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I. Résumé

La résistance bactérienne aux antibiotiques est devenue un probléme majeur de santé publique
impliquant des actions de surveillance et de lutte contre sa diffusion. L’épidémiologie de la résistance
aux antibiotiques au sein des pathogénes cliniques est indispensable notamment a la prise en charge
thérapeutique. Cependant, elle est également pertinente au sein des bactéries animales et
environnementales afin d’en apprécier I’ampleur et d’en appréhender la diffusion. Alors que de
nombreux travaux ont été conduits sur le microbiote des animaux de compagnie, les études portant sur
la faune sauvage restent rares. Or, il apparait opportun de I’intégrer dans 1’étude de la dynamique des
bactéries antibiorésistantes afin d’apprécier son rdle épidémiologique dans leur dissémination et

d’évaluer les risques zoonotiques qui en découlent.

Sur la base de notre revue de la littérature, nous avons mis en évidence un lien étroit existant entre les
activités humaines et la présence de bactéries antibiorésistantes dans la faune sauvage. Ceci nous a
conduits a discuter de ’existence probable de voies d’échanges entre le compartiment humain et

animal.

Sur la base d’une étude ayant démontré la présence dans le sud de la France d’un réservoir aviaire
d’Escherichia coli producteurs de béta-lactamases a spectre élargi, nous avons exploré le microbiote
cloacal de deux especes de goélands, différentes par leurs niches écologiques et leur mode

d’alimentation, en tant que réservoir potentiel de bactéries multirésistantes aux antibiotiques.

Dans un premier temps nous nous sommes intéressés a la présence de Proteus mirabilis producteurs
d'AmpC acquises dans le microbiote des goélands au cours des deux années d’étude. Ces isolats
¢taient producteurs de céphalosporinases de type CMY-2 dont le support génétique était un ¢lément
intégratif et conjugatif (ICE) de la famille SXT/R391-like. Deux souches cliniques humaines avaient
les mémes enzymes, supports et fond génétiques que des souches aviaires. Ceci permet de supposer
que ces goélands constituent un réservoir de P. mirabilis porteurs du géne blacyy.,, et que les
structures de type ICE SXT/R391-like joueraient un role important dans la dissémination et la

persistance de ce géne de résistance.



Nous avons également isolé des souches d’Escherichia coli productrices de carbapénémases acquises,
qui constituent actuellement ['une des menaces les plus préoccupantes pour la santé publique en termes
d'antibiorésistance. Ces souches proviennent uniquement de goélands leucophées et sont porteuses du
gene blaypy. L’analyse de leur patrimoine génétique montre qu’elles sont liées a des souches
humaines sensibles. Nous n’avons en effet pas isolé de souches humaines productrices de
carbapénemases de type VIM dans le méme temps. Cette découverte pose la question d’un réservoir

aviaire potentiel et d’une menace de diffusion.

Lors du screening nous avons identifi¢ une souche de Vibrio cholerae non-O1/non-O139 résistante
aux carbapénémes et provenant d’un goéland leucophée. Elle possédait des génes blayn.; et blayiv.a
qui faisaient partie d’un integron de classe 1, situé sur un plasmide IncA/C. 1l s’agit de la premicre

description d’une souche de V. cholerae productrice de ce type de carbapénémases.

Ce travail démontre la complexité de la circulation de 1’antibiorésistance au sein du microbiote étudié.
Il ouvre de nombreuses perspectives d’un point de vue épidémiologique mais également fondamental
sur les mécanismes et les supports génétique de cette antibiorésistance. En effet, il illustre bien les
apports importants des outils d’épidémiologie moléculaire dans la surveillance de I’émergence et la
compréhension de la dynamique de transmission et de diffusion des bactéries multirésistantes dans la

faune sauvage.



Abstract

Bacterial resistance has become a major public health problem leading to a strengthening of spread
surveillance and control. The epidemiology of antimicrobial resistance (AMR) in clinical pathogens is
essential for therapeutic management. It is also relevant in animal and environmental bacteria to
determine and understand AMR existence and diffusion. While much work has been done on the
microbiota of companion animals, studies involving wildlife are scarce. It is essential to consider
wildlife when studying AMR dynamics to assess its epidemiological role in AMR spread and

understand the zoonotic risk which ensues from it.

With our literature review, we highlight the close link between human activities and the presence of

AMR in wildlife. It led us to discuss the pathways between the human and animal compartments.

A previous study reported the presence of an avian reservoir of extended spectrum beta-lactamases-
producing Escherichia coli in the South of France. Based on this finding, we explored the microbiota

of two gull species, differentiated by their ecological niches and diet, as a potential reservoir of AMR.

First, we investigated the presence of acquired AmpC-producing Proteus mirabilis in the gulls’
microbiota over two years. The isolates produced CMY-2 cephalosporinases with the genetic support
of an integrative and conjugative element (ICE) which belongs to the SXT/R391-like family. Two
human strains had the same enzymes, genetic support and genetic background as the avian isolates.
This suggests that these gulls may act as a reservoir of blacwy,-carrying P. mirabilis, and the

SXT/R391-like ICEs may play an important role in this gene’s dissemination and persistence.

We also isolated acquired carbapenemases-producing E. coli, which is currently one of the most
serious AMR threats to public health. These strains, which carried the blayny., gene, were recovered
from yellow-legged gulls. The phylogenetic analyses showed that the gulls are significantly linked
with human susceptible isolates. However, VIM carbapenemase producing-human isolate was not
isolated in the same time period. This discovery raises the question of a potential avian reservoir and

the threat of diffusion.



During the screening, we identified a carbapenem resistant non-O1/non-O139 Vibrio cholerae strain,
recovered from a yellow-legged gull. It carried both blayn.; and blayi.s genes which were part of a
class 1 integron structure located in an IncA/C plasmid. This is the first description of a V. cholera

strain producing this type of carbapenemase.

This work demonstrates the complexity of the AMR circulation in the microbiota studied. It opens
many perspectives from an epidemiological and fundamental point of view on the mechanisms and
genetic supports of AMR. It further illustrates the contribution of molecular epidemiology tools in the
understanding of the dynamics of transmission and diffusion and the surveillance of the emergence of

AMR in wildlife.



I1. Introduction

Aprés une phase d’optimisme victorieux ayant suivi le développement de nouveaux vaccins et
antibiotiques, les derniéres décades ont vu 1’émergence ou la réémergence d’agents pathogenes
affectant les populations humaines et animales domestiques (1, 2). Parmi ces émergences, celle des
bactéries résistantes aux antibiotiques occupent une place a part. En effet, ce phénomene d’émergence
et de diffusion de I’antibiorésistance est la conséquence directe de I’utilisation abusive et inapproprice
des molécules antibiotiques qui semblaient avoir remisé durablement les maladies infecticuses
bactériennes au rang de causes mineures de mortalité et de morbidité au sein des populations humaine.
Or aujourd’hui cette situation s’est aggravée. L’organisme mondial de la santé (OMS) a identifié¢ ce
phénomeéne comme une menace majeure pour la santé humaine (3) mais aussi ayant un impact

économique délétere croissant dans les pays industrialisés comme dans les pays en développement

4.

Cependant, tandis qu’une grande partie des agents pathogenes a 1’origine des crises sanitaires récentes,
tels que le VIH ou le virus Ebola, ont une origine zoonotique (i.e. ils circulaient a 1’origine au sein de
la faune sauvage) (2, 5), 'origine des bactéries antibiorésistantes est aussi diverse que difficile a
déterminer. En effet, les éléments génétiques conférant les résistances peuvent étre échangés entre
différentes espéces et souches bactériennes. Ces éléments peuvent préexister a I’utilisation humaine
des antibiotiques (6). La plupart des champignons et bactéries qui produisent des antibiotiques
possédent des mécanismes de résistances contre ces derniers (7). Les résistances peuvent ¢galement
évoluer directement en réponse a une exposition aux antibiotiques, cependant dans ce cas celle-ci peut
avoir eu lieu au sein d’un héte humain comme chez un animal domestique, voire dans I’environnement
(8). Ainsi, alors que les crises sanitaires et économiques associées aux agents pathogénes zoonotiques
ont fait prendre conscience de la nécessité d’étudier conjointement la dynamique des maladies
associées au sein des populations humaines, d’animaux domestiques et de la faune sauvage, ce type
d’approche « One Heath » a en revanche été trés peu développé dans le cadre de 1’étude des bactéries
antibiorésistantes. L’OMS, ’organisation des nations unies pour l'alimentation et l'agriculture (FAO)

et 'organisation mondiale de la santé animale (OIE) ont souligné la nécessité de collaborer étroitement



pour lutter contre 1’émergence de I’antibiorésistance. Cependant cette approche n’inclut pour le
moment et dans la majorité des cas que les animaux domestiques et non la faune sauvage (6, 9).
Pourtant, cette derniére apparait a la lumiére des données existantes comme un compartiment

potentiellement clé dans les dynamiques des bactéries antibiorésistantes (6).

Il existe actuellement trés peu de données sur les bactéries antibiorésistantes présentes au sein de la
faune sauvage, par rapport aux connaissances existantes au sein des populations humaines et animales
domestiques. La grande majorité des recherches menées a ce jour ont mis en évidence la présence de
bactéries résistantes a un ou plusieurs antibiotiques dans presque tous les écosystemes, jusqu’aux plus
reculés (10, 11). La quantité et la diversité de ces bactéries augmentent généralement avec la proximité
des activités humaines (12, 13). Ces études ont permis de détecter des bactéries antibiorésistantes chez
des especes tres variées allant du rongeur (14), au loup (15) en passant par la tortue marine (16). Les
animaux sauvages apparaissent donc réguliérement porteurs et excréteurs de bactéries

antibiorésistantes.

Les proportions de bactéries antibiorésistantes et les types de résistances rencontrés dans la faune
sauvage varient considérablement en fonction des espéces et des sites. Cependant, il existe
actuellement peu d’études de comparaison des profils de résistances en un méme site chez plusieurs
espeéces ou en plusieurs sites chez une méme espece. Une étude comparant les antibiorésistances
présentes chez les Escherichia coli isolées chez différentes especes d’oiseaux a montré que les plus
touchés étaient les oiseaux vivant en milieu urbain, les oiseaux aquatiques et les rapaces (17). Chacune
de ces catégories pourrait présenter un risque accru de contact avec des bactéries antibiorésistantes du
fait de son écologie. Les rapaces concentrent généralement les agents pathogenes présents chez leurs
proies, les oiseaux urbains peuvent étre directement en lien avec les bactéries infectant ’homme via
les déchets anthropiques ou les eaux usées, tandis que les oiseaux aquatiques peuvent étre en contact
avec les bactéries résistantes qui persistent dans 1’eau. En ce qui concerne les différents habitats, ceux
qui sont les plus proches des activités humaines sont généralement ceux ou la plus grande diversité et
prévalence de résistance est observée (12, 13). Cependant, rares sont les études qui s’intéressent a un

continuum d’habitats et permettant d’avoir une vision précise de la dynamique de 1’antibiorésistance



dans I’espace a partir de sources potentielles. Deux études pionniéres dans ce domaine ont comparé les
bactéries antibiorésistantes présentes chez les rongeurs dans différents habitats. Une premiere étude
effectuée en milicu rural a souligné une corrélation positive entre les densités d’élevage sur le site
d’étude et la proportion de bactéries antibiorésistantes (18). Une seconde étude également menée sur
des rongeurs a montré un gradient de prévalence de bactéries antibiorésistances allant des espaces

protégés, tels que les réserves, les moins touchés, aux abords des porcheries, les plus touchés (19).

Les types d’habitats et 1’écologie des espeéces apparaissent donc jouer un rdle important dans la
diversité et la quantité des bactéries antibiorésistantes présentes. Cependant les données sur 1I’impact
de ces facteurs sont tres limitées. Par ailleurs les habitats fréquentés par les especes et leur écologie
sont également susceptibles de déterminer leur role dans la dynamique des bactéries antibiorésistantes
dont elles sont porteuses. 11 a ainsi été démontré que différentes espéces capables de se déplacer sur de
tres longues distances telles que le loup ibérique (Canis lupus signatus) (15) et différents oiseaux
migrateurs (20, 21) peuvent porter des bactéries antibiorésistantes. Ces derniers pourraient donc avoir
un role de dispersion de ces agents pathogénes plus ou moins important en fonction de la durée
d’excrétion des bactéries et des déplacements effectifs des individus. De plus certaines especes étant
directement en contact avec 1’homme comme des rongeurs et des oiseaux, ou encore le renard,
pourraient représenter des ponts épidémiologiques entre le compartiment humain et le compartiment
sauvage. Il a notamment été démontré que des souches antibiorésistantes trés proches de celles
détectées au sein des populations humaines étaient présentes chez des oiseaux sauvages (21-23).
Cependant la compréhension des échanges entre ces compartiments nécessite la comparaison
phylogénétique des souches résistantes trouvées chez les humains et au sein de la faune sauvage, ce

qui a été rarement mis en ceuvre.

Au vu des données disponibles il apparait donc que :

* La faune sauvage est porteuse de bactéries antibiorésistantes.

* Les types de résistances et leur prévalence différent en fonction de I’écologie des especes et des

habitats occupés mais les connaissances manquent pour comprendre ces différences.



* Certaines souches antibiorésistantes observées dans la faune sauvage sont trés proches des souches
présentes au sein des populations humaines. Il existe donc des échanges de bactéries antibiorésistantes

entre faune sauvage et populations humaines mais ceux-ci restent mal compris.

* Certaines espéces pouvant se déplacer sur de longues distances pourraient potenticllement avoir un

role dans la dispersion des bactéries antibiorésistantes.

Dans ce contexte, il apparait pertinent d’intégrer la faune sauvage dans 1’étude de la dynamique des
bactéries antibiorésistantes notamment pour comprendre son role potentiel dans leur dissémination. Il
semble également important de la prendre en compte dans 1’évaluation des risques liés a la présence de

ces agents biologiques pathogenes pour I’Homme.

L’objectif global de ce travail a été d’étudier la circulation des bactéries multirésistantes aux
antibiotiques a I’interface entre populations humaines et faune sauvage, afin de comprendre son rdle
dans la dissémination de 1’antibiorésistance.

Sur la base de notre revue de la littérature portant sur le role de la faune sauvage dans la dynamique
des bactéries résistantes aux antibiotiques, 1’étude de Bonnedhal et al. a particuliérement attiré notre
attention. En effet, cette étude menée en 2009 dans le Sud de la France (21), a mis en évidence un
réservoir aviaire (goélands leucophées, Larus michahellis) de souches d’E. coli productrices
d’enzymes de haut niveau de résistance aux céphalosporines de troisieme génération (C3G), des béta-
lactamases a spectre élargi (BLSE) de type CTX-M. En revanche, les auteurs n'ont pas précisé
l'existence d’autres bactéries multirésistantes aux antibiotiques. Ainsi a I’instar de ce réservoir aviaire
d’E. coli producteur de BLSE, 'objectif de notre étude a été d’explorer ce méme microbiote cloacal
des goélands en tant que réservoir potentiel d’autres bactéries multirésistantes. Nous avons inclus une
autre espece d’oiseaux, des goélands railleurs (Chroicocephalus genei). Ces derniers sont différents
des goélands leucophées par leur niche écologique et leur mode d’alimentation. En effet, ils sont
beaucoup moins au contact de I’homme et se nourrissent exclusivement de poissons marins,

contrairement aux goélands leucophées qui sont plus anthropiques et se nourrissent dans les décharges.



Nos objectifs spécifiques sont les suivants :

A partir du microbiote cloacal des deux espéces de goélands (railleur et leucophée)

1. Dépister et caractériser des isolats de Profeus mirabilis producteurs de céphalosporinases

hyperproduites.

2. Etudier la persistance de ces P. mirabilis dans le temps.

3. Dépister et caractériser des isolats d’E. coli résistants aux carbapénémes.

4. Caractériser un isolat de Vibrio cholerae résistants aux carbapénemes.
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Chapitre I

Revue de littérature
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Préambule

La diffusion des résistances aux antibiotiques est devenue un probléme majeur de santé humaine avec
comme conséquences une augmentation des colts économiques et un risque d’impasses

thérapeutiques.

La compréhension et la lutte contre cette diffusion inclue non seulement des études en clinique
humaine et vétérinaire, mais aussi environnementales et de la faune sauvage. En effet, les hypothéses
selon lesquelles la faune pourrait jouer un réle important dans la dynamique des bactéries résistantes

aux antibiotiques sont de plus en plus nombreuses, alors que les données empiriques restent rares.

Cette revue analyse les données de la littérature disponible pour identifier les principales informations
que nous possédons dans ce domaine et suggérer des voies de recherche afin de combler les lacunes de

nos connaissances actuelles.

Pour atteindre notre objectif, nous nous sommes posés quatre questions : i) Quelles sont les bactéries
résistantes les plus fréquemment retrouvées dans la faune sauvage? ii) Comment peut s’effectuer la
circulation de la résistance et/ou ses supports génétiques entre la faune sauvage et les autres
compartiments (humain, animaux domestiques et environnement) ? iii) Dans quels habitats trouve-t-on

ces bactéries résistantes ? iv) Est-ce que ces résistances sont associées a certaines caractéristiques

écologiques de 1’hote ?

Nous avons mis en évidence le lien étroit existant entre I’impact des activités humaines sur les habitats
naturels et le portage de bactéries résistantes aux antibiotiques par la faune sauvage. En outre, nous
avons souligné que les espéces omnivores, carnivores et anthropophiles ont un risque élevé d’étre
porteuses et donc potenticllement de répandre ces bactéries résistantes. Enfin, nous discutons
I’existence probable de voies d’échanges de bactéries résistantes entres populations humaines et faune
sauvage, et soulignons I’importance de prendre en compte le transfert horizontal de génes de résistance

dans 1’étude de ces voies.
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Summary

1. The spread of antimicrobial resistance is of major concern for human health and leads to
growing economic costs. While it is increasingly hypothesized that wildlife could play an
important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce.

2. The present work builds on a systematic review of the available data in order to highlight
the main information we have and to suggest research pathways that should be followed if
we aim to fill the gaps in our current knowledge.

3. To achieve this goal, we address four questions: (i) Which resistant bacteria are the most
frequently observed in wildlife? (ii)) How are resistant bacteria exchanged between wildlife and
the other hosts involved? (iii) In which habitats are those resistant bacteria found? (iv) Are
resistances associated with certain ecological traits of the host?

4. Synthesis and applications. We highlight the strong link existing between the impact of
human activities on natural habitats and the carriage of antimicrobial-resistant bacteria by
wildlife. Furthermore, we underline that omnivorous, anthropophilic and carnivorous species
are at high risk of being carriers and potentially spreaders of antimicrobial-resistant bacteria.
Identifying among those groups key sentinel species may be of particular interest to imple-
ment ecosystem contamination surveillance. Finally, we discuss possible exchange routes for
antimicrobial-resistant bacteria between humans and wildlife. Considering that water is of
major importance in those exchanges, a critical way to control antimicrobial resistance spread
may be to limit aquatic environment contamination by antimicrobial-resistant bacteria and
antibiotics.

Key-words: antibiotic resistance, antibiotic-resistant bacteria, emerging infectious disease,
Escherichia coli, health ecology, Klebsiella pneumoniae, MRSA, pathogens, Salmonella spp.,
transmission routes

as resistance makes necessary the use of expensive last-

Introduction . R o
generation molecules and implies extra hospitalization

Antimicrobial resistance (AMR) is a major threat for
human health world-wide, impairing our capacity to treat
an increasing number of infections (WHO 2014). In addi-
tion, it entails a considerable increase in treatment costs,

*Correspondence author. E-mail: vittecoq@tourduvalat.org

costs. AMR is also a crucial issue in agriculture since it
makes more complex the maintenance of domestic animal
health, leading to additional economic costs. Further-
more, available data show that numerous wildlife species
carry antimicrobial-resistant bacteria (AMRB) in a wide
range of habitats, which raises the question of their role

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society
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in AMRB dynamics at the interface between human pop-
ulations, domestic animals and natural ecosystems.

There is thus an urgent need to understand the dynam-
ics of AMR: how it spreads, how it passes from one com-
partment to another and how and why it is maintained
within bacterial populations. These dynamics are greatly
complicated both by the large diversity of antimicrobial
resistance mechanisms (Fig. 1a) and by the horizontal
transfer of resistance genes existing between bacteria
(Fig. 1b; Tenover 2006). Indeed, the dissemination of
AMR has been largely attributed to inter- and intraspeci-
fic DNA exchange, mainly through the horizontal transfer
of plasmid-located resistance genes, which is the most
important mechanism at the origin of acquisition of resis-
tance in bacterial pathogens of human health concern
(Carattoli 2013). Plasmids are extrachromosomal DNA
molecules capable of autonomous replication and can
confer resistance to the major classes of antimicrobials,
including B-lactams, aminoglycosides, tetracyclines, chlo-
ramphenicol, sulphonamides, trimethoprim, macrolides
and quinolones (Carattoli 2009).

The main measures currently applied in European
countries are to cut down on the use of antibiotics in both
human and domestic animals, since it has become clear
that the two compartments are closely linked (Angulo,
Nargund & Chiller 2004). These measures are based on

the assumption that AMR is associated with fitness costs
that allow susceptible bacteria to overcome resistant ones,
when there is no selective pressure linked to antimicrobial
drugs. Yet it appears that these costs are extremely vari-
able (Andersson & Hughes 2010) and can be reduced or
even turned into fitness benefits by compensatory muta-
tions (Luo et al. 2005). Additionally, the same mechanism
or a mechanism found on the same genetic element can
confer resistance to both antimicrobial drugs and pollu-
tants (Baker-Austin et al. 2006). Thus, the pollution of
environmental reservoirs can contribute to the develop-
ment and maintenance of AMRB. Finally, AMRB are
naturally found in soils in the absence of anthropogenic
antimicrobial drugs due to the natural production of
antibiotic molecules by some bacteria and fungi (Keen &
Montforts 2012).

The low reversibility of AMR is all the more worrying
in that
enhanced virulence. As an illustration, the different steps
leading to methicillin resistance acquisition in Staphylo-
coccus aureus are associated with virulence modifications
(Cameron, Howden & Peleg 2011). The methicillin-resis-
tant strain of S. aureus (MRSA), USA300, appears to
have caused a strong increase in severe cutaneous infec-
tions observed in the USA in the 2000s (Chadwick et al.
2013). It is an example of bacteria in which AMR and

in some cases resistance is associated with
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Fig. 1. The complexity of antimicrobial
resistance mechanisms (a) and their trans-
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Mobile genetic

(1) Decrease in the membrane permeability
to a drug. (2) Active extrusion of the drug
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out of the cell. (3) Modification of the cel-
lular target of a drug. (4) Inactivation of
the drug. (b) Mechanisms of antimicrobial
resistance acquisition: the resistance to a
drug can result from a mutation (1). The
mutated bacteria that become resistant will
be selected in the presence of the drug.
This type of resistance will only be passed
to the next generation within a particular
strain. In contrast, some resistances can be
carried by plasmids that can be transmit-
ted from one bacterial species to another
through either cell-to-cell conjugation (2),
phage-mediated transduction (3) or trans-

formation by extracellular DNA (4).
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virulence are associated. Similarly, the Escherichia coli
group called ST131 is characterized by both multidrug
resistance and high virulence (Da Silva & Mendonga
2012). However, the link between resistance and virulence
is highly diverse. Even within a single bacterial species
such as E. coli, the association between virulence factor
and resistance determinant carriage greatly varies accord-
ing to the resistance mechanisms involved and the verte-
brate host species studied (Da Silva & Mendonga 2012).

Considering the significant impact AMR has world-
wide on both the economy and human health, it is a mat-
ter of urgency to improve our understanding of the role
each compartment (i.e. domestic animals, human popula-
tions, wildlife and environmental reservoirs) plays in the
maintenance and the dispersal of AMR within bacteria
populations. However, while considerable efforts have
been made to increase our knowledge of AMR dynamics
in human populations and domestic animals, much less
attention has been paid to wildlife. Yet over the last dec-
ade, accumulated evidence has revealed the presence of
antibiotics and AMRB in wildlife and natural environ-
ments (Allen ef al. 2010). Studies highlighted the presence
of AMR in all ecosystems including the most isolated
ones such as Antarctica (Miller, Gammon & Day 2009)
and in a wide range of species (Allen ez al. 2010).

Here, our purpose was to review currently available
data concerning AMR in wildlife with the aim of drawing
the major lessons that can be inferred from it. To achieve
this goal, we carried out searches on the Web of Science
(https://access.webofknowledge.com/) and PubMed
(http://www.ncbi.nlm.nih.gov/pubmed) databases using
the following terms (‘Antimicrobial’ OR ‘antibiotic’)
AND ‘resistance’ AND (‘wildlife’ OR ((‘mammal’ OR
‘bird” OR ‘reptile’ OR ‘amphibian’ OR ‘fish’ OR ‘inverte-
brate’) AND (‘wild’ OR ‘free-ranging’))). We ended our
research on 20 May 2015. From the resulting list of refer-
ences, we selected those presenting novel data about any
resistant bacteria carried by any wild animal but exclud-
ing those living in captivity. We completed the reference
selection with additional articles cited in four recent
review papers (Guenther, Ewers & Wieler 2011; Welling-
ton et al. 2013; Radhouani er al. 2014; Sousa et al. 2014).
This left us with 210 peer-reviewed articles mainly pertain-
ing to birds and mammals in Europe and North America
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(Table 1). Only the most relevant are cited in the text
body of the present paper. The full list of articles is pre-
sented in Appendix S1 (Supporting information).

We investigated the available studies with reference to
four questions: (i) Which bacteria species are the most fre-
quently found to be resistant to antimicrobial drugs in
wild vertebrates? (i) How do wildlife species get colonized
by AMRB and which exchanges of such bacteria occur
between humans, domestic animals and wildlife? (iii)
What characterizes the habitats that are the most contam-
inated by AMR? (iv) What ecological or life-history traits,
if any, favour the colonization and potential infection by
AMRB in wildlife?

Given the huge heterogeneity of the data reported in
the studies we gathered that notably differ by the verte-
brate host species they focus on, the bacterial species they
search for and the methods they use to isolate bacterial
strains and determine their antimicrobial resistance pat-
tern, we decided not to present any meta-analysis. Indeed,
considering recent discussions on this issue in the litera-
ture (e.g. Kriston 2013; Melsen et al. 2014), we felt that in
our case discussing the results of primary studies would
be more useful than relying on a meta-analysis, which
would summarize data that we consider highly inhomoge-
neous.

To conclude, we underline the gaps that remain in our
knowledge of the wildlife compartment and its epidemio-
logical links with human and domestic animal popula-
tions, and we suggest important paths to explore to
anticipate future resistance transfer between compart-
ments and to avoid human health crises.

AMR diversity in human pathogens carried by
wildlife

In the vast majority of studies focusing on AMR in wild-
life, the goal is not to investigate the whole bacterial com-
munity present in a host population but rather to assess
whether a bacterial species (or strain) can be found in a
particular host population. Similarly, not every resistant
determinant known in the focus pathogen is systematically
searched for, but only a selection of them. It is essential
to consider, while trying to obtain information from the
currently available data, that they only represent results

Table 1. Host groups and regions studied in the 210 articles analysed in our review

Region Amphibians and reptiles Birds Fish Invertebrates Mammals Total
Africa 1 1 1 0 9 12
Asia 1 10 2 1 6 20
Europe 4 72 7 6 53 142
North America 4 33 2 0 24 63
Oceania 0 0 0 0 3 3
Polar regions 0 5 0 0 2

South America 4 1 0 0 4 9
Total 14 122 12 7 101 256

The overall total exceeds 210 since some studies concern several groups or regions.
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concerning what has been searched for. Generally, the
search is driven by human health concerns associated with
the focus bacteria or the focus resistance mechanisms.
Indeed, only three bacterial groups were studied in more
than 10% of the 210 studies we analysed: E. coli (115
studies), Salmonella spp. (54
cus spp. (43 studies).

Escherichia coli is part of the normal intestinal flora in
humans. Nevertheless, it is the most frequent cause of uri-
nary tract and bloodstream infections world-wide. In
E. coli, the resistance of major concern is resistance to
third-generation cephalosporins and carbapenem mainly
conferred by enzymes known as extended-spectrum [-lac-
tamases (ESBLs) and carbapenemases (WHO 2014). In
wildlife, E. coli is the most commonly targeted bacteria in
AMR studies. ESBL-producing E. coli are now frequently
found in wildlife (reviewed in Guenther, Ewers & Wieler
2011), notably in birds and mammals (see for example
Costa et al. 2006; Literak et al. 2010; Silva et al. 2011;
Gongalves et al. 2013). By contrast, resistance to car-
bapenems that are now present in E. coli in livestock and
companion animals (Guerra, Fischer & Helmuth 2014)
has not been reported in E. coli in wildlife despite
searches focused on mammals, birds and reptiles (e.g.
Navarro-Gonzalez et al. 2013).

