germ tubes were washed twice in Milli-Q™ water and once in cacodylate
buffer (0.1 M), and then incubated in the fixative solution (2.5% (w/v) glutaraldehyde, 2%
(w/v) paraformaldehyde, 0.1M cacodylate buffer) for 24 h at room temperature under
vacuum. After washing with cacodylate buffer, samples were incubated for 24 h in 2%
KMnO4 in cacodylate buffer at 4°C, washed and post-fixed for 2 h at room temperature in
2% osmium tetroxide. Then samples were washed in Milli-Q™ water and finally dehydrated
through a series of ethanol-water solutions (50, 70, 95% ethanol, 2 x 30 min each) and then
100% ethanol (3 x 20 min).

For scanning electron microscopy (SEM), samples underwent two baths of graded
ethanol-hexamethyldisilazane (HDMS) solutions (50/50, then 25/70 proportions, 45 min
each) followed by immersion in pure HMDS baths (3 x 45 min). Processed samples were
mounted on aluminium stubs, coated with carbon, and stored in a desiccator until studied.
Observations were made on a JSM 6301F scanning electron microscope (Jeol, Paris, France)
operating at 3 kV and equipped with digital imaging.

For transmission electron microscopy (TEM), ethanol was replaced by propylene oxide

(3 x 20 min) and samples were impregnated overnight in a propylene oxide-Epon mixture
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(1:1 v/v) and then in pure Epon for 16 h and 8 h. After polymerization (24 h at 37°C, 24 h
at 45°C and then 48 h at 60°C), thin sections were directly examined on a JEM-1400
transmission electron microscope (Jeol, Paris, France; 120 kV) except for life cycle studies of
S. boydii where thin sections were contrasted with uranyl acetate and lead citrate prior

examination.

Ferritin labeling

Cationized ferritin is a positively charged ligand that allows visualization of anionic sites
at the cell surface under physiological pH and ionic strength [12]. Scedosporium boydii
germ tubes were examined by TEM after labeling with cationized ferritin, and controls
consisted in incubation of fungal elements with native ferritin (lacking a positive charge) and
in pretreatment of germ tubes with neuraminidase (type X) in order to remove sialic acids
(all products purchased from Sigma-Aldrich, St Quentin Fallaviers, France). To do this, S.
boydii germ tubes were washed 3 times with MilliQ™ water, centrifuged and then incubated
with cationized or native ferritin (1 mg/ml in phosphate buffered saline 150 mM) for 1 h at
room temperature with agitation. To remove sialic acids, cells were first incubated with
neuraminidase (1 U/ml in 0.1 M acetate buffer pH 5, supplemented with 40 mM CacCl,) for 30
min at room temperature with shaking, washed twice and then incubated with cationized
ferritin as described above. Cells in the three conditions were finally washed twice in MilliQ™

water and treated as described earlier for transmission electron microscopy.

Cell surface charge and hydrophobicity measurement

Cell surface charge and hydrophobicity were evaluated by microelectrophoresis and
two-phase partitioning as previously described [8]. Briefly, resting or germinating conidia
were washed and resuspended in Milli-Q™ water containing 1 mM NaCl, then their
electrophoretic mobility was measured with the Zetasizer Nano ZS (Malvern Instruments Ltd,
Malvern, UK) and zeta potential was calculated using the Smoluchowski equation.
Experiments were performed at 25°C and repeated three times (ten to thirty cycles for each
measurement). The cell surface hydrophobicity (CSH) was determined using the
water/hexadecane system. Briefly, germ tube suspensions (2.5 ml) prepared in PBS were
topped or not (in case of control samples) with hexadecane (0.5 ml), and vortexed for 2 min,
then allowed to stand at room temperature for 3 min and finally 1 ml of the aqueous phase
(bottom) was transferred into a new tube. After repeating the same procedure, samples
were homogenized and the optical density (OD) was read at 405 nm on three 200-pul aliquots
for each sample. The percentage difference in optical density readings between test samples
and controls was considered as the hydrophobic index. Experiments were performed in

triplicate.
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Lectin labeling

Germ tubes were washed with Tris buffer (0.5 mM Tris, 100 mM NaCl, 1 mM CaCl,, 1
mM MgCl,, pH 7.0) and then incubated with gold-conjugated concanavalin A (Con A-gold 5
nm from Biovalley, Marne la Vallée, France; 1:50 dilution in Tris buffer) or with FITC-
conjugated Con A, peanut agglutinin (PNA) or wheat germ agglutinin (WGA) at a final
concentration of 100 pg/ml (all fluorescent lectins from Sigma-Aldrich), for 30 min at 37°C
with continuous rotatory mixing [8]. Control samples consisted in incubation of fungal
elements together with the lectins and a large excess (0.2 M) of the lectin-specific
carbohydrates (a-methyl D mannopyranoside for Con A, N-acetyl glucosamine for WGA, and
galactose for PNA) added immediately before lectins. Finally, samples were washed three
times in Tris buffer, and observed under fluorescence microscope (Leica DMR, Leipzig,
Germany) for FITC-conjugated lectins or processed as described earlier for TEM without

contrasting with uranyl acetate and lead citrate.

Chemical force spectroscopy (CFS) measurements

The surface of S. boydii resting or germinated conidia was imaged using a
NanoWizard® atomic force microscope (JPK Instruments AG, Berlin, Germany) operating in
intermittent contact mode under ambient conditions. A standard rectangular cantilever
(Nanosensors NCL-W) was used for imaging, with a free resonance frequency of 165 kHz and
a typical spring constant of about 40 N/m. The radius curvature of the tip was ~10 nm. The
detailed analysis of chemical force spectroscopy images was performed using JPK Data
Processing software (JPK Instruments AG). Hydrophilic and hydrophobic adhesions were
obtained in ultrapure water from force-distance curves measured on the surface of both
conidia and germ tubes using functionalized cantilevers. Gold-coated cantilevers (Olympus,
Hambourg, Germany) with spring constants of 0.01 N/m were immersed either in 1 mM
solutions of 1-dodecanethiol or in 11-mercapto-1-undecanol (Sigma-Aldrich) in ethanol for
14 h and then rinsed with ethanol prior their use. From force-curve measurements (2048
measurements), the mean hydrophilic and hydrophobic adhesions were extracted from
gaussian fits performed on the histograms. Before probing the conidial or germ tube surface,
the cantilevers functionality was tested by measuring their adhesion to hydrophobic or

hydrophilic flat surfaces.

Protein extraction, identification and analysis

Protein extraction. Extraction was performed according to Damveld et al. [13] with
modifications. Frozen conidia or germ tubes were ground with a mortar and pestle in liquid
nitrogen, then crushed in a cell homogenizer (Braun Melsungen model MSK, Melsungen,

Germany) for 1.5 min for conidia or 1 min for germ tubes (150 mg dry material) under a
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current of CO, cooling in the presence of a protease inhibitor cocktail (15ml; 1X in MilliQ
water, cOmplete, EDTA-free, Roche, Meylan, France) and a mix of 1 mm and 0.25 mm
diameter glass beads. Glass beads were removed by filtration through 41-um-pore size
sterile nylon filters and cell breakage was confirmed by phase-contrast microscopy (> 95%).
Suspensions were centrifuged at 13500 X g for 10 min at 4°C. After lyophilization, cell debris
(500-900 mg) were washed 5 times with 50 mM Tris-HCI buffer pH 7.8 (25 pl per mg dry
weight) and pelleted at 18000 X g for 10 min at 4°C. Cytosolic contaminants, membrane
proteins and disulfide-linked cell wall proteins were removed by boiling five times (2 min
each) with SDS-extraction buffer (50 mM Tris-HCI pH 7.8, 2% w/v SDS, 0.1 M Na-EDTA, and
1.6 pl B-mercaptoethanol; 25 ul per mg dry weight). Then cell wall debris were washed six
times with MilliQ™ water, lyophilized and weighed. To extract cell wall GPI-anchored
proteins, freeze-dried cell wall debris were incubated with HF-pyridine (10 pl per mg dry
weight) for 3 h at 0°C [14]. Then the suspension was centrifuged at 18000 X g for 10 min at
4°C and proteins were precipitated from the supernatant by the addition of 9 volumes of
100% methanol-Tris buffer (100% v/v methanol, 50 mM Tris-HCI pH 7.8) followed by
incubation for 2 h at 0°C. After centrifugation, the pellet was washed twice with 90%
methanol-Tris buffer (90% v/v methanol, 50 mM Tris-HCI pH 7.8) and lyophilized. The
resulting extracts represented 10.0% and 10.2% of the initial dry weight of cell wall debris
after removal of cytosolic contaminants in conidia and germ tubes, respectively. Finally,
proteins were deglycosylated with peptide-N-glycosidase F (PNGase glycerol free, New
England Biolabs, Evry, France) according to the manufacturer's recommendation.
Deglycosylation was performed in glass vials by the addition of 5000 units PNGase F to 50-
100 mg protein extract, followed by incubation for 3h at 37°C. Proteins were precipitated
and washed as described earlier using the methanol-Tris buffer and finally lyophilized.

Trypsin digestion. Lyophilized samples were suspended in 50 mM ammonium
bicarbonate and incubated with 7.2 mM dithiothreitol (DTT) during 15 min at 37°C. They
were next incubated with 13.5 mM iodoacetamide during 15 min at room temperature in the
dark. Samples were then digested overnight with 4 ng/ul of sequencing grade modified
trypsin (Promega, Madison, WI, USA) at 37°C.

Mass spectrometry (MS). MS measurements were done with a nanoflow high-
performance liquid chromatography (HPLC) system (Dionex, Villebon sur Yvette, France; LC
Packings Ultimate 3000) connected to a hybrid LTQ-OrbiTrap XL (Thermo Fisher Scientific,
Villebon sur Yvette, France) equipped with a nanoelectrospray ion source (New Objective,
Wil, Switzerland). Peptides from tryptic digestion were injected onto a trapping precolumn (5
mm x 300 ym i.d., 300 A pore size, Pepmap C18, 5 ym) for 3 min in 2% buffer B

(acetonitrile, 0.1% formic acid) at a flow rate of 25 pl/min. This step was followed by
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reverse-phase separations at a flow rate of 0.25 pl/min using an analytical column (15 cm x
300 ymi.d., 300 R pore size, Pepmap C18, 5 um, Dionex, LC Packings). The gradient ranged
from 2% to 35% buffer B for the first 30 min, increased to 60% buffer B until minute 40,
and to 90% buffer B in minute 43. Finally, the column was washed with 90% buffer B for 9
min, and equilibrated with 2% buffer B for 21 min prior to loading of the next sample.

The peptides were detected by directly eluting them from the HPLC column into the
electrospray ion source of the mass spectrometer. An electrospray ionization (ESI) voltage of
1.5 kV was applied to the HPLC buffer using the liquid junction provided by the
nanoelectrospray ion source and the ion transfer tube temperature was set to 200° C. The
MS instrument was operated in its data-dependent mode by automatically switching between
full survey scan MS and consecutive MS/MS acquisition. Survey full scan MS spectra (mass
range 400-2000) were acquired in the OrbiTrap section of the instrument with a resolution of
R = 60000 at m/z 400; ion injection times were calculated for each spectrum to allow the
accumulation of 10° ions in the OrbiTrap. The ten most intense peptide ions in each survey
scan with an intensity > 2000 counts (to avoid triggering fragmentation too early during the
peptide elution profile) and a charge state = 2 were sequentially isolated at a target value of
10000 and fragmented in the linear ion trap by collision induced dissociation (CID).
Normalized collision energy was set to 35% with an activation time of 30 ms. Peaks selected
for fragmentation were automatically put on a dynamic exclusion list for 60 s with a mass
tolerance of + 10 ppm. The maximum injection time was set to 500 ms and 300 ms for full
MS and MS/MS scan events respectively, and for an optimal duty cycle the fragment ion
spectra were recorded in the LTQ mass spectrometer in parallel with the OrbiTrap full scan
detection. For OrbiTrap measurements, an external calibration was used before each
injection series ensuring an overall error mass accuracy below 5 ppm for the detected
peptides. MS data were saved in RAW format files using XCalibur software version 2.0.7
(Thermo Fisher Scientific) with tune 2.5.5 SP1.

Protein identification. The Proteome Discoverer 1.2 software was used to submit
MS/MS data to the translated genome of S. apiospermum IHEM 14462 (previously
Pseudallescheria apiospermum) completed with Sus scrofa trypsin and Elizabethkingia
miricola PNGase F (10829 sequences) using the Mascot search engine (Mascot server v2.2;
http://www.matrixscience.com). Parameters were set as follows: trypsin as enzyme with one
allowed miscleavage, carbamidomethylation of cysteins as fixed modification and methionine
oxidation as variable modifications. Mass tolerance for MS and MS/MS was set at 10 ppm
and 0.5 Dalton, respectively. Identified rank 1 peptides were filtered based on Xcorr values

and the Mascot score to obtain a false discovery rate of 1%.
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Protein analysis. Sequences of the identified proteins were analyzed for the presence
of GPI anchor using Big PI fungal predictor (http://mendel.imp.ac.at/gpi/fungi_server.html),
signal peptide using Signal P (http://www.cbs.dtu.dk/services/SignalP/), transmembrane
helices using TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/), N- and O-
glycosylation sites using NetNGlyc and NetOGlyc services (http://www.cbs.dtu.dk/services/),
pl using ProtPararm (http://web.expasy.org/protparam/) and grand average of hydropathy
values (GRAVY) to evaluate the hydrophilic or hydrophobic character of a protein along its
amino acid sequence (http://www.bioinformatics.org/sms2/protein_gravy.html). For pipeline
filtering of  proteins  the new  web tool proFasta was also used
(http://www.bioinformatics.nl/tools/profasta/). Functional domain analysis was performed
using Interpro (http://www.ebi.ac.uk/interpro/). Protein sequence similarities were searched
by using Blastp in NCBI website (http://blast.ncbi.nim.nih.gov) against all the non-
redundant protein sequences and then against species-specific databases Aspergillus
fumigatus, Neurospora crassa, Magnaporthe oryzae and Saccharomyces cerevisiae. Specific
websites were also used to perform Blastp analysis against Candida albicans
(http://www.candidagenome.org),  Colletotrichum  graminicola and  Colletotrichum
higginsianum genomes

(http://www.broadinstitute.org/annotation/genome/colletotrichum_group/Blast.html).

Statistical analysis.

For studies of the kinetics of germination, two-way analysis of variance (ANOVA) was
used with the Bonferroni post-hoc test. For cell surface charge and hydrophobicity studies,
results were analyzed using the Student t-test. P-values less than 0.05 were considered

significant.

I1.4. Results

Germination and life cycle of S. boydii

In order to define the best conditions for germination of S. boydii, three different
parameters were first investigated: the age of culture, the culture medium and incubation
temperature. Tracking germination during 8 h showed significant differences (P < 0.01 at 4 h
and P < 0.001 at 6 and 8 h) in the percentages of germination between conidia isolated from
5-, 9-, and 14-day old cultures (Figure E.19.A). Germination started after 4 h of incubation
and conidia recovered from 9-day old cultures showed highest rates of germination as well
as more homogeneity in terms of size of germ tubes. After 16 h of incubation all cultures
showed mycelial agglomerations and the percentage of ungerminated conidia could no more
be determined. Germination was also affected by the culture medium. Higher germination

rates were observed for conidia recovered from 9-day old cultures and incubated in YPD
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liquid medium compared to malt liquid medium (Figure E.19.B; P < 0.001). Finally,
incubation temperature greatly affected the kinetics of germination since the number and
length of germ tubes progressively increased with the increase in incubation temperature
from 20°C to 25°C and 37°C with the presence of long branched intermixed hyphae after 16
h of incubation at 37°C (Figure E.19.C). Therefore germination was performed by

incubation of conidia from 9-day old cultures in YPD liquid medium at 37°C for all
subsequent experiments.

