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Résumé

Introduction

L’intérêt croissant des applications liées à la supraconductivité à haute température
nécessite des outils numériques permettant de modéliser rapidement et efficacement
en 3D le comportement de tels matériaux. Malgré de nombreux travaux sur le
sujet, présentés dans le chapitre 1, les méthodes developpées restent limitées par la
complexité et le grand nombre de degrés de libertés des problèmes 3D modélisant
les câbles multifilamentaires torsadés.

Par consequent, on se focalisera principalement dans ce travail de thèse sur
le développement et la validation d’approches numériques permettant de simpli-
fier considérablement la modélisation tridimensionnelle, appliquée à la formulation
en champ magnétique H, de câbles supraconducteurs multi-filamentaires torsadés.
L’idée étant d’estimer rapidement et efficacement les pertes AC générées par de
tels câbles.

Modélisation 3D de supraconducteurs à hautes tem-
pératures

Au vu des limites présentes dans les approches numériques précédemment deve-
loppées pour la modélisation des supraconducteurs, le chapitre 2 explore et décrit
deux approches numériques permettant de modéliser précisément en 3D le com-
portement thermo-électromagnétique non-linéaire des supraconducteurs à hautes
températures. Les approches numériques décrites sont de types élements finis et
Galerkin discontinue avec un accent sur le développement de cette dernière.

Ces approches discrétisent les équations non-linéaires, dont les inconnues sont
le champ magnétique et la température. Ces équations résultent du couplage des
lois de comportement électromagnétique caractérisant les supraconduteurs (loi élec-
trique en puissance et comportement magnétique linéaire), des équations de Max-
well simplifiées en basses fréquences et enfin des équations thermiques :

H : µ0
∂H

∂t
+∇× (ρ(J, T ) · ∇ ×H) = 0

T : ρT cp(T )
∂T

∂t
−∇ · (λ(T )∇T ) = ρ(J, T )J2

(1)
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où

ρ(J, T ) =
Ec

Jc(T )

∥∥∥∥ J

Jc(T )

∥∥∥∥n(T )−1

(2)

Dans l’approche type éléments finis, l’accent est mis sur le traitement des non-
linéarités issues du comportement électrique des supraconducteurs via une linéari-
sation de la loi puissance.

E(Jk) = E(Jk−1) + A · (Jk − Jk−1) (3)

avec

A =

{
J, in Ωs

ρr · I, in Ωr
=



(n− 1)Ec
Jnc

J2
i ‖J‖

n−3 +
Ec
Jnc
‖J‖n−1 , i = j in Ωs

(n− 1)Ec
Jnc

JiJj ‖J‖n−3 , i 6= j in Ωs

ρr , i = j in Ωr

0 , i 6= j in Ωr

(4)

L’ approche type Galerkin discontinue, de part sa méthodologie couple les mé-
thodes des éléments finis et des volumes finis . Son principal avantage est qu’elle
est adaptée au calcul parallèle car les matrices issues de la discrétisation sont dia-
gonales par blocs. Le maillage du domaine étudié est ainsi distribué sur tous les
noyaux d’une architecture hardware. Une telle caractéristique évite des problèmes
de limitations de mémoire généralement rencontrés lorsque de larges problèmes sont
résolus grâce aux éléments finis.

A la différence de l’usage des élements d’arêtes pour l’application des méthodes
éléments finis sur des formulations en champs magnétique H, l’approche Galerkin
discontinue utilisera une approximation nodale. Une pénalisation bien définie des
termes d’interfaces est indispensable afin d’assurer la continuité de la composante
tangentielle du champ magnétique.

Afin de valider ces approches numériques, un cube supraconducteur soumis à
un champ magnétique sinusoïdal transverse fut modélisé en 3D pour des cas avec et
sans couplage thermique. Les pertes AC générées furent évaluées et comparées pour
ces deux approches avec des résultats obtenus sous le logiciel éléments finis Comsol.
On observe bien une équivalence des pertes AC calculées mais une différence non-
négligeable en terme de mémoire allouée aux calculs pour les différentes approches.

Un cas de modélisation 3D du comportement électromagnétique sans couplage
thermique d’un câble supraconducteur mono-filamentaire droit transportant du
courant fut aussi implémenté. La comparaison des pertes AC calculées montre aussi
une équivalence de l’approche type Galerkin discontinue et celle de type éléments
finis implémentée sous GetDP. La différence en terme de taille de mémoire allouée
est toujours présente.

Ces cas de simulations montrent la validité des deux approches numériques
développées.

L’approche type Galerkin discontinue permet, grâce au calcul parallèle, d’éviter
toutes limitations de mémoire. Cette caractéristique rend cette approche potentiel-
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(a) Aucun couplage thermique (b) Couplage thermique

Figure 1 – Pertes AC générées par un cube supraconducteur soumis à un champ
magnétique sinusoïdal transverse.

Figure 2 – Pertes AC générées par un câble supraconducteur mono-filamentaire
droit transportant du courant.

lement appropriée pour la modélisation tridimensionnelle de larges systèmes supra-
conducteurs tel que des supraconducteurs multifilamentaires torsadés. De plus, de
nombreuses perspectives de recherche afin d’optimiser cette approche, telles que du
calcul sur GPU par exemple, sont envisageables.

Cependant, la modélisation tridimensionnelle, via les éléments finis, de câbles
supraconducteurs multifilamentaires torsadés nécessite des méthodes permettant
de simplifier considérablement le problème. Ces dernières permettraient de pal-
lier les potentiels problèmes de limitations de mémoire dues aux larges géométries
complexes de ces types de câbles.

Modélisation 3D de supraconducteurs multifilamen-
taires torsadés
Une évaluation précise des pertes AC générées par des câbles supraconducteurs
multifilamentaires torsadés nécessite en plus d’outils numériques robustes de mo-
délisation 3D, d’approches numériques permettant de simplifier considérablement
ce type problème.

Ces dites méthodes sont développées et décrites dans le chapitre 3. Au regard
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des tailles raisonnables des géométries étudiées dans la suite, l’outil de modélisation
3D utilisé pour ces travaux est GetDP.

Dans un premier temps, une étude de modélisation est réalisée sur un câble su-
praconducteur mono-filamentaire torsadé sujet à un champ magnétique sinusoïdal
transverse. De cette étude, l’on note l’apparition de plusieurs boucles de courant
électrique dans le câble. Ainsi, le champ magnétique vu par le filament supra-
conducteur torsadé du câble ne semblait pas être unidirectionnel mais ce dernier
parcourt plutôt la trajectoire hélicoidale décrite par le filament.

Figure 3 – Distribution 3D du courant dans le câble supraconducteur mono-
filamentaire torsadé à t = T/4s et dans le repère (x,y, z).

Ces observations furent validées par l’application d’une transformation géomé-
trique uniquement sur le champ magnétique transverse initialement imposé sur le
filament torsadé. La dite transformation exprime le passage du repère (x,y, z) au
repère de Frenet (T,N,K) associé à la trajectoire hélicoidale décrite par le filament
torsadé :

H[T,N,K] =

−a · sin(θ) a · cos(θ) b

cos(θ) sin(θ) 0

−b · sin(θ) b · cos(θ) −a

 ·H[x,y,z] (5)

avec a = r/L, b = c/L, c = p/2π, L2 = r2 + c2, et θ = z/c où p est le pas de
torsadage et r le rayon de l’hélice. Le rayon r depend de la taille des surfaces de
base du domaine de l’air entourant le câble sur le modèle. En effet pour une boîte
d’air ce rayon r sera la moitié de la longueur de la diagonale tandis que pour un
cylindre comme domaine d’air, le rayon r sera celui des surfaces de base.

De cette transformation du champ magnétique imposé sur ce câble mono-
filamentaire torsadé, on retrouve une unique boucle de courant dans le filament.
Ce résultat est équivalent au cas d’un filament droit soumis à un champ transverse
dans le repère (x,y, z). Il confirme ainsi notre hypothèse de départ sur la direction
du champ.

Afin de complètement valider cette transformation, une étude paramétrique avec
comme variables le nombre total de filaments, le pas de torsadage, l’amplitude et
la direction du champ magnétique imposé est réalisée. Cette étude regroupe de
nombreux cas de simulations ayant pour but de comparer les pertes AC générées
par le câble dans le repère (x,y, z) où ses filaments sont torsadés avec celles dans
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Figure 4 – Distribution 3D du courant dans le câble supraconducteur mono-
filamentaire torsadé à t = T/4s et dans le repère de Frenet (T,N,K).

(a) 2 filaments (b) 6 filaments

Figure 5 – Pertes AC générées, dans les repères (x,y, z) et (T,N,K), par des
câbles multifilamentaires supraconducteurs de longueur p = 4mm soumis à un
champ magnétique sinusoïdal transverse .

le repère de Frenet (T,N,K) où ses filaments sont droits. On observe bien une
équivalence des deux configurations quel que soit les paramètres définis.

Malgré une telle équivalence, la modélisation tridimensionnelle de câbles su-
praconducteurs multifilamentaires torsadés comporte toujours un large nombre de
degrés de liberté. Celà résulte du grand nombre de torsades que comporte généra-
lement de tels câbles. Afin de rémédier à ce problème, on a pu observer, avec de
nombreuses simulations utilisant la transformation dans le repère de Frenet, qu’un
câble avec un nombre minimal de torsades pouvait être représenté, en termes de
pertes AC par unité de longueur, de façon équivalente par un modèle réduit d’une
de ses torsades située en son centre. Ce modèle réduit comportera des conditions
de périodicité à ses extrémités.

L’idée d’une telle approche réside dans l’approximation de la quantité de cou-
rant moyen traversant la torsade situé au centre du câble si les effets magnétiques
des extrémités du câble en son centre deviennent négligeables. La modélisation ap-
proximative du centre du câble donne ainsi une idée de ce courant moyen ainsi que
des pertes AC par unité de longueur associées.

En considérant le modèle réduit à la torsade centrale au câble, on s’est interessé
à ce qui se passe en son milieu. On a alors étudié des fractions de cette torsade
dans le but de réduire le modèle.

Cette diminution de longueur du modèle réduit permet de considérablement
diminuer le nombre de degrés de liberté du problème.
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(a) Pertes AC instantanées (b) Pertes AC moyenne

Figure 6 – Comparaison et évolution des pertes AC d’un câble supraconducteur
sujet à un champ sinusoïdal transverse en fonction du nombre de torsades par
rapport aux pertes AC d’une torsade comme modèle réduit.

(a) Champ transverse (b) Champ axial

Figure 7 – Comparaison des pertes AC d’un câble supraconducteur pour différents
modèles réduits.
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(a) 2 filaments (b) 4 filaments

Figure 8 – Pertes par aimantation de câbles supraconducteurs, évaluée dans le
repère de Frenet, avec 2 et 4 filaments torsadés et leur version homogénéisée soumis
à un champ magnétique transverse - Bmax = 50 mT, f = 100 Hz et p = 4 mm

Ces approches couplant la transformation dans le repère de Frenet et les mo-
dèles réduits de câbles supraconducteurs multifilamentaires torsadés permettent de
simplifier la modélisation 3D et d’accélérer la conception optimisée de ces types de
câbles.

Ils ont ainsi permis de modéliser en 3D l’influence du champ elliptique sur les
pertes par aimantation d’un échantillon de 100 câbles de MgB2 multifilamentaires
torsadés.

A partir de l’étude de câbles comportant une seule couche de filaments, on
montre la possibilité d’homogénéiser ces câbles afin d’évaluer de façon équivalente
les pertes AC par unité de longueur.

Dans ce contexte, les volumes des différents sous-domaines sont conservés ainsi
que chacune de leur géometrie excepté celle du sous-domaine supraconducteur. Ce
dernier est représenté par un unique filament centrée de longueur équivalente à celle
du câble. De nouveaux paramètres de la loi puissance doivent être définis comme
étant fonctions de différents paramètres tel que :

Jch = G(Jc, nf , αv, βrf , βrL) (6)

and

nh = g(n, nf , αv, βrf , βrL) (7)

Ces fonctions dépendent du nombre de filaments nf appartenant à une couche,
du ratio volumique αv des filaments supraconducteurs par rapport à la matrice
résistive, de la distribution radiale βrf des filaments sur les couches et la distribu-
tion radiale βrL des couches des filaments. Pour notre étude, ces fonctions furent
évaluées empiriquement afin de servir de base pour de futures recherches visant à
les définir explicitement.

Conclusion
Les approches éléments finis et Galerkin discontinue ont été mise en place pour
déterminer les champs induits dans des supraconducteurs et notamment évaluer
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les pertes dans les câbles multifilamentaires.
Dans un premier temps, il s’agit de résoudre les problèmes liés à la modélisation

tridimensionnelle des supraconducteurs. Pour celà, l’approche type éléments finis
prenant en compte la linárisation de la loi puissance ainsi que l’approche de type
Galerkin discontinue, adaptée au calcul parallèle, furent mise en place pour la
résolution de problèmes en champ magnetique H . Elles furent validées sur des
cas simples avec des résultats réferences issus d’une approche type élements finis
implémentée sur Comsol.

Puis, la réduction et simplification des larges problèmes associés à la modélisa-
tion tridimensionnelle de câbles supraconducteurs multifilamentaires est indispen-
sable car l’étude des configurations réelles de câbles nécessiterait des maillages à des
millions d’inconnues. De ce fait, une transformation géométrique fut proposée et
validée afin de résoudre un problème 3D équivalent dans le repère de Frenet. Dans
ce repère les filaments torsadés deviennent droits et le champ appliqué devient
hélicoïdal.

A partir de ce problème 3D équivalent, des modèles réduits de ces câbles per-
mettant l’évaluation rapide et simplifiée des pertes AC par unité de longueur furent
proposées et validées. Ils ont permis de modéliser en 3D l’influence du champ ellip-
tique sur les pertes par aimantation d’un échantillon de 100 câbles de MgB2 avec
54 filaments torsadés.

Enfin, l’homogénéisation de ces types de câbles représente une perspective de
recherche. Les résultats présentés montrent la faisabilité et les potentialités d’une
telle approche pour la conception optimisée de ces câbles.
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General Introduction

The rising global energy consumption coupled with the finite supply of fossil en-

ergy ushered a new wave of research initiatives geared to develop more efficient

and robust renewable energy alternatives. These initiatives are aimed at devel-

oping technologies which use abundant energy with respect to the environment.

Such technologies involve for instance electrical machines which are ubiquitous in

numerous industries. Those devices are generally characterized by non-negligible

dissipated energy, from electric cables carrying current, as heat losses.

In the case of electrical machines, electric cables carrying high currents, more

than the usual conventional materials such as copper, with minimal losses can

be a perfect alternative. Fortunately, high temperature superconducting materials

provide interesting properties for such application. In fact, high temperature super-

conductors can carry high direct currents (DC) with minimal to zero losses when

used in an environment with cryogenic temperatures. In such state, the resistivity

of the superconductors remain close to zero if the temperature, the magnetic field

density and the current intensity are respectively below the critical temperature

Tc, the critical magnetic field density Bc and the critical current density Ic.

However, high alternating currents (AC) carried by those materials can lead

them to dissipate heat because of the magnetic induction. The energy dissipated

is commonly called AC losses. Its precise evaluation is therefore critical in order to

design efficient cables for electrical machines. Moreover, the design of the associated

cryogenic system, whose function is to maintain, from a thermal standpoint, the

cable in a superconducting state, require an accurate value of those losses.

The need of accuracy in evaluating AC losses requires strong mathematical

tools. Despite the existence of analytical tools, superconducting machines com-

monly using multiple superconductors in tape/wire form wound into coils and

interacting together in a complex magnetic environment make them insufficient.

Thus, robust and efficient numerical tools must be investigated and developed in

order to accurately model superconductors. Several developments have been made

1
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in that direction with considerable amount of work geared towards 2D modelling.

The aspect regarding 3D modelling have known some interesting developments ex-

cept in the case of large scale systems such as multi-filamentary superconducting

wires.

In this dissertation, several numerical approaches geared toward an accurate

3D modelling of whole twisted multi-filamentary superconducting wires will be

developed. The main focus is to simplify and reduce the associated 3D problem

of such wires for fast and efficient AC losses computations. In fact, a typical 3D

problem for modelling those wires requires a large number of degrees of freedom

coupled with complexities arising from the twisted multi-filamentary wire geometry.

Thus, reduced model of truncated version of those wires will help us derive the

complete electro-magnetic behaviour of the whole wires through fast and efficient

computations.

The chapter 1 set the overall picture of the research work involved. An introduc-

tion to the superconductivity followed by an understanding of loss mechanisms are

mentioned. Moreover, applications, mostly involving large systems, are described

in order to show the current and future developments involving superconductivity.

Then, the modelling aspect is introduced with the different mathematical models

and numerical methods investigated by the applied superconductivity community.

With some detailed descriptions of those numerical approaches, their limitations

in regards with 3D modelling of large and complex superconducting systems are

stated.

Given those limitations, two numerical approaches applied on the magnetic

field H based formulation are presented in the chapter 2. The first one is the finite

element method with a focus on the treatment of non-linearities arising from the

electrical behaviour of high-temperature superconductors. Then, the discontinuous

galerkin method will be introduced in order to make use of its numerous capabilities

such as distributed computing for electromagnetism 3D modelling. With a thermo-

electromagnetic consideration, several simple cases, subjected to different magnetic

field configurations, are validated with simulations using finite element method

implemented in GetDP and Comsol Multiphysics.