Bacteria of the genus Salmonella are a major cause of
foodborne illness throughout the world. Salmonella can
be found in the intestines of many animals, including

studies) and Enterococ-

poultry and pigs. Most Salmonella strains cause gastroen-
teritis, while some strains, particularly Salmonella enterica
serotypes Typhi and Paratyphi, cause enteric fever. Dur-
ing the late 1990s and early 2000s, several clones of mul-
tiresistant Salmonella emerged, and since then they have
expanded world-wide. For example, in S. enterica sero-
type Typhimurium, a genomic element that carries resis-
tance to five antimicrobials may spread horizontally
among serotypes. In wildlife, S. enterica serotype Typhi-
murium presenting this pentaresistance has been detected
in mammals (Caleja ef al. 2011) and birds (Cizek et al.
2007).

Enterococci are ubiquitous bacteria in various environ-
mental habitats and are commensal of mammals, birds,
some reptiles and invertebrates (Aarestrup 2006). Some
species have emerged as important causes of nosocomial
and community-acquired infections (Van den Bogaard
et al. 2002; Radhouani er al. 2012). They have innate
resistance to many antimicrobial agents and they can
carry a variety of acquired antibiotic resistance genes,
which can be transmitted to other pathogenic bacteria
(Murray 1991; Spera & Farber 1994). They are frequently
studied in both wild and domestic animals since they are
suitable as indicators of antimicrobial resistance in Gram-
positive bacteria.

In addition to E. coli, Salmonella spp. and Enterococ-
cus spp., AMR has been occasionally studied in a few other
bacterial groups, among which four were searched for in at
least 5% of the articles we considered: Campylobacter spp.,

Enterobacter spp., Klebsiella spp. and Staphylococcus spp.
In this article, our aim was to identify the main patterns
that can be inferred from the available data. However, we
emphasize the fact that those data concern essentially the
three pathogens presented above and a few other bacteria,
mostly enteric. Future research should aim to widen the
range of bacteria groups studied, especially considering
that, due to horizontal transfer, groups that are not major
human pathogens may, nevertheless, contribute to spread-
ing resistance mechanisms that are clinically relevant. For
example, Kluyvera ascorbata is a rare bacteria that can
occasionally cause severe infections in humans (Ruffini
et al. 2008). It also has been isolated from wild animals
(e.g. Lee et al. 2008). Despite the rarity of the severe human
cases, K. ascorbata is of concern due to its ability to trans-
fer genes encoding for ESBLs to other Enterobacteriaceae.
Moreover, as further discussed in our conclusions, culture-
independent methods may also help to broaden the range
of AMR genes investigated in wildlife. As an illustration,
an innovative study recently led on gulls in the USA
revealed that the focus population carried a huge variety of
AMR genes that were previously unrecognized (Martiny
et al. 2011).

When considering current knowledge on AMRB found
in wildlife, it is also important to keep in mind that the
methods usually used to detect AMRB provide informa-
tion on the presence of resistant strains, but do not assess
the proportion of bacteria they represent in the studied
population. This quantitative aspect may be an essential
component of AMRB dynamics, and methods enabling
the investigation of this issue should be used in future
studies.

Exchanges

Mounting evidence attests the occurrence of AMRB
exchanges between wildlife, humans and domestic ani-
mals. When investigating these exchanges, it is important
to note that even bacteria of the same species harbouring
the same resistance genes may not have the same origin
since they may not belong to the same clonal complex.
Yet, more and more studies show that identical or near
identical strains, belonging to the same clonal complex,
are circulating in wildlife, humans and domestic animals
(e.g. Paterson et al. 2012; Monecke et al. 2013). Neverthe-
less, identifying similar pathogens in two compartments
does not offer a basis for determining how and in which
direction the exchanges took place. Thus, it is often very
difficult to disentangle the transmission routes of AMRB
between two compartments. As an illustration within the
references we analysed, we could not draw any statisti-
cally based conclusion about the source of AMRB car-
riage in wildlife since this source could not be precisely
determined with certainty in any study. Indeed, several
possible transmission routes exist between the focus com-
partments including direct contact with infected individu-
als, their tissues or their faeces, water and soil. The
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complex network of AMRB transmission routes existing
between humans, livestock and the environment has been
extensively discussed (Martinez 2009; Allen et al. 2010;
Davies & Davies 2010); here, we focus on the role of wild-
life in this network and rapidly describe the main trans-
mission routes involved.

CONTACT

Humans and domestic animals can be in contact with
wildlife species that live or feed near habitations and rear-
ing estates. For example, rodent faeces can be touched by
humans or their animals and be ingested if they contami-
nate food. Additionally, rodents living in the vicinity of
human habitations and rearing estates can be in direct
contact with animal faeces and manure. Moreover,
humans can directly touch wild animals they trap, hunt or
treat as veterinarians. This transmission route is known to
be important for many zoonotic diseases such as tularae-
mia or brucellosis (e.g. Stewart 1996). There is no reason
to think that it might not be important in AMRB
exchanges.

Thus, it would be worthwhile to undertake studies
aimed at assessing the risk of antimicrobial transmission
linked to hunting and trapping practices. Such studies
could build on the networks of game meat surveillance
that exist in many countries. Wild animals can also ingest
contaminated meat from domestic animals. It has been
proven that animal products commonly contain AMRB
(Overdevest 2011) and wildlife can occasionally feed on
dead animals (e.g. stillborn calves or lambs) or on their
giblets when they are not collected after home slaughter.
Such contamination routes could be important to take
into account with a view to controlling the spread of
AMR to wildlife.

WATER

Water seems to be a major transmission media for
AMRB (Taylor, Verner-Jeffreys & Baker-Austin 2011), as
suggested by the evidence of the presence of those bacte-
ria in treated water rejected in rivers (Galvin er al. 2010),
in rivers themselves (Dhanji ez al. 2011), in lakes (Hame-
lin et al. 2006) and even in sea water (Zhao & Dang
2012). Furthermore, there is clear evidence of the
exchanges of resistance genes between environmental bac-
teria and human pathogens, which can occur in aquatic
systems (Wellington e al. 2013). AMRB found in water
can originate either from human or from domestic animal
populations. It should be noted that the four pathogens
of major concern cited above (S. aureus, E. coli, K. pneu-
moniae and Salmonella spp) can persist in water for vary-
ing periods according to strains and environmental
conditions and have all been recovered from aquatic habi-
tats (Filali et al. 2000; Martinez-Urtaza et al. 2004; Dole-
jska et al. 2009; Goodwin et al. 2012).
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First, sewage treatment plants, even the most modern,
usually remove neither all antibiotic molecules nor AMRB
from the treated sewage (Rizzo et al. 2013). The contami-
nated water is then spread into rivers allowing the disper-
sal of antibiotics and AMRB downstream. Similarly,
livestock effluents containing AMRB and antibiotics can
contaminate the aquatic environment. In this case, part of
the effluent is not treated at all as contaminated pastures
and fields can be directly connected to rivers and ground-
water due to run-off and infiltration. Whatever the source
of the water contamination, it generally increases down-
stream of human activity areas (e.g. Pruden, Arabi &
Storteboom 2012) and mechanisms of AMR can then be
transmitted to wildlife because either they inhabit and/or
feed in an aquatic environment or because they drink the
water.

In both marine and freshwater habitats, it is a matter
of urgency to study the impact of aquaculture on the
spread of AMRB. Aquaculture may be the key to success
in feeding the growing global human population, but
globally it relies on the utilization of large amounts of
antibiotics (Cabello ef al. 2013). The vast majority of
aquaculture farms directly discharge both leftover antibi-
otics and organic matter (faeces and fish alimentation resi-
dues) into the surrounding water. Growing evidence
shows that these practices are linked to antibiotic accumu-
lation around the farms and favour the development and
spread of AMRB below the pans and over distances that
may be over one kilometre and probably more, depending
on currents (Buschmann er al. 2012). Regrettably, few
studies focusing on this impact of aquaculture have
included research on bacteria infecting wildlife living in
aquatic habitats near aquaculture farms. Within our list,
only two articles addressed this issue (Gonzdlez et al.
1999; Burr et al. 2012). Both were led in freshwater.
Gonzdlez et al. (1999) highlighted antimicrobial resistance
in only four AMRB strains: three from water and just
one from a wild pike, which did not permit any compar-
ison with wild and farmed trout that were studied in par-
allel. By contrast, Burr et al. (2012) showed that within a
single lake, farmed perch Perca fluviatilis carried a higher
proportion of AMRB than wild individuals of the same
species. The diversity of resistance highlighted was also
higher in farmed animals and strains did not cluster
according to the status (i.e. wild or captive) of the perch.
Yet those results were not discussed in the light of the
treatments used in farmed perch. Similarly, Gonzdles
et al. did not include any information about the treat-
ments used in farmed trout. It is of major importance to
include this component in future studies to gain a better
understanding of the impact of aquaculture as wild fishes
and aquatic mammals can travel long distances and
spread AMR. In addition, bivalves inhabiting the sur-
rounding environments could also be contaminated, espe-
cially filter feeders, and be at risk if they are eaten by
humans (Soonthornchaikul & Garelick 2009).

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology, 53, 519-529



524 M. Vittecoq et al.

SOIL

Antimicrobial resistance exists naturally in soil communi-
ties, notably due to the production of antibiotics by some
soil bacteria and fungi (Keen & Montforts 2012). But the
presence of AMRB in soil can also be the result of direct
faeces or urine deposition (e.g. in pastures), of manure
use (Heuer, Schmitt & Smalla 2011) or of effluent flows
(Wellington et al. 2013). This could be an important
transmission route with regard to the control of AMR
spread (Heuer, Schmitt & Smalla 2011). Aerial transmis-
sion has also been suggested as possibly playing a role in
AMRB dispersal (Allen et al. 2011). Wind could con-
tribute to the spread of small particles of soil contami-
nated by antibiotics or AMRB. Thus, air should not be
excluded from our AMR understanding framework, and
studies should be undertaken to investigate its potential
role in the spread of AMR. Finally, whatever the source
of the soil contamination, wild species feeding in exposed
fields could be infected by AMRB and spread them fur-
ther.

More studies should focus on improving our under-
standing of the routes that allow AMR exchanges
between epidemiological compartments, which is essential
to meet the challenge of resistance spread control. AMR
associated with drug use in cattle farms may spread both
to soil through manure and to neighbouring watersheds
through effluents. Targeting these two routes may help to
reduce the risk of AMR spread associated with this activ-
ity (Pruden et al. 2013). Considering AMR genes as envi-
ronmental contaminants and using methods that allow
searching directly for these genes rather than for the bac-
teria carrying them may help in efficiently following the
spread of AMR in all the components of the AMR trans-
mission network. For example, methods involving poly-
merase chain reaction (PCR) use could permit searching
for specific AMR genes whose spread is particularly wor-
rying or that could be used as general AMR contamina-
tion markers (Pruden et al. 2006; Gillings et al. 2015).
Overall, it is crucial to raise the awareness of the strong
interconnectedness between habitats and compartments
induced by multiple exchange routes, which implies that
AMR issues must be tackled simultaneously in human
populations, domestic animals, wildlife and environmental
reservoirs.

Habitats: where is the resistance?

To understand and control AMR flows, one of the first
steps is to determine in which kind of habitat they usually
take place and why. It is now established that AMRB are
ubiquitous in natural ecosystems. As an illustration, mul-
tiresistant E. coli have been isolated from water in Antarc-
tica (Miller, Gammon & Day 2009). Spatial analysis is
essential to understand AMR dynamics as it allows the con-
sideration of contamination gradients across habitats and
the potential consequences of wild species dispersion as well

as human and domestic animal movements (Singer, Ward
& Maldonado 2006). However, data allowing comparison
of AMRB prevalence across different habitats are scarce,
and studies focusing on collecting such spatial data should
be encouraged.

Only 10% of the articles we considered allowed us to
draw some conclusions concerning the differences of
AMR across habitats in terms of prevalence. Indeed, most
of the authors either focus on only one kind of habitat or
work in different sites but omit to describe them in detail.
In certain cases, the study areas are also very large (an
administrative region or a state) and include various habi-
tats. Among the 21 suitable articles, we used chi-square
tests or Fisher’s exact tests when the application condi-
tions of chi-square test were not met to compare the pro-
portions of AMRB carriers between the host groups
inhabiting different habitats when such analysis was not
initially led by the authors. We chose a P-value threshold
of 0-05 and applied a Bonferroni correction when several
pairwise tests were used to analyse the results of the same
study. Eleven studies highlighted a significantly higher
prevalence of AMRB within the habitat considered that
was the most impacted by human activities compared to
more preserved sites, while 10 did not detect any contrast.
Resistance mechanism diversity could only be compared
in 19 of those articles and was significantly higher in nine
of them in the most anthropized places, while no differ-
ence was underlined in the remaining 10 papers. Interest-
ingly, none of the articles highlighted a reverse trend
neither concerning prevalence nor diversity of AMRB.
Thus, available data suggest that the diversity of resis-
tance mechanisms detected, as well as the proportion of
individual hosts carrying AMRB, increases with the prox-
imity to human activities. Regrettably in most cases, habi-
tats are just classified according to their main ‘function’
(e.g. natural reserve, farm, city, sewage plant, etc.). Some
authors also use human or livestock density to character-
ize the study sites (Guenther er al. 2010). Such indexes
that could be compared across studies should be more
widely used. Land-use classification according to satellite
data could also be relevant.

As discussed in part II, water seems to play a major
role in the dispersal of antibiotics and AMRB to natural
ecosystems. As an illustration of this role, studies carried
out on marine mammals to date have shown that they
carry highly diverse AMRB (Schaefer er al. 2009) and
that AMRB prevalence has been alarmingly increasing
over the last decade (Wallace et al. 2013). Furthermore,
with the global loss of natural wetlands, waterbirds have
become increasingly dependent on alternative and artifi-
cial habitats including wastewater treatment wetlands
(Murray & Hamilton 2010), which could favour the trans-
mission to wild birds of AMRB of human origin. Thus,
aquatic habitats may be more impacted by AMR contam-
ination than terrestrial ones. Yet, comparing AMRB
prevalence in aquatic vs. terrestrial host species is chal-
lenging since few studies focus on both groups. Among
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our references, 68 focus on aquatic species only (we con-
sidered as aquatic all species that either live or feed in
water), 109 on terrestrial ones, one did not give any detail
on the bird species studied and only 32 searched for
AMRB in both groups. Among them, only 13 gave
enough information to draw some conclusions. In most
cases, authors did not investigate this aspect and we used
chi-square tests or Fisher’s exact tests when the applica-
tion conditions of chi-square test were not met to com-
pare AMRB distribution between groups. Only three
studies gave significant results (P < 0-05); they all high-
lighted a higher AMRB prevalence in aquatic species.

Host species ecology and contamination risks

To understand the role of wildlife in AMRB dynamics, it
is essential to identify among potential host species those
ecological traits that favour the carriage of such bacteria
since: 1) it can help to infer the origin of the habitat con-
tamination by the AMRB and ii) it is crucial to take into
account the concerned animal species’ characteristics (e.g.
diet, life span) in order to predict the role they could play
in AMRB evolution, maintenance and dispersal.

A species can be characterized by its habitat, which
influences the contamination risk by AMRB. As stated
above, the habitats that are the more closely linked to
human activities appear to be the most highly contami-
nated by AMRB (Allen et al. 2010). Thus, species inhabit-
ing these habitats appear to be the most strongly
impacted. Beyond the habitat occupied by species, two
other major ecological traits can influence their role in
AMR dynamics, as well as their risk of contamination by
any pollutant: i) how they use the habitat resources, nota-
bly what they eat and drink, and ii) how they move
within their habitat and from this habitat to other places.

Studies offering a basis for comparison of AMRB
prevalence in species with different diets within a habitat
are scarce. Within our reference list, 101 articles focused
on a single species, among which 43 were carnivorous (in-
cluding piscivores, insectivores and scavengers), 25 were
herbivorous and 33 were omnivorous. Among the 109
papers that searched for AMRB in several species, only
35 provided data that allowed comparing AMRB preva-
lence across species with different diets. The others either
studied several species sharing the same diet (34 papers)
or did not give enough details to permit any statistical
comparison between groups (40 papers). In particular,
some authors either do not list the species they sampled
(sometimes just referred to as wild birds or wild mam-
mals) or do not give the number of individuals sampled,
only referring to those that yielded positive AMRB
results. To analyse the results of the 35 studies providing
exploitable data, we used chi-square tests or Fisher’s exact
tests when the application conditions of chi-square test
were not met to compare AMRB distribution between the
different host species involved grouped into three types of
diets: carnivores, omnivores and herbivores. We chose a
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P-value threshold of 0-05 and applied a Bonferroni cor-
rection when several pairwise tests were used to analyse
the results of the same study. In 25 studies, no significant
difference was highlighted between the proportions of
individuals carrying AMRB across groups. The results of
six articles were consistent in showing that carnivorous
and omnivorous species were more likely to carry AMRB
than herbivorous species (see details in Table 2). By con-
trast, two papers gave opposite results underlining higher
AMRB prevalence in herbivorous than in carnivorous
and omnivorous ones (see details in Table 2). Finally, two
papers underlined a higher proportion of AMRB carriers
in carnivorous than in omnivorous species, while one
reported opposite results.

Thus, available data suggest that carnivorous and
omnivorous species are generally the most at risk of
AMRB carriage. Among bird species, raptors and gulls
present high colonization rates with AMRB (Poeta et al.
2008; Guenther et al. 2010). Similarly, mammalian preda-
tors and omnivorous species appear to carry a wide diver-
sity of AMRB (Navarro-Gonzalez et al. 2012; Gongalves
et al. 2013). Yet, few studies allowed the investigation of
this issue and more than two-thirds of them gave non-sig-
nificant results. Thus, more studies focusing simultane-
ously on several species living in the same habitat but
differing by their diet are needed to be able to draw firm
conclusions on this point. Moreover, a direct causal link
between these contamination rates and diet remains to be
highlighted. The gut microbiota is known to be influenced
by diet along with phylogeny and physiology of the host
(Muegge et al. 2011). At least in mammals, the maximum
diversity of bacteria is observed in herbivorous species, an
intermediate level of diversity characterizes the predators,
while omnivorous species have the lowest bacteria diver-
sity in contrast to what is known regarding AMRB (Ley
et al. 2008). To understand this contrast, it is important
to recall that the data we have concerning the AMRB
found in wildlife are based on what has been searched
for, meaning that we have information mostly on human
pathogens. Available results argue in favour of undertak-
ing research in order to understand the fate of AMRB
throughout food chains (Teale 2002).

It is no doubt important to take into account the spe-
cies that have the highest dispersal capacity due to the
role they could play in the spread of AMRB. Thus, the
studies reporting AMRB carriage in migratory birds (e.g.
Palmgren et al. 1997; Middleton & Ambrose 2005; Foti
et al. 2011) are of particular interest. Similarly, top preda-
tors generally forage across large distances (Schoener
1968; Gittleman & Harvey 1982). They could represent a
natural reservoir of AMR that could disperse AMRB
over large areas. Such species may be key elements of
AMR dynamics in natural ecosystems. Omnivorous spe-
cies often feed on anthropogenic decay and near human
habitations and farms, meaning that they could represent
a major epidemiological link between domestic animals,
humans and wildlife. Furthermore, small anthropophilic
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Table 2. Studies underlining significant differences in antimicrobial-resistant bacteria (AMRB) carriage across host groups with distinct

diets
Host group Focus bacteria AMRB carriage across groups Reference
Mammals E. coli and Salmonella spp. Omnivorous > herbivorous Dias et al. (2015)
Birds E. coli Carnivorous > omnivorous Guenther et al. (2010)
Mammals Enterococcus spp. Omnivorous > herbivorous Mallon et al. (2002)
Mammals Bacillus spp., Enterococcus spp. Herbivorous > omnivorous Meyer et al. (2014)
and Staphylococcus spp.
Mammals E. coli No difference in prevalence Nhung et al. (2015)
but more multiresistant
strains in carnivorous than
in omnivorous
Birds E. coli Omnivorous > herbivorous Sato et al. (1978)
Birds and mammals E. coli Carnivorous > herbivorous Smith et al. (2014)
Birds E. coli Omnivorous > carnivorous Tausova et al. (2012)

Birds, mammals
and reptiles
Mammals

Salmonella spp.

E. coli

Carnivorous > herbivorous White & Forrester (1979)

Omnivorous > herbivorous Williams et al. (2011)

To analyse the results of the 35 studies providing exploitable data, we used chi-square tests or Fisher’s exact tests when the application
conditions of chi-square test were not met to compare AMRB distribution between the different host groups. In addition to the 10
papers presented above, 25 studies did not highlight any significant difference between the proportions of individuals carrying AMRB
across groups (P > 0-05, Bonferroni correction was applied when several pairwise tests were used to analyse the results of a single

study).

prey species such as rodents could represent a bridge
between human/domestic animals and their predators.

Life-history traits are also key to understanding the role
of species in pathogen dynamics (Johnson et al. 2012) but
they have rarely been taken into account in the study of
AMR in wildlife. Among our reference list, data were too
scarce to lead any analysis focusing on this issue. Yet they
could have an important part to play in shaping the role
of a species in antimicrobial dynamics. For example, a
recent study on two rodent species (bank voles Myo-
des glareolus and wood mice Apodemus sylvaticus) in the
UK showed that different seasonal population dynamics
were associated with different AMRB carriage over time
(Williams et al. 2011).

Concluding remarks

Despite growing evidence showing the presence of AMRB
in numerous wildlife species living in diverse environments
world-wide, studies focusing on this compartment remain
scarce. In this article, we used a systematic review to
underline key information concerning AMRB carriage in
wildlife that can be inferred from the available literature:
e Firstly, the natural habitats that are the most strongly
impacted by human activities are the ones in which the
highest diversity of AMR is observed in bacteria carried
by wildlife, including resistance mechanisms that are of
major concern for human health.

e Secondly, ecological characteristics of species as well as
their life-history traits can serve to infer their potential
role in AMRB epidemiology. Omnivorous, anthropophilic
and carnivorous species seem to be at high risk of being
potential carriers and potentially spreaders of AMRB.

e Thirdly, AMRB exchanges occur between wildlife,
humans and domestic animals but the transmission routes
are difficult to disentangle. Direct contacts, soil and water
seem to be of major importance in the flows involved.

e Finally, when studying AMRB exchanges, it is crucial
that different bacteria may share and
exchange resistance genes through horizontal transfer. It
may be important to consider bacteria that have never
been found to infect humans since the resistance mecha-
nisms they carry could be exchanged with human patho-
gens.

This work highlights both the important progress that
has been made in our understanding of the role played by
wildlife in AMRB dynamics and the wide gaps that
remain in our understanding of the mechanisms involved.

We recommend that a wider diversity of bacteria
should be studied since organisms that are not pathogenic
for humans may still carry and spread relevant resistance
mechanisms that could be acquired by human/domestic
animal pathogenic strains. For instance, while insects may

to consider

become an important protein source within the next dec-
ades, it will be necessary to study the AMRB they may
carry when assessing the health risks potentially associ-
ated with the development of this new resource. The
application of a culture-independent approach, functional
metagenomics, allowed the identification of resistance
genes in the gut of the gypsy moth Lymantria dispar,
which proved that insect guts could be a reservoir of
antibiotic resistance genes with the potential for dissemi-
nation  (Allen eral. 2009). Culture-independent
approaches include PCR-based methods and functional
genomics (see Allen e al. 2010). Such methods should be
developed and used in line with classical culture-based
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approaches since they can bring complementary informa-
tion. Indeed, the results from culture-based methods are
highly variable depending on the culture media used (Gar-
cia-Armisen et al. 2013) and give no access to the resis-
tance genes carried by uncultivable bacteria.

Furthermore, it is important to stress that when trying
to track the fate of AMRB in wildlife, it is essential to
access negative results reporting the absence of particular
resistance mechanisms in some wild species or some kind
of habitats. As illustrated by the low number of articles
that allowed statistical analysis of AMRB across habitats
and species diets, it is essential to give detailed data con-
cerning the species sampled, to describe focus habitats
using comparable indexes such as human density or pro-
portion of different land use and to present results for
each species in each habitat. Such improvements seem
essential to move forward from successive studies that
give information about one particular species in one par-
ticular habitat to comparable data that would allow
broad comparisons and give way to a better understand-
ing of AMRB dynamics in wildlife.

Finally, data concerning AMRB prevalence in develop-
ing countries in wildlife are lacking, while AMR is of
major concern in these regions, notably in South-East
Asia (Jean & Hsueh 2011). More attention should be paid
to this area where the close links existing between wildlife,
domestic animals and humans have proved to promote
the emergence of pathogens (Chen ez al. 2013), including
AMRB (Hasan et al. 2012).

Over the last decade, the One Health approach has
been implemented in the study of most emerging diseases,
and wildlife has been included in their modelling. It recog-
nizes that the health of humans, animals and ecosystems
are interconnected and involves applying a coordinated,
collaborative, = multidisciplinary = and  cross-sectoral
approach to address potential or existing risks that origi-
nate at the animal-human—ecosystems interface. It is
urgent to extend this fruitful approach to the study of the
emergence and spread of AMR. Otherwise, this missing
piece of the puzzle could impair our capacity to limit the
emergence, maintenance and spread of resistance.

Acknowledgements

This work was funded by the MAVA Foundation and by the CNRS
(INEE Ecosan Camargue program n°27943).

Data accessibility

All data used and discussed in this article were previously pub-
lished in the papers listed in Appendix S1.

References

Aarestrup, F.M. (2006) Antimicrobial Resistance in Bacteria of Animal Ori-
gin. ASM Press, Washington, DC.

Allen, H.K., Cloud-Hansen, K.A., Wolinski, J.M., Guan, C., Greene, S.,
Lu, S. er al. (2009) Resident microbiota of the gypsy moth midgut

Antimicrobial resistance in wildlife 527

harbors antibiotic resistance determinants. DNA and Cell Biology, 28,
109-117.

Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J. &
Handelsman, J. (2010) Call of the wild: antibiotic resistance genes in
natural environments. Nature Reviews Microbiology, 8, 251-259.

Allen, S.E., Boerlin, P., Janecko, N., Lumsden, J.S., Barker, [.LK., Pearl,
D.L. et al. (2011) Antimicrobial resistance in generic Escherichia coli
isolates from wild small mammals living in swine farm, residential, land-
fill, and natural environments in southern Ontario, Canada. Applied and
Environmental Microbiology, 77, 882-888.

Andersson, D.I. & Hughes, D. (2010) Antibiotic resistance and its cost: is
it possible to reverse resistance? Nature Reviews Microbiology, 8, 260—
271.

Angulo, F.J., Nargund, V.N. & Chiller, T.C. (2004) Evidence of an associ-
ation between use of anti-microbial agents in food animals and anti-
microbial resistance among bacteria isolated from humans and the
human health consequences of such resistance. Journal of Veterinary
Medicine, Series B, 51, 374-379.

Baker-Austin, C., Wright, M.S., Stepanauskas, R. & McArthur, J.V.
(2006) Co-selection of antibiotic and metal resistance. Trends in Micro-
biology, 14, 176-182.

Burr, S.E., Goldschmidt-Clermont, E., Kuhnert, P. & Frey, J. (2012)
Heterogeneity of Aeromonas populations in wild and farmed perch,
Perca fluviatilis L.: Aeromonas heterogenecity. Journal of Fish Diseases,
35, 607-613.

Buschmann, A.H., Tomova, A., Lépez, A., Maldonado, M.A., Henriquez,
L.A., Ivanova, L. et al. (2012) Salmon Aquaculture and Antimicrobial
Resistance in the Marine Environment. PLoS ONE, 7, e42724.

Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dolz, H., Mil-
lanao, A. et al. (2013) Antimicrobial use in aquaculture re-examined: its
relevance to antimicrobial resistance and to animal and human health.
Environmental microbiology, 15, 1917-1942.

Caleja, C., de Toro, M., Gongalves, A., Themudo, P., Vieira-Pinto, M.,
Monteiro, D. et al. (2011) Antimicrobial resistance and class I integrons
in Salmonella enterica isolates from wild boars and Bisaro pigs. Interna-
tional Microbiology, 14, 19-24.

Cameron, D.R., Howden, B.P. & Peleg, A.Y. (2011) The interface between
antibiotic resistance and virulence in Staphylococcus aureus and its
impact upon clinical outcomes. Clinical Infectious Diseases, 53, 576-582.

