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Part I

Coherent fluctuations and
quantum correlations in

many-body systems: generalities

Toutes choses acquierent de la
profondeur — plus que de la
profondeur, quelque chose comme

une quatrieme dimension.

Henri Bergson






Chapter 1

Quantum coherence and
quantum uncertainty

1.1 Quantum uncertainty and thermal de Broglie
wavelength

The concept of coherent fluctuations (or quantum fluctuations) is intimately related
to the wave-particle duality at the heart of quantum theory. In the early years of
the 20" century, the experimental observations on the black-body radiation and the
photoelectric effect led Einstein (1905) to postulate the existence of light corpuscles,
or photons, in apparent contradiction with the representation of light as a wave
phenomenon (see, for instance, the book of Jammer (1966) for an historical overview
of the conceptual development of quantum mechanics). Reversing the logic, de
Broglie (1924) made the hypothesis that massive particles have in turn a wave-like
nature. The experimental confirmation of the wave-like behaviors of electrons by
Davisson and Germer (1928) firmly established the wave-particle duality as a basic
concept to understand natural phenomena. This duality between wave-like and particle-
like behavior of matter has then been rooted into the formal structure of quantum
mechanics by Schrodinger equation for the wavefunction (Schrédinger, 1926), and
Born’s statistical interpretation of the latter (Born, 1926). The wave-particle duality is
one of the facets of Heisenberg uncertainty principle (Heisenberg, 1927), from which

Bohr (1928) elaborated the more philosophical concept of complementarity.

In which situations can we expect wave-like effects to play a significant role in
the behavior of a many-particle ensemble, for instance a cloud of atoms at thermal

equilibrium? Following the original intuition of de Broglie (1924), to each atom of
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mass m and velocity v we associate a wavelength
Nap = - (1)
mu
with & the Planck constant. Using that mv? ~ kgT, T being the temperature of the
gas and kp Boltzmann constant, we arrive at
h
VmkpT -

If the inter-particle distance d is much larger than the thermal de Broglie wavelength

AdB ~ (1.2)

AdB, particles can be considered as classical, distinguishable objects, while in the
regime where d < Ay, the wavepackets associated to each particle start to overlap,
leading to interference phenomena which significantly alter the behavior of the gas with
respect to the predictions of classical mechanics. In this regime, quantum fluctuations
(namely, the coherent superposition of different positions in the state vector of each
particle) cannot be ignored, and the particles start to develop non-classical forms of
correlations — they become entangled' . In summary, this analysis shows that quantum
mechanics adds a new length scale to the problem, the thermal de Broglie wavelength,
as the typical distance that particles can explore coherently. The thermal de Broglie
wavelength is different from 1) the interparticle distance; and 2) the typical distance
that particles can explore (coherently and incoherently) — namely the size of the

cloud.

1.2 The harmonic oscillator example

To gain intuition about the physical origin of the coherent superposition of an atom
over different positions, we consider the simple example of a particle of mass m
confined in a harmonic potential, in contact with a heat bath at temperature 7". We are
interested in the uncertainty of the particle position inside the trap. This uncertainty
has two origins 1) thermal fluctuations and 2) intrinsic quantum fluctuations which
subsist even at 7' = 0. The total (squared) uncertainty, resulting from thermal and

quantum effects together, can be quantified by the variance of the position

(8%2) 0t = (2%) — (z)* . (1.3)
Elementary algebra shows that’
1
(52gg>t0t = m% (ﬁ + 2> . (1.5)

! The word “entangled”, synonym for “non-separable”, has a mathematical definition to be given in
Section 2.1, translating the idea of correlated quantum superposition.
’The Hamiltonian is

H*iJrlmmeQ*hw aJraJr1 1.4)
S 2m 2 - 2 '
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with 3 = h/mw, and 7 is the mean number of energy quanta. Using Bose-Einstein

formula for n, we arrive at

h 1 1
2 _ Z
(0o = mw <ehw/kBT -1 + 2) ' (1.6)

At high temperature (hw < kgT'), the classical prediction of the equipartition theorem
<52$>tot = kpT/ mw? is recovered, while in the opposite limit the variance of the
position saturates to i/2mw due to the residual zero-point motion of the particle. In
fact, classical mechanics predicts that (§%z)yor = kpT/mw? at any temperature. It is
then tempting to interpret k5T /mw? as the thermal contribution to the uncertainty of
the position, the remainder being the quantum uncertainty, or, more accurately, the

quantum variance of the position

<62x>t0t = <52x>equipartition (classical) + <(5235>Q . (17)

It is natural to expect that quantum fluctuations are reduced by thermal agitation, and
in fact the quantum variance of the position is proportional to )\3 B = h? /mkpT at
low trap frequency (hw < kpT). In this respect, the thermal de Broglie wavelength
may be interpreted as the quantum uncertainty of the position of a particle in a cloud,

in addition to the prediction of classical mechanics.