Finally, an extensive study on the 3D modelling of twisted multi-filamentary

superconducting wires have been done in the chapter 3. Given the geometric com-

plexities present in the wire, the purpose was to develop numerical approaches

which simplify the 3Dmodelling of such wires based on the finite element method. A

mathematical framework is thus proposed to solve an equivalent straight wire mod-
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elling problem with a significant reduced number of unknowns. Thus, capabilities of

this framework led to develop a model-order reduction which model accurately and

quickly in 3D the electro-magnetic behaviour of twisted multi-filamentary super-

conducting wires. With the use of GetDP, numerous simulations on smaller versions

of these wires were done in order to validate the proposed framework. Then this

new model was applied on a study of the influence of elliptical magnetic fields on

the magnetization losses of a twisted MgB2 twisted wire with 54 filaments. As re-

search perspectives, homogenization approaches are investigated briefly in order to

show the optimization wire design potentialities.
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Chapter 1

Superconductivity and numerical

modelling

1.1 Introduction

Superconductivity was first discovered in 1911 by Kamerlingh Onnes. In his exper-

iments with liquid helium, Onnes observed that the electrical resistance of metals

such as mercury, lead and tin sharply disappeared below a low critical temperature,

Tc, characteristic of each material (4.15 Kelvins (K) for the mercury, 7.19 K for the

lead and 3.72 K for the tin)[1]. The metals, characterized by a perfect conduction,

were observed in a superconductor state. Perfect diamagnetism of superconductors

was discovered later in 1933 in superconductors by Meissner and Ochsenfeld. In

such case, the applied magnetic field was expelled by superconductors, at tempera-

tures below Tc, except for a distance of λ known as the penetration depth [2]. This

became known as the Meissner effect.

Above their critical temperature Tc, superconductors are in normal state which

is common to the electrical behaviour of resistive materials.

Years later, different superconductors have been discovered with an increasing

critical temperature.

Metallic elements and alloys, whose superconducting state is observed below

30 K have been named low temperature superconductors (LTS). Some oxide com-

pounds named high-temperature superconductors (HTS) were discovered with a su-

perconducting state observed above 30K. With the growing interest and research

in superconductivity, the critical temperature has been increasing and now may

exceed 130 K for certain oxide superconductors, see fig. 1.1. The higher the criti-

cal temperature Tc, the easier is the design and maintenance of cryogenic systems

5
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Figure 1.1 – Critical temperatures and year of discovery for different superconduc-
tors [3].

needed to cool down the superconductors in their applications.

A superconductor is thus characterised by its critical temperature, Tc, its critical

magnetic field, Hc, and its critical current density, Jc, as shown in figure 1.2. These

parameters define the upper limits for the superconductivity in a material and can

be used to define a superconducting or normal state for a given set of conditions

[4]. The shaded volume in this figure corresponds to the material being in its

superconducting state.

In the last few years, the development of high-temperature superconducting

devices increased. Several prototypes and some commercial devices have been built.

However, many of those devices costs remain high and potential solutions to reduce

it are being proposed and explored. Moreover, other important practical aspects

such as cooling systems must be taken in consideration for real applications.

The complexities associated with the devices geometries and overall highly non-

linear behaviour in real applications led to the development of efficient numerical

modelling tools. Those tools will help deepen the understanding of the behaviour of

HTS devices. They will also allow the optimization of those devices performances

while helping reduce their associated costs.

Beyond the behaviour and the optimization of those devices, numerical mod-

elling tools can also be used to predict how a device will perform in its environment
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Figure 1.2 – Characteristics of superconductors

once in operation. In other words, a device rarely operates alone, but acts on its

neighbourhood as one element of a system. A good example of this is a supercon-

ducting power device installed in a power system. Since the final performance of

a device is conditioned by the system in which it is installed, it is of the highest

importance to develop device models that are compatible with system simulators.

These device models, most often expressed in terms of electric circuits, are in gen-

eral simpler than those used for device optimization, for instance finite element

models, but they are nonetheless essential for comparing the performance of com-

peting technologies in a given system.

In this chapter, characteristics and constitutive laws of superconductors will be

explored. Moreoever, models and numerical methods, applied on modelling high

temperature superconductors and found in the literature, will be presented with

mentions of their advantages and limitations. A focus on their limitations will help

derive the need of a robust and scalable approach to model superconducting devices

in three-dimensions.

1.2 Superconductors : types I and II

1.2.1 Type-I superconductors

They consist of pure metals with a critical temperature below 10 K. The Meissner

effect or perfect diamagnetism characterizes the behaviour of type-I superconduc-
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tors below the critical magnetic field Hc. Above Hc the type-I superconductor

becomes normal and the magnetic field fully penetrates the material (see Fig. 1.3).

During the Meissner effect, a current flow combined with a self-induced magnetic

field are created and confined in the outer layer of the superconductor. Thus, the

current-capacity of type-I superconductors becomes limited.

Figure 1.3 – Phase diagram of type-I superconductors

According to Silsbee’s criterion, only valid for type-I, a superconductor loses its

zero resistance when at any point on the surface the total magnetic field strength

(due to the transport current and applied magnetic field) exceeds Hc[5]. The max-

imum current that can be carried by a type-I superconductor is called critical

current intensity Ic. For currents above Ic, the self-induced magnetic field will be

large enough to bring on transition to a normal state[6].

1.2.2 Type-II superconductors

The discovery and development of superconducting metal alloys led to the exis-

tence of another superconductors class known as type-II superconductors. In 1957,

Abrikosov contributed to the behaviour study of this class. According to his re-

search, they exhibited a continuous increase in flux penetration starting at a first

critical field till reaching B = µ0H at a second critical field Hc2, instead of showing

a discontinuous disappearance of superconductivity at the critical magnetic fieldHc

(see Fig.1.5)[7]. It is now known that the behaviour of this new class was not simply

due to impurities in their chemical composition but were intrinsic properties[8].
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Figure 1.4 – Phase diagram of type-II superconductors

Figure 1.5 – Magnetic behaviour characteristics of both type-I and type-II super-
conductors

Moreover, they are also characterized by a new phase called mixed state be-

tween the critical magnetic field Hc1 and Hc2 (see Fig.1.4). In such state, both the

Meissner state and the superconducting state are present. The negative surface

energy between normal regions and superconducting regions led to the appearance

of cylindrical normal regions in order to attain the lowest total free energy state

possible [9]. Those cylindrical normal regions, called vortices or fluxons, are dis-

tributed in a regular pattern called fluxon lattices (see Fig. 1.6). Each vortice let
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the applied magnetic field pass through and is shielded from the neighbouring su-

perconducting regions by a vortex of induced currents called super-currents. The

perfect diamagnetism is maintained by the surface currents on edges of both the

material and its vortices.

Figure 1.6 – The mixed state with fluxon lattices and encircling supercurrent [9]

Because of microstructural defects and impurities (lattice defects, grain bound-

aries, dislocations), the vortices movement will be stopped. This energy barrier

created lead to the flux pinning. The Lorentz force Fl created on each vortex is

smaller than the pinning force Fp.

However, the Lorentz force can become greater than the pinning force at a

certain critical value Jc leading to the vortices movement called flux flow.

In the case of thermally-actived vortices motion called flux creep, the movement

of vortices is slower and more sporadic. The superconducting state of the material

has not disappeared.

Metal alloys and some pure metals, Niobium for instance, are type-II supercon-

ductors. Different oxide compounds are also included. All pure metals and metal

alloys have their Tc below 30 K and are referred to as low temperature supercon-

ductors (LTS), while the oxide superconductors have their Tc above 30 K and are

referred to as high-temperature superconductors (HTS).

1.3 HTS: macroscopic models

HTS materials are type-II in nature, and the magnetic flux entering a type-II

superconductor does so in the form of vortices. Super-currents flow around vortices

to shield them from the superconducting matrix. These vortices always appeared in
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the sample initially from the edges of the material. Their motion inward is impeded

by pinning sites due to irregularities in the material microstructure, such as lattice

defects, grain boundaries, and dislocations [10].

Because of these pinning sites, type-II superconductor are characterized by an

irreversible magnetization and a trapped magnetic field.

1.3.1 Critical state model : Bean model

A critical state model (CSM) is often used to represent the dynamics and different

operation modes of vortices.

Critical state models are based on the macroscopic behaviour of superconduct-

ing materials, derived from experimental observations of the relationship between

current density and magnetic field. The critical state occurs when an applied field

exceeds a type-II superconductor’s lower critical magnetic field Hc1. Magnetic flux

vortices with circulating shielding currents penetrate the material to shield the

interior of the material from the applied current/field.

Where there is a current flowing in the superconductor, the magnetic field

experiences a Lorentz force Fl = J × B . For a large Lorentz force, the vortices

become de-pinned and move in the direction of the force with a velocity vv. this

vortex movement will induce an electric field E = B× vv. Thus,

E = ρ(‖J‖)J (1.1)

In order to maintain a superconduting state, all CSMs state that the current

density should not exceed the critical current density Jc.

The Bean model is the simplest of all CSMs. It states that the magnitude of

the superconductor’s current density takes values of either 0 where the perfect

diamagnetism property holds or ±Jc in the mixed state. When the superconductor

is entirely penetrated with ±Jc, the superconductor is characterized by a critical

state.

1.3.2 E-J power law

Some HTS materials are characterized by an ill-defined critical current density. An-

derson[33] proposed a flux creep theory where the relationship between the electric

field and the current density is not discontinuous. In this theory, vortices move
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slowly, due to thermal activation, at current lower than the critical current, then

an electric field appears and losses occur. Rhyner [11] proposed the following E−J
power law :

E = Ec

∥∥∥ J
Jc

∥∥∥n (1.2)

with Jc = Jc(B, T ), n = n(B, T ) and the critical electric field Ec = 10−4 V/m.

The power law index n is dependent on the HTS properties and microstructure.

The extreme case of n = 1 and n = ∞ correspond to the linear Ohm law and

the Bean’s model.

1.3.3 Kim model

It is the commonly used model characterizing the magnetic field dependence of the

critical current density. Kim and Anderson [12] showed that the critical current

density in a type-II superconductor exhibit a strong dependence on temperature,

as well as magnetic field. It was also recognized by Bean [14]. The model devel-

oped states that the critical current density decreases with the local magnetic field

according to :

Jc(B, T ) = Jc0(T )

(
1 +
‖B‖
B0

)−1

(1.3)

with B0 a constant and Jc0 is the critical current density at zero field, which is

a temperature-dependent constant of the material.

1.3.4 AC losses

HTS materials appear to be much more interesting for technological development

since they can carry large currents. However, losses are generated due to the vortices

dynamic (flux flow or flux creep) resulting from the varying current or magnetic

field applied. It is therefore important to accurately calculate and measure AC

losses in order to minimize them, since they are dissipated as heat, for an efficient

design of both superconducting and cryogenic systems [15].

Depending of the energy source, AC losses are usually classified as magneti-

zation losses or transport current losses [16]. Both categories can be present in

superconducting applications.



1.3. HTS: macroscopic models 13

AC losses types

They are losses generated by the HTS materials subjected to an external alternating

magnetic field.

• Hysteresis losses

They are the result of the magnetization irreversibility caused by the pinning

of vortices. The flux that first entered the superconductor does not leave in

the same manner. It is because of vortice pinned by irregularities in the HTS

material that such irreversibility and hysteresis losses occur. The hysteresis

loop is shown on the average magnetic field density B-magnetic field H char-

acteristic. The dissipated energy per cycle is proportional to the loop surface

if no transport current are flowing [16]. The larger the critical current density

is, the larger the hysteresis losses will be [10].

• Coupling losses

Coupling losses are present in multi-filamentary conductors which consists

of multiple superconducting filaments (round filaments or tapes) within a

resistive matrix [16], [17]. The induced current generated by the alternating

magnetic field can flow through the superconductor and the resistive matrix

between the filaments. Filaments are said to couple together once the current

flow from one filament to another. In this configuration, all the filaments

form one magnetic body with a resistance encountered in the resistive matrix.

Thus, losses generated in the resistive matrix are called the coupling loss [16].

• Eddy current losses

When an external time-varying magnetic field penetrates into a normal con-

ductor, it induces a changing electric field, which in turn causes currents

to flow [18]. These are known as eddy currents. They are generated by the

resistive matrix which protects the superconducting filaments.

AC losses calculation

AC losses will be calculated using an electric method. An electric field is induced by

an applied time-varying magnetic field. A screening current begins to flow and there

is a local non-zero product of voltage and current. The product E · J is integrated

spatially over the conductor cross-section area S and with respect to time over
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the magnetic field cycle yields to give the loss (per unit volume per field cycle in

J/cycle/m3).

Q =
1

S

∫ 1/f

0

∫
S

E · JdSdt (1.4)

1.4 HTS applications

HTS applications encompasses domains where high current density or high mag-

netic fields are important. It includes for example transformers, fault current lim-

iter, superconducting magnetic storage, magnetic resonance imaging, power cables

and motors or generators.

Transformers

HTS allow transformers to operate continuously in overload conditions without

any lifetime loss because of the ultra-cold operating range of 20 to 77 K and the

low total losses due to their zero resistance. They are also smaller and lighter in

comparaison to conventional transformers [19].

Fault current limiter

The negligible impedance of HTS in their superconducting state allows them to

operate in ideal conditions whenever fault currents are not generated. Moreover,

the current is limited, whenever there is a fault event, because the transition from

the superconducting state to the normal state is too fast [20].

Superconducting magnetic storage

Those devices are used to prevent voltage sags and outage on the energy distribution

network. They are generally small, store and release quickly huge amount of energy.

They are either flywheel-based or magnetic field-based [21].

Magnetic resonance imaging

HTS will render small the huge magnet used in the magnetic resonance imaging

(MRI). Their accessibility to higher temperatures and their low manufacturing and

maintenance will make them more accessible for such market [22].



1.4. HTS applications 15

Power cables

HTS allow power cables to carry huge amount of current while the total generated

losses are extremely lower in comparison with normal conductors present in cables.

Their lightness gives more design flexibility to apply on these cables [23]-[24].

HTS rotating machines : motors or generators

However, this dissertation work will be focused on HTS rotating machines such as

motor or generator. HTS coil windings of those machines will be modeled precisely

in order to optimize both their design and the machines design.

Figure 1.7 – HTS rotating machine [38].

A look at HTS synchronous motor shows that HTS rotating machines include

both stator and rotor assembly. Each assembly have HTS coil windings containing

multiple polesets, each fabricated using HTS wire or tape designed to withstand

the powerful magnetic and mechanical forces experienced in the rotor.

Those HTS wires or tapes design consider the minimization of the resulting AC

losses during the machine operation. They mainly include fine filaments twisted

or straight embedded together inside a resistive matrix (mostly metallic) as a me-

chanical support.
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Table 1.1 – HTS Synchronous motors developed

Contribution Rated power Time Basic parameters HTS material

America

1.5 kW [25] 1993 2-pole, 3600 rpm Multifilamentary BSCCO coil
3.7 kW [25] 1993 4-pole, 1800 rpm Multifilamentary BSCCO coil
92 kW [26] 1995 4-pole, 1800 rpm Multifilamentary Bi-2223/Ag coil
735 kW [27] 2000 4-pole, 1800 rpm Multifilamentary BSCCO tape
3.7 MW [28] 2001 4-pole, 1800 rpm Multifilamentary BSCCO wire
5 MW [29] 2003 6-pole, 230 rpm Multifilamentary BSCCO tape
36.5 MW [38] 2006 120 rpm Multifilamentary BSCCO tape

Siemens 400 kW [31] 2001 4-pole, 1800 rpm Mg-reinforced Bi-2223/Ag tape
4 MW [32] 2005 2-pole, 3600 rpm Bi-2223 tape

Korea 73.5 kW [33] 2002 4-pole, 1800 rpm Stainless steel-reinforced Bi-2223 tape
3 kW [34] 2001 4-pole, 1800 rpm Bi-2223/Ag tape

Japan 3.1 kW [35] 2005 8-pole, 720 rpm Gd-Ba-Cu-O bulk magnet
Finland 1.5 kW [40] 1997 4-pole, 1500 rpm Bi-2223/Ag coil

1.5 Mathematical models

The goal here is to derive mathematical representations of the overall physical

behaviour of the studied system based on relevant hypothesis and simplifying as-

sumptions. In the case of superconducting devices, the electromagnetic behaviour

is simultaneously characterized by Maxwell equations ( eqs.1.5-1.8), the linear mag-

netic constitutive law (eq. 1.10) and the electric power law (eq. 1.12).

All electromagnetic phenomena are described mathematically by Maxwell equa-

tions. They are first-order vectorial partial differential equations which relates var-

ious physical quantities characterizing the electric or magnetic behaviour of a con-

tinuum domain. Those quantities, both time and space dependent, are the following

:

– the magnetic field H measured in Ampere per meter (A/m)

– the magnetic field density B measured in Tesla (T)

– the electric field E in Volts per meter (V/m)

– the electric field density D in Coulomb per meter square (C/m2)

– the electric current density J in Amperes per meter square (A/m2)

– the electric charge density ρ in Coulomb per meter cube (C/m3)

∇× E = −∂B
∂t

(1.5)

∂D

∂t
+ J = ∇×H (1.6)
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∇ ·D = ρ (1.7)

∇ ·B = 0 (1.8)

Superconducting machines will not generally operate in high frequencies, there-

fore the electric field density D can be neglected. Thus, equations 1.6 will become

:

J = ∇×H (1.9)

We therefore have equations 1.5, 1.7, 1.8 and 1.9 to use for our study. However,

they are not enough to find a solution since there is more unknowns (18) than

equations (8).

