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Sums, products and projections of discretized
sets

Weikun He

Thesis prepared under the supervision of
Emmanuel Breuillard and Péter Varja

Abstract

In the discretized setting, the size of a set is measured by its covering
number by J-balls (a.k.a. metric entropy), where ¢ is the scale. In this
document, we investigate combinatorial properties of discretized sets un-
der addition, multiplication and orthogonal projection. There are three
parts. First, we prove sum-product estimates in matrix algebras, gener-
alizing Bourgain’s sum-product theorem in the ring of real numbers and
improving higher dimensional sum-product estimates previously obtained
by Bourgain-Gamburd. Then, we study orthogonal projections of subsets
in the Euclidean space, generalizing Bourgain’s discretized projection the-
orem to higher rank situations. Finally, in a joint work with Nicolas de
Saxcé, we prove a product theorem for perfect Lie groups, generalizing
previous results of Bourgain-Gamburd and Saxcé.

Résumé

Daus le cadre discrétisé, la taille d’un ensemble & I’échelle § est évaluée
par son nombre de recouvrement par J-boules (également connu sous le
nom de I'entropie métrique). Dans cette thése, nous étudions les propriétés
combinatoires des ensembles discrétisés sous ’addition, la multiplication
et les projections orthogonales. Il y a trois parties principales. Premiére-
ment, nous démontrons un théoréme somme-produit dans les algébres de
matrices, qui généralise un théoréme somme-produit de Bourgain concer-
nant 'anneau des réels. On améliore aussi des estimées somme-produit en
dimension supérieure obtenues précédemment par Bougain et Gamburd.
Deuxiémement, on étudie les projections orthogonales des sous-ensembles
de l'espace euclidien et étend ainsi le théoréme de projection discrétisé
de Bourgain aux projections de rang supérieur. Enfin, dans un travail en
commun avec Nicolas de Saxcé, nous démontrons un théoréme produit
dans les groupes de Lie parfaits. Ce dernier résultat généralise les travaux
antérieurs de Bourgain-Gamburd et de Saxcé.



Remerciement

Je voudrais remercier tout d’abord mon directeur Emmanuel Breuillard pour
sa disponibilité et sa patience durant toutes ces années, pour m’avoir proposé
un sujet de recherche trés passionnant, pour ses remarques éclairantes et pour
m’avoir fait découvrir de nouveaux horizons mathématiques.

I would like to thank my second advisor Péter Varju for his help (despite
being his "half student", I enjoyed from him the full attention of an advisor),
for guiding me through my research, for sharing his insights and for correcting
carefully my manuscripts filled with errors.

It is an honor to have Julien Barral and Elon Lindenstrauss as the referees
of my thesis. I am grateful for their careful reading. The corrections they
suggested improved greatly the quality of this memoir.

Je voudrais également remercier trés chaleureusement Julien Barral, Bernard
Host, Frédéric Paulin et Stéphane Seuret pour avoir accepté de faire partie de
mon jury de thése.

Cela a été un plaisir de collaborer avec Nicolas de Saxcé. Je le remercie
pour de nombreuses discussions trés enrichissantes, pour son enthousiasme et
son encouragement.

Je remercie aussi Arindam, Cagri, Mikotaj, Lison, Kajal, Matthew, Richard,
Jonas, Shu', Yeping?, Bingxiao®, Wei Guo, Zicheng*, Camille, Davi, Gabriel et
Maxence pour des discussions inspirantes autour des groupes, la géométrie et la
dynamique.

Cette thése a été préparée a ’Université Paris-Sud, je suis reconnaissant en-
vers mesdames Blandin-Lavigne, Jacquemin, Rey ainsi que mesdames Mignier,
Rigal, Roussas et Toro pour leur aide dans les démarches administratives.

Enfin, je remercie mes ami-e-s doctorant-e-s (les noms de certains d’entre
eux sont déja apparus un peu plus haut) Xiaodong®, Yif, Eddie, Benjamin,
Guillaume, Emilien, Vincent, Linxiao”, Salim, Sasha, Thibault, Ruoci®, Cong?,
Lucile, Tiago, Yang!'®, Joseph, Robert, Maxime, Mor, Anthony, Jeanne, Luc,
Thomas, Yi'', ... pour avoir partagé le bureau, les repas au CESFO, les ca-
fés/thés autour des énigmes mathématiques, les sorties sportives et surtout la
passion pour les mathématiques.

Mes derniers remerciements vont & ma famille : f/5, BOFFTMIRAN, &
T SRS, N —E ORISR 5 5 -

Uik 2 KERE S XK 4 BT S EBEPR O MaE 7 MR S ThEW O mm
10 W 1B



Contents

Introduction en frangais

0.1 La notion d’ensembles discrétisés . . . . . ... .. ... .. ...
0.2 La théorie additive . . . . . . ... ... ... oo
0.3 Estimées somme-produit . . . . . . .. ... L.
0.4 Orthogonal projections . . . . . . . . . ... ... ... ..
0.5 Estimées produit . . . . . . . .. ...

Introduction

1.1 The notion of discretized sets . . . . . . . . ... ... ... ...
1.2 Additive theory . . . . . . . ...
1.3 Sum-product estimates . . . . . .. ... L.
1.4 Orthogonal projections . . . . . . . .. .. .. .. .. ... ..
1.5 Product estimates . . . ... ... . ... .. .o o0

Generalities on discretized sets

2.1 Basics . . . .. e e e e
2.2 Ruzsacalculus .. ... ... ... ... .. . . e
2.3 Energy and Balog-Szemerédi-Gowers theorem . . . . . ... . ..
2.4 Basic sum-product estimates . . . . . .. ... ...
2.5 Noncommutative analogues . . . ... ... ... ... ......

Sum-product estimates in matrix algebras

3.1 Preliminaries . . . . . . . .. ...
3.2 Escaping from subvarieties . . . . . . ... ... ...
3.3 Traceset estimates . . . . . . ... .. ... ... ... ... ...
3.4 Effective Wedderburn theorem . . . . ... ... ... ......
3.5 Sum-product estimate in simple algebras . . . . . ... ... L.
3.6 Growth under linear action . . . ... ... ... ... ......
3.7 A sum-product estimate in simple Lie algebras . . . . ... ...

Orthogonal projections of discretized sets

4.1 Preliminaries . . . . . . . . . ... o
4.2 Technical lemmata . . . ... ... ... ... ... ... ...
4.3 Proof of the mainresult . . . . ... ... ... ... ... ....
4.4 Projection of fractal sets . . . . . .. ... ... ... ... ...

Product estimates in perfect Lie groups
5.1 Sum-product estimates in representations . . . . .. . ... ...
5.2 Product theorem for perfect Lie groups . . . .. ... ... ...

14
14
15
16
19
25

30
34
37
40
41
45
30
56

57
60
65
73
83



Bibliography 103

ii



Chapitre 0

Introduction en francais

Pour un ensemble A, notons |A| son cardinal. On utilise les notations de Landau
O(f) et les notations de Vinogradov f < g tout au long de ce mémoire. De plus,
nous écrivons f < g pour dire f < get g < f.

0.1 La notion d’ensembles discrétisés

Depuis les travaux de Katz-Tao [38], la notion d’ensembles discrétisés est connue
pour étre un cadre général pour étudier les propriétés fractales des ensembles
continus tout en utilisant les outils combinatoires comme la combinatoire arith-
meétique. Dans cette section, nous allons introduire les notions de base.

0.1.1 Le nombre de §-recouvrement

Soit (E,d) un espace métrique. Pour p > 0 et © € E notons B(z, p) la boule
fermée de centre x et de rayon p. On écrit Bg(z, p) quand on veut préciser dans
quel espace ambiant se trouve la boule. Pour un sous-ensemble A C FE, notons
A(P) 1e p-voisinage de A :

AP) ={z e E|d(z,A) < p}.

Un sous-ensemble A est dit p-séparé si pour tout a € A, ANB(a, p) = {a}. Tout
au long de ce mémoire, la variable 0 désigne un réel strictement positif que 1’on
appelle [’échelle.

Définition. Soit A un sous-ensemble relativement compact de (E, d). Son nombre
de d-recouvrement, également connu sous le nom de I’entropie métrique, est dé-
fini par

N
Ns(A) =min{N >0|3zy,...,.an € E, AC U B(z;,6)}.

=1

Exemple. Soient p un nombre premier et (Z,, | - |,) ’anneau des entiers p-adiques
muni de sa valeur absolue usuelle. Si A est un sous-ensemble de Z,, alors pour
tout k£ € N,

Np-#(A) = |mi(A)]
ot 71 Zy — Zyp/P*Z, ~ 7/p*Z désigne la réduction modulo p*.
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Si nous permettons a ¢ d’étre 0, alors Ny (A) est exactement le cardinal de A.
11 est plus intéressant d’étudier le comportement asymptotique de Ns(A) quand
0 tend vers 0.

Exemple. Les dimensions de Minkowski inférieure et supérieure de A C (E, d)
peuvent étre définies par les formules suivantes, voir [45, §5.3].

. .. logNs(A - , log N5(A
dimy(A) = llgrggf —log(d) et dimy(A) = llr?jélp —log(é)'

En particulier, si Ns(A) <s_0 6~ alors elles coincident et sont égales & «.

Maintenant supposons que E est I’espace euclidien R™, n > 1. Notons A la
measure de Lebesgue sur R™. Outre le nombre de d-recouvrement, nous avons
d’autre moyen de mesurer la taille d’'un ensemble & I’échelle 6.

Lemma 2.1. Soient § > 0 et A un sous-ensemble borné de R™. Soit A un
sous-ensemble 26-séparé mazimal de A. Alors

Nas(A) < |A] < N5(A) < Mi(B(0,2)) Nas(A),

et
§TMA(AD) =, N5(A),

En particulier, le fait de changer I’échelle par un facteur constant ne change
le nombre de d-recouvrement que par un facteur constant. De plus, A et son
S-voisinage A(®) ont & peu prés la méme taille & I’échelle 6 :

N5(AD) =, Ni(A).

Et c’est pour cette raison-la que dans [38], un ensemble J-discrétisé est défini
comme une réunion de boules de rayon §. Dans les démonstrations de ce mé-
moire, nous pouvons presque toujours remplacer A par son J-voisinage.

Exemple. Soit p une mesure de probabilité sur R™ & support compact. Sa
transformée de Fourier-Stieltjes fi(¢) = [ e~ &) du(x), £ € R™, est K-lipschit-
zienne pour un certain K > 0 dependant seulement de max,ecgupp(yllz]|- Par
conséquent, si l’on pose, pour t > 0,

A ={€ e R" [ [a(&)] = t},

alors Aét%) C A;. Cela montre qu’il est naturel de regarder I’ensemble A; &
Iéchelle t.

0.1.2 Non-concentration

Si un ensemble borné A C R™ a la taille N5(A) < 6%, alors on a envie de penser
a comme étant la dimension de A. Mais, une boule de rayon §'~ % vérifie aussi
N3(B(0,6'~ %)) < 6. Evidemment, une boule a des propriétés trés différentes
de celles d’une fractale. Pour éviter de telles situations dégénérées, nous impo-
sons souvent une propriété de non-concentration sur ’ensemble A. Soient x > 0
et € > 0 des parameétres. Par exemple, on pourrait demander

(0.1) Vp >4, N,(A)>dp".
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Parfois, nous avons besoin d’une condition plus forte comme suit.
(0.2) Vp>d,Vxe E, Ns(ANB(z,p)) <5 p"Ns(A).

Dans ces conditions, plus x est grande, plus la non-concentration est forte. La
notion de (, «)p-ensemble dans [38] correspond a la condition (0.2) avec k
maximal, i.e. kK = a. Ici, € est un petit parameétre pour relacher légérement ces
conditions. Ajouter le terme ¢¢ est de dire que la non-concentration est exigée
de Péchelle § jusqu’a l’échelle ¢¢. Clairement, la condition (0.2) implique (0.1).
La réciproque n’est pas vraie. Néanmoins, si 'on se permet de passer dans des
sous-ensembles relativement grandes, on peut extraire un sous-ensemble ayant
la propriété (0.2) d’un ensemble ayant la propriété (0.1).

Exemple. Soit A un sous-ensemble borélien borné de R™ de dimension de
Hausdorff dimyg A > «. Soit p la mesure donnée par le lemme de Frostman.

Théoréme 0.1 (Lemme de Frostman [45, Theorem 8.8]). Soit A un sous-
ensemble borélien de R™. Si dimy(A) > « alors il existe une mesure borélienne
finie non-nulle p de support compact telle que Supp(u) C A et

Vp >0, Vo € R",  u(B(x,p)) < p~.
Il est alors immédiat que pour tout p > 0,
Np(A) > p(A)pe.
C’est-a-dire, nous avons la non-concentration (1.1) avec kK = a.

En guise de conclusion, dans ce mémoire, un ensemble §-discrétisé veut dire
(parfois informellement) un ensemble dont la taille est mesurée par le nombre de
d-recouvrement et qui vérifie en plus une condition de non-concentration du type
(0.1) ou (0.2). Le sujet de cette thése est d’étudier le comportement (surtout la
croissance) des ensembles discrétisés sous des opérations telles que I’addition,
la multiplication, I’action d’un groupe ou les projections orthogonales. Dans les
sections suivantes, nous discuterons selon I'opération qui nous intéresse.

0.2 La théorie additive

Dans cette section, supposons que ’espace ambiant E est muni d’une structure
de groupe abélien dont la loi est notée additivement. Soient A, B C E des sous-
ensembles. Notons

—A={-al|ac€ A},

A+B={a+b|la€ Abec B}

et
A—B={a—-blac Abe B}.

Soit s un entier naturel non-nul. Le notation sA désigne la somme de A avec
lui-méme s fois, A 4+ --- + A. Par la théorie additive, on entend 1’étude de la
croissance de sA ou bien celle de sA — s’'A, s,s" € N.

Considérons ' = R” dans le cadre discrétisé. En approchant R™ par le
réseau 0 -Z", on peut transférer la théorie additive du cadre discret vers le cadre
0-discrétisé. Par exemple, on a 'inégalité de Pliinnecke-Ruzsa.



Lemma 2.4 (Inégalité de Pliinnecke-Ruzsa). Pour tout paramétre K > 1, si
Ns(A+ B) < KN5s(B) alors pour tous les entiers k > 1 et 1 > 0,

Ns(kA —1A) <, K*N5(B).

En particulier, pour tout s > 2, Ns(sA) est considérablement plus grand que
Ns(A) si et seulement si N5(A + A) est déja considérablement plus grand que
Nj5(A). C’est pour cela qu’en combinatoire additive, une question centrale est de
classer les ensembles avec petit doublement (i.e. ensembles A tels que |[A+ A| <
K|A]). Le théoréme de Freiman affirme qu’un tel ensemble est forcément contenu
dans une progression arithmétique généralisée de taille comparable (voir [59,
Chapter 5]). Transféré dans le cadre discrétisé, ce théoréme devient

Théoréme 0.2 (Version discrétisée du théoréme de Freiman, [57, Proposi-
tion 7.3]). Soit K > 2 un paramétre. Soit A un sous-ensemble borné de R™.
Si Ns(A+ A) < KN5(A) alors il existe un ensemble P qui est une somme
de Ok n(1) progressions arithmétiques dans R™ et tel que A C P+ B(0,9) et
|P| <5 n Ns(A).

L’un des problémes fondamentaux en combinatoire additive est d’obtenir
une bonne dépendance explicite en K des constantes implicites dans le théoréme
précédent.

Dans le sens inverse, tout résultat démontré dans le cadre discrétisé entrai-
nera sa contrepartie dans le cadre discret. Dans ce mémoire, nous nous conten-
tons des résultats existants et ne démontrons rien de nouveau pour la théorie
additive.

0.3 Estimées somme-produit

Maintenant, supposons que notre espace ambiant E est en plus muni d’une
structure d’anneau. Soient A, B C E des sous-ensembles. Notons

A-B={ab|a€ Abe B}.

Soit s € N*. On écrit A® pour le produit itéré de A avec lui-méme s fois, A - - - A.
De plus, on définit récursivement (A); = AU (—A) et Vs € N,

() = (Ao U (A + (4)0) U [ (A - (A)ss)-

Autrement dit, (A), est 'ensemble des éléments qui peuvent étre obtenus en
additionnant et multipliant au plus s éléments de AU (—A).

Grosso modo, le probléme somme-produit demande, étant donné un sous-
ensemble de F, s’il croit vite sous ’addition, la soustraction et la multiplication
et si ce n’est pas le cas, quels sont les obstructions. Ainsi, une estimée somme-
produit est une minoration pour la taille de (A)s avec s > 2. Le premier résultat
de ce genre est di & Erdds et Szemerédi [28] pour 'anneau des réels R.

Théoréme 0.3 (Erdgs-Szemerédi [28]). Il existe une constante absolue ¢ > 0
telle que pour tout sous-ensemble fini non-vide A de R, on ait

max(|A 4 Al,|A - A]) > c|A|* T
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Cela est le point de départ de beaucoup de travaux qui ou bien établissent
des estimées similaires pour des classes plus larges d’anneaux, ou bien améliorent
des bornes existantes. Voir [58] pour une approche élégante et plus d’histoire.

Bien que le théoréme de Erd@s-Szemerédi concerne les réels!, il ne s’agit
pas d’un résultat dans le cadre discrétisé. A la différence de la théorie additive,
I’étude du phénomeéne somme-produit dans le cadre discrétisé différe de son ana-
logue discret en plusieurs aspects. Par exemple, la multiplication par § préserve
le cardinal alors qu’elle réduit le nombre de é-recouvrement de tout ensemble
borné & une constante. De plus quand x varie de d & 1, son comportement varie
contintiment entre celui d’un diviseur de zéro et celui d’'un élément inversible.
Malgré cela, on espére qu’un ensemble discrétisé typique croit trés vite sous
I’addition et la multiplication. Pour I’anneau R, cela a été conjecturé par Katz
et Tao dans [38] et résolu par Bourgain [6, 7].

Théoréme 0.4 (Théoréme somme-produit discrétisé de Bourgain [7]). Etant
donnés k > 0 et o < 1, il existe une constante ¢ > 0 telle que la proposition
suivante soit vraie pour § > 0 suffisamment petit. Soit A un sous-ensemble de
R tel que

(i) Ac B(0,67°),
(ii) Vp > 8, Ny(A) = 5p*,
(iii) Ny(A) <=7,
Alors Ns(A+ A) + Ns(A-A) > §Ns(A).

La démonstration de ce théoréme utilise une analyse multi-échelle. On étudie
d’abord la structure additive & chaque niveau. Cela peut étre fait a ’aide du
théoréme de Freiman rappelé plus haut. Notamment, la premiére démonstration
de Bourgain [6] fait appel & un théoréme de Freiman quantitatif da & Chang [20].
Ensuite, on utilise la multiplication qui interagit entre les différents niveaux pour
déduire une croissance.

L’importance du théoréme somme-produit de Bourgain peut étre justifiée
par ses nombreuse applications. Lorsque le cadre discrétisé a été introduit dans
[38], il était congu comme une stratégie générale pour démontrer les résultats
dans le régime continu tout en utilisant les idées et les résultats venant du régime
discret ot I’on dispose de théories bien développées telles que la combinatoire
arithmétique. Ainsi, 'une des motivations de Bourgain était d’établir la conjec-
ture de Erdés-Volkmann [29] qui affirme qu’aucun sous-anneau borélien de R
n’est de dimension de Hausdorff strictement entre 0 et 1. La conjecture a aussi
été résolue par Edgar et Miller [27] avec d’autres idées. Cependant, leur mé-
thode ne sont pas quantitative, comparée & la méthode de Bourgain. De plus,
comme prévu par Katz et Tao [38], le théoréme 0.4 fait également progrés sur le
probléme de distance de Falconer et sur une conjecture de Furstenberg en géo-
métrie fractale. Parmi d’autres applications directes, citons aussi la construction
explicite d’expanseurs monotones due & Bourgain et Yehudayoff [15]. Nous dis-
cuterons plus d’applications plus tard lorsque nous parlerons des théorémes de
projection et des théorémes produit.

I Dans leur article original, le théoréme est énoncé pour I’anneau Z, mais leur démonstration
est valable pour tout anneau intégre totalement ordonné.
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Bourgain et Gamburd ont obtenu des estimations similaires pour l’anneau
C dans [9] et plus tard pour 'anneau C™, le produit direct de C avec lui-méme
n fois, n > 2, dans [11]. Les énoncés sont un peu différentes puisque R n’a pas
de sous-algebre réel propre alors que C et C™ en ont. De plus, 'anneau C™ a
des idéaux propres non-triviaux , i.e. il n’est pas simple. Dans le chapitre 3,
nous démontrons une estimation somme-produit pour les algébres simples de
dimension finie sur R. Notons que par le théoréme de Wedderburn et le théoréme
de Frobenius, une telle algébre est isomorphe & M, (R), M, (C) ou M,,(H),
I’algébre des matrices de taille n x n & coefficients réels, complexes ou dans les
quaternions, avec n > 1. Avant d’énoncer le résultat, mentionnons que dans
le contexte discret, Chang [21] a étudié le probléme somme-produit pour les
matrices réelles et Tao [58] a obtenu un théoréme somme-produit concernant
une algébre quelconque.

Théoréme 3.1. Soit E une algébre réelle normée* simple de dimension finie.

Etant donnés k > 0 et 0 < dim(E), il eviste une constante ¢ > 0 dépendant
seulement de E, k et o telle que la proposition suivante soit vraie pour 6 > 0
suffisamment petit. Soit A un sous-ensemble de E satisfaisant

(i) AcCB(0,67°),
(i§) Yo > 5, No(A) > 5p~,
(i) Ns(A) < 677,
(iv) pour tout sous-algébre propre W de E, il existe a € A tel que d(a, W) > §¢.

Alors,
Ns(A+ A)+ Ns(A+ A A) > 5 °Ns(A).

La stratégie de la démonstration consiste & produire un tore riche afin d’uti-
liser ’estimée somme-produit de Bourgain-Gamburd dans C”. Ici, un tore riche
veut dire un sous-ensemble de taille relativement grande constitué d’éléments
simultanément diagonalisables. L’idée du tore riche remonte jusqu’aux travaux
de Helfgott [36] et s’est montrée trés utile pour démontrer des théorémes pro-
duit dans beaucoup de situations, par exemple, le théoréme produit discrétisé
de Saxcé (théorem 0.7) dont nous parlerons un peu plus tard. En fait, notre
méthode donne une stratégie pour obtenir des estimées somme-produit dans les
algébres simples a partir d’une estimée somme-produit dans le corps de base.

Nous obtenons également des estimations concernant la croissance d’un sous-
ensemble discrétisé d’'un espace euclidien sous l’action linéaire. Soient X un
sous-ensemble borné de R™ et A une collection d’endomorphismes de R™. On
peut se demander si X croit vite sous 'addition et les transformations par les
éléments de A, pourvu que A soit assez riche.

Théoréme 3.2. Soit n € N*. Etant donnés k > 0 et 0 < n, il existe une
constante € > 0 telle que la proposition suivante soit vraie pour § > 0 suffisam-
ment petit. Soient A un sous-ensemble de End(R™) et X un sous-ensemble de
R™. Supposons que

(i) AC B(0,67°),

2 Par « normée » on entend une norme qui fait de I’espace vectoriel sous-jacent un espace
vectoriel normé. Et comme toutes les normes sur un espace vectoriel de dimension finie sont
équivalentes, on peut la supposer sous-multiplicative.

viii



(ii) Vp =6, Np(A) = 697",

(iii) pour tout sous-espace propre non-trivial W de R", il existe a € A et w €
By (0,1) tel que d(aw, W) > 6¢,

(wv) X C B(0,07°),
(v) Vp >0, N,(X)>d6p",
(vi) Ns(X) < <.

Alors,
Ns(X + X) + meaicNé(X +aX) >0 Ns(X),

ot aX = {ax |z € X}.

Cela améliore un résultat de Bourgain-Gamburd [11, Proposition 1] o on
exige une constante a la place de 0¢ dans la condition (iii). Cette condition
(iii) est une condition d’irréductibilité. Son affaiblissement est le défi technique
principal dans la démonstration du théoréme 3.2. Le facteur §¢ signifie que la
condition doit étre vérifiée a I’échelle §¢. Ainsi, le théoréme 3.2 affirme que la
croissance a lieu méme si I’on ne connait rien & des échelles entre 0¢ et 1. Cette
amélioration est importante pour beaucoup d’applications parce que ce genre
d’estimations sont souvent utilisées avec le théoréme de Balog-Szemerédi-Gowers
qui nécessite de restreindre les ensembles avec lesquels on travaille & des sous-
ensembles de taille ¢ fois la taille initiale. Cette procédure détruit généralement
toutes les informations au-dessus de I’échelle §¢€.

Revenons aux phénomeénes somme-produit dans les algébres. Au lieu de pen-
ser la somme et le produit comme étant les lois dans un anneau, on peut penser
la somme comme étant I’addition dans un espace vectoriel et le produit comme
étant les endomorphismes de cet espace vectoriel obtenus en considérant les mul-
tiplications a gauche et & droite. Avec ce point de vue, on retrouve facilement
le théoréme 3.1 & partir du théoréme 3.2. Donc en fait le phénoméne « somme-
produit » ne concerne pas seulement les anneaux. Le « produit » peut venir de
lextérieur, d’'une action. On verra dans le chapitre 5 une estimation de type
somme-produit pour les représentations de groupe de Lie.

On peut aussi déduire du théoréme 3.2 une estimation « somme-crochet »
dans les algébres de Lie simples. Si A est un sous-ensemble d’une algébre de Lie
g, on écrit [A, A] = {[a,b] | a,b € A}.

Corollaire 3.3. Soit g une algébre de Lie réelle de dimension finie qui est en
plus munie d'une norme. Etant donnés k > 0 et o < dim(g), il existe une
constante € > 0 telle que la proposition suivante soit vraie pour § > 0 suffisam-
ment petit. Soit A un sous-ensemble de g satisfaisant

(i) ACB(0,57°),
(ii) Vp > 5, N(A) > 5p*,
(iii) N3(A) <6777,

(iv) pour tout sous-algébre de Lie propre W de g, il existe a € A tel que
d(a, W) > §°.

