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Part I

Coherent fluctuations and
quantum correlations in

many-body systems: generalities

Toutes choses acquièrent de la
profondeur — plus que de la
profondeur, quelque chose comme
une quatrième dimension.

Henri Bergson





Chapter 1

Quantum coherence and
quantum uncertainty

1.1 Quantum uncertainty and thermal de Broglie
wavelength

The concept of coherent fluctuations (or quantum fluctuations) is intimately related

to the wave-particle duality at the heart of quantum theory. In the early years of

the 20th century, the experimental observations on the black-body radiation and the

photoelectric effect led Einstein (1905) to postulate the existence of light corpuscles,

or photons, in apparent contradiction with the representation of light as a wave

phenomenon (see, for instance, the book of Jammer (1966) for an historical overview

of the conceptual development of quantum mechanics). Reversing the logic, de

Broglie (1924) made the hypothesis that massive particles have in turn a wave-like

nature. The experimental confirmation of the wave-like behaviors of electrons by

Davisson and Germer (1928) firmly established the wave-particle duality as a basic

concept to understand natural phenomena. This duality between wave-like and particle-

like behavior of matter has then been rooted into the formal structure of quantum

mechanics by Schrödinger equation for the wavefunction (Schrödinger, 1926), and

Born’s statistical interpretation of the latter (Born, 1926). The wave-particle duality is

one of the facets of Heisenberg uncertainty principle (Heisenberg, 1927), from which

Bohr (1928) elaborated the more philosophical concept of complementarity.

In which situations can we expect wave-like effects to play a significant role in

the behavior of a many-particle ensemble, for instance a cloud of atoms at thermal

equilibrium? Following the original intuition of de Broglie (1924), to each atom of
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mass m and velocity v we associate a wavelength

λdB =
h

mv
(1.1)

with h the Planck constant. Using that mv2 ∼ kBT , T being the temperature of the

gas and kB Boltzmann constant, we arrive at

λdB ∼
h√

mkBT
. (1.2)

If the inter-particle distance d is much larger than the thermal de Broglie wavelength

λdB , particles can be considered as classical, distinguishable objects, while in the

regime where d . λdB , the wavepackets associated to each particle start to overlap,

leading to interference phenomena which significantly alter the behavior of the gas with

respect to the predictions of classical mechanics. In this regime, quantum fluctuations

(namely, the coherent superposition of different positions in the state vector of each

particle) cannot be ignored, and the particles start to develop non-classical forms of

correlations – they become entangled1. In summary, this analysis shows that quantum

mechanics adds a new length scale to the problem, the thermal de Broglie wavelength,

as the typical distance that particles can explore coherently. The thermal de Broglie

wavelength is different from 1) the interparticle distance; and 2) the typical distance

that particles can explore (coherently and incoherently) — namely the size of the

cloud.

1.2 The harmonic oscillator example

To gain intuition about the physical origin of the coherent superposition of an atom

over different positions, we consider the simple example of a particle of mass m

confined in a harmonic potential, in contact with a heat bath at temperature T . We are

interested in the uncertainty of the particle position inside the trap. This uncertainty

has two origins 1) thermal fluctuations and 2) intrinsic quantum fluctuations which

subsist even at T = 0. The total (squared) uncertainty, resulting from thermal and

quantum effects together, can be quantified by the variance of the position

〈δ2x〉tot = 〈x2〉 − 〈x〉2 . (1.3)

Elementary algebra shows that2

〈δ2x〉tot = x2
0

(
n̄+

1

2

)
. (1.5)

1 The word “entangled”, synonym for “non-separable”, has a mathematical definition to be given in
Section 2.1, translating the idea of correlated quantum superposition.

2The Hamiltonian is

H =
p2

2m
+

1

2
mω2x2 = ~ω

(
a†a+

1

2

)
(1.4)
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with x2
0 = ~/mω, and n̄ is the mean number of energy quanta. Using Bose-Einstein

formula for n̄, we arrive at

〈δ2x〉tot =
~
mω

(
1

e~ω/kBT − 1
+

1

2

)
. (1.6)

At high temperature (~ω � kBT ), the classical prediction of the equipartition theorem

〈δ2x〉tot = kBT/mω
2 is recovered, while in the opposite limit the variance of the

position saturates to ~/2mω due to the residual zero-point motion of the particle. In

fact, classical mechanics predicts that 〈δ2x〉tot = kBT/mω
2 at any temperature. It is

then tempting to interpret kBT/mω2 as the thermal contribution to the uncertainty of

the position, the remainder being the quantum uncertainty, or, more accurately, the

quantum variance of the position

〈δ2x〉tot = 〈δ2x〉equipartition (classical) + 〈δ2x〉Q . (1.7)

It is natural to expect that quantum fluctuations are reduced by thermal agitation, and

in fact the quantum variance of the position is proportional to λ2
dB = h2/mkBT at

low trap frequency (~ω � kBT ). In this respect, the thermal de Broglie wavelength

may be interpreted as the quantum uncertainty of the position of a particle in a cloud,

in addition to the prediction of classical mechanics.

1.3 Coherent vs. incoherent uncertainty

The analysis of the previous section conveys the general idea that the uncertainty of

physical quantities has two sources:

1. The uncertainty on the experimental preparation of the system generates a

certain randomness in the microstate |ψ〉. To take into account the uncertainty

on the preparation, one introduces a statistical ensemble of states {pi, |ψi〉},
where pi is the probability for having actually prepared the microstate |ψi〉.
This statistical ensemble is incorporated in the density operator (or matrix)

ρ =
∑

i pi|ψi〉〈ψi|, often called simply “the state ρ”. The uncertainty on the

actual microstate is a source of incoherent fluctuations. When the preparation

consists of placing the system in contact with a heat bath, incoherent fluctuations

are equivalently called “thermal fluctuations”.

with a = x̃+ip̃√
2

, a† = x̃−ip̃√
2

, x̃ = x
√
mω/~ = x/x0 and p̃ = p/

√
m~ω = p/p0. Operators a and a†

satisfy the bosonic commutation relations [a, a†] = 1. Using x = x0
a+a†√

2
and 〈a(†)〉 = 〈[a(†)]2〉 = 0,

we obtain the desired result with n̄ = 〈a†a〉.
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2. Even when the system is in a particular microstate |ψ〉, observables may have an

intrinsic quantum uncertainty. This happens whenever |ψ〉 is not an eigenstate

of the observable in question. The quantum uncertainty cannot be traced back

to a lack of accuracy during the preparation of the system, and is absent in

classical physics. It is the source of coherent fluctuations.

In the present work we show that the two contributions can be formally separated in

the form of an incoherent and a coherent contribution to the variance of any observable,

both of which are measurable in the case of thermal equilibrium. In general we expect

that an observable O possesses quantum fluctuations in a state ρ if and only if O and

ρ do not commute with each other. This expectation may be promoted to a general

principle:

Quantum uncertainty principle

[O, ρ] 6= 0 ⇐⇒ O has quantum fluctuations

if the system is in the state ρ
(1.8)

In the specific case of thermal equilibrium states, this is equivalent to the condition

[O,H] 6= 0, whereH is the Hamiltonian of the system. In fact, it is tempting to regard

the “Quantum uncertainty principle” as one of the facets of Heisenberg uncertainty

relations, and we might use the term “Heisenberg uncertainty” as a synonym for

“quantum uncertainty”.

In conclusion of this section, three main questions can be identified.

• How to isolate, both in computations and in experiments, quantum fluctuations

from incoherent uncertainties?

• Under which conditions can a function C(ρ,O) be said to quantify the coherence

of the state ρ with respect to the eigenstates of the observable O?

• What are the interference phenomena associated to quantum fluctuations which

justify the term “coherent fluctuations”?

It is the purpose of the following sections to address these questions.

1.4 Quantum coherence and interferometry

1.4.1 A simple example of interferometer

In the previous section, we introduced quantum fluctuations as fluctuations which

cannot be understood from the perspective of a statistical ensemble, but rather as
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a manifestation of the quantum uncertainty principle for non-conserved quantities

(namely: for observables which do not commute with the density operator). In this

section, we introduce an a priori independent notion of quantum fluctuations from

the perspective of interference phenomena. However, the two notions turn out to be

equivalent. This equivalence is elaborated in Sections 1.5 and 1.7. Rather generally,

an interference experiment can be sketched as follows: 1) we consider an input state

|ψ〉 = λ0|0〉+ λ1|1〉, where |λ0|2 + |λ1|2 = 1, and |0〉 and |1〉 represent the two arms

of the interferometer (we consider real and positive λ0, λ1 and absorb possible phases

into the definition of |0〉 and |1〉); and 2) a phase is accumulated along each arm to

yield |ψ(φ0, φ1)〉 = λ0e
iφ0 |0〉 + λ1e

iφ1 |1〉. Finally, an observable is measured on

|ψ(φ0, φ1)〉, for instance Sx = (|1〉〈0|+ |0〉〈1|)/2, whose average value is

s = 〈ψ(φ0, φ1)|Sx|ψ(φ0, φ1)〉
= λ0λ1 cos(φ0 − φ1) . (1.9)

The signal s oscillates as a function of the phase difference on the two arms φ = φ0 −
φ1. The visibility of the interference fringes V = 2λ0λ1 is nothing else than (twice)

the standard deviation (defined as the square root of the variance) of Sz = (|0〉〈0| −
|1〉〈1|)/2, quantifying the superposition of |ψ〉 in the basis (|0〉, |1〉), the eigenstates of

Sz3. It is the variance of Sz which is related to the visibility because Sz is the so-called

generator of the transformation of |ψ〉 in the interferometer (namely, the evolution in

the interferometer can be written, up to a global phase, as |ψ(φ0, φ1)〉 = eiS
zφ|ψ〉).

But the variance of Sz cannot in general quantify the visibility of the interference

fringes, for the state could have the same variance without any coherence between |0〉
and |1〉4. If one imagines a situation of partial dephasing of ρ

ρα(φ) = λ2
0|0〉〈0|+ λ2

1|1〉〈1|+ α (λ0λ1e
iφ|0〉〈1|+ h.c.) (1.10)

with 0 < α < 1 and h.c. denoting the hermitian conjugate, a calculation of 〈Sx〉 gives

Tr[ρα(φ)Sx] = αλ0λ1 cosφ , (1.11)

so that the visibility is now reduced by a factor α. For any α, the variance of Sz

is (λ0λ1)2, but only part of this variance comes from coherent fluctuations, which

manifest themselves in interference phenomena. It is then natural to split the variance
3 Indeed 〈δ2Sz〉 = 〈ψ|(Sz)2|ψ〉 − 〈ψ|Sz|ψ〉2 = (1/4)[1 − (λ2

0 − λ2
1)2] = (λ0λ1)2 where we

used that 1 = λ2
0 + λ2

1.
4 If ρ = |ψ〉〈ψ| → ρdecoh = λ2

0|0〉〈0|+λ2
1|1〉〈1|, then ρdecoh(φ) = eiS

zφρdecohe−iS
zφ = ρdecoh

(the state is unable to show any interference effect), while 〈δ2Sz〉(ρdecoh) = 〈δ2Sz〉(|ψ〉) = (λ0λ1)2

(the uncertainty on σz , now fully of incoherent origin, is the same as before decoherence had been
introduced).
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into an incoherent and a coherent part, the latter being responsible for interference

phenomena

〈δ2Sz〉tot = 〈δ2Sz〉incoh + 〈δ2Sz〉coh . (1.12)

The coherent part is suppressed in favor of the incoherent one by the noise on the

relative phase between |0〉 and |1〉.
More generally, one can conceive an interferometer with more than two arms

|ψ〉 = λ1|ψ1〉+ λ2|ψ2〉 · · ·+ λn|ψn〉 (1.13)

|ψ(φ1 . . . φn)〉 =
∑

k

λke
iφk |ψk〉 . (1.14)

Intuitively, interference effects are going to be significant if the number of relevant

λk’s is large. This raises the following questions:

• How to quantify the number of relevant |ψk〉’s over which the state of the system

extends coherently (especially if the state is mixed)?

• How is it related to the visibility of interference phenomena?

The first question turns out to be the same as the question raised at the end of the

previous Section 1.1 (namely, “How to define, compute and measure quantum fluc-

tuations?”), and an answer will be provided in the following Sections 1.5 and 1.7.

Concerning the visibility in interference experiments, the question may be a bit too

general to be given a simple answer: we now have n phases instead of 2, and the very

meaning of “visibility of the fringes” in this high-dimensional space is not clear (see

however von Prillwitz, Rudnicki, and Mintert (2015) and Biswas, Garcı́a Dı́az, and

Winter (2017) for studies in that direction). Nonetheless, the interferometric point of

view provides an elegant mathematical framework to quantify coherent fluctuations,

as shown in Section 1.5. Also, quantifying the coherent extent of a state on a family of

other states, in relationship with the visibility in interference experiments, is a question

of high experimental and even technological significance if the state ρ is intended to

serve as a probe for estimating the phase difference on the arms of an interferometer

(Pezzè et al., 2016). In the following paragraph, we introduce a central quantity in

the context of phase estimation, the quantum Fisher information (Pezzè and Smerzi,

2014).

1.4.2 Quantum Fisher information

Phase estimation. As a special case of the multipath interferometer, we consider

the situation in which one aims at measuring with great accuracy the value of a field
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φ (a magnetic field, a gravity field, a local acceleration field, and so on). A probe

quantum system in the state ρ is sent into the region where the field is to be measured,

and, neglecting dissipative processes, it undergoes the unitary evolution

ρ(φ) = e−iφOρeiφO . (1.15)

If a magnetic field of magnitude φ in the z direction is present, the observableO = Sz

is the z component of the magnetic moment of the quantum system; if a gravitational

potential φz is present, then O = z is the z-coordinate of the constituents of the

quantum system, and so on. Now, after the unitary evolution, some measurement A is

performed on the probe, yielding the result a with probability pφ(a). If this probability

depends on φ, measuring A provides information on the actual strength of the field. If

one is to evaluate the sensitivity of the interferometer, it is meaningful to determine its

ability to discriminate between closely separated values of φ, say φ and φ+ dφ. So

the question is the following: how well can we distinguish the probability distribution

pφ from pφ+dφ by measuring A several times? Of course, if the value of the field φ

is perfectly stable, and the measurement repeated an infinite number of times, the

statistics of the results will exactly coincide with pφ for one, and only one value of

φ (unless pφ = pφ′ , in which case there is no way to discriminate between φ and φ′

by measuring A). So in this idealized situation, one is able to discriminate arbitrarily

close values of φ, however similar pφ and pφ+dφ can be. But what if only a finite,

albeit very large, number N of measurements can be performed?

Fisher information and the Cramér-Rao bound. This is a basic question of esti-

mation theory, and the answer is given by the Cramér-Rao bound (Pezzè and Smerzi,

2014): the variance ∆2φest on the estimation of φ is lower bounded by the inverse of

N times the Fisher information of pφ

∆2φest ≥
1

NI[φ,A]
(1.16)

and the bound is asymptotically reachable in the limitN →∞. The Fisher information

I[φ,A] =
∑

a

[∂φpφ(a)]2

pφ(a)
(1.17)

is a measure of the distinguishability D[pφ, pφ+dφ] between pφ and pφ+dφ in the limit

dφ→ 05

D[pφ, pφ+dφ] =
1

2
I[φ,A](dφ)2 . (1.20)

5 as quantified by the relative entropy (Vedral, 2002). The relative entropy (or Kullback-Leibler diver-
gence) between two probability distributions p and q is defined as Srel(p|q) =

∑
a p(a) log[p(a)/q(a)].
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The intuitive meaning of this result is that the more different the probability distribution

pφ is from pφ+dφ, the more information we obtain on the value of φ by measuring

A. The amount of information about φ contained in pφ is quantified by the Fisher

information, and the Cramér-Rao bound provides the quantitative link between this

amount of information, and the precision on the value of φ we obtain by measuring A.

Quantum Fisher information. Now, the precision of the evaluation of φ depends

on the measurement A performed on the probe. In order to obtain the best possible

precision, the Fisher information has to be maximized over all possible measurements,

yielding the so-called quantum Cramér-Rao bound

∆2φest ≥
1

NFQ
. (1.21)

The quantum Fisher information (QFI)

FQ = max
meas.A

I[φ,A] (1.22)

where the max is over all the possible measurements, is thus the fundamental property

of the input state ρ of the system which quantifies its ability to probe the field φ very

accurately in an interferometric setup6. Interestingly, FQ does not depend any more

on φ, although the optimal measurement A to perform might do so. This important

property will be discussed in Section 1.5. The QFI is then only a property of the state

ρ, and of the observable O which couples to φ in the interferometer.

One has

log

[
pφ+dφ(a)

pφ(a)

]
= log

(
1 +

dφ

pφ(a)
∂φpφ(a) +

(dφ)2

2pφ(a)
∂2
φpφ(a) +O[(dφ)3]

)
=

dφ

pφ(a)
∂φpφ(a) +

(dφ)2

2pφ(a)
∂2
φpφ(a)

−1

2

(
dφ

pφ(a)
∂φpφ(a)

)2

+O[(dφ)3] . (1.18)

Hence, the relative entropy between pφ and pφ+dφ is

Srel(pφ|pφ+dφ) = −
∑
a

pφ(a) log[pφ+dφ(a)/pφ(a)]

= −dφ∂φ
∑
a

pφ(a)− (dφ)2

2
∂2
φ

∑
a

pφ(a) +
(dφ)2

2

∑
a

[∂φpφ(a)]2

pφ(a)
.(1.19)

As
∑
a pφ(a) = 1 for all φ, the first two terms vanish and we obtained the result of Eq. (1.20).

6 Or, more generally, when the system undergoes an arbitrary evolution parametrized by the field φ.
Our focus is here on interferometry because we elaborate on the concept of coherence, but the theory of
parameter estimation is not restricted to interferometric setups.
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Quantum Fisher information for pure states. Quite remarkably, if ρ is a pure

state, the QFI takes the physically transparent expression (Pezzè and Smerzi, 2014)

FQ[ρ,O] = 4〈δ2O〉ρ=|ψ〉〈ψ| = 4(〈ψ|O2|ψ〉 − 〈ψ|O|ψ〉2) . (1.23)

In full agreement with the qualitative discussion at the beginning of this section, the

variance of O in the state |ψ〉 directly quantifies the ability of |ψ〉 to exhibit high-

visibility interference phenomena with respect to the eigenstates of O. The physical

intuition behind this observation is that if pφ changes very rapidly with φ, it means

that ρ(φ) = e−iφOρeiφO changes very rapidly with φ. If ρ is a pure state |ψ〉, this is

achieved when |ψ〉 is not an eigenstates of O, so that the transformation e−iφO|ψ〉
transforms |ψ〉 significantly. In this case, the extent of |ψ〉 over the spectrum of O
is quantified the variance. If instead ρ is a mixed state, the coherent extent of ρ over

the spectrum of O is rather quantified by the QFI, which is thus a kind of quantum

variance (QV)7.

1.4.3 Uncertainty relations

We argued that coherent fluctuations are a manifestation of the quantum uncertainty

principle. It is legitimate to ask if they are involved in some analog of the Heisenberg

uncertainty relation for two non-commuting observables A and B

〈δ2A〉〈δ2B〉 ≥ 1

4
|〈[A,B]〉|2 . (1.24)

The answer is yes, as we show in this section. In fact, it is a basic result of estimation

theory that the Fisher information I(φ,A) [Eq. (1.17)] of the probability distribution

pφ(a) for the eigenvalues a of A, is lower bounded by the following expression

I(φ,A) ≥ |∂φ〈A〉|
2

〈δ2A〉(φ)
. (1.25)

Inequality (1.25) can be proved using Cauchy-Schwarz inequality8. The meaning

of this inequality is simple. Let us imagine that the probability distribution pφ(a) is
7 The very same idea lies behind the concept of “quantum speed limit”. In interferometry, if φ

is very small, one needs a very large coherent extent of ρ across the eigenstates of O in order for
ρ(φ) = e−iφOρeiφO to be distinguishable from ρ — a very large QV. Conversely, if the QV is small,
the time needed for ρ(t) = e−itOρeitO to become distinguishable from ρ is large — at least larger than
some bound specified by the quantum speed limit. For a study of quantum speed limits in connection
with the coherence content of the ρ, see Pires et al. (2016) and references therein.

8 The following proof is suggested in a footnote of Pezzé and Smerzi (2009). It is essentially
identical to the proof of the Cramér-Rao bound (Pezzè and Smerzi, 2014). By definition of 〈A〉, for any
value of φ we have ∫

da pφ(a)[a− 〈A〉(φ)] = 0 . (1.26)
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peaked around ā = 〈A〉(φ) with a standard deviation (std) ∆A =
√
〈δ2A〉(φ). If A

is measured and if the value a is obtained, we expect it to be close to ā(φ) (within the

std). Our confidence interval ∆φest for φ is thus fixed by

∆φest|∂φ〈A〉| = ∆A . (1.30)

The Cramér-Rao bound, Eq. (1.16) imposes that this confidence interval be larger

than I(φ,A)−1/2, which corresponds to Eq. (1.25)9. Basically, replacing A with any

power of A, inequality (1.25) states that the Fisher information is larger than the rate

of change of any one of the moments of pφ(a): it contains information on the rate of

change of the full distribution pφ(a), capturing the rate of change of all the moments

together.

Like in previous section, we specify our attention to the case where the parameter

φ enters in a unitary transformation U(φ) = e−iφB generated by some observable B,

so that

∂φ〈A〉 = i[B,A] . (1.31)

Given that the QFI is the upper bound to the Fisher information associated to all

possible observables A that could be measured, we finally obtain

FQ(B)〈δ2A〉 ≥ |〈[A,B]〉|2 . (1.32)

Eq. (1.32) reduces to the standard Heisenberg inequality, Eq. (1.24), for pure states,

for which FQ(B) = 4〈δ2B〉. For mixed states, it is more stringent than the latter,

since in general FQ(B) ≤ 4〈δ2B〉 [namely, Eq. (1.32) implies Eq. (1.24)].

In conclusion, Eq. (1.32) represents an interesting complementarity relation

between the quantum and total fluctuations of two non-commuting observables, the

quantum fluctuations being quantified by the QFI.

Differentiating with respect to φ, we obtain∫
da ∂φpφ(a)[a− 〈A〉(φ)] =

∫
da pφ(a)∂φ〈A〉(φ) . (1.27)

The r.h.s is ∂φ〈A〉(φ), since 〈A〉(φ) is independent of a, and since the probability distribution pφ(a) is
normalized to 1. Then, using that ∂φpφ(a) = pφ(a)∂φ ln pφ(a), we obtain∫

da pφ(a)[∂φ ln pφ(a)][a− 〈A〉(φ)] = ∂φ〈A〉(φ) . (1.28)

Applying Cauchy-Scharz inequality |〈XY 〉|2 ≤ 〈X2〉〈Y 2〉, valid for any pair of random variables X(a)
and Y (a), to X(a) = ∂φ ln pφ(a) and Y (a) = a− 〈A〉(φ), we finally obtain inequality (1.25) with the
Fisher information of the distribution pφ

I(φ,A) =

∫
da pφ(a)[∂φ ln pφ(a)]2 . (1.29)

9 ∆φ2
est = 〈δ2A〉/|∂φ〈A〉|2 ≥ 1/I(φ,A)⇔ I(φ,A) ≥ |∂φ〈A〉|2/〈δ2A〉.
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Finally, we notice that when considering a gaussian state for the two quadratures

p and q of a bosonic mode, the inequality of Eq. (1.32) is saturated:

FQ(p)〈δ2q〉 = ~2 (gaussian states). (1.33)

This result generalizes to mixed gaussian states the well-known property of the

minimal-uncertainty states obtained as ground states of harmonic-oscillator Hamil-

tonians. In the present context, it is simply a consequence of the fact that inequality

(1.25) is saturated for a gaussian probability distribution.

1.5 Mathematical approach to quantum coherence

In Section 1.1, we showed that the de Broglie wavelength, quantifying the spatial extent

over which particles are coherently spread at thermal equilibrium, can be interpreted as

the quantum contribution to the uncertainty of the position, in addition to the prediction

of the equipartition theorem, valid for classical systems only. This idea will be given

a much wider significance in Section 1.7 where the quantum variance is introduced

for any observable. In Section 1.4.2, we approached the more general question of

estimating the coherent extent of an arbitrary state over the eigenstates of an arbitrary

observable. This question was approached from the point of view of interference

phenomena, and it was proposed that the quantum Fisher information (QFI) precisely

measures this quantum uncertainty. In particular, in the case of pure states, the QFI

reduces to (four times) the variance of the observable in question. The physical

intuition behind this result was that the more widely a state ρ coherently extends over

the eigenvectors of O, the more rapidly it evolves with φ in a unitary transformation

U(φ) = e−iφO generated by O, and parametrized by φ. “Rapidly” means here that

there exists some (φ-dependent) observable whose probability distribution in the state

ρ(φ) is very different from its probability distribution in the state ρ(φ+ dφ). The QFI

precisely quantifies this “speed of evolution”.

To avoid confusion, we note that the concept of coherence discussed here is

sometimes called asymmetry in the literature. The study of coherence, both from

a physical and a mathematical point of view, is still a vivid area of research, and

several concepts are not set in stone. The interested reader is referred to Marvian and

Spekkens (2016) for a discussion on various notions of coherence, and to Streltsov,

Adesso, and Plenio (2016) for a review on coherence as a resource.

In the remainder of this section, we shall first discuss a mathematical framework

settled to quantify coherence. Then we will construct a whole family of coherence

measures, to which the QFI belongs, based on the intuition that a state evolves rapidly
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under a unitary transformation if and only if it possesses a large coherence with respect

to the generator of the transformation. Finally, we will show that all these coherence

quantifiers can be measured through to the dynamical structure factor for thermal

equilibrium states.

1.5.1 Axiomatic framework

To justify more rigorously that the QFI, or any other quantity, is a coherence measure,

it is reasonable to introduce a set of mathematical conditions that any coherence

measure C(ρ,O) should fulfill (Streltsov, Adesso, and Plenio, 2016). This approach

highlights several physical and mathematical aspects behind the general concept of

coherence. Proposed conditions are the following:

(i) Quantum uncertainty principle:

C(ρ,O) 6= 0⇐⇒ [ρ,O] 6= 0 . (1.34)

If ρ can be decomposed as an incoherent mixture of eigenstates ofO, all fluctua-

tions of O are of incoherent origin, and C(ρ,O) = 0. Coherent fluctuations are

a manifestation of the quantum uncertainty principle, and can only be present

if [O, ρ] 6= 0. By convention, coherence measures are chosen non-negative,

C(ρ,O) ≥ 0.

(ii) Monotonicity under operations which conserve O:

C(L(ρ),O) ≤ C(ρ,O) (1.35)

if L
(
e−itOρeitO

)
= e−itOL(ρ)eitO, and L is an arbitrary linear evolution for

quantum states [more precisely, L is a completely positive, trace preserving

(CPTP) linear transformation (Wiseman and Milburn, 2010)]. In particular,

if L is a unitary transformation of inverse L−1, the coherence is preserved

throughout the unitary evolution10,11. This condition corresponds to the intuition

that only operations which do not conserve O can create coherence between the

eigenstates of O. In the case of a unitary transformation which commutes with

O, the probability distribution for the fluctuations of O is conserved throughout

the evolution, and we may legitimately expect that the putative distribution for

quantum fluctuations of O is also conserved (Marvian and Spekkens, 2014).

10 Indeed, C(ρ,O) ≥ C(L(ρ),O) ≥ C(L−1[L(ρ)],O) = C(ρ,O), so that C(ρ,O) = C(L(ρ),O).
11 The QFI satisfies this condition. This is the reason why the optimal precision that can be reached

in the evaluation of the small field φ in an interferometric framework is independent of φ, see Section
1.4.2.
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(iii) Convexity with respect to ρ:

C
(∑

i

piρi,O
)
≤
∑

i

piC(ρi,O) . (1.36)

This condition translates the idea that incoherently mixing states can only lead

to a decrease of coherence. In order to create coherence, one needs to coherently

superpose states, not to mix them incoherently.

(iv-a) Additivity under tensor product:

C(ρA ⊗ ρB,OA +OB) = C(ρA,OA) + C(ρB,OB) , (1.37)

where A and B are two quantum systems, and OA(B) is an observable related

to A(B) degrees of freedom12. If the combined state ρAB of two systems A

and B is a tensor product ρA⊗ ρB , they are uncorrelated: fluctuations on A and

B are independent, and so are quantum fluctuations.

Actually, anticipating over the developments of the following sections, one could

argue that a more stringent condition should apply to measures of coherence, namely,

that if A and B only share classical correlations (to be defined later), then quantum

fluctuations on A and B should be independent, leading to the condition

(iv-b)

C(ρAB,OA +OB) = C(ρA,OA) + C(ρB,OB) (1.38)

if ρAB is a classical-quantum or a quantum-classical state (defined in Section

2.1), with

ρA(B) = TrB(A)ρAB . (1.39)

As this condition has not been considered in the litrature so far, we leave this as an

optional stronger requirement, which is indeed fulfilled by the measures of coherence

discussed in this manuscript.

To these requirements widely accepted in the literature (apart from (iv-b) which

had not been proposed), we suggest to add the following physically motivated one:

(v) Absence of divergent behavior at thermal phase transitions. Thermal (i.e. finite

temperature) phase transitions are driven by thermal (namely incoherent) fluctu-

ations, and quantum fluctuations should not become critical at such transitions.

12 The mathematically oriented reader should like to readOA⊗ IB instead ofOA, where IB denotes
the identity operator acting on B Hilbert space, and similarly for OB . Throughout this manuscript, we
follow the physicist notations and always omit the “⊗Ieverything else” factors.
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1.5.2 A family of coherence measures

We now show that measures of coherence in the above sense can be constructed by

translating mathematically the physical intuition that a state ρ evolves swiftly with

t under a unitary transformation U(t) = e−itO if, and only if it possesses a large

coherence with respect to O. That is, we show that if Df [ρ, ρ(dt)] is a measure of

distinguishability (parametrized by a function f which satisfies certain properties to

be discussed shortly) between ρ and ρ(dt) = ρ− i[O, ρ]dt+O(dt2) then

Df [ρ, ρ(dt)] =
1

2
Cf (ρ,O)(dt)2 (1.40)

defines a measure of coherence Cf satisfying (i)-(v). Mathematically, a measure of

distinguishability D(ρ1, ρ2) is a non-negative function which contracts under any

evolution of the states (i.e. under any CPTP linear operation L): D[L(ρ1),L(ρ2)] ≤
D(ρ1, ρ2) (Bengtsson and Zyczkowski, 2007). In particular, if L is a unitary evolution,

the distinguishability between ρ1 and ρ2 is conserved throughout the evolution13.

Pictorially speaking, the space of quantum states rotates as a rigid body under a unitary

evolution. In general, loss of distinguishability under evolution comes from the fact

that noise and dissipation lead to a loss of structure of ρ1 and ρ2, and thus to a decrease

of our ability to distinguish them from each other14. Among the distinguishability

measures, of particular interest are those based on a metric, that is, an infinitesimal

notion of distance. If g is a metric, then the infinitesimal squared length from ρ to

ρ+ dρ is

ds2 = gµνdρ
µdρν (1.41)

where summation over repeated indices is understood, and µ, ν = 1, . . . D2 label the

entries of the D ×D density-matrix ρ. Then, the distance between ρ1 and ρ2 along a

path γ joining ρ1 and ρ2 in the Hilbert space is

Dγ(ρ1, ρ2) =

∫

γ
ds . (1.42)

The distinguishability between ρ1 and ρ2 is then defined as the length of the shortest

path joining them (the geodesic distance) D(ρ1, ρ2) = minγ Dγ(ρ1, ρ2). Petz (1996)

showed that any metric contractive under evolution must be of the form (up to a

13 D(ρ1, ρ2) = D(L[L−1(ρ1)],L[L−1(ρ2)] ≤ D[L(ρ1),L(ρ2)] ≤ D(ρ1, ρ2), so that the inequali-
ties are in fact equalities.

14 For classical probability distributions p1 and p2, this corresponds to the fact that, for instance, under
a stochastic map, p1 and p2 flow towards some fixed point, and thus become less and less distinguishable
from each other.
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multiplicative constant)15

ds2 =
f(0)

2

∑

i,j

|dρij |2
pif(pj/pi)

(1.43)

with ρ =
∑

i pi|i〉〈i|, and dρij = 〈i|dρ|j〉. f(x) ≥ 0 is a function which fulfills a set

of conditions, among which

a) f(x) = xf(1/x) ;

b) f(1) = 1 .

The diagonal terms i = j of Eq. (1.43) reconstruct the Fisher information for the

probability distribution pi, see Eq. (1.17). Here, dρ = −i[O, ρ]dt, so that |dρij |2 =

|[O, ρ]ij |2(dt)2 = |〈i|O|j〉|2(pj − pi)2(dt)2. In particular, dρii = 0 for all i. This

leads us to introduce the following measure of coherence

Cf (ρ,O) =
f(0)

2

∑

i 6=j

(pi − pj)2

pif(pj/pi)
|〈i|O|j〉|2 . (1.44)

If ρ is a pure state |ψ〉〈ψ|, Cf is just the variance of O16, but it is otherwise smaller

that the variance. It can be proved that Cf satisfies conditions (i)-(v):

(i) Nonnegativity is manifest, and Cf (ρ,O) = 0 iff ∀i, j (dρ)ij = 0 iff [ρ,O] = 0.

(ii) and (iii) are proved in the Appendix of Zhang et al. (2016).

(iv-b) is proved in Appendix A.

(v) is discussed in Section 1.9.

In particular, the quantum Fisher information is equal to 4CF with F (x) =

(1 + x)/2 (Pezzè and Smerzi, 2014), which obviously satisfies the conditions a)

and b). Another example is provided by the quantum variance introduced in Section

1.7. Finally, we note the following inequalities, valid for any f (Gibilisco, Imparato,

and Isola, 2009)

Cf ≤ CF ≤
1

2f(0)
Cf (1.45)

which imply, in particular, that all members of the family have the same properties as

far as the scaling behavior with system size, or temperature dependence for equilibrium
15 The prefactor f(0)/2 is chosen in such a way that the corresponding coherence measure is the

variance for pure states. Different normalization choices can be found in the literature.
16 Indeed, noting |ψ〉 = |i = 1〉 and (|i〉) an orthonormal basis of the Hilbert space, p1 = 1 and

pi 6=1 = 0, Cf (|ψ〉〈ψ|,O) = f(0)
2

2
∑
i 6=1

1
f(0)
|〈ψ|O|i〉|2 = 〈ψ|O(1 − |ψ〉〈ψ|)O|ψ〉 = 〈ψ|O2|ψ〉 −

〈ψ|O|ψ〉2.
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states, are concerned. These inequalities confirm that all the coherence measures of

the family quantify the same physical property of the system: the width over which it

extends coherently in the space of the eigenvalues ofO, or in other words, the coherent

fluctuations of O.

1.6 Coherent fluctuations and dynamical structure
factor

As a further unifying aspect for the coherence measures introduced in Section 1.5.2,

we show that if ρ is a thermal equilibrium state at inverse temperature β = (kBT )−1,

ρ = e−βH/Z, all of them can be related to the dynamical structure factor for the

fluctuations of O17 (Forster, 1995; Täuber, 2014)

SOO(ω) =

∫ +∞

−∞
dt eiωt〈δO(t)δO(0)〉 (1.46)

where δO = O − 〈O〉 and O(t) = eitH/~Oe−itH/~. In particular, the variance of O
is the integral over all frequencies of the dynamical structure factor

〈δ2O〉tot = 〈δO(0)δO(0)〉 =

∫ +∞

−∞

dω

2π
SOO(ω) . (1.47)

The coherence measure Cf takes the following expression

Cf (ρ,O) =

∫ ∞

0

dω

2π
hQf (β~ω)(1− e−β~ω) SOO(ω) (1.48)

where hfQ is a quantum filter

hQf (x) = f(0)
1− e−x
f(e−x)

(1.49)

parametrized by the function f18. As hQf (x) ∼ x at small x, it filters out the low

frequencies ω � kBT/~ in the ω-integral of Eq. (1.48). At T = 0 (β →∞), hQf = 1,

17 The expression of the QFI in terms of the dynamical structure factor was first proved by Hauke
et al. (2016). Here, we generalize this result to any member Cf of the family of coherence measures.

18 We obtain Eq. (1.48) as follows. First, denoting ρ =
∑
i pi|i〉〈i|, such that H|i〉 = Ei|i〉 and

pi = e−βEi/Z, we obtain the following expression for the dynamical structure factor

SOO(ω) =

∫ +∞

−∞
dt eiωt

∑
i,j

pi e
it
~ (Ei−Ej)〈i|δO|j〉〈j|δO|i〉

=
∑
i,j

pi 2πδ[ω + (Ei − Ej)/~] |〈i|δO|j〉|2 (1.50)
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and the total variance is recovered19. This result is intuitive, in that only frequencies

such that ~ω � kBT are sensitive to quantum-mechanical effects, and are thus

the only ones to contribute to the coherent fluctuations of O, while the frequencies

such that ~ω � kBT contribute to the incoherent fluctuations. Alternatively, the

dynamical structure factor may be expressed in terms of the imaginary part of the

dynamical susceptibility via the fluctuation-dissipation theorem (Callen and Welton,

1951; Forster, 1995)

SOO(ω) =
2~

1− e−β~ωχ
′′
OO(ω) (1.55)

where χ′′OO(ω) is the imaginary part of the dynamical susceptibility χOO(ω), charac-

terizing the average increase of 〈O〉(t) at frequency ω if a small periodic forcing in

the form of −ε(Oeiωt + h.c.)/2 added to the Hamiltonian is exerted

〈δO〉(ω) = εχOO(ω) +O(ε2) , (1.56)

where 〈δO〉(t) = 〈O〉ε(t)− 〈O〉ε=0.

The imaginary part χ′′OO(ω > 0) characterizes energy absorption by the system

under the driving force. Using the fluctuation-dissipation theorem, Eq. (1.55), the

coherence measure Cf can then be expressed as

Cf (ρ,O) = ~
∫ ∞

0

dω

π
hQf (β~ω) χ′′OO(ω) . (1.57)

In particular, the critical behavior of quantum fluctuations at a phase transition can be

traced back to the low frequency behavior of χ′′, and of the quantum filter f(0)(1−
Since, for ω 6= 0, we may keep only i 6= j in the sum, we replace |〈i|δO|j〉|2 by |〈i|O|j〉|2. This
expression of SOO(ω) is to be compared with the expression of Cf , Eq. (1.44)

Cf =
∑
i,j

pi gf (pj/pi)|〈i|O|j〉|2 (1.51)

with gf (x) = f(0)
2

(1−x)2

f(x)
. Since pj/pi = e−β(Ej−Ei), we have that

gf (pj/pi) =

∫ +∞

−∞
dω δ[ω + (Ei − Ej)/~] gf (e−β~ω) (1.52)

and hence the expression

Cf =

∫ +∞

−∞

dω

2π
gf (e−β~ω) SOO(ω) . (1.53)

Then, using SOO(−ω) = e−β~ωSOO(ω) and gf (x) = xgf (1/x), we conclude that

Cf =

∫ +∞

0

dω

2π
[gf (e−β~ω) SOO(ω) + gf (eβ~ω) SOO(−ω)] =

∫ +∞

0

dω

2π
2gf (e−β~ω) SOO(ω) .

(1.54)
This expression coincides with Eq. (1.48) with the quantum filter hQf (x) = 2gf (e−x)/(1 − e−x) =

f(0)(1− e−x)/f(e−x).
19 Note that S(ω < 0) = 0 at T = 0.
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e−β~ω)/f(e−β~ω) which is linear at small ω. On the other hand, the total variance of

O is

〈δ2O〉tot = ~
∫ ∞

0

dω

π
coth(β~ω/2) χ′′OO(ω) , (1.58)

where the function coth(β~ω/2) behaves as 1/ω at small ω, namely it enhances the

low frequency part of the integrand.

1.7 Quantum coherence and thermodynamics: the
quantum variance

Considerations of previous Section 1.5 lead to criteria that a good measure of coherence

is expected to satisfy. These criteria are motivated both by physical and mathematical

considerations. There exists a whole family of coherence measures fulfilling these

criteria, and some of them (like the quantum Fisher information) have additional,

special physical meaning which translates into experimental significance. In this

section, we introduce another member of this family of coherence measures, the

quantum variance (QV), by considering the effect of the quantum uncertainty principle

onto the equilibrium fluctuations of an observable for a system in contact with a heat

bath. In the case of a particle confined in a harmonic potential 1
2mω

2x2, we proposed

in Section 1.2 to define the QV of the position 〈δ2x〉Q as

〈δ2x〉tot = 〈δ2x〉equipartition + 〈δ2x〉Q (1.59)

where 1
2mω

2〈δ2x〉equipartition = 1
2kBT , with kB the Boltzmann constant and T the

temperature. Namely: the QV quantifies the amount by which a thermodynamic

identity valid for classical systems is violated. The equipartition theorem is in fact a

special instance of the more general fluctuation-dissipation theorem (FDT), valid for

classical systems at thermal equilibrium for any observable O:

〈δ2O〉 =
classical FDT

kBTχ
stat
OO (1.60)

where χstat
OO is the static susceptibility of 〈O〉 with respect to the application of a small

field ε coupled to the same observable O. IfH is the Hamiltonian of the system, the

definition of χstat
OO is the following:

H → H− εO (1.61)

〈O〉 ε−→ 〈O〉+ εχstat
OO +O(ε2) . (1.62)

For instance, if O = M z is the magnetization along the direction z, ε is a small

magnetic field along z, and χstat
OO = ∂〈Mz〉

∂ε

∣∣∣
ε=0

. If Ok =
∫
dx eikxn(x) is some
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Fourier component of the density, then ε is a potential oscillating in space at the same

wave-vector k, and χstat
OO(k) = ∂〈Ok〉

∂ε

∣∣∣
ε=0

, and so on.

This simple relation between the static susceptibility and the variance ofO at equi-

librium cannot hold in general for quantum systems, as the example of the harmonic

oscillator illustrates. Furthermore, the classical FDT predicts that all fluctuations

vanish at T = 0 — provided that χstat
OO does not diverge at low T 20. But according to

quantum mechanics, at T = 0 almost all observables continue to fluctuate — in fact,

any observable which does not commute with the Hamiltonian continues to fluctuate,

since the ground state is generally not one of its eigenstates. What the classical FDT

ignores are precisely these fluctuations related to Heisenberg principle, which are the

only one subsisting down to T = 0. In other words, the classical FDT neglects the

possibility for a quantum system to be in a coherent superposition of several classical

configurations, or in short, the classical FDT ignores coherent fluctuations. We are

thus lead to define the QV ofO as the part of fluctuations not captured by the classical

FDT

〈δ2O〉Q = 〈δ2O〉tot − kBTχstat
OO . (1.63)

As we shall see, 〈δ2O〉Q ≥ 0 by construction.

1.7.1 QV and Heisenberg principle

The nonzero value of 〈δ2O〉Q can be directly traced back to the noncommutativity

of O with the Hamiltonian, [O,H] 6= 0. Indeed, if they commute, the eigenstates

ofH can be chosen among the eigenstates of O, and the classical reasoning holds21.

More generally, the susceptibility χstat
OO takes the following expression in terms of the

20 Quantum-mechanically one could envision that χstat →∞ when T → 0 but one can prove that
kBTχ

stat → 0 for non-degenerate ground states.
21 The origin of the FDT 〈δ2O〉 = kBTχ

stat
OO for classical systems is that upon the application of

−εO, each microscopic configuration C of the system is shifted in energy by an amount −εO(C), where
O(C) is the value that the observable O takes in the microscopic configuration C. Then, the average
value of O in the presence of the perturbation reads

〈O〉(ε) =
1

Z(ε)

∑
C

O(C)e−β[E(C)−εO(C)] (1.64)

where E(C) is the energy of the configuration C in the absence of the perturbation, and β = (kBT )−1.
Z(ε) =

∑
C e
−β[E(C)−εO(C)] is the partition function. The classical FDT then follows by differentiating

〈O〉(ε) with respect to ε:

χstat
OO =

∂〈O〉
∂ε

∣∣∣∣
ε=0

= β
1

Z

∑
C

O(C)2e−βE(C) − 〈O〉 1

Z

∂Z

∂ε

∣∣∣∣
ε=0

= β[〈O2〉 − 〈O〉2] . (1.65)

The partition function in the quantum case is Z(ε) = Tr[e−β(H−εO)]. If |C〉 denote the common
eigenstates of H and O, with eigenvalues E(C) and O(C), the partition function takes the same
expression as in the classical case Z(ε) =

∑
C〈C|e

−β(H−εO)|C〉 =
∑
C e
−β[E(C)−εO(C)].
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so-called imaginary-time correlations of O

χstat
OO =

∫ β

0
dτ 〈O(τ)O(0)〉 − 〈O〉2 (1.66)

whereO(τ) = eτHOe−τH. Averages are taken at termal equilibrium 〈·〉 = Tr(· e−βH)/Z22.

In general, kBTχstat
OO ≤ 〈δ2O〉, with the equality holding iff [O,H] = 023. So finally

we have that

〈δ2O〉Q ≥ 0 and 〈δ2O〉Q = 0 iff [O,H] = 0 . (1.69)

The QV thus quantifies the contribution of the quantum uncertainty principle, Eq.

(1.8), to equilibrium fluctuations of the observable O. We still have to show that the

QV satisfies the reasonable requirements identified in Section 1.5 that any measure of

coherence should fulfill, and we are going to do so by showing that the QV belongs

to the family of measures of coherence derived from the notion of distinguishability

between ρ and ρ(t) = e−itOρeitO introduced in Section 1.5. Before doing so, we give

another intuitive meaning of the QV in terms of imaginary-time fluctuations within

the path-integral formulation of quantum statistical mechanics (Feynman and Hibbs,

1965; Frérot and Roscilde, 2016b; Malpetti, 2016)

1.7.2 QV and path integrals

For classical systems, the partition function Z = Tr(e−βH) is a sum over the micro-

scopic configurations of the system, each configuration being weighted by a Boltzmann

factor e−βE(C). As we discussed, this calculation ignores the possibility for a quantum

22 The proof is as follows. We consider H1 = H − V , and g(β) = eβHe−βH1 . g obeys the
differential equation ∂βg = eβH(H−H1)e−βH1 = eβHV e−βH1 , and the solution is (since g(0) = 1)
g(β) = 1 +

∫ β
0
dτ eτHV e−τH1 . So we have that

e−βH1 = e−H +

∫ β

0

dτ e−βHV (τ) +O(V 2) . (1.67)

From this equation, we get that Z1 = Tre−βH1 = Z(1 + β〈V 〉) + O(V 2). On the other hand, we
have that Tr(e−βH1O) = Tr(e−βHO) +

∫ β
0
dτ Tr(e−βHV (τ)O) +O(V 2). Finally, we arrive at the

desired result

〈O〉(V ) = 〈O〉(0) +

∫ β

0

dτ [〈V (τ)O(0)〉 − 〈V 〉〈O〉] (1.68)

and Eq. (1.66) follows by taking V = εO.
23 We show that ∀τ 〈O(τ)O(0)〉 ≤ 〈O2〉. Introducing X = O(τ) − O(0), we have

〈XX†〉 ≥ 0 with equality iff X = 0. Since X† = O(−τ) − O, this is is equivalent to
〈O(τ)O(−τ)〉+ 〈O2〉 ≥ 〈O(τ)O(0)〉+ 〈O(0)O(−τ)〉. Since 〈O(τ1)O(τ2)〉 = 〈O(τ1 − τ2)O(0)〉,
we finally have 〈O(τ)O(0)〉 ≤ 1

2

(
〈O2〉+ 〈O(2τ)O(0)〉

)
. Iterating this relation, we find that

〈O(τ)O(0)〉 ≤
[∑∞

i=1(1/2)i
]
〈O2〉 = 〈O2〉. Then, the equality (β~)−1

∫ β~
0
〈O(τ)O(0)〉 = 〈O2〉

holds iff ∀τ O(τ) = O iff [O,H] = 0.
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system to coherently spread across several microscopic configurations. In the frame-

work of path-integrals, this coherent spreading can be cast in the form of a so-called

imaginary-time dynamics: instead of sampling microscopic configurations, one has to

sample paths C(τ) of microscopic configurations, and the dynamics along the paths

correspond to the coherent delocalization of the system in the space of configurations.

The paths have a duration β~ in the extra imaginary-time dimension, and are periodic

C(β~) = C(0). Each path is weighted by a Boltzmann weight e−(1/~)S[C(τ), ∂τC(τ), ... ].

A major subtlety comes from the fact that these weights might be complex numbers,

so that the interpretation in terms of “weight” is less clear. In the end, taking the

trace in a basis C where O is diagonal, the partition function may be cast in the form

(Feynman and Hibbs, 1965; Frérot and Roscilde, 2016b; Malpetti, 2016)

Z =

∫

C(0)=C(β~)
D[C(τ)]e−

1
~S[C(τ), ∂τC(τ), ... ] . (1.70)

The variance of O is then

〈δ2O〉tot =

〈
1

β~

∫ β~

0
[O(τ)− 〈O〉]2dτ

〉

paths

(1.71)

and 〈. . . 〉paths denotes an average over an ensemble of paths weighted by e−S/~.

O(τ) is a shorthand for O[C(τ)]. Now, we see that O fluctuates for two reasons

1) the average value of O(τ) along a path Ō = (β~)−1
∫ β~

0 O(τ)dτ (also called

path centroid) fluctuates from path to path and 2) for a given path, the value of

O(τ) fluctuates along the imaginary time dimension with respect to the path centroid

Ō. Quite remarkably, the splitting between incoherent and coherent fluctuations, as

leading to the definition of the QV, exactly coincides with the above two sources of

fluctuations within the path integral formalism

〈δ2O〉tot =
〈
(Ō − 〈O〉)2

〉
paths︸ ︷︷ ︸

kBTχO

+

〈
1

β~

∫ β~

0
[O(τ)− Ō]2dτ

〉

paths︸ ︷︷ ︸
〈δ2O〉Q

. (1.72)

As illustrated on Fig. 1.1, this provides a very intuitive account for the origin of

incoherent and coherent fluctuations at thermal equilibrium: to sample paths, one

can first sample the mean value along the path (the path centroid), and the statistics

of this mean value provides the probability for incoherent (or thermal) fluctuations,

and then, for each given value of the path centroid, sample the paths which fluctuate

in imaginary time with respect to this path centroid, providing the probability for
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Figure 1.1: Thermal vs. quantum fluctuations. Different imaginary-time paths
O(τ) in the space of eigenvalues of the observable O are shown, associated with the
path-integral representation of a generic mixed state ρ. While the thermal/incoherent
fluctuations 〈δ2O〉T are associated with the fluctuations of the centroid of the paths
(dashed yellow lines), the quantum/coherent fluctuations 〈δ2O〉Q are associated with
the fluctuations of the paths around their centroids (solid blue lines). Figure courtesy
of T. Roscilde.

coherent (or quantum) fluctuations. In short

thermal variance =

{
variance (from path to path)

of the mean (along a path);
(1.73)

quantum variance =

{
mean (over the paths)

of the variance (along a path).
(1.74)

1.7.3 QV and “skew information”

The QV has a natural meaning in the context of equilibrium fluctuations only, but its

definition can be extended to arbitrary states by the following mathematical expression

〈δ2O〉Q = Tr(ρO2)−
∫ 1

0
dα Tr(ρ1−αOραO) (1.75)

where we made the change of variable τ → αβ in Eq. (1.66) and used the fact

that ρ = (1/Z)e−βH. To prove that the QV is a member of the family of coher-

ence measures introduced in Section 1.5, we note that the quantity Iα(ρ,O) =

Tr(ρO2)− Tr(ρ1−αOραO), known as the Dyson-Wigner-Yanase skew information

in the literature (Wigner and Yanase, 1963), belongs to it for any 0 < α < 1 (Hansen,

2008). The QV, being the averaged of Iα over α

〈δ2O〉Q =

∫ 1

0
Iα(ρ,O)dα , (1.76)
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automatically inherits this property, and thus the mathematical properties (i, . . . v) of

Section 1.5.1. Note also that it is immediate to see from Eq. (1.75) that if ρ is a pure

state, so that ρ = |ψ〉〈ψ| = ρα = ρ1−α, the quantum variance coincides with the total

variance. In particular, for thermal equilibrium states, this proves that if the ground

state is unique

kBTχ
stat
OO = 〈δ2O〉tot − 〈δ2O〉Q →

T→0
0 . (1.77)

Note that this proof requires the ground state to be separated from excited states by

a nonzero energy gap. While this is true by definition on a finite size system if the

ground state is unique, this may not hold in the thermodynamic limit. In fact, when

considering the behavior of fluctuations above a quantum critical point in Part III, we

shall precisely encounter a situation where Eq. (1.77) does not hold.

1.7.4 Expression of the QV for arbitrary states

We can derive from Eq. (1.75) another useful expression of the quantum variance by

evaluating the trace in a basis of eigenstates of ρ, ρ =
∑

i pi|i〉〈i|:

〈δ2O〉Q =
∑

i

pi〈i|O2|i〉 −
∫ 1

0
dα
∑

i,j

p1−α
i pαj |〈i|O|j〉|2

=
∑

i,j

pi

(
1− pj/pi − 1

ln(pj/pi)

)
|〈i|O|j〉|2

=
∑

i,j

pi

(
1 + x

2
− x− 1

lnx

)
|〈i|O|j〉|2 , (1.78)

with x = pj/pi. This expression, of the form given in Eq. (1.44), may be used to

evaluate the QV when it is possible to diagonalize exactly the density matrix — or,

equivalently, the Hamiltonian for thermal equilibrium states.

1.7.5 QV and dynamical susceptibility

Finally, the QV can be expressed as an integral over frequencies of the dynamical

susceptibility, weighted by a “quantum filter” (see Section 1.5)

〈δ2O〉Q = ~
∫ ∞

0

dω

π
hQV(β~ω) χ′′OO(ω) (1.79)

with the quantum filter given by the so-called “Langevin function”

hQV(x) = coth(x/2)− 2

x
. (1.80)
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This expression can be proved using Eq. (1.58) for the total variance, and the following

expression for the static susceptibility

χstat
OO = 2

∫ ∞

0

dω

π

χ′′OO(ω)

ω
, (1.81)

which follows itself by inserting the dynamical structure factor SOO(ω), defined in

Eq. (1.46), into Eq. (1.66) for the static susceptibility:

〈O(τ)O(0)〉 − 〈O〉2 =

∫ ∞

−∞

dω

2π
SOO(ω)e−τ~ω . (1.82)

Using the identity SOO(−ω) = e−β~ωSOO(ω), performing the integration over τ ,

and using the fluctuation-dissipation theorem, Eq. (1.55), to express SOO(ω) in terms

of χ′′OO(ω), we finally obtain Eq. (1.81).

1.8 Inequalities between the QV, the QFI and the
skew information

It is informative to compare the expression for the QV in terms of dynamical suscepti-

bilities, Eq. (1.79), to a similar expression for the quantum Fisher information (QFI),

proved by Hauke et al. (2016) and derived in Section 1.6

FQ[ρ,O]/4 = ~
∫ ∞

0

dω

π
hQFI(β~ω) χ′′OO(ω) (1.83)

with the quantum filter given by

hQFI(x) = tanh(x/2) . (1.84)

We also have a similar expression for the “skew information” (Wigner and Yanase,

1963) Iα[ρ,O] = Tr(ρO2)− Tr(ρ1−αOραO), where the quantum filter is given by

hα(x) =
cosh(x/2)− cosh[(α− 1/2)x]

sinh(x/2)
. (1.85)

All these expressions for the quantum filters may be recovered from Eq. (1.49) by

noting that the QV, the QFI, and the skew information can be expressed as in Eq.

(1.44) with for f the following functions:

fQV(x) =
(1− x)2/6

1 + x+ 2(1− x)/ lnx
(1.86)

fQFI(x)/4 = (1 + x)/2 (1.87)

fα(x) =
α(1− α)(1− x)2

1 + x− xα − x1−α (1.88)
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A direct comparison of fQFI, f1/2 and fQV reveals the following chain of inequal-

ities

〈δ2O〉Q(ρ) ≤ I1/2[ρ,O] ≤ FQ[ρ,O]
4 ≤ 2I1/2[ρ,O] ≤ 3〈δ2O〉Q(ρ) (1.89)

Iα[ρ,O] ≤ FQ[ρ,O]
4 ≤ 1

2α(1− α)
Iα[ρ,O] , (1.90)

where the inequalities with the QFI can also be viewed as special instances of Eq.

(1.45). As both the QV and the skew information can be expressed in terms of

imaginary-time correlations, themselves more easily accessed in numerical and field-

theory computations than the dynamical structure factor, these inequalities may be

used in practice to bound the QFI, relevant to interferometric questions.

1.9 Behavior of quantum fluctuations at thermal
critical points

We conclude this first chapter by showing that quantum fluctuations are not expected

to diverge at a thermal (namely finite-temperature) critical point where, instead, the

total fluctuations diverge. In this section, we consider the fluctuations of the order

parameter of a critical phase transition, typically some component of the magnetization

in the magnetic language of “standard models” for second-order phase transitions

(Collins, 1989). In Part III, we come back in much more details to the critical behavior

of quantum fluctuations at both thermal and quantum critical points; in this section,

we only derive this general prediction.

In order to do so, we resort to generic scaling arguments for the dynamical response

close to a critical point (Hohenberg and Halperin, 1977; Collins, 1989; Täuber, 2014;

Kamenev, 2011).

Quantum fluctuations and dynamical susceptibility. We recall the expression of

quantum fluctuations in terms of the dynamical susceptibility χ′′(ω) (see Section 1.6)

Cf = ~
∫ ∞

0

dω

π
hQf (β~ω)χ′′OO(ω) , (1.91)

where hQf is a quantum filter. Close to the critical point, Cf is composed of a regular

part, varying smoothly across the phase transition, and of a singular part whose

singularity descends from the singular part of χ′′OO

Cf = Creg
f + Csing

f . (1.92)
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Critical behavior of the static susceptibility. The static susceptibility χOO of the

order parameter diverges upon approaching the critical temperature Tc according to

χOO ∼ t−γT (1.93)

where t = |T/Tc − 1|, T being the temperature and γT a critical exponent (we denote

with a subscript T the critical exponents associated to a thermal phase transition). In

virtue of Eq. (1.81), which we repeat here for completeness

χOO = 2

∫ ∞

0

dω

π

χ′′OO(ω)

ω
, (1.94)

the static response may be viewed as stemming from fluctuations at all frequencies,

weighted by χ′′OO(ω)/ω.

Critical slowing down. We expect that, close to the critical point, χ′′OO(ω) is peaked

around ω = 0, with a characteristic width ωc having the physical meaning of a

relaxation rate. This relaxation rate is generically observed to vanish upon approaching

the critical point as a power law (Hohenberg and Halperin, 1977; Collins, 1989; Täuber,

2014; Kamenev, 2011)

ωc ∼ ξ−zT (1.95)

where ξ is the correlation length for the fluctuations of the order parameter, and zT

the dynamical critical exponent. Given that ξ ∼ t−νT , this scaling law is equivalent to

ωc ∼ tνTzT . (1.96)

The divergence of ω−1 at the critical point induces the so-called critical slowing down

of the dynamics.

Dynamical scaling hypothesis. The dynamical scaling hypothesis amounts to pos-

tulate the following behavior for the singular part of the dynamical susceptibility

χ′′OO(ω) = g

(
ω

ωc

)
χOO (1.97)

with g some scaling function.