Additional equations must be added to 1.5, 1.7, 1.8 and 1.9 in order to find a

solution. They are known as constitutive laws and are expressed as :

B = µ0H (1.10)

D = ε0E (1.11)

E = ρ(J)J (1.12)

with the non-linear resistivity ρ characterized by the power law 1.2 in the su-

perconducting domain. The quantity µ0, whose value is about 4π.10−7 H/m (Henry

per meter), is known as the magnetic permeability. The quantity ε0 is known as

the vacuum permittivity.

All those mathematical relations are embedded in one single sytem of equations

generally called formulation. The formulations [41] - [42] used to model supercon-

ducting devices are listed below.
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1.5.1 H formulation

The magnetic field H is the only unknown of this formulation. The elementary

equations deriving from both Maxwell equations and the constitutive laws are :

J = ∇×H (1.13)

E = ρ(J)J = ρJ (1.14)

The combination of all those elementary equations with the Faraday law in

equation 1.5 will give us the H formulation :

∇× (ρ∇×H) = −µ∂H
∂t

(1.15)

1.5.2 E formulation

The electric field E is the only unknown of this formulation. The elementary equa-

tions deriving from both Maxwell equations and the constitutive laws are :

∂B

∂t
= −∇× E (1.16)

J = ρ(J)−1E = ρ−1E (1.17)

The combination of all those elementary equations with both the Ampere law

in equation 1.9 and the linear magnetic constitutive law in equation 1.10 will give

us the E formulation :

∇×∇× E = −∂(µρ−1E)

∂t
(1.18)

1.5.3 A− V formulation

In this case, the system of equations have the magnetic vector potential A and the

electric scalar potential V as unknowns. Based on Maxwell equations and consti-

tutive laws characterizing the behaviour of superconducting devices, we have the

following elementary equations :

B = ∇×A (1.19)
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E = −∂A
∂t
−∇V (1.20)

σ = σ(E) (1.21)

where B, E, σ are the magnetic field density vector, the electric field vector and

the electric conductivity.

The combination of all those elementary equations with the Ampere law in

equation 1.9 and the linear magnetic constitutive law in equation 1.10 will give us

the system of equations known as the A− V formulation :
∇× 1

µ
∇×A = −σ(

∂A

∂t
+∇V )

∇ · (σ(
∂A

∂t
+∇V )) = 0

(1.22)

with µ the magnetic permeability.

1.5.4 T− φ formulation

The unknowns of such formulation are the electric vector potential T and the

magnetic scalar potential φ. The elementary equations deriving from both Maxwell

equations and the constitutive laws are :

J = ∇×T (1.23)

H = T−∇φ (1.24)

ρ = ρ(J) (1.25)

where J, H, ρ are the current density vector, the magnetic field vector and the

electric resistivity.

The combination of all those elementary equations with the Faraday law in

equation 1.5 will give us the T− φ formulation : ∇× ρ∇×T = −µ∂(T−∇φ)

∂t
∇ · (T−∇φ) = 0

(1.26)
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1.6 Numerical methods

Every formulations described above can be solved using different numerical meth-

ods. Several numerical methods used to model superconducting devices have been

found in the literature. Through some discretization, they approximate the exact

solution of the model described by whichever formulation listed. The discretization

involves the geometry of the problem, either as a grid or as a mesh, depending on

the method. The dimension of this grid/mesh, specifically the number of nodes or

edges in it, is directly related to the number of degrees of freedoms (or unknowns)

of the problem. The number of degrees of freedoms has a critical impact on the

computation time and memory requirements.

1.6.1 Minimization of an energy functional

One can define a third family of numerical method based on the minimization of

an energy functional. This approach is very intuitive, since it consists in defining a

functional that relates the total energy of a system (or a variation of energy with

respect to some initial conditions) with the variables that define the state of this

system, e.g. potentials, field variables, source terms, etc.

It allows more freedom in the way one chooses the shape functions used to

approximate the solution. It also allows solving classes of problems that would be

difficult to solve otherwise, namely the critical state problem, which is singular in

its pure form, and therefore can only be approximated to some extent when using a

classical electromagnetic formulation. Although at first sight this approach requires

less mathematical formalism than strictly applying the finite element method, the

process of minimizing a functional in order to obtain a well-posed discrete equation

system requires good skills in functional analysis and optimization algorithms. Also,

since it is generally based on integral equations, its use in 3D is likely to be limited

to relatively small problems.

In the HTS community, the use of this method was first introduced by Bossavit

[55] and applied by Maslouh [44]. It was also formalized later by Prigozhin [43] as

a systematic approach to solve the J distribution in HTS domains based on the

critical state model. A variant of the method was later introduced by Sanchez and

Navau [45] and improved and generalized by Pardo et al [46] to include, among

other things, current constraints.
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. Limitations

A similar problem of matrices size is encountered with methods using the

minimization of the energy functional. Despite their flexible mathematics

formalism, these optimization problems cannot be easily extended to complex

3D geometries because of the resulting algebraic system sizes.

1.6.2 Integral methods

These methods require the use of Green’s functions defined everywhere in the stud-

ied domain. They were mainly developed for 2D modelling purposes. The Green’s

functions will be solved exactly on each point of the grid or mesh. All the local

solutions will be interpolated over the grid or mesh in order to get the global so-

lution over the studied domain. These methods are smoother by nature but we

can have Green’s functions with singularities leading to large errors if not treated

properly. The pointwise discretization of the problem leads to a global matricial

system with full matrices over the studied domain. Thus, the larger the studied

domain is, the bigger the full matrices will be and the more difficult it will be to

solve the resulting matricial system. Moreover, these methods do not give control

on the error approximation over the studied domain. It will therefore be difficult

to refine the global solution depending on the approximated error of the problem

over the studied domain.

In the applied superconductivity modelling, the Brandt method remain the com-

monly used integral method for 2D problems [48]. It solves the Laplace equation

resulting from the A − V formulation. As mentioned above, a general solution of

the magnetic vector potential A is derived, based on Green’s functions, in order to

discretize, over each grid’s point, the resulting integral formulation of the problem.

From there, the matricial system must be inverted and solved iteratively. Bound-

ary conditions are not needed. The numerical algorithm has been implemented

and used by several groups to model efficiently different superconducting systems.

However, its extension on 3D problems is not simple. Green’s functions in 3D are

not easily defined and the resulting matricial system will be large, because of the

high number of degrees of freedom characterizing 3D problems, in addition to be

full.

. Limitations
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Despite the smoothness of the 2D solution and its simple implementation,

integral methods such as the Brandt method cannot easily be extended to 3D

problems. In fact, Green’s functions evaluation is not simple even for simple

geometries in 3D. Even if the Green’s functions are well-defined, the large size

and complexity of the geometry will likely lead to compute an inversion of full

large matrix. Such an operation is extremely costly in terms of computations.

It is thus not suitable to compute with those methods the electro-magnetic

behaviour of twisted multi-filamentary superconducting tapes or wires for

instance.

1.6.3 Finite element method

This method consists in solving, through a discretization over a meshed domain,

the weighted residual of the formulation describing the problem. The weighted

residual is the integration over the meshed domain of the formulation multiplied

by weighting or test functions. The weight functions are used to approximate in a

piecewise manner the continuous solution of a studied problem over discrete mesh.

The modified governing equations are said to be written in weak form. Through

this approach, it is possible to weight the numerical error of the problem over the

whole domain. Thus, obtained numerical solutions can minimize the error on the

whole domain depending on the chosen weight functions.

The local solution on each element of the meshed domain is determined by the

values set at the element boundary. Information is thus propagated from element

to element through their common boundaries leading to the boundary conditions

imposed at the periphery of the studied model which will then determine the global

solution. Therefore, the connectivity between the degrees of freedom is only function

of the nodes (in case of nodal base functions) or edges (in case of vector base

functions) shared by neighbouring elements, leading to sparse matrix patterns, and

a more or less linear relationship between the number of degrees of freedom and

the memory requirements.

Finite element method is the most popular numerical method used in engineer-

ing to model systems. Through commercial or open-source software packages, it

provides a stable and simple to use framework to model in 1D, 2D and 3D geome-

tries of complex shapes [51]-[55].

In applied superconductivity, finite element method have been investigated for

2D and 3D models. It has been implemented mostly on the A − V , T − φ, and
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H formulations. For numerical stability purposes, a residual resistivity is always

added on the non-linear resistivity ρ(J). This added term might be viewed as a

thermally activated resistance at the initial temperature.

In 3D, the resulting matricial system, though sparse, becomes large due to the

high number of degrees of freedom. Large enough memory is therefore required in

3D cases.

. Limitations

Finite element methods are geared to model in any dimension complex ge-

ometries of superconducting systems. However, the resulting sparse matrix

size will scale with the size of the geometry because of the degrees of freedom

growing number. The large matrix size will require large memories and it

can limit computations of problems involving large scale systems. In addition

to the non-linearities present in the problem, difficulties to invert and solve

such matrix will occur. The treatment of non-linearities present in the power

law will become problematic for high value of the index n and high-order

approximations.

Thus, a linearization of the power law will be investigated in this thesis work

because it will provide more stability.

1.6.4 Finite volume method

This method is using aspects of both the finite difference method and finite ele-

ment method, especially on partial differential equations that arise from physical

conservation laws.

It can be applied to both structured and unstructured meshed domains of com-

plex geometries. Based on well-defined control volumes deriving from the meshed

domain, a volume integral conservation law of the problem is discretized. These

control volumes are either vertex-centered or cell-centered with mesh nodes as ver-

tices and mesh elements as cell. In order to obtain a linear system, integral on each

control volume are expressed in terms of mean values.

A numerical integration procedure, with a specified polynomial approximation,

is thus applied in a point-wise manner over the volume integral formulation on

each control volume. Equations also involve integrals of fluxes, approximated in a

linear form as numerical fluxes, crossing the boundary of control volumes defined
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on the mesh. Furthermore, boundary conditions can be applied non-invasively since

values of the conserved variables are located within the control volumes and not at

vertices or surfaces.

Finite volume method requires few degrees of freedom to compute a solution

closed to the exact one. The resulting matrix is banded, thus sparse, when struc-

tured meshes apply while it has no line structure in the case of unstructured meshes.

The major advantage of this method is that it implicitly makes the flux variable

divergence-free by equating the flux integrals on every common edge (in 2D) or face

(in 3D) of mesh elements.

Alloui et al [56]-[58] investigated this numerical approach for the modeling of

high-temperature superconductors in 3D. The A−V formulation coupled with the

heat equation was used. Different numerical schemes and iterative solvers were also

used in order to deal with the resulting matricial system associated to the dis-

cretized problem. They successfully obtained expected results for numerous cases

basedon the finite volume element.

. Limitations

Although the smoothness and the regularity of the solutions is not a con-

cern, finite volume method present the same limitations as the finite element

method in terms of large matrix for 3D problem. Solving these kind of ma-

trices is costly.

1.6.5 Finite element - Finite volume hybrid method

It is usually implemented to solve convection-diffusion partial differential equations

where the diffusion equations are discretized using the finite element method and

the convection equations are discretized using the finite volume method. Moreover,

equivalence of the computed projection of the finite element method solution on

the finite volume method mesh and vice versa allows mathematically a successful

numerical implementation of this hybrid approach.

Specific operators must be implemented in order to successfully compute the

equivalent projection of the solution. These operators ensure the coupling between

the finite element discrete form and the finite volume discrete form.

It can be applied to both structured and unstructured meshed domains of com-

plex geometries. Based on nodes and elements, as control volumes, of the meshed
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domain, a volume integral formulation of the problem is discretized. According to

this approach, the global solution is assumed to be piecewise constant.

Kameni et al [59]-[60] implemented this approach for the specific case of mod-

eling, based on the E-formulation, high-temperature superconductors in 2D. In the

partial differential equations associated to the E-formulation, the nodal finite ele-

ment method appears to be not suitable for the treatment of non-linear terms while

the finite volume method does not approximate well the diffusion terms because

of the gradient operator. Thus, the finite volume method will be implemented in

the discrete form based on the nodal finite element method to deal efficiently with

the non-linear terms. The nodal finite element method will be used for the discrete

form of the finite volume method in order to approximate effectively the diffusion

terms. For the coupling of both methods in order to solve the E-formulation, well-

defined operators will be derived in order to successfully compute the equivalent

projected solution in either finite element or finite volume meshed domain.

The developed method is robust and efficient. Unlike the finite element method,

it allows the modeling of superconductors with an n-value as high as 200.

. Limitations

The mixed approach combining both finite element method and finite volume

method, to solve non-linear equations system describing superconductors, is

tedious to extend in 3D. Despite its robustness and efficiency, specific opera-

tors must be well-defined for 3D geometries of any complexity.

1.6.6 Discontinuous Galerkin method

This method [61] is using aspects of both the Finite volume method and Finite

elements method. On each element of the studied mesh, a finite element approach

is implemented to discretize the problem. Moreover, interface terms, defined on each

element face, are replaced by equivalent integrals of well-defined numerical fluxes.

Numerical fluxes are evaluated, using the symmetry interior penalty method, in

order to ensure the convergence of the problem.

The discrete system consists of block diagonal matrices with each blocks made

of volume terms and interface terms.

Because of the structure of its matricial system, this method allows naturally

a scalability in both memory and computations through parallel processing. More-

over, the discontinuous character of the local approximated problem allows a flex-
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ible treatment of the non-linearities.

. Limitations

The discontinuous galerkin method investigated by Kameni et al [62]-[64] for

the E-formulation provides numerically the adequate framework to deal with

the commonly encountered large matrice size mentioned in all the numerical

approaches above. Its framework is naturally prone to parallel computations

which neglect the limited memory problem occurring with the finite element

method. Despite its robustness and efficiency, solving the E-formulation is not

appropriate for complex geometries in 3D. It requires the analytical evaluation

of demagnetization coefficients of the studied domain in order to compute

the electro-magnetic behaviour without a surrounding air domain. Such an

evaluation is too complicated for geometries which includes twisted multi-

filamentary superconductors for instance.

In the following thesis work, this approach implementation to solve the H-

formulation will be investigated.

1.7 Conclusion

Through a thorough literature investigation, we found extensive works done on the

modelling of high-temperature superconductors. Several differential formulations of

the problem have been explored and solved with numerous numerical approaches

for 2D and/or 3D modelling.

The numerical approaches encompass strong form and weak form approaches.

The former includes integral methods such as the Brandt method and the latter

consists of variational based method .

They are commonly limited by the resulting large matrices needed to be inverted

and computed. These operations are extremely costly in computations time and

memory. Moreover, the treatments of the non-linearities might also be problematic

causing difficulties to get the problem convergence.

In regards of those observations, the work of this thesis will consist in adding

more numerical features to the commonly used finite element method applied on

the H-formulation in order to make the 3D modelling of twisted multi-filamentary

superconducting wires possible. While some of those features, described in chapter

2, are related for convergence purposes to the treatment of the non-linearities arising
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from the electrical behaviour of superconductors, most of them, described in chapter

3, will be geared towards more simplifications of the associated 3D problem of those

wires.

Also, in chapter 2 we will be improving upon the discontinuous galerkin method

framework, applied on the E-formulation, in order to efficiently model in 3D, based

on the H-formulation, high-temperature superconductors of any geometric com-

plexities. This numerical approach has been chosen because of its potential for

electromagnetism 3D modelling. It also provides natural implementation of par-

allel computations, which might reduce the memory usage and potentially allows

computations over large scale systems. Thus, it has the potential to provide scal-

ability in terms of memory and computations. Computations speed can also be

improved upon implementing GPU-accelerated computations.
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Chapter 2

3D modelling of high-temperature

superconductors

2.1 Introduction

High temperature superconductors (HTS) are used as windings in several alternat-

ing applications, such as motors design for aircraft propulsion [30] and magnets

design for medical imaging [65]. They must carry high currents efficiently. High

and complex magnetic fields will thus be generated based on the superconducting

windings geometry used in the studied systems.

AC losses, generated by superconducting windings as heat loads, must be eval-

uated accurately and reduced in order to design an efficient superconducting ma-

chine. Such an evaluation must take in account the highly non-linear electrical

behaviour characterizing high temperature superconductors, thermal conditions,

complexities arising from both the winding geometry and the external magnetic

field configurations.

Robust, efficient and fast numerical approaches must be developed to model

accurately in 3D the thermo-electromagnetic behaviour of high-temperature super-

conducting windings. They are represented by the global domain Ω. It will generally

include two non-overlapping sub-domains Ωs and Ωr which are respectively super-

conducting and a non-superconducting sub-domain. For instance, superconducting

windings made of multi-filamentary superconducting wire will have all its filaments

as the sub-domain Ωs while the sub-domain Ωr will represent the resistive matrix

embedding the filaments.