Carattoli, A. (2009) Resistance plasmid families in Enterobacteriaceae.
Antimicrobial Agents and Chemotherapy, 53, 2227-2238.

Carattoli, A. (2013) Plasmids and the spread of resistance. International
Journal of Medical Microbiology, 303, 298-304.

Chadwick, S.G., Prasad, A., Smith, W.L., Mordechai, E., Adelson, M.E.
& Gygax, S.E. (2013) Detection of epidemic USA300 community-asso-
ciated methicillin-resistant Staphylococcus aureus strains by use of a sin-
gle allele-specific PCR assay targeting a novel polymorphism of
Staphylococcus aureus pbp3. Journal of Clinical Microbiology, 51, 2541—
2550.

Chen, Y., Liang, W., Yang, S., Wu, N., Gao, H., Sheng, J. et al. (2013)
Human infections with the emerging avian influenza A H7N9 virus
from wet market poultry: clinical analysis and characterisation of viral
genome. The Lancet, 381, 1916-1925.

Cizek, A., Dolejska, M., Karpiskova, R., Dédicovd, D. & Literdk, I.
(2007) Wild black-headed gulls (Larus ridibundus) as an environmental
reservoir of Salmonella strains resistant to antimicrobial drugs. European
Journal of Wildlife Research, 53, 55-60.

Costa, D., Poeta, P., Saenz, Y., Vinue, L., Rojo-Bezares, B., Jouini, A.
et al. (2006) Detection of Escherichia coli harbouring extended-spec-
trum-lactamases of the CTX-M, TEM and SHV classes in faecal sam-
ples of wild animals in Portugal. Journal of Antimicrobial
Chemotherapy, 58, 1311-1312.

Da Silva, G.J. & Mendonga, N. (2012) Association between antimicrobial
resistance and virulence in Escherichia coli. Virulence, 3, 18-28.

Davies, J. & Davies, D. (2010) Origins and evolution of antibiotic resis-
tance. Microbiology and Molecular Biology Reviews, 74, 417-433.

Dhanji, H., Murphy, N.M., Akhigbe, C., Doumith, M., Hope, R., Liver-
more, D.M. et al. (2011) Isolation of fluoroquinolone-resistant O25b:
H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum f-lacta-
mase from UK river water. Journal of Antimicrobial Chemotherapy, 66,
512-516.

Dias, D., Torres, R.T., Kronvall, G., Fonseca, C., Mendo, S. & Caetano,
T. (2015) Assessment of antibiotic resistance of Escherichia coli isolates
and screening of Salmonella spp. in wild ungulates from Portugal.
Research in Microbiology, 166, 584-593.

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology, 53, 519-529



528 M. Vittecoq et al.

Dolejska, M., Bierosovd, B., Kohoutova, L., Literak, I. & Cizek, A.
(2009) Antibiotic-resistant Salmonella and Escherichia coli isolates with
integrons and extended-spectrum beta-lactamases in surface water and
sympatric black-headed gulls. Journal of applied microbiology, 106,
1941-1950.

Filali, B.K., Taoufik, J., Zeroual, Y., Dzairi, F.Z., Talbi, M. & Blaghen,
M. (2000) Waste water bacterial isolates resistant to heavy metals and
antibiotics. Current Microbiology, 41, 151-156.

Foti, M., Rinaldo, D., Guercio, A., Giacopello, C., Aleo, A., De Leo, F.
et al. (2011) Pathogenic microorganisms carried by migratory birds
passing through the territory of the island of Ustica, Sicily (Italy). Avian
Pathology, 40, 405-409.

Galvin, S., Boyle, F., Hickey, P., Vellinga, A., Morris, D. & Cormican,
M. (2010) Enumeration and characterization of antimicrobial-resistant
Escherichia coli bacteria in effluent from municipal, hospital, and sec-
ondary treatment facility sources. Applied and Environmental Microbiol-
ogy, 76, 4772-4779.

Garcia-Armisen, T., Anzil, A., Cornelis, P., Chevreuil, M. & Servais, P.
(2013) Identification of antimicrobial resistant bacteria in rivers: insights
into the cultivation bias. Water Research, 47, 4938-4947.

Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M. & Zhu,
Y.-G. (2015) Using the class | integron-integrase gene as a proxy for
anthropogenic pollution. The ISME Journal, 9, 1269-1279.

Gittleman, J.L. & Harvey, P.H. (1982) Carnivore home-range size, meta-
bolic needs and ecology. Behavioral Ecology and Sociobiology, 10, 57—
63.

Gongalves, A., Igrejas, G., Radhouani, H., Correia, S., Pacheco, R., San-
tos, T. et al. (2013) Antimicrobial resistance in faecal enterococci and
Escherichia coli isolates recovered from Iberian wolf. Letters in Applied
Microbiology, 56, 268-274.

Gonzilez, C.-J., Lépez-Diaz, T.-M., Garcia-Lépez, M.-L., Pricto, M. &
Otero, A. (1999) Bacterial microflora of wild brown trout
(Salmo trutta), wild pike (Esox lucius), and aquacultured rainbow trout
(Oncorhynchus mykiss). Journal of Food Protection, 62, 1270-1277.

Goodwin, K.D., McNay, M., Cao, Y., Ebentier, D., Madison, M. & Grif-
fith, J.F. (2012) A multi-beach study of Staphylococcus aureus, MRSA,
and enterococci in seawater and beach sand. Water research, 46, 4195—
4207.

Guenther, S., Ewers, C. & Wieler, L.H. (2011) Extended-spectrum beta-
lactamases producing E. coli in wildlife, yet another form of environ-
mental pollution? Frontiers in Microbiology, 2, 246.

Guenther, S., Grobbel, M., Liibke-Becker, A., Goedecke, A., Friedrich,
N.D., Wieler, L.H. e al. (2010) Antimicrobial resistance profiles of
Escherichia coli from common European wild bird species. Veterinary
Microbiology, 144, 219-225.

Guerra, B., Fischer, J. & Helmuth, R. (2014) An emerging public health
problem: acquired carbapenemase-producing microorganisms are pre-
sent in food-producing animals, their environment, companion animals
and wild birds. Veterinary microbiology, 171, 290-297.

Hamelin, K., Bruant, G., El-Shaarawi, A., Hill, S., Edge, T.A., Bekal, S.
et al. (2006) A virulence and antimicrobial resistance DNA microarray
detects a high frequency of virulence genes in Escherichia coli isolates
from great lakes recreational waters. Applied and Environmental Micro-
biology, 72, 4200-4206.

Hasan, B., Sandegren, L., Melhus, A., Drobni, M., Hernandez, J.,
Waldenstrom, J. et al. (2012) Antimicrobial drug-resistant escherichia
coli in wild birds and free-range poultry, Bangladesh. Emerging Infec-
tious Diseases, 18, 2055-2058.

Heuer, H., Schmitt, H. & Smalla, K. (2011) Antibiotic resistance gene
spread due to manure application on agricultural fields. Current Opinion
in Microbiology, 14, 236-243.

Jean, S.-S. & Hsueh, P.-R. (2011) High burden of antimicrobial resistance
in Asia. International Journal of Antimicrobial Agents, 37, 291-295.

Johnson, P.T.J., Rohr, J.R., Hoverman, J.T., Kellermanns, E., Bowerman,
J. & Lunde, K.B. (2012) Living fast and dying of infection: host life his-
tory drives interspecific variation in infection and disease risk. Ecology
Letters, 15, 235-242.

Keen, P.L. & Montforts, M.H.M.M. (2012) Antimicrobial Resistance in the
Environment. Wiley-Blackwell, Hoboken, NJ.

Kriston, L. (2013) Dealing with clinical heterogeneity in meta-analysis.
Assumptions, methods, interpretation. International Journal of Methods
in Psychiatric Research, 22, 1-15.

Lee, H.Y., Stephen, A., Sushela, D. & Mala, M. (2008) Detection of pro-
tozoan and bacterial pathogens of public health importance in faeces of
Corvus spp. (large-billed crow). Tropical Biomedicine, 25, 134—139.

Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R.,
Bircher, J.S. er al. (2008) Evolution of mammals and their gut microbes.
Science, 320, 1647-1651.

Literak, I., Dolejska, M., Radimersky, T., Klimes, J., Friedman, M., Aare-
strup, F.M. et al. (2010) Antimicrobial-resistant faecal Escherichia coli
in wild mammals in central Europe: multiresistant Escherichia coli pro-
ducing extended-spectrum beta-lactamases in wild boars. Journal of
applied microbiology, 108, 1702-1711.

Luo, N., Pereira, S., Sahin, O., Lin, J., Huang, S., Michel, L. er al. (2005)
Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter je-
Jjuni in the absence of antibiotic selection pressure. Proceedings of the
National Academy of Sciences of the United States of America, 102, 541—
546.

Mallon, D.J.P., Corkill, J.E., Hazel, S.M., Wilson, J.S., French, N.P., Ben-
nett, M. et al. (2002) Excretion of vancomycin-resistant enterococci by
wild mammals. Emerging Infectious Diseases, 8, 636-638.

Martinez, J.L. (2009) Environmental pollution by antibiotics and by
antibiotic resistance determinants. Environmental Pollution, 157, 2893—
2902.

Martinez-Urtaza, J., Liebana, E., Garcia-Migura, L., Perez-Pineiro, P. &
Saco, M. (2004) Characterization of Salmonella enterica serovar Typhi-
murium from marine environments in coastal waters of Galicia (Spain).
Applied and environmental microbiology, 70, 4030-4034.

Martiny, A.C., Martiny, J.B.H., Weihe, C., Field, A. & Ellis, J. (2011)
Frontiers: functional metagenomics reveals previously unrecognized
diversity of antibiotic resistance genes in gulls. Frontiers in Antimicro-
bials, Resistance and Chemotherapy, 2, 238.

Melsen, W.G., Bootsma, M.C.J., Rovers, M.M. & Bonten, J.M. (2014)
The effects of clinical and statistical heterogeneity on the predictive val-
ues of results from meta-analyses. Clinical Microbiology and Infection,
20, 123-129.

Meyer, C., Heurich, M., Huber, I., Krause, G., Ullrich, U. & Fetsch, A.
(2014) The importance of wildlife as reservoir of antibiotic-resistant bac-
teria in Bavaria — first results. Berliner Und Miinchener Tierdrztliche
Wochenschrift, 127, 129-134.

Middleton, J.H. & Ambrose, A. (2005) Enumeration and antibiotic resis-
tance patterns of fecal indicator organisms isolated from migratory
Canada geese (Branta canadensis). Journal of Wildlife Diseases, 41, 334—
341.

Miller, R.V., Gammon, K. & Day, M.J. (2009) Antibiotic resistance
among bacteria isolated from seawater and penguin fecal samples col-
lected near Palmer Station, Antarctica. This article is one of a selection
of papers in the Special Issue on Polar and Alpine Microbiology. Cana-
dian Journal of Microbiology, 55, 37-45.

Monecke, S., Gavier-Widen, D., Mattsson, R., Rangstrup-Christensen,
L., Lazaris, A., Coleman, D.C. e al. (2013) Detection of mecC-
positive Staphylococcus aureus (CC130-MRSA-XI) in diseased Euro-
pean hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE, 8,
€66166.

Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., Gonzidlez, A.,
Fontana, L. er al. (2011) Diet drives convergence in gut microbiome
functions across mammalian phylogeny and within humans. Science,
332, 970-974.

Murray, B.E. (1991) New aspects of antimicrobial resistance and the
resulting therapeutic dilemmas. Journal of Infectious Diseases, 163,
1185-1194.

Murray, C.G. & Hamilton, A.J. (2010) Review: perspectives on wastewater
treatment wetlands and waterbird conservation. Journal of Applied Ecol-
ogy, 47, 976-985.

Navarro-Gonzalez, N., Mentaberre, G., Porrero, C.M., Serrano, E.,
Mateos, A., Lopez-Martin, J.M. et al. (2012) Effect of cattle on salmo-
nella carriage, diversity and antimicrobial resistance in free-ranging wild
boar (Sus scrofa) in northeastern Spain. PLoS ONE, 7, e51614.

Navarro-Gonzalez, N., Casas-Diaz, E., Porrero, C.M., Mateos, A.,
Dominguez, L., Lavin, S. et al. (2013) Food-borne zoonotic pathogens
and antimicrobial resistance of indicator bacteria in urban wild boars in
Barcelona, Spain. Veterinary Microbiology, 167, 686—689.

Nhung, N.T., Cuong, N.V., Campbell, J., Hoa, N.T., Bryant, J.E., Truc,
V.N.T. et al. (2015) High levels of antimicrobial resistance among
Escherichia coli isolates from livestock farms and synanthropic rats and
shrews in the Mekong Delta of Vietnam. Applied and Environmental
Microbiology, 81, 812-820.

Overdevest, I. (2011) Extended-spectrum B-lactamase genes of Escherichia
coli in chicken meat and humans, the Netherlands. Emerging Infectious
Diseases, 17, 1216-1222.

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology, 53, 519-529



Palmgren, H., Sellin, M., Bergstrom, S. & Olsen, B. (1997) Enteropatho-
genic bacteria in migrating birds arriving in Sweden. Scandinavian Jour-
nal of Infectious Diseases, 29, 565-568.

Paterson, G.K., Larsen, A.R., Robb, A., Edwards, G.E., Pennycott, T.W.,
Foster, G. et al. (2012) The newly described mecA homologue,
mecALGA251, is present in methicillin-resistant Staphylococcus aureus
isolates from a diverse range of host species. Journal of Antimicrobial
Chemotherapy, 67, 2809-2813.

Poeta, P., Radhouani, H., Igrejas, G., Gongalves, A., Carvalho, C., Rodri-
gues, J. et al. (2008) Seagulls of the Berlengas natural reserve of Portu-
gal as carriers of fecal Escherichia coli harboring CTX-M and TEM
extended-spectrum beta-lactamases. Applied and environmental microbiol-
ogy, 74, 7439-7441.

Pruden, A., Arabi, M. & Storteboom, H.N. (2012) Correlation between
upstream human activities and riverine antibiotic resistance genes. Envi-
ronmental Science & Technology, 46, 11541-11549.

Pruden, A., Pei, R., Storteboom, H. & Carlson, K.H. (2006) Antibiotic
resistance genes as emerging contaminants: studies in northern Color-
ado. Environmental Science & Technology, 40, 7445-7450.

Pruden, A., Larsson, D.J., Amézquita, A., Collignon, P., Brandt, K.K.,
Graham, D.W. er al. (2013) Management options for reducing the
release of antibiotics and antibiotic resistance genes to the environment.
Environmental Health Perspectives, 121, 878-885.

Radhouani, H., Poeta, P., Goncalves, A., Pacheco, R., Sargo, R. & Igre-
jas, G. (2012) Wild birds as biological indicators of environmental pol-
lution: antimicrobial resistance patterns of Escherichia coli and

enterococci isolated from common buzzards (Buteo buteo). Journal of

Medical Microbiology, 61, 837-843.

Radhouani, H., Silva, N., Poeta, P., Torres, C., Correia, S. & Igrejas, G.
(2014) Potential impact of antimicrobial resistance in wildlife, environ-
ment and human health. Frontiers in Microbiology, 5, 23.

Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C.
et al. (2013) Urban wastewater treatment plants as hotspots for antibi-
otic resistant bacteria and genes spread into the environment: a review.
Science of The Total Environment, 447, 345-360.

Ruffini, E., Pace, F., Carlucci, M., De Conciliis, E., Staffolani, P. & Car-
lucci, A. (2008) Urinary tract infection caused by Kluyvera ascorbata in
a child: case report and review of the kluyvera infections in children.
Minerva Pediatrica, 60, 1451-1454.

Sato, G., Oka, C., Asagi, M. & Ishiguro, N. (1978) Detection of conjuga-
tive R plasmids conferring chloramphenicol resistance in Escherichia coli
isolated from domestic and feral pigeons and crows. Zentralblatt Fiir
Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene. Erste
Abteilung Originale. Reihe A: Medizinische Mikrobiologie Und Para-
sitologie, 241, 407-417.

Schaefer, A.M., Goldstein, J.D., Reif, J.S., Fair, P.A. & Bossart, G.D.
(2009) Antibiotic-resistant organisms cultured from atlantic bottlenose
dolphins (Tursiops truncatus) inhabiting estuarine waters of Charleston,
SC and Indian River Lagoon, FL. EcoHealth, 6, 33-41.

Schoener, T.W. (1968) Sizes of feeding territories among birds. Ecology,
49, 123-141.

Silva, N., Igrejas, G., Rodrigues, P., Rodrigues, T., Gongalves, A., Felgar,
A.C. et al. (2011) Molecular characterization of vancomycin-resistant
enterococci and extended-spectrum beta-lactamase-containing
Escherichia coli isolates in wild birds from the Azores Archipelago.
Avian Pathology, 40, 473-479.

Singer, R.S., Ward, M.P. & Maldonado, G. (2006) Can landscape ecology
untangle the complexity of antibiotic resistance? Nature Reviews Micro-
biology, 4, 943-952.

Smith, S., Wang, J., Fanning, S. & McMahon, B.J. (2014) Antimicrobial
resistant bacteria in wild mammals and birds: a coincidence or cause for
concern? Irish Veterinary Journal, 67, 8.

Antimicrobial resistance in wildlife 529

Soonthornchaikul, N. & Garelick, H. (2009) Antimicrobial resistance of
Campylobacter species Isolated from edible bivalve molluscs purchased
from Bangkok markets, Thailand. Foodborne Pathogens and Disease, 6,
947-951.

Sousa, M., Gongalves, A., Silva, N., Serra, R., Alcaide, E., Zorrilla, I.
et al. (2014) Acquired antibiotic resistance among wild animals: the case
of Iberian Lynx (Lynx pardinus). Veterinary Quarterly, 34, 105-112.

Spera, R.V. Jr & Farber, B.F. (1994) Multidrug-resistant Enterococcus fae-
cium. Drugs, 48, 678—688.

Stewart, S.J. (1996) Tularemia: association with hunting and farming.
FEMS Immunology and Medical Microbiology, 13, 197-199.

Tausova, D., Dolejska, M., Cizek, A., Hanusova, L., Hrusakova, J., Svo-
boda, O. et al. (2012) Escherichia coli with extended-spectrum-lactamase
and plasmid-mediated quinolone resistance genes in great cormorants
and mallards in Central Europe. Journal of Antimicrobial Chemotherapy,
67, 1103-1107.

Taylor, N.G.H., Verner-Jeffreys, D.W. & Baker-Austin, C. (2011) Aquatic
systems: maintaining, mixing and mobilising antimicrobial resistance?
Trends in Ecology & Evolution, 26, 278-284.

Teale, C.J (2002) Antimicrobial resistance and the food chain. Journal of
Applied Microbiology, 92, 855-89S.

Tenover, F.C. (2006) Mechanisms of antimicrobial resistance in bacteria.
The American Journal of Medicine, 119, S3-S10.

Van den Bogaard, A.E., Willems, R., London, N., Top, J. & Stobberingh,
E.E. (2002) Antibiotic resistance of faecal enterococci in poultry, poul-
try farmers and poultry slaughterers. Journal of Antimicrobial Che-
motherapy, 49, 497-505.

Wallace, C.C., Yund, P.O., Ford, T.E., Matassa, K.A. & Bass, A.L.
(2013) Increase in antimicrobial resistance in bacteria isolated from
stranded marine mammals of the Northwest Atlantic. EcoHealth, 10,
201-210.

Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., Gaze, W.H., Hawkey,
P.M. et al. (2013) The role of the natural environment in the emergence
of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious
Diseases, 13, 155-165.

White, F.H. & Forrester, D.J. (1979) Antimicrobial resistant Sal-
monella spp. isolated from double-crested cormorants (Phalacroco-
rax auritus) and common loons (Gavia immer) in Florida. Journal of
Wildlife Diseases, 15, 235-237.

WHO (2014) Antimicrobial resistance: global report on surveillance 2014.
Accessed on June 19, 2015. Available at: http://www.who.int/drugresis-
tance/documents/surveillancereport/en/

Williams, N.J., Sherlock, C., Jones, T.R., Clough, H.E., Telfer, S.E.,
Begon, M. ef al. (2011) The prevalence of antimicrobial-resistant
Escherichia coli in sympatric wild rodents varies by season and host.
Journal of Applied Microbiology, 110, 962-970.

Zhao, J. & Dang, H. (2012) Coastal seawater bacteria harbor a large reser-
voir of plasmid-mediated quinolone resistance determinants in Jiaozhou
Bay, China. Microbial Ecology, 64, 187-199.

Received 29 June 2015, accepted 3 December 2015
Handling Editor: Hamish McCallum
Supporting Information

Additional Supporting Information may be found in the online version
of this article.

Appendix S1. Complete list of the 210 articles gathered through
systematic search.

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology, 53, 519-529



Chapitre 11

Forte prévalence de la céphalosporinase CMY-2 portée
par des éléments intégratifs et conjugatifs SXT/R391-like
chez des souches aviaires de Proteus mirabilis du sud de la

France
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Préambule

L’acquisition et 1’hyperproduction de céphalosporinases de type AmpC constitue aujourd’hui une
cause non négligeable d'émergence et de diffusion de résistance aux céphalosporines de troisieéme
génération (C3G) en particulier chez les FEnterobacteriaceae. Les génes ampC codant ces
céphalosporinases sont naturellement retrouvés sur le chromosome des entérobactéries dites du
groupe 3. Mais depuis quelques années on observe 1’émergence de 'acquisition de génes ampC chez
des espéces d'entérobactéries qui jusqu'alors en étaient naturellement dépourvues. La mobilisation des
genes ampC naturellement présents dans le chromosome de certaines bactéries a été rendue possible
grice a des éléments génétiques mobiles, comme les plasmides ou les éléments intégratifs et
conjugatifs (ICEs). Ce phénoméne est particuliérement préoccupant pour l'espéce Proteus mirabilis,
qui est un pathogéne fréquemment retrouvé en clinique humaine. L'intégration de ces génes dans le
chromosome des bactéries réceptrices permet d'acquérir et de pérenniser a long terme cette résistance

au sein de l'espéce par transmission verticale.

Si de plus en plus d’études rapportent la présence de ces céphalosporinases chez des souches cliniques,
il y a cependant peu de données disponibles sur 1'existence potentielle d'écosystémes animaux qui

constitueraient des réservoirs primaires ou secondaires d’entérobactéries productrices de ces enzymes.

Dans I’article suivant nous décrivons la présence de P. mirabilis producteurs d'AmpC acquises au sein

du microbiote des deux especes de goélands étudiées.

Ces isolats aviaires de P. mirabilis producteurs d’AmpC étaient tous porteurs du geéne blacyy.,. Le
support génétique a été identifié comme étant un ICE de la famille SXT/R391-like dans toutes les
souches aviaires. Ce support a été retrouvé chez trois souches humaines isolées dans la méme région et
durant la méme période d’étude. Nous avons comparé les différents isolats par rep-PCR. Deux isolats

cliniques avaient le méme fond génétique que neuf isolats aviaires des deux espéces d’oiseaux.

Nous avons ainsi décrit pour la premicre fois dans un microbiote aviaire 1’existence de souches de P.
mirabilis productrices de céphalosporinases de type CMY-2 dont le géne est situé sur un ICE de la

famille SXT/R391-like.
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The genetic structures involved in the dissemination of blacyy., carried by Proteus mirabilis isolates recovered from different
gull species in the South of France were characterized and compared to clinical isolates. blac,,y_, was identified in P. mirabilis
isolates from 27/93 yellow-legged gulls and from 37/65 slender-billed gulls. It was carried by a conjugative SXT/R391-like inte-
grative and conjugative element (ICE) in all avian strains and in 3/7 human strains. Two clinical isolates had the same genetic

background as six avian isolates.

MY-2 and its derivatives are the most widespread plasmid-

mediated cephalosporinases (AmpC) in Proteus mirabilis (1,
2), and they are mainly found in plasmids from incompatibility
(Inc) groups A/C and I1 (1, 3). blacy,y., mobilization by an inte-
grative and conjugative element (ICE) in P. mirabilis was de-
scribed recently in Japan and Spain (4, 5). Several studies focused
on the characterization of AmpC-producing P. mirabilis isolates
from food-producing animals and pets (6—8). Migratory birds can
actas reservoirs and play an important role in the dissemination of
these resistance genes (9). This study investigated the occurrence
and the molecular structures supporting the spread of blacy,y_, in
P. mirabilis isolates from different gull species in the South of
France. Human isolates from the same geographical region were
used for comparison.

(Preliminary results of this research were presented at the 34th
Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse
[RICAI], Paris, France, 27 to 28 November 2014.)

In April 2012, fecal samples were collected from 93 juvenile
nonfledged yellow-legged gulls (Larus michahellis) and from 65
slender-billed gulls (Chroicocephalus genei) breeding in the island
of Carteau in Port-Saint-Louis and in the Giens peninsula
(France), respectively. A cotton swab was rotated inside the bird
cloacae and was immediately inoculated in tryptic soy broth
(Thermo Fisher Scientific). After a 24-h incubation at 37°C,
broths were subcultured on chromID ESBL agar biplates (bio-
Mérieux, Marcy I’Etoile, France) and were examined after 24 and
48 h. P. mirabilis was identified by matrix-assisted laser desorption
ionization—time of flight mass spectrometry (Bruker Daltonics,
Bremen, Germany). Susceptibility to amoxicillin, cefalotin, ce-
foxitin, cefotaxime, ceftazidime, cefepime, and imipenem was
tested using the disk diffusion method on Mueller-Hinton agar
and was interpreted following the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) clinical breakpoints

1148 aac.asm.org

Antimicrobial Agents and Chemotherapy

(version 5.0) (http://www.eucast.org/clinical_breakpoints/). The
criteria used to select suspected AmpC producers were described
previously (1). Extended-spectrum beta-lactamase (ESBL) pro-
duction was excluded using the double-disc synergy test (10).
Seven P. mirabilis human clinical isolates with AmpC phenotypes
collected in 2012 in the same geographical region were used for
comparison. Strain typing was performed by repetitive sequence-
based PCR (rep-PCR) using the DiversiLab system (bioMérieux,
France) as described previously (11).

The presence of genes encoding AmpC was assessed by multi-
plex PCR as previously described (12). Plasmids were typed using
the PCR-based replicon-typing method (PBRT) (13) and the plas-
mid relaxase gene-typing method (PRaseT) (14). Primers target-
ing the highly conserved relaxase gene of the ICE belonging to the
SXT/R391 family were designed as previously described (14). ICE
integration at the 5" end of the chromosomal prfC gene was inves-
tigated using primers to amplify the ORF_96 gene at the ICE 3’
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blacyyo-Carrying ICEs in Proteus mirabilis from Gulls

extremity, degenerate primers to cover P. mirabilis and Escherichia
coli prfC gene sequences, and primers that amplify both regions
(overlapping PCR) (4, 5) (see Table S1 in the supplemental mate-
rial). E. coli J53 was used as a negative control. All PCR products
were sequenced bidirectionally using the BigDye Terminator v3.1
cycle sequencing kit (Applied Biosystems, Foster City, CA, USA)
and an Applied Biosystems 3730xl capillary sequencer. Sequences
were identified using the BLAST program and the NCBI database.
Mating experiments were performed at 37°C using P. mirabilis
and azide-resistant Escherichia coli J53 strains with a donor to
recipient ratio of 1:1. Transconjugants were selected on Drigalski
agar (Bio-Rad) containing 200 mg/liter sodium azide and 20 mg/
liter cefoxitin. To investigate the possible chromosomal location
of blacyy.,, I-Ceul-restricted DNA from selected strains and
transconjugants was separated by pulsed-field gel electrophoresis
(PFGE). Pulse ramps were 90 to 150 s for 24 h and 90 to 120 s for
6hat 170 V. Southern blotting and hybridization using a blacyy_»
probe and a probe for the highly specific integrase of the SXT/
R391-like ICE were carried out as previously described (15, 16).

AmpC enzymes were produced by 29% (27/93) of P. mirabilis
isolates from yellow-legged gulls and by 56.9% (37/65) of isolates
from slender-billed gulls. PCR analysis and sequencing showed
thatall 71 AmpC-producing P. mirabilis isolates (i.e., 64 avian and
7 human isolates) carried the blacyy., gene.

Eleven clusters (named A to K) were recognized using rep-PCR
(Fig. 1). Ten clusters contained exclusively avian isolates. Five
clusters included only yellow-legged gull isolates (clusters A, B, C,
D, and G), two clusters were comprised only of slender-billed gull
isolates (clusters J and K), and three clusters included isolates
from both species (clusters E, F, and I). Cluster H was comprised
of two human and six avian P. mirabilis isolates.

