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Abstract

The security of information systems is paramount in today’s life, es-
pecially with the growth of complex and highly interconnected computer
systems. For instance, bank systems have the obligation to guarantee the
integrity and confidentiality of their costumer’s accounts. The electronic
voting, auctions and commerce also needs confidentiality and integrity pre-
servation. However, security verification and its distributed implementation
are heavy processes in general, advanced security skills are required since
both security configuration and coding distributed systems are complex
and error-prone. With the diverse security attacks leaded by the Internet
advent, how can we be sure that computer systems that we are building do
satisfy the intended security property ?

The security property that we investigate in this thesis is the non-
interference, which is a global property that tracks sensitive information in
the entire system and ensures confidentiality and integrity. Non-interference
is expressed by the requirement that no information about secret data is
leaked through the observation of public data variation. Such definition is
more subtler than a basic specification of legitimate access for sensitive
information, allowing to exploit and detect malfunctioning and malicious
programs intrusions for sensitive data (e.g, Trojan horse that sends confi-
dential data to untrusted users). However as a global property, the non-
interference is hard to verify and implement.

To this end, we propose a model-based design flow that ensures the
non-interference property in application software from its high-level model
leading to decentralized secure implementation. We present the secureBIP
framework [?] that is an extension for the component-based model with
multy-party interactions for security. Non-interference is guaranteed using
two practical manners : (1) we annotate the entire variables and ports of the
model and then according to a defined set of sufficient syntactic constraints
we check the satisfaction of the property, (2) we partially annotate the
model way and then by extracting its compositional dependency graphs
we apply a synthesis algorithm that computes the less restrictive secure
configuration of the model if it exists [?].

Once the information flow security is established at a high-level model
of the system, we follow a practical automated method to build a secure
distributed implementation [?]. A set of transformations are applied on the
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abstract model to progressively transform it into low-level distributed mo-
dels and finally to distributed implementation, while preserving informa-
tion flow security. Model transformations replace high-level coordination
using multiparty interactions by protocols using asynchronous Send/Re-
ceive message-passing. The distributed implementation is therefore proven
”secure-by-construction” that is, the final code conforms to the desired se-
curity policy. To show the usability of our method, we apply and experiment
it on real case studies and examples from distinct application domains.
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Résumé
Il est reconnu que garantir une sécurité de bout-en-bout pour les systèmes

distribués est un problème très complexe. En effet, la communication bas ni-
veau entre les différentes parties du programme demande l’implémentation
d’un protocole de communication complexe pour garantir une sécurité glo-
bale à partir de la sécurité locale de chaque composant. Il est à noter que la
décomposition du systme en sous-système est très souvent liée à un objectif
fonctionnel et est indépendante de l’objectif de sécurité à atteindre. Donc,
les données sont très souvent manipulées par des sous systèmes dont les
niveaux de sécurité sont différents. Par ailleurs, il est souvent rare de trou-
ver des programmeurs qui ont une expertise suffisant sur les mécanismes
de sécurité à utiliser pour implémenter de tels protocoles de coordination
de composants.

Dans le cadre de cette thèse, nous avons opté pour le développement
de procédures automatiques pour garantir des propriétés de non-inférence
dès la conception jusqu’à l’implémentation d’un système distribué fiable.
Pour ce faire, nous avons étendue la plateforme BIP pour la création et
vérification de la sécurité de flux d’information des systèmes à base de com-
posants. Une combinaison de deux notions de non-interférence (d’événements
et de données), garantissant l’objectif de sécurité, sont définies et formelle-
ment prouvés à travers des ”unwinding” relations fortement utilisées pour
vérifier la non-interférence. Une méthode automatisé basé sur l’utilisation
de conditions syntactiques, inspiré danalyse statique, est utilisée pour va-
lider quun modèle annoté par des labels de sécurité satisfait la propriété.
Cette méthode est raffinée d’avantage avec l’utilisation d’un algorithme de
synthèse (d’inférence) d’annotation de sécurité visant à simplifier et rendre
plus pratique la procédure d’annotation du modèle.

La distribution du modèle peut introduire des difficultés de gestion
de concurrence (conflits) entre composants et nécessite forcement une re-
vérification des notions de sécurités, ce qui rend la têche fastidieuse. Dans
cette thèse nous introduisons une méthode de distribution qui permet de
préserver la satisfaction des conditions syntactiques de sécurités une fois
vérifiées dans le modèle centralisé. Cette méthode est dite sécurisé-par-
construction.
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Chapter 1

Introduction

The amount and complexity of nowadays conceived systems and soft-
ware knows a continuous increase. Especially, with today’s highly con-
nected word, where computers rarely work in isolation and instead, they
are organized in heterogeneous distributed systems that collaborate with
each others to create systems with improved processing and communication
performance and higher storage capacities. However, the implementation
of distributed systems may induce several issues related to both functional
and security aspects. Indeed, the use of low level communications primi-
tives require to decompose the application into independent parts and then
to use or design a protocol that defines how the different parts communi-
cate to ensure a correct and secure execution of the application. Finally,
the designer has to implement this protocol by taking the security aspect
into account. Each of these tasks is complex and tedious. Besides, secure
code writing requires large knowledge and good expertise with security
mechanisms, whereas, only a handful of programmers have the right mind-
set to do so, and few applications have the luxury of being written by
such programmers. Given that, information in a distributed system can be
manipulated, exchanged, duplicated and modified by entities operating in
heterogeneous environments and sometimes unreliable. Hence, it is imper-
ative to find a way to control and secure their use in a seamless manner.

However, except for the often-intuitive access control procedure with the
use of cryptography primitives, it is rare to find a clear and well-established
end-to-end security strategy for the development of distributed software.
Unfortunately, even these mechanisms have been proven incomplete and
limited since only by preventing the direct access to data, indirect (im-
plicit) information flows are still possible given rise to the so called covert
channels [?]. As an alternative, non-interference, one of the most promising
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1.1. MODEL-BASED DESIGN AND SECURITY

and also hard to establish end-to-end security property, has been studied
as a global property to characterize and to develop techniques ensuring
information flow security. Initially defined by Goguen and Meseguer [?],
non-interference ensures that the system’s secret information does not af-
fect its public behavior.

Conceiving an approach to control information flow till implementa-
tion in an automated manner is the best way to tackle such security is-
sues, where we basically rely on tool-sets that verify security properties at
abstract level and then automatically generate codes. Here, we adapt a
Model-driven Security (MDS) to build software applications. For avoiding
failures in system’s security operations that can be either attributed to
conceptual or implementations errors, combining a model based approach
with the use of formal method proofs appears to be most promising for
either cases. Hence this combination provides assurance about system re-
quirements validity and that are consequently well interpreted at imple-
mentation. Such approach reduces the reliance on developer’s experiences
which consequently reduces code errors.

This thesis aims at contributing to bridge the gap between the current
theoretical and formal verification techniques for end-to-end information-
flow security in distributed systems and implementation aspects on real
platforms. The main focus here is to give a rigorous method that ensures
the correct and secure building of systems at an abstract level from the early
step of defining specifications until implementation and code generation.
With focus on the non-interference property, we set in place a framework
for system modeling and security verification defining solid guarantees of
information confidentiality and integrity. Based on the analysis of security
on the system model and by checking security consistency, we enable an
automated process that automatically generates code that satisfies require-
ments (e.g, security) defined at higher level.

1.1 Model-Based Design and Security

Model-based design entails building software matching users-defined
specifications and requirements. These specifications include functional
aspects, related to functional tasks that a system should provide to the
user, and non-function aspects, related to criteria that qualifies the system
such us performance and security. The MDA (Model Driven Architecture)
approach proposed by OMG (Object Management Group) is among the

14 CHAPTER 1. INTRODUCTION



1.1. MODEL-BASED DESIGN AND SECURITY

main approaches for application design that provides a method to build
applications by separating business logic from any technical implementa-
tions for platform. Indeed, unlike technical aspects, the business logic of
the application is stable and undergoes little changes over time. It is ev-
ident then, to separate both to deal with the complexity of information
systems and strong technology migration costs. Based on MDA approach,
the MDS (Model Driven Security) have been conceived in the purpose to
offer solutions to security constraints. Indeed, thanks to model-based de-
sign, MDS raises the level of abstraction in the design and development of
secure applications. However and for the best of our knowledge, most of
the works that adopted MDS for verifying information-flow security when
creating the systems are not based on formal and rigorous studies of mod-
els and are just limited on applying access control techniques. Recently,
[?] offers a solution that applies MDS approach to secure software. The
authors use UML modeling to describe the functional specifications of the
system and the safety specifications. Despite that this work provides a
formal characterization of the syntax and semantics of the changes made
in the shares, the designer should intervene to refine his model at each
transformation which is error-prone task and not practical for large-scale
systems.

Implementation

Application Software

Intermediate Model 1

Intermediate Model n

Transformation 1

Transformation n

Code generation

Figure 1.1 – Model-Based Design

Component-based models: The careful selection of a rigorous design
model can greatly facilitate the application modeling and the analysis of
security properties. By considering CBM (Component-Based Model), we
represent systems using heterogeneous components with well-defined in-

CHAPTER 1. INTRODUCTION 15



1.2. INFORMATION-FLOW SECURITY

terfaces ensuring dynamicity, scalability, transparency and interoperability
while implementing distributed systems. Indeed, the decomposition of the
systems used to study individual behaviour of each component and the
study of inter-component interactions allows controlling the information-
flow security. This has the advantage of being on the one hand, modular
and secondly to be able to parallelize the verification of components. To do
this, we use the BIP model (Behaviour, Interaction, Priorities), introduced
in Chapter 4, for the description of the system and try to extend it to
specify the security properties. BIP model allows describing the behaviour
of components, their interactions and priorities to filter those interactions
as desired properties, which seems to us very appropriate for the security
of the information flow. A component-based model has been proposed in
[?] and used to study implementation issues of secure information flows.
The work we present in this thesis treats the information flow security in
a different aspect with formal proofs and finer granularity.

1.2 Information-Flow Security

Specifying the security requirement correctly of a given system is not a
trivial task. For instance, keeping an amount of money withdrew from an
ATM system confidential would be naively interpreted, as this information
must never leave the system. However such approach has serious deficien-
cies in a way that if you choose to make a tractability of your account
money by receiving emails containing such transactions history would not
be possible. Otherwise, by changing a bit in the confidential information
value (e.g, increment the amount value with 1$) and then send it and decre-
ments the received value to obtain the money amount would be accepted.
Given an other classical example, considering a travel service orchestrator,
where a businessman is planning a trip to a private meeting in a private
destination. The observation of the price information of the trip, an in-
truder can deduce the destination. Ensuring confidentiality of the system
is quietly related to verifying that its outputs does not depend on confiden-
tial information. Hence, confidentiality should be interpreted as the lack
of dependencies on confidential information. This approach is interpreted
as the non-interference property that we consider and treat all over this
thesis.

The non-interference property, initially set by Goguen and Meseguer[?],
ensures that sensitive data does not affect the publicly visible system be-
havior. This property allows the tracking of information in the system, and
the application of an end-to-end confidentiality and integrity. For example,
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1.3. CONTRIBUTIONS

in contrast with access control policies, which require only users with the
appropriate read rights to read a shared file , the non-interference property
requires that none of the users having not the appropriate level of security
can not have any information about the content f file, even indirectly.

Non-interference verification techniques are based on the use of infor-
mation flow control mechanisms [?, ?, ?, ?]. Mainly, these techniques are
based on tracking the spread of information in the system, assigning secu-
rity labels to the system’s various communication channels. An annotation
represents a certain level of security and classifies various communication
channels according to their level of restriction. Consider a system that
processes data from an input channel and broadcasts them using output
channels. Labels are assigned to these channels, e.g High label for channels
handling sensitive or secret information, and Low for channels manipu-
lating public information. Non-interference property implies that, during
execution, data from High level input channels must not flow to the level of
output channels Low, because by observing the behavior of public outputs,
an intruder can deduce the value of sensitive inputs.

Despite the long history in literature for non-interference verification
that started in the early 80s, the application of the theoretical results in real
systems where limited since the non-interference property is hard to ensure.
Some operating systems such as Flume [?], HISTAR [?] and Asbestos [?]
and programming language like JIF [?] have attempt to ensure information
flow security in distributed systems but they fall short with effectiveness.
Since they consider the information flows at a coarse granularity level, they
can cause over-approximations causing false positive: the system can detect
interference while they do not exist. In the work we propose in this thesis,
we give a practice method to verify the non-interference property using
component-based model allowing a fine-grained analysis of security. Then,
we follow a set of transformation steps enforcing the security established at
a centralized high-level model until the generation of the distributed code.

1.3 Contributions

Based on the previously identified challenges in the state-of-the-art, we
provide hereafter an overview of the contributions of this thesis. The pre-
sentation below is orthogonal to the global organization of the manuscript
where we start by presenting generic theoretical contributions and then
their applications on different specific platforms, as presented in Figure
1.2. In the first part, we present a rigorous component-based framework
that we extend to analyze information-flow security in the system. Then
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1.3. CONTRIBUTIONS

we develop a method to generate by-construction secure distributed code.
In the second part, we provide tool-supported flow to automate code and
configuration generation for different platforms with different contexts.

System Model

System behavior

Security

specifications

Proof

Security property

Satisfies

Security synthesis

Code generation

Generates

Figure 1.2 – Contributions overview

Framework for Security Verification The first contribution of this
thesis is the secureBIP, a formal framework that is an extension of the
BIP framework with security. SecureBIP provides a system construc-
tion methodology for complex systems where big systems are functionally
decomposed into multiple sub-components communicating through well-
defined interactions. Sensitive information are tracked in the entire system
by using annotation model that defines different security levels tagging
ports and data of the secureBIP model. Following the annotation model,
we privilege a very pragmatic approach and provide simple syntactic con-
ditions to automate the verification of non-interference. These conditions
eliminate a significant amount of security leakages, especially covert chan-
nels, independently from implementation language or the execution plat-
form.

Moreover, with secureBIP we handle two types of non-interference:
event and data-flow non-interference, in a single semantic model. The need
to consider together event and data flow non-interference has been recently
identified in the existing literature. The bottom line is that preserving the
safety of data flow in a system does not necessarily preserve safe observabil-
ity equivalence on system’s public behavior (i.e., secret/private executions
may have an observable impact on system public events).

Information-Flow synthesis Information flow security verification is
mainly based on annotations either at an abstract level (models) or in the
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1.3. CONTRIBUTIONS

code itself. However, security designers do have intuitive idea about some
confidential information, but not all data that a complex system may in-
clude. Hence finding a correct configuration to given complex system is a
hard and complicated task. In this work, we propose a formal model that
enables automated synthesis of security configurations, under the guidance
of the system designer. The overall approach is based on propagating anno-
tations on the model following data dependency-graphs and respecting the
local security constraints defined with for secureBIP model. This approach
is practical since the designer does not need to be expert in security and
concentrates only on the functional specifications.

Security-by-Construction The distributed computing systems are ubiq-
uitous and do increase with complexity which make it difficult to make
strong statement about the security provided by the hole system, espe-
cially when dealing with distrusted parties and participants. In this thesis,
we propose a unified approach to build and implement distributed sys-
tems that enforce end-to-end security (i.e, confidentiality and integrity).
Assuming that we use trusted platform and based on the idea of static in-
formation flow control, we provide a method, that starting from an initially
centralized system satisfying the set of security constraints and produces a
functionally equivalent distributed model where these security constraints
are preserved, we make an automated transformation that splits multi-
party interactions and atomic executions into implementable send/receive
messages. The decentralized system is a component-based model where
communications between distinct components are managed using interac-
tion protocol components that each can handle data computations to a
certain security domain at most (e.g, an upper-bound security level). Here
we pursue a constructive approach where, the system designer has only to
focus on specifying a secure centralized multiparty model and then a com-
piler automatically generates a secure send/receive model.

Code Generation To enable rising system performance at execution
we rely on automatic code generation. Starting from optimized security
annotations on the secureBIP model, we introduce cryptography compo-
nents that ensures the security of communications inter-components and
encapsulating the sensitive data exchanged between them. Then we gen-
erate from this intermediate model a concrete implementation targeting
distributed platform architecture. For each atomic component, we gen-
erate a standalone program that implements the Petri net for automaton
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1.4. ORGANIZATION

representing the behavior of the component. Send/Receive communica-
tions are encrypted following a platform dependent configuration file that
specifies for each security level the encryption algorithm and the assignment
mechanisms to use to secure these channels.

1.4 Organization

The remainder of this thesis is organized as follows:
— The two Chapters 2 and 3 review the state-of-the-art on which the

work is based. The Chapter 2, presents the centralized and decen-
tralization of the component-based model, BIP , that we use consis-
tently in this thesis. The Chapter 3, presents the non-interference
property and the main verification techniques previously given in
literature to handle it.

— Chapter 4 formally presents the secureBIP framework. We formally
define non-interference property and we give two methods to verify
it. First method is based on verifying the satisfaction of sufficient
conditions and the second method is based on the synthesis of secu-
rity annotations.

— Chapter 5 describes the secure-by-construction approach to build
non-interferent distributed systems. The proposed solution con-
sists on splitting atomic executions on the centralized secure model
into Send/Receive messages handled between all atomic components
through distributed schedulers. These schedulers are constructed to
be security aware components that handle interaction and data ex-
changed between atomic components while preserving the security
constraints of the centralized model.

— The two Chapters 6 and 7 introduce our implementation and ex-
perimentation works. Chapter 6 presents the tool-set that we im-
plemented based on the BIP framework. The tools are related to
non-interference verification, code and configuration generations and
some transformation tools that allow to apply verification techniques
on real-applications for evaluation. Chapter 7 illustrates this evalu-
ation on two systems: non-interference verification on a Web Service
composition and on an AADL-MILS application.

— Finally, we conclude and outline some future work in Chapter 8.
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Component-based design is founded on a paradigm that allows the con-
struction of complex systems by assembling components. The use of com-
ponent models allows describing systems in high-level of abstraction inde-
pendently of the implementation details and provides formal semantics to
reason about their properties and automate their analysis and code gener-
ation. Hence, we consider that such models are very adequate to reason
about security and track data and event dependencies of system executions
at an abstract level. Our approach to describing system model is based on
using BIP [?, ?] framework for the construction of complex, heterogeneous
embedded applications. BIP is a highly expressive [?], component-based
framework with formal semantics. A BIP model is the superposition of
three layers: a behavioral layer, an interaction layer and a priority layer,
as presented in Figure 2.1.

Interaction

Priority

Behavior

Figure 2.1 – BIP model architecture.

The BIP models describe systems where communications between atomic
component are assured using strong synchronized multi-party interactions.
Atomic components behavior is represented using state machines, commu-
nicate between each other through a set of interface( port ). Priorities are
used to filter amongst possible interactions and to steer system evolution
so as to meet performance requirements, e.g. to express scheduling poli-
cies. Priorities define a partial orders between interactions and can change
dynamically.

The Decentralized implementation of the BIP models and allowing par-
allel execution between components and interactions simultaneously is a
non-trivial task. Indeed, adding implementation details involves many
subtleties( e.g., inherently concurrent, non-deterministic, and non-atomic
structure of distributed systems ) that can potentially introduce errors to
the resulting system. To resolve this problem, we review a source-to-source
transformation [?, ?] of the centralized BIP model allowing to introduce
message passing communication primitives and managing interactions in
a distributed way using dedicated scheduler components. A hierarchical
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3-layered model is introduced to automatically decentralized BIP .
This chapter is structured as follows. The BIP model is described in

Section 2.1 . It gives an abstract formalization of the layers Behavior,
Interaction, Priority. Section 2.2 describes the automated transformation
of BIP that aim to decentralize the model. In this model, we present
the challenges introducing concurrency in the decentralized model and we
introduce the three layer architecture adapted in distributing this model.

2.1 The BIP Component-based Framework

BIP stands for behavior, interaction and priority, that is, the three lay-
ers used for the definition of components and their composition in this
framework. This framework allows the construction of complex, hierar-
chically structured models from atomic components characterized by their
behavior and their interfaces. The behavior of atomic components is a
transition systems enriched with data. Atomic components are composed
by layered application of interactions and priorities. Interaction layer, also
referred to as glue, express synchronization constraints and do the trans-
fer of data between the interacting components. Priority layer is used to
filter interactions and to steer system evolution so as to meet performance
requirements (e.g., to express scheduling policies). In this section, we will
formally introduce and give the semantics of the three layers of the model.

2.1.1 Atomic Components

In BIP, atomic components are transition systems labelled with ports
and extended with variables used to store local data. Transitions are used
to move from a source to a destination state. Each transition is associ-
ated to a guard and an update function, that are respectively a Boolean
condition and a computation defined over local variables. Ports are action
names generally used for synchronization with other components. States
denote control locations at which the components wait for synchronization.
In transitions, data and their related computation are written in C/C++
language. The syntax of an atomic component in BIP is formally defined
as follow.

Let D = {Dj}j∈J be a universal set of data domains (or data types)
including the Boolean domain DBool = {true, false}. Let Expr be an uni-
versal set of operators, that is, functions of the form op : ×mi=1Dji → Dj0 ,
where m ≥ 0, Dji ∈ D for all i = 0,m. We consider typed variables
x :D where x denotes the name of the variable and D , dom(x) ∈ D its
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cnotif cinfo

crequest cconfirm

cpushcget

cinfo,cnotif

cgetcpush

cconfirm

crequest

cancel

Event−Creator

cancel

l1

l2

l3

l4

Figure 2.2 – An example of a BIP atomic component.

domain of values. We define expressions op(x1, ..., xm) constructed by ap-
plying operators op on variables x1, ..., xm such that moreover, the number
of variables and their domains match exactly the domain of op. We denote
by use(e) the set of variables occurring in e and by Expr[X] the set of
expressions constructed from a set of variables X and operators in Expr.
We denote by Asgn[X] the set of assignments to variables in X, that is,
any subset {(xi, ei)}i∈I ⊆ X × Expr[X] where (xi)i∈I are all distinct. An
assignment (x, e) is denoted by x := e.

Definition 1 (atomic component) An atomic component B is defined
by B = (L,X, P, T ) where:

— L is a set of locations.
— P is a set of ports.
— X is a set of variables and we denote by Xp the subset of exported

variable through the port p.
— T ⊂ L×¶×Exp[X]×Asgn[X]×L is a set of port labelled transitions.

For every transition τ ∈ T , we denote by gτ ∈ Exp[X] its guard,
that is, a Boolean expression defined on X and by fτ ∈ Asgn[X]
its update function, that is, a parallel assignment {x := exτ}x∈X to
variables of X.

Example 1 Figure 2.2 shows an example of an atomic, Event-Creator
component that communicates with other atomic components to create an

24 CHAPTER 2. COMPONENT-BASED MODEL



2.1. THE BIP COMPONENT-BASED FRAMEWORK

Event between them. Here, it contains three control locations, l1 the initial
location, l2 and l3 related through transition labeled with ports crequest,
cconfirm, cget, cpush, and cancel. From l1, the crequest transition is
always enabled and leads to location l2. From l2, the component can either
execute the transition labelled with cancel or executes the transition labelled
with port cconfirm which synchronises with other atomic components to
create an event. In case, the transition labelled with cconfirm is executed,
the atomic component can execute the transitions labelled with ports cget
and cpush and update the exported variables cnotif and cinfo respectively
exported by them.

Given a set of variables X, we define valuations V of X as functions
V : X → ∪j∈JDj which assign values to variables, such that moreover,
V (x) ∈ dom(x), for all x ∈ X. We denote by V [u/x] the valuation where
variable x has assigned value u and any other variable has assigned the
same values as in V . For a subset Y ⊆ X, we denote by V|Y the restriction
of V to variables in Y .

Given an expression e = op(x1, ..., xm) ∈ Expr[X] and a valuation V on
X we denote by e(V ) the value op(V (x1), ..., V (xm)) obtained by evaluating
the expression operator op according to values of x1, ..., xm on the valuation
V . Moreover, given an assignment a ∈ Asgn[X] and a valuation V of X
we denote by a(V ) the new valuation V ′ obtained by executing a on V ,
formally V ′(x) = e(V ) iff x := e ∈ a and V ′(x) = V (x) otherwise.

A BIP atomic component, for a given valuation of variables, can execute
a transition if and only if its associated guard evaluates to true. When
several transitions are simultaneously enabled, a non-deterministic choice
is performed to select one of them. Firing a transition implies an exchange
of data through the port followed by the atomic execution of its internal
computation. Formally:

Definition 2 (atomic component semantics) The semantics of an atomic
component B = (L,X, P, T ) is defined as the labelled transition system
lts(B) = (QB,ΣB,−→

B
) where the set of states QB = L × X, the set of

labels is ΣB = P ×X and the set of labelled transitions −→
B

is defined by the

rule:

Atom
τ = `

p−→ `′ ∈ T x′′p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′p])

(`,x)
p(x′′

p )−−−→
B

(`′,x′)

That is, (`′,x′) is a successor of (`,x) labelled by p(x′′p) iff (1) τ = `
p−→ `′

is a transition of T , (2) the guard gτ holds on the current valuation x,
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(3) x′′p is a valuation of exported variables Xp and (4) x′ = fτ (x[Xp ←
x′′p]) meaning that, the new valuation x′ is obtained by applying fτ on x
previously modified according to x′′p. Whenever a p-labelled successor exist
in a state, we say that p is enabled in that state.

2.1.2 Interactions and Priorities

The interaction layer consist of a set of multiparty interactions relat-
ing ports from different sub-components. Each interaction represent a
nonempty set of ports that have to be jointly executed at interaction execu-
tion. For every interaction, we define a guard and a data transfer function,
that are, respectively, an enabling condition and an assignment of data
exported across the involved ports.

Consider a composition of an existing set of atomic components {Bi =
(Li, Xi, Pi, Ti)}i=1,n such that they have pairwise disjoint sets of states,
ports, and variables i.e., for any two i 6= j from {1..n}, we have Li∩Lj = ∅,
Pi ∩ Pj = ∅, and Xi ∩ Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the

ports, L =
⋃n
i=1 Li the set of all locations, and X =

⋃n
i=1Xi the set of all

variables.

Definition 3 (interaction) An interaction a between atomic components
is a triple (Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga is a guard,
and Fa is an update function. By definition, Pa uses at most one port of
every component, that is, |Pi ∩ Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we
simply denote Pa = {pi}i∈I , where I ⊆ {1..n} contains the indices of the
components involved in a and for all i ∈ I, pi ∈ Pi. Ga and Fa are both
defined on the variables exported by the ports in Pa (i.e.,

⋃
p∈Pa Xp).