Critical scaling of the singular part of quantum fluctuations. As a consequence,

quantum fluctuations acquire a singular part of the form

Csing
f = ~χOO

∫ ∞

0

dω

π
hQf (β~ω)g(ω/ωc) . (1.98)
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Close to the critical point, the scaling function g selects frequencies close to zero, such

that ~ω � kBT . This implies that we may approximate the quantum filter hQf by its

linear behavior at small ω. Making the change of variables x = ω/ωc, we arrive at the

expression

Csing
f =

(~ωc)2

kBT
χOOIf (1.99)

where

If =

∫ ∞

0

dx

π
hQf (x)g(x) . (1.100)

Recalling the scaling behaviors χOO ∼ t−γT and ωc ∼ tνTzT , and using the relation

γT = (2− ηT)νT with ηT the critical exponent of the correlation function (Collins,

1989), we may finally predict that the singular part of the quantum fluctuations scales

according to

Csing
f ∼ t2νT(zT+ηT/2−1) . (1.101)

This prediction is the main result of the present section.

Criterion for the absence of divergence of quantum fluctuations at the thermal
phase transition. Noting that νT ≥ 0, we can conclude that this singular part is

non-divergent if and only if

zT ≥ 1− ηT/2 . (1.102)

The values of zT reported in the literature are always larger than 1 (Hohenberg and

Halperin, 1977; Collins, 1989; Täuber, 2014; Kamenev, 2011), so that this condition

is fulfilled for all models studied so far (note that ηT ≥ 0). On the other hand, we

may expect that temperature-derivatives of Cf of sufficiently high degree are singular

at the critical point. For instance, the gaussian theory for a non-conserved order

parameter (Hohenberg and Halperin, 1977; Collins, 1989; Täuber, 2014; Kamenev,

2011) predicts νT = 1/2, zT = 2 and ηT = 0, so that Csing
f ∼ t. For systems

belonging to this universality class, we can thus predict a singularity of ∂TCf , and

indeed, we shall encounter such an example in Part III.

We note that it may happen that zT = 1 − ηT, although this situation would be

very pathological. For instance, we may have zT = 1 and ηT = 0. In this case, we

expect from Eq. (1.101) a discontinuity of the quantum fluctuations across the phase

transition. If the discontinuity vanishes, the singular behavior stems from the cubic

term in hQf (β~ω) (assuming that it is an odd function). In this case, repeating the steps

leading to Eq. (1.101), we obtain that

Csing
f ∼ t2νT(2zT+ηT/2−1) . (1.103)
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Discussion. In view of Eq. (1.91), it is not surprising that quantum fluctuations bear

the signature of the dynamical critical exponent zT. However, we emphasize that the

quantum variance was not defined by Eq. (1.91), but as the difference between total

fluctuations and the static susceptibility (see Section 1.7). In principle, neither the

total fluctuations nor the static susceptibility need dynamical probes to be measured.

We have thus shown that the difference between two static physical quantities, namely

physical quantities whose investigation do not require any dynamical measurement,

bears the signature of the dynamical critical exponent, associated to the critical slowing

down at a thermal transition.

In light of the link between the quantum fluctuations and the dynamical susceptibil-

ity via Eq. (1.91), this conclusion is important both conceptually and experimentally.

From a computational perspective, taking for Cf the quantum variance, our result also

shows that the dynamical exponent zT is contained in the imaginary-time dynamics

alone (see Section 1.7), without the need to actually calculate the response at real

frequencies.

1.10 Conclusion

In this first chapter, we introduced the notion of coherent fluctuations from two differ-

ent perspectives: 1) the effect of Heisenberg principle, through the non-commutativity

of an observable O with the state ρ, onto the fluctuations of that observable. For

states at thermal equilibrium, we introduced the quantum variance, quantifying the

fluctuations of O which exceed the prediction of a classical fluctuation-dissipation

theorem (valid only if [O, ρ] = 0); 2) the interference effects exhibited by ρ when it

undergoes a unitary transformation U(φ) = e−iφO generated by the observable O,

and parametrized by φ. We introduced the quantum Fisher information, quantifying

the ultimate precision one can get on the estimation of φ by measuring ρ after this

unitary evolution. The quantum Fisher information and the quantum variance were

shown to belong to a wider family of coherence measures, as they both quantify the

speed of evolution of ρ under a unitary transformation U(φ), although for different

measures of distinguishability between ρ and ρ(φ). In particular, all the coherence

measures of this family where expressed in terms of the dynamical susceptibility

χOO(ω) if the system is at thermal equilibrium.

Despite similarities, we emphasize the specificity of the quantum variance, which

is, to our knowledge, the only measure of coherence defined in purely physical terms,

namely, as the difference between the variance of O and (kBT times) the static

susceptibility of O with respect to a perturbation which couples to O. This aspect
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has a tremendous impact in terms of the computability of the quantum variance via

state-of-the-art analytical and numerical approaches to quantum many-body systems,

as well as its potential accessibility to experiments. In the following Chapter 2, we

show that quantum correlations can be naturally quantified in a similar spirit.
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Chapter 2

Quantum covariance

2.1 Quantum correlations: entanglement and
beyond

2.1.1 Non-locality

Over the past decades, it has been progressively recognized that quantum mechanics

predicts correlations among degrees of freedom that would do not admit a classical

counterpart. Whether correlations in specific situations should be considered as

genuinely quantum depends on what is understood as a classical framework. The

most extreme form of non-classicality is manifested by the impossibility to reproduce

some predictions of quantum mechanics with a local “hidden-variable” (LHV) model.

In short, if two measurements, respectively x and y, are performed on two systems

A and B yielding the results a and b with probability p(ab|xy), locality is defined

as the existence of a “hidden-variable” λ, whose value is independent of the chosen

measurements x and y (this is the locality hypothesis), and occurs with probability

q(λ), such that

p(ab|xy) =

∫
dλ q(λ) p(a|x, λ) p(b|y, λ) (2.1)

for any pair of measurements (x, y) and any pair of results (a, b). Eq. (2.1) expresses

the fact that correlations among the results of measurement on A and B can be

interpreted as resulting from 1) an interaction between the two systems during which

the shared value of λ is determined (possibly randomly), and 2) an evolution during

which A and B do not influence each other any longer, and behave as two independent

bodies. Then, correlations between measurement results on A and B can be fully

traced back to the common value of λ, without any further reciprocal influence. The

incompatibility of such LHV hypothesis with some predictions of quantum mechanics
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was first discovered by Bell (1964), following the careful scrutiny of the famous EPR

paper (Einstein, Podolsky, and Rosen, 1935) by Bohm (1952). The experimental

confirmation of the predictions of quantum mechanics first by Aspect, Grangier, and

Roger (1982) and many subsequent experimental tests of non-locality, up to the very

recent triplet of 2015 loophole-free experiments (Hensen et al., 2015; Giustina et al.,

2015; Shalm et al., 2015), definitely ruled out the possibility to build a consistent

physical theory of nature based on purely local objects (Brunner et al., 2014).

2.1.2 Non-separabiliy or entanglement

Non-locality, namely the impossibility to express the probability of measurement

results on two systems A and B as in Eq. (2.1), is an extreme form of non-separability

(synonymous with entanglement in the present day terminology). The term “entangle-

ment” was originally introduced by Schrödinger (1935) to qualify a situation where

(in his words) :

“Maximal knowledge of a total system does not include total knowledge

of all its parts, not even when these are separated from each other and at

the moment not influencing each other at all.” (Schrödinger, 1935)

Werner (1989) realized that this “entanglement of predictions” (Schrödinger, 1935)

reflects the impossibility that A and B, prepared in distant laboratories by means of

local operations and classical communications (LOCC) only, reproduce all the forms

of correlations predicted by quantum mechanics. In this LOCC paradigm (Horodecki

et al., 2009), only combined states ρAB of the form

ρsep
AB =

∑

i

pi σ
A
i ⊗ σBi (separable state) (2.2)

can be produced. Here σA(B)
i is an arbitrary density-matrix for A(B) subsystem, and

pi is the probability that the two distant laboratories where A and B are manipulated

prepare the joint state σAi ⊗ σBi . A state ρAB failing to admit such decomposition is

called non-separable or entangled (Horodecki et al., 2009). Non-locality is an extreme

form of non-separability in that any separable state, Eq. (2.2), admits a LHV model

(where the hidden variable λ is just the label i in the sum on the r.h.s of Eq. (2.2)), so

that non-separability is necessary for non-locality, while the converse is not true: there

exists non-separable states which nevertheless admit a LHV model (Werner, 1989;

Augusiak, Demianowicz, and Acı́n, 2014)1.

1 Quantum steering is yet another layer of refinement, lying in-between non-separability and non-
locality (Cavalcanti and Skrzypczyk, 2017).
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2.1.3 Non-classicality and the quantum discord

A more recent breakthrough came when Ollivier and Zurek (2001) and Henderson

and Vedral (2001) realized that even for separable states, correlations between mea-

surements on A and B may exhibit non-classical features. This happens whenever the

states {σAi } (or {σBi }) in Eq. (2.2) are not fully distinguishable from one another, a

possibility offered by the superposition principle. The non-classicality is expressed by

the fact that two different ways of characterizing the correlations between A and B,

equivalent for classical systems where the statistical properties are represented by a

probability distribution p(a, b) in a phase-space, may be inequivalent when transposed

to quantum systems, where such representation is in general impossible. The two

quantities are here

1. The information contained in the correlations between A and B (or mutual

information), quantified by the sub-additive behavior of entropy

I(A : B) = SA + SB − SAB (2.3)

where S({pi}) = −∑i pi log pi stands for the Shannon entropy of the prob-

ability distribution pi. For A, one takes p(a) =
∑

b p(a, b), and similarly for

B.

2. The average information gained on the state of B by knowing the state of A:

J(A : B) = SB −
∑

a

p(a)S(B|a) (2.4)

where S(B|a) = S({p(b|a)}).

The equality of I(A : B) and J(A : B) for classical probability distributions is a

simple consequence of Bayes’ rule p(b|a) = p(a, b)/p(a). For quantum systems,

“knowing the state of A” has an unambiguous meaning only if a measurement MA

on A is specified, whose outcome modifies the entropy of B. J then becomes

measurement-dependent, and asymmetric in A and B. On the other hand, I(A : B)

keeps the same expression as in Eq. (2.3), provided Shannon entropy is replaced

by von Neumann entropy −Trρ log ρ, and the reduced states for A(B) is obtained

by tracing over the degrees of freedom of B(A) : ρA(B) = TrB(A)ρAB . In general,

J(MA : B) < I(A : B), and this is so for any measurement MA unless the state ρAB
is of the form

ρC−QAB =
∑

i

pi |eAi 〉〈eAi | ⊗ σBi (classical-quantum state) , (2.5)
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where {|eAi 〉} forms an orthogonal family of states. If this is so, measuring a non-

degenerate observable diagonal in {|eAi 〉} maximizes the information gained on B, so

that the upper bound J(MA : B) = I(A : B) is reached. These considerations led

Ollivier and Zurek (2001) and Henderson and Vedral (2001) to define the quantum

discord as

D(A : B) = I(A : B)− max
meas.MA

J(MA : B) (2.6)

where the maximum is taken over all possible measurements on A. The quantum

discord cannot be negative, and reaches zero iff the state ρAB is classical-quantum,

Eq. (2.5) (Modi et al., 2012). Non-classical features of correlations between A and

B in a state which is not classical-quantum are grouped under the generic name of

quantum correlations, which is thus, strictly speaking, a more general concept than

entanglement (Adesso, Bromley, and Cianciaruso, 2016).

2.1.4 Hierarchy of quantum correlations

In conclusion of this first section, we have the following hierarchy of non-classical

correlations

quantum correlations <

{
non-separability

entanglement
< non-locality . (2.7)

The above hierarchy means that in order to exhibit non-locality (in the sense of the

non-existence of a LHV model which reproduces the correlations between A and B,

Eq. (2.1)), ρAB needs to be non-separable (i.e. not of form given in Eq. (2.2)), and

hence, obviously, quantum-mechanically correlated (i.e not of the form given in Eq.

(2.5)). The converse is not true: some states are quantum-mechanically correlated

(or, equivalently, discordant in the sense of a non-zero discord), while actually being

separable, and some non-separable states admit a LHV model (Werner, 1989). Finally,

we note that for pure states, any correlation is a quantum effect, and the above hierarchy

collapses onto a single notion (Brunner et al., 2014)

correlations = quantum correlations =

{
non-separability

entanglement
= non-locality . (2.8)

2.2 Quantum correlations as correlations among
Heisenberg uncertainties

2.2.1 Quantum variance versus the quantum discord

The considerations leading Henderson and Vedral (2001) and Ollivier and Zurek

(2001) to introduce the quantum discord (see Section 2.1) have a flavor similar to our
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considerations of Section 1.7, leading to the introduction of the quantum variance

(QV). According to Modi et al. (2012)

“ Quantum discord encapsulates the idea that two equivalent ways of look-

ing at correlations in classical information theory give different results

when generalized to quantum information theory. In quantum physics, we

can have classical correlations, but we also have correlations that exceed

them.” (Modi et al., 2012)

Recalling the definition of the QV of an arbitrary observable O, Eq. (1.63)

〈δ2O〉tot = kBTχO + 〈δ2O〉Q

with χO the static susceptibility of 〈O〉, kB Boltzmann constant and T the temperature

(see Section 1.7), we could rephrase this statement for quantum fluctuations. Indeed,

we showed in Section 1.7 that the QV encapsulates the idea that two equivalent

ways of looking at fluctuations in classical statistical mechanics (namely fluctuations

at equilibrium, and linear response to a perturbation) give different results when

generalized to quantum statistical mechanics. In quantum physics, we have classical

(incoherent) fluctuations, but we also have quantum (coherent) fluctuations in addition.

Despite a similar flavor, we must bear in mind several fundamental differences be-

tween the quantum discord and the QV. First, while the former is based on information-

theoretic quantities (“information gained on B by making measurements on A”),

the latter is defined in purely physical terms, without explicit reference to the un-

derlying mathematical theory. Indeed, the QV can be defined and measured even

without knowing anything about quantum mechanics, a very different situation from

an information-theoretic quantity like the quantum discord. Second, according to

the quantum discord, even pure states share classical correlations (as quantified by

J(MA : B), see Eq. (2.4)), while according to the QV, any fluctuation in a pure state

is a quantum effect, and several arguments supporting this conclusion were given in

Section 1.4.2, 1.5 and 1.7. Similarly, according to the natural concept of quantum

correlations which we are about to derive from the QV, any correlation in a pure state

has a quantum origin, in agreement with the fact that any form of correlations in a

pure state implies that the state is entangled, see Eq. (2.8).

2.2.2 The quantum covariance

The concept of quantum (or coherent) fluctuations introduced in Section 1 calls for a

natural concept of quantum correlations, completely independent of the one discussed

in the previous Section 2.1.
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Here and in the rest of this manuscript, quantum correlations are understood as

correlations among coherent fluctuations.

To give to this statement a mathematical meaning, we specify two observablesOA
and OB . The quantum covariance of OA and OB is then defined as

covarQ(OA,OB) = 〈δOAδOB〉Q =
1

2

[
〈δ2(OA +OB)〉Q − 〈δ2OA〉Q − 〈δ2OB〉Q

]

(2.9)

where 〈δ2(OA +OB)〉Q, 〈δ2OA〉Q and 〈δ2OB〉Q are the quantum variances of OA +

OB ,OA andOB respectively. This is just the transposition to the quantum fluctuations

setting of the definition of the (total) covariance in terms of the (total) variances2

〈δOAδOB〉tot =
1

2

[
〈δ2(OA +OB)〉tot − 〈δ2OA〉tot − 〈δ2OB〉tot

]
(2.12)

In all this manuscript, we shall always consider two observables OA and OB
related to two subsystems A and B which are disjoint portions of a bigger one, so

that OA and OB commute. In this case, an equivalent definition for the quantum

covariance is

〈δOAδOB〉Q = 〈δOAδOB〉tot − kBTχAB (2.13)

= 〈OAOB〉 −
1

β

∫ β

0
dτ 〈OA(τ)OB(0)〉 (2.14)

= Tr(ρOAOB)−
∫ 1

0
dα Tr(ρ1−αOAραOB) (2.15)

with χAB = ∂〈OA〉
∂fB

= ∂〈OB〉
∂fA

the cross-susceptibility — namely the susceptibility

of 〈OA〉 with respect to the application of a small perturbation on B in the form

of −fBOB added to the Hamiltonian (obviously, the definition is symmetric upon

exchanging the role of A and B, see Section 1.7). We have notedO(τ) = eτHOe−τH
and ρ = e−βH/Z. This equivalent expression, which makes no reference to the

2 We focus here on the quantum covariance based on the non-additivity of the QV. The definition
can be immediately extended to any measure of coherence Cf discussed in Section 1.5 as

Cf (OA +OB , ρ) = Cf (OA, ρ) + Cf (OB , ρ) + 2 covarfQ(OA,OB) . (2.10)

In fact, if the quantum Fisher information (Section 1.4.2) is the quantity of interest, the associated
quantum covariance is known in the literature as the “quantum Fisher information matrix” (QFIM). We
are not aware of an interpretation of the QFIM in terms of quantum correlations, but we suggest to do so.
In Chapter 8 and 11, we compare the QFIM to the quantum covariance for, respectively, a free fermions
system and a quantum Ising chain. The quantum f -covariance is given by

covarfQ(ρ,OA, OB) =
f(0)

2

∑
ij

(pi − pj)2

pif(pj/pi)
〈i|OA|j〉〈j|OB |i〉 (2.11)

where pi and |i〉 are the eigenvalues and eigenstates of the total density matrix ρ (in general different
from the reduced density matrix ρAB).
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QV, is another instance of the violation of a classical fluctuation-dissipation relation

(〈δOAδOB〉tot = kBTχAB), in the case of quantum systems. The third expression,

Eq. (2.15), makes no reference to the Hamiltonian, and extends the definition of the

quantum covariance to arbitrary states ρ.

The path-integral framework (see Section 1.7 for details) provides a third, comple-

mentary picture

〈δOAδOB〉Q =

〈
1

β~

∫ β~

0
dτ [OA(τ)− ŌA][OB(τ)− ŌB]

〉

paths

(2.16)

where Ō = (β~)−1
∫ β~

0 O(τ) denotes the path centroid, and the average is taken over

paths weighted by the action e−S/~. The above expression Eq. (2.16) shows that the

quantum covariance is nothing else than the correlation function for imaginary-time

fluctuations with respect to the path centroid (Malpetti and Roscilde, 2016). As dis-

cussed in Section 1.7, quantum fluctuations for a system at thermal equilibrium are

the fluctuations in imaginary-time of the path-integral. Similarly, quantum correla-

tions of two observables are the correlations among their respective imaginary-time

fluctuations.

The quantum covariance will be studied on model examples of many-body systems,

and in the vicinity of (thermal and quantum) phase transitions in Part III. In particular,

the quantum covariance may exhibit a behavior in total discrepancy with the total

covariance (Malpetti and Roscilde, 2016), especially in the vicinity of thermal phase

transitions, where the total covariance may exhibit a singular behavior, while the

quantum covariance nearly insensitive to the very presence of a phase transition.

2.3 Quantum covariance within quantum information
theory

Considerations on Heisenberg principle and on the physical notion of coherent fluc-

tuations, as quantified by the quantum variance, the quantum Fisher information, or

any member Cf of the family of coherence measures discussed in Section 1.5, natu-

rally lead us to a physically meaningful concept of quantum correlations— quantum

correlations between two observables OA and OB , concerning degrees of freedom

located in two subsystems A and B, are the correlations which may exist between

the quantum uncertainties of OA and OB . A priori, this physical concept of quantum

correlations need not be related to the information-theoretic concept of quantum cor-

relations discussed in Section 2.1. For instance, can the quantum covariance serve

a “measure of quantum correlations”, in the sense of quantum information thoery
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(Adesso, Bromley, and Cianciaruso, 2016), just as the quantum variance can serve as

a “measure of coherence” (Streltsov, Adesso, and Plenio, 2016), as defined in Section

1.5? Leaving this question open to future studies, we simply raise the question

• What is the relationship (if any) between the physical and the information-

theoretic concepts of quantum correlations?

This question remains largely open, but several elements are worth mentioning. We

have to distinguish between two situations

1) The bipartite case: subsystems A and B exhaust the whole system of interest. A

and B may be coherently coupled (i.e. the state of A and the state of B may share

some well-defined phase relationship), but they are incoherently coupled to their

environment.

2) The multipartite case: A and B are immersed in a larger quantum system ABC.

In this case, A and B are coherently coupled to each other (either directly of via

C), and are also coherently coupled to C. However, they are incoherently coupled

to the environment of ABC.

2.3.1 Bipartite case

In the bipartite case, we have the following result3.

ρAB is classical-quantum, Eq. (2.5) =⇒ ∀OA,OB covarQ(OA,OB) = 0 . (2.17)

In a classical-quantum state (c-q) Eq. (2.5), coherent fluctuations on A and B are

completely uncorrelated, and this holds for any pair of observables. This situation

is much more satisfactory than for the quantum discord (Section 2.1): in the sense

of the quantum discord, almost all measurements on A are “discordant”, even for a

c-q state, since J(MA : B) < I(A : B) unless the optimal measurement is picked up.

Instead, it is enough to exhibit a single pair of observables OA, OB whose quantum

fluctuations are not independent to conclude that the state cannot be c-q. The definition

of the quantum covariance does not require any optimization, which in turn makes

the quantum discord exceedingly difficult to estimate as soon as A and B become

bigger than single qubits. Furthermore, the quantum covariance is defined in terms

of physical quantities which can, in principle, be measured in experiments. Finally,

we conjecture that the inverted implication of Eq. (2.17) holds; namely, that if the

3 The proof is given in Appendix A. In particular, even if our emphasis is on the quantum covariance
derived from the physically motivated quantum variance, the result holds if the quantum covariance is
derived from another coherence measure of Section 1.5.
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state is not c-q, there exists at least one pair of observables for which the quantum

covariance is nonzero. It is natural to expect that if the quantum covariance is very

large, then the state ρAB must be very far from being c-q. This expectation takes the

form of a theorem, namely, the quantum covariance cannot exceed certain threshold

value unless the state is entangled. This follows from the following inequality, valid

for any member Cf of the family of coherence measures discussed in Section 1.5. If

ρAB is separable

Cf (OA +OB) ≤ 1

2
(omax − omin)2 (2.18)

where the spectrum ofOA andOB is assumed to be bounded between omin and omax
4.

As 2covarfQ(OA,OB) ≤ Cf (OA) + Cf (OB)5, we conclude that, for separable states:

4covarfQ(OA,OB) ≤ Cf (OA) + Cf (OB) + 2covarfQ(OA,OB)

= Cf (OA +OB)

≤ 1

2
(omax − omin)2 (2.21)

where the first inequality holds in full generality, and the second if ρAB is separable.

On the other hand, if for any f the f -quantum covariance exceeds the bound 1
8(omax−

omin)2, then the state ρAB is necessarily entangled.

2.3.2 Multipartite case

In the multipartite case, the fundamental departure of the physical notion of quantum

correlations from the information-theoretic one is that the splitting between classical

and quantum correlations is not any more a property of the reduced state ρAB alone,

but depends on the full state ρABC in which A and B are immersed. For instance, if

ρABC is a pure state, it is not legitimate, according to the physical notion of quantum

correlations, to split the correlations between OA and OB into a classical and a

quantum part: the classical part vanishes identically even if ρAB is a mixed state. This
4 This was first proved by Hyllus et al. (2012) and Tóth (2012) for the quantum Fisher information.

As the only ingredient is that the latter is convex in ρ and is additive for product states, the proof
immediately carries over to any measure of coherence Cf . If ρ =

∑
i piσ

A
i ⊗ σBi

Cf (OA +OB , ρ) ≤
∑
i

piCf (OA +OB , σAi ⊗ σBi ) (2.19)

=
∑
i

pi[Cf (OA, σAi ) + Cf (OB , σBi )] . (2.20)

Without loss of generality, σA(B)
i can be chosen as pure states, for which Cf is just the variance. If the

spectrum of OA(B) is contained in [omin, omax], then the variance is maximal if the state is the equal
weight superposition of the eigenvectors corresponding to omin and omax, for which the variance is
(omax − omin)2/4, hence the result of Eq. (2.18).

5 This follows from the fact that Cf (OA −OB) = Cf (OA) + Cf (OB)− 2covarfQ(OA,OB) ≥ 0.
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situation has severe consequences when considering, for instance, the correlations

between two spins in a many-spin system (Malpetti and Roscilde, 2016). For instance,

according to the quantum discord, quantum correlations among two spins may exhibit

singularities at thermal phase transitions. As thermal phase transitions are driven

by incoherent fluctuations, this result appears to be unphysical. On the contrary,

according to the physical notion of quantum correlations provided by the quantum

covariance, quantum correlations among two spins are non-singular across thermal

phase transitions, a much more sensible statement. We elaborate further on the critical

behavior of quantum correlations in Chapter III.

Overall, these observations call into question the relevance of the quantum discord

in the context of many-body systems. The physically consistent picture provided

by the concept of quantum correlations as correlations among coherent fluctuations

offers instead a very plausible physical basis for the study of quantum correlations in

many-body systems.
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Part II

Entanglement thermodynamics

Fools, they do not even know how
much more is the half than the whole.

Hesiod



Summary of Part II. In this part, we develop a thermodynamic understanding

of entanglement in many-body ground states. The entanglement thermodynamics

point of view is elaborated in Chapter 3, where the central entanglement temperature

hypothesis is proposed. Chapter 4 is then devoted to the study of entanglement

in simple free fermion models in d = 1 and d = 2 from the perspective of the

entanglement temperature hypothesis. In the following Chapters 5, 6 and 7 of this part,

we focus on the various phases of the paradigmatic Bose-Hubbard model, describing

strongly correlated bosons on a lattice. A general semi-classical approach (the slave-

boson approach) is presented, and applied to the Bose-Hubbard model. Technical

considerations about the structure of entanglement within the slave-boson approach

are also discussed (Chapter 5). The structure of entanglement in the superfluid

phase is studied in Chapter 6, while the Mott-insulator/superfluid phase transition is

investigated, from the perspective of entanglement, in Chapter 7, and conclusions

are drawn in Section 7.3. This part is largely based on the results published in

Frérot and Roscilde (2015) and Frérot and Roscilde (2016a), but contains mainly

new developments, particularly for what concerns the entanglement temperature

hypothesis.
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Chapter 3

Entanglement
thermodynamics: general

aspects

3.1 Introduction

When an extended, many-body quantum system is in a perfectly well-defined mi-

crostate (pure state), entanglement implies that a generic subsystem, instead, cannot

be assigned a well-defined microstate. It admits only an ensemble (mixed-state)

description, with a finite entropy — the entanglement entropy. This is of course

very reminiscent of systems in contact with an energy (and/or particle) reservoir at

equilibrium, and yet, it bears fundamental differences for ground states of several

important many-body Hamiltonians, in that the entanglement entropy is generally

sub-extensive (i.e. unlike thermodynamic entropy, it is not proportional to the volume

of the subsystem).

In the present part of the manuscript, we explore the possibility of capturing

(ground-state) entanglement and quantum fluctuations in a subsystem (A) within an

effective thermodynamic description, in which the complement of A (B) plays the

role of the reservoir. The ensuing “entanglement thermodynamics” is obviously very

different from ordinary thermodynamics, due to the sub-extensive nature of some of

its thermodynamic fluctuations.

Entanglement entropy is introduced in Section 3.2, and the thermodynamic picture

is elaborated in the subsequent sections. We shall argue that the thermodynamic

analogy provides a way to predict approximate “equations of states” for quantum-

fluctuation properties, namely constituent relationships involving the fluctuations of
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Figure 3.1: Illustration of the local entanglement temperature. The global system A-B
lies in its ground state, and the entanglement temperature decays when moving away
from the boundary between A and B.

local observables1, as well as entanglement entropy. We shall do so in a variety

of models of high experimental relevance. For a broader overview on the study of

entanglement in many-body systems, see Amico et al. (2008), and Eisert, Cramer,

and Plenio (2010) and Laflorencie (2016) for reviews more focused on ground-state

entanglement properties.

State of the art. Our contribution lies at the convergence point of three lines of

research that have been undertaken recently.

1) The first one aims at establishing rigorous relations between entanglement

entropy and local fluctuations, typically the number of particles in atomic gases or

some component of the magnetization in certain spin models (see Song et al. (2012)

for an important contribution in this sense). Up to now, such relationships have been

established only for noninteracting fermions in any dimension (Calabrese, Mintchev,

and Vicari, 2012) and Luttinger liquid theory describing one-dimensional conductors

(Laflorencie and Rachel, 2014), but it does not seem easy to extend these results to,

e.g. a bosonic superfluid in dimensions d ≥ 2 (see below).

2) The purpose of the second line of research is to find a microscopic account for

the special sub-extensive scaling of entanglement entropy, and in order to do so, the

latter should be decomposed as a sum of local contributions. In this perspective, a

1 By “local”, we mean that the observable is restricted to degrees of freedom of a (generally
extended) subsystem, not necessarily to a single site in a lattice model, or to a local field in some
continuum approach. We use the term “global” for observables related to the entire system.
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central concept is the entanglement contour (Cs) introduced by Chen and Vidal (2014),

such that

SA =

∫

A
ddx Cs(x) (3.1)

where SA is the entanglement entropy of subsystem A. In a previous work (Frérot and

Roscilde, 2015), we extended the notion of contour to fluctuations, and explored the

link between the fluctuation and entanglement contours as a way to obtain a deeper,

more microscopic understanding of the link between the entanglement entropy and

local quantum fluctuations.

3) Swingle and McGreevy (2015) have proposed an illuminating insight into the

origin of area laws of entanglement entropy. They argued that the reduced density

matrix of A could be well approximated by

ρA ≈ exp−
∫

A
ddx
H(x)

T (x)
, (3.2)

or equivalently, that the “entanglement Hamiltonian” − log ρA is well approximated

by the physical HamiltonianH(x) modulated spatially by a local entanglement tem-

perature T (x) at position x (this situation is pictorially illustrated on Fig. 3.1). We

emphasize that, although the viewpoint of an effective local temperature is very conve-

nient to account for the structure of entanglement in many-body systems, the situation

is very different from A being thermalized with a series of local thermostats at temper-

ature T (x). In fact, this situation would bring the subsystem A out of equilibrium, and

the ensuing state would not be described by an equilibrium Boltzmann form as in Eq.

(3.2). Hence, the rigorous point of view is that A is effectively thermalized at some

uniform, fixed temperature, but the energy scales of the constituents of A (masses,

interaction energies, etc.) are modulated in space by T (x). Nonetheless, we shall find

the idea of local thermostats extremely useful.

Extending the entanglement thermodynamics ideas. In this context, our original

contribution is to show that the approach of Swingle and McGreevy (2015) does

in fact provide a way to link entanglement entropy with observable fluctuations in

a generic manner. The basic idea is to supplement the Ansatz of Eq. (3.2) for the

reduced density-matrix by a so-called local equilibrium approximation. This amounts

to decompose the subsystem A into mesoscopic uncorrelated subregions, each of them

being thermalized at the local temperature T (x), and contributing ≈ 〈δ2O〉[T (x)] to

the variance ofO and≈ S[T (x)] to entanglement entropy, where 〈δ2O〉(T ) and S(T )

are respectively the (thermal) variance ofO and the (thermal) entropy at temperature T .

Furthermore, we propose a procedure, based on the notion of contours, to reconstruct
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the local entanglement temperature T (x) from the correlations of O in the ground

state and the knowledge of 〈δ2O〉(T ).

Entanglement entropy is introduced in Section 3.2, and the “entanglement temper-

ature” (ET) hypothesis is motivated and developed in Section 3.3.2 on general grounds.

The central concept of contours is introduced, and constitutive “entanglement equa-

tions of states” are proposed (Section 3.3.3). The remaining Chapters 4, 5, 6 and 7 of

Part II are devoted to the study of paradigmatic examples of many-body Hamiltonians,

namely free fermions, and bosons described by the Bose-Hubbard model.

3.2 Entanglement entropy

3.2.1 Information theory approach

A central goal of the present part is the investigation of the relationship between an

information-theoretic notion of quantum correlations (namely entanglement entropy),

and the physical notion of quantum correlations introduced in the first chapter (see

Section 2.2) for many-body systems at zero temperature. As the global many-body

wave-function is a pure state, the situation is conceptually simple: all correlations are

quantum correlations, and all forms of quantum correlations are a manifestation of

entanglement. Physically, correlations are correlations among the fluctuations of two

observables OA and OB , as quantified for instance by the covariance

〈δOAδOB〉 = 〈OAOB〉 − 〈OA〉〈OB〉 . (3.3)

In information theory, correlations are quantified by the mutual information.

Von Neumann entropy. Considering a system in a state ρ =
∑

i pi|ψi〉〈ψi|, where

|ψi〉 are orthogonal to each other, and
∑

i pi = 1, the picture is that the system is in an

incoherent mixture of pure states |ψi〉 with probabilities pi. The lack of information

on the actual microstate is then quantified by the Shannon entropy of the probability

distribution

S(ρ) = −
∑

i

pi ln pi . (3.4)

Shannon entropy is interpreted as the average information gained when the system is

measured (more specifically: when the actual microstate i is uncovered).

Alternatively, one could consider an arbitrary (complete, non-degenerate) ob-

servable O =
∑

i oi|oi〉〈oi|, and study the probability distribution for observing the

results oi if O is measured, pOi = 〈oi|ρ|oi〉. The Shannon entropy of this probability
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distribution will be minimal if O and ρ commute, which leads us to the following

definition of von Neumann entropy

S(ρ) = min
O complete

−
∑

i

pOi ln pOi (3.5)

= −Tr(ρ ln ρ) . (3.6)

Von Neumann entropy is the “minimal uncertainty”, as quantified by Shannon entropy,

among all possible observables. This minimal uncertainty cannot be attributed to the

fact that, for instance, ρ is a pure state, but one is measuring an observable for which it

is not an eigenstate. Von Neumann entropy is thus considered as the intrinsic entropy

of the state, which vanishes if the state is pure, even though a generic observable,

because of quantum fluctuations, has a nonzero Shannon entropy.

Mutual information. From now on, unless possible ambiguity, we will use the term

“entropy” to refer to von Neumann entropy. An important property of entropy is its

sub-additivity: if ρAB is the state of a combined system formed of two parts A and B,

then

S(ρAB) ≤ S(ρA) + S(ρB) (3.7)

with ρA = TrBρAB is the reduced-density matrix of A obtained after tracing over the

degrees of freedom of B, and similarly for ρB (Lieb and Ruskai, 1973). Sub-additivity

translates the fact that observing A and B separately instead of jointly generally yields

redundant information — precisely because of the possible existence of correlations

between them. The mutual information

I(A : B) = S(ρA) + S(ρB)− S(ρAB) ≥ 0 (3.8)

is then defined as the information contained in A−B correlations2.

Entanglement. Furthermore, for separable states Eq. (2.2) (and thus for classical

probability distributions), it always holds that

S(ρA) ≤ S(ρAB) (separable states). (3.9)

This property3 translates the intuitive statement according to which one cannot be

more ignorant about the state of a subsystem, than we are about the state of the total
2 Alternatively, I(A : B) = D(ρAB |ρA ⊗ ρB) where the relative entropy D(ρ|σ) = Tr[ρ(ln ρ−

lnσ)] quantifies our ability to distinguish ρ (the actual density-matrix ρAB) from σ (the uncorrelated
state ρA ⊗ ρB) by making measurements on ρ (Vedral, 2002).

3 Inequality (3.9) is an immediate consequence of the concavity of S(ρAB)−S(ρA) with respect to
ρAB , proved by Lieb and Ruskai (1973). Indeed, if ρAB =

∑
i pi σ

A
i ⊗ σBi (separable state), concavity

implies that S(ρAB) − S(ρA) ≥
∑
i pi[S(σAi ⊗ σBi ) − S(σAi )]. Then, using that S(σAi ⊗ σBi ) =

S(σAi ) + S(σBi ), and the fact that S(σBi ) ≥ 0, we conclude that S(ρAB) ≥ S(ρA).
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system. However intuitive this statement may seem, it does not hold in general for

quantum system, as a manifestation of entanglement (Schrödinger, 1935).

Conversely, the violation of Eq. (3.9) witnesses the presence of entanglement

between A and B. This violation has been reported in the experiment of Islam et al.

(2015), on systems of a few ultra-cold bosons on a lattice (strictly speaking, they

measured the order-2 Rényi entropy, for which Eq. (3.9) is also valid (Horodecki and

Horodecki, 1996)).

The situation is especially dramatic if ρAB is a pure state, for instance the ground-

state of some Hamiltonian, for which S(ρAB) = 0. In this case, any nonzero entropy

on a subsystem A is a manifestation of entanglement, stemming purely from quantum

correlations with its complement B

I(A : B) = S(ρA) + S(ρB) = 2S(ρA) , (3.10)

where the second equality comes from the fact that, for a pure state, S(ρA) = S(ρB)4.

In this context, S(ρA) is called the entanglement entropy of A, and quantifies the

amount of quantum correlations shared byA andB (in the information-theoretic sense

(Horodecki et al., 2009)).

3.2.2 Entanglement entropy vs. thermodynamic entropy

The question we are raising is the following:

• Is there any relationship between the information-theoretic entanglement en-

tropy of pure states and the thermodynamic entropy of equilibrium statistical

mechanics?

The answer to this very natural question is far from obvious. Usually, our physical

understanding of the non-vanishing entropy of a system is the presence of a bath.

The common picture is then that the system acts as a bath to itself through quantum

fluctuations. On the one hand, it is immediate to see that the existence of quantum

correlations in a pure state (namely the existence of at least a pair of observables of

subsystems A and B which exhibit a nonzero covariance) implies that entanglement

entropy is nonzero5. Yet going beyond this simple observation and establish a more
4 This may be viewed as a consequence of the following inequality S(ρAB) ≥ |S(ρA)− S(ρB)|

(Araki and Lieb, 1970), so that S(ρAB) = 0⇒ S(ρA) = S(ρB), but is physically a consequence of the
fact that for a pure state, nonzero entropy of the subsystems is only a correlation effect, in which A and
B play a symmetric role. The Schmidt decomposition makes this A-B symmetry manifest, regardless of
their respective size.

5 Indeed, a pure state is separable iff it is a product state, and a product state exhibits no correlation
between its subsystems. Hence, if some correlations exist in a pure state, it cannot be separable: it must
be entangled.
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systematic understanding of the behavior of entanglement entropy in terms of quantum

correlations/fluctuations is not obvious. We are thus lead to raise the following

questions:

• What quantum correlations/fluctuations imply the existence of entanglement

among the subparts of a many-body system?

• Can we construct equations of states for entanglement thermodynamics, in

connection with experiments?

Local fluctuations of globally conserved quantities. The first question calls for

an identification of the physical mechanism(s) driving the existence of entanglement

among the different subsystems, and is the leitmotiv pertaining to all the studies

conducted during this thesis. The answer will obviously depend on the physical

system under examination, but some general understanding can be gained for a

specific class of systems, namely the ones possessing a globally conserved quantity,

which nonetheless fluctuates locally — typically the number of particles in an atomic

gas, but the conclusions are not restricted to this example (Song et al., 2012).

Considering an extended quantum system in d spatial dimensions, which we divide

into two portions A and B, we show that, under global particle-number conservation,

local particle number fluctuations imply entanglement between A and B. We assume

that the HamiltonianHAB describing the whole system conserves the total number of

particles N = NA +NB , and consider any one of its eigenstates |Ψ〉 (for instance the

ground state). The Schmidt decomposition of |Ψ〉 with respect to an AB bipartition

reads (Nielsen and Chuang, 2000)

|Ψ〉 =
∑

α

λα|ψα〉A ⊗ |φα〉B (3.11)

where the basis (|ψα〉A) diagonalizes the reduced density matrix ρA = TrB(ρAB),

and ρAB = |Ψ〉〈Ψ|. Since N is a good quantum number of HAB , any eigenstate of

HAB is a simultaneous eigenstate of N , whence [ρAB, NA +NB] = 0. This in turn

implies that

TrB[ρAB, NA +NB] = [TrB(ρAB), NA] = 0 , (3.12)

so that the states |ψα〉A = |N (α)
A , {k(α)}〉A can be chosen to be a basis of eigenstates

of NA (where {k(α)} are the other quantum numbers labeling the states)

|Ψ〉 =
∑

α

λα |N (α)
A , {k(α)}〉A ⊗ |N −N (α)

A , {k′(α)}〉B . (3.13)
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Hence for any eigenstate |Ψ〉 the existence of a finite uncertainty on the local particle

number NA implies a Schmidt decomposition with at least two terms, and a finite en-

tanglement entropy SA = −TrρA ln ρA = −∑α λα lnλα. This establishes coherent

particle-number exchange as a fundamental mechanism of entanglement. A similar

reasoning applies to any model possessing a globally conserved quantity O, and

exhibiting fluctuations of the corresponding local quantity OA. An important example

is that of quantum spin systems possessing an axial symmetry: fluctuations of the

local magnetization along the symmetry axis imply entanglement. The above analysis

is based on two caveats: 1) the system must be in an eigenstate of the Hamiltonian.

Otherwise, as discussed in the first chapter (see in particular Section 1.7), fluctuations

have both a thermal and a quantum origin, and only the latter are responsible for

entanglement. We come back to the study of quantum fluctuations at finite tempera-

ture in Part III; and 2) there must be some globally conserved quantity on which to

base the analysis. In general, local fluctuations of observables which are not globally

conserved have both intrinsic fluctuations, and correlation-induced fluctuations, and

only the correlation part is associated to entanglement.

Area law of entanglement entropy in ground states. From now on, we specify

our attention to ground states of many-body Hamiltonians. The second question (Can

we establish equations of states for entanglement thermodynamics?) is necessarily a

subtle point. As a matter of fact, in ground states, entanglement entropy is typically a

sub-extensive quantity: in contrast to the thermal entropy, it generically scales as the

boundary area of A

S(ρA) = SA(l) ∼ ld−1 (3.14)

if l is the linear size of A (Eisert, Cramer, and Plenio, 2010). The intuitive explanation

for this so-called area-law scaling of entanglement entropy is that it is a correlation

property only. Generally, we may expect that S(ρA) + S(ρB) differs from S(ρAB)

by at most a term proportional to the area of the boundary separating A and B. The

general expectation is then that I(A : B) = S(ρA) + S(ρB) − S(ρAB) obeys an

area-law scaling, provided correlations are short-ranged. This is the reason why we

expect that in ground-states, where S(ρA) = I(A : B)/2, entanglement entropy

obeys an area-law scaling. This property is generally lost at finite energy density,

where the entanglement entropy of a subsystem is equal (up to boundary terms) to the

thermodynamic entropy corresponding to that energy.

Note that it often happens that correlations are not short-ranged in ground-states

of many-body systems. Paradigmatic examples in this sense are offered by the Fermi-

liquid metallic phase, and the bosonic superfluid, where density correlations decay as
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a power-law with distance. We may expect violations of the area law for entanglement

entropy in such critical phases, and it is indeed well-known that the area law is

corrected by a multiplicative log l factor in the Fermi-liquid regime (Calabrese and

Cardy, 2004; Gioev and Klich, 2006; Wolf, 2006). Instead, the area law is not violated

in critical bosonic systems (at least not in dimension d ≥ 2), and it is one of the

purposes of the following sections to explain why the area law is violated for critical

fermions, and not for critical bosons.

3.3 Entanglement thermodynamics

In this section, we introduce the concept of entanglement thermodynamics. We first

discuss the possibility to approximate the reduced density-matrix of a subsystem by

an equilibrium state of the same subsystem connected to a thermal bath (Section

3.3.1). The limitations of this “global temperature” approach are discussed, and lead

us to introduce a refined “local temperature” Ansatz to the reduced density-matrix,

partly based on the Bisognano-Wichmann theorem for Lorentz invariant field theories

(Section 3.3.2). A local equilibrium hypothesis for this refined Ansatz leads us to

the concept of local entanglement thermodynamics, providing us a systematic way to

relate entanglement properties with more standard observables (Section 3.3.3).

3.3.1 Global entanglement temperature

Model example: free fermions. To introduce the main concepts of this chapter

with a simple example, we focus on a gas of fermions in the Fermi-liquid regime

(equivalent to non-interacting fermions as far as the qualitative behavior is concerned),

and consider them on a d-dimensional hyper-cubic lattice. They are described by the

Hamiltonian

H =
∑

k

(εk − µ)c†kck (3.15)

where ck = V −1/2
∑

i e
−ik·rici destroys a fermion in the single particle state of

momentum k . Here, ri denotes the position of the site i on the lattice, which

contains V sites. Periodic boundary conditions are assumed for simplicity, so that

εk = −2J
∑d

p=1 cos(kpa), with J the hopping amplitude and a the lattice spacing (set

to 1 in the following, i.e. distances are measured in units of a). The chemical potential

µ sets the Fermi energy at T = 0. Our concern is to develop a thermodynamic

understanding of the entanglement entropy of a large subsystem A, of linear size l,

when the total system is in the ground state ofH. Since A is not isolated — due to the

coherent exchange of particles with its complement B—, the number of particles in A
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is not fixed (only the average density is fixed) while the number of particles in the total

system is fixed (by µ). The subsystem A is thus described by some grand-canonical

ensemble.

Entanglement Hamiltonian. Without loss of generality, the reduced density matrix

of A may be written as

ρA = e−H
ent
A (3.16)

for some entanglement HamiltonianHent
A . Indeed, if ρ is diagonalized as

∑
i pi|i〉〈i|,

then ρ = e−H forH =
∑
εi|i〉〈i|, with pi = e−εi . So at least formally, entanglement

entropy of A is just the thermal entropy of some fictitious system of fermions whose

dynamics is governed by the entanglement Hamiltonian, and thermalized at some

fictitious temperature arbitrarily set to 1 (the global energy scale of the entanglement

Hamiltonian is just a matter of convention).

A “global entanglement temperature” Ansatz. On physical grounds, for a suffi-

ciently large A subsystem, one expects the entanglement Hamiltonian to resemble the

“physical” Hamiltonian for the fermions hopping on the lattice. After all, ρA is ex-

pected to be close to the ground state of the physical HamiltonianHphys
A (the hopping

Hamiltonian for the free fermions, but involving only the matrix elements within the

subsystem A), denoted |GSA〉, and to deviate from it mainly near the boundary of A

ρA = |GSA〉〈GSA|+ boundary terms . (3.17)

Of course, the boundary terms are essential to describe entanglement between A and

B. Then, a possible Ansatz for the entanglement Hamiltonian is to take the physical

Hamiltonian of A divided by some very low entanglement temperature

Hent
A ≈ H

phys
A

Tent
(3.18)

naively translating the idea that there is entanglement between A and B because the

system acts as a heat bath to its subsystems. We call Eq. (3.18) the global entanglement

temperature hypothesis (GET), as opposed to the local entanglement temperature

hypothesis (LET) to be introduced in Section 3.3.2. The GET hypothesis cannot

systematically reproduce the expectation that the degrees of freedom of A contributing

to entanglement with B are located in the vicinity of the boundary between A and B.

Indeed, this happens only if the low-lying excitations ofHphys
A are boundary states, as

for instance in topological phases. In certain cases, it has rather been suggested that

Hent
A ≈ Hphys

boundary, where Hphys
boundary is the physical Hamiltonian of A, restricted to
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the degrees of freedom at the boundary betweenA andB (Li and Haldane, 2008). This

would naturally account for the area law, since the entanglement Hamiltonian would

describe a system of boundary degrees of freedom in d − 1 dimensions in thermal

equilibrium, exhibiting an entropy proportional to ld−1. We shall see in Section 7.1

that the LET hypothesis partly justifies this point of view when dealing with gapped

phases.

A sub-intensive entanglement temperature. According to the GET hypothesis, if

the entanglement entropy of an extensive subsystem obeys a sub-extensive scaling law

(typically an area law), then the entanglement temperature must be a sub-intensive

quantity, namely

Tent
l→∞−−−→ 0 . (3.19)

The GET hypothesis can either be tested directly by calculating the entanglement

Hamiltonian6, and comparing it to the physical Hamiltonian, or, more constructively,

it can be tested for its consequences.

Consequence of the GET Ansatz for entanglement thermodynamics. Direct

consequences of the GET hypothesis are that 1) the (quantum) variance of any local

observable OA in the ground-state of AB equals the (quantum7 and thermal) variance

that OA would take if A were thermalized, in the absence of its complement B, at

temperature Tent, in the grand-canonical ensemble; and 2) (entanglement) entropy of

A in the ground-state of AB equals the (thermal) entropy ofHphysical
A at temperature

Tent. In the case of a gas, one thus predicts

SA = lds(Tent) (3.20)

〈δ2NA〉 = ldkBTent
∂〈n〉
∂µ

(3.21)

where l is the linear size of subsystem A, s(T ) is the entropy per unit volume at

temperature T , and we have used the fluctuation-response relation between the particle-

number variance 〈δ2N〉 and the (isothermal) compressibility ∂〈n〉/∂µ. Under the GET

hypothesis, one could then measure 〈δ2NA〉, and deduce the entanglement temperature

using Eq. (3.21). If the thermodynamic function s(T ) is known, entanglement entropy

6 This is in general a very difficult task, even for the free fermion Hamiltonian, in part because
one needs to know precisely all the entanglement energies. They are extracted as − log(pi) with pi the
eigenvalues of the reduced density matrix, and many pi’s lie exponentially close to 0 when l increases,
so that the required accuracy on the pi’s grows exponentially with l. A few exact results exist, which
form the basis of the LET hypothesis discussed in Section 3.3.2.

7 A quantum contribution to the variance of OA is expected also at finite temperature if OA is not a
conserved quantity, see Chapter 1.
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Jhopping

Figure 3.2: GET hypothesis for the free fermions. (a) Entanglement entropy SA
and variance of the number of fermions 〈δ2NA〉 at T = 0 and µ = 0 (half-filling).
A is half of a line of V = 2l sites with periodic boundary conditions (PBC), for
l = 4, 8, 16 . . . 2048. Note the logarithmic scale on the horizontal axis. (b) Thermal
entropy S and thermal variance of the number of particles 〈δ2N〉 (both per site) as a
function of temperature, for µ = 0. The system is a line of 2× 104 sites with PBC. (c)
Squares: entanglement entropy as a function of the variance of the number of fermions
in subsystem A (both per site), extracted from panel (a). Dashed-line: thermal entropy
as a function of the thermal variance in the grand-canonical ensemble, extracted from
panel (b), showing a slope of π2/3 (see text).

can then be deduced through Eq. (3.20). Alternatively, one can avoid the detour

through the entanglement temperature if the thermodynamic relation S(〈δ2N〉) is

known in the grand-canonical ensemble: the entanglement entropy is just estimated as

SA = S(〈δ2NA〉).

Test of the GET thermodynamic relations for gapless free fermions. As illus-

trated on Fig. 3.2, in the case of gapless free fermions with a d− 1 dimensional Fermi

surface, the GET hypothesis enables one to predict quantitatively the value of the

entanglement entropy of subsystem A, based on the knowledge of the thermodynamic

relation S(〈δ2N〉), and on the measurement of the particle number variance inA. This

remarkable result is well known in the literature. It can be proven (to leading order in

the scaling behavior) for free fermions in any dimension (Calabrese, Mintchev, and

Vicari, 2012) and carries over to interacting fermions and bosons in one dimension

in the Luttinger-liquid regime (Laflorencie and Rachel, 2014). In all these situations,

entanglement entropy and the variance of the number of particles in a subsystem of
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linear size l scale as

SA, 〈δ2NA〉 ∼ ld−1 log l . (3.22)

For the above-cited systems, since at low temperature in the grand-canonical ensemble,

both quantities are extensive and linear in T , one deduces that the entanglement

temperature must scale as

Tent ∼
log l

l
(3.23)

which is sub-intensive, in agreement with the general arguments given so far. For free

fermions (in the gapless metallic phase), the relationship between 〈δ2NA〉 and SA is

remarkably simple (Calabrese, Mintchev, and Vicari, 2012)

SA =
π2

3
〈δ2NA〉+O(1) (3.24)

where O(1) denotes subdominant constant terms. It is not difficult to see that this

relationship is exactly the same in the grand-canonical ensemble at low temperature

(Huang, 1987; Diu, Lederer, and Roulet, 1996)

S/V =
π2

3
ρ(µ)T +O(T 3) (3.25)

〈δ2N〉/V = ρ(µ)T +O(T 3) (3.26)

where ρ(µ) is the density of states at Fermi energy8. These results give encouraging

support to the thermodynamic understanding of ground-state entanglement entropy,

and to the physical picture behind the Ansatz of Eq. (3.18) for the entanglement

Hamiltonian.

Inconsistency of the GET Ansatz for superfluid bosons. Unfortunately, the same

hypothesis is inconsistent when applied to bosons in a superfluid regime in dimension

d ≥ 2, as a simple scaling comparison shows. As a matter of fact, at thermal

equilibrium, entropy and fluctuations behave as

S ∼ V T d (3.28)

〈δ2N〉 ∼ V T . (3.29)

Here, we assume that the superfluid is in the Bogoliubov regime (Pitaevskii and

Stringari, 2003), where the entropy is carried by the linearly dispersing phonons,
8 In particular, in d = 1, entanglement entropy in the ground state grows as (ln l)/3 for a line of

length l in an infinite chain (Calabrese and Cardy, 2004). As in d = 1, ρ(µ) = [2Jπ sin(πn)]−1 with n
the density, the entanglement temperature is

Tent =
2J sin(πn)

π

log l

l
. (3.27)
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which are noninteracting bosonic quasiparticles, whence the result S ∼ T d (Huang,

1987; Diu, Lederer, and Roulet, 1996) (a proof is given in the footnote 5 of Chap. 6).

On the other hand, in the ground-state it is found that entanglement entropy and

local fluctuations of the number of bosons scale as9

SA ∼ ld−1 (3.30)

〈δ2NA〉 ∼ ld−1 log l . (3.31)

Hence, the thermal analogy for S suggests that T dent ∼ 1/l and Tent ∼ (log l)/l

for 〈δ2N〉, two scalings manifestly incompatible One thus has to face the following

questions

• Why is the GET hypothesis working for fermions, and not for bosons?

• More specifically, why is the area law violated by a multiplicative log l for

fermions, and not for bosons?

This latter question is especially relevant in view of the fact that for fermions and

bosons alike, the local variance of the number of particles obeys the same scaling

〈δ2NA〉 ∼ ld−1 log l. We will see in Section 3.3.2 how the LET hypothesis answers

these questions, but at this point, a closer look to the structure of the entanglement

Hamiltonian is in order. The GET hypothesis, Eq. (3.18), makes in particular a very

simple prediction for the spectrum ofHent: it should be simply the spectrum ofHphys
A

rescaled by the entanglement temperature.

Entanglement spectrum vs. physical spectrum for free fermions. If the physical

Hamiltonian describes free fermions, the entanglement Hamiltonian is also a free-

fermion Hamiltonian

Hent =
∑

α

E
(α)
ent c

†
αcα (3.32)

where cα destroys a fermion in the entanglement eigenmode α (technical details on the

entanglement properties of free-fermion Hamiltonian will be given in see Section 4.1).

The (single particle) entanglement spectrum E
(α)
ent is deduced from the eigenvalues nα

of the correlation matrix Cij = 〈c†icj〉 for i, j ∈ A as

nα =
1

eE
(α)
ent + 1

. (3.33)

9 For the scaling of the particle number variance, see Astrakharchik, Combescot, and Pitaevskii
(2007) and Klawunn et al. (2011). The area law scaling for entanglement entropy has been observed in
spin and bosonic models with a spontaneously broken continuous symmetry (U(1) or SU(2)), both with
quantum Monte Carlo calculations (Hastings et al., 2010; Kallin et al., 2011; Humeniuk and Roscilde,
2012; Herdman et al., 2016) and semi-classical methods (Song et al., 2011; Luitz et al., 2015; Frérot and
Roscilde, 2015). See Laflorencie (2016) for a review.
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Figure 3.3: Entanglement spectrum vs. physical spectrum for 1d free fermions. (a)
Single particle entanglement spectrum. A is a line of l sites in a chain of 50l sites with
PBC at half filling. i labels the entanglement eigenstates, shifted to be centered at
i = 0. (b) Square symbols: entanglement spectrum rescaled by Tent = (2J/π)(ln l/l)
(only the lowest levels are shown); dots: physical spectrum (in units of 2J). A same
as in (a) with l = 80. (c) Same as in (b) for µ = −0.95,−0.6,−0.15, 0.15, 0.6, 0.95,
and Tent = (ln l)/[lπ2ρ(µ)] with ρ(µ) = [2Jπ sin(πn)]−1, n being the density. In all
panels, we set J = 1/2

nα, the mean occupation of the entanglement eigenmode α, is just a Fermi distribution

for the entanglement energies10. The entanglement spectrum for 1d free fermions is

plotted on Fig. 3.3(a). The GET hypothesis predicts that

E
(α)
ent =

E
(α)
phys − µ
Tent

. (3.34)

As shown on Fig. 3.3(b) and (c), this relation is well verified for the low-lying

entanglement energies, near Eent = 0. In the thermodynamic limit, Tent → 0 and

the relevant entanglement energies are given by Eq. (3.34) with an increasingly

good accuracy, as shown by Peschel and Eisler (2009). As 〈δ2NA〉 and SA depend

only on the density of states close to the Fermi energy Eent = 0, this justifies the

thermodynamic relation between them illustrated on Fig. 3.2(c). However, it is already

apparent on Fig. 3.3(b,c) that the GET prediction of Eq. (3.34) only applies to the

part of the entanglement spectrum lying close to the Fermi level, while deviations are

apparent further away from the Fermi level.

Necessity of a refined Ansatz for the entanglement Hamiltonian. Unfortunately,

a comparison between the entanglement spectrum (ES) and the physical spectrum

(PS) beyond the 1d free fermions case shows even stronger limitations of the GET

10 In particular, the variance of the local particle number is 〈δ2NA〉 =
∑
α nα(1 − nα) and the

entanglement entropy is SA = −
∑
α[nα lnnα + (1− nα) ln(1− nα)].
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hypothesis. For instance, as it will be discussed shortly, for a 2d bosonic superfluid,

the dispersion relation of the entanglement spectrum shows a logarithmic dispersion

relation Eent(k‖) ∼ 1/| ln k‖| (k‖ denotes the wavevector parallel to the cut between

A and B), while the physical spectrum is linearly dispersing, E(k) ∼ k. A global

rescaling of the spectrum cannot turn a linear dispersion into a logarithmic one.

Furthermore, the GET Ansatz suffers from another fundamental limitation. Indeed,

the system of interest is translationally invariant, so that correlations depends only on

the relative distance, namely

〈OiOj〉 = 〈O0,O|i−j|〉 . (3.35)

However, this property is lost in the GET Ansatz because of the introduction of sharp

boundaries.

This calls for a more refined Ansatz for the entanglement Hamiltonian, provided

by the local entanglement temperature (LET) hypothesis.

3.3.2 The local entanglement temperature hypothesis

The idea of the LET Ansatz is to restore the translational invariance of the system of

interest by imposing soft boundary conditions on the entanglement Hamiltonian.