In all avian isolates, PRaseT revealed the presence of an IncJ
relaxase gene specific to the SXT/R391-like ICE family (17), while
PBRT was negative. In the seven human isolates, the SXT/R391-
like ICE (three strains), an IncA/C plasmid (two strains), or both
elements (two strains) were detected. Mating experiments were
performed using one randomly chosen P. mirabilis isolate for each
clone defined by rep-PCR and all singletons. For cluster H, which
includes human and avian isolates, one avian and the two human
strains were chosen. The blacy,y., gene was successfully trans-
ferred to E. coli (average transfer frequency, 10~ transconjugants/
recipient). The blacyy_, and the Inc] relaxase genes were detected
in all recipient cells, except for the two clinical isolates that carried
only the IncA/C plasmid and the two human isolates with the
IncA/C plasmid and the SXT/R391-like ICE in which only the
IncA/C plasmid was detected, suggesting that it carried the resis-
tance gene. PCR mapping of the blacy,y_,-containing region re-
vealed a genetic structure similar to the one described by Harada et
al. (4), which included a highly specific SXT/R391-like integrase,
the Inc]J relaxase, and a TnI0 composite transposon that carried
the blacyy., gene integrated in the ICE (see Fig. S1 in the supple-
mental material).

blacyy., chromosomal localization was demonstrated by
Southern blotting in the avian strain YL11 and the human strain
H3 and the corresponding transconjugants but not in the human
strains H4 and H7 (Table 1). Hybridization using the ICE-specific
probe revealed the presence of the ICE in strains YL11, H3, and H4
and in the transconjugants for strains YL11 and H3 (data not
shown). ICE and blacy,y., colocalization on the same ~565-kb
I-Ceul fragment was observed in the strains YL11 and H3.

aacasm.org 1149

1senb Aq 910z ‘| Adenuge4 uo /610" wse oee//:diy woly papeojumo



fio'wisedee QGLL

Adesayioway) pue syuaby |elqosdiwnuy

¢ JaquinN 09 dWN|OA 910C Menjqaj

TABLE 1 Antibiotic susceptibility testing of Proteus mirabilis isolates”

Selected strains

on which
rep-PCR Genetic support of No. Ii;)c?ttt}ilrzrivas ftj;eigti Antibiotic resistance profile (inhibition zone diam, mm®)
Isolate type cluster blacyy-» isolates  performed” transconjugant®  AMX CTX CF FEP FOX CAZ IPM
Avian A SXT/R391-like ICE 2 P R (6) S (23) R(6) S(29-30) R (17) 1(19-21) S (28-30)
T R (6) R (13) R (6) S (30) R (6) R(9) S(32)
B SXT/R391-like ICE 2 P R (6) 1(19) R (6) S (24-27) R (14-17) 1(19-20) S (25-27)
T R (6) R (10) R (6) S(33) R (6) R (6) S (30)
C SXT/R391-like ICE 3 P R (6) S (23-26) R (6) S (27-34) S (19-21) 1(19-21) S (25-28)
T R (6) R (10) R (6) S (32) R (6) R (6) S (30)
D SXT/R391-like ICE 2 YL11 P R (6) S (23-26) R (6) S (29-34) R (17-18) 1(20-21) S (26)
T R(6) R(11) R (6) S (32) R (6) R (6) S (31)
E SXT/R391-like ICE 2 P R(6-12)  S(23-26) R(6) S(26-39) R (18) S/I(19-27) S (24-29)
T R (6) R (16) R (6) S (34) R (8) R (12) S (30)
F SXT/R391-like ICE 5 P R (6) S/1(19-26) R (6) S (27-34) R (15-18) S/1(19-24) S (25-29)
T R (6) R (8) R (6) S(33) R (6) R (6) S(32)
G SXT/R391-like ICE 5 P R (6) S/1(19-25) R (6) S (25-33) R (10-18) S/1(19-27) S (27-30)
T R (6) R (6) R (6) S (32) R (6) R (6) S (30)
H SXT/R391-like ICE 6 P R (6-7) S (23-28) R (6) S (28-39) R (13-18) S/1(19-30) S (26-33)
T R (6) R (15) R (6) S (34) R(9) R (10) S (32)
I SXT/R391-like ICE 24 P R(6-10)  S(23-32) R(6) S(29-41) R (8-18) S/I(19-31) S (24-31)
T R (6) R(9) R (6) S(37) R (6) R (8) S(29)
] SXT/R391-like ICE 4 P R (6-8) S (25-32) R (6) S (32-41) R (18) S/1(21-32) S (24-31)
T R (6) R (6) R (6) S (34) R (6) R (6) S (30)
K SXT/R391-like ICE 2 P R (6) S (28-30) R (6) S (34-39) RI (18) S (28-29) S (30-31)
T R (6) R (9) R (6) S (33) R (6) R (10) S (32)
Singletons SXT/R391-like ICE 7 P R (6) S/R (16-29) R (6) S (27-37) S/R (18-19) S/1(19-27) S (23-29)
T R (6) R (11-15) R (6) S (33-38) R (6-8) R (11-17) S (31-33)
Human clinical H IncA/C plasmid® 1 H4 P R (6) S(25) R (6) S(27) R (18) 1(20) S (25)
T R (6) R (6) R (6) S (33) R (6) R (6) S(31)
SXT/R391-like ICE 1 H3 P R (6) S (23) R (6) S (32) R (15) 1(20) S (25)
T R (6) R (8) R (6) S (34) R (6) R(7) S(32)
Singletons SXT/R391-like ICE 2 P R (6) S/1(19-23) R (6) S (25-35) R (17-18) 1(19-21) S (22-26)
T R (6) R (9-11) R (6) S (28-33) R (6) R (6-13) S (29-32)
Singleton IncA/C plasmid® 1 P R (6) 1(19) R (6) S(25) R(17) 1(19) S(23)
T R (6) R(12) R (6) S (38) R (6) R(8) S (32)
Singleton IncA/C plasmid 2 H7 P R (6) S (21-23) R (6) S (34-37) R (18) 1(20) S (27-30)
T R (6) R (15-16) R (6) S (32-35) R (6) R (6-10) S (33)

“ Antibiotic susceptibility testing was performed and interpreted according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints (version 5.0) (http://www.eucast.org/clinical_breakpoints/). Mating
experiments were performed using one randomly chosen representative P. mirabilis isolate for each clone defined by rep-PCR and all singletons.

b Southern blotting with blacyy., and ICE-specific integrase probes was performed after PEGE following DNA macrorestriction using the intronic endonuclease I-Ceul.

¢ P, parental strain; T, transconjugant.

4 The range of the inhibition zone diameter for clustered isolates is indicated. AMX, amoxicillin; CF, cefalotin; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; IPM, imipenem; R, resistant; S, susceptible; I,

intermediate.

¢ One strain also harbored a SXT/R391-like ICE that did not carry blacyy_,-
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(A) ICEPmiJpnl, partial sequence (AB525688)
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(B) Isolates carrying a blayy ,-positive SXT/R391-like ICE
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FIG 2 Genetic organization of the SXT/R391-like ICE carrying blacyy., in P. mirabilis. The same molecular structure was observed in all 64 blacy,y_,-positive
avian strains and in 3/7 (42.9%) human strains. This structure was similar to that of ICEPmiJpn1 (GenBank accession no. AB525688). Light gray arrows represent
the conserved genes of the ICE. Dark gray arrows represent genes carried by the Tn10 composite transposon. Black arrows represent the blacyy_, gene. Thin black
lines represent the different primers used to explore this region. (A) Partial sequence of ICEPmiJpnl used as a template for PCR mapping. (B) Schematic

representation of the regions amplified and sequenced in this study.

Positive overlapping PCR amplification demonstrated that the
ICE was integrated in the chromosome of each P. mirabilis isolate
and the corresponding transconjugant. These data suggest that the
ICE is involved in blacy,y_, dissemination in all avian and in three
human isolates. PCR analysis of ICE insertion sites in randomly
chosen isolates for each clone of our collection and of their respec-
tive transconjugants gave the same result. As expected, (i) ORF_96
was present in P. mirabilis and its transconjugant but was absent in
E. coli J53, (ii) prfC was present in P. mirabilis and E. coli J53 but
could not be amplified in the transconjugant (due to disruption
caused by the ICE insertion), and (iii) the overlapping PCR cov-
ering the ORF_96 and prfC genes was positive in P. mirabilis and
its transconjugant but negative in E. coli J53. This confirmed the
insertion of the blayy_,-carrying ICE at the 5’ end of prfC.

P. mirabilis isolates carrying blacy.y_, were described in dogs
(6), cats (18), and chickens (19). Mata et al. recently highlighted
the increasing prevalence of blacy,y_,-carrying SXT/R391-like
ICEs in P. mirabilis human isolates in Spain between 1999 and
2007 (5). In their study, the blacyy., genetic environment was
similar to the one observed in our avian P. mirabilis isolates. A
similar structure was described in the ICEPmiJpn1 element recov-
ered from a P. mirabilis clinical isolate in Japan in 2006 (Fig. 2).
Our study is the first description of such a structure in P. mirabilis
isolates in France and tends to confirm the hypothesis about the
role of ICEs in blacyy., dissemination worldwide (5). The finding
that the ICE was the exclusive genetic support of the resistance
gene in all avian isolates, which were classified in different clusters,
suggests that it may play an important role in the spread of anti-
biotic resistance genes among these birds and in marine ecosys-
tems. Although the biotic/abiotic reservoirs of resistant strains of
P. mirabilis continue to be poorly known, the presence of similar
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clones in avian and human isolates in our study may suggest ex-
changes between different ecosystems (wildlife versus human).
Moreover, P. mirabilis has already been described as a shuttle spe-
cies between human and animal guts and water bodies (20).

As ICEs from the SXT/R391-like family are widespread in en-
vironmental strains of Proteus spp., Vibrio spp., Photobacterium
spp.» and Shewanella spp. (21), the insertion of beta-lactam resis-
tance genes in this structure is worrying and should be monitored.
Further studies are needed to assess the presence of beta-lactam-
resistant ICE-positive strains (P. mirabilis and other clinically rel-
evant bacteria) in the environment and in wildlife microbiota.
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Chapitre 111

Persistance de souches de P. mirabilis porteuses du géne
blacyy sur un élément intégratif et conjugatif SXT/R391-

like au sein de goélands du sud de la France

17



Préambule

Les entérobactéries résistantes aux B-lactamines ont été décrites dans le tube digestif des oiseaux
sauvages dans plusieurs pays a travers le monde, y compris les régions les plus reculées. Cependant, la
plupart des études sont transversales ou de prévalence, qui décrivent le portage de bactéries a Gram-
négatif antibiorésistantes & un moment précis. La plupart des études longitudinales portant sur la
persistance des génes codant des BLSE ou des AmpC chez 1'animal ont été menées chez les animaux
d’élevage et producteurs de denrées alimentaires. A notre connaissance, il n'y a eu que peu d'études

longitudinales portant sur des bactéries a Gram négatif multirésistantes chez les oiseaux sauvages.

L’étude suivante, dont 1’échantillonnage a été effectué en 2013, est un suivi de celle de 2012 dans
laquelle nous avons décrit une prévalence élevée de Proteus mirabilis producteurs de CMY-2 chez les
deux especes de goélands étudiées. Comme le géne blacyy., était situé dans un ICE de la famille
SXT/R391-like, une structure génétique qui n'avait été décrite jusqu’alors qu’au Japon et en Espagne,
nous avons étudi¢ la persistance et la stabilité de ce déterminant de résistance chez ces deux especes de

goélands a un an d’intervalle.

Nous avons isolé des souches de P. mirabilis résistantes aux C3G lors de la compagne de 2013. Tous
les isolats étaient porteurs du géne blacmy-, situé sur un ICE de la famille SXT/R391-like. La présence
de ce géne de résistance sur ce méme support génétique a un an d’intervalle chez les mémes colonies
de goélands témoigne de sa persistance dans la faune sauvage. Des clones similaires de P. mirabilis
ont été identifiés dans les deux compagnes d’échantillonnage chez les deux especes de goélands et

chez les isolats humains utilisés lors de la compagne de 2012.

Cette étude met ’accent sur la persistance de déterminants d’antibiorésistance chez les goélands dans
le sud de la France, soutenant notre hypothése que ces oiseaux sauvages peuvent représenter un
réservoir zoonotique pouvant persister plusieurs années. L’analyse clonale prouve une transmission

interespece avec les risques zoonotiques qui en découlent.
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Abstract

We describe the persistence of blacmy-2-producing Proteus mirabilis isolated from two gull
colonies in Southern France sampled in 2012 and 2013. PCR-mapping showed that blacmy-2
was located on a similar genetic background which was an SXT/R391-like integrative and
conjugative element. Rep-PCR (Diversilab) analysis showed similar clones between the avian

isolates from the two years of study and some human isolates.
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Resistance to broad-spectrum cephalosporins in Enferobacteriaceae from animal origin has
been increasingly reported in the last 15 years (Ewers et al., 2012; Guenther et al., 2011).
Companion animals (Carattoli et al., 2005; Costa et al., 2008), food-producing animals
(Huijbers et al., 2014; Michael et al., 2015) and wildlife (Alcala et al., 2015; Costa et al.,
2006; Guenther et al., 2011) have been identified as carriers of B-lactam-resistant
Enterobacteriaceae. This presence can become a major health problem since similar bacterial
clones have been recovered from animal and human clinical isolates (Bonnedahl et al., 2009;
Hernandez et al., 2013; Valentin et al., 2014), which suggests that animals can act as a

potential reservoirs of multidrug resistance (MDR) genes.

B-lactam resistant Enterobacteriaceae isolates have been extensively described in the
digestive tract of wild birds in several countries worldwide (Alcala et al., 2015; Bonnedahl
and Jarhult, 2014; Hernandez et al., 2013), including regions remote from human habitation
(Sj6lund et al., 2008). However, most studies are cross-sectional or prevalence studies, which
describe the carriage of MDR Gram-negative bacteria at a precise moment of time. Most
longitudinal studies focusing on the persistence of ESBL and pAmpC-encoding genes in
animals have been carried out in livestock and food-producing animals (Giovanardi et al.,
2013; Hansen et al., 2013; Keelara et al., 2013; Laube et al., 2013; Liebana et al., 2006; Von
Salviati et al., 2014). To our knowledge, there are only few longitudinal studies focusing on

MDR Gram-negative bacteria carriage in wild birds (Bonnedahl et al., 2014).

The present study is a follow-up to our 2012 study in which we reported the high prevalence
of blacmy-2-harboring Proteus mirabilis in two gull colonies in Southern France (Aberkane et
al., 2015), a region where birds have close contact to humans. Moreover, two human clinical
isolates had the same genetic background as six avian isolates. As blacymy-» was located in a
SXT/R391-like integrative and conjugative element (ICE), a genetic structure which had only

been described in Japan and Spain (Harada et al., 2010; Mata et al., 2011), we aimed to study
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the persistence and steadiness of this particular resistance determinant in the gull population

at a one-year interval.

In April 2013, we collected 193 cloacal samples from two juvenile gull colonies in Southern
France. The species involved included yellow-legged gulls (YLG) (Larus michahellis, 101
samples) breeding in the island of Carteau in Port-Saint-Louis and slender-billed gulls (SBG)
(Chroicocephalus genei, 92 samples) breeding in Giens peninsula. The same sampling
method was used as the previous study (Aberkane et al., 2015). Screening was performed in
the same gull colonies (i.e., same species and same locations) as in our 2012 study but on
different bird individuals since rectal swabbing can be performed only for juvenile gulls.
Screening for P. mirabilis resistant to third-generation cephalosporins (3GC) was carried out
using the ChromID ESBL agar biplates (bioMérieux, Marcy-1'Etoile, France) selective media.
Bacterial identification and antibiotic susceptibility testing was performed as described in the

preceding study (Aberkane et al., 2015).

In the 2013 screening campaign, 34/193 (17.6%) samples were positive for cephalosporin-
resistant P. mirabilis isolates. Ten isolates came from YLG (10/101, 9.9%) and 24 isolates
came from SBG (24/92, 26.1%). All isolates showed resistance to amoxicillin, co-amoxiclav,
cefalotin and cefoxitin and were positive for the CMY-2-encoding gene (Table 1). For
comparison, the 2012 campaign retrieved 64/158 (40.5%) CMY -2-producing P. mirabilis
isolates with YLG and SBG yielding 27 and 37 isolates, respectively (Aberkane et al., 2015).
Although the 2013 campaign could show a slow decline in resistance rates when compared to
the 2012 positivity rate (40.5%), we show here the persistence of this resistance determinant

in two gull populations.

The genetic backgrounds of all 98 blacmy-»-carrying P. mirabilis avian isolates from the 2012

and 2013 campaigns were analysed by rep-PCR using the DiversiLab system (bio-Mérieux,
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France), as well as seven human clinical isolates collected in 2012 (Supplementary Figure 1).
Fourteen clusters (named A-N) and 12 singletons were found. Seven clusters included isolates
from both species coming from the 2012 and 2013 campaigns (clusters B, D, E, F, I, M and
N). Two clusters (clusters A and L) included only YLG isolates from the 2012 campaign and
two other clusters (clusters H and J) included only SBG isolates from the 2012 campaign.
Three clusters included avian and human clinical isolates (clusters C, G and K). PCR-
mapping of the genetic environment of blacmy-» was performed as previously described
(Aberkane et al., 2015) and showed that blacmy-» was part of a SXT/R391-like ICE in all 34
P. mirabilis 1solates from 2013. This ICE was successfully transferred by conjugation to E.
coli 153 for a representative isolate of each rep-PCR clone. As for the avian isolates of the

2012 campaign, no plasmid encoding blacmy., was recovered in 2013.

Similar clones were recovered in the two sampling campaigns (Supplemental Figure 1) while
avian isolates which presented the same genetic background as some human clinical isolates
of 2012 were recovered in 2013. The study design does not allow us to know if the gulls are
intermittent or persistent carriers of CMY-2-producing P. mirabilis since a same individual
was only sampled once during the entire study. However, the presence of this resistance gene
on similar genetic structures at a one-year interval in the same colonies witnesses its
establishment in the wild fauna. Strain fitness and stability of the ICE in the chromosome of
P. mirabilis could explain this persistence. Longitudinal surveys of the carriage of antibiotics
resistance determinants have been performed scarcely in animals (Giovanardi et al., 2013;
Hansen et al., 2013; Keelara et al., 2013; Laube et al., 2013; Liebana et al., 2006; Persoons et
al., 2010; Raufu et al., 2014; Von Salviati et al., 2014). Most studies were carried out in
livestock and food-producing animals, which are generally submitted to various antibiotics to
treat clinical disease problems and to serve as growth promoters. Nonetheless, these studies

showed that resistance determinants could persist from months to several years. Moreover,
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Liebana et al. showed that despite the discontinuation of antibiotics use at the beginning of
their study, CTX-M enzymes could persist for more than six months amongst calves and their
environment (Liebana et al., 2006). This is concordant with the present study showing the
persistence of the blacyy-; resistance determinant although a potential environmental

exposure to antibiotics cannot be excluded.

This study emphasises the persistence of MDR determinants in wild gulls from Southern
France, supporting our hypothesis that wild birds may represent a zoonotic reservoir which
may persist for several years without any known antibiotic selection pressure. Clonal analysis

proves interspecies transmission with arising zoonotic risks in this highly crowded area.
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Table. Characterization of blacmy-2-positive P. mirabilis isolates from the 2012 and 2013

screening campaigns.

YLG, yellow-legged gull isolates; SBG, slender-billed gull isolates.

Supplementary Figure.

Dendrogram of blacmy-2-positive P. mirabilis isolates from the 2012 and 2013 screening

campaigns.

YLG, yellow-legged gull isolates; SBG, slender-billed gull isolates; H, human isolates; *,

strains of the 2013 campaign.



Table

Cephalosporinase-producing samples

. No. Of
Collec.tlon date (No. Source (No.) NO'.CMY-Z- Genetic support of CMY-2 (No.) Diversilab . No.
isolates) carrying isolates clusters Singletons
2012 (165) YLG (93) 27 SXT/R391-like ICE (27) 9 3
SBG (65) 37 SXT/R391-like ICE (37) 6 4
SXT/R391-like ICE (3), IncA/C

Human (7) 7 plasmid (4) 3 3
YLG (101 10 SXT/R391-like ICE (10 6 1

2013 (193) (101) 1 © (10)
SBG (92) 24 SXT/R391-like ICE (24) 9 1
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Chapitre IV

Présence d'Escherichia coli résistants aux carbapénémes
au sein du microbiote cloacal de goélands leucophées dans

le sud de la France
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Préambule

Les carbapéneémases acquises constituent actuellement 1'une des menaces les plus inquiétantes pour la
sant¢ publique en terme d'antibiorésistance. En 2013, une Salmonella corvalis produisant une
carbapénemase de type NDM-1 a été décrite chez un rapace sauvage (un milan noir, Milvus migrans).
Ainsi, d'autres ¢tudes sont nécessaires pour comprendre le role des oiseaux sauvages dans la
transmission de bactéries résistantes aux carbapénemes. L'objectif de notre étude a été d'enquéter sur
la présence d'Escherichia coli résistants aux carbapénémes chez les deux especes de goélands étudices.

En 2012, nous avons recueilli 158 échantillons cloacaux provenant de ces deux espéces.

Nous avons pu isoler sur milieux sélectifs 22 souches d'E. coli résistantes aux carbapénémes a partir
de goélands leucophées, alors qu'aucune n'a été isolée de goélands railleurs. Toutes étaient porteuses
du geéne blavim-1.Nous les avons comparées au niveau moléculaire avec des isolats sensibles provenant
des deux espéces de goélands et des souches humaines sensibles provenant de patients hospitalisés
dans la méme région. Les souches résistantes étaient reliées génétiquement aux souches sensibles

isolées des deux especes de goélands et avec les souches humaines.

Ces résultants sont suffisamment alarmants pour essayer d'identifier la source de contamination de ces
oiseaux. Ils soulignent également la complexité¢ de la circulation de 1’antibiorésistance dans cette
région. En effet, contrairement aux souches de P. mirabilis productrices de CMY-2, ces souches d’E.
coli productrices de VIM-1 n’ont été isolées que chez les goélands leucophées. De plus, ce type de
carbapénémases n’est que tres rarement identifié en France. On pourrait alors se poser la question sur

I’origine de ces souches.
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TCo-managed work

Abstract:

Acquired carbapenemases currently pose one of the most worrying public health threats
related to antimicrobial resistance. A NDM-1-producing Sa/monella Corvallis was reported in
2013 in a wild raptor. Further research was needed to understand the role of wild birds in the
transmission of bacteria resistant to carbapenems. Our aim was to investigate the presence of

carbapenem-resistant Escherichia coli in gulls from southern France. In 2012, we collected



158 cloacal swabs samples from two gull species: Yellow-legged gulls (Larus michahellis)
that live in close contact with humans and Slender-billed gulls (Chroicocephalus genei) that
feed at sea. We molecularly compared the carbapenem-resistant bacteria we isolated through
culture on selective media with the carbapenem susceptible strains sampled from both gull
species and from stool samples of humans hospitalized in the study area. The genes coding for

carbapenemases were tested by multiplex PCR.

We isolated 22 carbapenem-resistant E. coli strains from Yellow-legged gulls while none
were isolated from Slender-billed gulls. All carbapenem-resistant isolates were positive for
blayiv-1 gene. VIM-1 producing E. coli were closely related to carbapenem susceptible strains

isolated from the two gull species but also to human strains.

Our results are alarming enough to make it urgently necessary to determine the contamination
source of the bacteria we identified. More generally, our work highlights the need to develop
more bridges between studies focusing on wildlife and humans in order to improve our

knowledge of resistant bacteria transmission routes.

Keywords: antimicrobial resistance, enterobacteria, humans, Larus, molecular

characterization, phylogenetic analyses, wild birds



Introduction

Among the antimicrobial resistant bacteria (AMRB) of concern recently isolated from
birds, a NDM-1 carbapenem-resistant Salmonella (S. enterica subsp. enterica serovar
Corvallis) was reported in 2013 in a wild raptor (a black kite, Milvus migrans) in Germany

(Woodford et al. 2014).

This detection raised questions about the potential risk of the spread of resistance
potentially associated with this wild reservoir. Acquired carbapenemases currently pose one
of the most worrying public health threats related to antibiotic resistance (Gupta et al. 2011;
Poirel, Potron & Nordmann 2012). They confer resistance to carbapenems, but also to almost
all B-lactams, the most widely used class of antibiotic, and are encoded by genetic elements
that are transferable between bacteria (Potron, Poirel & Nordmann 2014; Krahn ef al. 2016;
Luca et al. 2016). The actual number of carbapenemase producing bacterial isolates is rising
and the epidemiological status of these bacteria (sporadic versus local spread versus national

endemicity) is progressively worsening worldwide (Glasner ef al. 2013; WHO 2014).

Carbapenems represent the latest therapeutic innovation for f-lactams, but this innovation
is old, the latest group of molecules having been approved for clinical use more than a decade
ago. Yet they are currently our last effective defence against multiresistant Gram-negative

bacteria (Woodford et al. 2014).

Our ability to limit the rise and spread of carbapenemase producers, which occur only at
basal levels in many countries at present, should serve as a key performance indicator for the
success or failure of the efforts that have been called for by international organizations and

governments to reduce the impact of antibiotic resistance (Woodford et al. 2014). To meet



this challenge, we need to investigate the role of any non-human reservoirs of carbapenem-
resistant bacteria, which could favor their further spread in human populations (Woolhouse e?
al. 2015). To date, carbapenem-resistant bacteria have been isolated from water in some rivers
and sewage plants as well as in a few pets and food animals (reviewed in Woodford et al.
2014). The resistant bacteria isolated from a black kite is so far the sole evidence of the
presence of carbapenem-resistant bacteria in a wild species without any direct link with
domestic animals or humans. The only other evidence of carbapenem resistance in wildlife is
from a pig farm in Germany where a VIM-1 carbapenem-resistant Sa/monella serovar Infantis
was isolated in a mouse (Mus musculus) (Fischer et al. 2012). Verona integron-encoded
metallo-B-lactamases (VIM) belong to class B carbapenemase and were first described in Italy
in 1999 (Lauretti et al. 1999). Greece is now considered to be the epicenter of the spread of
VIM-producing Enterobacteriaceae to other European countries where they have been
punctually detected including Spain, Italy and France (Canton et al. 2012; Mathlouthi et al.
2016). In the light of these data, further research is clearly needed to understand the potential

role of some wild species in the spread of carbapenem-resistant bacteria.

To contribute to the development of this research, we chose to focus on Escherischia coli
for three reasons: 1) It is an ubiquitous bacteria that can be carried by a wide range of species
including humans, other mammals and birds. ii) It is the most frequent cause of urinary tract
and bloodstream infections worldwide. iii) It is a major cause of carbapenem-resistant
infection, accounting for 25% of the episodes reported in France during the last decade (INVS
2014). Hence, our aim was to investigate the presence of carbapenem-resistant E. coli in a
species that lives in close contact with humans following its recent colonization of urban
habitats and that has subsequently experienced a strong demographic increase: the Yellow-
legged gull (YLG, Larus michahellis; Duhem et al. 2008). The focal YLG population was

previously reported to carry high loads of extended-spectrum B-lactamase (ESBL) producing



E. coli (Bonnedahl et al. 2009). We also investigated the E. coli strains found in Slender-
billed gulls (SBG, Chroicocephalus genei) living in the same area. We chose to study both
species since they share the same environment but their feeding habits differ. YLG are
opportunistic, feeding on fresh fish, but, like the black kite, they also feed on refuse and
carcasses, whereas SBG mainly feed on marine fishes (Flitti ez al. 2009). We investigated E.
coli carried by chicks since, within the colonies we studied, they had no contact with humans
and they could only be contaminated by bacteria brought by adults or already present in the
colony. Thus, finding AMRB in those chicks would mean that these bacteria have either been
transmitted from adults to chicks or that the environment (surrounding water or soil) is

contaminated by them.

In France, as in most Western European countries, carbapenemase-producing bacteria
infections have so far been limited to hospital settings and represent only a few cases per year.
Yet the number of those cases has significantly increased in recent years in many European
countries, including France (ECDC 2013; INVS 2014). In all, 913 infectious episodes
associated with carbapenem-resistant enterobacteria were reported nationwide from January
2004 to March 2014, 25% of which were due to E. coli strains (INVS 2014). Through the
investigation of E. coli strains carried by gull chicks in two colonies in south-eastern France,
our aim was to elucidate four questions: i) Are the focus populations harboring some
carbapenem-resistant bacteria while those bacteria are still rare in the neighboring human
population? ii) Is the proportion of individuals carrying these AMRB similar in the two target
species, despite their contrasting feeding habits? iii) Are the E. coli genotypes carried by gulls
closely related to those recently isolated in humans in the study region? iv) Which resistance

mechanisms are involved in the potentially detected resistances?