Given a set of interactions γ and components C = (B1, . . . , Bn), the
execution of an interaction a ∈ γ can only take place if its associated guard
Ga is evaluated to true and all its involved ports Pa are enabled. The
execution of an interaction a is an atomic sequence of two micro-steps:

1. synchronization between participant components of the interaction
through the involved ports {pi}i∈I ∈ Pa, with data assignment (ex-
change) by executing the transfer function at connector level Fa

2. Execution of internal transitions, of distinct participant components
in interaction a, labelled with ports {pi}i∈I ∈ Pa

Given a system of interacting components, priorities are used to filter
the enabled interactions. They are given by a set of rules, each consist-
ing of an ordered pair of interactions or connectors. When connectors are
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specified in a priority, the rules apply between all the respective interac-
tions of the connectors. Dynamic priorities can be specified by providing
guard condition, which are boolean expression in C on the variables of the
components involved in the interactions. The maximal progress priority is
enforced implicitly by the BIP Engine: if one interaction is contained in
another one, the latter has higher priority. Below is an example of priority
expressed in the BIP language.

priority p1 iff(G) a1 < a2

This specifies the priority p1 that, when the boolean condition G is
true, interactions of connector a2 would be preferred to those of a1.

2.1.3 Composite Components

In component-based modeling, systems are constructed from assem-
bling a set of unitary components using composition operators. BIP offers
a layered glue which provides mechanisms for coordinating components be-
haviors, namely interactions.

A composite component C = γ(B1, . . . , Bn) is obtained by applying a
set of interactions γ to a set of atomic components B1, . . . Bn. Hereafter,
we present the semantics of a composite component.

Definition 4 (composite component semantics) Let C = γ(B1, . . . , Bn)
be a composite component. Let Bi = (Li, Xi, Pi, Ti) and lts(Bi) = (Qi,Σi,−→

Bi

) their semantics, for all i = 1, n. The semantics of C is the labelled tran-
sition system lts(C) = (QC ,ΣC ,−→

C
) where the set of states QC = ⊗ni=1Qi,

the set of labels ΣC = γ and the set of labelled transitions −→
C

is defined by

the rule:

Comp

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi}i∈I) {x′′pi}i∈I = Fa({xpi}i∈I)

∀i ∈ I. (`i,xi)
pi(x

′′
pi
)

−−−−→
Bi

(`′i,x
′
i) ∀i 6∈ I. (`i,xi) = (`′i,x

′
i)

((`1,x1), . . . , (`n,xn))
a−→
C

((`′1,x
′
1), . . . , (`

′
n,x

′
n))

For each i ∈ I, xpi above denotes the valuation xi restricted to variables of
Xpi.

As previously explained, the rule expresses that a composite component
C = γ(B1, . . . , Bn) can execute an interaction a ∈ γ enabled in state
((`1,x1), . . . , (`n,xn)), iff (1) for each pi ∈ Pa, the corresponding atomic
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component Bi can execute a transition labelled by pi, and (2) the guard
Ga of the interaction holds on the current valuation of variables exported
on ports participating in a. Execution of interaction a triggers first the
update function Fa which modifies variables exported by ports pi ∈ Pa.
The new values obtained, encoded in the valuation x′′pi , are then used by the
components’ transitions. The states of components that do not participate
in the interaction remain unchanged.

Any finite sequences of interactions w = a1...ak ∈ γ∗ executable by the
composite component starting at some given initial state q0 is named a
trace. The set of all traces w from state q0 is denoted by traces(C, q0).
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Figure 2.3 – Event-Creation in the Whens-App application

Example 2 Figure 2.3 presents a composite component that contains three
atomic components, Event-Creator and two Event-Receiver in interaction.
The composition represents an event creation between the three atomic com-
ponents. Here interactions are represented using connectors (lines) between
the interacting ports. All interactions between components Event-Creator
and Event-Receivers are strong synchronized binary interactions. The in-
teractions {get,push} implements a data transfer between the two Event-
Receivers , that is, an assignments at exportation between variables info
and notif .

2.2 Distributed BIP Framework

In this section, we recall from [?], the key steps in decentralizing the
functional BIP model. The target model aims to be implementable using
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basic message-passing primitives and orchestrator engines to manage multi-
party interactions in a distributed way.

2.2.1 Challenges

Deriving from a high-level model a correct and efficient distributed im-
plementation, that allows parallelism between components as well as par-
allel execution between interactions, is a challenging problem. As adding
implementation details involves many subtleties (e.g., inherently concur-
rent, non-deterministic, and non-atomic structure of distributed systems)
that can potentially introduce errors to the resulting system.

The decentralized model introduced in [?] is based mainly in introduc-
ing engine components that manage interactions execution between dis-
tributed atomic components. Engine implementation can be either central-
ized, a single engine handling all the interactions allowing only concurrency
at interaction execution, or decentralized using multiple engines handling
interaction partitions and allowing concurrency between interactions and
components. On the contrary, introducing concurrency and distribution
(and possibly multiple Engines) to the model requires dealing with com-
plex issues:

p1 p2

B1 B2

p3 p4

B3

p5 p6

B4

p7

p8

B5

a2 a3

p9

a1

a4

Figure 2.4 – Simple high-level model.

— (Partial observability) Suppose interaction a1 (and, hence, compo-
nents B1, . . . , B3) is being executed. If component B3 completes its
computation before B1 and B2, and, ports p4, p5 are enabled, then
interaction a2 is enabled. In such a case, distributed Engines must
be designed so that concurrent execution of interactions does not in-
troduce behaviors that were not allowed by the high-level model. We
address the issue of partial observability by breaking the atomicity
of execution of interactions, so that a component can execute unob-
servable actions once a corresponding interaction is being executed
[BBBS08].

— (Resolving conflicts) Suppose interactions a1 and a2 are enabled si-
multaneously. Since these interactions share component B3, they

CHAPTER 2. COMPONENT-BASED MODEL 29



2.2. DISTRIBUTED BIP FRAMEWORK

cannot be executed concurrently. We call such interactions conflict-
ing. Obviously, distributed Engines must ensure that conflicting
interactions are mutually exclusive.

— (Performance) On top of correctness issues, a real challenge is to
ensure that a transformation does not add considerable overhead
to the implementation. After all, one crucial goal of developing
distributed and parallel systems is to exploit their computing power.

Conflicts

Generally, there is a conflict between two entities whenever they are
competing to use a given resource. When using decentralized orchestra-
tor engines to handle interactions, the resources being used are the offers
(requests) sent by the interacting components to execute some interaction.
We can distinguish two types of conflicting interactions: external or inter-
nal conflict. Figure 2.5(i) shows an external conflict, where, assuming that
interactions a and b are handled by separate orchestrators, the component
first sends an offer to both orchestrators to execute either interactions,
which here cause a conflict. Figure 2.5 (ii), shows an interaction execution
at a non-deterministic state, where a can be executed through port p1 or
b through port p2, the offer is sent to both orchestrators handling a and b.
At this point, a conflict arises as only one of the engines should respond to
the offer, since the component can execute only one of the transitions.

a b

(i) (ii)

ba

p

p1p2p

`1 `1 `2

` `

p2 p1

Figure 2.5 – Conflicting Interactions

More formally we define the set of conflicting interactions in the BIP
model as follows:

Definition 5 Let B = γ(B1, . . . , Bn) be a composite component and a, b
∈ γ be two interactions. The interactions a and b are conflicting if

— either, they share a common port p; ports(a) ∩ ports(b) 6= ∅
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— there is at least a component Bi in the intersection containing a
control location ` with an outgoing transition labeled by a port of an
outgoing transition labeled by a port of b. formally, p1 ∈ a, p2 ∈ b
and `

p1−→ ∧ ` p2−→
We denote this situation by a # b or equivalently b # a.

Considering a partitioning of the set of interactions γ where γ = γ1∪· · ·∪γk
and ∀i, j ∈ {1, . . . , k}, i 6= j =⇒ γi∩γj = ∅. Here, γ1, . . . , γj is conflict-free
partition if the γi are pairwise conflict-free, that is if for any two distinct
integers i, j in {1, . . . , k}, γi and γj are conflict-free.

In this section we give the 3-layer model as a solution for decentralizing
BIP model and that tackles the different challenges encountered at enforces
concurrency in distributed implementation.

2.2.2 The 3-Layer Model

This decentralization method relies on a systematic transformation of
BIP components and replacement of multiparty interaction by protocols
expressed using send/receive (S/R) interactions. The execution of a dis-
tributed components is a sequence of actions that are either message emis-
sion, message reception or internal computation. Consequently transformed
atomic components in our target model include three types of ports: send
ports, receive ports and unary ports. Unary ports correspond to inter-
nal computation that is a unary interaction involving only one component.
Whereas, the S/R interactions are binary point-to-point and directed in-
teractions from one sender component (send port), to one receiver com-
ponent (receive port). All interactions in the target model are managed
via distributed Interaction Protocol (orchestrator engines), and Conflict-
resolution Protocol components. Following these notions, we define a 3-
layer decentralized model containing three kinds of distributed components
which correspond to the three layers of the distributed model as presented
in Figure 2.6. To ensure simple implementation on a distributed platform
using basic (i.e. Send/Receive) message-passing primitives, we require that
the automaton of atomic components used in centralized model is deter-
ministic. For each port, there is at most one enabled transition labeled
by this port at each state. In particular, two transitions outgoing from
the same control state and labeled with the same port must have mutually
exclusive guards.

Definition 6 (composite S/R component) CSR = γSR(BSR
1 ,. . . , BSR

n )
is a S/R BIP composite component if we can partition the set of ports of
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BSR into three sets Ps, Pr, Pu that are respectively the set of send-ports,
receive-ports and unary interaction ports.

— Each interaction a = (Pa, Ga, Fa) ∈ γSR is either (1) a S/R interac-
tion with Pa = (s, r1, r2, ..., rk), s ∈ Ps, r1, ..., rk ∈ Pr and Ga = true
and Fa copies the variables exported by the port s to the variables
exported by the port r1, r2..., rk or (2) a unary interaction Pa = {p}
with p ∈ Pu, Ga = true, Fa is the identity function.

— If s is a port in Ps, then there exists one and only one S/R interaction
a = (Pa, Ga, Fa) ∈ γSR with Pa = (s, r1, r2, ..., rk) and all ports
r1, r2, ..., rk are receive ports. We say that r1, r2, ..., rk are the receive
ports associated to F .

— If a = (Pa, Ga, Fa) with Pa = (s, r1, r2, ..., rk) is a S/R interaction
in γSR and s is enabled in some global state of CSR then all its
associated receive-ports r1, r2, ..., rk are also enabled at that state.

From a functional point of view, the main challenge when transforming
BIP models with multiparty interactions towards distributed models with
send/receive interactions is to enhance parallelism for execution of concur-
rently enabled interactions and computations within components. That
is, in a distributed setting, each atomic component executes independently
and thus has to communicate with other components in order to ensure cor-
rect execution with respect to the original semantics. The existing method
for distributed implementation of BIP relies on structuring the distributed
components according to a hierarchical architecture with three layers, as
depicted in Figure 2.6:

— The first layer (S/R atomic component) includes transformed atomic
components. Each atomic component will publish its offer, that is
the list of its enabled ports, and then wait for a notification indicat-
ing which interaction has been chosen for execution.

— The second layer (IP) deals with distributed execution of interac-
tions by implementing specific interaction protocols. The interaction
protocol evaluates the guard of each interaction and executes the as-
sociated update function The interface between this layer and the
component layer provides ports for receiving offers and notifying the
ports selected for execution.

— The third layer (CRP) deals with conflict resolution between IPs.
A conflict occurs if two different IP components try to execute two
interactions involving a common atomic component in the lower
layer. Several distributed algorithms exist for conflict resolution,
this layer is generic with appropriate interfaces.
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We graphically denote a send port by a trigger (N) and a receive or
a unary port by a circle ( ). In the following sections we describe the
different components in the three layer model and we give there semantics.
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Figure 2.6 – Decentralized 3-Layer Model Architecture.

In Figure 2.6, we give an example of decentralizing the Whens-up system
model. Here, the interactions are divided in two subsets: first {request, get2, push2}
and second {confirm, get1, push1}, that are handled by two IP compo-
nents. The atomic component are transformed to S/R components that
send offers through o ports, and receive notifications on ports p. For the
sake of clarity, in Figure 2.6 we only represent interactions get1 and get2.
Following this partitionning the geti and pushi interactions are in external
conflict. Hence, a CRP component is introduced to resolve it.

Distributed Atomic Layer

An atomic component B is transformed to a S/R component BSR by
breaking the atrocity of each ”atomic” synchronized transition, where the
transition is split into a send and receive action. Hence, the execution
of the transition is executed in two steps. The synchronization between
participants is implemented as a two-phase protocol between the atomic
components and orchestrator engines.

First BSR sends an offer through a dedicated send port, then it waits for
a notification arriving on a receive port. The offer contains the information
to determine whether an interaction is enabled. An offer includes the set
of enabled ports of BSR through which the component is currently ready
to interact and the values of a set of exported variables. The exported
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variables are variables that may be read and written during the interaction
from different participant components. These variables can be used in
guards or in the update functions.

We encode enabled ports and current control state as follows. For each
port p of the transformed component BSR, we introduce a Boolean variable
xp. We add a participation number (state variable) n that contains the
participation number of atomic component. The newly added variables are
modified by an update function when reaching a new state. The variable
xp is then set to true if the corresponding port p becomes enabled, and to
false otherwise. Similarly, before reaching the control state `, the variable
n is incremented, indicating that the transition have been executed.

Since each notification from the engine triggers an internal computation
in a component, following [?], we split each control location ` into two con-
trol locations, namely, ` itself and a busy control location ⊥`. Intuitively,
reaching ⊥` marks the beginning of an unobservable internal computation.
We are now ready to define the transformation from B into BSR.

Definition 7 (Transformed atomic component) Let B = (L,X, P, T )
be an atomic component within C. The corresponding transformed S/R
component is BSR = (LSR, XSR, P SR, T SR):

— LSR = L ∪ L⊥, where L⊥ = {⊥` | ` ∈ L}
— XSR = X ∪ {xp}p∈P ∪ {n} where each xp is a Boolean variable

indicating whether port p is enabled, and n is an integer called a
participation number.

— P SR = P ∪ {o}. The offer ports o export the variables XSR
o =

{n}
⋃
{{xp}∪Xp} that is the participation number n, the new Boolean

variables xp and the variables Xp associated to ports p. For all other
ports p ∈ P , we keep XSR

p = Xp.

— For each state ` ∈ LSR, we introduce an offer transition τo = (⊥`
o−→

`) ∈ T SR where the guard go is true and fo is the identity function.

— For each transition τ = (`
p−→ `′) ∈ T we include a notification

transition τp = (`
p−→ ⊥`′) where the guard gp is true. The function

fp applies the original update function fτ on X, increments n and
updates the Boolean variables xr, for all r ∈ P . That is, xr :=
gτ if ∃τ = `′

r−→ `′′ ∈ T , and false otherwise.

Example 3 Figure 2.7 shows the distributed S/R version of the atomic
component from 2.2. For each original control location `i, i ∈ {1, 2, 4} with
an outgoing synchronized transition, a busy control location ⊥` has been
added with a transition labelled with the offer port o from ⊥`i to `i, i ∈
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Figure 2.7 – Distributed version of the Event-Creator component from
Figure 2.2

{1, 2, 4}. For instance, before executing the transition ⊥`4 to `4, the update
function f3 is called. If the transition labelled with port cpush is selected to
be executed, when reaching the ⊥`4 the variable nec is incremented and the
variable xcpush is reset to true.

Interaction Protocol Layer

The Interacting Protocol layer contains a non-empty set of engine com-
ponents. The implementation of the IP can be centralized, where all inter-
actions of the initial BIP model are managed by a single engine component,
or it can be decentralized, where a set of engine components are used and
each of them is in charge of executing a subset of interactions. Each IP
component represents a scheduler that receives messages from S/R compo-
nents then calculates the enabled interaction and selects them for execution.
Hereafter, we introduce the functional behavior of the IP component and
how to manage interactions.

To execute an interaction, different atomic components send offer mes-
sages to the IP component. The received messages contains information
about the local state of the atomic components which constitute a partial
view of the global state of the system. If the IP does not take any decision,
it will eventually receive all offers and know the global state. The simple
and correct way for the IP to take decision on executing an interaction
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in distributed implementation is to execute the interaction as soon as all
participating components send an offer and are ready to execute it.

The following Figure 2.9 presents the IP component handling the set
of interactions { rrequest, rconfirm }. Here the IP component correspond to
a Petri-net that associates to each atomic component a token. The token
position of each component in the IP represent the status of the component
that can either be in:

— waiting place: Initially, and after each notification, the IP compo-
nent does not know the state of the component until it sends an
offer. In that case the IP is waiting for the component offer. There
is one waiting place for each component. In Figure 2.9, the waiting
place is labeled by w .

— received place: The token is there when an offer has been received,
and the IP has not scheduled any interaction involving the compo-
nent. There is one received place for each component. In Figure 2.9,
the received place is labeled by rcv .

— sending place: The token is there when an interaction involving the
component has been scheduled. There is one such place for each port
of the atomic components, thus indicating which port is involved in
the scheduled interaction. In Figure 2.9, there is a single sending
place labeled by s .

Initially each component participating in an interaction handled with
the IP have a token in a waiting place. Once an offer is received from
a component, the token moves to the receive place and then interaction
takes place when all tokens from the participating components are in re-
ceive places. After the interaction execution the tokens moves to the send
places corresponding to the ports involved in the interaction. From the
send place, the token moves back to the waiting place when sending the
notification to the atomic component. Here, we are ready to formally define
IP components behavior. For clarity sake, we denote by participants (γ)
the set of components Bi, . . . , Bn is a participant in a ∈ γ if it exports a
port that is part of a. Besides, we denote ports(γ) the set of ports occurring
in an interaction a ∈ γ.

Let C = γ(B1, · · · , Bn) be a composite component and γ = {ai =
(Pi, Fi, Gi)|ai ∈ γ} the set of interactions. Let participants(γ) (resp. ports(γ))
be the set of atomic components (resp. ports) participating (resp. occur-
ring) in interactions from γ.

Definition 8 (IP component) The component IP = (LIP , XIP , P IP , T IP )
handling γ is defined as:

— Set of places LIP is the union of the waiting places {wi | Bi ∈
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participants(γ)}, the receiving places {rcvi | Bi ∈ participants(γ)},
the sending places {sp | p ∈ ports(γ)} and the trying places{ta | a ∈
γ, a externally conflicting } .

— Set of variables XIP = {n | Bi ∈ participants(γ)}
⋃
{{xp}∪Xp | p ∈

ports(γ)}
— Set of ports P IP that contains:

— the offer ports = {oi | Bi ∈ participants(γ)} that are associated
to variables n, xp, and Xp from component Bi.

— the notification send ports {p | p ∈ ports(γ)} associated to vari-
ables Xp.

— the send ports {ra} and the receive ports {oka, fa} for each in-
teraction a that is externally conflicting. The ports {oka, fa} do
not have any variable attached while we associate to port ra a
set of participation numbers {ni}i∈I where I is the set of all Bi

components involved in interaction a.
— Set of transitions T IP ⊆ 2L

IP ×P IP×2L
IP

. A transition τ is a triple
(•τ, p, τ •), where •τ is the set of input places of τ and τ • is the set
of output places of τ . We introduce three types of transitions:
— receiving offers (wi, oi, rcvi) for all components Bi ∈ participants(γ).
— executing interaction ({rcvi}i∈I , a, {spi}i∈I) for each interaction

a ∈ γ such that a = {pi}i∈I , where I is the set of components
involved in a. To this transition we associate the guard [Ga ∧∧
p∈a xp] and we apply the original update function Fa on ∪p∈aXp.

— sending notification (sp, p, wi) for all ports p and component Bi ∈
participants(γ).

— if the interaction a is externally conflicting the set of transitions
will also contain:
— reservation request ({rcvi}i∈I , ra, {ta}) guarded with

∧
p∈a xpi∧

Ga.
— positive response ({ta}, oka, {spi}i∈I with update function Fa
— negative response ({ta}, fa, {rcvi}i∈I) with no guard or update

function

By introducing IP engines to manage interaction, we were capable to
decentralize the BIP model. However, introducing concurrency while exe-
cuting component and interaction would require the understanding of more
subtleties and complex issue related to resolving conflicts. Here, the inter-
actions {rpush1, cget} and {push2, cget} are enabled simultaneously. Since
these interactions share the same component Bi they can not be executed
concurrently. We call such interactions conflicting. Obviously, distributed
engines must ensure that conflicting interactions are mutually exclusive.
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Conflict-free Interaction Management

Actually, interactions that are conflicting correspond to transitions that
share a common input place. The conflict is solved as the Petri-net seman-
tics ensures that if any one of these transitions executes, it consumes the
token in the common input place, thus disabling the other transition. In
particular, the semantics allows conflicts occurring between two interac-
tions to be resolved locally, within the same IP .

Considering a set of conflict-free partitions of interactions and assume
that a separate IP is built for each class of them. We define an IP i
component that manages the interactions of each partition γi from γ, the
formal definition of conflicts is priviously given in Section 2.2.1 .
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Figure 2.8 – Distributed model of the whens-up example with interactions
conflict-free management.

The distributed version of the whens-up example presented in Figure
2.3 in the previous section is given in the Figure 2.8. The interaction set is
divided in two separate subsets, each handled by a distinct IP component.

The solution of conflict-free partitioning has a drawback, because group-
ing interaction following a conflict-free criteria reduces drastically paral-
lelism between interactions. In other words two interactions that are not
indirect conflict cannot run in parallel. For instance let us consider the
example in Figure 2.5. Assuming that a1 is conflict only with a2, and,
a2, a3, a4 are pairwise conflict. This situation leads to create only one IP
component handling all the interactions. Hence, a parallel execution of
the interactions a1 and a3 is no longer possible, despite that it is possible
without violating the operational semantics of BIP . For this reason a third
layer that implements a conflict resolution protocol is created and that we
introduce in the following subsection.

As an example considering the IP1 component handling the interactions
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rcvget1 rcver2rcvreq

wer2wecwer1

oer2oer1 oec

sreq1 sreq1

wer1 wec
wer2

sconf1 screq sconf1scconf

rconfirm rrequest

Figure 2.9 – The IP1 component behavior of the whens-app application
from figure 2.6

γ1 = {request, confirm} depicted in Figure 2.8. On the figure, all interac-
tions are handled within the IP component. Here we involve only waiting
wa and receive rcva places to execute the interactions. Ones an interaction
is executed a notification is sent to the involved atomic components.

Conflict-Resolution Protocol Layer

As previously explained, the main task of the CRP layer is to ensure
that external conflicting interactions between two IP components are ex-
ecuted mutually exclusive. The implementation of the CRP component
is based on the use of any algorithm that solves committee coordination
problem [?].

The first distributed solution to the committee coordination problem
assigns one manager to each interaction [?]. Conflicts between interactions
are resolved by reducing the problem to the dining or drinking philosophers
problems [?], where each manager is mapped onto a philosopher. Bagrodia
[?] proposes an algorithm where message counts are used to solve synchro-
nization and exclusion is ensured by using a circulating token. The princi-
ple is to keep the last offer number used for each component.Whenever a
reservation arrives from the distributed IP component, each offer number
from the request is compared against the value of the last offer number
used in the conflict resolution protocol. If each number from the request is
greater than the corresponding one in the conflict resolution protocol, the
interaction is granted to execute. Otherwise execution is forbidden.
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Here we adopt this solution to manage conflicting interactions handled
by different IP components. The Conflict-Resolution layer components im-
plements committee coordination algorithm and provide appropriate inter-
faces to connect with the Interaction protocol layer with a minimal restric-
tions. The first version implementing the behavior of a CRP component is
a single process. Here we give the formal definition of the CRP component:

Definition 9 Given a centralized BIP model C = γ(B1, · · · , Bn) and an
interaction partition γ = γ1∪, . . . ,∪γ. The CRP component IP = (LCP , XCP , PCP , TCP ):

XCP contains the last offer variable Ni for each component Bi.

for each externally conflicting interaction a that involve a set of components
invol(a):

— LCP contains the waiting place wa and the treat place tra.
— PCP contains the ports rcva, oka and faila
— XCP contains the variables {nai | Bi ∈ invol(a)}. The variables

associated to the port rcva are Xrcva = {nai | Bi ∈ invol(a)}. The
ports oka and faila do not have associated variables.

— TCP contains the transitions: (1) τrcva = (wa, rsva, ra), τ(oka) =
(ra, oka, wa) and τfaila = (ra, faila, wa). The transition τrcva has no
guard and no update function. The transition τoka is guarded by
Gτoka =

∧
Bi ∈ invok(a) nai > Ni and its update function updates

the Ni variables of the participants: foreach Bi ∈ participants(a) do
Ni := nai . The transition τfaila has no guard and no update function.

As previously mentioned, the behavior of the CRP layer is based on the
use of the message-count technique [?]. This technique is based on counting
the number of times that a component interacts. Each component keeps a
participation counter n which indicates the number of times a component
have participated in interactions. The CRP ensures that each participation
number is used only once. That is, each component takes part in only one
interaction per transition. To this end, in the Conflict Resolution Protocol,
for each componentBi, we keep a variableNi which stores the latest number
of participation of Bi. For each reservation message ra received by the
the CRP component to execute an interaction a = {pi}i∈participants(a),

a set of participation numbers ({nai }i∈participants(a)) for all participating
components in a is received.

If for each component Bi, the participation number nai is greater than
Ni, then the Conflict Resolution Protocol acknowledges successful reserva-
tion through port oka and the participation numbers in the Conflict Reso-
lution Protocol are set to values sent by the Interaction Protocol. On the
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contrary, if there exists a component whose participation number is less
than or equal to what Conflict Resolution Protocol has recorded, then the
corresponding component has already participated for this number and the
Conflict Resolution Protocol replies failure via port fa.
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Figure 2.10 – Decentralized interaction management

The decentralized management of interactions relies on the additional
conflict resolution layer to solve conflicts between different IPj components.
Usually, this layer implements a distributed algorithm that solves a com-
mittee coordination problem [?]. Several solutions have been presented in
[?] and can be re-used directly in our context.

In this subsection, we define the interactions in the 3-layer model. Fol-
lowing Definition 6, we introduce S/R interactions by specifying the sender
and the associated receivers. Given a composite component C = γ(B1, · · · ,
Bn), and partitions γ1, · · · , γm of γi ⊆ γ, the transformation produces a
S/R composite component CSR = γSR(BSR

1 ,· · · , BSR
n ,

(IP1, · · · , IPm), {CRPi}). We define the S/R interactions of γSR as follows:
— For every atomic component BSR

i participating in a set of interac-
tions γi, for every IP components IP1, · · · , IPm handling γi, include
in γSR the offer interaction off = (BSR

i .o, IP1.oi, · · · , IPm.oi).
— For every port p in component BSR

i and for every IPjs component
handling an interaction involving p, we include in γSR the response
interaction resp=(IPj.p, B

SR
i .p)

— For every IPj component handling an interaction a that is in conflict
with an other interaction a′ handled by some different IP, include
in γSR the reserve interaction r=(IPj.ra, CRP.ra). Likewise, in-
clude in γSR the ok interaction ok=(CRP.oka, IPj.oka) and the fail
interaction f=(CRP.fa, IPj.fa).