An Ansatz for the entanglement Hamiltonian. According to the LET hypothesis

(Swingle and McGreevy, 2015), a quantitative understanding of the entanglement

features (and in particular, as we shall see, of the relationship between entanglement

and quantum correlations of observable quantities) in the ground-state of many-body

lattice Hamiltonians is provided by the following Ansatz

ρA ≈ (1/Z)e−H
ent
A

Hent
A =

∑

i∈A (sites)

Hphys
i

Tent(i)
+

∑

b∈A (bonds)

Hphys
b

Tent(b)
. (3.36)

Here, Hphys
i is the physical Hamiltonian acting on the site i, containing the local

potentials and the local interaction terms, for instance Uni(ni − 1)/2 − Vini for a

Hubbard Hamiltonian, with U the onsite interaction strength and Vi a local potential.

Likewise, Hphys
b denotes a “bond” term in the Hamiltonian, for instance a hopping

term Jc†icj + h.c. or an interaction term Vijninj if b is linking sites i and j. Tent is a

local entanglement temperature, typically going from higher values near the boundary

of A (so that the fluctuations of the boundary degrees of freedom are enhanced),

to smaller values in the bulk of A (so that the corresponding degrees of freedom
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are increasingly frozen out), in accordance with the picture by which the quantum

fluctuations contributing to entanglement between A and B are located in the vicinity

of the A−B boundary.

According to the LET hypothesis expressed in Eq. (3.36), the entanglement Hamil-

tonian takes a particularly suggestive form: it is simply the physical Hamiltonian

modulated in space by some local entanglement temperature. Again, the LET hypoth-

esis should not be taken as an exact statement — in fact, exact calculations on lattice

models show that it cannot hold as an equality, since the entanglement Hamiltonian

typically involves longer-ranged hopping than the physical Hamiltonian — but rather

as a useful heuristic viewpoint which should be tested for its predictions. Nonetheless,

it is noteworthy that the LET hypothesis takes the form of a theorem for certain field

theories — namely Lorentz-invariant field theories — which are relevant descriptions

of the low-energy properties of important lattice many-body systems, suggesting in

particular that the entanglement temperature should decay as 1/x, x being the distance

to the A−B boundary.

The Bisognano-Wichmann theorem. The study of the entanglement content of

the vacuum of quantum field theories — the continuum counterpart to the study of

entanglement in ground states of many-body quantum Hamiltonians on a lattice —

was partly stimulated by Hawking prediction of black holes evaporation (Hawking,

1974), a consequence of the pumping of gravitational energy to create particles out of

the vacuum of quantum fields, and in particular, out of the electromagnetic vacuum

(Unruh, 1976). A related result is the prediction by Bekenstein (1973) that a black

hole has an entropy proportional to its area A (in units of the squared Planck length,

lP = G~2/c3, the Bekenstein-Hawking black-hole entropy is SBH = A/4l2P ). These

results can be viewed as special consequences of the entanglement content of the

vacuum of quantum field theories (Susskind and Lindesay, 2005). In this context,

a very important result, directly motivating the Ansatz of Eq. (3.36) (Swingle and

McGreevy, 2015), was obtained by Bisognano and Wichmann (1976), who showed

that the reduced-density matrix for a half-infinite space A (t = 0, x1 > 0 and

xi ∈ R for i = 2, . . . , d) obtained after tracing out the degrees of freedom in the

complementary half-infinite space (t = 0, x1 < 0 and xi ∈ R for i = 2, . . . , d), in the

ground-state of a Lorentz-invariant quantum field theory is

ρA =
1

Z
exp

[
−
∫

x∈A,x1>a
ddx

2πx1

~c
H(x)

]
(3.37)

whereH(x) is the Hamiltonian density, c the speed of light, and a some short-distance

ultraviolet cutoff, set by the underlying lattice spacing for instance (Susskind and
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Lindesay, 2005). Z is such that TrρA = 1. Eq. (3.37) shows that the entanglement

Hamiltonian for a half-space in the vacuum of a Lorentz-invariant quantum field theory

is exactly the field-theory Hamiltonian modulated in space by a local entanglement

temperature

Tent =
~c

2πx1
(3.38)

where x1 is the distance to the boundary betweenA andB. The Bisognano-Wichmann

theorem is extremely relevant to the study of entanglement in ground-states of con-

densed matter systems, as the Lorentz invariance of the field theory it relies upon is

often a good approximation to the low-energy physics of the model of interest. In

physical systems, one encounters both situations where the Lorentz invariance is a

low-energy property of the Hamiltonian (Bose-Hubbard model), and situations where

it is not (free fermions in d ≥ 2, spins with power-law decaying interactions with a

sufficiently small decay exponent), and we will see that even in the absence of Lorentz

invariance, the local temperature hypothesis may work very well (though with a decay

with the distance to the boundary possibly different from Tent ∼ 1/x1).

The local entanglement temperature on the lattice. Coming back to our subject

of interest – the entanglement Hamiltonian for a lattice many-body systems – the

Bisognano-Wichmann theorem suggests that, under Lorentz invariance of the effective

field-theory description, the entanglement temperature is c/2πx1, with x1 the distance

to the A−B cut. We choose units where ~ = 1, and measure the distance in units of

the lattice spacing a. To be precise, in the following, we shall focus on square lattices

(or cubic in d = 3) with periodic boundary conditions. To begin with, let us imagine

that the total system is defined on a cylinder Lx×Ld−1 periodic along x2, . . . xd, with

Lx � 1. If we define A as containing all sites such that x1 ≥ 1, and B with all sites

such that x1 ≤ 0, the A−B cut is between x1 = 0 and x1 = 1, centered on x1 = 1/2.

A site at position (x1, . . . , xd) is thus at a distance x1 − 1/2 from the boundary, and

similarly for a link parallel to the A−B boundary. On the other hand, a link between

(x1, x2, . . . , xd) and (x1 + 1, x2, . . . , xd) is at distance x1 from the boundary. Finally,

if the system is periodic also along x1, so that A is a cylinder of dimensions l × Ld−1

cut out of a torus of dimensions Lx × Ld−1, having now two boundaries with B, we

conjecture that the local temperature is the sum of the temperatures induced by each

of the boundaries11

Tsite(x) =
c

2π

[
1

x1 − 1/2
+

1

l − x1 + 1/2

]
(3.39)

11 This conjecture is motivated by the fact that it is an exact result in the context of 1d conformal
field theory (Wong et al., 2013).
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and similarly
2

Tlink(x, x′)
=

1

Tsite(x)
+

1

Tsite(x′)
(3.40)

In any case, we shall propose a way to extract the local entanglement temperature

from correlation functions in the ground-state.

3.3.3 From local temperature to local thermodynamics

Physical meaning of the LET Ansatz. At first sight, such an Ansatz like Eq. (3.36)

seems “obviously wrong”, since the reduced density matrix must reproduce all the

properties of a homogeneous system : after all, singling out a subsystem is an arbitrary

operation. In particular, the average value of any local observable 〈Oi〉 related to the

degrees of freedom on a given site i, is independent of i, and any correlation function

〈δOiδOj〉 depends only on the relative position of i and j. But how could a Hamilto-

nian modulated in space give rise to homogeneous properties? The idea is that one

may reproduce the statistical properties of a homogeneous system without boundaries

at zero temperature with those of an inhomogeneous system with boundaries at finite

temperature. Roughly speaking, as the fluctuations in a system with boundaries are

typically suppressed near the boundaries12, a higher “local” temperature is needed in

order to compensate for this effect.

To avoid confusion, it should be stressed that Eq. (3.36) corresponds to an

equilibrium state, and does not describe a physical situation where the region A is in

contact with a series of thermostats at temperatures T (x). Indeed, this situation would

produce stationary currents circulating throughout A, and lead to a non-equilibrium

steady state which could not be described by a Boltzmann form. The correct image is

that of a system whose energy scales (mass, interaction strength, external potentials)

are modulated by T (x), and in contact with a unique thermostat at a temperature

arbitrarily set to 1, so what really happens is that the (softer) degrees of freedom

near the edges are more subject to thermal fluctuations, while the (harder) degrees of

freedom in the bulk of A are completely frozen to their ground state. This happens

in such a fine-tuned way that, at temperature 1, all observables are translationally

invariant. In particular, the ground state (or any eigenstate) of the Ansatz Hamiltonian

Eq. (3.36) have no reason to be, and in general are not, translationally invariant. We

shall illustrate this point on explicit examples in the remainder of this section (see, for

instance, Fig. 4.3).

12 A prominent counter-example is represented by gapped topological phases, where the low energy
dynamics takes place at the boundaries.
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Local equilibrium approximation. In spite of these precautions, we will see that

it is extremely convenient to regard T (x) as the local temperature of the subsystem A.

Indeed, T (x) does play the pivot role of a local entanglement temperature, relating

the contribution of a site at x to entanglement entropy, to its contribution to quantum

fluctuations. The latter assumption is physically motivated by a local equilibrium

approximation (LEA) on the reduced density matrix Eq. (3.36). The LEA can be

formulated as follows

〈Oi〉(ρ = e−β(
∑
iHi)) ≈ 〈O〉(ρ = e−β(H≡Hi)) (3.41)

and expresses the fact that, at equilibrium, the average value of a local observable

Oi, in an inhomogeneous system having a position-dependent Hamiltonian Hi, is

given by the average value that the same observable O would have in a homogeneous

system, where the Hamiltonian would be uniformly equal to Hi, thermalized at the

same temperature T = 1/β. The LEA is widely used in the context of cold atoms,

where it allows for the experimental reconstruction of equations of state. Even though

the LEA was originally formulated for the density (hence the traditional terminology

of local density approximation – LDA), it is straightforwardly generalized to any local

observable.

Area laws and their violation from the LEA. In the context of entanglement, the

LEA can be used in a straightforward manner (Susskind and Lindesay, 2005; Wong

et al., 2013; Swingle, 2013; Swingle and McGreevy, 2015) to give an estimate for

entanglement entropy

S ≈
∑

i∈A
s (Ti) (3.42)

where s(T ) is the thermal entropy per unit of volume, and Ti the local entanglement

temperature. Remarkably, for conformally invariant models, the formula Eq. (3.42)

provides the leading term of the entanglement entropy with the correct prefactor

(Swingle, 2013; Wong et al., 2013). More generally, if one accepts that the local en-

tanglement temperature decays as T (x) ∼ 1/x with x the distance from the boundary

between A and B, as proven for Lorentz-invariant quantum field theories (Bisognano

and Wichmann, 1976), one easily understands the origin of the area law, and its

possible logarithmic violation.

• For gapped phases, the area law is straightforward to derive : as s[T (x)] ∼
e−∆/T (x) ∼ e−x∆, the terms contributing to the sum in Eq. (3.42) are expo-

nentially localized in a layer of width 1/∆ near the boundary, hence the area

law.
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• For gapless free fermions, regardless of the number d of dimensions of space,

s[T (x)] ∼ T (x) ∼ 1/x, hence the logarithmic violation of the area law S ∼
ld−1 log l.

• For a system of linearly dispersing bosons, s[T (x)] ∼ T (x)d ∼ 1/xd, so that

the area law is strict for d ≥ 2, and logarithmically violated in d = 1.

The first figure of merit of the local entanglement thermodynamics approach is hence

to give a coherent picture for the area laws and their possible violation encountered in

a variety of situations (Swingle and McGreevy, 2015). But the second, and perhaps

more important one, appears when one follows the same line of reasoning to account

for the scaling of fluctuations.

For concreteness, consider the number of particles in region A : NA =
∑

i∈A ni.

The variance of NA can be decomposed as 〈N2
A〉 − 〈NA〉2 =

∑
i∈A[〈niNA〉 −

〈ni〉〈NA〉] =
∑

i∈A〈δniδNA〉, where δO = O − 〈O〉. The LEA is then applied to

〈δniδNA〉— that we call later the “contour of density fluctuations” —, by assuming

that the correlation between the site i and the region A approximates the correlation

we would find in a homogeneous system with temperature Ti. Explicitly:

〈δniδNA〉 ≈
1

V
〈δ2N〉(Ti) (3.43)

where the r.h.s represents the variance of the number of particles per unit volume of a

large system of volume V , at a uniform temperature Ti. Knowing the scaling of the

thermal fluctuations with the temperature in a homogeneous system, one is then able

to predict the scaling of the quantum fluctuations with the linear size l of a subsystem

at zero temperature from the knowledge of the local entanglement temperature. For

instance, the scaling of 〈δ2N〉 with T is the same for bosons and fermions : they

are exponentially activated for gapped phases, and are proportional to T in Bose

superfluids and Fermi liquid phases. This can be shown through the thermodynamic

identity 〈δ2N〉/V = T∂n/∂µ, where the susceptibility ∂n/∂µ of the density to a

change of chemical potential behaves as e−∆/T in a gapped, incompressible phase,

and tends to a finite value at zero temperature in a gapless Fermi liquid and a superfluid

alike. This implies, through the hypothesis T (x) ∼ 1/x and the LEA (3.43) on the

reduced density matrix (3.36), that the area law for particle number fluctuations is strict

for gapped phases, and logarithmically violated for gapless phases, which matches the

observations.

LEA and “contours”. But more importantly, we are now able to give an indirect,

yet experimentally meaningful way to estimate entanglement entropy. Indeed, under
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the assumptions that 1) the thermodynamic equation of state relating entropy and

density fluctuations s = s(〈δ2N〉/V ) is known; and 2) one can calculate/measure the

density-density correlations; then one can estimate the entanglement entropy as

S ≈
∑

i∈A
s(CN (i)) (3.44)

where CN (i) = 〈δniδNA〉 defines the fluctuation contour (Frérot and Roscilde, 2015).

But the entanglement contour Cs (that will be introduced in Section 4.1) has been

precisely defined by Chen and Vidal (2014) to achieve this spatial decomposition of

entanglement entropy : S =
∑

i∈A Cs(i), so that the central conjecture (3.44) can be

formulated in a stronger form :

S(T )
f←→ 〈δ2O〉

Cs(i) f←→ CO(i) (3.45)

where the f above the arrows means that the contours are linked by the same functional

relation than their thermal counterparts. We conjecture, and will show on several

explicit examples in the following sections, that the correspondence formulated in Eq.

(3.45) holds, at least in an approximate manner, for several local observable O.

Discussion. We have now introduced all the basic tools needed for the microscopic

understanding of the entanglement structure in many-body ground states, based on

usual thermodynamic concepts. The following Chapters 4, 5, 6 and 7 will be devoted

to the explicit study of model systems, against which to test the general considerations

and approximations discussed so far. At this point, we wish to emphasize that while

the LET Ansatz for the entanglement Hamiltonian, Eq. (3.36) combined with the LEA

Eq. (3.41) imply the thermodynamic relations between the contours, Eq. (3.45), the

converse is not true. Namely, we shall encounter situations where the correspondence

between the contours, Eq. (3.45), holds, while the LET Ansatz of Eq. (3.36) is not at

all a good approximation to the entanglement Hamiltonian (free fermions in d ≥ 2)13.

13 Similarly, while the Bisognano-Wichmann theorem for quantum field theories, Eq. (3.37), relies
on the hypothesis of Lorentz invariance, situations are encountered where the Lorentz invariance is not a
good approximation at low energy, but where the entanglement Hamiltonian is well approximated by
the LET Ansatz of Eq. (3.36), though with a decay of the local temperature with the distance x1 to the
boundary different from 1/x1. This situation is realized by certain spin models with power-law decaying
interactions, although it shall not be elaborated further in this manuscript.
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Chapter 4

Entanglement
thermodynamics: Free

fermions

Introduction. In this chapter, the spatial structure of entanglement in a gas of free

fermions (FF) at zero temperature is investigated. Section 4.1 is devoted to general

considerations, valid for arbitrary FF models, and definitions of the entanglement and

fluctuations contour are given. Section 4.2 studies the simplest case of 1d gapless FF,

for which we exhibit a very accurate Ansatz for the entanglement Hamiltonian in the

form of the lattice version of the Bisognano-Wichmann theorem, Eq. (3.37), valid

for field theories in the continuum. We also show that the local equilibrium point of

view for the spatial structure of entanglement, discussed on general grounds in Section

3.3.3, is extremely meaningful in this case. Section 4.3 is then devoted to 2d FF, for

which the naive LET Ansatz of Eq. (3.36) is incorrect. We trace this inefficiency back

to the absence of Lorentz invariance in d = 2, and show that, nevertheless, a local

equilibrium hypothesis is still meaningful at the level of the contours. Conclusions

and outlooks on FF models are finally proposed in Section 4.4.

4.1 Generalities

In this section, we provide technical details necessary to study the structure of entangle-

ment in FF models (as proposed originally by Peschel and Eisler (2009)), and introduce

the concept of contours for entanglement and for the variance of an observable.
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4.1.1 Entanglement Hamiltonian

We consider an arbitrary FF Hamiltonian

H =
∑

i,j

c†ihijcj (4.1)

where i, j denote the sites of a lattice of arbitrary geometry and arbitrary dimension.

c
(†)
i are fermionic operators satisfying the anti-commutation relations

{
{ci, c†j} = δij

{ci, cj} = 0 .
(4.2)

The V × V hermitian matrix hij is the one-body Hamiltonian, which is diago-

nalized by a unitary transformation h = UEU † with UU † = U †U = I, and

E = diag(ε1, . . . , εV ). The diagonal form ofH is thus

H =
V∑

α=1

V∑

i,j=1

UiαεαU
∗
jαc
†
icj

=
V∑

α=1

f †αfαεα (4.3)

where

f †α =
V∑

i=1

Uiαc
†
i (4.4)

creates a particle, delocalized on the lattice, in the single-particle wavefunction (or

“mode”) ψα(i) = Uiα. The (many-body) ground state ofH is obtained by filling all

energy levels up to the Fermi energy εF = 01. A thermal state

ρ =
1

Z
e−H/kBT (4.5)

is obtained by populating each single-particle mode with an average number of

fermions

nα = 〈f †αfα〉
=

1

1 + eεα/kBT
. (4.6)

Such a state is a Gaussian state, namely the exponential of a quadratic form

ρ =
1

Z

∏

α

e−βεαf
†
αfα (4.7)

1 Note that we set the density by absorbing the chemical potential term −µN = −µ
∑
i c
†
i ci into

the diagonal part of hij , so that the Fermi energy is by definition at εF = 0. Usually, one sets εF = µ,
but this simply corresponds to a global shift of the single-particle energies.
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and therefore it satisfies Wick’s theorem2, which implies that this state is completely

characterized by the one-body correlation matrix

Cij = 〈c†icj〉
=

∑

α,β

U∗iα〈f †αfβ〉Ujβ

= (U∗NUT )ij (4.8)

where N = diag(n1, . . . , nV ) and UT denotes the transpose of U . If we restrict our

observations to a subsystem A, containing an arbitrary subset of the sites of the lattice,

we may keep only

CA = (Cij)i,j∈A . (4.9)

Since all correlation functions related to A degrees of freedom factorize according to

the prescriptions of Wick’s theorem, we know that the reduced density matrix ρA is

also a Gaussian state, which can be written as the exponential of a FF Hamiltonian hA
(Peschel and Eisler, 2009)

{
ρA = e−HA

HA =
∑

i,j∈A c
†
icj(hA)ij .

(4.10)

In particular, Eq. (4.8) implies that C∗A and hA are diagonal in the same basis U (A) =

(U
(A)
iα ). Furthermore, the eigenvalues n(A)

α of C∗A are related to the eigenvalues ε(A)
α

of hA by

n(A)
α =

1

1 + eε
(A)
α

(4.11)

ε(A)
α = ln

(
1

n
(A)
α

− 1

)
. (4.12)

In particular, if one works with the ground state ofH (or, more generally, any pure state

obtained by populating certain single-particle modes α with one fermion, and the other

ones with zero fermion), hA is the (one-body) entanglement Hamiltonian, and ε(A)
α

the (one-body) entanglement spectrum. In principle, the entanglement Hamiltonian

could be reconstructed by diagonalizing the one-body density matrix C∗A containing

only degrees of freedom within region A

C∗A = U (A)NA(U (A))† (4.13)
2 More generally, any state obtained by populating the one-particle states independently of each

other is a Gaussian state. Formally, this can be thought of as a thermal state, although with a different
temperature for each mode α. Wick’s theorem is proved and extensively discussed in the book of Blaizot
and Ripka (1986).
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but in practice, this is possible only for relatively small systems (up to about 30

sites), because many n(A)
α lie exponentially close to 0 or 1, so that it is very hard to

get a sufficient precision on the associated ε(A)
α and to reconstruct the entanglement

Hamiltonian. On the other hand, most physical quantities of interest are insensitive to

the modes whose occupation lie close to 0 or 1. For instance, entanglement entropy

of A is the thermal entropy associated to the occupation nAα of the entanglement

eigenmodes. Any mode is occupied (with probability n(A)
α ) or empty (with probability

1− n(A)
α ) independently of the others, yielding an entropy of

SA =
∑

α

s(n(A)
α ) (4.14)

s(n) = −n lnn− (1− n) ln(1− n) . (4.15)

As s(n) is 0 for n = 0, 1, the entanglement entropy is mostly sensitive to the highly

fluctuating modes such that n(A)
α ≈ 1/2.

4.1.2 Contours

A key concept in the study of the spatial structure of entanglement in many-body

systems is the entanglement contour, first introduced by Chen and Vidal (2014),

and further elaborated by us (Frérot and Roscilde, 2015) and by Coser, De Nobili,

and Tonni (2017). The basic idea of the entanglement contour is to decompose

entanglement entropy as a sum of local contributions

SA =
∑

i∈A
Cs(i) (4.16)

where Cs(i) is the contribution of site i to the entanglement of A with B. In view of

the fact that SA is a sum of independent contributions stemming from the different

entanglement eigenmodes, Eq. (4.14), it is natural to seek a decomposition of the form

SA =
∑

i∈A

∑

α

s(n(A)
α )wα(i)

︸ ︷︷ ︸
Cs(i)

(4.17)

where wα(i) is weighting the contribution of site i to s(n(A)
α ), the contribution of the

entanglement mode α to entanglement entropy. In particular, for all α
∑

i

wα(i) = 1 . (4.18)

Here, the most obvious choice is given by the weight of the entanglement mode α on

site i

wα(i) = |U (A)
iα |2 (4.19)
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so that the entanglement contour reads

Cs(i) =
∑

α

|U (A)
iα |2s(n(A)

α ) . (4.20)

This definition of the entanglement contour satisfies several natural desiderata (Chen

and Vidal, 2014), and in particular the sum rule Eq. (4.17). In a similar spirit (Frérot

and Roscilde, 2015), we define the fluctuation (or density) contour as

CN (i) = 〈niNA〉 − 〈ni〉〈NA〉 , (4.21)

such that

〈δ2NA〉 =
∑

i∈A
CN (i) . (4.22)

As NA =
∑

α c
†
αcα and ni =

∑
α,β(U (A))∗iαU

(A)
iβ c†αcβ , we can write

CN (i) =
∑

α,β

|U (A)
iα |2 [〈nαnβ〉 − 〈nα〉〈nβ〉]

=
∑

α

|U (A)
iα |2[〈(n(A)

α )2〉 − 〈n(A)
α 〉2] (4.23)

where 〈n2〉 − 〈n〉2 = n(1 − n) since n = 0 or 1. Here, we have used the fact that

the populations nα = c†αcα are conserved, and that they fluctuate independently for

α 6= β. Note the similarity of the expression of Eq. (4.23) for the fluctuation contour

with Eq. (4.20) for the entanglement contour.

4.1.3 Contour and structure factor

In the special case of a translationally invariant system, it is convenient to relate the

fluctuation contour of an observable to the structure factor. Considering an arbitrary

local observable Oi, the structure factor is defined as

SO(k) =
∑

j

e−ik·(rj−ri)〈δOiδOj〉 . (4.24)

In particular, the corresponding contour is

CO(i) =
∑

j∈A
〈δOiδOj〉

=
1

N

∑

k

e−ik·riSO(k)
∑

j∈A
eik·rj

=
1

N

∑

k

e−ik·riSO(k)TA(k)∗ (4.25)

where we have introduced the form factor for the subsystem A

TA(k) =
∑

j∈A
e−ik·rj . (4.26)
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4.1.4 Discussion

We emphasize that the above treatment applies to any free fermion Hamiltonian.

It relies solely on the validity of Wick’s theorem. This includes arbitrary hopping

amplitudes (including complex ones to implement, for instance, magnetic fields on

free hopping electrons) and arbitrary onsite potentials. Furthermore, if the state

satisfies Wick’s theorem at some initial time, and is evolved through a free fermion

Hamiltonian (possibly time-dependent), it satisfies Wick’s theorem at any later time

as well. This property is easy to prove in the Heisenberg picture for the c(†)
i operators

i~∂tci = [ci,H] =
∑

j

hijcj (4.27)

so that ci(t) is a linear combination of the cj(0)’s (= cj). Since any linear combination

of operators which satisfy Wick’s theorem also satisfies Wick’s theorem, we imme-

diately realize that the evolved state is amenable to the same treatment as the initial

one. Hence, all sorts of questions related to the effect of gauge fields, disorder, time

evolution, finite temperature, etc, onto the structure of entanglement in free fermion

models can be investigated at a minimal computational effort.

These properties have been used by Chen and Vidal (2014) to investigate the

real-time dynamics of entanglement contours, and by us (Frérot and Roscilde, 2015)

to investigate fluctuation and entanglement contours of fermions in the brick-wall

lattice (which has similar properties to the graphene lattice), or in topological bands.

4.2 Free fermions in one dimension

In this section, we introduce the FF Hamiltonian in d = 1 and the “local entanglement

termodynamics” (LET) Ansatz for the entanglement Hamiltonian [Eq. (4.42)] inspired

by the Bisognano-Wichmann theorem, Eq. (3.37). We show that the LET Ansatz and

the actual entanglement Hamiltonian have striking similarities (exact same eigenvec-

tors, very similar energies, see Fig. 4.1). We then argue in favor of the validity of the

local temperature picture by comparing the contours of several quantities and their

thermal counterparts (Fig. 4.2). Finally, we briefly emphasize again the subtle but

essential point that the reduced density-matrix is a thermal state of the entanglement

Hamiltonian at a very specific temperature.
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4.2.1 Free fermions on a line

In this section, we investigate again the simplest situation: free fermions hopping on a

homogeneous 1d lattice. The Hamiltonian in second-quantized form is

H = −J
N∑

x=1

(c†xcx+1 + c†x+1cx)− µ
N∑

x=1

c†xcx (4.28)

where we identify x = N + 1 with x = 1 (periodic boundary conditions). H is

diagonalized by a Fourier transform

ck =
1√
N

∑

x

e−ikxcx (4.29)

εk = −2J cos k − µ (4.30)

H =
∑

k

εkc
†
kck . (4.31)

The one-body spectrum εk is symmetric with respect to k ↔ −k. It is convenient to

introduce the Fermi wavevector kF ≥ 0 such that

εkF = 0 (4.32)

µ = −2J cos kF . (4.33)

The speed of light in the Bisognano-Wichmann theorem Eq. (3.37) is replaced here

by the Fermi velocity

vF =
∂εk
∂k

∣∣∣∣
k=kF

(4.34)

= 2J sin kF . (4.35)

At low energy (|εk| � J), the spectrum is approximately linear

εkF+q = −2J cos(kF + q) + 2J cos(kF ) (4.36)

= qvF +O(q2) (4.37)

so that q = k − kF > 0 can be thought of as the momentum of relativistic massless

fermions (Eq =
√
m2c4 + q2c2 = |q|c if m = 0) where vF plays the role of c. This

linear dispersion at low energy, εkF+q ≈ vF q, is the origin of the Lorentz invariance of

the effective field theory which describes the low-energy / long-wavelength behavior

of this free fermion gas on the lattice. Finally, the one-body correlation matrix in the
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ground state is

Cxx′ = 〈c†xcx′〉 (4.38)

=
1

N

∑

k

〈c†kck〉eik(x′−x) (4.39)

N→∞−→
∫ kF

−kF

dk

2π
eik(x′−x) (4.40)

=
sin[kF (x′ − x)]

π(x′ − x)
(4.41)

which depends only on the relative position x′ − x since we work with periodic

boundary conditions. We have taken the thermodynamic limit N →∞.

4.2.2 Entanglement Hamiltonian

We consider a subsystemA containing all the sites from x = 1 to x = l. The one-body

entanglement Hamiltonian hA is obtained by diagonalizing the correlation matrix C∗A
(= CA = (Cij)i,j∈A), see Section 4.1: hA and C∗A have the same eigenvectors, and

their spectra are related by Eq. (4.12). The “local entanglement temperature” Ansatz

(see Section 3.3.2) for the entanglement Hamiltonian is

HLET
A = −2π

vF
J

l−1∑

x=1

βx,x+1(c†xcx+1 + c†x+1cx)− 2π

vF
µ

l∑

x=1

βxµc
†
xcx . (4.42)

With all β’s equal to vF /2π, this would just be the physical Hamiltonian restricted to

the subsystemA (note in particular that we now have open boundary conditions). Here,

we have (as introduced in Section 3.3.2, paragraph “local entanglement temperature

on the lattice”)

βr = (r − 1/2)

(
1− r − 1/2

l

)
(4.43)

βr,r+1 = r(1− r/l) (4.44)

Miraculously, hLET
A and CA are found to commute, so that they have the same

eigenvectors3. In particular, hA and hLET
A have also the same eigenvectors, denoted

ψα(x), and possibly differ only in their spectrum, denoted respectively εα and εLET
α

hAψα = εαψα (4.45)

hLET
A ψα = εLET

α ψα , (4.46)

3 This can be checked by a lengthy but straightforward comparison of the matrix elements of
CAh

LET
A and hLET

A CA.
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Figure 4.1: Entanglement Hamiltonian for 1d free fermions (l = 50, N = 5000,
µ = 0). (a) Comparison between the entanglement spectrum (filled yellow triangles)
with the spectrum of hLET

A , Eq. (4.42) (empty circles). Only the lowest levels (near
α = l/2 = 25) are plotted for the entanglement spectrum because of the already-
cited limitations in the numerical precision (see Section 3.3.1). Large symbols at
α = 25, 35, 45 indicate the eigenvalues associated to the eigenstates plotted on panel
(b). (b) Spatial weight |ψα(x)|2 of the eigenstates of the one-body entanglement
Hamiltonian, for α = 25, 35, 45. Highest modes (contributing a smaller amount to
entanglement entropy) are located far in the bulk of A, while lowest modes (giving
the largest contributions to entanglement entropy) have more weight close to the
boundaries. Notice the logarithmic scale on the vertical axis.

so that the reduced density matrix for A is

ρA =
1

Z
exp

{
−
∑

α

(c(A)
α )†c(A)

α εα

}
(4.47)

where 1/Z ensures the normalization Tr(ρA) = 1 and we have introduced

c(A)
α =

∑

x∈A
ψα(x)∗cx . (4.48)

Similarly, the approximate reduced density matrix provided by the LET Ansatz is

ρLET
A =

1

Z ′
exp

{
−
∑

α

(c(A)
α )†c(A)

α εLET
α

}
. (4.49)

As shown on Fig. 4.1(a), the spectra of hA and hLET
A are very similar, which

makes hLET
A and excellent approximation of hA, since they have exactly the same

eigenvectors. However, even though it is not visible on Fig. 4.1(a), we emphasize that
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they are different, even in the asymptotic limit l→∞, as hA contains further hopping

terms beyond nearest neighbor, absent from hLET
A , which persist for arbitrary large

l (Eisler and Peschel, 2017). Interestingly, as shown on Fig. 4.1(b) the eigenvectors

ψα(x) associated to entanglement energies close to εα = 0 (which give the largest con-

tribution to entanglement entropy), are mainly localized near the edges of A, while the

eigenvectors associated to increasingly high entanglement energies (which contribute

increasingly less to entanglement entropy), have their weight located increasingly far

from the boundary.

Somehow illustrating the origin of the are law of entanglement entropy (logarith-

mically violated in this case), the entanglement modes which contribute the most to

entanglement entropy involve degrees of freedom in the vicinity of the boundary of

A. There is nothing rigorous in this last remark, since strictly speaking, entanglement

entropy is only sensitive to the entanglement energies, and not to the spatial structure

of the associated entanglement modes. The connection between the spatial structure of

entanglement eigenstates and the scaling of entanglement entropy can be made more

rigorous by the analysis of the spatial structure of the entanglement contours, which

are sensitive to both entanglement energies (dictating the mode populations) and to

the spatial structure of the modes. Contrary to the entanglement spectrum, and to the

entanglement eigenstates, the contours have a robust structure in the thermodynamic

limit.

4.2.3 Relations between the contours

Expression of the contours. We now wish to investigate the “local entanglement

temperature” hypothesis discussed on general grounds in Section 3.3.3 in the specific

case at hand: free fermions hopping on a line. In this context, the two central quantities

(introduced in Section 4.1) are the entanglement contour

Cs(x) =
∑

α

s(nα)|ψα(x)|2 , (4.50)

where nα = [1 + exp(εα)]−1 and s(n) = −n lnn − (1 − n) ln(1 − n); and the

density-fluctuations contour

CN (x) =
l∑

x′=1

〈δnxδnx′〉 (4.51)

=
∑

α

〈δ2nα〉|ψα(x)|2 , (4.52)
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where 〈δ2n〉 = n(1 − n). More generally, we can consider the fluctuation contour

associated to other Fourier components of the density

Ck(x) =

l∑

x′=1

〈δnxδnx′〉 cos[k(x− x′)] (4.53)

such that, integrating over the whole subsystem A, we obtain the local structure factor

(times the number l of sites)
∑

x

Ck(x) =
∑

x,x′∈A
eik(x−x′)〈δnxδnx′〉 ≡ lSA(k) . (4.54)

The variance of the number of particles, 〈δ2NA〉, corresponds to the special case

k = 0, while the case k = π corresponds to the variance of the staggered density in A

Nstagg = Neven −Nodd , (4.55)

also called “imbalance” in the literature, where Neven counts the number of particles

on the sites such that x is even, and Nodd on the remaining ones.

Spatial structure of the contours vs. thermal behavior of the corresponding ther-
modynamic fluctuations. Fig. 4.2(a) shows the contours of entanglement Cs, of

density fluctuations CN = Ck=0, and of imbalance fluctuations Cπ for a subsystem

of 100 sites in a chain of 5000 sites. Clearly, the contours are symmetric with re-

spect to the center of A. Furthermore, both the entanglement and density-fluctuations

contour decay when moving away from the boundary of A (note the logarithmic

scale on the vertical axis). This corresponds to fact that both SA =
∑

x∈A Cs(x) and

〈δ2NA〉 =
∑

x∈A CN (x) are sub-extensive in the size of A: if the contours would

decay to a nonzero (an size-independent) value in the bulk of A, their integral would

scale linearly in the volume of A. Remarkably, both Cs and CN decay as 1/x in the

bulk of A, giving rise to the logarithmic violation of the area law observed for gapless

free fermions, and they do so in such a way that

Cs
CN
→ π2

3
(4.56)

showing that the relation
SA
〈δ2NA〉

≈ π2

3
(4.57)

is simply inherited by the same relation existing already at the level of the contours

(Frérot and Roscilde, 2015). This is a first illustration of the validity of the local tem-

perature picture discussed on general grounds in Section 3.3.3, and further illustrated

on panels (b), (c) and (d) of Fig. 4.2.
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Figure 4.2: Local entanglement temperature for 1d free fermions. A is a line of 100
sites in a chain of 5000 sites with PBC, at half filling. (a) Entanglement contour
(red triangles), density-fluctuations contour (blue squares) and imbalance-fluctuations
contour(yellow circles) as a function of position in subsystem A (see text for the
definitions). (b) Entropy density, structure factor at k = 0 and at k = π (see text for
the definition), as a function of temperature. Same symbols as for the corresponding
contours in panel (a). Black arrows illustrate the manner in which the local entangle-
ment temperature may be reconstructed from the knowledge of the contour [panel (a)],
and the knowledge of the thermal behavior of the corresponding fluctuations [panel
(b)]: one chooses Tent(x) such that CO(x) = 〈δ2O〉[Tent(x)]/V . (c) Entanglement
temperature as a function of the position, extracted by the above-mentioned procedure,
from the entanglement, density and imbalance contours [same symbols as for the
associated contours in panel (a)]. Solid black line: prediction of Eq. (3.39) with
c = vF . (d) Entanglement contour (red triangles) and imbalance-fluctuations contour
(yellow circles) as a function of the density-fluctuations contours [data extracted from
panel (a)]. Solid lines are the corresponding entropy density and structure factor at
k = π, as a function of the structure factor at k = 0, at thermal equilibrium [data
extracted from panel (b)].
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On the other hand, the imbalance-fluctuations contour slightly increases near the

boundaries of A, and quickly reaches a plateau value, independent of the size of A,

corresponding to the fact the 〈δ2NA
stagg〉 scales linearly with the volume of A; namely

it exhibits a volume-law scaling. The slight decrease of Cπ when approaching the

boundaries of A nicely matches the expectation that the entanglement temperature is

higher near the boundaries. Indeed, in Fig. 4.2(b) we have plotted the structure factors

at k = 0 (equal to 〈δ2N〉/V , V being the total number of sites in the system), and at

k = π (equal to 〈δ2Nstagg〉/V ), and the entropy density as a function of temperature.

While the variance of N and the entropy both increase linearly at low temperature

(the prefactor relating them being precisely π2/3), and then reach a shot-noise limit

at high temperature (S/V → ln 2 and 〈δ2N〉/V → n(1 − n) = 1/4 for n = 1/2),

corresponding to uncorrelated fluctuations on all the sites, the imbalance fluctuations

actually increase when moving towards lower temperature4. As a consequence of

the entanglement temperature going to zero in the bulk, the imbalance-fluctuations

contour is hence larger in the bulk than on the edges of A. This in contrasts with the

entanglement and density-fluctuations contours, which go to zero in the bulk of A,

reflecting the fact that both the variance of the density and the entropy go to zero at

low temperature.

Thermodynamic relations between the contours and local entanglement temper-
ature. Now, from the hypothesis that the contours depend on the local entanglement

temperature in the same way as the global fluctuations do on the true temperature,

CO(Tent) ≈
〈δ2O〉
V

(Tent) , (4.58)

we can extract Tent from: 1) the knowledge of the equation 〈δ2O〉(T ) (which could be

measured in an experiment); and 2) the knowledge of the contour CO (which could also

be measured whenever the correlations of O are accessible). The small black arrows

on Fig. 4.2(b) illustrate the procedure to extract Tent from 1) and 2). In principle, the

entanglement temperature obtained in this way is observable-dependent. However, as

shown on Fig. 4.2(c), the temperature obtained from Cs5, CN and Cπ are extremely

close to each other, and furthermore, they are extremely close to the entanglement

temperature which modulates in space the Ansatz Hamiltonian of Eq. (4.42)

TAnsatz
ent (x) =

vF
2π

(
1

x− 1/2
+

1

l − x+ 1/2

)
(4.59)

4 This highly non-classical behavior is a consequence of the imbalance fluctuations being strongly
affected by the quantum (or coherent) contribution to the fluctuations, see Frérot and Roscilde (2016b)
and Section III.

5 Although the entanglement contour is a priori not a measurable quantity, we also illustrate the
procedure for it for the sake of completeness.
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if x = 1 . . . l denotes the position of the sites of A (recall that the two boundaries

between A and B are at positions 1/2 and l+ 1/2 respectively). This further validates

the local equilibrium approximation (LEA), discussed in Section 3.3.3, according to

which the subsystem A may be viewed as being in local thermal equilibrium at the

temperature Tent(x) (independent of the observable). One then sees that the local

contribution of the site x to the variance of an observable O, as extracted from the

LEA on the Ansatz Hamiltonian, is just the contour CO(x).

The validity of the LEA is not at all obvious a priori, since we know that the

state has an infinite correlation length. One could argue that what matters in this

context is not the correlation length ξ in the ground state, but the correlation length

ξ(x) at the local temperature Tent(x). The physical intuition would be that we can

divide the subsystem A into patches of linear size ξ(x), on which the temperature is

approximatetly constant, and which are uncorrelated from each other. In the present

case of free fermions, ξ(T ) ≈ vF /(2πT ), and T (x) ≈ vF /(2πx) so that ξ(x) ≈ x.

If one wants the temperature to be approximately constant across a patch of size

ξ(x) ≈ x, one needs the gradient of T (x) to be sufficiently small

∆T

T (x)
� 1 ⇔ ξ∂xT

T (x)
� 1 (4.60)

⇔ x vF
2πx2

vF
2πx

� 1 (4.61)

⇔ 1� 1 (4.62)

which is not a good approximation. So it seems difficult to justify the LEA on physical

grounds, especially in view of the fact that the “patches” we consider in practice, are

single lattice sites. However, we are somehow forced to admit that it indeed provides

a correct account for the thermodynamic relations observed between the contours.

Note that the picture of local thermal equilibrium must be manipulated with

caution: all local observables are really translationally invariant. The contours are

not, because they are not local quantities (they depend on the very definition of A),

and therefore are able to detect the (non-uniform) entanglement temperature. The

balance between the idea of local equilibrium and the nonlocal nature of entanglement

is somewhat embodied in the local and nonlocal nature of the contours.

Finally, we illustrate on Fig. 4.2(d) how the detour through the entanglement

temperature can be circumvented by directly comparing the contours of different

observables. Indeed, a direct consequence of Eq. (4.58) is that, considering two

observables O1 and O2, the associated contours obey

CO1(CO2) ≈ 〈δ2O1/V 〉
(
〈δ2O2〉/V

)
(4.63)
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Figure 4.3: Homogeneity of the Ansatz states. Comparison of the density profile
between the GET Ansatz (red triangles) and the LET Ansatz (blue circles) at various
temperatures, for µ/J = −1.8 (density n = 0.1434). (a) At T = 0; (b) At T = Tent,
chosen such that the (thermal) entropy matches the entanglement entropy that the
system would have if it were immersed in an infinitely large ground state. (c) At T =
2Tent. Friedel oscillations at wavevector kF , induced by the presence of boundaries,
are strongly suppressed only at T = Tent for the LET Hamiltonian, Eq. (4.42), while
they survive up to large temperatures for the GET Hamiltonian (namely, the physical
Hamiltonian with open boundaries).

where, on the r.h.s, we have the relation between the variances of O1 and O2 per site

at thermal equilibrium. We illustrate this prediction by showing how the entanglement

contour and imbalance contour could be reconstructed from the knowledge of the

density contour, together with the thermal behavior of the entropy and of the structure

factors at k = 0 and π (plotted on Fig. 4.2(b)), without the need to actually measure

the temperature, which can be a delicate task in the context of cold atoms.

4.2.4 Homogeneity of the Ansatz state

Before moving on to the d = 2 situation, we briefly comment on the seemingly para-

doxical observation that a thermal state of a manifestly inhomogeneous Hamiltonian,

as proposed in Eq. (4.42) (LET Ansatz), reproduces much better the properties of a

homogeneous system (since subsystem A is immersed in a homogeneous system, it is

itself perfectly translationally invariant), than of a more homogeneous Hamiltonian,

as proposed in Eq. (3.18) (GET Ansatz, namely, the physical Hamiltonian with open

boundaries). To gain insight into this issue, we briefly study the behavior of the

spatial density for these two Ansatz Hamiltonians, varying the temperature. The subtle

point here is that even if the GET Hamiltonian is homogeneous, the mere presence of

boundaries induces strong Friedel oscillations of the density at wavevector kF near

the edges. As is already visible on Fig. 4.3(a), these boundary-induced oscillations

are less pronounced in the ground state of the LET Hamiltonian, than in the ground
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state of the GET Hamiltonian. The ground state of the LET Hamiltonian has per se no

physical meaning, but this observation somehow anticipate the fact that at T = Tent
6

[Fig. 4.3(b)], the density profile for the LET Hamiltonian is nearly perfectly flat. On

the other hand, the GET Ansatz continues to exhibit strong Friedel oscillations of

the density at this temperature (where its thermal entropy matches the ground state

entanglement entropy of A), and up to relatively high temperatures [Fig. 4.3(c)]. Fur-

thermore, at T > Tent, the LET Ansatz exhibits again spatial inhomogeneities: only

at T = Tent does the LET Hamiltonian accurately mimic the reduced-density matrix

ρA in the ground-state of the physical Hamiltonian. To conclude this discussion, we

may say that the inhomogeneous entanglement Hamiltonian is perfectly fined tuned to

mimic the ground state properties when studied at a very specific temperature. It is not

only the structure of the entanglement Hamiltonian itself which matters, but also the

fact that the statistical properties associated to it are evaluated at a special temperature.

Similar considerations have led Chandran, Khemani, and Sondhi (2014) to question the

common belief according to which the low energy entanglement Hamiltonian contains

universal signatures of the phase of matter characterizing the physical ground state

|GSphys〉. They argued that the low energy physics of the entanglement Hamiltonian

need not correspond to the actual properties of |GSphys〉, and in especially pathologic

models, there might even be (finite temperature) phase transitions between the ground

state of the entanglement Hamiltonian, |GSent.Ham.〉, and the state at temperature 1,

which describes the physical ground state |GSphys〉 under examination.

4.3 Free fermions in d ≥ 2

We now turn to the richer case of free fermions in d = 2. After introducing the

model, we show that for a subsystem A consisting of a cylinder cut out of a torus, the

entanglement Hamiltonian decouples as a sum of 1d FF systems, each of them having

its own Fermi velocity. In each sector, we can use the results of Section 4.2 in d = 1,

but the validity of the LET hypothesis for the entanglement Hamiltonian, which would

require a unique Fermi velocity, breaks down. In spite of this breakdown, we show

that a local equilibrium point of view, understood as a relation among the contours,

continues to hold.

6 The entanglement temperature Tent is chosen in such a way that the thermal entropy coincides
with the entanglement entropy of the reduced state ρA in the ground state of the infinite free fermion
chain.
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4.3.1 Free fermions on a torus

We consider free fermions hopping on a square lattice, and work with periodic bound-

ary conditions (PBC, the system is thus defined on a torus). The Hamiltonian is

H = −
Lx∑

x=1

Ly∑

y=1

c†x,y [J(cx,y+1 + cx,y−1 + cx−1,y + cx+1,y) + µcx,y] , (4.64)

where we identify x = Lx + 1 with x = 1 and y = Ly + 1 with y = 1 (PBC). As

usual, µ is the chemical potential (fixing the density), and J the hopping amplitude.

The Hamiltonian is diagonalized by Fourier transform

ckx,ky =
1√
LxLy

∑

x,y

e−ik·rcx,y (4.65)

εk = −2J(cos kx + cos ky)− µ (4.66)

H =
∑

k

εkc
†
kck , (4.67)

where k = (kx, ky) and r = (x, y). We consider the ground state of H, filling all

energy levels up to the Fermi energy εF = 0 (again, we incorporate the chemical

potential as a shift of energy levels). The one-body correlation function is (with

V = LxLy)

Crr′ = 〈c†rcr′〉 =
1

V

∑

k

eik·(r
′−r)fFD(εk) (4.68)

with fFD(ε) = 1 if ε < εF , and 0 if ε > εF (the Fermi-Dirac distribution at zero

temperature).

4.3.2 Entanglement Hamiltonian for a cylinder

Block-diagonalization of the correlation matrix. We consider a subsystem A in

the form of a cylinder lx × Ly. This geometry enables us to use the translational

invariance along the y direction. In particular, it will be convenient not to work

directly with the correlation matrix (Crr′)r,r′∈A, but to remain in Fourier space for

the y direction. Defining

cx,ky =
1√
Ly

Ly∑

y=1

e−ikyycx,y , (4.69)
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we have the correlation matrix

〈c†x,kycx′,k′y〉 =
1

Lx

Lx∑

kx,k′x=1

e−i(kxx−k
′
xx
′) 〈c†kx,kyck′x,k′y〉︸ ︷︷ ︸
δkx,k′x

δky,k′y
fFD(εk)

= δky ,k′y
1

Lx

∑

kx

e−ikx(x−x′)fFD(εk)

≡ δky ,k′yCxx′(ky) . (4.70)

This calculation shows that the correlation matrix is block-diagonal with respect to

the ky index. Since the subsystem A is also translationally invariant in the y direction

(having the geometry of a cylinder), the same holds for the correlation matrix restricted

to sites in A. To diagonalize it, and thereby gain access to the entanglement properties

(see Section 4.1 and 4.2 for more details), we can then just work in each ky sector

successively, in which we diagonalize the matrix

[Cxx′(ky)]xx′∈A . (4.71)

Moreover, one sees that in each ky sector, the correlation matrix is exactly the correla-

tion matrix for a 1d system of free fermions, Eq. (4.41), although with a ky-dependent

chemical potential

µ(ky) ≡ 2J cos[kF (ky)] = 2J cos ky + µ , (4.72)

where we introduced the ky-dependent Fermi wavevector kF (ky) (which we choose

between 0 and π for convenience).

Entanglement Hamiltonian. We thus realize that all the analyses we have made

on the entanglement structure in 1d in Section 4.2 can just be repeated here in each ky
sector. Note that we also have a ky-dependent Fermi velocity

vF (ky) = 2J sin[kF (ky)] , (4.73)

which plays an important role for the entanglement properties, as the prefactor of the

entanglement temperature, see for instance Eq. (4.59). In particular, we expect that

the entanglement Hamiltonian is very well approximated by

HAnsatz
A =

Ly∑

ky=1

HLET
A (ky) (4.74)
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Figure 4.4: Entanglement spectrum for free fermions in d = 2. A is a 100 × 100
cylinder in a 100× 104 torus, and µ/J = 0. (a) Entanglement spectrum; (b) Spectrum
of the Hamiltonian Eq. (4.75); (c) Spectrum of the LET Hamiltonian, Eq. (4.78)
(namely the same as in (b), but with a ky-independent Fermi velocity, see text).

where the one-body entanglement Hamiltonian in the ky sector is given by Eq. (4.42),

which we repeat here for completeness:

HLET
A (ky) = − 2π

vF (ky)
J
l−1∑

x=1

βx,x+1(c†ky ,xcky ,x+1 + c†ky ,x+1cky ,x)

−2π

vF
µ(ky)

l∑

x=1

βxµc
†
ky ,x

cky ,x (4.75)

where the β coefficients are given by

βx = (x− 1/2)

(
1− x− 1/2

lx

)
(4.76)

βx,x+1 = x(1− x/lx) . (4.77)

We know that the eigenfunctions of hLET
A (ky) are exactly the eigenfunctions of the

one-body entanglement Hamiltonian (this is just the same argument as in 1d, see the

discussion after Eq. (4.41)), and we expect that their spectrum are very similar, since

in each ky sector we have a 1d free fermion gas, for which we have already noticed

how similar the entanglement spectrum and the spectrum of the Ansatz Hamiltonian

are (see for instance Fig. 4.1).

Entanglement spectrum. As illustrated on Fig. 4.4(b), the spectrum of hLET
A (ky)

indeed reproduces closely the exact entanglement spectrum, Fig. 4.4(a). For compari-

son, we have plotted on Fig. 4.4(c) the spectrum of the LET Ansatz Hamiltonian we
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could have proposed to describe the entanglement properties

HLET = − 2π

veff
F

lx∑

x=1

Ly∑

y=1

c†x,y [J(βxcx,y+1 + βxcx,y−1+

βx−1,xcx−1,y + βx,x+1cx+1,y) + βxµcx,y] , (4.78)

where veff
F is some effective Fermi velocity, chosen in such a way that the entanglement

entropy ofHLET at temperature 1 equals the entanglement entropy of A. Clearly, Fig.

4.4(c) shows that this LET Ansatz completely misses the structure of the entanglement

spectrum. Indeed, there is no reason to expect that the LET Ansatz of Eq. (4.78)

is a good approximation to the entanglement Hamiltonian, since such an Ansatz is

motivated by the Bisognano-Wichmann theorem (see Section 3.3.2) which relies on

the hypothesis of Lorentz invariance. However, contrary to the 1d case, the 2d free

fermion gas is not Lorentz invariant at low energy. For instance there is not a single

Fermi velocity, but a different one at each point of the Fermi surface. And, as we just

showed, it is a much better approximation to consider the 2d free fermion gas as a

collection of 1d systems, each being Lorentz invariant (and even conformally invariant)

at low energy, and each having its own Fermi velocity. It would be interesting to

generalize this picture to arbitrary geometries for the subsystem A, and propose a

more general Ansatz entanglement Hamiltonian. This perspective resonates with the

arguments of Swingle (2010), who proposed an interpretation of the entanglement

entropy of free-fermion systems as an integral over the Fermi surface of a collection

of 1d systems. We leave this question open to future studies.

4.3.3 Local entanglement temperature for 2d free fermions

Despite the fact that one cannot approximate the entanglement Hamiltonian by the

physical Hamiltonian modulated in space by a unique entanglement temperature

(instead, one has a different entanglement temperature in each ky sector, proportional

to the ky-dependent Fermi velocity vF (ky)), the thermodynamic relations among

the contours continue to hold. This is illustrated on Fig. 4.5. Panel (a) shows

the contours of entanglement, density fluctuations and imbalance fluctuations (see

Section 4.2 for definitions), and panel (b) shows the entropy density, and the structure

factor at k = (0, 0) and k = (π, π) as a function of temperature. The validity of

the local entanglement temperature hypothesis is illustrated on panel (c), where we

have extracted the local temperature for the three contours of panel (a), using the

temperature dependence of the associated thermodynamic quantities of panel (b). The
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Figure 4.5: Local entanglement thermodynamics for 2d free fermions. A is a cylinder
of size 100× 100 in a torus of size 5000× 100, and we worked at half-filling (µ = 0).
(a) Entanglement (red triangles), density (blue squares) and imbalance (yellow circles)
contours as a function of position in subsystem A (see text). (b) Entropy density,
structure factor at k = (0, 0) and at k = (π, π) as a function of temperature. Same
symbols as for the corresponding contours in panel (a). (c) Local entanglement
temperature extracted from the contours of panel (a), and the temperature dependency
of the associated thermodynamic quantities of panel (b). Same symbols as for the
contours on panel (a).

local temperature is plotted as a function of

1

xeff
=

1

x− 1/2
+

1

l − x+ 1/2
≡ 1

βx
(4.79)

where βx has been defined in Eq. (4.77). The linear behavior of T as a function of

1/xeff shows that the local temperature takes the form

Teff =
ceff

2πxeff
(4.80)

where ceff is some effective Fermi velocity.

The fact that the three different ways to extract the local temperature are essentially

equivalent shows that each of the three contours of panel (a), combined with the

knowledge of the thermodynamic relations of panel (b), could be used to reconstruct

the two others, and, presumably, the contour related to any other observable.

4.3.4 Discussion

The 2d free fermion case is thus an interesting situation where the local entanglement

temperature hypothesis completely misses the structure of the entanglement spectrum

(Fig. 4.4), but correctly predicts the thermodynamic relations observed among the

contours (Fig. 4.5), showing that the two things need not be related.

The validity of the local thermodynamic relations between the contours in the 2d

free fermion gas could have been anticipated. In fact, if the subsystem A is a cylinder,
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Figure 4.6: Local entanglement thermodynamics for 2d free fermions. A is a square of
size 30× 30 in a torus of size 1500× 1500, and we worked at half-filling (µ = 0). (a)
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in subsystem A. (b) Ratio of the local temperature extracted from the density contour
to the one extracted from the entanglement contour. (c) Ratio of the local temperature
extracted from the imbalance contour to the one extracted from the density contour.

we have seen that the reduced density matrix describes a collection of independent

1d free fermion gases, each having its own Fermi velocity vF (ky). In this case, the

contours take the form

C =
∑

ky

C(ky) . (4.81)

Since at low entanglement temperature, the contours depend linearly on each other,

reflecting the fact that the associated thermodynamic quantities depend linearly on

temperature [see, for instance, Fig. 4.2(b)], the ky-sector contributions to the contours

are related linearly to each other (at least in the bulk of A, where the entanglement

temperature goes to zero). But a sum of linear dependences gives also rise to a linear

dependence. Hence, the thermodynamic relations between the contours holds also in

2d, inherited from the same relations being valid in 1d. Nonetheless, we emphasize

that the thermodynamic relations among the contours seem to hold for arbitrary shapes.

For instance, on Fig. 4.6 we have plotted the contours for a square subsystem. In this

case, we cannot invoke the translational invariance to reduce the problem to that of a

collection of independent 1d Fermi gases. However, the local temperatures extracted

from the entanglement, density or imbalance contours are the same within 5% [panels

(b), (c)].

The robustness of the thermodynamic relations among the contours for gapless

free fermions can be understood in the following manner. Let us postulate that the

entanglement Hamiltonian has the form

HE =
∑

i

Hi (4.82)
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where Hi is a free fermion Hamiltonian consisting of hopping between sites in the

vicinity of i. Then, according to the local equilibrium approximation, the entanglement

contour and density-fluctuations contour are approximately given by

Cs ≈ s(Hi) ; CN ≈ 〈δ2N〉(Hi)/V . (4.83)

Then, ifHi corresponds to a gapless free-fermion Hamiltonian, we know that

Cs ≈
π2

3
CN (4.84)

regardless of the microscopic details. For the imbalance-fluctuation contour, we

do not know the general relation between S and 〈δ2Nstagg〉, but such a general

relation presumably exists in order to explain the robustness of the relations among

the contours.

4.4 Conclusion on free fermions models

In this chapter, we have investigated the spatial structure of entanglement in simple

gapless free fermion (FF) models in d = 1 and d = 2, and we have done so from the

perspective of the local entanglement temperature (LET) hypothesis introduced in

Section 3.3.2. We have distinguished two levels of interpretation regarding the LET

hypothesis: 1) as an Ansatz for the entanglement Hamiltonian, represented by Eq.

(3.36); and 2) as a set of relations among the contours. On general grounds, 2) may be

viewed as a consequence of 1) through the local equilibrium approximation (LEA, see

Section 3.3.3). For FF in d = 1, we showed that both 1) and 2) are valid, but we also

showed that the LEA should not be expected to be correct a priori, so that the validity

of 2) does not appears as a trivial consequence of 1). In passing, we emphasized that

not only the structure of the entanglement Hamiltonian is important, but also the fact

that it is evaluated at a very specific temperature: for instance, Fig. 4.3 shows that

only at that temperature, the density is homogeneous.

FF in d = 2 represent a surprising example where the LET Ansatz for the entangle-

ment Hamiltonian completely misses its actual structure, but where the relationships

among the contours continue to hold. It appears desirable to deepen our understanding

in d = 2. One could, inspired for instance by the explanation of Swingle (2010) of

the behavior of entanglement entropy, propose a generalization of the Ansatz of Eq.

(4.75) for the entanglement Hamiltonian, to arbitrary shapes of the subsystem A, and

propose an explanation for the validity of 2) based on the form of this Ansatz.
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Consequence for the experimental study of entanglement in equilibrium many-
body systems. The general expectation concerning FF models, is that all the in-

formation about the structure of entanglement is essentially contained in the density

correlations. To study entanglement itself is not expected to provide any new fun-

damental insight into these simple models, beyond the one provided by standard

observables. Indeed, from density-fluctuation contours (measurable with quantum gas

microscopes (Bakr et al., 2009; Preiss et al., 2015; Preiss, 2015)), one can extract the

local entanglement temperature Ti, and hence the entanglement contour via

Cs(i) = s(Ti) (4.85)

with s(T ) the thermal entropy density.

Possible extensions. Besides conducting similar studies on more complex free-

fermion models, it could also be interesting to develop a similar understanding of

the relationship between entanglement and fluctuations during the unitary dynamics

following a quantum quench. In the simplest examples, one expects the dynamics of

the fluctuation contours to closely follow the dynamics of the entanglement contours,

as studied by Chen and Vidal (2014).