>
w

1004 1004
=% 5 days =% Malt
g 804 ©-9days g so{ - YPD
- 8- 14 days -
O 604 O 60
whd e
c c
= 40- = 40
£ £
= =
Q Q
O 20 (M 20-
0 0 T T T T
2 4_ 6 2 4_ 6 8
Time (h) Time (h)
C
20°C 25°C 37°C

Figure E.19. Kinetics of germination of S. boydii in various conditions.

A: conidia isolated from 5-, 9- and 14-day-old cultures on yeast peptone dextrose (YPD) agar
were incubated in YPD liquid medium over 8 h at 37°C. B: conidia isolated from 9-day-old
cultures on Malt or YPD agar were incubated in Malt or YPD liquid media over 8 h at 37°C. C:
conidia isolated from 9-day-old cultures on YPD agar were incubated in YPD liquid medium for 16
h at 20°C, 25°C or 37°C (200X).

The process of germination in S. boydii starts by the protrusion of a germ tube from
the mother cell without significant differences in the conidial size before and after initiation
of the germination process. As illustrated in Figure E.20.A, resting conidia measured 5.31 £
0.92 x 2.74 £ 0.57 ym (7 conidia studied), a size which remains essentially the same after
germination (Figure E.20.B, 4.79 £+ 0.36 x 2.13 £ 0.34 ym; 7 conidia measured). Most
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germination events occurred laterally rather than along the axis of the mother cell: Among
111 germinated cells only 29 cells (26.1%) germinated along the axis whereas the rest of
conidia (73.9%) germinated laterally as shown in Figures E.20.B and C. With the
progression of germination, branching occured and the first branching site was seen very
close to the mother cell (Figure E.20.D and E, arrow). Finally, more branching appeared
along the filaments, at the subapical region of the articles (Figure E.20.F, arrowheads), and

filaments elongated until the mother cell was no more distinguished.

Figure E.20. The life cycle of S. boydii under scanning electron microscopy.

After release from phialides, conidia (A) germinate (B) and the hyphal part of germ tubes
elongates (C) until a first branch emerges near the mother cell (D). Both hyphae grow and more
branching sites appear on filaments at the subapical region of the articles (E) until the mother
cell can no more be distinguished (F). Arrows indicate sites of first branching, and later branching

are indicated by arrowheads. Bars: 1 umin A, Band C; 0.5 ymin D; and 5 ym in E and F.

TEM examination of the different morphological stages of the fungus showed important
ultrastructural changes in the cell wall during with germination (Figure E.21). The fungal
cell wall appeared to be composed of two layers, a large electrontransparent inner layer and
a thinner electron dense outer layer. Comparing the cell wall of hyphae (Figure E.21.A) to
that of conidia (Figure E.21.B) showed a homogeneous thickness of the outer cell wall layer
in resting conidia and mother cells of germ tubes, whereas its thickness greatly varied in

hyphae. The outer cell wall layer of the filament was thin or even absent in some places. Of
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note, the cell wall surface of the mother cell seemed to be covered by a thin electrondense
film which was totally lacking at the surface of the hyphal part of germ tubes, allowing

plasticity and elongation of the filament (Figure E.21.C and D).

, C

Figure E.21. Cell wall modifications during germination of S. boydii under transmission
electron microscopy.

A: hyphal cell wall; B: conidial cell wall; and C: cell wall of a germinating conidium. D: enlarged
part of C highlighting the cell wall structural modifications during germination and the loss of the
electron dense film covering the surface of conidia. Bars: 0.2 pmin Aand B; 1 pum in C; and 0.5

pMm in D.

Changes in cell surface physical properties during germination
The differences in the biochemical composition of the cell wall between conidia and
hyphae reflected by the ultrastructural changes were also revealed by modifications of the

surface physical properties as can be seen in Figure E.22.A. TEM after cationized ferritin
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labeling showed a greater density of negatively charged areas at the surface of mother cells
of germ tubes compared to their hyphal part. Neuraminidase pretreatment of germ tubes
before incubation with cationized ferritin showed that the surface negative charge was not
related to the presence of sialic acids on the mother cell or the hyphal surface (Figure
E.22.B). The use of native ferritin confirmed that binding of cationized ferritin was related to

its electrostatic charge and not to the ferritin molecule itself (Figure E.22.C). Zeta potential

measurements also provided evidence for the difference in the surface electronegative
charge between resting (-40.50 £ 0.15 mV) and germinated (- 16.10 * 2.42) conidia as
seen in Figure E.22.D (P = 0.0005).

Similarly, the cell surface hydrophobicity was also shown to decrease after germination
(Figure E.23, P < 0.0001).

D o

T -10-

S - 20- ¥

wd

c

-g -30-

<%

@ -40- ®

)

N

- 50 1 1

Resting Germinated
conidia conidia

Figure E.22. Detection of surface charge modifications during germination of S. boydii
by ferritin labeling and zetapotential measurements.

TEM images of germ tubes labeled with cationized ferritin (A), treated with neuraminidase prior
cationised ferritin labeling (B) or incubated with native ferritin (C). D: Comparison of the surface
electrostatic charge of resting and germinated conidia (P = 0.0005). H: hyphal part of germ tube;

MC: mother cell of germ tube. Bars: 1 pm.
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Figure E.23. Change in the cell surface hydrophobicity following germination.
Significant difference in the cell surface hydrophobicity between resting and germinated conidia

revealed by two-phase partitioning using the water/hexadecane system (P < 0.0001).

Changes in the cell surface composition during germination

Lectin binding to cell wall carbohydates. The accessibility of cell wall
carbohydrates to mannose-binding, chitin-binding [15] and galactose-binding [16] lectins
(Con A, WGA and PNA, respectively) was investigated during germination of S. boydii. While
most of the mother cells were not labeled with Con A, as previously shown for resting conidia
[8], the hyphal part of almost all germ tubes was intensely labeled (Figure E.24.A, E.24.D
and E.25), suggesting unmasking of the mannose-containing glycoconjugates by the loss of
the surface electron dense film seen on the mother cells. A similar binding pattern was also
seen for WGA (Figure E.24.B and E.24.E), whereas no fluorescence was observed after
incubation with PNA either on the mother cell or the hyphal part of germ tubes (Figure
E.24.C and E.24.F).

Detection of hydrophobic/hydrophilic adhesions at high spatial resolution in
conidia and hyphae. AFM images presented on Figure E.26.A and B revealed that the
surface of S. boydii conidia is smooth, devoid of any peculiar organization, conversely to that
of A. fumigatus conidia which is totally covered by rodlets [17]. To investigate the chemical
nature of S. boydii cell surface, non-specific force-curves were measured with OH- or CHs-
modified tips (Figure E.26.C). CFS using CHs-modified probes (to measure hydrophobic
adhesion forces) revealed the presence of hydrophobic components, such as glycoproteins,
while the use of OH-modified probes revealed hydrophilic adhesion forces mainly due to the
presence of polysaccharides. Force-curves recorded on the surface of nongerminated conidia
with CHs; tips showed large adhesion forces of 1.8 £ 0.3 nN, whereas a lower value of 0.85 £

0.15 nN was obtained on the surface of the hyphae (Figure E.26.C), which was in
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agreement with the diminished cell surface hydrophobicity measured by two-phase
partitioning. The values for CH3/CH3 interactions measured at the surface of the germ tube

and its apex were similar (0.8 to 0.9 nN) suggesting that the same hydrophobic

glycoproteins covered the whole hyphal surface.

Figure E.24. Fluorescence labeling of S. boydii surface carbohydrates with FITC-
conjugated lectins.

Germ tubes after labeling with mannose-binding Concanavalin A (A and D), chitin-binding wheat
germ agglutinin (B and E), and galactose-binding peanut agglutinin (C and F) lectins. The same
fields are presented under fluorescence and phase contrast microscopy respectively. Arrows

indicate mother cells.

Figure E.25. Gold labeling of cell wall mannan groups in S. boydii germ tubes as
observed by trasmission electron microscopy.

Germ tubes labeled with gold-conjugated concanavalin A (Con A; 5-nm gold particles) showing
higher affinity of gold particles to the hyphal part (H) of germ tubes compared to the mother cell

(MC). Arrows indicate the limits of the outer cell wall layer of the mother cell. Bar: 0.5 pm.
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Figure E.26. High resolution imaging and chemical force spectroscopy analysis of S.
boydii conidia and germ tubes.

AFM amplitude images of a resting (A) or germinated (B) S. boydii conidium. C left: Scheme for
chemical functionalization of AFM tips. Gold-coated tips were modified with CH3-terminated
alkanethiols or OH-terminated alkanethiols. C right: Histograms of hydrophobic adhesion forces
measured on the surface of a resting conidium (1.8 £ 0.3 nN, in red) and the hyphal part of a

germinated conidium (0.85 £ 0.15 nN, in blue).

On the contrary, no significant difference in OH/OH interactions (hydrophilic adhesions)
was observed between resting (1.2 £ 0.4 nN) and germinated conidia (1.0 £ 0.2 nN).
Likewise, the same adhesion values (1.0 nN) were calculated for the surface of the basis and

the apex of the hyphal part of germ tubes.

Characteristics of the identified surface proteins

Two hundred and fifty proteins were detected from both the conidial and germ tube
extracts taken together, and among them 32 had a signal peptide. Analysis with BigPI
software identified 20 different GPI-anchored proteins (Table E.5). Seven of out of the 20

GPI-anchored proteins were detected in both conidial and germ tube extracts, 12 only in the
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germ tube extracts and one only in the conidial extract. Analyzing the 20 identified GPI
proteins showed that all proteins were extensively glycosylated (Table E.6), had a signal
peptide and all but one had no transmembrane helices after excluding 45-N-terminal and 35
C-terminal amino acids. One transmembranal helix was found for the glycine-rich protein
(accession number KEZ42341.1). All 20 proteins had a pI < 5 except for the glycine-rich
protein whose pI was 6.89. To analyze the serine-threonine (S/T) content of our proteins, we
first considered the overall S/T content of proteins (results indicated in Table E.6), then we
analyzed them with proFasta with additional filters (S/T content >10%, Start position of scan
26 and End position of scan -26) to exclude the S/T content of N- and C-terminal signal
sequences. With this analysis all 20 proteins had an S/T content higher than 10%.

Analysis of S. apiospermum proteome also revealed the presence of 100 gene
sequences coding for GPI anchored proteins (Figure E.27), which meant that 20% of GPI

anchored proteins was extracted in our conditions.

131 sequences containing a signal peptide
L .

Transmembrane helix (TMHMM analysis)
126 sequences lack a TVH

pl value<5
100 sequences

Figure E.27. Flowchart showing the analysis of S. apiospermum IHEM 14462 proteome
sequences in search for putative GPI-anchored proteins.

Protein sequences used for analysis were generated from internal laboratory sequencing (refer to
Experimantal part: Section III). Accession numbers for most protein sequences are available on
NCBI database.
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Protein (Accession number)? Fungal Sequence Charge ; Ion Modification® Coverage
extract? m/z [Da] score
Glucan endo-1,3-beta-D-glucosidase  RC AAQGLDGTNGAFNSAR 2;775.37518 95 3.06
(KEZ41172.1) GC ISPTGIANKEFAGANPDTLVGYIK 3, 826.11169 43 9.58
EFAGANPDTLVGYIK 2 ;797.91400 32
AAQGLDGTNGAFNSAR 2;775.37335 30
SQSDFEAEFKAAQGLDGTNGAFNSAR 3, 906.75531 29
CFEM domain (KEZ46909.1) RC AGEFGcQSTDVACLCcR 2 ;915.88647 76 C6, C13 and 12.38
C15
SRDFVYGIR 2 ; 556.79877 43
GC AGEFGcQSTDVAcLcR 2 ;915.88623 72 C6, C13 and 12.38
C15
SRDFVYGIR 2 ; 556.79712 36
DFVYGIR 2 ;435.23141 24
CFEM domain (KEZ46627.1) RC QGDWYcGcQPDNmSK 2 ; 931.35608 64 C6, C8 and 8.02
M13
GC QGDWYcGcQPDNMSK 2;923.35590 59 C6 and C8 26.74
IQGAATNCVIEACGGAAGALAVITEVQGICEEALK 3,;1182.26111 55 C8, C13 and
C30
CFEM domain (KEZ44163.1) RC IPECANSCcVTQATSGNK 2;918.92078 24 C4 and C8 9.83
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GC IPECANSCVTQATSGNK 2;918.91559 67 C4 and C8 15.61
IAGCNQGDIK 2 ; 538.26495 33 C4
GDSL_like lipase (KEZ43142.1) RC SQKVVLVDFR 2 ; 595.85217 34 2.83
GC MAALLFDGINNAASR 2 ; 782.40625 26 4.25
Glycine-rich protein (KEZ42341.1) RC GGSSSSSSSSSRPGSPGFAGSGAPR 3; 737.67633 37 8.68
GC GGSSSSSSSSSRPGSPGFAGSGAPR 3; 737.67267 60 8.68
Unknown function (KEZ44256.1) RC NTcEALCPGAAK 2 ; 646.29688 62 C3 and C7 6.32
GC YYSASLYSFVcQEAFK 2 ; 981.95807 75 C11 14.74
NTcEALCPGAAK 2 ; 646.29364 31 C3 and C7
CRH1_transglycosylase GC GAVFSIANEK 2 ; 518.27850 60 13.14
(KEZ42985.1) LGSWVAGR 2 ; 423.23560 37
GGKTYPQTPMQVK 2;717.87677 30
TYPQTPMQVK 2 ; 596.80658 28
DcPADPAIGGDFTVDFTK 2 ; 963.43573 18 C2
GH17 family protein (8171 (ANA)) GC DSNPDNKMQFAITK 2 ; 804.89087 62 10.82
NAPGKFNAVR 2 ; 537.29724 42
AGIGADPSVLVGFIGDYR 2;903.97845 21
Unknown function (KEZ45212.1) GC AcGATDYDcQCcAAQQAISTcYNNcPGDSRK 3;1148.13013 29 C2,C9, C11, 19.23
C20 and C24
AcGATDYDcQCcAAQQAISTcYNNcPGDSR 3;1105.43347 25 C2, C9, C11,
C20 and C24
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1,3-beta-glucanosyltransferase gel4  GC GIAYQQNTGAAGAGVQDAK 2 ;910.45422 101 6.00
(KEZ46619.1) FFYENGTQFYIK 2,;778.87817 21
Unknown function (KEZ45428.1) GC QGLLGVVANAEDGVLYACSQVK 2;1146.09692 47 C18 9.28
Unknown function (KEZ43031.1) GC CVVDGITAIGCTVEDTACACTTENLAK 2 ; 1465.16699 44 C1, C11,C18 13.50
and C20
Unknown function (KEZ44206.1) GC TPTKDELVPAGK 2 ; 628.34967 48 5.43
Glucanosyltransferase; GC ILSAGVKPAPSGK 2;612.87158 33 2.74
Glyco_hydro_72 (KEZ46098.1)
Unknown function (KEZ43170.1) GC cDQGDGSESATLAYSNcLQK 2,;1102.46899 89 Cl and C17 30.77
CINScPATDVNCLAHCTPVPSPNEDNLNKLHDCAAK 5 ; 819.36963 16 C1, C5, C12,
C16 and C33
Unknown function (941 (ANA)) GC GLTSMQTSIQQNCANVR 2 ; 954.45905 56 C13 7.11
Unknown function (3034 (ANA)) GC SGIcGGEGVVSLYKK 2;777.40729 43 C14 2.35
Unknown function (6337 (ANA)) GC VLTDAPVYNVQYGSGK 2 ;855.94086 76 3.86
Cu/Zn superoxide dismutase RC TLAHLDPFIR 2 ;591.83844 23 3.79

(KEZ44265.1)

@ ANA= Accession number Not Available yet

b RC: resting conidia; GC: germinated conidia.