In this chapter, the studied problem we must solve will be formulated based

on the magnetic field H and the temperature T , using the heat equation, Maxwell

29
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equations and the necessary constitutive laws, in section 2.2. Its approximations us-

ing the classical finite element method and the nodal discontinuous galerkin method

will be investigated in sections 2.3 and 2.4 respectively. The latter numerical ap-

proach provides numerous potential advantages such as a scalability over numerous

processors through parallel computing. Finally, section 2.5 will focus on compar-

isons and validations of both numerical approaches applied to simulation cases of

superconducting systems in both the non-thermal coupling and thermal coupling

cases.

2.2 Problem formulation

2.2.1 Constitutive laws

Magnetic and electric constitutive laws will characterize the studied domain Ω.

The electric behaviour of Ω is assumed linear and isotropic in the sub-domain

Ωr while highly non-linear and isotropic in the sub-domain Ωs. The linear and

isotropic electric constitutive law, known as Ohm law, is expressed as follows:

E = ρJ (2.1)

with ρ the constant resistivity of the non-superconducting sub-domain Ωr.

The highly non-linear and isotropic electric constitutive law, known as power

law, describing the superconducting sub-domain Ωs. Instead of the expressions

shown in equations 1.2 and 1.12, we will have a temperature dependence as follows

:

E = ρ(J, T )J (2.2)

with

ρ(J, T ) =
Ec

Jc(T )

∥∥∥∥ J

Jc(T )

∥∥∥∥n(T )−1

(2.3)

In the power law expressed above, the quantity ρ is the electrical resistivity of

the sub-domain Ωs. The quantities Ec, Jc and n are the critical electric field, the

critical current density and the power law index of the superconducting domain

Ωs respectively. Both the critical current density and the power law index are
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dependent on the temperature T .

2.2.2 Differential formulation

The coupling of the resulting Maxwell equations 1.5, 1.7, 1.8, 1.9 with the heat

equations and constitutive equations 1.10, 3.14, 2.2, 2.3 presented above will give

the following non-linear vectorial equation based on both the magnetic field H and

the temperature T :

H : µ0
∂H

∂t
+∇× (ρ(J, T )∇×H) = 0, in Ω× [0, t]

T : ρT cp(T )
∂T

∂t
−∇ · (λ(T )∇T ) = ρ(J, T )J2, in Ω× [0, t]

(2.4)

H : H× n = Ha × n, in ∂Ω

T : ∇T · n = 0 in ∂Ω

(2.5)

H : H(x, 0) = H0, ∀x ∈ Ω

T : T (x, 0) = T0, ∀x ∈ Ω

(2.6)

with the initial temperature T0 and the initial magnetic field H0. The boundary

∂Ω of the studied domain are assumed belonging to an air domain surrounding the

entire superconducting windings. Both an external alternating magnetic field Ha

and a thermal insulation condition imposed on the boundaries ∂Ω are also assumed.

In the heat equation, ρT , cp(T ), λ(T ) are the mass density, the specific heat and

the thermal conductivity of the studied domain respectively. AC losses generated by

the studied system are considered as a heat source quantity. In fact, the continuity

of the tangential components of the magnetic field H and the conservation of the

current density J = ∇×H must be insured.

In this formulation, the boundary condition of the magnetic part, expressed by

equation 2.5 on ∂Ω = ΓD,M , are of Dirichlet type for the magnetic part and Neu-

mann for the thermal part. However, some problems might require both Dirichlet

and Neumann boundary conditions for each part.

In the magnetic part, Neumann boundary conditions might be imposed on ΩN,M
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with ∂Ω = ΓD,M ∪ ΩN,M .

For the thermal part of the problem, boundary conditions might be Neumann-

like insulation, convection and radiation conditions and Dirichlet too. Assuming

∂Ω = ΓD,T ∪ ΩN,T , they can be imposed on ΩN,T = ΩN,T
i ∪ ΩN,T

c ∪ ΩN,T
r with

ΩN,T
i ∩ ΩN,T

c ∩ ΩN,T
r = ∅ for the Neumann boundaries and ΩD,T for the Dirichlet

ones. Depending on the problem, boundaries ΩN,T
i , ΩN,T

c and ΩN,T
r are respectively

subjected to insulation, convection and radiation conditions.

2.2.3 Variational formulation

The discretization of equation (2.4) requires to derive a variational formulation.

The unknown magnetic field H and the unknown temperature T are supposed to

belong to (L2(Ω))3 and L2(Ω) respectively such that :

L2(Ω) =

{
f : Ω ⊂ R3 7→ R :

∫
Ω

f 2(x)dΩ <∞
}

(2.7)

with a scalar product and a norm expressed as :

(f, g)L2(Ω) =

∫
Ω

f(x).g(x)dΩ, ‖f‖L2(Ω) =
√

(f, g)L2(Ω) (2.8)

After multiplying equations (2.4) by the basis vector function ϕ and the basis

function Φ, we must find the unknown variables couple (H, T ) ∈ (L2(Ω))3×L2(Ω)

such that:

H :

∫
Ω

(µ0
∂H

∂t
+∇× (ρ(J, T )∇×H)) ·ϕdΩ = 0 , ∀ϕ ∈ (L2(Ω))3

T :

∫
Ω

(ρT cp(T )
∂T

∂t
−∇ · (λ(T )∇T )− ρ(J, T )J2)ΦdΩ = 0 , ∀Φ ∈ L2(Ω)

(2.9)

However, the Green’s theorem applied on the magnetic problem’s volumic term

and the thermal problem’s volumic term with respectively the Curl− Curl operator
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and Div −Grad operator will give us

H :

∫
Ω

∇× (ρ∇×H) ·ϕdΩ =

∫
Ω

ρ(∇×H) · (∇×ϕ)dΩ−
∫

Γ

((ρ∇×H)× n) ·ϕdA

T :

∫
Ω

∇ · (λ(T )∇T )ΦdΩ = −
∫

Ω

λ(T )∇T · ∇ΦdΩ +

∫
Γ

λ(T )(∇T · n)ΦdA

(2.10)

According to equations 2.9 and 2.10, the final expressions of the variational

formulation are :

H :

∫
Ω

µ0
∂H

∂t
·ϕdΩ +

∫
Ω

ρ(∇×H) · (∇×ϕ)dΩ

−
∫

Γ

((ρ∇×H)× n) ·ϕdA = 0

, ∀ϕ ∈ (L2(Ω))3

T :

∫
Ω

ρT cp(T )
∂T

∂t
· ΦdΩ +

∫
Ω

λ(T )∇T · ∇ΦdΩ

−
∫

Ω

ρ(J, T )J2ΦdΩ

+

∫
Γ

λ(T )(∇T · n)ΦdA = 0

, ∀Φ ∈ L2(Ω)

(2.11)

The general solution space of the unknown magnetic field H, defined above, will

be restricted based on both the chosen numerical approach and the physics.

Two numerical approaches respectively based on the finite element method and

the Discontinuous Galerkin Method will be investigated. Their implementation will

be discussed in addition with the treatment of the non-linearities arising from the

superconductor electric behaviour.

2.3 Finite element method

A numerical approach based on the classical finite element method has been de-

veloped to solve the H-formulation. It was implemented in the open source finite

element software GetDP [67]-[68]. The treatment of non-linearities, arising from

the power law describing the electrical behaviour of superconductors, will also be
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investigated.

We will first discuss the spatial discretization of Ω and the associated functional

element spaces in order to derive the discrete variational formulation resulting from

the H-formulation.

2.3.1 Mesh definition

Let us consider a three-dimensional conforming mesh Th which is a partition of the

domain Ω in tetrahedral or hexahedral elements K such that Ω =
⋃
K∈Th K. The

size of each element is denoted by hK . We assume that the mesh is aligned with

the discontinuities of the material properties, such as the resistivity ρ, present in

the domain. Therefore, Th = Th,s∪Th,r with Th,s and Th,r respectively representing

the meshes of the sub-domains Ωs and Ωr.

All the faces of the mesh Th belong to the set Γh = ΓIh ∪ ΓBh where ΓIh is the set

of all the interior faces and ΓBh the set of the boundary faces.

Among the boundary faces, there will be faces with either Dirichlet or Neun-

mann boundary conditions such that ΓBh = ΓB,Dh,M ∪ ΓB,Nh,M and ΓBh = ΓB,Dh,T ∪ ΓB,Nh,T

for both the magnetic and thermal problems respectively . ΓB,Dh,T or ΓB,Dh,M is the set

of boundary faces with Dirichlet conditions and ΓB,Nh is the one with Neumann

conditions for either the thermal and the magnetic problems.

2.3.2 Discrete variational formulation

The finite element discretization of the equation (2.4) will need an approximation

of the unknown magnetic field H based on Nedelec elements. The approximated

quantities uh and vh of the temperature T and the magnetic field H will be defined

over the mesh Th. They will belong respectively to the following finite element

spaces :

Uh =
{
u ∈ L2(Ω) : u|K ∈ P1(K), K ∈ Th

}
(2.12)

and

Vh =
{
v ∈ H(curl; Ω) : v|K ∈ (P1(K))3, K ∈ Th

}
(2.13)
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with

H(curl; Ω) =
{
v ∈ (L2(Ω))3 : curlv ∈ (L2(Ω))3

}
(2.14)

The norm associated with Vh is on the mesh Th evaluated as :

‖v‖Vh = ‖v‖2
H(curl;Ω) (2.15)

Thus, the discrete weak formulation of equation (2.4) will consist in finding

(vh, uh) ∈ (Vh × Uh) such that:

H :

∫
Th

vht ·ϕdTh +

∫
Th
κ(∇× vh) · (∇×ϕ)dTh−

∫
ΓB,N
h,M

((κ∇× vh)× n) ·ϕdA+ IB,Dh,M = 0 , ∀ϕ ∈ Vh

T :

∫
Th
ρT cpu

h
t · ΦdTh −

∫
Th
λ∇T · ∇ΦdTh −

∫
Th

(ρJ2)ΦdΩ

+

∫
ΓB,N
h,T

λ(∇T · n)ΦdA = 0 , ∀Φ ∈ Uh

(2.16)

with vht = ∂vh/∂t, uht = ∂uh/∂t, κ = ρ/µ0 and :

IB,Dh,M =

∫
ΓB,D
h,M

γ ·ϕdA+

∫
ΓB,D
h,M

(vh −Ha) · γ′
dA. (2.17)

The Lagrange coefficients γ and γ′ help impose the Dirichlet boundary condi-

tions in a weak way. They must belong to the finite element space Vh.
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2.3.3 Numerical treatment of the non-linearities arising from

E = ρ(J)J

The electrical behaviour of the superconducting domain Ωs is defined by a non-

linear power law as shown in (2.2) and (2.3).Therefore, the discrete variational

formulation, expressed in (3.14), must take in account those non-linearities.

First, a linearization of the vectorial power law is necessary in order to avoid

using a residual resistivity and to ensure the convergence of the problem. Therefore,

we have the following indicial notation of the combination of (3.14) and (2.3) in

the superconducting domain Ωs :

Ei =
Ec
Jc
n (JmJm)(n−1)/2 Ji , i,m = 1, 2, 3 (2.18)

E = Ei is differentiable function with respect to the vector field J = Ji. Thus,

the first-order Taylor expansion of the vector field Ei around J0 = (J1,0, J2,0, J3,0)

can be derived as follows :

E(J) = E(J0) + J · (J− J0) (2.19)

with J the Jacobian of the function E : R3 7→ R3 expressed as :

J =

(
∂Ei
∂Jj

)∣∣∣∣∣
Ωs

=


∂E1/∂J1 ∂E1/∂J2 ∂E1/∂J3

∂E2/∂J1 ∂E2/∂J2 ∂E2/∂J3

∂E2/∂J1 ∂E2/∂J2 ∂E2/∂J3

 , i, j = 1, 2, 3 (2.20)

In order to find the expanded expression of the jacobian J, the partial derivation
of Ei with respect to Jj will give the following :

(
∂Ei
∂Jj

)∣∣∣∣∣
Ωs

=
Ec
Jc
n

[
∂Ji
∂Jj

(JmJm)(n−1)/2 +
∂[(JmJm)(n−1)/2]

∂Jj
Ji

]
, i, j,m = 1, 2, 3

(2.21)
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with

∂Ji
∂Jj

= δij , i, j = 1, 2, 3 (2.22)

and

∂[(JmJm)(n−1)/2]

∂Jj
= (n− 1)

[
∂Jm
∂Jj

Jm

]
(JmJm)(n−3)/2

= (n− 1)δmjJm(JmJm)(n−3)/2

, i, j,m = 1, 2, 3

(2.23)

The use of equations 2.22 and 2.23 in 2.21 will give the following :

(
∂Ei
∂Jj

)∣∣∣∣∣
Ωs

=
Ec
Jc
n

[
δij(JmJm)(n−1)/2 + (n− 1)δmjJm(JmJm)(n−3)/2Ji

]

=
Ec
Jc
n

[
δij(JmJm)(n−1)/2 + (n− 1)JiJj(JmJm)(n−3)/2

]
, i, j,m = 1, 2, 3

(2.24)

Thus

(
∂Ei
∂Jj

)∣∣∣∣∣
Ωs

=
Ec
Jc
n

[
δij‖J‖(n−1) + (n− 1)JiJj‖J‖(n−3)/2

]
, i, j = 1, 2, 3

(2.25)

In the non-superconducting sub-domain Ωr, the quantity ∂Ei/∂Jj|Ωr = δij. In

both sub-domains Ωs and Ωr, we will have two real constant numbers ν and M

such that :

|J| ≤ ν ≤M , i, j = 1, 2, 3 (2.26)

We can conclude from both 2.26 and 2.19 that the vector function E(J) know

as a power law is Lipschitz continuous. The use of the Newton-Raphson algorithm
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on the power law linearization will lead to a convergence.

At each time step tlp of the problem resolution, the power law will be approxi-

mated by a first order Taylor expansion. The linearised power law at the iteration

k of the Newton Raphson algorithm is the following:

E(Jk) = E(Jk−1) + A · (Jk − Jk−1) (2.27)

with

A =

{
J, in Ωs

ρrI, in Ωr

=



(n− 1)Ec
Jnc

J2
i ‖J‖

n−3 +
Ec
Jnc
‖J‖n−1 , i = j in Ωs

(n− 1)Ec
Jnc

JiJj ‖J‖n−3 , i 6= j in Ωs

ρr , i = j in Ωr

0 , i 6= j in Ωr

(2.28)

where I the identity matrix, i, j = 1, 2 and 3. Moroever, the current density Jk−1

and the corresponding electric field, evaluated at the iteration k-1 of the Newton-

Raphson algorithm, are known. The power law linearisation will be formulated

directly in the discrete variational formulation as an approximation of the following

volumic term of the superconducting domain :

∫
Th,s

κcurlvhk · curlϕdTh,s (2.29)

The approximated expression of (2.29), based on the power law linearisation,

will give :

∫
Th,s

κk−1curlvhk−1 ·curlϕdTh,s+µ−1
0

∫
Th,s

A · (curlvhk−curlvhk−1) ·curlϕdTh,s (2.30)

In the numerical implementation, we noticed that the tensor A ensures a stable

convergence of the problem.
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2.4 Discontinuous Galerkin method

This method consists in solving the studied problem on each elementKi of the mesh

Th. The variational formulation expressed in equation 2.11 will be used on each el-

ement Ki instead of the global domain Ω. Moreover, interfaces terms expressed on

∂Ki instead of Γ will be replaced in an equivalent way by numerical fluxes term

based defined in a finite volume method-like way. Those interfaces terms will help

connect all the elements Ki of the mesh under the same problem [71]-[72].

2.4.1 Mesh definition

A three-dimensional conforming mesh Th is a partition of the domain Ω in tetra-

hedral or hexahedral elements Ki of size hKi
such that :

Ω =
Ne⋃
i=1

Ki (2.31)

o

Kl ∩
o

Km = ∅, ∀l,m with 1 < l 6= m < Ne (2.32)

with
o

Kl representing the interior domain or the largest open set of the element

Kl.

The set Fh of all faces of the mesh Th consists of a subset of interior faces F ih
and a subset F bh of boundary faces such that :

F ih ∩ F bh = ∅ (2.33)

While the boundary faces of F bh will help impose boundary conditions, the

interior faces of F ih will help connect all the elements Ki through numerical fluxes.

Both subsets are defined as :

∀f ∈ F ih, ∃l,m such that 1 < l 6= m < Ne, f = Kl ∩Km (2.34)



40 Chapter 2. 3D modelling of high-temperature superconductors

and

∀f ∈ F bh, ∃l such that 1 < l < Ne, f = Kl ∩ ∂Ω (2.35)

We assume that the mesh is aligned with the discontinuities of the material

properties, such as the resistivity ρ, present in the domain. Therefore, Th = Th,s∪Th,r
with Th,s and Th,r respectively representing the meshes of the sub-domains Ωs and

Ωr.

Among the boundary faces, there will be ones with either Dirichlet or Neunmann

boundary conditions depending on the problem types:

F bh = F b,Dh,T ∪ F
b,N
h,T (2.36)

and

F bh = F b,Dh,M ∪ F
b,N
h,M (2.37)

with F b,Dh,T or F b,Dh,M and F b,Nh or F b,Nh,T are subsets of boundary faces with Dirichlet

conditions and Neumann conditions respectively for either the thermal or magnetic

parts of the problem.

2.4.2 Discrete Variational formulation

The discontinuous galerkin discretization of the equation (2.4) will need nodal

approximation vh and wh of the unknown temperature T and magnetic field H.