Alors,
Ni(A+ A) + Ns(A+ [A, A]) > 65-N3(A).
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0.4 Orthogonal projections

Soient 0 < m < n des entiers positifs. Soit Gr(R", m) la grassmannienne des
sous-espaces vectoriels de dimension m dans ’espace euclidien R™. Pour V €
Gr(R™,m), notons my : R™ — V la projection orthogonale sur V.

Les propriétés fractales des projections orthogonales ont été beaucoup étu-
diées en géométrie fractale, en commengant par le théoréme de projection de
Marstrand [43]. Voir par exemple [31] pour plus d’histoire. De maniére infor-
melle, un théoréme de projection est une minoration pour la taille des projec-
tions d’un sous-ensemble sur de différentes directions. Comme en générale on
n’espére pas que la projection soit grande pour toutes les directions, le théoréme
s’exprime souvent par une majoration de la taille de ’ensemble des directions
exceptionnelles, c’est-a-dire, des directions sur lesquelles la projection est petite.
Par exemple, rappelons le résultat suivant obtenu dans une série de travaux ds
a Mattila et Falconer.

Théoréme 0.5 (Mattila [44], Falconer [32], voir aussi [46, §5.3]). Soit A C R™
un sous-ensemble borélien de dimension de Hausdorff dimy(A) = a. Soit s > 0
un réel.

(i) Si0<s<a<m, alors

dimp{V € Gr(R",m) | dimyg(7y (A)) < s} <m(n—m) — (m —s).

(i) Si0<s<m<a, alors

dimp{V € Gr(R",m) | dimg(7y (4)) < s} <m(n—m) — (o — s).

Notons que m(n —m) est la dimension de Gr(R"™,m) et que la notion de la
dimension de Hausdorff sur Gr(R™, m) ne dépend pas du choix spécifique de la
meétrique car toutes les distances sur un compact sont équivalentes tant qu’elles
définissent la méme topologie.

A l'aide de son théoréme somme-produit discrétisé, Bourgain a établi un
théoréme de projection discrétisé pour les projections de rang 1. Avant d’énoncer
le théoréme, introduisons quelques notations afin de formuler des conditions de
non-concentration dans les espaces projectifs ou dans les grassmanniennes. Pour
V € Gr(R",m) et W € Gr(R",n — m), on définit

de(V,W) = |det(v1, - -, Uy Wiy - -+, Wi—im)|

ot (v1,...,Vn) est une base orthonormée de V et (ws,...,w,—_,,) une base
orthonormée de W. Par exemple, d¢(V, W) = 0 si et seulement si V' et W ont
une intersection non-triviale. Pour p > 0, on pose

VeW,p) ={V € Gr(R",m) | de(V,W) < p}.

Théoréme 0.6 (Bourgain [7, Theorem 5]). Soit n > 2 un entier. Etant donnés
0<a<netr>0,il existe e > 0 tel que la proposition suivante soit vraie pour
d > 0 suffisamment petit. Soit A C Bgn(0,1). Soit u une mesure de probabilité
sur espace projectif Gr(R"™,1). Supposons que

Na(A) 2 5—(x+€;



Vp >4, Ve e R", Ns(ANB(z,p)) <0 p"Ns(A);
Vp > 6, YW € Gr(R",n—1), u(Ve(W,p)) < 5-p".

Alors il existe un sous-ensemble A’ C A et un ensemble de direction D C
Gr(R™, 1) tels que Ns(A") > 6°N5(A), p(D) > 1 —6¢ et

Ns(mg(A”)) > 6" n¢
dés que 0 € D et que A" C A’ vérifie N5(A") > §2°N5(A).

Plus tard, dans [48], pour les sous-ensembles de R?, Orponen a obtenu une
borne plus forte sous une codition de non-concentration plus forte. L’approche
qui y est utilisée est différente mais fait également appel a la théorie autour du
phénomeéne somme-produit.

Il convient aussi de remarquer qu’il y a un ensemble de problémes en pa-
ralléle concernant les projections des ensembles ou mesures auto-similaires. Par
exemple, récemment, une conjecture de Furstenberg concernant transversalité
entre les ensembles x2-invariants et x3-invariants a été résolue dans deux tra-
vaux indépendants, Shmerkin [56] et Wu [61]. L’approche de Shmerkin utilise
aussi les outils venant de la combinatoire additive et quelques idées dans la dé-
monstration du théoréme somme-produit de Bourgain. Voir aussi [55] pour plus
d’informations.

L’objectif du chapitre 4 est de généraliser le théoréme 0.6 aux projections de
rang supérieur.

Théoréme 4.1. Soient 1 < m < n des entiers. Etant donnés 0 < o < n et
Kk > 0, il existe € > 0 tel que la proposition suivante soit vraie pour § > 0
suffisamment petit. Soient A C Bgn(0,1) et pu une mesure de probabilité sur
Gr(R™, m). Supposons que

N&(A) > 6—a+e;

Vp >4, Yz € R", Ns(ANB(z,p)) <~ p"N;5(A);
Vp 20, YW € Gr(R",n —m), pu(Ve(W,p)) <6 p".
Alors il existe D C Gr(R™,m) tel que (D) > 1 — ¢ et

m

Ns(my (A') =67
dés que V € D et que A" C A vérifie N5(A") > 6°Ns(A).

Ce résultat est nouveau pour m > 1. En plus, comparée au théoréme 0.6,
notre borne inférieure est établie pour tout sous-ensemble assez grand de A au
lieu de seulement les sous-ensembles assez grand d’une certaine partie de A. La
démonstration du théoréme 4.1 se fait par une récurrence sur le couple (n,m).
L’approche dans la démonstration du théoréme 0.6 combinée avec l’estimation
somme-produit en dimension supérieure (théoréme 3.2) montre le cas ou m est
un diviseur de n. Ensuite, de nouvelles idées sont utilisées pour ramener & ce
cas spécial.
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0.4.1 Motivation ergodique

Le théoréme de projection discrétisé de Bourgain constitue un ingrédient impor-
tant dans le théoréme de Bourgain-Furman-Lindenstrauss-Mozes [8] sur 1’équi-
distribution des orbites sur le tore R?/Z? sous les actions des sous-semi-groupes
de SL4(Z). Ce résultat ergodique est d’autant plus intéressant qu’il est quanti-
tatif. Par exemple, il a permis & Bourgain et Varju [14] d’établir Pexistence de
trous spectraux uniformes dans SLy(Z/¢Z), avec ¢ entier arbitraire.

Le théoréme de Bourgain-Furman-Lindenstrauss-Mozes donne des énoncés
qualitatifs sur les mesures stationnaires. Les quatre auteurs ont notamment
démontré une propriété de raideur®. Dans [4], par les méthodes plus ergodiques,
Benoist et Quint ont généralisé ce résultat de « stiffness » a une classe beaucoup
plus large de systémes dynamiques. En particulier, pour ’action linéaire de
SL4(Z) sur le tore R?/Z% ils n’ont pas besoin de I’hypothése de proximalité
dans [8]. Cependant, les résultats dans [4] ne sont pas quantitatifs.

Donc si 'on veut des résultats quantitatifs, il faudrait reprendre la méthode
de [8]. L’approche dans [8] est Fourier-analytique. Lorsqu'un sous-groupe I' C
SL4(7Z) agit sur le tore, son transposé ‘T agit sur les coefficients de Fourier. Une
grande partie de la démonstration se concentre sur ’étude des grands coefficients
de Fourier sous cette action. Par la théorie des produits aléatoires de matrices, si
I" est proximal, alors les grands produits aléatoires dans I' se comporte comme
des projections de rang 1 composées avec des rotations, s’ils sont observés a
la bonne échelle. C’est ainsi que le théoréme 0.4 intervient. Maintenant, si '
n’est pas proximal, les projections de rang supérieur vont jouer un role. Et nous
espérons que le théoréme 4.1 va étre utile dans cette situation.

0.4.2 Conséquence sur les projections des fractales

Tout comme le théoréme de projection discrétisé de Bourgain, le théoréme 4.1
peut étre utilisé pour déduire un théoréme de projection en terme de dimension
de Hausdorff.

Corollaire 4.2. Soient 1 < m < n des entiers. Etant donnés 0 < a < n et
Kk > 0, il existe € > 0 tel que la proposition suivante soit vraie. Soit A C R"
un sous-ensemble borélien de dimension dimg(A) = «. Alors l'ensemble des
directions exceptionnelles

{V € Gr(R",m) | dimg(my (4)) < —a + €}

m
n

ne peut pas supporter de mesure non-nulle p sur Gr(R™, m) ayant la propriété
de non-concentration suivante,

Vp >0, YW € Gr(R",n —m), u(Ve(W,p)) < p".
Appliqué & une mesure de Frostman supportée par les directions exception-
nelles, cela donne

Corollaire 4.3. Soient 1 < m < n des entiers. Etant donnés 0 < a < n et
k > 0, il existe € > 0 tel que la proposition suivante soit vraie. Soit A C R™ un
sous-ensemble borélien de dimension dimy(A) = «. Alors

dimg{V € Gr(R",m) | dimp(7y (A)) < %a +e} <m(n—m)—1+r.

3 Une action I' ~ X est dite u-raide pour une mesure p sur I' si toute mesure u-stationnaire
est (Supp(p))-invariante. La terminologie est due a Furstenberg [33].

xii



Par conséquent, on peut poser k = ¢ = 0 dans l'estimation précédente. Com-
parée & ce qui est connu (le théoréme 0.5), la constante 1 dans notre estimation
est trés faible pour la plupart des valeurs de m et de «. Néanmoins, notre ré-
sultat n’est pas entiérement recouvert par le théoréme 0.5, notamment dans les
deux situations suivantes

(i) (Projection sur des droites) m =1 et o €]0,1+ 2],

1

(ii) (Projection sur des hyperplans) m =n—1let a €|n—1— —,nl.

Par exemple, pour n = 2 et m = 1 (cas traité dans Bourgain [7]), cela donne,
1
dimH{9 € Gr(R?,1) | dimp(mg(A)) < §dimH(A)} =0,

pour tout ensemble borélien A avec 0 < dimg(A) < 2.

0.5 Estimées produit

Maintenant supposons que notre espace ambiant est un groupe multiplicatif G.
Comme plus haut, pour des sous-ensembles A et B de G, leur ensemble produit
est noté par

AB={ab|la€ A, be B}.

Nous écrivons aussi A=! = {a™! | a € A} pour lensemble inverse et A® =
A--- A pour I'ensemble produit itéré s-fois. Bien que I'inégalité de Pliinnecke-
Ruzsa soit fausse dans les groupes non-commutatifs en général, nous avons tou-
tefois (voir [59, Proposition 2.40])

A3\ 0s(1)
II) Al

(0.3) (AU {1} UA~Y)| <, (W

En vue de cette inégalité, quand on étudie la croissance de A®; on s’intéresse
Ly R ; |A°]
particuliérement & la constante de triplement AT

Une petite précision est nécessaire pour éviter de la confusion. Quand on
parle de croissance dans les groupes en géométrie des groupes, on s’intéresse
au comportement asymptotique de |A®| avec A une partie génératrice. Citons
le théoréme de Gromov qui caractérise les groupes de croissance polynomiale?.
Alors qu’en combinatoire arithmétique, le cadre dans lequel nous nous plagons,
nous analysons de maniére plus fine la quantité |A®| pour les valeurs petites de
s. En particulier, les questions dans ce cadre ont du sens et sont intéressantes
meéme si G est un groupe fini.

Dans le cadre discret, nous avons une trés bonne compréhension des en-
sembles a petit triplement. La théorie commence par les travaux de Helfgott [36,
37] et méne & une généralisation aux groupes finis de type Lie par Breuillard-
Green-Tao [18] et indépendamment par Pyber-Szabo [51] et aboutit aussi & une
classification des ensembles & petit triplement due & Breuillard-Green-Tao [19].
Le dernier résultat établit une conjecture de Helfgott-Lindenstrauss et peut
étre vu comme une généralisation du théoréme de Freiman dans le cadre non-
commutatif.

4 Un groupe est dit de croissance polynomiale si pour une/toute partie génératrice A, |A®|
est majoré par un polynoéme en s quand s tend vers +oo.
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Contrairement a ce qui se passe dans le cas commutatif, il y a peu d’espoir
de transférer directement les estimées produit depuis le cadre discret au cadre
discrétisé.

Néanmoins, 'analogue de l'inégalité (0.3) reste valable, comme montré par

Tao [57, Theorem 6.8]. Et c’est pour cela qu’on se concentre sur le triplement

3
/X‘;&((’:)) dans le cadre discrétisé aussi. En utilisant le théoréme somme-produit

de Bourgain, Bourgain et Gamburd [9, 11] ont les premiers résultats dans ce
cadre, & savoir, un théoréme produit pour les groupes de Lie SU(d), d > 2. Cela
a été ensuite généralisé par Saxcé [24] aux groupes de Lie simples.

Théoréme 0.7 (Théoréme produit pour les groupes de Lie simples, Saxcé [24]).
Soit G un groupe de Lie simple. Il existe un voisinage U de ’élément neutre de
G tel que la proposition suivante soit vraie. Etant donnés o < dim(G) et k > 0,
il existe € > 0 tel que pour tout 0 > 0 suffisamment petit, si A C U satisfait

(i) Ns(A) <6777¢;
(ii) ¥p > 0, Ny(A) > 6°p™" ;

(iii) pour tout sous-groupe propre fermé connexe H < G, il existe a € A avec
d(a,H) > 0°;

alors N5(A3) > §7Ns(A).

Ce résultat peut étre comparé & celui de Breuillard-Green-Tao [18] dans
le cadre discret. Tous les deux affirment qu’un sous-ensemble typique dans un
groupe simple a un grand triplement sauf s’il est coincé dans un sous-groupe.

Les théorémes produit peuvent étre appliqués pour obtenir des résultats
de trou spectral. Cela est fait pour les groupes SU(d), d > 2 par Bourgain-
Gamburd [9, 11] et plus généralement pour les groupes compacts simples par
Benoist-Saxcé [3]. Ensuite, Boutonnet, Ioana et Golsefidy [16] ont introduit la
notion de trou spectral local et ont étendu davantage ces résultats aux cas
non-compacts. De Dautre coté, un théoréme produit discrétisé peut avoir des
conséquences concernant la dimension de Hausdorff des sous-groupes boréliens.
Ainsi, en combinant les techniques d’analyse de Fourier [23], Lindenstrauss-
Saxcé [41] et Saxcé [25] ont montré qu’il n’y a pas de sous-groupe borélien
dense de dimension de Hausdorff intermédiaire dans un groupe de Lie connexe
simple.

Si le groupe G est nilpotent, alors il n’est pas difficile de construire des sous-
ensembles qui satisfont les hypothéses du théoréme 0.7 mais qui ont un petit
triplement. Par exemple, on peut prendre une somme de progressions arithmé-
tiques si G est abélien. Et pour un groupe nilpotent quelconque, il y a une notion
de nilprogression qui généralise les progressions arithmétiques, voir par exemple
[19]. Ce contraste entre les groupes simples et les groupes nilpotents apparait
aussi avec ’existence de sous-groupe borélien dense de dimension intermédiaire.
Erdss et Volkmann [29] ont construit des sous-groupes de R de dimension de
Hausdorff arbitraire entre 0 et 1. Saxcé [22] a étendu cette construction aux
groupes de Lie nilpotents et & une large classe de groupes résolubles.

Dans un travail en commun avec Nicolas de Saxcé, nous étendons le théo-
réme 0.7 aux groupes de Lie parfaits. Ceci constitue le résultat principal du
chapitre 5. Rappelons qu’un groupe de Lie G est dit parfait si son algébre de
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Lie g satisfait la condition [g,g] = g. En particulier, les groupes de Lie semi-
simples sont parfaits. Rappelons que le quotient d’un groupe de Lie G par son
radical R est semi-simple. Si G est simplement connexe alors G/R ’est aussi et
donc un produit direct de groupes de Lie simples et simplement connexes. Les
facteurs dans ce produit direct sont appelés les facteurs simples de G.

Théoréme 5.1 (Théoréme produit pour les groupes de Lie parfaits). Soit G un
groupe de Lie parfait simplement conneze. Il existe un voisinage U de ’élément
neutre de G tel que la proposition suivante soit vraie. Etant donnés o < dim(G)
et k > 0, il existe € > 0 tel que pour tout 6 > 0 suffisamment petit, si A C U
satisfait

(i) N5(A) <d777¢;

(ii) pour tout facteur simple S de G, en notant 7s: G — S la projection
canonique, on a

Vp >4, Ny(rs(A) >dp™"

(i4i) pour tout sous-groupe propre fermé connexe H < G, il existe a € A avec
d(a, H) > 0¢;

alors N5(A3) > §7Ns(A).

Ici c’est pour des raisons pratiques que nous demandons & ce que G soit
simplement connexe. Le résultat concerne en fait les groupes de Lie locaux, car
nous restreignons & un voisinage de I’élément neutre.

L’idée de la démonstration est de réduire d’abord au cas ot GG est un produit
semi-direct d’un groupe semi-simple par un groupe abelien. Et puis, dans ce
cas spécial, on considére sa représentation adjointe et y montre une croissance.
Enfin, cette croissance dans ’algébre de Lie est transférée au groupe de Lie grace
a l'utilisation de la formule de Campbell-Hausdorff.

Ainsi, en étape intermédiaire, nous obtenons une estimation de type somme-
produit pour les représentations de groupe de Lie. C’est un résultat intéressant
a part entiére. Soit V' une représentation linéaire de dimension finie sur R d’un
groupe de Lie G. Soient X un sous-ensemble de V' et A un sous-ensemble de
G. Nous nous demandons si X croit vite sous 'addition et 'action de A. Pour
s > 1, on écrit (A, X)s pour désigner I’ensemble des éléments de V' qui peuvent
étre exprimés comme sommes, différences et produits d’au plus s éléments de A
et de X.

Théoréme 5.2 (Estimée somme-produit dans les représentations). Soient G
un groupe de Lie et V un G-module de dimension finie. Il existe un voisinage U
de Uélément neutre de G tel que la proposition suivante soit vraie. Etant donnés
€o et k>0, il existe s > 1 et € > 0 tels que pour tout § > 0 suffisamment petit,
si ACU et X C By(0,1) satisfont

(i) il existe une suite Jordan-Hélder® 0 = Vo < ... < V; =V telle que pour
i=1,...,1,
vp Z 67 N,D(WVI/VL71(A)) Z 5Ep7’i'

oy, v, , : G — GL(V;/Vi_1) désigne la représentation de G sur Vi /Vi_y ;

5 Par « Jordan-Holder », nous entendons que 0 = Vo < ... < V; = V sont des sous-modules
tels que les quotients V;/V;_1 sont tous des G-modules simples.
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(ii) pour tout sous-groupe propre fermé connexre H < G, il existe a € A avec
d(a,H) > 06°;

(iii) pour tout sous-module propre W <V, il existe x € X avec d(x, W) > §¢;

Alors,
Bv(o, (560) C <A,X>S + Bv(o, 6)

Remarquons que pour les représentations irréductibles, ce théoréme est une
variante du théoréme 3.2. C’est dans ce cas spécial qu’on va utiliser les résultats
du chapitre 3. Le reste de la démonstration du théoréme 5.2 consiste & ramener
a ce cas spécial par une récurrence sur la longueur de la décomposition de
Jordan-Holder de V.

En considérant ’action de R* sur R, nous retrouvons le théoréme somme-
produit discrétisé de Bourgain (théoréme 1.4). De méme, nous pouvons retrouver
les estimations somme-produit discrétisées pour C ou H. En plus, la méthode
dans la démonstration du théoréme 5.2 peut étre utilisée pour obtenir des es-
timations somme-produit dans les algébres semi-simples (i.e. sommes directes
d’algébres simples).
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Chapter 1

Introduction

For any set A, we denote by |A| or #A its cardinality. Landau notations O(f)
and Vinogradov notations f < ¢ are used throughout this document. We also
write f < g tosay f < g and g < f. In this chapter we introduce the main
results by providing backgrounds and motivations. For impatient readers, the
main new results in this document are : (all in the discretized a.k.a metric
entropy setting)

e A sum-product theorem for matrix algebras (Theorem 3.1).

e A sum-product estimate for sets in Euclidean space under linear transfor-
mation (Theorem 3.2).

A projection theorem for orthogonal projections of rank > 2 (Theorem 4.1).

(Joint work with N. de Saxcé) A product theorem in perfect Lie groups
(Theorem 5.1).

(Joint work with N. de Saxcé) A sum-product estimate for representations
of Lie groups (Theorem 5.2).

1.1 The notion of discretized sets

The notion of discretized sets was highlighted by Katz and Tao in [38] as a
framework for studying fractal properties of continuous sets by using combina-
torial tools such as arithmetic combinatorics. In this section we introduce the
setup.

1.1.1 The j-covering number

Let (E,d) be a metric space. For p > 0 and = € F, we denote by B(z, p) or
by 2(”) the closed ball centered at = and of radius p. And we write Bg(z, p) to
specify the ambient space when it is not clear. For A C E, we denote by A(®)
the closed p-neighborhood of A :

AP) = {z e E|d(z,A) < p}.



A subset A is said to be p-separated if for any a € A, a is the only element in
the intersection B(a, p) N A. Throughout this document, the variable § stands
for a positive real number which we refer to as the scale.

Definition. Let A be a relatively compact subset of (E,d). The §-covering
number of A, also known as the metric entropy of A, is defined as

N
Ns(A) =min{N >0 3zy,...,ay € E, AC | JB(:,9)}.
i=1
Example. Let p be a prime number and let (Z,,|-|,) be the ring of p-adic
integers equipped with its usual p-adic absolute value. If A is a subset of Z,,
then for all k£ € N,
Np-#(A) = |mi(4)]
where 7y, : Z, — Z,/p"Z, ~ Z/p"Z denotes the reduction modulo p*.
If we allow the scale ¢ to be zero, then Ny(A) is exactly the cardinality of A.

It is more interesting to study the asymptotic behavior of Ns(A) when § goes
to 0 from above.

Example. The lower and upper Minkowski dimensions of A C (E,d) can be
defined as (see [45, §5.3])

) .. logNs(A) - . log NVs(A)
dimy;(A) = hgn_)lglf Tgé and dimpy(A) = llrgljélp Tg(s'
In particular, if N5(A) <s_0 6~ then they agree and are equal to a.
Now let E be the Euclidean space R™, n > 1. Denote by X\ the Lebesgue

measure on R"™. Besides the -covering number, we have other means to measure
the size of a set at scale .

Lemma 2.1. Let § > 0 and let A be a bounded subset of R™. Let A be a
mazximal 20-separated subset of A. Then

N25 ) < ‘A| < Ng( ) < Nl(B(0,2)>N2§(A),
and
ITMAD)) =, N5(A).

In particular, changing the scale by a constant factor only affects the covering
number by a constant factor. Moreover, A and its d-neighborhood A(®) have
the same size when viewed at scale § :

N5 (A)) =, Ns(A).

That is why in [38], a d-discretized set is defined to be a union of balls of radius
0. And in the proofs in later chapters, we can almost always replace A by its
d-neighborhood.

Example. Let u be a compactly supported probablhty measure on R". Its
Fourier-Stieltjes transform (see [39, Chapter VI, §2]) i(¢) = [e™&) du(x),
¢ € R", is K-Lipschitz for some K > 0 depending only on MaX,esupp(u) l]-
Therefore, if we set, for ¢ > 0,

A ={¢eR" [ [a(&)] = t},

t
then A;f) C A;. Hence, it is natural to look at the set A; at scale t.



1.1.2 Non-concentration

If a bounded subset A C R™ has size N5(A) < §~%, we would like to think a as
its dimension. But a ball of radius §1~» also satisfies As(B(0,617 %)) < §=°.
Clearly, a ball has very different properties compared to a fractal. To avoid this
degenerate situation, we will often require some non-concentration properties
on the set A. Let Kk > 0 and € > 0 be parameters. For example we often ask
that

(1.1) Vp 24, N,(A) 28",
And sometimes we need a stronger condition as follows :
(1.2) Vp>6, Ve e E, Ns(AnzP) <5 p"Ns(A).

In these conditions the larger « is, the stronger the non-concentration becomes.
The notion of (d, «),-sets in [38] corresponds to condition (1.2) with x maximal,
i.e. K = a. Here € is a small parameter to relax these conditions. We may
understand it as saying that the non-concentration is required from scale ¢ to
scale 0¢. Obviously, condition (1.2) implies (1.1). The converse is not true.
Nevertheless, if we allow passing to a large subset, we can extract a subset
having property (1.2) from a set having property (1.1).

Example. Let A be a bounded Borel set in R™ of Hausdorff dimension dimy A >
a. Let p be the measure given by Frostman’s lemma.

Theorem 1.1 (Frostman’s lemma [45, Theorem 8.8]). Let A be a Borel set
of R™. If dimyg(A) > « then there exists a finite nonzero compactly supported
Borel measure p with Supp(p) C A such that

Vp >0, Vo € R", u(B(x,p)) < p=.
Then it is immediate that for any p > 0, we have
Noy(A) > p(A)pe.

In other words, we have the non-concentration (1.1) with k = «.

1.2 Additive theory

In this section, suppose that the ambient space E is moreover equipped with a
structure of abelian group. For subsets A, B C F, we write

—A={-a|ac A},
A+B={a+blac Abe B}

and
A-B={a—-b|lac Abe B}.

Let s be a positive integer, we write sA for the s-fold sum-set A+ ---+ A. By
additive theory, we mean the study of the growth of sA or that of sA — s’A,
5,8 > 1.

Consider the discretized setting in £ = R™. It turns out that by approxi-
mating R™ by the lattice § - Z?, we can transfer any result concerning additive
properties in the discrete setting to the d-discretized setting. For example, we
have the Pliinnecke-Ruzsa inequality.



Lemma 2.4 (Pliinnecke-Ruzsa inequality). For all K > 1, if N5s(A+ B) <
KNj5(B) then for all integers k > 1 and | > 0,

Nis(kA —1A) <,, K" N5(B).