¢ For amino acid modifications, C «number » corresponds to carbamidomethyl modification at the indicated amino acid number, and M «number » to
oxidation modification at the indicated amino acid number.

Raw data containing all details can be found in Annexes 1 and 2 (Table A.7. and A.8.). For proteins identified with a single peptide refer to the MS/MS
spectra in Annexes 3 (Figure A.30).
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Proteins. (Accession number)? Protein family S/T¢  pl Omega site (0-5 to w+5)° GRAVY N- and O-
(fungal extract)® (%) value® glycosylation

Glucan endo-1,3-beta-D-glucosidase Bglp/Bgtp (Bgt2p); 22.0 4.41 -0.413 7N+ 680

QQAAPSAGSSNN
(KEZ41172.1) GH 17; (RC/GC)
CFEM protein (KEZ46909.1) CFEM domain; (RC/GC) 26.2 4.01 TQGPGNTGGAQQS -0.062 ON+400
CFEM protein (KEZ46627.1) CFEM domain; (RC/GC) 17.6  4.37  SSFPTAGAGSIA -0.242 2N+240
CFEM protein (KEZ44163.1) CFEM domain; (RC/GC) 22.5 4.24  SAPTSSGAAGVV 0.453 1N+250
GDSL_like lipase (KEZ43142.1) ?; (RC/GC) 19 4.45  KAGDQGSGAVRV -0.031 2N +180
Glycine-rich protein (KEZ42341.1) ?; (RC/GQC) 20.1 6.89 VPADESGARSV -0.160 5N+40
Unknown function (KEZ44256.1) ?; (RC/GC) 21.6  4.25  GSEDSSSGDNKEGAAASV -0.205 2N+90
CRH1_transglycosylase (KEZ42985.1) Crhp (Crhlp); GH16;(GC)  23.3 4.69 TGSQDSGASLVQ -0.270 2N+310
GH17 family protein Bglp/Bgtp (Bgt2p); 20.3  4.78 -0.222

ATGADSSASGYT
(8171 (ANA)) GH17; (GC) 1IN+320
Unknown function (KEZ45212.1) ?; (GC) 16.1  4.40  SETSKGGAAELA -0.035 1N+ 140
1,3-beta-glucanosyl transferase ; gel4 Gelp/Gasp (AfGel5p); 13.2 4.70 -0.275

NKKEDDSSAVRF
(KEZ46619.1) GH72; (GC) 6N+ 130
Unknown function (KEZ45428.1) ? (GC) 19.8 4.19 GSGDEGGAAALA 0.086 3N+200
CFEM protein (KEZ43031.1) CFEM domain; (GC) 23.5 3.90 GDDNGNGSGTSGAVVN 0.144 3N+300
Unknown function (KEZ44206.1) ? (GC) 19.9 4.69 SPVPTNGAARSA 0.090 2N+270
Glucanosyl transferase Glyco-hydro 72 Gelp/Gasp (AfGel2p); 11.6 4.81 STSKEDAGAFLR -0.222 3N+70
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(KEZ46098.1) GH 72; (GC)

Unknown function (KEZ43170.1) ?; (GC) 25.2 420  ATGTGSSASATE -0.112 ON+300
Unknown function (941 (ANA)) ?; (GC) 20.5 4.72  FDIVASPSAHL -0.243 ON+180
Unknown function (3034 (ANA)) ?: (GC) 21 3.40  GPVEVSAAGRNT -1.021 ON+1200
Unknown function (6337 (ANA)) ?; (GC) 30.2  4.35  VTAAQSAGRRQ -0.213 ON+940
Cu/Zn superoxide dismutase (KEZ44265.1)  Cu/Zn SOD; (RC) 14.1  4.47  TNLPEGSAAVSS -0.314 4N+100

@ ANA: Accession number Not Available yet

b RC: resting conidia; GC: germinated conidia.

¢S: serine; T: threonine.

9 Red: best predicted w site. Orange: alternative w site (second best). Green: basic amino acids.

¢ GRAVY index > 0: hydrophobic; GRAVY index < 0: hydrophilic.
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II.5. Discussion

Germination and invasiveness are tightly interwound in fungal infections since the
presence of hyphae in tissue sections represents a major indicator of fungal burden [18, 29,
30]. In filamentous fungi, the conidia-to-hyphae transition is accompanied by cell wall
modifications to allow adaptation to new environments. As a matter of fact, in A. fumigatus,
the cell wall of resting conidia is composed of three layers; during germination, the outer
hydrophobin/melanin-rich cell wall layer is shed, leading to major changes in the cell wall
ultrastructure and physical properties [17, 23, 31, 32]. Other major changes during
germination of A. fumigatus include the emergence of beta-1,3-glucans to the cell surface
leading to selective recognition of hyphae by Dectin-1 and the decrease in laminin receptors
that mediate the adherence to the basement membranes [23, 24]. In C. albicans, Castillo et
al. [10] also showed that hyphae produced additional GPI-anchored CWPs, Als3 and Rbtl,
that are not detected in the cell wall of blastospores. In another study, hyphal induction in C.
albicans was shown to modulate a larger number of GPI-anchored CWPs such as the Als3,
Hwp2, Hyrl, PIb5, Sod5, Rhd3, Sod4 and Ywp1l proteins [25].

In this study, we first showed that the cell wall of S. boydii, which is composed of two
layers, underwent ultrastructural modifications during germination, demonstrated by the
transition from a compact electron dense outer cell wall layer in resting conidia and mother
cells of germ tubes to a more diffuse and irregular outer layer in hyphae. However, unlike A.
fumigatus that passes by the swelling step during germination, no major changes in the cell
size were observed nor any cytoplasm vacuolization, and the outer cell wall layer of the
mother cell remained attached to the electron transparent inner layer after germination.
Physical properties of the cell surface were also affected by the germination process: conidia
and mother cells of germ tubes were more electronegatively charged than hyphae, as
attested by electrophoretic mobility measurements and cationized ferritin binding.
Consequently, the presence of the negatively charged sialic acids was investigated since it
could affect the surface charge and was previously correlated to fungal pathogenesis [26]
and adhesion of A. fumigatus conidia to the host basal lamina [27]. In S. boydii, the
removal of these sialic acid molecules did not reduce the binding of cationized ferritin to
mother cells suggesting that they were not connected to the surface electronegative charge.
On the contrary, the inhibition of DHN-melanin synthesis in S. boydii [8] significantly
reduced the surface electronegative charge of conidia suggesting an important effect of
melanin on the surface electronegative charge, which is corroborated by the reduction of the

electronegative charge upon germination and production of hyaline hyphae.
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In a previous study we demonstrated that the cell wall content in mannose-containing
glycoconjugates increased with the maturation of conidia [8], but the accessibility of these
molecules to Con A was hampered by the accumulation of melanin [8]. As conidia
germinate, these mannose-containing glycoconjugates as well as the chitin molecules
became unmasked in the hyaline hyphal part of S. boydii germ tubes, thus markedly
increasing the binding to Con A and WGA.

The hydrophobic adhesion forces recorded on the conidial surface of S. boydii (1.8 %
0.3 nN) were significantly lower than those recorded by Dague et al [17] for A. fumigatus
conidia (3 £ 0.4 nN). Scedosporium boydii conidia lacked any peculiar structures formed by
rodlet-forming hydrophobins that render the aspergillar surface homogeneously hydrophobic
[28]. However, the measurement of CHs3/CHs; (hydrophobic) and OH/OH (hydrophilic)
interactions at the surface of conidia and germ tubes showed non-zero values indicating that
the whole surface of the conidial and hyphal structures are composed of a mixture of
hydrophobic and hydrophilic components. After germination, CH3/CHj5 interactions diminished
suggesting a decrease in the content of some glycoproteins. The inhibition of DHN-melanin
synthesis in conidia did not affect these hydrophobic adhesion forces, which meant that
these interactions were not linked to melanin (data not shown). On the other hand, the
OH/OH interactions remained the same before and after germination reflecting no change in
some polysaccharide components.

Changes in the cell wall during germination were also illustrated by the analysis of GPI-
anchored CWPs. The analysis of S. boydii cell wall protein extracts revealed 250 proteins,
among them only 20 had a GPI-anchor. The presence of non-GPI anchored proteins or
atypical proteins was in agreement with numerous studies on C. albicans [10, 29, 30]
where such proteins were consistently found in cell wall extracts even after varying the
methodologies of extraction except for studies from de Groot et al/ [14, 31] who did not find
atypical proteins in the cell wall extracts.

In yeasts and filamentous fungi, GPI-anchored proteins may have two different
terminal localizations: the plasma membrane (GPI-PMP) and/or the cell wall (GPI-CWP). Cell
wall proteins have abundant N- and/or O-linked glycosylation sites, a signal peptide [32],
and no transmembrane helixes, which was the case for 19 out of the 20 extracted GPI-
anchored proteins. Moreover, Pittet and Conzelmann [33] reported that GPI-CWPs had pls
of 4.87% 0.22 whereas PMPs had significantly higher pls of 6.67 £ 0.95. However, a recent
study on Pichia pastoris showed that proteins in the cell wall or in the plasma membrane did
not have different pIs [34]. In our case, all the 19 GPI-anchored proteins had a pI value less
than 5.
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There is growing evidence that the proximal and distal sequences to the GPI-
attachment site (called the w site), found close to the C-terminus of the protein, exert a
major effect on the final localization of a GPI-anchored protein. The presence of a high S/T
content (or stretches of ST) upstream the w-proximal region has been greatly recognised as
a marking feature for CWPs [35, 36] since it can override w-proximal signals like dibasic
amino acid signals (arginine (R), histindine (H) and lysine (K)) at w-1 and w-2 sites that
direct GPI-containing proteins to the plasma membrane [37]. For the 20 extracted proteins
and even after the exclusion of N- and C-terminal sequences, the ST content remained
higher than 10%. Moreover, no dibasic amino acids were found at the w-1 and w-2 sites
(Table E.6). Ouyang et al. [38] mentioned that a monobasic amino acid can be sufficient
for retaining a GPI-anchored protein in the plasma membrane, as was the case for 3 of our
extracted proteins, but again the ST rich regions can override such signal. Add to this, the
presence of valine (V), isoleucine (I) or leucine (L) at w-4 and w-5 as well as tyrosine (Y) or
asparagine (N) at w-2 was also suggested to act positively for the cell wall localization of
proteins according to Hamada et al. [39] but these conditions did not apply to our protein
sequences neither did they apply to some cell wall proteins in A. fumigatus like the AMplp
[38]. All these data taken together would suggest a cell wall localization for at least 19 of
the extracted proteins. However, the w-proximal signals and cell wall or membrane
localization of proteins remain a matter of debate, especially that the same GPI-anchored
protein might be present in both the cell wall and the membrane compartments.

The different families to which these proteins belonged to were also analyzed and
compared to other fungi. Among the 20 identified GPI-anchored proteins identified, one was
found only in conidial extracts, whereas 12 were found only in the germ tube extracts and 7
proteins were present in both extracts. The protein identified only in conidial extracts
(KEZ44265.1) carried a Cu/Zn superoxide dismutase domain. Superoxide dismutases (SOD)
are antioxidant enzymes involved in the degradation of superoxide anions. The identified
protein in S. boydii belonged to a particular class of extracellular SODs containing a signal
peptide and predicted to have a GPI anchor. These SODs were first described in the
opportunistic fungal pathogen C. albicans that expressed three GPI-anchored SOD1-related
proteins: CaSod4p, CaSod5p and CaSod6p [40]. Strains lacking CaSod5p were more
susceptible to killing by macrophages and neutrophils and exhibited a decreased virulence in
mouse models [40]. Sod5p was suggested to be involved in removal of superoxides
produced by the hosts [41]. In S. apiospermum genome, seven sequences were predicted
to have a superoxide dismutase domain (3 of them were Cu/Zn SOD). Among them, only
two had a signal peptide, both being Cu/Zn SODs, but only one had a predicted GPI anchor.

To be noted, the extracted protein in this study was different from the one previously
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identified by Lima et al. [42] in S. apiospermum (KEZ41328.1) that did not contain a signal
peptide, a transmembrane helix, or a GPI anchor.

Twelve GPI-anchored proteins were only found in germ tube extracts and among these
4 proteins belonged to known GPI-anchored protein families implicated in cell wall
biosynthesis activities, one to CFEM (Common in Fungal Extracellular Membrane)-domain
containing proteins while the rest had no known functions. The first group of proteins
contained a protein similar to Crhp proteins (KEZ42985.1) that are suggested to be involved
in the linkage between the cell wall polysaccharides B(1-6)glucan and chitin [43, 44, 45].
Crhp proteins are classified in the glycoside hydrolases 16 family (GH16) of the CAZy
Database (http://www.cazy.org/). They were originally studied in the yeast S. cerevisiae,
but their biochemical function in the fungus remains unknown and single deletions of these
genes in A. fumigatus were not associated to any phenotype changes [46]. Two proteins
similar to proteins to the Gel/Gas family were also detected in this study in the germ tube
cell wall extract (KEZ466191.1, KEZ46098.1). Proteins of this family were particularly well
studied in A. fumigatus, N. crassa, S. cerevisiae and C. albicans [46]. Gelp/Gasp proteins
belong to the glycoside hydrolase family 72 (GH72) and were shown to perform elongation of
B(1-3)glucan chains. To date, only AfGellp, AfGel2p and AfGel4p in A. fumigatus have been
studied and AfGel2p was shown to be important for cell wall morphogenesis and virulence in
a mouse model of invasive aspergillosis while AfGEL4 was shown to be an essential gene for
cell wall remodeling [9, 47, 48, 49]. In S. boydii germ tube extract, a protein (8171(ANA))
similar to proteins of the Bgtp/Bglp family was also identified. These proteins belong to the
glycoside hydrolase 17 family (GH17) and were studied in S. cerevisiae and A. fumigatus.
AfBgt2p displays a branching activity in the cell wall by cleaving two residues of a B(1-
3)glucan chain and transferring them to another chain of f(1-3) glucan with a B(1-6) linkage
[48]. This was the first time that a branching activity, which is a key activity for cell wall
morphogenesis, was described in fungi. However the single Afbgt2 mutant strain did not
display a differential phenotype with respect to the wild-type strain, thus suggesting that
there were other proteins with B(1-3) glucan branching activity in the cell wall [48, 49].