1.3 Coherent vs. incoherent uncertainty

The analysis of the previous section conveys the general idea that the uncertainty of

physical quantities has two sources:

1. The uncertainty on the experimental preparation of the system generates a
certain randomness in the microstate |1)). To take into account the uncertainty
on the preparation, one introduces a statistical ensemble of states {p;, Vi) },
where p; is the probability for having actually prepared the microstate [¢;).
This statistical ensemble is incorporated in the density operator (or matrix)
p =2 pili) (i

actual microstate is a source of incoherent fluctuations. When the preparation

, often called simply “the state p”. The uncertainty on the

consists of placing the system in contact with a heat bath, incoherent fluctuations

are equivalently called “thermal fluctuations”.

with a = 5”:;%5, at = i%’;, & = av/mw/h = x/xo and p = p/v/mhw = p/po. Operators a and a

satisfy the bosonic commutation relations [a, a'] = 1. Using z = xo ayif and (aP) = ([aP]?) =0,

2
we obtain the desired result with 7 = (a'a).
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2. Even when the system is in a particular microstate |¢/), observables may have an
intrinsic quantum uncertainty. This happens whenever |¢)) is not an eigenstate
of the observable in question. The quantum uncertainty cannot be traced back
to a lack of accuracy during the preparation of the system, and is absent in

classical physics. It is the source of coherent fluctuations.

In the present work we show that the two contributions can be formally separated in
the form of an incoherent and a coherent contribution to the variance of any observable,
both of which are measurable in the case of thermal equilibrium. In general we expect
that an observable O possesses quantum fluctuations in a state p if and only if O and
p do not commute with each other. This expectation may be promoted to a general

principle:

Quantum uncertainty principle

(0,0 £0 = Qhas quantu'm .ﬂuctuations (1.8)
if the system is in the state p

In the specific case of thermal equilibrium states, this is equivalent to the condition
[O, H] # 0, where H is the Hamiltonian of the system. In fact, it is tempting to regard
the “Quantum uncertainty principle” as one of the facets of Heisenberg uncertainty
relations, and we might use the term “Heisenberg uncertainty” as a synonym for
“quantum uncertainty”.

In conclusion of this section, three main questions can be identified.

e How to isolate, both in computations and in experiments, quantum fluctuations

from incoherent uncertainties?

e Under which conditions can a function C(p, O) be said to quantify the coherence

of the state p with respect to the eigenstates of the observable O?

e What are the interference phenomena associated to quantum fluctuations which

justify the term “coherent fluctuations”?

It is the purpose of the following sections to address these questions.

1.4 Quantum coherence and interferometry

1.4.1 A simple example of interferometer

In the previous section, we introduced quantum fluctuations as fluctuations which

cannot be understood from the perspective of a statistical ensemble, but rather as
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a manifestation of the quantum uncertainty principle for non-conserved quantities
(namely: for observables which do not commute with the density operator). In this
section, we introduce an a priori independent notion of quantum fluctuations from
the perspective of interference phenomena. However, the two notions turn out to be
equivalent. This equivalence is elaborated in Sections 1.5 and 1.7. Rather generally,
an interference experiment can be sketched as follows: 1) we consider an input state
[9) = Ao|0) + A1|1), where [Xg|? + |A\1]? = 1, and |0) and |1) represent the two arms
of the interferometer (we consider real and positive Ay, A\; and absorb possible phases
into the definition of |0) and |1)); and 2) a phase is accumulated along each arm to
yield [1)(¢o, #1)) = Xoe’®|0) 4+ A1e?®1[1). Finally, an observable is measured on
|1 (0, ¢1)), for instance S* = (]1)(0] + |0)(1])/2, whose average value is

s = (Y(po,91)S[P(¢0, #1))
= )\0)\1 COS(qf)o*qbl) . (19)

The signal s oscillates as a function of the phase difference on the two arms ¢ = ¢g —
¢1. The visibility of the interference fringes V' = 2\g\; is nothing else than (twice)
the standard deviation (defined as the square root of the variance) of S* = (]0)(0] —
|1)(1])/2, quantifying the superposition of |) in the basis (]0), |1)), the eigenstates of
S#3, Ttis the variance of S* which is related to the visibility because S7 is the so-called
generator of the transformation of |1/ in the interferometer (namely, the evolution in
the interferometer can be written, up to a global phase, as [¢)(¢o, 1)) = € ?|¢))).
But the variance of 5% cannot in general quantify the visibility of the interference
fringes, for the state could have the same variance without any coherence between |0)

and |1)*. If one imagines a situation of partial dephasing of p
pa () = A510)(0] + A1) (1] + a (AoA1e™[0) (1] + h.c.) (1.10)
with 0 < o < 1 and h.c. denoting the hermitian conjugate, a calculation of (S*) gives
Tr[pa(0)S*] = aXgAicos ¢, (1.11)

so that the visibility is now reduced by a factor «. For any «, the variance of S*
is (AgA1)2, but only part of this variance comes from coherent fluctuations, which

manifest themselves in interference phenomena. It is then natural to split the variance

FIndeed (025%) = (I(S)2|0) — (WIS*10)? = (1/4)[1 — (3 — AD)?] = (Aohi)? where we
used that 1 = A2 + A2

4 pr _ |1/)><’¢| N pdecoh _ )\3|0> <0| +)\%|1><1" then pdecoh((b) _ eiqubpdecohefiquﬁ _ pdecoh
(the state is unable to show any interference effect), while (62.5%)(p?°°°") = (§25%)(|¥)) = (AoA1)?
(the uncertainty on o, now fully of incoherent origin, is the same as before decoherence had been
introduced).
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into an incoherent and a coherent part, the latter being responsible for interference
phenomena
<52‘9Z>t0t - <6252>incoh + <5QSZ>coh . (112)

The coherent part is suppressed in favor of the incoherent one by the noise on the
relative phase between |0) and |1).

More generally, one can conceive an interferometer with more than two arms

) A|tn) + Aalha) <o+ Apltn) (1.13)
[(P1--0n)) = D M€ |en) . (1.14)
k

Intuitively, interference effects are going to be significant if the number of relevant

Ag’s is large. This raises the following questions:

e How to quantify the number of relevant |1/ )’s over which the state of the system

extends coherently (especially if the state is mixed)?
e How is it related to the visibility of interference phenomena?