Materials and Methods

Ethics statement

The study has been approved by the Scientific and Ethical Council of the Tour du Valat
Foundation, which is in charge of the ethical issues in our research centre, on October 5,
2011. The results have subsequently been reviewed by this council. Birds were handled and
sampled under the supervision of two registered bird ringers of the « Museum National
d’Histoire Naturelle » of Paris (Thomas Blanchon & Yves Kayser) who made every effort to
avoid any animal suffering. Permits for fieldwork were issued by the municipality of Port-

Saint-Louis and the Communauté d’ Agglomération Toulon Provence Méditerranée.

Sampling, bacterial strains and antibiotic susceptibility testing.

Cloacal swabs were collected from gull chicks, aged from 1 to 4 weeks, in two colonies.
The Yellow-legged gull colony was situated on an islet near the village of Port-Saint-Louis
(4°51°26.50”E. 43°22°39.93”N), where 93 swabs were sampled on chicks on May 23, 2012.
The colony of Slender-billed gulls was located in the Giens peninsula (6°08°20.10”E.

43°03°01.14 N.). 65 samples were collected there on July 23, 2012.

Immediately after sampling, the swabs collected from gulls were placed in Oxoid Tryptone
Soya Broth (Thermo Scientific™). They were then transported to the laboratory and
incubated at 37C° overnight. Following incubation, a loopful was streaked on plates of
Hektoen (BioMérieux, Marcy-I'Etoile, France) and of a selective chromogenic medium for the
detection of carbapenem-resistant bacteria (Oxoid Brilliance CRE; Thermo Scientific™). The
bacteria were incubated for 24 to 48h on these media depending on observation of growth of
bacterial colonies. E. coli identity was confirmed by matrix-assisted laser desorption
ionization-time of flight (MALDI-TOF) mass spectrometry (Bruker Daltonik, Bremen,

Germany). Antimicrobial susceptibility testing was performed by disk diffusion assay on



Mueller-Hinton agar (Bio-Rad, Marne-la-coquette, France) and interpreted according to the
European Committee on Antimicrobial Susceptibility Testing (EUCAST 2012, version 2.0)
clinical breakpoints (http://www.eucast.org/clinical breakpoints/). Antibiotic agents tested
were: amoxicillin, amoxicillin-clavulanic acid, ticarcillin, ticarcillin-clavulanic acid,
piperacillin, piperacillin-tazobactam, imipenem, cephalotin, cefoxitin, cefotaxime,
ceftazidime, cefpodoxime, cefpirome, cefepime, moxalactam, aztreonam. Metallo-f3-
lactamase production was investigated in E. coli isolated from the selective medium by the
Carbapenemase/Metallo-B-Lactamase Confirmation Identification Pack (Rosco Diagnostic

Neo-SensitabsTM, Eurobio, Courtaboeuf, France).

Twenty-five clinical isolates of carbapenem-susceptible non-pathogenic E. coli, recovered
from human patient’s stools in the same geographical area (Montpellier hospital) and during

the study period, were used for phylogenetic comparison.

In addition, four E. coli strains belonging to reference phylogroups (Al, B1, B2;, D1) were

kindly provided by Prof. Richard Bonnet.
Detection and identification of carbapenem-resistance genes

The E. coli strains that were isolated from the media containing carbapenem were further
analyzed to determine the mechanisms involved in resistance to carbapenems using a
multiplex PCR (Dallenne et al. 2010; Hornsey, Phee & Wareham 2011). Briefly, the presence
of the most prevalent carbapenemase genes (including blaxpc, blayiv, blaoxa-as group and
blanp) was assessed by multiplex PCR, as previously described (Dallenne ef al. 2010) and
blanpm gene presence was investigated by PCR assay (Hornsey, Phee & Wareham 2011).
Metallo-B-lactamase production was assessed by the Carbapenemase/Metallo-p-Lactamase
Confirmation Identification Pack (Rosco Diagnostic Neo-Sensitabs™, Eurobio, Courtaboeuf,

France).



All amplified PCR products were purified using the ExoSap purification kit (ExoSap-it,
GE Healthcare, Piscataway, NJ, USA) and bidirectional sequencing was performed using the
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA)
and an Applied Biosystems 3730 XL capillary sequencer. Each sequence was then compared
with already known carbapenemase genes available in the NCBI database using the BLAST
program. The detection of blayim.1 gene was confirmed by simplex PCR assay and sequencing
using the following primers: VIM F (5’- AGTGGTGAGTATCCGACAG-3’) and VIM_R

(5’-TGCAACTTCATGTTATGCCG-3’).

Molecular analyses

To determine the relatedness between the E. coli isolates sampled from YLG, SLG and
humans, we performed PCR phylotyping, discriminant single nucleotide polymorphism
(SNP), multi locus sequence typing (MLST) and polymorphic variable-number of tandem

repeats loci (VNTR).

All isolates were assigned to the eight E. coli phylogenetic groups and subgroups (A0, Al,
B1, A1xB1, B2,, B23, D1, and D2) using PCR on the basis of the presence or absence of three
DNA fragments (chuA, yjaA and tspE4.C2)(Clermont, Bonacorsi & Bingen 2000) and on the

comparison with four reference strains (A1, B1, B23, D1).

Allele-specific real-time PCR was used to screen seven SNPs (fadD234, clpX267,
uidA138, clpX177, clpx234, lysP198, icdA177) on seven housekeeping genes (Sheludchenko,

Huygens & Hargreaves 2010) using an Applied Biosystems 7300.

MLST procedures were performed using Wirth et a/. MLST scheme (Wirth ez al. 2006).
Seven housekeeping genes (Adk, FumC, GyrB, Icd, Mdh, PurA, RecA) were amplified by
PCR and sequenced by Eurofins (Germany). The sequences were assembled and trimmed

(3,423 nucleotides in total) using the MLST Databases at the University of Warwick (freely



available at http://mlst.warwick.ac.uk/mlst/). Alleles and sequence type (ST) numbers were

assigned de novo in Bionumerics (Applied-Maths, Sint Maartens-Latem, Belgium).

The genotyping assay of VNTR was performed on six polymorphic loci (CVN15, CVN7,
CVN4, CVNI1, CVN2, CVNI14) (Lindstedt et al. 2007) using a genetic analyser Applied

Biosystems 7330x/.

Phylogenetic and statistical analyses

Exact Fisher tests were used to test for differences in E. coli phylogroup distributions

among host populations.

The multiple alignments of all complete MLST sequences were conducted using ClustalW
in BioEdit v.7.0.9.0. software. Maximum-likelihood (ML) tree construction was based on the
MLST sequences and the best-fitting ML model under the Akaike Information Criterion was
GTR (General Time Reversible) + I' (gamma distribution) for nucleotides as identified by
ModelTest (Posada & Crandall 1998). The most likely DNA tree and corresponding bootstrap
support values were obtained by PhyML using Mega 5.0 software (Tamura et al. 2011) with
nearest neighbor interchange branch swapping and 100 bootstrap replicates. All positions

containing gaps and missing data were eliminated.

Genetic polymorphism of VNTR data was measured in terms of allelic richness per locus
and sample (Rs) (Mousadik & Petit 1996), gene diversity was measured in terms of expected
heterozygosity per locus and sample (Hs) using the unbiased estimator adapted to haploid data
(Nei & Chesser 1983) and the genotypic linkage disequilibrium was tested by the log-
likelihood ratio G-statistic after Bonferroni's correction using FSTAT v 2.9.4 software

(Goudet 2003).

MLST, SNP and VNTR data were analyzed with Bionumerics software v7.0 (Applied-

Maths, Sint Maartens-Latem, Belgium). Based on allelic profiles, the evolutionary



relationship between isolates was assessed by a minimal spanning tree (MST) implemented in
Bionumerics. The MST is a graphical tool that links the nodes by unique minimal paths in a
given dataset: the total summed distance of all branches is minimized. The Prim’s algorithm

calculated a standard MST with single and double locus variance priority rules.

Results

Detection of carbapenem-resistant E. coli

Twenty-two E. coli strains isolated from Yellow-legged gulls (Table 1) were resistant to
most of the B-lactam antibiotics, except aztreonam, and were metallo-B-lactamase producers.
Those carbapenemase producing E. coli originated from 18 of the 93 YLG chicks on which
we sampled cloacal swabs. Two birds carried two carbapenemase producing isolates and one
gull carried three. All 22 carbapenemase-producing E. coli isolates were positive for blaym.
gene. Conversely, no carbapenem-resistant bacteria were isolated from the samples collected
on 65 Slender-billed gulls. Table 1 indicates the number of isolates sampled from each host

group that were used for each type of analysis (Phylogroup, SNP, MLST and VNTR).
Phylogroups

Table 2 shows the prevalence of phylogenetic groups for the entire set of isolates from the
different host samples. Seven phylogroups were determined in susceptible E. coli samples and
only three phylogroups (A1, A1xB1, B2,) in VIM-1 resistant E. coli isolates. The distribution
of phylogroups in resistant isolates was significantly different from that observed in
susceptible samples (P <0.001 Fisher's exact test). Among the 22 carbapenem-resistant
isolates, 18 belonged to the phylogroup Al (81.8%). This proportion was significantly higher

than that found in the susceptible isolates as a whole (P <0.001 Fisher's exact test).

Multilocus sequence typing (MLST)



The MLST analysis involved 92 nucleotide sequences (Table 1) with 7 partial
housekeeping gene sequences (i.e. 4,963 nucleotides in total). Among the 360 variable sites,
255 were informative sites over the 4,963 bases. The number of unique haplotypes was 68 out
of 88 in total, excluding the four reference strains. The PhyML tree (Figure 1) with bootstraps
based on concatenated 7 fragments of sequences which totalized 4,963 nucleotides showed
that the resistant isolates (orange symbols) were grouped in five clusters grouping 4
(phylogroup A), 6 (phylogroup A), 2 (phylogroup AxB), 8 (phylogroup A) and 2 (phylogroup
B) isolates. We noticed that these five clusters were scattered in the phylogenetic tree (Figure
1) with blue node bootstrap of 62, 95, 86, 69 and 82 respectively. The genetic diversity is

more extended in susceptible strains due to the number of clusters grouping together.

Single nucleotide polymorphism (SNP)

In the SNP analysis, 26 distinct haplotypes were detected among the 88 E. coli isolates
studied (reference strains were not included, see Table 1). The number of SNP haplotype
combinations was as follows: 3 SNP haplotypes out of 22 isolates in resistant E. coli from
Yellow-legged gulls, 11 out of 26 isolates in susceptible E. coli from Yellow-legged gulls, 11
out of 15 isolates in susceptible E. coli from Slender-billed gulls and 14 out of 25 isolates in
susceptible E. coli from humans. The diversity of SNP found in the carbapenem-resistant
isolates (3 out of 27 haplotype combinations) was lower than in other strains, but this
difference was not significant (P = 0.07 Fisher's exact test). Elsewhere, the CCCGCCT
(fadD234, clpX267, uidA138, clpX177, clpx234, lysP198, icdA177) SNP combination was
significantly more frequent in VIM-1 strains (18 out of 22) than the others (P<0.001, Fishers’s

exact test) and absent in the E. coli isolates sampled in Slender-billed gulls.

Variable number tandem repeat (VNTR)

The VNTR gave complete results for 79 isolates only (Table 1). All the loci were

polymorphic, showing from 3 (CVN7 and CVN15) to 14 alleles (CVN14). There was lower



genetic variability in the sample of resistant isolates as shown by the allelic richness (Rs =
2.3+1.2) vs. other samples (susceptible isolates from Yellow-legged gulls Rs = 4.5 + 3.6;
Susceptible isolates from Slender-billed gulls Rs = 3.0 £ 2.2, Susceptible isolates from
humans Rs = 4.3 + 2.9). However the difference of Rs between each pair of samples was not

significant (Wilcoxon test, p-values range between 0.574 and 0.936).

Elsewhere, the gene diversities per locus were similar in all samples except for locus
CVN2 which showed a higher value for resistant YLG strains (Hs = 0.69) compared to the
three other sample groups (Susceptible strains from YLG: Hs = 0.22, SBG: Hs = 0.26,
humans: Hs = 0.17). However the difference of Hs between each pair of samples was not

significant (Wilcoxon test, p-values range between 0.261 and 0.936).

A significant linkage disequilibrium (P <0.001) was underscored at 3 loci pairs: (CVN1 x
CVN2, CVNI x CVNI14, CVN2 x CVNI14) in the resistant YLG sample group, whereas no
significant linkage disequilibrium was detected in any loci combination in other samples,

even in the susceptible E. coli isolated from YLG.

Phylogenetic analysis based on MLST, SNP and VNTR

The minimum spanning tree presented in figure 2 is based on genetic sequence similarity
according to MLST (7 fragments of gene sequences shortened and aligned to the reference
sequences in the MLST Databases at the University of Warwick (freely available at
http://mlst.warwick.ac.uk/mlst/) (i.e. 3,423 nucleotides in total)), SNP and VNTR analyses.
The phylogenetic structure highlighted is similar to that underlined in figure 1. Isolates of the
same phylogroup tend to cluster together. Carbapenem-resistant isolates do not form a distinct
cluster. Conversely, they are grouped in 3 clusters that also include carbapenem susceptible
strains isolated from the different host species (YLG, SLG and humans). In addition, only one
resistant isolate presents a unique sequence, the others are grouped in five clonal complexes

including 2 to 6 strains.



Discussion

We highlighted the presence of VIM-1 carbapenem-resistant E. coli strains in Yellow-
legged gulls in southern France. Our results confirm that gulls represent a bird group that
frequently carries antimicrobial resistant bacteria, as was previously shown in several studies
(e.g. Cizek et al. 2007; Poirel et al. 2012; Hasan et al. 2014) led in particular in southern

Europe (Stedt et al. 2014).

Alarmingly, while the previous report of carbapenem-resistant bacteria in a wild bird was a
single case in a raptor (Fischer ef al. 2013), we detected VIM-1 bearing E. coli carriage in 18
different chicks, which raises the question of the extent of wildlife contamination in the study
region. Interestingly, we identified 5 clonal complexes and one unique genotype within the
VIM-1 containing bacteria we detected (Figure 2). This suggests that several distinct
introductions of carbapenem-resistant £. coli occurred on the islet. Further studies are needed
to investigate the extent of the circulation of VIM-1 containing bacteria within gull

populations in Southern France.

Our findings are all the more worrisome if we consider that gulls live in close contact with
human populations since they feed on waste matter, notably in cities, and thus represent a
bridge species for pathogens between wildlife and humans. Moreover Yellow-legged gulls are
not migratory birds; yet, young individuals can fly large distances from their native colony to
their wintering sites that include the whole of the Rhone Valley and the French Atlantic coast
(Sadoul & Pin 2009). Thus, this species could favor the spread of carbapenem-resistant

bacteria, at least within France.

By contrast, we did not detect any carbapenem-resistant E. coli in Slender-billed gulls.
This species does not breed in the same colonies as YLG, but SBG and YLG can share resting

sites and are thus frequently in contact. Furthermore the two colonies we studied are located



only 110km apart. This distance can easily be covered by a gull within a day, meaning that
these sites are not isolated from one another in terms of potential bacteria exchanges between
the species we studied.As stated above, the two species differ by their diet, which suggests
that the carriage of carbapenem-resistant bacteria by YLG may be associated with their
feeding habits and/or the habitat they visit to feed. In France, from January 2004 to March
2014, 913 infectious episodes associated with carbapenem-resistant enterobacteria were
reported, including 233 episodes due to E. coli, all of which were detected in hospitals (INVS
2014). Many of those episodes (481 out of 913) were linked to a previous stay of the patient
in a foreign country (INVS 2014, Cuzon ef al. 2010; Crémet ef al. 2012), which underscores
the rarity of carbapenem-resistant infection originating in France. Furthermore, the resistance
gene we detected (blayiv-1) 1s uncommon in France, where it caused only 5% of the reported
infections due to carbapenem-resistant enterobacteria, the OXA-48 and OXA-48-like genes
being the most frequent in the country (74%)(INVS 2014). blayn.; 1s an integron-borne
metallo-p-lactamase gene which was first reported in Pseudomonas aeruginosa in Italy in
1996 (Lauretti ef al. 1999). It encodes for a class B carbapenemase which also hydrolyses all
B-lactams except monobactams, and evades all B-lactamase inhibitors. VIM-1 bearing bacteria
have been reported from clinical samples in Greece although they are beginning to spread in
southwestern Europe, notably in Spain and Italy, while France seems, for now, to be less

affected (Canton et al. 2012; Mathlouthi et al. 2016).

The phylogenetic analyses performed using phylotyping and three types of genetic markers
(SNP, MLST and VNTR) clearly showed that Yellow-legged gulls, Slender-billed gulls and
humans share the same pool of E. coli strains. Our results confirm that E. coli exchanges are
frequent between gulls and humans, as was previously demonstrated in the region (Bonnedahl
et al. 2009). The occurrence of such exchanges highlights the potential risk of resistance

spreading from gulls to humans (Stedt et al. 2014).



VIM-1 containing E. coli are closely related to carbapenem susceptible strains isolated
from the two gull species and humans. Nevertheless, their group can be distinguished from
the susceptible group through two genetic traits. First, PCR phylotyping showed that the 92
strains we studied included bacteria belonging to 8 phylogroups. No phylogroup was
significantly more present than others in susceptible strains. By contrast, phylogroup A, to
which some susceptible strains also belong, represented 81.8% of the VIM-1 bearing E. coli.
The association between some phylogroups and antimicrobial resistance patterns is for now
poorly understood. Nevertheless, several studies have already highlighted that phylogroup A
E. coli are over-represented within resistant strains isolated in France (Smati et al. 2013),
including chromosomal AmpC B-lactamase overproducers carried by humans (Corvec et al.
2007) as well as ESBL E. coli detected in cattle (Valat et al. 2012) and ampicillin-resistant
isolates from pigs (Bibbal et al. 2009). Further studies are still needed to determine if E. coli
belonging to phylogroup A are more likely to acquire antimicrobial resistances and why.
Besides carbapenem resistant strains tended to be less diverse than susceptible ones according
to VNTR and SNP analysis. This lower diversisty is consistent with the higher selection
pressure, potentially linked with antimicrobial molecule presence, resulting in strong
bottlenecks that is expected to have contributed to the emergence of resistant strains. This

suggests that the resistance was recently acquired by the bacteria we isolated or that a

selection pressure favored the expansion of a pre-existent clone.

We report here the second isolation worldwide of carbapenem-resistant enterobacteria
from wild birds and the first detection in gulls. In depth molecular analysis of blaVIM genetic
surroundings and features will be necessary in the future to fully understand the downstream impacts
of our findings. Yet, here our aim was not to fully characterize the genetic background of carbapenem
resistant E. coli carried by wildlife but rather to warn over the potential role of wild birds as

carbapenem-resistant bacteria carriers and spreaders. Our results are alarming enough to justify an

urgent call for further studies. They also make it a matter of urgency to determine the



contamination source of the bacteria we identified. The next step could be to extend our work
to several other YLG and SBG colonies, including some in which the two species are
breeding in neighboring islets, as well as to repeat sampling other time to improve our
knowledge of VIM-1 carrying bacteria circulation in French gull populations. Such extended
sampling could also help in disentangling the respective roles of feeding habits and
environmental pollution in carbapenem-resistant bacteria contamination. To complete this
analysis, it would also be necessary to search for resistant bacteria within the environment,
especially in water, since it has previously been shown that rivers and coastal areas can
contain carbapenem-resistant bacteria even when those pathogens are rare in the surrounding
human populations (Aubron et al. 2005; Montezzi et al. 2015). More generally, our work
highlights the urgent need to develop more bridges between studies focusing on wildlife and
humans in order to improve our knowledge of resistant bacteria dynamics. Such bridges will
be a key factor in enabling us to efficiently face the challenge of antimicrobial resistance in

the future.
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Table 1. Summary of the strains studied and the analyses in which they were included.

Number Strains for which complete data are available
Resistant to

Host species of
carbapenem Phylogroup  MLST SNP VNTR
strains
Yellow-legged Yes 22 22 22 22 20
gulls No 26 26 26 26 25
Slender-billed
No 15 15 15 15 14
gulls
Humans No 25 25 25 25 18
Phylogroup
reference strains No 4 4 4 4 2
(humans)

Total 92 92 92 92 79




Table 2. Prevalence of eight E. coli phylogroups in the strains isolated from Yellow-

legged gulls, Slender-billed gulls and human patients.

Sample group

Number of strains of each phylogenetic groups (% in the sample group)

A0 A1 A1xB1 B1 B2; B2; D1 D2
Resistant E. coli
22 0 18 2 0 2 0 0 0
from Yellow-
(81.8%) (9.1%) (9.1%)
legged gulls
Susceptible E. 26 6 4 2 10 0 0 4 0
coli from Yellow- (23.1 %) (15.4%) (7.7%) (38.4%) (15.4%)
legged gulls
Susceptible E. 15 1 1 0 6 0 0 4 3
coli from Slender- (6.7%) (6.7%) (40.0%) (26.6%) (20.0%)
billed gulls
25 4 2 0 6 0 7 4 2
Susceptible E.
(16.0%) (8.0%) (24.0%) (28.0%) (16.0%) (8.0%)

coli from humans




Figure 1. Phylogenetic relationships among the 92 Escherichia coli isolates studied based
on concatened MLST sequences. The circle tree was constructed using maximum likelihood
methods. Bootstrap values greater than or equal to 60% are indicated at the nodes, those
relating to the five clusters containing carbapenem-resistant isolates are shown in blue. The E.
coli strains were isolated from Yellow-legged gulls (YLG), Slender-billed gulls (SBG) and

humans.
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Figure 2. Minimum spanning tree of 79 of the studied Escherichia coli strains based on
MLST, SNPs and VNTR. The 13 strains for which part of the VNTR data was missing were
excluded. The phylogroups are shown as ovals. Clonal complexes are indicated by symbols
proportional in size to the number of strains within them. Black lines connecting strains
indicate that they differ at least by one VNTR (bold thick lines) to two VNTR, seven MLST

genes and two SNPs (the thinnest lines).
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Chapitre V

Présence de Vibrio cholerae résistant aux carbapéneémes

dans le microbiote cloacal des goélands
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Préambule

Il y a actuellement une émergence de souches de Vibrio cholerae antibiorésistantes qui sont de plus en
plus décrites dans le monde. Cependant, la résistance de cette espéce aux céphalosporines de troisiéme
génération, la plupart du temps par l'intermédiaire de génes de résistance codant des BLSE ou des
céphalosporinase, reste rarement décrite. A notre connaissance, la résistance de Vibrio spp. conférée
par des carbapénemases n’a été que trés rarement rapportée, essenticllement en Asie du sud-est, ou
plusieurs études ont décrit des souches cliniques et environnementales productrices de
métalloenzymes de type NDM-1. En outre, en 2015, une étude a décrit un nouveau type de
carbapénémases, VCC-1, isolé de crevettes au Canada. Une autre étude a rapporté la présence de
souches de V. cholerae résistantes aux carbapénemes dans des échantillons environnementaux
collectés sur les cotes allemandes de la mer baltique et de la mer du nord. Cependant, aucun géne de

résistance n’a été retrouvé chez ces souches.

Dans D’article suivant nous décrivons une souche de V. cholerae non-O1/non-O139 productrice de
deux carbapénémases de type VIM-1 et VIM-4. Elle a été isolée d’un échantillon cloacal d’un goéland
leucophée. Les geénes blayyy faisaient partie d’un intégron de classe 1, situé sur un plasmide de type
IncA/C. Cette étude souligne une fois de plus la présence de génes codant des carbapénémases dans le

microbiote de la faune sauvage.
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We describe here a non-O1/non-0139 Vibrio cholerae isolate producing both VIM-1 and VIM-4 carbapenemases. It was isolated
from a yellow-legged gull in southern France. The blay,, genes were part of a class 1 integron structure located in an IncA/C
plasmid. This study emphasizes the presence of carbapenemase genes in wildlife microbiota.

M ultidrug-resistant Vibrio cholerae strains have been increas-
ingly reported worldwide (1). However, data on resistance
to third-generation cephalosporins, mostly via genes encoding ex-
tended-spectrum B-lactamase (ESBL) (2, 3) or cephalosporinase
determinants (4) are limited. Carbapenemase-mediated resis-
tance in Vibrio spp. has been reported only in India, where clinical
and environmental V. cholerae isolates carrying the NDM-1 me-
talloenzyme were described in several studies (4-6). We describe
here an avian strain of V. cholerae that was isolated in southern
France and that coharbors the blayy, , and blay,, , carbapen-
emase genes.

In April 2013, 93 cloacal swab samples from juvenile un-
fledged yellow-legged gulls (Larus michahellis) breeding on the
island of Carteau, Port-Saint-Louis, France, were screened for
bacteria resistant to broad-spectrum -lactam antibiotics. Briefly,
swab samples were inoculated in Trypticase soy broth (Thermo
Fisher Scientific) and grown at 37°C for 24 h. Samples were then
subcultured in ESBL agar plates (bioMérieux, Marcy I’Etoile,
France) and were examined after 24 and 48 h of incubation. En-
terobacteriaceae resistant to multiple drugs via different resistance
mechanisms (e.g., third-generation cephalosporin-resistant Esch-
erichia coli and Proteus mirabilis harboring plasmid-mediated
cephalosporinase genes or ESBL genes) were recovered (7; our
unpublished data). In addition, a V. cholerae strain showing resis-
tance to third-generation cephalosporins was detected. No other
multidrug-resistant V. cholerae strain was recovered. Species iden-
tification was performed by matrix-assisted laser desorption ion-
ization—time of flight (MALDI-TOF) mass spectrometry (Bruker
Daltonics, Bremen, Germany). Moreover, PCR analysis of the rfb
gene cluster (8), the cholera toxin ctxA gene (9), and the coloni-
zation factor fcpA gene (9) revealed a nontoxigenic, non-O1/non-
0139 isolate.

Susceptibility testing was performed using the disk diffusion
method on Mueller-Hinton agar and was interpreted according to
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) clinical breakpoints (version 5.0) (http://www.eucast
.org/clinical_breakpoints/) (10). The strain was intermediate or
resistant to most B-lactam antibiotics, except aztreonam. The
MICs for amoxicillin, cefotaxime, ceftazidime, imipenem, ertap-
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enem, doripenem, and meropenem were determined in the pa-
rental strain and the transconjugant with the Etest method (bio-
Mérieux, Marcy I'Etoile, France) (Table 1). Metallo-B-lactamase
production was observed by using the carbapenemase/metallo-3-
lactamase confirmative identification pack (Rosco Diagnostica Neo-
Sensitabs, Eurobio, Courtaboeuf, France). Specifically, reduced sus-
ceptibility to meropenem was corrected by the addition of dipicolinic
acid, while the addition of cloxacillin and boronic acid had no effect.
ESBL production was excluded with the double-disk synergy test
(11), while culture in Mueller-Hinton agar impregnated with 2 ml of
5 X 10> M EDTA restored the activity of all B-lactam antibiotics, as
previously described (12). Susceptibility testing using the disk diffu-
sion method showed that fluoroquinolones, chloramphenicol, cotri-
moxazole, and tetracycline remained active. Only tobramycin
showed intermediate susceptibility among the aminoglycosides,
while amikacin, isepamicin, netilmicin, and gentamicin remained ac-
tive.

Detection of the most prevalent carbapenemase genes (includ-
ing blaypc, blayy, blagya_as> and blayyp._ ), assessed by multiplex
PCR as previously described (13), and of the blayyy, gene (14),
assessed by PCR assay, gave a positive result for the blayy, gene.
This was confirmed by simplex PCR assay using the primers
VIM_F (5"-AGTGGTGAGTATCCGACAG-3") and VIM_R (5'-T
GCAACTTCATGTTATGCCG-3'). Bidirectional sequencing per-
formed using the BigDye Terminator v3.1 cycle sequencing kit
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TABLE 1 Susceptibility of parental and recipient strains

Non-O1/Non-0139 V. cholerae Producing VIM-1 and VIM-4

TABLE 2 Primers used for PCR mapping of the cassette network

MIC (mg/liter) for:

Parental strain Recipient strain

Antibiotic (V. cholerae) (J53 E. coli) J53 E. coli
Amoxicillin >256 >256 2
Cefotaxime 4 8 0.064
Ceftazidime 6 24 0.064
Aztreonam 0.38 0.032 0.064
Imipenem 3 4 0.25
Ertapenem 0.19 0.064 0.064
Meropenem 0.5 0.75 0.064
Doripenem 0.75 0.75 0.064
Amikacin 2 0.5 0.5
Gentamicin 1.5 0.25 0.25
Tobramycin 2 0.75 0.5

(Applied Biosystems, Foster City, CA, USA) and an Applied Bio-
systems 3730 XL capillary sequencer identified both blayy,_, and
blay .4 genes.