In particular, for any s > 2, Ms(sA) is significantly larger than Ns(A) if and
only if Ns(A + A) is already significantly larger than Ns(A). That is why an
important problem in additive combinatorics is the classification of sets with
small doubling (i.e. sets A such that |4+ A| < K|A|). Freiman’s theorem says
such sets are contained in generalized arithmetic progressions of comparable size
(see [59, Chapter 5]). Transferred into the discretized setting, it becomes

Theorem 1.2 (Discretized version of Freiman’s Theorem, [57, Proposition 7.3]).
Let K > 2 be a parameter. Let A be a bounded subset of R™. If Ns(A +
A) < KNj3(A) then there exists a set P which is the sum of Ok (1) arithmetic
progressions in R™ such that A C P+ B(0,0) and |P| <k n Ns(A).

Having a good dependence of the implied constants on K is one of the central
problems in additive combinatorics.

In the other way around, anything proved in the §-discretized setting will
imply its counterpart in the discrete setting. So in this document, we do not
prove anything new for the additive theory of discretized sets.

1.3 Sum-product estimates

Now we suppose that our ambient space F has moreover a ring structure. For
A and B subsets of E, we write

A-B={ab|a€ Abe B}.

Let s be a positive integer, we write A® for the s-fold product-set A --- A. More-
over, we define recursively (A); = AU (—A) and for all positive integers s > 2,

(4)e = (a0 U (AN + () U L (4D - (A)ars).
k=1 k=1

In other words, (A)s is the set of elements obtained from at most s elements of
AU (—A) by adding and multiplying them.

Roughly speaking, the sum-product problem asks, given a set A, whether A
grows fast under addition, multiplication and subtraction and if not, what are
the obstructions. Thus, a sum-product estimate is a lower bound for the size of
(A)s with s > 2. The first result of this type is due to Erdés and Szemerédi 28]
for the ring of real numbers R.

Theorem 1.3 (Erdgs-Szemerédi [28]). There is an absolute constant ¢ > 0 such
that for any nonempty finite subset A of R, we have

max(|A 4 Al,|A - A]) > c|A|* T

This was the starting point of numerous works. They either establish similar
estimates for broader classes of rings or improve existing bounds. See [58] for
an elegant treatment and more history.



Although the Erd@s-Szemerédi theorem concerns the ring of real numbers?,
it is not about discretized sets. Unlike the additive theory, the study of the
sum-product phenomenon in the discretized setting differs in many ways from its
discrete analogue. For example, the multiplication by § preserves the cardinality
while reduces the J-covering number of any bounded set to a constant. And
when z changes from § to 1, its behavior continuously changes form that of a
zero-divisor to that of an invertible element. Despite this, we expect typical
discretized sets to grow quickly under addition and multiplication. For the ring
R, this was conjectured by Katz and Tao in [38] and settled by Bourgain [6, 7].

Theorem 1.4 (Bourgain [7]). Given k > 0 and 0 < 1, there is € > 0 such that
the following holds for 6 > 0 sufficiently small. Let A be a subset of R, assume
that

(i) A B(0,679),
(ii) Vp > 5, N,(A) > 5p",

(iii) N5(A) < 6=

Then,

(1.3) Ns(A+ A)+ Ns(A- A) > 5N;(A).

The proof of this theorem uses multi-scale analysis. Additive structure is
analyzed at each level (using a quantitative Freiman’s theorem due to Chang [20]
in Bourgain’s first proof in [6]) and then multiplicative information is used to
show growth in size.

Bourgain’s sum-product theorem is very influential. It is used directly or
indirectly in almost all results about discretized sets mentioned in this docu-
ment. When the discretized setting was introduced in [38], it was conceived
as a general strategy for proving results in the continuous regime (where sets
are measured by its Hausdorff dimension) while using ideas and results in the
discrete regime where we have well-developed theory such as arithmetic combi-
natorics. Thus, one of the original motivations of Bourgain’s theorem was the
Erdgs-Volkmann ring conjecture [29] which asserts that no Borel subring of R
has Hausdorff dimension between 0 and 1. This conjecture was also settled by
Edgar and Miller [27] using different ideas. However, their proof is not quanti-
tative. Moreover, as anticipated in [38], Bourgain’s theorem also makes progress
on the Falconer distance problem and the Furstenberg conjecture in fractal ge-
ometry. Among other direct applications, let us mention the construction of
explicit monotone expanders by Bourgain and Yehudayoff [15]. We will discuss
more applications later when we talk about projection and product estimates.

Bourgain and Gamburd have obtained similar estimates for the ring C in
[9] and later for the ring C", the n-fold direct product of C with itself, in
[11]. The statements are slightly different since R has no proper subalgebra
while C and C™ have. Moreover, C" has nontrivial proper ideals, i.e. it is not
simple. In Chapter 3, we prove a sum-product estimate for finite-dimensional
simple algebras over R. Note that by the Wedderburn structure theorem and the
Frobenius theorem, such algebras are isomorphic to M, (R), M, (C) or M,,(H),

I In their original paper, the theorem was stated for Z but their proof works in any totally
ordered ring without zero-divisor.



the algebra of n x n matrices over the real numbers, the complex numbers, or
the quaternions, with n > 1. Before stating the result, let us mention that
in the discrete context, Chang [21] investigated the sum-product problem for
real matrices and Tao [58] obtained a sum-product theorem concerning general
algebras.

Theorem 3.1. Let E be a normed® simple real algebra of finite dimension.
Given k > 0 and o < dim(E), there is € > 0 depending on E, k and o such that
the following holds for 6 > 0 sufficiently small. Let A be a subset of E, assume
that

(i) AcCB(0,67°),
(ii) Yp > 6, N,(A) > 6p~",
(111) Ns(A) < §=o77¢,
(iv) for every proper subalgebra W C E, there is a € A such that d(a, W) > §°.

Then,
Ns(A+ A) + Ns(A+ A-A) > 5 N;(A).

The strategy is to produce a rich torus, i.e. a relatively large subset consisting
of simultaneously diagonalizable elements, and then use the Bourgain-Gamburd
sum-product estimate in C™. The idea of rich torus originated from the work of
Helfgott [36] and since then has been used to show product theorems in a lot of
situations. For instance, the proof of Saxcé’s product theorem (Theorem 1.7)
consists also of producing a rich torus and applying the Bourgain-Gamburd sum-
product estimate in C™. Our method provides a general strategy for obtaining
sum-product estimates in simple algebras from sum-product estimates in the
base field.

We also obtain related estimates concerning linear actions on Euclidean
spaces. Let X be a bounded subset of the Euclidean space R™. Let A C End(R™)
be a collection of linear endomorphisms. We can ask whether X grows under
addition and transformation by elements of A, provided that A is sufficiently
rich.

Theorem 3.2. Let n be a positive integer. Given k > 0 and o < n, there is
€ > 0 such that the following holds for § > 0 sufficiently small. Let A be a subset
of End(R™) and X a subset of R", assume that

(i) A C B(0,67°),
(i) Yp > 8, N,(A) > §p~",

(iii) for every nonzero proper linear subspace W C R™, there is a € A and
w € By (0,1) such that d(aw, W) > §¢,

(iv) X C B(0,67°),
(v) Vp >0, Ny(X) > d6p",

2 By "normed" we mean there is a norm which makes the underlying linear space E a normed
vector space. Since all norms on E are equivalent, we can always assume that the norm is
submultiplicative if we want.



(vi) Ns(X) < 57-<.

Then,
Ns(X + X) + mEaIi(Ng(X +aX) > 0" Ns(X),

where aX = {ax | v € X}.

This improves a previous result of Bourgain and Gamburd [11, Proposition
1] where a constant is required instead of ¢¢ in the irreducibility condition (iii).
The proof of Bourgain and Gamburd relies on this irreducibility hypothesis at
all scales in a crucial way. It seems to us not easy to modify if we relax their
assumption. Relaxing this hypothesis is the most important technical challenge
in the proof of Theorem 3.2. A reason for which this improvement is important
is that this kind of estimates are often used together with the Balog-Szemerédi-
Gowers theorem, which requires restricting the sets we work with to subsets of
size §¢ times the original size. This procedure usually destroys all information
above scale §¢.

Theorem 3.2 is actually a better formulation for the sum-product phenomenon
since we can easily recover Theorem 3.1 form it by considering the left and right
multiplications by elements of A as the collection of endomorphisms of E. Sim-
ilarly, we can also obtain a "sum-bracket" estimate in simple Lie algebras. If A
is a subset of a Lie algebra g, write [A, A] = {[a,b] | a,b € A}.

Corollary 3.3. Let g be a normed® simple Lie algebra of finite dimension.
Given k > 0 and o < dim(g), there is € > 0 such that the following holds for
0 > 0 sufficiently small. Let A be a subset of g, assume that

(i) AcC B(0,67°),
(i) Yp > 8, N,(A) > 6p~*,
(111) Ns(A) < §=o7¢,

(iv) for every proper Lie subalgebra W of g, there is a € A such that d(a, W) >
dc.

Then,
Ns(A+ A)+Ns(A+ A, A]) > 6 N;(A).

1.4 Orthogonal projections

Let 0 < m < n be positive integers. We write Gr(R™, m) do denote the Grass-
mannian of m-dimensional subspaces in R". For V € Gr(R",m), denote by
my : R®™ — V the orthogonal projection onto V.

Fractal properties of orthogonal projections of subsets the Euclidean space
have been intensively studied in fractal geometry starting from the renowned
Marstrand projection theorem [43]. See the survey [31] for more history. Roughly
speaking the problem asks for lower bounds for the size of the projections of
the set to different directions. Since in general, the projection can not be large
for every direction. We ask more precisely for a bound on the size of excep-
tional directions where a exceptional direction means a subspace onto which the

3 We mean a norm which makes the underlying linear structure a normed vector space.



projection is small. Recall the following higher-dimensional projection theorem
obtained in a series of works of Mattila and Falconer.

Theorem 1.5 (Mattila [44], Falconer [32], see also [46, §5.3]). Let A C R™ be
a Borel set of Hausdorff dimension dimy(A) = a. For all s > 0,

(i) if 0 < s < a<m then

dimp{V € Gr(R",m) | dimyg(7y (A)) < s} <m(n—m) — (m —s);

(ii) if 0 < s <m < « then

dimp{V € Gr(R",m) | dimg(myv(A)) < s} <m(n—m) — (a — s).

Note that m(n —m) is the dimension of Gr(R™, m) and the notion of Haus-
dorff dimension on Gr(R™,m) does not depend on the specific choice of the
metric since all distances on a compact set are equivalent as long as they define
the same topology.

Using his discretized sum-product theorem, Bourgain established a discretized
projection theorem concerning rank one projections. Before stating the theo-
rem, let us introduce some notations in order to formulate non-concentration
conditions in projective spaces or Grassmannians. For V € Gr(R",m) and
W e Gr(R",n —m), we define

dg(V,W) = |det(v1, ..y Uy Wiy v oy Wi—im)|

where (v1,...,v,) is an orthonormal basis of V' and (w1,...,wy—m) an or-
thonormal basis of W. For example d(V, W) = 0 if and only if V and W have
nontrivial intersection. For p > 0, we define

Vie(W,p) ={V € Gr(R",m) | de(V, W) < p}.

Theorem 1.6 (Bourgain [7, Theorem 5]). Let n > 2 be an integer. Given 0 <
a<n and Kk > 0, there exists € > 0 such that the following holds for sufficiently
small 6 > 0. Let A be a subset of R™ contained in the unit ball B(0,1). Let p

be a probability measure on the projective space Gr(R™,1). Assume that
N5 (A) > 677
Vp >4, Ve e R", Ns(ANB(x,p)) <0 p"Ns(A);

Vp >4, VW € Gr(R",n—1), p(Ve(W,p)) <6 p".

Then there is a subset A" C A and a set of directions D C Gr(R"™,1) such that
Ns(A") > 6Ns(A), u(D) > 1 —6° and

Ni(mo(A”)) > 55
whenever 0 € D and A" C A’ is a subset such that N5(A") > §2N;(A).

Later in [48], for sets in the plane R?, Orponen obtained shaper bound
under stronger non-concentration condition for x. The approach is different but
nevertheless exploits the sum-product phenomenon.



It is also worth noting that there is a parallel set of problems which concerns
projections of self-similar measures and self-similar sets. For instance, recently,
a conjecture of Furstenberg concerning transversality between x2 and x3 in-
variant sets was settled in two independent works, Shmerkin [56] and Wu [61].
Shmerkin’s approach also uses tools form additive combinatorics and ideas from
Bourgain’s discretized sum-product theorem. See also the survey paper [55] for
further references.

The main result of Chapter 4 is a generalization of Theorem 1.6 to higher
rank projections.

Theorem 4.1. Let m < n be positive integers. Given 0 < o < n and k > 0,
there exists € > 0 such that the following holds for sufficiently small § > 0. Let
A be a subset of R™ contained in the unit ball B(0,1). Let p be a probability
measure on Gr(R™, m). Assume that

Ns(A) > 6ot
Vp >0, Ve e R", Ns(ANB(xz,p)) <0 p"Ns(A);
Vp >4, VIV € Gr(R",n —m), u(Ve(W,p)) <6 p".
Then there is a set D C Gr(R™, m) such that u(D) > 1 — 6¢ and
Ni(my (A)) > 67 wo¢
whenever V.€ D and A’ C A is a subset such that N5(A") > §<Ns(A).

For m > 1, our result is new. Moreover compared to Theorem 1.6, we es-
tablish the lower bound for all relatively large subsets of A. The proof goes
by induction on the dimension pair (n,m). The approach in the proof of The-
orem 1.6 combined with the higher dimensional sum-product estimate (Theo-
rem 3.2) proves the cases where m divides n. New ideas are used to reduce
other cases to these cases.

1.4.1 Ergodic theoretic motivation

Bourgain’s discretized projection theorem is one of the main ingredients in the
Bourgain-Furman-Lindenstrauss-Mozes theorem [8] on equidistribution for or-
bits of subsemigroups of SL4(Z) on the torus. This last result can be used to
study stationary measures. Namely, they obtained a stiffness result. Note also
that Bourgain and Varju [14] used Bourgain-Furman-Lindenstrauss-Mozes the-
orem in combination with the result in [60] to show expansion in SL4(Z/qZ), q
arbitrary integer.

In [4], Benoist and Quint have generalized the stiffness result of Bourgain-
Furman-Lindenstrauss-Mozes to a much broader class of dynamical systems. In
particular, for linear actions on tori, they do not need the proximality assump-
tion in [8]. However, the results in [4] are not quantitative.

The approach in [8] is Fourier-analytic. While a subgroup I' C SL4(Z) acts
on the torus, its transpose ‘T acts on Fourier coefficients. A large part of the
proof focuses on the study of large Fourier coefficients under this action. By the
theory of random matrix products, if I is proximal, then large random products
in I' behave like rank one projections composed with rotations, if viewed at an
appropriate scale. That is how Theorem 1.6 comes into play. If I' is not proximal,
higher rank projections will be involved. We hope that Theorem 4.1 can be used
in this situation.



1.4.2 Consequence on fractal projections

Just like Bourgain’s discretized projection theorem can be used to derive a
projection theorem in terms of Hausdorff dimension [7, Theorem 4], Theorem 4.1
has the following consequence.

Corollary 4.2. Let m < n be positive integers. Given 0 < a < n and k > 0,
there is € > 0 such that the following is true. Let A C R"™ is a Borel subset of
dimension dimy(A) = «. Then the set of exceptional directions

{V € Gr(R",m) | dimg(my (4)) < —a + €}

does not support any nonzero measure j1 on Gr(R™, m) with the following non-
concentration property,

Vo> 0, YW € Gr(R",n —m),  u(Ve(W.p)) < p".

Applied to a Frostman measure supported on the set of exceptional direc-
tions, this gives

Corollary 4.3. Let m < n be positive integers. Given 0 < a < n and k > 0,
there is € > 0 such that the following holds. Let A C R"™ be a Borel set of
dimension dimy(A) = «. Then

dimH{V € Gr(R",m) | dimg(my (A)) <

m04—&—6}Sm(n—m)—1—|—m.
n

In particular, as k — 0, we get
dimp{V € Gr(R™, m) | dimg(my (A)) < moz} <m(n—m)— 1L
n

This should be compared to the estimates already known in Theorem 1.5. OQur
result is not covered by Theorem 1.5 in the following two situations:

. . . . 1
(i) (Projection to lines) m =1 and a € ]0,1+ —[,

1

(ii) (Projection to hyperplanes) m =n —1and a € Jn —1 — —5,n|.

For example, as known in Bourgain [7], for n = 2 and m = 1, we have
1
dimy {6 € Gr(R?, 1) | dimy(me(A)) < 3 dimy(A4)} =0,

for all Borel set A such that 0 < dimy(A) < 2.

1.5 Product estimates

Now let the ambient space be a multiplicative group G. As before, for subsets
A and B of G, we write

AB={ab|a€ A, be B}

to denote the product set. We write also A=t = {a~! | a € A} for the inverse
set and A° = A--- A for the s-fold product set. This time we are interested in
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the growth of (AU {1} U A=1)5. Although the Pliinnecke-Ruzsa inequality is
false for general groups, we still have (see [59, Proposition 2.40])

|A3|)Os(1)

(1.4) (AU{1}UA™Y| <, (W

A

That is why we are interested in sets with small tripling (i.e. |A%| < K|A]|).

In the discrete setting, we have very good understanding of such sets, starting
with the works of Helfgott [36, 37], generalized by Breuillard-Green-Tao [18]
and independently by Pyber-Szabé [51] to finite groups of Lie types on the
one hand and leading to a classification of small tripling set due to Breuillard-
Green-Tao [19] on the other. The last result solves a conjecture of Helfgott-
Lindenstrauss and can be viewed as a generalization of Freiman’s theorem.

Unlike the commutative case, there is little hope to transfer directly product
estimates from the discrete setting to the discretized setting.

Nevertheless, the analogue of (1.4) in the discretized setting holds, as shown
by Tao [57, Theorem 6.8]. That is why in the discretized setting, we also
focus on the tripling. Using Bourgain’s sum-product theorem, Bourgain and
Gamburd [9, 11] obtained product theorem for SU(d), d > 2. This is then
generalized by Saxcé [24] to simple Lie groups.

Theorem 1.7 (Product theorem for simple Lie groups, Saxcé [24]). Let G be a
simple Lie group. There is a neighborhood U of the identity in G such that the
following holds. Given o < dim(G) and k > 0, there exists ¢ > 0 such that for
all § > 0 sufficiently small, if A C U satisfies

(i) Ni(A) <5777¢;
(ii) Yp > 8§, N,(A) > §p~";

(iii) for any proper closed connected subgroup H < G, there exists a € A with
d(a,H) > 0¢;

then N5(A3) > 576N5(A).

This result can be compared to Breuillard-Green-Tao [18] in the discrete
setting. It says a typical discretized set in a simple group has large tripling
unless it is trapped in a subgroup.

Product theorems can be applied to get spectral gap results. This is done
for the groups SU(d), d > 2 by Bourgain-Gamburd [9, 11] and for compact
simple Lie groups by Benoist-Saxcé [3]. Then Boutonnet-Ioana-Golsefidy [16]
introduced the notion of local spectral gap and further extended the expansion
result to noncompact settings. Discretized product theorems can also be applied
to study the Hausdorff dimension of measurable subgroups. Thus, combined
with Fourier techniques [23], Lindenstrauss-Saxcé [41] and Saxcé [25] showed
that there is no measurable dense subgroup of intermediate Hausdorff dimension
in connected simple Lie groups.

If the group G is nilpotent, then it is easy to construct a subset satisfying
the assumptions of Theorem 1.7 but having small tripling. For example, we can
take a sum of arithmetic progressions if G is abelian. And for a general nilpotent
group, there is a notion of nilprogression which generalizes arithmetic progres-
sions, see e.g. [19]. This contrast between simple groups and nilpotent groups
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also appears with the existence of measurable dense subgroups of intermedi-
ate dimension. Erdés and Volkmann [29] constructed measurable subgroups of
arbitrary Hausdorff dimension in R. Saxcé [22] extended this construction to
nilpotent Lie groups and a large class of solvable groups.

In a joint work with Nicolas de Saxcé, we extend Theorem 1.7 to perfect Lie
groups. This is the main result of Chapter 5. Recall that a Lie group G is said
to be perfect if its Lie algebra g satisfies the condition [g, g] = g. It is a weaker
condition than semisimplicity. The quotient of G by its radical R is semisimple.
If G is simply-connected, then G/R is simply-connected, hence a direct product
of simply-connected simple Lie groups. Factors appearing in this direct product
are called simple factors of the group G.

Theorem 5.1 (Product theorem for perfect Lie groups). Let G be a simply-
connected perfect Lie group. There is a neighborhood U of the identity in G such
that the following holds. Given o < dim(G) and k > 0, there exists € > 0 such
that for all 6 > 0 sufficiently small, if A C U satisfies

(i) N5(A) <6777

(i1) for any simple factor S of G, denote by 7s: G — S the canonical projec-
tion,
Vp >0, Ny(ms(A)) =dp"

(i5i) for any proper closed connected subgroup H < G, there exists a € A with
d(a, H) > 6¢;

then N5(A3) > 67Ns(A).

We require G to be simply-connected only for notational convenience. The
theorem is in fact about local Lie groups (a.k.a. analytic group chunk, see [54])
because we restrict to a neighborhood of the identity. If G is a connected perfect
Lie group, we can restrict to a neighborhood U’ such that U’ lifted to G, the
universal covering of GG, is contained in the neighborhood given by Theorem 5.1
applied to G.

The idea of the proof is to first reduce to the case where G is the semidirect
product of a semisimple group by an abelian group. Then in this special case we
consider its adjoint representation and show a growth statement in the adjoint
representation. Finally, this growth in the Lie algebra can be transferred to the
group by using the Campbell-Hausdorff formula.

Thus, as an intermediate result, we obtain a sum-product type estimate for
representations of Lie groups. It is an interesting result on its own right. The
setting is the following. Let V be a finite-dimensional linear representation over
R of a Lie group G. Let X be a bounded subset of V' and A a bounded subset
of G. We can ask whether X grows fast under addition and the action of A. For
s > 1, we define (A4, X) to be the set of elements in V' that can be obtained as
sums, differences and products of at most s elements of A and X.

Theorem 5.2 (Sum-product estimates in representations). Let G be a Lie group
and V finite-dimensional linear representation of G over R. There exists a
neighborhood U of the identity in G depending only on V' such that the following
holds. Given €g,k > 0, there exists s > 1 and ¢ > 0 such that for all § > 0
sufficiently small, if AC U and X C By (0,1) satisfy the following :
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(i) There is a Jordan-Hilder* sequence 0 = Vo < ... <V, =V such that for
everyi=1,...,1,

Vp 26, No(mv,vi_,(A) = 6%

where 7y, v, : G — GL(V;/Vi_1) denotes the representation of G on
Vi/Vie1.

(ii) For any proper closed connected subgroup H < G, there exists a € A with
d(a, H) > 0°.

(iii) For any proper submodule W <V, there exists x € X with d(x, W) > 6¢.

Then,
By (0,0°) C (A, X)s + By (0,0).

Note that for irreducible representations, this is a variant of Theorem 3.2. It
is in this special case that we use results from Chapter 3. The rest of the proof
of Theorem 5.2 consists of reducing to this special case by an induction on the
length of the Jordan-Ho6lder decomposition of V.

Considering R* acting on R, we can recover from Theorem 5.2 Bourgain’s
discretized sum-product theorem (Theorem 1.4). Similarly, we can recover the
discretized sum-product estimates for C or H. Moreover, the method in the
proof of Theorem 5.2 can be used to obtain sum-product estimates in semisimple
algebras (i.e. sums of simple algebras).

4 We mean 0 = Vp < ... < Vj =V are submodules such that V;/V;_; are all irreducible.
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Chapter 2

(zeneralities on discretized
sets

In this chapter we collect some elementary and well-known results, especially
arithmetic combinatorial tools, in the discretized setting. We provide proofs
that are important or are not easily accessible in the literature. Some of the
results are not used in later chapters.

2.1 Basics

We will first work in the Euclidean space R™. Anything we prove in R™ can
be easily transferred to an arbitrary finite-dimensional normed vector space (at
the price of losing a constant) if the proof is not already valid in general vector
spaces.

Recall that A denotes the Lebesgue measure.

Lemma 2.1. Let § > 0 and let A be a bounded subset of R". Let A be a
mazimal 25-separated subset of A. Then

(2.1) Nas(A) < |A| < Ns(A) < N1(B(0,2)) Nas(A),
and
A )‘(A((S)) n
A= XBway = 2N

As a consequence, N5(A®)) <, N5(A).

Proof. Let A and A be as in the statement of the lemma. Let B(z1,4),...,B(zxy, )
be a cover of A by N = N;(A) balls of radius 4.

If the balls B(a, 26), a € A do not, cover A then we could find b € A\ A such
that AU {b} is still 26-separated, contradicting the maximality of A. Therefore,
Nos(A) < |A. ) }

Consider the map A — {1,..., N} which maps each a € A to an index ¢
such that a € B(z;,4). Since A is 20-separated, this map is injective. Hence

|A] < N5(A).
The last inequality in (2.1) follows from a more general estimate
(2.2) Vp2 6, N5(A) < N, (A) max Ns(A N B(, p))
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and the fact that Ns(B(xz,26)) = N1(B(0,2)) for any = € R"™. To see inequal-
ity (2.2), we first cover A by p-balls and then cover each of these p-balls by
d-balls.

Since A is 20-separeted, the balls B(a,d), a
included in A, Hence |A|A(B(0,8)) < A(A©®).

From A U, B(x;,6) follows that A©®)  (JI | B(x;,20). Hence A(A®)) <
Ns(A)N(B(0, 26)). O

€ A are pairwise disjoint and

It is sometimes useful to change scales. Clearly, NVs(A) is nonincreasing in
0. Conversely, for all ¢’ > 4, we have

6/
5
It is a consequence of (2.2) and the fact N5(B(0,d")) <, (6’6~1)™ which can be
proved using Lemma 2.1.