One protein with a predicted CFEM domain was also detected in the hyphal extract.
This domain contains around 60 amino acids, predominantly hydrophobic, and eight cysteine
residues with a conserved spacing [51]. These domains are found mainly in GPI-CWPs and
most CFEM-containing proteins studied to date are involved in host-pathogen interaction and
virulence. In M. grisea, Pth11p, which contains a CFEM domain, is required for plant infection
[52]. Likewise, three proteins with a CFEM domain were shown to be involved in the cell

wall stabilization in A. fumigatus, but they did not play a role in cell wall morphogenesis or
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as virulence factors [53]. In C. albicans proteins containing CFEM domains have been
suggested to play a role in biofilm structure [54].

We identified 7 proteins present in both conidial and germ tube extracts of which 3 had
no known function or domain, 3 had CFEM domains and one was similar to AfBgt2p
(KEZ41172.1) and shared 31.4% homology with its S. boydii paralogue (8171 (ANA))
detected in germ tube extracts mentioned earlier. Both proteins (KEZ41172.1 and 8171
(ANA)) contained the two conserved glutamic acid residues of the catalytic site described for
proteins of GH17 family [55].

Finally, no hydrophobins could be identified in our extracts using the hydrophobin
conserved eight-cystein pattern in proFasta. In A. fumigatus, Dague et al [28] showed that
the presence of the hydrophobin RodAp accounted for the high CH3/CH3 interactions
measured on the conidial surface. RodAp is a moderately hydrophobic protein with a GRAVY
value of 0.245 (A. fumigatus Af293, protein accession P41746.2) and a suggested GPI-
anchor [56]. After analyzing the GRAVY values of our extracted GPI-anchored proteins, only
one protein in the conidial extract presented a hydrophobic character (GRAVY > 0, Table
E.6). Interestingly, this protein was twice more hydrophobic than RodAp (GRAVY = 0.453)
and had a CFEM domain (KEZ44163.1). CFEM domains, as previously mentioned, have a
conserved eight-cysteine pattern that is distinct from that of hydrophobins; they are
commonly identified in GPI-anchored cell wall proteins extracts and have predominant
hydrophobic amino acid residues in their sequences (32% to 45% of the total amino acids)
[51]. The identified CFEM (KEZ44163.1) was present in both conidial and germ tube
extracts, but its relative amount with respect to the extracted conidial or hyphal GPI-
anchored proteins (calculated after analyzing the average intensity of the strongest
peptides) was twice higher in the conidial extract (2.054 %) than in the germ tube extract
(1.055 %). Even though this remains speculative, this may account for the higher cell
surface hydrophobicity and CH3/CH3 interactions observed on the conidial surface and
suggests a hypothesis for future investigations on the conidial surface of fungi having high
hydrophobic adhesions and no rodlet layer as S. boydii.

The analysis of the genome of S. apiospermum also revealed the presence of 100 gene
sequences coding for GPI-anchored proteins which is similar to the number identified in
other fungal genomes like A. fumigatus strains Af293 and A1163 containing 91 and 85
sequences respectively [36]. The extraction of only 20% of these proteins suggests that in
our conditions only 20 proteins are expressed. Other culture conditions should be tested to
investigate the expression of the other coding sequences.

Together these data demonstrate that, similarly to other fungi, the cell wall in S. boydii

is a highly dynamic structure composed of a mixture of molecules that give, when taken
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together, the physical, chemical and molecular fungal cell wall imprint. Today, mapping
interactions at the surface of S. boydii cells at high spatial resolution and correlating such
information to molecular data is highly valuable to our understanding of the pathogenesis of

this fungus.
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II1.1. Abstract

The first genome of one species of the S. apiospermum complex, responsible for
localized to severe disseminated infections according to the immune status of the host, will
contribute to a better understanding of the pathogenicity of these fungi, but also to the

discovery of the mechanisms underlying their low susceptibility to current antifungals.

111.2. Scedosporium apiospermum genome sequencing

Pseudallescheria apiosperma, also known as Scedosporium apiospermum, is a soil-
borne opportunistic pathogen, responsible for cutaneous or sub-cutaneous mycetomas
following traumatic inoculation of fungal elements, and for respiratory tract infections.
Moreover, it becomes a redoubtable pathogen in immuno-compromised patients, where it
may cause disseminated infections with skin, eye, bones, joints, and deep organs
involvement such as the heart and central nervous system [1]. Besides, species of the S.
apiospermum complex are the second most frequent molds, after A. fumigatus, colonizing
the respiratory tract of cystic fibrosis patients, causing in this clinical context respiratory
infections such as bronchiitis and allergic broncho-pulmonary mycoses, or disseminated life-
threatening infections in case of immunodeficiency like cortico-steroid induced diabetes or
after lung transplantation. Here we report the sequencing and annotation of the genome of
one of the major species within this closely related species complex.

The genome sequence of Scedosporium apiospermum strain IHEM 14462, isolated in
1998 from a sputum sample from a cystic fibrosis patient in Tours, France, was resolved by
two distinct high throughput Illumina sequencing technologies, on a HiSeq2000: a paired-
end run, sequencing on average 50 bp at each extremity of approximately 120.3 millions of
250-bp inserts, and a mate-pairs run, sequencing on average 50 bp at each extremity of
approximately 82.2 millions of 4-kb inserts. De novo assembly was achieved by an additional
single molecule real-time sequencing on a PacBio RSII instrument (Pacific Biosciences), thus
fully sequencing 273,000 inserts with a mean size of 2.3 kb. After trimming bad quality
Illumina runs, the sequences were assembled by Genostar (Montbonnot, France) in 3,744
contigs with the CLC Genomics Workbench v6.0.2 (http://www.clcbio.com/products/clc-
genomics-workbench/). PacBio RSII reads were then used to generate scaffolds from the
contigs using the softwares BLASR [2] and SSPACE Premium scaffolder v2.3 [3].
Subsequently, gaps were closed with GapFiller v1.10 [4]. Finally, 176 scaffolds were
obtained with a mean size of 246,804 bp representing a total length of 43.4 Mbp.

The genome annotation was performed by Genostar: coding sequences (CDS)

prediction was performed with Augustus v2.5.5 [5], trained on an algorithm optimized for
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Neurospora crassa. The 10,919 putative CDS identified were annotated by BlastP [6] against
the TrEmbl database [7]. A function was inferred for a given CDS when the deduced protein
sequence shared at least 80% similarity and 40% identity with a protein of known function
in the TrEmbl database. A putative function was attributed to the remaining CDS by
functional domain searches through the Pfam database [8]. Thus, a function was assigned
to 8,818 out of the 10,919 CDS (80.75%). For 813 CDS, the functional annotation was
refined by attribution of enzyme classification (EC) numbers.

Genomic data will greatly improve the comprehension of the pathogenic mechanisms
underlying pseudallescheriosis, and will help at understanding the low susceptibility of
Pseudallescheria apiosperma to currently available antifungal drugs [9].

Nucleotide sequence accession number. This Whole Genome Shotgun project has
been deposited at DDBJ/EMBL/GenBank under the accession JOWAO00000000. The version
described in this paper is the first version, JOWA01000000.
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GENERAL DISCUSSION

The recognition of Scedosporium species as human pathogens came a 100 years after
their discovery in 1889 [6]. Ever since then, the number of case reports related to these
fungi was on the rise. Today, infections of immunocompetent individuals by Scedosporium
species are no more restricted to mycetoma and these fungi are increasingly recognized as
major causal agents of deep infections after near-drowning [63] and respiratory infections
in patients with underlying diseases like cystic fibrosis [28]. Recent studies have focused on
providing diagnostic tools for a better identification of Scedosporium species in fungal
infections and one of the interesting tools, developed by Thornton [63], targeted a
carbohydrate component of the cell wall.

The fungal cell wall components (like ergosterol, chitin, B 1,3 and B 1,6-glucan) have
been major targets for antifungal treatments [94]. Most of the cell wall components are
absent in mammalian cells and its unique biochemistry and structural organization make it
an interesting structure to study [167].

Our understanding of the role of the cell wall in maintaining fungal life has radically
changed in the last century. It is now viewed as a dynamic structure that changes in various
fungal growth states and in response to surrounding conditions. It maintains a protective
role in adverse conditions and plays an aggressive role during pathogenesis. However, cell
wall remodeling is not restricted to the fungal kingdom; it is also known in other life forms
like bacteria and plants.

In bacteria, a large number of enzymes are involved in the cell wall synthesis and
maintenance. In Escerichia coli enzymes for precursor synthesis, peptidoglycan synthesis
and regulation, cell wall stability, peptidoglycan hydrolysis, cell wall elongation and division
were well studied [168]. Peptidoglycan is an essential and specific constituent of the
bacterial cell wall. It is a polymer formed by alternating residues of N-acetylglucosamine
(GIcNAc) and N-acetylmuramic acid (MurNAc). During bacterial cell growth and division, the
peptidoglycan mesh is constantly cleaved by hydrolases that allow remodelling of the cell
wall including the insertion of new glycan chains, control of cross-linking, cell separation, etc.
Although the main function of the bacterial cell wall is to preserve internal osmotic pressure
and maintain the shape, recent evidence demonstrate that the cell wall synthesis directly
affects the movement of filamental gram positive and gram negative bacteria [168].
Moreover, the cell wall differs in exponentially growing bacteria; the average glycan chain
length decreases by 30% as bacteria reach the stationary phase [168]. The crosslinking and
covalent attachment of outer membrane lipoproteins also increases which reflects a cell wall

maturation event [168].
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In plants, if we take the outer epidermal wall in the juvenile plant axis (hypocotyl) that
is composed of pectic substances, hemicellulose, cellulose, glycoproteins and phenolic
substances, the thickness of the wall differs depending on the age and culture conditions
(light or dark) [169]. The epidermal outer wall has a composition similar to that of
secondary walls yet it is still capable of elongation [170]. As the plant grows, certain cells
reach their final size and start depositing lignified secondary wall that may contain up to
80% cellulose per dry mass [169]. Eventhough plants are multicellular systems, some cells
do undergo changes in their wall composition and thickness before and after reaching their
final size.

In our study we have first seen major changes in the conidial cell wall properties and
composition with the ageing culture. Modifications in the cell surface hydrophobicity, in the
electronegative charge as well as in melanin and mannose residue content provided evidence
for conidial maturation. This maturation process probably occurs after reaching final conidial
size but before the detachment of conidia from the filament or conidiogenous cell. This
means that that the interruption of the maturation process at day 5 results in harvesting
conidia with less resistance capacities and more immunogenic properties since the quantity
of melanin does not yet reach its maximum level. At day 9, the majority of conidia
underwent maturion, despite the continued increase in the quantity of mannan containing
polysaccharides as shown by flow cytometry; later on, our study about the cell wall changes
associated with germination revealed that the capacity of conidia to germinate decreases at
day 14, thus indicating conidial ageing. Therefore we concluded that the increase in
immunogenic molecules like mannose containing polysaccharides is progressively masked by
the accumulation of melanin, which is reflected in the surface physical properties. Melanin is
known to allow the fungal escape from the host immune defenses, it physically shields the
fungal cells and quenches toxic free radicals produced by the host. Evidently, these
scavenging capacities depend on a higher antioxidant state of melanin; in other terms a
higher degree of polymerization or a higher molecular weight of the melanin polymer. This
was demonstrated in conidia by UV-visible spectrophotometry which revealed the increase in
the quantity of extracted melanin with age of cultures and the decrease in EPR signals
indicating a decrease in the quantity of synthesis intermediates.

Cell wall modifications were also tracked during germination. The absence of melanin
in S. boydii hyphae, which are hyaline, renders mannose containing polysaccharides and
chitin more accessible to their specific lectins ConA and WGA, respectively. These changes
were also seen after examining the cell wall ultrastructure under transmission electron
microscopy. The cell wall of S. boydii is composed of two layers; the inner electron

transparent cell wall layer was continuous from the mother cell to the germ tube whereas
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the outer electron-dense layer that was compact and of uniform thickness in the mother cell
but totally different in the hyphal wall of germ tubes since it was irregular and diffuse.
Nevertheless, the outer compact cell wall layer of the resting conidia remained attached to
the inner layer for mother cells of germ tubes contrary to what is seen in A. fumigatus after
germination with the progressive shedding of the outer cell wall layer during swelling.

Changes during germination were also confirmed using other approaches. Studying the
surface physical properties revealed a more hydrophobic and more electronegative surface in
conidia compared to hyphae. Unlike inhibition of melanin synthesis, removal of cell wall sialic
acids did not affect the electronegative surface charge. Conversely to chemical interactions
with OH-containing molecules, interactions with CHs-containing molecules decreased after
germination reflecting a change in some cell wall glycoprotein content or accessibility.

Extracting GPI-anchored glycoproteins allowed the identification of 8 proteins in
conidial extracts and 20 proteins in germ tube extracts, 7 of which were common between
both extracts. The protein families to which these proteins belonged was explained earlier in
study II and this revealed a number of proteins potentially implicated in virulence as seen in
other fungal models. Our contribution to the general understanding of Scedosporium
virulence factors or molecules with potential role in virulence is summed up in Figure D.28.

During the course of this work, genome sequencing was deemed indispensable since in
the first study the sequencing of PKS1 (=7000 bp) and 4HNR (=1000 bp), to elucidate the
genetic basis of DHN melanin synthesis, was not an easy task. Moreover, the identification of
cell wall GPI-anchored proteins was impossible without the availability of the genome since
no sufficiently close fungi were sequenced so far and primary analyses using the closest
fungal genomes like that of Colletotrichum allowed the identification of only 8 proteins
instead of the 250 identified using S. apiospermum’s genome.

The complete genome sequence of S. apiosperma strain IHEM14462 was finally
published and almost 80% of the predicted coding sequences were annotated. Analysis of S.
apiospermum genome revealed interesting metabolic pathways involved in bioremediation.
Bioinformatic analysis of the genome unravelled an important number of enzymes involved
in the degradation pathways of various environmental pollutants, the activity of some was
previously investigated while other enzymes were identified for the first time.

Scedosporium species, are ubiquitous ascomycetes known for their ability to adapt to
various human-impacted ecological niches, including highly polluted soils and water [25].
These fungi were reported to use phenyl benzoate and crude oil as sole carbon sources
[172, 173] and to degrade gaseous saturated hydrocarbons [92], phenol and p-cresol
[173] and more recently dioxin [175, 176]. Because of these particular properties, they

were proposed for bioremediation.
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Figure D.28. Virulence factors identified in species of the S. apiospermum complex and possible pathogenic mechanisms as

compared to other fungal models
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General discussion

Analysis of the predicted metabolic pathways in S. apiospermum genome using KEGG
pathway database (http://www.genome.jp/kegg/) unraveled an important number of
enzymes implicated in the degradation of various pollutants. Our data indicated that 23, 22
and 3 open reading frames (ORFs) encode enzymes involved in the degradation pathways of
benzoate, aminobenzoate and fluorobenzoate respectively. Thirty-four ORFs were identified
for methane metabolism (gaseous hydrocarbon), 13 ORFs for toluene degradation (Figure
D.29), 2 ORFs for xylene degradation, 11 ORFs for styrene degradation, 13 ORFs for
chlorohexane and chlorobenzene degradation and 2 ORFs for polychlorinated biphenyls
degradation.