Experimental relevance of free-fermion models. In this chapter, fermions were

supposed without interactions. In fact, the Pauli principle makes a system of fermions

extremely robust to repulsive interactions. The theory developed by Landau (Nozieres

and Pines, 1999) shows that a Fermi liquid is essentially a free fermion system, albeit

with effective masses which may differ significantly from the masses of the original

fermions. Furthermore, we tacitly assumed that the fermions were spinless. Of course,

fermions have always a half-integer spin, but if interactions are neglected, a gas of

multiple-spin-component free fermions may just be treated as a mixture of independent

spinless-fermion systems. Furthermore, weak attraction among spin-1/2 fermions can

lead to superconductivity through pairing, but we have not considered this possibility.

In Chapters 5, 6 and 7, we shall instead consider the similar — though not identical —

phenomenon of superfluidity for weakly repulsive bosons. We also know that strong

interactions among spin-1/2 fermions on a lattice may drive a phase transition from

the metallic phase to a so-called Mott-insulating (MI) phase. We have completely

neglected this possibility in our study of free fermion systems of Section 4. In fact,

the very understanding of the phase diagram of interacting spinful fermions on a

lattice is considered one of the most difficult open problems of theoretical condensed

matter. In recent years, great experimental effort has been devoted to build cold-

atom experiments simulating the behavior of spin-1/2 band electrons in solids, and
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promising results concerning the observation of antiferromagnetic ordering in the MI

phase have been reported (Parsons et al., 2016; Boll et al., 2016).

101





Chapter 5

Slave-boson approach to the
Bose-Hubbard model

Introduction. In Chapter 4, we have explored various aspects of the local entan-

glement temperature (LET) hypothesis on free-fermion lattice systems. We have in

particular introduced the concept of contours as central quantities to develop a thermo-

dynamic understanding of the structure of entanglement in many-body ground states:

the relations between the contours of different observables reflect the thermodynamic

relations between the corresponding observables at thermal equilibrium. In 1d, we

have also shown that the entanglement Hamiltonian is very well approximated by

a LET Ansatz, namely, as the physical Hamiltonian modulated in space by a local

temperature, and that this local temperature is precisely the origin of the thermody-

namic relations among the contours (Section 4.2). In the present chapter and the

following Chapters 6 and 7, we continue our study and focus on bosonic particles

on a lattice, inspired by cold-atom experiments realizing the Bose-Hubbard model

(Bloch, Dalibard, and Zwerger, 2008). In particular, such experiments realize the

bosonic analog of the interaction-induced phase transition from a superfluid to a Mott

insulator, as first reported by Greiner et al. (2002). In the remainder of this Chapter,

we present a powerful quasiparticle approach (the slave-boson approach) to the study

of the Bose-Hubbard model. By doing so, we shall set the context and discuss the

technical details necessary to conduct the study of the entanglement structure in the

superfluid phase (Chapters 6) and across the superfluid-insulator phase transition

(Chapter 7).
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5.1 The Bose-Hubbard model

In this section, we introduce the Bose-Hubbard (BH) model describing interacting

bosons on a lattice (Fisher et al., 1989; Bloch, Dalibard, and Zwerger, 2008).

For a recent experimental investigation of the entanglement structure in Bose-

Hubbard systems, see the thesis of Preiss (2015).

The Hamiltonian describing interacting bosons on a lattice contains two parts. The

first part is the one-body (kinetic) Hamiltonian

Hkin = −
∑

i,j

tijb
†
ibj (5.1)

where tij = t∗ji is the hopping matrix. bi, bj are bosonic operators satisfying the

commutation relations [bi, bj ] = 0 and [bi, b
†
j ] = δij . If the only hopping mechanism

is between nearest-neighbor sites, tij = t if i and j are nearest-neighbors, and 0

otherwise. We shall mainly focus on this situation, although the slave-boson treatment

is valid for an arbitrary hopping matrix. In experiments, there is always an external

confining potential Vi. We neglect this term here, and focus on a homogeneous system

with periodic boundary conditions (PBC). If the system contains N noninteracting

bosons, the ground state of Hkin is a Bose-Einstein condensate (BEC) containing

all atoms in the one-particle ground-state (the lowest-energy wavefunction of the

matrix −tij). The perfect BEC is unstable to arbitrarily weak attractive interactions.

Therefore, we focus on repulsive interactions. For simplicity, we neglect interactions

between bosons when they are on different sites. When two bosons are on the same

site, the energy cost is denoted U , so that the interaction term is

Hint = U
∑

i

ni(ni − 1)

2
(5.2)

where ni = b†ibi is the number of bosons on site i. The factor ni(ni−1)
2 =

(
ni
2

)
simply

counts the number of pairs of bosons on site i, each pair contributing an interaction

energy U . The Bose-Hubbard Hamiltonian is the sum of the kinetic and interaction

Hamiltonians

HBH = Hkinetic +Hint . (5.3)

If the number N of bosons is incommensurate with the number V of sites (namely, if

the density 〈n〉 = N/V is not an integer), the system is always a superfluid condensate

(throughout this thesis, we use the concepts of condensation and of superfluidity

interchangeably, as they coincide for the models of our interest). This includes the

weak-interaction limit, accurately described by Bogoliubov theory (Pitaevskii and
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Stringari, 2003), and the hardcore limit, accurately described by a semi-classical

approach after a mapping to an equivalent XY spin model (Coletta, Laflorencie, and

Mila, 2012). If the density is an integer, a sufficiently strong interaction is always

able to destroy the superfluidity, driving the system towards a Mott insulating phase

(Fisher et al., 1989; Greiner et al., 2002). This phase transition is driven by the ratio

t/U of the kinetic to interaction energy: the kinetic part favors the delocalization of

the particles across the lattice (if the density is an integer, this implies that several

bosons must be allowed to occupy the same lattice site), while the interaction part

favors configurations where all sites contain as few bosons as allowed by the filling.

If t/U is very small, local fluctuations of the number of bosons per site become too

expensive energetically, and superfluidity, which requires the coherent delocalization

of the bosons all across the lattice, is destroyed.

For theoretical purposes, it is more convenient to work at fixed chemical potential

rather than at fixed density, because the chemical potential appears explicitly as a

Hamiltonian parameter. The grand-canonical Hamiltonian takes the form

HBH = −
∑

i,j

tijb
†
ibj +

∑

i

(
U
ni(ni − 1)

2
− µni

)
. (5.4)

The many-body ground-state is the state of minimal energy of HBH. No exact so-

lution for this many-body ground state is known in general, and we have to resort

to either numerical approaches, or to approximate calculations. In d = 1, density-

matrix renormalization-group techniques (DMRG) provide a very efficient numerical

approach to low-energy properties, but DMRG becomes problematic in dimensions

d ≥ 2 (see, however, Alba, Haque, and Läuchli (2013) for a DMRG study of the

entanglement spectrum in the ground state of the Bose-Hubbard model on cylindrical

geometries). In the following, we describe a semi-classical approach valid across

the whole phase diagram in d = 2, 3, which consists of 1) finding the mean-field

ground state (Section 5.2); and 2) building an effective quadratic Hamiltonian for quan-

tum fluctuations around the mean-field solution (the so-called slave-boson approach,

Section 5.3).

5.2 Mean-field phase diagram: the Gutzwiller
approach

5.2.1 Mean-field Hamiltonian

The Gutzwiller mean-field (MF) approach to bosonic systems amounts to neglecting

correlations between different sites. This is usually a good approximation as long
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as the correlations are small in comparison to the average values. Considering two

operators A and B, we may write

AB = A〈B〉+ 〈A〉B − 〈A〉〈B〉+ [A− 〈A〉] [B − 〈B〉]︸ ︷︷ ︸
neglected at the MF level

, (5.5)

where we may neglect the correlation term if

〈[A− 〈A〉] [B − 〈B〉]〉 � 〈A〉〈B〉 . (5.6)

This is equivalent to the following approximation

〈AB〉 ≈ 〈A〉〈B〉 . (5.7)

The MF approach to the BH Hamiltonian of Eq. (5.4) consists in neglecting all

correlations among different lattice sites, while the local part of the Hamiltonian

(containing the interaction term and the chemical potential term) is treated exactly.

Introducing the notation

φi = 〈bi〉 , (5.8)

the kinetic part ofHBH is then approximated as

HMF
kin = −

∑

i,j

tij(φjb
†
i + φ∗i bj − φ∗iφj) (5.9)

= −
∑

i


∑

j

tijφjb
†
i + h.c.


+

∑

i,j

tijφ
∗
iφj (5.10)

where we used the fact that tij = t∗ji. Finally, we see that, at the mean-field level of

approximation, the BH Hamiltonian is a sum of local Hamiltonians

HMF
BH =

∑

i


b†i

∑

j

(−tijφj) + h.c.+
U

2
ni(ni − 1)− µni


+

∑

i,j

tijφ
∗
iφj .

(5.11)

The MF ground state is then found by minimizing the energy ofHMF
BH . This must be

done self-consistently, since the MF Hamiltonian depends itself implicitly on the MF

ground state through φi = 〈bi〉. As the HamiltonianHMF
BH is a sum of local terms, its

ground state is a product state

|ΨMF〉 = ⊗i|ψ0〉i . (5.12)

The Hilbert space on site i is generated by the Fock states |n〉i, corresponding to n

bosons on site i: bi|n〉i =
√
n|n− 1〉i. In this basis, the local states may be written as

|ψ0〉i =
∑

n≥0

cn(i)|n〉i (5.13)
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where cn(i) are complex numbers. For numerical purposes, we impose a maximal

number of bosons per site nmax � 〈n〉, which must be chosen much larger than

the average density in order to keep the truncation error as small as possible. In

practice, if the average density is around one boson per site, nmax = 5−6 is sufficient.

Normalization of |ψ〉i imposes that
∑nmax

n=0 |cn(i)|2 = 1.

Finding the MF ground state amounts to minimize the MF variational energy

EMF = 〈ΨMF|HBH|ΨMF〉 = 〈ΨMF|HMF
BH |ΨMF〉 , (5.14)

which is a quartic function of the cn(i) coefficients. Such a minimization is formally

equivalent to finding the self-consistent ground states of the local Hamiltonians

HMF
i = −




∑

j

(tijφj


 b†i + h.c.


+

U

2
ni(ni − 1)− µni , (5.15)

whose expression depends in turn on the ground state via the φj coefficients.

Iterative algorithm. A practical way to find the MF ground state is to make use of

an iterative algorithm:

0) choose randomly the coefficients cn(i) on each site i;

1) calculate

φi = 〈bi〉 =
∑

n

cn−1(i)∗
√
ncn(i) (5.16)

on every site and form the MF Hamiltonian, Eq. (5.15);

2) find the ground state of the MF Hamiltonian on every site;

and iterate 1) and 2) up to convergence, by using the ground state found at 2) as

the input to calculate φi in 1). One can devise many variants of this algorithm. For

instance, it may be more convenient to perform “local updates” on the MF trial

ground state instead of the “global update” we have described, namely, to update the

parameters φi of step 1 after each calculation of the ground state (step 2) on a given

site, before moving to step 2 on a neighboring site. In general, it is always wiser to try

several ways to iterate the procedure, and to repeat the iterative process by starting

from different initial states at step 0). A strong dependence on the initial state of the

ground state after convergence may be caused by frustration, inducing metastable

states. This possibility has been reported in the presence of long-range interactions

between the bosons, see for instance the devoted chapter in the book of Lewenstein,

Sanpera, and Ahufinger (2012). In our case, this phenomenology does not occur.
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Simplified procedure for homogeneous systems. We shall be mainly concerned

with homogeneous systems. In this case, we may considerably simplify the minimiza-

tion procedure by assuming from step 0) that the MF ground state is translationally

invariant

∀i cn(i) = cn . (5.17)

As a consequence, assuming that tij allows hopping to neighboring sites only with a

hopping amplitude t, and denoting z the number of neighbors (= 2d in a square or

cubic lattice, d being the dimension), the local MF Hamiltonian on site i is

HMF
i = −(ztφb†i + h.c.) +

U

2
ni(ni − 1)− µni + zt|φ|2 , (5.18)

with φ = 〈bi〉. The minimization procedure, [steps 0), 1), 2)], can thus be performed

self-consistently on a single site.

5.2.2 Signature of condensation

Condensation manifests itself in a nonzero condensed fraction. This criterion is

equivalent to the presence of so-called off-diagonal long-range order (Penrose and

Onsager, 1956; Yang, 1962; Anderson, 1966)

〈b†ibj〉 ≈
|i−j|→∞

φ∗iφj 6= 0 (5.19)

where φi is the so-called “macroscopic wavefunction”. At the MF level of approxima-

tion, this is equivalent to the simple criterion

φ 6= 0 . (5.20)

On the other hand, the Mott-insulating phase corresponds to a MF ground state with

an integer number of bosons per site: |ψ〉 = |n〉, for which 〈b〉 is zero. At the MF

level of approximation, the average value of the bosonic field φ = 〈b〉 thus plays the

role of an order parameter for the superfluid-to-insulator phase transition.

5.2.3 Phase diagram

The ground-state phase diagram of the BH model, obtained by the procedure we have

described1, is plotted on Fig 5.1. It contains a superfluid (SF) region, where φ 6= 0, and

where the number of particles on each site fluctuates; and Mott-insulating (MI) lobes of

integer density, where the number of particles at each site is fixed, and where φ = 0. If

1 In fact, the boundaries of the phase diagram at the mean-field level can be determined exactly, see
Section 7.1.
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Figure 5.1: Left: Mean-field phase diagram of the Bose-Hubbard model. Outside the
lobes, the phase is superfluid (SF), while inside the lobes, the phase is a Mott-insulator
(MI). Dashed lines denoted (a), (b), and (c) indicate the lines along which the SF
order parameter φ is plotted on panels (a), (b), and (c). (a) Density (dashed-dotted
line) and SF order parameter φ (solid line) along the line tz/U = 0.12. (b) SF
order parameter along the line of density n = 1. Solid line: MF prediction. Dashed
lines: MF prediction renormalized by quantum fluctuations calculated within the
slave-boson approach in d = 2 (see Section 5.3). (c) SF order parameter along the
line of density n = 0.5. Same symbols as in panel (a). The horizontal dashed line
indicates φ =

√
0.5, corresponding to a coherent state of density n = 0.5.

µ < εmin, where εmin is the minimal single-particle energy (the minimal eigenvalue of

the matrix −tij), the system is empty of particles. Here, on the square or cubic lattice,

εk = −2t
∑d

a=1 cos ka, so that εmin = ε0 = −zt with z = 2d. So for µ < −zt,
the system is in the vacuum. As shown on Fig. 5.1(a,b), the SF order parameter φ

vanishes continuously at the SF / MI phase transition, indicating that the transition

is of second order. The MF approximation predicts the same type of transition along

the critical line. Nonetheless, the transitions at the tips of the lobes (going beyond

the MF approximation), which occur at fixed density, are predicted to belong to a

different universality class than at a generic point of the phase boundary (Fisher et al.,

1989). The generic transition is accompanied with a change of density, as shown on

Fig. 5.1(a) (solid line). On the other hand, if the density is fixed at some noninteger

value, the system is always superfluid. This is shown on Fig. 5.1(c), where we plot φ

for a density of n = 1/2. In the limit of weak interactions, t/U →∞, the mean-field

ground state is a coherent state, |ψ〉 ∝ exp (−φb†)|0〉, with |φ2| = 〈n〉. In the opposite

(hardcore) limit t/U → 0, the system may be mapped to a XY spin-1/2 model, and

the mean-field ground state is a factorized state of s = 1/2 spins, whose Bloch vectors
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correspond to the orientation of classical spins minimizing the classical limit (s→∞)

of the Hamiltonian. For n = 1/2, this classical ground state is a spin-1/2 lying in the

XY plane, for instance ψ = (|0〉 + |1〉)/
√

2, for which φ = 1/2 (see Section 6.1).

On Fig. 5.1(b,c), we have also plotted the SF order parameter 〈b〉 renormalized by

quantum fluctuations, calculated within the slave-boson approximation described in

the next section. We find that the quantum fluctuations always reduce the superfluid

order, but are not strong enough to destroy it. As a consequence, the phase transition

line within the slave-boson approach conicides with the MF solution. In contrast

to these results, an exact calculation would show that the MI lobes are larger than

predicted by the MF approximation, which underestimates the ability of quantum

fluctuations to destabilize the SF phase.

5.3 Quantum fluctuations around the mean-field
solution: the slave-boson approach

In this subsection, the so-called slave-boson (SB) approach is introduced in full

generality. Although our focus is on the Bose-Hubbard model, the treatment applies to

arbitrary bosonic and/or spin Hamiltonians: whenever the Gutzwiller mean-field (MF)

is a good starting point, the SB approach represents a systematic way to introduce

quantum fluctuations around the MF solution in the form of an effective quadratic

Hamiltonian for bosonic quasiparticles. We then specify the general approach to the

uniform Bose-Hubbard model; finally, the self-consistency of the SB approach across

the whole phase diagram, including the critical points, is verified.

5.3.1 Slave-boson approach

Introduction. The MF approximation, although providing invaluable insight into

the structure of the ground state, completely neglects correlations. In particular, it

is impossible by construction to study the structure of entanglement within the MF

approximation. It is however possible to add small quantum fluctuations around the MF

solution, which enables us to access the entanglement content of the ground state at a

minimal computational cost. The SB technique is an approximate, yet very convenient,

method, because it incorporates quantum fluctuations as gaussian fluctuations, and

therefore all the machinery of Wick’s theorem may be applied. In essence, the SB

technique is a semi-classical method, very similar to the Bogoliubov approach to

weakly interacting bosons (Pitaevskii and Stringari, 2003), to the Holstein-Primakoff

approach to spin models (which may be applied in the hardcore limit of the Bose-

Hubbard model, see Coletta, Laflorencie, and Mila (2012)), or to the so-called random
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phase approximation which may be applied for φ� 1 (Sengupta and Dupuis, 2005).

In fact the slave-boson approach is completely equivalent to the above-mentioned

semi-classical treatments in their respective domains of applicability. As the SB

technique turns out to be more general that these similar approximation schemes, we

shall not describe them, and focus on the SB technique only. We might however, in

passing, mention the relationship between the results obtained within the slave-boson

approximation, and the results obtained with these other methods. The SB approach

(sometimes called “Schwinger bosons approach”) is already known in the literature

(Frésard, 1994; Altman and Auerbach, 2002; Dickerscheid et al., 2003; Altman et al.,

2003; Huber et al., 2007; Pekker et al., 2012; Huerga, Dukelsky, and Scuseria, 2013),

but had not been used previously to study the structure of entanglement.

SB approach: extending the physical Hilbert space. The SB approach is three-

fold.

1) On each site i of the lattice, we attach to each state |n〉i a fictitious (“slave”)

bosonic particle of “flavor” n. This amounts to introduce a bosonic operator βi,n
for each n, on every site i. These slave-boson (SB) operators satisfy the usual

bosonic commutation relations, and SB operators associated to different flavors n

or to different sites i commute

[
βi,n, βi′,n′

]
= 0 (5.21)[

βi,n, β
†
i′,n′

]
= δi,i′δn,n′ . (5.22)

Each site is equipped with fictitious Fock spaces generated by the application of

β†i,n’s operators on a fictitious vacuum state |∅〉. The state |n〉i of the physical Fock

space corresponds to the state containing exactly one slave-boson of flavor n

|n〉i = β†i,n|∅〉 . (5.23)

Higher occupations of this slave-boson mode i, n are unphysical. An arbitrary state

|ψ〉i of the local (physical) Hilbert space may be created out of the slave-boson

vacuum in a similar manner

|ψ〉i =
∑

n

cn(i)|n〉i =
∑

n

cn(i)β†i,n|∅〉 (5.24)

The local SB Hilbert space contains many unphysical states. In fact, only those

states which may be written as in Eq. (5.24) are physical. In order to restrict the

accessible SB Hilbert space to those, and only those states which belong to the
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physical Hilbert space, we must add the following constraint
∑

n

β†i,nβi,n = 1 ∀i . (5.25)

In other words, the physical states are exactly those which contain one slave-boson

per site, possibly delocalized over the different flavors.

2) The key physical idea is then to assume that the true ground state is very close to

the MF ground state. In the SB language, this amounts to postulate that on each

site the population of SB corresponding to the MF flavor

γ†i,0 =
∑

n

Un,0(i)β†i,n (5.26)

is very close to one. Populations of flavors orthogonal to the MF one may thus be

treated as perturbations.

To formulate this idea, we first rotate the local basis |n〉i to the basis which

diagonalizes the MF Hamiltonian, Eq. (5.15) (in general, the rotation is site-

dependent, although in our case it turns out to be the same on every site):

HMF
i = U(i)E(i)U(i)† (5.27)

where E(i) = diag(ε0(i), . . . εnmax(i)) in increasing order, where nmax is the

maximal number of physical bosons per site. The MF ground state corresponds to

ε0(i). The matrix U(i) defines a local rotation to a new family of SB operators,

denoted γi,α
γ†i,α =

∑

n

Un,α(i)β†i,n . (5.28)

The eigenstate ofHMF
i of energy εα(i) is created out of the SB vacuum by applying

the SB operator γ†i,α. In terms of the γ’s operators, the constraint of Eq. (5.25)

takes the same form ∑

α

γ†i,αγi,α = 1 ∀i . (5.29)

If the system remains close to the MF ground state, we may say that

γ†i,0γi,0 = 1− si (5.30)

si =
∑

α≥1

γ†i,αγi,α � 1 (5.31)

and therefore, when restricted to act on the true ground state

γi,0, γ
†
i,0 = 1 +O(γ2

α>0) . (5.32)

where O(γ2
α>0) denotes terms of order two or higher in the operators γ(†)

i,α for

α > 0.

112



3) We then re-write the Bose-Hubbard Hamiltonian in terms of the SB γ’s operators,

use Eq. (5.30) to express γ(†)
i,0 in terms of the γ(†)

i,α 6=0 operators, and develop

the Hamiltonian up to quadratic order in the γ(†)
i,α>0 operators. At order 0, we

recover the MF energy function. The order-1 term vanishes if the MF ground

state is a minimum of the MF variational energy. The order-2 term describes the

quantum dynamics of the slave-bosons, corresponding to weak perturbations to

the MF containing the entanglement structure we are looking for. Being quadratic

in the SB operators, the effective Hamiltonian can finally be diagonalized by a

Bogoliubov transformation.

We now explain in more details the step 3).

Expression of an arbitrary operator in terms of the SB operators. We need to

express operators acting on site i (in our case, b(†)i and ni) in terms of the SB operators.

Considering an arbitrary local operator Ôi, it may be written as

Ôi =
∑

n,n′
i〈n|Ôi|n′〉iβ†i,nβi,n′ (5.33)

= βi
†Oiβi (5.34)

where we have introduced the vector notation

βi = (βi,0, . . . , βi,nmax)T (5.35)

and where Oi is the matrix

(Oi)nn′ = i〈n|Ôi|n′〉i . (5.36)

Since we are working with the γ’s operators, we shall use the form

Ôi = γi
†Õiγi (5.37)

where

γi = U(i)†βi (5.38)

Õi = U(i)†OiU(i) (5.39)

with U(i) defined by Eq. (5.27). We then isolate the contribution of γ(†)
i,0 , and use

γ†i,0γi,0 = 1−∑α>0 γ
†
i,αγi,α.

Ôi = (Õi)00

(
1−

∑

α>0

γ†i,αγi,α

)
+
∑

α>0

(Õi)α0γ
†
i,αγi,0 +

∑

α>0

(Õi)0αγ
†
i,0γi,α

+
∑

α,β>0

(Õi)α,βγ†i,αγi,β . (5.40)
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If the constraint (5.25) is exactly preserved, this last expression is exact. Then, we

keep terms up to second order in the γ(†)
α>0 operators. At this level of approximation,

we may replace γ(†)
i,0 by 1, since they are already multiplied by terms of order 1. By

doing so, one is neglecting terms of order 3 or higher. We finally obtain

Ôi = (Õi)00 +
∑

α>0

[
(Õi)α0γ

†
i,α + (Õi)0αγi,α

]

+
∑

α,β>0

[
(Õi)α,β − δα,β(Õi)00

]
γ†i,αγi,β

+O(γ3
α>0) . (5.41)

The average value of Ôi will then contain a 0th-order term corresponding to the

expectation value on the MF ground state (Õi)00 = i〈ψ0|Ôi|ψ0〉i, with |ψ0〉i the MF

ground state on site i. The higher-order terms describe therefore the fluctuations

around the MF solution.

Onsite term and kinetic term of the Bose-Hubbard Hamiltonian. The onsite

term of the Bose-Hubbard Hamiltonian, Eq. (5.4), containing both the onsite inter-

action term and the chemical potential term, is of this form, with Ôi = Hi,loc =

Uni(ni − 1)/2− µni.
The kinetic part, on the other hand, contains products of local operators

b†ibj = γi
†b̃†iγiγj

†b̃jγj . (5.42)

The 0th-order term is

b†ibj =
order 0

(b̃†i )00(b̃j)00

= φ∗iφj , (5.43)

with φi = 〈bi〉MF where the average is taken in the MF ground state. The order-1 term

is

b†ibj =
order 1

∑

α>0

[
φ∗i (b̃j)0αγj,α + φj(b̃

†
i )0αγi,α

+ φ∗i (b̃j)α0γ
†
j,α + φj(b̃

†
i )α0γ

†
i,α

]
. (5.44)

The order-2 term contains products of the order-0 term of one operator, with the

order-2 term of the other operator, plus the product of order-1 terms for both operators.

b†ibj =
order 2

∑

α,β>0

{[
φ∗i (b̃j)αβ − φ∗iφjδα,β

]
γ†j,αγj,β +

[
φj(b̃

†
i )αβ − φ∗iφjδα,β

]
γ†i,αγi,β

+
[
(b̃†i )α0γ

†
i,α + (b̃†i )0αγi,α

] [
(b̃j)β0γ

†
j,β + (b̃j)0βγj,β

]}
. (5.45)
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Order-0 contribution: the MF ground-state energy. Now, collecting contribu-

tions from both the onsite term and the kinetic term, we see that the order-0 contribu-

tion to the BH Hamiltonian

H(0)
BH = −

∑

i,j

tijφ
∗
iφj +

∑

i

i〈ψ0|Hi,loc|ψ0〉i (5.46)

is just the energy of the MF ground state, Eq. (5.11). Recalling the definition of the

MF Hamiltonian on site i, Eq. (5.15)

HMF
i = −

∑

j

(tijφjb
†
i + h.c.) +

U

2
ni(ni − 1)− µni , (5.47)

this may also be rewritten as

H(0)
BH =

∑

i

i〈ψ0|HMF
i |ψ0〉i +

∑

i,j

tijφ
∗
iφj . (5.48)

The MF approximation may then just be viewed as the 0th order approximation for

the slave-bosons.

Vanishing of the order-1 term. The order 1 contribution to the BH Hamiltonian is

H(1)
BH =

∑

i

∑

α>0


(H̃i,loc)0α −

∑

j

tijφj(b̃
†
i )0α −

∑

j

tjiφ
∗
j (b̃i)0α


 γi,α + h.c.

(5.49)

The matrix element between the brackets is

(H̃i,loc)0α −
∑

j

tijφj(b̃
†
i )0α −

∑

j

tjiφ
∗
j (b̃i)0α = i〈ψ0|HMF

i |ψα〉i = 0 (5.50)

where |ψα〉i is the eigenstate ofHMF
i associated to the eigenvalue εα(i). This matrix

element vanishes, since the states |ψα〉i are orthogonal to each other. This represents

a useful numerical check that the MF ground state has been found. One thus has

H(1)
BH = 0 . (5.51)

Quadratic Bose-Hubbard Hamiltonian in terms of the SB operators. Finally,

the contributions of order 2 to the BH Hamiltonian contain three terms: a local (onsite)

term, a “hopping” term, and a “pair” term

H(2)
BH = H(2)

BH,local +H(2)
BH,hopping +H(2)

BH,pair . (5.52)
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The local term is diagonal in the i and α indices

H(2)
BH,local =

∑

i

∑

α,β>0

[
i〈ψα|HMF

i |ψβ〉i

− i〈ψ0|HMF
i |ψ0〉i δα,β

]
γ†i,αγi,β (5.53)

=
∑

i

∑

α>0

[εα(i)− ε0(i)]γ†i,αγi,α , (5.54)

and represents local deviations from the MF energy ε0(i) due to the occupation of

modes orthogonal to the MF.

The hopping term is2

H(2)
BH,hopping = −

∑

i,j

tij
∑

α,β>0

[
(b̃†i )α0(b̃j)0βγ

†
i,αγj,β + (b̃†i )0α(b̃j)β0γ

†
j,βγi,α

]

=
∑

i,j

∑

α,β>0

γ†i,αγj,βA
(1)
iα,jβ (5.55)

where we introduced the matrix A(1) with matrix elements

A(1)
iα,jβ = −tij(b̃†i )α0(b̃j)0β − tji(b̃i)α0(b̃†j)0β (5.56)

which is hermitian (i.e. it satisfies A(1)
jβ,iα = (A(1)

iα,jβ)∗). The hopping Hamiltonian

H(2)
BH,hopping describes processes where a slave-bosonic particle is destroyed in the

mode β on site j (operator γjβ), sent to the “MF condensate” on site j by the operator

b
(†)
j (matrix element (b̃j)0β or (b̃†j)0β), and created again at site i in the SB mode α

(operator γ†i,α) out of the “MF condensate” on site i (matrix element (b̃†i )α0 or (b̃i)α0).

These processes have an overall amplitude tij or tji, and a phase may be acquired

through both tij and the matrix elements of b’s operators which are in general complex

numbers.

The pair term is

H(2)
BH,pair = −

∑

i,j

tij
∑

α,β>0

[
(b̃†i )α0(b̃j)β0γ

†
i,αγ

†
j,β + (b̃†i )0α(b̃j)0βγi,αγj,β

]

=
1

2

∑

i,j

∑

α,β>0

[
γi,αγj,βBiα,jβ + h.c.

]
(5.57)

where we introduced the matrix B with matrix elements

Biα,jβ = −tij(b̃†i )0α(b̃j)0β − tji(b̃†j)0β(b̃i)0α (5.58)

which is symmetric ( Biα,jβ = Bjβ,iα). This pair Hamiltonian describes processes

where two SB particles are extracted out of the MF condensate (operator γ†iαγ
†
jβ), or

are simultaneously destroyed and then recreated into the MF condensate (operator

γiαγjβ), with amplitudes given by the matrix elements of B.
2 Note that i 6= j, so that γ(†) operators related to i and j commute with each other; a term with

i = j would have to be incorporated in the local part of the Hamiltonian.
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Discussion. The approach we have described is very general. Although our focus is

ultimately the homogeneous Bose-Hubbard model, it is straightforward to implement

similar calculations with arbitrary hopping amplitudes (possibly complex, representing

gauge fields), to include spin degrees of freedom for the bosons, and to consider

inhomogeneities in the system. Indeed, our derivation of the quadratic Hamiltonian

did not make use of the specific form of the onsite part of the Hamiltonian (we only

introduced the matrix elements of the onsite Hamiltonian between the eigenstates

of the MF Hamiltonian, but this is completely general), and the hopping part of the

Hamiltonian may be replaced by a sum of terms of the form
∑

ij JijAiBj with Jij an

arbitrary complex number, and Ai and Bj arbitrary operators on sites i and j without

changing anything to the derivation of the quadratic Hamiltonian. Furthermore, a

time-dependent version of the slave-boson technique may also be derived, but shall

not be discussed here. The generalization to a cluster-slave-boson approach, based

on a cluster-mean-field rather than on the simple mean-field Ansatz we have used, is

also straightforward to implement (Huerga, Dukelsky, and Scuseria, 2013): what we

have called “sites” i and j in our derivation are only labels which may be related to an

arbitrary subset of the actual sites of the lattice.

Bogoliubov diagonalization of the quadratic SB Hamiltonian for the homoge-
nous BH model. The last step is to diagonalize the quadratic Hamiltonian H(2)

BH

via a Bogoliubov transformation (Blaizot and Ripka, 1986). In our case, since the

system is homogeneous, and since no spontaneous breaking of the translational in-

variance occurs, all the parameters are site-independent. It is thus more convenient

to Fourier-transform the SB operators before the diagonalization. Furthermore, the

matrix elements of A and B may always be chosen as real numbers. This basically

amounts to a choice of a real φ. In this case, the MF Hamiltonian is a real symmetric

matrix in the basis |n〉, so that its eigenstates |ψα〉 have only real coefficients in the

same basis. Hence, the matrix elements of b and b† between these states are real

numbers. Recall that we are working on a square lattice in 2d, or a cubic lattice in 3d.

We introduce

γk,α =
1√
V

∑

i

e−ik·riγi,α (5.59)

in terms of which the local term is just

H(2)
BH,local =

∑

k

∑

α>0

(εα − ε0)γ†k,αγk,α (5.60)

while the hopping term is

H(2)
BH,hopping =

∑

k

∑

α,β>0

(A
(1)
k )αβγ

†
k,αγk,β (5.61)
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where

(A
(1)
k )αβ = −tk

[
(b̃)0α(b̃)0β + (b̃)β0(b̃)α0

]
(5.62)

with tk =
∑

j tije
−ik·(ri−rj) = −2t

∑d
a=1 cos ka. Finally, the pair term is

H(2)
BH,pair =

1

2

∑

k

∑

α,β>0

(Bk)αβγ−k,αγk,β + h.c. (5.63)

where

(Bk)αβ = −tk
[
(b̃)α0(b̃)0β + (b̃)β0(b̃)0α

]
. (5.64)

It will be convenient to use the vectorial notation γk = (γk,1, . . . γk,nmax)T 3. Putting

everything together, we finally obtain

H(2)
BH =

1

2

∑

k

(γ†k,γ−k)

(
Ak Bk

Bk Ak

)(
γk
γ†−k

)
− 1

2

∑

k

TrAk (5.65)

with Ak = A
(1)
k + diag(εα − ε0). The final step in order to put the quadratic

Hamiltonian H(2)
BH in a diagonal form is to diagonalize the matrices (Blaizot and

Ripka, 1986)

Mk = η

(
Ak Bk

Bk Ak

)
(5.66)

= Pk

(
Ωk 0

0 −Ωk

)
P−1
k (5.67)

where η =

(
1 0

0 −1

)
and Ωk = diag(ωk,α). ωk,α are the eigenfrequencies of the

system. The diagonalization is generally performed numerically given the potentially

large number of SB flavors retained in the calculation. The matrix P satisfies P−1 =

ηP †η (Blaizot and Ripka, 1986). The Bogoliubov rotation
(
γk

γ†−k

)
= Pk

(
λk

λ†−k

)
(5.68)

preserves the bosonic commutation relations (Blaizot and Ripka, 1986), and this last

transformation finally leads us to the diagonal form

H(2)
BH =

∑

k

nmax∑

α=1

ωk,αλ
†
k,αλk,α −

1

2

∑

k

Tr(Ak − Ωk) . (5.69)

3 Note that the α = 0 mode is not present any more. It is indirectly present through the dependency
of the matrices A and B on the MF ground state. Its status is somewhat analogous to the condensate
mode in the Bogoliubov approximation: its serves as a “reservoir” for the SB particles.
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The slave-boson ground state is the vacuum of the λk,α operators, which differs from

the vacuum of the γ’s operators (namely the MF ground state) because of the mixture

of γ and γ† involved in the Bogoliubov rotation, and the ground-state energy is

lowered, with respect to the MF contributionH(0)
BH, by an amount 1

2

∑
k Tr(Ak−Ωk).

5.3.2 Self-consistency of the SB approach and correlation
functions.

Self-consistency criterion. The approximation we have made relies on the hypoth-

esis that the SB population of modes orthogonal to the MF state remain small
∑

α>0

〈γ†i,αγi,α〉 � 1 ∀i . (5.70)

In the case of a homogeneous system, this is equivalent to

s =
1

V

∑

k

∑

α>0

〈γ†k,αγk,α〉 � 1 . (5.71)

One thus has to calculate 〈γ†k,αγk,α〉 in the ground-state of the BH Hamiltonian, at the

SB level of approximation.

Correlation matrices. More generally, we shall be interested in correlation func-

tions of various observables, which are completely characterized by the correlation

matrices

Cα,α′(k) = 〈γ†k,αγk,α′〉 (5.72)

Fα,α′(k) = 〈γk,αγ−k,α′〉 , (5.73)

since the SB ground-state of the BH Hamiltonian is a gaussian state, for which

Wick’s theorem applies (Blaizot and Ripka, 1986). A convenient way to obtain these

correlation matrices is to consider the following matrix

C(k) =

〈(
γk

γ†−k

)(
γ†k γ−k

)〉
(5.74)

= Pk

〈(
λk

λ†−k

)(
λ†k λ−k

)〉
P †k (5.75)

= Pk

(
diag(1 + nk,α) 0

0 diag(nk,α)

)
P †k . (5.76)

where

nk,α =
1

eβωk,α − 1
(5.77)
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if we are considering a thermal state at temperature T = 1/β. In the ground state, one

simply has nk,α = 04. Since the matrix Pk has the form (Blaizot and Ripka, 1986)

Pk =

(
Uk V ∗k
Vk U∗k

)
, (5.78)

we obtain that

C(k) =

(
1 + C(k) F (k)

F (k)† C(−k)

)
(5.79)

=

(
UkU

†
k UkV

†
k

VkU
†
k VkV

†
k

)
(5.80)

where we used that 〈γk,αγ−k,α′〉∗ = 〈γ†−k,αγ
†
k,α′〉. Note also that

UkU
†
k = 1 + VkV

†
k (5.81)

and that we have the symmetry k↔ −k. In particular, we see immediately that the

stability criterion for the SB approximation is

s =
1

V

∑

k

Tr(VkV
†
k )� 1 . (5.82)

If s is very small, the MF ground state is an excellent approximation to the true ground

state, and calculations within the SB approach are expected to be in quantitative

agreement with exact calculations. If s exceeds 10%, quantum corrections the MF

solution are not so small, and we expect a stronger departure of the SB predictions

from the exact results.

Self-consistency across the phase diagram of the BH model. On the left panel of

Fig. 5.2 we have plotted the value of s across the zero-temperature phase diagram

of the 2d BH Hamiltonian. The first observation is that the SB approximation is

self-consistent over nearly all the phase diagram. The maximum value of s is ≈ 0.11,

and is found near the O(2) point, namely at the phase transition occurring at integer

4 A subtlety occurs for zero-energy modes. In fact, the Bogoliubov transformation requires ω > 0
(Blaizot and Ripka, 1986). This situation is problematic in the gapless SF phase. Unless otherwise stated,
we always remove the contribution of the zero energy mode(s) from our calculations. As the neglected
contribution is microscopic (stemming from a single mode), this does not alter the reliability of our
predictions in the thermodynamic limit, but may have significant impact on finite size systems, especially
regarding the spatial structure of entanglement (Frérot and Roscilde, 2015). An alternative procedure is
to introduce a very small gap, scaling to zero in the thermodynamic limit, by adding a term of the form
−h
∑
i(bi + b†i ) to the Hamiltonian, with h→ 0 when increasing the system size. We shall come back

to this issue in Section 6.1.
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Figure 5.2: Left: Slave-boson population (orthogonal to the MF state) in the SB
ground-state of the 2d Bose-Hubbard model. In the Mott-insulating phases (MI), the
population of SB is around 2− 3%, while in the superfluid phase (SF), it is around
5− 6%. The maximal population is found at the tip of the MI lobes. For instance, at
the b point, corresponding to the phase transition at unit filling n = 1, the population
is slightly below 11%. In 3d, the topography is similar, with a maximum value of
about 4% at the same point. Strong SB populations indicate that quantum fluctuations
are large. Interestingly, entanglement entropy exhibits a very similar behavior (see Fig.
7.3). a, b, c and d mark the points where the excitation spectrum is plotted on the right
panel. Right: Excitation spectrum from the SB approach at kx = 0. Only the two
lowest branches are shown. (a) tz/U = 0.15, µ/U =

√
2− 1 ; (b) tz/U = 3− 2

√
2,

µ/U =
√

2−1 ; (c) tz/U = 0.2, µ/U =
√

2−1 and (d) tz/U = 0.12, µ/U = 0.168.
The thick red line marks the amplitude mode in the SF phase.

density (n = 1)5. For comparison, in 3d, the SB population has a maximal value of

≈ 0.04 at the same point. This result is in itself a validation of the MF theory, which

represents a rather good approximation throughout the phase diagram. In fact, MF

theory only breaks down in the very vicinity of the O(2) points: the universality class

of the phase transition at the O(2) points is that of the (d+ 1)-XY model, which is not

captured by a gaussian theory such as the SB approximation. In contrast, the generic

transition is described by a gaussian theory, so that the SB predictions are reliable

everywhere in the phase diagram, except in the very vicinity of the O(2) points —

with the caveat that the actual phase-transition line is a shifted with respect to the MF

prediction. MF theory by itself does not provide any self-consistency check, and the

first virtue of the SB approach is to provide such a self-consistent validation.

Limitations of the SB approximation. The limitation of the SB approximation

stems from the fact that the constraint of having exactly one SB particle per site,

Eq. (5.25), is only approximately accounted for. The self-consistency of the SB

5 The term O(2) characterizing this point comes from the fact that the low-energy effective field-
theory describing the phase transition is a O(N=2) model.
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approach is a necessary, yet not sufficient condition for having an accurate description

of the system. Ultimately, the validity of the SB approach relies on the comparison of

certain of its physical predictions with exact calculations (see, for instance, Coletta,

Laflorencie, and Mila (2012) for a comparison with quantum Monte Carlo calculations

in the hardcore limit, showing a remarkably good accuracy of the SB approach),

or with experiments (see Endres et al. (2012) for a comparison between the SB

prediction and experiments concerning the spectrum of amplitude fluctuations of the

order parameter across the SF-MF phase transition, demonstrating also quantitative

agreement). In general, we expect that the SB approach is “semi-quantitative”.

Physical content of the SB approach. A crucial observation of Fig. 5.2 is that the

O(2) points are clearly singled out as the points where quantum fluctuations have

the strongest effect on the structure of the ground state — in fact, they are so strong

that they induce a failure of the gaussian theory to capture the critical exponents of

the phase transition. In contrast, the generic (or commensurate-incommensurate, CI)

transition occurring at any other point of the phase-transition line does not exhibit

strong quantum fluctuations. In fact, the critical point of the generic transition is,

strictly speaking, still in the MI phase. When leaving the MI lobe by increasing µ,

one can picture the ground state as a Mott insulator, to which a very dilute gas of

bosons has been added. These bosons condense and form a very dilute superfluid,

inducing very weak quantum fluctuations (in this case, the quantum fluctuations are

mostly due to the Mott insulator itself). When leaving the MI lobe by decreasing µ,

the picture is the same, but one is adding very few holes instead of particles. The

generic transition is thus not induced by quantum fluctuations, but rather by the fact

that adding or removing a few particles to a Mott-insulator immediately leads to a

very dilute superfluid. In essence, it is not different from the “phase transition” from

the vacuum to a very dilute superfluid of a few bosons.

In contrast to the generic transition, the O(2) transition occurring at fixed, integer

density, is much richer. Here, increasing the ratio tz/U at fixed density from the MI

phase, one is effectively increasing the virtual particle-hole pair fluctuations in the

MI by increasing the role of the kinetic energy term in the Hamiltonian, and at some

critical ratio, the particle-hole fluctuations become so large that the bosons become

delocalized over the whole lattice to form a superfluid. When approached from the

SF phase, the picture is better formulated in terms of the fluctuations of the SF order

parameter φ. Recalling that φ is a complex number, we notice that it fluctuates both in

phase and in amplitude. The phase fluctuations are always gapless and correspond to

the well-known Goldstone mode of this continuous symmetry-broken phase. Deep
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in the SF, this is the sound mode described by Bogoliubov theory. But the gapped

amplitude fluctuations of the order parameter, absent from Bogoliubov theory, soften

when approaching the O(2) transition, and are gapless at the O(2) point (at the SB

level of approximation). These amplitude fluctuations of the order parameter form an

additional source of quantum fluctuations, and are responsible for a richer structure of

entanglement in the vicinity of the O(2) points (see Chapter 7). On the right panel of

Fig. 5.2, we have plotted the excitation spectrum at various representative points of

the phase diagram: in the gapped MI phase (panel a), in the gapless SF phase (c), at

the CI generic transition (d) and at the O(2) point (b).

5.3.3 Discussion

Although the SB approach can incorporate an arbitrary number of modes orthogonal

to the MF to describe quantum fluctuations, in several regions of the phase diagram we

can give an accurate, and physically simpler description of the structure of fluctuations,

by restricting us to a limited number of SB flavors.

Hardcore limit. In the limit of infinite interaction U/t→∞, but imposing a non-

integer filling fraction n̄, the system is in a SF regime. In this hardcore limit, if

n0 < n̄ < n0 + 1 with n0 an integer, only occupations with n0 or n0 + 1 bosons are

allowed. One may then keep only one SB flavor in addition to the MF. This regime is

further explored in Chapter 6.

Weak-interaction limit. In the limit of a dilute and/or weakly interacting superfluid

n̄U/t� 1, the system is accurately described by Bogoliubov theory. The MF is close

to a coherent state |ψ0〉 ∝ e−φb
† |0〉, and we may keep only one mode orthogonal

to the MF, describing collective fluctuations of the phase, the other branches being

very high in energy. This regime is very similar, regarding the structure of quantum

correlations in the ground-state, to the hardcore limit and is also explored in Chapter

6.

Mott insulator. In the Mott insulator of density n, the MF ground state is |ψ0〉MI =

|n〉. In this case, the only modes connected to the MF state by the MF Hamiltonian

contain n ± 1 bosons. We can thus keep only two SB flavors, describing particle

and holes fluctuations in the MI. Other branches do not contribute to the low-energy

dynamics, and in particular, to entanglement (Section 7.1).

123



5.4 Reduced-density matrix for bosonic gaussian
states

In this section we provide the technical details related to the calculation of the en-

tanglement Hamiltonian from the correlation matrix, and to the definition of the

entanglement contour for bosonic gaussian states.

5.4.1 Reduced density-matrix and entanglement spectrum
within the SB approximation

Since, within the SB approximation, the ground state is a gaussian state, we can

use Wick’s theorem to reconstruct the reduced density matrix of any subset of sites

through the knowledge of the two-point correlators only. Considering a subset of sites

i ∈ A, as for the free fermion case studied in Section 4, the validity of Wick’s theorem

implies that the reduced density matrix of A takes the form of the exponential of a

quadratic Hamiltonian for the SB degrees of freedom in A

ρA ∝ exp(−Hent) (5.83)

Hent =
∑

i,j∈A

∑

α,α′>0

{
Aiα,jβγ†iαγj,β +

1

2
(Biα,jβγiαγj,β + h.c.)

}
(5.84)

where A† = A and BT = B. Indices α, α′ denote the SB flavors. As for the free

fermion case, the matricesA and B can be reconstructed from the one-body correlation

matrix for degrees of freedom within the subsystem A. If

M = η

(
A B
B∗ A∗

)
= P

(
Ω 0

0 −Ω

)
P−1 , (5.85)

we know that P−1 = ηP †η (Blaizot and Ripka, 1986), and that, if CA is the correlation

matrix for A degrees of freedom

CA =

(
1 + C∗A FA

F †A CA

)
, (5.86)

with (CA)iα,jβ = 〈γ†iαγjβ〉 and (FA)iα,jβ = 〈γiαγjβ〉 for i, j ∈ A and α, β > 0, then

(as CA is hermitian)

CA = P

(
1 +N 0

0 N

)
P † . (5.87)

Multiplying on the right by η, and using the fact that P †η = ηP−1, we conclude that

CAη = P

(
1 +N 0

0 −N

)
P−1 (5.88)
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where N = (exp Ω − 1)−1 = diag(n1, . . . np, . . . ). What we have to do is then to

diagonalize the matrix CAη. Its negative eigenvalues−np are related to the (one-body)

eigenvalues ofHent (the one-body entanglement spectrum ωp) by

np =
1

eωp − 1
(5.89)

ωp = ln

(
1

np
+ 1

)
, (5.90)

while the matrix

P =

(
U V ∗

V U∗

)
(5.91)

contains the associated entanglement eigenmodes

λent = U †γ − V †γ† (5.92)

where we introduced the vector γ = (γiα)i∈A,α>0. As for the 2d free-fermion case,

Section 4.3, we are often going to consider a region A consisting of a cylinder cut out

of a torus. In this case, we can use the translational invariance of A along the direction

parallel to the cut. Denoting k‖ the wavevector in this direction, the correlation matrix

CA is block diagonal with respect to k‖, and the diagonalization can be performed in

each sector k‖ successively. Then, the entanglement modes are labeled by two indices

(k‖, p) where the index p expresses 1) the modes in the direction perpendicular to the

cut; and 2) the different SB flavors. If the width of the cylinder A in the direction

perpendicular to the cut is l, and if nmax SB flavors are retained (in addition to the

MF state which has been “condensed” during the SB construction), then p runs over

l × nmax values.

5.4.2 Entanglement contour for bosonic gaussian states

Beyond the free fermion case first discussed by Chen and Vidal (2014), the definition

of the entanglement contour is still an open question. We are not aware of results

concerning entanglement contours beyond quadratic models; and even for quadratic

bosonic Hamiltonians, the question is delicate, since only two studies have been

reported in the literature dealing with this problem (Frérot and Roscilde, 2015; Coser,

De Nobili, and Tonni, 2017).

Mode decomposition of entanglement entropy. Similarly to the case of fermions,

the entanglement entropy for bosonic gaussian states takes the form a thermal entropy

for a fictitious system of free bosons

S =
∑

p

sBose(np) (5.93)
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and sBose is the entropy of a bosonic mode containing np bosons in average

sBose(n) = (1 + n) ln(1 + n)− n lnn . (5.94)

Mode decomposition of the entanglement contour. It is then natural to seek a

decomposition of S as

S =
∑

i∈A
Cs(i) (5.95)

where

Cs(i) =
∑

p

wp(i)s(np) (5.96)

is the entanglement contour, weighting the contribution of site i to the entanglement

entropy shared by A and its complement, and wp(i) is weighting the contribution of

site i to the entanglement entropy stemming from the mode p. In order to recover the

entanglement entropy when summing the contours over the sites i in A, we impose

that ∑

i∈A
wp(i) = 1 ∀p . (5.97)

Definition of the weights entering in the mode decomposition of the contours.
The remaining question is then how to define the weights wp(i). They must obviously

be related to the spatial structure of the modes contained in the matrix P of Eq. (5.91),

but there is not a unique way to do so. In our paper, we proposed the following

definition6

wp(i) = |Uip|2 − |Vip|2 (5.98)

directly inspired by the physical concept of local density of states, adapted to the

entanglement Hamiltonian [see the corresponding section in Frérot and Roscilde

(2015)]. Although the normalization condition Eq. (5.97) is automatically satisfied

due to the η-orthogonality of the matrix P (namely, the fact that PηP †η = 1), it is a

priori not obvious that Cs(i) ≥ 0 holds. Indeed, each wp(i) may happen to be negative.

However, we have never encountered such situations where Cs(i) < 0, which would

be physically problematic. Nonetheless, in face of this problem, Coser, De Nobili,

and Tonni (2017) have proposed an alternative definition of the entanglement contour.

We shall explain the idea of Coser, De Nobili, and Tonni (2017) in the simplified

framework where the correlation matrices Cij = 〈b†ibj〉 and Fij = 〈bibj〉 are real,

which is the case in the slave-boson approach to the Bose-Hubbard model, and refer
6 In order to simplify the notations, we suppose that indices i are related to a single site, and a single

SB flavor. In the case of several flavors, on simply has to sum the contributions stemming from the
different flavors on site i: wp(i) =

∑nmax
α=1 wp(i, α).
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the reader to the original paper for the general case. The canonical transformation to

the normal modes can be expressed in terms of the correlators of the quadratures (q, p)

instead of the bosonic operators (b, b†). They are related by
{

b = q+ip√
2

b† = q−ip√
2

⇐⇒
{
q = b+b†√

2

p = b−b†
i
√

2

. (5.99)

One can then verify that the correlation matrices are related by




〈qipj〉 = = 〈b†ibj〉︸ ︷︷ ︸
Cij

+= 〈bibj〉︸ ︷︷ ︸
Fij

+i
δij
2

〈qiqj〉 = <〈b†ibj〉+ <〈bibj〉+
δij
2

〈pipj〉 = <〈b†ibj〉 − <〈bibj〉+
δij
2

. (5.100)

Apart from the term i/2 in the diagonal of 〈qipj〉, stemming solely from the com-

mutation relation [qi, pj ] = iδij , the correlators for the q and p quadratures are

real7. Defining r = (q1, . . . qN , p1, . . . pN )T , the diagonalization of the entanglement

HamiltonianH then amounts to find a canonical transformationW bringing the matrix

Γ = <〈rrT 〉 into a diagonal form. Using the fact that C and F are real matrices, so

that <〈qipj〉 = 0, we obtain




H =
∑N

α=1 ωα
Q2
α+P 2

α
2 + const.

Γ = W

(
Λ 0

0 Λ

)
W T

(5.101)

where Λ = diag(λ1, . . . , λN ), with λα = 1
2 + (expωα − 1)−1 and

(
q

p

)
= W

(
Q

P

)
(5.102)

with q = (q1, . . . , qN )T , etc8. The canonical commutation relations for the quadra-

tures q, p and Q, P are preserved if, and only if

WJW TJ = −1 (5.103)

where J =

(
0 1

−1 0

)
9. In particular, W is invertible of inverse W−1 = −JW TJ .

Note that since W is in general not an orthogonal matrix, the decomposition of Eq.
7 Obviously, <C and <F can be reconstructed from the correlators 〈qiqj〉 and 〈pipj〉. On the other

hand, since F (and hence =F ) is symmetric, while C is hermitian (and hence =C is antisymmetric),
=F and =C are extracted as the symmetric and antisymmetric part of <〈qipj〉 respectively.

8 Note the factor 1/2 in the relation between λα and ωα which corresponds to the zero-point motion
of the oscillators.

9 W is then called a symplectic matrix. The existence of such symplectic diagonalization of γ is
guaranteed by Williamson’s theorem, stating that any 2N × 2N matrix M which is real, symmetric, and
definite positive, can be decomposed as M = W (D ⊕D)W t where D = diag(d1, . . . dN ), di > 0,
and W symplectic and real. See the Appendix of Coser, De Nobili, and Tonni, 2017 for a constructive
elementary proof of Williamson’s theorem.
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(5.101) dos not result from a standard diagonalization of γ. The question is then to

construct the matrix W . In the particular case where C and F are real matrices, one

sees that the matrix γ is block diagonal (since 〈qipj〉 = iδij/2, see. Eq. (5.100)). The

canonical transformation W is then also block diagonal

W =

(
X 0

0 Y

)
, (5.104)

which means that the canonical transformation acts independently of the q and p

quadratures10




q = XQ

p = Y P

Y T = X−1

, (5.105)

and the matrix γ takes the form

γ =

(
G 0

0 H

)
=

(
XΛXT 0

0 Y ΛY T

)
. (5.106)

Note again that since X is not an orthogonal matrix, this form does not result from the

usual diagonalization of the matrices Gij = 〈qiqj〉 (top left block), or Hij = 〈pipj〉
(bottom-right block). To perform the symplectic diagonalization, we remark instead

that

GH = XΛXTY︸ ︷︷ ︸
1

ΛY T = XΛ2Y T . (5.107)

Since Y T = X−1, we can conclude that, whenever the correlation matrices C and F

are real, the problem of bringing the correlation matrix γ (or, equivalently, the matrix

C, or also equivalently, the entanglement Hamiltonian) into a canonical form reduces

to the problem of diagonalizing the matrix GH , where
{

G = C + F + 1/2

H = C − F + 1/2
. (5.108)

The eigenvalues λ2
α of GH provide the entanglement spectrum through the relation

λα =
1

2
+

1

eωα − 1
(5.109)

and the matrix X contains the eigenvectors. The matrices U and V bringing the

bosonic modes b to the normal modes β = (Q+ iP )/
√

2 according to

b = Uβ + V β† (5.110)
10 In this case, the symplectic character of W is equivalent to Y T = X−1, as a direct evaluation of

−JWTJ shows.
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are related to the matrices X and Y = (XT )−1 according to
{
U = X+Y

2

V = X−Y
2

. (5.111)

In terms of the matrix X , our definition of the entanglement contour in Frérot and

Roscilde (2015), Eq. (5.98), reads

wα(i) = Xiα(X−1)αi . (5.112)

As X−1 6= XT , wα(i) may be negative. Recalling that X rotates the original “po-

sitions” qi into the normal modes, see Eq. (5.105), we notice that, in addition to a

mere rotation of the qi’s, X may involve some “squeezing” of the modes. Indeed, the

singular value decomposition (SVD) of X

X = U1ΞU2 (5.113)

with U1 and U2 orthogonal matrices, and Ξ = diag(eξα), shows that the squeezing

part Ξ of the SVD is responsible for the non-orthogonality of X . This observation

lead Coser, De Nobili, and Tonni (2017) to work with

X̃ = U1U2 (5.114)

instead of X11. The matrix X̃ is then orthogonal, and the associated contour is

wα(i) = X̃2
iα (5.115)

which is non-negative by construction. We will show that the two definitions for

the entanglement contour lead to qualitatively similar insights: we observe that both

definitions lead to a contour decaying when moving from the edges towards the bulk of

A, and the decays exhibit a similar shape. Although there is a priori no reason to favor

one or the other definition, we nonetheless find that the definition of Coser, De Nobili,

and Tonni (2017) is in better agreement with the local thermodynamic hypothesis

discussed in Section 3.3.3 on finite-size systems, supporting a related observation

reported by Coser, De Nobili, and Tonni (2017) for the 1d harmonic chain.

5.5 Correlation functions in the SB approach

In the SB representation, a local observable Oi is expressed as in Eq. (5.41).

11 It is equivalent to perform the polar decomposition (unique since X is invertible) X = X̃P with
P a symmetric definite positive matrix, and X̃ orthogonal.
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Average value. Then, the average value of Oi is corrected, with respect to its MF

value (Õi)00 = i〈ψ0|Oi|ψ0〉i by the nonzero population of SB modes orthogonal to

the MF

〈Oi〉 − (Õi)00 =
∑

α,β>0

[
(Õi)α,β − δα,β(Õi)00

]
〈γ†i,αγi,β〉 . (5.116)

Covariance. The covariance for two operators Oi and Oj at two different positions

i and j can be obtained in a similar manner:

〈OiOj〉−〈Oi〉〈Oj〉 =
∑

α,β>0

〈[
(Õi)α0γ

†
i,α + (Õi)0αγi,α

] [
(Õj)β0γ

†
j,β + (Õj)0βγj,β

]〉

(5.117)

where we neglected terms of order (γ
(†)
α>0)3 or higher, and used the fact that 〈γ(†)

i,α>0〉 =

0. Note that this holds only if the observables have nonzero matrix elements between

different eigenstates of the MF Hamiltonian (Õi)α0 6= 0, etc. In particular, in the MI

phase, the density ni does not fulfill this condition. In this case, one must go to the

next order in calculating the correlation function, and use Wick’s theorem to express

higher order correlators in terms of the two-body correlators. The corresponding

formulas are given in the Appendix of Frérot and Roscilde (2016b).