If f: R" — R” is a linear map with ||f| < K where K > 1, or more
generally if f: A — R" is K-Lipschitz, we have

(2.3) Ni(4) < ( )"N5, (A).

(2.4) N3 (fA) < K"Ni(A).

For a family of bounded sets (A4;) we have

Ns(U A;) < ZNé(Ai)-

This need not be an equality even if (A;) is a disjoint family. However, we have
an equality if AE‘S) are pairwise disjoint.

When we want to intersect two discretized sets A, B C R"™, we shall take
the d-neighborhood of at least one of the sets before intersecting. Note that
N5(A® N BO) can be large while at the same time AN B is empty. The same
is true for A9 N B9 and A N BO). However, we have

(2.5) N3(APD 1 B) <, Ns(A® 0 BY)) <, N5(A N BEY),

2.2 Ruzsa calculus

Let § > 0 be the scale. Let A, B,C be bounded subsets of R™. All implied
constants in Landau and Vinogradov notations depend on n. Again results in
this section can be transferred to an arbitrary finite-dimensional normed vector
space with a loss of a constant factor.

Let K > 2 be a parameter. We denote by O(K) an unspecified finite set of
cardinality O(K). Moreover, we write O(K’; A) to indicate that it is a subset of
A. For example, we have

O(K;A)+ O(L; B) C O(KL, A+ B).

Lemma 2.2 (Ruzsa’s covering lemma). Let K > 2 be a parameter. If N5(A +
B) < KNj;(A), then

BC A—A+O(K;B) +B(0,0).
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Proof. Let By be a maximal subset of B such that the translates (b + A+

B(0, g))beBo are disjoint. We have, on the one hand, for any b € B, the translate

b+ A+ B(0,%) is not disjoint from &' + A + B(0, %) for some V' € By which
means b € A — A+ By + B(0,9). On the other hand, by the disjointness,

Ns(A+ B) > Ng(A-i—BO) > |Bo‘N%(A).

Hence |By| < K. O

We can approximate R™ by the lattice § - Z™. More precisely for a subset
A C R”, we define

A={ae€s 2" | Ana" +£ z}.

Then A ¢ A" and A ¢ A", Consequently Ns(A) =< |A|. Moreover these
inclusions behave nicely under addition and subtraction. Namely, for all k,1 > 0,

kA —1A C kA — 1A+ B(0,n(k + 1))

and conversely R ~
kA —1A CkA—1A+B(0,n(k+1)d).

Using this approximation and the scale change estimate (2.1) we can translate
additive combinatorial results in the discrete setting to the discretized setting.
For the discrete version see the book [59] or [49] for the Pliinnecke-Ruzsa in-
equality.

Lemma 2.3 (Ruzsa triangular inequality). We have
N5 (B)Ns(A—C) < Ns(A— B)Ns(B - C).

Lemma 2.4 (Pliinnecke-Ruzsa inequality). For all K > 1, if N5(A+ B) <
KNj5(B) then for all natural numbers k and [,

Ns(EA —1A) < O(K)* N5(B).

2.3 Energy and Balog-Szemerédi-Gowers theorem

Before stating the Balog-Szemerédi-Gowers theorem in the discretized setting
let us recall some basic facts about energy in the discrete setting. Let ¢: X — Y
be a map between discrete sets and A a finite subset of X, define the ¢-energy

of A to be
w(p, 4) = |[Ane  (y)*
yey

In other words, it is the square of the [?-norm of the push-forward of the counting
measure on A under ¢ or the number of collisions of the map |4 :

w(p, A) = lloLall = #{(a1,a2) € A x A: p(a1) = p(az)} -

For example, the usual additive energy between two subsets A and B of an
abelian group G is w(+, A x B) where + is the group law of G.
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When nothing is known about ¢, w(p, A) can be as small as |A| (when ¢ is
injective) and as large as |A|?> (when ¢ is constant on A). If the image of A by
 is small then the energy is large by the Cauchy-Schwarz inequality :

Al?
(2.6) w(p, 4) > A

The converse is not true. Nevertheless, we have a partial converse.

Lemma 2.5. Suppose there are K, M > 0 such that w(p, A) > %\A| and for
ally €Y, |ANe~'(y)| < M. Then there exists A’ C A such that |A'| > 5 |A|
and |p(A")| < 5F|Al.

Proof. The idea is to trim off small fibers. We consider

M
Y = Y ||Ane™! >
{fyev|lAng (y)I_QK

and let A’ = ¢~1(Y”’). By the definition Y’, we have
_ M
A= Y 1Ane™ W) > Y-
yey’

Hence |p(A")] < 25| A].
From the definition of the energy and the assumptions of the lemma,

M -1 -1
W(%A)_ﬁZIAﬂw W +M Y [Ane ' (y)
yeyY yey’
M
< —|A|l+M|A|
< oA+ M4
It follows that |A’| > 7| Al. O

What Balog-Szemerédi-Gowers theorem roughly says is that if ¢ is a group
law (or has some injectivity property similar to a group law) and A is a Cartesian
product then the set A’ in the conclusion of Lemma 2.5 can be chosen to be a
Cartesian product.

For discretized sets we have an analogous notion of energy.

Definition. Let ¢: X — Y be a Lipschitz map between metric spaces and A a
bounded subset of X. We define the p-energy of A at scale 6 as

ws(tp, A) = N5 ({(a,a) € Ax Al d(p(a), p(a’)) < 6}).

Here we adhere to the convention that the distance on a Cartesian product
X x Y of metric spaces is such that

2
d((z,y), (',y)" = d(z,2")? + d(y,y')?
for all pairs (z,y), (¢/,y') € X x Y.

Lemma 2.6. Let n and m be positive integers. Let A C R™ be a bounded subset
and p: R™ = R™ a K-Lipschitz map.
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(i) The analogue of inequality (2.6) is true :

N5(A)2
(2.7) ws(p, A) >nm No(o(A))”

(ii) If v: A — R™ is another K-Lipschitz map, then
(2.8) ws (i, YA) <n K" ws(p o1, A).
(iii) Let A be a mazimal §-separated subset of A. Then

ws(ie, A) <n #{(a,0) € Ax A| lg(a) = 0(a))| < (1+2K)3}.

Proof. Let A be a maximal d-separated subset of A.

(i) Let Y be a finite subset of R™ such that ¢(A) is covered by the balls of
radius g centered at points in Y. Then

- ~ 0
A< D _[Ane™ (B, ),
yey
and by the definition of wy,
~ 0
> JAne™ (B, 3) * < wilp, A).
yey

It follows from the Cauchy-Schwarz inequality that
AP < [V ws (0, A).

(ii) It is an easy consequence of (2.4).

(iii) For each a € A, choose @ € A such that ||a — al| < 6. Let Q be a maximal
80-separated subset of {(a,a’) € A x A||¢(a) —¢(a’)|| < 6}. Then the
map (a,a’) — (a,a’) is injective from €2 to the set on the right-hand side
of the desired inequality. O

We will need the following additive version of Balog-Szemerédi-Gowers The-
orem which gives a criterion for the additive energy between two sets to be large.
See [57, Theorem 6.10] where it is proved in a much broader context.

Theorem 2.7 (Balog-Szemerédi-Gowers Theorem). Let A, B be bounded sub-
sets of R™. If

ws(H, A x B) 2 ZN(A) NGB,

then there exists A’ C A and B’ C B such that N5(A') >, K-°MN;(A),
N5(B") >, K-O°WN;(Y) and

Ns(A' + B') <, KODN;5(A)2N5(B)?.
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2.4 Basic sum-product estimates

First consider a situation where A C End(R™) is a set of endomorphisms acting
on a bounded subset X C R" in a Euclidean space. Let K > 2 be a parameter.
Similarly to the consideration of "good elements" in [13, Proposition 3.3] and
the basic construction in [58, Proposition 3.1], we define at scale § > 0,

S5(X; K) = {f € Benagn)(0, K) | No(X + fX) < KN5(X)}.

Here are some basic properties of S5(X; K). The main idea is that it behaves
like an approximate ring.

Lemma 2.8. Let X C B(0, K) be a subset of R™, we have

(i) If a € Ss(X;K) and b € End(R"™) such that |ja — || < K0, then b €
S5(X; KOW)

(ii) If1d,a,b € S5(X; K), then a+b, a —b and ab all belong to Ss(X; KOM).

(iii) Suppose that a invertible and ||a=|| < K. If a € S5(X; K), then a™! €
Ss(X; KOMW),

() If1d,aq,...,as € S5(X; K), then
Ns(X + a1 X + - +a.X) < KOON5(X).

(v) If 1d, a € S5(X; K), then for all p > 4, we have
N, (X +aX) < KODN,(X).
In other words, a € S,(X; KOW).
Proof. (i) If N5(X +aX) < KN3(X) and ||a — b|| < K¢, then
X +bX C X +aX + B(0, K26).
Hence N5(X +bX) < KOWN5(X).
(ii) Let a,b € S5(X; K). By Ruzsa’s covering lemma (Lemma 2.2),
aX C X — X + O(K) + B(0,0),

and
bX C X — X +O(K)+B(0,9).

Hence,
X+ (a+b)X C3X —2X + O(K?) + B(0,20),

X +(a—b)X C3X —2X + O(K?) + B(0,2).
Finally by the Pliinnecke-Ruzsa inequality (Lemma, 2.4),
Ns(X + (a+0)X), Ns(X + (a —b)X) < KODN;(X).

Moreover, since ||a|| < K, we have

X +abX C X +a(X — X + O(K) +B(0,0))
C X +aX —aX +O(K)+B(0,K6)
C3X —2X + O(K?) + B(0,3KY9)

Hence, N3(X 4+ abX) < KOMN;(X).
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(iii) If a € GL,(R) and ||a™!|| < K, then X +a71X = a~!(X +aX) and hence
Ns(X +a71X) < KOONG(X + aX).

(iv) The argument is similar to that of (ii).

(v) For all p > § we have

Ns(X) < max N5(X N B(z, p) N, (X)

and for all x € R™,
Ns(X + X +aX) > Ns(X NB(z, p) ) N,(X + aX).
If Id, a € Ss(X; K), then by (iv),
Ns(X + X 4 aX) < KODN(X).

We obtain the desired estimate by combining the three inequalities above.
O

Now let A be a bounded subset of a finite-dimensional normed algebra FE.
We can view left multiplications by a € A as elements of End(FE). Lemma 2.8
tells us that, if for some K > 2,

Ns(A+a-A) < KNs(A)

for all a € A, then for any positive integer s there is s’ = s'(s) > 1 such that
Ns(A+a-A) < K¥ Njs(A)

for all a € (A4)s.

Lemma 2.9. Let K > 2 be a parameter. If A C Bg(0,K) is a subset of a
finite-dimensional normed algebra E satisfying

Ns(A+A)+Ns(A+ A- A) < KN5(A),
then for any positive integer s,
Ns((A)s) < K" MN5(A).
Moreover, for any p > 0,
No((A)s) < KON, (A).

This lemma is a sum-product analogue of property (1.4) in groups . This dis-
cretized version can be proved by mimicking the proof of its discrete counterpart
in [17, Lemma 5.5].

Proof. Without loss of generality, we can assume that the norm on E is sub-
multiplicative and 0 € A. We prove by induction on s that there exists ks > 1
such that

(2.9) (A)y C kyA — ko A+ O(KF; (A).) + B(0, K*:6).
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This combined with the Pliinnecke-Ruzsa inequality (Lemma 2.4) will finish the
proof. For s = 2, the inclusion (2.9) is immediate from Ruzsa’s covering lemma,
(Lemma 2.2). In particular, we have

(2.10) A-ACA—A+O(K;A-A)+B(0,0).

For the induction step, we show that if (2.9) is true then (A),+ A and (A)- A also
satisfy an inclusion of the form (2.9). For (A); + A, this is clear. Multiplying
A on the right to both sides of (2.9) yields

(A)g- A CEy(A-A) —Eky(A-A) + O(KF=; (A).) - A+ B(0, Kk T15).
By (2.10),
k(A A) C koA — koA + O(K" kA A) + B(0, k).

For any = € (A)g,, by the discussion after the proof of Lemma 2.8, Ns(A+xz-A) <
KO N5(A). Hence by Ruzsa’s covering lemma (Lemma 2.2) again,

t-ACA—A+O(K%W; (A 1) +B(0,0).
Taking union of O(K*) of such sets, we obtain
O(K*;(A),) - AC A— A+ O(K? W (A)y, 1) + B(0,6).
Putting these inclusions together gives
(A)s - A C (2ks + 1)A = (2ks + 1A+ O(K Wi (A) 0, 1)) + B(0, K 9),

which finishes the proof of the induction step.
The "moreover" part is obtained by the same argument as in the proof of
Lemma 2.8(v). O

As a consequence of Lemma 2.9, in order to show that (A)3 is substantially
larger than A, we can show that (A), is much larger than A. That is why the
strategy of the proof of Theorem 3.1 is to show that for any ¢y > 0 there is
s > 1 such that (A), contains a ball of radius 6.

Conversely, if a growth statement such as Theorem 3.1 is true then within a
bounded number of steps, the set always grows to become J-dense in a large ball.
This kind of phenomenon is often proved using Fourier analysis, as shown by
Bourgain [7, Theorem 6]. Below we extend this argument to higher dimensional
situation. It is also worth noting that these arguments are analogue of arguments
using the high dimension of irreducible representations in groups, such as those
used in Sarnak-Xue [52], Gowers [34], Bourgain-Gamburd [10] in the discrete
setting and Bourgain-Gamburd [9, 11], Saxcé [23] in the discretized setting. In
the following paragraphs, End(R"™) is endowed with the usual operator norm.

Proposition 2.10. Let ¢ > 0. Given o > 0 and 8 > 0 such that a + > n,
there ezists s = s(a+ 8 —n,n) > 1 such that the following is true for all § > 0
sufficiently small. Let i be a probability measure on Bgyqrn)(0,1) and v a
probability measure on Brn(0,1). Assume that

(i) for all p>§ and all ,n € R™ with ||€|| =1,
p({a € End(R") | ‘ag € B(n,p)}) < 6~ p%
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(ii) for all p > 6 and all x € R™, v(B(z,p)) < §~p°.
Then there exists a,...,as € Supp(p) such that
B(0,6*)Ca1 X+ - +asX —a1 X — - —a, X +B(0,0)
where X = Supp(v).

Lemma 2.11. Let €, o, B, p and v be as in Proposition 2.10. Then for all
EeR™ with 1 < €| <671,

at+B—n

(211) [1otae)auta) < 57l ="

This lemma can be viewed as a higher dimensional extension of [7, Theorem
7].

Proof. First we prove that for any 1 < R < 257!,
(2.12) / [o(n)>dn <, 6 “R"P.
B(0,R)

For any function ¢, denote by ¢~ the function z — ¢(—x). Similarly define
v~ for any measure on R™. Choose a smooth function p: R” — R supported
on B(0, 1) and having fR" @ = 1. Replace it with ¢ % ¢~ if necessary, we can
assume that ¢(§) € Ry for all £ € R™. From the continuity of ¢, there is a
constant ¢ > 0 such that

for all £ € B(0,¢).

N =

o(6) >

For R > 0, set pr(r) = ¢ "R"p(c"'Rx), v € R"™ so that ||pr|le <, R™ and
Supp(pr) C B(0,cR™!) and moreover

cn

Vn € B(0,R), ¥r(n) = ¢(E) =

N —

Thus for all 1 < R < 2671,
[ oPan< [ oGP ertn dn
B(0,R) R7
By the Parseval identity, the right-hand side is equal to
@0 [ ondv s <o ol s )(BOCR),

Using assumption (ii), the right-hand side can be bounded by O, (6 ¢R"~ 7).
This finishes the proof of (2.12).

Now, consider Hr: = {n € Bg=(0,R) | |0(n)| > t.} for 1 < R < ¢! and
0 <t < 1. Since v is K-Lipschitz for some constant K depending only on n, we
have

t
HR,t +B(0, ﬁ) C HR-I—l,%'
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Thus )\(I‘I}(é/fm)t2 < fB(o R+1)|ﬁ|2 <, 07¢R"# and hence
Ni(Hpy) < 6t " 2R"P,
Let £ € R™ be a vector of length 1 < ||¢]] = R < 671, then
[19a)lduta) < ¢+ (i, ).

where H}%,t = {a € End(R") | "a¢ € Hr+}. From a covering of Hg, by t-Balls
we can lift to a covering of Hf%’t by sets of the form {a € End(R") | ¢ €
B(n,t)}. Using t <1, R < 6! and assumption (i), we obtain, for all € R",

p({a € Bnd(R") | ¢ € B(,1)}) < p({a € Bnd(R") | ‘ass € B(E, )
<6 R
Therefore,
u(Hp,) < 6~ RNy (Hp,).
We obtain the desired estimate by setting ¢ = RS O

Proof of Proposition 2.10. Write 7 = “jﬁg" and set R = min{(;*%,é’l}. Let

s be a positive integer. Taking the s-power of (2.11) and integrating over the
annulus B(0,571) \ B(0, R), we obtain

/anﬂléél (/‘f/(tagﬂ dM(a)>s d¢ < §3se gn—Ts

for 6 > 0 sufficiently small. Developing the left-hand side and using Fubini’s
theorem gives existence of ay,...,as € Supp(p) such that

[ ime) o) de < 5 R
R<|jglI<o—t

Denote by v/ the image measure of v®% by the map (x1, -+ ,s) = a1my +- -+
asts. The above inequality and the choice of R yield

/ 0/(€)| dE < 55 7.
R<L[E)I<6—1

Let ¢: R™ — R be a smooth function supported on B(0,1) and with [, ¢ =1
and moreover ¢ (¢) € Ry for all £ € R™. Set ths(x) = 6" T"<q)(61+<z) so that
it is supported on B(0,5"~¢) and 1)s(&) = 1(6'~<€). The convolution v/ * 15 is
a smooth function supported on B(0, s + 1), hence there is xg € Supp(v' * ¥s)
such that

(2.13) V' ok hs () >, 57"

By the Parseval identity, for all z € R™

vrita) = [ @0 ac
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Hence for all z € B(zg, 0°)
[V s ps (o) — v/ 4ps(2)]
<[ 1 —eiEmmT0) gg 42 J(€)] e + 2 h5(€)d
<[ li-e de+ [ pepac e [ e ae

0,R) <ligl<o—

<<n(sseRn+1+26$e—47"€+/ |,¢A}(51—e£)|d€
él=6-1

Pick s = M + 1 so that the first two terms are O(0¢). To bound the last

integral, we note that since 1 is smooth, we have [¢)(€)| <, [|€]|~™ for any
m > n. Hence the last integral is

[y 90N g e 0

l€ll=o—1

Now pick m large enough so that me —n > € and we obtain
|V % )5(z0) — V' * s(2)] Kne O°.

Combined with (2.13) we have B(0,5%) C Supp(v’) — Supp(v’) + B(0,25*7°)
when ¢ is small enough. This is almost what we want except here we need a
261 ~“-neighborhood instead of J-neighborhood. To finish the proof it suffices to
see that we can work at the scale §; = (g)i from the beginning. For example,
the hypothesis (ii) implies that for all p > 6; and all z € R", v(B(z,p)) <
57998, O

Recall that all algebras in this document are associative and unital.

Proposition 2.12. Let E be a finite-dimensional normed algebra over R. There
is an integer s depending on E such that the following holds for all ¢ > 0 and for
§ > 0 sufficiently small'. Let A C Bg(0,1). Assume that N5(A) > §— dim(E)+e,
Then there exist elements aq,...,as € A such that

B(0,0°%)) c ayA+ -+ a,A—a1A— - —a, A+ B(0,6).

This proposition can be viewed as a discretized analogue of [17, Lemma 6.4].
Note also that the statement with right multiplication instead of left one is
equally true.

Proof. This is a direct consequence of Proposition 2.10. Without loss of gen-
erality, we can suppose that the norm on FE is Fuclidean. Denote by n the
dimension of E. Let v be the normalized restriction of the Lebesgue measure
to A, The assumption (ii) of Proposition 2.10 for 3 = n follows immediately
from Lemma 2.1.

Let u be the push forward of v under the map E — End(FE), a — [, where [,
denote the left multiplication by a. We claim that p satisfies the assumption (i)
of Proposition 2.10 with o = 1.

For any £ € I/, denote by my the linear endomorphism a — ‘1,€. The linear
application £ — End(E), £ — mg is injective since E is unital. Thus, there
exists ¢ > 0 such that ||me|| > ¢||£]|. Let §&,n € E with ||£]| =1 and let p > 4.

1

smaller than a constant depending on E and e.
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We want be bound I/(mgl(B(n,p))). We know that |me|| > ¢. Consequently,
from the Cartan decomposition of m¢ we see that

mgl(B(O,p)) C We +B(0,¢7p)

where We is a n — 1-dimensional subspace. Hence either mgl(B(n, p)) is empty
or there is ag € E such that

me ' (B(n,p)) C ag + We +B(0,2¢™ ' p).
We conclude that

p({f € End(E) | 'f¢ € B(n, p)) = v(mg ' (B(n, p))) <z 6 °p,

which proves the claim and hence the proposition. O

2.5 Noncommutative analogues

Let G be connected real Lie group. Let u be a left-invariant Haar measure on
G and d a left-invariant smooth metric on G.

Due to non-zero curvature, the precise estimates in Lemma 2.1 valid in R™
does not hold in general. Nevertheless, the same type of estimates hold if we
restrict ourself to a compact set and allow constants to depend on this compact.
Actually, (G, d) is a locally reasonable metric group following the definition of
Tao [57, Definition 6.3]. Namely,

(i) The topology on G is compatible with the metric d. Closed balls for d are
compact.

(ii) For any R > 1, we have
d(zg,y9), d(gz, 9y), dlz™",y™") <¢,r d(z,y)
for all z,y,9 € B(1, R).
(iii) For any R > 1, we have
p(B(1,2r)) <,z p(B(1,7))
forall 0 <7 < R.

Form these properties, estimates similar to Lemma 2.1 follows. Let us recall
some of them, for more details see [57, §6]. Let R > 1. Let X C B(1,R). For
all 0 < § <1, we have

X B(1,6) C B(1,0¢.r(9))X,
B(1,9)X € X B(1,0¢,r(9)),

p(X®)

(214 A(B(1,9))

=a,r N5(X),

and
NQ&(X) XG,R N(;(X) XG,R Ng(X(é)).
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There is also a useful property specific to Lie groups. For all 0 < § < 1 and all
closed connected subgroups H < G,

Ns(Bp(1,1)) =g 6~ dmUD),

The Pliinnecke-Ruzsa inequality does not hold for noncommutative groups.
However the Ruzsa triangular inequality still holds in the noncommutative set-
ting. From it we can deduce a weak but noncommutative version of Pliinnecke-
Ruzsa inequality. In the discretized setting, its statement is the following.

Lemma 2.13 (Tao [57, Theorem 6.8]). Let R > 1 and K > 2 be parameters.
If A C Bg(1, R) satisfies Ns(A3) < KNs(A) then for all s > 1,

Ns((AU{1}UA™Y®) <g.r KO- WN;(A).

It is worth noting that the Balog-Szemerédi-Gowers Theorem also holds in
the noncommutative and d-discretized setting, see [57, Theorem 6.10].

2.5.1 Metric entropy version of the Petridis lemma

In this subsection, we prove an discretized version of a result known as the
Petridis lemma [49]. It implies the Pliinnecke-Ruzsa inequality in the com-
mutative setting and thus can be viewed as a substitute for Pliinnecke-Ruzsa
inequality in the noncommutative setting.

Lemma 2.14 (Metric entropy version of the Petridis lemma). Let (G,d) be a
locally reasonable metric group. Let R > 1 and K > 2 be parameters and let
0<d <1 beascale. If A and B are subsets of Bg(1, R) such that Ns(AB) <
KNj5(A), then there exists Ay C A such that for any subset Y C Bg(1, R),

N(S(YAOB) <G,R KN(;(YAO).

Like in [57], the strategy is to first prove a continuous version. Then the
lemma follows from properties of locally reasonable metric groups such as esti-
mate (2.14). Till the end of this section, G denote a locally compact Lie group
and p an left-invariant Haar-measure.

The main idea in Petridis’ proof is to consider a subset Ay C A which
minimizes the ratio \,‘4;‘)3”_ So in the continuous setting we want a subset Ag
(AOB)

minimizing the ratio £

Let B denote the Borel o-algebra of a locally compact group GG. Write B~
for the set of all Borel subsets of positive measure. Let B C G be a measurable
relatively compact subset with positive measure and define f: B — R4 U {400}
as

f(A)=u(AB), VAeB.
Properties of the function f can be summarized as follows.
(i) (Monotonicity) for all A, A’ € B, if A C A’, then f(A) < f(A").

(ii) (Continuity from below) if (A4,) is sequence of measurable sets with A,, C
Apyq for all n, then

U Ay) <supf( n)-

n>1
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(iii) (Submodularity) for all A, A" € B,
FLAUA) + f(ANAT) < f(A) + f(A).

(iv) (Bounded away from 0) there exists ¢ > 0 such that f(A4) > ¢ for all
A € Bsg.
(v) (Left-invariance) for all A C B and all g € G, f(gA) = f(A).

From now on we can forget the definition of f and only use the above properties.
The only difficulty for transferring Petridis’ proof to the continuous setting is

to prove the existence of sets minimizing the ratio l{ Eﬁ;; where A’ ranges over
all subsets of A with positive measure.

Lemma 2.15. Let A C G be a measurable subset of finite positive measure.
Let A~q denote the set {A’ € Bsg | A’ C A}. Assume that f: A — R, is a
function satisfying properties (i)-(iv) above. Then the infimum

fA)

K =
A€4s0 u(AY)

is reached. Moreover, countable unions of minimizing sets are minimizing. Con-
sequently, up to a null set, there is a unique minimizing set of mazximal measure.
Any minimizing set is a subset of this set up to a null set.