These approximated quantities are defined over each finite element Ki of the mesh

Th. They will respectively belong to the following finite element space :

Uh =
{
u ∈ L2(Ω) : u|K ∈ Pm(K), K ∈ Th

}
(2.38)

and

Wh =
{
v ∈ (L2(Ω))3 : v|K ∈ (Pm(K))3, K ∈ Th

}
(2.39)

with Pm(K) the space of polynomials of degree at most m on an element K.The

solution space Wh is a subset of square-integrable vector function space (L2(Ω))3.

Its associated norm with is the sum of (L2(Ki))
3 norm evaluated on each element
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Ki such that :

‖v‖Wh =

(
Ne∑
i=1

‖v|Ki
‖2
Wh

) 1
2

(2.40)

The discrete weak formulation of equation (2.4) associated with the discontin-

uous Galerkin method, defined on each element K, consists in finding (wh, uh) ∈
Wh × Uh such that:

H :

∫
Ki

∂wh

∂t
·ϕdKi +

∫
Ki

κ(∇×wh) · (∇×ϕ)dKi

−
∫
∂Ki

((κ∇×wh)× n) ·ϕdA = 0 , ∀ϕ ∈Wh

T :

∫
Ki

ρT cp
∂uh

∂t
· ΦdKi −

∫
Ki

λ∇uh · ∇ΦdKi

−
∫
Ki

(ρJ2)ΦdKi

+

∫
∂Ki

λ(∇T · n)ΦdA = 0 , ∀Φ ∈ Uh

(2.41)

However, the equation based on the magnetic field H as an unknown in 2.41

must be expressed in a conservative form for the numerical implementation. There-

fore, the curl− curl operator is changed by a div operator such that :

κcurlwh = (F h
x , F

h
y , F

h
z )T (2.42)

and

F1 = (0, F h
z ,−F h

y )T ,F2 = (−F h
z , 0, F

h
x )T ,F3 = (F h

y ,−F h
x , 0)T (2.43)
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will give the following derivations


curl(κcurlwh) = (divF1, divF2, divF3)T

(κcurlwh)× n = (F1 · n,F2 · n,F3 · n)T

(2.44)

With wh = (w1, w2, w3)T , ϕ = (ϕ1, ϕ2, ϕ3)T and F = (F1,F2,F3)T , the final

expression of the set of equations in 2.41 in the conservative form (with j = 1, 2

and 3) is :

H :

∫
Ki

∂wj
∂t
· ϕjdKi +

∫
Ki

Fj · ∇ϕdKi

−
∫
∂Ki

(Fj · n)ϕjdA = 0 , ∀ϕ ∈Wh

T :

∫
Ki

ρT cp
∂uh

∂t
· ΦdKi −

∫
Ki

λ∇uh · ∇ΦdKi

−
∫
Ki

(ρJ2)ΦdKi

+

∫
∂Ki

λ(∇uh · n)ΦdA = 0 , ∀Φ ∈ Uh

(2.45)

with κ = ρ/µ0 and n the interface normal vector present in interface terms :

Ih,M = −
∫
∂Ki

(
(κ∇×wh)× n

)
·ϕdA =

∫
∂Ki

(Fj · n)ϕjdA (2.46)

Ih,T =

∫
∂Ki

λ(∇T · n)ΦdA (2.47)

They are expressed respectively in the magnetic and thermal part of the problem

equations 2.41 and 2.45 above.

However, the continuity of the tangential components of the approximated mag-

netic field wh, as expressed by the constraint equation 1.8, must be ensured. Thus,

an equivalent and penalized interface term Ĩh,M must replace the actual interface

term Ih,M in order to both ensure the constraint equation 1.8 and the convergence.

A similar approach will help us derive for the thermal part of the problem a penal-
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ized interface term Ĩh,T in place of the interface term Ih,T to ensure the continuity

of the temperature.

2.4.3 Spatial approximation

Each element Ki of the mesh Th is characterized by vertices ak with k ∈ 1, .., N .

Moreover, Lagrange polynomials Lk ∈ Pm(K) will be set on each Ki such that:

Lk(al) = δkl (2.48)

with δkl the Kroneker delta function. Because of the discontinuous characteristic

of the method, those functions are assumed to be zero outside their defined domain

Ki. They are also constructed as basis functions on reference elements resulting

from a mapping Ψ based on the meshed elements Ki.

The mapping Ψ is a diffeomorphism that transform a physical element D into

a topological elements I as shown in the figure 2.1 below.

Figure 2.1 – Mapping from D to I

Let v1,v2,v3,v4 the vertices of the physical element D while their images

through the mapping Ψ are vI ,vII ,vIII ,vIV in the element I. In both elements,

faces are defined as a, b, c and d.

In the tetrahedra case, the diffeomorphism Ψ, mapping a point x = (x, y, z) of

the element D and its associated image ξ = (ξ, η, ζ), is expressed as :

x = Ψ−1(ξ) = λ1v1 + λ2v2 + λ3v3 + λ4v4 (2.49)

and

ξ = Ψ(x) = λ1vI + λ2vII + λ3vIII + λ4vIV (2.50)
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where λ1, λ2, λ3, λ4, known as the barycentric coordinates, are invariant with∑4
s=1 λs = 1. Moreover we have :

vI =


−1

−1

−1

 ,vII =


1

−1

−1

 ,vIII =


−1

1

−1

 ,vIV =


−1

−1

1

 (2.51)

The previous vortices coordinates ultimately lead to the linear formulation of

the barycentric coordinates expressed as follows :

λ1 = −(ξ + η + ζ + 1)/2, λ2 = (ξ + 1)/2, λ3 = −(ζ + 1)/2, λ4 = (η + 1)/2 (2.52)

In order to work in the parametric space, we will use the following property :

∂x

∂ξ

∂ξ

∂x
=


xξ xη xζ

yξ yη yζ

zξ zη zζ

 ·

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 =


1 0 0

0 1 0

0 0 1

 (2.53)

The Jacobian JΨ of the diffeomorphism Ψ will be constant since the barycentric

coordinates are linear. It will be formulated as :

JΨ =
∣∣∣∂x
∂ξ

∣∣∣ =
1

∇ξ · (∇η ×∇ζ)
(2.54)

According to such mapping, elementary integration and derivation operations

are implemented as follows :

• The gradient of a function F = (Fx, Fy, Fz) is, based on the mapping Ψ,

expressed as:

∇F =
1

JΨ

[ ∂
∂ξ

(JΨF · ∇ξ) +
∂

∂η
(JΨF · ∇η) +

∂

∂ζ
(JΨF · ∇ζ)

]
(2.55)

• The scalar product on element D to the element I is given by :

∫
D

f(x)g(x)dx =

∫
I

f(x(ξ))g(x(ξ))JΨ(ξ)dξ (2.56)

• The scalar product on the element’s faces of D to the element’s faces of I is
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given by :

∫
∂D

f(x)g(x)dx =

∫
∂I

f(x(ξ))g(x(ξ))JΨ(ξ)dξ (2.57)

Moreover, the interpolation of a function f using basis functions Lk and the

mapping Ψ give us the following :

f(ξ) =
N∑
k=0

fkLk(ξ) (2.58)

with ξk the interpolation points such that fk = f(ξk) and Lk(ξl) = δkl.

Let φk the polynomial basis of Pm and the associated Vandermonde matrix:

V ([ξ1, .., ξN ]) =


φ1(ξ1) φ2(ξ1) . . . φN(ξ1)

φ1(ξ2) φ2(ξ2) . . . φN(ξ2)
...

... . . . ...

φ1(ξN) φ2(ξN) . . . φN(ξN)

 (2.59)

thus

Lk(ξ) =
|V ([ξ1, ..., ξk−1, ξ, ξk+1, ..., ξN ])|

V ([ξ1, .., ξN ])
(2.60)

Interpolation points will be choosed based on the quadrature method of Legendre-

Gauss-Lobatto in order to render the Vandermonde matrix invertible and minimize

the error from the polynomial interpolation.

Thus we will have the following approximations of the magnetic field H = Hi

(where i = 1, 2, and 3) and the temperature T :

Hi =
N∑
j=0

hjLj(x) (2.61)

and

T =
N∑
j=0

tjLj(x) (2.62)

2.4.4 Numerical fluxes terms on the faces of the mesh Th

New interfaces terms expressed as numerical fluxes will be constructed to replace

the actual interface terms. The derived terms, based on the symmetric interior
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penalty method, should be equivalent to Ih,M and Ih,T . The term Ih,M must specifi-

cally ensure the continuity of the normal and tangential components of the magnetic

field H across each face f ∈ Th. The defined face will either belong to two neigh-

bouring elements K (on the left side) and K ′ (on the right side) as f = ∂K ∩ ∂K ′

or to the boundary Γ as f = ∂K ∩ Γ.

. Thermal problem

Based on several previous studies on the Discontinuous Galerkin method

applied on Poisson problem, the equivalent interface term Ĩh,T for the thermal

part of the problem is known as :

Ĩh,T = −
∫
f

[λ∇Φ · n]{{uh}}dA−
∫
f

[λ∇uh · n]{{Φ}}dA+ Ip,T (2.63)

with the penalty term Ip,T defined as :

Ip,T =

∫
f

b[uh][Φ]dA (2.64)

The penalty coefficient b depends on both the size and diffusivities of the

neighbouring elements K and K ′ . The quantities [uh] and {{uh}} denote the
jump and average of the approximated temperature uh across each face f .

For instance, if f = ∂K ∩ ∂K ′ for two neighbouring elements K and K ′, the

respective jump and average are :

[uh] = uhK − uhK′ (2.65)

and

{{uh}} =
uhK − uhK′

2
(2.66)

with uhK and uhK′ the approximate temperature fields on elements K and K ′ .

. Magnetic problem

Grote [70] was able to derive error estimates on the discontinuous galerkin en-

ergy norm from the use of the interior penalty discontinuous galerkin method

applied to Maxwell equations. He then developped appropriate interface terms

with two theorems in order to get the convergence.
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Grote theorem 2: a priori error estimate on general finite element

meshes

Let the analytical solution w of the problem satisfy

w ∈ L∞(J ;H1+s(Ω)3), wt = ∂w/∂t ∈ L∞(J ;H1+s(Ω)3),

for s > 1
2
, wh be the semi-discrete Discontinuous Galerkin approximation

with a coefficient α > αmin. Then the error e = w −wh satisfies

‖e‖L∞(J ;V(h)) 6 C|e(0)|h + Chmin(s,l)
(
‖w‖L∞(J ;H1+s(Ω)3) + ‖wt‖L∞(J ;H1+s(Ω)3)

)
,

with a constant C > 0 that is independent of the mesh size.

In the theorem 2 above, w0 = w|t=0 ∈ L∞(J ;H1+s(Ω)3), thus we have :

|e(0)|h 6 Chmin(s,l)‖w0‖1+s,Ω

There is therefore an optimal convergence of order O(hmin(s,l)) with respect to

the discontinuous galerkin energy norm. However, solutions to the Maxwell

equations sometimes have singularities that do not satisfy the regularity as-

sumptions of the previous theorem.

The following theorem will show that the discontinuous galerkin method can

still converge under weaker yet realistic regularity assumptions provided that

the meshes are conforming.

Grote theorem 3: a priori error estimate on low-regularity solutions

with singularities

Let the analytical solution w of the problem satisfy

wt, curlw ∈ L∞(J ;Hs(Ω)3),

for s > 1
2
. Next, let Th be a conforming triangulation of Ω into tetrahedra

or hexahedra with edges parallel to the coordinates axes, and wh be the semi-
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discrete Discontinuous Galerkin approximation with α > αmin. Then the error

e = w −wh satisfies

‖e‖L∞(J ;V(h)) 6 |e(0)|h + Chmin(s,l)
(
‖w‖L∞(J ;Hs(Ω)3)

+‖curlw‖L∞(J ;Hs(Ω)3) + ‖wt‖L∞(J ;Hs(Ω)3) + ‖curlwt‖L∞(J ;Hs(Ω)3)

)
,

with a constant C > 0 that is independent of the mesh size.

Assuming w0 = w|t=0 ∈ L∞(J ;H1+s(Ω)3) , theorem 3 give us an optimal

convergence of order O(hmin(s,l)) for the error in the energy norm.

Based on this work, we implemented a similar equivalent interface term func-

tion of the magnetic field and based on the symmetric interior penalty method

to the magnetic part of the H-formulation as :

−
∫
f

[ϕ×n] · {{κ · curlwh}}dA−
∫
f

[wh×n] · {{κ · curlϕ}}dA+ Iph,M (2.67)

with the penalty term Iph,M =

∫
f

a[wh × n] · [ϕ× n]dA.

The quantities [wh × n] and {{wh × n}} denote the jump and average of

the tangential components of the field wh across each face f . For instance, if

f = ∂K ∩ ∂K ′ for two neighbouring elements K and K ′, the respective jump

and average of the tangential components of the magnetic field are :

[wh × n] = wh
K × n−wh

K′ × n (2.68)

and

{{wh × n}} =
wh
K × n + wh

K′ × n

2
(2.69)

In the penalty term Iph,M , the function a penalizes the jump of the tangential

components of the fields wh and ϕ. According to Grote, it is defined as :

a|f = αmh (2.70)
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with

m|f =

{
max(κK , κK′), f = ∂K ∩ ∂K ′

κK , f = ∂K ∩ Γ
(2.71)

and

h|f =

{
max(hK , hK′), f = ∂K ∩ ∂K ′

hK , f = ∂K ∩ Γ
(2.72)

The coefficient α is a constant whose minimum value must depend on the

shape-regularity of the mesh and the approximation order of the field uh.

The larger α becomes, the smaller the time step will be for the solver to

reach convergence.

However, the interface term expression defined above is not suitable for con-

servative form based on the div operator. In order to ease this process, the

interface term must be rewritten in terms of fluxes projected on the basis

vector function ϕ.

First, the following mixed product invariance property :

a · (b× c) = b · (c× a) = c · (a× b) (2.73)

with vectors a,b, and c, applied in equation (2.67) will lead to the interface

term expression below:

∫
f

[ϕ] · {{(κcurlwh)× n}}dA+

∫
f

[(κcurlwh)× n] · {{ϕ}}dA+ Iph,M (2.74)

with the penalty term Iph,M = −
∫
f

a[ϕ] · [n×wh × n]dA.

While this expression showcases projections on the basis vector function ϕ, it

does not introduce fluxes quantities. Based on the conservative form expressed

in the set of equations in 2.45, we will have the following interface term (with

j = 1, 2 and 3):

∫
f

[ϕj] · {{Fj · n}}dA+

∫
f

[Fj · n] · {{ϕj}}dA+ Iph,M (2.75)
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where the penalty term Iph,M remains unchanged.

2.4.5 Boundary conditions

In order to respect the physics, Neumann and Dirichlet boundary conditions must

be imposed in accordance with the numerical fluxes developed above. The associ-

ated boundaries in both the magnetic and thermal problems respectively are ΓD,

ΓD,T for the Dirichlet ones and ΓN , ΓN ,T for the Neumann ones. They are defined

such that ΓD ∩ ΓN = ∅, ΓD,T ∩ ΓN ,T = ∅, Γ = ΓD,T ∪ ΓN ,T and Γ = ΓD ∪ ΓN . The

interface common to both neighbouring elements K and K ′ is always assumed to

belong to ΓD,ΓD,T or ΓN ,ΓN ,T on the side of K.

. Magnetic problem

In this problem, Dirichlet boundary condition, expressed as H = Ha where

Ha is the external magnetic field, will be applied on the boundary ΓD. Thus

the following jump and average terms present on the interface term Ĩh,M :

[(κ · curlwh)× n] = −(κ · curlwh
K′)× n (2.76)

[n×wh × n] = n×Ha × n− n×wh
K′ × n (2.77)

{{(κ · curlwh)× n}} =
(κ · curlwh

K′)× n

2
(2.78)

The quantities wh
K and wh

K′ are the approximation of the magnetic field H

over the neighbouring elements K and K ′ respectively. Meanwhile, the Neu-

mann boundary condition H× n = 0, applied on ΓN ,will give the following

jump and average terms :

[(κ · curlwh)× n] = (κ · curlwh
K − κ · curlwh

K′)× n (2.79)

[n×wh × n] = −n×wh
K′ × n (2.80)

{{(κ · curlwh)× n}} =
(κ · curlwh

K + κ · curlwh
K′)× n

2
(2.81)
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. Thermal problem

In this problem, Dirichlet boundary condition, expressed as T = Ta where Ta
is the fixed temperature, imposed on the boundary ΓD,T . Thus the following

jump and average terms present on the interface term ˜Ih,T :

[λ · graduh · n] = −λgraduhK′ · n (2.82)

[uh] = Ta − uhK′ (2.83)

{{λgraduh · n}} =
λgraduhK′ · n

2
(2.84)

The quantities uhK and uhK′ are the approximation of the temperature T over

the neighbouring elements K and K ′ respectively. Meanwhile, the Neumann

boundary condition gradT · n = 0, applied on ΓN ,T , will give the following

jump and average terms :

[λgraduh · n] = −λgraduhK′ · n (2.85)

[uh] = uhK − uhK′ (2.86)

{{λgraduh · n}} =
λgraduhK′ · n

2
(2.87)

2.4.6 Numerical treatment of the non-linearities arising from

E = ρ(J)J

The discontinuous galerkin method will allow, with its local approximation of the

problem on each element, either an explicit or an implicit treatment of the non-

linear resistivity ρ(J) of the problem.