To characterize the genetic environment of the blay,, genes,
the amplicons of parental and recipient strains were analyzed by
PCR mapping and sequencing using specific primers (Table 2)
(GenBank accession number KR262557). Both blayy,,.; and
blayy., genes were part of the same class 1 integron (Fig. 1),
located in the IncA/C plasmid. These two carbapenemase gene
cassettes flanked an aac(6’)-IIc gene cassette that confers resis-
tance to aminoglycosides. A PcS (strong) promoter variant, diver-
gent to the integrase gene, was identified in the class 1 integron,
with a functional P2 promoter located downstream of the PcS in
the attl1 site. It resulted from the insertion of three G residues. The
PcS-P2 association has rarely been described in class 1 integrons
and might confer high-level gene cassette expression (15). A sim-
ilar integron containing the blayy,., and aac(6')-Ilc genes was
previously described in an Enterobacter cloacae clinical isolate
from Greece (GenBank accession number AY648125) (16), but
this is the first description of a class 1 integron with two blay
variants. It may be hypothesized that the presence of two blayy,
genes in a single integron might enable better plasticity in the case
of rearrangements of the cassette network under selective pressure
caused, for instance, by antibiotics.

Mating experiments were performed on agar plates, as previ-
ously described (6), at 25°C and 37°C using the rifampin-resistant
E. coli ]53 strain as the recipient, with a donor-to-recipient ratio of
4:1. Transconjugants were selected on Drigalski agar (Bio-Rad)
containing 250 mg/liter rifampin and 4 mg/liter cefotaxime. A
transconjugant that coharbored the blay,,., and blayy, 4 genes
was obtained from the V. cholerae isolate at 25°C, with a transfer
frequency of 3 X 10~ ° transconjugants per recipient. PCR map-
ping showed that the genetic structure that harbored both blayy,
genes was the same in the parental and recipient strains. No trans-
fer was obtained at 37°C, despite repeated attempts. The plasmid
relaxase gene typing (PRaseT) method, which allows detection of
the major replicon groups, and a PCR-based replicon typing
method revealed the presence of an IncA/C plasmid in the paren-
tal and recipient strains (17, 18). Conversely, the SXT integrative
and conjugative element, which is a major resistance determi-
nant in V. cholerae (1), was detected in only the parental strain by
PRaseT. No other typeable mobile genetic element was found.
Plasmid content analysis using the method of Kado and Liu (19)
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Primer name Primer sequence (5’ to 3")

VIM-L1 TCATTGTCCGTGATGGTGATGA
VIM-L2 CCGGGCGGTCTAGACTTGCT
VIM-R1 CGATATGCGACCAAACACCATC
VIM-R2 GCCATTCAGCCAGATCG

att]l GGCATCCAAGCAGCAAGCGCGTT
sull GTCCGACATCCACGACGTCTGATC

revealed only one plasmid of ~150 kb in both the parental and
recipient strains (see Fig. S1 in the supplemental material). These
results suggest that the blayy,_, and blay 1, genes were carried by
the broad-host-range IncA/C transmissible plasmid, a widespread
blay,\-carrying genetic element (20) and a common resistance
determinant in V. cholerae (21).

Although nonepidemic, non-O1/non-0139 V. cholerae iso-
lates are human pathogens that may cause diarrhea and extraint-
estinal infections (21). Fluid resuscitation remains the first-line
therapy, but the use of antibiotics allows decreased symptom du-
ration and pathogen dissemination. This is, to our knowledge, the
first description of a non-O1/non-0139 V. cholerae isolate har-
boring blay,, carbapenemase genes worldwide and the first de-
scription of a carbapenemase-producing V. cholerae in Western
countries.

Here, its identification in an animal microbiota brings new
insights into the presence of such strains in wildlife ecosystems.
Walsh et al. (6) previously described NDM-1-carrying V. cholerae
in seepage and tap water samples collected in New Delhi, India,
emphasizing the transfer frequency of this metalloenzyme in var-
ious recipient species at environmentally relevant temperatures.
In their study, conjugative transfer of IncA/C plasmids harboring
blaypa., in V. cholerae did not happen at 37°C, and average trans-
fer frequencies of 10~ ° and 10~ * were observed at 25°C and 30°C,
respectively. Similarly, our study found that the plasmid could
transfer at 25°C with comparable frequencies, whereas conjuga-
tion attempts at 37°C were unsuccessful. This suggests that opti-
mal transfer conditions would mainly occur in the environment
rather than in the gut. The presence of metalloenzymes on differ-
ent genetic locations (IncA/C and nontypeable plasmids [4, 6],
chromosome [5, 6]) in V. cholerae is of concern because it indi-
cates that they can spread easily on various mobile genetic ele-
ments.

Yellow-legged gulls inhabit mostly coastal regions across the Med-
iterranean, where they breed in dense colonies. As they can fly long
distances across the European and northern African borders, espe-
cially during their first year of life, they could play a role in the dis-
semination of blay,.-harboring V. cholerae. Based on the feeding
habits of yellow-legged gulls (they mainly rely on anthropogenic
resources) and their microbiota diversity (including E. coli), it is
reasonable to think that they are an important zoonotic reservoir
of multidrug-resistant organisms, including blayy,-carrying bac-
teria. This is consistent with reports highlighting the increasing
prevalence of carbapenemase-producing microorganisms in wild-
life microbiota (22). Moreover, their direct exposure to human
activities might play a role in the spread of antibiotic resistance, as
previously illustrated by ESBL-positive E. coli isolates with similar
genetic background recovered among gulls and humans in several
countries, including southern France (23). Further studies are
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FIG 1 Linear map of the class 1 integron harboring both blayy,_, and blayy,_, genes. Arrows, relative gene size and direction of transcription; black arrows, gene

cassette promoters PcS and P2.

needed to assess the prevalence of carbapenemase genes and their
genetic background in wildlife microbiota.

Nucleotide sequence accession number. The sequence of the
class 1 integron harboring both blayy,_; and blayy, 4 genes has
been submitted to GenBank under accession number KR262557.
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IX. Conclusions — Discussion

Ce travail de thése a permis d'identifier et de caractériser 1’existence d’un réservoir de bactéries
multirésistantes aux antibiotiques au sein du microbiote cloacal de goélands méditerranéens en France,
puis de comparer ces BMR aviaires aux isolats bactériens retrouvés chez I’homme dans la méme

région d’étude en colonisation ou impliqués dans des processus infectieux.

Plus particulierement, cette étude a révélé 1’existence d’isolats de P. mirabilis producteurs de CMY-2.
Le fait que I'ICE soit le support génétique exclusif de cette résistance indique qu'il pourrait jouer un
role important dans la dissémination de ce gene de résistance chez ces goélands et dans I'écosystéme
marin. Ce qui est en adéquation avec la forte prévalence de ces éléments génétiques mobiles retrouvés
chez des bactéries ubiquitaires de I'environnement aquatique, notamment celles du genre Vibrio (24).
C'est aussi la premicre description de ce géne de résistance sur un ICE chez des souches humaines en
France, cela a été décrit dans trois autres régions dans le monde (25-27), ce qui pourrait confirmer
I'hypothese de Mata sur l'importance de ces éléments génétiques dans 1'émergence de ces résistances
chez I'homme, mais aussi dans la faune sauvage, d'autant plus que nous avons montré qu'il y avait une
persistance dans le temps de ces génes de résistances portés par ces ICEs chez ces deux especes de

goélands.

Cependant, lors de notre échantillonnage nous avons aussi isolé des souches d’E. coli productrices de
céphalosporinases a haut niveau. Plusieurs plasmides ont été détectés chez ces souches qui possedent
le méme gene de résistance que les P. mirabilis mais n’ont cependant pas le méme support génétique.
Ces ICEs de la famille SXT/R391-like n’ont été retrouvé chez aucun FE. coli producteurs de
céphalosporinase, de méme que les P. mirabilis possédant le géne blacyy., ne possédaient aucun
plasmide détectable avec les techniques utilisées. Cela pourrait étre di a une spécificité d’hote de ces
ICEs de la famille SXT/R391-like porteurs du géne blacmy.,. En effet, n’ayant été retrouvée que chez
P. mirabilis (25-27), cette structure génétique chromosomique pourrait conférer un avantage sélectif a
cette espece bactérienne lorsque soumise a une pression de sélection antibiotique constante dans le

temps.
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Un deuxiéme résultat trés important et trés intéressant est la présence d’especes bactériennes
productrices de carbapénémases au sein du méme microbiote. Il s’agit de la deuxieme description d'E.
coli productrices de carbapénémases chez des oiseaux sauvages, et la premiére chez des goélands.
Ceci est particulierement préoccupant en raison des situations d'impasses thérapeutiques et des
problémes de santé publique que peut causer ce type de souches. Il s’agit aussi de la premiére
description d'une souche de V. cholerae produisant une carbapénémase de type VIM, et la premiére

description d'une souche de cette espéce résistante aux carbapénémes dans les pays occidentaux.

Cependant et comme développé en préambule, les bactéries productrices de carbapénémases de type
VIM sont rares en France, responsable de seulement 5% des infections signalées (28). Elles sont plus
souvent retrouvées en Grece, bien qu'elles commencent a se répandre en Europe du sud-ouest,
notamment en Espagne et en Italie (29, 30). La France en revanche semble pour le moment moins
touchée, ou les genes blaoxaas sont les plus fréquemment retrouvés (28). En outre, le fait que ces
souches soient reliées génétiquement aux souches sensibles humaines et aviaires isolées de la méme
région d’étude, confirme I’existence d’échanges entre les goélands et les humains, comme cela avait
été démontré précédemment dans la région avec des E. coli producteurs de BLSE (21). De plus, la
présence de ces souches dans une seule espéce de goélands nous oriente vers une sélection de la
résistance qui a eu lieu dans l'environnement et / ou au sein de la faune. Cette sélection peut avoir
conduit soit a la circulation soutenue d'une souche amenée de 1'étranger, a 1'émergence de souches
résistantes indépendante directement liées a la pollution locale ou d’une contamination d’origine
humaine locale suivie d’une amplification liée aux conditions environnementales de la colonie. Le fait
de retrouver le méme géne de résistance chez une souche de V. cholerae suggere un éventuel transfert
génétique entre ces deux especes. Les plasmides de type IncA/C ayant un large spectre d’hdte (31), ils

pourraient jouer un role important dans la transmission et la dissémination de ces résistances.

De plus, V. cholerae étant une bactérie ubiquitaire dans I’environnement (24), on pourrait se poser la
question sur la diffusion et la persistance de ces genes de résistance dans ce dernier. Une étude
rapporte la présence de souches environnementales d’E. coli productrices de ce méme type de

carbapénemases sur différents types de plasmides (32). L environnement pourrait ainsi jouer le role

27



non seulement de réservoir de ces génes mais aussi d’intermédiaire entre les différents compartiments

étudiés.

Avec cette étude nous démontrons la complexité de la circulation de I’antibiorésistance au sein du
microbiote étudié. Nous ne possédons actuellement pas assez d’informations pour bien comprendre ce
phénomene. Cependant, ce travail ouvre de nombreuses perspectives d’un point de vue
épidémiologique mais également fondamental sur les mécanismes et les supports génétique de cette
antibiorésistance. En effet, il illustre bien les apports importants des outils d’épidémiologie
moléculaire dans la surveillance de 1I’émergence et la compréhension de la dynamique de transmission

et de diffusion des BMR dans la faune sauvage.
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X. Perspectives

Notre étude permet d’envisager d’explorer différentes perspectives :

1. L’une des premicres perspectives sera de caractériser les autres BMR isolées dans notre
¢chantillonnage aviaire. En particulier, d’étudier les supports génétiques des céphalosporinases de haut
niveau retrouvées chez les isolats d’E. coli et les comparer avec ceux retrouvés chez les patients du
CHU de Montpellier et les P. mirabilis. Nous investiguerons aussi les souches d’E.coli résistants aux
carbapénémes isolées lors de la deuxieme année d’étude afin de confirmer leur persistance dans le
temps. Ces dernieres sont porteuses du méme gene de résistance blaypy. Il serait aussi pertinent de
caractériser les souches de P. mirabilis, E. coli et Klebsiella pneumoniae productrices de BLSE isolées
de ce méme microbiote, et réaliser un suivi longitudinal de ces BMR au sein de cet écosysteme aviaire
afin d’étudier la dynamique temporelle de ce phénomeéne et de comparer nos résultats avec ceux de

1I’étude de Bonnedahl ez a/ (21).

2. 1l serait aussi intéressant d’explorer les habitats visités par ces goélands en les équipant de balises
GPS. Ces derniers peuvent étre amenés a prospecter d’autres sites a des fins alimentaires. Ceci pourrait

aider a expliquer leur contamination par des BMR

3. Dans notre étude nous ne nous sommes intéressés qu’a un seul écosystéme animal sauvage que sont
les goélands. Nous souhaiterions donc aussi inclure un hdte qui vit en contact plus étroit avec I’homme
que les goélands comme le rat surmulot (Rattus norvegicus). Les données disponibles montrent que
cet espece peut étre porteuse de BMR (18). Elle differe des goélands par sa capacité de dispersion, les
oiseaux parcourant des distances beaucoup plus longues que les rongeurs, ce qui nous permettra

d’évaluer les conséquences de ces contrastes sur la dynamique des bactéries antibiorésistantes.

4. Afin de compléter ce travail, il serait nécessaire d'explorer le compartiment manquant a notre étude,
a savoir l'environnement, en particulier dans 1’écosystéme aquatique qui a déja été décrit comme étant
un réservoir de ce type de souches BMR, et de les comparer avec nos souches aviaires afin de mieux
comprendre la dynamique de transmission de ces résistances. En effet, I’eau pourrait représenter un

intermédiaire entre les compartiments étudiés, ce qui expliquerait la présence de mémes clones chez
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I’homme et les deux especes d’oiseaux. L’analyse des propriétés physico-chimiques de cette eau serait
aussi trés pertinente. Il a ét¢ démontré que la présence de facteurs extrinseques comme les métaux
lourds ou des métabolites d’antibiotiques favorisaient I’émergence et le maintien des geénes de

résistance aux antibiotiques chez les bactéries (6, 33, 34).

5. En plus de la recherche de BMR directement dans 1’eau, une recherche de ces dernicres pourrait étre
réalisée dans la méme région aux sein d’organismes filtreurs aquatiques (e.g. Mytilus
galloprovincialis) (35), qui pourraient jouer le role de sentinelle pour les BMR. En effet, ce sont de
véritables concentrateurs de bactéries circulantes et peuvent donc constituer des modeles biologiques
trés intéressants pour avoir une image de la diversité bactérienne aquatique. Par ailleurs, au sein de
notre région d’étude, la Camargue, ces organismes sont ubiquitaires. Il serait intéressant
d’échantillonner ces derniers et d’étudier leur portage bactérien dans différents habitats le long d’un
continuum entre zones potentiellement sources de souches antibiorésistantes (e.g. hopitaux, stations
d’épuration) et zones moins touchées par les activités humaines (e.g. réserves naturelles). En effet, des
¢tudes ayant porté sur la présence de bactéries antibiorésistantes dans 1’eau, ont montré qu’il existait
des gradients de densité et de diversité de ces bactéries le long de cours d’eau en aval de sources
potentielles de souches antibiorésistantes telles que des hopitaux et des stations d’épuration (36, 37).
Ainsi, en prenant 1’hypotheése qu’il existe des zones sources de contamination par les bactéries
antibiorésistantes, nous pouvons supposer que la quantité et la diversité des souches résistantes devrait

diminuer au sein de la faune sauvage, comme dans |’eau, a mesure que I’on s’éloigne de ces sources.
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arbapenemase-producing Enterobacteriaceae (CPE) have

been increasingly reported worldwide. The few studies avail-
able on CPE epidemiology in West and East Africa highlight the
identification of carbapenemases in Cameroon (NDM-4), Kenya
(NDM-1), Sierra Leone (VIM and DIM-1), Senegal (OXA-48),
and Tanzania (KPC, IMP, OXA-48, VIM, and NDM) (1). Al-
though blagy, 45 genes are widely spread in North Africa,
blagy x4 derivatives have been rarely reported in Africa. Indeed,
blagya.143 Was detected only twice in Egypt and blagy 14, (a point
mutant analogue of OXA-48) only once in South Africa (1). Here,
we describe the first four cases of Escherichia coli carrying the
blagxa.1s1 gene in Burkina Faso.

Four E. coli strains (Table 1) were isolated from four patients in
two hospitals in Ouagadougou, Burkina Faso. Carbapenem MICs,
determined using the Etest (bioMérieux), were 1 to 1.5 mg/liter,
0.125 to 0.75 mg/liter, and 0.25 to 0.5 mg/liter for ertapenem,
doripenem, and imipenem, respectively (Table 1). Three patients
received antibiotics before strain isolation (Table 1). None of the
patients reported recent travel outside Burkina Faso. Multiplex
PCR and DNA sequencing targeting the most prevalent extended-
spectrum-@3-lactamase (ESBL)- and carbapenemase-encoding
genes (2, 3) revealed the presence of blacrx_n15 and of blagy 141
in the four isolates. No other carbapenemase-encoding gene (cor-
responding to NDM, VIM, IMP, and KPC) was detected. Multi-
locus sequence typing (MLST) (http://bigsdb.web.pasteur.fr/)
showed that the four strains belonged to new sequence type (ST)
ST692, which is described here for the first time. Enterobacterial
repetitive intergenic consensus sequence PCR (ERIC-PCR) (4)
patterns (see Fig. S1 in the supplemental material) and the vari-
able-number tandem-repeat (VNTR) (5) profile determined on
the basis of analysis of 7 polymorphic loci (6-1-5-8-3-5-1; see
Table 1) confirmed the genetic links among the four E. coli strains.
However, the review of medical records indicated that the four
patients were hospitalized in different structures (hospitals and
wards). Although there was no relationship or housing shared
between the patients, these data support the hypothesis of infec-
tions by the same multidrug-resistant clone circulating in these
hospitals or in the general community.

Plasmid DNA was extracted by alkaline lysis and subsequently
analyzed by gel electrophoresis as previously described (6). Com-
parative analysis was carried out using reference plasmids RP4 (54
kb), pCFF04 (85 kb), and pIP173 (126.8 kb) and showed two
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different plasmids of ca. 120 kb and ca. 54 kb, respectively, in each
strain.

Mating experiments performed using azide-resistant E. coli
strain J53 as a recipient under various conditions were unsuccess-
ful. Plasmid DNA was extracted using a QIAprep Spin Miniprep
kit (Qiagen) and transferred by electroporation into E. coli DH10B
(Invitrogen, Cergy-Pontoise, France). The blagyx,_;4,-carrying
transformants showed ertapenem and imipenem MICs of 0.38 to
0.5 mg/liter and 0.5 to 0.75 mg/liter, respectively. Analysis by plas-
mid relaxase gene typing (7) and PCR-based replicon typing (8)
identified IncX3-type relaxase and ColE-type replication initia-
tion genes, respectively, in the transformants. Alkaline lysis of
transformants and subsequent electrophoresis showed that these
genes were carried by the ca. 54-kb plasmid. As a blagy,_5,-car-
rying IncX3 plasmid was recently identified in E. coli in China (9),
PCR mapping was carried out in the four strains and their respec-
tive transformants with primers designed using plasmid
pOXA181_EC14828 as the template (GenBank accession number
KP400525). All primers used for PCR mapping are reported in
Table S1 in the supplemental material. PCR mapping gave sim-
ilar results in all four E. coli strains. DNA regions surrounding the
blagx .15, gene are detailed in Fig. 1 and showed that blagyx, s,
was part of the Tn2013 transposon, as previously described (10).
The same genetic context was recovered in all six blagxs 15~
surrounding sequences available in the GenBank database
(GenBank accession numbers KP400525, AB972272, TN205800,
NZ_JRKWO01000020, JQ996150, and KT005457) (11, 12). The
repAl gene (encoding a ColE-type replication initiation protein)
was downstream of Tn2013. This replicase gene was also found
on plasmids pKP3-A (JN205800) and pMR3-OXA181
(NZ_JRKWO01000020) that belong to the ColE and IncN incom-
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TABLE 1 Clinical and microbiological characteristics of the four blagy,_,5,-producing E. coli isolates and their respective transformants and of E.
coli J53¢

Result
Characteristic EC187 EC187 (T) EC292 EC292 (T) EC309 EC309 (T) EC327 EC327 (T) E. coli]53
Patient F, 12 yrs old M, 2 yrs old F, 65 yrs old F, 21 yrs old
Origin Urine Suppuration Suppuration Urine
Clinical symptom or Dysuria Abdominal pain Peritonitis Unknown
diagnosis
Use of antibiotics in the None reported CFM, CRO, GE AMC, GE CRO, GE
previous 3 mo
MLST ST692 ST692 ST692 ST692
VNTR® 6-1-5-8-3-5-1 6-1-5-8-3-5-1 6-1-5-8-3-5-1 6-1-5-8-3-5-1
MIC (mg/liter)
Ertapenem 1 0.5 1.5 0.5 1.5 0.5 1.5 0.38 0.06
Doripenem 0.125 ND 0.25 ND 0.25 ND 0.75 ND ND
Imipenem 0.25 0.5 0.5 0.75 0.38 0.5 0.38 0.5 0.25
Associated resistance
ESBL CTX-M-15 None CTX-M-15 None CTX-M-15 None CTX-M-15 None

Non-B-lactam
resistance

CIP, GE, SXT, TE ND CIP, GE, SXT, TE ND CIP, GE, SXT, TE ND CIP, GE, SXT, TE ND

4 (T), transformant; F, female; M, male; ND, not determined; AMX, amoxicillin; AMC, amoxicillin-clavulanic acid (co-amoxiclav); CFM, cefixime; CIP, ciprofloxacin; CRO,
ceftriaxone; GE, gentamicin; SXT, sulfamethoxazole-trimethoprim; TE, tetracycline.
? Data represent CNV1, CNV2, CNV3, CNV4, CNV7, CNV14, and CNV15.

patibility groups, respectively. This suggests that blagy g, might  blagxa_,5;-surrounding regions and included, in addition to the

have come from a ColE-type scaffold. Fluoroquinolone resistance
gene gnrSI was also detected downstream of blagy, 5, (Fig. 1).
An IncX3-specific backbone was recovered at the 5" extremity of

repB replicase gene, the parA partition gene (13) and the umuD
gene involved in SOS mutagenesis (14). Large-scale PCR mapping
targeting various plasmid regions, including transfer, replication,

POXA181_EC14828 (KP400525)
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FIG 1 Genetic map of the four plasmids harboring blagy,_;5; described in this report. Purple arrows represent the replicase genes. Light-gray arrows represent
genes encoding hypothetical proteins. Yellow arrows represent genes encoding partition systems. Dark-gray arrows represent accessory genes. Green arrows
represent transposase-encoding genes and insertion sequences. Red arrows represent antimicrobial resistance genes. Blue arrows represent genes implicated in
plasmid transfer. The genetic context of blagy,_;s; is visually extended at the bottom. Plasmid pOXA181_EC14828 was harbored by an E. coli isolate in China
(GenBank accession no. KP400525) and was used as a model to map the four blagy,_;5,-carrying plasmids described in this report. Thin black lines represent the
25 oligonucleotide pairs used for PCR mapping in all four plasmids. All amplicons were fully sequenced and displayed 100% identity to those of plasmid
pOXA181_EC14828.
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and partition systems, was also performed and covered a total of
29,569 bp, which amounts to ca. 55% coverage compared to the
estimated size of the plasmid (Fig. 1; see also Table S1 in the sup-
plemental material). All PCR products displayed 100% identity
to those encoded by the respective regions of plasmid
pOXA181_EC14828 (Fig. 1).

Since the first description in Indian hospitals in 2011, OXA-
181-positive Enterobacteriaceae have been reported worldwide (1,
11). Their emergence in West Africa in IncX3 plasmids is of par-
ticular concern because these plasmids mediate the spread of car-
bapenemases in Enterobacteriaceae (15, 16). Moreover, a recent
study found an IncX3 plasmid harboring blagy,_1g, in a Klebsiella
variicola isolate in fresh vegetables imported to Switzerland from
Asia (12). This plasmid, named pKS22 (KT005457), is highly sim-
ilar to pOXA181_EC14828 (100% coverage and 99% identity)
and therefore to the four IncX3 plasmids described in our report.
The presence of highly similar IncX3 plasmids in Asia, Africa, and
Europe might suggest the epidemic potential of the members of
this plasmid lineage and their role in worldwide dissemination of
OXA-181.
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High prevalence of extended-spectrum
B-lactamase producing enterobacteriaceae
among clinical isolates in Burkina Faso
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Abstract

Background: Nothing is known about the epidemiology and resistance mechanisms of extended-spectrum
R-lactamase-producing Enterobacteriaceae (ESBL-PE) in Burkina Faso. The objective of this study was to determine
ESBL-PE prevalence and to characterize ESBL genes in Burkina Faso.

Methods: During 2 months (June-July 2014), 1602 clinical samples were sent for bacteriologic investigations to the
microbiology laboratories of the tree main hospitals of Burkina Faso. Isolates were identified by mass spectrometry
using a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) BioTyper. Antibiotic susceptibility was
tested using the disk diffusion method on Muller-Hinton agar. The different ESBL genes in potential ESBL-producing
isolates were detected by PCR and double stranded DNA sequencing. Escherichia coli phylogenetic groups were
determined using a PCR-based method.

Results: ESBL-PE frequency was 58 % (179 strains among the 308 Enterobacteriaceae isolates identified in the collected
samples; 45 % in outpatients and 70 % in hospitalized patients). The CTX-M-1 group was dominant (94 %, CTX-M-15
enzyme), followed by the CTX-M-9 group (4 %). ESBL producers were more often found in E. coli (67.5 %) and Klebsiella
pneumoniae (26 %) isolates. E. coli isolates (n =202; 60 % of all Enterobacteriaceae samples) were distributed in eight
phylogenetic groups (A =49, B1=15,B2=43, C=22,Clade |=7, D=37, F=13 and 16 unknown); 22 strains belonged
to the sequence type ST131. No association between a specific strain and ESBL production was detected.

Conclusions: This report shows the alarming spread of ESBL genes in Burkina Faso. Public health efforts should focus
on education (population and healthcare professionals), surveillance and promotion of correct and restricted antibiotic
use to limit their dissemination.

Keywords: Enterobacteriaceae, ESBL, Clinical samples, Inpatient and outpatient, Burkina Faso

Background

The emergence and spread of Multidrug Resistant (MDR)
bacteria are major public health threats. Particularly,
bacteria that produce extended-spectrum f3-lactamases
(ESBL) are of great concern because their resistance to
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penicillins and narrow- and extended-spectrum cephalo-
sporins reduces considerably the treatment options [1].
ESBL genes originally evolved from the 3-lactamase TEM-
1, TEM-2 and SHV-1 genes through mutations of the
amino acids surrounding the active site and were mainly
detected in nosocomial pathogens [2]. However, during
the past decade, the rapid and massive spread of CTX-M-
type ESBLs has been described worldwide. This has
considerably changed their epidemiology because they
combine the expansion of mobile genetic elements with
specific clonal dissemination [3]. Furthermore, such
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plasmids typically carry resistance genes also to other
drugs, such as aminoglycosides and fluoroquinolones [2].
Recent studies suggest that CTX-M-type ESBL- producing
Enterobacteriaceae (ESBL-PE) are endemic in most coun-
tries of Europe, Asia and South America, with high rates
of CTX-M-type ESBL-producers particularly among
Escherichia coli (30 to 90 %) and Klebsiella pneumoniae
(10 to 60 %) [4, 5]. Despite these public health concerns,
little is known about ESBL diffusion in Africa. ESBL-PE
rates between 8.8 and 13.1 % were reported in South
Africa [6] and an alarmingly high proportion of ESBL-PE
(49.3 %) was found among clinical isolates from Ghana
[7]. Conversely, no information is available on the
epidemiology of ESBL-producing pathogens in hospital or
community settings in Burkina Faso, a low-income
country close to Ghana. Therefore, the aim of the present
study was to estimate ESBL occurrence in clinical samples
from hospitalized and non-hospitalized patients and to
characterize the ESBL genes as well as the genetic back-
ground of the identified E. coli strains.

Methods

Study setting

During 2 months (June—July 2014), all consecutive clinical
samples sent to the microbiology laboratories of the three
main hospitals of Burkina were investigated. Specifically:

1. Yalgado Ouedraogo Teaching Hospital (CHU-YO)
is the largest medical institution located in
Ouagadougou, the capital city with a population of
about 2 million inhabitants. This hospital has 716
beds and intensive care units that are used for
surgical, medical and trauma emergencies. Annually,
more than 20,000 inpatients (children and adults)
are admitted among 126,000 consultations.