Figure 5.3 illustrates the IP 1 component constructed for the set of in-
teractions γ1 = {request, get1, push2} for the example shown in Figure
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2.6. For all Bi components involved in interactions γ1, we introduce a wait-
ing (wa) and receiving (rcva) places. The interactions get2 and push2 are
in external conflict with the interaction get1 and push1 respectively, hence
when executing both interaction we involve trya try places. For all ports p
involved in γ1 we introduce a sending place spi . The IP component moves
from wi to rcvi whenever it receives an offer from the corresponding com-
ponent Bi After choosing and executing interactions, the IP component
moves to sending (sp) places to send notification through ports p to the
corresponding component. In the case of conflicting interactions get2 and
push2, we introduce a ra transition used to communicate with the upper
layer to resolve conflict. The response of the execution request sent by the
IP component can either positive through execution of the oka transition
or either negative executing a fail transition fa.
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Figure 2.11 – The IP1 component behavior of the whens-app application
from figure 2.6

2.2.3 Functional Equivalence

In this section, we recall from [?] the proofs showing the correctness
of the target S/R model. First, we show that the target model is a valid
S/R model, that is, (1) only S/R or unary interaction are allowed, (2) each
send port participates in exactly one S/R interaction and (3) whenever a
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send port is enabled, the associated receive port becomes unconditionally
enabled within a finite set of transitions in the receiver component. Lemma
1 proves a stronger assumption states that the receive port is enabled as
soon as the send port becomes enabled.

Lemma 1 Let γSR(BSR
1 , . . . , BSR

2 , IPi, CRPi) be the S/R model obtained
from γ(B1, . . . , Bn). Then, at each reachable stateof the S/R model, when-
evera send-ports is enabled, the associated receive-port r is already enables.

As explained earliers, each atomic component start listening to notifi-
cations directly after sending an offer. Dually, IP componentwait for offers
from a given atomic component as soon as it sends a notification to that
component.

Proof 1 Let BSR
i be a S/R atomic component. We show that all S/R

interactions involving BSR
i meet the statement of the lemma. Recall that

to each atomic component we associate a token in the engine. Within
the execution of the engine, the token can be either in a waiting place,
in a receive place or in a sending place. Hence we can distinguish three
configurations of the atomic component state and it’s corresponding token:

— Initial state: BSR
i is in a busy state and the corresponding token is

in the waiting place wi. The send-port( in atomic component ) oi
is enabled as well as the receiveport( in IPcomponent ). Genarlly,
the property holds for configurations of this form, in particular the
initial configuration. The excution of this configuration lead as to
the next one.

— BSR
i is in a stable state and the associated token is in the receiving

pace ri. From this configuration, no send-port involving a commu-
nication between BSR

i and {IP}∪{CRP} is enabled. Only the token
in the engine can move, provided a unary interaction is executed.

— BSR
i is in a stable state and the associated token is in a sending

place sp. With such configuration, the send port p is enabled. By
construction, the sp state can be reached only if the variable xp was
previously set to true by BSR

i before sending the offer only if the
variable xp was previously set to true by BSR

i when the offer was
sent. Thus, the S/R interaction between send and receive ports is
possible and by executing it, we reach back the first configuration.

2.3 Conclusion

In this chapter, we presented the BIP component-based model, a for-
malism for modeling heterogeneous systems with synchronized multi-party
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interactions. A system is described by assembling a set of atomic compo-
nents communicating through set of interfaces (ports).

The second part of this chapter, we presented method to automatically
decentralize BIP models. This method transform an arbitrary BIP model
into a send/receive model directly implementable on a distributed platform.
This transformation consist on adapting a 3-layer model architecture that
consists on (1) breaking the atomicity of actions in atomic components
of the centralized BIP model, (2) introducing scheduler IP components
to coordinate the execution of interactions in distributed way according
to a user partitioning and (3) using CRP components to resolve conflicts
between schedulers.

Component-based models are highly recommended to reason about se-
curity properties at an abstract level in parallel with functional behavior
modeling. For this reason, we extend, in the next chapter, the BIP model
to handle information flow security. Where we formally define a set of
sufficient conditions to preserve security in both models.
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3.1. NON-INTERFERENCE DEFINITIONS

In this chapter, we present the security property targeted in this work,
non-interference. We first briefly cite different definitions given in literature
for non-interference informally and then we present distinct approaches
used to tackle the security issues defined using this property according to
different system types.

3.1 Non-Interference Definitions

Noninterference is a model for information-flow control(CIF), firstly de-
fined by Goguen and Meseguer [?], which ensures that sensitive data does
not affect the publicly visible system behavior. This security feature al-
lows tracking of information in the system and the establishing of end-
to-end confidentiality and integrity properties. Here, we informally define
the non-interference property as given in [?], but in order to verify that a
system satisfy it, we need a formal definition, which we give in the next
Chapter 4. Gogen and Mesugers presented the non-interference property
using a model of deterministic state machine that accepts commands from
its various users as input, processes them using transition functions and
return outputs according to output functions. For a given system, the
non-interference property holds between two users U1 and U2 (denoted
U1 6 U2) if the output given on U2 does not depend whether U1 provides
input to the system or not. More precisely, U1 6 U2 holds if for every
sequence of commands the output to U2 after execution of this sequence
is identical to the output to U2 after execution of the purged sequence,
i.e the sequence that results after removing all commands issued by U1,
[?]. This reduces the non-interference to a problem of indistinguishability
between multiple execution traces of the system (e.g, states of memory),
while considering that the network is abstract to a shared memory. Nu-
merous further variant of non-interference have been proposed over the last
20 years [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Although that these
last definition were given different names like, non-deducebility, general-
ized non-interference, restrictiveness or non-interference, they all share the
same underlying idea of non-interference.

The intuitive way to explain the non-interference property violation
may be shown in program code. Hereafter, we present two examples of
security leaks that are the explicit and the implicit flow, where we consider
that variables h is a sensitive data while l is a public one. The illegal
explicit flow can be summarized in the instruction l:=h that assign a
secret variable h to a public one l. The implicit flow is presented in the
conditioned instructions, i.e, if h then l=True; else l=False;, where
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APPROACHES

the value of the public variable is modified within a context of a secret
variable h. Such illegal flow is a kind of covert channels that can not be
managed properly by a purely dynamic mechanism such as access control.

3.2 Non-Interference Verification: Methods

and Approaches

Many formal models and tractability techniques have been used in the
literature to deal with information flow leaks issues. Some of these tech-
niques are based on the use of formal models which define in precise terms
the system behavior as well as properties, allowing to specify requirements
without ambiguities and verifying critical requirements with mathematical
rigor. While formal models are used for verification at abstract level, secu-
rity typed languages are used to analyze programs and verifying security
at code level. In this thesis, we use a combination of both approaches to
track and secure critical information at data as well as event levels.

3.2.1 Formal Trace-Based Security Model

A formal security model is a formal specification of system’s security
requirements. As depicted in Figure 3.1, the system model component that
specifies how the system operates, interpreted in a specific formalism and
a security component which specifies what security property is required.
The verified satisfaction relation between both components ensures that
the security requirements are fulfilled by the system.

I
System Model

System Behavior

Security

specifications

Proof

Security property

Satisfies

Figure 3.1 – Structure of formal security model.

Formal methods are related to secure system model (security and behav-
ior components) based on a common semantic or a syntactic specification
formalism. As presented in the previous Chapter 2, the system model that
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we employ through out this thesis is a component-based model, BIP , where
the behavior can be expressed by a set of traces where every trace models a
possible execution sequence of the system. Formally, a trace is a sequence
of events where every event models an atomic step execution (e.g. send-
ing or receiving a message). In trace-based system models several system
properties such as safety (e.g. invariants) and aliveness (e.g. termination)
properties can be modeled by a set of traces and are referred to as a prop-
erty of traces. Such properties are satisfied if every possible trace of the
given system is contained in the set that specifies the property [?]. Based
on this, the security property that we treat in this thesis, non-interference,
is modeled by a set of set of traces.

The trace-based interpretation of non-interference property have been
often employed with event system. These systems were quite popular for
the investigation of information flow security properties [?, ?, ?, ?]. The
particularity of BIP model that we employ in this thesis is the use of a
set variables in atomic component. Hence, the security properties that
we give using trace-based definitions are not limited to event-traces but
we extended to observation of variables variation with different execution
traces.

3.2.2 Security Typed Languages

The most popular security techniques, used earlier in the 80s, to secure
distributed system are access control techniques or deny access. Despite
there wide use in practice [?, ?, ?], these techniques rely only on defining
who has the right to read or modify a variable or a resource over the net-
work instead of defining what exactly it is accessed to read or to write. For
example, to prevent an authorized processes to access a shared file they re-
strict write-read permissions defined in role-based dictionaries(tables) that
may be very complicated to put in place in case of complicated systems.
As a useful complement to traditional security mechanisms such as access
control and cryptography, security typed language provides an end-to-end
protection allowing to enforce different security policies. Critical infor-
mation are checked not just at a certain point (e.g. system output) but
throughout the duration of computation. The control of information flows
for typed languages, uses the program code to discover security leaks. It
was introduced for the first time by Denning [?]. The use of typing aim
to ensure that a program may not contain an illegal information flow com-
pared to the effective flow of policy. The idea is to associate security levels
on different variables of the program and then check that no assignment can
occur in a high security level variable to another lower security level. Dif-
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ferent implementation of typed languages have been given, particularly we
mention the JIF language [?, ?]. JIF is an extension of the Java language
to control information flow using a Decentralized Label Model [?]. The la-
bels (annotations) associated to data in the code represent a security policy
that restricts the flow of information in the system. The verification can be
done through annotations check at compile time verifying if the program
meets a set of constraints that statically regulates the information flow, or
at run-time execution to enforce these constraints.

3.2.3 Security Labels

Security labels are used to annotate program variables in order to con-
trol the flow of information in the programs. The label of a variable controls
how the data stored in this variable can be used. If the contents of one
variable affects the other variable is that there is a flow of information
from the first to the second. The key to protecting the confidentiality and
integrity is to ensure that when the data flows through the system, the
security labels are consistent with the defined policy. There are several
models of labels in the literature. Hereafter we give example to a three of
them, [?, ?, ?].

Decentralized Label Model

In this section we describe the Decentralized Label Model (DLM) [?].
This model is said to be ”decentralized” because security policies are not
defined by a central authority, but controlled by the various participants in
the system. The system will then behave in ways that respect these security
policies. This feature is possible thanks to the concept of ”ownership” of
the labels used to annotate the data. This concept allows each participant
to define the security level of its data, but not those of others. To protect
secret information, Labels are expressed within a set of constraints. Each
constraint is defined using principals representing authorities that control
the information to protect.

Authority The authorities are the entities that own, modify and publish
the information. They represent users, groups or roles. A process has the
right to act on behalf of a group of authorities. Some authorities have the
right to act for others. When A authority can act to another authority A′,
A has all the power and potential of privileges A′. The relationship is for is
reflexive and transitive, and to define a hierarchy or a partial order between
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authorities. The relationship acts for allows to delegate all the privilege of
an authority (A) to another (A′). We denote such relationship by (≺).

Labels To track data information flow in programs, authorities uses la-
bels as security constraints. A security label can be either a confidentiality
label or an integrity label. A constraint in a security label has two parts :
an owner and a set of Readers in confidentiality label or Writers in an in-
tegrity label. The owner represent the authority that owners the data and
the set of Readers and Writers represent authorities that can respectively
access the information to read or to modify.

A label consists of two major parts: a privacy label and an integrity
label. Each of these labels contain a set of elements that express need of
security defined by authorities. A label element has two parts: an owner
and set of authorities that represent players in a privacy label and writers
in an integrity label. The purpose of a label element is to protect the
private information of the owner of the item. It is called the Data Use
Policy. Thus, data is labeled with a number of policies set by the data
owners authorities.

Lc = {o1 : r1; o2 : r1, r2} (∗)

The confidentiality label gives the security level wanted to data by des-
ignating the potential readers list. For instance, considering a confidential
label Lc ∗. The Lc label contains two security policies separated by semi-
colon where o1, o2, r1 and r2 are all authorities. Both o1 and o2 are owners
of the label policies and {r1} and {r1, r2} are respectively the set of readers
of the policies. Actually, readers are the authorities to which this element
provides access to the data. So the owner is the source of the data and its
readers are possible recipients. The authorities are not listed as readers do
not have the right to access the data. As the data flows in the system, the
label must be respected.The meaning of a label is that every policy in the
label must be respected as the data flows through the system, so that each
tagged information is not disclosed only following a consensus between all
policies. A user can read the data only if this user representative authority
can act for each political reader in the label. Thus, only users whose au-
thorities may act to r1 can read the data labeled by Lc. The same authority
may be the owner of several policies; policies are enhanced independently
of one another in this case.

The integrity policy are dual privacy policies. As privacy policies pro-
tect against improperly read data, even if they cross or are used by pro-
grams that do not trust, the integrity policies protect data against inap-
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propriate modification. A label integrity keeps track of all the sources that
affected its value, even if these sources affect it indirectly. They prevent
untrusted data to have an effect on the stored data confidence. The struc-
ture of an integrity policy is identical to that of a confidential policy. It
has an owner, the authority for which the policy is applied, and a group
of writers (instead of readers), the authorities who are authorized to mod-
ify the data. A label integrity can contain a set of integrity policies with
different owners.

A security domain is defined over the set of confidentiality labels and
a partial order relation. The partial order relation is the flows to relation,
denoted ⊆ and defined as follows:

L1 ⊆ L2 ≡ ∀o1 ∈ O(L1). ∀o2 ∈ O(L2). o1 ≺ o2 ∧
∀r1 ∈ R(L1, o1). ∃r2 ∈ R(L2, o2). r1 ≺ r2

The intuition behind the flows to relation ⊆ above is that (1) the informa-
tion can only flow from one owner o1 to either the same or a more powerful
owner o2 where o2 can act for o1 and (2) the readers allowed by R(L2, o)
must be a subset of the readers allowed by R(L1, o) where we consider that
the readers allowed by a policy include not only the principals explicitly
mentioned but also the principals able to act for them.

Token-Based Label Model

The following model, inspired by [?, ?] represents the labels as a set
of chips (tags). A token is an opaque term, out of context, has no precise
meaning, but that is assigned to the data to associate them with some
type of confidentiality or integrity. The label belonging to a set of security
levels L and contains two sets: S (for Secrecy), which represents the level
of privacy and I (for Integrity), which represents the level of integrity. We
then note L = {S; I}.

Associate a confidentiality token j (j ∈ S) at a given data implies that
this data contains information of a confidentiality level j. To reveal the
contents of this given data, the system must obtain the approval for all of
privacy chips that tag this data. The level of integrity of a data represents a
guarantee of the authenticity of the information in this database. It allows
the recipient to ensure that the data that was sent to it was not modified
by untrusted parties. Assign a token of integrity i (i ∈ I) for a given data
represent an additional guarantee for this data.

Definition 10 (Order Relation) All labels in a system are governed by
the partial order relation can flow to (can flow to), denoted by ⊆. Following
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this relationship, the flow is directed from the least restrictive to the most
restrictive label. The relationship can flow to can be decomposed into two
equations:

— ⊆C: This relationship orders confidentiality levels
— ⊆I : This relationship ordered integrity levels

Considering two security labels L1 = {S1; I1} and L2 = {S2; I2}. We
denote:

L1 ⊆ L2 if and only if S1 ⊆C S2 and I1 ⊆I I2 (3.1)

Definition 11 (Confidentiality) Considering two confidentiality levels
S1 and S2 each containing a set of tokens:

S1 ⊆C S2 if and only if ∀j1 ∈ S1 , ∃j2 ∈ S2 such that j1 = j2 (3.2)

Definition 12 (Integrity) Considering two Integrity levels I1 and I2 each
containing a set of tokens:

I1 ⊆I I2 if and only if ∀i2 ∈ I2 , ∃i1 ∈ I1 such that i1 = i2 (3.3)

Theorem 2 (Union) Considering two security labels L1 = {S1, I1} and
L2 = {S2, I2}. The Union of both labels is L = {}:

L1 ∪ L2 = L ⇐⇒ S = S1 ∪ S2 et I = I1 ∩ I2 (3.4)

Corollary 1 If L1 and L2 are two Labels in L, then L1∪L2 ∈ L such that:

∀Li ∈ L, if L ⊆ L1 and L ⊆ L2 then L ⊆ L1 ∪ L2 (3.5)

Theorem 3 (Transitivity) For two security levels, L1 and L2

If L1 ⊆ L2 and L2 ⊆ L3 then L1 ⊆ L3 (3.6)

Theorem 4 (Reflexively) For two security levels, L1 and L2

If L1 ⊆ L2 and L2 ⊆ L1 ⇐⇒ L1 = L2 (3.7)

Based on the use of the previous definitions and theorems, we can define
security domain as follows:

Definition 13 (security domain) A security domain is a lattice of the
form 〈S,⊆,∪,∩〉 where:

— S is a finite set of security levels.
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H

M2

L
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Figure 3.2 – Example of security domain

— ⊆ is a partial order ”can flow to” on a set of security levels S that
indicates that information can flow from one security level to an
equal or a more restrictive one.

— ∪ is a ”join” operator for any two levels in S and that represents
the upper bound of them.

— ∩ is a ”meet” operator for any two levels in S and that represents
the lower bound of them.

As a trivial example, consider the set S = {L,M1,M2, H} of security
levels that are governed by the relation L ⊆ M1, L ⊆ M2, M1 ⊆ H
and M2 ⊆ H. M1 and M2 are incomparable and we note M1 * M2 and
M1 + M2. Edges between the different security levels represent the way
the information have the right to flow. This security domain is graphically
illustrated in Figure 3.2.

3.2.4 From Verification to Implementation

The application of formal approaches that we have cited above appears
to be the most appropriate in order to ensure security. However, the imple-
mentation of formal model is difficult, error-prone, time consumption and
expensive task. The implementation of information flow control solutions
for centralized systems are mostly based on flow analysis, conducted with
safety typed languages that intermingle security policy with the functional
application code, and so help create non-interfering systems construction.
Such languages have the advantage of treating the flow of information at a
fine-grained level, but it suffers from certain drawbacks: the security con-
straints and the functional behavior of the system are not separated, which
implies that, in hand, the developer must be sufficiently versed in security
to enforce these constraints himself on the code, and secondly, he must
undergo a fairly heavy training phase to take over the new language.

Distributed solutions for verification information flow is either based on
applying access control techniques, which could allow certain information
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leaks due to the implicit flows, for example, or by distributing the system
after applying constraints safety, dividing it into non-interfering mutually
modules. The problem is that the systems created by these solutions are
distributed according to the security constraints, not as functional con-
straints. In addition to this, the non-interference property still a difficult
property to implement, restrictive and considered to be unpractical which
make it not always desired by the system designers.

It is for these reasons that a solution usable for non-interference in real
systems must be flexible, integrated and easy to apply, especially for the
non-expert on security. It must also be able to combine other proper-
ties (i.e, safety and aliveness properties) with non-interference. Enforcing
a total separation between functional modeling and verification and the
implementation of security mechanisms is the most promising approach
while treating non-interference. Indeed, the application of non-interference
in complex systems is a difficult task because the information can take
many forms and operate on several types of channels, which makes it dif-
ficult to follow. The verification made on an abstract level and followed
by set of secure-by-construction transformations to decentralize the model,
allows to efficiently introduce security mechanisms (i.e, encryption, signa-
ture tokens) while generating the application code. Hence, we can reach
an optimal security configuration. The use of component-based systems to
treat non-interference is very adequate where, thanks to their modularity
and interfaces, we can decompose the security issue which facilitate the
interference detection and easily add security mechanisms.

3.3 Security Verification Techniques and Lan-

guages

Several solutions to tackle different security issues in distributed systems
exists in literature. Most of theses solutions treat security in distributed
systems with separation of concerns in an ad-hock manner, where security
and functional specifications are treated separately. Hereafter, we give
examples of different systems that treat security at a different levels, either
at an abstract level or with separate modules for the implementation of
security mechanisms for execution.

3.3.1 Security Abstraction and Configuration

Several solutions based on high-level security configuration have been
developed. This work, like ours, are based on a separate configuration
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code to describe non-functional properties such as security and generate
the appropriate code. Hereafter, give examples of models ensuring security
at abstract level, the SecureUML and JASON.

SecureUML

SecureUML is a modeling language allowing to specify security require-
ments in arbitrary UML design models using access control techniques.
[?] proposes a scheme to a different security concepts provided the use
of Role-Based Access Control (RBAC) that restricts access to authorized
users. SecureUML is based on the MDS approach, where starting from
extension of the UML model encompassing security using Access Control
techniques, a set of transformations are done till a platform dependent im-
plementation. This approach is very used especially with target platforms
including EJBs (Enterprise Java Beans), Enterprise Services for .NET and
Java Servlets.

JASON

Jason was introduced in [?] as a canevas with a compiler that aims to
simplify adding security policies to services. The system developer uses
the Java annotations (defined in JIF) to define and represent multiple
security policies in the code such as confidentiality, integrity and RBAC
access-control. Next, a cryptographic code is automatically generated by
the JASON canvas. Hence, the system designer can focus on functional
specifications of the application.

3.3.2 Component-Based Security Systems

Standard security approaches for distributed systems, we have cited
above, are essentially based on the access control policies that control the
execution of actions on individual objects. However, access control policies
suffer from the Trojan Horse problem or other information leakage using
hidden channels. This is due to the fact that no check is made on the
use of a given once issued to authorized service. Inappropriate calculation
of confidential information and calls to third-party services may disclose
secrets to other entities that are not authorized to read this information.
The Mandatory Information flow control can solve some of these problems
by labeling every information and service with a given level of security.
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CIF Based Architecture: CIF aims to represent the distributed sys-
tems using a component oriented architecture, applying the CIF technique
by assigning parameters to elements of the system at a higher level of
abstraction. In the CIF project, the model base component used is an
extended Fractal model that expresses security properties in addition to
the architecture. A security interface has been added allowing to mark the
inter-component connections at the ports where a pair of confidentiality
and integrity appointed label that represent security constraints imposed
on traded variables. The label applies to a port is applied to all mes-
sages sent (or received) via this port. Each component can have a set of
attributes, each with a security label.

CIF uses the ADL fractal extended language to present the security
configuration in addition to the architecture of the system. Figure 3.3 rep-
resents an example of a description in ADL CIF. Compared with the Fractal
ADL, the ADL CIF allows the specification of the component data labels
(attributes), the labels of communication ports and the desired communica-
tion protocol. The description of the protocol guides the administrator for
the selection of the security protocol and communication between compo-
nents. In addition, the bonds in the ADL CIF are considered unidirectional
because we need to distinguish between an inquiry and a response that may
have different security requirements, while a bond may be bidirectional in
Fractal.

<component name=”C”>
<component name=”C1”>
<port name=”P” r o l e=” c l i e n t ” s i g n a t u r e=” s e c u r i t y . p l t f ”

l a b e l=”{C: I }”/>
<attribute name=”M” l a b e l=”{Cm: Im}” value=”mon message”/>
<content class=” s e c u r i t y . C1Impl”>

</component>
<component name=”C2”>
<port name=”P” r o l e=” s e r v e r ” s i g n a t u r e=” s e c u r i t y . p l t f ”

l a b e l=”{C ’ : I ’} ”/>
<content class=” s e c u r i t y . C1Impl”>

<binding c l i e n t=”C1 .P” s e r v e r=”C2 .P”>
<pro to co l name=”RMI”/>

</binding>
</component>

</component>

The specification of the security features is achieved at a higher ab-
straction level. It is done in the ADL language by using security tags
assigned to the component interfaces. Annotating a component is where
the component attributes, incoming and outgoing messages through the
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C1 C2

p={C:I}

m={Cm:Im}
C

p’={C’:I’}

Figure 3.3 – A simple ADL CIF example.

communication port are tagged with security levels. The annotation mech-
anisms forces the system to comply with the security restrictions at two
levels:

— Intra-component level: Security property has to be satisfied locally
at each component. Confidentiality and integrity is verified at com-
pilation and at code generation for each component.

— Inter-component level: Exchanged messages that are classified con-
fidential have to be kept secure in a non-secure network. To define
the security constraints on the exchange of messages between com-
ponents, the communication ports are annotated with labels. The
semantics of different labels is defined according to the port type
either it is a server or client.

3.3.3 Distributed Implementation Solutions

The solutions presented earlier mainly concern centralized systems, and
do not address the problems that can cause distribution of the program on
an unreliable network. Some of these solutions, as JIF were extended to
accommodate distributed systems.

JIF/Split: The JIF/Split is the extension of the JIF language by [?] to
allow automated partitioning of program across distributed and mutually
hostile hosts, while preserving information flow security across the entire
resulting ensemble. According to a trust relation (privilege) expressed by
principals to hosts, Jif/split can partition a program such that a code frag-
ment that executes on a host only has access to data owned by principals
who trust that host. Hence, sub-programs reproduce original program with
added satisfaction to security requirement without the need of a universally
secure machine.

CHAPTER 3. INFORMATION-FLOW SECURITY 57



3.4. CONCLUSION

Fournet Compiler [?]: Recently and similarly to Jif/Split, [?] presented
a compiler that distributes programs with a strengthening of security com-
munications by adding cryptographic mechanisms. This compiler is built
for a simple imperative language with security annotations and distributed
code linked to concrete cryptographic libraries. The compiler presented
here is structured into four stages. The first is the partitioning, it can cut
the sequential code into a set of routines following the annotations applied
by the Security designer. The second step is the control flow which can
protect the program against malicious scheduler in a code that keeps track
of the status of this program. The replication step transforms a distributed
program based on a shared memory in a program where the variables are
replicated at each node of the system. Finally, the last step is cryptogra-
phy, which inserts encryption operations to protect these replications and
generates an initial protocol to distribute their keys.

Fabric: Fabric [?] is a platform for building secure distributed systems
that promotes secure resource sharing between heterogeneous nodes that
do not necessarily trust. The nodes are divided into storage nodes (stor-
age nodes), dissemination (dissemination nodes) and computing (worker
nodes). These nodes share a set of objects Fabric, which are similar to
Java objects tagged with the DLM model labels. The Fabric language is
also based on an extension of the JIF language for distributing programs
with support for transactions and for remote method invocation.