Claussen and Schmidt [173] previously demonstrated that phenol degradation in S.
apiospermum proceeded via two distinct pathways, the catechol and the hydroquinone
pathways, by measuring the corresponding enzyme activities. In the genome sequence, we
identified the ORFs encoding enzymes belonging to each pathway. Regarding the catechol
pathway, we found 3 ORFs encoding catechol 1,2-dioxygenases (Enzyme Commission
number (EC) 1.13.11.1) and for the hydroquinone pathway we found 3 ORFs coding for
hydroxyquinol 1,2-dioxygenases (EC 1.13.11.37) and 2 ORFS coding for maleylacetate
reductases (EC 1.3.1.32). In addition, two genes encoding phenol 2-monooxygenases (EC
1.14.13.7) were found, these enzymes are predicted to mediate the hydroxylation step
common to both pathways [176].

Moreover, we investigated major classes of fungal enzymes known to catabolize
organic pollutants, but lacking substrate specificity [177]. For instance, we found 2 genes
encoding laccases (EC 1.10.3.2), one encoding a tyrosinase (EC 1.14.18.1), a chloride
peroxidase (EC 1.11.1.10), a putative nitroreductase and a quinone reductase (EC 1.6.5.2).
Likewise, within 98 genes coding for P450 cytochromes, we searched for families that were
reported to degrade pollutants like CYP52, CYP53 and CYP504 [178]. Two genes belonging
to the CYP53 family, known to degrade benzoate and its derivatives, were found in S.
apiospermum genome (EC 1.14.13.12 and EC 1.14.14.1).

Together these data provide a molecular support for running efforts to use these fungi
or attenuated strains of these fungi in bioremediation, and open the way to genetic

engineering experiments to overexpress certain desired enzymes.
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Figure D.29. Toluene degradation.

Enzymes identified in S. apiospermum genome are highlighted in green.
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Conclusions and perspectives

CONCLUSIONS AND PERSPECTIVES

This work highlights the cell wall remodeling in S. boydii during maturation and
germination of conidia. A number of potential virulence factors were identified providing a
basis for future studies on the role of each of these molecules in the host-pathogen
interactions. Eventhough no rodlet-forming hydrophobins were observed in atomic force
microscopy for conidia, a CFEM domain-containing protein (KEZ44163.1) seemed to be
interesting for further studies since it was twice more hydrophobic that RodAp, has a
conserved spacing of 8 cysteine residues close to that of hydrophobins, and it might justify
the higher hydrophobicity and higher CH3/CHs; interactions seen on the conidial cell wall.

Genome analysis of S. apiospermum also provided molecular evidence for ongoing
research in the domain of bioremediation and would also provide support for other studies
concerning pathogenesis and biotechnological applications.

The fungal cell wall is a highly dynamic structure that is composed of a mixture of
molecules that ensure various surface interactions. Combining our knowledge on surface
properties, interactions and molecular data would provide valuable explanations for fungal
pathogenesis, particularly for the adherence of the fungus to the host tissues and its evasion

from the host immune response.
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ANNEXES

Annex I

Raw MS data for conidial cell wall extracts

Annex II

Raw MS data for mycelial cell wall extracts

Annex III

MS/MS spectra from proteins identified with a single-peptide from mycelial and conidial

extracts.
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Annex 1

I. Annex 1

Table A.7. Raw MS data for conidial cell wall extracts. Protein sequences with predicted GPI-anchor are shaded in grey.

Accession Coverage # PSMs # Peptides # AAs Il;’lkvl‘)’a] ;ilc' Score Description

A_P_NEUCRA_SCA CDS.9909  36.48 18 11 307  32.5 955 53063 CD>10246751026580 Direct
(translation)

A_P_NEUCRA_SCA CDS_5086 31.36 13 10 338 36.3 6.95 403.53 CDS 164130165831 Reverse
(translation)

A_P _NEUCRA_SCA_CDS_6775  29.86 11 10 355  37.4 7.02 29487 CDPS 1275054 1276728 Direct
(translation)

A P NEUCRA_SCA CDS.720  41.98 10 9 212 23.6 11.14 287.32  CDS 14384111439493 Reverse
(translation)

A_P_NEUCRA_SCA CDS.3537  21.99 10 9 391  44.4 10.20 223.55 CDS 854001855532 Reverse
(translation)

A P _NEUCRA_SCA_CDS_5972  36.19 12 9 257  27.9  10.40 354.10 CDS 463869 464833 Direct
(translation)

A_P NEUCRA_SCA CDS. 1688  41.61 13 9 161  18.0 11.37 34857  CDS 546288547203 Reverse
(translation)

A_P_NEUCRA_SCA CDS._10475 14.42 10 9 652  71.0 522 309.48 CDS 608324610529 Direct
(translation)

A P _NEUCRA_SCA_CDS_1515 31.30 10 8 262  29.4 10.37 268.73 CDS 1187524 1188738 Reverse
(translation)

A_P_NEUCRA_SCA CDS 9538  19.53 11 8 553  59.5 9.14 281.34 CDS21923172194572 Direct
(translation)

A_P NEUCRA_SCA CDS. 7198  49.51 11 8 103 11.3  11.36 291.89  CDS 2840263 2840773 Direct
(translation)

A P NEUCRA_SCA CDS_4128  49.26 39 8 136 14.7  10.13 1284.25 CDS 598951599519 Reverse
(translation)

A_P_NEUCRA_SCA_CDS. 7250  49.33 10 8 150  16.0 10.54 263.39  CDS 3009246 3009995 Direct
(translation)

A_P NEUCRA_SCA CDS_ 7341  18.45 12 7 439  47.6 9.07 306.68 DS 249002251080 Reverse

(translation)
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Annex 1

MW

calc.

Accession Coverage # PSMs # Peptides # AAs [kDa] pI Score Description

A_P_NEUCRA_SCA_CDS 9776  46.15 10 7 130 14.9 10.70 259.80  CDS 499394 459933 Reverse
(translation)

A_P_NEUCRA_SCA CDS._6709  8.89 7 7 844 933 6.98 202.43 CDS 1023156 1026040 Reverse
(translation)

A P _NEUCRA_SCA CDS_8164 3.91 9 7 2069 234.3 6.57 260.32 CDS12262151232601 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._5869  22.90 7 7 310  34.0 9.51 167.63 CDS 8536587080 Reverse
(translation)

A_P _NEUCRA_SCA CDS_3357 16.23 8 6 308 337 9.85 263.99 CDS 179931181468 Reverse
(translation)

A_P_NEUCRA_SCA CDS_3189  7.77 6 6 914  98.6 5.6 230.80 CDS 9527298370 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 10806 28.85 6 6 156  17.8 10.77 164.86  CDS 723031723861 Direct
(translation)

A_P _NEUCRA_SCA CDS_7163  29.13 5 5 254  27.6 11.14 89.19  CDS 2684196 2685276 Direct
(translation)

A_P NEUCRA_SCA CDS. 9624  34.91 7 5 106 11.8 11.69 234.13  CDPS 2335074 2535801 Reverse
(translation)

A_P_NEUCRA_SCA CDS._6345  23.50 6 5 200  23.0 10.29 209.45 CDPS 1937786 1938849 Reverse
(translation)

A P _NEUCRA_SCA_CDS_8525  18.40 5 5 375  41.6 569 159.21  CDS 1090548 1092375 Direct
(translation)

A_P_NEUCRA_SCA_CDS._10467 23.01 6 5 239 27.5 10.64 194.98  CDS 571292572521 Direct
(translation)

A P NEUCRA_SCA CDS._1326 21.78 6 5 225 256 10.27 145.67  CDS 496028 497064 Direct
(translation)

A P _NEUCRA_SCA CDS_4712  36.89 6 5 122 14.0 10.32 183.29  CDS 146610 147201 Reverse
(translation)

A_P_NEUCRA_SCA CDS_5046  22.06 5 4 136 15.4  11.15 119.83 CDS 2912729648 Direct
(translation)

A P NEUCRA_SCA CDS_4692  24.22 5 4 161  18.6 10.74 104.75 CDS 86340 87050 Direct
(translation)

A_P_NEUCRA_SCA_CDS_1000  20.39 4 4 152 16.9 8.38 152.30  CDS 433450434368 Reverse

(translation)
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MW calc.

Accession Coverage # PSMs # Peptides # AAs [kDa] pI Score Description

A_P_NEUCRA_SCA CDS._7719  6.27 5 4 702 80.0 5.00 149,51 CDS 771188773356 Reverse
(translation)

A_P NEUCRA_SCA CDS 5104 8.36 4 4 586  61.5 572 155.60 CDS 230142232077 Reverse
(translation)

A P _NEUCRA_SCA_CDS_9198 29.14 4 4 151 16.9  10.61 149.46  CDS 891285892014 Direct
(translation)

A_P NEUCRA SCA CDS.973  7.18 7 4 529 586 8.60 26226 CDS 325614328603 Reverse
(translation)

A P _NEUCRA_SCA_CDS_9938 17.20 5 4 157 17.4  10.29 191.80 CDPS 11513221152074 Direct
(translation)

A_P NEUCRA_SCA CDS 1189  22.45 6 4 196  21.5 548 208.89 CDS 323654 354241 Reverse
(translation)

A_P_NEUCRA_SCA CDS._7766  23.12 6 4 186  20.8 10.81 136.15 CDS 10186011019576 Direct
(translation)

A P _NEUCRA_SCA CDS_9673  32.77 5 4 119 12.9  10.70 125.44  CDS 43430 44381 Reverse
(translation)

A_P NEUCRA_SCA CDS_996  14.71 5 4 238 26.8 9.82 7629  CDS 420676422469 Reverse
(translation)

A_P_NEUCRA_SCA CDS._9088  16.72 4 4 287  31.5 10.23 165.30 CDS 394712395755 Reverse
(translation)

A_P _NEUCRA_SCA_CDS_9294 13.89 4 4 396 447 5.7 79.25  CDS 1264789 1266546 Direct
(translation)

A_P_NEUCRA_SCA_CDS._10804 5.93 4 4 928  103.9 5.95 118.64 CDS 716700719483 Direct
(translation)

A_P_NEUCRA_SCA_CDS._6580  6.42 4 4 670  72.4 6.13 131.87 CDS 459371461529 Reverse
(translation)

A P _NEUCRA_SCA_CDS_9929  41.06 4 4 151 16.4 10.71 101.69 CDPS 1123121 1123923 Reverse
(translation)

A_P_NEUCRA_SCA CDS. 9756  10.51 4 4 514 553 550 122.87 CDS 390259 392448 Reverse
(translation)

A_P_NEUCRA_SCA CDS.9175  16.99 5 4 153 17.6  10.02 156.72  CDS 771674772565 Direct
(translation)

A_P_NEUCRA_SCA_CDS_6759  18.58 4 4 226 24.9 9.66 127.22 DS 11889461189912 Reverse

(translation)
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A_P_NEUCRA_SCA CDS._1325  39.09 5 3 110 117 9.95 14320 CDS 494888495601 Reverse
(translation)

A_P NEUCRA_SCA CDS._2888  18.58 4 3 183 20.7 11.71 63.39  CDS17379951739028 Reverse
(translation)

A P _NEUCRA_SCA CDS_4129 27.21 3 3 136  14.2 10.71 59.63  CDS 600516601038 Direct
(translation)

A_P NEUCRA_SCA CDS_ 3432  20.95 4 3 105  11.4 9.19 6557  CDS 441669 442608 Reverse
(translation)

A P _NEUCRA_SCA CDS_3192 8.46 3 3 473 52.0 8.16 149.10 CPS 116556118313 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_2275  30.15 4 3 136 15.5 10.83 128.87 CPS 1197945 1198666 Direct
(translation)

A_P NEUCRA _SCA CDS._7189  6.83 3 3 410  44.7 8.28 74.75 DS 2800829 2802494 Direct
(translation)

A P _NEUCRA_SCA_CDS_1887  7.50 3 3 480  52.7 8.38 65.59  CDS 137/82821379954 Reverse
(translation)

A_P_NEUCRA_SCA CDS._6299 11.97 3 3 259  28.4 8.97 116.43 CDS 1748300 1749286 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._10073 6.11 3 3 785 854 6.84 65.44  CDS 490962493583 Reverse
(translation)

A P _NEUCRA_SCA_CDS_6011  20.69 3 3 174 20.5 10.35 99.09  CDS 639501640596 Reverse
(translation)

A_P NEUCRA_SCA CDS. 8471  11.11 3 3 351 37.7 11.05 126.31 CD> 887110888540 Direct
(translation)

A_P_NEUCRA_SCA CDS_ 3358  31.25 5 3 96 10.7 9.99 170.41 CDPS 183973184599 Reverse
(translation)

A_P _NEUCRA_SCA_CDS_5073 16.36 4 3 165  18.8 9.70 110.43 CDS 126434 127128 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 10350 12.23 3 3 417  44.4 6.48 12450 CPS 102013103753 Reverse
(translation)

A_P_NEUCRA_SCA CDS.3359  13.62 3 3 213 23.6 8.81 127.60 CDPS 185105185935 Direct
(translation)

A_P_NEUCRA_SCA_CDS_6778  13.18 3 3 258 27.7 8.76 71.68 CDS 1283772 1284925 Reverse

(translation)
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A_P_NEUCRA_SCA CDS._9108  6.38 3 3 549  56.7 521 86.40  CDS 463865465645 Direct
(translation)

A_P_NEUCRA_SCA_CDS_ 10679 20.65 4 3 92 10.5 11.65 92.99  CDS 207679208336 Reverse
(translation)

A P _NEUCRA_SCA_CDS_3343  20.29 5 3 207 233 10.73 119.14  CDPS 9501595746 Direct
(translation)

A_P NEUCRA_SCA CDS_ 5144  16.33 3 3 251  26.2 10.33 127.27  CDS 396804 398661 Direct
(translation)

A P _NEUCRA_SCA CDS_3910 9.51 3 3 263 284 6.54 123.73  CDS 207748 208694 Direct
(translation)

A_P NEUCRA_SCA_CDS 9322  7.36 3 3 530 58.0 6.95 135.96 CD> 1368868 1370956 Reverse
(translation)

A_P_NEUCRA_SCA CDS_1031  6.69 3 3 583  63.5 9.13 93.50  CDPS 559039561306 Direct
(translation)

A P _NEUCRA_SCA CDS_6886 4.24 3 3 849 943 458 89.11 DS 1703813 1706916 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._1005  4.80 3 3 1001 112.5 9.23 13129 CDS 452883456037 Reverse
(translation)

A_P_NEUCRA_SCA CDS_1787  5.07 3 3 808  86.6 5.58 107.43 CDS 988309990992 Direct
(translation)

NA_P_NEUCRA_SCA_CDS._1559 25.55 3 3 137 15.4 9.00 116.80 CDS 13766051377302 Direct
(translation)

A_P NEUCRA_SCA CDS._1469  3.92 2 2 689 745 6.27 9155 PS5 10087421011330 Direct
(translation)

A_P_NEUCRA_SCA CDS._10684 11.88 2 2 160  18.3 10.62 46.46  CDS 226013 226888 Reverse
(translation)