Structure factor. If the system is translationnally invariant, it is convenient to

introduce the structure factor S(k) for the correlations of O:

〈OiOj〉 − 〈Oi〉〈Oj〉 =
1

N

∑

k

eik·(ri−rj)S(k) (5.118)

with

S(k) =
∑

α,β>0

[
(Õi)α0(Õj)β0〈γ†−k,αγ

†
k,β〉+ (Õi)0α(Õj)0β〈γk,αγ−k,β〉

+(Õi)α0(Õj)0β〈γ†−k,αγ−k,β〉+ (Õi)0α(Õj)β0〈γk,αγ†k,β〉
]

(5.119)
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Chapter 6

Structure of entanglement in
the bosonic superfluid

Introduction. This chapter is devoted to a study of the entanglement structure

in the superfluid (SF) phase of the Bose-Hubbard (BH) Hamiltonian. To simplify

the calculations and develop some understanding at the analytical level, we specify

our attention to the limiting cases of infinite (or hardcore) interactions, and weak

interactions. In subsection 6.1, we derive the quadratic Hamiltonian in the limit of

hardcore interactions. In particular, the dispersion relation and the structure factor for

the density correlations are obtained. The corresponding formulas in the Bogoliubov

limit are also given. In subsection 6.2, we show that the entanglement contour

exhibits a 1/rd decay at large distance from the boundaries which appears to be

completely universal throughout the SF phase, and we explain this result from a

local thermodynamic perspective, based on the validity of the Bisognano-Wichmann

theorem for Lorentz-invariant field theories. As the area law for entanglement entropy

is strict in the bosonic SF, the short-distance decay of the contours actually dominates

the scaling of entanglement entropy, and we show in Section 6.3 that this scaling is

uniquely governed by the healing length. In subsection 6.4, we show that the density-

fluctuations contour has a structure similar to the entanglement contour (exponential

short-distance decay governed by the healing length, followed by a power-law decay

at large distance). However, the density-fluctuations contour decays as 1/r at large

distances, giving rise to a logarithmically violated area law for the particle-number

variance in a subsystem. As for the entanglement contour, we demonstrate that the

density contour at large distance follows from a local thermodynamic hypothesis, and

show that the entanglement contour can be qualitatively reconstructed from the density

contour via a thermodynamic relation between entropy and density fluctuations valid
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at low temperature. Subsection 6.6 is finally devoted to the study of the entanglement

spectrum and of the entanglement Hamiltonian in the SF phase, and several open

issues are put forward.

6.1 The hardcore and Bogoliubov limits

6.1.1 Hardcore limit

We first focus on the hardcore limit, namely

U/t→∞ (6.1)

n̄ fixed , (6.2)

where the density n̄ = 〈n〉 is fixed between n0 and n0 + 1. On the phase diagram of

Fig. 5.1, the hardcore limit coincides with the vertical axis t/U = 0. On the phase

diagram, the system seems to be always in the MI phase, but this is an artifact of the

representation in the (t/U, µ/U) plane: all lines of density between n0 and n0 + 1 col-

lapse onto the single point (t/U = 0, µ/U = n0) in the hardcore limit. Nonetheless,

the density is still a function of the ratio t/µ. This situation is conceptually simple,

since only occupations of n0 or n0 + 1 boson are allowed on each site. We may thus

keep only two states to find the MF ground state, condense one of them, and describe

the quantum fluctuations around the MF solution with a single SB flavor. We focus

on the case n0 = 0 for simplicity, but the following treatment is easily generalized to

any n0. In this case, since ni = 0 or 1, the interaction term Un(n − 1)/2 vanishes

identically. The Hamiltonian then reduces to

Hhardcore = −
∑

ij

tijb
†
ibj − µ

∑

i

b†ibi . (6.3)

Because of the hardcore constraint, ni ∈ {0, 1},Hhardcore is not a free Hamiltonian.

Equivalently, the hardcore boson Hamiltonian can be mapped onto an XY spin model
{
|0〉 ↔ | ↓〉
|1〉 ↔ | ↑〉

. (6.4)

In terms of the spin-1/2 operators




Sxj = (b†j + bj)/2

Syj = (b†j − bj)/(2i)
Szj = b†jbj − 1/2

σαi = 2Sαi

, (6.5)
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the Hamiltonian can be rewritten (we assume that tij is real)

Hhardcore = −
∑

ij

tij(S
x
i S

x
j + Syi S

y
j )− µ

∑

i

(Szi + 1/2) . (6.6)

In terms of the spin-1/2 operators, the hopping term is an exchange term, while the

chemical potential is a magnetic field along z. The SB approach is then fully equivalent

to the semi-classical approach of Holstein and Primakoff (1940), as described for

instance in Coletta, Laflorencie, and Mila (2012).

Mean-field ground state in the hardcore limit. Since φ = 〈bi〉 is defined up to

a global phase factor, we may assume that φ∗ = φ ≥ 0. Then, φ = 〈σ+〉 =

〈σ−〉 = 1
2〈σx〉. Considering only nearest-neighbor hopping in the matrix tij , the MF

Hamiltonian takes the simple form

HMF
hardcore = −tzφ(b+ b†)− µn+ tzφ2 (6.7)

= − ~B · ~σ − µ/2 + tzφ2 (6.8)

with ~B = (tzφ, 0, µ/2) and z = 2d on a hyper-cubic lattice in d dimensions.

HMF
hardcore has eigenvectors

|ψ0〉 =

(
cos(θ/2)

sin(θ/2)

)
(6.9)

|ψ1〉 =

(
sin(θ/2)

− cos(θ/2)

)
(6.10)

in the basis (| ↑〉, | ↓〉) = (|1〉, |0〉), with
{

tan θ = 2tzφ/µ

φ = (1/2) sin θ
. (6.11)

The respective eigenvalues are ε0/1 = ∓| ~B| − µ/2 + tzφ2. From Eq. (6.11), one sees

that either φ = θ = 0, or
{

cos θ = µ/tz

φ = (1/2)
√

1− (µ/tz)2
. (6.12)

φ 6= 0 is only possible if |µ/tz| ≤ 1, which is the situation considered in the

following1. One also sees that the density n̄ = (〈σz〉+ 1)/2 = cos2(θ/2) is related

to the chemical potential µ and to the superfluid order parameter φ according to

n̄ =
1

2

( µ
tz

+ 1
)

(6.13)

φ =
√
n̄(1− n̄) . (6.14)

1 If |µ/tz| > 1 in the hardcore limit, the ground state is either the vacuum (µ < −tz), or in the
product state containing exactly 1 boson per site (µ > tz).
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Slave-boson Hamiltonian and excitation spectrum in the hardcore limit. The

quadratic SB Hamiltonian, see Eqs. (5.62), (5.64) and (5.65), is

H(2)
hardcore =

1

2

∑

k

(
γ†k γ−k

)(Ak Bk

Bk Ak

)(
γk
γ†−k

)
−
∑

k

TrAk/2 (6.15)

where γk = V −1/2
∑

j e
−ik·rjγj , with γj the SB operator associated to the eigenstate

|ψ1〉 of the MF Hamiltonian. Since we have a single SB flavor, Ak and Bk are not

matrices but simply numbers given by
{
Ak = ε1 − ε0 − tk[(b01)2 + (b10)2]

Bk = −tk[2b01b10]
. (6.16)

One can evaluate b01 = 〈ψ0|σ−|ψ1〉 = − cos2(θ/2) and similarly b10 = sin2(θ/2).

Note that ε1− ε0 = 2| ~B| = 2
√

(tzφ)2 + (µ/2)2 = tz in virtue of Eq. (6.12). Finally,

we have2 {
Ak = tz[1− (ηk/2)(1 + cos2 θ)]

Bk = tz(ηk/2) sin2 θ
(6.17)

where we introduced ηk = tk/tz = (1/d)
∑d

i=1 cos ki. The above Hamiltonian can

be diagonalized by a canonical Bogoliubov transformation

bk = ukβk − vkβ†−k (6.18)

where βk, β
†
k are bosonic operators destroying/creating Bogoliubov quasiparticles.

Requiring the above transformation to diagonalizeH(2)
hardcore and to satisfy bosonic

commutation relations for βk, β†k, leads us to the following expressions for the uk and

vk coefficients:

uk =
1√
2


 Ak√

A2
k −B2

k

+ 1




1/2

(6.19)

vk =
Ak

|Ak|
1√
2


 Ak√

A2
k −B2

k

− 1




1/2

(6.20)

We also obtain the energy spectrum for the SB excitations

Ek =
√
A2

k −B2
k (6.21)

= tz
√

(1− ηk)(1− ηk cos2 θ) (6.22)

2 We made use of the identities cos4(θ/2)+sin4(θ/2) = (1+cos2 θ)/2 and cos(θ/2) sin(θ/2) =
(1/2) sin θ.
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which is gapless at k = 0. At small k, we may approximate ηk ≈ 1 − k2/2d.

Consequently, the spectrum at small k is linear

Ek ≈ t
√

2d| sin θ|︸ ︷︷ ︸
c

k (6.23)

where c is the sound velocity. In terms of the density, the sound velocity is

c = 2t
√

2d
√
n̄(1− n̄) . (6.24)

Given the linear dispersion relation at small k, we anticipate that the gas of hardcore

bosons displays an effective Lorentz invariance at low energy. It will thus be instructive

to compare the prediction of the Bisognano-Wichmann theorem for the entanglement

Hamiltonian, Eq. (3.37), with an explicit calculation for the lattice gas of hardcore

bosons.

Density correlations in the hardcore limit. The structure factor for the density

correlations is evaluated through Eq. (5.119). In the hardcore limit, the sum on

α, β > 0 reduces to a single term with α = β = 1. One then has to evaluate the

matrix elements of the density n = Sz + 1/2 between the MF states |ψ0〉 and |ψ1〉.
Namely:

ñ01 = ñ10 =
1

2
sin θ . (6.25)

The structure factor then reads

S(k) =
sin2 θ

4
(2Fk + 2Ck + 1) (6.26)

where Fk = 〈bkb−k〉 and Ck = 〈b†kbk〉. In terms of the coefficients uk and vk or the

Bogoliubov transformation defined in Eq. (6.20), we have

Fk = −ukvk(2nk + 1) (6.27)

Ck = u2
knk + v2

k(1 + nk) (6.28)

where nk = [exp(Ek/T )− 1]−1 is the thermal population of the mode k (= 0 in the

ground-state). Using the fact that u2
k − v2

k = 1, we can express the structure factor as

S(k) =
sin2 θ

4

Ak −Bk

Ek
(2nk + 1)

= n̄(1− n̄)
εk
Ek

(2nk + 1) (6.29)

where we introduced the free particle dispersion relation εk = tz(1 − ηk), and we

used the fact that n̄(1− n̄) = φ2 = sin2(θ)/4.
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6.1.2 The weak interaction limit

In the weakly interacting limit, the system also admits an accurate description in

terms of a unique gapless mode of bosonic quasiparticles. This is the well-known

Bogoliubov theory for the weakly interacting Bose gas (Pitaevskii and Stringari, 2003).

In the SB approach, we recover the Bogoliubov limit when Un̄/t� 1. In this limit,

the MF ground state is a coherent state |ψ0〉 ∝ eφb
† |0〉. The SB Hamiltonian then

contains a gapless mode identical to the sound mode of Bogoliubov theory, and a

family of highly gapped modes which play no role far from the phase transition to the

Mott insulator. The effective Hamiltonian describing collective fluctuations of the SF

order parameter takes the form of Eq. (6.15), with coefficients Ak and Bk given by
{
Ak = εk + Un̄

Bk = Un̄
(6.30)

where n̄ is the density and εk = tz(1− ηk). The structure factor3 then takes a similar

form as in the hardcore regime, Eq. (6.29),

S(k) = n̄
εk
Ek

(2nk + 1) (6.31)

although with a different dispersion relation

Ek =
√
εk(εk + 2Un̄) . (6.32)

In particular, the dispersion relation at small k is also linear, Ek ≈ ck, with a sound

velocity c = t
√

2Un̄.

6.2 Universal entanglement structure in the SF
phase

In this section, we show that the local thermodynamic hypothesis, together with the ef-

fective Lorentz invariance in the SF, predicts a universal behavior for the entanglement

contour, and verify this prediction by an explicit calculation in d = 2 and d = 3.

6.2.1 Universal prediction for the entanglement contour

Strict area law in the bosonic superfluid. In contrast to the free fermion case

discussed in Section 4, the gapless bosonic superfluid in d ≥ 2 is known to obey a

strict area law

S ∼ ld−1 (6.33)
3 See for instance the Appendix of Frérot and Roscilde (2015) for the derivation of this expression.
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where S is the entanglement entropy of a subsystem A whose linear size is l. In

Frérot and Roscilde (2015), we have shown this result for the weakly interacting Bose

gas within Bogoliubov theory. Similar results have been reported in the Heisenberg

antiferromagnet by Song et al. (2011) via spin-wave theory and by (Hastings et al.,

2010; Kallin et al., 2011; Humeniuk and Roscilde, 2012) via quantum Monte Carlo

calculations. Field-theory calculations have also proved the area law of entanglement

entropy for free bosonic fields (Casini and Huerta, 2009). The area law scaling in a

gapless phase is a priori not obvious, since correlations decay as a power-law with

distance: as for the free fermion case, one could have expected logarithmic corrections

to the area law4.

Decay of the entanglement contour. In Section 4, we showed that the logarithmic

correction to the area law for free fermions originates from the very slow decay of the

entanglement contour when moving into the bulk of A:

Cs(i) ∼ 1/r(i) (6.34)

where r(i) is the distance of site i to the A-B boundary. Integrating the contour over

the region A then provides the ln l multiplicative correction to the area law. In a

similar spirit, in Frérot and Roscilde (2015), we showed that the strict area law scaling

for bosons can be explained by the observation that the entanglement contour decays

as

Cs(i) ∼ 1/r(i)d (6.35)

in d dimensions. In agreement with the critical nature of the phase, the entanglement

contour decays as a power-law with distance, but in an integrable manner as long as

d ≥ 2, justifying the strict area law.

In fact [and this represents the main novelty of the present chapter with respect to

Frérot and Roscilde (2015)], the decay of the entanglement contour is partly explained

by the Bisognano-Wichmann (BW) prediction, supplemented by the local equilibrium

approximation (LEA) discussed in Section 3.3.3.

BW prediction. Indeed, considering thatA is a half-infinite system (x1 > 0, x2, . . . xd),

the BW theorem predicts that the entanglement Hamiltonian is the physical Hamilto-

4 Note that we are not discussing here the logarithmic additive (and thus subdominant) correction to
the area associated to the spontaneous breaking of a continuous symmetry in the thermodynamic limit
(Metlitski and Grover, 2011), see the devoted chapter in the review of Laflorencie (2016) and references
therein. We are only interested in developing a thermodynamic understanding for the dominant area
term, and its dependency on the physical properties of the system under investigation.
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nian modulated in space by the local entanglement temperature

T (r) =
c

2π

1

x1
. (6.36)

where c is the speed of light (in our case, c is the speed of sound in the superfluid).

Local equilibrium approximation. According to the LEA hypothesis, the entan-

glement entropy of A is then

S ≈
∫

r∈A
ddr s[T (r)]︸ ︷︷ ︸

Cs(r)

(6.37)

where s(T ) is the thermal entropy evaluated at the local temperature T (r). When the

entropy is associated to free bosonic modes with a linear dispersion Ek = ck, we have

(in units where kB = ~ = 1)

s(T ) =

∫
ddk

(2π)d
sBose

(
1

eck/T − 1

)
(6.38)

where sBose is defined in Eq. (5.94). Making the change of variable u = ck/T in the

integral, we conclude that

s(T ) =

(
T

c

)d
αd (6.39)

where αd is some d-dependent constant which can be evaluated to5

α2 =
3ζ(3)

2π
≈ 0.574

α3 =
2π2

45
≈ 0.439 . (6.42)

Universal entanglement contour. As a consequence, the BW + LET prediction

that the entanglement contour should coincide with the local thermodynamic entropy

is, for a semi-infinite subsystem:

Cs(r) = s[T (r)] =
αd

(2πx1)d
. (6.43)

5 The constant αd can be evaluated as follows. We start from the energy per unit volume

u(T ) =

∫
ddk

(2π)d
ck

eck/T − 1
=

Ωd
(2π)d

T d+1

cd
fB(d) (6.40)

where fB(d) =
∫∞

0
dx xd/(ex − 1) = d! ζ(d + 1) with ζ the Riemann function, and Ωd the solid

angle: Ω2 = 2π and Ω3 = 4π. We then use

s(T ) =

∫ T

0

∂u

∂T

dT

T
=

(
T

c

)d
d+ 1

d

ΩdfB(d)

(2π)d
. (6.41)

Since ζ(3) = 1.20205 . . . and ζ(4) = π4/90, we conclude the expressions given in Eq. (6.42).
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Figure 6.1: Entanglement contour for 2d hardcore bosons at half filling. A is a
500× 500 cylinder cut out of a 104 × 500 torus. The mode at k = 0 has been gapped
with a small field h = 1/5002, and the entanglement lowest mode removed (see the
footnote 6). (a) Contour C(I)

s (Frérot and Roscilde, 2015) (blue circles), contour C(II)
s

(Coser, De Nobili, and Tonni, 2017) (orange triangles), and BW + LET conjecture, Eq.
(6.45) (black dashed line); see text for details. (b) Same as (a), but as a function of the
effective distance xeff defined in Eq. (6.46). (c) Ratio C(II)

s /C(conj.)
s at the center of A

(namely at x = l/2).

This prediction nicely agrees with the 1/xd1 decay of the entanglement contour for a

system of gapless bosons we have reported in Frérot and Roscilde (2015). Further-

more, it predicts that the prefactor of the 1/xd1 decay is universal, independent of the

microscopic details of the Hamiltonian (such the sound velocity, the density and so

on).

6.2.2 Numerical verification of the universal prediction

On Fig. 6.1 and 6.2, we show that the BW + LET conjecture contained in Eq. (6.43)

is in reasonable agreement with the lattice calculation of the entanglement contour in

d = 2 and d = 3 respectively6.

6 There are two main subtleties related to the calculation of the entanglement contour for bosons,
discussed extensively in Frérot and Roscilde (2015). The first one is related to the treatment of the
k = 0 mode. Being of zero energy, it cannot be handled by the Bogoliubov transformation. If it is
simply ignored in the calculations, the entanglement contour on a cylinder acquires a spurious alteration.
A better procedure is to follow the prescription of Song et al. (2011) to gap it out by introducing a
small term −h(bi + b†i ) into the Hamiltonian, slightly modifying the expressions for the MF ground
state and the resulting quadratic SB Hamiltonian (the only difference, in the end, is that we must add
a term +h sin θ to Ak in Eq. (6.17)). The size-dependent field h should scale to zero as 1/V 2 in the
thermodynamic limit in order for the zero mode to contribute at most a constant to the momentum-space
integrals of the kind (1/V )

∑
k(· · · )/ωk (see discussion in Frérot and Roscilde (2015)). The second

subtlety comes from the fact that, on any accessible size, the entanglement contour is dominated by the
contribution of a single entanglement mode — the entanglement mode of lowest energy, hence of highest
weight — whose profile decays as 1/x instead of 1/xd. The contribution of this entanglement lowest
mode to the contour should then be removed to properly study the thermodynamic limit (as it represents a
microscopic contribution to the entanglement entropy). Unless otherwise stated, we follow this procedure
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Figure 6.2: Entanglement contour for 3d hardcore bosons at half filling. A is a
100 × 100 × 100 hyper-cylinder cut out of a 2000 × 100 × 100 hyper-torus. Same
treatment of the zero modes as for Fig. 6.1. Contour C(I)

s (Frérot and Roscilde,
2015) (blue circles), contour C(II)

s (Coser, De Nobili, and Tonni, 2017) (orange
triangles), and BW + LET conjecture, Eq. (6.45) (black dashed line); see text for
details. Contours are plotted as a function of the effective distance xeff defined in Eq.
(6.46).

Universal entanglement contour for a cylinder-in-a-torus geometry. The geom-

etry we are considering is not the semi-infinite plane of the BW theorem. Instead,

our subsystem A is a l × ld−1 (hyper-)cylinder cut out of a L × ld−1 (hyper-)torus.

Namely, A contains sites x = 1, . . . l in the first direction (denoted x), and all sites

in the remaining d− 1 dimensions where periodic boundary conditions are imposed.

This geometry enables us to take advantage of the translational invariance along d− 1

directions parallel to the cut, and to simplify the diagonalization of the correlation

matrix, since the latter is block-diagonal with respect to the momentum k‖. To ap-

proximate at best the thermodynamic limit, we take L� l (in practice, we work with

L/l = 20). Nonetheless, since A and B have now two boundaries in common, the

conjecture of Eq. (6.43) must be adapted. In analogy with the result of conformal

field theory (Wong et al., 2013), and with our findings on free fermions reported in

Section 4, we conjecture that the local temperature is

T (x) =
c

2π

(
1

x− 1/2
+

1

l − x+ 1/2

)
, (6.44)

namely the sum of the temperatures associated to the presence of each boundary. The

term 1/2 comes from the fact that the first boundary between A and B is between

sites at x = 0 and x = 1, so at position x = 1/2, and similarly the second boundary

in our analyses of the entanglement contours for gapless bosons (namely, here, in the SF phase of the BH
model). In a gapped phase (namely, here, in the MI phase), no such subtlety occurs and we can keep all
the physical modes, without the need of gapping one of them out, and all the entanglement modes alike.
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is at position l + 1/2. Then the conjecture for the entanglement contour is

C(conj.)
s (r) =

αd
(2π)d

(
1

x− 1/2
+

1

l − x+ 1/2

)d
. (6.45)

An equivalent way to formulate this statement is to introduce the effective distance

xeff =

(
1

x− 1/2
+

1

l − x+ 1/2

)−1

=
(x− 1/2)(l − x+ 1/2)

l
(6.46)

such that the conjectured entanglement contour is C(conj.)
s (r) = αd/(2πxeff)d.

Discussion. On Fig. 6.1 and 6.2, we have calculated two proposed forms for the

entanglement contour: the contour C(I)
s proposed in our paper (Frérot and Roscilde,

2015), corresponding to Eq. (5.112) for the local weight wα(i) associated to the

entanglement mode α; and the contour C(II)
s of Coser, De Nobili, and Tonni (2017),

corresponding to Eq. (5.115) for wα(i). The first, reassuring observation, is that both

definitions give rise to a contour exhibiting a similar decay when moving towards the

bulk of A [panel (a)]. The second observation is that the BW + LET conjecture of

Eq. (6.45) is rather close to the lattice calculation [panel (b)]. Since the agreement is

slightly better with for the contour C(II)
s of Coser, De Nobili, and Tonni (2017), from

now on, unless otherwise stated, we shall always use this definition of the entanglement

contour. On panel (c), we show that on the sizes accessible to the calculation (here a

500× 500 cylinder in a 104 × 500 torus), finite size effects are still manifest, and we

may conjecture that the agreement between C(I)
s , C(II)

s and C(conj.)
s increases for even

larger sizes. Similar observations hold in d = 3, as illustrated on Fig. 6.2.

6.3 Entanglement structure and the healing length

6.3.1 Beyond of the field-theory prediction

Short-distance cutoff of the field-theory. In the previous section, we showed that

the universal decay of the entanglement contour in the bulk of A is in good agree-

ment with the Bisognano-Wichmann field theory prediction, according to which the

entanglement Hamiltonian for a gapless bosonic superfluid is completely universal.

Nonetheless, this prediction holds only beyond a certain short distance cutoff, that we

denote ξ. The first, naive expectation is that ξ is just the lattice spacing. But if this

were the case, then entanglement entropy would be almost constant throughout the SF

phase, since the entanglement Hamiltonian would be almost constant, at least far from
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Figure 6.3: Entanglement entropy in the SF phase in two dimensions. (a) Entanglement
entropy in the hardcore limit U/tz =∞, as a function of the density n̄. A is half of a
2l × l torus with l = 100. (b) Entanglement entropy in the softcore (generic) regime,
calculated within the SB approximation (circles), with n̄ = 0.9. a results from fits of
the form S = al+ b ln l+ c, with l = 10, . . . 100. The dashed line is the prediction of
Bogoliubov theory, valid in weak interaction limit U � tz, and the dashed-dotted line
the prediction in the hardcore limit U � tz. The SB calculation, valid throughout the
SF phase, interpolates between these two limiting cases. The local maximum results
from the proximity of a quantum critical point (namely the SF/MI phase transition at
the O(2) point).

the O(2) points, where the description in terms of a unique gapless mode ceases to

be correct. But this prediction is in complete contradiction with the observation. On

Fig. 6.3, we have plotted the entanglement entropy in the hardcore regime varying

the density between 0 and 1, and in the softcore regime varying interaction from very

weak (Bogoliubov regime) to infinity (hardcore regime) at fixed density n̄ = 0.9.

Clearly, entanglement entropy is very sensitive to the microscopic details, a sensitivity

which is completely missed by the field-theory prediction. In fact, this dependency is

largely explained by the existence of another microscopic length scale, independent of

the lattice cutoff: the healing length of the condensate.

The healing length. The healing length ξ is the characteristic length beyond which

the SF order parameter φ recovers its bulk value near a defect. In our case, it is also

the characteristic length below which the Lorentz invariance, associated to the linear

dispersion relation at small k, is not a good approximation. The healing length can be

introduced as

ξ =
1

mc
, (6.47)

where m = (2t)−1 is the mass (in our case, the effective mass given by the curvature

of the one-particle dispersion relation on the lattice εk ≈ tk2 = k2/2m, and c is the

speed of sound; restoring the units, the healing length would be ξ = ~/mc). In the
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Bogoliubov and hardcore limits respectively, the speed of sound is cBogo. = t
√

2Un̄

and cHC = 2t
√
zn̄(1− n̄) with z = 2d. As a consequence, the healing length is (in

units of the lattice spacing)

ξBogo. =

√
2t

Un̄
(6.48)

ξHC =
1√

zn̄(1− n̄)
. (6.49)

6.3.2 Non-universal entanglement contour at short distance

As we show on Fig. 6.4(a, b), it is only beyond ξ that the entanglement contours

assume their universal value.

Exponential decay of the short-distance entanglement contour. As shown on

panel (c, d) of the same Fig. 6.4, at distances smaller than ξ, on the other hand, the

decay of the contour is exponential, with a decay length compatible with the healing

length ξ

Cs(xeff) ≈ Cs(1/2)e−axeff/ξ (6.50)

with a some constant of order 1, and Cs(1/2) is the value of the contour at the boundary.

Furthermore, as shown on Fig. 6.4(e), Cs(1/2) converges in the thermodynamic limit

to

Cs(1/2) ≈ a′

ξd
, (6.51)

with a′ a numerical factor which is weakly dependent on the model.

Short- and long-distance contributions of the contours to entanglement entropy.
Finally, summing the universal, long-distance contribution and the non-universal,

healing-length dominated, short-distance contribution to entanglement entropy, we

conclude that

S = Suniv.(ξ) + Sshort−dist.(ξ) . (6.52)

Since the integration of the contour along the boundary provides a trivial 2ld−1 factor

(recall that A has the shape of a cylinder immersed in a torus, hence it has two

boundaries, each of area ld−1), both terms on the r.h.s are proportional to 2ld−1, while

the prefactor of the area-law stems from the integration of the contour when moving

to the bulk of A. The universal contribution is

Suniv.(ξ) = 2ld−1

∫ ∞

ξ
dr

αd
(2πr)d

(6.53)

= 2ld−1 αd
(2π)d(d− 1)ξd−1

(6.54)
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Figure 6.4: Spatial structure of entanglement in the SF phase in two dimensions. A is
a l × l cylinder cut out of a 20l × l torus. (a) Entanglement contour in the hardcore
limit U/tz = ∞, for various densities n̄ (for l = 500). Contours are plotted as a
function of the effective distance xeff , see Eq. (6.46). Vertical dashed lines indicate
the cross-over to the universal regime occurring at x ≈ ξ = 1/

√
zn̄(1− n̄). (b)

Same as in (a), but in the Bogoliubov regime, varying the small parameter Un̄/t.
The healing ξ is

√
2t/Un̄. (c) and (d): Entanglement contours are rescaled to the

value at the boundary Cs(1/2), and plotted as a function of the rescaled position x/ξ.
Note the logarithmic scale on the vertical axis, showing an exponential decay at short
distance. (c) Hardcore limit and (d) Bogoliubov limit. (e) Value of the contour at
the boundary, rescaled to 1/ξ2, as a function of l/ξ. Data are plotted on the same
graph for both the hardcore limit (HC, triangles), and the Bogoliubov limit (Bogo.,
circles), showing that the behavior of the contour is uniquely controlled by the healing
length ξ. (f) Entanglement entropy, rescaled to 2l/ξ, as a function of l/ξ. In (e) and
(f), instead of introducing a small gap into the spectrum, we have removed the mode
at k = 0, and we have kept the contribution from the lowest entanglement mode,
since it complicates the analysis of the structure of entanglement only in the bulk of
A. For comparison, the curve similar to (f) presented in Frérot and Roscilde (2015)
was without the contribution from the lowest entanglement mode, and for a different
aspect ratio.144
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with αd the constant calculated in Eq. (6.42), and the short-distance contribution is

Sshort−dist.(ξ) = 2ld−1 a
′

ξd

∫ ∞

0
dr e−ar/ξ (6.55)

= 2ld−1 a′

aξd−1
. (6.56)

Area-law prefactor of entanglement entropy. Overall, we find that both terms

give a similar contribution to the prefactor of the area law, so that the entanglement

entropy behaves simply as

S = b

(
l

ξ

)d−1

. (6.57)

In the cylinder-in-a-torus geometry,

b =
2α2

(2π)2
+

2a′

a
(6.58)

contains a first universal term and a second one which, despite being non-universal,

shows only a weak dependence on the specific model [Fig. 6.4(e)]. On Fig. 6.4(f),

we have plotted ξS/(2l) as a function of l/ξ in d = 2 in both the hardcore and

the Bogoliubov limits. The collapse of the various data onto a single curve further

confirms the validity of the arguments presented in this section. Finally, the validity of

the scaling Ansatz is further demonstrated on Fig. 6.5 for d = 3.
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6.4 Contour of density correlations in the SF phase

The density correlations in the SF phase have the same structure in both the Bogoliubov

and the hardcore regimes. In this section, we are going to show that the contour of

density fluctuations, Cn, introduced in Section 3.3.3, enables one to extract the local

entanglement temperature of the Bisognano-Wichmann theorem, Eq. (6.44). In order

to do so, we are going to

1. calculate the density contour at large distance for the cylinder-in-a-torus geome-

try;

2. calculate the variance 〈δ2N〉(T ) of the number of particles in a system contain-

ing V sites at thermal equilibrium;

3. show that at large distance, the density contour is

Cn(r) ≈ 〈δ
2N〉[T (r)])

V
(6.59)

with

T (r) =
c

2π

(
1

x− 1/2
+

1

l − x+ 1/2

)
, (6.60)

c being the sound velocity, and x the position in the direction perpendicular to

the cut between A and B (hence moving towards the bulk of A).

6.4.1 Expression of the structure factor

To unify the notations, we first remark that the prefactor n̄(1 − n̄) of the structure

factor in the hardcore regime, Eq. (6.29), and n̄ in the Bogoliubov regime, Eq. (6.31),

are just the onsite variance of the number of particles, as predicted by the MF Ansatz.

In the hardcore regime, we can have only 0 or 1 particle, so that the variance of n is

just 〈δ2n〉MF = n̄(1− n̄) with n̄ the average of n. In the Bogoliubov regime, the MF

Ansatz is a coherent state, and coherent states have purely poissonnian fluctuations

with 〈δ2n〉MF = 〈n2〉 − 〈n〉2 = n̄. In both the hardcore and the Bogoliubov limit, the

structure factor for the density correlations takes the form

S(k)

〈δ2n〉MF
=

εk
Ek

(2nk + 1) (6.61)

Since we are interested in the behavior of the correlations at long distance (namely

at small k), we introduce an effective mass m = (2t)−1 such that the free-particle

dispersion relation on the lattice is

εk ≈
k2

2m
. (6.62)

On the other hand, at small k the spectrum is linear, Ek ≈ ck.
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Structure factor in the ground state. At T = 0 (so that nk = 0), the structure

factor at small k is then
S(k)

〈δ2n〉MF
≈ k

2mc
. (6.63)

To develop a thermodynamic understanding of the structure of entanglement entropy,

we will relate the contour of density fluctuations to the thermal behavior of 〈δ2N〉,
the variance of the total number of particles.

Thermal variance of the number of particles. We have 〈δ2N〉 = S(k = 0)/V .

Since the spectrum is gapless at k → 0, we may replace 2nk + 1 by 2kBT/Ek at

small k. We thus see that the structure factor has a finite limit at k → 0, given by

S(k = 0)

〈δ2n〉MF
=

〈δ2N〉
V 〈δ2n〉MF

=
kBT

mc2
. (6.64)

6.4.2 Density fluctuations contour

General expression. The density-fluctuations contour is

Cn(r) =
∑

r′∈A
〈δn(r)δn(r′)〉 (6.65)

=
1

V

∑

r′∈A

∑

k

e−ik·(r
′−r)S(k) (6.66)

=
1

V

∑

k

TA(k)S(k)eik·r (6.67)

where we have introduced the form factor

TA(k) =
∑

r′∈A
e−ik·r

′
. (6.68)

Expression on a half-(hyper)-torus. We assume that A has the shape of a (hyper)-

cylinder, containing sites 1, . . . l in the first direction, of total size L, and all sites in

the remaining d− 1 directions, of sizes l2, . . . ld, where periodic boundary conditions

are imposed. As a consequence, the form factor is

TA(k) = l2δk2,0 · · · ldδkd,0
1− e−ik1l

1− e−ik1
e−ik1 , (6.69)

so that the density-fluctuations contour is, factorizing eik1(1−l)/2 on the r.h.s

Cn(r) =
1

L

∑

k1

S(k1, 0, . . . 0)
sin(k1l/2)

sin(k1/2)
eik1(x1−1/2−l/2) . (6.70)
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In the thermodynamic limit of large L, we can replace the sum over the Brillouin zone

by an integral. Furthermore, in the limit of large l, the factor sin(k1l/2)/ sin(k1/2) is

strongly peaked near k1 = 0. We may thus replace sin(k1/2) by k1/2. Finally, in this

regime, the structure factor can be approximated by Eq. (6.63). Hence we obtain the

following expression, valid in the thermodynamic limit

Cn(r)

〈δ2n〉MF
≈
∫ 2π

0

dq

2π

1

mc
sin(ql/2)eiq(x1−1/2−l/2) . (6.71)

Replacing sin(ql/2) by (e−iql/2 − eiql/2)/(2i) and integrating between 0 and 2π, we

finally obtain

Cn(r)

〈δ2n〉MF
≈ 1

2πmc

(
1

x1 − 1/2
+

1

l + 1/2− x1

)
. (6.72)

This expression is manifestly equal to the thermal variance kBT/(mc2), evaluated at

the local temperature given by Eq. (6.44).

In terms of the effective distance xeff introduced in Eq. (6.46), the density contour

reads
Cn(r)

〈δ2n〉MF
≈ ξ

2πxeff
, (6.73)

an expression showing that, apart from the prefactor 〈δ2n〉MF, the large distance decay

of the density contour is uniquely controlled by the healing length ξ = (mc)−1.

Short- and long-distance structure of the density-fluctuations contour. As il-

lustrated on Fig. 6.6(a) in d = 2, this scaling is perfectly reproduced by an exact

calculation at distances larger than the healing length: as for the entanglement contour,

the density-fluctuations contour exhibits an exponential decay exp(−ax/ξ) at short

distance, controlled by the healing length, followed by an algebraic decay as 1/x at

long distance.

Scaling of the particle-number variance in a subsystem. In contrast to the entan-

glement contour, however, the 1/x tail is not integrable, and dominates the scaling of

the particle-number variance 〈δ2N〉 in a subsystem. Indeed, we can predict that the

asymptotic scaling of 〈δ2N〉 is

〈δ2N〉
〈δ2n〉MF

=

∑
r∈A Cn(r)

〈δ2n〉MF
≈ 2ld−1 ξ

2π

∫ l

ξ

dx

x
=
ξ

π
ld−1 ln(l/ξ) . (6.74)

As shown on Fig. 6.6(b) for d = 2, and 6.6(c) for d = 3, this scaling forms allows

a perfect collapse of the data for various values of the healing length, in both the

hardcore and Bogoliubov regimes.
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Figure 6.6: Density contour in the SF phase. A is a l × l cylinder in a l × 20l torus.
(a) Density contour rescaled to the MF variance of the density 〈δ2n〉MF, as a function
of the effective distance xeff defined in Eq. (6.46), rescaled to the healing length ξ.
Data are shown for various values of the healing length (related to the microscopic
parameters of the Hamiltonian by Eq. (6.49)), for either the hardcore limit (HC) or
the Bogoliubov limit (Bogo.). The vertical dashed line indicates the cross-over from
exponential to power-law decay at xeff ≈ ξ, and the black solid line is the theoretical
prediction ξ/(2πxeff) (see text). l = 104. (b) Scaling of the particle-number variance
〈δ2N〉 in a subsystem, rescaled to lξ〈δ2n〉MF/π, as a function of ln(l/π). The dashed
line indicates a slope 1, and l = 500, 1000, . . . 15000. (c) Particle-number variance
in A in d = 3 dimensions, rescaled to l2ξ〈δ2n〉MF/π, as a function of ln(l/ξ). The
dashed line indicates a slope of 1. Same geometry and symbols as in Fig. 6.5.
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6.5 Discussion

Summary of the results obtained for the contours in the bosonic superfluid. We

have found that the entanglement contour and the density-fluctuations contour display

a similar behavior: an exponential short-range decay controlled by the healing length,

followed by an algebraic decay at distances larger than the healing length. They differ

in the exponent of the algebraic decay: 1/x for the density contour, and 1/xd for the

entanglement contour. We have been able to interpret this difference in terms of a local

temperature, theoretically predicted to decay as c/(2πxeff) for Lorentz invariant field

theories, with c the sound velocity and xeff the (effective) distance to the boundary

of the subsystem A7. In particular, we have shown that the prefactor of the algebraic

decay of the contours can be predicted by a local equilibrium hypothesis, according to

which the contour takes the value of the associated thermodynamic quantity, evaluated

at the local temperature:

Cs(r) ≈ s[T (r)] = αd

(
T (r)

c

)d
=

αd
(2πxeff)d

(6.75)

Cn(r) ≈ 〈δ
2N〉[T (r)]

V
= 〈δ2n〉MF

T (r)

mc2
=
〈δ2n〉MF

2π

ξ

xeff
. (6.76)

These expressions, valid only for distances larger than the healing length, show in

particular that the decay of the entanglement contour is universal (αd is a d-dependent

constant that we have determined exactly, see the discussion around Eq. (6.42)).

Thermodynamic relation among the contours. We have not discussed the validity

of the thermodynamic point of view at distances shorter than the healing length,

because we cannot rely on the prediction of field theory in this regime. However, we

see that, if correct, the LET hypothesis implies that the entanglement contour and

density-fluctuations contour are related by

Cs = αd

( Cn
ξ〈δ2n〉MF

)d
. (6.77)

This expression is a simple consequence of Eqs. (6.75) and (6.76), without any as-

sumption on the specific value of the local temperature — provided that it is sufficiently

small, so that the expressions s(T ) = αd(T/c)
d and 〈δ2N〉/V = 〈δ2n〉MFT/(mc

2)

7 strictly speaking, the Bisognano-Wichmann (BW) theorem has only been demonstrated for A
being a half-infinite system. However, for systems having conformal invariance in addition to Lorentz
invariance, the BW theorem has been extended to cylindrical subsystems (Wong et al., 2013), where
the local temperature behaves exactly as c/(2πxeff), with xeff given by Eq. (6.46) (in its continuum
version, namely without the factors 1/2). This is also our conclusion, and we may conjecture that
Lorentz invariance alone is sufficient for the validity of the Ansatz on a cylindrical subsystem.
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Figure 6.7: Reconstruction of the entanglement contour from the density-fluctuations
contour. Data from Fig. 6.4. (a) Hardcore limit and (b) Bogoliubov limit. The solid

lines show Cs = 0.574
(

Cn
ξ〈δ2n〉MF

)2
, where Cn is the density contour.

are valid. Fig. 6.7 shows that Eq. (6.77) is well reproduced at large distances, mod-

ulo the finite-size effects which prevent us from observing the expected universal

behaviors of the contours. Remarkably, the prediction of Eq. (6.77) is found to apply

quantitatively also to the short-range regime xeff . ξ.

Conclusion. As for free fermions in Section 4, we are thus led to the remarkable

conclusion that the entanglement contour can be reconstructed from the density-

fluctuations contour through Eq. (6.77), which is a thermodynamic relation between

entropy and density fluctuations. This conclusion holds with the caveat that we are

only concerned with the approximate behavior of entanglement. In fact, a detailed

calculation shows that the area-law prefactor for entanglement entropy, resulting from

the integration of the contour, can only be predicted within about 10% with this

method. In particular, the investigation of subdominant corrections to entanglement

entropy (mostly logarithmic terms or constant terms) seems out of reach.

6.6 Entanglement Hamiltonian in the SF phase

In the previous sections, we have investigated the structure of entanglement from the

point of view of the contours, which proved to be invaluable tools to relate the area

law of entanglement entropy (EE) to the spatial structure of correlations in the system.

A complementary approach to the same question is to investigate the structure of the

entanglement Hamiltonian. Even though the local thermodynamic picture developed

in the previous section strongly suggests that the Ansatz of the Bisognano-Wichmann

theorem, Eq. (3.37), is a good approximation to the entanglement Hamiltonian

at distances larger than the healing length ξ, we have not verified it directly. In
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particular, we have not discussed the structure of the entanglement spectrum, and

the possibility to obtain it as the physical spectrum of the same model with energy

scales (interaction strength, external potentials, hopping terms) modulated in space

by the local temperature extracted from, e.g., the density-fluctuations contour. This is

not necessarily a trivial statement: for instance the 2d free fermion gas (see Section

4.3) was an example where the local thermodynamic picture is correct, but where the

entanglement Hamiltonian is not at all the physical Hamiltonian modulated in space

by a local temperature. However we could understand why, and the fact that the 2d

free fermion gas is not Lorentz invariant at low energy was a crucial ingredient of our

understanding. Here, in contrast, the d ≥ 2 bosonic superfluid is Lorentz invariant

at distance larger than ξ, and we should find that the entanglement spectrum is very

well approximated by the spectrum of a physical Hamiltonian modulated in space

by the entanglement temperature. We first discuss the structure of the entanglement

spectrum, and then discuss the issues about the entanglement Hamiltonian.

6.6.1 Entanglement spectrum in the SF phase

Just like the EE can be decomposed as a sum of local contributions, S =
∑

i∈A Cs(i),

it can also be expressed as a sum of contributions stemming from the different modes

which diagonalize the entanglement Hamiltonian, S =
∑

α sα. In our case, since

we are considering a quadratic approximation to the Bose-Hubbard Hamiltonian, the

modes α are single-particle bosonic modes, so that sα = sBose(nα) is just the thermal

entropy corresponding to the occupation nα = 1/[exp(εα)− 1] of the mode α.

The EE is thus the thermal entropy, evaluated at temperature 1, of a fictitious

system whose (dimensionless) density of states is associated with the (dimensionless)

entanglement energies εα, the single-particle eigenvalues of the entanglement Hamil-

tonian. Anticipating the area law of EE, we expect that this entanglement density of

states scales as ld−1, so that in the thermodynamic limit

S = ld−1

∫ ∞

0
dε ρ(ε)s(ε) (6.78)

where ρ(ε) takes some well-defined value in the thermodynamic limit. The area law

prefactor is then directly controlled by the entanglement density of states. Based on

the results of the previous sections, we anticipate that the density of states is uniquely

controlled by the healing length. For the sake of simplicity, we consider a cylinder-in-

a-torus geometry, with subsystem A consisting of a l× ld−1 (hyper)-cylinder, periodic

along the last d− 1 directions, cut out of a L× ld torus with L� l (in practice, we

work with L = 20l). As already remarked in Section 5.4, this geometry considerably

simplifies the analysis, for the periodicity of A along d − 1 directions allows us to
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Figure 6.8: Entanglement dispersion relation in the SF phase in two dimensions
(Bogoliubov regime). A is a l × l cylinder in a 20l × l torus with l = 400. Due to
the symmetry k‖ ↔ −k‖, only positive values of k‖ are shown. (a) Entanglement
spectrum as a function of k‖. Only the two lowest branches are shown. Although it is
not visible on the figure, each branch contains two almost degenerate modes, related to
the presence of two boundaries for A. (b) Lowest branch of (a), plotted as a function
of −1/ ln k‖, showing a dispersion relation of the form εk‖,1 ∝ −1/ ln k‖ at small k‖.
Vertical dashed lines indicate a cross-over from this regime to a different, sub-linear
behavior at k‖ & 1/ξ.

organize the entanglement spectrum into bands, indexed by the momentum k‖ in the

d− 1 directions parallel to the cut. Equivalently, the entanglement Hamiltonian is a

sum over different sectors of k‖ which are decoupled from each other:

Hent =
∑

k‖

l∑

p=1

εk‖,pγ
†
k‖,p

γk‖,p (6.79)

where p labels the dynamics in the direction perpendicular to the cut. In the thermody-

namic limit, the EE may then be expressed as

S = ld−1

∫
dd−1k‖

(2π)d−1
sk‖ (6.80)

sk‖ =
∞∑

p=1

s(εk‖,p) (6.81)

where, anticipating the convergence of the sum over p (guaranteed by the fact that the

area law is strict in d ≥ 2), we have pushed the upper bound of summation to∞. On

Fig. 6.8, we have plotted the entanglement spectrum in the Bogoliubov regime for

various values of the healing length ξ =
√

2t/Un̄ in two dimensions. As the physical
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spectrum, the entanglement spectrum is gapless at k‖ = 0. However, the entanglement

dispersion relation is not linear, but rather logarithmic at small k‖

εk‖,α ∼
1

ln(1/k‖)
. (6.82)

Furthermore, as shown on Fig. 6.8(b), the entanglement dispersion relation becomes

steeper when ξ →∞. This behavior is at variance with the physical spectrum, since

the sound velocity is c = ~/(mξ), and goes to zero when ξ → ∞. However, this

behavior is not a surprise, in view of the fact that S ∼ (l/ξ)d−1: when ξ increases, the

EE decreases, and accordingly, the entanglement energies become larger, so that at a

fixed temperature T = 1, the thermal entropy associated to the entanglement spectrum,

which equals the EE, becomes smaller. It is neither immediate to infer the scaling

behavior of the EE S ∼ (l/ξ)d−1 from the scaling behavior of the entanglement

spectrum at small k‖ proposed in Eq. (6.82), nor to identify in the entanglement

spectrum a universal contribution to the EE, somewhat similar to the contribution

stemming from the entanglement contour at distances larger than the healing length.

We leave these questions open to future studies. Finally, we note that the logarithmic

dispersion relation of the entanglement spectrum, Eq. (6.82) has been predicted by

Metlitski and Grover (2011) and Swingle (2013). In particular, Swingle (2013) has

shown that this dispersion relation is that of the Ansatz entanglement Hamiltonian of

the Bisognano-Wichmann theorem, Eq. (3.37).

6.6.2 An Ansatz for the entanglement Hamiltonian

In this section, we propose an Ansatz for the entanglement Hamiltonian, and discuss

some open issues related to the validation of this Ansatz within the slave-boson

approach.

Ambitious strategy. We propose (similarly to Section 3.3.2)

Hent =
∑

i∈A
βiHloc(i)− t

∑

i n.n j

βijb
†
ibj (6.83)

where the second sum runs over nearest-neighbors, and with Hloc(i) = Uni(ni −
1)/2− µni and

βij =
βi + βj

2
. (6.84)

The local inverse temperature βi = 1/Ti is extracted from the density contour Cn in

the ground state from the relation of Eq. (6.77), valid in the deep SF phase (hardcore

limit or Bogoliubov limit)

Ti = Cn(i)
mc2

〈δ2n〉MF
(6.85)
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where m = (2t)−1 is the effective mass on the lattice and c the speed of sound.

〈δ2n〉MF is the onsite variance of the number of particles at the mean-field (MF)

level of approximation (if n̄ is the average density, 〈δ2n〉MF = n̄ in the Bogoliubov

limit where the MF ground state is a coherent state, and 〈δ2n〉MF = n̄(1 − n̄) in

the hardcore limit, see Section 6.1). This expression for Ti is valid only in the deep

SF phase, while in general, the function 〈δ2N〉(T ) at thermal equilibrium has to be

inverted in order to extract Ti from Cn(i), see Section 3.3.2. A basic test for the

validity of the Ansatz is to compare its spectrum with the entanglement spectrum.

In order to do so within the slave-boson approach, the first step is to find the

MF ground state (see Section 5.2). Owing to the presence of boundaries and to the

spatial modulation associated to Ti, the MF ground state is a priori not translationally

invariant. On the other hand, since the Ansatz is supposed to mimic the properties of a

system which is translationally invariant (being extracted as a subsystem of a uniform

ground state), we expect that the effects of the boundaries and of the local temperature

somehow cancel each other to give rise to a state which is (almost) translationally

invariant. This is precisely what we observed for free fermions in Section 4.2, see Fig.

4.3. In particular, we emphasized the subtle point that the entanglement Hamiltonian

should give rise to the same thermodynamic expectation values as those calculated

on the ground state when such thermal averages are evaluated at a dimensionless

temperature of 1.

Limitations of the SB approach to study the Ansatz Hamiltonian at temperature
1. For free fermions, figure 4.3 clearly showed that, e.g, the density in the ground

state of the entanglement Hamiltonian is not at all translationally invariant. This

subtlety turns into a technical issue in the case of bosons treated within the slave-

boson (SB) approach: being in essence a low-energy approach, there is no guarantee

that it can accurately capture the properties of the Ansatz Hamiltonian at temperature

1. In fact, as shown on Fig. 6.9, the mean-field ground state of the Hamiltonian of Eq.

(6.83) is not homogeneous. Although the spatial modulation of the energy scale partly

compensates the effect of the boundaries on the SF order parameter, this compensation

is not perfect. Surprisingly, we also note that the purely parabolic profile

βx ∝ xeff =
(x− 1/2)(L− x+ 1/2)

L
, (6.86)

expected to be correct only for x & ξ, compensates better the effect of boundaries

than the local temperature extracted from the density contour through Eq. (6.85). We

observe that adding quantum and thermal fluctuations through the SB approach to

the MF solution only leads to a decrease of φ everywhere, and does not produces
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Figure 6.9: Superfluid order parameter in the ground-state of the Ansatz Hamiltonian
of Eq. (6.83). Hardcore limit of the BH model, ξ = 4. (a) Inverse local energy scale
βx in a 40× 40 cylinder. Blue triangles: parabolic profile βx = (2π/c)(x− 0.5)(L−
x+0.5)/L; yellow squares: βx extracted from the density contour through Eq. (6.85);
green dots: flat profile βx = 1. (b) Corresponding profile of the SF order parameter φ
in the MF ground state. For a flat profile of β, φ is suppressed in a shell of width ξ
near the boundaries. This suppression is partly compensated by a parabolic profile of
β.

the expected uniform profile of 〈b〉. Furthermore, the spectrum of excitations around

MF solution presents only qualitative similarities with the entanglement spectrum. In

particular, we are not able to reproduce the logarithmic dispersion relation at small k‖
shown on Fig. 6.8.

Alternative, less ambitious strategy. A possible alternative strategy to reproduce

the properties of the entanglement Hamiltonian could be to start directly from the

slave-boson Hamiltonian (and not from the Bose-Hubbard Hamiltonian), and modulate

its parameters in space by the local temperature. This procedure, although lacking of

direct physical motivation, would probably provide a better Ansatz for the entangle-

ment Hamiltonian within the SB framework. We postpone a more in-depth study of

this option to a future work.
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Chapter 7

Entanglement across the
superfluid / Mott-insulator

phase transition

Introduction. In this chapter, largely based on Frérot and Roscilde (2016a), we

study the structure of entanglement in the Mott-insulating phase of the Bose-Hubbard

model (subsection 7.1), and its reorganization across the phase transition to a superfluid

at the O(2) point, namely when increasing the ratio t/U of kinetic to potential energy

at fixed, commensurate density (subsection 7.2). In the following we shall first discuss

the entanglement structure in the Mott-insulating phase, and the applicability of the

local-temperature Ansatz for the entanglement Hamiltonian. Then we will move on to

discuss the O(2) transition. The closing of the MI gap at the O(2) transition has for

consequence an increased low-energy density of state for quantum fluctuations in the

ground state, as manifest in the entanglement spectrum (Fig. 7.2), and entanglement

entropy is found to exhibit a sharp singularity at the O(2) points (Fig. 7.3). On

the SF side of the transition, a similar singularity is found as a consequence of the

softening of amplitude fluctuations of the SF order parameter, going gapless at the

transition. A gaussian field theory prediction for the critical scaling of the singularity

on the MI side (Metlitski, Fuertes, and Sachdev, 2009; Calabrese and Cardy, 2004)

is found in quantitative agreement with our results. We shall conclude by discussing

the difficulties related to the understanding of the entanglement singularity via the

contours and their relations.
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7.1 Entanglement structure in the Mott-insulating
phase

7.1.1 Quadratic SB Hamiltonian in the MI phase

Mean-field solution. In the MI phase, the MF ground state |n0〉 is an eigenstate of

n, the operator counting the number of particles on a site: n|n0〉 = n0|n0〉, where

the integer n0 is the density in the MI phase. The SF order parameter φ = 〈n0|b|n0〉
vanishes, so that the MF Hamiltonian defined in Eq. (5.15) is readily diagonalized in

the |n〉 basis:

HMF|n〉 = εn|n〉 (7.1)

εn = Un(n− 1)/2− µn . (7.2)

In particular, the γ’s operators that destroy particles in the eigenstates of the MF

Hamiltonian are simply the original β’s operators of the SB construction.

Quadratic Hamiltonian. In order to build the quadratic SB Hamiltonian describing

quantum fluctuations around the MF solution, we need to evaluate the matrix elements

of b connecting the MF ground state to the other eigenstates of the MF Hamiltonian.

Here, we immediately see that the only non-zero matrix elements are between |n0〉
and |n0 ± 1〉. This implies that the matrices A(1)

k and Bk defined in Eqs. (5.62) and

(5.64) have no matrix elements involving states with |n− n0| ≥ 2. For those states,

the only nonzero terms in the quadratic Hamiltonian come from the diagonal part

H(2)
BH,local =

∑
n6=n0

∑
k(εn − εn0)β†k,nβk,n. They thus form flat bands, completely

decoupled from the MF state and from the states with n = n0±1, and do not contribute

to quantum fluctuations in the ground-state. In order to simplify the notations, we

denote βk,n0±1 ≡ βk,±. Restricting ourselves to these two families of modes, the

matrices Ak and Bk are then 2× 2 matrices. Using the fact that εn+1− εn = nU −µ,

and evaluating the matrix elements of b between n0 and n0 ± 1, we find that

Ak =

(
ak,+ 0

0 ak,−

)
(7.3)

Bk =

(
0 bk

bk 0

)
, (7.4)

with ak,+ = n0U − µ − tk(n0 + 1), ak,− = µ − U(n0 − 1) − tkn0 and bk =

−tk
√
n0(n0 + 1). We have introduced tk = 2t

∑d
i=1 cos ki. In particular, we remark
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that the quadratic Hamiltonian takes the block-diagonal form

H(2)
MI =

1

2

∑

k,ε=±

(
β†k,ε β−k,−ε

)(ak,ε bk

bk ak,−ε

)(
βk,ε
β†−k,−ε

)
. (7.5)

To perform the Bogoliubov rotation bringingH(2)
MI into a diagonal form, it is convenient

to write ak,± = (ak,+ + ak,−)/2± (ak,+ − ak,−)/2, and rewrite the Hamiltonian as

H(2)
MI =

∑

k

ak,+ − ak,−
2

(β†k,+βk,+ − β
†
k,−βk,−) +

1

2

∑

k,ε=±

(
β†k,ε β−k,−ε

)(ak,++ak,−
2 bk

bk
ak,++ak,−

2

)(
βk,ε
β†−k,−ε

)
.(7.6)

The Bogoliubov rotation which diagonalizes the Hamiltonian is thus

λk,± = ukβk,± − vkβ†−k,∓ (7.7)

where the coefficients uk and vk are given by

vk =
ak,+ + ak,−
|ak,+ + ak,−|

1√
2

(
ak,+ + ak,−

2ωk
− 1

)1/2

(7.8)

uk =
√

1 + v2
k (7.9)

with ωk =
√

(ak,+ + ak,−)2/4− b2k = (1/2)
√
t2k − 2Utk(2n0 + 1) + U2. Putting

everything together, we finally obtain

H(2)
MI =

∑

k,ε=±
λ†k,ελk,ε [−ε(tk/2 + δµ) + ωk] (7.10)

where we have dropped a constant term and introduced δµ = µ− U(n0 − 1/2). The

spectrum at two representative points of the MI phase is plotted on Fig. 5.2(a, d).

Physical interpretation of the quadratic SB Hamiltonian. Several points are

worth mentioning concerning the structure of the SB ground state in the MI phase.

First, we note that the action of λ†k,± ((λk,±) creates locally states with n0 ± 1

(n0∓1) particles, so that λ†k,±λk,± leaves the total number of particles unchanged. The

total number of particles is thus conserved by the SB Hamiltonian, and in particular,

the ground state renormalized by quantum fluctuations is an eigenstate of the total

number of particles, like the MF ground state. However, it contains particle-hole

fluctuations, implying that the number of particles on each site can fluctuate.

A second observation is that the ground state is independent of the chemical

potential µ in the MI phase. This comes from the fact that the coefficients uk and vk
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of the Bogoliubov transformation are independent of µ. The physical reason for this is

clear: changing µ does not affect the number of particles as long as we stay in the MI

phase, and the properties of the ground state only depend on the number of particles

and on the ratio t/U . While the particle and hole excitations have an energy which

depends on µ, the ground state is only sensitive to the sum of them, 2ωk, since at the

level of quantum fluctuations, they can only occur as combined particle-hole pairs.

Thirdly, since the uk and vk coefficients of the Bogoliubov rotation are identical

for λk,+ and λk,−, these two families of modes give exactly the same contribution to

the entanglement entropy of a subsystem, and the entanglement spectrum is exactly

twice degenerate.

Finally, the boundaries of the MI phase at the SB level of approximation can

be determined by the equations t0/2 + δµ = ±ω0
1. By doing so, one finds a

phase boundary exactly at the location predicted by the MF criterium φ = 0. In

particular, the O(2) points at the extremity of the MI lobes are located along the

particle-hole symmetry line defined by the equality of the particle and hole gaps,

namely at µ/U = n0 − (1 + g)/2 with g = 2dt/U , and at the value of g for which

both gaps vanish, namely gc = 2n0 + 1− 2
√
n0(n0 + 1) ≈ 0.1716 for n0 = 1.

7.1.2 Spatial structure of entanglement in the MI phase

Energy of particle-hole fluctuations. The spectrum of the particle-plus-hole fluc-

tuations in the MI phase at small k is

2ωk =
√
tk − 2Utk(2n0 + 1) + U2 (7.11)

≈
√

∆2 + k2c2 (7.12)

≈ ∆ +
k2

2m
(7.13)

where we introduced the gap ∆, and the speed of sound c given by

(∆/U)2 = 2(ω0/U)2 = 1 + g2 − 2g(2n0 + 1) = (gc − g)(1/gc − g) (7.14)

(c/U)2 = (g/d)(2n0 + 1− g) . (7.15)

Close to g = gc, and focusing on n0 = 1, these expressions are approximately given

by

(∆/U)2 = 4
√

2(g − gc) ; (c/U)2 =
gc2
√

2

d
(7.16)

The mass m is related to the gap by ∆ = mc2.