3.4 Conclusion

The main objective of our work is to ensure non-interference with fine
granularity for distributed systems based on a sound and rigorous verifi-
cation technique. None of the solutions we have presented above handles
the non-interference issues from centralized to distributed systems at high
level of abstraction till secure code generation. In this respect, we propose
a framework equipped with the necessary practical and automation tools
for control information flow in the system and generating secure code.
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4.1. SECURITY MODEL

As presented in the state of the art, security insurance is more related
to problems in design and implementation rather than vulnerabilities in
cryptographic mechanisms. Therefore, considering a rigorous model with
well-defined semantics allows to formally verify a system with respect to
mathematical descriptions of security( properties ).

As presented in the previous Chapter 2, component-based modeling
approach allows to build complex systems from assembling simple com-
ponents. It can be formalized as an operation that takes in components
and their integration constraints. From these, it provides the description
of a new, more complex components. Different part of the system can
be treated independently which saves time and cost and increases produc-
tivity via component reuse. Modeling is henceforth seen as a matter of
re-configuring and reorganizing existing components, which is not always
trivial and should not be neglected. Introducing security requirements at
an abstract level and integrate it in the design process aim to simplify the
verification and detecting leaks at early stages at system creation. Hence,
models are a combination of security and functional requirements, where
the information flow are controlled following set of predefined constraints.
As our modeling languages have a well-defined semantics, we can formally
analyze these designs. Consequently, once the system is proved secure, we
can use tools to automatically generate code directly from the model. In
this context, we introduce secureBIP framework for verifying information
flow in component-based systems. This is built as an extension of the
component-based modeling formalism BIP [?, ?].

This chapter is organized as follows. In Section 4.2.2, we introduce the
proposed security extension, secureBIP , with focus on the definitions of
non-interference property. Then in Section 4.4, we provide formal steps
towards the usability of automated method based on the use of unwind-
ing theorem, providing sufficient conditions for non-interference. These
conditions verify the security of system composition (atomic behavior and
interactions) providing a key factor in the scalability of our approach, which
is also an important criterion for the success of verification in realistic set-
tings. In Section 18, we improve the verification technique to a practical
security level synthesis allowing to generate security configuration for the
model. We then illustrate the use of secureBIP in Section 4.7.

4.1 Security Model

In order tackel security issues related to sensitive information flow in
early design phases, we extend previously defined BIP model with specific
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mechanisms to track and analyse security. Here we present the secureBIP
component-based model that will constitute the foundation upon which we
will build our approachs for building secure systems. We explore infor-
mation flow policies [?, ?, ?] with focus on the non-interference property.
SecureBIP was first introduced in [?]. It allows, first, to defne a security
policy, by classifing different part of the model (data variables, ports and
interactions) with annotations describing how information can flow from
one classification with respect to the other, and second, to put in place a
practical security analysis approach by defining a set of sufficient condi-
tions. Hereafter, we present the adapted security mechanisms to define the
non-interference property and statically verify it.

We consider that the used labelling model forms a complete lattice.
Based on this, we formally represent security domains as finite lattices
(⊆,≤) where ⊆ denotes the security levels and ≤ the flows to relation. For
a level s, we denote by [−, s] (resp. by [s,−]) the set of levels allowed to
flow into (resp. from) s. Moreover, for any subset S ⊆ S, we denote by
tS (resp. uS) the unique least upper (resp. greatest lower) bound of S
according to ≤.

Let C = γ(B1, . . . Bn) be a composite component, fixed. Let X (resp.
P ) be the set of all variables (resp. ports) defined in all atomic components
(Bi)i=1,n. Considering (S,⊆,≤) a security domain, fixed.

Definition 14 (security assignment) A security assignment for com-
ponent C is a mapping σ : X ∪P ∪ γ → S that associates security levels to
variables, ports and interactions such that, moreover, the security levels of
ports matches the security levels of interactions, that is, for all a ∈ γ and
for all p ∈ P it holds σ(p) = σ(a).

Figure 4.1 shows an example of an annotated atomic component. We
use two intuitive security levels H and L, where L ⊆ H. Here, we tag
each port with a security level, presented in dashed square, where we tag
variables cnotif and cinfo with the same security level H.

In atomic components, the security levels considered for ports and vari-
ables allow to track intra-component information flows and control the in-
termediate computation steps. Inter-components communication, that is,
interactions with data exchange, are tracked by the security levels assigned
to interactions.
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Figure 4.1 – Example of an annotated atomic component, Event-Creator.

4.2 Non-Interference

Let σ be a security assignment for C, fixed. For a security level s ∈ S,
we define γ ↓σs the restriction of γ to interactions with security level at most
s that is formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.

For a security level s ∈ S, we define w|σs the projection of a trace
w ∈ γ∗ to interactions with security level lower or equal to s. Formally,
the projection is recursively defined on traces as ε|σs = ε, (aw)|σs = a(w|σs )
if σ(a) ⊆ s and (aw)|σs = w|σs if σ(a) 6⊆ s. The projection operator |σs is
naturally lifted to sets of traces W by taking W |σs = {w|σs | w ∈ W}.

For a security level s ∈ S, we define the equivalence ≈σs on states of C.
Two states q1, q2 are equivalent, denoted by q1 ≈σs q2 iff (1) they coincide on
variables having security levels at most s and (2) they coincide on control
locations having outgoing transitions labeled with ports with security level
at most s. We are now ready to define the two notions of non-interference.

4.2.1 Event Non-Interference

Definition 15 (event non-interference) The security assignment σ en-
sures event non-interference of γ(B1, . . . , Bn) at security level s iff,

∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs )(B1, . . . , Bn), q0)
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Event non-interference ensures isolation/security at interaction level.
The definition excludes the possibility to gain any relevant information
about the occurrences of interactions (events) with strictly greater (or in-
comparable) levels than s, from the exclusive observation of occurrences of
interactions with levels lower or equal to s. That is, an external observer
is not able to distinguish between the case where such higher interactions
are not observable on execution traces and the case these interactions have
been actually statically removed from the composition. This definition is
very close to Rushby’s [?] definition for transitive non-interference. But, let
us remark that event non-interference is not concerned about the protection
of data.
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d2 d3
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Figure 4.2 – Example for event non-interference.

Example 4 Figure 4.2 presents a simple illustrative example for event
non-interference. The model consists of three atomic components compi,i=1,2,3.
Different security levels have been assigned to ports and interactions: comp1

is a low security component, comp2 is a high security component, and comp3

is mixed security component. The security levels are represented by dashed
squares related to interactions, internal ports and variables. As a conven-
tion, we apply high (H) level for secret data and interactions and low(L)
level for public ones. The set of traces is represented by the automaton in
figure 4.3 (a). The set of projected execution traces at security level L is
represented by the automaton depicted in figure 4.3 (b). This set is equal to
the set of traces obtained by restricted composition, that is, using interac-
tion with security level at most L and depicted in figure 4.3 (c). Therefore,
this example satisfies the event non-interference condition at level L.
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Figure 4.3 – Sets of traces represented as automata.

4.2.2 Data Non-Interference

Definition 16 (data non-interference) The security assignment σ en-
sures data non-interference of C = γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σs q2 ⇒

∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2) : w1|σs = w2|σs ⇒
∀q′1, q′2 ∈ QC : q1

w1−→
C

q′1 ∧ q2
w2−→
C

q′2 ⇒ q′1 ≈σs q′2

Data non-interference provides isolation/security at data level. The
definition ensures that, all states reached from initially indistinguishable
states at security level s, by execution of arbitrary but identical traces
whenever projected at level s, are also indistinguishable at level s. That
means that observation of all variables and interactions with level s or
lower excludes any gain of relevant information about variables at higher (or
incomparable) level than s. Compared to event non-interference, data non-
interference is a stronger property that considers the system’s global states
(local states and valuation of variables) and focus on their equivalence along
identical execution traces (at some security level).

Example 5 Figure 4.4 presents an extension with data variables of the
previous example from figure 4.2. We consider the following two traces
w1 = 〈a1a2,b2b3, c2b1, d2d3, c1, a2a1〉 and w2 = 〈a1a2, b2b3, c2b1, c1, a2a1〉 that
start from the initial state ((l1, u = 0, v = 0), (l4, x = 0, y = 0), (l6, z =
0, w = 0)). Although the projected traces at level L are equal, that is,
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w1|σL = w2|σL = 〈a1a2, c2b1, c1, a1a2〉, the reached states by w1 and w2 are
different, respectively ((l2, u = 4, v = 2), (l5, x = 3, y = 2), (l6, z = 1, w =
1)) and ((l2, u = 4, v = 2), (l5, x = 2, y = 2), (l7, z = 1, w = 0)) and
moreover non-equivalent at low level L. Hence, this example is not data
non-interferent at level L.
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Figure 4.4 – Example for data non-interference.

Definition 17 (secure component) A security assignment σ is secure
for a component γ(B1, . . . , Bn) iff it ensures both event and data non-
interference, at all security levels s ∈ S.

The verification of system design for information flow security, partic-
ularly non-interference, is hard, error prone and computationally difficult
task. Indeed, to accurately verify non-interference definitions using univer-
sal quantifiers on variables and ports of the systems, we usually run and
compare all possible execution sequences. Here, we show how can we obtain
sufficient conditions for non-interference analysis in complex component-
based systems by extending unwinding theorems for secureBIP .

4.3 Unwinding Relations

The unwinding conditions were first introduced by Goguen and Meseguer
[?]. They provide sufficient conditions for non-interference that are efficient
to verify since they rely basically in local conditions of pairs of states. The
existence of unwinding relations is tightly related to non-interference. The
basic idea is that if there exist an unwinding relation R of the states in an
input/output state machine M for a policy dividing events in high secu-
rity levels (H) and low (L), then non-interference holds on M for the (H)
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and (L) partition. In general, the unwinding approach reduces the veri-
fication of information flow security to the existence of certain unwinding
relation. This relation is usually an equivalence relation on system states
that respects some additional properties on atomic execution steps, which
are shown sufficient to imply non-interference. In the case of secureBIP
, the additional properties are formulated in terms of individual interac-
tions/events and therefore easier to handle. The following two definitions
formalize this relation for the two types of non-interference defined.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a secu-
rity assignment for C.

Definition 18 (unwinding relation) An equivalence ∼s on states of C
is called an unwinding relation for σ at security level s iff the two following
conditions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a−→
C
q′ ⇒ σ(a) ⊆ s ∨ q ∼s q′

2. output and step consistency
∀q1, q2, q′1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1
a−→
C
q′1 ∧ σ(a) ⊆ s⇒

∃q′2 ∈ QC : q2
a−→
C
q′2∧

∀q′2 ∈ QC : q2
a−→
C
q′2 ⇒ q′1 ∼s q′2

The unwinding conditions where applied first on labelled transition sys-
tems [?]. The main difference between classical labelled transition systems
and the behavior of atomic components used in the secureBIP the use of
variables and guards for keeping history of the state and for parametrizing
ports. For data non-interference we have extended the unwinding theorem
accordingly for coping soundly with these differences in the notation in an
efficient way. Intuitively, by tagging the the set of variables at each atomic
component, we statically analyze guarded transitions with actions by si-
multaneously extending an unwinding relation that considers the union
of variable sets associated to each global state. Tagging keeps track of
variables whose value is directly or indirectly dependent on higher secu-
rity level ones, in the spirit of language based information flow analysis.
This information allows to soundly decide on the output consistency of the
relation.

In the case of secureBIP , the additional properties are formulated in
terms of individual interactions/events and therefore easier to handle. The
following two theorems formalize this relation for the two types of non-
interference defined.
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The next result allows to relate event non-interference and the existance
of an unwinding relation.

Theorem 5 (event non-interference) If an unwinding relation ∼s ex-
ists for the security assignment σ at security level s, then σ ensures event
non-interference of C at level s.

Proof 2 We shall prove traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs )(B1, . . . ,
Bn), q0) by double inclusion. ”⊇” inclusion: Independently of the unwind-
ing relation, by using elementary set properties it holds that traces((γ ↓σs
)(B1, . . . , Bn), q0) = traces((γ ↓σs )(B1, . . . , Bn), q0)|σs ⊆ traces(γ(B1,
. . . , Bn), q0)|σs . ”⊆” inclusion: This direction is an immediate consequence
of Lemma 6 hereafter. It states that for every trace w in traces(γ(B1, . . . , Bn), q0)
its projection w|σs is also a valid trace in traces(γ(B1, . . . , Bn), q0). But,
this also means that w|σs is a valid trace in traces((γ ↓σs )(B1, . . . , Bn), q0)
which proves the result.

Lemma 6 In the conditions of theorem 5, for every trace w in traces(γ(B1, . . . ,
Bn), q0), for every state q such that q0

w−→
C
q, the projected trace w|σs is also

a valid trace in traces(γ(B1, . . . , Bn), q0) and moreover, for every state q′

such that q0
w|σs−−→
C

q′ it holds q ∼s q′.

Proof 3 The lemma is proved by induction on the length of the trace w.
For the empty trace w = ε verification is trivial: ∼s holds for the initial
state q0 ∼s q0 and ε = ε|σs . By induction hypothesis, let assume the property
holds for traces of length n. We shall prove the property for traces of length
n+ 1. Let w′ = wa be an arbitrary trace of length n+ 1, let w be its prefix
(trace) of length n and let a be the last interaction. Consider states q, q1
such that q0

w−→
C
q

a−→
C
q1. By the induction hypothesis we know that w|σs is

a valid trace and for all states q′ such that q0
w|σs−−→
C

q′ it holds q ∼s q′. We

distinguish two cases, depending on the security level of a:
— σ(a) * s: In this case, w′|σs = w|σs hence, w′|σs is a valid trace as

well, reaching the same states q′. Moreover, since a is invisible for
s, the unwinding condition (1) ensures that q ∼s q1. By transitivity,
this implies that q1 ∼s q′, which proves the result.

— σ(a) ⊆ s: In this case, w′|σs = w|σsa. From the unwinding condition
(2), since q ∼s q′ and a is visible and enabled in q then, a must
also be enabled in q′. Therefore, w|σs can be extended with a from
state q′ to some q′1 hence, w′|σs is indeed a valid trace. Moreover,
since q ∼s q′ the unwinding condition (2) ensures also that q1 ∼s q′1,
which proves the result.
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Figure 4.5 – Proof illustration for lemma 6

Based on the unwinding technique, we formally give a verification of
data non-interference.

Theorem 7 (data non-interference) If the equivalence relation ≈σs is
also an unwinding relation for the security assignment σ at security level
s, then σ ensures data non-interference of C at level s.

Proof 4 Let us consider two equivalent states q1 ≈σs q2. The first condition
for data non-interference requires that, for any trace w1 from q1 there exists
a trace w2 from q2 having the same projection at level s, that is, w1|σs = w2|σs .

We shall prove a slightly stronger property, namely, the trace w2 can be
chosen such that, the successors q′1 and q′2 of respectively q1 by w1 and q2
by w2 are moreover equivalent, that is, q′1 ≈σs q′2. The proof is by induction
on the length of the trace w1. The base case: for the empty trace w1 = ε
we take equally w2 = ε we immediately have q′1 = q1 ≈σs q2 = q′2. The
induction step: we assume, by induction hypothesis that the property holds
for all traces w1 such that |w1| ≤ n and we shall prove it for all traces w′1
such that |w′1| = n + 1. Let a be the last interaction executed in w′1, that
is, w′1 = w1a with |w1| = n. Let q′′1 be the state reached from q1 by w1.
From the induction hypothesis, there exists a trace w2 that leads q2 into q′′2
such that w1|σs = w2|σs and moreover q′′1 ≈σs q′′2 . We distinguish two cases,
depending on the security level of a:

— σ(a) 6⊆ s: since ≈σs is unwinding and q′′1
a−→
C
q′1 it follows that q′′1 ≈σs

q′1. In this case, we take w′2 = w2 and q′2 = q′′2 which ensures both
w′1|σs = w1|σs = w2|σs = w′2|σs and q′1 ≈σs q′′1 ≈ q′′2 = q′2.

— σ(a) ⊆ s: since ≈σs is unwinding and q′′1 ≈σs q′′2 and q′′1
a−→
C
q′1 there

must exists q′2 such that q′′2
a−→
C
q′2 and moreover, for any such choice

q′1 ≈σs q′2. Hence, in this case, the trace w′2 = w2a executed from
q2 and leading to q′2 satisfies our property, namely w′1|σs = w1|σsa =
w2|σsa = w′2|σs and q′1 ≈σs q′2.
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The second condition for data non-interference requires that, for any
traces w1 and w2 with equal projection on security level s, that is w1|σs =
w2|σs , any successor states q′1 and q′2 of respectively q1 by w1 and q2 by w2

are also equivalent at level s. This property is proved also by induction on
|w1|+|w2|, that is, on the sum of the lengths of traces w1, w2. The base case:
for empty traces w1 = w2 = ε we have that q′1 = q1 and q′2 = q2 and hence
trivially q′1 ≈σs q′2. The induction step: we assume, by induction hypothesis
that the property holds for any traces w1, w2 such that |w1| + |w2| ≤ n
and we shall prove it for all traces w′1, w

′
2 such that |w′1| + |w′2| = n +

1. We distinguish two cases, depending on the security levels of the last
interactions occurring in w′1 and w′2.
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Figure 4.6 – Proof illustration for theorem 7

— at least one of the last interactions in w′1 or w′2 has a security level
not lower or equal to s. W.l.o.g, consider that indeed w′1 = w1a1
and σ(a1) 6⊆ s. This situation is depicted in figure 4.6, (left).
Let q′′1 be the state reached from q1 after w1. Since w′1|σs = w′2|σs
and σ(a1) 6⊆ s it follows that w1|σs = w′1|σs = w′2|σs . The induction
hypothesis holds then for w1 and w′2 because |w1|+ |w′2| = n− 1 and
hence we have that q′′1 ≈σs q′2. Moreover, q′1 is a successor of q′′1 by
interaction a1. Since the security level of a1 is not lower or equal
to s, and ≈σs is an unwinding relation at level s, it follows from the
local consistency condition that q′′1 ≈σs q1. Then, by transitivity of
≈σs we obtain that q′1 ≈σs q′2.

— the last interactions of both traces w′1 and w′2 have security level
lower or equal to s. That is, consider w′1 = w1a1 and w′2 = w2a2
with σ(a1) ⊆ s, σ(a2) ⊆ s. This situation is depicted in figure 4.6,
(right).
Let q′′1 and q′′2 be the states reached respectively from q1 by w1 and
from q2 by w2. Since σ(a1) ⊆ s,σ(a2) ⊆ s we have w′1|σs = w1|σsa1,
w′2|σs = w2|σsa2. From the hypothesis, w′1|σs = w′2|σs , it follows that
both a1 = a2 and w1|σs = w2|σs . Therefore, the induction hypothesis
can be applied for traces w1, w2 because |w1|+|w2| = n−2 and hence,
we obtain q′′1 ≈σs q′′2 . But now, q′1 and q′2 are immediate successors
of two equivalent states q′′1 and q′′2 by executing some interaction
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a = a1 = a2, having security level lower or equal to s. Since, ≈σs is
an unwinding relation at level s, it follows from the step consistency
condition that successors states q′1 and q′2 are also equivalent at level
s, hence, q′1 ≈σs q′2.

4.4 Static Security conditions

The two theorems above are used to derive a practical verification
method of non-interference using unwinding. We provide hereafter suffi-
cient syntactic conditions ensuring that indeed the unwinding relations ∼s
and ≈s exist on the system states. These conditions aim to effectively re-
duce the verification of non-interference to the checking on local constraints
on both transitions (intra-component conditions) and interactions (inter-
component conditions). Especially, they give an direct way to automate
the verification.

Definition 19 (security conditions) Let C = γ(B1, . . . , Bn) be a com-
posite component and let σ be a security assignment. We say that C satis-
fies the security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is
locally consistent, that is:
— for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `2

p2−→ `3 ⇒
`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

— for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `1

p2−→ `3 ⇒
`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

(ii) all assignments x := e occurring in transitions within atomic com-
ponents and interactions are sequential consistent, in the classical
sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x)

(iii) variables are consistently used and assigned in transitions and in-
teractions, that is,

∀τ ∈ ∪ni=1Ti ∀x, y ∈ X : x ∈ def(fτ ), y ∈ use(gτ ) ⇒
σ(y) ⊆ σ(pτ ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒
σ(y) ⊆ σ(a) ⊆ σ(x)
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(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = `1
p−→ `2, τ2 = `1

p−→ `3 ⇒
(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [?]
for excluding causal and conflicting places for Petri net transitions having
different security levels. Similar conditions have been considered in [?, ?]
and lead to more specific definitions of non-interferences and bisimulations
on annotated Petri nets. The second condition (ii) represents the classical
condition needed to avoid information leakage in sequential assignments.
The third condition (iii) tackles covert channels issues. Indeed, (iii) en-
forces the security levels of the data flows which have to be consistent with
security levels of the ports or interactions (e.g., no low level data has to
be updated on a high level port or interaction). Such that, observations
of public data would not reveal any secret information. Finally, conditions
(iv) enforces deterministic behavior on atomic components.

The relation between the syntactic security conditions and the unwind-
ing relations is precisely captured by the following theorem.

Theorem 8 (unwinding theorem) Whenever the security conditions hold,
the equivalence relation ≈σs is an unwinding relation for the security assign-
ment σ, at all security level s.

The following result is the immediate consequence of theorems 5, 7 and
8.

Corollary 2 Whenever the security conditions hold, the security assign-
ment σ is secure for the component C.

4.5 Configuration Synthesis

When modeling sophisticated systems using secureBIP model, it surely
requires advanced security skills and tools to ensure critical information se-
curity. However, tracking illicit information flows in huge models with com-
plex interactions can be challenging. Hence, we consider that simplifying
and automating the verification process is very important. In this chapter
we consider a practical method to synthesize and verify the information
flow security in the secureBIP model, where starting from intuitively given
security annotations for some variables in the system model we automat-
ically generate, a full annotation configuration for variables and ports if
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the system is secure. Otherwise, the security issue is located and an error
referring to security levels inconsistency regarding the initial security anno-
tations is generated. The proposed synthesis approach is based on the use
of previously defined security conditions ensuring by this a formally proved
end-to-end information flow security. For clarity sake some restriction to
the previous model are applied while presenting the approach. In this sec-
tion we present some restrictions on the model applied to the secureBIP
model for which we provide a compositional approach to synthesize security
configurations in secureBIP models.

4.5.1 Model Restriction

The restrictions that we impose on the (centralized) secureBIP model
aim at simplifying model representation towards tracking information flows.
More precisely, the simplified model is a refined model that allows defining
information flow directions, which allows automatically propagate annota-
tions in the system and synthesize them. The restrictions are applied to
atomic components of the secureBIP allowing to have a centralized send/re-
ceive model with strong synchronized interactions, where:

— we distinguish respectively input ports P in ⊆ P and output ports
P out ⊆ P in the secureBIP model and we assume that they are
disjoint, P in∩P out = ∅. Here the data is exchanged between atomic
components through ports.

— every input or output port p ∈ P in ∪ P out is associated to a unique
variable var(p) ∈ X such that no sharing exists, that is, whenever
var(p) = var(p′) we have p = p′.

— the system evolves either by performing asynchronously an internal
step of some component Bi (Inter rule) or by performing a syn-
chronous communication between two components Bi, Bj involving
respectively ports pouti , pinj related by a connector in Γ (Comm rule).

Figure 4.7 provides an example of atomic components. The Producer
component contains two states l1 and l2 and one output ports out. The
transition labelled with port produce takes place only if the guard [w ≥ 3]
is true. Then, the variable x is incremented by executing the assignment
x := x+ 1. The transition labelled with the out port takes place

In this section, we first recall the main aspects of information flow anal-
ysis that we require in controlling the information flow in the system model.
Then, we apply these notions on secureBIP model where we extract im-
plicit and explicit information flow dependencies and we give an algorithm
to automatically synthesize and verify security annotations. Here we give
an optimized, rapid and compositional solution to secure the system.
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Figure 4.7 – A Producer-Buffer-Consumer example

4.5.2 Data-flow analysis

Introduced in 1987, data-flow graphs DFG, represent a combination
of both control and data dependence allowing to analyze tasks such as
program slicing [?, ?], in parallelization and vectorization optimizations
[?, ?], and as a software engineering and testing tool [?, ?]. In this chapter,
we use data-flow graphs to extract and construct information dependence
in the model composition in an automated way. We define, hereafter,
the control and data dependence that we require to analyze and control
information flow in sequential programs.

a2:            y:=0

a1:       if (x>5) then

(a) (b)

s1:      a:=5

s2:      b:=a

s3:      c:=ba3:       z:=1

Figure 4.8 – Example: control and data dependency

— control dependence (implicit flow): considering the set of instruc-
tions presented in example 4.8(a), a1 has a control dependence on
a predecessor instruction a2 where the outcomes of a2 determines
whether or not the instruction a1 should be executed or not. Hence,
variable y has a control dependence on variable x.

— data dependence (explicit flow): data or flow dependency occurs
when an instruction depends on the result of a previous instruction.
The simple way of defining data dependency is the use of assign-
ments instructions. As presented in example 4.8(b), instruction s3
(resp. s2) is dependent on instruction s2 (resp. s1). The variable c
depends on variable b and variable b depends on a, hence the variable
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c is also dependent on b and a.

Roughly speaking, the information flow analysis in secureBIP model is
based on the construction of a DFG that considers the set of variables and
ports in the model as nodes on which we calculates there dependencies at
each execution step of the model. Then, we apply an iterative algorithm
that verifies a transfers function, expressed using the can-flow to informa-
tion flow relation, till reaching a fix point. Here we recall the basic steps
to the iterative algorithm:

Algorithm 1: Data-flow Algorithm

1 Set enter.after = init. Set all other n.after to T. . initialize n.afters:
2 Initialize a worklist to contain DFG nodes
3 while the worklist is not empty do
4 Remove a node n from the worklist.
5 Compute n.before by combining all p.after such that p is a

predecessor of n in the CFG.
6 Compute tmp = fn ( n.before )
7 if tmp != n.after then
8 Set n.after = tmp
9 Put all of n’s successors on the worklist

In the following we will extend the data-flow analysis algorithm, Algo-
rithm 1, to handle and control information flow in the system composition.

4.5.3 Security Synthesis

The configuration synthesis problem is defined as follows. Given a par-
tial security annotation of a system, extend it towards a complete anno-
tation which is provable secure according to Corollary 2, or show that no
such annotation actually exists. We assume that system components are
port deterministic.