Proof. We first show that finite unions of nearly minimizing sets are nearly
minimizing. More precisely we claim that if A’, A” € As¢ are such that

(215)  f(A) < (K + )u(A') and F(A") < (K +¢")u(A”)
for some €', €’ > 0, then
JAAUA") <(K+¢€+e"u(A uA”).

To prove the claim, we note that f(A'NA") > Ku(A'NA") by the definition
of K. Substituting this and (2.15) into the submodularity inequality yields

FA UA") < (K + () + (K + (") — Kp(A' 0 A").

Then the monotonicity and modularity of p gives the claim.

Now choose a sequence (A,),>1 of measurable sets with positive measure
such that f(A,) < (K +27"). Note that by the condition (iv), u(4,) > 55
for any n > 1. Hence

p(limsup A,) = lim  p U Ap) > 0.

n—-4oo N—+o0 n>N
By the claim, for all £ > 1
N+k N+k

7 An) < (K + 27N A,
n=N n=N
Taking the limit for £ — 400 and using condition (ii), we obtain

FU A < (5 + 2N An).

n>N n>N
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Finally using condition (i) and taking the limit for N — 400, we obtain

f(limsup A4,,) < Kpu(limsup A4,,).
n—-+4oo n—-+oo
This proves the existence of minimizing sets.

The claim above already shows that finite unions of minimizing sets are
minimizing. The fact that this is also true for countable unions follows from the
continuity from below of f and u. The union of a sequence (A,,) of minimizing
sets with u(A,,) tending to the supremum of the measure of all minimizing sets is
a minimizing set of maximal measure. The uniqueness follows immediately. [

Lemma 2.16 (Continuous version of the Petridis lemma). Let f: B — Ry U
{+0o0} be a function satisfying properties (i)-(v) on page 26. Let A be a mea-
surable subset with 0 < u(A) < +o00. Then there exists a Borel set Ag C A such
that for any countable subset Y C G,

7oA < T v ay).

1(A)
Proof. The previous lemma shows the existence of a Borel subset Ay C A such
that
!/
o) _ e ) _ 104
1(Ao) Alca p(A') ~ p(A)
wu(A")>0

We consider the collection of subsets Y C G such that f(Y Ag) < Ku(Y Ag) <
+0o. This collection contains {1}. It is closed under G-translation on the left
by the left-invariance of f and pu. We claim that it is also closed under adding
the identity element. Indeed, by the submodularity,

f(Y Ao U Ao) + f(YAgN Ag) < f(YAo) + f(Ao).
By the definition of K, f(Y Ao N Ag) > Ku(Y Ag N Ag). Hence
(Y UT11)A) < K (u(Y Ag) + i Ag) — (Y Ag 1 Ag)) = Kp((Y U {1}) U Ao).

Thus, the conclusion of the lemma holds for any finite subset Y. Too see that
it is also true if Y is countable it suffices to use the continuity from below. [J

Now we deduce Lemma 2.14 from Lemma 2.16.

Proof of Lemma 2.14. Let G, R, A, B and K be as in the statement of Lemma 2.14.
From N5(AB) < KN5s(A) and the basic properties of locally reasonable metric
groups, we deduce that

AP BOY < p N5(AB)u(B(1,0)) <a.r KNs(A)u(B(1,0)) <a.r Ku(A®)

Now we apply Lemma 2.16 to the set of positive measure A(®) and the function
f: A u(A'BO®). We get Ag C A® such that for any countable set Y C G,

(Y AgB®) < r Kp(Y Ag).

Set A, = A((fs) N A so that we have both A; C A((fs) and Ay C A:(Lé). Let
Y C Bg(1, R). We claim that

N5(YA1B) <c.r KN5(Y Ay),
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which finishes the proof of Lemma 2.14.
To prove the claim, consider Y C Y a finite subset such that Y ¢ Y(®). We
know
1Y AgB®) < .r Kpu(Y Ag).

On the one hand, we can bound from above the right hand side by
(Y Ag) < p(Y AP)) < (Y A1) O mO)) < g N3(Y Ay)u(B(L,6)).

On the other hand, we can bound from below the left hand side : there exists
C <@,r 1 such that

(VAoB) &) C Y AB® and YABCYWAPBC(VAB) .
Hence

(Y AB®) > (Y AoB)'©)) 6,1 N (Y A B)u(B(1, g)).

Moreover, we have u(B(1, &)) > r p(B(1,6)) and
/\/% (YAOB) >a.R Ncg((?AOB)(C‘;)) >a.R Ncg(YAlB) >a.Rr /\/g(YAlB).

Putting all these inequalities together, we obtain the claim. O
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Chapter 3

Sum-product estimates in
matrix algebras

In the chapter we generalize Bourgain’s discretized sum-product theorem to
matrix algebras. By normed algebra we mean an associative unital algebra over
R endowed with a norm that makes the underlying linear space a normed vector
space. Let E be a normed algebra. We want to understand, given a bounded
subset A C F satisfying similar properties as in Theorem 1.4, how Nj({A))
grows and whether (1.3) or similar estimates hold.

If we ask these questions for general real algebras, they can be as hard as the
Freiman problem! as illustrated by the following example. Let Ay be a bounded
subset of R containing 0. Consider A the set of matrices of the form (§ ¢) with
a € Ag. Then for any positive integer s, every element in (A), is of the form
(ka) with a € s’Ag and k € {—¢,...,s'} where s’ is an integer depending on
s. Conversely, for every a € sAg, we have (§¢) € (A),. Hence

Ns(sAo) < N5((4)s) <s Ns(s"Ao).-

This means the growth of A under addition and multiplication is somehow
equivalent to the growth of Ay under only addition.

That is why we will restrict our attention to simple algebras. By the Wed-
derburn structure theorem and the Frobenius theorem, we know that a simple
real algebra of finite dimension is isomorphic to M,,(R), M,,(C) or M,,(H), the
algebra of n x n matrices over the real numbers, the complex numbers, or the
quaternions, for some n > 1.

Theorem 3.1. Let E be a normed simple real algebra of finite dimension. Given
k>0 and o < dim(FE), there is € > 0 depending on E, k and o such that the
following holds for § > 0 sufficiently small. Let A be a subset of E, assume that

(i) ACB(0,67°),
(ii) Vp > 5, N, (A) > 5p~,

! Freiman problem asks, in a given abelian group, which subsets grow slowly under addi-
tion. Freiman’s Theorem asserts that they are "close" to generalized arithmetic progressions.
Obtaining a polynomial bound for this theorem is one of the fundamental open problems in
additive combinatorics. See |59, Chapter 5|.
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(111) Ns(A) < §=o7¢,
() for every proper subalgebra W C E, there is a € A such that d(a, W) > §¢.

Then,
(3.1) Ns(A+A)+ Ns(A+ A-A) > 6 N;s(A).

The case E = C is due to Bourgain and Gamburd [9]. So our result is new
for dim(F) > 2.

The assumption (ii) is a non-concentration condition. It is to avoid the
situation where A is a union of a bounded number of small balls. A subset
A C E satisfying the condition (iv) will be said to be §¢-away from subalgebras.
This is the additional condition compared to the one-dimensional case. Without
it A can be trapped in a small neighborhood of a proper subalgebra. Note the
conclusion (3.1) is slightly weaker than that of Theorem 1.4. Here, instead of
A- A, weneed A+ A- A to see the growth. Actually, the estimate (1.3) fails
under the same assumptions as soon as dim(FE) is greater than 1. Indeed, if A
is a union of a segment of unit length and an orthonormal basis of E, then the
set A satisfies the assumptions® of Theorem 3.1 but A+ A and A - A are both
unions of a bounded number of unit segments. Thus (1.3) fails for such A.

Using the fact that all norms on a finite-dimensional linear space are equiv-
alent, it is easy to see that the constant ¢ > 0 can be made independent of the
choice of the norm while scale ¢ need to be smaller than a constant dg depending
on F, its norm, o and k. Moreover, this constant g can be made uniform for
norms ranging in a compact set (for the topology of pointwise convergence).
However, the dependence on the norm can not be removed completely as illus-
trated by the following example. Let £ = C and A = [0,1] - 4. For any r > 0,
consider the norm defined by Vz,y € R, ||« + iy|. = r|z| + |y|. Then the as-
sumptions of Theorem 3.1 are satisfied but Ns(A+ A)+Ns5(A+A-A) < N5(A)
if r <4.

Our second result concerns linear actions on Euclidean spaces. Let X be a
bounded subset of the Euclidean space R™. Let A C End(R™) be a collection
of linear endomorphisms. We can ask whether X grows under addition and
transformation by elements of A, provided that A is sufficiently rich.

Theorem 3.2. Let n be a positive integer. Given x > 0 and o < n, there is
€ > 0 such that the following holds for § > 0 sufficiently small. Let A be a subset
of End(R") and X a subset of R™, assume that

(i) ACB(0,67°),
(i) Yp > 8§, N,(A) > §p~",

(i5i) for every nonzero proper linear subspace W C R™, there is a € A and
w € By (0,1) such that d(aw, W) > 6¢.

(iv) X C B(0,07¢),
(v) ¥p>0d, N(X)>d6p",
(vi) Ns(X) <59,

2 The condition dim(E) > 1 is needed to have assumption (iv).
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Then,
(3.2) Ns(X + X) + r;leachg(X +aX) > 6 “N5(X),

where aX = {ax | x € X }.

This improves a previous result of Bourgain and Gamburd [11, Proposition
1].

As a simple corollary, we can obtain a "sum-bracket" estimate in simple Lie
algebras. If A is a subset of a Lie algebra g, write [A, A] = {[a,)] | a,b € A}.

Corollary 3.3. Let g be a normed® simple Lie algebra of finite dimension.
Given k > 0 and o < dim(g), there is € > 0 such that the following holds for
0 > 0 sufficiently small. Let A be a subset of g, assume that

(i) AC B(0,67°),
(ii) ¥p = 6, Nj(A) = 57",
fiii) Ny(A) < 670,
(iv) for every proper Lie subalgebra W of g, there is a € A such that d(a, W) >
dc.

Then,
Ns(A+ A) + Ns(A+ [A, A]) > 6 Ns(A).

3.0.1 Outline of the proofs
Both Theorem 3.1 and Theorem 3.2 are deduced from the following theorem.

Theorem 3.4. Let E be a normed simple real algebra of finite dimension. Given
k>0 and eg > 0, there is € > 0 and an integer s > 1 such that the following
holds for § > 0 sufficiently small. Let A be a subset of E, assume that

(i) A B(0,67°),
(i) Vp = 6, Np(A) = 6p",
(iii) A is d°-away from subalgebras.

Then,
B(0,6°) C (A)s + B(0,9).

Note that each of the conditions (ii) and (iii) rules out one obvious obstruc-
tion for (A)s to grow. Indeed, firstly, if A is covered by a bounded number of
balls of radius p with p < §°, then (A), is covered by O,(1) balls of radius p.
Secondly, if A is contained in the unit ball* and in the p-neighborhood of a proper
subalgebra with p < 6%, then (A), is contained in the O4(p)-neighborhood of
the same proper subalgebra.

The main ingredient in the proof of Theorem 3.4 is a sum-product theo-
rem [11, Corollary 8] due to Bourgain-Gamburd concerning the ring C™, the
n-fold direct product of C with itself. Let n be a positive integer. We denote
by A the set of diagonal matrices in M,,(C).

3 We mean a norm which makes the underlying linear structure a normed vector space.
4 In this example, the norm on F is submultiplicative, i.e. Vz,y € E, ||zy|| < ||z|/||ly||- This
assumption is not restrictive since every norm on E is equivalent to a submultiplicative one.
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Theorem 3.5 (Bourgain-Gamburd [11]). Given x > 0 and n a positive integer,
there is a positive integer s > 1 such that, for & > 0 sufficiently small, the
following holds. Let A be a subset of M, (C). Assume that

(i) A cC B(0,1),
(ii) N5(A) = 67",
(iii) A C A+B(0,9).
Then there is n € A with ||n|| = 1 such that
[0,6%]n C (A)s + B(0,57),
with some 0 < a < C(n,k) and some 5 > c(n, k) > 0.

Let us sketch the proof of Theorem 3.4. In the following paragraphs, each s
stands for some unspecified integer that can be bounded in terms of F, k. In
order to use the Bourgain-Gamburd theorem above, we need first to embed the
algebra F in M,,(C) and then produce a lot of nearly simultaneously diagonal-
izable elements in (A),. The standard way (since [36]) to produce such elements
is to use the fact that the centralizer of a matrix with n distinct eigenvalues is
simultaneously diagonalizable. Since the set of matrices with at least one multi-
ple eigenvalue is an algebraic subvariety of M,,(C), to find an element a € (A)
with n distinct eigenvalues we use the technique of "escape from subvarieties",
first developed in [30]. For our discretized setting, a quantitative version of this
technique is required since distance matters. For Lie groups, this is established
in [24]. Here we adapt the argument in the sum-product setting.

Once we have such an element a, we consider the map ¢: z — ax — za. We
distinguish two cases.

(a) If ©(A) is large (N5(p(A)) > 6% Ns(A) with &' = Tammey)> then we will

prove N3((A),) > 6% Ns(A) in this case. We remark that all element
in ¢(A) have zero trace. Hence if B is a set of matrices with a lot of
different traces, then ¢(A) + B contains a lot of disjoint translates of
©(A). In particular, Ns(¢(A) + B) > Ns(¢(A))Ns(tr(B)). Thus, it
suffices to establish a lower bound on the size of the set of traces of (A),.
Indeed, we can prove tr((A),) > 62 using the fact that the bilinear
form (z,y) — tr(zy) is non-degenerate.

(b) Otherwise the set A must have a large intersection with a fiber of ¢, i.e.
there is y € M,,(C) such that N5(ANg~ (B(y,4))) > 6=~ . The difference
set of the above intersection consists of nearly simultaneously diagonaliz-
able matrices. Then we can apply Theorem 3.5 to get a small segment at
a smaller scale (a segment of length 6 is inside the §**#-neighborhood of
(A)s, where o, 8 and s are the constants given by Theorem 3.5).

What we do is to repeat the same argument to (A), if case (a) happens. Af-
ter a bounded number of times, case (a) won’t be possible because (A4)s C
B(0,0,(6-9:(9))). Hence eventually, case (b) is true, i.e. inside (A),, there is a
segment of direction ¢ and length §% at scale 7. Then, using the fact that
the two-sided ideal generated by ¢ is the whole algebra E, we can prove that
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the small segment will grow into a small ball under left and right multiplication
by elements of A.

This almost finishes the proof. The only problem is that the ball obtained is
not large enough and it is at a different scale than ¢. As in [24], this issue can
be sce)(}ved by applying the above argument at various scales ranging from § a+F
to 0= .

That is how the proof of Theorem 3.4 goes. To deduce Theorem 3.1 from it,
we argue by contradiction and use Lemma 2.9 : if both A+ Aand A+ A- A
are small (i.e. (3.1) fails), then for every s, (A)s is small, and thus cannot grow
into a large ball as Theorem 3.4 asserts.

To prove Theorem 3.2, a little more work is needed. First, in the special
case where the collection of endomorphisms is so large that for every z € X,
Az = {ax | a € A} contains a ball of radius ||z||, a Fubini-type argument yields
(3.2). Then, using Lemma 2.8, we know that if (3.2) fails, then we have an
upper bound for Ns(X + aX) for every a € (A)s, s > 1. Therefore, the idea
of the proof is to apply Theorem 3.4 to make A grow into a fat ball in some
subalgebra E C M,,(R) so that we can use the special case. Here the subalgebra
FE can be understood as the subalgebra approximately generated by the set A. It
inherits the irreducibility property (assumption (iii) in Theorem 3.2) from A. In
particular, R™ is an irreducible representation of E. Hence, by the Wedderburn
structure theorem, F' is isomorphic to M, (R) or Mz (C) or M= (H). Here, a
technical issue appears : in Theorem 3.4, the result depends on the norm on F.
In the present situation, the norm on F is induced from that on M, (R). To
have a control on it, we need a quantitative version of the Wedderburn theorem.
Indeed, we show that under the quantitative irreducibility condition (iii) of
Theorem 3.2, the normed algebra E is isomorphic to one of the three matrix
algebras endowed with standard operator norm via a bi-Lipschitz map with
Lipschitz constant controlled independently of A.

3.0.2 Organization of Chapter 3

In Section 3.1 we introduce some definitions and notation and then recall the
Yojasiewicz inequality from the theory of semianalytic sets. Sections 3.2 3.4
prepare for the proof of the main results. More precisely, Section 3.2 is dedi-
cated to the "escape from subvariety" technique. Section 3.3 deals with a lower
bound on the size the set of traces. Then in Section 3.4 we establish an effective
version of the Wedderburn structure theorem. We complete the proof of Theo-
rem 3.4 and deduce Theorem 3.1 in Section 3.5. Finally Theorem 3.2 is proved
in Section 3.6 and Corollary 3.3 is deduced in Section 3.7.

3.1 Preliminaries

We first set up notation and terminology and then recall the Y.ojasiewicz in-
equality.

3.1.1 Notations and definitions

Throughout this chapter, n denotes a positive integer. Most of our estimates
are about objects in some ambient space (a normed vector space or a normed
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algebra) and we write f <y ¢ and f = Oy (g) to indicate that the implied
constant depends not only on the dimension of V' but also on the norm of V.
We will omit the subscript when it depends only on the dimension n.

We endow the space R™ with its usual Euclidean norm ||-|| and C™ and H"
with their respective [>-norm. All algebras are over R and unital. In an algebra
E, 1 denotes the multiplicative identity. All subalgebras of E contain 1g.
When K is a division algebra over R, denote by M,,(K) the algebra of n by n
matrices with coefficients in K. For a real linear space V, denote by End(V)
the algebra of real endomorphisms of V. We identify End(R") with M,,(R) in
the usual way.

Since all our spaces are normed, we will need a notion of good bases : those
which are well spaced. When V is R” or C" endowed with [?>-norm, recall that
its norm induces an [?-norm on each of its exterior powers. In this case the best
bases are clearly orthonormal ones. Note that a basis (a1, ..., a,) is orthonormal
if and only if V&, |lax|| < 1 and ||a; A -+ Aay]| > 1. If we loosen this condition,
we get a notion of good bases. However, the norm on an exterior power of V'
is properly defined only when V is equipped with an [?>-norm and we will deal
with other norms such as the operator norm on End(R"™). Thus, we need an
equivalent formulation.

Lemma 3.6. Let (a1,...,a,) be a basis of a normed vector space V over R
or C, then the following conditions are equivalent in the sense that if the i-th
condition holds for some 0 < p; < 1 then the j-th condition holds for some

O(1
Pj>>VPZ‘()-

(i) For allk=1,...,n, |ag| < pl_l and d(ay, Span(ay,...,ax—1)) > p1.

(ii) For all k = 1,...,n, |lax| < p3' and all x € V, its coordinates (xy)x in
the basis (ay)y satisfy, Vk, |z < py*|z].

Moreover, if the norm on V is an [?>-norm, then they are also equivalent to the
following conditions.

(iii) For allk =1,...,n, |lar] < p3' and |jay A--- Aay| > ps.

(iv) Any endomorphism that maps an orthonormal basis to (a1, ..., ay,) is p; ' -
bi-Lipschitz.

In condition (i), we adhere to the convention that Span(@) means the zero
subspace. This lemma is already known in [30, Lemma 7.5] and [24, Lemma
2.16]. We give an alternative proof.

Proof. Every norm on a finite-dimensional linear space is equivalent to an /-
norm. Hence it suffices to prove the equivalences in the case where V' = R"™ or
C™ endowed with the standard norm. First, (i) implies (iii) since we have

n
lar A~ Aay|l = H d(ay,Span(ay, ..., ak_1)).
k=1

To see that (iii) implies (ii), let © € E, then x = x1a; +- - - + zpa, with (z;);
the coordinates of = in (a;);. On the one hand,

—(n—1
|z Aag A~ Aanll < [l2llllaz] - lanll < p3 ™2
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On the other hand, x Aas A -+ ANa, =x1a1 A+ Aay so
lx Aag A Aagll = |x1] ||lar A -+ Aanl] > ps|za]-

Hence |z1] < p3"||z|| and the proof is similar for the other coordinates.
Equivalence between (ii) and (iv) is clear.
Finally, (iv) implies (i) because the inequality in (i) holds for an orthonormal
basis with p; = 1 and a le—bi—Lipschitz map will only introduce a factor pzl
or p4 to these inequalities. O

Remark. From the proof we see that the implied constant in the notation >y
in the lemma can be 1 if V is endowed with an [?-norm. Also, if V; is a fixed
normed vector space, then this implied constant is uniform for all subspaces V'
of V().

Lemma 3.6 suggests the following definition.

Definition. Let 0 < p < 1 be a parameter. We say a basis (a1,...,ay) of a
normed vector space V' is p-almost orthonormal if it satisfies the condition (i)
in Lemma 3.6 with p; = p.

Definition. Let 0 < p < 1 be a parameter. Let V' be a normed vector space.
We say that a subset A C V' is p-away from linear subspaces if for every proper
linear subspace W C V| there is a € A such that d(a, W) > p.

Let F be a normed algebra. We say that a subset A C E is p-away from
subalgebras if for every proper subalgebra W C FE, there is a € A such that
d(a,W) > p.

In a similar way, we define the notion of being p-away from Lie subalgebras.

We have the following observation.

Lemma 3.7. Let 0 < p < % be a parameter. In a normed vector space V of
finite dimension, if a subset A C B(0, p~1) is p-away from linear subspaces, then
A contains a p-almost orthonormal basis. Conversely, if A contains a p-almost
orthonormal basis, then A is p@v (V) -away from subspaces.

Proof. Assume that A C B(0,p 1) is p-away from linear subspaces. We can
construct a p-basis from the set A by induction. For k = 1,...,dim(V), suppose
that a,...,ag—1 are constructed, then Span(ay,...,ax—1) is a proper subspace
of V. Hence there is ay, € A such that d(ax,Span(ay,...,ak—1)) > p.

Conversely, assume that A contains a p-almost orthonormal basis (a;). For
any proper linear subspace W C V, there is x € V such that ||z| = d(z, W) =
1. By Lemma 3.6, we can write z = >, z;a;, with |z;| < p=Ov1) for all i.
Consequently,

d(z, W) <> [wild(a;, W) < p= @Y " d(a;, W).

Hence there is i such that d(a;, W) > p©v ). O

Definition. Let 0 < p < 1 be a parameter. Let A be subset of End(R™). We
say that A acts p-irreducibly on R™ if for every nonzero proper linear subspace
W C R™, there is a € A and w € By (0, 1) such that d(aw, W) > p.

We say that a subalgebra E C End(R™) acts p-irreducibly on R™ if the set
BE(0,1) acts p-irreducibly on R™.
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3.1.2 Lojasiewicz inequality

The Lojasiewicz inequality [42, Théoréme 2, page 62] is a powerful tool which
allows us to extract quantitative estimates from algebraic facts. Let us recall it
here.

Theorem 3.8 (Lojasiewicz inequality). Let M be a real analytic manifold en-
dowed with a riemannian distance d and let f: M — R be a real analytic map.
If K is a compact subset of M, then there is C > 0 depending on K and f such
that for all x € K,

T .
‘f(.%')| Z 6m1n<1ad(x7z))c
where Z = {x € M | f(x) = 0}.

Note that we take the minimum between 1 and d(x, Z) to make the inequality
true even if Z is empty.

3.2 Escaping from subvarieties

In this section we show that if a subset A of a simple algebra is not trapped in any
subalgebra then we can escape from any subvariety within a bouned number of
steps using addition and multiplication. The number of necessary steps depends
only on the ambient algebra E. This is achieved in two steps. First, using only
multiplication we can escape from linear subspaces (Proposition 3.11). Then,
once the set is away from linear subspaces, we can escape from subvarieties using
only addition (Lemma 3.13). Note that everything is quantitative. By escaping
a subvariety we mean getting outside a neighborhood of that subvariety.

3.2.1 Escaping from linear subspaces

Let A be subset of a normed algebra E of finite dimension. Obviously, if A is
away from linear subspaces, then it is away from subalgebras. We will see in
this subsection that the converse is true if we are allowed to replace A with its
product set A®.

The following is the subalgebra (and simpler) version of the Lemma 2.5 in
[24]. The proof is essentially the same.

Lemma 3.9. Let 0 < p < % be a parameter. Let A be a subset of a normed alge-
bra E of finite dimension. If A C B(0,p~1) and A is p-away from subalgebras,
then A contains a subset of cardinality at most dim(E) which is p©=™M)-away
from subalgebras.

Proof. Let C > 1 be a large constant. Suppose that aq,...,ax_1 are con-
structed. If {ay,...,ax_1} is pC-away from subalgebras, then we are done.
Otherwise there is a proper subalgebra W such that for all i = 1,...,k — 1,
d(a;,W) < p©. Then choose from A an element aj such that d(ay, W) > p.

We prove by induction that at each step (ai,...,a) is a P2 _almost
orthonormal basis of its linear span Vi, = Span(ay,...,ax). This is obvious for
k = 1. For k > 2, suppose that (ay,...,a,_1) is a p@#(M-almost orthonormal

basis of Vi_1. We can write ay = z1a1 + -+ - + x_1a5-1 + a), with z; € R and
llai|| = d(ak, Vi—1). Consequently, x1a1+- - -+x,_1ax_1 is the decomposition of
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the vector ay — a?c in the pOE(l)—almost orthonormal basis (a,...,ar—1). Hence
for every i = 1,...k — 1, |2;| < 2p=92W||ay|| < p=9=(1). Then

k—1
p < dlar, W) < frild(ai, W) + [|aj.|
=1
< pfoE(l) max d(a;, W) + ||a||

1<i<k—1
< pC702M 4|l |

When C is large enough, this implies d(ag, Vi—1) = ||a},|| > p?. Hence, (a1, ..., ax)
is a p@#(D_almost orthonormal basis of Vj.
We conclude that the construction must stop after at most dim(E) steps. O

Then we have the analogue of Proposition 2.7 in [24].