The first question turns out to be the same as the question raised at the end of the
previous Section 1.1 (namely, “How to define, compute and measure quantum fluc-
tuations?”), and an answer will be provided in the following Sections 1.5 and 1.7.
Concerning the visibility in interference experiments, the question may be a bit too
general to be given a simple answer: we now have n phases instead of 2, and the very
meaning of “visibility of the fringes” in this high-dimensional space is not clear (see
however von Prillwitz, Rudnicki, and Mintert (2015) and Biswas, Garcia Diaz, and
Winter (2017) for studies in that direction). Nonetheless, the interferometric point of
view provides an elegant mathematical framework to quantify coherent fluctuations,
as shown in Section 1.5. Also, quantifying the coherent extent of a state on a family of
other states, in relationship with the visibility in interference experiments, is a question
of high experimental and even technological significance if the state p is intended to
serve as a probe for estimating the phase difference on the arms of an interferometer
(Pezze et al., 2016). In the following paragraph, we introduce a central quantity in
the context of phase estimation, the quantum Fisher information (Pezze¢ and Smerzi,
2014).

1.4.2 Quantum Fisher information

Phase estimation. As a special case of the multipath interferometer, we consider

the situation in which one aims at measuring with great accuracy the value of a field
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¢ (a magnetic field, a gravity field, a local acceleration field, and so on). A probe
quantum system in the state p is sent into the region where the field is to be measured,

and, neglecting dissipative processes, it undergoes the unitary evolution
p(p) = 7190 pei?0 (1.15)

If a magnetic field of magnitude ¢ in the z direction is present, the observable O = S*
is the z component of the magnetic moment of the quantum system; if a gravitational
potential ¢z is present, then O = z is the z-coordinate of the constituents of the
quantum system, and so on. Now, after the unitary evolution, some measurement A is
performed on the probe, yielding the result a with probability p,(a). If this probability
depends on ¢, measuring A provides information on the actual strength of the field. If
one is to evaluate the sensitivity of the interferometer, it is meaningful to determine its
ability to discriminate between closely separated values of ¢, say ¢ and ¢ + d¢. So
the question is the following: how well can we distinguish the probability distribution
Dy from py 1 qs by measuring A several times? Of course, if the value of the field ¢
is perfectly stable, and the measurement repeated an infinite number of times, the
statistics of the results will exactly coincide with p, for one, and only one value of
¢ (unless py = py, in which case there is no way to discriminate between ¢ and ¢’
by measuring A). So in this idealized situation, one is able to discriminate arbitrarily
close values of ¢, however similar py and ps 44 can be. But what if only a finite,

albeit very large, number N of measurements can be performed?

Fisher information and the Cramér-Rao bound. This is a basic question of esti-
mation theory, and the answer is given by the Cramér-Rao bound (Pezz¢ and Smerzi,
2014): the variance Aquest on the estimation of ¢ is lower bounded by the inverse of

N times the Fisher information of py

1

2
A ¢est 2 NI[¢,A]

(1.16)

and the bound is asymptotically reachable in the limit N — oo. The Fisher information

2
I, A] = Z[‘?‘Z"’(g)} (1.17)

is a measure of the distinguishability D[pg, ps+dg| between py and pg 44 in the limit
dp — 0°
1
Dlpg, poras] = 51[6, Al(dg)” - (1.20)

5 as quantified by the relative entropy (Vedral, 2002). The relative entropy (or Kullback-Leibler diver-
gence) between two probability distributions p and ¢ is defined as Sie1(p|q) = >~ p(a) log[p(a)/q(a)].
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The intuitive meaning of this result is that the more different the probability distribution
D¢ is from pg, 44, the more information we obtain on the value of ¢ by measuring
A. The amount of information about ¢ contained in py is quantified by the Fisher
information, and the Cramér-Rao bound provides the quantitative link between this

amount of information, and the precision on the value of ¢ we obtain by measuring A.

Quantum Fisher information. Now, the precision of the evaluation of ¢ depends
on the measurement A performed on the probe. In order to obtain the best possible
precision, the Fisher information has to be maximized over all possible measurements,

yielding the so-called quantum Cramér-Rao bound

1
Aoy > —— . 1.21
¢est =N FQ ( )
The quantum Fisher information (QFI)
Fg = max I[p, A (1.22)

meas. A

where the max is over all the possible measurements, is thus the fundamental property
of the input state p of the system which quantifies its ability to probe the field ¢ very
accurately in an interferometric setup®. Interestingly, F¢y does not depend any more
on ¢, although the optimal measurement A to perform might do so. This important
property will be discussed in Section 1.5. The QFI is then only a property of the state

p, and of the observable O which couples to ¢ in the interferometer.

One has
op | Perde(@ | _ do o @92 oo 3
tog | P22 | tog (14 900t + {9 0 (a) + Of(a0)")
L by (R
- p¢(a)a¢p¢( )+ 2p¢(a)8¢p¢( )
-5 (S 0mel) + 0l (L1
Hence, the relative entropy between py and pg+de is
Sre1(Polporas) = = ps(a)loglpeias(a)/ps(a)]
de)? o do)? Dgps(a)]?
= —d¢dy za:m(a) - %Qb za:m(a) + ( 2) za: [ ‘;Zé((a))] 1.19)

As >~ pg(a) = 1 for all ¢, the first two terms vanish and we obtained the result of Eq. (1.20).