We rely on flow dependency graphs as an intermediate artifact for solv-
ing this problem. For every component Bi = (Qi, Xi, Pi, Ti), we define the
flow dependency graph Gi = (Ni, ↪→i) where the set of vertices Ni = Xi∪Pi
contains the ports and variables of Bi and edges ↪→i ⊆ Ni×Ni correspond
to flow dependencies required by Corollary 2 and are defined below, for
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every x, y ∈ Xi, p, r ∈ Pi:

y↪→ix iff ∃t ∈ Ti. x := e ∈ asgn(t), y ∈ use(e) ∪ use(guard(t))
p↪→ix iff ∃t ∈ Ti. x := e ∈ asgn(t), p = port(t)

∨
p ∈ P in

i , x = var(p)
y↪→ip iff ∃t ∈ Ti. y ∈ use(guard(t)), p = port(t)

∨
p ∈ P out

i , y = var(p)
p↪→ir iff ∃t, t′ ∈ Ti. p = port(t), r = port(t′), (dst(t) = src(t′) ∨ src(t) = src(t′))

Using flow dependency graphs, the configuration synthesis problem is for-
mally rephrased as follows:

— Given system Γ(B1, ..., Bn), partial annotation σ0 : X → S ∪ {⊥}
— Find complete annotation ζ : X ∪ P → S such that

(C1) (initial annotation) ∀x ∈ X. σ0(x) 6= ⊥ =⇒ ζ(x) = σ0(x)

(C2) (flow preservation) ∀i = 1, n. ∀x, y ∈ Pi ∪ Xi. x↪→iy =⇒
ζ(x)≤ζ(y)

(C3) (connector consistency) ∀γ = (poutpin) ∈ Γ. ζ(pout) = ζ(pin)

If a complete annotation ζ exists and satisfies the conditions (C1-C3) above,
then the system Γ(B1, ..., Bn) is provable secure for σ = ζ|X and ς = ζ|P ,
which are respectively the projections of ζ to variables X and ports P .
That is, all conditions required by Corollary 2 on annotation of ports and
variables within components are captured by dependency graphs (Gi)i=1,n

and satisfied according to (C2). Connectors are consistently annotated
according to (C3). Moreover, the initial annotation is preserved by (C1).

An iterative algorithm to compute the complete annotation ζ is depicted
as Algorithm 2 below. If the algorithm terminates without detecting in-
consistencies, then ζ is the less restrictive annotation satisfying conditions
(C1-C3). If an inconsistency is detected, then no solution exists. In this
case, the initial annotation is inconsistent with respect to the information
flow within the system.

Initially, all system variables are either annotated by security levels
given from system designer σ0 if it exist or a default level that correspond
to the greatest lower bound security levels (uS) in the lattice (line 1). The
algorithm visits iteratively all components (lines 2-18). For every compo-
nent Bi, it propagates forward the current annotation ζ within the flow
graph Gi (lines 3-13). The security level ζ(ni) of every node ni is eventu-
ally increased to become more restrictive than the levels of its predecessors
(lines 8-13). An inconsistency is reported if the security level increases for
an initially annotated variable (lines 10-11). Any change triggers recompu-
tation of successors nodes of ni (lines 12-13). Finally, once the annotation
within Gi is computed, any change on security levels on input/output ports
is propagated to connected ports (lines 14-18). The involved components
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Algorithm 2: Annotation Synthesis

1 ζ(n)←
{
σ0(n) if n ∈ X, σ0(n) 6= ⊥
uS otherwise

. initialization

2 BList← {Bi}i=1,n . inter-component outer loop
3 while BList 6= ∅ do
4 choose-and-remove(BList, Bi)
5 nList← Xi ∪ Pi . intra component inner loop for Gi
6 while nList 6= ∅ do
7 choose-and-remove(nList, ni)
8 si ← t{ζ(n) | n↪→ini} . recompute security level of ni
9 if ζ(ni)≤si and si 6= ζ(ni) then

10 if ni ∈ Xi and σ0(ni) 6= ⊥ then
11 stop . inconsistency detected

12 ζ(ni)← si . update and propagate change within Gi
13 nList← nList ∪ {n | ni↪→in}

14 foreach pi ∈ P out
i ∪ P in

i do
15 find pj ∈ P out

j ∪ P in
j with (pipj) ∈ Γ or (pjpi) ∈ Γ

16 if ζ(pi) 6= ζ(pj) then
17 ζ(pj)← ζ(pi) . update and propagate change across

connectors
18 BList← BList ∪ {Bj}
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need to be revisited again (line 18). Notice that both while loops are guar-
anteed to terminate as the number of annotation changes is bounded for
every node. That is, the security level can only be increased finitely many
times in a bounded lattice (S,≤).

Proposition 1 Algorithm 2 solves the configuration synthesis problem.

Proof 5 Initially, the annotation ζ is defined to satisfy initial annotation
condition (C1). The algorithm propagates this annotation along the flow
graphs, without changing the initially annotated variables. It terminates
only when ζ satisfies flow preservation condition (C2) and connector con-
sistency (C3).

As an example, we apply Algorithm 2 to the Producer-Buffer-Consumer
presented in Figure 4.7 with initial annotation {x 7→ s2, y 7→ s2, z 7→
s3, t 7→ s1}, for security levels s1, s2 and s3, such that s1≤s2≤s3 . The
three flow dependency graphs and their dependencies through connectors
are depicted in Figure 4.9. For this initial labelling, the algorithm succeeds
to generate a complete annotation {x 7→ s2, w 7→ s2, out 7→ s2, produce 7→
s2, y 7→ s2, in 7→ s2, out 7→ s2, z 7→ s3, t 7→ s1, u 7→ s3, in 7→ s2}. If
however we add to the initial configuration a label to the guard variable w,
{w 7→ s3}, Algorithm 2 detects an inconsistency at the Producer component
and an illicit flow from the w variable to y variable through port produce
is reported to the user. To illustrate the efficiency of information flow

in

in out

out

produce
consume

y

z

t

u

Buffer

x

w

ConsumerProducer

s2

s2

s2

s1

s2

s2

s2

s2

s3

s3

s2

s2

Figure 4.9 – Dependency graphs of Producer-Buffer-Consumer from Fig-
ure 4.7

verification using secureBIP framework, we consider two applications: a
social network application whens-App and the Travel Reservation system.

4.6 Use-Case 1: Whens-App Application

We consider Whens-App, an Online Social Network (OSN) application
for organizing events, such as business meeting where participants can ex-
change data when these meetings take place. Figure 4.10 shows an overview
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of a fragment of the system which consists of a finite number of users com-
municating using the Whens-App application. Each one of the users is
capable of creating or receiving an event. An event creation has to include
at least two users, an Event-Creator and an Event-Receiver. The behavior
of Event-Creator and Event-Receiver components are given in Figure 2.3.
Communication channels are represented by lines in the figure.

ER

Event−Receiver
Event−Creator

EC

ER

ER

ER
EC

ER

ER

ER
EC

ER

ER

ER

EC

ER

EC

ECER

Internet

Figure 4.10 – High-level description of the Whens-App system.

As social network application, Whens-App, entails a large variety of
security requirements, here however, we focus on some relevant require-
ments related to information flow security: Assuming that components are
trustful and the network is insecure, (1) the interception and observation
of exchanged data messages does not reveal any information about event
participants and (2) confidentiality of classified data as well as events is
always preserved and kept secret inter- as well as intra-components. Both
requirements are ensured by using security annotations model for tracking
events and data in the system and checking that the formal model satisfies
the security constraints given in Section 4.4.

Several possibilities of security assignment can be applied to the system
model. Here we give in the following examples two of these possibilities:
the first one, presented in figure 4.11, correspond to securing data transfer
between different participants of the event where we consider that all com-
munications that contain a data transfer are secure, while the second one,
presented in 4.12, shows that only data outgoing from the Event-Creator
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Figure 4.11 – Non-interferent Event-Creation from the Whens-App appli-
cation

is considered secure while data received by the Event-Creator from differ-
ent Event-Receivers can be considered public. with these examples, the
security conditions are respected at port annotations as well as variables
assignments. Where the both variables at all component have the same se-
curity level (H) and transferred at at an interaction of ports labelled with
a (H) label.

The third one, presented in figure 4.13 where the system is considered
interferent. Here, we have a security level inconsistency at the conflicting
interation cancel, confirm . The system is considered insecure at the two
states l2, since the execution of one of the interactions would reveal the
non-execution of the other. Hence, the observation of the execution of
the cancel interaction reveals information about the event creation which
have been canceled. Also, another information leak is detected at data
level, where the assignment of variables at the push interactions have an
inconsistent security level. Indeed, the variable rinfo1 and rinfo2, having
both (H) label, are assigned to the variable cinfo that is annotated with
an (L) label.

4.7 Use-Case 2: Travel Reservation

We illustrate the secureBIP framework to handle information flow se-
curity issues for a classical example, the web service reservation system
proposed in [?]. A businessman, living in France, plans to go to Berlin for
a private and secret mission. To organize his travel, he uses an intelligent
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Figure 4.12 – Non-interferent Event-Creation from the Whens-App appli-
cation
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Figure 4.13 – Interferent Event-Creation from the Whens-App application
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web service who contacts two travel agencies: The first agency, AgencyA,
arranges flights in Europe and the second agency, AgencyB, arranges flights
exclusively to Germany. The reservation service obtains in return specific
flight information and their corresponding prices and chooses the flight that
is more convenient for him.

In this example, there are two types of interference that can occur,
(1) data-interference since learning the flight price may reveal the flight
destination and (2) event interference, since observing the interaction with
AgencyB can reveal the destination as well. Thus, to keep the mission
private, the flight prices and interactions with AgencyB have to be kept
confidential.
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Figure 4.14 – Model of reservation web service in secureBIP

The modeling of the system using secureBIP involves two main dis-
tinct steps: first, functional requirements modeling reflecting the system
behavior, and second, security annotations enforcing the desired security
policy. The model of the system has four components denoted: Travel A
and Travel B who are instances from the same component and correspond
respectively to AgencyA and AgencyB, and components Reservation and
Payment. To avoid Figure 4.14 cluttering, we did not represent the in-
teractions with Travel A component. Search parameters are supplied by
a user through the Reservation component ports dests and dates to which
we associate respectively variables (from, to) and dates. Next, through
search interaction, Reservation component contacts Travel B component to
search for available flights and obtains in return a list L of specific flights
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with their corresponding prices. Thereafter, Reservation component selects
a ticket ti from the list L and requests the Payment component to perform
the payment.

All the search parameters from, to, dates, as well as the flights list L are
set to low since users are not identified while sending these queries. Other
sensitive data like the selected flight ti, the price variable p and the payment
parameters (identity id, credit card variable cna and code number cno) are
set to high. Internal ports dests and dates as well as search, fly list, accept
interactions are set to low since these interactions (events) do not reveal
any information about the client private trip. However, the select fly
interaction must be set to high since the observation of the selection event
from AgencyB allow to deduce deduce the client destination. In the case
of a selected flight from AgencyA, the select fly interaction could be set
to low since, in this case, the destination could not be deduced just from
the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies
the syntactic security conditions from Definition 19. Indeed, these condi-
tions hold for the system model depicted in Figure 4.14. In particular, it
can be easily checked that all assignments occurring in transitions within
atomic component as well as within interactions are sequential consistent.
For example, at the select fly interaction we assign a low level security item
from the flight list L to a high security level variable ti, formally ti = L[i].
Besides, the security levels assignments to ports exclude inconsistencies due
to causal and conflicting transitions, in all atomic components.

4.8 Conclusion

In this chapter we presented secureBIP, a framework to secure component-
based systems. Here we formally define a security model by specifying two
types of non-interference, respectively event and data non-interference in
a single semantic model. To the best of our knowledge, these properties
have never been jointly considered for component-based models. Never-
theless, the need to consider together event and data flow non-interference
has been recently identified in the existing literature. The bottom line is
that preserving the safety of data flow in a system does not necessarily
preserve safe observability on system’s public behavior (i.e., secret/private
executions may have an observable impact on system public events).

We extended the BIP framework to encompass security annotations to
track sensitive information throughout the system. Based on these anno-
tations, we provided a set of sufficient syntactic conditions to practically
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and automatically verify the non-interference. These conditions are exten-
sions of security typed language rules applied to our model. Compared to
security-typed programming languages [?, ?] and operating systems [?, ?, ?]
enforcing information flow control, secureBIP is a component-based mod-
eling approach where non-interference is established at a more abstract
level. Thus, secureBIP can be implemented using different programming
languages and is independent from a specific operating system and execu-
tion platform.

The use of our framework has been demonstrated on a Web Service
application and an social online network application. Distinct security an-
notations can be applied to these systems according to the perspective of
the system designer and his security intuitions. The verification model
generates a verdict about the security. In the next chapter we introduce a
automated and practical method to decentralize the system while preserv-
ing security.
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The decentralized BIP model, previously presented in the Chapter 2,
is a set of components executing in a group of distributed nodes such that
there is at least one component per node. An executing component in the
decentralized model is able to send and receive data between other compo-
nent. Assuming that the decentralized BIP components are running on a
trusted hosts, it still paramount to the non-leakage of sensitive information
intra-component as well as inter-component while exchanging data at in-
teraction level. In Chapter 2, we verified the non-interference property in a
multi-party interaction model. Following the transformation steps that aim
to decentralize the model, new variables, ports and transitions are added
and interactions are splitted. It would be interesting to find an automated
method to generate from a centralized secure model a secure distributed
model implementable on a distributed platform.

In this chapter, we extend the decentralized BIP framework by mod-
ifing the previously presented transformation such that to encompass and
preserve information flow security from centralized to distributed model.
Following a set of typing rules, we show that the security annotations of
a high-level model can be transferred to the three-layer distributed model
while preserving non-interference. The new proposed transformation im-
poses additional restrictions on the partitioning of interactions as well as
on the structure of the conflict resolution layers. That is, interactions and
conflict resolution must be statically partitioned according to their secu-
rity levels to avoid information leaks. Moreover, we give a set of rules to
propagate annotations in way to build a secure-by-construction model.

In this chapter, we describe the transformation steps with respect to se-
curity aspect for the decentralized 3-layer architecture model, where Section
5.1.1 presents distributed Atomic Component Layer, Section 5.1.2 presents
the Interaction-Protocol Layer and Section 5.1.3 presents the Conflict-
Resolution Layer.

5.1 Architecture Secure Decentralized Model

5.1.1 Distributed Atomic Layer

The transformation of an atomic component Bi in secureBIP model
into a Send/Receive atomic component BSR is based on decomposing each
atomic synchronization into a send and a receive action. Precisely, each
transition is split into two consecutive steps: (1) an offer that publishes
the current state of the component, and (2) a notification that triggers the
update function. As previously explained in Chapter 4, ports and variables
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in atomic component Bi in a centralized model are classified with security
levels.

Let C = γ(B1, · · ·Bn) be a composite component and σ be a security
assignment for C with domain S, fixed. Moreover, assume that σ satisfies
the security conditions for C, defined in Section 4.4 frm Chapter 4 . Fur-
thermore, to simplify presentation, consider that atomic components are
deterministic, that is, for every state ` and for every port p there exists at
most one transition outgoing ` which is labelled by p.

Definition 20 (Transformed atomic component) Let B = (L,X, P, T )
be an atomic component within C. The corresponding transformed S/R
component is BSR = (LSR, XSR, P SR, T SR):

— LSR = L ∪ L⊥, where L⊥ = {⊥` | ` ∈ L}
— XSR = X∪{xp}p∈P ∪{ns|s ∈ S} where each xp is a Boolean variable

indicating whether port p is enabled, and ns is an integer called a
participation number (for security level s).

— P SR = P ∪ {os | s ∈ S}. The offer ports os export the variables
XSR
os = {ns}

⋃
{{xp}∪Xp | σ(p) = s} that is the participation num-

ber ns, the new Boolean variables xp and the variables Xp associated
to ports p having security level s. For all other ports p ∈ P , we
define XSR

p = Xp.
— For each state ` ∈ LSR, let S` be the set of security levels assigned to

ports labelling all outgoing transitions of `. For each security level
s ∈ S`, we include the following transition τos = (⊥`

os−→ `) ∈ T SR,
where the guard gos is true and fos is the identity function.

— For each transition τ = `
p−→ `′ ∈ T we include a notification

transition τp = (`
p−→ ⊥`′) where the guard gp is true. The func-

tion fp applies the original update function fτ on X, increments
ns and updates the Boolean variables xr, for all r ∈ P . That is,
xr := gτ if ∃τ = `′

r−→ `′′ ∈ T , and false otherwise.

To preserve security classification and enforce its consistency in the
decentralized model we consider different levels of offer port named os in
BSR
i for each defined security level in the Bi component. Furthermore,

relevant variables security level are annotated in a way to preserve initially
defined security partitioning. Indeed, the set of initially defined variables do
preserve their annotations whereas relevant variables, such as port enabling
denoted xp and interaction execution counters denoted ns, are annotated
respectively to there interactions levels. The exported variables through
the os port has different security levels and are not limited to security level
s. These security assignment corresponding to the decentralized atomic
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components are given following a set of propagation rules. In this section
we formally present the secure decentralized atomic component BSR and
the security assignment rules.

Example 6 Considering a descriptif example depectited in figure 5.1 that
shows a set of atomic components B1, B2 and B3. The B2 component
contains two control states l2 and l3 and three ports p3, p4 and p5. Initially
at state l2, the transition labelled by p4 can only occur if the transition
labelled by p3 was executed once, at least, and the variable x is incremented.
The exported variable x is associated to the port p5. The dashed squares
represent security annotations and will be presented in the coming sections.
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Figure 5.1 – Composite component

Example 7 Figure 5.2 represents the transformed S/R version of the atomic
component B2 presented in Figure 5.1. The component is initially in con-
trol state ⊥l2. It sends an offer through the corresponding offer port o2L1
containing the current enabled ports xp3 , xp4 and the participation number
n2L1, then reaches state l2. In that state, it waits for a notification on either
port p3 or p4. The notification on p3 triggers the execution of the update
function which consists on incrementing the variable x, incrementing the
value of n2L2 and re-evaluating xp3 and xp4 based on the guards of transition
labelled with p3 and p4 from l2.

Definition 21 (security assignment σSR for BSR) The security assign-
ment σSR is defined as an extension of the original security assignment σ.
For variables XSR and ports P SR of a transformed atomic components BSR,
define
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fl2 =


xp3 := true

xp4 := (x > 0)

xp5 := false

n2L1 ++

p4

: xp5

xp4

xp4
: xp3
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xp3

l2

o2L1

⊥l2
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l3⊥l3
p5

fl2

p3
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fl3 =


xp3 := false

xp4 := false

xp5 := true

n2L2 ++

p3

o2L2

p5

o2L1

n2L1
n2L2

xp5

Figure 5.2 – Transformation of atomic component B2 (Figure 5.1).

σSR(x) =


σ(p) if x = xp for some p ∈ P
s if x = ns for some s ∈ S
σ(x) otherwise, for any other x ∈ XSR

σSR(p) =

{
s if p = os for some s ∈ S
σ(p) otherwise, for any other p ∈ P SR

As an illustration, we reconsider the example depicted in Figure 4.1.
Following the above definition and as depicted in Figure 5.2, ports crequest, cconfirm
and oecL1 are tagged with (L1) and respectively ports cget, cpush and oecL2

are tagged with (L2), where L1 ⊆ L2.

Lemma 9 If the security assignment σ satisfies the security conditions
for the atomic component B then the security assignment σSR satisfies the
security conditions for the transformed S/R component BSR.

Proof 6 (Lemma 9) We show that transformed S/R atomic components
are secure by construction, that is, security conditions (i), (ii), (iii) and
(iv), related to events and data are preserved by the transformation.

— Condition (i): In a transformed atomic BSR component we distin-
guish two cases of conflicting transitions:

1. τ1 = ⊥`
os−→ ` and τ2 = ⊥`

os′−→ `

2. τ1 = `
p1−→ ⊥`1 and τ2 = `

p2−→ ⊥`2.

From hypothesis, B annotated by σ satisfies security conditions.
Hence, from condition (i) related to conflicting transitions in B the
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case (1) can not take place since ports labelling outgoing transitions
of state ` have the same security level and, moreover, in case (2), it
implies that σSR(p1) = σSR(p2).
Similarly, in the transformed component there are two cases of causal
transitions:

1. τ1 = ⊥`
os−→ ` and τ2 = `

p−→ ⊥`1 and

2. τ1 = `
p−→ ⊥`1 and τ2 = ⊥`1

os′−→ `1

By construction, in (1) σSR(os) = σ(p). Hence, condition related to
causal transitions is verified and σSR(os) ⊆ σ(p). In (2) σSR(os′) =
σSR(p′) such that p′ belong to the set of ports labelling outgoing
transitions of `′. By assumption, initial atomic component B sat-
isfies security conditions, thus σ(p) ⊆ σ(p′) and by construction
σSR(p) ⊆ σSR(p′). Therefore σSR(p) ⊆ σSR(os′) which satisfies se-
curity conditions (i).

— Condition (ii, iii): we verify the security level consistency of vari-
ables assigned in transitions. All actions defined on transitions of
atomic component B are kept unchanged in BSR and the security
level of all variables are preserved with σSR. Hence, by construction
these actions are still secure and satisfy conditions (ii) and (iii).
The xpi variables of enables ports pi on a state {⊥`i}`i∈LSR are mod-
ified at the received notification transition labelled with port p at
the same state ⊥`i where (1) σSR(xpi) = σSR(pi). From condition
(i), we have security level consistency of causal transition, thus (2)
σSR(p) ⊆ σSR(pi). Each variable xpi is evaluated according to the
guard gτpi . For all y ∈ gτpi we have (3) σSR(y) ⊆ σSR.(pi). From
(1), (2) and (3) we can deduce that the condition (iii) is preserved for
all xpi variables. The participation number ns is only incremented
with notification transitions labelled with port p having the same se-
curity level s. Thus σSR(p) ⊆ σSR(ns), condition (ii), is valid in all
transitions.

— condition (iv): This condition is trivially verified whenever the atomic
component B is deterministic where, for every state there is at most
one transition that is labelled by each port.

5.1.2 Interaction Protocol Layer

The Interaction Protocol Layer consists of a set of components, each
in charge of execution of a subset of interactions in the initial secureBIP
model. Each component represent a scheduler that receives messages from
S/R components then calculates the enabled interaction and selects them
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for execution. Hereafter, we focus on how to secure the interactions man-
aged by these engines in a constructive way by preserving initially defined
conditions.

Here we consider that each IPs component is a security-aware scheduler
that takes into account interaction’s security level as well as participation
numbers of all security domain initially defined in the centralized secure-
BIP model. We follow isolation at security levels while representing IP
components. That is, all interactions having the same security level s are
managed by the same IPs. However, several IPjs component can handle
subsets of the same security level interaction, s. In this case, conflicts can
occur between these interactions. In case of conflicting interactions, the
IPjs components has to communicate with the upper layer CRP layer to
take decisions and select the interactions to execute.

However, while deciding which interaction to execute, mixed security
level variables can be handled by IPs components where s is most re-
strictive security level of these variables, . The use of the IP components
allow parallel execution at components level as well as interactions level
in a distributed environment. In this section we show how to construct
a secure IP without introducing unexpected behavior nor disallowing in-
terleaving, which represents a compromise between liveness and security
property in distributed systems. Indeed, a parallel execution of two dis-
tinct security level interaction would not need to suspend one of them to
maintain security, thus there will be no potential for a delay in executing
some interactions.

The security annotations are propagated in the distributed model with
respect to the following rules:

Definition 22 (security assignment σSR for IPs) The security assign-
ment σSR is built from the original security assignment σ. For variables
XIP and ports P IP of the IPs component that handles γs, we define

σSR(x) =

{
σ(x) if x ∈ Xp and s ⊆ σ(x)

s otherwise

σSR(p) = s, forall p ∈ P IP

Within IPs component, all ports are annotated with security level s.
Whereas, the security assignment σSR maintains the same security level for
all variables having their level greater than s in the original model and up-
grades the others to s. That is, all variables within the IPs component will
have security levels at least s. This change is mandatory to ensure consis-
tent copy of data in offers (resp. notifications) from (resp. to) components
to the IPs.
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Example 8 Figure 5.3 illustrates the IPL1 component constructed for in-
teractions γL1 = {p1p3, p2p4} for the example shown in Figure 5.1. For all
Bi components involved in interactions γL1, we introduce a waiting (wi)
and receiving (rcvi) places (i.e, (w1 ,w2) and (rcv1, rcv2). For all ports p
involved in γL1 we introduce a sending place spi (i.e, (sp1, sp2, sp3, sp4).
The IPL1 component moves from wi to rcvi whenever it receives an of-
fer from the corresponding component Bi. After choosing and executing
interactions, the IPL1 component moves to sending (sp) places to send no-
tification through ports p to the corresponding component.

L1 L1L1 L1 L1 L1

p4

w2

w1

rcv1

w2

rcv2

IPL

o2lo1l

a b
xp3 ]∧[xp1 xp2 ]∧[xp4

sp1 sp3
sp4sp2

p1

w1

p3

w2

p2

w1

o2lo1lp1 p2 p3 p4

Figure 5.3 – IPL1 Event-secure interactions scheduler component

Example 9 Figure 5.4 (a) presents a data transfer between two atomic
components B1 and B2 on a synchronized interaction c where the variable
y from component B2 is assigned to the variable x from variable B1 if
(y < 5). The variable xis tagged with L2 annotation and variable y is
tagged with L2 annotation where L1 ⊆ L2. In the decentralized model
shown in Figure 5.4 (b), the IPL2 component executes interaction c. To
this end, variable x is imported into a same security level variable x′, while
the variable y is imported into a higher security level variable y′, through the
corresponding offer. Once the interaction takes place, x′ is copied back to x
on the notification transition. No copy is performed back to the y variable.
Here we manage different level variable in the same IP schedulers.
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Figure 5.4 – Secure data exchange between atomic and IP components.

Figure 5.5 represents the distributed model of the system shown in Fig-
ure 5.1 with centralized interaction management. Indeed, low-level security
interactions a and b are managed with a single IPL1, where high level in-
teraction c is managed with a centralized IPL2 component.

p2 o1L1 o3L2

IPL2 = {c}IPL1 = {a, b}
o1

p1

p2 o2 p3 p4 o2p5 p6 o3p1

BSR1 BSR2 BSR3

p4o2L1 p3 p5 o2L2 p6

Figure 5.5 – Centralized interaction management

5.1.3 Conflict-Resolution Layer

When trying to improve system performance, we split the set of same
security level interactions γs into distinct subsets of interactions γjs that
are executed by different IPjs components. Hence, as previously explained
in chapter 2, conflicts can occur between interactions handled by distinct
IPjs components. In case of conflicting interactions, the IP layer has to
communicate with the upper layer CRP layer to take decisions and select
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the interaction to execute. Here, we present a partition of CRPlayer com-
ponent to resolve conflicts as well as preserving information flow security
of conflicting interactions. To preserve non-interference, however, conflicts
between interactions having the same security level s and hosted by distinct
IPjs components must be solved by a dedicated CRPs component. That
is, a distinct conflict resolution component is actually needed for every
security level. This solution is adequate to the fact that, as explained ear-
lier, conflicts can occur only between interactions having the same security
level, due to the assumption that secureBIP system satisfies the security
conditions.

The functional behavior of the CRPs component is preserved and it’s
formal definition is given in 8 from chapter 2. We propagate the annota-
tions in all ports and variables of the CRPs component according to the
two following rules.