A P _NEUCRA_SCA_CDS._3404  2.57 2 2 662  72.4 8.44 3586  CDS 347023343090 Direct
(translation)

A_P_NEUCRA_SCA_CDS_6477  3.52 2 2 711 79.2 521 7333  CDS 30182 32898 Direct
(translation)

A_P_NEUCRA_SCA_CDS_2877  0.63 2 2 2866 312.2 7.21 75.85  CDS 1696403 1706483 Direct
(translation)

A_P_NEUCRA_SCA CDS_7637 4.46 2 2 202 23.0 10.46 56.61 CDS 410256 411590 Reverse

(translation)
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A_P_NEUCRA_SCA _CDS 7765 6.94 2 2 317 33.2 10.08 54.27 CDS 1015713 1016914 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_ 2300 8.49 2 2 106 12.0 10.48 49.89 CDS 1318160 1318947 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8155  26.25 2 2 80 9.1 1011 6400 D> 1203536 1204076 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6593  23.08 2 2 104 112 9.13 31.87 P> 528076528731 Direct
(translation)
A_P_NEUCRA_SCA_CDS_988  11.56 2 2 199 22.4 9.99 27.47  CPS 399776400725 Reverse
(translation)
KEZ46909.1 12.38 3 5 02 190 412 11550 CDS 972008 972906 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9455  17.60 2 2 125 146 11.55 3821 D> 1882988188381l Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8488  6.28 2 2 414 465 6.24 63.24 (D> 942260943901 Direct
(translation)
A_P_NEUCRA_SCA CDS_9537  12.72 2 2 173 20.0 10.33 55.61 D> 21905362191200 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9928 9.61 2 2 333 34.6 6.15 58.37 CDS 1119505 1120898 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_3199  8.62 2 2 200 313 493 7506 Do 139597140674 Direct
(translation)
A_P_NEUCRA_SCA CDS_1449  9.19 2 2 283 30.1 892 5695 D> 958207959804 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9166  16.50 3 2 103 11.6 9.48 12576 D> 729467729952 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9287  5.11 2 2 313 337 496 5736  CPoo12370171238212 Direct
(translation)
A_P_NEUCRA SCA CDS_1242  6.98 2 2 401 448 872 5552 D> 154701156291 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9417  7.53 2 2 438 474 534 107.05 D> 17262221727829 Direct
(translation)
A_P_NEUCRA_SCA CDS_8101  4.27 2 2 445 493 638 7591 D> 949933946391 Reverse

(translation)
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A_P_NEUCRA_SCA_CDS._6573  7.55 2 2 384 416 7.55 71.41  CDS 421496423212 Reverse
(translation)

A_P_NEUCRA _SCA CDS._1767  4.80 3 2 542  61.0 7.94 117.62 CDS 885430887670 Reverse
(translation)

A P _NEUCRA_SCA CDS_6143 14.62 3 2 130 14.8 9.94 120.54 CDS11210221121736 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._1025  6.02 2 2 465  53.0 6.73 58.76  GCDS 532079533473 Direct
(translation)

A P _NEUCRA_SCA_CDS_8689 5.28 2 2 417  45.6 6.70 72.60  CDS 1687747 1689671 Reverse
(translation)

A_P_NEUCRA_SCA CDS_6701  25.98 3 2 127 137 9.98 105.38 CDS 9928279393541 Direct
(translation)

A P NEUCRA _SCA CDS._1547  4.53 2 2 574  64.1 583 7039  CDS13324321335096 Reverse
(translation)

NA_P_NEUCRA_SCA_CDS_8322 8.63 2 2 278  29.3  4.48 65.15  CDS 379477 380310 Reverse
(translation)

A_P NEUCRA_SCA CDS_5984  4.42 2 2 634  68.0 4.93 9356  CDS 536425538326 Reverse
(translation)

A_P_NEUCRA_SCA CDS._7876 17.24 2 2 116  13.1 9.80 47.88  CDS 130930131423 Direct
(translation)

A_P_NEUCRA_SCA_CDS._2408 7.73 3 2 362 389 5.0 99.96  CDS 1740861 1741946 Direct
(translation)

A_P_NEUCRA_SCA_CDS._6956  4.60 1 1 261 29.3  10.26 50.49  CDS 1966228 1967418 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 5568  2.36 1 1 381 41.6 7.58 28.72  CDPS 707892709250 Direct
(translation)

A P _NEUCRA_SCA_CDS._1408  3.25 1 1 277 305 9.06 6631  CDS 844551845499 Reverse
(translation)

A P NEUCRA _SCA CDS._3622 4.93 1 1 142 152  10.45 34.06  CDPS 1198629 1199577 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 8966  4.96 1 1 141 15.5 10.37 46.47  CDS 248941249471 Reverse
(translation)

A_P_NEUCRA_SCA _CDS_1185  6.25 1 1 192 21.5 9.51 33.03 CDS 343939 344986 Reverse

(translation)
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A_P NEUCRA _SCA CDS._3196  1.97 1 1 608  67.0 7.64 63.46  CDS 133885135872 Reverse
(translation)

A_P NEUCRA SCA CDS_438  6.25 1 1 272 29.7 8.00 53.56  CDS 313359314643 Direct
(translation)

A P _NEUCRA_SCA CDS._7354 8.15 1 1 135  15.7 10.64 42.49  CDS 341208 341345 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_5900 2.44 1 1 614  66.6 550 44.06  CDS 206553208910 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._10423 2.79 1 1 394 437 7.43 3036  CDS 401791403400 Direct
(translation)

A_P NEUCRA_SCA CDS_4285 5.71 1 1 333 34.9 7.83 2826  CDS 573029574264 Direct
(translation)

A_P_NEUCRA_SCA_CDS._10369 3.12 1 1 449  48.9 6.16 36.91 DS 172591174092 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._10685 5.79 1 1 190  22.0 10.29 28.20  CDS 227326228207 Direct
(translation)

A_P NEUCRA_SCA CDS_6483  3.53 1 1 255  28.6 7.96 51.42  CDS 5332854936 Direct
(translation)

A_P_NEUCRA_SCA CDS.2495  11.80 1 1 305 343 7.59 51.42  CDS 309886310999 Direct
(translation)

A P _NEUCRA_SCA CDS._7864 5.88 1 1 153 17.6 973 51.42  CDS93117 33640 Reverse
(translation)

A_P NEUCRA_SCA _CDS_ 3337 1.56 1 1 959  99.0 5.90 36.27  CDS 6415767308 Direct
(translation)

A P NEUCRA SCA CDS._1158  2.28 1 1 483  53.0 7.27 47.73  CDS 234952236623 Direct
(translation)

A P _NEUCRA_SCA CDS_9558 1.91 1 1 577  63.2 9.10 39.73  CDPS 2251576 2255495 Reverse
(translation)

A_P NEUCRA_SCA_CDS_3403 2.04 1 1 489 534 5.87 3583  CDS 341774343860 Reverse
(translation)

NA_P_NEUCRA_SCA_CDS_2301 4.69 1 1 341 371 8.66 5368  CDS 1320256 1321699 Reverse
(translation)

A_P_NEUCRA_SCA CDS_10469 3.23 1 1 310 34.4 9.79 31.08 CDS 589601 590699 Direct

(translation)
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A_P_NEUCRA_SCA_CDS.10746 9.78 1 1 92 10.2  10.99 34.21 DS 490702491262 Reverse
(translation)

A_P_NEUCRA_SCA_CDS.7325 8.97 1 1 145  16.8 10.62 79.26  CDS 181988 182558 Direct
(translation)

A P _NEUCRA_SCA CDS_2479 1.66 1 1 664  72.2 505 37.81  CDS 197423199735 Reverse
(translation)

A_P_NEUCRA_SCA CDS. 1358  2.99 1 1 301 34.5 8.90 44.06  CDS 669635670835 Reverse
(translation)

A P _NEUCRA_SCA CDS_6916  4.01 1 1 324 350 592 8031  CDS18085551810173 Direct
(translation)

A_P NEUCRA_SCA CDS._6489  6.85 1 1 146 16,9 9.88 33.98  CDS 6785168436 Direct
(translation)

A_P NEUCRA _SCA CDS_ 5882  2.53 1 1 475  52.8 5.87 4255  CDS 138137139888 Reverse
(translation)

A P _NEUCRA_SCA CDS_2890 3.91 1 1 256 30.2 10.48 38.48  CDS 1743282 1744636 Reverse
(translation)

A_P_NEUCRA_SCA CDS._7180  3.88 1 1 309  33.7 9.03 53.14  CDS 2753313 2754434 Reverse
(translation)

A_P_NEUCRA_SCA CDS._7862  2.52 1 1 516  55.9 8.92 31.24  CDS 8735289008 Reverse
(translation)

A P _NEUCRA_SCA CDS_9759  7.51 1 1 173 19.2 9,70 51.42  CDS400519401450 Reverse
(translation)

A_P NEUCRA_SCA_CDS_ 9543  4.94 1 1 243 26.5 8.81 3225  CDS2218233 2219226 Direct
(translation)

A_P_NEUCRA_SCA CDS.7793  1.35 3 1 889 983 7.01 140.20 GCDS 1096982 1100780 Reverse
(translation)

A P _NEUCRA_SCA CDS 5571  3.04 2 1 395 433  9.16 89.49  CDPS 714176715579 Direct
(translation)

A_P_NEUCRA_SCA_CDS._8988  1.90 1 1 684  72.3 8.79 3820  CDS 1727719328 Direct
(translation)

A_P NEUCRA_SCA CDS._8520  3.95 1 1 354 386 6.25 3030  C°PS10725341073743 Reverse
(translation)

A_P_NEUCRA_SCA CDS_9265 2.14 1 1 653 71.8 6.83 66.73 CDS 1153114 1155451 Direct

(translation)
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A_P_NEUCRA_SCA_CDS_5560  3.90 1 1 385  41.8 6.4 27.08 D> 009277670603 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_301  2.29 1 1 611  66.0 6.87 3748  _D> 051809653941 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_5212  2.41 1 1 622 654 6.62 3398  _D> 743883745818 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1265  10.88 1 1 147 158 10.13 3598 D> 200283260815 Direct
(translation)
NA_P_NEUCRA_SCA_CDS_2332 1.47 1 1 614 620 459 40.14 P> 1456020 1457861 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8038  10.43 2 1 211 21.4 1059 79.75  CPS 686263687185 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6915 1.58 1 1 888 97.9 759  48.71 CDS 180_3081 1805744 Direct
(translation)
A_P_NEUCRA_SCA_CDS_7707  10.75 1 1 186  21.0 9.41 48.92  CPS 726521727078 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_6833 2.94 1 1 884 100.1 5.97 21.85 CDS 148_6978 1490262 Reverse
(translation)
KEZ46627.1 8.02 5 ) 67 187 445 o025  CDS 531513 532142 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6821  0.12 1 1 4339 491.6 6.11 27.67 CDS 142_6280 1439442 Reverse
(translation)
A_P_NEUCRA SCA CDS_2997  4.86 1 1 288 304 6.67 46.67 oo 21804382181412 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6681  1.35 1 1 891 956 8.56 4545 P> 900934904482 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_335  7.11 1 1 197 205 10.29 33.11 P> 779672780610 Direct
(translation)
KEZ44163.1 9.83 1 ) 173 165 445 o2aog  CDS 215154 215800 Direct
(translation)
A_P_NEUCRA_SCA_CDS_4105  1.93 1 1 571  63.3 7.94 4189  CD> 518893520863 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1411  6.67 2 1 150  15.8 9.31 59.45  CD> 848773849485 Reverse

(translation)

Sarah Ghamrawi | The cell wall of Scedosporium boydii PSS 143



Annex 1

MW calc.

Accession Coverage # PSMs # Peptides # AAs [kDa] pI Score Description
KEZ41172.1 3.06 . | 23 0.0 464 oso,  CDS 1101340 1103048 Direct
(translation)
A_P_NEUCRA_SCA_CDS_501  4.94 1 1 243 263 493 3925 D> 376440577509 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2762 5.24 1 1 286 31.8 10.05 26.25 CDS 1300250 1301607 Reverse
(translation)
KEZ44256.1 6.32 ) | 190 197 441 621y  CDS 695902 696649 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9719  15.33 1 1 137 146 9.69 39.30 D> 232082232564 Reverse
(translation)
NA_P_NEUCRA_SCA_CDS_8085 12.26 1 1 155 157 9.58 20.04  _D> 867800868270 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1741  0.86 1 1 1398 152.8 9.20 37.34 D> 753335760327 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1727  9.76 1 1 82 89 926 4022 D> 709839710466 Direct
(translation)
A_P_NEUCRA_SCA_CDS_5076  9.64 1 1 83 9.0  10.11 31.06 D> 130129130698 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9463  1.76 1 1 794 871 673 7368  CPo19054401507821 Direct
(translation)
A_P_NEUCRA_SCA_CDS_5580  4.66 1 1 193 208 522 4590 P> 752980754655 Direct
(translation)
A_P_NEUCRA_SCA CDS_6507  0.48 1 1 2521 279.9 9.41 4977 D> 141521149223 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_2944  2.68 1 1 448 485 6.23 2831 (D> 19731551974890 Direct
(translation)
KEZ44265.1 3.79 ) ) 64 276 460 2333  CDS 733621 734543 Direct
(translation)
KEZ43142.1 2.83 . | 353 357 460 3305  CDS 262747 263972 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2433  2.33 1 1 429  44.6 7.99 4050  GD> 27154204 Direct
(translation)
A_P_NEUCRA_SCA_CDS_3548  13.33 1 1 90 103 1029 2597 (D> 900297900726 Direct

(translation)

Sarah Ghamrawi | The cell wall of Scedosporium boydii EPSC| 144



Annex 1

MW

calc.

Accession Coverage # PSMs # Peptides # AAs [kDa] pI Score Description

A_P_NEUCRA_SCA_CDS._8709  9.90 1 1 101 11.3  10.33 32.28  CDPS 1741580 1742281 Direct
(translation)

A_P_NEUCRA_SCA CDS_2826  3.08 1 1 389 424 554 33.04  CDS15091551510409 Direct
(translation)

A P _NEUCRA_SCA CDS._3163  2.42 1 1 454 517 6.15 31.00  CDS 69868 71767 Direct
(translation)

A_P NEUCRA SCA CDS. 2691  1.28 1 1 1015 106.4 7.77 34.93  CDS10022451006207 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_10076 8.96 1 1 134 15.0 6.71 4833  CDS>00103 500821 Reverse
(translation)

A_P NEUCRA SCA CDS. 6241  1.88 1 1 691  76.8 5.59 21.05  CPS15209611523302 Direct
(translation)

A_P NEUCRA_SCA CDS_500  3.28 1 1 366 39.5 9.29 53.45  CDS 563253 570680 Direct
(translation)

A P _NEUCRA_SCA_CDS_2345  3.47 1 1 375 412 6.76 47.28  CPS 1512170 1513363 Reverse
(translation)

A P NEUCRA SCA CDS._349  1.62 1 1 862  94.6 7.06 29.64 DS 850990855630 Reverse
(translation)

A_P NEUCRA _SCA CDS_ 7122 5.74 1 1 244  26.8 9.22 4539  CPS 2531054 2531989 Reverse
(translation)

A P _NEUCRA_SCA CDS_1737 14.71 1 1 102 11.8 10.13 32.94  CDS 740065740476 Direct
(translation)

A_P_NEUCRA_SCA CDS_3697  7.45 1 1 188  20.8 9.33 33.06  CDS 9392594563 Reverse
(translation)

A_P NEUCRA_SCA CDS_2554  4.45 1 1 292 32,9 837 64.00  CDS 522452523429 Direct
(translation)

A P _NEUCRA_SCA CDS 3591 2.76 1 1 508 567 5.33 2208  CDS10780321080066 Direct
(translation)

A P NEUCRA SCA CDS 411  14.56 1 1 103 10.6 9.09 69.15  CDS 206030206397 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_2706 4.01 1 1 374 399 7.62 33.30  CPS10815211082812 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_347 1.17 1 1 1363 147.0 6.52 35.54 CDS 844110 849022 Direct

(translation)
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A_P_NEUCRA_SCA_CDS_6925  9.77 1 1 174 193 599 3089  CDS 1834380 1835131 Reverse
(translation)

KEZ42341.1 8.68 1 1 88 28.6 737 3693  CDS 163008 164053 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_7148  22.94 1 1 109  11.2 11.66 30.54 D> 2037746 2638366 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_3289  11.50 1 1 200 22.6 10.11 20.30 D> 203749204348 Direct

(translation)

#= number; PSM= peptide spectrum match; AA= amino acid
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II. Ahnex 2

Table A.8. Raw MS data for mycelial cell wall extracts. Protein sequences with predicted GPI-anchor are shaded in grey.