2. Souro Sanou Teaching Hospital (CHU-SS) is the
major healthcare and referral centre for the
southern and western regions of Burkina Faso. It has
521 beds distributed in different specialized
(medicine, surgery, gynaecology obstetric and
paediatric) acute care units. The annual number of
hospitalizations ranges from 15,000 to 20,000
patients among 108,000 consultations.

3. Charles de Gaulle Paediatric Teaching Hospital
(CHUP-CDG) is the referral paediatric hospital in
Ouagadougou with 120 beds. About 6000 children
are seen each year and 5000 are hospitalized. The
microbiology laboratory also receives samples from
adult outpatients.

Specimen collection, identification and antimicrobial
susceptibility testing

In June and July 2014 (CHU-SS and CHUP-CDG) and
July 2014 (CHU-YO), 1602 clinical samples were sent to
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the three microbiology laboratories for bacteriologic
investigations (CHU-YO: n =521, CHU-SS: n =528 and
CHUP-CDG: #n=553). Bacterial cultures could be
obtained only from 584 of these samples (mainly be-
cause of poor pre-analytical sample handling) and they
included 308 Enterobacteriaceae isolates. Enterobacteria-
ceae isolates were recovered from urine (n=185), pus
(n =56), aspirates from various anatomic sites (n = 38),
stool (n=16), blood (n=8), vaginal swabs (n=3) and
cerebrospinal fluid samples (n =2). The remaining 276
isolates included Gram positive cocci (Staphylococcus
spp and Streptococcus spp) and Gram negative bacilli (e.g.,
Pseudomonas aeruginosa and Acinetobacter baumanii).
Species identification was performed by matrix-assisted
laser desorption ionization-time of flight (MALDI-TOF)
mass spectrometry (Bruker Daltonics, Bremen, Germany).
Antimicrobial susceptibility was tested with the disk diffu-
sion method on Miiller-Hinton agar. The following an-
tibiotics were tested: penicillins (amoxicillin, amoxicillin-
clavulanic acid, piperacillin, piperacillin-tazobactam, ticar-
cillin, ticarcillin-clavulanic acid), monobactam (aztreonam),
oxacephem (moxalactam), extended-spectrum cephalo-
sporins (cefepime, cefotaxime, cefpirome, cefpodoxime,
cefoxitin, ceftazidime, cephalotin), carbapenems (imipe-
nem), aminoglycosides (amikacin, gentamicin, netilmicin
and tobramycin), quinolones (nalidixic acid, ciprofloxacin,
levofloxacin, ofloxacin) fosfomycin, chloramphenicol, tetra-
cycline and trimethoprim-sulfamethoxazole. Results were
interpreted according to the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) clin-
ical breakpoints (Version 5.0) (http://www.eucast.org/
clinical_breakpoints/). ESBL production was detected
by using the combined double-disk synergy method
[8]. In case of high-level cephalosporinase production,
the combined double-disk synergy test was performed
using cloxacillin-supplemented medium. Ertapenem
minimal inhibitory concentrations (MIC), determined
using the Etest (bioMerieux), were determined for all
isolates.

Molecular identification of ESBL genes

DNA was extracted from one single colony for each isolate
in a final volume of 100 uL of distilled water by incubation
at 95 °C for 10 min followed by a centrifugation step. The
presence of blactx. (CTX-M group 1, 2, 8, 9 and 25),
blareny, blasyy and blaoxawe genes was assessed by
multiplex PCR according to a previously published
method [9]. DNA from reference blactx.m, blatem,
blasyy and blaoxa.-iike-positive strains was used as
positive control. PCR products were visualized after
electrophoresis on 1.5 % agarose gels containing eth-
idium bromide at 100 V for 80 min. A 100 bp DNA
ladder (Promega, USA) was used as a marker size.
PCR products were purified using the ExoSAP-IT
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purification kit (GE Healthcare, Piscataway, NJ, USA)
and sequenced bidirectionally on a 3100 ABI Prism
Genetic Analyzer (Applied Biosystems). Nucleotide se-
quence alignment and analyses were performed online
using the BLAST program available at the National
Center for Biotechnology Information web page
http:// www.ncbi.nlm.nih.gov.

PCR detection of Escherichia coli phylogroups and ST131
E. coli phylogenetic grouping was performed using the
PCR-based method described by Clermont and al. [10].
For strains assigned to the B2 phylogenetic group, the
sequence type (ST) 131 was determined using a PCR
method specific for the O25-b serotype with primers
that target the pabB and trpA genes, as previously
described [11].

Statistical analysis

Statistical analysis was performed with Epi Info, version
3.5.3 [Centers for Disease Control and Prevention (CDC),
Atlanta, GA, USA]. Associations between demographic
variables (sex, site of infection and age) and infection by
ESBL-PEs were analysed by using odds ratio and a multi-
nomial logistic regression model, when appropriate. A
value of p<0.05 was considered to be statistically
significant.
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Results

Occurrence of ESBL-producing enterobacteriaceae

During the study period, 308 different enterobacterial
isolates were recovered from 158 hospitalized and 150
non-hospitalized patients (Table 1). The mean age of
these patients was 29.7 + 24.6 years and the sex ratio 1.4;
118 patients (38 %) were younger than 15. Among these
308 isolates, 179 (58 %) were identified as potential
ESBL-PEs by antimicrobial susceptibility testing. PCR
analysis confirmed that they all carried ESBL genes
(Table 1). Considering the isolate origin, ESBL-PE preva-
lence was of 65 % (42/65) at CHU-YO, 59 % (84/142) at
CHU-SS and 52 % (53/101) at CHUP-CDG. Moreover,
ESBL-PEs were found in 45 % of outpatients and 70 % of
hospitalized patients (p < 0.001). In hospitalized patients,
no demographic factor was significantly associated with
ESBL-PE occurrence (p > 0.05) (Table 1). Conversely in out-
patients, the ESBL-PE prevalence was significantly higher
among patients older than 65 years of age (Odd Ratio
[OR] = 6.4, 95 % CI=0.47-86.34; p <0.001). ESBL-PE
rate was also significantly higher in male than female
outpatients (OR = 4.59) and in urinary samples (59 of 119;
50 %) (Table 1). Species identification showed that the 179
ESBL-PEs included 121 (67.5 %) E. coli, 46 (26 %) K. pneu-
moniae, 7 (4 %) Enterobacter cloacae, 2 (1 %) Providencia
stuartii, 1 (0.5 %) Enterobacter aerogenes, 1 (0.5 %) Citro-
bacter freundi and 1 (0.5 %) Morganella morgannii species
(Table 2). The highest proportion of ESBL-PEs was found

Table 1 Demographic characteristics and source of the bacterial isolates

Outpatients (n=150)

Inpatients (n = 158)

Variable ESBL-positive  ESBL-negative Odds Ratio (95 % Cl) P-value ESBL-positive ESBL-negative Odds Ratio (95 % Cl) P-value
(n=68) (n=82) (n=111) (n=47)
Sex <0.001 0.724
F(n=129) 16 48 1 47 18 1
M (n=179) 52 34 4.59 (2.14-9.84) 64 29 0.85 (042-1.70)
Source of isolates 0.019 0.139
Urine sample (n-185) 59 60 1 48 18 1
Pus (n=56) 06 07 0.87 (0.28-2.75) 32 1 1.09 (046-2.61)
Aspirate (n =38) 02 03 0.68 (0.11-4.20) 24 09 1.00 (0.39-2.56)
Other® (n=29) 01 12 0.08 (0.01-0.67) 07 09 0.29 (0.09-0.90)
Age <0.001 0.607
<28 days 01 02 1 09 04 1
>28 days-1 year 01 08 0.20 (0.01-4.72) 07 04 0.78 (0.14-4.27)
>1-5 years 02 15 0.31 (0.02-5.19) 06 06 044 (0.09-2.28)
>5-15 years 04 07 1.14 (0.08-16.95) 30 12 1.11 (0.29-4.31)
>15-65 years 44 45 1.96 (0.17-22.35) 49 19 1.15(0.32-4.17)
>65 years 16 05 6.40 (0.47-86.34) 10 02 2 (033-15.18)

Abbreviations: Cl confidence interval, ESBL extended-spectrum beta-lactamase, F females, M males, n number

?Other: stool, cerebrospinal fluid, blood samples and high vaginal swabs
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Table 2 Prevalence of ESBL-producing isolates among the different Enterobacteriaceae species identified in our samples

Distribution of ESBL-producing isolates in samples (%)

Species Within species Total Urine Stool Blood Pus Aspirates HVS CSF
(%) (n=185) (n=16) (n=18) (n=56 (n=38) (n=3) (n=2)
Escherichia coli 121/202 (60 %) 67.5 % 67/114 0/15 0 29/39 23/31 2/2 0/1
Klebsiella pneumonia 46/70 (66 %) 26 % 32/51 0 5/6 6/8 3/4 01 0
Enterobacter cloacae 7/13 (54 %) 4 % 6/10 0 0 1/3 0 0 0
Enterobacter aerogenes 1/3 (33 %) 0.5 % 1/2 0 0 0 01 0 0
Citrobacter koseri 0/1 - 0 0 0 0 01 0 0
Citrobacter freundi 173 (33 %) 0.5 % 1/2 0 0 0/1 0 0 0
Proteus mirabilis 0/5 - 0/4 0 0 0/1 0 0 0
Providencia stuartii 2/6 (33 %) 1% 0/1 0 1/1 1/3 0/1 0 0
Salmonella spp 0/3 - 0 0/1 0/1 0 0 0 0/1
Morganella morgannii 1/1 (100 %) 0.5 % 0 0 0 1/1 0 0 0
Leclercia adecarboxylata 0/1 - 01 0 0 0 0 0 0
Total (%) 179/308 (58 %) 100 % 107/185 0/16 6/8 38/56 26/38 2/3 0/2

Abbreviations: CSF cerebrospinal fluid, ESBL extended-spectrum beta-lactamase, HVS high vaginal swab, n = number

in blood samples (6/8, 75 %). Moreover, within each spe-
cies, the fraction of ESBL producers was highest among
Morganella morgannii isolates (100 %), followed by K
pneumoniae (66 %) and E. coli (60 %) (Table 2). The 129
non-ESBL-PEs included E. coli (81/2002, 40 %), K. pneu-
moniae (24/70, 34 %) Enterobacter cloacae (6/13, 46 %),
Providencia stuartii (4/6, 66 %) Enterobacter aerogenes (2/
3, 77 %) Citrobacter freundi (2/3, 66 %), Salmonella spp
(3/3, 100 %), Proteus mirabilis (5/5, 100 %) and Leclercia
adecarboxylata (1/1) species.

Antibiotic susceptibility patterns
The susceptibility pattern of ESBL producing (n=179)
and non-producing (n = 129) Enterobacteriaceae isolates
is shown in Fig. 1. ESBL-PE isolates were more resistant
to the other tested antibiotics than non-producers: cotri-
moxazole (45 % vs 5 %), gentamicin (89 % vs 27.5 %),
tobramycin (86 % vs 9 %), netilmicin (88 % vs 12 %),
ciprofloxacin (80 % vs 12 %), ofloxacin (70 % vs 7 %) and
levofloxacin (82 % vs 27 %) (p<0.05). None of the
collected Enterobacteriaceae isolates was resistant to
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isolates. The histogram shows the percentage of ESBL-PE and NON ESBL-PE isolates that were susceptible to each tested antibiotic compound. Y axis:
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imipenem. Four isolates had high ertapenem MCL
Additional investigations showed that these four isolates
carried blaOXA181 (47).

Molecular characterization of ESBL and other B-lactamase
genes

Most ESBL-PE isolates (94 %) were identified as
CTX-M group 1 producers because all of them car-
ried the blactx.a1s gene. CTX-M group 9 producers
represented only 4 % of all ESBL-PEs (blactx.a14 Was
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detected in three isolates and blactx.n.o7 in five samples
(Table 3). The blasiy.1» gene was detected in two isolates.
The ESBL genes were detected alone or in association
with one to three other f3-lactamase genes: blaoxa.1,
blagipy.1 and blargys.;. While blactx.a.1s was found in all
the different enterobacterial species, blacTx.n.14 Was de-
tected only in E. coli samples (n = 3), blactx.a.27 in E. coli
(n=2), K. pneumoniae (n=1) and E. cloacae (n=1) iso-
lates, and blagyyy.1o in one E. coli and one K. pneumoniae
sample (Table 3).

Table 3 Characterization of genes encoding beta lactamases in the 179 ESBL-producer isolates

Outpatients (n = 68)

Inpatients (n=111)

Isolates (n) Hospital (n) ESBL Type Other -lactamases ESBL Types Other B-lactamases
Escherichia coli (121) CHU-YO (37) CTX-M-15 (1) OXA-1(1) CTX-M-14 (1) SHV-1, TEM =1 (1)
CTX-M-15 (2) SHV-1 (2) CTX-M-14 (1) TEM-1 (1)
CTX-M-15 (1) TEM-1 (1) CTX-M-15 (3) TEM-1, OXA-1 (3)
CTX-M-15 (1) - CTX-M-15 (7) TEM-1(7)
- - CTX-M-15 (3) SHV-1 (3)
- - CTX-M-15 (12) OXA-1 (12)
- - CTX-M-15 (3) -
- - CTX-M-27 (2) TEM-1 (2)
CHUSS (52) CTX-M-15 (3) SHV-1, OXA-1 (3) CTX-M-15 (1) SHV-1, OXA-1 (1)
CTX-M-15 (1) TEM-1, OXA-1 (1) CTX-M-15 (1) TEM-1, OXA-1 (1)
CTX-M-15 (2) TEM-1 (2) CTX-M-15 (1) TEM-1 (1)
CTX-M-15 (27) OXA-1 (27) CTX-M-15 (15) OXA-1 (15)
SHV-12 (1) - - -
CHUP-CDG (32) CTX-M-15 (1) OXA-1 (1) CTX-M-14 (2) TEM-1, OXA-1 (2)
CTX-M-15 (4) TEM-1(4) CTX-M-15 (8) TEM-1, OXA-1 (8)
CTX-M-27 (1) OXA-1, TEM-1(1) CTX-M-15 (10) TEM-1(10)
- - CTX-M-15 (6) OXA-1 (6)
Klebsiella pneumonia (46) CHU-YO (5) CTX-M-15(1) TEM-1, OXA-1(1) CTX-M-15 (1) SHV-1, OXA-1, TEM-1 (1)
SHV-12 (1) - CTX-M-15 (2) OXA-1 (2)
CHUSS (24) CTX-M-15(1) SHV-1, OXA-1, TEM-1(1) CTX-M-15(3) SHV-1, OXA-1, TEM-1(3)
CTX-M-15(2) SHV-1, OXA-1, (2) CTX-M-15(2) SHV-1, OXA-1 (2)
CTX-M-15(3) SHV-1, TEM-1 (3) CTX-M-15(2) OXA-1, TEM-1 (2)
CTX-M-15(5) OXA-1 (5) CTX-M15 (2) OXA-1 (2)
CTX-M-15(1) TEM-1(1) CTX-M=15(1) -
CTX-M-15(2) SHV-1 (2) - -
CHUP-CDG (17) CTX-M-15 (2) OXA-1 (2) CTX-M-15 (3) OXA-1(3)
- - CTX-M-15 (5) EM-1, OXA-1 (5)
- - CTX-M-15(4) SHV-1, TEM-1(4)
- - CTX-M-15(2) SHV-11
- - CTX-M-27(1) SHV-1(1)
Other strains (12) CTX-M-15(2) OXA-1, TEM-1 (2) CTX-M-15 (5) OXA-1, TEM-1
CTX-M-15 (2) TEM-1, SHV-1 (2) CTX-M-15 (1) SHV-11(1)
CTX-M-27 (1) OXA-1 (1) CTXM-15 (1) -

Abbreviations: N number
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Escherichia coli phylogenetic groups and sequence type 131
The phylogenetic group analysis revealed diversity in
both ESBL-producing and non-producing E. coli isolates
(n =202). Specifically, E. coli isolates belonged to eight
different phylogenetic groups (A =49, Bl =15, B2 =43,
C=22, Clade I=7, D=37 F=13) and 16 could not be
classified according to Clermont and al. method [10].
These 16 isolates might represent a new phylogenetic
group. Phylogenetic group A was more represented
among ESBL-producers (31 of 121; 26 %), followed by
group D and B2 (for both: 26 of 121; 21.5 %). Non-ESBL
producers belonged mainly to the phylogenetic groups A
and B2 (18 and 17 of 81, respectively; 21 %). Moreover,
the ST131 sequence type was detected in 16 ESBL-
producers and in six non-producers (Table 4).

Discussion

In this study, we investigated the frequency of ESBL
production by Enterobacteriaceae isolates from clinical
samples sent to the three main hospitals of Burkina Faso
in June and July 2014. Overall, 58 % of these isolates
were ESBL-PEs. This is much higher than the rates
reported in Europe [12, 13] and in other African coun-
tries: Algeria (17.7-31.4 %), Egypt (42.9 %) [14] and
Ghana (49.4 %) [7]. Lack of antibiotic surveillance may
have contributed to increasing the ESBL-PE problem
that certainly has been present in Burkina Faso for a
long time. Indeed, it has been shown that in countries
with limited resources where hygiene is poor and antibi-
otics are misused, the absence of anti-microbial surveil-
lance programmes increases the risk of multi-resistance
development by bacteria in hospitals and in the commu-
nity [15-17]. We found that blood cultures had the
highest proportion of ESBL-PE isolates. This differs from
the results of a recent literature review on ESBL-PE
prevalence in Africa [18] showing a significantly lower
proportion of ESBL-PE in blood cultures than in other
specimens. This discrepancy is certainly explained by the
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small number of enterobacterial strains (eight of which
six were ESBL-PEs) recovered from blood samples.
Indeed, 107 ESBL-PEs were identified in urine samples
(107/185, 58 %), a prevalence similar to what reported in
previous studies [7, 19-21]. ESBL producers were more
often found in E. coli (67 %) and K. pneumoniae (26 %)
isolates, in agreement with previous works showing that
these two species are the predominant ESBL-producers
worldwide [2, 22]. ESBL-producing E. coli is considered
to be responsible for hospital- and community-acquired
infections, while ESBL-producing K. pneumoniae is con-
sidered mainly a nosocomial pathogen [2, 22]. In agree-
ment, we identified ESBL-producing K. pneumoniae
most frequently in samples from hospitalized patients.
ESBL-PE prevalence differed considerably between out-
patients and inpatients (45 % vs. 70 %: p < 0.001). More
than two thirds of enterobacterial infections in hospital-
ized patients were thus caused by an ESBL-PE. In
Burkina Faso, patients are usually hospitalized only in
the case of very severe symptoms and after a long and
empiric antibiotic therapy. These factors could explain
this alarmingly high resistance level in hospitalized pa-
tients and also in outpatients (45 % compared with 7.5 %
of community-acquired infections in Morocco [23] and
11.7 % in Nigeria) [24]. In outpatients, ESBL-PE
frequency was significantly higher in isolates from older
patients (more than 65 years of age, [OR] =6.4, 95 %
CI=0.47-86.34). These results are in agreement with
the study by Colodner and al. [3] showing that elderly
patients present a higher antibiotic pressure and more
underlying diseases, two significant risk factors for in-
fection by ESBL producers [25]. In addition, ESBL-PE
rate was significantly higher in male outpatients (OR =
4.59, 95 % CI =2.14-9.84) and the urinary tract was the
most frequent source (59 of 119, 50 %). The possible
explanation may be that complicated urinary tract in-
fections are more frequent in elderly men than elderly
women [26].

Table 4 Phylogenetic group assignment of the 202 E. coli strains subdivided based on the detection or not of ESBL genes

ESBL-Positive (n=121)

ESBL-Negative (n=81)

A Bl B2 C Cladel D F Unknown ST131 A Bl B2 C Cladel D F Unknown ST131
Hospital (number of samples)

CHU-YO (55)

Outpatients (16) 0 0 3 0 O 2 0 0 1 0 0 1 6 0 0O 0 4 0

Inpatients (39) 9 2 4 6 0 5 6 0 3 0 0 3 0 O 2 0 2 1
CHU-SS (90)

Outpatients (59) 6 1 1M 4 2 8 1 0 8 7 2 7 4 1 3 2 0 4

Inpatients (31) 7 1 5 1 0 3 1T 1 4 2 2 1 1 1 0 1T 3 0
CHUP-CDG (57)

Outpatients 200 0 1 0 0 0 2 2 1 0 7 2 3 0 0 1 0 1 1

Inpatients (37) 9 2 3 0 3 6 0 3 0 2 2 2 0 O 5 0 1 0
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In this study most ESBL-PEs were resistant to multiple
drugs, especially to fluoroquinolones, aminoglycosides,
cotrimoxazole and tetracycline, as described in previous
studies [27-29]. This level of multi-resistance could lead
to potential therapeutic impasses. Indeed, more than three
quarters of ESBL-PE isolates were resistant to fluoroquino-
lones and aminoglycosides (but for amikacin), thus com-
promising the choice of antibiotic treatment, especially for
outpatients with urinary tract infections. Moreover alter-
native antimicrobial agents, such as amikacin, fosfomycin
and imipenem, are very expensive and difficult to obtain in
Burkina Faso. These alarming results should act as an im-
petus for the establishment of antibiotic control policies.
Indeed, currently, there is no restriction in the use of anti-
biotics in Burkina Faso. Antibiotics can be purchased over
the counter without medical prescription. Patients may
buy only a few tablets of an antibiotic because of limited
money availability. Moreover, patients may begin an anti-
microbial regimen and stop it when they feel better, before
the end of the treatment, to save the remaining tablets for
another time.

Finally, we found that 94 % of ESBL-PEs carried the
blactx.m.15 gene. In the last decade, CTX-M enzymes,
particularly CTX-M-15, have emerged worldwide and
are the most prevalent in Europe, America and Asia
[30-36]. Moreover, eight strains were CTX-M group 9
producers (blactx.nm.27 in five and blactx 14 in three).
These genes have been previously detected in E. coli
isolates in Kenya [37] and in Egypt [38]. Nevertheless,
the blactx.m.15 gene remains dominant in the African
continent: 59 % of ESBL-PE in South Africa [34], 83 %
in Mali [39], 91 % in Tunisia [40] and 96 % in Cameroon
[41]. The blasyy.1> gene (detected in one E. coli and one
K. pneumoniae sample) has emerged in recent years and
has been also detected in different Enterobacteriaceae
isolates in the previously quoted studies in African coun-
tries [34, 38—41].

The phylogenetic group assignment of the 202 E. coli iso-
lated showed a high diversity in both populations (out-pa-
tients and in-patients) without any association between a
specific strain and ESBL production. This indicates that the
high frequency of ESBL carriage is not caused by the epi-
demic spread of a single resistant clone. This contrasts with
previous studies in which the dissemination of CTX-M-15-
producing isolates was associated with the spread of the
ST131 E. coli strain belonging to phylogenetic group B2
[42—44]. Indeed, in the present study, most isolates were
assigned to the commensal groups A (49/202, 24 %) and
B2 (43/202, 21 %). Only 13 % (16/121) of ESBL-producers
and 7 % (6/81) of non ESBL-producers belonged to the
ST131 clone. Moreover, some ESBL-producing E. coli iso-
lated from urine, pus and blood samples belonged to three
phylogenetic groups associated with CTX-M-15 dissemin-
ation: the virulent extra-intestinal group D (26/121) [45]
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and groups C (11/121) and F (10/121), usually detected in
urinary tract infections [46]. This important genetic diver-
sity among isolates suggests that the high rate of ESBL pro-
duction and associated resistance are more likely caused
by the diffusion of plasmids carrying antibiotic resistance
genes than to cross-transmission between patients. The
maintenance of these plasmids was probably favoured by
antibiotic pressure. Further investigations, including mul-
tilocus sequence typing and plasmid characterization, are
needed to complete this study.

Conclusions

In summary, this first survey shows an alarmingly high
frequency of multi-resistant ESBL-PEs among clinical
isolates in Burkina Faso. The analysis of the resistance
genes highlighted an important dissemination of blacrx.
m-15 without clonal dissemination, suggesting a strong
antibiotic selection pressure in hospital and community
settings. Public health efforts should focus on educating
the population and healthcare professionals about the
proper use of antibiotics to halt/limit the spread of
multi-resistant bacteria.
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Fecal Carriage of Enterobacteriaceae Producing
Extended-Spectrum Beta-Lactamases in Hospitalized
Patients and Healthy Community Volunteers
in Burkina Faso
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Extended-spectrum [-lactamase-producing Enterobacteriaceae (ESBL-PE) have been described worldwide,
but few reports focused on Burkina Faso. To assess the prevalence of digestive carriage of such bacteria in the
community and in the hospital, 214 fecal samples, 101 from healthy volunteers and 113 from hospitalized
patients without digestive pathology, were collected in Bobo Dioulasso, Burkina Faso economic capital, during
July and August 2014. Stool samples were screened using ESBL agar plates. Strains were identified by mass
spectrometry using the Biotyper MALDI-TOF. ESBL production was confirmed with the double-disc synergy
test. Susceptibility was tested using the disk diffusion method on Miiller-Hinton agar. The main ESBL genes
were detected using multiplex PCR and bidirectional gene sequencing. Escherichia coli phylogenetic groups
were identified using a PCR-based method. During the study period, prevalence of subjects with fecal ESBL-PE
was 32% (69/214), 22% among healthy volunteers and 42% among inpatients. All but two ESBL, CTX-M-15
and ESBL-PE, were mostly E. coli (78%). Among the 60 ESBL-producing E. coli strains, 26% belonged to
phylogenetic group D, 23.3% to group A, 20% to group B1, 6.6% to group B2, and 3.3% to the ST131 clone.
Univariate analysis showed that history of hospitalization and previous antibiotic use were risk factors asso-
ciated with ESBL-PE fecal carriage. In Burkina Faso, the prevalence of both healthy subjects from the com-
munity and hospitalized patients with fecal ESBL-PE is alarmingly high. This feature should be taken into
consideration by both general practitioners and hospital doctors with regard to empirical treatments of infec-
tions, notably urinary tract infections.

Introduction Digestive tract is the main reservoir of Enterobacteriaceae

causing infections whatever their onset (community or hospi-

EXTENDED-SPECTRUM B-LacTtamases (ESBL) hydrolyze
a wide range of B-lactam antibiotics, including second-
and third-generation cephalosporins.' Furthermore, ESBL-
producing enterobacterial (ESBL-PE) isolates that produce
new ESBL families (especially CTX-M enzymes) are as-
sociated with resistance to fluoroquinolones and aminogly-
cosides and have been detected worldwide. This might limit
the available treatment options and increase the likelihood
of empiric treatment failure.>*

tal).” Therefore, knowing the prevalence of subjects with di-
gestive tract carriage of ESBL-PE in the community and
among hospitalized patients is a manner to predict the in-
volvement of such bacteria in infections and their level of
transmission. From this point of view, the situation is partic-
ularly dramatic in Africa where subjects with ESBL-PE di-
gestive tract carriage range from 10% to 50% and is higher than
60% in the case of ESBL-producing Escherichia coli.®” In
Burkina Faso, a low-income country of West Africa, nothing is
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known about the digestive tract carriage of ESBL-producing
Enterobacteriaceae both among inpatients and healthy sub-
jects. The objective of the present study was to assess the
prevalence of patients hospitalized at the Souro Sanou Uni-
versity Hospital and healthy volunteers living in the city of
Bobo Dioulasso with digestive tract carriage of ESBL-PE, and
to characterize the ESBL produced as well as the genetic
background of the E. coli producing these enzymes.

Materials and Methods
Patients, specimen collection, and ethical clearance

This study was conducted in Bobo Dioulasso, Burkina Faso
economical capital with a population of about 1 million in-
habitants. During July and August 2014, 214 fecal samples
were collected from 101 healthy volunteers in the community
and 113 patients who were hospitalized at the Souro Sanou
University Hospital for more than 48 hr (people with digestive
pathologies were excluded from the study). Souro Sanou
University Hospital is the major healthcare and referral center
for Burkina Faso southern and western regions. It has 521 beds
distributed in different specialized (medicine, surgery, gyne-
cology, obstetrics, and pediatrics) acute care units. Each
participant was interviewed by health professionals using a
home-made standardized questionnaire to record the following
data: age, gender, antibiotic treatment during the past 3 months,
and any hospital stays in the previous year. The study was
approved by the Souro Sanou University Hospital board (Au-
thorization No. MS/SG/CHUSS/DG/DL 2014-171, July 2,
2014). Informed written consent was obtained from all subjects
and at least one parent for each child before enrollment.