Lemma 3.10. Let 0 < p < % be a parameter. Let A be a subset of a normed
simple algebra E of finite dimension. If A C B(0,p™!) and A is p-away from
subalgebras, then for every nonzero proper linear subspace W of E, there is
w € Bw(0,1) and a € A such that

d(aw, W) > pP=D)  or  d(wa, W) > p°=W),

Proof. In view of Lemma 3.9, we can assume that A has exactly n = dim(F)
elements ay, .. .,a,. We can further assume that A C B(0, 1) for we can replace
A with its contraction p - A. We will treat the case where the norm on FE is
Euclidean. The general case follows easily since every norm on F is equivalent
to an Euclidean one. Suppose the lemma were false. Then there would be a
linear subspace Wy of dimension 0 < k < n such that for all w € By, (0,1) and
alli =1,...,n, d(a;w, W) < p and d(wa;, Wy) < p© for some large C. The
actual value of this constant will be determined by the Lojasiewicz inequality
used below.
Consider the map f: Gr(E,k) x E™ — R defined by

S

fWizy, ... xn) = Z/ d(z;w, W)* 4 d(wx;, W)? dw
i=1YBw(0,1)

where the integration dw is with respect to the k-dimensional Lebesgue measure
on By (0,1). This map is well-defined and real analytic. This can be seen by
observing that the tautological bundle 7: " — Gr(E, k) of the Grassmannian
has around every point an analytic local trivialization ¢: U x RF — 7= 1(U)
such that YW € U, (W, -): R¥ — 7= 1({W}) ~ W is an isometry of Euclidean
spaces.

From the choice of Wy it follows that f(Wy;ai,...,a,) < p©. Hence by
the Lojasiewicz inequality (Theorem 3.8) applied to the compact set Gr(E, k) x
B(0,1)", thereis W7 € Gr(E, k) and by, ...,b, € Esuch that f(Wy;b1,...,b,) =
0 and Vi, ||a; — b;]| < p when the constant C' is chosen large enough. The map
f vanishing on (W7;by,...,b,) is equivalent to every b; being in the subalgebra

EWIZ{ZE€E|1‘W1CW1 andWm:CWl}.

Now our set A is not p-away from the subalgebra Eyy,. Therefore Ey, must
be the whole algebra E, which in turn implies that W; is a two-sided ideal in
FE. This contradicts the assumption that E is simple. O
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Proposition 3.11. Let 0 < p < % be a parameter. Let A be a subset of a
normed simple algebra E of dimension n. Assume that A C B(0,p~!) and
A is p-away from subalgebras. Write Ay = {1g} U A. Then for any n € E
with ||| > p, the set ATnA? contains a p©=V -almost orthonormal basis of E.

Equivalently, A?nA? is p©=M)-away from linear subspaces in E.

Proof. We construct the basis inductively. First, let 73 = 1. Then for k
1,...,n — 1, suppose that after k steps, we have constructed n,...,mk
AFnA* such that (ny1,...,m:) is a p©#(D-almost orthonormal basis of W
Span(n1,...,nx). By Lemma 3.10, there is w € By, (0,1) and a € A such
that either d(aw, W) > p°#™ or d(wa, W) > p°#(). Let us deal with the
former case, the latter case being similar. We can write w in the p@=(M)-almost
orthonormal basis (71, ..., 7k),

m

W= w1 + - A Wk

By Lemma 3.6, the coefficients |w;| < p~©#(1), Vi. Hence

k
d(aw, Wy,) < Z\wﬂd(am,Wk) < p~ 9= 'rrllaxkd(am, W).
i=1 R
Hence it is possible to pick i, € {1,...,k} so that putting nx+1 = an;, we have
A1, Wi) > pP2M. Then (11, ...,m611) is a p?%M-almost orthonormal basis
of its linear span. O

3.2.2 Escaping from subvarieties, R" case

Lemma 3.12. Let d > 1 and 0 < p < 1. Let (ay,...,an) be a p-almost
orthonormal basis of R™. Define

I'y= {xlal + -t xpan | Vi, x; € {0,...,d}}.
For any polynomial function P: R™ — R of degree at most d, we have

sup |P(x)| <pa p~ O max| P(y)].
z€B(0,1) Y€l

Proof. We write Ryq[X;]1<i<n for the space of polynomials on R™ of degree at
most d. First consider the case where (a1, ...,a,) is the canonical basis. Let

Ag={(z1,...,2n) €ER™ | Vi, z; € {0,...,d}}.

By a simple induction on the number of variables n, we see that if P € Ry[X;]1<i<n
and vanishes on A4 then it must be the zero polynomial. Therefore the linear
map
Ry[Xili<i<n — RA4
p = (P(A)aens

is injective. Hence the coefficients of P are controlled by maxyea,|P(N)| and
consequently for all r > 0,

(3.3) sup |P(z)| <n.a ¥ max|P(\)|.
z€B(0,r) AEAg
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For the general case consider 1: R” — R™ the unique linear map which
sends the canonical basis to (a1,...,a,). Thus ¥(Ag) =Ty and, by Lemma 3.6,
»(B(0, p~9»(1))) 5 B(0,1). We obtain the desired estimate by applying in-
equality (3.3) to the polynomial P o and r = p=9»(1), O

Combining this lemma with Lemma 3.7, we have the following immediate
consequence.

Lemma 3.13. Let V' be a normed vector space and P: V — R a nonzero
polynomial map. Then there is an positive integer s depending only on the degree
of P and the dimension of V such that the following holds for any parameters
0<p< % Let A be a subset of V with A C B(0,p~1). If A is p-away from
linear subspaces then there is a € s(AU{0}) such that

|P(a)| >v,p pOvrM).

3.3 Trace set estimates

To each real algebra E we can associate a trace function trg and a bilinear
form 7. Let x be an element of F, we define trg(z) to be the trace of the left
multiplication by z as an endomorphism of E. For example, if E = M, (R),
then trg is n times the usual trace for matrices.

Let z,y € E. We define 7g(x,y) = trg(zy). Thus 7g: EX E — Ris a
symmetric bilinear form. Observe that its kernel ker 7 is a two-sided ideal of
E. Tt follows that 7 is non-degenerate if E is semisimple, i.e. direct sum of
simple algebras. Note that the converse is true, but we won’t need this fact
here.

Let A be a bounded subset of a semisimple algebra E. In this section, we
are interested in the size of the trace set of A? :

trp(A?) = {trg(ab) | a,b € A}.

The aim is to establish a lower bound under appropriate conditions. Here is the
result.

Lemma 3.14. Given € > 0. The following is true for sufficiently small § > 0.
Let E be a normed semisimple algebra of dimension n < +oco. Let A be a subset
of E such that

e ACB(0,07°,
o A is §-away from linear subspaces in E.

Then N (trg(A2)) > 5 6CON;(A)w, where n = dim(E).
We begin with a lemma.

Lemma 3.15. Let 0 < p < % be a parameter. Let V be a normed vector space
of dimension n and 7: V x V — R a non-degenerate bilinear form. If (a;) is a
p-almost orthonormal basis of V, then for all x € V,

o)

2]} <vr p=t max|7(a;, 7)].
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The V and 7 in the subscript indicate that the implied constant depends
not only on V' but also on the bilinear form.

Proof. It suffices to deal with the special case where V' = R™ endowed with
the standard Euclidean norm. Let g be the endomorphism which sends the
canonical basis to the p-almost orthonormal basis (a;). By Lemma 3.6, ||g7}|| <
p~ 9, Let s be the matrix of 7 in the canonical basis. Then a straightforward
computation tells us that for all z € V, 'gsz is the column vector (7(a;,z));.
Hence

lll < 15~ 1~ I gse]l <nr p~ O max|r(as, 2)]. O

Proof of Lemma 3.1/. By Lemma 3.7, A contains a d¢-almost orthonormal basis
(ai)1<i<n of E. Thus, by Lemma 3.15 applied to the non-degenerate bilinear
form 7, forall z € E, ||z|| < '~ whenever |trg(a;z)| < dforalli =1,...,n.

Consider the map ©: A — R defined by = — (trg(a;z)),. On the one
hand, this map is "almost injective" with the d-blurred vision : for all z,y € A,
if |©(z) — O(y)|| < J then |z — y|| < 61~ It follows that

Ng(@(A)) >n ./\/‘5170(6) (A) >E 5O(E)N5(A).

On the other hand, the set ©(A) is contained in the n-fold Cartesian product
tr(A2%) x - x tr(A?), hence

N;5(O(A)) <, Ns(tr(A?)™.

We obtain the desired estimate by combining the two inequalities above. O

3.4 Effective Wedderburn theorem

The Wedderburn theorem (see [40, Chapter XVII, §3] or [53]) states that if
R™ is an irreducible representation of an finite-dimensional algebra E, then
E is isomorphic to either M,,(R) or M= (C) or M= (H). In this section we
prove a quantified version of this algebraic fact. From now on, we endow these

matrix algebras with operator norms®. Let M= (C)gr denote a fixed embedding
of M= (C) in M, (R) and M= (H)g a fixed embedding of M= (H) in M,,(R).

Proposition 3.16. Let 0 < p < % be a parameter. Let E be a subalgebra of
M, (R) acting p-irreducibly on R™. Then either E = M, (R) or E is conjugate
to M= (C)r or to M= (H)g by a change of basis matriz g € GL(R") satisfying
lgll +llg~ ]| < p=OW.

In particular, E is isomorphic to M, (R) or Mz (C) or M= (H) by an iso-
morphism which is p~©W -bi-Lipschitz.

3.4.1 Effective diagonalization

The following lemma is implicit in [30, proof of Proposition 7.4]. We include its
proof for the sake of completeness.

5 Bach matrix is seen as an endomorphism of the Euclidean space R™, C* ~ R2" or H" ~ R4",
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Lemma 3.17. Let 0 < p < 1 be a parameter. Let a € M, (C) be a diago-
nalizable matriz. Assume that ||a|| < p~! and its spectrum is a p-separated set
(it may contain multiple eigenvalues). Then a is diagonal in a p°M -almost

orthonormal basis of C™.

Proof. Let A1, ..., \, be the eigenvalues of a (they appear with the correspond-
ing multiplicity). Let vi,...,v, be the corresponding eigenvectors. Each v;
can be chosen to be of unit length and we can further assume that (v;,v;) =0
whenever ¢ # j but \; = A\;. For k =1,...,n, write V;, = Span(vy,...,v). We
will prove by induction on k that (vi,...,vy) is a p@*(}-almost orthonormal
basis of Vj,. This is clear when k = 1.

Let k be an integer between 1 and n—1. Suppose that (vy,...,vg) isa p
almost orthonormal basis of V. Let us show that d(vgy1, Vi) > pok(l) and

Or(1)_

thus (v1,..., 0k, vp+1) is a pok(l)—almost orthonormal basis of Vi41. Without
loss of generality we can assume that among the eigenvalues Aq,..., g, only
A1, .-+, g are equal to Ap4;1 for some [ < k. Considering the orthogonal
projection of vi1 onto Vi, we can decompose the vector vy into
k
(3.4) Vg1 = Z TiV; + Vpyqs
i=1
where 1,..., 2, € C and v, € Vi, In particular, d(vg41, Vi) = [[v],,q]|. We
can then express avi41 in two different ways :
k
V41 = A 1Vkt1 = Z Ne1230; + Ajt 1V 1,
i=1
and
k
Vg1 = Z iV 4 avy .
i=1

It follows that l

Z(/\k_H — \N)xu = )\k+11}]/¢+1 —avy .
i=1
Denote by w1 the vector on the right-hand side. Its norm can be bounded
t Jwega ]l < 2llall||lvjg |l < p2|v)4 1|l The left-hand side gives the coordinates

of wyy1 in the basis (vy,...,v;) which is p@(M-almost orthonormal by the
induction hypothesis. Hence, by Lemma 3.6,

Vi=1,.., 0 egr = Ailla] < p” OOl < p~ %O lo -
Hence for alli = 1,...,1, |z;| < p~ () |41 || thanks to the assumption [Ax 11—
Ail > p.

In order to bound |z;| for j > I+ 1, we take the scalar product with v; on
both sides of (3.4). We obtain

l

0= in(vj,vi) + z;.

i=1
Hence for all j =1 +1,...k, |z;| < p~9*W|jv || Using (3.4) again we obtain

1= |lops1 | < p~ 9D |lvj 4| and then ||v]_,|| > p©+(). This finishes the proof
of the inductive step. O
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3.4.2 Effective Wedderburn theorem in M, (R)

For z € M,(R) and A C M, (R) denote by C(x) and C(A) their respective
centralizers, i.e.
C(z) = {y € Mn(R) | 2y =y},

C(A)={ye M,(R) |Vz € A, xy = yz}.

Lemma 3.18. Let 0 < p < 1 be a parameter. For any g € SL,(R), if |lg|| >
p~ ", then the subalgebra C(g) does not act p-irreducibly on R™.

Proof. Let g = kal be the Cartan decomposition of g, with k,I € SO(n) and

a = diag(aq,...,a,) where its singular values ay,...,a, are arranged so that

ay > ag > -+ > a, > 0. Assume that a; = ||g|| > p~™". Since a1---a, =
)

det(g) =1, there is p € {1,...,n — 1} such that
a
Zetl P
ap
Put W = kSpan(es,...,ep). It is a nonzero proper linear subspace of R". We

claim that for all € C(g) " B(0,1) and all w € By (0, 1), d(zw, W) < p.

Indeed, decomposing every vector v € R™ as v = v'+v” with v’ € [7! Span(ey, ...

and v” € [7! Span(ep1,...e,), we see that
d(gv, W) = [|av"|| < apsa]jv]l.

Moreover, for all w € W,
lg™ wll < @[]

Consequently, for all z € C(g) N B(0,1) and all w € By (0,1), we have
zw = grg~'w, and thus

- - Ap+1
dlaw, W) < apiallog ™ w] < apeallg ™ wl < 25 < p
P

O

Lemma 3.19. Let 0 < p < % be a parameter. If two real matrices x and y €
M, (R) are conjugate by a complex matriz g € GL,,(C) with ||g|| + ||¢7 || < p~*
then there is a real matriz h € GL,,(R) which also conjugates them and moreover
1R]] + (1R~ < p=O.

Proof. Assume that grg~! = y with ,y € M,,(R) and g € GL,,(C). We write
g = gr + igs with gg, g5 € M, (R) its real and imaginary part. From gz = yg
we see that grx = ygp and gax = ygg. For A € C, consider hy = gx + Aggy. For
all A € C, we have hyz = yhy. Hence whenever det(hy) # 0, h) conjugates x
and y. What remains to do is to find appropriate A € R such that hy) and h)_\1
have bounded norms.

Define P(\) = det(hy). It is a polynomial with real coefficients and its
degree is at most n. We know that

|P(i)] = |det(g)] = |det(g™")[ 7" > [lg 1|90 > p7V.

It is easy to see that the coefficients of P are controlled by maxycg1)|P())].
Hence

P(i P(N)|.
[P()| < max [P(Y)
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So there is Ao € [0, 1] such that |P(A\g)| > p©(). Take h = h,,. we have
IRl < gzl + olllgsll < 2llgll < o~
and |det(h)| > p®™M), which implies
1R < Al det(R)| 7 << p= O,
Here the first inequality can be seen from the Cartan decomposition of h. [J

Proof of Proposition 3.16. Consider K = C(E) the centralizer of E in M,,(R).
From (the proof of) Wedderburn’s theorem, K is a division algebra over R and
E is equal to C(K), the centralizer of K. By the Frobenius theorem, the real
division algebra K is isomorphic to R, C or H. The action of K on R™ makes
R™ a K linear space. Hence n is even if K ~ C and a multiple of 4 if K ~ H.

If K ~ R then E = M,(R), we are done. If K ~ C or respectively if
K =~ H, then E is isomorphic to Mz (C) or respectively to M= (H). The
Skolem-Noether theorem (see [50, §12.6]) tells us all embeddings of M= (C) or
M= (H) in M,(R) are conjugate (by a matrix in GL(R")). We are going to
show that under our quantitative irreducibility assumption, the change of basis
matrix can be nicely chosen.

From the discussion above, we see that an embedding of M= (C) is uniquely
determined by an embedding of C in M,,(R). Moreover, if K is conjugate to a
fixed embedding of C, then F is conjugate to a fixed embedding of M= (C) by
the same change of basis matrix. The same applies to the quaternion case. That
is why we are going to study embeddings of C and of H. Let ¢g: C — M,,(R) de-
note the embedding of C such that C(¢o(C)) = M= (C)g and tg: H — M,,(R)
the embedding of H such that C (3o (H)) = M= (H)g.

When K is isomorphic to C, denote by ¢: C — M, (R) the embedding
of C whose image is K. The homomorphism ¢ is uniquely determined by
©(i) and we have E = C(¢(i)). The matrix ¢(i) satisfies ¢(i)? = —1Id,,
which implies that ¢(i) is diagonalizable over C and its eigenvalues can only
be ¢ or —i. Its trace is real. Therefore the multiplicities of the two eigen-
values must be equal. We conclude that (i) is conjugate (over C) to the
diagonal matrix diag(iIdz,—ildz). From Lemma 3.18 and the irreducibility
assumptions on E, we have ||o(i)|| < p~91). Then by Lemma 3.17, ¢(i)
is conjugate to diag(ild=,—ildz) by a change of basis matrix g € GL,(C)
satisfying ||lg|| + [lg7!]| < p~9M). The same is true for ¢g(i). We conclude
that ¢(i) is conjugate to (i) by a change of basis matrix ¢’ € GL,,(C) with
gl +1lg'~ Y| < p~@1). Finally, thanks to Lemma, 3.19, ¢’ can be chosen to be
real. This finishes the proof for the case where K ~ C.

When K is isomorphic to H, denote by ¢: H — M,,(R) the embedding of H
whose image is K. The homomorphism ¢: H — M,,(R) is uniquely determined
by 1(3) and (j) and E = C(4(2)) N C((})).

The two matrices (i) and (j) satisfy

(3.5) $(i)? = ¥(j)? = = 1d, and $(i)(j) = = (G)Y ().

Repeating the argument in the complex case, Lemma 3.18 gives the estimates
(@), [ ()] < p~ @M. Moreover, (i) is conjugate to diag(i Idn,—ild=) by
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a change of basis matrix satisfying the desired norm estimate. Write ¢ (¢) and
¥(4) in this new basis,

i) { iy _Z_(I)dg} and ¥(j) = [%‘%].

The condition (3.5) is then equivalent to A = D =0 and BC = CB = —1Id=.
It is easy to check that the conjugation by the block diagonal matrix ¢’ =
diag(C,1dz ) preserve 9 (i) and conjugates ¥(j) to

0 | —Id=
Idx 0 '

Note that ||¢’|| + l¢'~*|| = IC|| + | B]| < [[%()|| < p~9M. To conclude the
proof we use Lemma 3.19 to make sure the change of basis matrix is real. [

3.5 Sum-product estimate in simple algebras

We prove Theorem 3.4 and Theorem 3.1 in this section.

3.5.1 Sum-product theorem in C"

We will use Bourgain-Gamburd’s sum-product theorem in C™ (Theorem 3.5) in
the a slightly stronger form.

Corollary 3.20. Given k > 0 and n > 1, there is « > 0, 8 > 0 and a positive
integer s > 1 such that, for e > 0 sufficiently small and § > 0 sufficiently small,
the following holds. Let A be a subset of M,,(C). Assume that

(i) Ac B(0,67°),

(i) N5(A) > 07",
(iii) A C A+ B(0,6'7°).
Then there exists 1) in the algebra generated by A such that ||n| =1 and
(3.6) [0,6%n C (A)g + B(0,5%T).

The corollary mainly says that the segment length 6% and the new scale 615
in Theorem 3.5 can be chosen independently of A. This will be very useful when
we use this diagonal case. Recall that A denotes the set of diagonal matrices in

M,,(C).

Proof. In this proof, let m;(a) denote the i-th diagonal entry of a for any ¢ =
1,...,n and any a € M, (C). Partitioning A into at most 6~ (<) parts of
diameter 1 and choosing the part with the largest §-covering number, we see
that Ns(B(0,1)N(A— A)) > §~*TO(9), Thus we can assume that A C B(0,1).
By working at scale §1~¢, we can further assume A C A+ B(0, ). Theorem 3.5
says that (3.6) is true for some « and 5 which may depend on A. Nevertheless,
they can be bounded by constants depending only on n and x. What we need
to show is that they can actually be chosen independently of A. This is evident
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for 8 since (3.6) gets only weaker when 8 becomes smaller. Hence there exist
0<ay<C=C(n,K), so=50(n, k) >1and n € A such that ||n|| =1 and

(3.7) [0,6%]n C (A, + B(0,5%FF).

By replacing a with ag + 33 and 8 with 33 we can assume that o > 8. Fix
an index ¢ such that |m;(n)| >, 1. Consider for any s > 1, the set

Qo = {w e Ry | I € (A),, [|€]] < 0%, d(€,A) < 56437,

i ()] = %5“’ and [0,1]¢ C (A), + B(0,50*7)}.

We need to prove existence of a > 0 and s > 1 depending only on n and  such
that a € Q.

It follows from (3.7) that ag € Qg,. Now we show that if w €  for some
s > 1 then there is s’ = s'(s,n, k) > 1 such that [w + ag,w + ag + 58] C Q.
Indeed, for any v € [ag, a9 + 3/3], by (3.7), there exists a € (A),, such that
57 € a+ B(0,6%F). Thus d(a, A) < §*+8 < §7+28 and

87 <y mi(a) < la]| < §7.
By multiplying a to the relation [0,1)¢ C (A)s + B(0, s0“*#) we obtain
[0,1)€a C (A)sysy + B(0, s]|al|0“F) C (A)sts, +B(0,0(s)5* 7).
Moreover, |[£al <, ||€]l|lall < $6“T7 and
d(€a, A) < d(E,A)al] + [|E]ld(a, A) < 56757+ 57,
and for § > 0 sufficiently small,
60 2 ()@ ~On(d€, A)d(a, ) S 16 1-00 (7)o, 1547
Hence w + v € Q for some s’ = s'(s,n, k).

A simple induction yields that there exists a sequence (sg)r>o depending
only on n and k such that for all £ > 0,

k
[(/{J + 1)0[0, (k + 1)0&0 + 55] C st.
Recall that ay depends on A but it is bounded by 8 < a9 < C where

and C' are constants given by Theorem 3.5 and depend only on n and . Put
o= ([%—‘ + 1)C’ and K = {%‘“—‘ For any choice of o € [8,C], the equation

k
(k+1)a0_a§(k+1)ao+§ﬁ

has a solution k satisfying & < K. It follows that a € €, C Q,,. This
concludes the proof since a and sx depend only on n and k. O
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3.5.2 Small segment
The key step in the proof of Theorem 3.4 is to produce a small segment in (A);.

Proposition 3.21. Given a finite-dimensional normed simple algebra E and
k>0, there is s > 1 and € > 0, o, 8 > 0 such that the following is true for
0 > 0 sufficiently small. Let A be subset of . Assume that

(i) ACB(0,67),
(i) Ns(A) = 67",
(iii) A is -away from subalgebras.

Then there is n € E, ||n|]| =1 such that
(35 0,6°] C (A), + B(0,5°*).

Proof of Proposition 8.21. First observe that we can assume without loss of
generality that E is a real subalgebra of M, (C) for some positive integer n
and it contains a least one element with n distinct eigenvalues. Indeed, this
is evident if F is isomorphic to M,,(C) or M, (R) since for the latter case we
can embed naturally M, (R) in M,,(C). We don’t need to worry about the
norm because all linear isomorphisms are bi-Lipschitz and bi-Lipschitz maps
only change the constants in the assumption and conclusion of the proposition.
If E is isomorphic to M, (H), then we can embed M,, (H) in My, (C) by sending
each entry = + iy + jz + kw € H to a 2 x 2 block ( "1 Z7"). It is easy to
check that this embedding of F contains a diagonal matrix with distinct diagonal
entries.

In this proof, s stands for an unspecified positive integer depending on n and
% that may increase from one line to another. Since A is §*-away from subal-
gebras, (A), is 69(9)-away from linear subspaces by Proposition 3.11 applied to
any 77 € A with [|n]| > 6. Therefore, without loss of generality, we can assume
that A is §“-away from linear subspaces in E.

Consider P: M,,(C) — C defined by

(3.9) P(z) =[]\ = X))

i<j

where Aq, ..., A\, are eigenvalues of x € M,,(C) (the n roots of the characteristic
polynomial of z). The right-hand side of (3.9) is symmetric in (\;) and thus
polynomial in the coefficients of the characteristic polynomial of x. Hence x —
|P(z)|? is a real polynomial on M, (C). Apply Lemma 3.13 to |P|? restricted
to E. Since F contains an element with n distinct eigenvalues, we obtain an
element a € (A), such that |P(a)| > d°(9) and consequently the eigenvalues
A1, ..., Ay of a satisfy

Vi g, A — A > 090,
Now consider the map

T = axr — xa.
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Let v' = 5. We distinguish two cases according to the size of the image ¢(A).

First consider the case where
Ni(p(A)) > 827 N (A).

In this case we can show a growth estimate. By Lemma 3.14, there is a subset
A’ C A? such that trg(A’) is d-separated and of size |trg(A’)| > 6=*%". Here,
we used the fact that dim(FE) < 2n2. Observe that trp(p(z)) =0 for all z € E,
hence )

Ns((A) + A') > Ns(p(A))|trp(A)] > 6727 N5(A).

Consequently,
(3.10) N3 ((A)s) = 677 N5(A).

Otherwise, we have

Ns(ip(A)) < 8 N5 (4),
then by cutting A into "radius 0" fibers, we see that

Ns(A) < Ni(p(A)) m;iXNg (7" (B(y,0)) N A).

Hence there is y. € M, (C) such that Ns(¢~!(B(y.,d)) N 4) > 5~ . Put
A" = o1 (B(ys, 6))NA—p ' (B(ys, 8)) N A so that N5(A”) > 5= and p(A”) C
B(0, 20).