1 This condition corresponds to the criterium of thermodynamical stability of the SB approach in
the MI phase, requiring non-negative energies in the quadratic Hamiltonian of Eq. (7.10).
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Correlation length. The particle-hole gap induces a finite correlation length

ξ = b
c

∆
= b

√
g(3− g)

d(1 + g2 − 6g)
≈ b[2d(1− g/gc)]−1/2 (7.17)

where we focus on the first MI lobe with n0 = 1. b is some constant of order 1 which

we have determined by fitting the density-density correlations according to

〈δniδnj〉 = a
e−|ri−rj |/ξ

|ri − rj |d+1
, (7.18)

an expression valid close to the O(2) point. By doing so, we found b ≈ 0.5 in d = 2.

Spatial structure of the entanglement contour. We can expect that both the en-

tanglement and density contours are exponentially decaying at distances larger than

ξ. At distances smaller than ξ, we expect to observe the universal prediction for the

entanglement contour, Eq. (6.45). A natural prediction for the entanglement contour

is then

Cs(r) = 2αd
e−x/ξ

(2πx)d
(7.19)

where x is the distance to the boundary of subsystem A. Note that in the limit ξ →∞,

there is a factor 2 with respect to the SF phase discussed in the previous sections. The

origin of this factor 2 is the presence of two modes becoming gapless at the O(2) point,

where the correlation length diverges. As a consequence, exactly at the O(2) point the

universal part of the entanglement contour is twice that of a single Lorentz-invariant

mode [see Fig. 7.1(a)]. This prediction holds only within the SB approximation, which

breaks down precisely at the O(2) point by predicting incorrect critical exponents

for the phase transition2. However, in view of the moderate renormalization of the

MF ground state by quantum fluctuations at the O(2) point we expect this prediction

to be at least qualitatively valid. As shown on Fig. 7.1(a), both the entanglement

contour and the density contour exhibit a short-range power-law decay followed by

an exponential decay controlled by the correlation length ξ. We observe that the

entanglement contour in the “cylinder-in-a-torus” geometry is well approximated by

the expression

Cs(r) = 2αd

(
e−x

′/ξ

(2πx′)d
+

e−(l−x′)/ξ

[2π(l − x′)]d

)
(7.20)

where x′ = x− 1/2 if A contains the sites at position x = 1, . . . l. Surprisingly, we

note that when ξ →∞, this expression does not simply extrapolates to the expression

2 Indeed, the SB approach being a gaussian theory, the phase transition is predicted to belong to the
gaussian universality class, and not to the d+ 1-dimensional XY class it actually belongs to.
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Figure 7.1: Structure of entanglement in the MI phase in two dimensions. g/gc =
0.999 (ξ ≈ 16), and A is a l × l cylinder cut out of a l × 20l torus for l = 200.
(a) Entanglement (blue circles) and density (orange triangles) contours. The solid
blue line is the expression of Eq. (7.20), and the red dots show S/V as a function of
c/(2πx). The x-axis is the distance to the left boundary (= i− 0.5 if the first site is
at i = 1). Also shown is the entanglement contour at g = gc (green squares), and
the universal prediction 2αd/(2πxeff)2 (solid green line, see text). (b) Entanglement
spectrum (orange triangles) and spectrum of the Ansatz Hamiltonian of Eq. (6.83)
with βi = (2π/c)(i− 0.5)(l− i+ 0.5)/l (blue circles). Only the lowest branches are
shown, and the spectra are plotted as a function of the momentum k‖ in the direction
parallel to theA−B boundary. Although it is not visible on the plot, each dot contains
in fact 4 modes: a double degeneracy is exact (related to the particle/hole symmetry,
exact in the ground state), and a double quasi-degeneracy is related to the presence of
two boundaries, almost perfectly decoupled if l is large compared to the correlation
length ξ. Note also that modes at k‖ < 0 are not shown (E−k‖ = Ek‖).

of Eq. (6.45). An alternative expression such as

Cs(r) = αd
e−x

′/ξ + e−(l−x′)/ξ

(2πxeff)d
(7.21)

would do so, but is found in worse agreement with the contour in the bulk of A.

However, as shown on Fig. 7.1(a), exactly at the O(2) point, the contour is compatible

with the prediction of Eq. (7.21) (with ξ = ∞, so that the numerator provides the

factor of 2 stemming from the presence of two modes going gapless at the O(2) point).

We anticipate that the formula (7.20) has to be modified to correctly account for the

fate of the contours in the very vicinity of the O(2) point, to correctly extrapolate to

the universal result when ξ →∞.

Thermal entropy. In order to compare the entanglement contour with the thermal

entropy evaluated at the local entanglement temperature, we have calculated the

thermal entropy in the Mott-insulating phase. In order to do so, to take into account
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the fact that the ground state is only sensitive to the particle-plus-hole gap, we have

considered the entropy of a fictitious system of free bosonic particles with dispersion

relation 2ωk. We have fitted the this entropy to

S(T )/V ≈ αd
[(

T

c

)d
+ b′

(
∆

c

)d]
e−∆/T . (7.22)

We have verified the validity of this scaling behavior in d = 2 varying the ratio t/U

and found b′ ≈ 0.17. To take into account the fact that the entanglement spectrum

contains the contribution from two degenerate modes, on Fig. 7.1(a) we have plotted

twice this entropy as a function of the local temperature T = c/(2πx), predicted by

the Bisognano-Wichmann theorem. This formula generalizes the gapless behavior

S(T )/V = αd(T/c)
d to the gapped case.

Prediction of the correlation length from the local equilibrium hypothesis. In

particular, we see that the hypothesis of a local entanglement temperature T = c/(2πx)

implies an exponential decay of the entanglement contour at large distance

Cconj.
s (x) = s(c/2πx) ∼ e−2π∆x/c . (7.23)

Furthermore, this relation predicts that the correlation length ξ should be

ξconj. =
c

2π∆
. (7.24)

Unfortunately, as shown on Fig. 7.1(a), this does not correspond to the correct result

ξ ≈ 0.5c/∆ found from fitting the density-density correlations, and which governs

the spatial decay of the contours.

This seemingly negative result shows that either the local equilibrium hypothesis

is not valid, or that the local temperature is not c/(2πx) (or both). Note, however,

that Fig. 7.1(a) shows that the hypothesis of a local temperature of c/(2πx) is in very

good agreement with the entanglement contour at distances shorter than ξ (namely the

length scale below which the system looks like a superfluid).

Entanglement spectrum vs. spectrum of the Ansatz Hamiltonian. In the MI

phase, since the order parameter vanishes uniformly, the local temperature Ansatz

for the entanglement Hamiltonian is easier to verify. Indeed, the issues mentioned

in Section 6.6 for the SF phase, and relative to the precise behavior of the SF order

parameter in the vicinity of the boundaries, are not present. On Fig. 7.1(b), we have

plotted both the entanglement spectrum and the spectrum of the Ansatz Hamiltonian

with a local inverse temperature

β(x) =
2π

c

(x− 1/2)(l − x+ 1/2)

l
, (7.25)
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as calculated within the SB approximation.

We observe that the spectrum of the Ansatz entanglement Hamiltonian has a

dependence on µ which is not acceptable in the MI phase, but which is cancelled

by considering pairs of eigenenergies associated with particle-hole excitations. We

therefore postulate that the entanglement spectrum is obtained from the Ansatz as the

spectrum of particle-hole excitations. The relatively good agreement shown in Fig.

7.1(b) justifies this choice a posteriori.

Discussion. The good agreement between the entanglement spectrum and the spec-

trum of the Ansatz Hamiltonian with an entanglement temperature given by the

field-theory prediction seems to point to a failure of the local equilibrium hypothesis.

A more in-depth study of the contours in the vicinity of the O(2) point is necessary to

clarify this issue.

7.2 The MI / SF phase transition

7.2.1 Introduction

In this section, we investigate the reorganization of the structure of entanglement

across the phase transition between the MI and the SF occurring at the O(2) point

(namely at fixed integer density, here set to n0 = 1 for simplicity). As the generic

transition which occurs when adding or removing a few particles to a MI is not induced

by quantum fluctuations, we shall not discuss it in details. In essence, on the SF side

of the generic transition, the structure of entanglement is that of a very dilute SF

coexisting with a MI background. The difference with the usual SF is that the vacuum

is here nontrivial, but contributes also to entanglement. In addition to the gapless

mode, whose contribution to entanglement has the structure that we have discussed in

the SF phase, the underlying MI contributes in the form of a gapped mode, affecting

the entanglement contours at short distance.

In contrast, the O(2) transition offers a different situation. As is already clear on

Fig. 5.2, where we have plotted the SB population in states orthogonal to the MF

ground state across the phase diagram, the O(2) points are singled out as the points

were the quantum fluctuations are the strongest.

Approaching the transition from the MI side. When approached from the MI

phase, the fluctuations are particle-hole pairs, confined within a distance ∼ ξ. When a

subsystem of size smaller than ξ is examined, it is practically indistinguishable from a

SF. From the perspective of the contours, they exhibit the characteristic power-law
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decay of the SF phase, and the entanglement contour is universal at distances x� ξ.

Approaching the transition by increasing the ratio g = tz/U of kinetic to potential

energy (z = 2d is the number of nearest neighbors on a cubic lattice in d dimensions),

the particle-hole gap ∆/c ∼ √gc − g closes, and the correlation length diverges

(ξ ∼ c/∆), so that the particle-hole pairs become deconfined.

The O(2) point at the SB level of approximation. At the SB level of approxima-

tion, the O(2) point is described by two gapless modes of a free bosonic theory, so that,

following the arguments presented in Section 6.2, we expect that the entanglement

contour becomes fully universal. One may wonder about the role of the healing length,

which was shown in Section 6.2 to control the short-distance behavior of the contours

in the gapless phase. The healing length is given by ξh = 1/(mc) with m = 1/(2t)

and c = U
√
gc(3− gc)/d at the O(2) point. The healing length is then approximately

given by ξh =
√

gc
d(3−gc) near the O(2) point, of order 0.1 in d = 2, 3, which is

completely negligible.

Note that we have this picture only thanks to the quantum fluctuations incorporated

in the SB approach. The MF ground state on the MI side remains unchanged up to the

very O(2) point (at gc = 3− 2
√

2 for n0 = 1).

On the SF side. Continuing to increase g above gc, the SF order parameter acquires

continuously a nonzero value (φ ∝ √g − gc), and long-range order is truly established.

From the perspective of fluctuations, on the SF side of the O(2) transition they are better

understood as phase and amplitude fluctuations of the order parameter (sometimes

respectively called “transverse” and “longitudinal” fluctuations, or “Goldstone” and

“Higgs” modes by analogy with high energy physics). The phase fluctuations are

gapless in the whole SF phase, and their consequences for entanglement have been

extensively discussed in Section 6 in the limiting case of infinite interactions (hardcore

limit), and weak interactions (Bogoliubov limit). On the other hand, the amplitude

fluctuations are gapped (∆H/c ∼
√
g − gc).

7.2.2 Entanglement spectrum vs. physical spectrum on the SF
side of the O(2) transition

The softening of the particle-hole fluctuations on the MI side of the transition, and

of the amplitude fluctuations of the order parameter on the SF side, are responsible

for a singular contribution to entanglement entropy. This is manifest when comparing

the physical spectrum (PS) and the entanglement spectrum (ES) across the transition.

On Fig. 7.2, we have plotted the ES and PS as a function of the momentum k‖
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!kk,↵/t

Figure 7.2: Physical spectrum v.s. entanglement spectrum in two dimensions. Upper
panels.– Physical spectrum at kx = 0 (the spectra were already shown on Fig. 5.2;
they are reproduced here to be compared with the entanglement spectra on the lower
panels). Only the two lowest branches are shown. (a) tz/U = 0.15, µ/U =

√
2− 1

; (b) tz/U = 3 − 2
√

2, µ/U =
√

2 − 1 ; (c) tz/U = 0.2, µ/U =
√

2 − 1 and
(d) tz/U = 0.12, µ/U = 0.168. Lower panels.– Entanglement spectrum against
the wave vector k|| parallel to the A − B boundary. Only the lowest branches are
shown. In the SF (MI) phase, each branch is actually two-fold (four-fold) degenerate.
(e), (f), (g) correspond to the same parameters as (a), (b), (c) respectively. In all the
panels, the thick red line marks the amplitude mode in the physical spectrum and in
the entanglement spectrum.

166



parallel to the A−B boundary. In particular, the O(2) point is singled out as the only

point of the phase diagram where exactly two modes are gapless in both the ES and

PS3. This shows that the softening of the fluctuation modes in the critical region is

indeed responsible for an enhanced entanglement density of states at low entanglement

energy. Since entanglement entropy is the thermal entropy (evaluated at temperature

1) for fictitious bosonic quasiparticles whose dispersion relation is the entanglement

spectrum, this in turn is responsible for a singularity of entanglement entropy at the

O(2) point.

To further illustrate this point, on Fig. 7.3(h) we have plotted the entanglement

“Higgs” and “Goldstone” gaps for the phase and amplitude fluctuations respectively (in

the SF phase). In the MI phase, they are just the particle-hole gap in the entanglement

spectrum. In striking analogy with the physical spectrum, the “Higgs” gap vanishes

as
√
|g − gc| at the transition4. On Fig. 7.3(i), we show that the region where the

Higgs entanglement gap is smaller than 1, corresponding to a noticeable population

of this mode at a temperature of order 1, is precisely the region where the cusp in

entanglement entropy may be observed. Finally, on Fig. 7.3(j), we have represented in

false colors the entanglement entropy of a 50× 50 cylinder cut out of a 50× 100 torus

above the phase diagram in the vicinity of the O(2) point (denoted ‘b’ on the figure).

Clearly, this figure is very similar to Fig. 5.2, which represented the renormalization of

the MF ground state by quantum fluctuations. In particular, the entanglement entropy

has a cusp singularity at the O(2) point, while the cusp is rounded off at the generic

transition. Note also that entanglement entropy is independent of µ in the MI phase, a

consequence of the fact that the ground state itself is independent of µ.

7.2.3 Critical scaling of entanglement entropy

Entanglement entropy obeys a strict area law across all the phase diagram, including

at the critical points. In particular, it can be fitted to the following form

S = aLd−1
A + b lnLA + c . (7.26)

The t/U -dependence of the area-law coefficient a and of the logarithm coefficient b

are predicted in a robust manner by the SB approach5, and plotted in Fig. 7.4(a). In
3 Actually, in the ES, all modes are always (nearly) two-fold degenerate, but this generic quasi-

degeneracy is trivial and stems simply from the presence of two boundaries between A and B in the
geometry chosen for our calculations.

4 There is also a finite-size gap for the entanglement Goldstone mode in the SF phase, ∆G ∼
L
−(d−1)/2
A . This scaling may be related to the logarithmic contribution [(d− 1)/2] logLA to entangle-

ment entropy, characteristic of a phase breaking spontaneously a continuous symmetry (Metlitski and
Grover, 2011). See Frérot and Roscilde (2015) for a more in-depth discussion.

5 By robust, here we mean that the coefficients are independent of the details of the regularization
scheme of the zero mode in the SB approach. The ability of the SB approach to reproduce the log term
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(h)
(i)

(j)

tz/U

tz/U tz/U

Figure 7.3: (h) Entanglement gaps across the SF-MI transition of the 2d Bose-Hubbard
model. Region A corresponds to half of a LA × 2LA torus (LA = 100). The shaded
area marks the region in which ∆H . 1. In the SF phase, the entanglement spectrum
exhibits a finite-size gap ∆G ∼ L−1/2

A . (i) EE across the SF-MI phase transition for
µ/U = 0.3, 0.329, 0.357, 0.386 and

√
2− 1 from bottom to top. Shaded area as in

(h), and LA = 50 (j) EE across the phase diagram of the 2d Bose-Hubbard model
(LA = 50). a, b, c and d mark the points where the spectra are evaluated in Fig. 7.2.
Dashed lines correspond to constant density n = 1 and n = 0.9, and z = 4.
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Figure 7.4: (a) a and b coefficients of EE scaling across the 2d SF-MI transition at
n = 1, extracted from a fit on LA × 2LA half toruses with 10 ≤ LA ≤ 100. The thin
blue line shows a = 2a1 in the MI and a = a0 + a1 in the SF, where a0 and a1 are
defined in Eqs. (7.33) and (7.34) respectively; (b) Area-law coefficient a on a log-log
scale. Shown are the predictions of Bogoliubov theory for small U , and the large-U
prediction of Alba, Haque, and Läuchli (2013) (dash-dotted line).

particular the coefficient a exhibits the above-mentioned cusp singularity associated

with the gapless Higgs entanglement mode. Our approach allows us to predict as

well the behavior of the area-law coefficient away from the transition. As shown

in Fig. 7.4(b), a ∼
√
U for small U , consistent with the prediction of Bogoliubov

theory (see Section 6.1) and with the fact that the area law term disappears in a perfect

condensate (Ding and Yang, 2009); for large U deep in the insulating phase the

coefficient is instead found to decrease as lnU/U2, in complete agreement with the

analytical and numerical calculations of Alba, Haque, and Läuchli (2013) (see also

Fig. 6.3 for the calculation of a at non-integer filling, namely n̄ = 0.9.

Universal logarithmic contribution to entanglement entropy. On the other hand,

the coefficient b of the logarithmic term takes the universal value (d−1)/2 throughout

the superfluid phase, and jumps to zero at the phase transition [Fig. 7.4(a)]. This is

perfectly consistent with the prediction of Metlitski and Grover (2011) of a universal

relies on the prescription (Song et al., 2011) of introducing a gap ∆ in the SB spectrum, scaling as
∆ = hL−d in the same way as the lowest excitation of the Anderson tower of states (Frérot and Roscilde,
2015); the precise value of the b coefficient is found to be robust to the choice of the h prefactor. On
the other hand, the c coefficient may depend strongly on the choice of h (Luitz et al., 2015), and its
prediction is therefore not reliable. See the supplementary material of (Frérot and Roscilde, 2016a) for a
more detailed discussion.
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Figure 7.5: Critical scaling of the singular contribution to entanglement entropy
at the O(2) point. A is half of a (hyper)-torus of dimension Ld−1

A × 2LA. (a) In
d = 2, [S(LA, ξ

−1) − S(LA, 0)]/(2LA) as a function of 1/ξ. Dashed black line
shows the field theory prediction 1/(6ξ) of Eq. (7.29) on the MI side of the transition.
LA = 100. (b) In d = 3, (ξ2/2L2

A)[S(LA, ξ
−1) − S(LA, 0)] as a function of log ξ,

showing the logarithmic correction predicted by Eq. (7.30) when LA < ξ. Large
symbols correspond to the MI side for LA = 8, 16, 32, 64 (from bottom to top), and
the purple dots correspond to the SF side (LA = 20). The black dashed line indicated
a slope 1/(12π), in compliance with Eq. (7.30). On the SF side, there is no prediction
from field theory, but we see that the singularity behaves in a qualitatively (and even
quantitatively in d = 3) similar manner than on the MI side.

logarithmic term NG(d− 1)/2 lnLA in a phase breaking spontaneously a continuous

symmetry (here the SF phase which breaks the U(1) symmetry), and stemming from

the number of Goldstone modes NG (=1 in the case at hand).

Field-theory prediction on the MI side of the O(2) transition. Traditionally the

generic and O(2) transitions are distinguished via the different critical exponents

manifested by the order parameter, its susceptibility and the correlation length (Fisher

et al., 1989). In fact, the entanglement entropy is also sensitive to the critical behavior

of the correlation length: indeed the area-law coefficient on the MI side of the O(2)

transition is predicted (Metlitski, Fuertes, and Sachdev, 2009; Calabrese and Cardy,

2004) to manifest the singular behavior (up to logarithmic corrections in d = 3)

S

A = a0(g)− a1

ξd−1
(7.27)

where a0(g) is a smooth function of g, and a1 > 0. A = 2Ld−1
A is the area of the

A − B boundary. Since a0(g) varies smoothly in the vicinity of g = gc, it may be
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considered constant in the critical region. ξ is the correlation length, related to g in

the vicinity of the critical point by ξ ∼ c/∆, see Eq. (7.17). In fact, the prediction

(7.27) of Metlitski, Fuertes, and Sachdev (2009) is only valid below the upper critical

dimension dc = 3. An explicit prediction for the coefficient a1 is obtained from the

Eq. (6.6) of Calabrese and Cardy (2004), namely :

Ssing/A = S/A− a0 = −N
12

∫
dd−1k||

(2π)d−1
log

k2
|| + ξ−2

k2
|| + a−2

, (7.28)

where the integration runs over the d− 1 spatial dimensions of the boundary, and a is

the lattice spacing. The singular part comes from the large ξ terms resulting from the

integration, namely

Ssing/A = − N

12ξ
(d = 2) (7.29)

Ssing/A = − N

24π
ξ−2 log ξ (d = 3), (7.30)

so that a logarithmic correction to Eq. (7.27) appears in d = 3. As shown on Fig. 7.5,

this prediction agrees very well with our calculations on the MI side of the transition

both in d = 2 (panel a) and d = 3 (panel b). A similar behavior has been reported in

previous studies by Singh, Melko, and Oitmaa (2012) and Helmes and Wessel (2014).

Discussion of the field-theory prediction. It is important to stress that Eq. (7.27),

as obtained by the field-theory calculation of Metlitski, Fuertes, and Sachdev (2009),

applies only to the insulating side of the transition and, within the Gaussian approx-

imation, it predicts quantitatively the a1 coefficient of our calculations. Yet it does

not predict the entanglement cusp observed at the O(2) transition. The existence of

this cusp on the superfluid side is dominated by the presence of the amplitude mode

going gapless both in the physical and in the entanglement spectrum. This suggests

that the entanglement entropy reveals the divergence of the elusive correlation length

ξH ∼ c/∆H of longitudinal fluctuations (Kardar, 2007), which is proportional to the

inverse mass of the amplitude mode [see Fig. 7.3(h)], but which is challenging to

extract from any microscopic observable of the original model. On the SF side of the

transition, the behavior of the singular contribution to entanglement entropy is similar

to the behavior on the MI side. In d = 2, the prefactor of 1/ξ is slightly smaller than

that on the MI side [Fig. 7.5(a)], while in d = 3, the prefactor of (log ξ)/ξ2 is the

same as on the MI side [Fig. 7.5(b)].

7.2.4 Entanglement contours at the O(2) transition.

It would be interesting to understand the singular behavior predicted by Eqs. (7.29)

and (7.30) from the perspective of the entanglement contours. Unfortunately, this is
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not possible in a straightforward manner. Indeed, we have already discussed (see Fig.

7.1) that the following approximation

Cs(i) ≈ 2
αd

[2π(i− 1/2)]d
e
−a′ i−1/2

ξ (7.31)

qualitatively captures the behavior of the entanglement contour in the MI phase (we

place ourselves directly in thermodynamic limit, so that the second boundary between

A and B is pushed to infinity). Fig. 7.1(a) only showed the data in d = 2, but we

have observed that similar results holds in d = 3. We also know that this prediction is

valid at the O(2) point where the entanglement contour is universal. However, if this

approximation were correct up to the critical point, a prediction for the prefactor of

the area law would then be

a = a0 − a1(ξ) (7.32)

a0 =
∞∑

i=1

2αd
[2π(i− 1/2)]d

(7.33)

a1(ξ) =

∞∑

i=1

2αd
[2π(i− 1/2)]d

(
1− e−a′

i−1/2
ξ

)
. (7.34)

Unfortunately, this prediction is incompatible with the field theory calculation (and

thus with the actual lattice calculation which agrees with it). For instance, a scaling

analysis of a1(ξ) would show that a logarithmic correction is predicted in d = 2, while

in d = 3 we would predict a1(ξ) ∼ 1/ξ, in contradiction with Eq. (7.30). Nonetheless,

as shown on Fig. 7.4(a) in d = 2, this conjecture still qualitatively describes the

behavior of a when traversing the critical point. But obviously, something is missing

in Eq. (7.31) to capture correctly the singularity of entanglement entropy at the critical

point, something which must be related to the precise way in which the contour

decays in the bulk of A. Indeed, we have observed that Eq. (7.31) works well only

at distances i . ξ to the boundary, and that the agreement with the exact calculation

worsens at i > ξ when approaching the critical point. We leave open to future studies

the possibility to understand quantitatively the singular contribution to entanglement

entropy from the perspective of the contours. Another related question that we leave

open, is the possibility to understand the singularity through the local equilibrium

hypothesis for the entanglement Hamiltonian. This would include on both sides of

the transition a detailed study of the density contours, of the entanglement contours,

and of the corresponding thermal quantities — namely thermal entropy and thermal

variance of the number of particles.
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7.3 Conclusion on the local entanglement
thermodynamics

This second part of the thesis has been devoted to a local entanglement thermodynam-

ics (LET) approach to the structure of entanglement in many-body ground states. In its

strongest form, this hypothesis proposes an Ansatz for the entanglement Hamiltonian

of an extended subsystem in the form of the physical Hamiltonian modulated in space

by a local entanglement temperature, and supplements this Ansatz with a local equilib-

rium approximation. The local thermodynamics perspective has appeared to be valid

at least as a useful heuristic viewpoint on the structure of entanglement in many-body

ground states, and often as a tool for semi-quantitative predictions of entanglement

features. The main motivation behind the LET hypothesis is to build a consistent

physical explanation of the area laws and of their possible violation reported in a

variety of situations. As such, the LET hypothesis is justified in all the situations we

have encountered in this chapter. While a quantitative understanding is still missing in

some cases (especially the bosonic superfluid-insulator transition), the LET hypothesis

is always found to predict correctly the scaling behavior of entanglement entropy.

If correct as a general principle, the LET hypothesis has the remarkable con-

sequence that the rough structure of entanglement can be reconstructed indirectly

from the knowledge 1) of correlation functions in the ground state; and 2) of the

thermal behavior of entropy and fluctuations. In other words, the study of quantum

correlations (in the physical sense) is, in its own right, as interesting as the study

of entanglement per se, for the two are bridged by thermodynamic relations. This

conclusion is important when moving away from ground states (as we will do in the

last part of this manuscript), for we know how to generalize the concept of quantum

correlations to finite temperature (Part I), but not the concept of entanglement entropy

in a physically transparent manner.
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Part III

Inspecting quantum criticality and
nonzero temperatures

La pureté est horreur de la vie, haine de
l’homme, passion morbide du néant. Un corps
chimiquement pur a subi un traitement barbare
pour parvenir à cet état absolument contre
nature. L’homme chevauché par le démon de
la pureté sème la ruine et la mort autour de lui.
Purification religieuse, épuration politique,
sauvegarde de la pureté de la race, nombreuses
sont les variations sur ce thème atroce, mais
toutes débouchent avec monotonie sur des
crimes sans nombre dont l’instrument
privilégié est le feu, symbole de pureté et
symbole de l’enfer.

Michel Tournier



Summary of Part III. The third part of the manuscript is dedicated to the study of

quantum fluctuations and quantum correlations at finite temperature.

In Chapter 8, we introduce the basic concepts on the example of a one-dimensional

lattice gas of free fermions. The quantum and thermal contributions to the structure

factor are discussed, together with the corresponding spatial structure of quantum and

thermal correlations. We also discuss the area-law scaling for quantum fluctuations

of a conserved quantity in a subsystem (here, the number of particles), as opposed to

the volume-law scaling of total fluctuations, and to the volume-law scaling of both

quantum and thermal fluctuations for non-conserved quantities.

Chapter 9 discusses general aspects of quantum correlations in the vicinity of

phase transitions. In particular, the scaling of the (quantum and thermal) fluctuations

of the order parameter in the vicinity of a quantum critical point are established. We

propose to define the quantum critical region in terms of the scaling behavior of

quantum fluctuations. We also propose a simple gaussian field-theory model which

captures the essence of the (non-divergent) behavior of quantum fluctuations when

crossing a thermal critical point.

In Chapter 10, we focus on the Ising model in a transverse field with infinite-

range ferromagnetic interactions (also known as the Lipkin-Meshkov-Glick model),

which presents a characteristic phase diagram for the study of quantum vs. thermal

criticality. This example allows us to illustrate the general scaling laws derived in

Chapter 9 through direct microscopic calculations. We show in particular that the

quantum fluctuations of the order parameter (the collective spin component Sz which

is involved in the ferromagnetic Ising interaction) diverge at the quantum critical point,

and that this divergency is fully accompanied by the “squeezing” of Sy fluctuations,

perpendicular to both the order parameter and the transverse field (along x). Since

squeezing implies augmented precision on the a priori knowledge of an observable in

quantum mechanics, this is a first example suggesting the potential use of quantum

critical states for metrological purposes (specifically, interferometric schemes).

In Chapter 11, which closes the manuscript, we investigate the opposite limit of

a d = 1 quantum Ising chain with nearest-neighbor interactions. This model offers

the opportunity to enrich our understanding of quantum vs. thermal criticality by

discussing the spatial structure of quantum vs. thermal fluctuations. In particular,

quantum and thermal fluctuations show a complete separation of scales in the thermal

critical region, while they have the same scaling behavior in the quantum critical

region (although quantum fluctuations are at least one order of magnitude weaker

than thermal ones). Finally, we show that the divergence of coherent fluctuations

at the quantum critical point is not accompanied by a consequent squeezing of Sy
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fluctuations, which leaves open the question about the potential use of these states for

interferometric purposes.
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Chapter 8

Basic aspects: free fermions

Introduction. In this chapter, we explore coherent fluctuations and the correlations

between them in a simple system of non-interacting fermions. We consider a tight-

binding Hamiltonian on a d = 1 lattice

H = −
L∑

i=1

c†i (tci+1 + tci−1 + µci) (8.1)

in the grand-canonical ensemble, where the chemical potential µ fixes the average

density. The system is thermalized at temperature T . t is the hopping amplitude

setting the energy scale, and we consider periodic boundary conditions (L+ 1 ≡ 1).

Free fermions in dimension d ≥ 2 show similar features as in d = 1 regarding the

spatial structure of correlations discussed in the present chapter. H is diagonalized by

Fourier transform

H =
∑

k

εkc
†
kck (8.2)

with εk = −2t cos k − µ, and ck = L−1/2
∑

j e
−ikrjcj .

8.1 Total, thermal and quantum structure factors

8.1.1 Total structure factor

We shall focus on the correlations among the most elementary local observables,

namely the local densities ni (as the local fields ci are not proper observables). We aim

at separating quantum and thermal contributions to these correlations (see Section 2.2).

As we are considering non-interacting particles, correlation effects stem solely from

Pauli principle. Naively, we thus expect that a reliable separation of total correlations
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into a classical and a quantum contribution identifies all correlations as purely quantum

ones. Though excessively simplistic, this expectation turns out to be partly justified.

Total correlations are defined as the covariance of density fluctuations on different

sites (see Section 2.2). With the notation δO = O − 〈O〉

〈δniδnj〉 = 〈c†icic
†
jcj〉 − 〈c

†
ici〉〈c

†
jcj〉 (8.3)

=
(Wick)

〈c†icj〉〈cic
†
j〉 (8.4)

=
1

L2

∑

k1,k2

ei(k2−k1)(ri−rj)fk1(1− fk2) (8.5)

=
1

L

∑

k

eik(ri−rj) 1

L

∑

q

fq(1− fk+q)

︸ ︷︷ ︸
Stot
k

(8.6)

where the structure factor Stot
k has been defined on the last line. We have introduced

the Fermi factors fk = 1/(eβεk + 1), with β = (kBT )−1, and used Wick’s theorem

(Blaizot and Ripka, 1986) plus particle-number conservation to factorize the order-4

correlators in terms of order-2 correlators.

8.1.2 Thermal and quantum structure factor

The thermal structure factor is defined as

ST
k = kBTχ(k) (8.7)

where

χ(k) =
∂〈Nk〉
∂h−k

∣∣∣∣
h−k=0

(8.8)

is the static susceptibility. We introduced the Fourier-component of the density profile

Nk = L−1/2
∑

j e
ikrjnj . The thermal structure factor can be expressed in terms of

imaginary-time correlations (Section 1.7) as

ST
k =

∫ β

0

dτ

β
〈δNk(τ)δN−k(0)〉 (8.9)

where O(τ) = eτHOe−τH. The discrepancy between total and thermal covariances

stems from the possible non-trivial dynamics ofNk(τ) in imaginary time if [Nk,H] 6=
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0. We have

〈δNk(τ)δN−k(0)〉 =
1

L

∑

i,j

eik(ri−rj)〈δni(τ)δnj(0)〉 (8.10)

=
1

L

∑

i,j

eik(ri−rj)
[
〈c†i (τ)ci(τ)c†j(0)cj(0)〉−

〈c†i (τ)ci(τ)〉〈c†j(0)cj(0)〉
]

(8.11)

=
1

L

∑

i,j

eik(ri−rj)〈c†i (τ)cj(0)〉〈ci(τ)c†j(0)〉 (8.12)

=
1

L

∑

i,j

eik(ri−rj) 1

L2

∑

k1,k2

[

ei(k2−k1)(ri−rj)eτ(εk1
−εk2

)fk1(1− fk2)
]

(8.13)

=
1

L

∑

q

fq(1− fk+q)e
τ(εq−εk+q) . (8.14)

We have used that ck(τ) = e−τεkck and c†k(τ) = eτεkc†k. Integrating over τ , we find

that

ST
k =

1

L

∑

q

fq(1− fk+q)
eβ(εq−εk+q) − 1

β(εq − εk+q)
, (8.15)

In particular, we see that for k = 0, corresponding to the total number of particles

(conserved byH)

ST
k=0 = Stot

k=0 . (8.16)

For k 6= 0, the thermal contribution from any other k 6= 0 does not exhaust the total

fluctuations, due to the decay of 〈δNk(τ)δN−k(0)〉 as a function of τ [Fig. 8.1(a)]

ST
k 6=0 < Stot

k 6=0 . (8.17)

We thus define the quantum structure factor as

SQ
k = Stot

k − ST
k . (8.18)

Thermal and quantum covariance. The thermal (quantum) covariance is

〈δniδnj〉T(Q) =
1

L

∑

k

eik(ri−rj)S
T(Q)
k . (8.19)

8.1.3 Temperature dependence of the structure factors

In Fig. 8.1, we explore the amplitude of fluctuations as a function of wavevec-

tor k and of temperature T . Fig. 8.1(a) presents the imaginary-time correlations
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Figure 8.1: Quantum and thermal structure factors for free fermions in d = 1 at
half filling (n = 1/2). (a) Correlations in imaginary time of the fluctuations at
wavevector k, for T/t = 0.5. Nk=0(τ) = Nk=0(0), so that correlations in imaginary
time are constant. At a generic k 6= 0, instead, the correlation function is maximal
at τ = 0 (corresponding to total fluctuations), and decays in imaginary time under
the effect of quantum fluctuations. Being symmetric with respect to τ = β/2, the
correlation function then increases again up to the initial value. (b) Fluctuations at
k/π = 0.2 as a function of the temperature. At low temperature, the thermal variance
increases linearly with T and coincides with the total variance for T � t (where
it attains the shot-noise limit n(1 − n) with n the density). The quantum variance
(QV) is observed to monotonically decrease with T , and scales as 1/T 2 at large
temperature. (c) Same as in (b) but for k = π. The k = π quantum fluctuations
are so strong that the total fluctuations are found to decrease with the temperature,
in complete contradiction with classical intuition. At low temperature, the thermal
variance increases as T log(1/T ) because of the divergence of χstat(π) ∼ log(1/T ).
(d) Total, quantum and thermal structure factors as a function of wavevector k at
T/t = 0.1. Quantum fluctuations represent the dominant contribution to the total
structure factor at almost all wavevectors, and cause it to exceed the shot-noise limit
for k ≥ π/2 (this behavior is observed at all temperatures, see panels (e) and (f)). (e)
and (f): Same as in (d) but at a temperature T/t = 0.5 and 1.5 respectively. At high
temperature, the quantum structure factor vanishes, while the thermal structure factor
converges towards the shot-noise limit.
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〈δNk(τ)δN−k(0)〉 at k = 0, k = π/5 and k = π as a function of τ/β, showing that

correlations are symmetric with respect to τ = β/21 and, except at k = 0, decay

in imaginary time. The total structure factor is the τ = 0 value of this correlation

function, Stot
k = 〈δNk(0)δN−k(0)〉, and the decay as a function of τ is a consequence

of quantum fluctuations. On Fig. 8.1(b, c) we show the variation of the total, quantum

and thermal structure factor at k = π/5 (panel b) and k = π (panel c) as a function of

temperature. At high temperature, the quantum variance (QV) decreases to zero as

1/T 22, and the total (≈ thermal) variance saturates to the shot-noise limit n(1− n),

with n = 〈ni〉 the average density, corresponding to uncorrelated fluctuations on every

lattice site. The monotonic decrease of the QV as a function of temperature is a generic

feature: though it is not a mathematical necessity3, thermal agitation is generally ex-

pected to destroy coherence. On the contrary, the thermal variance is monotonically

increasing with the temperature. This behavior is also expected to be generic, unless a

phase transition is crossed, which is not the case here. In general, the thermal variance

is expected to grow linearly with T at low temperature (〈δ2O〉T = kBTχO) if the

susceptibility χO has a finite value at T = 0. This linear behavior is observed for free

1 In general, if O is an hermitian operator, the property 〈δO(τ)δO(0)〉 = 〈δO(β − τ)δO(0)〉
holds:

1

Z
Tr
(
e−βHeτHOe−τHO

)
=

1

Z
Tr
(
e−βHe(β−τ)HOe−(β−τ)HO

)
(8.20)

using the invariance of the trace under cyclic permutations.
2 We can prove that the decrease of the QV at high temperature is at least as fast as 1/T 2 = β2. At

high temperature, we may expand

O(τ) = eτHOe−τH = O + τ [H,O] +O(τ2) . (8.21)

Hence
〈O2〉 − 〈O(τ)O(0)〉 = τ(〈HO2〉 − 〈OHO〉) +O(τ2) . (8.22)

We then use the fact that
ρ =

1

Z
e−βH =

1

Z
(1− βH) +O(β2) , (8.23)

so that finally
〈O2〉 − 〈O(τ)O(0)〉 = O(βτ) . (8.24)

Integrating over τ , we find that

〈δ2O〉Q =

∫ β

0

dτ

β
[〈O2〉 − 〈O(τ)O(0)〉] (8.25)

=

∫ β

0

dτ

β
O(βτ) = O(β2) . (8.26)

3 The convexity of the QV with respect to the density matrix, see Section 1.5, does not imply that
the QV decreases upon increasing the temperature. Convexity only implies that the QV ofO in a thermal
state is smaller than the average variance of O in the eigenstates of the Hamiltonian, and not that it is
smaller than the variance of O in, say, the ground state (GS). If energy states slightly above the GS have
a much larger variance of O than in the GS, one can expect that the QV increases at low temperature.
This behavior is however not observed in general.
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fermions at half filling, apart at k = π where χ(π) ∼ log(1/T )4. The total variance,

being the sum of a decreasing and of an increasing function of T , cannot be predicted

to display any specific behavior, and indeed, we observe that e.g. at k = π/5, quantum

fluctuations are rather weak, and the total structure factor monotonically increases to

the shot-noise limit (panel b), while at k = π, quantum fluctuations are so strong that

the total fluctuations monotonically decrease with temperature, in complete contradic-

tion with our classical intuition (panel c). The strong quantum fluctuations at k = π

are a consequence of strong anti-correlations of the density between neighboring sites

at half filling.

Fig. 8.1(d,e,f) shows the total, quantum and thermal structure factors as a function

of k for T/t = 0.1 (panel a), 0.5 (panel b) and 1.5 (panel c). The first observation, in

compliance with our expectation and with the results presented on panels (b) and (c), is

that, upon increasing the temperature, the quantum structure factor is decreasing, while

the total and thermal structure factors get closer to the shot-noise limit n(1− n). The

second observation, that we already made, is that the quantum structure factor always

vanishes at k = 0, corresponding to the fact that the particle number is conserved in

the whole system: there is no coherence in the density matrix between states with

different numbers of particles.

8.2 Spatial structure of density correlations

At different sites, density fluctuations are always anticorrelated: Ctot = 〈δniδnj〉 =

−|〈c†icj〉|2 ≤ 0, and, within an envelope decreasing as e−rij/ξ(T ) (ξ(T ) is the T -

dependent correlation length), oscillate at a spatial frequency 2kF , with kF the Fermi

wave-vector (2kF = π at half-filling). Thermal correlations CT = 〈δniδnj〉T =

kBT∂〈nj〉/∂µi have a similar structure, but oscillate in sign (this behavior is related

to the Friedel oscillations of the density in the vicinity of an impurity, as illustrated

on Fig. 4.3). Quantum correlations CQ, which are the difference between the two,

have also the same structure but are found to be always negative, as total correlations.

Furthermore, at distances larger than the correlation length, we observe that the

oscillations of thermal correlations almost perfectly compensate the oscillations of

total correlations, so that quantum correlations show almost no oscillations at all.

These findings are illustrated on Fig. 8.2. On the same figure, for comparison, we

have also plotted the density correlations associated to the quantum Fisher information

4 This behavior may be checked by evaluating the static susceptibility χ(π) in Eq. (??).
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Figure 8.2: Density correlations for d = 1 free fermions, for µ/t = −1.2 (kF ≈
0.3π) and T/t = 0.03. Total covariance Ctot (dashed blue line), thermal covariance
CT (dashed-dotted orange line), quantum covariance CQ (green dots) and the QFI
covariance CQFI (red solid line) are plotted as a function of the spatial separation r
between the two sites. At distances shorter than the correlation length ξ ∼ t/T , all
correlations are mostly coherent, and decay as 1/rd+1 in d spatial dimensions, and at
distances larger than ξ, they decay exponentially. The correlation length for the QFI
covariance is twice larger than the usual correlation length.

(QFI, see Section 1.4.2), which we call “QFI covariance”, given by

CQFI(r) =
1

L

∑

k

e−ikrSQFI
k /4 (8.27)

SQFI
k /4 =

1

L

∑

q

fq(1− fk+q) tanh2[β(Eq − Ek+q)/2] (8.28)

=
1

4
QFI(Nk) , (8.29)

where QFI(Nk) is the quantum Fisher information of Nk.

At distances shorter than the correlation length, thermal effects are negligible, and

all correlations have a coherent nature: Ctot ≈ CQFI ≈ CQ (these are exact equalities

at T = 0). Remarkably, at distances larger than ξ, only the quantum covariance

CQ follows the exponential decay of the total covariance, while the QFI covariance

decay exponentially also, but with a correlation length twice as large. This result

is rather unexpected, for it implies that certain form of quantum correlations (as

quantified by the QFI covariance), may exceed by far the total correlations for the
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same observable. Yet we remark that 2ξ is the correlation length for the decay of the

first-order correlation function 〈c†icj〉, and therefore the range of the QFI covariance

does not exceed the range of all correlations in the system. It remains surprising that

quantum correlations related to the density show sensitivity to the correlations of the

field; something which, parenthetically, only shows up at T > 0. Nonetheless, we

shall further remark in Chapter 11 that the QFI covariance exhibits a systematically

slower decay than the quantum covariance, suggesting a certain ambiguity on the

actual range of quantum correlations.

Finally, we emphasize that, in the context of parameter estimation (Pezzè and

Smerzi, 2014), the QFI covariance is the proper quantifier of the metrological useful-

ness of the state, and is interesting to study from that perspective.

8.3 Area-law scaling of the local QV of the number of
particles

We now turn our attention on bipartite fluctuations, namely the fluctuations on subsys-

tems of observables which are conserved globally — we focus here on the particle

number. Such fluctuations in the ground state are tightly linked to entanglement in

the case of free fermions, as discussed in Chapter 3, and their scaling with subsystem

size exhibits a logarithmically violated area law. When moving to finite temperatures,

the link between entanglement and fluctuations breaks down, as fluctuations acquire

a thermal contribution which has no relationship to entanglement — yet, we can

continue quantifying quantum fluctuations with the quantum variance. It is remark-

able to observe that, in spite of the volume-law scaling of total fluctuations at finite

temperature, the quantum variance of the subsystem particle number obeys an area

law (Frérot and Roscilde, 2016b)

〈δ2NA〉Q ∼ Ld−1
A (8.30)

Here NA =
∑

i∈A ni counts the number of particles in a subsystem A, whose linear

size is LA. This area-law scaling can be seen as the finite-temperature counterpart of

the (log-violated) area-law scaling of particle-number fluctuations in the ground state,

itself being a manifestation of the scaling of entanglement entropy SA. And indeed,

as shown on Fig. 8.3 for free fermions in d = 2, we observe that the thermodynamic

relation (π2/3)〈δ2NA〉 ≈ SA between fluctuations and entanglement entropy in the

ground state, translates at finite temperature into a similar relation between the QV of

NA and (half of) the mutual information

I(A : B)/2 ≈ π2

3
〈δ2NA〉Q (8.31)
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Figure 8.3: Quantum correlations vs. quantum mutual information. (a) Scaling of
the quantum variance of bipartite particle-number fluctuations and of the quantum
mutual information in a system of free fermions on a L × L square lattice (L =
32) at half filling for three different temperatures (J is the hopping amplitude); (b)
temperature dependence of the same two quantities, along with the total entropy SA,
the total fluctuations 〈δ2NA〉, the Wigner-Yanase skew information I1/2(NA, ρ), and
the quantum Fisher information FQ(NA; ρ), for an A square region with linear size
LA = L/2. The T−2 decay of the mutual information at high temperature has been
proven rigorously for free fermions in Bernigau, Kastoryano, and Eisert (2015), and it
is proven for the quantum variance, skew information and quantum Fisher information
in App. F of Frérot and Roscilde (2016b), from which this figure is reproduced.

where the mutual information I(A : B) = SA + SB − SAB (B is the complement

of A in the total system) is a measure of total correlations between A and B, and

reduces to (twice) the entanglement entropy in the ground state where SA = SB and

SAB = 0 (see Section 3.2). As the mutual information does not in principle isolate

quantum from thermal correlations, but accounts for all of them together, this relation

further confirms that essentially all correlations in a noninteracting system stem from

quantum effects. Furthermore, as shown on Fig. 8.3(b), only the QV is related by

Eq. (8.31) to the mutual information, while the QFI (divided by 4, is also equal to the

variance in the ground state), is about three times larger (see the Appendix F of Frérot

and Roscilde (2016b) for a calculation of the QV and of the QFI at large T ).
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Chapter 9

Generalities on quantum
criticality

Introduction. In this chapter, we present general aspects of quantum fluctuations

in the vicinity of a second-order phase transition. Approaching a thermal (i.e. finite-

temperature) critical transition, the fluctuations of the order parameter O diverge

according to

〈δ2O〉tot ∼ t−γT (9.1)

with t = |T − Tc|/Tc and γT a (thermal) critical exponent. t is the distance to the

critical temperature Tc, expressed in dimensionless units. In Section 1.9, we showed

that this critical behavior of the fluctuations of the order parameter is entirely due to

the thermal contribution. Indeed, it was shown that the quantum variance (QV) of O
acquires a singular part scaling according to

〈δ2O〉sing
Q ∼ t2νT(zT+ηT/2−1) (9.2)

where νT is the critical exponent of the correlation length (ξ ∼ t−νT), and zT the

dynamical critical exponent (Hohenberg and Halperin, 1977; Collins, 1989; Täuber,

2014; Kamenev, 2011). As all the values for zT reported in the literature satisfy the

condition zT > 1 , and as νT, ηT ≥ 0, we concluded that this singular part for the QV

of the order parameter vanishes at the critical point, so that the divergence of 〈δ2O〉tot

stems entirely from the divergence of the thermal variance

〈δ2O〉tot ≈ 〈δ2O〉T = kBTχ ∼ t−γT . (9.3)

Obviously, the situation must be completely different in the vicinity of a quantum

critical point, where the phase transition is driven by quantum fluctuations. In Section
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Figure 9.1: Quantum critical region. Schematic representation of the phase diagram
of a HamiltonianH0 having a low-temperature ordered phase, and a high-temperature
disordered phase. The application of a perturbation gV which does not commute
withH0 induces quantum fluctuations which ultimately destabilize the ordered phase
beyond a critical value g ≥ gc, even at T = 0. On the disordered side g ≥ gc,
an energy gap ∆ opens. At finite temperature above the quantum critical point
(g = gc, T = 0), the scaling of fluctuations is controlled by the critical exponents
of the quantum phase transition in the so-called “quantum critical region” (orange
shaded area). These exponents are in general different from the critical exponents of
the finite-temperature phase transition, which govern the scaling of fluctuations in the
thermal critical region (grey shaded area).

9.1, we present the generic phase diagram of a system possessing both thermal and

quantum phase transitions, having in mind the quantum Ising model explicitly studied

in Chapters 10 and 11. We briefly comment on the novel insights into the so-called

“quantum critical region” provided by our approach in Section 9.2. Section 9.3 is

devoted to general scaling predictions (including finite-size scaling) for thermal and

quantum fluctuations both in the vicinity of a thermal and of a quantum critical point,

while Section 9.4 illustrates the dichotomy between thermal and quantum fluctuations

at a thermal phase transition in the simple case of a gaussian field theory.
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9.1 Representative phase diagram

On Fig. 9.1, we show the typical phase diagram of a system possessing a thermal

critical trajectory terminating at a quantum critical point (Sachdev, 2001). The general

form of the Hamiltonian describing such a system is

H = H0 + gV (9.4)

where H0 has a low-temperature ordered phase, and a high-temperature disordered

phase. gV is a term which does not commute withH0. As in Chapters 10 and 11 we

shall discuss in details the quantum Ising model in a transverse field, corresponding to

the Hamiltonian

HTFIM = −
∑

i,j

JijS
z
i S

z
j −B

∑

i

Sxi , (9.5)

the Fig. 9.1 can be seen as the phase diagram of HTFIM, but is not restricted to

this example (Sachdev, 2001). In this case, Sαi is the α component of spin s = 1/2

particles localized at the nodes i of a generic lattice. Jij ≥ 0 are coupling constants

favoring ferromagnetic alignment of the spins along the z axis, while B is a transverse-

field term favoring a magnetization along the x axis.

When [V,H0], the term gV induces quantum fluctuations of the order parameter

which destabilize the ordered phase for g ≥ gc. In the vicinity of the thermal critical

trajectory T ≈ Tc(g) > 0, the scaling of fluctuations is governed by the critical

exponents of the classical field theory, describing the long-wavelength properties close

to the transition (Sachdev, 2001). The universality class of the transition is the same

as for g = 0. Physically, this is a consequence of the fact that the critical behavior of

fluctuations is entirely carried by thermal fluctuations, while quantum fluctuations do

not diverge, as we argued in Section 1.9. They merely “renormalize” the parameters of

the classical field theory, and the region at g < gc is often described as a “renormalized

classical” regime (Sachdev, 2001).

9.2 The quantum critical region

The situation is completely different in the vicinity of the quantum critical point (QCP)

(g = gc, T = 0). At T = 0, thermal fluctuations are absent, and the critical behavior

is entirely carried by quantum fluctuations. At T > 0 above g = gc, on the other

hand, the situation is much richer (Sachdev, 2001). In this so-called quantum critical

region, both quantum and thermal fluctuations are of equal importance to understand

the scaling of fluctuations. The notion of quantum fluctuations / correlations we

have developed in Chapters 1 and 2 thus appears especially suited to disentangle
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thermal and quantum effects in this quantum critical region. In particular, the quantum

critical region is usually defined as the finite-temperature region where the scaling of

fluctuations is governed by the critical exponents of the quantum phase transition, as

opposed to the critical exponents of the thermal phase transition. In the specific case of

the Ising model, the universality class of the quantum critical point is that of the (d+1)-

dimensional classical Ising model (Sachdev, 2001). However, in practice, if focusing

on total fluctuations, this region may be very difficult to identify, for the proximity

of the thermal critical trajectory may “pollute” the scaling behavior associated to the

quantum critical point. If instead one focuses on quantum fluctuations, the discussion

is much simpler: as quantum fluctuations diverge only at the quantum critical point,

it is more convenient and natural to define the quantum critical region as the region

where the scaling of quantum fluctuations is governed by the critical exponents of the

QCP.

The redefinition of the quantum critical region in terms of the scaling behavior of

quantum fluctuations is one of the main conceptual improvements associated to the

present work in the context of quantum statistical mechanics.

9.3 Scaling of thermal and quantum fluctuations

In this section, we briefly review the scaling behavior of critical fluctuations in

the vicinity of a second-order phase transition, namely the scaling of the variance

〈δ2O〉 of the order parameter. This includes a discussion of the finite-size scaling

behavior (namely the scaling of fluctuations with the size L of the system, or with

the number N = Ld of sites for a lattice model in d spatial dimensions). We already

showed in Section 1.9 that the quantum variance of the order parameter 〈δ2O〉Q does

not diverge at a thermal phase transition. We first review the finite-size scaling of

〈δ2O〉 at a thermal phase transition (Section 9.3.1), and then of both 〈δ2O〉Q and

〈δ2O〉T = kBTχ at a quantum phase transition, and in particular in the quantum

critical region (Section 9.3.2).

9.3.1 Thermal critical scaling

Approaching the thermal phase transition, the scaling behavior of 〈δ2O〉 is the same

as for the static susceptibility χ of the order parameter. On a system of finite size L,
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the scaling theory (Täuber, 2014) predicts the following behavior

〈δ2O〉/N ∼ χ/N ∼ t−γTf(ξ/L) (9.6)

∼ LγT/νTg(LtνT) (9.7)

∼ N (2−ηT)/dg′(NtνTd) , (9.8)

where f is a scaling function of ξ/L. ξ ∼ t−νT is the correlation length governing the

large-distance decay of the correlation function

〈δOiδOj〉 ∼
e−|ri−rj |/ξ

|ri − rj |d−2+ηT
, (9.9)

with ηT the exponent characterizing the power-law decay of the correlation function at

the critical point (ξ =∞). In Eq. (9.7), we introduced g(x) = x−γTνTf(1/x), and in

Eq. (9.8) g′(x) = g(xd) with d the number of spatial dimension (N = Ld). We also

used the relation γT/νT = 2− ηT (Täuber, 2014). These scaling forms show that 1)

in the limit N → ∞, we have 〈δ2O〉/N ∼ t−γT ; and 2) at T = Tc, the variance of

the order parameter diverges with the system size as 〈δ2O〉 ∼ N1+(2−ηT)/d.

9.3.2 Quantum critical scaling

Scaling of the thermal variance. The scaling laws of the previous section apply

also to the static susceptibility of the order parameter χ at T = 0, where now δ =

|g − gc|/gc replaces t = |T − Tc|/Tc

χ/Ld ∼ δ−γf(Lδν) (9.10)

and where the exponents refer to the universality class of the quantum critical point

(for the sake of clarity, the critical exponents for the thermal phase transition are

denoted with a subscript “T”, and the exponents for the quantum phase transition

without substript). At finite temperature, this scaling behavior is modified into

χ ∼ δ−γf(Lδν , T/∆) (9.11)

where ∆ is the energy gap for g > gc, and a characteristic energy scale for g < gc.

This characteristic energy may be a gap, or the critical temperature for the thermal

phase transition. The energy gap closes at the critical point with the scaling behavior

∆ ∼ ξ−z ∼ δνz , where z is a (quantum) dynamical critical exponent1. Note that the

1 The quantum dynamical exponent z bears no relation to the dynamical exponent zT of the thermal
phase transition.
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exponent η, characterizing the decay of the order-parameter correlations close to the

QCP, is now defined by

〈δOiδOj〉 ∼
e−|ri−rj |/ξ

|ri − rj |d+z−2+η
. (9.12)

This definition is related to the fact that, according to the field theory describing

the critical behavior, the d real-space dimensions of the system are embedded in a

higher-dimensional space with an effective number d + z of dimensions (Sachdev,

2001).

To predict the scaling behavior of thermal fluctuations at finite temperature along

the critical trajectory t = 0, we proceed to the following manipulations

〈δ2O〉T/Ld = kBTχ/L
d ∼ Tδ−νf(Lδν , T δ−νz)

∼ T 1−γ/(νz)(Tδ−νz)γ/νzf(Lδν , T δ−νz)

∼ T 1−γ/(νz)g(δνz/T, TLz) . (9.13)

This shows that at δ = 0 and Lz � 1/T , the thermal variance diverges according

to 〈δ2O〉T/Ld ∼ T 1−γ/(νz) ∼ T 1−(2−η)/z . In particular, in the thermodynamic

limit, the thermal variance does not scale to zero when approaching T = 0 provided

2 − η ≥ z. For the Ising model, z = 1 and η < 1 so that this condition is satisfied.

This counter-intuitive behavior is a specificity of the quantum critical region, where

thermal and quantum fluctuations diverge with the same critical exponents, as we now

show.

Scaling of the quantum variance. In fact, we can show that the quantum variance

of the order parameter has the same scaling as the thermal variance (and hence, obvi-

ously, as the total variance) in the quantum critical region. In order to do so, we resort

to the expression of the quantum variance in terms of the dynamical susceptibility (see

Section 1.7)

Cf =

∫ ∞

0

dω

π
hQf (ω/T )χ′′(ω) . (9.14)

We have set ~ = 1. Here Cf can be the quantum variance, or any one of the measures

of coherence introduced in Section 1.5.2. In particular, it applies also to the quantum

Fisher information, for which a similar scaling analysis has been given in Hauke et al.

(2016). hQf is a quantum filter which is linear for ω � T , and goes to 1 for ω � T .