Accession Coverage # PSMs # Peptides # AAs rkvl‘)’a] ;ilc' Score Description

A_P_NEUCRA_SCA_CDS._9909  46.91 18 14 307 32.5 9.55 ©554.91 CDS10246751026580 Direct
(translation)

A_P_NEUCRA_SCA_CDS_ 6775 40.56 12 11 355 37.4  7.02 49905 CDS 1275054 1276728 Direct
(translation)

A P _NEUCRA_SCA CDS_4128 53.68 79 10 136 14.7  10.13 1728.14 CDS 298951599519 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_3357 29.55 10 8 308 33.7 9.85 26172 CDS 179931181468 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_7765 32.49 11 8 317 33.2  10.08 331.67 CDPS10157131016314 Reverse
(translation)

A_P _NEUCRA_SCA CDS_3432 43.81 10 7 105 11.4  9.19 281.43 CDS 441669 442608 Reverse
(translation)

A_P_NEUCRA_SCA CDS_5972 31.91 7 7 257 27.9  10.40 256.54 CDS 463869464893 Direct
(translation)

A_P_NEUCRA_SCA CDS_7862 14.53 8 7 516 55.9 8.92 134,72 CDS 8735289008 Reverse
(translation)

A P _NEUCRA_SCA_CDS_5869 20.97 7 7 310 34.0 9.51 237.96 CDS 8536587080 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 6593  63.46 9 6 104 112 9.13 174.34  CDPS 528076528731 Direct
(translation)

KEZ42985.1 13.14 6 5 273 ces aen  nags  DPE LEMERor L0l RevERE
(translation)

A_P NEUCRA_SCA CDS_7341 18.45 9 5 439 47.6 9.07 219.4g CDS 249002251080 Reverse
(translation)

A_P_NEUCRA_SCA CDS_3196 13.65 5 5 608 67.0 7.64 174.46 CDS 133885135872 Reverse
(translation)

A_P _NEUCRA_SCA CDS_1688 26.71 6 5 161 18.0  11.37 210.52 DS 546288 547203 Reverse
(translation)

A_P_NEUCRA_SCA _CDS_5046 25.00 5 4 136 15.4  11.15 133.18 CDS 29127 29648 Direct

(translation)
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A_P_NEUCRA_SCA_CDS_10806 24.36 5 4 156  17.8  10.77 90.94 DS 723031723861 Direct
(translation)
A_P_NEUCRA_SCA_CDS_973 7.18 5 4 529 58.6 8.60 129.85 CDS 325_614 328603 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9538  10.13 4 4 553  59.5 9.14 14946 oo 2192317.2194572 Direct
(translation)
A_P_NEUCRA_SCA_CDS_7198  36.89 5 4 103 113 11.36 137.40 D> 2840263 2840773 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2275  27.21 6 4 136 155 10.83 18505 D> 1197945 1198666 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6709 7.23 4 4 844 93.3 698 92.21 CDS 1023156 1026040 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_7250  22.00 6 4 150  16.0  10.54 199,44 (D> 3009246 3009995 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9175  29.41 6 4 153  17.6  10.02 187.28 CP> 771674772565 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1031  12.86 4 4 583  63.5 9.13 114.62 D> 229039561306 Direct
(translation)
KEZ41172.1 9.56 4 / 23 500 464 8534  CDS 1101340 1103048 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1000  15.79 4 3 152 16.9 838 148.97 DS 433450434368 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_5086  10.95 3 3 338 363 695 84.14 D> 164130165831 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_5104  8.19 3 3 586  61.5 572 107.98 Do 230142232077 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9198  21.85 4 3 151 169 10.61 87.99  CP> 891285892014 Direct
(translation)
A_P_NEUCRA_SCA CDS_9624  28.30 4 3 106 11.8  11.69 158.30 0> 2>3°074 2535801 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9776  32.31 4 3 130 149 1070 84.55  CD> 459394459933 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_6345  25.50 3 3 200 23.0 1029 54.87 (D> 19377861938849 Reverse

(translation)
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A_P_NEUCRA_SCA CDS_9938  22.29 4 3 157 174 1029 104.18 D> 11513221152074 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2300  15.09 3 3 106 12.0 1048 6227 D> 1318160 1318947 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8155  45.00 3 3 80 9.1 10.11 112,07 CPS12035361204076 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6483  11.37 4 3 255  28.6 7.96 5699 D> 332854936 Direct
(translation)
A_P_NEUCRA_SCA_CDS_3358  31.25 4 3 96 10.7 9.99 123.15 (DS 183973184599 Reverse
(translation)
KEZ46909.1 12.38 3 - o2 100 412 102.1n CDS 972008 972906 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9108  6.38 3 3 549 567 521 79.34 D> 4063865465645 Direct
(translation)
A_P_NEUCRA_SCA_CDS_10679 33.70 3 3 92 10.5  11.65 93.40 D> 207679 208336 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9928  12.01 3 3 333 346 615 11838 Do [1195051120898 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_9756  10.12 4 3 514 553 550 127.95 GDo 390259392448 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8038  25.12 4 3 211 214 1059 129.93 D> 0806263687185 Direct
(translation)
8171 (ANA) 10.82 3 - 288 411 49, gsoy  CDS 1254213 1255376 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_347  1.98 3 3 1363  147.0 6.52 47.17  CP> 844110849022 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2531  7.06 3 3 439 460 4.82 66.52  _P> 439965436281 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_720  16.51 > 5 12 236 1114 apgs  CDS 1438411 1439493 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_4129  27.21 2 2 136 142 1071 56.47  CD> 600516601038 Direct
(translation)
A_P_NEUCRA_SCA CDS_8966 12.77 2 2 141 155 1037 31.76 D> 248941249471 Reverse

(translation)
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A_P_NEUCRA_SCA_CDS_7189  6.10 > 5 410 447 88 ssoo  CDS 2800829 2802494 Direct
(translation)

A_P_NEUCRA_SCA_CDS_8471  9.69 2 2 351 377 11.05 134.08 D> 887110888540 Direct
(translation)

A_P_NEUCRA_SCA_CDS_10746 29.35 2 2 92 102 10.99 61.79 D> 490702491262 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_6225  3.51 2 2 1055  120.1 9.50 49.87  CD> 14475621451004 Direct
(translation)

A_P_NEUCRA_SCA_CDS_6489  23.29 2 2 146 169 9.88 58.80  _P> 0785168436 Direct
(translation)

A_P_NEUCRA_SCA_CDS_2890  9.77 > 5 o6 300 1048 7205  CDS 1743282 1744636 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_7793  2.14 > 5 655 983 701 833  CDS 1096982 1100780 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_9166  30.10 2 2 103 11.6 9.48 12278 CD> 729467729952 Direct
(translation)

A_P_NEUCRA_SCA_CDS_10406 39.71 2 2 68 72 10.05 87.27  CDS 349762350115 Direct
(translation)

A_P_NEUCRA_SCA_CDS_1265  24.49 3 2 147 158  10.13 102.93 D> 200283 260815 Direct
(translation)

KEZ46627.1 26.74 3 5 87 187 445 1y55g CDS 531513 532142 Direct
(translation)

KEZ44163.1 15.61 5 5 173 162 442 842y  CDS 215154 215800 Direct
(translation)

KEZ44256.1 14.74 5 5 190 107 441 sogo  CDS 695902 696649 Direct
(translation)

KEZ43170.1 30.77 3 5 82 177 436 1355 CDS 395583 396264 Reverse
(translation)

NA_P_NEUCRA SCA_CDS 808 , o, X 3 05 157  ocs po4g  CDS 867806 868270 Reverse

5 (translation)

KEZ45212.1 19.23 5 5 156 156 453 4108  CDS 1611962 1612506 Reverse
(translation)

NA_P_NEUCRA SCA CDS 155 _ . 3 3 137 154 900 4a4ec  CDS 1376605 1377302 Direct

9

(translation)

Sarah Ghamrawi | The cell wall of Scedosporium boydii S 150



Annex 2

MW

calc.

Accession Coverage # PSMs # Peptides # AAs [kDa] pI Score Description
A_P_NEUCRA_SCA_CDS_351  4.33 3 2 508  53.5 4.94 4801 D> 8063690865271 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_4090  11.59 2 2 207 211 11.49 77.41 (D> 4060621461368 Direct
(translation)
KEZ46619.1 6.00 5 5 17 563 488 10331 CDS 494030 495765 Direct
(translation)
A_P_NEUCRA_SCA_CDS_3189  1.42 1 1 914  98.6 526 6241 D> 9527298370 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1408  3.25 1 1 277 30.5 9.06 26.63  CDS 844551845499 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_3622 4.93 1 1 142 15.2 10.45 27.20 CDS 1198629 1199577 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1185 4.17 1 1 192 215 9.51 5540  CDS 343939 344986 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_3192  2.75 1 1 473 520 816 2735 D> 116556118313 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_7637  6.44 1 1 202 23.0 1046 31.51  CPS 410256411590 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_7865  13.56 2 1 118 13.4  10.68 41.87  CP> 9439795212 Direct
(translation)
A_P_NEUCRA_SCA_CDS_5900  2.28 1 1 614  66.6 550 4821 D> 200553208910 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1887 2.29 1 1 480 52.7 8.38 25.88 CDS 1378282 1379954 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1326  3.56 1 1 225 256  10.27 27.41  CD> 496028497064 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9652  11.01 2 1 109 121 1073 2530 (D> 2685790 2686587 Direct
(translation)
A_P_NEUCRA SCA CDS_1189  7.14 1 1 196  21.5 548 101.21 D> 35365% 334241 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_10685 4.74 1 1 190  22.0 10.29 39.33 (P> 227326228207 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9673  9.24 1 1 119 12.9 10.70 40.00 DS 43430 44381 Reverse

(translation)
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A_P NEUCRA_SCA CDS 6011 6.32 1 1 174 20.5  10.35 66.49  CDS 639501640596 Reverse
(translation)

A_P NEUCRA_SCA CDS 996  4.20 1 1 238 26.8 9.82 36.86  CDS 420676422469 Reverse
(translation)

A P _NEUCRA_SCA CDS_1673 2.24 1 1 446 50.8 8.12 30.35  CDS 487745490088 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_ 2495 11.80 1 1 305 343 7.59 29.98  CDS 309886310999 Direct
(translation)

A P _NEUCRA_SCA_CDS_7864 5.88 1 1 153 17.6  9.73 29.98  CDS 9311793640 Reverse
(translation)

A_P NEUCRA SCA CDS_3337 0.94 1 1 959 99.0 5.90 26.99 DS 6415767308 Direct
(translation)

A_P NEUCRA _SCA CDS 1158  1.45 1 1 483 53.0 7.27 25.76  CDS 234952236623 Direct
(translation)

A_P_NEUCRA_SCA_CDS._9088 6.27 1 1 287 31.5  10.23 108.43 CDS 394712395755 Reverse
(translation)

A_P NEUCRA SCA CDS_9294  4.04 1 1 396 447 5.17 36.58  CDS 1264789 1266546 Direct
(translation)

A_P_NEUCRA_SCA_CDS_9558 1.73 1 1 577 63.2 9.10 137.50  CDS 2251576 2255495 Reverse
(translation)

A P _NEUCRA_SCA CDS_5073 11.52 2 1 165 18.8 9.70 67.52  CDS 126434127128 Reverse
(translation)

A_P_NEUCRA_SCA CDS_ 6778 5.81 1 1 258 27.7 876 46.11  CDS12837721284925 Reverse
(translation)

NA_P_NEUCRA_SCA_CDS 897 |, oo ) ) . o4 o5 900,  CDS 277450 277770 Reverse

8 (translation)

A_P_NEUCRA_SCA_CDS._9033  5.40 1 1 352 39.8 870 33.51  CDS 177625178847 Reverse
(translation)

A_P NEUCRA SCA CDS_4712 9.84 1 1 122 14.0  10.32 24.68  CDS 146610147201 Reverse
(translation)

A_P NEUCRA_SCA CDS_2878 1.31 1 1 535 58.8 8.95 25.76  CDS 1709634 1711585 Direct
(translation)

A_P_NEUCRA_SCA_CDS_6580 2.09 1 1 670 72.4  6.13 32.59 CDS 459371 461529 Reverse

(translation)
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A_P_NEUCRA_SCA_CDS_3343  6.76 1 1 207 233 1073 24.88 Do 9501595746 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9929 7.95 1 1 151 16.4 10.71 31.62 CDS 112_3121 1123923 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_8988  1.02 1 1 684 723 879 2751 D> 1727719328 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9287  5.11 1 1 313 33.7 4.96 5263 (DS 12370171238212 Direct
(translation)
NA_P_NEUCRA_SCA CDS 621 , o ) ) 228 366 1035 s3g,  CDS 1405168 1406151 Direct
7 (translation)
A_P_NEUCRA_SCA_CDS_5784  1.99 1 1 705 78.8 9.82 8215  _D> 384336386450 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9265  2.14 1 1 653  71.8 6.83 6831 D> 11531141155451 Direct
(translation)
A_P_NEUCRA_SCA_CDS_7247 2.08 1 1 864 97.7 519 78.37 CDS 300_2645 3005319 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_5144  6.77 1 1 251 262 10.33 58.98 oo 396804398661 Direct
(translation)
A_P_NEUCRA_SCA_CDS_3910  5.32 1 1 263 28.4 6.54 2494 D> 207748208694 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1767  2.95 1 1 542 61.0 7.94 91.43 (DS 885430887670 Reverse
(translation)
941 (ANA) 711 ; ) 36 253 ass seqs  CDS 184022 184738 Reverse
(translation)
NA_P_NEUCRA_SCA CDS 233 , o ) ) 614 620 450 384  CDS 1456020 1457861 Reverse
2 (translation)
A_P_NEUCRA_SCA_CDS_6143  13.85 1 1 130 148 9.94 127.08 CP>11210221121736 Reverse
(translation)
KEZ45428.1 9.28 B ) 37 234 43, e84,  CDS 225338 226130 Direct
(translation)
A_P_NEUCRA_SCA_CDS_9208  10.74 1 1 121 133 1141 2136  CDo 935189935788 Reverse
(translation)
KEZ43031.1 13.50 1 1 200 18.5 4.09 43.81 CDS 142127 142835 Reverse