Or, more generally, when the system undergoes an arbitrary evolution parametrized by the field ¢.
Our focus is here on interferometry because we elaborate on the concept of coherence, but the theory of
parameter estimation is not restricted to interferometric setups.
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Quantum Fisher information for pure states. Quite remarkably, if p is a pure

state, the QFI takes the physically transparent expression (Pezze and Smerzi, 2014)

Folp, O] = 4(8°0) gy (w) = A(IO? ) — (]O[)?) . (1.23)

In full agreement with the qualitative discussion at the beginning of this section, the
variance of O in the state |¢) directly quantifies the ability of |¢)) to exhibit high-
visibility interference phenomena with respect to the eigenstates of O. The physical
intuition behind this observation is that if p, changes very rapidly with ¢, it means
that p(¢) = e~ pe’®© changes very rapidly with ¢. If p is a pure state |1), this is
achieved when [1)) is not an eigenstates of ©, so that the transformation e~**C 1))
transforms |¢) significantly. In this case, the extent of |¢) over the spectrum of O
is quantified the variance. If instead p is a mixed state, the coherent extent of p over
the spectrum of O is rather quantified by the QFI, which is thus a kind of quantum
variance (QV)’.

1.4.3 Uncertainty relations

We argued that coherent fluctuations are a manifestation of the quantum uncertainty
principle. It is legitimate to ask if they are involved in some analog of the Heisenberg

uncertainty relation for two non-commuting observables A and B
1
(0 A)(6°B) > L[4, B)I* (1.24)

The answer is yes, as we show in this section. In fact, it is a basic result of estimation
theory that the Fisher information (¢, A) [Eq. (1.17)] of the probability distribution
pg(a) for the eigenvalues a of A, is lower bounded by the following expression
|05(A) 2
I1(¢p,A) > ———. (1.25)
A2 5 a0
Inequality (1.25) can be proved using Cauchy-Schwarz inequality®. The meaning

of this inequality is simple. Let us imagine that the probability distribution py(a) is

7 The very same idea lies behind the concept of “quantum speed limit”. In interferometry, if ¢
is very small, one needs a very large coherent extent of p across the eigenstates of O in order for
(o) = e "9 pe'®© to be distinguishable from p — a very large QV. Conversely, if the QV is small,
the time needed for p(t) = e =" pe**® to become distinguishable from p is large — at least larger than
some bound specified by the quantum speed limit. For a study of quantum speed limits in connection
with the coherence content of the p, see Pires et al. (2016) and references therein.

8 The following proof is suggested in a footnote of Pezzé and Smerzi (2009). It is essentially
identical to the proof of the Cramér-Rao bound (Pezze and Smerzi, 2014). By definition of (A), for any

value of ¢ we have

/ da ps(a)a — (A)(@)] = 0. (126)
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peaked around @ = (A)(¢) with a standard deviation (std) AA = /(02 A)(¢). If A

is measured and if the value a is obtained, we expect it to be close to a(¢) (within the
std). Our confidence interval A for ¢ is thus fixed by

Adest|05(A)| = AA . (1.30)

The Cramér-Rao bound, Eq. (1.16) imposes that this confidence interval be larger
than I (¢, A)_l/ 2, which corresponds to Eq. (1.25)”. Basically, replacing A with any
power of A, inequality (1.25) states that the Fisher information is larger than the rate
of change of any one of the moments of py(a): it contains information on the rate of
change of the full distribution py(a), capturing the rate of change of all the moments
together.

Like in previous section, we specify our attention to the case where the parameter
¢ enters in a unitary transformation U (¢) = e~ %5
so that

generated by some observable B,

ds(A) = i[B, A] . (1.31)

Given that the QFI is the upper bound to the Fisher information associated to all

possible observables A that could be measured, we finally obtain
Fq(B)(s*A) > [([A, B)|* . (1.32)

Eq. (1.32) reduces to the standard Heisenberg inequality, Eq. (1.24), for pure states,
for which Fp(B) = 4(62B). For mixed states, it is more stringent than the latter,
since in general Fy(B) < 4(5%B) [namely, Eq. (1.32) implies Eq. (1.24)].

In conclusion, Eq. (1.32) represents an interesting complementarity relation
between the quantum and total fluctuations of two non-commuting observables, the

quantum fluctuations being quantified by the QFI.

Differentiating with respect to ¢, we obtain

[ dadups(@la— (@) = [ dapo@oa(a)(o). .2

The r.h.s is 94 (A)(¢), since (A)(¢) is independent of a, and since the probability distribution pe (a) is
normalized to 1. Then, using that Ospe(a) = pg(a)Ody Inpgs(a), we obtain

/da Py (a)[0s Inpg(a)lla — (A)(9)] = 9y (A)(9) - (1.28)
Applying Cauchy-Scharz inequality | (X Y')|? < (X?)(Y?), valid for any pair of random variables X ()

and Y (a), to X (a) = 0y Inpy(a) and Y (a) = a — (A)(¢), we finally obtain inequality (1.25) with the
Fisher information of the distribution pg

1(6, A) = / da py(@)[ds Inpy(a)]? . (1.29)

P Adls = (07A)/106(A)* > 1/1(9, A) & 1(9, A) = [95(A)[* /(5 A).
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Finally, we notice that when considering a gaussian state for the two quadratures
p and q of a bosonic mode, the inequality of Eq. (1.32) is saturated:

Fo(p)(6%q) = h*  (gaussian states). (1.33)

This result generalizes to mixed gaussian states the well-known property of the
minimal-uncertainty states obtained as ground states of harmonic-oscillator Hamil-
tonians. In the present context, it is simply a consequence of the fact that inequality

(1.25) is saturated for a gaussian probability distribution.