In the explicit case, the resistivity ρl−1 , evaluated at the time step tl−1
p of the

problem resolution, is used as an input in the problem at following time step tlp.

In the implicit case, the full expression of the resistivity ρ is included in the def-

inition of F expressed in the conservative form 2.45. A Newton-Raphson algorithm
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is applied on the approximation of F to perform a linearization equivalent to the

power law linearization defined for the finite element method.

The convergence, once reached in each approach, will give a good enough ap-

proximation of the solution.

2.5 Comparisons and validations

2.5.1 Straight superconducting filament embedded in a Nio-

bium matrix carrying a sinusoidal transport current

The superconducting wire of 4 mm length is made of one single superconducting

filament of 50 µm radius embedded in a Niobium matrix of 0.6 mm. The wire is

carry a sinusoidal transport current of amplitude Im = 500 A. It is modeled using

the non-thermal coupling. The computed AC losses will be compared with the ones

obtained with an H-formulation finite element model implemented in GetDP only

.

No thermal coupling

The superconducting behaviour of the wire is characterized by a critical electric

field Ec = 10−7 V/mm, a critical current density Jc = 50 A/mm2 and a power law

exponent n = 20. The transport current frequency will be f = 100 Hz.

Computed AC losses, fig.2.2, are equivalent for all the numerical approaches

implemented.

The allocated memory was about 2 GB for the new approach and about 6 GB

for GetDP.

2.5.2 Superconducting cube subjected to an alternating

transverse magnetic field

A superconducting cube of 2mm side length, subjected to an external magnetic

field Ha = Hmsin(2πft)ey, will be modeled using both the non-thermal coupling

and thermal coupling formulation with the discontinuous galerkin method [72]. The

computed AC losses will be compared with the ones obtained with H-formulation

finite element models implemented in GetDP and Comsol Multiphysics. Computa-

tions in Comsol Multiphysics will be done for both the non-thermal coupling and

thermal coupling only.
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Figure 2.2 – AC losses in the non-thermal case of a superconducting wire carrying
a transport current computed with GetDP and the discontinuous galerkin method
(DG) with the non-linear resistivity evaluated explicitly.

No thermal coupling

The superconducting behaviour of the cube is characterized by a critical electric

field Ec = 10−7 V/mm, a critical current density Jc = 100 A/mm2 and a power law

exponent n = 10. The magnetic applied flux density amplitude is Bm = 2 T with

a frequency f = 50 Hz.

Computed AC losses, fig.2.3, are equivalent for all the numerical approaches

implemented.

Using the same meshed cube model, computations in GetDP were performed in

2 hours. The implicit Euler method, used as a time stepping algorithm, was coupled

with both iterative and direct methods as matricial sytem solvers. Solvers such as

preonly and lu from the PETSc (Portable, Extensible Toolkit for Scientific Com-

putation) library were used simultaneously with MUMPS (Multifrontal Massively

Parallel sparse direct Solver). With an initial timestep of 10−5 s subjected to an

adaptive time-stepping scheme, the implicit Euler method tolerances were set to

10−3 and 10−6 for the absolute and relative residuals respectively.

The allocated memory was about 2 GB for the new approach and about 6 GB

for GetDP.
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Figure 2.3 – AC losses in the non-thermal case of a superconducting cube subjected
to an external magnetic field computed with GetDP, Comsol and the discontinuous
galerkin method (DG) with the non-linear resistivity evaluated explicitly.

Thermal coupling

The superconducting cube used in the non-thermal coupling case will be modeled

such that there is simultaneously a thermal insulation and an external magnetic

field Ha = Hmsin(2πft)ey on the air domain boundaries. Comparisons of the com-

puted AC losses in this thermal case will be done using the numerical approaches

investigated in the non-thermal coupling case.

The superconducting behaviour of the cube is characterized by a critical electric

field Ec = 10−7 V/mm, an initial critical current density Jc0 = 100 A/mm2, a

critical temperature Tc = 82 K and a power law exponent n = 10. The magnetic

applied flux density amplitude is Bm = 2 T with a frequency f = 50 Hz. The

temperature dependence of the critical current density is characterized by :

Jc = Jc0
Tc − T

(Tc − To)
(2.88)

While in the air domain the thermal properties are the specific heat cpa = 2040

J/(kg.K), the mass density ρa = 8.08607 kg/m3 and the thermal conductivity

λa = 0.139 W/(m.K), the superconducting cube is characterized by a specific heat

cps = 3 J/(kg.K), the mass density ρs = 6300 kg/m3 and the thermal conductivity

λs = 11 W/(m.K). The initial temperature To is set at 77 K.



2.5. Comparisons and validations 55

Figure 2.4 – Temperature distribution at t = 20 ms in the superconducting cube.

Figure 2.5 – AC losses in the thermal case of a superconducting cube subjected to
an external magnetic field computed with GetDP, Comsol and the discontinuous
galerkin method (DG) with the non-linear resistivity evaluated explicitly.

Computed AC losses, fig.2.5, remain equivalent for all the numerical approaches

implemented. Because of the temperature dependence, a decrease of the critical

current density is translated to the AC losses.

Using the same meshed cube model, computations in GetDP were performed in
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2 hours. The time stepping algorithm and solvers for the matricial system resolution

remain similar to the ones used in the case with no thermal coupling. Tolerances

and time step remain unchanged too.

The distribution, shown in fig. 2.4, illustrates the elevation of temperature,

below the critical state, occuring in the superconducting cube.

The allocated memory was about 2 GB for the new approach and about 6 GB

for GetDP.

2.6 Conclusion

In this chapter, we investigated two numerical approaches to model in 3D high

temperature superconductors. The first one was the finite element method, applied

on the commonly usedH-formulation coupled with the heat equation, implemented

in GetDP and characterized by a linearization of the vectorial power law charac-

terizing superconductors. Even though stability and convergence is provided by

such method coupled with the power law linearization, memory allocation becomes

limited with large scale problems.

Thus, we implemented the discontinuous galerkin method, applied on the same

problem formulation used in GetDP, to overcome the memory limitations problem

encountered in the finite element method. This method is naturally and highly

parallelizable both in mesh size and resolution. The matricial system resolution and

the mesh domain can then be distributed over numerous processors. In addition,

fast computations will also occur for certain cases as we scale optimally over a large

number of processors.

Good agreement is found between both numerical approaches as simple simu-

lation cases are implemented. Comsol Multiphysics, commonly used for supercon-

ductor modelling, had its results implemented for the cube problem to validate the

approach used in GetDP.



Chapter 3

3D modelling of twisted

multi-filamentary superconducting

wires

3.1 Introduction

In several large scale applications, superconducting machines [30] [65] use in some

cases twisted multi-filamentary superconducting wires [66] as windings.

The structure of those wires consists of fine superconducting filaments embed-

ded in a resistive matrix as a mechanical support. The matrix role is to protect

mechanically all the superconducting filaments. The purpose of the wire is to allow

the superconducting part to carry most of the high currents thus minimizing as

much as possible the electric conduction of the resisitive matrix.

The described structure also help, along with the twisting process, reduce AC

losses generated by the wire or tape. The geometric transformation resulting from

the twisting process keep all the filaments, embedded in the resistive matrix, as

much uncoupled as possible in order to get most of the current carried by all

filaments.

A numerical and precise evaluation of AC losses generated by such wires is im-

portant for an efficient design of superconducting machines. It is also critical for the

choice and design of an appropriate cryogenic system. Numerical tools developed in

the previous chapter 2 provide useful frameworks to model 3D problems associated

with those complex structures and configurations [55]. Complexities also encom-

pass the highly non-linear electrical behaviour of high-temperature superconductors

[14]-[13].

57
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In this chapter, the focus will therefore be on the simplification of the 3D

modelling of twisted multi-filamentary superconducting wires for fast and efficient

AC losses computations.

First, we will investigate, with the help of the numerical approach of type fi-

nite element introduced and developed in chapter 2, the 3D modelling of complete

twisted multi-filamentary wires with a single twist pitch length. Through those sim-

ulation cases, a mapping, allowing the simplification of the twisted wire 3D problem

with an equivalent 3D problem in a frame where the wire becomes straight, will

be developed and validated. Unlike the twisted multi-filamentary wire geometric

complexities and the large number of degrees of freedom deriving from its associ-

ated 3D problem, the equivalent 3D problem in the new frame is characterized by a

simple straight multi-filamentary wire geometry and a reduced number of degrees

of freedom.

Then, approaches aimed at reducing the equivalent 3D problem size will be

developed. They will take advantages of periodic conditions, possible because of

both the straight wire section geometric uniformity along its length and the electric

current uniformity at the wire center. Given a certain minimal wire length, the right

approximation of AC losses per unit length of the wire will be possible. Reduced

models will involve portions of the wire with at most the twist pitch as length. We

will even see that, under a certain magnetic configuration, pseudo-2D model could

give us a good approximation of AC losses per unit length.

With those reduced models, we will study, with AC losses measurements as

references, the numerical analysis of the impact of elliptical fields on magnetization

losses of a sample of 100 MgB2 wires with 54 twisted filaments each.

Because of their reasonable size, all the models involved in this study were

implemented in the finite element open source code GetDP [67].

3.2 Influence of a transverse magnetic field on a

twisted mono-filament wire

In this study, we investigated the current distribution within a twisted mono-

filament superconducting wire subjected to a sinusoidal transverse magnetic field.

The wire is assumed to be a twist pitch long with a superconducting filament

embedded in a Niobium matrix.

The 3D model used in the H-formulation is comprised of the wire completely
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surrounded by a less resistive domain to approximate an air domain.

Figure 3.1 – 3D current density distribution inside the filament at t = T/4s

The computed current density distribution, resulting from the finite element

method model in GetDP, gave an interesting result. Three current loops are locally

created along the twisted superconducting filament as shown in fig.3.1.

Unlike the expected single current loop created inside a straight filament sub-

jected to a transverse magnetic field, the unpredictable multiple current loops lo-

cally created inside the twisted filament suggests a different magnetic field config-

uration from the filament perspective.

Differences to a twisted and a straight filament subjected to a similar magnetic

led us assume that the twisted superconducting filament observes, in the Frenet

frame (tf ,nf ,bf ) moving along the helical trajectory originating from the twisting

process, a transverse magnetic field with a directional change. This results from

the fact that every point on the twisted superconducting filament sees the same

external magnetic field.

The helical trajectory is associated with the geometric transformation of straight

filaments into twisted filaments. tf , nf and bf are respectively the unit vector tan-

gent, the normal unit vector and the binormal unit vector.

In order to confirm the previous assumption, an expression of the transformation

must be derived and validated for numerical modelling purposes.
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3.3 Mapping from a twisted mono-filament wire to

a straight mono-filament wire

As described above, multiple local current loops appearing inside the twisted mono-

filament mean the applied transverse magnetic field, unidirectional in the initial

frame Bi = (i, j,k), is characterized with a directional change in the frame associ-

ated with the twisted filament.

The given frame is the Frenet frame Bf = (tf ,nf ,bf ) which moves along the

helical trajectory resulting from the twisting in the initial frame Bi = (i, j,k).

Assuming the Frenet frame is the one fixed, the initial frame becomes the one

moving along the mentioned helical trajectory and the twisted filament becomes

straight.

Those observations must be derived in order to implement them for numerical

simulations. A mapping from the initial frame Bi = (i, j,k) to the Frenet frame

Bf = (tf ,nf ,bf ) will be developed.

First, the parametric equations, in the initial frame, associated with the helical

trajectory resulting from the twisting are :


x = r cos(θ)

y = r sin(θ)

z =
p

2π
θ

(3.1)

with θ ∈ [0, 2π], r the radius of the helix and p its twist pitch. Thus, the vector

function associated to the helical trajectory will be :

r(θ) = r cos(θ) i + r sin(θ) j +
p

2π
θ k (3.2)

The unit tangent, normal and binormal vectors of such trajectory are generally

expressed as :

tf =
dr/dθ

|dr/dθ|
(3.3)

nf = − dtf/dθ

|dtf/dθ|
(3.4)

bf = tf × nf (3.5)
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The use of equation 3.2 in equations 3.3, 3.4 and 3.5 gives :

tf =
1

(r2 + (p/2π)2)1/2
[−r sin(θ) i + r cos(θ) j +

p

2π
k] (3.6)

nf = cos(θ) i + sin(θ) j (3.7)

bf =
1

(r2 + (p/2π)2)1/2
[− p

2π
sin(θ) i +

p

2π
cos(θ) j− r k] (3.8)

In addition to defining a = r/L, b = c/L, c = p/2π and L2 = r2+c2, expressions

in the Frenet frame of i, j and k, obtained from substitution applied on equations

3.6, 3.7 and 3.8, are :

i = −a sin(θ) tf + cos(θ) nf − b sin(θ) bf (3.9)

j = a cos(θ) tf + sin(θ) nf + b cos(θ) bf (3.10)

k = b tf − a bf (3.11)

Thus, the transition matrix from the initial frame basis vectors Bi to the Frenet

frame basis vectors Bf is :

PBiBf =


−a · sin(θ) a · cos(θ) b

cos(θ) sin(θ) 0

−b · sin(θ) b · cos(θ) −a

 (3.12)

Both basis vectors are orthonormal. Therefore, the transition matrices PBiBf and

P
Bf
Bi are both orthogonal and invertible such that :

P
Bf
Bi = (PBiBf )−1 = (PBiBf )T (3.13)

The mapping between both basis vectors is thus mathematically valid. In either

frame, the frame we depart from is assumed moving along the helical trajectory.

Depending on the air domain geometry, the helix radius r will be set as :

– half of the diagonal length of the air domain top and bottom surfaces if it is

a box
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– the radius of the air domain base surfaces if it is a cylinder

The differential operators describing the domain physics will remain unchanged

in whatever frame we will be working on.

However, the external boundary conditions they are subjected to must be

changed. For instance, the external magnetic field applied to a twisted supercon-

ducting wire must be transformed in the Frenet frame where the wire becomes

straight as shown in fig.3.2.

Figure 3.2 – 3D filament subjected to a transverse magnetic field in the Frenet
frame

Thus, the mathematical expression of the geometric transformation applied to

the magnetic field H will be the following :

H[T,N,K] =


−a · sin(θ) a · cos(θ) b

cos(θ) sin(θ) 0

−b · sin(θ) b · cos(θ) −a

 ·H[x,y,z] (3.14)

with θ = z/c.

In the Frenet frame, we computed the current density distribution of the previ-

ously mentioned twisted mono-filament superconducting wire subjected to an ex-

ternal magnetic field. However, the applied magnetic field is now the transformed

form of the external magnetic field used in the initial frame (x,y, z) shown in

the previous case. We therefore have an external magnetic field with a directional

change along the helical trajectory associated to the transformation as shown in

fig. 3.2.
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Figure 3.3 – 3D current density distribution inside the filament in the Frenet frame
at t = T/4s

The computed current density shows in fig. 3.3 a single loop of current inside the

filament. The studied case computed in the Frenet frame is thus equivalent to the

case of a straight mono-filament superconducting wire subjected to a unidirectional

transverse magnetic field. Moreover, the geometry of the resistive matrix remain

straight despite such transformation because it is assumed non-magnetic [73].

3.4 Mapping validation on a twisted bi-filaments

wire

The geometric transformation described above will be investigated for a twisted bi-

filaments superconducting wire subjected to a unidirectional sinusoidal magnetic

field (cases in transverse field and cases in axial field). The wire is assumed to have

a single twist pitch length. Both superconducting filaments, radially distributed on

a single layer, are embedded in a Niobium matrix with an air domain surrounding

both filaments and matrix. The model parameters are shown in the table 3.1. Its

geometry with and without the mapping are also shown in figures 3.4a and 3.4b.

The objective is to compare modelling cases, through computed AC losses, with

and without the geometric transformation in order to check any equivalence be-

tween the two problems (initial and transformed ones). The transformed magnetic

field becomes bi-directional unlike the unidirectional magnetic field imposed in the

initial frame. In both cases, a parametric study, involving the twist pitch p and the
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Table 3.1 – Bi-filaments superconducting wire parameters

Quantity Value
Twist pitch p (mm) 4 or 8 or 16
Filament radius (µm) 50
Matrix radius (mm) 0.6
Air radius (mm) 4p

Layer radius (mm) 0.1
Critical current density (A/mm2) 5

Power law index n 10
Air conductivity (S/m) 103

Matrix conductivity (S/m) 6·109
Magnetic field amplitude Bmax (mT) 50 or 100 or 200

Frequency f (Hz) 50
Magnetic field norm Bmsin(2πf)

magnetic field amplitude Bmax as variables, will be done.

Comparisons of AC losses results obtained from both problems (initial and

transformed ones) will effectively show equivalence no matter the parameters set

for the twisted bi-filaments wire. Moreover, we will observe that, unlike the problem

with twisted filaments, the equivalent problem with straight filaments will always

require, in addition to a simple geometry, at least 50% less degree of freedoms to

approximate the solution.

Computations were done using the open source finite element code GetDP. The

implicit Euler method, used as a time stepping algorithm, was coupled with both

iterative and direct methods as matricial sytem solvers. Solvers such as preonly

and lu from the PETSc (Portable, Extensible Toolkit for Scientific Computation)

library were used simultaneously with MUMPS (Multifrontal Massively Parallel

sparse direct Solver). With an initial timestep of 5.10−6 s subjected to an adaptive

time-stepping scheme, the implicit Euler method tolerances were set to 10−6 and

10−6 for the absolute and relative residuals respectively.