As discussed in Section 1.9, we can formulate a scaling hypothesis for the dynamical

susceptibility (Täuber, 2014; Collins, 1989; Sachdev and Ye, 1992)

χ′′(ω) = χf(ω/T, T/∆, Lδν) . (9.15)

194



Contrary to thermal phase transition, we do not need to introduce a new critical

exponent to characterize the dynamics. In quantum mechanics, energy scales (∆, T )

are sufficient to determine a characteristic frequency (ωc = ∆/~, T/~). Combining

Eqs. (9.14) and (9.15), we obtain

Cf = χ

∫ ∞

0

dω

π
hQf (ω/T )f(ω/T, T/∆, Lδν) (9.16)

= χTg(T/∆, Lδν) (9.17)

where

g(T/∆, Ltν) =

∫ ∞

0

dx

π
hQf (x)f(x, T/∆, Lδν) . (9.18)

We can reshape this expression to predict the scaling behavior at T = 0:

Cf/Ld ∼ δνz−γh1(T/∆, Lδν) , (9.19)

showing that for L � 1/δν and T � ∆ ∼ δνz , the quantum fluctuations scale as

Cf/Ld ∼ δνz−γ . A more convenient form to analyse the scaling along the critical

trajectory δ = 0 is

Cf/Ld ∼ T 1−γ/(νz)h2(δνz/T, LzT ) . (9.20)

This shows that the quantum variance diverges along the critical trajectory with the

same exponent T 1−γ/(νz) as the thermal variance, see Eq. (9.13). This observation

supports the common picture according to which, in the quantum critical region,

quantum and thermal fluctuations are equally important (Sachdev, 2001). Finally, we

can also reshape this expression to study the finite-size scaling at the critical point

Cf/Ld ∼ Lγ/ν−zh3(δνL,LzT ) . (9.21)

Using γ/ν = 2− η, and setting δ = 0 and T = 0, we obtain

Cf ∼ Ld+2−η−z ∼ N1+(2−η−z)/d . (9.22)

9.3.3 Quantum coherence volume

From the scaling behavior of Cf at the QCP, we can define a “quantum coherence

volume” (see also Hauke et al. (2016))

NQ =
Cf
N
∼ N (2−η−z)/d . (9.23)

Indeed, as Cf/N is the integral of the quantum covariance between a point and

the rest of the system, NQ characterizes the effective number of particles whose

fluctuations are quantum-mechanically correlated. In fact, focusing on the quantum
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Fisher information(QFI) (Cf (O) = FQ(O), with O =
∑N

i=1Oi is sum of local

observables whose spectrum is rescaled in order to fall into the interval [−1/2, 1/2]),

NQ is a “multi-particle entanglement witness”, in the sense of the k-producibility

criterium (Hyllus et al., 2012; Pezzè and Smerzi, 2014; Tóth, 2012). A many-body

pure state ψ is said to be k-producible if it can be written as a product state

|ψk-prod〉 = |ψ1〉 ⊗ · · · ⊗ |ψp〉 (9.24)

where the states ψj involves at most k particles. A mixed state ρ is said to be k-

producible if it is a mixture of k-producible pure states

ρk-prod =
∑

i

pi|ψ(i)
k-prod〉〈ψ

(i)
k-prod| . (9.25)

Using the convexity of the QFI with respect to ρ, the fact that the QFI is upper-bounded

by four times the variance, and that the variance itself is upper-bounded when O has

a bounded spectrum (the upper bound is attained for equal-weight superpositions of

extremal eigenstates of O), it is straightforward to show that (Hyllus et al., 2012;

Pezzè and Smerzi, 2014; Tóth, 2012)2

NQ = FQ(O, ρk-prod)/N ≤ k . (9.28)

The divergence of NQ at a quantum critical point if z + η ≤ 2 (which is the case of

the Ising model where z = 1 and η < 1), thus signals the presence of entanglement

extending over the whole system. More importantly, it signals the potentiality of many-

body states produced as thermal states in the vicinity of certain QCP for metrological

purposes. Indeed, the fact the NQ ≥ 1 is necessary and sufficient for quantum-

correlated states to be useful in interferometric frameworks (Pezzè and Smerzi, 2014;

Pezzè et al., 2016). We shall have a more in-depth discussion of this observation for

the Ising model in Sections 10.5 and 11.5
2 Using the convexity of the QFI and the fact that FQ equals four times the variance in a pure state

FQ(O, ρk-prod) ≤ 4
∑
i

pi〈ψ(i)
k-prod|O

2|ψ(i)
k-prod〉 . (9.26)

Then, in a k-producible pure state, the variance of O =
∑N
i=1 is the sum of uncorrelated fluctuations on

the different clusters, whose maximal size is k. There are at most bN/kc clusters of size k, and the last
cluster is of size N − kbN/kc. On a cluster of size k, the variance is at most (k/2)2, corresponding to
an equal weight superposition of the extreme eigenvectors of

∑k
i=1Oi, whose spectrum is contained in

[−k/2, k/2]. We thus conclude that

FQ(O, ρk-prod) ≤ bN/kck2 + (N − kbN/kc)2 ≤ Nk . (9.27)

As this proof relies solely on the fact that the QFI is convex in ρ, and that it is upper-bounded by (four
times) the variance, it immediately applies to all the measures of coherence introduced in Section 1.5.2,
and in particular, to the quantum variance (Malpetti and Roscilde, 2016).
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9.4 Gaussian field theory for a thermal phase
transition

The scaling predictions of the previous section apply to all universality classes for

equilibrium phase transitions. More insight into the structure of quantum and thermal

fluctuations in the vicinity of a thermal phase transition can be gained by studying

a simple field theory model describing critical fluctuations. The purpose of this

section is to provide a simple calculation of the structure factor for thermal and

quantum fluctuations across a thermal phase transition, within a gaussian field theory.

In particular, we will show that the correlation length ξT for thermal (and total)

fluctuations diverges as 1/
√
t (as expected from the νT = 1/2 exponent of the gaussian

theory), while the quantum correlation length ξQ remains finite. This matches the

results from quantum Monte Carlo simulations presented in Malpetti and Roscilde

(2016) for the d = 2 Ising model in a transverse field, and the exact results in d = 1

presented in Chapter 11.

9.4.1 Quantum O(N) model

In the following we consider the quantum O(N) model (or the quantum version of the

Landau-Ginzburg-Wilson theory) for N = 1, namely a paradigmatic quantum field

theory for the study of quantum and thermal phase transitions. Its partition function

takes the form

Z = Tr[e−βH] (9.29)

=

∫
D[φ]e−S[φ] (9.30)

where the Boltzmann weight for a field configuration φ(r, τ) is given by

S[φ] =
1

2

∫ β

0
dτ

∫
ddr

{
c2|∇φ|2 + b2(∂τφ)2 + rφ2 +

u

2
φ4
}
. (9.31)

S[φ] is also called the “euclidean action”. φ(r, τ) is the field describing the real-space

structure and imaginary-time dynamics of the order parameter, and it is periodic in

τ with period β. While φ can generally be an N -component vector, for simplicity

we shall consider the case N = 1, namely φ corresponds to the coarse-grained

magnetization along z of a model having the same symmetries as those of the Ising

model [Eq. (9.5)]. The imaginary-time dimension of length β is irrelevant to describe

the scaling of critical fluctuations at a thermal phase transition and is usually neglected,

but it contains the structure of quantum fluctuations we are trying to understand, and

in our treatment it must be kept even at finite temperature.
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The field-theory action of Eq. (9.31) provides an accurate description of fluctua-

tions provided the microscopic details of the model can be ignored, which is possible

only if the correlation length is much larger than the microscopic length scales (the

lattice spacing in the Ising model). It is thus valid only sufficiently close to the critical

trajectory (in the grey-shaded area of Fig. 9.1).

The coefficient r ∝ T − Tc in Eq. (9.31) changes its sign at T = Tc. At

T > Tc, the minimal free energy configuration is at φ = 0, corresponding to the

high-temperature disordered phase, while for r < 0 (T < Tc), the system orders. The

coefficient u > 0 ensures the stability of the model for r < 0 by penalizing very large

fluctuations of φ. The c2|∇φ|2 term penalizes fast spatial variations of φ and favors

spatial homogeneity of the order parameter. The b2(∂τφ)2 term has the same effect,

but for the imaginary-time dynamics.

9.4.2 Quadratic effective action

We can derive an effective action for the small fluctuations about the saddle-point

solution of the action, namely the field configuration φ0 such that

δS

δφ(r)

∣∣∣∣
φ=φ0

= 0 . (9.32)

This corresponds to a uniform configuration, which coincides with the value of the

order parameter in Landau theory. We then introduce the decomposition

φ(r, τ) = φ0 + ψ(r, τ) . (9.33)

Assuming ψ � φ0, and inserting this decomposition into Eq. (9.31), we obtain

S[φ0 + ψ] = S0[φ0] + S1[φ0, ψ] + S2[φ0, ψ] +O(ψ3) (9.34)

where O(ψ3) contains terms of order ψ3 or higher. We have introduced

S0[φ0] =
V β

2
(rφ2

0 +
u

2
φ4

0) , (9.35)

corresponding to the free energy of the homogeneous configuration φ0. The term

S1[φ0, ψ] = (rφ0 + uφ3
0)

∫ β

0
dτ

∫
ddrψ(r, τ) (9.36)

vanishes if the minimal free energy is chosen for φ0, corresponding to φ0 = 0 for

T > Tc (disordered phase) and φ0 = ±
√
−r/u for T < Tc (ordered phase)3. Finally,

3 Indeed ∂φ0S0 = V β(rφ0 + uφ3
0). The minimal free energy configuration satisfies ∂φ0S0 = 0

and thus S1 = 0. The condition ∂2
φ0
S0 > 0 then selects φ0 = 0 for r > 0 and φ0 = ±

√
−r/u for

r < 0.
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the effective quadratic action is

S2[ψ] =
1

2

∫ β

0
dτ

∫
ddr

{
c2|∇ψ|2 + b2(∂τψ)2 +m2ψ2

}
, (9.37)

where {
m2 = r (T > Tc) ,

m2 = 2|r| (T < Tc) .
(9.38)

This effective action is readily diagonalized in Fourier space:

ψ(r, τ) =
1√
V

∫
ddk

(2π)d
e−ik·rψk(τ) , (9.39)

where V is the volume of the system. Given the periodicity in imaginary time, ψk(τ)

can also be expressed as a discrete Fourier series:

ψk(τ) =
∞∑

n=−∞
eiωnτψk(ωn) (9.40)

where ωn = 2πn/β (the so-called “Matsubara frequencies”). The fact that ψ(r, τ) is

real imposes that ψk(ωn)∗ = ψ−k(−ωn). In terms of the Fourier-transformed fields,

we obtain

S2[ψ] =
β

2

∞∑

n=−∞

∫
ddk

(2π)d
|ψk(ωn)|2(b2ω2

n + c2k2 +m2) . (9.41)

The effective action describes a collection of independent modes ψk(ωn) whose

fluctuations are gaussian. In particular, we immediately see that the variance of

ψk(ωn) is

〈δ2ψk(ωn)〉 =
T

b2ω2
n + c2k2 +m2

≡ Tχ(k, iωn) (9.42)

with T = 1/β the temperature. We have introduced the dynamical susceptibility

χ(k, ω), here evaluated for imaginary frequencies iωn (Sachdev, 2001; Täuber, 2014).

9.4.3 Quantum and thermal structure factors

In Section 1.7, we showed that within the path-integral framework, thermal fluctuations

are the fluctuations from path to path of the mean-value in imaginary time (the path

centroid). At a given wavevector k, this corresponds to the fluctuations of ψk(ωn = 0).

We thus obtain the thermal structure factor

ST
k =

T

c2k2 +m2
. (9.43)
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Figure 9.2: Quantum and thermal fluctuations at a thermal phase transition. (a)
Quantum and thermal variance of the order parameter predicted by the gaussian
field theory (Eqs. (9.43) and (9.50) with b = c = 1 and r = T/Tc − 1). The
thermal variance diverges, while the QV has a barely visible cusp at the transition.
(b) Singular part of the QV [see Eq. (9.51)]. (c) Quantum and thermal correlation
length as predicted by the gaussian field theory [Eqs. (9.44) and (9.46)]. (d) ξT and
ξQ calculated with quantum Monte Carlo for the d = 2 Ising model in a transverse
field (namely the Hamiltonian of Eq. (9.5) with only nearest-neighbor couplings J on
a square lattice, and a transverse field B = 2J ; temperature in units of 1.9J , so that
that the maximum of ξT is for T ≈ 1 in these rescaled units). System size 36× 36 (ξT

is not found to diverge at the transition because of finite-size effects). QMC results
courtesy of T. Roscilde.
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In this Lorentzian shape of the thermal structure factor, we immediately identify the

thermal correlation length

ξT = c/m =

{
c/
√
r (T > Tc)

c/
√

2|r| (T < Tc) .
(9.44)

The quantum fluctuations, on the other hand, correspond to the fluctuations in imagi-

nary time with respect to the path centroid. These are the fluctuations at all the nonzero

Matsubara frequencies. We thus obtain the quantum structure factor

SQ
k =

∑

n6=0

T

b2ω2
n + c2k2 +m2

. (9.45)

The quantum structure factor being a sum of Lorentzians, its Fourier transform is

a sum of exponentials. The long-distance behavior of the correlation function is

governed by the slowest decay of these exponentials, corresponding to ω1 = 2πT .

The quantum correlation function can thus be estimated as

ξQ =
c√

m2 + (b2πT )2
. (9.46)

This demonstrates that the quantum correlation length remains finite at the critical

point m = 0, and that it is a continuous function of the temperature. Its first derivative

is however singular, since m2 = r above the critical point, while m2 = −2r below.

Note that the dynamical susceptibility is (Täuber, 2014)

χ(k, ω + i0+) =
1

c2k2 +m2 − b2(ω + i0+)2
≡ χ′(k, ω) + iχ′′(k, ω) . (9.47)

Introducing

Ek = b−1
√
c2k2 +m2 , (9.48)

the imaginary part of the dynamical susceptibility is

χ′′(k, ω > 0) =
π

2b2Ek
δ(Ek − ω) (9.49)

and χ′′(k,−ω) = −χ′′(k, ω). From this expression and from the expression of the

QV as a function of the dynamical susceptibility [Eq. (9.14)], we see that the quantum

structure factor is

SQ
k =

1

2b2Ek

[
cotanh

(
Ek
2T

)
− 2T

Ek

]
. (9.50)

At k = 0 and close to the critical point, we obtain the following expression

SQ
k=0 =

1

12b2T
− m2

16× 45b4
+O[(m/b)4] . (9.51)
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This result, illustrated on Fig. 9.2(a,b), shows that, similarly to the quantum coherence

length ξQ, the QV of the order parameter is nondivergent, but has a cusp at the critical

point, the singular part being proportional to m2 ∝ t = |T − Tc|/Tc. The prediction

of Eq. (9.51) is in agreement with the general prediction of Section 1.9, according to

which the singular part of the QV is proportional to t2νT (zT+ηT/2−1). For the present

case of a gaussian theory, νT = 1/2 and ηT = 0. The agreement with Eq. (9.51)

requires zT = 2, which is indeed the prediction of the dynamical scaling theory for

a nonconserved order parameter, at the gaussian level of approximation (Hohenberg

and Halperin, 1977; Täuber, 2014; Kamenev, 2011). An alternative interpretation is

that, as the dispersion relation is linear at the critical point (Ek ∼ kz with z = 1), the

dynamical exponent is in fact zT = 1. Since ηT = 0, given the discussion of Section

1.9, we could expect either a discontinuity of the QV (which is not observed), or a

singularity proportional to t2νT (2zT+ηT/2−1) = t, consistent with Eq. (9.51).

Our results are illustrated on Fig. 9.2, were the gaussian prediction for the

correlation lengths ξQ and ξT (panel c) are contrasted with a numerical (quantum

Monte Carlo) calculation for the d = 2 Ising model on a square lattice with nearest-

neighbor interactions (panel d), showing that the qualitative trend predicted by the

gaussian theory is well reproduced by a microscopic calculation.
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Chapter 10

Ising model with infinite-range
interactions

10.1 Introduction

Hamiltonian. This chapter is dedicated to a study of a mean-field-like version of

the Ising model in a transverse field. We consider N spin-1/2 particles (we assume N

even) interacting through the following Hamiltonian

H/J = − 1

N

N∑

i,j=1

Szi S
z
j − g

N∑

i=1

Sxi (10.1)

= − 1

N
(Sz)2 − gSx (10.2)

where Sαi for α = x, y, z are the spin−1/2 operators of the particle i. On the second

line, we expressed H in terms of the collective spin operators Sα =
∑N

i=1 S
α
i . The

coupling constant J sets the global energy scale, and g is a magnetic field along the x

direction. The factor 1/N ensures the extensivity of the (Sz)2 term when N → ∞.

This Hamiltonian (belonging to the family of so-called Lipkin-Meshkov-Glick (LMG)

Hamiltonians), has infinite-range interactions, and can be seen as the d→∞ limit of

the Ising model with nearest-neighbors interactions on a d-dimensional lattice.

Dicke states. As the HamiltonianH conserves the total spin S2, it can be diagonal-

ized in each sector of fixed S = 0, 1, . . . , N/2. For a fixed S, the Hamiltonian takes

the form of a (2S + 1)× (2S + 1) matrix, corresponding to the 2S + 1 values of the

spin projection M along a given direction, here chosen along z. In other words, the

Hamiltonian is block-diagonal in the basis of states |S,M, λ〉: all matrix elements

between sectors of different S vanish. The states |S,M, λ〉 are often referred to as
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the “Dicke states” in the atomic-physics literature (Arecchi et al., 1972). They are

common eigenstates of the total angular momentum operator, and of its projection

along the z axis: S2|S,M, λ〉 = S(S + 1)|S,M, λ〉 and Sz|S,M, λ〉 = M |S,M, λ〉.
The quantum numbers S,M do not generally specify the state fully, and further

quantum numbers (λ) are necessary. The number of possible values of λ depends on

S = N/2− p as

D(N/2− p) =

(
N

p

)
−
(

N

p− 1

)
(10.3)

for p ≥ 1 and D(N/2) = 1 (Arecchi et al., 1972). One can verify that

N/2∑

S=0

D(S)× (2S + 1) = 2N (10.4)

so that the Dicke states, including degeneracy, form a basis for the Hilbert space of an

ensemble of N spin-1/2 particles.

Ground state. The ground state always lies in the S = N/2 sector, which is not

degenerate. The N + 1 states of the S = N/2 sector are generated by the successive

application of S+ =
∑N

a=1(Sxa + iSya) onto the state |N/2,−N/2〉 = ⊗Ni=1| ↓z
〉i: |N/2,−N/2 + k〉 ∝ (S+)k|N/2,−N/2〉. The state |N/2,−N/2 + k〉 is the

symmetric superposition of all states containing N − k down spins and k up spins.

If the model describes effective spins corresponding physically to indistinguishable

two-level bosonic atoms, the symmetrization of the many-body wavefunction restricts

the dynamics to this S = N/2 sector. In this case, H is also known as the “bosonic

Josephson junction (BJJ) Hamiltonian” (Pezzè et al., 2016), because it can be derived

as a boson-spin mapping of a bosonic gas with two spatial modes. As the ground

state always lies in the S = N/2 sector, the ground-state physics of the LMG

Hamiltonian and of the BJJ Hamiltonian are the same, but finite temperature properties

are different. In particular, the BJJ Hamiltonian does not possess a finite-temperature

phase transition. It is therefore important to keep all the sectors S = N/2− p with

p > 0 to correctly capture the finite-temperature physics of the LMG Hamiltonian.

In the following, we first discuss the theoretical aspects underlying our understand-

ing of the phase diagram of this model, and then discuss the critical behavior of the

quantum and thermal fluctuations when approaching either the quantum critical point

or a thermal one.
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10.2 Phase diagram

Mean-field free energy. The phase diagram ofH, shown on Fig. 10.1, can be found

by a mean-field (MF) argument (Das et al., 2006), which becomes exact in the limit

N →∞ for a system with infinite-range interactions. Introducing m = 〈Szi 〉, we can

approximate the Szi S
z
j term of Eq. (10.1) by Szi S

z
j ≈ Szim + mSzj −m2. The MF

Hamiltonian then reads

HMF/J = −
N∑

i=1

(
2mSzi + gSxi −m2

)
, (10.5)

describing an ensemble of N uncorrelated 1/2-spins, whose Hamiltonians are

H(i)
MF/J = − ~B · ~σi +m2 (10.6)

where ~σ = 2~Si are the Pauli matrices, and ~B = (g/2, 0,m). The partition function at

inverse temperature β = (kBT )−1 is readily obtained as Z = e−βE+ + e−βE− from

the energies E± = Jm2 ± (J/2)
√
g2 + 4m2. Finally, we obtain the mean-field free

energy for the magnetization m along the z axis, F = −β−1 lnZ

F (m) = Jm2 − 1

β
ln

[
2 cosh

(
βJ

2

√
g2 + 4m2

)]
. (10.7)

Critical temperature. The critical temperature for the ferromagnetic (FM) / param-

agnetic (PM) transition can be determined by analyzing the behavior of F at small

m

F (m) = a+ rm2 + um4 +O(m6) (10.8)

with the coefficients

a = −β−1 ln[2 cosh(βJg/2)]

r = (J/g)[g − tanh(βJg/2)]

u = (βJ/4g)[2βJ/g − tanh(βJg/2)] .

(10.9)

In particular, we see that if g < 1, the r coefficient is negative for a sufficiently small

temperature, corresponding to tanh(βJg/2) ≥ g. This provides a finite-temperature

phase transition at
Tc
J

=
g

ln
(

1+g
1−g

) . (10.10)

For g > 1, or for g < 1 and T > Tc, the minimal free energy is at m = 0,

corresponding to the PM phase. For g < 1 and T < Tc, the free energy F exhibits

a double-well structure, with two symmetric minima at m = ±m0. The system

spontaneously breaks the z ↔ −z symmetry, and acquires a finite magnetization: this

corresponds to the FM phase.
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Figure 10.1: Phase diagram of the Ising model in a transverse field with infinite-
range interactions. The solid black line is the critical temperature Tc predicted by
Eq. (10.10). In the region (g < 1, T < Tc), the system is in a ferromagnetic (FM)
phase, and otherwise in a paramagnetic phase (PM). The dashed lines indicate the gap
to the first (E1, blue) and second (E2, orange) excited states, as calculated by exact
diagonalization for N = 700 spins. The thin dashed black lines are the prediction for
the gap of a second order Holstein-Primakoff (HP) approximation [Eq. (10.17)]. In
the FM phase, the HP prediction coincides with the gap to the second excited state,
while the first excited state is quasi-degenerate with the ground state (the gap scales
exponentially with N ). The pair of quasi degenerate ground states represent the two
possible orientations of the magnetization in the FM phase. Furthermore, there is a
finite-size gap at g = 1 scaling as N−1/3 (Dusuel and Vidal, 2004; Dusuel and Vidal,
2005). Deviations from the HP prediction are to be ascribed to finite-size effects.
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Ferromagnetic and paramagnetic phase. The LMG model thus presents the two

characteristic phases of the Ising model as a function of the temperature T and of the

transverse field g: a high-T or high-g PM phase where m = 0, and a low-T and low-g

FM phase where the z ↔ −z symmetry is spontaneously broken. A second-order

phase-transition line at T = Tc(g), terminating at Tc(gc) = 0 for the critical value

gc = 1 of the transverse field, separates the FM from the PM phase. At the phase

transition, characterized by mean-field critical exponents, the variance of the collective

spin component Sz becomes super-extensive. In particular, at the quantum critical

point (QCP) (T = 0, g = gc), these fluctuations are of purely coherent origin, while at

a thermal critical point (g < gc, T = Tc(g)), the super-extensive scaling stems purely

from thermal (and thus incoherent) fluctuations. This model, amenable to a simple

exact diagonalization study, thus represents a testbed to study the crossover between

thermal and quantum critical fluctuations in the vicinity of the QCP (compare Figs.

9.1 and 10.1).

10.3 Fluctuations in the ground state

10.3.1 Classical approximation

The fluctuations properties in the ground state are well-captured by a semi-classical

Holstein-Primakoff (HP) approximation, valid for any value of g in the limit N →∞,

but not at g = 1. The starting point of this approach is a classical approximation for

the collective spin (Coletta, Laflorencie, and Mila, 2012; Das et al., 2006). The main

assumption is that the collective spin operator ~S may, in a first approximation, be

replaced by a classical magnetic moment of length S = N/2: ~S = S(sin θ, 0, cos θ).

The y component of the collective spin vanishes since the Hamiltonian has a y ↔ −y
symmetry, and since there is no mechanism to break this symmetry, contrary to the

z component, where the ferromagnetic interaction takes place. In terms of θ, the

classical Hamiltonian is

E(θ)/J = −S
2

N
cos2 θ − gS sin θ . (10.11)

The solution of ∂θE = 0, ∂2
θE ≥ 0 shows that the minimal energy is at θ = π/2

for g > 1, and at sin θ = g for g < 1, in agreement with the mean-field solution. In

particular, the stability criterium ∂2
θE ≥ 0 shows that the θ = π/2 solution is unstable

for g < 1 (it is a local maximum of E), while the two equivalent solutions θ and π− θ
of sin θ = g are absolute minima. For g > 1, θ = π/2 provides the unique minimum

of E. An expansion of E in the vicinity of θ = π/2 in powers of x = θ − π/2 gives
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(recall that S = N/2)

2E

JN
= −g +

x2

2
(g − 1) +

x4

8
+O(x6) . (10.12)

This expression leads us to anticipate that at g = 1, where the potential is quartic in

x, a harmonic treatment of the fluctuations around the classical ground state breaks

down.

10.3.2 Semi-classical approximation

Holstein-Primakoff mapping. The HP approach, in its simplest form, precisely

amounts to a harmonic treatment. It first consists of mapping the spin operators to

bosonic operators encoding the quantum fluctuations around the classical solution

(Coletta, Laflorencie, and Mila, 2012). In the FM phase, any one of the two solutions

θ and π − θ may be chosen as the reference classical state. This yields





Sz = cos θ[S − a†a]− sin θ
√
S/2(a + a†) +O(a3)

Sy =
√
S/2(a − a†)/i+O(a3)

Sx = sin θ[S − a†a] + cos θ
√
S/2(a + a†) +O(a3)

(10.13)

where a and a† are the HP bosonic operators satisfying [a, a†] = 1, and where the

expressions are valid up to order O((a(†))3).

Quadratic effective Hamiltonian. The Hamiltonian is then expanded in terms of

these HP operators, and terms up to order quadratic in the a(†) are retained. The 0th

order term is simply the classical energy of Eq. (10.11), the linear term in the a(†)

vanishes if the classical ground state solution is chosen for θ, and the second-order

term is a harmonic-oscillator Hamiltonian encoding the quantum fluctuations. In the

paramagnetic and ferromagnetic phases respectively, this quadratic Hamiltonian reads

H(2)
PM/(Jg) =

p2

2
+

1

2
(1− 1/g)q2 (10.14)

H(2)

FM/J =
p2

2
+

1

2
(1− g2)q2 , (10.15)

where q = (a + a†)/
√

2 and p = (a − a†)/i
√

2. In accordance with the classical

analysis, the harmonic oscillator frequency vanishes at g = 1. In that case, a Hamilto-

nian quartic in the HP operators may then be derived, but it cannot be diagonalized

analytically.
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Self-consistency of the HP approach. The self-consistency of the HP approxima-

tion requires that the quantum fluctuations of the spin along the direction of ~S remain

small compared to the mean value N/2. This condition is equivalent to 〈a†a〉 � S,

itself equivalent to |g − 1| � 1/N21. This shows that in the limit N → ∞ the

approximation is valid all the way to, but strictly speaking not at, the critical point

g = 1.

Gap above the ground state. An important prediction of the HP approach is the

value of the gap above the ground state:

∆PM = Jg
√

1− 1/g (10.16)

∆FM = J
√

1− g2 . (10.17)

The closing of the gap at the QCP g = 1 signals the breakdown of the second-order

HP approximation.

Spin fluctuations in the ground state. Another important prediction of the HP

approach is the variance of the various components of the collective spin. The results

are summarized in Table 10.1, where we also included the finite-size-scaling behavior

of the fluctuations and of the gap at the QCP. The finite-size-scaling of the fluctuations

and of the gap at the QCP have been predicted theoretically by Dusuel and Vidal (2004)

and Dusuel and Vidal (2005) using elaborate techniques involving the expansion of the

Hamiltonian in terms of the HP operators at orders higher than quadratic, combined

with renormalization group arguments. In passing, we notice that the Heisenberg

inequality

〈δ2Sz〉〈δ2Sy〉 ≥ 1

4
〈Sx〉2 (10.18)

is saturated both in the FM and in the PM phase (namely: it takes the form of an

equality). This can be understood as the PM and FM ground states are ground states of

the harmonic oscillator Hamiltonians [Eqs. (10.14) and (10.15) respectively], and as

such states are of minimal uncertainty. At the QCP, we have verified that this property

also holds within 3% for N = 2000. As it holds for any g 6= 1 in the limit N →∞,

it is reasonable to conjecture that it also holds at the QCP.

1 Indeed, we have (with ω2 = 1− 1/g if g > 1 and ω2 = 1− g2 if g > 1, so that 0 ≤ ω ≤ 1)

〈a†a〉 � S ⇐⇒ (〈p2〉+ 〈q2〉 − 1)/2� N/2

⇐⇒ 1

2ω
+

1

2
ω − 1� N ⇐⇒ 1

2ω
� N

⇐⇒ ω2 � 1/N2 ⇐⇒ |1− g| � 1/N2 .

209



Scaling behavior FM (g < 1) QCP (g = 1) PM (g > 1)
at T = 0

〈Sx〉 N
2 sin θ N

2
N
2

〈Sy〉 0 0 0

〈Sz〉 N
2 cos θ 0 0

〈δ2Sx〉 N
4 cos2(θ)(1− g2)−1/2 ∼ N2/3 O(1)

〈δ2Sy〉 N
4 (1− g2)1/2 ∼ N2/3 N

4 (1− 1/g)1/2

〈δ2Sz〉 N
4 sin2(θ)(1− g2)−1/2 ∼ N4/3 N

4 (1− 1/g)−1/2

gap ∆ J
√

1− g2 ∼ N−1/3 Jg
√

1− 1/g

Table 10.1: Scaling of the collective spin fluctuations and of the gap in the ground
state of the Ising model with infinite-range interactions. In the FM phase (g < 1), the
fluctuations are with respect to any one of the two ordered ground states such that
sin θ = g, and the gap is for excitations above these two ground states. The scaling at
the QCP has been analytically predicted by Dusuel and Vidal (2004) and Dusuel and
Vidal (2005).

Finite-size vs. infinite-size ground state in the ferromagnetic phase. Finally, we

emphasize that in the FM phase, the exact ground state on a finite-size system is a

symmetric superposition of the two semi-classical solutions, and a naive calculation

would give 〈Sz〉 = 0 and 〈δ2Sz〉 ∼ N2 (Pezzè et al., 2016). This behavior is however

an artifact of the ground state physics: the exact ground state is a Schrödinger’s cat state

separated from the antisymmetric superposition by a gap exponentially small in N .

Any small perturbation (such as an infinitesimal magnetic field along z, exponentially

small in the size of the system) will stabilize one of the two classical solutions, around

which the HP approach is buit.

Gap above the ground state: Holstein-Primakoff approximation vs. exact finite-
size calculation. As shown on Fig. 10.1, the gap calculated by the HP technique

is in quantitative agreement with the exact calculation: it coincides with the gap

to the first excited state in the PM phase, and to the gap between the pair of quasi-

degenerate ground states and the first excited state above them. We have verified that

any discrepancy between the exact gap and the HP prediction, visible on Fig. 10.1

for N = 700 spins, is a finite size effect. In particular, although the precursor of the

phase transition (as characterized, for instance, by the value of g for which the gap is
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minimal) appears for g < 1, it is progressively shifted towards g = 1 upon increasing

N .

10.4 Quantum vs. thermal criticality

10.4.1 Total vs. quantum variance across the phase diagram

Expression of the QV and of the QFI. In order to extend the ground state study

to finite temperatures, we rely on exact diagonalization. For a given observable we

evaluated the quantum variance (QV) according to (see Section 1.7.4)

〈δ2O〉Q =
∑

i,j

[
pi −

pi − pj
ln(pi/pj)

]
|〈i|O|j〉|2 (10.19)

and the quantum Fisher information (QFI) according to (Pezzè and Smerzi, 2014)

FQ(O) =
∑

i,j

2
(pi − pj)2

pi + pj
|〈i|O|j〉|2 (10.20)

with pi = e−βEi/Z, and |i〉 is the eigenstate of H of energy Ei. In practice, for

O = Sz (or any other component of the collective spin), since matrix elements

between different S sectors vanish, these expressions take the form

〈δ2Sz〉Q =
1

Z

N/2∑

S=0

D(S)




2S+1∑

i,j=1

f
(S)
ij |〈S, i|Sz|S, j〉|2


 (10.21)

where f (S)
ij = e−βEi(S)− (e−βEi(S)− e−βEj(S))/[β(Ej(S)−Ei(S))], and similarly

for the QFI2. Here, Ei(S) and |S, i〉 denote the energies and the eigenvectors ofH in

the S sector: H|S, i〉 = Ei(S)|S, i〉. D(S) counts the degeneracy of each S sector

and has been defined in Eq. (10.3). The average value of an observable O which

conserves the total spin S (like any component of the collective spin does) is simply

calculated as

〈O〉 =
1

Z

N/2∑

S=0

D(S)

[
2S+1∑

i=1

〈S, i|O|S, i〉e−βEi(S)

]
. (10.23)

The variance of O is obtained by 〈δ2O〉 = 〈O2〉 − 〈O〉2.
2 The numerical error using this formula for the QV can be large for closely spaced energies. If

|β(Ei − Ej)| � 1, it is better to replace this expression by its Taylor expansion using

(e−βEi − e−βEj )/[β(Ej − Ei)] = e−βEi

(
1− β(Ej − Ei)

2
+
β2(Ej − Ei)2

6
− · · ·

)
. (10.22)

For the QFI, there is no such instability in the numerical calculation.
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Figure 10.2: Total vs. quantum variance of Sz in the Ising model with infinite-range
interactions. Exact diagonalization results with N = 500 spins. (a) Variance of |Sz|.
At the thermal phase transitions, the variance of Sz is proportional to N3/2 (see Fig.
10.3). (b) Quantum variance of Sz. In contrast to the total variance, the quantum
variance is not critical at the thermal phase transitions, but only at the quantum critical
point (g = 1, T = 0), where 〈δ2Sz〉Q ∼ N4/3 (see Fig. 10.5). In (a) and (b), the
solid line for g < 1 marks the critical temperature in the limit N →∞ predicted by
Eq. (10.10), and the dashed line for g > 1 is the gap predicted by Eq. (10.17).

Total and quantum variance across the phase diagram. On Fig. 10.2, we have

plotted the variance of |Sz| (panel a) and the quantum variance of Sz above the phase

diagram of the Ising model with infinite-range interactions for N = 500 spins. In the

symmetry-breaking FM phase, the distribution of Sz is bimodal, so that 〈δ2Sz〉 ∼ N2.

We thus consider the variance of |Sz|, which is singular only at the phase transition.

Fig. 10.2 shows that 〈δ2|Sz|〉 has a finite-temperature peak corresponding to the

transition — interestingly, unlike what happens at most phase transitions, finite-size

effects in the infinitely-connected model shift the peak of 〈δ2|Sz|〉 at temperatures

below the value of Tc in the thermodynamic limit.

In the FM phase, there is no need to consider the quantum variance of |Sz|, since

the fluctuations from one orientation of the magnetization to the opposite one are

purely of incoherent origin, while coherent fluctuations are small fluctuations about

a given orientation of the magnetization. Remarkably, Fig. 10.3(b) shows that the

QV of Sz (the order parameter of the FM / PM transition), does not manifest any

divergent bahavior at the thermal phase transition, in agreement with the general

scaling considerations of Section 1.9. In fact, the QV seems to be completely smooth

across the thermal phase transition, but a closer inspection reveals that the derivative

of the quantum variance is singular (see below). In marked contrast with the behavior

at thermal critical points, the QV diverges at the quantum critical point (QCP, at g = 1

and T = 0), and only there.
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In the following, we analyze the behavior the quantum and thermal fluctuations at

a thermal critical point (Section 10.4.2), in the paramagnetic phase for g > 1 (Section

10.4.3), and along the quantum critical trajectory g = 1 terminating on the QCP at

T = 0 (Section 10.4.4). Our results are in agreement with the scaling considerations

of Sections 1.9 and 9.3.

10.4.2 Quantum fluctuations do not diverge at a thermal critical
point.

On Fig. 10.3, we analyze the scaling behavior of the (total) variance of |Sz|, of the QV

of Sz , and of the QFI of Sz , across the thermal phase transition occurring at g = 0.8.

Total variance. The finite-size-scaling behavior of infinitely-connected systems has

been investigated by Botet, Jullien, and Pfeuty (1982). In compliance with the scaling

arguments of Section 9.3.1), the Sz fluctuations are predicted to obey the scaling form

〈δ2|Sz|〉
N

= N (2−ηT)/dcg(NtνTdc) . (10.24)

with t = T/Tc− 1 and g some scaling function. The exponents ηT = 0 and νT = 1/2

are the mean-field critical exponents of the Ising model, and dc = 4 is the upper

critical dimension of the corresponding short-range model (Botet, Jullien, and Pfeuty,

1982).

This prediction complies well with our data. Indeed, as shown on panel (a),

〈δ2|Sz|〉/N diverges with N at T = Tc. Furthermore, on panel (b), we show the

correctness of the following scaling Ansatz

〈δ2|Sz|〉
N

=
√
Nf(t

√
N) (10.25)

with f some scaling function, in agreement with Eq. (10.24). Tc is given by Eq.

(10.10). This proves that 1) 〈δ2|Sz|〉 ≈ N3/2f(0) at T = Tc; and 2) 〈δ2|Sz|〉/N ≈
f(1)/t for N →∞ and T 6= T0.

QV and QFI. As shown on panels (c) and (e), neither the QV nor the QFI diverge at

the critical point (given the inequalities 〈δ2O〉Q ≤ FQ(O)/4 ≤ 3〈δ2O〉Q, see Section

1.8, if one of them diverges, the other one must also diverge). However, as we show

on panels (d) and (f), their first derivative with respect to T is singular at the phase

transition in the limit N →∞. We observe the following scaling behavior for the QFI

at T → T−c
1

N

∂FQ
∂T

= f(t
√
N) (10.26)
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Figure 10.3: Scaling of total and quantum fluctuations at a thermal critical point
of the infinite range Ising model (g = 0.8, N = 200, 400, . . . 1000). (a) 〈δ2|Sz|〉
(solid lines), FQ(Sz)/4 (N = 1000, blue triangles) and 〈δ2Sz〉Q (N = 1000, orange
circles), all per spin. The dashed black line indicates T = Tc with Tc predicted in Eq.
(10.10). (b) Same data for 〈δ2|Sz|〉/N3/2 as a function of (T/Tc − 1)

√
N (see text).

(c) Quantum variance of Sz as a function of T and (d) its first derivative. (e) and (f):
as (c) and (d) but for the QFI. Symbols in (c-f) are the same as in (b).
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implying that the second derivative of FQ/N with respect to T diverges as
√
N at

T = Tc. Extrapolating the data of panel (d) to N →∞, we also expect that the first

derivative of the QV is singular at the transition in the thermodynamic limit, but we

could not find a simple scaling Ansatz to explain the behavior of the QV. We also note

that the singularity of the first derivative of the QV and the QFI with respect to the

temperature at the thermal critical point is consistent with the gaussian field theory

calculation of Section 9.4.

These results seem to be in contradiction with those presented by Hauke et al.

(2016) where a similar calculation of the successive derivatives (up to the fifth) of the

QFI across the transition lead the author to conclude the absence of any singularity

(see Fig. 3b of Hauke et al. (2016)). Their conclusion is however incorrect, for the

aforementioned authors only took into account the contributions from the S = N/2

sector of the collective spin in their calculation, being thus unable to describe the

thermal phase transition.

10.4.3 Quantum and thermal fluctuations in the paramagnetic
phase.

On Fig. 10.4, we have plotted the total, thermal and quantum variance of Sz , and the

QFI in the paramagnetic phase (g = 1.1). Both on Fig. 10.4 and 10.3(a), we note that

the QFI appears more robust to thermal effects than the QV, although both of them

quantify the same physical property — the coherent fluctuations of Sz . Note that the

QFI is always bounded between four and twelve times the QV (see Section 1.8).

10.4.4 Quantum and thermal fluctuations along the quantum
critical trajectory.

As we showed in Section 9.3.2, both quantum and thermal fluctuations are predicted

to scale in the same manner along the quantum critical trajectory g = gc

〈δ2Sz〉tot,Q,T/N ∼ T 1−(2−η)/zftot,Q,T(N z/dT ) . (10.27)

For the Ising model, z = 1 (Sachdev, 2001), and for the mean-field transition, η = 0.

The dimension d for an infinite-range model is the upper critical dimension of the

corresponding short-range model (Botet, Jullien, and Pfeuty, 1982), d = 4− z = 3

for the Ising quantum critical point. We thus expect the scaling behavior

〈δ2Sz〉tot,Q,T/N ∼ T−1ftot,Q,T(N1/3T ) . (10.28)

On Fig. 10.5 we analyse the validity of this scaling prediction, which turns out to be

very difficult to confirm for the total fluctuations. We suspect that finite-size effects
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Figure 10.4: Total, quantum and thermal fluctuations in the paramagnetic phase of
the Ising model with infinite-range interactions (g = 1.1, N = 800). The black
vertical dashed line indicates the gap ∆/J = g

√
1− 1/g. The proximity of the QCP

at g = 1 induces a non-monotonic behavior of the total fluctuations (solid red line),
which increase upon lowering the temperature for T & ∆, and then crossover to the
ground-state value.

are too strong for this infinite-range model to allow for the proper observation of the

scaling regime. In fact, on a finite-size system, the critical trajectory g = 1 is still

in the paramagnetic phase (see the phase diagram on Fig. 10.1), and the behavior of

the total variance is similar to what we observed at g = 1.1 (Fig. 10.4). However,

the scaling regime is clearly present for the quantum variance of the order parameter,

which is much less affected by finite-size effects. On Fig. 10.5(a), we clearly see a

divergence 〈δ2Sz〉Q ∼ 1/T starting for T/J . 0.4, and a cross-over to a finite, N -

dependent ground-state value for T/J . ∆ ∼ N−1/3. The correctness of the Ansatz

of Eq. (10.28) is further confirmed on panel (b), where we plotted 〈δ2Sz〉Q×T/(JN)

against N1/3T/J . The flat plateau corresponds to the scaling regime. On panel (b),

we have also performed the same scaling analysis for the QFI for which the scaling

regime is less clearly manifest, and the plateau resembles rather a broad shoulder.

The scaling behavior of the QFI and of the QV must nonetheless be the same as a

consequence of the inequality linking them (see Section 1.8).
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Figure 10.5: Scaling of fluctuations along the quantum critical trajectory g = 1 for
the Ising model with infinite-range interactions. (a) Scaling of the total (dashed lines)
and quantum (solid lines) variance of Sz for N = 200, 400, · · · 1000. The scaling
regime 〈δ2Sz〉Q ∼ 1/T is observed for the QV at T/J . 0.4, but is not visible for
the total variance, presumably due to finite-size effects. At high temperature, the
QV is proportional to 1/T 2, while the total variance saturates to the shot-noise limit
〈δ2Sz〉 ∼ N/4 of a completely mixed state of spin-1/2 particles. (b) Same data as in
(a), but rescaled to 1/T and plotted as a function of (T/J)N1/3. The QFI of Sz is
also plotted. The collapse of the curves for various N signals the scaling regime.

10.4.5 Quantum critical region

Scaling along the quantum critical trajectory. At finite temperature, in the vicin-

ity of the critical trajectory at g = gc, the presence of the QCP is predicted to control

the scaling behavior of fluctuations in an extended quantum critical region (Sachdev,

2001), see Fig. 9.1 and Section 9.2:

〈δ2O〉tot,Q,T ∼ T 1−(2−η)/zf(Ec/T ) . (10.29)

Ec is an energy scale set by the gap on the PM side g > gc, and by the critical

temperature Tc on the FM side. Note that Ec = 0 for g = gc, and conventionally, we

choose Ec = −Tc for g < gc.

Critical scaling: total versus quantum fluctuations. The scaling exponents z and

η are controlled by the QCP, and not by the exponents of the thermal phase transition

occurring at Tc. As we argued in Section 9.2, this scaling behavior is difficult to

observe when focusing on the total fluctuations — in fact, in Section 10.4.4, we were

not able to confirm this scaling behavior along the critical trajectory, see Fig. 10.5.
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This difficulty stems from the presence of the thermal phase transition which competes

with the QCP to govern the scaling behavior of total fluctuations. Instead, focusing on

quantum fluctuations is much more convenient, as they are very weakly affected by

the thermal phase transition (see for instance Fig. 10.3). Indeed, the scaling behavior

of quantum fluctuations (represented by the QV and the QFI) is clearly observed on

Fig. 10.5.

Definition of the quantum critical region. More generally, as Ec = 0 for g = gc,

we can predict from Eq. (10.29) the existence of an extended region where Ec/T � 1

in which

〈δ2O〉QT (2−η)/z−1 ≈ const. (10.30)

This last property is a natural definition for the quantum critical region. Equivalently,

the QV may be replaced by the QFI, or any other measure of coherence introduced

in Section 1.5.2, since they all have the same scaling behavior as a consequence of

inequality (1.45). In our case, recall that η = 0 (gaussian model) and z = 1 (Ising

universality class).

Description of the quantum critical region for the infinite-range Ising model.
As shown on Fig. 10.6 where we have plotted the left hand side of Eq. (10.30) in the

(T/J,Ec/J) plane, for both the QV (panels b, e) and the QFI, (panels c, f), we clearly

identify an extended plateau (or a broad maximum) for T & Ec. In contrast, such a

plateau is not clearly observed for the total fluctuations (panels a, d), strongly affected

by the presence of the thermal phase transition (we do observe a small plateau, but it

does not clearly correspond to an extended scaling region, see Fig. 10.5(b)).

Furthermore, according to Eq. (10.29), in the vicinity of the QCP we should

observe a constant value f(Ec/T ) along straight lines T = const. × Ec in the

(T/J,Ec/J) plane. Interestingly, this structure is clearly present for the total fluctua-

tions, especially on the PM side g > gc where the effect of the thermal phase transition

is absent. For g < gc, it is also visible well below Tc, although finite-size effects are

important (the straight lines converge toward the precursor of the true phase transition,

which occurs at gc,eff(N) < 1).

Discussion. In conclusion, the separation of total fluctuations into a thermal and

a quantum contribution allows for a refined analysis of the quantum critical region.

In particular, we proposed to define this region in terms of the scaling behavior of

quantum fluctuations, see Eq. (10.30), and showed, on the specific example of the Ising

model with infinite-range interactions, that it can be unambiguously identified in this
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Figure 10.6: Quantum critical region for the Ising model with infinite-range interac-
tions (N = 1000 spins). Panels (a), (b) and (c) show respectively the total fluctuations
〈δ2|Sz|〉, the quantum variance 〈δ2Sz〉Q and the QFI FQ(Sz)/4 in the vicinity of
the quantum critical region in the (T/J,Ec/J) plane. All quantities are rescaled
to the number of spins, and multiplied by T/J . The flat plateau for T/J ≤ 0.25,
|Ec/J | ≤ 0.2 corresponds to the quantum critical region [see Eq. (10.30)]. On the
abscissa, the energy scale Ec is the gap ∆ for g > 1, and (minus) the critical tempera-
ture −Tc for g < 1. Data below T/J = 0.1 are not shown because they are strongly
affected by finite-size effects. The black lines indicate T = |Ec|. Panels (d), (e), (f)
are the same data as (a), (b) and (c) respectively.

219



manner. In the following section, we explore the potential usefulness of the strongly

coherent fluctuations present in the vicinity of the quantum critical point for quantum

metrological purposes. We show in particular that the behavior of the quantum Fisher

information is completely captured by the squeezing of Sy fluctuations.

10.5 Quantum critical squeezing

10.5.1 Spin squeezing and QFI

Quantum coherence volume. The divergence of coherent fluctuations in the vicin-

ity of the QCP is the signature of a strong quantum cooperative behavior. In particular,

we know that (see Hauke et al. (2016) and Section 9.3.2)

FQ(Sz)

N
= NQ ∼ N (2−η−z)/d (10.31)

is a lower bound to the size of entangled clusters of spins (as defined by the k-

producibility criterium, see Tóth (2012), Hyllus et al. (2012) and Section 9.3.3),

and can be qualified as a “quantum coherence volume”, or “entanglement depth”

following the terminology of Sørensen and Mølmer (2001). The Ising QCP is thus

associated to a divergence of the quantum coherence volume for the z-component of

the magnetization.

Metrology perspective. From the perspective of the metrological use of many-body

states as input states for an interferometer (Pezzè et al., 2016), this implies an extreme

sensitivity of the many-spin system to small variations of an external magnetic field

along the z-axis. Indeed, if the system is placed in such external magnetic field B~ez
during a time-interval t, it undergoes the unitary evolution U = e−iφS

z
with φ = tB,

and this extreme sensitivity manifests itself in the possibility to determine the value

of φ, after p independent measurements, with a minimal uncertainty given by the

quantum Cramér-Rao bound (see Section 1.4.2)

(∆φest)
2 ≥ 1

pFQ
∼ 1

pN4/3
, (10.32)

beyond the standard quantum limit (SQL) 1/(pN) achievable with non-entangled spins

(the existence of classical correlations among the spins is not helpful to increase the

sensitivity of an interferometer beyond the SQL). However, the Cramér-Rao bound is

a theoretical result, stemming from an optimization over all the possible measurements

on the probe system. If the extreme sensitivity resides in too complicated observables,

it may be impossible to exploit in practice. The very natural question is then the

following one:
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• Is there a simple way to take advantage of the diverging coherence volume close

to a QCP for precision interferometric purposes?

Spin squeezing. The answer is positive, in the case under study of the Ising model

with infinite-range interactions. The explanation is that the y-component of the

collective spin — transverse to both the magnetization (along z) and the transverse

field (along x) — has “squeezed” fluctuations at the QCP (squeezed with respect to

the projection-noise limit 〈δ2Sy〉 = N/4 of N independent s = 1/2 spins)

〈δ2Sy〉
N

∼ 1

N1/3
→

N→∞
0 (10.33)

(see Table 10.1). The reason why squeezed fluctuations along y allow for a precise

evaluation of a small magnetic field along z has been explained by Wineland et al.

(1994). PreparingN spins in a collective squeezed state allows one to attain a precision

∆φest given by

∆φest =

√
〈δ2Sy〉
〈Sx〉 ≡ ξR√

N
, (10.34)

where we introduced the so-called squeezing parameter ξR (Wineland et al., 1994).

This precision is below the projection-noise limit 1/
√
N whenever ξR < 1. The

squeezing parameter is defined in such a way that for a coherent spin state |ψ〉 =

⊗Ni=1|+x〉i, for which 〈Sx〉 = N/2 and 〈δ2Sy〉 = N/4, ξR = 1. The fluctuations of

Sy are said to be squeezed if ξR < 13.

Spin squeezing and quantum Fisher information. Given the definition of the QFI,

this quantity must be larger than 1/FQ(Sz). The inequality (Pezzé and Smerzi, 2009)

ξ2
R ≥

N

FQ(Sz)
(10.36)

can be viewed as a special case of the Heisenberg-like inequality derived in Section

1.4.3

FQ(A)〈δ2B〉 ≥ |〈[A,B]〉|2 (10.37)

valid for arbitrary observables A and B. Indeed, taking A = Sz and B = Sy, so

that [A,B] = −iSx, we obtain inequality (10.36). We already noted in Section 10.3

that inequality (10.36) is saturated in the ground-state (where it reduces to the usual
3 More generally, the squeezing parameter is defined as (Wineland et al., 1994)

ξR =
√
N

min~n⊥〈~S〉
√
〈δ2S~n〉

|〈~S〉|
, (10.35)

where the minimum is over the directions ~n transverse to the mean spin direction 〈~S〉.
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Figure 10.7: Spin squeezing versus QFI. (a) Squeezing parameter ξ−2
R =

〈Sx〉2/(N〈δ2Sy〉) divided by the QFI per spin FQ(Sz)/N over the phase diagram of
the Ising model with infinite-range interactions (N = 1000). (b) ξ−2

R (dashed lines)
and FQ(Sz)/N (solid lines) for N = 200 spins at T/J = 0.01 (blue), T/J = 0.05
(orange) and T/J = 0.1 (green). (c) ξ−2

R and FQ(Sz)/N at the QCP (g = 1, T = 0)
for N = 100, 200, . . . , 2000. Both diverge as N1/3. Studying the ratio between them,
we can conclude that the prefactors are equal with about 3% inaccuracy.
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Heisenberg inequality, Eq. (10.18), since FQ(A) = 4〈δ2A〉 for a pure state). Indeed,

the HP mapping to an Harmonic oscillator Hamiltonian shows that for N → ∞,

the ground state is a minimal uncertainty state, saturating Heisenberg inequality. As

illustrated on Fig. 10.7, it turns out that more generally

FQ(Sz)

N
ξ2
R →
N→∞

1 (10.38)

at any point of the phase diagram of the infinite-range Ising model, presumably

including the QCP.

Hence, exploiting the squeezing of the fluctuations of Sy is the optimal way to ben-

efit from the strong quantum correlations of the many-spin system for interferometric

applications.

On Fig. 10.7(a), we have plotted the ratio

r =
N

ξ2
RFQ(Sz)

=
〈Sx〉2

〈δ2Sy〉FQ(Sz)
≤ 1 (10.39)

across the phase diagram of the Ising model with infinite-range interactions for

N = 1000 spins, showing that r is essentially constant equal to 1 everywhere, except

in the vicinity of the quantum critical point where finite-size deviations are apparent.

On panel (b), we have plotted FQ(Sz)/N and ξ−2
R for different temperatures as a

function of the transverse field g. The large increase of the QFI near the QCP is nicely

reproduced by the squeezing. The difference observed between ξ−2
R and FQ(Sz)/N is

a finite-size effect. This is confirmed on panel (c) where both quantities are observed

to diverge as N1/3, with a prefactor equal within 3%. We may thus conjecture that in

the limit N →∞, the ratio r goes to 1 including at the QCP.

10.5.2 Spin squeezing across the phase diagram

To conclude, we explicitly plot on Fig. 10.8 the squeezing parameter ξ−2
R across the

phase diagram for N = 500 spins, in the vicinity of the QCP. We clearly observe an

extended region of robust squeezing ξR < 1, demonstrating the potential usefulness of

an ensemble of spins thermalized in this parameter regime for precision interferometric

measurements.

Adiabatic preparation of a spin-squeezed state. We can imagine an experimental

realization of equilibrium states close to the QCP by 1) starting with a full polarized

state ⊗Ni=1| + x〉i, corresponding to the ground state in an infinite transverse field

g →∞; and 2) adiabatically decreasing g towards the critical point. The large gap in

the PM phase should enable to implement a nearly-adiabatic preparation in a finite
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Figure 10.8: Spin squeezing across the phase diagram of the Ising model with infinite-
range interactions (N = 500 spins). Following the convention of the metrology
literature, the potential metrological gain exploiting spin squeezing is expressed as
ξ−2
R measured in decibels. The dashed-dotted blue line marks the limit below which
ξR < 1, signaling the presence of metrologically useful entanglement among the spins.
The solid line is the critical temperature Tc of the FM / PM transition, and the dashed
line on the PM side is the gap ∆.

time. If the energy injected during the preparation remains small, the many-body state

should then exhibit a squeezing ξR < 1 stable in time as long a external perturbations

can be neglected. The same idea was proposed by Sørensen and Mølmer (2001).

An ideal platform for the realization of the infinite-range Ising model is offered by

trapped ions, as recently shown by Islam et al. (2011) and Bohnet et al. (2016)
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Chapter 11

Ising chain in a transverse field

11.1 Introduction

11.1.1 Summary of the results obtained for the infinite-range
quantum Ising model

In Chapter 10, we investigated the critical behavior of a system of N spins interacting

through infinite-range Ising ferromagnetic interactions, in the presence of a transverse

field. We showed the existence of an extended region in the vicinity of the quantum

critical point (QCP) characterized by a strongly coherent behavior, robust to finite-

temperature effects.

Quantum critical scaling of quantum fluctuations at finite temperature. We

proved that, in this quantum critical region, coherent fluctuations of the order pa-

rameter Sz — as quantified by the quantum variance (QV) or the quantum Fisher

information (QFI) — scale with the temperature as (Hauke et al., 2016)

〈δ2Sz〉Q, FQ(Sz) ∼ 1

T 1−η (11.1)

(see Section 9.3.2, where we set z = 1). η is the critical exponent governing the

large-distance power-law decay of the correlation function at the QCP

〈δSzi δSzj 〉 ∼
1

|ri − rj |d−1+η
. (11.2)

For the infinite-range model of Chapter 10, η = 0 (although correlations have no

spatial structure at all for infinite-range interactions, η is consistently set to 0 for a

system described by a gaussian field theory). We have been able to identify without

ambiguity the quantum critical region where this scaling behavior is obeyed, a task

more subtle (if ever possible) when focusing on total fluctuations.

225



Divergence of the quantum coherence volume at the quantum critical point.
Furthermore, at the quantum critical point, both the QV and the QFI (which co-

incide respectively with the variance 〈δ2Sz〉 and four times the variance at T = 0),

diverge with the number of particles. We defined the coherence volume as

NQ =
FQ(Sz)

N
∼ 〈δ

2Sz〉Q
N

∼ N (1−η)/d . (11.3)

The number of spatial dimensions d of the system had to be replaced, for the infinite-

range model of Chapter 10, by the upper critical dimension dc = 3, and we found a

divergence of the coherence volume NQ ∼ N1/3.

Squeezing of fluctuations transverse to the order parameter. Finally, we showed

that this strongly coherent behavior is completely captured by the squeezing of Sy

fluctuations (Wineland et al., 1994)

ξR =
√
N

∆Sy

〈Sx〉 ≈
√

N

FQ(Sz)
∼ N−1/6 , (11.4)

where ∆Sy =
√
〈δ2Sy〉. In other words, the sensitivity of the collective spin S =∑N

i=1 Si to rotations around z, as ultimately quantified by the QFI, manifests itself in

a transparent manner through the squeezing of Sy fluctuations. This may be seen as a

consequence of the gaussian character of the fluctuations in this many-body system,

including at the quantum critical point.

11.1.2 The quantum Ising chain

Hamiltonian of the quantum Ising chain. It is extremely insightful to contrast the

results obtained in the limit of infinite-range interactions, with the behavior of a d = 1

system with short-range interactions. The model we focus on in the present chapter is

the Ising chain in a transverse field, whose Hamiltonian reads

H = −J
N−1∑

i=1

(σzi σ
z
i+1 + gσxi ) , (11.5)

where σαi (α = x, y, z) are the Pauli matrices localized on a 1d chain. Open boundaries

are assumed. J > 0 is the Ising interaction term favoring ferromagnetic ordering along

z, while g is a transverse field (whose intensity is measured in units of J) favoring an

alignment of the spins along x. A quantum phase transition occurs in the ground state

at g = gc = 1 (Sachdev, 2001). The schematic phase diagram is represented on Fig.

11.1.
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Figure 11.1: Phase diagram of the d = 1 Ising model in a transverse field. The system
presents three regimes at low temperature: 1) a quasi-ferromagnetic (FM) phase at
small g where the correlation length is proportional to e∆/T , where ∆ ∝ |g− gc| (FM
order occurs only at T = 0). Quantum correlations merely renormalize the effective
spin-length, and we find ξQ � ξ. 2) A paramagnetic (PM) phase at large g where
spins preferentially align along the transverse field, and ξtot & ξQ extends over a few
lattice sites. 3) A quantum critical region for T & ∆, whose precise extension has to
be determined, and where the scaling of fluctuations is governed by the exponents of
the critical point g = gc (red dot). In the quantum critical region, both ξtot and ξQ are
proportional to 1/T .

Divergence of the quantum coherence volume at the QCP. Within the family of

Ising models (d = 1, 2, . . .∞), the Ising chain represents the opposite limit to the

infinite-range model studied in Chapter 10, which may be viewed as the d→∞ limit

of this family of models. In a d = 1 system, fluctuations effects are expected to be

stronger — indeed, they are so strong that the critical temperature for the ferromagnetic

(FM) / paramagnetic (PM) phase transition is pushed down to Tc = 0: FM order

exists only in the ground state for g < gc. For instance, Eq. (11.3) predicts that the

coherence volume diverges at the critical point as (Hauke et al., 2016)

NQ ∼ N3/4 , (11.6)

(η = 1/4 in Eq. (11.3) at the d = 1 Ising QCP) almost saturating the so-called

Heisenberg limit NQ = N1.
1 Necessarily, NQ = FQ(Sz)/N ≤ N . This constraint follows from the inequality FQ(Sz) ≤

4〈δ2Sz〉. The variance of Sz is maximal for an equal weight superposition of ⊗Ni=1| ↑z〉 and ⊗Ni=1| ↓z〉,
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Thermal vs. quantum correlation length. Furthermore, the d = 1 Ising model

represents a paradigmatic situation where the spatial structure of quantum correlations

can be revealed, and contrasted with that of total correlations. For instance, while

we gave general arguments within a gaussian field theory in Section 9.4 supporting a

complete separation of scales for thermal and quantum fluctuations close to a thermal

phase transition, we have not provided any evidence of such a behavior through

explicit microscopic calculations [such calculations have been reported by Malpetti

and Roscilde (2016) and Malpetti (2016); see Fig. 9.2(d)]. The divergence of the

quantum correlation length ξQ (Malpetti and Roscilde, 2016) expected in the vicinity

of the quantum critical point (Sachdev, 2001)

ξtot, ξQ ∼
1

T 1/z
(11.7)

drives in turn the divergence of the coherence volume NQ (although the behavior of

NQ is also sensitive to the algebraic decay of the correlation function at distances

� ξQ, as indicated by the exponent η in Eq. (11.3)). The characterization of ξQ in

the different phases of the Ising model (and, more generally, of the spatial structure of

quantum correlations 〈δSzi δSzj 〉Q) thus represents a complementary, more microscopic

understanding, of the scaling behavior of the quantum variance and of the quantum

Fisher information.