1.5 Mathematical approach to quantum coherence

In Section 1.1, we showed that the de Broglie wavelength, quantifying the spatial extent
over which particles are coherently spread at thermal equilibrium, can be interpreted as
the quantum contribution to the uncertainty of the position, in addition to the prediction
of the equipartition theorem, valid for classical systems only. This idea will be given
a much wider significance in Section 1.7 where the quantum variance is introduced
for any observable. In Section 1.4.2, we approached the more general question of
estimating the coherent extent of an arbitrary state over the eigenstates of an arbitrary
observable. This question was approached from the point of view of interference
phenomena, and it was proposed that the quantum Fisher information (QFI) precisely
measures this quantum uncertainty. In particular, in the case of pure states, the QFI
reduces to (four times) the variance of the observable in question. The physical
intuition behind this result was that the more widely a state p coherently extends over
the eigenvectors of O, the more rapidly it evolves with ¢ in a unitary transformation
U(¢) = e~"%© generated by O, and parametrized by ¢. “Rapidly” means here that
there exists some (¢-dependent) observable whose probability distribution in the state
p(¢) is very different from its probability distribution in the state p(¢ + d¢). The QFI
precisely quantifies this “speed of evolution”.

To avoid confusion, we note that the concept of coherence discussed here is
sometimes called asymmetry in the literature. The study of coherence, both from
a physical and a mathematical point of view, is still a vivid area of research, and
several concepts are not set in stone. The interested reader is referred to Marvian and
Spekkens (2016) for a discussion on various notions of coherence, and to Streltsov,
Adesso, and Plenio (2016) for a review on coherence as a resource.

In the remainder of this section, we shall first discuss a mathematical framework
settled to quantify coherence. Then we will construct a whole family of coherence

measures, to which the QFI belongs, based on the intuition that a state evolves rapidly
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under a unitary transformation if and only if it possesses a large coherence with respect
to the generator of the transformation. Finally, we will show that all these coherence
quantifiers can be measured through to the dynamical structure factor for thermal

equilibrium states.

1.5.1 Axiomatic framework

To justify more rigorously that the QFI, or any other quantity, is a coherence measure,
it is reasonable to introduce a set of mathematical conditions that any coherence
measure C(p, O) should fulfill (Streltsov, Adesso, and Plenio, 2016). This approach
highlights several physical and mathematical aspects behind the general concept of

coherence. Proposed conditions are the following:

(i) Quantum uncertainty principle:
C(p,0) # 0+ [p,0] #0. (1.34)

If p can be decomposed as an incoherent mixture of eigenstates of O, all fluctua-
tions of O are of incoherent origin, and C(p, ©) = 0. Coherent fluctuations are
a manifestation of the quantum uncertainty principle, and can only be present
if [O, p] # 0. By convention, coherence measures are chosen non-negative,
C(p,0) > 0.

(i) Monotonicity under operations which conserve O:
C(L(p),0) < C(p,0) (1.35)

if £ (e719pe'®) = e~ L(p)e©, and L is an arbitrary linear evolution for
quantum states [more precisely, £ is a completely positive, trace preserving
(CPTP) linear transformation (Wiseman and Milburn, 2010)]. In particular,
if £ is a unitary transformation of inverse £~!, the coherence is preserved
throughout the unitary evolution'’-!'!. This condition corresponds to the intuition
that only operations which do not conserve O can create coherence between the
eigenstates of (. In the case of a unitary transformation which commutes with
O, the probability distribution for the fluctuations of O is conserved throughout
the evolution, and we may legitimately expect that the putative distribution for

quantum fluctuations of O is also conserved (Marvian and Spekkens, 2014).

¥ Indeed, C(p, 0) > C(L(p), O) > C(LML(p)], ©) = C(p, O), 50 that C(p, O) = C(L(p), O).

! The QFI satisfies this condition. This is the reason why the optimal precision that can be reached
in the evaluation of the small field ¢ in an interferometric framework is independent of ¢, see Section
1.4.2.
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(iii)) Convexity with respect to p:

C (Zpipi,0> < ZPiC<Pi70) : (1.36)

This condition translates the idea that incoherently mixing states can only lead
to a decrease of coherence. In order to create coherence, one needs to coherently

superpose states, not to mix them incoherently.

(iv-a) Additivity under tensor product:

C(pa® pp,0a+ Op) =C(pa,0a) +C(pp,OB), (1.37)

where A and B are two quantum systems, and O 4(p) is an observable related
to A(B) degrees of freedom!'?. If the combined state p4p of two systems A
and B is a tensor product p4 ® pp, they are uncorrelated: fluctuations on A and

B are independent, and so are quantum fluctuations.

Actually, anticipating over the developments of the following sections, one could
argue that a more stringent condition should apply to measures of coherence, namely,
that if A and B only share classical correlations (to be defined later), then quantum

fluctuations on A and B should be independent, leading to the condition

(iv-b)
Clpap,Oa+ Op) =C(pa,04)+Clps,OB) (1.38)

if pap is a classical-quantum or a quantum-classical state (defined in Section
2.1), with

paB) = Trpaypas - (1.39)

As this condition has not been considered in the litrature so far, we leave this as an
optional stronger requirement, which is indeed fulfilled by the measures of coherence
discussed in this manuscript.