Definition 23 (security assignment σSR for CRPs) The security assign-
ment σSR is built from the original security assignment σ. For variables
XCP and ports PCP of the CRPs component that manage a set of conflict-
ing interactions a, we define

σSR(x) = s, forall x ∈ XCP

σSR(p) = s, forall p ∈ PCP

Cross-layer Interactions

In this subsection, we define the interactions in the 3-layer model.
Following Definition 6, we introduce S/R interactions by specifying the
sender and the associated receivers. Given a composite component C =
γ(B1, · · · , Bn), and partitions γ1s, · · · , γms of γs ⊆ γ, for every security
levels s ∈ S, the transformation produces a S/R composite component
CSR = γSR(BSR

1 ,· · · , BSR
n ,

(IP1s, · · · , IPms)s∈S, {CRPs}s∈S). We define the S/R interactions of γSR as
follows:

— For every atomic component BSR
i participating in interactions of

security level s, for every IP components IP1s, · · · , IPms handling
γs, include in γSR the offer interaction offs = (BSR

i .os, IP1s.ois, · · · ,
IPms.ois).

— For every port p in component BSR
i and for every IPjs component

handling an interaction involving p, we include in γSR the response
interaction resp=(IPjs.p, B

SR
i .p)

— For every IPjs component handling an interaction a that is in conflict
with an other interaction a′ handled by some different IP, include
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in γSR the reserve interaction r=(IPjs.ra, CRPs.ra). Likewise, in-
clude in γSR the ok interaction ok=(CRPs.oka, IPjs.oka) and the fail
interaction f=(CRPs.fa, IPjs.fa).

Definition 24 (security assignment σSR for γSR) The security assign-
ment σSR is build from the security assignment σ. For interactions γSR be-
tween all atomic components of the transformed model, we define σSR(a) =
s for any interaction a involving an IPjs component handling interactions
with security level s.

Lemma 10 All the cross-layer interactions of CSR are secure with σSR.

Proof 7 (Lemma 10) We verify the security level consistency of trans-
ferred data on different interactions:

— At offer interaction offs, we perform a copy of received variables
through offer ports from BSR

i component to the IP component, such
that ∀x ∈ {{Xp}p∈P ∪ {xp}p∈P ∪ {nsi|Bi ∈ participants(γs), s ∈
S}} there exist a x′ ∈ XIP where x′ := x. By transformation,
σSR(x′) = s if σ(x) ⊆ s and σSR(x′) = σ(x) otherwise. The security
level of updated variables (x′) and used variables (x) are consistent
with security level of there corresponding offer interaction, where
σSR(offs) = s. Thus, the security condition (ii) and (iii) are pre-
served at offer interactions.

— At response interactions resp, we send notifications to the corre-
sponding ports p associated with the updated variables x′, where
σSR(p) ⊆ σSR(x′). By construction, σ(p) = σSR(p) = σSR(resp),
thus, σSR(resp) = σSR(x′) which satisfies condition (iii).

— With interactions r, f and ok, the only exchanged variables are the
participation numbers nsi of each participating component i. By con-
struction, each CRPs and IPs components are handling interactions
of the same security level s, thus σSR(r) = σSR(f) = σSR(ok) =
σSR(nsi). Therefore the security condition (iii) is preserved at these
interactions.

The following theorem states the correctness of our transformation, that
is, the constructed S/R model satisfies the security conditions by construc-
tion.

Theorem 11 (Security-by-construction) If the component C satisfies
security conditions for the security assignment σ then the transformed com-
ponent CSR satisfies security conditions for the security assignment σSR.
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5.2 Use-Case: Decentralized WhenApp Ap-

plication

In this section, we resume the Whens-App application previously pre-
sented in Chapter 4 where we already showed that both requirements re-
lated to the event and data non-interference are ensured by using security
annotations for tracking the information flow in the system. Here, we show
how the annotated model can be automatically and systematically trans-
formed towards a distributed implementation while preserving the security
properties.

rinfo rnotif rinfo rnotif rinfo rnotif

cnotif cnotifcinfo cinfo

H
H

H
H

L

L

L

L

rrequest

EC23

cpush

rpush

EC12

rrequest rrequestrconfirmrconfirmrconfirm

cconfirm

crequest crequest

cconfirm

cget

rgetrpush rgetrpush rget

ER1 ER2 ER3

cget cpush

Figure 5.6 – Example of the Whens-App system.

Figure 5.6 presents a simplified composite component for an instance
of the Whens-App application with two event creators and three event re-
ceivers. Interactions are represented using connecting lines between the
interacting ports. Binary interactions (rpush cget) and (cpush rget), to
store and report information, include data transfers between components,
that is, assignments of data across interacting components.. The decentral-
ization of this model is done mainly in two steps: first the transformation of
the atomic components to hold message passing and breaking the atomicity
of executions and second by introducing IPand CRPcomponents according
to a centralized or decentralized management of the interactions.

Atomic component transformation: From the Whens-App system,
we take as example the Event-Receiver component to transform it. The
component transformation and the extended security assignment for the
Event-Receiver are depicted in Figure 5.7. Variables nL , xrequest , xconfirm
and the offer port oL are assigned to Low (L). Variables nH , xpush , xget and
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the port oH are assigned to High (H). Ones can check that this assignment
obeys all the (local) security conditions related to BSR . Actually, secu-
rity conditions are preserved along the proposed transformation of atomic
components with respect to extended security assignment.

rnotif

rinfo

rrequest

rconfirm

oL

oL

nL ++

rrequest
xrconfirm := T
nL ++

xrpush
xrget
nH

oH

rget
xrpush := T
xrget := T nH ++

rpush
xrpush := T

nH ++

rinfo

q0

q1

q2

⊥q0

⊥q1

⊥q2

rget

rnotif

rconfirm
xrpush := T
xrget := T

xrget := T

xrrequest := F
xrconfirm := F

oLxrrequest
xrconfirm
nL

xrget := F
xrpush := F

xrrequest := F
xrconfirm := F

rpush

oH

Figure 5.7 – Transformation of atomic components illustrated on the Event
Receiver

Interactions management: Here we give an example of a centralized
interaction management where different sets of interactions are handled by
IPcomponents from the same security level.

oL

oL

rrequet

IPL

ECSR12 , ECSR23

ERSR1 , ERSR2 , ERSR3

rget oH

oH

IPH

cconfirm

crequest

rpush

cget

cpush

cnotif cinfo
cnotif

cinfo

pushi storeij
geti reportij

requestij i receivej
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rnotif rinfo
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rnotif

rnotif
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Figure 5.8 – Decentralized model for the WhensApp example.

The security assignment σSR is naturally lifted from offer/notification
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ports to the interactions of γSR. Intuitively, every S/R interaction involving
component IPs has security level s. The construction is illustrated for the
running example in Figure 5.8. We omitted the representation of ports and
depict only the interactions and their associated data flow. In particular,
consider the rinfo variable of Event Receiver which is upgraded to H when
sent to IPH and not sent back on the notification of the push interaction.

5.3 Conclusions

In this chapter, we present a practical approach to automatically se-
cure information flow in distributed systems. Starting from an abstract
component-based model with multiparty interactions, secureBIP , we ver-
ify security policy preservation as defined by the user, that is, verifying
non-interference property at both event and data levels. Then, we gen-
erate a distributed model where multiparty interactions are replaced with
asynchronous message passing. We apply to the generated model a set of
rules that aim to preserve information flow security. We show that the
obtained distributed model is ”secure-by-construction” where all the suffi-
cient conditions defined at the centralized secureBIP model are preserved
at transformation.
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6.1. THE BIP LANGUAGE

This chapter presents the implementation of different methods for secu-
rity using the BIP framework. We start by presenting the BIP contextual
language and it’s extension for security. Then we present in Section 6.2
an overview of the secureBIP tools with focus on verification and code
generation tools implementing approaches presented in previous chapters.

6.1 The BIP Language

The BIP language provides structural syntactic constructs for describ-
ing systems. The language entails components which behavior is defined
using variables, data type declarations, expressions and statements writ-
ten in C language and the coordination between components are defined
through connectors. The basic constructs of the BIP language are the
following:

— atomic component: the main artifact of the model, described with a
behavior defined with a set of transitions and communicating with
a set of interfaces (ports).

— connector: specifying synchronization between ports of components
associated to a set of actions allowing the transfer of data between
components.

— composite component: specifying the hierarchy of the system by as-
sembling instance of components (atomic or compound) using con-
nectors.

— package: specifying the top level of the system and encapsulating
the definition of the components and types declarations.

6.1.1 Language Features

We give, hereafter, an example of the Event-Creator component given
in Figure 2.2 from Chapter 3. In the BIP language, we start by defining
different types (ports, atom and connectors) that are later instantiated and
used in system composition. Each used port and variable has a type. The
port type defines a generic name for each variable exported by such a port.

#include <s t d l i b . h>
package WensApp

port type dataport ( s t r i n g msg)
port type eport ( )

connector type mult iparty ( eport p1 , eport p2 , eport p3 )
define p1 , p2 , p3
on p1 p2 p3
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down {}
end

connector type SendRec ( dataport p1 , dataport p2 )
define p1 p2
on p1 p2

down {p1 . var=p2 . var ;}
end

In this given piece of code we describe the different types of ports that are
used in our case, that is, either event port type, eport, or a port extended
with variables dataport. The BIP language supports most of the data
types defined with the C language by just importing their corresponding
definitions. Here, to be able to use string type for both cinfo and cnotif
variables we imported the stdlib library. We also defined connector types
that are parameterized by a list of port types that describes their support.
The define construct defines the set of interactions that are allowed by the
connector. In the example, we have two connectors allowing a multiparty
(ternary) interaction and an other binary one. For each of them a guard
and an update function can be provided. In the given example no guard is
used on the interaction and the update function is provided with the down
construct. To access variables associated to the ports, we use the dotted
notation, p1.var.

atom type event−c r e a t o r ( )
data s t r i n g c n o t i f , c i n f o

export port eport c r eque s t ( ) , cconf i rm ( )
export port dataport cget ( s t r i n g c n o t i f )
export port dataport cpush ( s t r i n g c i n f o )
port eport cance l ( )

place l1 , l2 , l3 , l 4
i n i t i a l to l 1 do {}
on c r eque s t from l 1 to l 2
on cconf i rm from l 2 to l 3
. . . .

end

The description of an atomic component starts with declaring variables,
ports and control locations. Upon port declaration, some variables are
bound to the port and their type match those in the port type definition.
Using the construct initial we specify the initial control location and pos-
sibly some initialization functions. The transitions are declared with the
trigger port (after on), a source location (after from) and a destination
location (after to). The actions defined at each transition can be declared
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with a guard (after provided) and update function (after do) Each transi-
tion of the behavior is declared, with a port (after on), a (set of) initial and
final state(s) (after from and to), a guard (after provided) and an update
function (after do). The functions and guards are written using a subset
of the C syntax.

compound type WensApp( )
component event−c r e a t o r EC( )
component event−r e c e i v e r ER1( )
component event−r e c e i v e r ER2( )

connector mult iparty reque s t (ER1 . r reques t1 , ER2 . r reques t2 , EC
. c r eque s t )

connector mult iparty conf i rm (ER1 . rconf irm1 , ER2 . rconf irm2 , EC
. c r eque s t )

connector SendRec out in1 (EC. c in fo , ER1 . r n o t i f )
connector SendRec out in2 (ER2 . r i n f o , EC. c n o t i f )
. . .

end

The compound component is a new component type that contains instances
from existing atomic component types. The interactions (communications)
between the instances of atomic components is defined by instantiating con-
nectors between them. The compound component offers the same external
interface as an atomic component, hence a compound component can have
an exported port connected to an atomic component forming a hierarchical
composition of the system.

6.1.2 Security Extension

atom type event−c r e a t o r ( )
@security ( p l=” event−c r e a t o r : event−r e c e i v e r 1 , event−r e c e i v e r 2 ”

)
data s t r i n g c n o t i f , c i n f o

export port eport c r eque s t ( ) , cconf i rm ( )
export port dataport cget ( s t r i n g c n o t i f )
export port dataport cpush ( s t r i n g c i n f o )
port eport cance l ( )

. . . .
end

To specify the security levels to the BIP model, we add annotations to
different ports and variables in atomic components. The security annota-
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tion is declared using the @security construct and confirms to the label
model adopted. Using the Decentralized label model, we define the security
label as a set of rules constructed from owners and readers and defined in
the constructor pl. For instance, the security label @security(pl=”event-
creator: event-receiver1,event-receiver2”) defined before a variable or a port
states that the owner of the information is the Event-Creator and readers
are Event-Receiver1 and Event-Receiver2.

6.2 Tool-set Implementation

This section presents the complete implementation of the different tools
available for the secureBIP framework. The tool set we provide aims to
facilitate the modeling, verifying and executing of secureBIP models. A
overview of the tool-set is shown in Figure 6.1. Here, we distinguish be-
tween three categories of tools, languages transformations, verification and
Execution. We now detail each of theses categories.

6.2.1 Languages Transformations

According to the application domain, the verification of security prop-
erty requires to translate into secureBIP existing languages from different
model of computation. These languages can model the application soft-
ware, the hardware architecture or both of them. Here, we consider as
examples of input language for the Tool-set the Business Process Execu-
tion Language (BPEL) [?, ?] or Architecture Analysis and Design Language
for multi-independent level model(AADL) [?]. BPEL is a software language
for Web Services composition while AADL is a modeling languages that
combines hardware aspects such as memory, buses and processors and soft-
ware component such as threads and systems.

From BPEL to BIP

BPEL provides structuring mechanisms to compose several WS into a
new one. We particularly focus on BPEL4WS [?] processes which compose
services from activities, that are either (1) basic such as receive, reply,
invoke, assign, throw, exist, or (2) structured such as sequence, if, while,
repeatuntil, pick, flow.

The representation of BPEL processes in our component model is struc-
tural. A process is represented as an atomic component where the behavior
encompasses all its basic and structured activities. All process variables
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Figure 6.1 – Securebip Tool-set overview.
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are added to the atomic component. Basic activities such as 〈receive.../〉,
〈replay.../〉, 〈invoke.../〉 are translated into specific transitions triggered
by respectively Receive * and Replay * ports. Their corresponding vari-
ables are implicitly attached to the above ports. The 〈assign.../〉 activity
is translated as an internal transition that executes the corresponding as-
signment.

Structured activities define the overall control flow of transitions in the
atomic component, in the usual way. In particular, transition guards are
extracted from 〈if..., while..., repeatuntil.../〉 and 〈pick.../〉 activities. Nev-
ertheless, as atomic component have behaviour expressed using automata,
the parallel execution of 〈flow.../〉 activities is not fully translated. In or-
der to catch data dependencies, however, their execution is sequentialized
within the component.

Finally, we define the connectors and the composition of the atomic
components by using the PartnerLinks defined for BPEL processes. Every
〈invoke.../〉, 〈receive.../〉 and 〈replay.../〉, 〈receive.../〉 interaction defined
over partner links is translated to a connector relating the corresponding
components and their respective ports. Let us notice that processes may
interact through partner links with external WS, that is, developed in other
languages than BPEL (such as Java, C, etc). In this case, these WS are
represented as atomic components with an implicit behaviour, for arbitrar-
ily sending and receiving data through their connected ports.

Similar translations have been already defined in the literature [?].
As the above translation is structural the resulting model remains com-
prehensive for the WS designer. The representation relies basically on
adapting reusable and composable model components that directly maps
processes with limited numbers of execution steps. Despite that, some fea-
tures in BPEL language are not considered such as fault/event handling
and scopes. Security errors that can be generated by these aspects are not
in the scope of this paper.

From MILS-AADL to BIP

D-MILS overview: Multiple Independent Levels of Security (MILS) [?]
is an approach is a highly assure security architecture based on concepts
of controlled information flow and of separation [?]. The design and im-
plementation of critical systems following the MILS approach involves two
principal phases: the designing of an abstract architecture intended to
achieve the stated functional and non-functional properties, and the im-
plementation of that architecture on a robust technology platform. During
the first phase, the properties that the system is expected to exhibit are
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defined and the contributions to the achievement of those properties by
the architectural structure and the behavioral attributes are analyzed and
justified.

The architecture defines an information flow pattern that is intended to
reflect a policy architecture while some behavioral properties, specific com-
ponents of the architecture enforce some local policies. The combination of
the policy architecture and local policies in a compositional reasoning may
establish useful system level properties.

The MILS platform provides a separation kernel based technology [?]
that establishes and enforces the abstract system architecture according to
its configuration data. The properties that the abstract system architecture
are intended to satisfy are assured not only on the analysis of its design
but also by the correct implementation and deployment of that design.
Indeed, the MILS platform generates configuration for the separation kernel
that must faithfully implement the specified abstract architecture. Using
a configuration compiler that is driven by the architecture and constraints
of the target platform synthesizing semantically correct configuration that
corresponds to the specified architecture. Based on the MILS approach
capacity to implement a single unified policy architecture to a network of
separation kernels, the D-MILS projects [?] proposes an extension for the
use separation kernel networking, where each separation kernel is combined
with a new MILS foundational component and communicates with each
others using a MILS networking system (MNS) producing the effect of a
distributed separation kernel.

To achieve all the requirements correctly for critical applications, an
automated approach as presented in 6.2 is followed providing a tool chain
that takes as input a declarative model of the system expressed in MILS di-
alect of the Architecture Analysis and Design Language (AADL) [?], facts
about the target hardware platform, properties of separately developed sys-
tem components, designer imposed constraints and system property spec-
ifications, and human guidance to the construction of the assurance case.
The tool chain components perform several tasks that are (1) parsing of
the languages [?], (2) transforming input model among the various inter-
nal forms [?, ?], (3) analysis and verification [?], (4) configuration data
synthesis and rendering [?], and (5) pattern-based assurance case construc-
tion [?, ?]. Outputs of the tool chain include, proofs of specified system
properties, configuration data for the D-MILS platform.

The transformation from MILS-AADL relies on a general method for
generating BIP models from languages with well-defined operational se-
mantics. As depicted in Figure 6.2, this method involves the following
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three steps for a given application description written in a language L:
— Translation of atomic components of the source language into BIP

components. The translation focuses on the definition of adequate
interfaces. It encapsulates and reuses data structures and functions
of the application description

— Translation of coordination mechanisms between components of the
application into connectors and priorities in the target BIP model

— Generation of a BIP component modeling the operational semantics
of L. This component plays the role of an engine coordinating the
execution of the application components

Figure 6.2 – Principles of BIP Language Factory [?]

The translation of MILS-AADL components in BIP is structural. A
detailed explanation of the transformation rules can be found on [?]. Here
we entail the transformation of main features of the input language into
BIP :

Packages The BIP language provides a package structuring mechanism
very similar to the one provided by MILS-AADL. A package in BIP al-
lows keeping together a related collection of data, ports, connectors and
component types. Packages might have dependencies on each other. An
import mechanism allows to re-use definitions from existing packages when
constructing new ones.

The package structure of the MILS-AADL specification is therefore fully
preserved by translation into BIP . In addition, specific BIP packages are
used to factorize representation for some of the common underlying features
of MILS-AADL specification i.e., predefined data types and port types.

Component Types and Implementations In contrast to MILS-AADL,
in BIP there is no syntactic separation between the component type (the
interface) and the component implementation (the behavior or the inter-
nal structure). A component type definition in BIP defines altogether the
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interface of that component (which is a set of typed ports) and its im-
plementation, either as an explicit behavior defined by an extended state
machine (or Petri net) or as a composition of already existing components
using interactions and priorities.

Table 6.1 summarizes the mapping of different categories of MILS-
AADL components into BIP .

MILS-AADL BIP

process type + implementation composite component
thread type + implementation atomic component
data data variable in atomic component
processor type + implementation atomic component
memory type + implementation atomic component
device type + implementation atomic component
bus type + implementation atomic component
network type + implementation atomic component
node type + implementation composite component
system type + implementation composite component

Table 6.1 – Translation Overview of MILS-AADL components

The principles for translation of MILS-AADL components are the fol-
lowing:

— MILS-AADL components are translated in BIP as atomic or com-
posite components having the interface depicted in Figure 6.3. With
few exceptions, all the MILS-AADL interface features (event and
data ports) are structurally mapped to BIP ports. Event ports are
becoming BIP ports without data. Data ports are becoming BIP
ports associated with a data variable of the corresponding type. In
addition, BIP components have two additional (basic mode control)
ports to be used for explicit activation/deactivation.

— For the case where the result is a composite components in BIP , as
illustrated in Figure 6.4, it consists of a composition of one atomic
mode controller sub-component and a number of sub-components
(atomic or composite), one for every sub-components in the MILS-
AADL description. The composition at BIP level is defined accord-
ing to event and data-flow connections plus additional mode update
interactions. For the case of atomic components in BIP , they are
identical to their associated mode controller component.

— The mode controller component is responsible for (i) storing and
providing access to all data features of the interface and the imple-
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mentation of the MILS-AADL component and (ii) implementing the
mode control behavior.
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Figure 6.3 – Generic interface of MILS-AADL components in bip
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Figure 6.4 – Generic structure of MILS-AADL composite components in
bip

BIP systems obtained from translation from MILS-AADL contain mul-
tiparty interactions classified into three disjoint categories:

— event-flow interactions: representing event flow communication
— data-flow update interactions: representing data flow computation

according to data flow equations
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— mode update interactions: representing mode update with activa-
tion/deactivation of subcomponents

Interactions are subject to the following generic priority rule: event-flow
interactions ≺ data flow interactions ≺ mode update interactions

Mode Transitions and Hybrid Behavior For every MILS-AADL com-
ponent, mode transitions and hybrid behavior are translated/represented
by the associated mode controller component in BIP .

The mode controller component stores and provide access to all the
data features of the associated MILS-AADL component. In addition to
these data variables, the BIP component uses one extra boolean variable
namely, active, to distinguish between active and inactive states.
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x1, x2, ...

mode identification and data access portsmode control ports
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Figure 6.5 – Generic interface of mode controller components in bip

The mode controller component has the interface illustrated in Fig-
ure 6.5. The ports belong to different categories that allow either to ac-
tivate/disactivate the component, receive or send event message or data
ports (i.e. in/out event and data ports), mode identification ports that
correspond to every component mode, or finally, update ports used to co-
ordinate recursively the mode change of sub-components.

The behavior of the mode controller is described by a Petri net. The
transitions are illustrated in Figure 6.6. Each of the previously defined cat-
egories of ports do correspond by construction to a corresponding category
of transitions.

Finally, let us remark the following limitations of the translation:
— Continuous data flows and hybrid behavior are not supported.
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Figure 6.6 – Behaviour of mode controller

— The most general form of mode invariants is not supported. Mode
invariants in ADDL-MILS need to be manually rewritten either into
the restricted (acceptable) form for BIP or into transition urgencies
in the mode controller.

Data Types BIP supports natively a number of elementary data types
including boolean, integer, float and real-time clock. These types can be
used to map directly their corresponding ones in MILS-AADL.

In addition, BIP allows using arbitrary abstract (opaque) data types
in C. Using this mechanism, it is possible to encode and use all other
MILS-AADL types, including the various forms of keys (and the associ-
ated primitives) as well as the various forms of structured data types (e.g.,
records, etc).

A full detailed explanation of the different categories of model transi-
tions, Event communications and data flows transformations are given in
[?].

6.2.2 Verification Tools

Here we present the secureBIP and security synthesis tools. Both tools
allow the verification of the information flow automatically according to
different initial annotation configuration.
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Figure 6.7 – SecureBIP tool.

To control the information security, the component-based architectures
facilitate monitoring the flow of information through the explicit connec-
tions between atomic components. Security annotations are assigned to
data and ports of each component in the BIP model. As explained in the
Section 6.1.2, the annotation of security levels to different parts of a compo-
nent is given in the bip file. This tool extracts dependencies in the system
model at intra-component level from actions and ports labelling transi-
tions on the atomic components behavior as well as inter-components with
the transferred data at interactions, as presented in Figure 6.7. The tool
requires that all data and ports are annotated. The security conditions
defined in Chapter 4, are then verified.

Security Synthesis

As depicted in Figure 6.8, the synthesis tool takes as input a secureBIP
model containing an initial annotation for a partial set of data. Then, it
builds the dependency graphs of components and runs the synthesis algo-
rithm defined in Chapter 4 at section 18 to produce the complete config-
uration. If the tool succeeds in generating a configuration for the system
variables and ports then the system is considered secure. Moreover, the
generated configuration is optimal and the less restrictive security levels
are applied while propagating annotations in the system. However, if no
configuration is found, the system is not secure and the tool generates a
diagnostic containing the location of the security error.
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Figure 6.8 – Security annotation synthesis.

6.2.3 Execution

Decentralization and Code Generation

Here we illustrate the complete design flow for generating secure dis-
tributed code represented in Figure 6.9. In this architecture, the flow con-
sists on configuring security at two levels, first at the abstract model and
second depending on target platform. Hereafter, we first give functional
implementation of the distributed secureBIP model and then we discuss
the different steps and design choices for adding security.

Functional implementation: In decentralized model, the IP engine
computes the set of enabled ports of each atomic component involved in
interactions handled by that IP. Then, according to the enabled ports and
guards of the interactions, the enabled interactions are computed. The
engine indicates a deadlock if no interaction is possible. Then, the data
transfer function of the interaction is computed. Finally, the IP engine
sequentially executes these transitions in the corresponding atomic compo-
nent to reach the next state. Hence, the IP engine here play the role of
the coordinator in selecting and executing interactions between the com-
ponents, taking into account the glue specified in the input component
model.

We generate code for the distributed secureBIP model automatically
where each element (atomic components, connectors, compound compo-
nents) is implemented as a C++ class. Each of these classes calls functions
that constitute the implementation of the IP engines. In turn, IP engines
may call functions of the generated code when needed, for instance when
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executing the data transfer function of an interaction.
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Figure 6.9 – Distributed secure code generation.

Abstract model configuration: Additionally to the system functional
model (.bip), the system designer provide a configuration file (Annota-
tions.xml) that contains the DLM annotations, previously presented in
Chapter 3 where we define the acts for relations and the labels to different
ports and data in each atomic component. Figure 6.10 presents fragments
of the configuration file for the Whens-App abstract model. We extend the
system model parser to extract labels from Annotations.xml file. Then, we
associate annotations to their corresponding ports and data types stored in
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the secure component model. Next, the secureBIP checker tool browses all
atomic components and interactions in the model to extract events depen-
dencies at each local state (incoming and outgoing port labelled transitions)
and data dependencies at different transition’s and interaction’s actions and
checks their label consistency. In the case where tool verdict is positive,
the tool generates automatically an interaction partition file that describes
the set of interactions that each IPcomponent would manage. This file is
used as input by secureBIP 2Dist to generate an annotated S/R model.
The secureBIP 2Dist generator is modified to encompass modifications in
decentralized model as well as rules for annotations propagation.