(translation)
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A_P_NEUCRA_SCA CDS_3265 1.38 1 1 506 554 879 2576 D> 123037124730 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6701  10.24 1 1 127 137 9.98 5950 (D> 992827993541 Direct
(translation)
KEZ44206.1 5.43 2 1 221 22.0 4.82 68.74 CDS 428.360 429175 Reverse
(translation)
NA_P_NEUCRA_SCA CDS 832 , , . . 78 203 a4 a4ogs  CDS 379477 380310 Reverse
2 (translation)
A_P_NEUCRA_SCA_CDS_8558  1.48 1 1 948  103.0 530 22.09 D> 12380771241585 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1727  19.51 1 1 82 8.9  9.26 2048 D> 709839710466 Direct
(translation)
A_P_NEUCRA_SCA_CDS_7876  6.90 1 1 116 131 9.80 2557  CD> 130930131423 Direct
(translation)
A_P_NEUCRA_SCA_CDS_5580  5.70 1 1 193 20.8 522 2261  CD> 752980734655 Direct
(translation)
KEZ43142.1 4.25 1 ) 353 357 460 oaoesq  CDS 262747 263972 Direct
(translation)
A_P_NEUCRA_SCA_CDS_8709  9.90 2 1 101 113 1033 39.85  _D> 1741580 1742281 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6759 4.42 1 1 226 24.9 9.66 23.98 CDS 118_8946 1189912 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_2574 2.34 1 1 599 62,9 9.38 79.05 Do 3920656594669 Direct
(translation)
A_P_NEUCRA_SCA_CDS_2345 3.47 1 1 375 41.2 6.76 29.61 CDS 151_2170 1513363 Reverse
(translation)
A_P_NEUCRA_SCA_CDS_1737  14.71 1 1 102 11.8  10.13 8546  _D> 740063740476 Direct
(translation)
A_P_NEUCRA_SCA_CDS_1417  6.72 1 1 253 26.6 7.74 77.88  _D> 866084867005 Direct
(translation)
A_P_NEUCRA_SCA_CDS_6925  16.09 2 1 174 193 599 2921 (DS 1834380 1835131 Reverse
(translation)
KEZ42341.1 8.68 1 ) 88 286 737 6039  CDS 163008 164053 Reverse

(translation)
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A_P_NEUCRA_SCA_CDS_7148 22.94 1 1 109 11.2  11.66 21.02  CDS 2637746 2638366 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._7630 0.56 1 1 1063  116.4 4.93 24.14  CDS 392366 395554 Direct
(translation)

NA_P_NEUCRA SCA_CDS 133 _ . ) ) 1 134 503 o608  CDS 516405517031 Reverse

0 (translation)

A_P NEUCRA_SCA CDS_3383 11.11 1 1 72 8.0 10.71 29.19  CDS 283134 283447 Reverse
(translation)

A P _NEUCRA_SCA CDS_5917 0.36 1 1 2490  276.0 6.95 26.29  CDS 2817692893304 Direct
(translation)

A_P NEUCRA_SCA CDS_ 2753  3.23 1 1 434 479 926 8551  CDS12614101262893 Direct
(translation)

KEZ46098.1 2.74 2 1 475 e sl mmge b SS0LIL sREgs DIreC
(translation)

A P _NEUCRA_SCA CDS_685  1.12 1 1 1156 122.6 4.96 65.00  CDS 13247421328559 Reverse
(translation)

A_P_NEUCRA_SCA CDS._2675 1.21 1 1 910 106.9 9.88 45.43  CDS 261702964704 Reverse
(translation)

A_P NEUCRA SCA CDS_2516 2.64 1 1 492 53.9  10.45 42.61  CDS 386434 388007 Reverse
(translation)

A P _NEUCRA_SCA CDS_5438 1.73 1 1 751 81.2 7.43 136.28  CDS 226631229033 Reverse
(translation)

A_P NEUCRA _SCA CDS._10547 1.44 1 1 905 104.1 9.91 2517  CDS 893901896615 Direct
(translation)

3034 (ANA) 2.35 1 1 638 G5 9.5E dpeg oo 2971022 28/5050 RevEraE
(translation)

A P _NEUCRA_SCA_CDS._8867 1.29 1 1 1164  126.2 5.16 35.26  CDS 465465469189 Reverse
(translation)

A_P_NEUCRA_SCA_CDS_9613  2.59 1 1 540 56.6 4.65 75.89  CDS 2475697 2477578 Direct
(translation)

6337 (ANA) 3.86 1 1 415 Gl Al gegy 0 SR 1el/EI8 IBEsEs Revense
(translation)

NA_P_NEUCRA_SCA CDS_180 . . ) ) (o7 15 o8y scgs  CDS 1043012 1043637 Direct

5

(translation)
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NA_P_NEUCRA SCA CDS 889 , _ ) ) 05 635 o044 3019  CDS 562320 564275 Direct

4 (translation)

A P _NEUCRA_SCA CDS_1717  10.19 1 1 157 17.7 5.07 54.36 DS 6786886793395 Direct
(translation)

A P _NEUCRA_SCA CDS_3488 3.56 1 1 533 57.2 540 3593  CDS661703663436 Direct
(translation)

A_P NEUCRA_SCA CDS_ 5167 8.89 1 1 225 23.8 9.47 30.82  CDS 508995510046 Reverse
(translation)

A_P_NEUCRA_SCA_CDS._10364 6.51 1 1 307 33.8 7.84 3595  CDS 158303159939 Direct

(translation)

#= number; PSM= peptide spectrum match; AA= amino acid; ANA= Accession number Not Available yet
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III. Ahnex 3

a
Extracted from: \WJARVIS\Xcalibur\data\plateforme_service\272_Bouchara\filamemt3ter_272.RAW #2656 RT:36.20 941 (ANA)
ITMS, CID, z=+2, Mono m/z=954.45905 Da, MH+=1907.91081 Da, Match Tol.=0.5 Da .
Mycelial extract
GLTSMQTSIQQNcANVR
100 o Y10*
yr 1189.73
V' 861.46
80 - 733.38 by*-H,O
901.44
z .
H yu'
3
< 60 1290.68
2
B + .
z 712754 " e
= y,2-H,0 X 1102.75 1418.57 -
971 Tuma .o b N
’ b5 074 173352
yat 449.58
459.43 bis*
27 1634.43
o -
400 600 800 1000 1200 1400 1600 1800
m/z
Extracted from: \\WARVIS\Xcalibur\data\plateforme_service\272_Bouchara\filamemt3ter_272.RAW #4373 RT:58.09 KEZA45428.1

ITMS, CID, z=+2, Mono m/z=1146.09692 Da, MH+=2291.18657 Da, Match Tol.=0.5 Da

40 1

30 4

20

Intensity [counts]
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NH;
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800
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V102t
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e
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1000

1052.27
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1200
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Miycelial extract
QGLLGVVANAEDGVLYAcSQVK

yis*
1624.85
Yia®©
1553.76
yis*
1439.61
yi2*
1368.66 Vie©
1723.36
“ ‘I|||| | ‘ ,
1400 1600 1800 2000
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C
Extracted from: \\JARVIS\Xcalibur\data\plateforme_service\272_Bouchara\filamemt3ter_272.RAW #4082 RT:54.37 KEZ43031.1
ITMS, CID, z=+2, Mono m/z=1465.16699 Da, MH+=2929.32671 Da, Match Tol.=0.5 Da .
Mycelial extract
25 c¢VVDGITAIGCcTVEDTAcAcTTENLAK
Yo yist
1167.61 1583.98
20 o YB+
936.68 vt
Vie?* 1238.74
g 15 4 y7* 892.27 yi2*
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Figure A.30. MS/MS spectra from proteins identified with a single-peptide from
mycelial (a - i) and conidial extracts (j - p).

The major fragmentation series (y-carboxy and b-amino) are annotated; the deduced sequence,
m/z value and charge state from the precursor ion are indicated. ANA indicates that Accession
number is Not yet Available and that the numbers are from the internal laboratory annotation

system.
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Les especes du complexe Scedosporium apiospermum sont des agents pathogénes
émergents qui se situent au deuxiéme rang parmi les champignons filamenteux isolés des
voies respiratoires des patients atteints de mucoviscidose. Ils sont omniprésents et
particulierement rencontrés dans les zones polluées. Malgré leur notoriété, nos
connaissances sur leur biologie moléculaire et leur physiologie restent limitées.

Chez les champignons, la paroi cellulaire constitue un bouclier protecteur face a des
conditions environnementales défavorables ainsi qu'une structure bien contrdler pour la
pathogénicité des champignons. Ici, nous avons étudié les changements dynamiques de la
paroi des conidies de S. boydii, I'une des deux espéces majeures de ce complexe avec S.
apiospermum, avec pour objectif d'identifier des facteurs de virulence potentiels. En utilisant
une large variété de techniques, allant de la microscopie électronique a balayage ou a
transmission a l'analyse protéomique des protéines a ancre glycosylphosphatidylinositol
(GPI) en passant par la microélectrophorése et la partition de phase, la cytométrie en flux,
la microscopie de force atomique, la résonance paramagnétique électronique, ou encore des
techniques moléculaires, nous avons mis en évidence diverses modifications qui se
produisent dans la paroi pendant la maturation et la germination des conidies de S. boydii et
nous avons identifié la DHN-mélanine ainsi qu'un nombre important de protéines a ancre
GPI.

Enfin, nous avons fourni la premiére séquence compléte du génome de S.
apiospermum qui appuierait les différents domaines de la recherche sur ces champignons
que ce soit pour I'étude des mécanismes pathogénes ou pour des applications
biotechnologiques.

Mots-clés : Scedosporium boydii, S. apiospermum, champignons filamenteux, paroi, germination,
maturation, génome, biotechnologie, protéines a ancre GPI, mélanine, virulence.

Species of the Scedosporium apiospermum complex are emerging human pathogens
that rank the second, after Aspergillus fumigatus, among the filamentous fungi colonizing the
airways of patients with cystic fibrosis. These fungi are ubiquitous in nature and particularly
encountered in polluted areas. Despite their clinical notoriety, our knowledge about their
molecular biology and physiology remains rather limited.

In fungi, the cell wall forms a protective shield against adverse environmental conditions
as well as a well-regulated structure for fungal pathogenesis, which makes it an interesting target
for antifungal drug development. Here, in an attempt to identify potential virulence factors, we
investigated the dynamic changes of the cell wall of conidia in S. boydii, one of the main
pathogenic species within this species complex with Scedosporium apiospermum. Using various
techniques, ranging from scanning and transmission electron microscopy to proteomic analysis of
glycosylphosphatidylinositol (GPI)-anchored proteins, passing through two-phase partitioning and
microelectrophoresis, atomic force microscopy and chemical force spectroscopy, flow cytometry,
electron paramagnetic resonance and molecular techniques. We highlighted various modifications
occurring in the cell wall during maturation and germination of S. boydii and we identified DHN-
melanin as well as a substantial number of GPI-anchored proteins in the cell wall.

Finally, we provided the first publicly available genome sequence of S. apiospermum that
would support various research fields on these fungi whether for the understanding of their
pathogenic mechanisms or for various biotechnological applications.

Keywords : Scedosporium boydii, S. apiospermum, filamentous fungi, cell wall, germination, maturation,
genome, biotechnology, GPI-anchored proteins, melanin, virulence.
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Modifications de la paroi au cours de la maturation et de la germination des

conidies de Scedosporium boydii

A multifaceted study of the cell wall changes during maturation and germination of the

conidia in Scedosporium boydii

Résumé

Les espéces du complexe Scedosporium
apiospermum sont des agents pathogenes émergents
qui se situent au deuxiéme rang parmi les champignons
filamenteux rencontrés au cours de la mucoviscidose.
lls sont omniprésents et particulierement rencontrés
dans les zones polluées. En dépit de leur importance
clinique, nos connaissances sur leur biologie
moléculaire et leur physiologie restent limitées.

Chez les champignons, la paroi constitue un
bouclier  protecteur face a des conditions
environnementales défavorables, et joue un réle
essentiel dans la pathogénicité. Ici, nous avons étudié
les changements dynamiques de la paroi des conidies
de S. boydii, 'une des deux espéces majeures de ce
complexe avec S. apiospermum, avec pour obijectif
d'identifier des facteurs de virulence potentiels. En
utilisant une large variété de techniques, allant de la
microscopie électronique a balayage ou a transmission
a lanalyse protéomique des protéines a ancre
glycosylphosphatidylinositol (GPI) en passant par la
microélectrophorése et la partition de phase, la
cytométrie en flux, la microscopie de force atomique, la
résonance paramagnétique électronique, ou encore des
techniques moléculaires, nous avons mis en évidence
diverses modifications qui se produisent dans la paroi
pendant la maturation et la germination des conidies de
S. boydii et nous avons identifié la DHN-mélanine ainsi
qu'un nombre important de protéines a ancre GPI.

Enfin, nous avons fourni la premiére séquence
compléte du génome de S. apiospermum qui appuierait
les différents domaines de la recherche sur ces
champignons que ce soit pour I'étude des mécanismes
pathogénes ou pour des applications biotechnologiques.

Mots clés
Scedosporium boydii, S. apiospermum, champignons
filamenteux, paroi, germination, maturation, génome,
biotechnologie, protéines a ancre GPI, mélanine,
virulence.

Abstract

Species of the Scedosporium apiospermum
complex are emerging human pathogens which rank the
second, after Aspergillus fumigatus, among the
filamentous fungi colonizing the airways of patients with
cystic fibrosis. These fungi are ubiquitous in nature and
particularly encountered in polluted areas. Despite their
clinical relevance, our knowledge about their molecular
biology and physiology remains rather limited.

In fungi, the cell wall forms a protective shield
against adverse environmental conditions, and therefore
plays a key role in pathogenesis, which makes it an
interesting target for antifungal drug development. Here,
in an attempt to identify potential virulence factors, we
investigated the dynamic changes of the cell wall of
conidia in S. boydii, one of the main pathogenic species
within  this species complex with Scedosporium
apiospermum. Using various techniques, ranging from
scanning and transmission electron microscopy to
proteomic analysis of glycosylphosphatidylinositol (GPI)-
anchored proteins, through two-phase partitioning and
microelectrophoresis, atomic force microscopy and
chemical force spectroscopy, flow cytometry, electron
paramagnetic resonance and molecular techniques, we
highlighted various modifications occurring in the cell
wall during maturation and germination of S. boydii and
we identified DHN-melanin as well as a substantial
number of GPl-anchored proteins in the cell wall.

Finally, we provided the first publicly available
genome sequence of S. apiospermum that would
support various research fields on these fungi whether
for understanding their pathogenic mechanisms or for
various biotechnological applications.

Key Words
Scedosporium boydii, S. apiospermum, filamentous
fungi, cell wall, germination, maturation, genome,
biotechnology, = GPl-anchored proteins, melanin,
virulence.