To these requirements widely accepted in the literature (apart from (iv-b) which

had not been proposed), we suggest to add the following physically motivated one:

(v) Absence of divergent behavior at thermal phase transitions. Thermal (i.e. finite
temperature) phase transitions are driven by thermal (namely incoherent) fluctu-

ations, and quantum fluctuations should not become critical at such transitions.

12 The mathematically oriented reader should like to read O 4 ® I instead of O 4, where [ denotes
the identity operator acting on B Hilbert space, and similarly for O . Throughout this manuscript, we
follow the physicist notations and always omit the “® Ieverything else”” factors.
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1.5.2 A family of coherence measures

We now show that measures of coherence in the above sense can be constructed by
translating mathematically the physical intuition that a state p evolves swiftly with
t under a unitary transformation U (t) = e~*© if, and only if it possesses a large
coherence with respect to O. That is, we show that if Dy |[p, p(dt)] is a measure of
distinguishability (parametrized by a function f which satisfies certain properties to

be discussed shortly) between p and p(dt) = p — i[O, p]dt + O(dt?) then

Dyp, pld)] = 3Cs(p, O) (d) (1.40)

defines a measure of coherence Cy satisfying (i)-(v). Mathematically, a measure of
distinguishability D(p1, p2) is a non-negative function which contracts under any
evolution of the states (i.e. under any CPTP linear operation £): D[L(p1), L(p2)] <
D(p1, p2) (Bengtsson and Zyczkowski, 2007). In particular, if £ is a unitary evolution,
the distinguishability between p; and ps is conserved throughout the evolution'?.
Pictorially speaking, the space of quantum states rotates as a rigid body under a unitary
evolution. In general, loss of distinguishability under evolution comes from the fact
that noise and dissipation lead to a loss of structure of p; and p2, and thus to a decrease
of our ability to distinguish them from each other'*. Among the distinguishability
measures, of particular interest are those based on a metric, that is, an infinitesimal
notion of distance. If g is a metric, then the infinitesimal squared length from p to
p+dpis

ds® = g dp'dp” (1.41)

where summation over repeated indices is understood, and i, v = 1, ... D? label the
entries of the D x D density-matrix p. Then, the distance between p; and p, along a

path ~ joining p; and ps in the Hilbert space is

D, (p1,p2) = / ds . (1.42)
gl
The distinguishability between p; and ps is then defined as the length of the shortest
path joining them (the geodesic distance) D(p1, p2) = miny D (p1, p2). Petz (1996)
showed that any metric contractive under evolution must be of the form (up to a

B D(p1, p2) = D(LIL (1)), LIL™ (p2)] < DIL(p1), L(p2)] < D(p1, p2), s0 that the inequali-
ties are in fact equalities.

' For classical probability distributions p; and pa, this corresponds to the fact that, for instance, under
a stochastic map, p1 and p» flow towards some fixed point, and thus become less and less distinguishable
from each other.
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multiplicative constant)'?

PP (OF S 3

2 = pif(pj/pi)

with p = >, p;|2) (2], and dp;; = (i|dp|j). f(x) > 0is a function which fulfills a set

of conditions, among which
a) f(z) =zf(1/x);
b) f(1)=1.

The diagonal terms 7 = j of Eq. (1.43) reconstruct the Fisher information for the
probability distribution p;, see Eq. (1.17). Here, dp = —i[O, p]dt, so that |dp;;|*> =
110, pli;1?(dt)? = |(i|O|5)|*(p; — pi)*(dt)?. In particular, dp; = O for all i. This

leads us to introduce the following measure of coherence

f(()) (pi - pj)2 . 12
Ci(p, O) = i|O)? . (1.44)
0.0) = S Y e o
J
If p is a pure state [1)) (1], Cy is just the variance of O'°, but it is otherwise smaller

that the variance. It can be proved that Cy satisfies conditions (i)-(v):
(i) Nonnegativity is manifest, and C¢(p, O) = 0iff Vi, j (dp);; = 0iff [p, O] = 0.
(i1) and (iii) are proved in the Appendix of Zhang et al. (2016).

(iv-b) is proved in Appendix A.
(v) is discussed in Section 1.9.

In particular, the quantum Fisher information is equal to 4Cr with F(z) =
(1 4+ x)/2 (Pezze and Smerzi, 2014), which obviously satisfies the conditions a)
and b). Another example is provided by the quantum variance introduced in Section
1.7. Finally, we note the following inequalities, valid for any f (Gibilisco, Imparato,
and Isola, 2009)

1
Cr <Cp < —=C 1.45
=0 4

which imply, in particular, that all members of the family have the same properties as

far as the scaling behavior with system size, or temperature dependence for equilibrium

'> The prefactor £(0)/2 is chosen in such a way that the corresponding coherence measure is the
variance for pure states. Different normalization choices can be found in the literature.
'8 Indeed, noting |¢)) = |i = 1) and (|¢)) an orthonormal basis of the Hilbert space, p1 = 1 and

piz1 = 0, Cr(J0)(9], 0) = L2235, L |($lOL)* = (O = [¥)()Of) = (»]O?|y) —
(] Of)>.
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states, are concerned. These inequalities confirm that all the coherence measures of
the family quantify the same physical property of the system: the width over which it
extends coherently in the space of the eigenvalues of O, or in other words, the coherent

fluctuations of O.