Figure 6.10 – Configuration file for the abstract model.

Platform dependent configuration: In this part, the system designer
provides configuration file that contains the cryptographic mechanisms to
be used to ensure confidentiality for data and ports to secure interactions
between atomic S/R and IP components. To preserve confidentiality we
use encryption. We assume that the generated code is running on trusted
hosts where it is safe to generate and store encryption keys. The Crypto Lib
library contains the different encryption protocols and functions that, fol-
lowing the configuration file, the code generator selects messages to secure
at communications using secure TCP/IP sockets.

The configuration states the encryption mechanisms for each defined
security level, that is, for variables and ports that need to be secured fol-
lowing the secure abstract annotations. A data security is enforced using
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authentication, encryption and signature mechanisms to encrypt and sign
the data at socket buffer before sending it. However we consider that en-
cryption does only provide a degree of privacy with variables. Hence, we
enforce the security of ports, if it is configured so, by hiding the message
identity at sending to enforce privacy of message sender and receiver.This
is done by defining a secure session where we encapsulate the sent message
such that no information about the sender can be deduced by observing
message transfer between components. In this message source and receiver
are encrypted under a shared key between sender and receiver component.
The message index (common encrypted pass-world shared between sender
and receiver) will be used by the receiver to retrieve the sent message. Ac-
cording to domain application, there exist some privacy extensions allowing
the identities of the communicating parties to be hidden from third parties.

sender
sender

receiver
message content

signature

index
message auth.

header

(encrypted or clear)

Payload (encrypted)

Figure 6.11 – Hide message sender identity.

Following this defined configuration, we automatically generate stand-
alone C++ processes for every S/R components (atomic and IP) commu-
nicating with secure TCP/IP sockets channels that can be deployed and
run on a distributed network. Each C++ process can be run on a host
that ensures at least the upper bound security level of annotated data and
ports in it. Obviously, it is easier to find a set of hosts that are trusted to
run a process of specific security level at most than it is to find a host that
can run the whole multi-level system.

Configuration Generation

As a part of the the D-MILs [?] project, we developed a tool-sets ensur-
ing that a defined model meets the desired properties at implementation,
by stating with configuring the target platform at deployment. A correct
configuration is crucial for meeting the security and safety goals of the
system. The insurance of security properties, such as non-interference is
enforced by the platform where, for instance, two components (subjects)
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that are not connected in the original model should not be able to commu-
nicate once deployed on the configured platform. For safety properties a
low response time may be necessary, which requires both sufficient compu-
tational resources and a low-latency network. We consider that the global
goals of the system are met once the requirements on the configuration
such that the ones above have to be verified.

Figure 6.12 – Configuration flow process of the MPCC [?].

The system is firstly designed and expressed as a MILS-AADL model [?]
reflecting a software architecture. When configuring the platform, the
MILS-AADL model is translated to a BIP model, which abstracts the
model and presents it as a set of boxes (components) with some connections
between them. This set of interconnected components correspond to the
structure to be implemented by the configured platform. The configura-
tion allocates appropriate resources to the different declared components,
allowing the execution and communication. When components are located
on different nodes these latter require a network configuration.The config-
uration compiler automatically computes the mapping of components to
nodes and generates the configuration.

subject implementation comp1 . i
{MPCC: memory( , [ f ami ly ( ram) , s i z e (2 ) ] ) }

CHAPTER 6. IMPLEMENTATIONS 117



6.2. TOOL-SET IMPLEMENTATION

{MPCC: memory( , [ f ami ly ( d i sk ) , s i z e (10) ] ) }
[ . . . ]

end comp1 . i

Figure 6.12 presents the flow of configuration process. Here we limit our
work to the mapping of component’s software model to the hardware nodes.
First, the configuration compiler begins with a declarative high-level system
description expressed in the BIP language. The import module defines a
policy extractor from BIP model into prolog clauses. It is realized and
implemented using the BIP front-end, where policy-related information
were dumped into a policy terms. That is, the policy contains information
about the component interfaces, there connections and related annotations
if any. The policy representation is structural, expressed in prolog terms
which subterms represent the components and the interaction flows between
them. Next, according to different annotations on the model (security and
safety), a mapping of nodes and virtual links is fully determined. Then,
subjects scheduling within nodes as well as the definition and scheduling of
virtual links within the network can take place. A fully detailed examples
are given in the tech-report [?]. Finally, the back-end compiler produces
the configuration files for the different separation kernels, components, and
for the communication network.

system implementation Sys . impl
{MPCC: deployment ( not same ( [ low , user ] ) ) }
{MPCC: deployment ( same ( [ d ispatch , user ] ) ) }
subcomponents

high : subject Hsubject ; −− high s e c u r i t y network
low : subject Lsubject ; −− low s e c u r i t y network
d i spatch : subject Dsubject ;
user : subject Usubject ;

[ . . . ]
end Sys . impl ;

Demonstrative Example

Here we give a simple demonstrative example containing three atomic
components a, b and c, communicating between each others through ports.
considering the following generated policy from the model:

po l i cy example (4 , p o l i c y ( [ component( a , subject , [ ] ,
[ r e s ou r c e (memory , 6 , e x c l u s i v e ) ,
r e s ou r c e ( cpu , 3 , e x c l u s i v e ) ] , [ ] ) ,

component(b , subject , [ ] ,
[ r e s ou r c e (memory , 5 , e x c l u s i v e ) ,
r e s ou r c e ( cpu , 2 , e x c l u s i v e ) ] , [ ] ) ,
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component( c , subject , [ ] ,
[ r e s ou r c e (memory , 7 , e x c l u s i v e ) ,
r e s ou r c e ( cpu , 2 , e x c l u s i v e ) ] , [ ] ) ] ,

[ ] , [ ] ) ) .

Considering the plateform policy containing two nodes n1 and n2:

plat form example (1 , p lat form ( [ dev i c e ( n1 , node , [ ] ,
[ r e s ou r c e (memory , 15) ,
r e s ou r c e ( cpu , 8) ] , [ ] ) ,

dev i c e ( n2 , node , [ ] ,
[ r e s ou r c e (memory , 15) ,
r e s ou r c e ( cpu , 2 ) ] , [ ] ) ] ,

[ ] , [ ] ) )

The generated configuration according to given model policy and plate-
form is given as follows: two possible solutions are found where, either a
and b are executing on the n1 node and component c on the node n2 or
the second solution is to map the components a and c to the n1 node and
the component b to n2 node. These solution are calculated according to
the cpu resource needs.

?− p o l i c y : po l i cy example (4 , Po l i cy ) , p lat form : plat form example
(2 , Platform ) ,
a l l o c a t e ( Pol icy , Platform , [ ] , Mapping ) .

Po l i cy = . . .
Platform = . . .
Mapping = [ a−n1 , b−n1 , c−n2 ] ;
Po l i cy = . . .
Platform = . . .
Mapping = [ a−n1 , b−n2 , c−n1 ] ;
fa l se .

However, by adding a constraint on the excution of b and c components to
be executed on the same node for instance, no mapping solution is found
for the configuration.

?− p o l i c y : po l i cy example (4 , Po l i cy ) , p lat form : plat form example
(2 , Platform ) ,
a l l o c a t e ( Pol icy , Platform , [ x same (b , c ) ] , Mapping ) .

fa l se .

6.3 Conclusion

In this chapter, we presented the different implemented tools that de-
fines the approach to track and verify the information flow in the sys-
tem from model design till implementation and code generation. We also
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showed that these tools can be explored by different application domains
through the connection and transformations from the set of language fac-
tory (MILS-AADL, BPEL, ...) and the BIP language. We present in the
following chapter an evaluation part, which includes a set of case studies
to illustrate with concrete examples the application of the solutions shown
in this work, as well as a performance experiments tools.
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7.1 Securing a Web Service Composed Sys-

tem

With the expansion of Web Services (WS) [?] deployed on the enterprise
servers, cloud infrastructures and mobile devices, Web Service composition
is currently a widely used technique to build complex Internet and enter-
prise applications. Orchestration languages like BPEL [?] allow rapidly
developing composed WS by defining a set of activities binding sophisti-
cated services. Nevertheless, advanced security skills and tools are required
to ensure critical information security. Indeed, it is important to track data
flow and prevent illicit data access by unauthorized services and networks;
this task can be challenging when the service is complex or when the com-
position is hierarchical (the service is composition of composed services and
atomic services). For instance, as we presented earlier in Chapter 4, the
travel organization WS has to keep a client’s destination secret as messages
are exchanged between different services like travel agency services and the
payment service. Each piece of information depending on the destination,
like ticket price, can lead to the secret disclosure if it is not protected.
WS security standards [?, ?] provide information flow security solutions
for point-to-point inter-service communication but fall short in ensuring
end-to-end information flow security in composed services. Furthermore,
the BPEL language does not state any rules on how to properly apply
security mechanisms to services. Generally, developers manually set up
their system security configuration parameters which can be tedious and
error-prone.

Partial configuration

Secure

Transformation

Syntehsis

graphs

OK

configuration

Dependency

Security analysis

Workflow
(BPEL)

Component Model

Secure

Configuration

counter 
example

KO

Figure 7.1 – Information flow analysis overview with component-based
model

Figure 7.1 shows a workflow overview of an approach used to handle
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the information flow security in WS compositions. The service designer
describes in BPEL his process and defines partial security constraints in
a configuration file. The constraints are expressed as authorization rights,
that is, a list of services owners and authorized readers for a subset of
critical data. The BPEL process and the configuration information are
then automatically transformed into a component-based framework. This
framework was first adapted to abstract distributed WS orchestration to a
component-based model where all Web services are transformed into atomic
components communicating through interactions by sending and receiving
variables and second, to synthesize security configuration for total system
variables with respect to security constraints by considering all implicit and
explicit data dependencies in the system.

7.1.1 Use-case overview: Smart-Grid System

Here we consider a simplified model of a smart grid system [?] man-
aged through Internet network using WS. Smart grid systems usually in-
terconnect a number of cooperating prosumers, (that is, pro-ducers and
con-sumers) of electricity on the same shared infrastructure. In principle,
every prosumer is able to produce, store and consume energy within the
grid. However, its use of the grid has to be negotiated in advance (e.g., on
a daily basis) in order to adapt to external conditions (e.g., weather condi-
tions, day-to-day demands,...) as well as to maintain the behaviour of the
grid in some optimal parameters (e.g., no peak consumption). Smart grids
are subject to requirements related to safety and security e.g., the power
consumption / production of a prosumer must remain secret as it actually
may reveal sensitive information.

In our WS model of the smart grid, the system consists of a finite
number of prosumer processes, Pri, communicating with a smart grid pro-
cess, SMG . Initially, each Pri sends its consumption and production plan,
(Pi, Ci, Bi), for the next day to the grid. Production Pi, consumption Ci
and (storage) battery Bi are expressed using energy units (integer) where
0 � Pi � 2, −3 � Ci � 0 and −1 � Bi � 1. The SMG validates the plans
received by checking that the overall energy flow through the grid implied
by these plans does not exceed the power line capacity. This check mea-
sures the consumption exceed acknowledgment, ack, compared to a bound,
that is, ack=0 if the −1 �

∑n
i=1(Pi+Ci+Bi) � 4, otherwise, it returns the

difference between the sum of the plans and the consumption bounds. The
SMG sends back to each Pri an acki to negotiate updating its own plan,
where ack =

∑n
i=1 acki. The negotiation terminates when ack=0 meaning

that the energy flow on the grid does not exceed the line capacity. Figure

CHAPTER 7. EXPERIMENTS 123



7.1. SECURING A WEB SERVICE COMPOSED SYSTEM

7.2 shows the system overview with two prosumers that exchange queries
with the smart grid.

Reply1_plan

SMG

Reply_ack Reply_ack

Request_plan Request_plan

Reply1_plan

Reply2_plan Reply2_plan

Pr1 Pr2

Figure 7.2 – Smart grid application overview

7.1.2 Transformation from BPEL to BIP

Here we give the translation of both SMG and prosumer components by
applying the transformation rules defined in the Chapter 6. The translation
of Pr1 process is given in Figure 7.3 while the translation of the SMG
process is given in Figure 7.4. The behavior of the atomic components
represent the activities given in the BPEL processes. First, the prosumer
get a request to send his consumption plan to the SMG . Here according to
an internal threshold, he either send an empty plan or the measured one.
The if branch in the BPEL behavior is translated into a conflicting state
where the actions performed from both transitions are different.

In the SMG component the parallel executions in the BPEL process are
translated into sequential transition executions in BIP component.

7.1.3 Implementation and Evaluation

The configuration synthesis algorithm described in Chapter 4 is im-
plemented and available for download at http://www-verimag.imag.fr/

~bensaid/secureBIP/. The user provides the WS composition in BPEL
and a configuration file (.xml) that contains an acts for relation defining au-
thorities for different processes and the DLM annotations for some process
variables. An example of a configuration file is provided in the Appendix.
In a first step, the BPEL composition is structurally transformed into a
component-based model representation in BIP[?]. The transformation ex-
tends an already existing translation of BPEL to BIP developed in [?] to
study functional aspects. In a second step, the synthesis tool takes as input
the system model (.bip) and the configuration file (.xml), builds the depen-
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dency graphs of components and runs the synthesis algorithm to produce
the complete configuration.
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Figure 7.5 – Generated dependency graphs (fragments).

The information flow security requirements that we emphasize here con-
sist first, on ensuring the confidentiality of energy consumption plan for
each Pri, (which can reveal sensitive competitive information such as its
production capacity) and second, ensuring that no prosumer is able to
deduce the consumption plan of any other prosumer by observing the re-
ceived ack information. For instance, consider two prosumers such that
one of them, Pr1, sends an extreme consumption plan (0,−3,−1) to the
SMG while the second, Pr2, sends (0,−3, 0) as a consumption plan. The
SMG first calculates the acknowledgment message that is ack=3 then
sends ack1=1, ack2=2 messages to respectively Pr1 and Pr2. Assume
now that Pr2 sends back a new consumption plan (1,−2, 1) and gets back
ack2=0. By only observing other ack1 message sent to Pr1, the Pr2 can
deduce that the consumption plan of Pr1 is equal to (0,-3,-1).

The security annotation model we adopted in this part is the DLM
(Decentralized Label Model). The designer input configuration file includes
an acts for relation as well as some annotated variables. Here we presented
an example of a configuration file of the smart grid system. In this xml
file we define 〈authority/〉 to different system components representing the
acts for relation. Moreover, we specify by 〈var config/〉 the annotations of
variables from different atomic components (processes).

<?xml v e r s i o n=” 1 .0 ”?>
<con f i g>

<a c t s f o r>
<author i ty>SMG: Prosumer1 , Prosumer2 , Prosumer3</author i ty

>
</a c t s f o r>
<va r con f i g>
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<v a r i a b l e var=” outplan ” proce s s=”Prosumer1”
l a b e l=”Prosumer1 :SMG”></var i ab l e>

<v a r i a b l e var=” outplan ” proce s s=”Prosumer2”
l a b e l=”Prosumer2 :SMG”></var i ab l e>

<v a r i a b l e var=” outplan ” proce s s=”Prosumer3”
l a b e l=”Prosumer3 :SMG”></var i ab l e>

</va r con f i g>
</con f i g>

For applying our approach to check system security, the designer in-
troduces initially his partial security policy by tagging intuitively some
variables that he considers sensitive in system model with security anno-
tations. He also provides an acts for diagram for all model components
where he gives authorities to some of them to act for others. In this system
the SMG component can only acts for both Pr1 and Pr2. To ensure confi-
dentiality of prosumers plan, the system administrator annotates out plan1
with L1 = {Pr1 : SMG } label and out plan2 with L2 = {Pr2 : SMG }
label. Obviously, L1 6≤ L2 and L2 6≤ L1 are indicating that both pro-
sumers represent separate security domains that can only communicate
with the SMG component. Then, the tool automatically generates the de-
pendency graph of the transformed smart grid system. Presented in Figure
7.5, the dependency graph is build over ports (rectangles) and data vari-
ables (circles) locally at each atomic component(big circles), where arrows
intra-circles represent dependencies between ports and data in the same
atomic component while arrow inter-circles represent inter-components de-
pendencies. The application of Algorithm 1 to the system dependency
graph detects an illegal information flow in the system and generates an
error in the out plan node for both prosumers. Indeed, the label propa-
gation in the system creates at ack node of the SMG component a new
label L3 = L1 t L2. Obviously, label L3 = {Pr1 : SMG ;Pr2 : SMG }
is more restrictive than both labels L1 and L2. Since the ack node de-
pends on out ack1 in Pr1 and out ack2 in Pr2, then it is labelled with
L3 in both prosumers which causes security level inconsistency at out plan
nodes. Algorithm 1 generates an inconsistent security level error between
both out plan and ack nodes. Here, the system designer has to redefine
the initial configuration, for instance, by given more privilege to prosumers
to act for SMG component and enforce variable ack to higher security
level L3 = {SMG : SMG }. In this case, and with the authority that each
prosumer gain, flow can go from L3 to L1 and L2.
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7.2 Securing a MILS-AADL Component-Based

System

7.2.1 Use-Case overview: Starlight System

We show the usability of this approach by applying it on the Starlight
example taken from the literature [?]. The Starlight system was developed
by the Australian Defense Science and Technology Organization allowing
to establish simultaneous connections to high-level (classified) and low-level
networks.

H

D

M

L

fwH

E

cmdL

resL

cmdH

resH

swich

cmd

return

outLinL

Starlight

Figure 7.6 – Starlight example overview [?].

As depicted in Figure 7.7 showing the architecture of the Starlight [?],
the system contains three atomic components: a high-level server (H), a
low-level server (L) each connected to respectively a high and low level
network and a switch (E). The switch component is used as a dispatcher
that allows to control the user keyboard commands to either flow to the
H or the L server. The low-level server can be used either to browse the
external world, send messages or have data sent to the high-level server for
later use. Based on an internal computation, the D component represent-
ing the starlight devise, receives commands from the user and dispatches
them to the H or L server. The dispatcher D is extended with a monitor
component M that filters commands sent to the L server and stops the com-
munication in case the dispatcher fails. According to the system commands
input, a switch to low and a switch to high events are activated. The prop-
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erty that we intend to ensure in this example consists mainly on ensuring
that any command sent between a switch to high (or the beginning) and
a switch to low event should not be visible to the low-level subject. Since
we consider that the observation of the communications between H and D
components cant reveal sensitive information about the sent commands, in
this example we don’t consider the event non-interference.

7.2.2 Transformation from MILS-AADL to BIP

Figure 7.7 shows a representation of the MILS-AADL starlight model.
A full description of the Starlight system in the MILS-AADL language is
given in the appendix. The different components (subjects) do commu-
nicate with each other through either event data ports ( ) where vari-
ables exchange is possible or event ports ( ). The behavior in the atomic
components is specified with modes change that defines a state change at
executions.

A complete transformation of the MILS-AADL model to BIP language
containing six atomic components is given in the appendix. Figure 7.8
shows a simplified representation of the starlight model in BIP . Here we
only consider three atomic components L subject, H subject and D subject.
The D subject receives the input commands from users through input port
in an integer form, then, according to the received variables (either it is
odd or not) the command is routed to one of the servers.

7.2.3 Configuration Generation

As previously mentionned, the security level of events reperesented by
the interactions between different components are considered low-level since
the observation of the communications between the D subject switcher and
the H subject server wan’t revial any information related to the command
sent by the user for that server. Hence, we concentrate here on the verifica-
tion of data security by tracking the data information flow. The constraints
that we can add to enforce security is that both L subject and H subject are
not executed on the same platform node and specially the H subject has to
run on a trusted node. A full detailed configurations of the full Starlight
model is given in the [?].
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Application n P X σ0 t

SMG

4 26 24 3 1.82
13 98 87 12 1.94
25 194 171 24 2.01
101 802 703 100 2.82

Whens-App

3 13 6 2 1.13
13 53 26 12 1.45
25 101 50 24 1.7
101 405 204 100 2.11

Table 7.1 – Model size and configuration time (in s) for smart grid appli-
cation with one initial security label by each prosumer.

7.3 Evaluation

In this chapter, we evaluate the implemented tools and generated code
in terms of configuration (annotation) generation and additional cost of
the execution. The evaluation is performed on an Intel Code 2Duo 2GHz
with 4GB RAM memory running Linux Ubuntu. For generation of the
certificates and encryption we use OpenSSL library which contains tested C
libraries and here we use X.509 certificates for signature and an asymmetric
encryption algorithm (RSA) with 2048bit key size.

The secureBIP Tool and the annotation synthesis generator were devel-
oped in Java 1.6. The secureBIP tool includes a 986 LoC where the secure
synthesis tool includes 680 LoC. We extended the code generator first at
decentralization to introduce the modification in the generated model and
second while adding cryptographic mechanisms to secure interactions be-
tween different components.

Compilation and Annotation Generation

A platform dependent configuration is introduced according to the prop-
agated annotation in the distributed model using the configuration file
where we specify authentication and encryption mechanisms.

As an evaluation of the compositional approach performance, table 7.1
presents some experiments over configuration time t for different variation
of the number of prosumer components, n, in the smart grid system for a
given number of variables X, ports P and with initial labels number, σ0.
Here we can notice that our configuration synthesis does not introduce an
overhead even by increasing the number of system components.
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Centralized Decentralized
Application n X P σ n X P σ γ(Strd) γ(encry)
Travel-
Reservation

4 20 34 54 19 56 82 138 706 582

Starlight 5 35 29 64 7 40 78 138 1105 1052
SMG 4 24 26 50 6 62 60 122 1013 939
Whens-App 3 6 13 19 11 20 36 56 974 907

Table 7.2 – Model size, configuration and number of executed interactions
(without encryption(strd) and encrypted (encry) in 60s for the different
applications.

Here, the compilation time depends on the size of the model and the
number of variables and ports. However, it is still acceptable, because the
generation of the configuration is done only once for the deployment.

Performance of Distributed Implementation

As an evaluation of the decentralization approach performance, table
7.2 presents some experiments over number of interactions executed in 60s
of different use-cases presented throughout this thesis. The Table gives
information about the number of variables (X), ports (P ), components (n)
and annotations (σ) in the centralized model and its decentralization. It
also shows a comparison between the number of executed interactions in
the decentralized model with (encryp) and without (strd) cryptographic
mechanisms. The use of encryption method for signing and encrypting
messages and sessions between components clearly has an impact on the
performance of the application and the number of executed interactions.
However, by comparing different applications, the number of encrypted
sessions and variables in the Travel Reservation application is the highest
compared to the other, hence the number of its encrypted interaction is the
lowest in the results. For all the experiments, we are using an asymmetric
encryption. The performance of the resulting system can be improved
if we choose to use an asymmetric encryption instead of the asymmetric
currently used. This optimization is orthogonal to our work.
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7.4 Conclusion

In this chapter, we illustrated the implementation and use of the differ-
ent tools by two examples, which differ in their types, their models oriented
components. These examples were used to demonstrate the usefulness and
feasibility of our approach and its application to specific cases. However,
as useful as it is, any security mechanism drives usually an additional cost
in terms of performance which we showed in the experiments in distributed
implementation. On the other hand, it is important to show that the tools
that we have achieved allow to really ensure non-interference for the entire
distributed system.
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Chapter 8

Conclusion and Perspectives

In this chapter, we conclude the thesis by describing the main achieve-
ments, the future work directions and its perspectives.

Achievements

Building secure software systems is a tedious and complex task to
achieve especially when these systems are in large scale. In particular, the
verification of non-interference requires an information flow control, which
is not always easy for large systems and that can be difficult to apply by
developers. As exposed along the manuscript, our belief is that the best
way to ensure an end-to-end security in distributed systems is to follow a
rigorous approach that ensures the correct and secure building of systems
at an abstract level from the early step of defining specifications until im-
plementation and code generation.

Following an MDS (Model Driven Security) approach, we proposed the
secureBIP , a framework for information flow verification. The security
specifications are defined very early in the design phase using secureBIP
, in parallel to the functional specifications. In this way, security is not
introduced in an ”ad-hoc” manner at the final phase. In the design phase,
the model obtained meet the various requirements of the chosen security
policy. Indeed, the system designer intervenes only in the design phase
since the various transformations as well as the code generation is done
automatically. In this way, the developer does not need to be expert in
security, some preliminary knowledge is sufficient.

In this work, we handled two types of non-interference, event and data-
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flow non-interference, where we consider that preserving the safety of data
flow in a system does not necessarily preserve safe observability equivalence
on system’s public behavior. Different annotations models are orthogonal
to the secureBIP framework as presented in state of the art. Sensitive
information are tracked in the entire system using annotation defining dif-
ferent security levels. We defined a set of syntactic conditions allowing to
automate the verification of non-interference.

We also proposed two tools for transitive non-interference verification,
the secureBIP and security synthesis. The verification is done in practical
manner where using the secureBIP tool, we annotate the entire variables
and ports of the model and then according to the defined set of syntac-
tic constraints, we check the satisfaction of the property. While using the
security synthesis, we partially annotate the model and then by extract-
ing its compositional dependency graphs we apply a synthesis algorithm
that computes the less restrictive secure configuration of the model if it
exists. The overall approach is based on propagating annotations on the
model following data dependency-graphs and respecting the local security
constraints defined with for secureBIP model.

The main challenge while implementing distributed software systems is
to ensure the end-to-end security. With the complexity increase of such
systems, this task may be error prone and demand security skills. The
solution we proposed in this thesis is a secure-by-construction approach
that consider as input an initially centralized system satisfying the set
of security constraints and produces a functionally equivalent distributed
model where these security constraints are preserved. The approach con-
sists on automatically transforming the centralized model by splitting the
multiparty interactions into binary send/receive interactions based on mes-
sage passing. The approach is constructive, practical and implementable
on distributed platforms, where a program designer has only to focus on
specifying a secure centralized multiparty model and then the compiler au-
tomatically generates a secure send/receive model.

Following the annotation configuration on the generated decentralized
model, we secure the communications and data transfer inter-components
by introducing cryptographic atomic components. Hence we generate an
intermediate model from which we generate concrete implementation tar-
geting distributed platform architecture. The generated code is consid-
ered secure with efficient performance, where only communications and
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exchanged variables that need to be secure are encrypted during the model
execution.

Perspectives

In the above contributions, several amelioration and extensions are
sought to enable covering additional aspects and hence ensure more gener-
ality for the proposed approaches.

Information-flow Verification

The verification of non-interference can be extended and investigated
in diverse directions.

— The syntactic conditions that we presented in Chapter 4 may be
considered restrictive for some systems. Hence, as a future work we
consider to further relax them by applying a program dependency
graphs based analysis over the compositional model. It is interesting
to consider such graphs to handle the transitions dependencies (e.g,
causal and conflicting transitions) with consideration of an execution
history. Such analysis can provide finer dependencies amongst ports
annotations at the conflicting transitions. The use of a runtime
verification technique can also dynamically refine dependencies on a
runtime-execution history.