Recall that |\; — ;| > 69 for all i # j. Hence we can apply Lemma 3.17
to the matrix a. We obtain a change of basis matrix g € GL,,(C) such that
lgll +1lg~ Il < 6~ and gag~! is diagonal. Conjugation by g will change any
estimate only by a factor of 6=°() or 6°(¢), Hence without loss of generality we
can assume that a = diag(A1,...,A,). Then an explicit computation gives an
expression for ¢ in the standard basis : if = (2;5); ; € My(C), then

QD(QS) = (()\1 — )\j)l‘ij)i’j.

Therefore for any z € M,,(C), if ||p(2)| < & then d(z,A) < §*~9(). Conse-
quently A” C A + B(0,6'79(). Then Corollary 3.20 gives constants «, 3 > 0
and integer s > 1 depending only on n and «’ and a unit vector n € M,,(C)
such that (3.8) holds.

What we have proved is that either the proposition holds or we have (3.10).
If we are in the latter case, we can iterate the same argument to (A)s. After at

most O(%f) iterations, (3.10) cannot be possible anymore, hence the proposition
must be true. O

3.5.3 Proof of Theorem 3.4.

Once (A); contains a segment, it takes only a few more steps to produce a small
ball.

Proposition 3.22. Under the assumptions of Proposition 3.21, we have

(3.11) B(0,6%) C (A), + B(0,5*7).
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Proof. Suppose that n € F is a unit vector satisfying (3.8). Since A is d°-away
from subalgebras, by Proposition 3.11, there is a §°(9)-almost orthonormal basis
of E of the form (a;nb;); with a;,b; € (A)gim(e)- Then (3.8) implies that for all
1=1,...,dim(E),

[0,8%ainb; C (A)syodim(m) + B(0,5°TF0),
Moreover, Lemma 3.6 yields

B(0,5°T9) ¢ > " [=6%, 8%ainb;.

(2

Hence (3.11) holds for sufficiently small € and slightly worse «, 8 and s. O

Proof of Theorem 3.4. The idea is to apply Proposition 3.22 at various scales
ranging from ¢ to 6¢. Let €1,a,8 and s be the constants given by Proposi-

tion 3.22 applied to 5 in place of 5. Let r = {%—‘ and for k =0,...,r,

define &, = 6+%5)" so that 6¢ = &, 6% < 62 and 607° = 5o for all
k=1,...,7.
For all k =1,...,r, assumptions of Proposition 3.21 at scale dy, are satisfied

provided that e < é(aiﬂ)r min{ey, §}. Thus

B(0,05) C (A)s + B(0,05_4).

Hence,
B(0,6%) c B(0,4y)
C (A)s +B(0,67 )
C (A)s +(A)s + B(0,6; )
C (A)s + -+ (A)s +B(0,07)
Hence, B(0, %) C (A),s + B(0,9). O

3.5.4 Proof of Theorem 3.1
We deduce Theorem 3.1 from Theorem 3.4 and Lemma 2.9.

Proof of Theorem 3.1. Suppose for a contradiction that for arbitrarily small € >
0, there exists A C F satisfying the assumptions of Theorem 3.1 but

Ns(A+A)+ Ns(A+ A A) <5 Ns(A).
We will show a contradiction when € is smaller than a constant depending only
on F, x and o.
dim(E)—o

On the one hand, applying Theorem 3.4 with ¢y = > dim(F)
integer s > 1 depending only on F, x and ¢ and such that

, we obtain an

B(0,5%) C (A), + B(0,0).
Hence

(312) 6—%(dim(E)+a) _ 6—(1—60)dim(E) <p N6(<A>s)
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On the other hand, by Lemma 2.9,
(3.13) Ns((A)g) < 6 ONG(A) < §7779:(9),

The inequalities (3.12) and (3.13) lead to a contradiction when e is sufficiently
small. 0

Remark. Conversely, a growth statement like Theorem 3.1 always implies a
statement like Theorem 3.4. The idea is to use the growth statement repeatedly
until the set is nearly "full-dimensional" and then Proposition 2.10 shows that
within a few more steps, it grows to "full dimension".

3.6 Growth under linear action

We prove Theorem 3.2 in this section.

3.6.1 Acting on R", probabilistic method

We endow End(R™) with its usual operator norm. Recall that we denote by
M= (C)g the standard embedding of Mz (C) in End(R") and by M= (H)g that
of M= (H). First we study the special case where the collection of endomor-
phisms A is the unit ball in End(R™) or one of these two subalgebras. Actually,
it is a direct consequence of [11, Proposition 1]. Here, we present an elementary
proof of this easier fact.

Lemma 3.23. Given k > 0 and o < n, there is € > 0 such that the following
holds for 6 > 0 sufficiently small. Let E be End(R™) or M=z (C)g or M=z (H)g.
Let X be a subset of R™. Assume that

(i) X C B(0,67°),
(ii) ¥p > 6, Ny(X) > dp~",
(iii) Ns(X) <6777¢,
then
feglg(}({),l)Né(X + fX) > 07 Ns(X).

Proof. Let p be the normalized Lebesgue measure on Bg(0,1). It is easy to
verify that p satisfies the assumptions of the following proposition with 7 = n.
Note that Bg(0,1) contains the identity Id. O

Proposition 3.24. Given k > 0 and 0 < o < 7, there is ¢ > 0 such that the
following holds for § > 0 sufficiently small. Let X be a subset of R™ and i a
probability measure on End(R™). If

(i) X C B(0,67),
(ii) Vp > 8, N, (X) > 6p",
(iii) N3(X) <577,

(iv) The support of u, Supp(u) C B(0,57¢),
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(v) For all p> 9§ and all v,w € R™ with |v|| =1,

u({f € End(B") | fv € w+B(0,)}) <6,

then

Ng(X +X) + max J\[(s(X + fX) > 576N5(X).
fESupp ()

Proof. Let X and u be as in the statement. Assume that AV5(X + X) <
5 ¢Ns(X). For all p > § we have

Ns(X +X) > N, (X) max Ns(X NB(w, p)).
Therefore,
(3.14) max Ns(X NB(w, p)) < 69 p"N5(X).

Let f be a random variable following the law . Define ¢y: R® x R — R"
by
ez, y) =z + fy.
This map is 6 ~“-Lipschitz by assumption (iv). Consider the ¢ -energy of X x X.
By Lemma 2.6(i),

Ns(X)4
X X —_—
No(X + £X) > ws(py, X x X)
Hence by Jensen’s inequality,
Ns(X)*

E[Ns(X + fX)] > Eos(pr, X < X)]°

The rest of the proof consists of bounding the expectation E[W5(g0 X xX )]
from above. Fix X a maximal d-separated subset of X. By Lemma 2.6(iii),

Elws(eor, X x X)) < S Plfly—y) €a’ —a+B(0,5>)].

z@yy €X

Let p > 0 be a constant to be chosen later. We distinguish two cases accord-
ing to whether ||y — /|| > p. If it is the case then the assumption (v) yields for
all z,2' € X,

Plf(y—y') €2’ —x+ B(0,6'72)] <§79p774.

Otherwise, the number of pairs (y,y’) such that ||y —y’|| < p can be bounded
using (3.14).

#H(w,y) e X x X | |y —¢/ll < p} <67 p"N5(X)*.
Moreover, we have for all z,y,y’ € X,

S P[fly-vy) e’ —x+B(0,5 %)) <6790

z’'eX
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since the events on the left-hand side can occur simultaneously for at most
6700 different 2’ € X.

By combining these inequalities and assumption (iii) and taking p = 67~
we obtain

E[ws(pg, X x X)] <679 (p7767|X|* + p"| X|?)
< 570(6)(57’70’pr +pH)N5(X)3

K(t—0o)

< g s _O(e)./\/'(;(X)?’.

It follows that when e is small enough, E[N5(X + fX)] > 6~ “N5(X). O

3.6.2 Almost-generating a subalgebra

In view of Lemma 2.8 we know that in order to establish (3.2), it suffices to
prove it with (A4)s + B(0,0) in the place of A for some s > 1. That’s why we
can focus on growth of A as a set of matrices. We cannot use Theorem 3.4 yet
since we do not know if A is away from subalgebras. In this subsection, we show
that we can find a subalgebra Ey of End(R™) such that A is effectively away
from subalgebras in Ey at some scale. This subalgebra Ey can be viewed as
approximately generated by A. Moreover, under the quantitative irreducibility
condition, Fy shall be described by Proposition 3.16.

Proposition 3.25. For all ¢; > 0 there is ¢ > 0 such that for all 0 < € < ¢, the
following holds for all § > 0 sufficiently small. Let A be subset of End(R™). If

e ACB(0,07°),
e A acts 6¢-irreducibly on R";

then there exists 6, € [6,0°] and g € GL,(R) with ||g|| + |lg~"|| < 679 such
that for £ = End(R"), M=z (C)r or M= (H)g,

gAg™' C E+B(0,6,)
and for all proper subalgebras F of E,
Ja € A,d(gag™ ', F) > 6.
Proof. Let Iy be the largest among all integer | € N such that there exists a
subalgebra F of End(R™) of codimension [ and such that A C E + B(0, (5(%)1).

We know [ exists since 0 is clearly such an [. Set §; = 63(H)° Thus § <

01 < 6°t with ¢; = %(%)"2 By the definition of [y there is a subalgebra Ey of

End(R"™) such that

(3.15) A C Ey+B(0,67)

and for any proper subalgebra F' of Ey, there is a € A such that
(3.16) d(a, F) > 67

We shall apply Proposition 3.16 to this subalgebra Ej in order to conjugate
it into one of the three "model" subalgebras. For any nonzero linear subspace
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W of R™, since A acts d%-irreducibly , there is w € By (0,1) and a € A such
that d(aw, W) > §¢. Then there is o’ € Ey such that |ja — a’|] < 6;. Hence
lla’|| <67+ 01 < 62 and

/
d(ﬁm W) > 62(5° — 61) > 626(6° — 6°1) > %

|
when € < 2. Thus Ej acts d4€-irreducibly on R"™. We conclude that there is
g € GL,(R) with ||g|| + [lg” ]| < 679 and E = gEpg~" is one of these three
subalgebras : End(R"), M= (C)r, M2 (H)g.

The map z — grg~' is §~©()-bi-Lipschitz. Hence by (3.15) and (3.16),

gAg~! € E+B(0,6790942)

1 Cl€1

and gAg™" is (50(6)(51%—away from proper subalgebras of E. When e < <54, we
have 65 < 6°°¢ and hence both

1
2

67952 <6, and 69052 > 5.
This completes the proof. O

Remark. From the proof we see that the new scale §; can be chosen such that
0 is an integer power of d;.

3.6.3 Proof of Theorem 3.2.

The proof consists of putting together what precedes. The only technical diffi-
culty is due to change of working scale required by Proposition 3.25.

Proof of Theorem 3.2. Assume for a contradiction that for ¢ > 0 arbitrarily
small, there exists A C End(R™) and X C R"™ such that the assumptions in
Theorem 3.2 are met but the conclusion fails, i.e. AU {Id} C S5(X;d™¢) using
the notation introduced in §2.4.

Let €5 > 0 be a small constant to be chosen later. By applying Proposi-
tion 3.25 to the set A, we get a constant ¢ > 0 depending on €1, a new scale
d1 € [0,6°], an element g € GL,(R) and a subalgebra ' = End(R") or Mz (C)
or M= (H)g such that ||g|| + [lg~"] < 6-9() and

gAg~' C E+B(0,6)

and the projection of gAg~! on E, which we will denote by A’, is §*-away from

subalgebras in E. Moreover, we have
(3.17) A’ C gAg™' +B(0,6)

Thus o<
A C B(0,57°0 4 5;) ¢ B(0,5; °).

Morever, for all p > 4, since gAg—* C A’ + B(0, p), we have

N (A) > N, (gAg™t) > 6PN, (A) > 500 p=r > 670 pr,
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So when ¢ is sufficiently small depending on ¢; and ¢, we have both A" C
B(0,0; ") and Vp > 61, N,(A") > 67 p~".

Let ¢g > 0 be a small constant to be chosen later in the proof. Applying
Theorem 3.4 to the set A’ at scale §; inside the algebra E, we obtain an integer
s > 1 depending only on n, x and ¢y such that

(3.18) Bg(0,61°) C (A")s + B(0,41),

if €; is chosen small enough depending on n, xk and €.
From A C Ss(X;67¢), we get for all a € A,

Ns(gX + gag™'gX) = N5 (9(X + aX)) < 6 CON(X) < 67 CN;(9X).

That is to say gAg—' C S5(gX,5-9()). By Lemma 2.8(v), gAg~" C Ss, (9 X;6-C).
Then by Lemma 2.8(i),

A C S5, (9X;6, %) € S5, (9 X3 67),

provided that € is sufficiently small compared to ce;. Repeated use of Lemma 2.8(ii)
yields
(A'); C S5, (X877 )).

Then by (3.18) and Lemma 2.8(i),
€0 . 5—0s(e1)
Bg(0,67°) C S5, (9X; 6, ).
In particular, 67° Id € S5, (9X; 51_05(61)). Hence, by Lemma 2.8(iii),
070 1d € S5, (907 O (V7))

Then again by Lemma 2.8(ii), Bg(0,1) C S, (9X; 8, @) 70 0)y,
Hence for any given es > 0, we can choose sufficiently small ¢g > 0 and
€1 > 0 accordingly so that

(3.19) Bp(0,1) C S5, (9X;01 ).

Take €2 to be the constant given by Lemma 3.23 depending on ¢ and x. We
would like to apply Lemma 3.23 to the set gX at scale ;. It’s easy to see that
when € is small enough,

gX C B(0,6790)) c B(0,6; ),
and for all p > ¢y,
Nyp(gX) = §9ON;(X) > 69 p7r > 572p7",

So the first two assumptions in Lemma 3.23 are satisfied but the conclusion
fails by (3.19). This means the assumption (iii) must fail, namely, N, (¢X) >
91 7~ . Therefore,

(3.20) N5, (X) > 695777,

In other words, at scale 01, the set X is almost full in B(0,07¢). The idea
of the rest of the proof is to use multiplication of elements of A to propagate
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estimate (3.20) to smaller scales until we reach the original scale § where we
have the assumption Ns(X) < §=7¢.
We have by (3.18) and (3.17),

57 1d € (A'), + B(0,81) C g{A)sg~ " + B(0,6-0-(95,).

Hence there exists a € (A)s such that a € 51% Id +B(0,579:(9)¢,). Taking the

square, we obtain a2 € 4; Id+B(O,5’OS(€)51%). Thus, when € is sufficiently
small,

a? € 6, 1d +B(0, %1).

For all p > 0, the multiplication by a? will transform a p-separated set in R™
into a &Tp—separated set. Hence,

Ns,p(@2X) > N, (X).
Moreover a?X C B(0,6-2¢6;). Hence
Ny p(X + a®X) > 50(6)/\/6*2661 (X)N51p(a2X) 2 50(6)/\[51 (XN, (X).
Lemma 2.8 tells us a? € Ss5(X,5~9:(9)) and for all p > 6,16,
N p(X +a2X) < 57O NG,  (X).
Combining the two estimates above, we obtain
(3.21) Nip(X) 2 69 ON5, (XN, (X)

whenever d1p > 4.

According to the remark after the proof of Proposition 3.25, we can assume
that there is an integer k with 1 < k < 1 such that § = 6%. Applying (3.21) to
p=2061,1=1,...,k—1, we obtain

N (X) = 69 FING, (X)*.
Hence, by (3.20) and the assumption on X,
50 > Ny(X) > 6o+ 0s(ke)
which is clearly impossible when € is small enough and this finishes the proof. [

Remark. Theorem 3.2 together with Lemma 3.10 yields another proof of The-
orem 3.1. It suffices to consider the action of left and right multiplications of
elements of A on the set A. Actually, this proves something slightly stronger.
Namely, the conclusion of Theorem 3.1 can be improved to

Ns(A+ A) + meaj(Né(A +a-A)+ meachg(A +A-a) > 0" N;5(A).
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3.7 A sum-product estimate in simple Lie alge-
bras

In this last section, we prove Corollary 3.3. Let g be a normed real simple Lie
algebra. We consider the adjoint representation ad: g — End(g), i.e. ad(a)x =
[a, z] for all a,z € g.

Proof of Corollary 3.3. Tt suffices to apply Theorem 3.2 to the set A C g and the
set of endomorphisms ad(A) C End(g). Note that the kernel of ad is the center
of g which is trivial for g is simple. Therefore, ad is a bi-Lipschitz map from g
to its image. This gives the non-concentration condition on ad(A). Moreover,
the quantitative irreducibility condition of Theorem 3.2 is guaranteed by the
following lemma. O

Lemma 3.26. Let 0 < p < 5 L be a parameter. Let A be a subset in a normed
simple Lie algebra g of finite dzmenswn Assume that A C B(0,p™1) and that
A is p-away from Lie subalgebras in g. Then ad(A) acts p@(M-irreducibly on

g.

Proof. Without loss of generality, we can assume the norm on g to be Euclidean.
The statement and proof of Lemma 3.9 remains valid when the word "subal-
gebra" is replaced by "Lie subalgebra". Actually this fact is implicit in [24,
Lemma 2.5]. Therefore, as in the proof of Lemma 3.10, we can assume that A is
finite of cardinality at most n and contained in B(0,1). Write A = {a1,...,a,}.

Suppose the conclusion were false, which means there is W} linear subspace
of dimension 0 < k < n such that for all w € By, (0,1) and all i = 1,...,n,
d(ad(a;)w, Wy) < p© where C is a large constant to be determined by the use
of the Yojasiewicz inequality below. Consider the following real analytic map :

Gr(g,k) xg" — R
(Wixy,...,x — Z/ d(ad(z;)w, W)? dw

Bw (0,1)

From the above, f(Wy;ay,...,a,) < p©. Application of the Lojasiewicz in-
equality (Theorem 3.8) to the compact set Gr(g,k) x B(0,1)" gives W €
Gr(g, k) and by,...,b, € g such that f(Wy;b1,...,b,) =0and Vi, [ja; — b < p
when the constant C' is chosen large enough. The fact f(W1;bq,...,b,) =0 is
equivalent to every b; being in the Lie subalgebra

w, = {z € g|ad(x)W; C W}.

Now our set A is not p-away from the Lie subalgebra gy,. Hence gy, must
be g, which in turn implies that W7 is an ideal in g. This contradicts the
simplicity of g. O

56



Chapter 4

Orthogonal projections of
discretized sets

In this chapter we generalize Bourgain’s discretized projection theorem (Theo-
rem 1.6) to higher rank projections. Let 0 < m < n be positive integers. We
denote by Gr(R", m) the Grassmannian of m-dimensional subspaces in R™. For
V € Gr(R™,m), my: R™ — V stands for the orthogonal projection onto V. If
W € Gr(R™,n — m), we define

dy(V,W) =|lor Ao AV Awp A+ A We— ||

where (v1,...,v,) is an orthonormal basis of V and (ws,...,w,—m,) an or-
thonormal basis of W. For example dg(V,W) = 0 if and only if V and W
have nontrivial intersection. For p > 0, we denote by V¢ (W, p) the set of all
V € Gr(R"™,m) such that d¢(V,W) < p. Recall that V¢ (W, 0) is a submanifold
of codimension 1 in Gr(R™,m) and belongs to the class of algebraic subvarieties
known as Schubert cycles (see for example [35, Chapter 1, §5]).

Our main result is the following.

Theorem 4.1. Let m < n be positive integers. Given 0 < o < n and k > 0,
there exists € > 0 such that the following holds for sufficiently small 6 > 0.
Let A be a subset of R™ contained in the unit ball B(0,1). Let p be probability
measure on Gr(R™, m). Assume that

(4.1) Ns(A) > 6t
(4.2) Vp >4, Ve e R", N;(ANB(z,p)) <5 p"Ns(A);
(4.3) Vp >4, VW € Gr(R",n—m), pu(Ve(W,p)) <6 p".

Then there is a set D C Gr(R™, m) such that (D) > 1 — ¢ and

Ns(my(A)) > 6 no> ¢

whenever V€ D and A’ C A is a subset such that N5(A') > §°N5(A).
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For 1 < m < n, our result is new. Hypothesis (4.2) is a Frostman type!
non-concentration condition on A. Without it we can have example like A =

B(0,61%), a ball of radius §' ==, whose size is N5(A) < 6~ but whose pro-
jection to any V € Gr(R™,m) is of size

Ni(my(A)) =< ==,

Hypothesis (4.3) is a non-concentration condition on the distribution of the
subspace V. The set V/(W, p) can be thought of as a p-neighborhood of the
Schubert cell V¢ (W, 0). For example if m = 1, V lives in the projective space and
(4.3) is asking p to be not concentrated around any projective subspace. Note
that the factor 6~ in both (4.2) and (4.3) means that the non-concentration
property needs to be satisfied up to scale 6¢. So the parameter x is about how
good the assumptions are and e is about how much the assumptions can be
relaxed and how good the conclusion is.

Just like Bourgain’s discretized projection theorem can be used to derive a
projection theorem in terms of Hausdorff dimension [7, Theorem 4], Theorem 4.1
has the following consequence.

Corollary 4.2. Let m < n be positive integers. Given 0 < a < n and k > 0,
there is € > 0 such that the following is true. Let A C R™ is a Borel set of
dimension dimyg(A) = a. Then the set of exceptional directions

{V € Gr(R",m) | dimp (v (A)) < —a+ €}

m
n
does not support any finite Borel measure p on Gr(R™,m) with the following
non-concentration property,

Vp >0, VW € Gr(R",n —m), u(Ve(W,p)) <p".

Applied to a Frostman measure supported on the set of exceptional direc-
tions, we get

Corollary 4.3. Let m < n be positive integers. Given 0 < o < n and k > 0,
there is € > 0 such that the following holds. Let A C R™ be a Borel set of
dimension dimyg(A) = «. Then

dimp{V € Gr(R™, m) | dimg(my (A)) <

m
—a+e} <m(n—m)—1+k.
n

Compared to what is already known (Theorem 1.5), the number 1 in our
estimate is very weak. However, our result does provide something new for
specific choice of n, m and «, namely when (m — 1) < a < m or when
m<a< 2

n—m”-

4.0.1 Strategy of the proof

Fix n,m and a. For ¢ > 0 and bounded subset A C R™ we define the set of
exceptional directions to be

E(A) = {V € Gr(R™,m) | 3A' C A, Ni3(A) > 6°N;(A)
and Ns(my(A')) < 6~ 7o <},

L Cf. Frostman’s lemma (Theorem 1.1).
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When we want to specify €, we write £(A,¢) instead. Our task is to bound
w(E(A)). In order to prove Theorem 4.1 which says u(€(A)) < ¢ under the
assumptions of the theorem, we prove instead that u(£(A4’)) < ¢ for some
subset A’ of A.

Theorem 4.4. Let m < n be positive integers. Given 0 < o < n and k > 0,
there exists € > 0 such that the following holds for sufficiently small § > 0. Let
A be a subset of R™ contained in the unit ball B(0,1). Let u be a probability
measure on Gr(R™, m). Assume (4.1), (4.2) and (4.3), then there exists A’ C A
such that

H(EA)) < b,

This statement is seemingly weaker, but there is actually a rather formal
argument which allows to deduce Theorem 4.1 from Theorem 4.4. We will show
this implication in Proposition 4.17.

The proof of Theorem 4.4 starts with the special case where n = 2m.

Proposition 4.5. Theorem 4.4 is true if n = 2m.

As in the m =1 case in [7], this special case is proved using a sum-product
theorem. For m > 1, we need the higher dimensional sum-product estimate
Theorem 3.2.

To see why this sum-product estimate can be helpful we remark that the
space of m by m matrices, End(R™), is diffecomorphic to the complement of a
codimension 1 Schubert cell in Gr(R?™,m). More precisely, if R>™ is the direct
sum of two subspaces V; and V5 both of dimension m, then the map Gr(R?*™, m)\
Ve (ViH,0) — L(Va, ;) defined by V W;‘lvl oy |y, is a diffeomorphism. Here
L(V5, V1) stands for the space of linear maps from V; to Va.

Once we have Proposition 4.5 we would like reduce other cases to this special
case. If m divides n, this is done easily by considering large slices of dimension
n—min A.

Proposition 4.6. Let ¢ > 3 be an integer. If Theorem 4.4 is true for n' =
(g — 1)m and m then it is also true for n = qm and m.

If m does not divide n and m < 7, the idea is the following. Write n = gm+r
with 0 <r < m. Let Vi,...,V, be linear subspaces of dimension m in "generic"
position. If the projection of A to the sum subspace Vi + .-+ V, is large then
its projection to one of the V; must be large as well.

Proposition 4.7. Let 0 < m < n be such that gm < n where ¢ > 1. If
Theorem 4.4 is true for n and m’' = gm then it is also true for n and m.

If m does not divide n and m > 4, we are in a dual situation to the previous
one. So we consider intersections instead of sums of subspaces. Write n =
g(n —m) 4+ r with 0 < r < n —m. Necessarily ¢ > 2. Let V4,...,V, be linear
subspaces of dimension m in "generic" position. The intersection Vi N---NVj
has dimension r. If the projection of A to ViN---NV, is large then we would like
to conclude that its projection to one of the subspace V; must be large as well.
However, this is not true unless we assume that A does not have any large slice
orthogonal to V' (see Proposition 4.26). If A does have a large slice of dimension
n — r, we can produce large projections using this slice.
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Proposition 4.8. Let 0 < m < n be such that n = qg(n —m) + r where ¢ > 1
and 0 <r <n—m. If Theorem 4.4 is true for n and m' = r then it is also true
for n and m.

Let us see how we prove Theorem 4.4 by putting these propositions together.

Proof of Theorem 4.4. Propositions 4.5 and 4.6 imply the theorem for all pairs
(n,m) such that m divides n. Consider the following order on pairs of positive
integers. We say (n,m) < (n/,m’) if (n,min(m,n —m), m) is smaller than
(n/,min(m’,n’ —m’), m’) for the lexicographical order.

If the theorem were false then let (n,m) be a <-minimal pair for which
the theorem fails. We know that m does not divide n. If m < % then write
n = qm+r with 0 < r < m. We have (n,gm) < (n,m). Hence Proposition 4.7
contradicts the minimality of (n,m). Otherwise m > %, then write n = q(n —
m) +r with 0 < r < n —m. We have (n,r) < (n,m) and then Proposition 4.8
contradicts the minimality of (n,m). O

4.1 Preliminaries

In this section we collect some elementary estimates about the Grassmannian
and establish two useful lemmata about intersections.