Last, but not least, the Ising chain is a unique example of an exactly solvable

model (Pfeuty, 1970) presenting a non-trivial quantum critical point (Sachdev, 2001),

and which is moreover relevant for experiments, e.g. in quantum magnetism (Kinross

et al., 2014) and atomic physics (Kim et al., 2011).

11.2 Technical aspects

In this section, we present the main technical aspects underlying the calculation of the

correlations for the quantum Ising chain.

11.2.1 Jordan-Wigner mapping and Bogoliubov transformation

Jordan-Wigner mapping to fermions. The first step is to map the spin operators

to fermionic operators through a Jordan-Wigner transformation (Lieb, Schultz, and

for which the variance of Sz is N2/4.
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Mattis, 1961; Pfeuty, 1970)

σxi = 1− 2c†ici

σyi = −i



i−1∏

j=1

σxj


 (ci − c†i )

σzi = −



i−1∏

j=1

σxj


 (ci + c†i ) . (11.8)

where the operators c(†)
i obey the fermionic anti-commutation relations {ci, cj} = 0

and
{
ci, c

†
j

}
= δij . In terms of the c(†)

i operators, the Ising Hamiltonian of Eq. (11.5)

takes the form of a quadratic Hamiltonian

H = −J
N−1∑

i=1

(c†ici+1 + c†i+1ci + c†ic
†
i+1 + ci+1ci − 2gc†ici + g) , (11.9)

which can be diagonalized by a Bogoliubov transformation.

Bogoliubov diagonalization. Introducing the symmetric 2N × 2N matrix

L =

(
A B

−B −A

)
(11.10)

withAij = 2Jgδij−J(δj,i+1+δj,i−1) andBij = −J(δj,i+1−δj,i−1), the Hamiltonian

reads

H =
1

2

(
c† c

)
L
(
c

c†

)
+ const. , (11.11)

where c = (c1, . . . , cN )T . As B is antisymmetric while A is symmetric, L is a

symmetric matrix which can be diagonalized by a unitary transformation (Blaizot and

Ripka, 1986)

L
(
c

c†

)
= U [E ⊕ (−E)]U † , (11.12)

where E = diag(E1, . . . EN ). This finally brings the Hamiltonian into a diagonal

form

H =

N∑

α=1

f †αfαEα + const. (11.13)

where (
c

c†

)
= U

(
f

f †

)
(11.14)

As we cannot deal exactly with periodic boundary conditions on a finite chain (Lieb,

Schultz, and Mattis, 1961), we have worked with an open chain.
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Spectrum in the infinite-size limit. In the thermodynamic limit, boundary condi-

tions are irrelevant and the excitation spectrum for the free fermions is

Ek = 2J
√

1 + g2 − 2g cos k (11.15)

where k is the wavevector. The spectrum has a gap at k = 0

∆ = 2J |1− g| (11.16)

which vanishes linearly when approaching the critical point g = 1. Although in the

fermionic picture the system seems to always possess well-defined quasiparticles,

these quasiparticles are not related to local observables, and cannot be probed by

conventional spectroscopic approaches (such as neutron scattering) which couple to

local spin observables. It is only in the limit g � 1 and g � 1 that the fermionic

quasiparticles can be approximated in terms of the spin degrees of freedom.

11.2.2 Fermionic correlations

Given the quadratic nature of the fermion Hamiltonian, the density-matrix of the

system ρ = e−βH/Z obeys Wick’s theorem at any temperature T = β−1. As a

consequence, all correlations for the spin degrees of freedom can be expressed as

combinations of the fundamental correlators for the fermions

C(t) =

〈(
c(t)

c†(t)

)(
c†(0) c(0)

)〉
(11.17)

where O(t) = eiHtOe−iHt. These correlators are themselves obtained via the Bogoli-

ubov transformation U from the correlators of the f operators:

C(t) = U

(
e−itE

1+e−βE
0

0 eitE

1+eβE

)
U † , (11.18)

where we used that fα(t) = e−itEαfα and 〈f †αfα〉 = [1+eβEα ]−1 (all other correlators

for the f (†)
α vanish). Note that the expression for C(t) is valid both for real times t and

imaginary times τ = it.

In practice, it is more convenient to work with the following (“Majorana”) opera-

tors

φ±i = ci ± c†i (11.19)

whose correlations are readily obtained from the correlation matrix C(t). These

operators anti-commute on different sites, and onsite, satisfy (φ±i )2 = ±1 and

{φ+
i , φ

−
i } = 0.
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11.2.3 Spin correlations

XX correlations. From the Jordan-Wigner mapping of Eq. (11.8), correlations for

σxi are just the density correlations for the fermions:

〈δσxi (t)δσxj (t)〉 = 4〈δni(t)δnj(t)〉 (11.20)

where ni = c†ici. These correlations will not be necessary in our subsequent analyses.

We shall only need the average magnetization which reads (note that σxi = 1− 2ni =

φ+
i φ
−
i )

〈Sx〉 =
1

2

N∑

i=1

〈φ+
i φ
−
i 〉 . (11.21)

ZZ correlations. We have

σzi = −



i−1∏

j=1

φ+
j φ
−
j


φ+

i . (11.22)

Obviously, being a product of an odd number of fermionic operators, the average

value of σzi vanishes. On the other hand, the correlation function takes the form

〈σzi (t)σzj (0)〉 =

〈[
i−1∏

k=1

φ+
k (t)φ−k (t)

]
φ+
i (t)

[
j−1∏

l=1

φ+
l φ
−
l

]
φ+
j

〉
. (11.23)

For equal-time correlators (t = 0), some simplifications are possible. Indeed equal-

time correlations read

〈σzi σzj 〉tot =

〈
φ−i

[
j−1∏

l=i+1

φ+
l φ
−
l

]
φ+
j

〉
. (11.24)

Although the mapping to fermions reduces the problem to that of free particles, the

simple two-body correlations for the original spins are thus expressed in general as

a 2(i + j − 1) ≈ N -body correlator. According to Wick’s theorem for fermionic

operators (Blaizot and Ripka, 1986), this correlator can be expressed as a Pfaffian:

〈a1a2 . . . a2n〉 = Pf(A) (11.25)

where Aij = 〈aiaj〉 is an antisymmetric matrix. The Pfaffian of a 2n× 2n antisym-

metric matrix is

Pf(A) =
1

2nn!

∑

P∈S2n

sign(P)

n∏

i=1

AP(2i−1),P(2i) , (11.26)

where the sum runs over the (2n)! permutations of the 2n indices, and sign(P) is the

sign of the permutation (namely the parity of the number of pair-wise exchanges of

indices which compose P). Wimmer (2012) has published a package to efficiently

compute such Pfaffians numerically, which we used in its Python implementation.
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YY correlations. Given that

σyi = −i



i−1∏

j=1

φ+
j φ
−
j


φ−i , (11.27)

the calculation of the correlations for the y component of the spins goes along the

same line as for the zz correlations. For the yy correlations, we shall only need the

equal-time (total) correlations, which simplify to

〈σyi σ
y
j 〉tot = −

〈
φ+
i

[
j−1∏

l=i+1

φ+
l φ
−
l

]
φ−j

〉
. (11.28)

11.2.4 Quantum correlations and QFI

Quantum covariance. The quantum covariance is obtained by subtracting the ther-

mal covariance from the total one (see Section 2.2). We focus on the splitting between

thermal and quantum correlations for the zz correlations, but what follows is immedi-

ately generalizable to all spin components. The thermal covariance is

〈σzi σzj 〉T =
1

β

∫ β

0
dτ 〈σzi (τ)σzj (0)〉 , (11.29)

namely the averaged imaginary-time correlations (σi(τ) = eτHσzi e
τH) (Malpetti and

Roscilde, 2016), see Section 2.2. The quantum covariance is thus

〈σzi σzj 〉Q = 〈σzi σzj 〉tot − 〈σzi σzj 〉T . (11.30)

We obtain the structure factors by Fourier transform

Stot,Q,T
k =

1

4N

N∑

i,j=1

eik(ri−rj)〈σzi σzj 〉tot,Q,T (11.31)

(the factor 1/4 is present because Szi = σzi /2).

Quantum Fisher information. The calculation of the QFI is more demanding.

Indeed, we have to resort to its expression in terms of the dynamical susceptibility

(Hauke et al., 2016), see Section 1.6

FQ(Szk) = (4/π)

∫ ∞

0
dω χ′′(k, ω) tanh(βω/2) . (11.32)

Although we mainly focus on k = 0, we shall consider also the QFI for the fluctuations

of Szk =
∑N

r=1 e
ikrSzr , expressing the sensitivity of the state to unitary transformations

induced by a magnetic field varying in space at wavevector k, and oriented along the z
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axis. The dynamical susceptibility χ′′(k, ω) is obtained from the dynamical structure

factor via the fluctuation-dissipation theorem (Callen and Welton, 1951; Forster, 1995)

χ′′(k, ω) =
1− e−βω

2
S(k, ω) . (11.33)

To obtain the dynamical structure factor, we first introduce the Fourier transform of

the real-time spin-spin correlations

4Sij(ω) =

∫ ∞

−∞
dt eiωt〈σzi (t)σzj (0)〉 . (11.34)

Given the symmetries of the problem, one can show that 〈σzi (t)σzj (0)〉 = 〈σzi (−t)σzj (0)〉∗ =

〈σzj (t)σzi (0)〉2. This property allows one to simplify the expression of Sij(ω) to

4Sij(ω) = 2

∫ ∞

0
dt
{

cos(ωt)<[〈σzi (t)σzj (0)〉]− sin(ωt)=[〈σzi (t)σzj (0)〉]
}
.

(11.35)

The dynamical structure factor is then obtained after a spatial Fourier transform

S(k, ω) =
1

N

N∑

i,j=1

eik(rj−ri)Sij(ω) . (11.36)

Given that, numerically, we worked with a discretized time, and given the rich

behavior of the real-time correlation functions (as opposed to the imaginary-time

correlations which show a simple monotonous decay, symmetric with respect to

τ = β/2), the final accuracy on the QFI is not obvious to control. We have verified

that our precision on χ′′(k, ω) was sufficient to reconstruct the quantum structure

factor with a relative accuracy of less than 10−2 through (see Section 1.7)

SQk =

∫ ∞

0

dω

π
hQV(βω) χ′′(k, ω) (11.37)

with

hQV(x) = coth(x/2)− 2

x
, (11.38)

in comparison with a direct calculation through Eq. (11.29), (11.30) and (11.31).

Quantum Fisher information matrix. Alternatively to the QFI of Sz fluctuations

at different wavevectors k, we can directly study the spatial structure of quantum

correlations contributing to the QFI by calculating the so-called “quantum-Fisher-

information matrix”, or, as we already renamed it in Chapter 8, the “quantum Fisher

information covariance”. The latter is defined as

〈Szi Szj 〉QFI = (4/π)

∫ ∞

0
dω

1− e−βω
2

tanh(βω/2)Sij(ω) . (11.39)

2 To prove this, one can calculate the average by inserting a basis of eigenstates of the Hamiltonian
between σzi (t) and σzj (0), and use the fact that the matrix elements of σzi are real.
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FQ(Szk) can then be obtained from 〈Szi Szj 〉QFI by a spatial Fourier transform. This

QFI covariance, already discussed in Chapter 8 in the context of free fermions, has a

similar status to the quantum covariance: its spatial structure (typically an exponential

decay at large distance) provides a microscopic understanding of the scaling behavior

of the QFI, governed by a “QFI correlation length”, denoted ξQFI, to be compared

to the quantum correlation length ξQ, governing the spatial decay of the quantum

covariance (Malpetti and Roscilde, 2016), and to the usual, total correlation length

ξtot governing the spatial decay of the usual, total covariance.

11.3 Spatial structure of quantum correlations away
from the critical region

In this section, we study the spatial structure of correlations, and discuss the behavior

of the correlation length for the total covariance (ξtot), the quantum covariance (ξQ)

and the QFI covariance (ξQFI). The quantum critical region is studied in details in

the next section. In the present section, we focus on g < 1, where the system orders

ferromagnetically at T = 0, and on g > 1, where FM order never develops, and the

system remains in a (quantum) PM phase down to T = 0. This quantum PM phase

for the d = 1 Ising chain has properties very similar to the one described for the

infinite-range Ising model in Chapter 10.

11.3.1 Ferromagnetic phase (g < 1)

Total fluctuations. For g < 1, the system develops true long-range order only at

T = 0. However, as the correlation length ξtot diverges exponentially (Sachdev, 2001)

ξtot ∼ e∆/T (11.40)

finite-size systems appear effectively ordered at temperatures much smaller than the

gap (i.e. for T such that ξtot & N , or T . ∆/ logN ). In fact, this divergence of the

correlation length signals a thermal phase transition at a critical temperature T = 0.

In essence, the phase diagram of the d = 1 Ising model has thus the topology of the

generic phase diagram of 9.1, where the ordered FM phase has collapsed onto the

segment (T = 0, g < 1). The Ising model in d = 1 (like in any dimension) has two

quasi-degenerate ground states for g < gc (the gap between them is exponentially

small in N ), corresponding to the symmetric and anti-symmetric superpositions of

symmetry-breaking configurations, where all the spins order along±z. The divergence

of ξtot signals that the system is effectively frozen in one of these configurations at

sufficiently low temperature (strictly speaking, only at T → 0 for N =∞).
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Figure 11.2: Structure of correlations in the FM region (g = 0.8, so that ∆/J = 0.4,
andN = 30). (a) Total, quantum and QFI covariance of σz between the first spin of the
chain and the ith spin (T = 0.7454). Solid lines are fit of the form 〈δσz0δσzi 〉 = ae−i/ξ .
The corresponding correlation lengths ξ are plotted on panel (b) as a function of
temperature. (c) Structure factors at T = 0.1757. The vertical dashed-dotted black
line indicates kξQ = 1, separating quantum-dominated fluctuations (kξQ > 1) from
thermal-dominated fluctuations (kξQ < 1). (d) k = 0 fluctuations as a function of
temperature. The total structure factor diverges as e∆/T at low temperature, and
saturates to ∝ N on a finite-size system, while quantum fluctuations are not critical.
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Quantum fluctuations. Quantum fluctuations of Sz , on the other hand, represent

the quantum uncertainty of the orientation of the magnetization: even if the spins order

preferentially along, say +z, they continue to fluctuate quantum-mechanically down

to T = 0 under the effect of the transverse field. But in contrast to thermal fluctuations,

for g < 1 these quantum fluctuations are correlated only at short distances, ξQ � ξtot

and are never strong enough to reverse the orientation of Sz . This scenario is the

generic one expected near a thermal phase transition (see Chapter 9) and was observed

for the Ising model with infinite-range interactions (Chapter 10). We thus expect that,

as opposed to total fluctuations, quantum fluctuations do not exhibit any divergent

behavior at low temperature.

Illustration for g = 0.8. Figure 11.2 illustrates this scenario. Panels (a) and (b)

show a complete separation of scales for thermal and quantum fluctuations (as

quantified by the quantum covariance or the QFI covariance): both decay expo-

nentially (panel a), but ξtot diverges exponentially upon lowering the temperature

(panel b), while ξQ and ξQFI smoothly increase towards their ground-state value

ξ(T = 0) ∼ 1/∆. We observe that ξQFI is about twice as large as ξQ for T & ∆, sim-

ilar to our findings for free fermions (Chapter 8). For T � ∆, quantum correlations

take their ground state value, and they have the effect of lowering the value of the

magnetization in the ground state (Sachdev, 2001) with respect to 〈Sz〉 = N/2 found

for the classical Ising chain (namely for g = 0). Even though this is not shown in Fig.

11.2(b), on a finite-size system even ξtot will eventually come down to a finite value

when T → 0, coinciding with the value of both ξQ and ξQFI.

As expected, the behavior of the correlation lengths reflects in the integrated

correlation functions (the structure factors) as illustrated on Fig. 11.2(c,d). On panel

(c), we clearly see that at distances x < ξQ (kξQ > 1), the structure of fluctuations

is dominated by quantum effects, while thermal fluctuations dominate for x > ξQ

(kξQ < 1). The splitting between thermal and quantum fluctuations as proposed in

this manuscript hence allow for a direct inspection of the length scales over which

quantum and thermal effects are respectively dominant, without a priori knowledge

of the detailed dynamics of the system. Finally, on panel (d), we have plotted the

evolution of the k = 0 structure factors (i.e. the total variance, the QV and the QFI

of Sz per spin). The observed behavior is very similar to that of the correlation

lengths (panel b): the total variance diverges exponentially (and quickly saturate to

〈δ2Sz〉 ∼ N2 due to strong finite-size effects), while quantum fluctuations smoothly

saturate their ground-state value.
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Figure 11.3: Dynamical correlations in the paramagnetic phase (g > 1). (a) Real-time
dynamics of the fluctuations at wavevector k (Sk(t) is defined in Eq. (11.43)). Data
for different values of k are shifted by an amount

√
k for a better visibility. The small

vertical black lines indicate t1 = N/∂kEk and t2 = 3t1. Calculation for N = 30,
g = 1.2, T = 0.012, up to time tJ = 147 with 640 time steps. (b) Frequency
spectrum of the data of (a), showing a resonance at ω = Ek, consisting of two peaks
separated by ∆ω ∝ 1/N (see text). The dashed orange line is the excitation spectrum
in the limit N →∞ given by Eq. (11.15). (c) Static structure factor for N = 300 and
T = 0.02. Solid lines are the prediction of Eq. (11.44).

11.3.2 Quantum paramagnetic phase (g > 1)

Dynamical structure factor. For g > 1, FM order never develops even at T = 0,

but the system has a finite magnetic susceptibility with respect to the application

of a field along the z axis (hence the term “paramagnet”). Spins are preferentially

aligned along +x (the orientation of the transverse field), and the system possesses
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well-defined quasiparticles, consisting of spin-flips along −x. These quasiparticles

manifest themselves as resonances at ω = Ek [given in Eq. (11.15)] in the dynamical

structure factor for SzSz correlations, predicted via quantum field theory to take the

form (for g → 1+ and k → 0) (Sachdev, 2001)

S(k, ω) ≈ c(∆/J)1/4

2Ek

1/τφ
(ω − Ek)2 + (1/τφ)2

. (11.41)

c = 2
√
g is defined through Ek ≈ ∆ + (ck)2/(2∆) (Ek is given in Eq. (11.15)),

and the amplitude of the resonance is known analytically (Sachdev, 2001). The

quasiparticle picture breaks down when approaching the critical point where ∆→ 0.

In principle, this expression for the dynamical structure factor is valid only for c|k| �√
∆T (Sachdev, 2001).

The phase coherence time τφ ∼ e∆/T , responsible for a thermal broadening of

the resonance, is essentially infinite for T � ∆, and the Lorentzian peak can be

approximated by a delta function

S(k, ω) ≈ c(∆/J)1/4

2Ek
πδ(ω − Ek) . (11.42)

Real-time dynamics. Equivalently, the real-time dynamics of the structure factor

exhibits undamped oscillations at a single frequency

Sk(t) =
1

4N

N∑

i,j=1

eik(ri−rj)〈σzi (t)σzj (0)〉 ≈ c(∆/J)1/4

4Ek
eiEkt . (11.43)

As illustrated on Fig. 11.3(a), on a finite-size system (here N = 30), this perfectly

coherent oscillation is modulated on a much longer period T (k). This period turns

out to coincide with the time needed for a quasiparticle at wavevector k, propagating

ballistically at a velocity vG(k) = ∂kEk, to travel twice across the chain: T (k) =

2N/vG(k). In the limit N →∞, this period becomes infinite, and only the frequency

ω = Ek remains. On Fig. 11.3(b), we have plotted the frequency spectrum of Sk(t)

(namely the dynamical structure factor S(k, ω)). Due to the low modulation at a

frequency 2π/T (k), each ω = Ek peak is split into two components, separated by a

frequency ∆ω ∝ 1/N , so that a single peak is recovered in the thermodynamic limit.

Note that as S(k, ω) ∝ 1/Ek [see Eq. (11.42)] we have multiplied S(k, ω) by Ek to

have a nearly uniform contrast on the figure.

Static structure factor. As a further validation of the prediction of Eq. (11.42) for

the dynamical structure factor in the PM phase, and especially of the prediction for
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the amplitude of the resonance, we have tested the corresponding prediction for the

static structure factor

Stot
k = Sk(t = 0) ≈ c(∆/J)1/4

4Ek
(11.44)

against an exact calculation on a chain of N = 300 spins, at T = 0.02, for various

values of the transverse field g. The comparison is shown on Fig. 11.3(c), and the

agreement is quite good at small k (note that for g = 1.05, finite-size effects are

visible at k = 0, as expected close to the critical point).

Quantum versus total correlations. In the PM phase, quantum and thermal cor-

relations have the same qualitative structure: all of them decay exponentially, as

illustrated on Fig. 11.4(a). The correlation lengths, extracted from this exponential

decay and plotted on Fig. 11.4(b), are of the same order of magnitude, with

ξQ < ξQFI < ξtot . (11.45)

For T � ∆, the correlation lengths are governed by the gap, so that ξ = O(c/∆)

(Sachdev, 2001). For T � ∆, on the other hand, ξ ∼ 1/
√
T , corresponding to

the de Broglie wavelength of free particles. This exponential decay is equivalently

understood from the Lorentzian shape of the corresponding structure factors at small

k, plotted on Fig. 11.4(c).

Similarly to the FM phase, we observe that the structure of fluctuations is governed

by the quantum contribution for kξQ > 1, and by the thermal contribution for kξQ < 1.

For T < ∆, the k = 0 structure factor (panel d) almost saturates its ground-state value,

which is proportional to ∆−3/4, in agreement with Eq. (11.44). For T � ∆, total

fluctuations attain the shot-noise limit 〈δ2Sz〉 = N/4, while quantum fluctuations

decrease proportionally to 1/T 2. Interestingly, for intermediate values of T , the

scaling behavior of both the QFI and the QV seems to cross-over to an intermediate

power-law regime, somehow anticipating the 1/T 1−η divergence along the critical

trajectory g = 1 (see discussion in Sec. 11.4.3).

11.4 Quantum critical scaling at T > 0

11.4.1 Field-theory prediction

At the quantum critical point (g = 1, T = 0), the long-distance / low-frequency

properties of the quantum Ising chain are captured by a field theory describing the

fluctuations of the magnetization density φ(x, τ) in space (x) and in imaginary time (τ )

(Sachdev, 2001). This field theory (the 1 + 1-dimensional quantum O(1) model) has
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Figure 11.4: Structure of correlations in the paramagnetic phase (g = 1.2, N = 30).
(a) Quantum, total and QFI covariance of σz between the first spin of the chain and
a spin at position i. Solid lines are fits of the form ae−i/ξ. The resulting correlation
lengths ξ are plotted on panel (b) as a function of temperature. For T � ∆, ξ ∼ 1/

√
T ,

corresponding to the thermal de Broglie wavelength of the quasiparticles. (c) Structure
factors. The vertical dashed line indicates a cross-over between thermal-dominated
(kξQ < 1) and quantum-dominated (kξQ > 1) fluctuations. (d) k = 0 fluctuations as
a function of temperature. For T � ∆, total fluctuations are essentially uncorrelated,
and assume the shot-noise value 〈δ2Sz〉 = N/4, while quantum fluctuations are
proportional to 1/T 2. A scaling regime, precursor of the quantum critical scaling, can
be guessed at intermediate temperature for the QV and the QFI, but no clear power-law
exponent can be extracted.
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the same form as the one describing the (thermal) critical point of the d = 2 classical

Ising model. In particular, correlation functions are invariant under rotation in the

(x, cτ) plane, and their decay with distance is controlled by the exponent η = 1/4 of

the d = 2 classical Ising model

〈σzx(τ)σz0(0)〉 ∼ 1

(x2 + c2τ2)1/8
(11.46)

(this rotational invariance in the (x, cτ) plane, which implies that the correlation

function depends only on the distance x2 + c2τ2, is the consequence of the value

z = 1 for the dynamical exponent, itself a consequence of the linear spectrum ω = ck

at the critical point, see Eq. (11.15)). Equivalently, the real-time correlations display

Lorentz invariance

〈σzx(t)σz0(0)〉 ∼ 1

(x2 − c2t2)1/8
, (11.47)

or in Fourier space

S(k, ω) ∼ 1

[k2c2 − (ω + i0+)2]7/8
. (11.48)

At finite temperature, the (x, cτ) plane acquires the topology of a cylinder: fluctuations

in imaginary time are periodic, of period β. Techniques of conformal field theory

allow the T = 0 results to be extended at finite temperature along the critical trajectory

(g = 1, T ≥ 0). It is remarkable that this field-theory approach to the quantum

Ising chain gives not only the correct scaling laws, but also the exact expression

of the scaling functions. The central result, which forms the starting point for the

comparison of our numerical calculations with the field-theory predictions, is the

following expression for the dynamical susceptibility (Sachdev, 2001)

χ(k, ω) = aT−7/4 Γ
(

1
16 − iω+ck

4πT

)
Γ
(

1
16 − iω−ck4πT

)

Γ
(

15
16 − iω+ck

4πT

)
Γ
(

15
16 − iω−ck4πT

) (11.49)

where a ≈ 0.00501 is known exactly, and where T is measured in units of J . Γ is

Euler gamma function. This formula predicts a line of peaks for ω = ck, whose width

remains finite down to T = 0, where they acquire a singular shape (see Fig. 11.5(c)).

11.4.2 Dynamical correlations

On Fig. 11.5, we compare the field-theory prediction with an exact calculation on a

open chain of N = 50 spins, for T = 0.401. On panel (a), we have compared the real-

time dynamics of <[S(k, t)] at a wave-vector k = 4π/25. The field-theory prediction

is obtained by Fourier-transforming S(k, ω), obtained itself from the imaginary-part

of χ(k, ω) via the fluctuation-dissipation theorem S(k, ω) = 2χ′′(k, ω)/(1− e−βω).

Although the initial time dependencies for the exact finite-size and the field-theory
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Figure 11.5: Dynamical correlations for g = 1, T/J = 0.401 and N = 50 spins. (a)
Real part of the dynamic correlation S(k, t) for k = 4π/25. Solid blue line: exact
numerical calculation; dashed orange line: theoretical prediction from the scaling
function of Eq. (11.49). On a finite open chain of N spins, the correlation is roughly
periodic with a period t/J = 2N . (b) χ′′(k, ω) reconstructed from a numerical Fourier
transform of (a) (solid blue line), and imaginary part of Eq. (11.49) (dashed orange
line). For the finite chain, frequencies are roughly odd multiples of the fundamental
frequency ω0 = Jπ/N . The resonance is a broad peak centered on ω = ck, the
broadening stemming from both thermal and quantum dissipation. (c) Theoretical
prediction of Eq. (11.49) for χ′′(k, ω) at k = 4π/25, for T/J = 0.001, 0.1, 0.4. The
resonance peak is completely asymmetric at T = 0, where an absorption of energy at
ω & ck decays into a continuum of excitations (there is no well-defined quasiparticle
for Sz at the critical point).
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calculations are in good agreement, the microscopic calculation shows finite-size

revivals of the correlation signal with a periodicity tN = 2N/J (note that the signal is

not exactly periodic). As shown on panel (b), it is clear that the frequency spectrum of

S(k, t) contains mainly odd multiples of the fundamental frequency ω0 = 2π/tN

ωn ≈ nJπ/N n odd integer. (11.50)

We interpret this observation by remarking that the low-lying (fermionic) excitation

spectrum of the open chain at g = 1, as obtained by the Jordan-Wigner and Bogoliubov

transformation (Section 11.2.1), is also composed of these frequencies. Given that, for

an arbitrary observable O,

〈O(t)O(0)〉 =
1

Z

∑

n,m

e−βEneit(En−Em)|〈n|O|m〉|2 , (11.51)

where the sum is over the (many-body) eigenstates of the Hamiltonian, it is clear that

these frequencies must appear in the spectrum of S(k, t) as stemming from matrix

elements between the ground state and a state containing one fermionic excitation. In

principle, we should also find all multiples and differences of the one-particle energies,

but apparently the corresponding matrix elements are strongly suppressed.

In the end, a direct comparison of our numerical reconstruction of χ′′ with the

field-theory prediction is not easy, but as the quantities we focus on in the following

result from integrating smooth “filters” multiplying χ′′(k, ω), the discrete nature of

the frequency spectrum on a finite chain (as opposed to the continuous spectrum in

the thermodynamic limit, and predicted by the field-theory) is not problematic.

Finally, on Fig. 11.5(c), we have plotted the field-theory prediction for χ′′(k, ω) at

k = 4π/25, varying the temperature. We clearly see that the broad resonance observed

at T/J = 0.4, corresponding to a very short lifetime of the magnetic excitations

created around ω = ck, sharpens upon decreasing the temperature. However, even at

T = 0, the resonance is not a delta function (i.e there are no stable quasiparticles), and

the peak is completely asymmetric with respect to ω = ck: no absorption of energy is

possible for ω < ck, while the system absorbs energy for all ω ≥ ck.

11.4.3 Scaling of fluctuations

Static structure factors. Instead of comparing directly the dynamical structure

factor as predicted by Eq. (11.49) and as calculated by exact diagonalization on a

finite chain (Fig. 11.5), we can compare the spatial structure of correlations, contained

in the corresponding static structure factors, which descends from χ′′(k, ω) as integrals

over frequencies against the various filters hα(ω/T ) (with α = T, tot, Q, QFI and so

243



on)

Sα(k) =

∫ ∞

0

dω

π
hα

(ω
T

)
χ′′(k, ω) (11.52)

where we recall that




hT(x) = 2/x

htot(x) = cotanh(x/2)

hQ(x) = cotanh(x/2)− 2/x

hQFI(x) = 4 tanh(x/2) .

(11.53)

Sα(k) is the structure factor for, respectively, thermal, total, quantum and QFI cor-

relations. Note that the thermal structure factor is equivalently given by ST(k) =

Tχ(k, 0).

Scaling form along the quantum critical trajectory. From the field-theory predic-

tion of χ(k, ω) [Eq. (11.49)], we see that χ′′ assumes the following scaling form

χ′′(k, ω) = T−7/4f

(
ck

T
,
ω

T

)
. (11.54)

This implies, in passing, that the correlation length ξ and the characteristic relaxation

time τ both scale according to

τ, ξ ∼ 1

T
. (11.55)

We can immediately draw from the scaling form of χ′′ a fundamental conclusion

concerning the scaling of fluctuations along the quantum critical trajectory. Indeed,

making the change of variable x = ω/T in the integral over ω in Eq. (11.52), we

obtain

Sα(k) = T−3/4

∫ ∞

0

dx

π
hα(x)f

(
ck

T
, x

)
. (11.56)

Focusing on k = 0 fluctuations, we conclude that

Sα(0) = (T/J)−3/4cα (11.57)

where we recall that T is measured in units of J , and where the exact value of cα is

predicted by field theory

cα =

∫ ∞

0

dx

π
hα(x)f(0, x) (11.58)

and

f(0, x) = a=
(

Γ
[

1
16 − i x4π

]2

Γ
[

15
16 − i x4π

]2

)
. (11.59)
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Figure 11.6: Scaling of fluctuations along the critical trajectory g = 1 of the quantum
Ising chain. (a) Total (dashed line), QFI (dotted line) and QV (solid line) structure
factors at k = 0 of Sz for a chain of N = 50 spins. At high temperature, the total
structure factor equals the shot-noise limit for spins-1/2 (〈δ2Sz〉 = N/4), while
quantum fluctuations decrease as 1/T 2. For temperatures T ∼ 1/N , finite-size effects
appear and all the structure factors are of order N3/4. In the quantum critical regime,
k = 0 fluctuations diverge proportionally to 1/T 1−η with η = 1/4. (b) Rescaled data
for N = 6, 12, 20, 30, 50 for the QFI, and up to N = 150 for the QV and the total
structure factor. The collapse of the curves for various values of N in these rescaled
axes, and the flat plateau, prove the scaling behavior Sα(0) = T−3/4f(N/ξ) in the
critical regime, with ξ ∼ 1/T . Horizontal dashed lines are the prediction of field
theory for f(∞) [see Eq. (11.60)].

Performing the integration numerically, we obtain




ctot ≈ 1.175

cT ≈ 1.111

cQ ≈ 0.0640

cQFI ≈ 0.557

(11.60)

Even though cT contributes for ≈ 95% to ctot, all quantities exhibit the same

(T/J)−3/4 divergence. This observation supports the statement according to which

the quantum critical region involves quantum and thermal effects on a similar footing.

Comparison of the field-theory prediction with a microscopic calculation. Fig.

11.6 shows a very good agreement of this field-theory prediction with our finite-

size calculations. Finite-size effects are apparent for T close to the finite-size gap

∆finite size ∼ 1/N , or equivalently, forN close to ξ ∼ 1/T . For T & 0.5J , the critical

regime terminates, and the physics is dominated by lattice effects (corresponding to
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g = 1, T/J = 0.266 and N = 50 spins. (a) Correlation function between the 5th

site and the site at position i + 5. Lines are exact calculations, and symbols are
given by Eq. (11.62). (b) Correlation lengths, extracted from fitting to an exponential
the correlations function calculated on a system of N = 50 spins, as a function of
temperature. Dashed-dotted line indicates the expected scaling behavior ξ ∼ 1/T
along the critical trajectory.

the fact that ξ ≈ lattice spacing). Finally, at T = 0, fluctuations diverge as

〈δ2Sz〉tot = 〈δ2Sz〉Q = (1/4)FQ(Sz) ∼ N7/4 (11.61)

in agreement with the scaling prediction.

11.4.4 Correlation lengths

Divergence of the correlation lengths. We now focus on the behavior of the corre-

lation lengths along the quantum critical trajectory. Such behavior can be predicted by

field theory, as we can indeed evaluate the correlation functions as

〈σzi σzj 〉α =
1

N

∑

k

eik(ri−rj)Sα(k) (11.62)

where Sα(k) is obtained by a numerical integration of Eq. (11.56).

On Fig. 11.7(a), we show that the field-theory prediction (symbols) is in very

good agreement with the exact calculation on a chain of N = 50 spins (lines), when

considering the correlations with a spin not too close to the boundary (here the fifth

spin of the chain). The agreement is better for the total and QFI covariance than for

the quantum covariance. In particular, the field-theory predicts small oscillations,

especially visible for the quantum covariance 〈σzi σzj 〉Q, which are not observed on our

open-chain calculation, but the correlation length is closely captured. On Fig. 11.7(b),
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the correlation lengths for these three correlation functions (as extracted from fitting

data similar to those of panel (a) at various temperatures) are plotted as a function of

temperature. As expected, for the three of them we observe the critical scaling

ξ ∼ 1/T 1/z (11.63)

with z = 1, but the prefactor for the total (and, hence, thermal) correlations is about

one order of magnitude larger than for the quantum correlation lengths.

Correlation lengths and finite-size effects. This last observation is consistent with

the picture obtained from the integrated correlation functions, namely the structure

factors at k = 0 plotted on Fig. 11.6. Indeed the total structure factor shows much

more pronounced finite-size effects than the quantum and QFI ones. As finite-size

effects are apparent for N ≈ ξ, this property must follow from the fact that the

quantum correlation lengths ξQ and ξQFI are smaller than the total ξtot (although all

of them diverge according to ξ ∼ 1/T ). This property allows one to extract the critical

exponents more easily from quantum fluctuations than from total ones.

11.4.5 Quantum critical region

We conclude this section with a brief discussion of the structure of the quantum critical

region, as witnessed by the scaling of total and quantum fluctuations.

Definition of the quantum critical region. Given the scaling of fluctuations around

the QCP

〈δ2Sz〉tot,Q = T−3/4f(∆/T ) (11.64)

where ∆ = 2|1 − g| is the gap, the quantum critical region is defined as the region

where T � ∆, so that f(∆/T ) ≈ f(0)

〈δ2Sz〉tot,Q = const.× T−3/4 . (11.65)

Characterization of the quantum critical region through total or quantum fluc-
tuations. On Fig. 11.8(a), we have plotted the total variance of Sz across the phase

diagram for N = 100 spins. To quantify quantum fluctuations, we have chosen to

compute the Wigner-Yanase “skew information” (Wigner and Yanase, 1963), defined

as

I1/2(Sz) = 〈(Sz)2〉 − 〈Sz(β/2)Sz(0)〉 (11.66)

where Sz(β/2) = eβ/2Sze−β/2. The behavior of the skew information is very close

to that of the QV and of the QFI, but is simpler to calculate. Indeed these quantities
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Figure 11.8: Quantum critical region of the Ising chain, for N = 100 spins. (a) Total
variance of Sz; (b) total variance rescaled to (T/J)−3/4; (d) logarithmic derivative
d log〈δ2Sz〉
d log T ; (d) skew information of Sz (see text) and (e) rescaled to (T/J)−3/4; (f)

logarithmic derivative
d log I1/2
d log T . On panels (b) and (e), the red dotted lines mark the

region where the rescaled fluctuations are equal to the “plateau” value within 10%
(the plateau value is approximated as the value for g = 1 and T/J = 0.3). On
panels (c) and (f), they mark the region where the logarithmic derivative is equal to
η−1 = −0.75 within 10%. On panel (a) and (d), they mark the intersection of the two
above-mentioned regions. The most conservative definition of the quantum critical
region is for the quantum fluctuations, and the corresponding region is marked on
panel (d), where the black dashed lines indicated the gap. For total fluctuations, data
for T < 0.23 are not show because they are affected by finite-size effects.
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are related by the chain of the inequalities (Section 1.8)

〈δ2Sz〉Q ≤ I1/2(Sz) ≤ FQ(Sz)/2 ≤ 2I1/2(Sz) ≤ 3〈δ2Sz〉Q . (11.67)

The skew information takes the form of Eq. (11.52) with the filter h1/2(x) =

tanh(x/4). The skew information is plotted on Fig. 11.8(d). When focusing on

total fluctuations (panel a), the quantum critical point is not easy to identify. On

the ferromagnetic side g < 1, the exponential increase of total fluctuations at low

T , discussed in Section 11.3.1, make the QCP very difficult to isolate. Instead, the

quantum fluctuations (panel d) are clearly maximal at the QCP. So is the QV (not

shown), and the QFI (Hauke et al., 2016).

Multiplying these quantities by T 3/4 to test the validity of the scaling Ansatz of

Eq. (11.64) (panels b and e), we expect to see levels of constant value for T/|g− 1| =
const. Such lines are indeed visible on the paramagnetic side g > 1 for both the total

variance and the skew information, but we cannot identify a clear plateau signaling

the quantum critical region, as was the case for the Ising model with infinite-range

interactions (compare Fig. 11.8 with Fig. 10.6). On panels (b), we have indicated the

region where

0.9 ctot ≤ 〈δ2Sz〉(T/J)3/4/N ≤ 1.1 ctot (11.68)

with ctot the plateau value given in Eq. 11.60. In practice, to limit finite-size effects,

we approximated ctot as ctot ≈ 〈δ2Sz〉(T/J)3/4/N for T/J = 0.3 and g = 1. We

used a similar definition the skew-information [Fig. 11.8(d)].

To complete the identification of the quantum critical (QC) region, we plot on

panels (c) and (f) the logarithmic derivative

d log〈δ2Sz〉
d log T

≈ (η − 2)/z + 1 = −3/4 (11.69)

in the QC region.

On panels (a), the QC region is then identified as the region where
∣∣∣∣∣
〈δ2Sz〉T 3/4

Nctot
− 1

∣∣∣∣∣ < 0.1 and

∣∣∣∣
1

1 + (η − 2)/z

d log〈δ2Sz〉
d log T

− 1

∣∣∣∣ < 0.1 (11.70)

and similarly for panel (c), where the QC region is defined in terms of the skew

information. As we see on Fig. 11.8, this naive definition of the QC region leads to

overestimate its size. It is clear, for instance, that along g = 1, the critical regime

terminates for T/J ≈ 0.5 [see Fig. 11.6)(a)], and not above T/J = 1.5. Finite-

size effects are also still present for the total fluctuations, which probably alter the

prediction with respect to the thermodynamic limit. On the other hand, quantum
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fluctuations identify a more restricted QC region. Our findings concerning the extent

of the quantum critical region at finite temperature are consistent with the ones of

Kopp and Chakravarty (2005), based on the scaling behavior of the free energy.

When going to d ≥ 2, we recover a “predictive power” of the total and quantum

fluctuations similar to the one observed in d =∞ (unpublished quantum Monte Carlo

results, courtesy of T. Roscilde).

11.5 QFI vs. spin squeezing

To conclude this chapter, we investigate the potential metrological implications of the

strong coherent fluctuations in the vicinity of the quantum critical point (QCP).

Metrological gain and spin squeezing. For the Ising model with infinite-range

interactions (which may also be viewed as the Ising model in d =∞), we saw that

the approximate equality

FQ(Sz)/N ≈ ξ−2
R =

〈Sx〉2
N〈δ2Sy〉 (11.71)

holds throughout the phase diagram (see Section 10.5, Fig. 10.7 and Fig. 11.9(a)

below). The squeezing parameter (Wineland et al., 1994) quantifies the sensitivity

of the mean orientation of the collective spin (here along the x axis) with respect to

rotations (here, rotations around the z axis). In d =∞, the “metrological usefulness”

of the system, quantified in general by the QFI, is completely captured by the squeezing

of fluctuations of the collective spin. We argued that this property holds in virtue

of the gaussian nature of the fluctuations in d =∞, including at the QCP. It is thus

extremely interesting to contrast this d = ∞, gaussian behavior, with the behavior

of the same model in the opposite d = 1 limit, where deviations from the mean-field

behavior are expected to be extreme.

Absence of divergence of the squeezing parameter at the QCP. As we show on

Fig. 11.9(b), it turns out that the system manifests nearly no squeezing down to the

lowest temperatures along the critical trajectory g = 1 (or a very weak squeezing,

ξ−2
R . 2, which does not scale with N in the limit N →∞ at the QCP).

Beyond squeezing. The very important and natural question is then to identify the

observable whose average value is extremely sensitive to rotations around the z axis.

The QFI provides the ultimate sensitivity among all possible observables, but no

information on the actual one which has to be measured. As already remarked, at

250



10 2 10 1 100

T/J

10 1

100

101

(a)
d =

FQ(Sz)/N
2

R

10 2 10 1 100 101

T/J

10 3

10 2

10 1

100

101 (b)
d = 1

FQ(Sz)/N
2

R

4 and 8 × I1/2

Figure 11.9: Spin squeezing vs. QFI along the quantum critical trajectory. (a)
Ising model with infinite-range interactions (see Section 10) for N = 1000 spins.
The QFI (solid blue line) is completely captured by the squeezing parameter ξ−2

R

(orange dots). (b) Ising chain for N = 50 spins. The quantum critical scaling is
not exhibited by the squeezing parameter. Dashed lines show the “skew information”
I1/2 = 〈Sz(0)[Sz(0)− Sz(β/2)]〉/N , which bounds the QFI (4I1/2 ≤ FQ ≤ 8I1/2,
see Section 1.8), and is much simpler to calculate in practice. Here, we introduced
Sz(τ) = eτHSze−τH.

the QCP the QFI scales as FQ(Sz) ∼ N7/4, almost saturating the Heisenberg limit

FQ(Sz) = N2, obtained with a “Schrödinger-cat state”

|Ψcat〉 =
1√
2

(
⊗Ni=1| ↑z〉i +⊗Ni=1| ↓z〉i

)
. (11.72)

Actually, this Schrödinger-cat state is very close to the exact ground state for g < 1 on

a finite-size system, and it is well-known that the metrological usefulness of this state

may be exploited by measuring the evolution of the parity of Sx

P (θ) = 〈
N∏

i=1

σxi 〉(θ) (11.73)

under rotations around z (|Ψcat〉(θ) = e−iθS
z |Ψcat〉) (Bollinger et al., 1996), as

demonstrated in trapped-ions experiments (Monz et al., 2011; Leibfried et al., 2005).

Indeed, P (θ) exhibits interference fringes oscillating at a frequency 2π/N , to be

compared with the 2π frequency obtained for the Rabi oscillations of uncorrelated

spins polarized initially along the x axis. This remark suggests to investigate the

evolution of P (θ) for the Ising chain, and compare the obtained sensitivity with the

QFI. We postpone this study to a future work.
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Chapter 12

Conclusions, perspectives

During this thesis, we have adopted a quantum statistical mechanics point of view in

order to characterize coherent fluctuations and quantum correlations in many-body

systems. Our conclusions are threefold.

12.1 General framework to quantify quantum
correlations.

Focusing on equilibrium states, we have developed a general framework to quantify

quantum fluctuations via standard thermodynamic quantities (namely fluctuations and

response functions).

Quantum variance. In this context, the central quantity we have introduced is the

quantum variance (QV) of an arbitrary observable O

〈δ2O〉Q = 〈δ2O〉 − TχOO , (12.1)

defined as difference between the total variance of O and (T times, with T the

temperature) the static susceptibility of 〈O〉 with respect to a small perturbation which

couples to O in the Hamiltonian.

Coherent fluctuations. We have shown that the quantum fluctuations, as quantified

by the QV, have a coherent nature, and could be probed by interferometric measure-

ments. By doing so, we proved that the QV belongs to a larger family of so-called

coherence measures, in the sense of quantum information theory. In particular, we

argued that the QV of O is closely related to a central quantity for quantum metrology,

the quantum Fisher information FQ(O), quantifying the potential metrological gain
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that can be attained if a quantum-correlated many-body system is used as the input of

an interferometer in which the unitary evolution is generated by the observable O in

question. Indeed, we proved the following chain of inequalities

〈δ2O〉Q ≤
FQ(O)

4
≤ 3〈δ2O〉Q , (12.2)

showing that the QV and the quantum Fisher information quantify the same physical

property — the quantum uncertainty of O.

Quantum covariance. As a natural extension of the concept of coherent fluctua-

tions, we introduced a physical concept of quantum correlations, namely correlations

among coherent fluctuations, as quantified by the quantum covariance of two observ-

ables O1 and O2:

〈δO1δO2〉Q =
1

2

(
〈δ2O1 +O2〉Q − 〈δ2O1〉Q − 〈δ2O2〉Q

)
. (12.3)

Although very natural from the point of view of coherent fluctuations, this physical

concept of quantum correlations is independent of previous measures of quantum

correlations proposed in the literature.

We can envision several directions for future work:

• To clarify the status of the quantum covariance within quantum information

theory is an important perspective open to future studies.

• Once introduced theoretically, quantum correlations beyond (or alternative to)

entanglement can be used to characterize both thermal equilibrium states (as

done in this thesis) as well as non-equilibrium ones, such as the generalized

Gibbs ensemble of integrable quantum systems, or stationary states of the

evolution of driven-dissipative systems.

• Furthermore, one can speculate on the possibility to define, beyond the quantum

variance, a probability distribution for quantum fluctuations. Such a definition

is rather straightforward within the path-integral framework for equilibrium

states, but in general, it is not obvious that a precise definition (and a precise

physical meaning) can be given to this concept. If such a precise definition can

be obtained, it would allow to study, e.g. possible universal traits in the quantum

critical regime, at non-equilibrium quantum phase transitions, etc.

12.2 Entanglement thermodynamics

As a special case of equilibrium states, we have devoted a large part of this thesis to

the study of zero-temperature quantum many-body systems. In this context, we have
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explored the relationship between quantum fluctuations and entanglement entropy of

extended subsystems from a thermodynamic perspective.

Local entanglement temperature. According to the physical picture we have de-

veloped, the reduced density matrix of a subsystem A is closely approximated by a

thermal state, albeit with a spatially-varying entanglement temperature T (x)

ρA ≈
1

Z
exp

(
−
∫

x∈A

H(x)

T (x)

)
(12.4)

whereH(x) a uniform Hamiltonian which, under general assumptions, can be thought

of as the physical Hamiltonian of the system. This physical picture is inspired by the

Bisognano-Wichmann theorem for a Lorentz-invariant quantum field theory, according

to which the local temperature is given by

T (x′) =
c

2πx′
(12.5)

with c the speed of light, and x′ the distance to the boundary between x and the

complement of A.

Local equilibrium approximation. Based on this physical picture, we have been

able to relate entanglement entropy and quantum fluctuations via a local equilibrium

approximation. Central to this approximation is the concept of entanglement and

fluctuation contours, expressing the local contribution of a portion of a subsystem

to the entanglement entropy or quantum fluctuations of extensive observables of the

subsystem itself. According to the local equilibrium approximation, the contours at

position x are related in the same manner as the corresponding bulk quantities (ther-

modynamic entropy and fluctuations) would be in an equilibrium state at temperature

T (x). Namely, we argued that

S ≈
∫

x∈A
s[T (x)] (12.6)

where s(T ) is the entropy density at temperature T , and similarly for the variance of

O:

〈δ2O〉 ≈
∫

x∈A

〈δ2O〉[T (x)]

V
. (12.7)

Reconstruction of the entanglement temperature. We have also shown how the

entanglement temperature can be reconstructed from the knowledge of 1) the correla-

tions 〈δO(x)δO(y)〉 in the ground state; 2) the temperature dependence of 〈δ2O〉(T ).

Indeed, the local temperature T (x) can be extracted from

CO(x) ≡
∫

y∈A
〈δO(x)δO(y)〉 ≈ 〈δ

2O〉[T (x)]

V
, (12.8)
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where CO(x) is the contour associated to the fluctuations of O.

On the side of future perspectives, we observe that the experimental reconstruction

of the entanglement temperature would provide a new characterization of quantum

many-body systems, and can be envisioned in state-of-the-art cold-atom experiments

based on quantum-gas microscopes which can measure, e.g. density correlations.

Microscopic understanding of the scaling laws of entanglement and fluctuations
in the ground state. Focusing on basic examples of many-body systems (inspired

by cold atom experiments), namely free fermions and interacting bosons on a lattice,

our thermodynamic approach provided us with a microscopic explanation for the area-

law scaling of entanglement entropy and particle-number fluctuations in a subsystem,

and for the possible (logarithmic) violation of the area-law.

Free fermions. For free fermions in a gapless phase, we showed that, in compliance

with the picture of local equilibrium, the contours for entanglement and for density

fluctuations are tightly related by

Cs(x) ≈ π2

3
CN (x) . (12.9)

Superfluid bosons. For bosons in a superfluid phase, we showed that the entangle-

ment contour is made of two parts: 1) a large-distance universal part that we have

predicted analytically, and confirmed numerically

Clarge dist.
s (x) ≈ ad

x′d
(12.10)

where d is the number of spatial dimensions, and ad is a universal constant that we

have determined analytically; and 2) a short-distance exponential decay uniquely

controlled by the healing length ξh

Cshort dist.
s (x) ∼ e−x′/ξh . (12.11)

On the side of perspectives, in a recent work we have studied the consequences

of power-law-decaying interactions (1/rα) onto the structure of entanglement and

fluctuations in the ground state of the XXZ spin model (Frérot, Naldesi, and Roscilde,

2017a). We have shown that for d < α < d + 2, the area-law of the entanglement

entropy is preserved, while collective-spin fluctuations acquire a modified scaling

behavior controlled by the exponent α. It would be extremely interesting to understand

these results from the perspective of entanglement thermodynamics. It would be

interesting to see if the local equilibrium hypothesis breaks down due to the non-

locality of long-range interactions.
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We can also envision the extension of the study of contours in out-of-equilibrium

situations (as already discussed by Chen and Vidal (2014)), and define a local in-

stantaneous entanglement temperature thanks to an instantaneous local equilibrium

hypothesis. This point of view could shine light on the generic problem of correlation

and entanglement spreading after a quantum quench, which we recently addressed

in the particular case of a long-range interacting spin model (Frérot, Naldesi, and

Roscilde, 2017b).

Entanglement across the superfluid-Mott insulator phase transition. Based on

a controlled quadratic approximation to the Bose-Hubbard Hamiltonian (the slave-

boson approach), we have studied the reorganization of quantum correlations across

the paradigmatic superfluid-Mott insulator phase transition for interacting bosons

on a lattice. Our main result in this context is the prediction of a sharp cusp for

the entanglement entropy at the O(2) transition (namely the transition occurring at

fixed, integer filling fraction), that we could attribute to the softening of amplitude

fluctuations of the superfluid order parameter upon approaching the transition. This

interpretation is based on the strong similarities between the physical spectrum (known

to display such an extra soft mode) and the entanglement spectrum.

As future perspectives, we remark that the quantitative link between the cusp

singularity of the entanglement entropy and the behavior of the contours remains to

be understood. Most importantly, the definition of the entanglement contour beyond

the quadratic models we have focused on also represents an important challenge for

future works.

12.3 Quantum versus thermal criticality

Absence of divergence of quantum fluctuations at thermal critical points. The

general framework we have developed to quantify coherent fluctuations and quantum

correlations is especially suited to contrast the physical mechanisms at play close

to thermal phase transitions (induced by thermal fluctuations), with those at play

close to quantum phase transitions (induced by quantum fluctuations). In particular,

resorting to generic scaling arguments, we have shown that quantum fluctuations are

not expected to diverge at thermal critical points. Nonetheless, we showed that they

are indeed singular, and that their singular part is governed by the dynamical critical

exponent, associated to the so-called critical slowing down of the dynamics close to

the thermal phase transition.

In the future, it would be very interesting to take advantage of the link between the
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singular part of quantum fluctuations at a thermal phase transition and the dynamical

critical exponent in order to extract the value of this exponent, either in numerical

calculations, in field-theory calculations, or in experiments. This would provide an

alternative to the methods probing directly the dynamics of the order parameter.

Divergence at quantum critical points. By focusing on two exactly solvable limits

of the paradigmatic Ising model in a transverse field (namely the infinite-range limit

and the d = 1 Ising chain with nearest-neighbor interactions), we have shown that

quantum fluctuations diverge at the quantum critical point (QCP), and only there —

in particular they do not diverge at thermal phase transitions, in agreement with the

arguments of scaling theory.

Moreover, we have proposed to define the quantum critical region (namely the

finite-temperature region in which the scaling of fluctuations is governed by the critical

exponents of the QCP) in terms of the scaling behavior of quantum fluctuations, as

captured e.g. by the quantum variance. This definition allowed us to identify in a

clean manner the quantum critical region, in comparison to the characterization based

on a similar definition for the total fluctuations — as the latter are also affected by

thermal criticality, if present.

In this respect, the study of quantum critical regions from the perspective of

quantum fluctuations for the Ising model in dimensions d = 2, 3, and for other classes

of models, represents an exciting perspective open to future works.

Quantum versus total correlation length. The spatial structure of quantum corre-

lations at finite temperature can be characterized by a quantum correlation length ξQ,

defined through

〈δOiδOj〉Q ∼ e−rij/ξQ , (12.12)

in a similar manner as what is done for total correlations:

〈δOiδOj〉tot ∼ e−rij/ξtot . (12.13)

The comparison of the quantum and total correlation lengths shows the generic

hierarchy

ξQ < ξtot . (12.14)

While the total correlation length diverges at thermal phase transitions, the quantum

correlation length remains finite at such transitions. Approaching a quantum critical

point, we have observed for the quantum Ising chain that the two correlation lengths

diverge with the same critical exponents, and that the total correlation length is about

one order of magnitude larger than the quantum one.
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In principle, the quantum fluctuations could be studied in various experimental

platforms. Cold atom experiments equipped with a quantum gas microscope, and

where arbitrary-shape optical potentials can be engineered, could access the quan-

tum variance and covariance. Bragg-scattering experiments, where the dynamical

susceptibilities are measured, could as well access the coherent part of fluctuations.

Correlation-assisted interferometry with equilibrium many-body states? At a

quantum critical point, quantum fluctuations diverge with the number of individual

components of the system. As a consequence, we can predict that the corresponding

quantum critical states are resources for interferometric measurements of very small

fields which couple to the order parameter of the QCP, allowing to overcome the

so-called standard quantum limit achievable with classically-correlated probes. In the

case of the infinitely-connected Ising model, we showed that this can be realized by

taking advantage of the squeezing of fluctuations in the direction transverse to the

order parameter. For the d = 1 Ising chain, although the potential metrological gain

is extremely large (as quantified by the quantum Fisher information), we could not

identify the optimal protocol to exploit it.

Quantum critical points offer a largely unexplored playground for quantum in-

terferometry. The perspective to characterize, both theoretically and experimentally,

the strong quantum cooperative behaviors which develop close to quantum critical

points, to do so in terms of quantities without a classical analog (namely quantum

(co)-variances), via protocols which themselves lack of a classical analog (namely

interferometric protocols), is evidently very exciting.
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Appendix A

A classical-quantum state has
vanishing quantum covariance

In this appendix, we show that a classical-quantum state has a vanishing quantum

f -covariance. We are considering a family of coherence measures (see Section 1.5)

Cf (ρ,H) =
f(0)

2

∑

ij

(pi − pj)2

pif(pj/pi)
〈i|H|j〉〈j|H|i〉 (A.1)

Where f are functions classified by Petz (1996). Here, ρ =
∑

i pi|i〉〈i| and H is some

observable. Among these coherence measures are the quantum Fisher information, the

Wigner-Yanase skew informations, and the quantum variance. Then, the f -quantum

covariance of OA and OB is defined as :

2covarfQ(ρ,OA, OB) = Cf (ρ,OA +OB)− Cf (ρ,OA)− Cf (ρ,OB) (A.2)

or equivalently

covarfQ(ρ,OA, OB) =
f(0)

2

∑

ij

(pi − pj)2

pif(pj/pi)
〈i|OA|j〉〈j|OB|i〉 (A.3)

where we used that pif(pj/pi) = pjf(pi/pj). Then, we consider a classical-quantum

state

ρCQ =
∑

µ

pµ|µA〉〈µA| ⊗ σBµ (A.4)

with 〈µA|νA〉 = δµν . We also introduce :

σBµ =
∑

k

pk|µ|ψBµ,k〉〈ψBµ,k| (A.5)

∀µ 〈ψBµ,k|ψBµ,k′〉 = δk,k′ (A.6)
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Then, the diagonal form of ρCQ is given by :

ρCQ =
∑

µ,k

pµ,k|µA〉|ψBµ,k〉〈µA|〈ψBµ,k| (A.7)

with the notation pµ,k = pµpk|µ. Given all that, the proof that covarfQ(ρCQ, OA, OB) =

0 is immediate:

covarfQ(ρCQ, OA, OB) =
∑

µ,ν,k,k′

g(pµ,k, pν,k′) 〈µA|〈ψBµ,k|OA|νA〉|ψBν,k′〉

× 〈νA|〈ψBν,k′ |OB|µA〉|ψBµ,k〉 (A.8)

with g(pi, pj) =
f(0)(pi−pj)2

2pif(pj/pi)
= 0 if pi = pj . First, the matrix element of OB gives a

δµ,ν , then, the matrix element of OA gives a δk,k′ (because we must have µ = ν) and

since g(pµ,k, pµ,k) = 0, we conclude that covarfQ(ρCQ, OA, OB) = 0.
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