1.6 Coherent fluctuations and dynamical structure
factor

As a further unifying aspect for the coherence measures introduced in Section 1.5.2,
we show that if p is a thermal equilibrium state at inverse temperature 3 = (kgT)~!,
p = e P /Z, all of them can be related to the dynamical structure factor for the
fluctuations of O'7 (Forster, 1995; Tauber, 2014)

Soo(w) = /_ gt 4450(1)50(0)) (1.46)

where 60 = O — (O) and O(t) = "/hOQe="H/" In particular, the variance of O
is the integral over all frequencies of the dynamical structure factor

(620) 101 = (50(0)50(0)) = / T g w). (1.47)

oo 2T

The coherence measure C; takes the following expression

¢ 0) = [ 52 n(Bh)(1 - ) Soo(w) (1.48)

where hé is a quantum filter

() = F(0) (1.49)

parametrized by the function f'8. As h?(z) ~ z at small z, it filters out the low
frequencies w < kpT'/h in the w-integral of Eq. (1.48). AtT = 0 (8 — o0), h? =1,

17 The expression of the QFI in terms of the dynamical structure factor was first proved by Hauke
et al. (2016). Here, we generalize this result to any member Cy of the family of coherence measures.

'® We obtain Eq. (1.48) as follows. First, denoting p = 3", p;|i)(i|, such that H|i) = Ej|i) and
pi = e BB /Z, we obtain the following expression for the dynamical structure factor

+oo ) it
Soo(w) / dt 6" S py e P (515015) (51501i)
—oo W5
> " pi 2mdlw + (B — E;)/h] |(i|50]5)]? (1.50)

2%
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and the total variance is recovered'’. This result is intuitive, in that only frequencies
such that Aiw > kpT are sensitive to quantum-mechanical effects, and are thus
the only ones to contribute to the coherent fluctuations of O, while the frequencies
such that Aiw < kpT contribute to the incoherent fluctuations. Alternatively, the
dynamical structure factor may be expressed in terms of the imaginary part of the
dynamical susceptibility via the fluctuation-dissipation theorem (Callen and Welton,

1951; Forster, 1995)
2h
Soo(w) = HWX,(/?O(W) (1.55)
where x(),(w) is the imaginary part of the dynamical susceptibility xoo(w), charac-
terizing the average increase of (O)(t) at frequency w if a small periodic forcing in

the form of —e(Oe™! + h.c.)/2 added to the Hamiltonian is exerted
(00)(w) = exoo(w) + O(e*) , (1.56)

where (00)(t) = (O)¢(t) — (O)c—p.
The imaginary part X~ (w > 0) characterizes energy absorption by the system
under the driving force. Using the fluctuation-dissipation theorem, Eq. (1.55), the

coherence measure C can then be expressed as

*d
Cr(p.0) = h [~ () Xpolw). (1.57)

In particular, the critical behavior of quantum fluctuations at a phase transition can be

traced back to the low frequency behavior of x”, and of the quantum filter f(0)(1 —

Since, for w # 0, we may keep only 4 # j in the sum, we replace |(i|§O|35)|* by |(¢|O|5)|?. This
expression of Soo (w) is to be compared with the expression of C¢, Eq. (1.44)

Cr =Y pi g5(ps/po)|(|O15)? (1.51)
¥
with gf(z) = @ (1]?(;”))2. Since p; /pi = e P Fi=FD we have that
Foo —Bhw
91(psfp) = [ dw Sl + (B~ B/ gye™) (152
and hence the expression
o dw —Bhw
Cy = / — gy(e ) Soo(w) . (1.53)
Lo 2T
Then, using Soo (—w) = e " Spo(w) and g¢(z) = xgs(1/x), we conclude that
T dw _ Bhw w T dw _ Bhw
Cy :/ o l9r(e7") Soo (@) + g5 (™) Soo(~w)] :/ 5 205(e”) Soo ().
0 ™ 0 2m

(1.54)
This expression coincides with Eq. (1.48) with the quantum filter h?(w) =2g5(e™™)/(1—e"") =

FO)A—e")/f(e™).
' Note that S(w < 0) = 0 at T = 0.
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e Bhw) | f(e=PM) which is linear at small w. On the other hand, the total variance of
Ois
2 * dw "
(0°O)tot = R — coth(Bhw/2) xpo(w) , (1.58)
0

where the function coth(fShw/2) behaves as 1/w at small w, namely it enhances the

low frequency part of the integrand.

1.7 Quantum coherence and thermodynamics: the
quantum variance

Considerations of previous Section 1.5 lead to criteria that a good measure of coherence
is expected to satisfy. These criteria are motivated both by physical and mathematical
considerations. There exists a whole family of coherence measures fulfilling these
criteria, and some of them (like the quantum Fisher information) have additional,
special physical meaning which translates into experimental significance. In this
section, we introduce another member of this family of coherence measures, the
quantum variance (QV), by considering the effect of the quantum uncertainty principle
onto the equilibrium fluctuations of an observable for a system in contact with a heat
bath. In the case of a particle confined in a harmonic potential %mw2x2, we proposed

in Section 1.2 to define the QV of the position (§%z)¢ as

<62x>t0t = <52x>equipartition + <52$>Q (1.59)

where %mw2<52$>equipartition = %k gT, with kg the Boltzmann constant and 7" the

temperature. Namely: the QV quantifies the amount by which a thermodynamic
identity valid for classical systems is violated. The equipartition theorem is in fact a
special instance of the more general fluctuation-dissipation theorem (FDT), valid for
classical systems at thermal equilibrium for any observable O:

50y = kpTx¥4 1.60
< > classical FDT BEXo0o ( )

where X552 is the static susceptibility of (O) with respect to the application of a small

field e coupled to the same observable O. If H is the Hamiltonian of the system, the

definition of x$5% is the following:

H — H—eO (1.61)
(0) S (0) +exB% +0() . (1.62)