Comparisons of those different configurations will be emphasized on the com-

puted AC losses generated by the studied wires. For each defined parameters p

and Bmax, computed AC losses, in both modeling case in the initial frame and its

associated transformed case in the Frenet frame, will be compared. Magnetization

will be also computed and compared for some cases.
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(a) Initial frame (b) Frenet frame

Figure 3.4 – Filaments of both twisted and equivalent straight bi-filaments super-
conducting wire of length p = 4 mm

3.4.1 Twisted bi-filaments superconducting wire subjected

to a transverse magnetic field along the y-axis

Case 1 : Bmax = 50 mT

In this case, superconducting filaments are fully penetrated in current because

of the low critical current density and the high magnetic field. Therefore, coupling

losses generated within the matrice make up the most of AC losses generated within

the wire (see fig.3.5a, 3.5b and 3.5c).

For each defined twist pitch, we notice that computed AC losses over a quarter

of cycle, as shown in figures 3.5a, 3.5b and 3.5c, are equivalent in both the initial

frame and the Frenet frame.

The computed magnetization losses and magnetization over the y-axis of the

filaments only remain also equivalent in both frames as shown in figures 3.7a and

3.7b. The current density vector distributions, shown in figures 3.6a, 3.6b and 3.6c,

are also equivalent.

However, more elements were needed from the filaments of the twisted wire

geometry to reach the equivalence. The meshed twisted wire had 108777 elements
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.5 – AC losses comparison of a bi-filaments superconducting wire of dif-
ferent twist pitch lengths subjected to a transverse magnetic field with Bmax = 50
mT in both the initial and Frenet frames.

while the meshed straight wire had 70856 elements.

Case 2 : Bmax = 100 mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 50

mT.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.8a, 3.8b and 3.8c, are similar in both the initial frame and the Frenet

frame.
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(a) Initial frame (b) Frenet frame

(c) Initial frame via Frenet frame with the use
of (PBi

Bf
)−1

Figure 3.6 – Current density vector distribution at t = 1.5 ms inside the super-
conducting domain of a bi-filaments superconducting wire of length p = 4 mm
subjected to a transverse magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.
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(a) Magnetization losses

(b) Average magnetization

Figure 3.7 – Magnetization losses and computed average magnetization along the
y-axis comparison of a bi-filaments superconducting wire of twist pitch length sub-
jected to a transverse magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.

Case 3 : Bmax = 200 mT

Coupling losses generated within the wire are the highest in comparison with the

ones computed when Bmax = 50 mT and Bmax = 100 mT.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.9a, 3.9b and 3.9c, are similar in both the initial frame and the Frenet

frame.
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.8 – AC losses comparison of a bi-filaments superconducting wire of of
different twist pitch lengths subjected to a transverse magnetic field with Bmax =
100 mT in both the initial and Frenet frames.

3.4.2 Twisted bi-filaments superconducting wire subjected

to an axial magnetic field along the z-axis

Case 1 : Bmax = 50 mT

In this case, coupling losses generated within the matrice still make up the most of

AC losses generated within the wire (see fig.3.10a, 3.10b and 3.10c).

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.10a, 3.10b and 3.10c, are similar in both the initial frame and the Frenet

frame.

The computed magnetization losses and magnetization over the z-axis of the

filaments only remain also equivalent in both frames as shown in figures 3.12a and
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.9 – AC losses comparison of a bi-filaments superconducting wire of of
different twist pitch lengths subjected to a transverse magnetic field with Bmax =
200 mT in both the initial and Frenet frames.

3.12b. The current density vector distributions, shown in figures 3.11a, 3.11b and

3.11c, are also equivalent.

However, more elements were still needed from the filaments of the twisted wire

geometry to reach the equivalence. The meshed twisted wire had 108777 elements

while the meshed straight wire had 53719 elements.

Case 2 : Bmax = 100 mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 50

mT.
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.10 – AC losses comparison of a bi-filaments superconducting wire of of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 50
mT in both the initial and Frenet frames.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.13a, 3.13b and 3.13c, are similar in both the initial frame and the Frenet

frame.

Case 3 : Bmax = 200 mT

Coupling losses of the wire still remain the highest in comparison with magneti-

zation losses. The increase of the magnetic field amplitude means an increase of

the losses generated within the wire in comparison with the ones computed when

Bmax = 200 mT.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.14a, 3.14b and 3.14c, are similar in both the initial frame and the Frenet
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(a) Initial frame (b) Frenet frame

(c) Initial frame via Frenet frame with the use
of (PBi

Bf
)−1

Figure 3.11 – Current density vector distribution at t = 1.5 ms inside the super-
conducting domain of a bi-filaments superconducting wire of length p = 4 mm
subjected to an axial magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.
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(a) Magnetization losses

(b) Average magnetization

Figure 3.12 – Magnetization losses and computed average magnetization along
the y-axis comparison of a bi-filaments superconducting wire of twist pitch length
subjected to an axial magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.

frame.

3.5 Mapping validation on a twisted six-filaments

wire

An additional investigation of the geometric transformation has been done on a

twisted six-filaments superconducting wire subjected to a unidirectional sinusoidal

magnetic field (cases in transverse field and cases in axial field). The wire is assumed

to have a single twist pitch length. In addition to two superconducting filaments

belonging to a first layer, there is a second layer with four filaments. All those
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.13 – AC losses comparison of a bi-filaments superconducting wire of of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 100
mT in both the initial and Frenet frames.

filaments are still embedded in a Niobium matrix with an air domain surrounding

both filaments and matrix. The model parameters are shown in the table 3.2.Its

geometry with and without the mapping are also shown in figures 3.15a and 3.15b.

Similarly as the study of the twisted bi-filament wire, the goal is to compare

modelling cases, through computed AC losses, with and without the geometric

transformation in order to check any equivalence. In both cases, a parametric study,

involving the twist pitch p and the magnetic field amplitude Bmax as variables, will

be done.

Comparisons of AC losses results obtained from both problems (initial and

transformed ones) will also effectively show equivalence no matter the parameters

set for the twisted six-filaments wire. Moreover, we will also observe that, unlike
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(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.14 – AC losses comparison of a bi-filaments superconducting wire of of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 200
mT in both the initial and Frenet frames.

the problem with twisted filaments, the equivalent problem with straight filaments

will always require less degree of freedoms to approximate the solution.

Comparisons of those different configurations will be emphasized on the com-

puted AC losses generated by the studied wires. For each defined parameters p

and Bmax, computed AC losses, in both modeling case in the initial frame and its

associated transformed case in the Frenet frame, will be compared.
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Table 3.2 – Six-filaments superconducting wire parameters

Quantity Value
Twist pitch p (mm) 4 or 8 or 16
Filament radius (µm) 50
Matrix radius (mm) 0.6
Air radius (mm) 4p

Layer 1 radius (mm) 0.1
Layer 2 radius (mm) 0.3

Critical current density (A/mm2) 5
Power law index n 10

Air conductivity (S/m) 103
Matrix conductivity (S/m) 6·109

Magnetic field amplitude Bmax (mT) 50 or 100 or 200
Frequency f (Hz) 50

Magnetic field norm Bmsin(2πf)

(a) Initial frame (b) Frenet frame

Figure 3.15 – Filaments of both twisted and equivalent straight six-filaments su-
perconducting wire of length p = 4 mm
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3.5.1 Twisted six-filaments superconducting wire subjected

to a transverse magnetic field along the y-axis

Case 1 : Bmax = 50mT

In this case, superconducting filaments are fully penetrated in current because

of the low critical current density and the high magnetic field. Therefore, coupling

losses generated within the matrice make up the most of AC losses generated within

the wire (see fig.3.16a, 3.16b and 3.16c).

(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.16 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to a transverse magnetic field with Bmax = 50
mT in both the initial and Frenet frames.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.16a, 3.16b and 3.16c, are similar in both the initial frame and the Frenet

frame.
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The computed magnetization losses and magnetization over the y-axis of the

filaments only remain also equivalent in both frames as shown in figures 3.17a and

3.17b. However, more elements were needed from the filaments of the twisted wire

geometry to reach the equivalence. The meshed twisted wire had 381106 elements

while the meshed straight wire had 82500 elements.

(a) Magnetization losses

(b) Average magnetization

Figure 3.17 – Magnetization losses and computed average magnetization along the
y-axis comparison of a six-filaments superconducting wire of twist pitch length
subjected to a transverse magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.

Case 2 : Bmax = 100mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 50

mT.
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For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.18a, 3.18b and 3.18c, are similar in both the initial frame and the Frenet

frame.

(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.18 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to a transverse magnetic field with Bmax =
100 mT in both the initial and Frenet frames.

Case 3 : Bmax = 200mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 100

mT.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.19a, 3.19b and 3.19c, are similar in both the initial frame and the Frenet
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frame.

(a) p = 4 mm (b) p = 8 mm

(c) p = 16 mm

Figure 3.19 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to a transverse magnetic field with Bmax =
200 mT in both the initial and Frenet frames.

3.5.2 Twisted six-filaments superconducting wire subjected

to an axial magnetic field along the z-axis

Case 1 : Bmax = 50mT

In this case, the superconducting filaments are not fully penetrated in current

because of both the low magnetic field amplitude and the defined superconductor

parameters.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.20a and 3.20b are similar in both the initial frame and the Frenet frame.
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(a) p = 4 mm

(b) p = 8 mm

Figure 3.20 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 50
mT in both the initial and Frenet frames.

The computed magnetization losses and magnetization over the z-axis of the

filaments only remain also equivalent in both frames as shown in figures 3.21a and

3.21b. However, more elements were needed from the filaments of the twisted wire

geometry to reach the equivalence. The meshed twisted wire had 381106 elements

while the meshed straight wire had 82500 elements.

Case 2 : Bmax = 100mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 50

mT.

For each defined twist pitch, we notice that computed AC losses, as shown in
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(a) Magnetization losses

(b) Average magnetization

Figure 3.21 – Magnetization losses and computed average magnetization along the
y-axis comparison of a six-filaments superconducting wire of twist pitch length
subjected to an axial magnetic field with Bmax = 50 mT in both the initial and
Frenet frames.

figures 3.22a and 3.22b, are similar in both the initial frame and the Frenet frame.

Case 3 : Bmax = 200mT

Coupling losses of the wire remain the highest in comparison with magnetization

losses. The increase of the magnetic field amplitude means an increase of the losses

generated within the wire in comparison with the ones computed when Bmax = 100

mT.

For each defined twist pitch, we notice that computed AC losses, as shown in

figures 3.23a and 3.23b, are similar in both the initial frame and the Frenet frame.
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(a) p = 4 mm

(b) p = 8 mm

Figure 3.22 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 100
mT in both the initial and Frenet frames.

3.6 Study of multi-filamentary wires with multiple

twist pitch

Simulations cases done on both complete twisted bi-filaments and six-filaments

wires validate the mapping proposed above. Thus, a three-dimensional modelling

of an equivalent complete straight filaments wire in the Frenet frame is possible.

It allows to deal with a simple geometry and its associated problem requires less

degrees of freedoms than the problem with twisted filaments.

Although such an equivalence and simplification is possible, problems associated

with the modelling of twisted multi-filamentary superconducting wire with multiple

twist pitch remain large in terms of degrees of freedoms number. This is due to the

commonly great length (several twist pitches) of wires geared for real applications.
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(a) p = 4 mm

(b) p = 8 mm

Figure 3.23 – AC losses comparison of a six-filaments superconducting wire of
different twist pitch lengths subjected to an axial magnetic field with Bmax = 200
mT in both the initial and Frenet frames.

We will therefore investigate approaches to reduce the size of problems asso-

ciated with multi-filamentary superconducting wires with several twist pitch sub-

jected to an external magnetic field. In this study, every simulation case will be

done in the Frenet frame on a six-filaments superconducting wire.

Parameters of the study are shown in the table 3.2. Cases of transverse field

and axial field will be both explored as external magnetic field.

3.6.1 Influence of the number of twist pitch

The study of straight filaments wires with multiple twist pitch in the Frenet frame

can allow, because of the wire section geometric uniformity no matter the wire

height position, the potential use of periodic conditions over a single twist pitch as
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Table 3.3 – Parameters of a six-filaments superconducting wire with multiple twist
pitch

Quantity Value
Twist pitch p (mm) 4

number of twist pitch np 3 or 5 or 7
Filament radius (µm) 50
Matrix radius (mm) 0.6
Air radius (mm) 4.p.np

Layer 1 radius (mm) 0.1
Layer 2 radius (mm) 0.3

Critical current density (A/mm2) 5
Power law index n 10

Air conductivity (S/m) 103
Matrix conductivity (S/m) 6·109

Magnetic field amplitude Bmax (mT) 50
Frequency f (Hz) 100

an equivalent reduced model.

This potential is also due to the fact that the current induced and circulating

inside the wire remains uniform. Thus, a precise evaluation of AC losses per unit

length at one of the wire portion of twist pitch length located approximately at the

wire center can give us, assuming the wire is long enough that its ends magnetic

influence at its center are negligible, a good enough approximation of the entire

wire AC losses.

With periodic conditions set at both top and bottom ends of the truncated wire

of twist pitch length, the possibility of reducing the problem is there. However, we

have to garantee that the modelled behaviour of the truncated wire is sufficient

enough to predict AC losses of the whole wire.

In order to ensure such prediction, numerous simulation cases over multiple twist

pitch have been done. Thoses studies consisted in finding the minimum number of

twist pitch where AC losses per unit length, evaluated on the whole wire with

multiple twist pitch, become equivalent to the ones of a single twist pitch wire with

periodic boundary conditions imposed.

As shown in figure 3.24 and 3.25, the greater the number of twist pitch becomes,

the closer AC losses per unit length are getting to the ones of a single twist pitch

length with imposed periodic boundary conditions. As the wire with multiple twist

pitch gets longer, the wire portion of twist pitch length at its center is less influenced

by the magnetic effects occuring at both the wire top and bottom ends.

From this study, we conclude that, given a minimum wire length, the magnetic
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Figure 3.24 – Total ac losses comparison in the Frenet frame of a twisted six-
filaments superconducting wire subjected and its truncated version to a transverse
magnetic field

Figure 3.25 – Evolution of the AC losses per unit length with respect to the number
of twist pitch of the wire

behaviour of a twisted multi-filamentary superconducting wire with multiple twist

pitch can be approximated on a reduced model consisting of a twist pitch length

wire with imposed periodic conditions at both its top and bottom ends. This re-

duced model approximates losses occuring at the center of the wire given that any

magnetic influence of its ends are neglected.
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3.6.2 Model-order reduction of a twisted multi-filamentary

wire with multiple twist pitch

Based on the previous findings, we concluded that the magnetic behaviour of a

truncated wire with a single twist pitch length and periodic boundary conditions

imposed could give us an approximation of the magnetic behaviour of the whole

wire with a minimal length. Thus, a model-order reduction of the whole wire was

first introduced.

Because there are four current loops in a wire portion with a twist pitch length

, with three of them equallly distributed along its length, we will further develop

more reduced models to model the center of this portion. Since we are dealing in the

Frenet frame with a straight multi-filamentary wire geometry , periodic boundary

conditions can be easily implemented. Also, the electric current at the wire portion

center remain the same, given the minimal wire length, further reduction of the

twist pitch length should give us an approximation of the AC losses per unit length

characterizing the whole wire.

Several simulations cases of different truncated parts, with p/4 and p/16 as

length, of a twisted six-filaments superconducting wire, subjected to either a trans-

verse or an axial magnetic field, were performed.

Figure 3.26 – Magnetization losses comparison of truncated twisted six-filaments
superconducting wires subjected to a transverse magnetic field along the y-axis

Computed AC losses results, shown in figures 3.26 and 3.27, show the equivalent
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Figure 3.27 – Magnetization losses comparison of truncated six-filaments supercon-
ducting wire subjected to an axial magnetic field along the z-axis

magnetic behaviour of different truncated lengths of the single twist pitch wire, with

periodic boundary conditions imposed. Thus we can further reduce the problem of

modelling long twisted multi-filamentary wire in three dimensions, under a given

minimal wire length, in order to effectively evaluate at the wire center its equivalent

AC losses per unit length.

• Special case : from 3D to pseudo-2D

Specific 3D problems can also be reduced to pseudo-2D problems. In the

Frenet frame, the mapping matrix expressed in eq.3.12 can be simplified,

with θ = π/2 or 3π/2, as follows :

PBiBf =


±a 0 b

0 ±1 0

±b 0 −a

 (3.15)

Thus, the pseudo-2D problem is only valid for cases where the external trans-

verse magnetic field is only along the y-axis. For other magnetic field configu-

rations, the transformed field does not belong to the studied 2D section plane.

The final reduced model is a 2D section of the wire whose position along its

length is defined such that the imposed magnetic field, moving along the
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helical trajectory, belongs to the xy plane.

Figure 3.28 – Magnetization losses per unit length of a pseudo-2D representation
in the Frenet frame of a truncated six-filaments superconducting wire subjected to
a transverse magnetic field along the y-axis

The problem resolution of the section where the helix angular parameter

θ = π/2 (z = p/4) or θ = 3π/2 (z = 3p/4) give us an equivalent pseudo-2D

problem where AC losses per unit length remain the same.