— Most of the declassification techniques are not adequate for real sys-
tems or are given without rigorous and formal proofs. Thanks to the
compositionnality of the present model we can introduce declassifi-
cation mechanisms to our model. Declassification has been studied
for sequential interactive programs with inputs and outputs [?], nev-
ertheless, its extension to distributed concurrent component-based
models such as Web Services is less understood.

— The transitive non-interference properties that we handle in this
thesis may be also considered restrictive especially for interactive
systems where the security flow can only go from the less restrictive
level to the more restrictive one. The intransitive non-interference is
more relaxed version of non-interference that is interesting to ana-
lyze using the secureBIP framework. According to a specific security
policy that defines how information can flow in the system accord-
ing to a sequence of security levels. Here again using a runtime
verification associated a post static analysis phase using program
dependency graphs allows to put in place an efficient methode to
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verify the intransitive non-interference property. Such analysis can
be practical to handle the intransitive non-interference thanks to the
compositionality of secureBIP model.

Non-interference for real-time systems

The growing importance of real-time systems verification lead us nat-
urally to necessary question of whether verification methodes and proof
thechniques developped to handle non-interference in untimed setting can
be generalized for timed systems in order to capture not only logical in-
formation flow (such is the case with secureBIP ) but also tiled depen-
dent non-interference (e.g, timing covert channels [?]). Previous works [?]
has reformulated some bisimulation-based definitions in a discrete time
settings [?], while others [?] introduced state-based and trace-based non-
interference using timed automata.

We consider that the secureBIP , as an extension for the BIP framework,
represents a complete flateform that isadequate to handle such issues. In-
deed, the BIP framework provides a real-time semantics for BIP models [?]
where each interactions are annotated with timing constraints expressed
using as range of times defined over clocks and urgencies. The ranges of
time indicates when an interaction can be executed while the urgency indi-
cates whether the model authorizes the time to progress before executing
the interaction. The behavior of a timed BIP framework is described with
timed automata. Hence the the analysis of timed non-interference can be
reformulated in compositional manner.

Besides, ensuring security in destributed real time systems represents a
huge challenge where before scheduling an interaction once has to ensure
that no conflicting interaction with an earlier deadline is enabled. Hence,
Hence, based on an extension of the timed-BIP framework we can assure a
combination of distribution, time and security constraints in single frame-
work which can be intresting in efficiently building complexe destributed
systems.
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.1. STARLIGHT USE-CASE

.1 Starlight Use-case

.1.1 MILS-AADL Original Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− MILS−AADL Model o f S t a r l i g h t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Property to ensure :
−− any command sent between a s w i t c h t o h i g h ( or the

beg inning )
−− and a sw i t ch to l ow event should not be v i s i b l e to the
−− low−l e v e l subject .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Overa l l MILS−AADL Model o f S t a r l i g h t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

cons tant s
computation : func t i on int −> int ;
i s h i g h : func t i on int −> bool ;

system Sys
f e a t u r e s

cmd : in event data port int ;
s w i t c h t o h i g h : in event port ;
sw i t ch to l ow : in event port ;
return : out event data port int ;
outL : out data port int ;

end Sys ;

system implementation Sys . impl
subcomponents

E : subject Extended D ;
High : subject Hsubject ; −− high s e c u r i t y network
Low : subject Lsubject ; −− low s e c u r i t y network

connec t i ons
event data port cmd −> E. input ;
event port s w i t c h t o h i g h −> E. s w i t c h t o h i g h ;
event port sw i t ch to l ow −> E. sw i t ch to l ow ;
event data port E. return −> return ;
event data port E. cmdL −> Low . cmd ;
event data port E.cmdH −> High . cmd ;
event data port Low . r e s −> E. resL ;
event data port High . r e s −> E. resH ;
event data port Low . fwH −> High . low data ;
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data port Low . outL −> outL ;

end Sys . impl ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Subjec t s d e s c r i p t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subject Extended D
f e a t u r e s

s w i t c h t o h i g h : in event port ;
sw i t ch to l ow : in event port ;
input : in event data port int ;
return : out event data port int ;
cmdH: out event data port int ;
cmdL : out event data port int ;
resH : in event data port int ;
resL : in event data port int ;

end Extended D ;

subject implementation Extended D . i
subcomponents

D: thread Dsubject ;
M: thread Monitor ;

connec t i ons
event port s w i t c h t o h i g h −> D. s w i t c h t o h i g h ;
event port D. mon i to r sw i t ch to h i gh −> M. s w i t c h t o h i g h ;

event port sw i t ch to l ow −> D. sw i t ch to l ow ;
event port D. mon i to r sw i t ch to l ow −> M. sw i t ch to l ow ;

event data port input −> D. input ;
event data port D. return −> return ;
event data port D.cmdH −> cmdH;
event data port D. cmdL −> M. cmdL in ;
event data port M. cmdL out −> cmdL ;
event data port resL −> D. resL ;
event data port resH −> D. resH ;

end Extended D . i ;

−− D:
thread Dsubject

f e a t u r e s
s w i t c h t o h i g h : in event port ; −− from user
sw i t ch to l ow : in event port ; −− from user
mon i to r sw i t ch to h i gh : out event port ; −− to monitor
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moni to r sw i t ch to l ow : out event port ; −− to monitor
input : in event data port int ; −− cmd input from user
return : out event data port int ; −− to user
cmdH: out event data port int ; −− to High subject
cmdL : out event data port int ; −− to Low subject
resH : in event data port int ; −− from High subject
resL : in event data port int ; −− from Low subject

end Dsubject ;

thread implementation Dsubject . impl
subcomponents

i : data int default 0 ; −− s t o r i n g the l a s t input from
the user

r : data int default 0 ; −− s t o r i n g the next r e s u l t for
the user

mode high : data bool default true ; −− i f fa l se the cur rent
mode i s low , o therwi se high

c l k : data c l o ck ;
modes

wa i t input : i n i t i a l mode ;
FW INPUT H: mode while c l k <= 1 ; −− r e c e i v e d input to

forward
FW INPUT L: mode while c l k <= 1 ; −− r e c e i v e d input to

forward
FW SWT H MONITOR: mode while c l k <= 1 ; −− forward switch

to monitor
FW SWT L MONITOR: mode while c l k <= 1 ; −− forward switch

to monitor
FW RES: mode while c l k <= 1 ; −− r e c e i v e d r e s u l t to forward

t r a n s i t i o n s
−− switch between s e c u r i t y modes

wa i t input −[ s w i t c h t o h i g h then mode high := true ]−>
FW SWT H MONITOR;

wa i t input −[ sw i t ch to l ow then mode high := fa l se ]−>
FW SWT L MONITOR;

−− forward switch to monito
FW SWT L MONITOR −[ mon i to r sw i t ch to l ow ]−> wai t input ;
FW SWT H MONITOR −[ mon i t o r sw i t ch to h i gh ]−> wai t input ;
−− otherwise , forwards the command ( through cmdH)
wa i t input −[ input when mode high = true then c l k := 0 ; i

:= data ( input )]−> FW INPUT H;
wa i t input −[ input when mode high = fa l se then c l k := 0 ; i

:= data ( input )]−> FW INPUT L;
−− forward incoming r e s u l t s to the user
wa i t input −[ resH then c l k := 0 ; r := data ( resH )]−> FW RES;
wa i t input −[ resL then c l k := 0 ; r := data ( resL )]−> FW RES;
wa i t input −[]−> wai t input ;
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−− forward commands
FW INPUT H −[cmdH( i )]−> wai t input ;
FW INPUT H −[]−> FW INPUT H;
−− FW INPUT H −[ sw i t ch to l ow ]−> FW INPUT H;
−− FW INPUT H −[ s w i t c h t o h i g h ]−> FW INPUT H;
−− FW INPUT H −[ resH ]−> FW INPUT H;
−− FW INPUT H −[ resL ]−> FW INPUT H;
−− FW INPUT H −[ input]−> FW INPUT H;

FW INPUT L −[cmdL( i ) ]−> wai t input ;
FW INPUT L −[]−> FW INPUT L;
−− FW INPUT L −[ sw i t ch to l ow ]−> FW INPUT L;
−− FW INPUT L −[ s w i t c h t o h i g h ]−> FW INPUT L;
−− FW INPUT L −[ resH ]−> FW INPUT L;
−− FW INPUT L −[ resL ]−> FW INPUT L;
−− FW INPUT L −[ input]−> FW INPUT L;

FW RES −[return ( r )]−> wai t input ;
FW RES −[]−> FW RES;
−− FW RES −[ sw i t ch to l ow ]−> FW RES;
−− FW RES −[ s w i t c h t o h i g h ]−> FW RES;
−− FW RES −[ resH ]−> FW RES;
−− FW RES −[ resL ]−> FW RES;
−− FW RES −[ input]−> FW RES;

end Dsubject . impl ;

thread Monitor
f e a t u r e s

s w i t c h t o h i g h : in event port ;
sw i t ch to l ow : in event port ;
cmdL in : in event data port int ;
cmdL out : out event data port int ;

end Monitor ;

thread implementation Monitor . i
subcomponents

i : data int default 0 ;
mode high : data bool default true ; −− i f fa l se the cur rent

mode i s low , o therwi se high
c l k : data c l o ck ;

modes
wait cmd : i n i t i a l mode ;
FW L: mode while c l k <= 1 ;

t r a n s i t i o n s
wait cmd −[ sw i t ch to l ow then mode high := fa l se ]−>

wait cmd ;
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wait cmd −[ s w i t c h t o h i g h then mode high := true ]−>
wait cmd ;

wait cmd −[cmdL in when mode high = fa l se then c l k := 0 ; i
:= data ( cmdL in )]−> FW L;

wait cmd −[cmdL in when mode high = true]−> wait cmd ;
wait cmd −[]−> wait cmd ;

FW L −[cmdL out ( i ) ]−> wait cmd ;
FW L −[]−> FW L;
−− i gno r e cmds during operat i on
−− FW L −[ sw i t ch to l ow ]−> FW L;
−− FW L −[ s w i t c h t o h i g h ]−> FW L;
−− FW L −[cmdL in]−> FW L;

end Monitor . i ;

−− end extens i on −−

−− low−l e v e l subject
subject Lsubject

f e a t u r e s
cmd : in event data port int ;
r e s : out event data port int ;
outL : out data port int default 0 ; −− 0 i s assumed as ok as

i n i t
fwH : out event data port int ;

end Lsubject ;

subject implementation Lsubject . impl
subcomponents

i : data int default 0 ;
c l k : data c l o ck ;

modes
WAITING: i n i t i a l mode ;
COMPUTING: mode while c l k <= 1 ;

t r a n s i t i o n s
WAITING −[cmd then c l k :=0; outL := data (cmd) ; i := data (

cmd)]−> COMPUTING;
WAITING −[fwH]−> WAITING;
WAITING −[]−> WAITING;

COMPUTING −[ r e s ( computation ( i ) ) ] −> WAITING;
COMPUTING −[fwH]−> COMPUTING;
COMPUTING −[]−> COMPUTING;
−− COMPUTING −[cmd]−> COMPUTING;

end Lsubject . impl ;
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−− high−l e v e l subject
subject Hsubject

f e a t u r e s
cmd : in event data port int ;
r e s : out event data port int ;
low data : in event data port int ;

end Hsubject ;

subject implementation Hsubject . impl
subcomponents

i : data int default 0 ;
c l k : data c l o ck ;

modes
WAITING: i n i t i a l mode ;
COMPUTING: mode while c l k <= 1 ;

t r a n s i t i o n s
WAITING −[cmd then c l k := 0 ; i := data (cmd)]−> COMPUTING;
WAITING −[ low data]−> WAITING;
WAITING −[]−> WAITING;
COMPUTING −[ r e s ( computation ( i ) ) ]−> WAITING;
COMPUTING −[ low data]−> COMPUTING;
COMPUTING −[]−> COMPUTING;

end Hsubject . impl ;

.1.2 Translated Starlight Model into BIP

package s t a r l i g h t 3
// mode acces s / i d e n t i f i c a t i o n por t type

port type mode access ( )
// in /out event por t t ype s & r e l a t e d connectors

port type i n ev en t ( )
port type out event ( )

connector type ou t in
( out event out , i n ev en t in )

define out in
on out in provided ( true )

end

connector type out in mode
( out event out , i n ev en t in , mode access mode)

LIST OF TABLES 149



.1. STARLIGHT USE-CASE

define out in mode
on out in mode provided ( true )

end

connector type in mode
( i n ev en t in , mode access mode)

export port i n ev en t i n ( )
define in mode
on in mode provided ( true )

end

connector type in in mode
( i n ev en t in1 , i n ev en t in2 , mode access mode)

export port i n ev en t i n ( )
define in1 in2 mode
on in1 in2 mode provided ( true )

end

connector type out mode
( out event out , mode access mode)

export port out event out ( )
define out mode
on out mode provided ( true )

end

// ac t / deact event por t t ype s

port type ac t event ( )
port type deact event ( )

connector type act mode
( ac t event act , mode access mode)

define act mode
on act mode provided ( true )

end

connector type deact mode
( deac t event deact , mode access mode)

define deact mode
on deact mode provided ( true )

end

/∗
∗ ( Event ) Data Port t ype s and connectors
∗
∗/

port type i n d a t a i n t ( int value )
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port type o u t d a t a i n t ( int value )

connector type o u t i n i n t
( o u t d a t a i n t out , i n d a t a i n t in )

define out in
on out in

provided ( true )
up { }
down { in . va lue = out . va lue ; }

end

connector type out in in t mode
( o u t d a t a i n t out , i n d a t a i n t in , mode access mode)

define out in mode
on out in mode

provided ( true )
up { }
down { in . va lue = out . va lue ; }

end

connector type in int mode
( i n d a t a i n t in , mode access mode)

data int value
export port i n d a t a i n t i n ( va lue )
define in mode
on in mode

provided ( true )
up { }
down { in . va lue = value ; }

end

connector type out int mode
( o u t d a t a i n t out , mode access mode)

data int value
export port o u t d a t a i n t out ( va lue )
define out mode
on out mode

provided ( true )
up { value = out . va lue ; }
down { }

end

/∗
∗ Dsub jec t imp l
∗
∗/

atom type Dsubject impl ( )
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data int b i p a c t i v e

data int i

data int mode high

data int r
data int v input
data int v resH
data int v resL
data int v cmdL
data int v cmdH
data int v re turn

// c l o c k c l k

// event \ data por t s
export port i n d a t a i n t input ( v input )
export port i n d a t a i n t resH ( v resH )
export port i n d a t a i n t resL ( v resL )
export port o u t d a t a i n t cmdL( v cmdL )
export port o u t d a t a i n t cmdH(v cmdH)
export port o u t d a t a i n t return ( v r e turn )
export port i n ev en t s w i t c h t o h i g h ( )
export port i n ev en t sw i t ch to l ow ( )

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )

export port mode access wa i t input ( )
export port mode access FW INPUT H( )
export port mode access FW RES( )
export port mode access FW INPUT L( )

// modes
place q wai t input , q FW INPUT H , q FW RES , q FW INPUT L

// i n i t i a l i z a t i o n
i n i t i a l to q wa i t input do { b i p a c t i v e = true ; i = 0 ; r = 0 ;

mode high = true ; }

152 LIST OF TABLES



.1. STARLIGHT USE-CASE

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s
on s w i t c h t o h i g h from q wa i t input to q wa i t input

provided ( b i p a c t i v e ) do {mode high = true ; }
on sw i t ch to l ow from q wa i t input to q wa i t input

provided ( b i p a c t i v e ) do {mode high = fa l se ; }

@SuppressWarning ( nondeterminism )
on input from q wa i t input to q FW INPUT H

provided ( b i p a c t i v e && mode high == true ) do { i =
v input ; }

@SuppressWarning ( nondeterminism )
on input from q wa i t input to q FW INPUT L

provided ( b i p a c t i v e && mode high == fa l se ) do { i =
v input ; }

on resH from q wa i t input to q FW RES
provided ( b i p a c t i v e ) do { r = v resH ; }

on resL from q wa i t input to q FW RES
provided ( b i p a c t i v e ) do { r = v resL ; }

on cmdH from q FW INPUT H to q wa i t input
provided ( b i p a c t i v e )

on sw i t ch to l ow from q FW INPUT H to q FW INPUT H
provided ( b i p a c t i v e ) do {mode high = fa l se ; }

on s w i t c h t o h i g h from q FW INPUT H to q FW INPUT H
provided ( b i p a c t i v e ) do {mode high = true ; }

on cmdL from q FW INPUT L to q wa i t input
provided ( b i p a c t i v e )

on sw i t ch to l ow from q FW INPUT L to q FW INPUT L
provided ( b i p a c t i v e ) do {mode high = fa l se ; }

on s w i t c h t o h i g h from q FW INPUT L to q FW INPUT L
provided ( b i p a c t i v e ) do {mode high = true ; }

on return from q FW RES to q wa i t input
provided ( b i p a c t i v e )

on sw i t ch to l ow from q FW RES to q FW RES
provided ( b i p a c t i v e ) do {mode high = fa l se ; }

on s w i t c h t o h i g h from q FW RES to q FW RES
provided ( b i p a c t i v e ) do {mode high = true ; }

// data por t s a c t i v a t i o n t r a n s i t i o n s

end

/∗
∗ Lsub j e c t imp l
∗
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∗/

atom type Lsubjec t impl ( )

data int b i p a c t i v e

// data
data int i
data int v outL
data int v cmd
data int v r e s
data int v fwH

// c l o c k c l k

// event \ data por t s
export port o u t d a t a i n t outL ( v outL )
export port i n d a t a i n t cmd( v cmd )
export port o u t d a t a i n t r e s ( v r e s )
export port o u t d a t a i n t fwH( v fwH )

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )

export port mode access WAITING( )
export port mode access COMPUTING( )

// modes
place q WAITING,q COMPUTING

// i n i t i a l i z a t i o n
i n i t i a l to q WAITING do { b i p a c t i v e = true ; i = 0 ; }

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s
on cmd from q WAITING to q COMPUTING

provided ( b i p a c t i v e ) do { v outL = v cmd ; i = v cmd ; }

on fwH from q WAITING to q WAITING
provided ( b i p a c t i v e )
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on r e s from q COMPUTING to q WAITING
provided ( b i p a c t i v e )

on fwH from q COMPUTING to q COMPUTING
provided ( b i p a c t i v e )

on bip run from q WAITING to q WAITING

on bip run from q COMPUTING to q COMPUTING

end

/∗
∗ Ex t end ed D i s p a t c h i c on t r o l l e r
∗
∗/

atom type E x t e n d e d D i s p a t c h i c o n t r o l l e r ( )

data int b i p a c t i v e

// data

// event \ data por t s

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )

// modes
place q b ip run

// i n i t i a l i z a t i o n
i n i t i a l to q b ip run do { b i p a c t i v e = true ; }

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s

// data por t s a c t i v a t i o n t r a n s i t i o n s

// mode i d e n t i f i c a t i o n t r a n s i t i o n s
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on bip run from q b ip run to q b ip run

end

/∗
∗ Hsub j ec t imp l
∗
∗/

atom type Hsubject impl ( )

data int b i p a c t i v e

// data
data int i
data int v cmd
data int v low data
data int v r e s

// c l o c k c l k

// event \ data por t s
export port i n d a t a i n t cmd( v cmd )
export port i n d a t a i n t low data ( v low data )
export port o u t d a t a i n t r e s ( v r e s )

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )

export port mode access WAITING( )
export port mode access COMPUTING( )

// modes
place q WAITING,q COMPUTING

// i n i t i a l i z a t i o n
i n i t i a l to q WAITING do { b i p a c t i v e = true ; i = 0 ; }

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s
on cmd from q WAITING to q COMPUTING
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provided ( b i p a c t i v e ) do { i = v cmd ; }
on low data from q WAITING to q WAITING

provided ( b i p a c t i v e )
on r e s from q COMPUTING to q WAITING

provided ( b i p a c t i v e )
on low data from q COMPUTING to q COMPUTING

provided ( b i p a c t i v e )

end

/∗
∗ s t a r l i g h t i m p l c o n t r o l l e r
∗
∗/

atom type s t a r l i g h t i m p l c o n t r o l l e r ( )

data int b i p a c t i v e

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )

// modes
place q bip run , q b ip suspended

// i n i t i a l i z a t i o n
i n i t i a l to q b ip run do { b i p a c t i v e = true ; }

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s

// data por t s a c t i v a t i o n t r a n s i t i o n s

// mode i d e n t i f i c a t i o n t r a n s i t i o n s
on bip run from q b ip run to q b ip run

end
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/∗
∗ Monitor impl
∗
∗/

atom type Monitor impl ( )

data int b i p a c t i v e

// data
data int i

data int mode high

data int v cmdL in
data int v cmdL out

// c l o c k c l k

// event \ data por t s
export port i n d a t a i n t cmdL in ( v cmdL in )
export port o u t d a t a i n t cmdL out ( v cmdL out )
export port i n ev en t s w i t c h t o h i g h ( )
export port i n ev en t sw i t ch to l ow ( )

// inner t r i g g e r por t s

// mode i d e n t i f i c a t i o n por t s
export port mode access b ip run ( )
export port mode access b ip suspend ( )
export port mode access FW L( )
export port mode access wait cmd ( )

// modes
place q FW L , q wait cmd

// i n i t i a l i z a t i o n
i n i t i a l to q wait cmd do { b i p a c t i v e = true ; i = 0 ;

mode high = true ; }

// data f l ow t r a n s i t i o n s

// mode t r a n s i t i o n s
on sw i t ch to l ow from q wait cmd to q wait cmd

provided ( b i p a c t i v e ) do {mode high = fa l se ; }
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on s w i t c h t o h i g h from q wait cmd to q wait cmd
provided ( b i p a c t i v e ) do {mode high = true ; }

@SuppressWarning ( nondeterminism )
on cmdL in from q wait cmd to q FW L

provided ( b i p a c t i v e && mode high == fa l se ) do { i =
v cmdL in ; }

@SuppressWarning ( nondeterminism )
on cmdL in from q wait cmd to q wait cmd

provided ( b i p a c t i v e && mode high == true )

on cmdL out from q FW L to q wait cmd
provided ( b i p a c t i v e )

on sw i t ch to l ow from q FW L to q FW L
provided ( b i p a c t i v e ) do {mode high = fa l se ; }

on s w i t c h t o h i g h from q FW L to q FW L
provided ( b i p a c t i v e ) do {mode high = true ; }

// data por t s a c t i v a t i o n t r a n s i t i o n s

end

connector type in in mode mode
( i n ev en t in1 , i n ev en t in2 , mode access mode1 ,

mode access mode2 )
define in1 in2 mode1 mode2

end

connector type in int mode mode
( i n d a t a i n t in , mode access mode , mode access mode2 )
data int value
define in mode mode2

on in mode mode2
provided ( true )
up { }
down { in . va lue = value ; }

end

connector type out int mode mode
( o u t d a t a i n t out , mode access mode , mode access mode2 )

data int value
define out mode mode2
on out mode mode2
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provided ( true )
// up { va lue = out . va lue ; }
// down { }

end

connector type out in int mode mode
( o u t d a t a i n t out , i n d a t a i n t in , mode access mode ,

mode access mode2 )
define out in mode mode2
on out in mode mode2

provided ( true )
up { }
down { in . va lue = out . va lue ; }

end

compound type main ( )

component E x t e n d e d D i s p a t c h i c o n t r o l l e r
d i s p a t c h i c o n t r o l l e r ( )

component s t a r l i g h t i m p l c o n t r o l l e r s t a r l i g h t c o n t r o l l e r ( )

component Monitor impl monitor ( )
component Dsubject impl subDispatch ( )

// mode c o n t r o l l e r

// subcomponents
component Lsubjec t impl low net ( )
component Hsubject impl h igh net ( )

// data f l ows
connector out int mode

x l o w n e t o u t L c o n t r o l l e r b i p r u n ( low net . outL ,
s t a r l i g h t c o n t r o l l e r . b ip run )

// event connec t ions
connector in in mode mode

x d i s p a t c h s w i t c h t o h i g h c o n t r o l l e r b i p r u n
( subDispatch . sw i t ch to h igh , monitor . sw i t ch to h igh ,

d i s p a t c h i c o n t r o l l e r . bip run , s t a r l i g h t c o n t r o l l e r .
b ip run )

connector in in mode mode
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x d i s p a t c h s w i t c h t o l o w c o n t r o l l e r b i p r u n
( subDispatch . sw i t ch to low , monitor . sw i t ch to low ,

d i s p a t c h i c o n t r o l l e r . bip run , s t a r l i g h t c o n t r o l l e r .
b ip run )

// event data connect ions

connector in int mode mode
x d i s p a t c h i n p u t c o n t r o l l e r b i p r u n ( subDispatch . input ,

d i s p a t c h i c o n t r o l l e r . bip run , s t a r l i g h t c o n t r o l l e r .
b ip run )

connector out int mode mode
x d i s p a t c h r e t u r n c o n t r o l l e r b i p r u n ( subDispatch . return

, d i s p a t c h i c o n t r o l l e r . bip run ,
s t a r l i g h t c o n t r o l l e r . b ip run )

connector out in int mode mode
x d i spa t ch cmdL low net cmd cont ro l l e r b ip run ( monitor .

cmdL out , low net . cmd , d i s p a t c h i c o n t r o l l e r .
b ip run , s t a r l i g h t c o n t r o l l e r . b ip run )

connector out in int mode mode
x d i spa tch cmdH high ne t cmd cont ro l l e r b ip run (

subDispatch . cmdH, h igh net . cmd ,
d i s p a t c h i c o n t r o l l e r . bip run , s t a r l i g h t c o n t r o l l e r .
b ip run )

connector out in int mode mode
x l o w n e t r e s d i s p a t c h r e s L c o n t r o l l e r b i p r u n ( low net .

res , subDispatch . resL , d i s p a t c h i c o n t r o l l e r . b ip run
, s t a r l i g h t c o n t r o l l e r . b ip run )

connector out in int mode mode
x h i g h n e t r e s d i s p a t c h r e s H c o n t r o l l e r b i p r u n (

h igh net . res , subDispatch . resH ,
d i s p a t c h i c o n t r o l l e r . bip run , s t a r l i g h t c o n t r o l l e r .
b ip run )

connector out in in t mode
x l o w n e t f w H h i g h n e t l o w d a t a c o n t r o l l e r b i p r u n (

low net . fwH , h igh net . low data , s t a r l i g h t c o n t r o l l e r
. b ip run )

connector out in in t mode
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x subDispatch cmdL moni tor cmdL in contro l l e r b ip run (
subDispatch . cmdL , monitor . cmdL in ,
d i s p a t c h i c o n t r o l l e r . b ip run )

end
end
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