For instance, if O = M? is the magnetization along the direction z, € is a small

magnetic field along z, and x35% = 8%{2) o If O = [da e**n(z) is some
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Fourier component of the density, then € is a potential oscillating in space at the same

wave-vector k, and x35% (k) = 6<8O€ 5| and so on.
e=0

This simple relation between the static susceptibility and the variance of O at equi-
librium cannot hold in general for quantum systems, as the example of the harmonic
oscillator illustrates. Furthermore, the classical FDT predicts that all fluctuations
vanish at 7' = 0 — provided that 353 does not diverge at low 7' 20 But according to
quantum mechanics, at 7' = 0 almost all observables continue to fluctuate — in fact,
any observable which does not commute with the Hamiltonian continues to fluctuate,
since the ground state is generally not one of its eigenstates. What the classical FDT
ignores are precisely these fluctuations related to Heisenberg principle, which are the
only one subsisting down to 7" = 0. In other words, the classical FDT neglects the
possibility for a quantum system to be in a coherent superposition of several classical
configurations, or in short, the classical FDT ignores coherent fluctuations. We are
thus lead to define the QV of O as the part of fluctuations not captured by the classical
FDT

(620) g = (0°O)tor — kpT XSS . (1.63)

As we shall see, (620)¢g > 0 by construction.

1.7.1 QV and Heisenberg principle

The nonzero value of (§20)) can be directly traced back to the noncommutativity
of O with the Hamiltonian, [O, H] # 0. Indeed, if they commute, the eigenstates
of 1 can be chosen among the eigenstates of O, and the classical reasoning holds?'.

More generally, the susceptibility X% takes the following expression in terms of the

2 Quantum-mechanically one could envision that 2

ksTx*** — 0 for non-degenerate ground states.

2! The origin of the FDT (620) = kpTx & for classical systems is that upon the application of
—e0, each microscopic configuration C of the system is shifted in energy by an amount —eO(C), where
O(C) is the value that the observable O takes in the microscopic configuration C. Then, the average
value of O in the presence of the perturbation reads

— oo when T" — 0 but one can prove that

(O)(e) = % S 0(C)e IEO 0@ (1.64)
C

where E(C) is the energy of the configuration C in the absence of the perturbation, and 8 = (kgT)™*.
Z(e) = 3, e PE=<O©)] is the partition function. The classical FDT then follows by differentiating
(O)(€) with respect to €:

stat __ a<0> _ l 2 —BE(C) _ laﬁ
Xo5 = 57| =07 ;0(6) e (©0) 3¢

= B[(O?) —(0)’].  (1.65)

e=0

The partition function in the quantum case is Z(e) = Tr[e”#*~<)]. If |C) denote the common
eigenstates of  and O, with eigenvalues E(C) and O(C), the partition function takes the same
expression as in the classical case Z(e) = 3", (Cle P =)|C) = 3, ¢ ALEE) =0,
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so-called imaginary-time correlations of O

B
ikt = /0 dr (O()0(0)) — (0)? (1.6)

where O(7) = e Qe . Averages are taken at termal equilibrium (-) = Tr(- e =) /7?2,
In general, kTS5 < (520), with the equality holding iff [0, H] = 0>. So finally
we have that

(6°0)g > 0 and (60)g = 0iff [0, H] = 0. (1.69)

The QV thus quantifies the contribution of the quantum uncertainty principle, Eq.
(1.8), to equilibrium fluctuations of the observable . We still have to show that the
QV satisfies the reasonable requirements identified in Section 1.5 that any measure of
coherence should fulfill, and we are going to do so by showing that the QV belongs
to the family of measures of coherence derived from the notion of distinguishability
between p and p(t) = e~ 0 peitQ introduced in Section 1.5. Before doing so, we give
another intuitive meaning of the QV in terms of imaginary-time fluctuations within
the path-integral formulation of quantum statistical mechanics (Feynman and Hibbs,

1965; Frérot and Roscilde, 2016b; Malpetti, 2016)

1.7.2 QV and path integrals

For classical systems, the partition function Z = Tr(e*m{) is a sum over the micro-
scopic configurations of the system, each configuration being weighted by a Boltzmann

factor e #F(C)_ As we discussed, this calculation ignores the possibility for a quantum

22 The proof is as follows. We consider H; = H — V, and g(8) = ePMe M1 g obeys the
differential equation Agg = ™ (H — H1)e PH1 = eBM Y e=AM1 and the solution is (since g(0) = 1)
g(B) =1+ fog dr e™"Ve~ ™M1, So we have that

B
e PHL = oM +/ dr e "MV (r) + O(V?). (1.67)
0

From this equation, we get that Z; = Tre™#"1 = Z(1 4 8(V)) 4+ O(V'?). On the other hand, we
have that Tr(e #*10) = Tr(e "™ O) + [/ dr Tr(e #™V (7)O) + O(V?). Finally, we arrive at the

desired result 5

(O)(V) = {0)(0) +/ dr [(V(r)0(0)) = (V)(O)] (1.68)

and Eq. (1.66) follows by taking V' = €O.

® We show that V7 (O(T)O(0)) < (O?). Introducing X = O(7) — O(0), we have
(XXT) > 0 with equality iff X = 0. Since X' = O(—7) — O, this is is equivalent to
(O(T)O(=7)) +(0?) > (O(1)0(0)) + (O(0)O(~T)). Since (O(11)O(2)) = (O(71 — 72)O(0)),
we finally have (O(7)0(0)) < 1 ((O*)+ (O(27)0(0))). Iteratin