Detection of ESBL-PE isolates and antibiotic
susceptibility testing

Briefly, 0.5 g of each fresh stool sample was suspended in
5 ml of sterile saline and 100 pl aliquots were plated on ESBL.
agar plates (bioMérieux, Marcy-1’Etoile, France) and were
examined after 24 and 48hr of incubation at 37°C. Each
distinct morphotype of colonies that grew on ESBL agar
plates was studied. Species identification was performed by
Matrix-Assisted Laser Desorption—Ionization Time-of-Flight
(MALDI-TOF) Mass Spectrometry (Bruker Daltonics,
Bremen, Germany). All Enterobacteriaceae isolates were
screened for ESBL production using the double-disc synergy
test.® In all positive isolates, antimicrobial susceptibility was
tested by using the disk diffusion method on Miiller-Hinton
agar for the following antibiotics: amoxicillin, amoxicillin—
clavulanic acid, aztreonam, cefepime, cefotaxime, cefpir-
ome, cefpodoxime, cefoxitin, ceftazidime, cephalothin,
moxalactam, piperacillin, piperacillin—tazobactam, ticarcillin,
ticarcillin—clavulanic acid, imipenem, nalidixic acid, cipro-
floxacin, levofloxacin, ofloxacin, amikacin, gentamicin,
netilmicin, tobramycin, fosfomycin, chloramphenicol, tetra-
cycline, and trimethoprim—sulfamethoxazole. Results were
interpreted following the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) clinical break-
points (Version 5.0) (www.eucast.org/clinical_breakpoints/).

Molecular identification of ESBL genes

DNA was extracted from single colonies in a final volume
of 100 pl of distilled water by incubation at 95°C for 10 min,
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followed by a centrifugation step. Multiplex PCR was used
to identify strains harboring blactx.m genes that encode
different CTX-M variants (i.e., CTX-M group 1, 2, 8, 9, and
25) as well as the blatgm, blasyy, and blagxa_jike genes, as
previously described.” DNA samples from reference strains
carrying blactx.m, blatem, blasyy, or blagx a-iike Were used
as positive controls. PCR products were separated by elec-
trophoresis on 1.5% agarose gels containing ethidium bro-
mide at 100V for 80 min. A 100 bp DNA ladder (Promega,
Fitchburg, WI) was used for size estimation. All specific
PCR products were purified using the ExoSAP-IT PCR
Clean-up Kit (GE Healthcare, Piscataway, NJ) and bidi-
rectional sequencing was performed on a 3100 ABI Prism
Genetic Analyzer (Applied Biosystems, Foster City, CA).
Sequence alignment and analysis were performed using the
BLAST program available at the National Center for Bio-
technology Information (www.ncbi.nlm.nih.gov).

Detection of E. coli phylogenetic groups
and sequence type 131 clone

To determine the phylogenetic group of the ESBL-
producing E. coli isolates, we used the PCR-based method
described by Clermont et al.'° For strains assigned to the B2
phylogenetic group, the presence of E. coli sequence type
(ST) 131 was determined using an O25b-specific PCR
method with pabB and trpA (control) allele-specific primers,
as previously described."’

Statistical analysis

Data were analyzed with Epi Info version 3.5.3 (Centers
for Disease Control and Prevention, Atlanta, GA). Condi-
tional logistic regression analysis was used for the univariate
analysis of risk factors and odds ratio with 95% confidence
intervals. A p<0.05 was considered to be statistically sig-
nificant.

Results
Prevalence and risk factors of ESBL-PE fecal carriage

During the study period, 214 subjects (101 healthy volun-
teers and 113 hospitalized patients) with a mean age of
21.917.1 years were enrolled (Table 1). Among the healthy
volunteers, 6 (6%) were hospitalized in the previous year and
22 (22%) received antibiotics, within the 3 months before in-
clusion in the study, such as B-Lactams (n=9/22, 41%),
fluoroquinolones (n="7/22, 32%), or other unspecified antibi-
otics (n=6/22, 27%). Among the hospitalized patients, 21
(18.5%) were also hospitalized in the previous year and 58
(51%) received antibiotics, within the 3 months before sam-
pling, such as B-Lactams (n=36/58, 62%), fluoroquinolones
(n=13/58, 22%), or other antibiotics (n=9/58, 16%) (Table 1).
The previous use of antibiotics and prior hospitalization were
different for both populations ( p <0.005) (Table 2). Among the
214 stool samples, 69 (32% [26-39%]) grew on selective ESBL
agar; 47 of these samples were from inpatients (42% [33-51%]
of 113) and 22 from healthy volunteers (22% [15-31%] of 101)
(p=0.002). ESBL production by these 69 samples was con-
firmed with the double-disk synergy test and by PCR. When
taking into account the unit where the enrolled patients were
hospitalized, we found that 65% (19/29) of patients enrolled
from medicine wards were ESBL-PE carriers, 47% (14/30)
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TABLE 1. DEMOGRAPHIC CHARACTERISTICS, PREVALENCE OF ESBL-PE FEcAL CARRIAGE IN THE STUDY POPULATION

Variables Healthy volunteers (n=101) Inpatients (n=113) Total (n=214)
Age, years, mean (SD) 18.5 (12.5) 25.9 (18.8) 21.9 (7.1)
Males, n (%) 47 (46) 46 (40.7) 93 (43)
ESBL-PE carriers, n (%) 22 (22) 47 (42) 69 (32)
Hospitalization duration, days, mean (SD) — 10.3 (11.2) —
Previous hospitalization (in the last year), n (%)

Yes 6 (6) 21 (18.5) 27 (12.6)

No 95 (94) 92 (81.5) 187 (87.4)
Antibiotic treatment (in last 3 months), n (%)

Yes 22 (22) 58 (51) 80 (37.4)

No 45 (44) 37 (33) 82 (38.3)

Not known 34 (34) 18 (16) 52 (24.3)
Used antibiotics, n (%)

B-Lactams 9 (41) 36 (62) 45 (21)

Fluoroquinolones 7 (32) 13 (22) 20 (9.3)

Other antibiotics® 6 (27) 9 (16) 15 (7)

“Tetracycline, doxycycline, trimethoprim—sulfamethoxazole, erythromycin, clindamycin, and gentamicin.

SD, standard deviation.

from surgery wards, 28% (8/29) from gynecology/obstetrics
ward, and 24% (6/25) from the pediatric department. Uni-
variate analysis did not identify any specific factor associated
with ESBL-PE fecal carriage in the hospitalized population
(Table 3). Conversely, in the healthy controls, previous use of
antibiotics and anterior hospitalization were risk factors for
ESBL-PE carriage (p <0.05) (Table 3).

Characterization of and associated resistance
in ESBL-PE isolates

From the 69 ESBL-positive samples, 77 different ESBL-
PE isolates were identified by MALDI-TOF Mass Spectro-
metry: E. coli was the main enterobacterial species (60/77:
78%), followed by Klebsiella pneumoniae (16/77: 21%) and
Enterobacter cloacae (1/77: 1%). Among the healthy vol-
unteers, 21/101 had an ESBL-producing E. coli among
whom three had also an ESBL-producing K. pneumoniae
isolate, and one had an ESBL-producing K. pneumoniae.
The three healthy volunteers who carried both ESBL-
producing E. coli and K. pneumoniae isolates were hospi-
talized during the previous year. Among the hospitalized
patients, 47/113 had ESBL-producing isolates: 34 an E coli
isolate, 7 a K. pneumoniae isolate, 1 an E. cloacae isolate,
and 5 both an E. coli isolate and a K. pneumoniae isolate.

The susceptibility pattern of the ESBL-producing strains
is summarized in Figure 1. ESBL-producing isolates from
healthy volunteers were more frequently resistant to chlor-
amphenicol and fluoroquinolones, while isolates from in-
patients showed higher resistance rates to tetracyclines and

aminoglycosides. Most samples from both populations were
also resistant to sulfamethoxazole—trimethoprim. All iso-
lates were susceptible to imipenem.

p-Lactamase production characterization

ESBL-positive strains harbored genes encoding CTX-M
group 1 enzymes [CTX-M-15: 75/77 (98%)], CTX-M group
9 enzymes [CTX-M-14:1/77 (1%)], or SHV enzymes [SHV-
12: 1/77 (1%)]. The blactx-m-15 gene was detected alone in
15 isolates (20%) or in association with other ff-lactamase
genes: blagxa-1 and blatgyy.; in 8 isolates (10.6%), blatem.
1 and blaSHV—l in 4 (53%), blaOXA—l and blaSHv_] in 8
(10.6%), blatgpm.; alone in 15 (20%), blagxa-; alone in 23
(306%), and blaSHv_l alone in 2 (26%) The blaCTX_M_14
gene was associated with the blagxa.; gene while blasyy.12
was detected alone. The blactx.m.1s gene was found in
59 E. coli strains, 15 K. pneumoniae isolates and the single
E. cloacae strain. The blactx_m.14 gene was detected in one
E. coli strain (healthy volunteer) and blasyy.1, in one
K. pneumoniae isolate (healthy volunteer) (Table 4).

E. coli phylogenetic groups and ST131 clone

The phylogenetic group analysis indicated that the 60
ESBL-positive E. coli isolates were distributed in six
phylogenetic groups: D (18/60), A (14/60), B1 (12/60), C
(8/60), B2 (4/60), F (3/60), and one unknown.

Group B1 E. coli isolates were only detected from hos-
pitalized patients, while group D isolates were mostly from

TABLE 2. UNIVARIATE ANALYSIS OF ANTIBIOTIC USE AND PREVIOUS HOSPITALIZATION
AMONG OUTPATIENTS AND INPATIENTS

Risk factors Outpatients (n=101) Inpatients (113) Odds ratio (95% CI) P
Previous use of antibiotics

Yes/no 22/45 58/37 0.31 (0.16-0.60) <0.001
Previous hospitalization

Yes/no 6/95 21/92 0.27 (0.10-0.71) 0.005
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TABLE 3. ANALYSIS OF RisK FACTORS FOR ESBL-PE FECAL CARRIAGE IN THE STUDY POPULATION
Outpatients (n=101) Inpatients (n=113)
ESBL- ESBL- ESBL- ESBL-
positive negative Odds ratio positive  negative  Odds ratio
Covariate (n=22) (n=79) (95% CI) P (n=47) (n=606) (95% CI) P
Age, years, mean (SD) 21.6 (14.5) 17.6 (11.8) 0.24 258 (15.4) 26 (21.7) 0.95
Male gender 7 40 0.46 0.12 16 29 0.62 0.28
(0.16-1.24) (0.29-1.34)
Hospitalization duration, 12.1 (14.1) 8.9 (8.35) 0.09
days, mean (SD)
Antibiotic use (last 3 months)
Yes/no 15/4 7141 20.47 <0.001 23/15 35/22 0.96 0.93
(5.5-95.23) (0.41-2.23)
Anterior hospitalization
(in last year)
Yes/no 5/17 1/78 23 <0.001 9/38 12/54 1.01 0.89
(2.51-209.17) (0.39-2.65)

healthy volunteers (12 out of 18). The ST131 clone was
found only in healthy volunteers (Table 5).

Discussion

In this study, we investigated the prevalence of healthy
community volunteers and hospitalized patients with intes-
tinal carriage of ESBL-PE in Burkina Faso. Overall, we
found a prevalence of fecal ESBL-PE carriage of 32%,
which is much higher than what is observed in the countries
in the North, and particularly in Europe, where fecal car-
riage rates range from 0.6% to 11.6%.'>'* However, our
results are consistent with data from various countries of
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TABLE 4. CHARACTERIZATION OF THE ESBL-PE STRAINS ISOLATED FROM HEALTHY VOLUNTEERS

AND HOSPITALIZED PATIENTS

No. of ESBL
producers (%)

All detected genes

ESBL genes

Other B-lactamase
genes

Healthy volunteers
(n=22 ESBL-positive samples)

Escherichia coli 21 (84) CTX-M, TEM, OXA-1-like (2)* CTX-M-15 (2)* TEM-1, OXA-1 (2)*
CTX-M, TEM (1) CTX-M-15 (1) TEM-1 (1)
CTX-M, OXA-1-like (11) CTX-M-15 (10) OXA-1 (10)
CTX-M-14 (1) OXA-1 (1)
CTX-M (6) CTX-M-15 (6)
CTX-M, SHV (1) CTX-M-15 (1) SHV-1 (1)

Klebsiella pneumoniae 4 (16) CTX-M, SHV, OXA-1-like (1)  CTX-M-15 (1) SHV-1, OXA-1 (1)
CTX-M, TEM (1) CTX-M-15 (1) TEM-1 (1)
CTX-M (1) CTX-M-15 (1)
SHV (1) SHV-12 (1)

Hospitalized patients

(n=47 ESBL-positive samples)

E. coli 39 (75) CTX-M, TEM, OXA-1-like (6)  CTX-M-15 (6) TEM-1, OXA-1 (6)
CTX-M, TEM (12) CTX-M-15 (12) TEM-1 (12)
CTX-M, OXA-1-like (13) CTX-M-15 (13) OXA-1 (13)
CTX-M, SHV, OXA-1-like 2) CTX-M-15 (2) SHV-11, OXA-1 (2)
CTX-M (6) CTX-M-15 (6)

K. pneumoniae 12 (23) CTX-M, SHV, OXA-1-like (5) CTX-M-15 (5) SHV-1, OXA-1 (5)
CTX-M, SHV, TEM (3) CTX-M-15 (3) TEM-1, SHV-1 (3)
CTX-M, SHV (1) CTX-M-15 (1)  SHV-1 (1)
CTX-M, TEM (1) CTX-M-15 (1) TEM-1 (1)
CTX-M (2) CTX-M-15 (2)

Enterobacter cloacae 1) CTX-M, SHV, TEM (1) CTX-M-15 (1) SHV-1, TEM-1 (1)

“Number of samples.

suggesting that ESBL-producing isolates can spread in the
community beyond the hospital environment (nosocomial
infections), thus potentially increasing the seriousness of
community-acquired infections.

Our risk factor analysis showed that in the community,
previous hospital stays during the last year and antibiotic use

within the last 3 months are high risk factors of ESBL-PE
fecal carriage, differently from what was reported by
Rodriguez-Bano et al. in Spain and Wu et al. in Hong
Kong."”° This discrepancy could be explained by the dif-
ferent clinical practices in these three countries. Indeed in
Burkina Faso, like in many less wealthy countries, the

TABLE 5. PHYLOGENETIC GROUP ASSIGNMENT OF THE 60 ESBL-PRODUCER E. CoLI STRAINS CLASSIFIED
ACCORDING TO THE B-LACTAMASE PRODUCTION

B2 C D F

Detected genes A BI Unknown STi131

Healthy volunteers (n=21 E. coli isolates)
CTX-M, TEM, OXA-1-like (n=2 samples)
CTX-M, TEM (n=1 sample)

CTX-M, OXA-1-like (n=11 samples)
CTX-M (n=6 samples)
CTX-M, SHV (n=1 sample)

Hospitalized patients (n=39 E. coli isolates)
CTX-M, TEM (n=4 samples)

CTX-M (n=2 samples)

CTX-M, OXA-1-like (n=4 samples)
CTX-M, TEM, OXA-1-like (n=2 samples)
CTX-M, TEM (n=6 samples)

CTX-M (n=2 samples)

CTX-M, OXA-1-like (n=3 samples)
CTX-M, TEM, OXA-1-like (n=2 samples)
CTX-M, TEM (n=2 samples)

CTX-M (n=2 samples)

CTX-M, OXA-1-like (n=6 samples)
CTX-M, TEM, OXA-1-like (n=2 samples)
CTX-M, SHV, OXA-1-like (n=2 samples)

7
5

=[]

|
| e

| oo |

1
3
— 1
2

[ [ o e] ==

|
| =




6

number of physicians, microbiologists, and epidemiologists
who can guide/supervise appropriate diagnostic testing,
treatment, and control of infectious diseases is insufficient.
Moreover, in Burkina Faso, antibiotics can be purchased
over the counter without medical prescription. Patients may
buy only a few tablets of an antibiotic because of limited
availability of money. Moreover, patients may begin an
antimicrobial regimen and stop it when they feel better,
before the end of the treatment, to save the remaining tablets
for another time. All these reasons can explain why prior
hospitalization or previous antibiotic use can be serious risk
factors of ESBL-PE fecal carriage in low- and middle-income
countries, as previously highlighted by studies in Mada-
gascar21 and in rural Thai communities.”” In the present study,
ESBL producers were mainly E. coli and K. pneumoniae
strains in hospitalized patients. Lonchel et al. in Cameroon and
Zhang et al. in China reported a more important diversity of
ESBL-PE species (e.g., Enterobacter spp. and Citrobacter
spp.).'>** Nevertheless, in all reports, E. coli was the most
freqluently identified species during colonization by ESBL-
PE.'>%* Importantly, all these bacteria that transit in the
human intestine can become resistant through horizontal gene
exchanges.”

In our study, blactxm.15 Was the most frequently detected
ESBL-encoding gene (98% of isolates), as previously reported
in Cameroon (96% of isolates), Indonesia (94.5%), and Tunisia
(91%).7’26’27 blasyy.12, which was previously reported in
Cameroon,'>?® was detected in a single K. pneumoniae isolate.
The SHV-12 enzyme has evolved from SHV-1 and has been
detected in different Enterobacteriaceae species in other Af-
rican countries.?’*° Nevertheless CTX-M-type ESBL, espe-
cially CTX-M-15, remain dominant worldwide, except in
Asia where ESBL epidemiology shows specific characteris-
tics, with the predominance of CTX-M-9 and 14.233! ESBL-
encoding genes are carried by plasmids, thus facilitating their
transfer between different bacterial species both in hospitals
and in the <:0mmunity.32’33 Most of these plasmids typically
carry resistance genes also to other drugs, such as ami-
noglycosides and fluoroquinolones.** Accordingly, in our
study, CTX-M-15 producers also showed high-level resis-
tance to non-f-lactams, such as aminoglycosides and tetra-
cycline in hospitalized patients and chloramphenicol and
fluoroquinolones in the community volunteers. Most ESBL-
PE samples from both populations were also resistant
to sulfamethoxazole—trimethoprim. The high resistance level
to chloramphenicol, sulfamethoxazole—trimethoprim, and
fluoroquinolones was probably due to easy access and a large
and uncontrolled use in the community. Concerning the level
of resistance to tetracycline in hospitalized patients, except
for an extensive use in hospitals, other risk factors have not
been identified.

In Burkina Faso, like in many low-income countries,
there are no restrictions on the use of antibiotics. Many of
our patients and healthy volunteers had a history of broad-
spectrum antibiotic consumption. Some antibiotics were
prescribed by medical professionals, while others were not.
Based on this irrational antibiotic use, we hypothesize that
the high prevalence of fecal carriage of ESBL-PE that are
resistant also to non-f-lactam antibiotics is caused by the
strong drug-selective pressure on bacterial populations that
live in the human intestine, generally in good intelligence
with their host,*® and not to an epidemic-resistant clone. The
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E. coli phylogenetic group assignment supports this hy-
pothesis. Indeed, the 60 ESBL-producing E. coli isolates
belonged to six of the eight different phylogenetic groups
recently described by Clermont et al.”~ Moreover, most
isolates were assigned to the commensal groups A and B1.
This finding contrasts with previous studies that associated
the dissemination of CTX-M-15-producing isolates with the
spread of the epidemic ST131 E. coli strain belonging to
group B2.°7® In the present study, only four isolates were
assigned to group B2 and only two belonged to the epidemic
ST131 clone, indicating that this clone is less represented in
fecal ESBL-producing E. coli. Similar results were reported
in Tunisia, Libya, and Spain.”‘41 Besides group A, B1, and
B2, some ESBL-producing E. coli isolates belonged also to
three other phylogenetic groups associated with CTX-M-15
dissemination: the virulent extraintestinal group D, previ-
ously found in a similar study in France,** and groups C and
E, usually described in urinary tract infections.** This im-
portant genetic diversity among CTX-M producers in Bur-
kina Faso suggests that horizontal plasmid transfer has played
a more important role than clonal expansion in the commu-
nity and hospital environments. Molecular epidemiology in-
vestigations, including multilocus sequence typing and
variable number of tandem repeats analysis, two powerful
tools for the genetic characterization of Enterobacteriaceae,
are needed to complete this study.***> This genetic charac-
terization of Enterobacteriaceae (sensitive and resistant to
antibiotics) population in Burkina Faso will enhance our
understanding of epidemiology and the circulation of these
bacteria within and between hospitalized patients and com-
munity populations in this country.

In summary, this first study on ESBL carriage among
intestinal isolates in Burkina Faso shows that ESBL-PE
intestinal carriage by asymptomatic humans in Burkina Faso
is high. The characterization of f-lactamase-encoding genes
highlights an important dissemination of the ESBL CTX-M-
15 without clonal dissemination. History of hospitalization
and previous antibiotic use are risk factors in the commu-
nity. Public health efforts should focus on educating the
population and healthcare professionals on the proper use of
antibiotics.
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1. Introduction

Mycobacterium bovis (M. bovis) infections in humans have
become quite rare in industrialized countries. Bovine tubercu-
losis (bTB) control programs have indeed reduced the rate of
zoonotic transmission. The number of M. bovis tuberculosis
(TB) case patients in France drastically reduced since the 1960s
and amounted to only 0.5% of all French TB case patients in
1995 [1]. The person-to-person transmission of M. bovis TB,
as confirmed by microbiological and epidemiological analyses,
remains very rare [2—4]. We report the case of an intrafamilial
transmission of M. bovis TB.

2. Observations
2.1. First case patient

A 49-year-old male patient was admitted to the pulmonology
department of the hospital of Bressuire (France) in March 2001
for a suspicion of pulmonary tuberculosis. The patient had been

* Corresponding author. Département de bactériologie-virologie, CHRU de
Montpellier, Montpellier, France.
E-mail address: s-godreuil @chu-montpellier.fr (S. Godreuil).

http://dx.doi.org/10.1016/j.medmal.2015.07.001
0399-077X/© 2015 Elsevier Masson SAS. All rights reserved.

working in a slaughterhouse as a butcher for several years. He
presented with a persistent cough, asthenia, and weight loss
for the past 4 months. The results of the chest X-ray revealed
bilateral apical opacities, but no cavity. The tuberculin skin test
result was negative (no induration). The HIV serology was neg-
ative. Microbiological analyses were performed on 3 sputum
samples and no acid-fast bacilli were found at direct micro-
scopic examination. However, the culture results highlighted the
presence of mycobacteria in a specific media. Species identifica-
tion was performed with the commercial kit GenoType MTBC
(Hain Lifescience) and confirmed the M. bovis infection. A
combination therapy with isoniazid (INH), rifampicin (RMP),
pyrazinamide (PZA), and ethambutol (EMB) was administered
for 3 months and later replaced by a two-drug combination
therapy (INH + RMP) for 6 more months.

2.2. Second case patient

The mother of the first case patient, a 72-year-old woman
who had been living with her son for years, was admitted to
the same pulmonology department in September 2003 for acute
chest pain on the right lower part of her thorax. The patient was
immunocompromised due to a long-term treatment with corti-
costeroids and methotrexate for rheumatoid arthritis. A family
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Table 1
Results of the molecular typing profiles (spoligotype and MIRU-VNTR) for the human isolates (son and mother).
Résultat du typage moléculaire spoligotype + MIRU-VNTR des deux souches humaines (fils et mere).

Patient  Spoligotype profile (Sp1 to Sp43) MIRU-VNTR profile

ETR-A ETR-B  ETR-C ETR-D QUBIla QUBIIb QUB26 VNTR3232

Son 1000000101111110111111111111111110111100000 7 5 3 2 11 4 7 7
Mother  1000000101111110111111111111111110111100000 7 5 3 2 11 4 7 7

cattle breeding activity, stopped for several years, was mentioned 6 more months. These 2 patients did not receive the standard
atanamnesis. The results of the chest X-ray revealed aright pleu- treatment due to the delayed identification of M. bovis. A
ral effusion. The tuberculin skin test result was positive (15 mm). conventional tuberculosis regimen was instead administered
A direct microscopic examination was performed on sputum (INH + RMP + EMB + PZA). Treatment duration was however
and pleural fluid samples. No acid-fast bacilli were found, but adjusted (9 months) once the results of the species identification

the culture results confirmed the presence of mycobacteria. were available. PZA should however have been discontinued
Molecular species identification confirmed the M. bovis infec- when M. bovis was identified.

tion. A tuberculosis regimen (INH + RMP + EMB +PZA) was Genetic typing using the MIRU-VNTR and spoligotyping
administered for 9 months. Both patients fully recovered after ~ techniques is an efficient and discriminating test to confirm
completing the treatment course. the epidemiological links between the mycobacteria isolates

The strains of M. bovis isolated from the mother and of infected patients. It is also useful to better understand the
son were compared to try and establish a potential infectious transmission of M. tuberculosis and M. bovis TB [2,4,6-9].

epidemiological link between these 2 case patients. Two com- These molecular tests have been widely used to confirm epi-
plementary and reference molecular epidemiological tests were demiological links in person-to-person transmission of TB or
used: spoligotyping and mycobacterial interspersed repetitive- to compare human and cattle isolates in zoonotic transmission
unit-variable-number tandem-repeat (MIRU-VNTR) [2-9]. The cases [2,4,6,7].

results confirmed the genetic link between the isolates of the The present family under study used to own a cattle herd.

mother and the son. Identical DNA profiles were observed using One of the epidemiological hypotheses on the transmission of
the spoligotyping technique and the analysis of 8 loci with the  the infection could be that both mother and son were contam-
MIRU-VNTR technique (ETR-A to ETR-D, QUB 11a, QUB inated by the same animal and that several years later they
11b, QUB 26, VNTR 3232) (Table 1). presented with TB due to the reactivation of the same endoge-

To confirm the hypothesis of a zoonotic transmission of M. nous strain. However, the most likely hypothesis remains the
bovis for those 2 case patients, their spoligotype profiles were occupational zoonotic contamination of the son by infected
compared with those of the national database on spoligotypes carcasses that had not been detected by the routine controls,
of M. bovis strains isolated from French animals between 1979 followed by a person-to-person transmission from the son to the

and 2014 (M.L. Boschiroli, personal communication, Anses). mother. The mother probably reactivated the tuberculosis 2 years
No similarity was found in the human and animal spoligotype after that initial contamination because of her immunocompro-
profiles. mised status. Some authors suggested that patients presenting

with tuberculosis and negative sputum results at direct exam-
ination, but positive culture results, played an important role
3. Discussion in the person-to-person transmission of TB [10]. Those stud-
ies support the intrafamilial transmission hypothesis of our case
The incidence of bTB in cattle herds and the risk of human  patients despite the paucibacillary presentation of the son’s TB.
transmission in industrialized countries significantly decreased ~ This hypothesis is even more relevant as person-to-person M.
with the systematic culling of cattle with a positive tuberculin bovis transmission has already been reported in immunocom-
skin test (performed since 1963 in France) and with the imple-  petent and immunocompromised patients [2,4]. The zoonotic
mentation of control measures for bovine tuberculosis [1,5]. origin of the infection could however not be clearly proven as
Food transmission from cattle to humans is also no longer an  no similarity on the genetic profile of those human strains were
issue because of the systematic pasteurization of the milk (since  identified in the national database of cattle spoligotypes.
1955 in France). In industrialized countries, M. bovis TB is
therefore currently observed in patients born before the imple-
mentation of such measures or in individuals who come froma 4. Conclusion
country with a high incidence of bTB and no control measures
[1,2,4]. Human M. bovis tuberculosis remains rare in industrialized
As M. bovis is innately resistant to PZA, the World Health countries. These case patients point out to the discriminating
Organization (WHO) recommends treating M. bovis pulmonary aspect of molecular epidemiological techniques (spoligotyping
TB with a triple therapy (INH+RMP + EMB) for 3 months, and MIRU-VNTR) that helped confirm the suspicion of person-
followed by a two-drug combination therapy (INH + RMP) for  to-person transmission from the son to the mother. The zoonotic

Please cite this article in press as: Bourgoin A, et al. Intrafamilial transmission of pulmonary tuberculosis due to Mycobacterium bovis. Med
Mal Infect (2015), http://dx.doi.org/10.1016/j.medmal.2015.07.001




+Model
MEDMAL-3639; No.of Pages3

A. Bourgoin et al. / Médecine et maladies infectieuses xxx (2015) xxx—xxx 3

origin of the infection could not be proven but these case patients
highlight the need for a better prevention of occupational risks of
animal to human M. bovis contamination for people working in
the cattle industry (livestock farmers, butchers, and veterinaries).
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