3.6.3 Analysis of the impact of elliptical fields on magneti-

zation losses

In the context of fully superconducting rotating machines, the stator conductor

sees a combination of alternating Balt and rotating Brot fields. Such a combination

is generally known as elliptical fields. It is mathematically expressed as :

B = Balt + Brot (3.16)

with

Balt =


0

(1− k)B0cos(wt+ ϕ)

0

 (3.17)
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and

Brot =


kB0sin(wt)

kB0cos(wt)

0

 (3.18)

This magnetic configuration is due to the high electrical loading of the stator

and the air-core magnetic configuration.

Magnetization losses generated by a round mono-core wire, under elliptical

fields, were evaluated and analyzed using a 2D finite element model [74]. Sev-

eral numerical simulations were performed in order to improve the classical model

by taking into account the contribution of the rotating component of the field on

the magnetization losses. Beyond AC losses evaluation, this study allowed a phys-

ical understanding of the electrical behaviour of superconducting wire under such

complex magnetic field configuration.

With the help of the previous study, the goal is to analyze, with the newly-

developed model-order reduction, magnetization losses of twisted multifilamentary

superconducting wires subjected to elliptical fields.

Based on several AC losses measurements taken with a calorimetric method ,

by researchers at CAPS (Center for Advanced Power Systems) in Tallahassee, from

a sample of 100 multi-filamentary MgB2 wires of 20 cm length each manufactured

by Hypertech, comparisons will be made with numerical results resulting from the

model-order reduction. Each wire have a twist pitch p of 25 mm and 54 twisted

superconducting filaments of 37 µm of diameter embedded in a CuNi matrix of

0.7 mm. Characterization of filaments defined a critical current density Jc = 2547

A/mm2 and n = 4.42.

In this study we are interested in computing measurements taken when the

sample was subjected to elliptic fields with k varying from 0 to 1 (with a 0.2

step) and the amplitude B0 either equal to 10 mT RMS (Root mean square) for

a frequency of 110 Hz or 20 mT RMS for a frequency of 50 Hz. The applied field

was imposed by setting a well-defined current inside coils inside which the sample

is positioned such that the magnetic field is close to be uniform.

As seen in figures 3.29 and 3.30, a fit is possible between measurements and

numerical values. Numerical values were obtained by the use of respectively two

reduced models of the wire with p/16 and p/2500 as length. The model-order

reduction model proposed above was applied and computations were made in less

than a day on meshes of about 135000 and 63000 elements for the reduced models
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Figure 3.29 – Magnetization losses experimental vs numerical comparison of a
twisted 54-filaments MgB2 wire subjected to an elliptic field at 50 Hz

Figure 3.30 – Magnetization losses experimental vs numerical comparison of a
twisted 54-filaments MgB2 wire subjected to an elliptic field at 110 Hz

respectively. However, numerical values were obtained for at 80% of the value of

the desired maximal applied field. This suggest a presence of defects in the coils

surrounding the sample. In fact, some tests revealed the presence of some additional

heat loads present in the coils.

With the lack of additionnal measurements data, more comparisons with the

numerical model could not be performed.
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Despite such shortcomings, the overall trend of the measured losses was kept

intact and retrieved with the numerical model. Thus, the physical behaviour of the

studied wire is well captured by the numerical model. As shown below, figures 3.31

and 3.32 illustrate that well with the computed instanteneous magnetization losses

of reduced models of length p/2500 or p/16 of the wire.

Figure 3.31 – Computed instanteneous magnetization losses of reduced models of
the twisted 54-filaments MgB2 wire subjected to an elliptic field at 50 Hz

Figure 3.32 – Computed instanteneous magnetization losses of reduced models of
the twisted 54-filaments MgB2 wire subjected to an elliptic field at 110 Hz
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As noticed in [74] for a straight mono-core wire, the maximum losses, which are

constant, are obtained for k = 1. However the AC losses evolution with respect to

k remains not the same. It is certainly due the twisted nature of the wire filaments

geometry whose impact is translated to the magnetic field behaviour of the wire.

In conclusion, the model-order reduction proposed is able to capture in a simple

way the physics involved in a complex twisted multi-filamentary superconducting

wire subjected to a complex magnetic configuration. Results are computed quickly

and we can have less degrees of freedoms. More comparisons with measurements

must be done in order to completely validate such an approach.

3.7 Perspective : homogenization of multi-filamentary

superconducting wire

As described above, the mapping allows us to reduce considerably the problem

of modelling twisted multi-filamentary superconducting wires. With the mapping

validation, we notice that the problem in the Frenet frame, characterized by a

simple geometry of a wire with straight filaments subjected to a geometrically

transformed magnetic field, gives us an approximate solution with higher precision

than the one obtained in the initial frame.

Based on those premises, a brief investigation of an homogenization approach

has been applied on twisted multi-filamentary superconducting wire subjected to

an external magnetic field along the y-axis. Thus, a pseudo 2D model in the Frenet

frame was used.

Wires with only one layer of filaments have been treated and the parameters

of the studied wires and their homogenized versions were defined in table 3.4.

Homogenization was studied on three twisted multi-filamentary superconducting

wires which have respectively 2, 3 and 4 filaments (see figures 3.33a, 3.33b and

3.33c) .

The investigation was done empirically in order to show that an homogenization

on those types of wires is possible. For a specific twisted wire with multiple super-

conducting filaments on its single layer, the study mainly consist in finding the

equivalent magnetic behaviour of an equivalent wire with a single superconducting

filament at the center.

In this brief study, the superconducting sub-domain volume, the wire length

and the twist pitch remain unchanged. The conservation of the superconducting
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(a) 2 filaments (b) 3 filaments (c) 4 filaments

Figure 3.33 – Pseudo-2D representation in the Frenet frame of twisted multifilamen-
tary superconducting wire subjected to a transverse magnetic field in the Frenet
frame.

Figure 3.34 – Pseudo-2D representation in the Frenet frame of the homogenized
twisted multifilamentary superconducting wire subjected to a transverse magnetic
field in the Frenet frame.

sub-domain imply having as an homogenized version a single centered filament of

radius rh = r/
√
nf .

The power law characterizing the electric behaviour of high temperature super-

conductors remained also unchanged. However, both the critical current density Jc
and the power law index n were adjusted as follows :

Jch = G(Jc, nf , αv, βrf , βrL) (3.19)

and

nh = g(n, nf , αv, βrf , βrL) (3.20)

with Jch, nh the adjusted critical current density and the adjusted power law

index. G and g are defined functions.

Those functions depends on the number of filaments nf belonging to the layer,
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Table 3.4 – Parameters of twisted multi-filamentary wire with multiple twist pitch
for homogenization

Quantity Value
Twist pitch p (mm) 4

number of filaments - normal nf 2 or 3 or 4
number of filaments - homogenized nfh 1

number of twist pitch np ≥ 7
Filament radius - normal r (µm) 50

Filament radius - homogenized rh(µm) 50
√

2 or 50
√

3 or 100
Matrix radius (mm) 0.6
Layer radius (mm) 0.1

Critical current density (A/mm2) 5
Power law index n 10

Air conductivity (S/m) 103
Matrix conductivity (S/m) 6·109

Magnetic field amplitude Bmax (mT) 50
Frequency f (Hz) 100

the volume ratio αv of the filaments with respect to the resistive matrice, the radial

distribution βrf of the filaments on the layer and the radial distribution βrL of the

layers. The functions G and g must be evaluated correctly in order to get the

equivalent magnetic behaviour.

In order to show that an homogenization is possible, we will evaluate empirically

those functions for specific cases (wires with 2, 3 and 4 filaments respectively), with

parameters set in, by choosing appropriate constant values Jch and nh. We will have

:

• Jch = 1.01Jc and nh = 1.01n for 2 filaments

• Jch = 2.16Jc and nh = 2.16n for 3 filaments

• Jch = 1.7Jc and nh = 1.7n for 4 filaments

As shown in figures 3.35a, 3.35b and 3.35c, the computed magnetization losses

of the homogenized wire show good agreement with the results from the actual

wire.

In conclusion, the homogenization of a twisted multi-filamentary superconduct-

ing wire with a single layer of filaments is possible. A more in-depth research on the

subject is necessary in order to define explicitely the functions G and g with respect

to the different parameters mentioned above. They should also be formulated with

consideration of wires with several layers of filaments.



96 Chapter 3. 3D modelling of twisted multi-filamentary superconducting wires

(a) Homogenized - 2 filaments (b) Homogenized - 3 filaments

(c) Homogenized - 4 filaments

Figure 3.35 – Magnetization losses per unit length of a pseudo-2D representation
in the Frenet frame of the pseudo-2D representation of twisted superconducting
wires in the Frenet frame.

3.8 Conclusion

In this chapter, we proposed a geometric transformation which simplifies, through a

well-defined mapping, the 3D modelling of twisted multi-filamentary superconduct-

ing wires. The mapping originates from observations made on the current distribu-

tion inside a twisted mono-filament superconducting wire subjected to a transverse

magnetic field. In fact, several current loops, observed along the helical trajectory of

the filament, suggested that the magnetic field was changing direction with respect

to the filament trajectory.

Thus, the transformation allows the study of the straight wires in the Frenet

frame subjected to a magnetic field moving along the helical trajectory that will

result from twisting filaments.
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The application of this mapping to both twisted bi-filaments and six-filaments

superconducting wires have been successfully validated for a transverse and an axial

external magnetic field. Computed AC losses of wires in both the initial frame and

the Frenet frame show good agreement regardless of the parameters such as the

magnetic field amplitude and the twist pitch.

Moreover, an advanced application of the proposed mapping allowed us to

reduce the size of the 3D problem associated with the study of twisted multi-

filamentary wire with multiple twist pitch. In fact, the computed AC losses per

unit length in the wire becomes equivalent to the ones in a single twist pitch wire

or its truncated length with imposed periodic boundary conditions imposed on

both its ends. In the case of the transverse applied magnetic field, the 3D problem

can be further reduced to a pseudo-2D problem where the transformed applied

magnetic field is planar in the Frenet frame.

An application of the model-order reduction on a sample of 100 MgB2 wires

with 54 twisted filaments each gave, base on AC losses measurements, a good

enough approximation of their magnetic behaviour under the influence of elliptical

magnetic fields.

All those simplifications introduced and developed make possible the 3D mod-

elling of twisted multi-filamentary superconducting wires with the finite element

method.

The homogenization of multi-filamentary wire with multiple twist pitch were

briefly explored. The goal was to show that such approach was worth investigating

as an application of the mapping. A brief study was done in order to show this

approach capabilities. A good agreement was obtained for computed AC losses in

both the homogenized wire and non-homogenized wire. This approach can be stud-

ied more in-depth and it can help a further design optimization of superconducting

wire.
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General conclusion

The need of accurate evaluation of AC losses generated in large superconducting

wire led us to investigate robust and efficient numerical methods with 3D modelling

capabilities. By analyzing shortcomings of numerical approaches found in the lit-

erature, in regards with their 3D modelling capabilities of large superconducting

systems such as wire, new approaches have been proposed.

First, the finite element method applied on the commonly used H-formulation

was introduced with a focus on the linearization of the power law in order to han-

dle its associated non-linearities for convergence purposes. Also, the discontinuous

galerkin method applied on the commonly used H-formulation was proposed. Be-

cause of its parallel computation capabilities, this approach scales naturally with

the computing architecture at disposal. Validations of this approach was done by

comparing AC losses of simple models done using finite element method imple-

mented in GetDP and Comsol Multiphysics. Unlike the finite element method, this

approach is not limited by the available computing memory. Its parallel computa-

tion configuration allow the distribution of partitioned sub-domain of the studied

mesh over numerous computers. This characteristic will be significant for 3D mod-

elling of large superconducting systems such as wires. As future research endeav-

ours, the resulting framework from this numerical approach can be optimized for

fast computations with GPU computations instead of CPU.

Memory limitations associated with the finite element method impede its use

for the 3D modelling of twisted multi-filamentary superconducting wires. Thus,

an in-depth study of such wires led us to develop a mapping where there is an

equivalent 3D model with straight filaments instead. The resistive matrix remain

also straight if it is non-magnetic. Otherwise, the matrix geometry must be twisted.

This mapping give us a less geometrically complex 3D model with less degrees of

freedoms for AC losses computations. Numerous simulations were done for the

purpose of a parametric study which validated the mapping use on twisted multi-

filamentary wires.
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Simplifications were further developed based on the developed mapping with

the introduction of a model-order reduction approach. It allows to study shorter

truncated 3-D version of a wire twist pitch in order to evaluate accurately the

invariant AC losses per unit length. Such reduction is possible for wires with at

least 7 twist pitches as we see that the greater the number of twist pitch is, the

closer AC losses per unit length of the whole wire get to the ones of its reduced

version. The problem can even be reduced to a 2D section with well-defined z

positions for the specific case involving transverse magnetic field in the y-axis only.

In order to study the influence of elliptical magnetic fields on magnetization

losses generated on 100 MgB2 wires with 54 twisted filaments each, AC losses of

the entire sample were computed from the 1/2500th of a single wire twist pitch. The

3D model-order reduction approach was applied on the mentioned truncated wire.

We observed the expected AC losses behaviour as we increase the ellipticity of the

applied magnetic field. This showed how the proposed reduced model approximates

well the behaviour of wires under complex magnetic configurations.

As another application of this reduced 3D model, an homogenization approach

was briefly investigated for wires with a single layer of filaments. The study, al-

though performed empirically, shows good promises. It need to be thoroughly in-

vestigated in order to evaluate an expression of the required function allowing the

homogenization for all types of twisted multi-filamentary wires. This can also lead

to the homogenization of tapes where the superconducting materials is deposited.

All those newly numerical approaches show good promises regarding the 3D

modelling of twisted multi-filamentary wires/tapes. The model-order reduction ap-

proach allows us to considerably reduce and simplify the resulting 3D problem

while giving us a good approximation of the magnetic behaviour of the whole wire.

The prospects of developing homogenization techniques will simplify even more

the 3D modelling and likely ushered more research on the optimization design of

those wires. AC losses measurements of those wires are also necessary in order to

establish such modelling approaches.
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Titre : Modélisation tridimensionnelle de supraconducteurs multifilamentaires
torsadés

Mots clefs : supraconducteurs à hautes températures, câbles multifilamentaires torsadés, modélisation
tridimensionnelle

Résumé : Les supraconducteurs à hautes tempera-
tures sont considérablement utilisés dans des appli-
cations telles que des machines électriques. La con-
ception de telles machines requiert une évaluation
précise des pertes AC générées par leurs bobinages
de câbles supraconducteurs multifilamentaires tor-
sadés. Ainsi, des outils numériques robustes et pré-
cis sont indispensables afin de modéliser rapide-
ment en 3D le comportement de tels câbles. Dans
ce manuscrit, deux approches numériques dont
une approche de type galerkin discontinue furent
développées afin de simplifier considérablement la
modélisation 3D de ce type de câbles. Elles furent
appliquées à la formulation en H couplée aux ef-
fets thermiques. La modélisation de cas simples a
permis de valider ces approches en les comparant
à celle des elements finis implementée sur Com-

sol. Puis, une transformation géométrique fut pro-
posée afin de modéliser de façon équivalente en 3D,
quelque soit la configuration en champ magnétique,
des câbles à filaments supraconducteurs droits à
la place de filaments torsadés. De cette transfor-
mation, un modèle d’ordre réduit fut développé et
validé afin de simplifier considérablement la mod-
élisation 3D de ce type de câbles. À partir de ce
modèle réduit, l’influence du champ elliptique sur
les pertes par aimantation d’un échantillon de 100
câbles de 54 filaments de MgB2 torsades fut mod-
élisé en moins d’une journée. Par ailleurs, des pre-
mières études empiriques montrant la faisabilité
d’une homogénéisation furent brièvement présen-
tées et validées pour des câbles ayant une seule
couche de filament.

Title : 3D modelling of twisted multi-filamentary superconductors

Keywords : High-temperature superconductors, twisted multi-filamentary wires, 3D modelling

Abstract : High temperature superconductors
are increasingly being used for several applications
such as electrical machines. Thus the design of such
devices ultimately requires an accurate evaluation
of AC losses generated by superconducting coils
sometimes made of twisted multifilamentary wires.
The development of robust numerical tools geared
towards the 3D modeling of such wires is therefore
needed. In this manuscript, the main objective is
to develop numerical approaches allowing consid-
erable simplifications of the modelling of twisted
multi-filamentary superconducting wires in 3D.
First, two numerical approaches such as the dis-
continuous galerkin method applied on the ther-
mally coupledH-formulation were developed. They
were compared and validated on simple cases using

the finite element method implemented in Com-
sol. Then, a well-defined mapping was proposed to
simply model in 3D, for any magnetic field config-
uration, straight multifilamentary wires instead of
twisted ones. An application of this mapping al-
lowed the development of a model-order reduction
approach which simplify considerably the mod-
elling of twisted wires in 3D. Thus, the elliptical
magnetic fields impact on magnetization losses was
accurately modeled in less than a day with the re-
duced approach applied on 100 MgB2 wires with 54
twisted filaments. As a research perspective on the
reduced model advanced applications, an homoge-
nization, empirically defined, was briefly presented
for wires with single layer only.
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