4.1.1 Distance on the Grassmannian

For linear subspaces V, W of R"™, we define
dg(ViW) = |lor Ao- Ao Awg A=+ A wg]

where (v1,...,v,) is an orthonormal basis of V and (wq, ..., ws) an orthonormal
basis of W. It is a distance when restricted to the projective space Gr(R™,1)
but only in this case. For example, d,(V,W) = 0 if and only if V' and W have
nontrivial intersection and d,(V,W) = 1 if and only if they are orthogonal to
each other. For other cases, d¢(V, W) falls between 0 and 1.

If vy,...,v,. are vectors and w = wy A --- A ws the wedge product of an
orthonormal basis of W, then

(4.4) lor A Avp AW = ||me (1) A+ Amre (0)]]
In particular, if (v1,...,v,) is an orthonormal basis of V', then
(4.5) Qe (V, W) = llmw (1) A< A s (0]

If f: V — W is a linear map between euclidean spaces of same dimension,
then the determinant of its matrix expressed in orthonormal bases up to a sign
does not depend on the choice of the bases. Moreover, we have

|det(f)] = [1f (i) A== A f(or)l

where (v1,...,v,) is an orthonormal basis of V. Together with (4.5) this gives
yet another definition of d¢(V, W) if dim(V) + dim(W) = n,

(4.6) de(V,W) = [det(my v,
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where Ty V= W+ denotes the restriction of 7y to V.
The natural action of the orthogonal group O(n) on the Grassmannian pre-
serves dy, i.e.
Vg € O(n), de(gV,gW)=de(V,W).

Consequently if dimV + dim W = n then
(4.7) de(VE W) =de(V, W),

because in this case we can always send V to W+ (hence W to V+) by an
element of O(n).
Moreover, when we have several subspaces, Vi, Va,...,V, of R", we define

dé(Vl,...,Vq) = ||V1 /\"'/\Vq”

where for each ¢ = 1,...,¢q, v; is the wedge product of the elements of an
orthonormal basis of V;. For example, if x1,...,x, € R™ are unit vectors, then

de(Ray, ..., Rx,) = |det(zq, ... x4,)]|.

Obviously, d¢(Vi,...,V,) is symmetric in the variables Vi,...,V,. Below
are some other elementary properties of d.

Lemma 4.9. If U,V,W are linear subspaces of R™, then

(4.8) de(U, VW) =d (U +V,W)de(U, V).

Consequently, if Vi,...,V, are also linear subspaces, then

(4.9) de(Vi,..., Vg) =du(Vo, V1) due(Vs, Vi + V) - de(Vg, Vi + -+ + V1)

(4.10)
de(Vi4-- '+Vq,W) >d Vi, W)de(Vo, V1 +W)- '~d4(Vq, Vi+-- '+Vq—1+W).

Proof. If the sum U + V is not a direct sum, then d (U, V,W) = 0 and
ds(U,V) = 0. Otherwise, let u and v be wedge products of orthonormal bases
of U and V respectively. Then u A v/|ju A v|| is the wedge product of an or-
thonormal basis of U 4+ V. Then (4.8) follows immediately from the definition.

The estimates (4.9) can be obtained by a simple induction. The inequality
(4.10) follows from (4.9) since, by (4.9), the right hand side of (4.10) is equal
to dg(Va,..., Vg, W) which, by (4.9) again, is equal to d¢(V4,...,Vy)de(V1 +
S+ Vo, W). O

Lemma 4.10. Let ¢ > 2. Let Vi,...,V, be linear subspaces of R". If z €
Vi+ -+ V, then

(4.11) 2l de(Va, .-, Vo) < llmva ()| + [, ()] + -+ + e, ()]

Proof. We will proceed by induction. Let ¢ = 2. Obviously, there is nothing to
prove if V; + V5 is not a direct sum. Moreover, without loss of generality, we
can assume that R™ = V; + V5. Then also R" = VlJ- + VQJ-. Write z = 21 + 29
with 2; € Vi* and 23 € V5t Then

l7va () = llva (z2) | = llz2ll de(Vit, Re2) > (|22l de(Vit, Vs5) = 2]l de(Va, Va).
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Similarly, ||mv, (2)]] > ||z1llde(Va, V2). We get the lemma for ¢ = 2 using the
triangular inequality.

Now, suppose the lemma is true for some ¢ > 2. Let us show the lemma for
g+ 1. Let V) = V; + V41 and 2’ = myy(z). The induction hypothesis applied
to z and (Vi,..., V1, V) gives

12l de(Vas o, Va1, Vo + Vi) < v (I +--- + I, (@) + 112711
The lemma applied to 2z’ and (V,, Vg41) gives
12 de (Ve V1) < llrw, GO+ v (D= v, ()] v, ()1

Recall that d&(‘/l, ceey ‘/q+1) = d&(Vl, e, Vq_l, V:] + V:;-i-l) d&(‘/:], ‘/:1_;,_1). We
obtain the desired estimate by multiplying the first inequality by d«(Vg, Vy41)
and combining it with the second. O

Lemma 4.11. If R" is a direct sum of Vi,...,V, then for any bounded subset
A CR?,

(4.12) Ns(A) <y, dK(Vl,...,%)*"HN(;(WW(A)).

Proof. Suppose for each i € {1,...,q}, my,(A4) is covered by the balls xl@,

z; € X; C V;. For each (z;); € X1 x -+ x X, there is a unique € R" such
that Vi, my,(z) = z;. By Lemma 4.10, we have

W‘jll(xgé)) N---N 7T‘7—q1 (mé‘s)) c 2@,

where ' = dg(Vi,...,V,)"1¢gd. So A is covered by the balls centered at such
x. Hence Ny (A) < |Xi|---|X,|. We then conclude by using the scale change
estimate (2.3). O

Lemma 4.12. Let V,W be linear subspaces of R™. If V! = 7wy, (V), then for all
reW,

(4.13) de(V, W)y (2)]| < [y (2)]] < [lmv ()]
In particular, if moreover dimV = dim W, then for all x € W,
de(V,WH) ||| < [lmv ()] < [|]l-

Proof. Since V' =y (V'), we have VAW C VL. Hence we can write 2 = y+z
with y = my/(z) € V' and z € V" N W C V*. Then my(z) = my(y). This
gives the second inequality in (4.13).

It is clear that V and V' have different dimensions if and only if V and W=+
have nontrivial intersection, which is equivalent to d «(V, W) = 0. In this case,
the first inequality in the lemma holds.

Let us assume dimV = dimV’. In this case there is g € O(n) which ex-
changes V with V’. We have

lmy ()]l = de®y, VEN(V +V)llyll = deRgy, V=0 (V + V) lyll.
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We have gy € V and since W = V' + V" nW c V! + VA v,
V/J_ N (VJrV/) _ (V/ +V/J_ QVL)J_ C WJ'.

Hence dg(Rgy, V'- N (V + V') > dg(V,WL). This proves the first inequality
in (4.13). O

Lemma 4.13. Let V,W be linear subspaces of R" with dimV < dimW and
de(V, W) > 0. Write V! = mw (V). For any bounded subset A C W,

(4.14) Ni(myi(A)) < de(V, WH) "N (my (A)).
In particular, if moreover dimV = dim W, then for any bounded subset A C W,
(4.15) Ng(A) < dy(V, Wl)_n/\/‘g(ﬂ'v(A)).

Proof. If d (V,W1) > 0 then 7y restricted to W is surjective. Hence we
can cover 7y (A) by the balls 7wy (b)), b € A ¢ W with [A] = Ns(my(A)).
Then 7y (A) is covered by the balls 7y (5)), b € A with & = d(V, WL)~14.
Indeed, Va € A, there is b € A such that |7y (a — b)|| < . Hence, by (4.13),
|y (@ — b)|| < §'. We then conclude by using (2.3). O

Lemma 4.14. Let V,W, U be linear subspaces of R™, with U C W. We have
(4.16) AV, U+ W) =d (V, W) dg(nw (V),U).

Proof. Both sides of (4.16) vanish if the dimension of V' = my (V) is smaller
than V. So we can assume that dimV’ = dimV = r. Let (v1,...,v,) be an
orthonormal basis of V. Then (7w (v1),...,7w(v,)) is a basis of V/. Moreover,
by (4.4), we have

[ (v1) A=+ A (vg) || = due (V, W)

and
|mw (v1) A - A (v,) Au|| = de(V, U, W),

where u is the wedge product an orthonormal basis of U. The desired equality
(4.16) follows from the fact

L rwe) A Amw (o) Al
Vo 0) = ) A A ()]

and Lemma 4.9 applied to V,U, W+ :

de(V,UWH) =d(UWH) de(V,U+ W) =de(V,U + WH). O

4.1.2 Intersections

Here we collect two useful lemmata about intersections and unions of intersec-
tions.

The first one is about intersections of large subsets. Let A be a Borel set in
R™. Let © be an index set equipped with a probability measure p and for each
0 € ©, we have a Borel subset Ay of A. We need an appropriate measurability,
namely, the map (z,0) — 14,(z) is required to be measurable.
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Lemma 4.15. In the situation described above, if there is K > 1 such that
V8 € ©, AM(Ap) > A(A)/K, then for any positive integer g > 0,

A(A) 1
®q . —
pE9{(61,...,0q) | AM(Ag, NN Ap,) > 5Tcq })ZQK‘J'
Proof. By Fubini’s theorem and then Jensen’s inequality,

/)\(Agl n---N qu)du®q(917 .. ,9q)

:/A/IA‘,1 (x)---1A6q(x)du®q(91,...79q)d)\(x)

) [ ([ 10w an0)" T

The lemma follows. O

The next lemma is about small probability events happening simultaneously.
Let (F,u) be a probability space. Suppose we have a collection of subsets
(Ei)ieqa,...,ny of E. We will think E; as events with small probability and
we want to estimate the probability such that a lot of them happen together.
Here "a lot" is relatively to weights we give to the events. Let (a;)icq1,...,n}

be non-negative real numbers such that Zi\il a; = 1. For I C {1,...,N},
write ay = ) ,.;a;. The following lemma is an easy consequence of Markov’s
inequality.

Lemma 4.16. With the notations above, we have, for any a > 0,

y( U (ﬂEi))gafl max  u(E;).

ie{1,...N
Ila;>a i€l ied ¥

Proof. Consider the Bernoulli random variables X; = 1, for ¢ =1,..., N so
that p(E;) = E[X;] and

u( U ﬂEZ) :]P’[ZaiXi > a].

Ilar>ai€l

Then it follows from Markov’s inequality that

N N
P X, >a]l <a'E Xl <at E[X;].
BoaXiza <o B[ ax] <! s BX)
This finishes the proof. O
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4.2 Technical lemmata

In this section, we show the deduction of Theorem 4.1 from Theorem 4.4 and
collect several other lemmata which are needed in the next section. Since they
are mostly about technical details, it is advisable to skip their proofs for a
first reading. In this section, implied constants in Landau notations O(f) and
Vinogradov notations f < g may depend on the dimension n and the parameter
k. Every statement is true only for 6 > 0 sufficiently small and by sufficiently
small we mean smaller that a constant depending on all other parameters (e.g.
n, m, a, £ and €) but not on A nor on p. Typically, if C = O(1) then C < 4§~ ¢.

4.2.1 Proof of Theorem 4.1 admitting Theorem 4.4

We deduce Theorem 4.1 from Theorem 4.4.

Proposition 4.17. Assume that 0 < m < n, 0 < a <n, k >0 and e >0
are parameters that make Theorem 4.4 true. Let A be a subset of R™ contained
in the unit ball. Let u be a probability measure on Gr(R™, m). Assume that u
satisfies (4.3) and A satisfies (4.2) and

(4.1") Ns(A) > 5 Fs,
Then
(4.17) p(E(A, §>) <55,

The idea is the following. A first application of Theorem 4.4 gives a subset
A" C A with pu(E(A’,e)) < 6¢. Either A’ is large enough in which case we are
done or we can cut A’ out of A and apply Theorem 4.4 again. This will give us
another subset A’. Then we iterate until the union of these A’s is large enough.

Proof. Let N > 1 be positive integer. Suppose we have already constructed
Ay, ..., Ay such that AZ(-(S) are pairwise disjoint and p(E(A4;,¢€)) < 0¢ for every
i=1,...,N. Either we have

N
(4.18) N3 (A\ [ APY) <oate,
i=1

in which case we stop, or the set A\ Uf;l Al(-%) satisfies both (4.1) and (4.2). In
the latter case Theorem 4.4 gives us A1 C A\UZ].V:1 AEQ‘S) with p(E(An41,€)) <
0¢. By construction, Ag\fll is disjoint with any of Al@, i1=1,...,N.

When this procedure ends write 4y = UiV=1 A;. Then (4.18) and (4.1') im-
plies Ns(A\ A(()%)) < 63 Nj(A). Moreover, by the disjointness of Agé), e Agg),

we have N
Ns(Ao) =D Ns(4y).
=1

Set a; = ﬁiéﬁog We claim that

£, 5) cJN e,

I iel

65



where the index set I runs over subsets of {1,..., N} with >, _;a; > 62. The
desired upper bound (4.17) then follows immediately from Lemma 4.16.

We now proceed to show the claim. Let V € £(A4, §). By definition, there
exists A’ C A with Ns(A4’) > 65N5(A) and Nj(my(A")) < 6~ *~5. Consider
the index set I defined as

IT={ie{l,....N} | Ns(A @) 0 A;) > 5N5(A)}.
We have, by (2.1) and (2.5),

N5(A') = Ns(A\ APY) < 3T N5(A" 0 APY)

=1
<Y ONS(A) + ) NG(AP 1 4y

iel il
< Z ai/\/};(A) + (5€N5(A)
el

Hence ), ;a; > §%. On the other hand, for all i € I, since

N (my (A2 1 47)) < Ny (v (A) ) < Ny (v (A7),

we have

Ns(my (AP 0 4y)) <6 wee,
Hence V € £(A;,¢€) for all i € I. This finishes the proof of the claim. O

4.2.2 Action of linear transformations

Clearly, all the assumptions and the conclusion of Theorem 4.4 are invariant
under the action of the orthogonal group O(n). The next proposition states
that the action of a § ~¢-bi-Lipschitz linear transformation only affects them by
a factor of §°(9). Here, while f € GL(R") acts on R" in the usual way, it
acts on the Grassmannian by multiplication by f* := (f~!)* or equivalently,
[V = (fvHt for all V € Gr(R™, m).

Lemma 4.18. Let 0 < m < n be dimensions. Let ¢ > 0. Let f € GL(R")
with || f|l + || f7 < 6. Let A be a bounded subset of R™ and p a probability
measure on Gr(R™,m).

(i) For each of the assumptions (4.1)—~(4.3) of Theorem 4.4, if it holds for A
and p with the parameters a, k and € then it also holds for the image set
fA and the image measure f-u with the parameters o, k and O(e) in the
place of .

(ii) For all V € Gr(R™,m), Ns(mry(fA)) < 5 OON;(my (A)).

(iii) We have n(E(A,€)) < (f-u)(E(fA,O(€))). In particular, if the conclusion
of Theorem 4.4 holds for fA and fp with some ¢ > 0 in the place of €
then it holds for A and p with e = ﬁ/l).

(iv) For all V € Gr(R",m) and all z € f*V,
N (fA ) W;jv(x(‘”)) < §0 Efleaé‘N‘s (A n W‘;1(y(5))).
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Proof. The statement about the assumptions (4.1) and (4.2) follows immediately
from the inequality (2.4). As for the assumption (4.3), it suffices to prove that
for all W € Gr(R™,n —m) and all p > 0,

(4.19) FEn(Ve(FW,p)) < p(Ve(W, 679 p)).

From the Cartan decomposition of f, we see easily that Vr = 1,...,n, |A" f*|+
A" 57 <679, For V € Gr(R™,m), let v be the wedge product of an
orthonormal basis of V' and w that of W. We have

L A" P Aw)|
LV W) = A S T Fowl
A" F) U v A wl
AT T TIA™ 75
> 69 d (V,W).

|

Hence f1V € V¢ (f+W, p) implies V € V¢ (W, 59 p), which establishes (4.19).
_ For the second statement, observe that there is a finite set A of cardinality
|A| = Ns(my (A)) such that

AC A+ VvVt +B(0,0).
Applying f and then 7,1y on both sides, we obtain
Ty (FA) C oy (FA) +B(0,679).

This proves that Nsi-c(msry (fA)) < Ns(my(A4)). We conclude by the scale
change estimate (2.3).

For the next statement, it suffices to prove that f+V € £(fA, O(¢)) whenever
V € E(A,e). Indeed, let V € E(A,e). Then there exists A’ C A such that
Ns(A") > 6°N5(A) and Nj(my(A’)) < 6~ %27¢. On the one hand, by (2.4),
we have Ns(fA") > 6°N5(fA). On the other hand, from (ii) it follows that
Ns(mpiy(fA) < 6= w29 Hence fLV € E(fA,O(e)).

For the last statement, it suffices to prove for any « € f1V, there exists
y € V such that

(4.20) FANT L @9) C f(AnT (@),
Indeed, if a € A satisfies w71y (f(a)) € (9, then
fla) € x4+ fV++B(0,9).
Applying f~! and then 7y on both sides, we obtain
my(a) € my (f 1 (x)) + B(0,5' 7).

This proves (4.20) with y = my (f~1(x)). O
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4.2.3 Non-concentration property for projections

Let A a subset of R™ as in Theorem 4.4. We want to understand whether a
projection of A still satisfies some similar regularity property as A does. More
precisely we want a large subset A’ of A such that

Vp >0, Ve eV, Ni(my(A)nal)) < prg=ie=,

for some s, proportional to x and ¢ some multiple of .

In the special case where m divides n, we have the following result. We will
only need this non-concentration result in this special case, although a more
general result might be true.

Lemma 4.19. Let n = gm with ¢ > 2. For any parameters 0 < a < n, k > 0
and € > 0, the following is true for 6 > 0 sufficiently small. If A is a subset
of R™ contained in the unit ball and u is a probability measure on Gr(R™,m)
satisfying the assumptions (4.1)—(4.3) for the parameters «,  and €, then

(E(A) \ Ereg(A)) < 6%,

where Eycg(A) denotes the set of all V € E(A) such that 3A" C A with Ns(A") >
53¢ and Ny(my(A')) <6 %°¢ and
(4.21) Vp >0, YeeV, Nimy(A)nzP) < pazs—wa-lle

The idea of the proof is the following. When V' € £(A), there is a large subset
A’ with small projection to V. We then remove small fibers of the projection
my : A — V to get A”. Any large subset in of my (A”) will have large preimage
by myv. Thus if V ¢ Eeg(A) then there will be a cylinder with axis V+ and
radius p in which A is very dense. If there are a lot of such V' we can then
intersect these cylinders to get a ball of radius p% which will contradict the
assumption (4.2).

Proof. For conciseness, write k1 = 577. We claim that if V € £(A) \ &ieg(A)
then there exists x € V and p > 4 such that

(4.22) Ns(Anayt (@) > prrg=aoe,

Indeed, let V' € E(A) \ Ereg(A), then there exists A” C A with Ns(A") >
67+2¢ and N(my(A4’)) < 6747 °. Now we want to remove small fibers of the
map my restricted to A’. Consider the set

B= {y eV N (A nrply?®)) > 5—%1a+4€}
and A” = A’ Ny, (B®). We have, for all y € V,
Ni((ANA") N (y)) < 65T,

for otherwise y would belong to B and the intersection (A’ \ A”) N 7y (y(9)
would be empty. Consequently,

N5(AT\A") < Nl (4) max Ny (4 \A") 1 (5 D)) < 574
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It follows that Ng(A”) > §~T3¢. Since V ¢ E.cx(A), the non-concentration
property (4.21) fails for 7y (A”). Hence there exists € V and p > 4 such that

(4.23) Ns (v (A" naP) > prig=a e,

Let B be a maximal 6J-separated subset of WV(A”)ﬂag(P). From (2.1) and (4.23),
we have |B| > p™46~ s €. Moreover for all y € B, by the definition of A”,
y € B®), hence Ns(A' Nyt (y))) > 5~ o+ Since B is 66-separated, all
these balls y(2%) with center y € B are 26-away from each other. Consequently,

N5 (A/ n ,/T‘;l(x(erQ(S)))z ZN5 (A/ ﬂﬂ_‘;l(y@é))) > pn157a76e.
yEB

This finishes the proof of the claim.

To obtain a contradiction, suppose that 1(E(A) \ Eeg(A4)) > §2¢. Note that
the radius p in the claim depends on V. However, from (4.2) and (4.22) we
know that it ranges from § to °¢. For the argument below, we want (4.22) to
hold for a lot of V' € £(A) \ &reg(A) with a same p > 6. Indeed, by a simple
pigeonhole argument?, we can find a subset D C £(A) \ Eeg(A) and a radius
p > d such that p(D) > §3¢ and for all V € D, there exists x € V such that

Ni(AN Tyt @) > p?¥1 675 N5(A)
and hence, by Lemma 2.1,
MAO Nyt (2P)) > pPrrg=2e\(A©)).

Let V1,...,V, be random elements of Gr(R™, m) independently distributed
according to p. On the one hand, from Lemma 4.15 applied to the restriction of
1 to D, it follows that with probability at least £ (p?*16~4€)1u(D)? > £ par1 =1,
there exists 1 € Vi,...,24 € V; such that

1
(4.24) AMAD nrpt@?)yn-nagt @) > 5,02‘1"15*4‘15)\(14(5))

On the other hand, from (4.9) and (4.3), it follows that with probability at
least 1 — (¢ — 1)~ €pa, we have

(4.25) de(Vi,.... V) > p'7 .

Now with our choice of k1, we have 1 — (¢ — 1)6—5/)5 + %qu’“(S_qE > 1. This
means that for some (V4,...,V;), both (4.24) and (4.25) hold. By Lemma 4.10,
there exists ¢ € R™ such that

7T\711 (xgp)) A---N W‘;ql(xt(zﬂ)) c )
with p’ = gpdg(Vh,..., V)7t < qp%. Then the non-concentration property (4.2)

of A implies that )
AMAD N2y < 57T N(AD).

Combining this with (4.24) yields
p2qn1574q6 < 576/)%’

which is impossible with our choice of k7. O

2 Arrange different p into intervals of the form [62 52 " '], where 0 < k < — log(e).
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4.2.4 Non-concentration property for slices

We will also consider slices of A, i.e. intersection of A with a §-neighborhood of
a affine subspace. When n = gm, we have similar non-concentration results for
(n — m)-dimensional slices of A.

Lemma 4.20. Let n = gm with q > 2 a positive integer. Let 0 < o < n,
k > 0 and € > 0 be parameters. If the statement in Theorem 4.4 fails for the
set A, then there is a (n — m)-dimensional affine subspace y + W and a subset
B C A®) N (y+ W) such that

Ns(B) > 67840 g4nd

(4.26) Vp>48, Ve eW N;(B ﬂx(”)) < pﬁé_ﬁ_o(e),
where 8 = %1@.

Here is an outline of the proof. The negation of Theorem 4.4 to A will
imply that a large subset of A is a large subset of a Cartesian product (of ¢
factors). Then, because of Lemma 4.19, the first factor can be chosen to have
the non-concentration property. This in turn will imply the non-concentration
property of the Cartesian product of the ¢ — 1 first factors. Now the negation of
the projection theorem will give a large slice parallel to the Cartesian product
of the ¢ — 1 first factors. The slice is nearly as big as the Cartesian product.
From this we conclude that it has also the non-concentration property.

Proof. Suppose the statement in Theorem 4.4 fails for the set A C R™. This
means that for any subset A’ C A, pu(E(A")) > 6°. In particular, &Eeq(A) is
non-empty by Lemma 4.19. Let Vi € &eg(A). There exists 4; C A with
Ns(Ap) > 6-F3€ and

K

(427) Vp >4, Ve € Vq, N(;(ﬂ'Vl (A1> N w(P)) < pia? 57%a7115_

Let ¢4 = % We construct by a simple induction a sequence of subspaces

Va,...,V, and a nested sequence of subsets 4; O --- D A, satisfying for any
71=2,...,q,
(4.28) de(Vi, Vit -+ Vi) 269,
Ns(Aj) = 0°Ns(Aj-1),
(4.29) Ni(my, (A7) < 877,

This is possible since at each step, we have by (4.3),
P(EAG_) \Ve(Vi + - 4 Vj_1,81)) > 6 — 6% > 0.

Since N5(Aq) < Ns(my, (Ag)) maxyey, Ns(Ag N w;ql(y(‘s))), there exists y, €
Vg such that

(4.30) Ni(Ag Ny () > 677 o400,

After a translation, we can suppose y, = 0. We write V =V, +--- + V,_; and
W = V- and set By = A;NW®) and B = myw (By). We have Ns(B) > § A+
by (4.30) and the fact that By C B,
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It remains to show the non-concentration property (4.26) for B. Let p > §
and x € W. From (4.28), d¢(V, W) = dg(V,V,) > §°). Hence, by (4.15) in
Lemma 4.13,

N5 (BN z)) < 67N (my (B) Nal)

where xy = my (x). Moreover B C Aé‘;), hence

(4.31) N3 (BN z)) < 67O N;(my (A,) N 2i).

Then Lemma 4.11 applied to the set my (A,) ﬂx((]zp) inV= @?:1 V; together
with (4.28) yield

q—1
Ni(my (Aq) Na§”) < 57O N;(my, (Ag) N2 T Ns (v, (Ag))

=2

where z1 = 7y, (xo). The required non-concentration property (4.26) then fol-
lows from (4.27) and (4.29). O

4.2.5 Without the non-concentration property

As illustrated by the example in the introduction, the non-concentration con-
dition (4.2) on A is crucial to have a gain € > 0 in the conclusion. Without
this condition, we still expect Ns(my(A)) to be close to Ns(A)= for generic
V € Gr(R"™, m). This is the subject of the next proposition.

Proposition 4.21. Given 0 < m < n, 0 < a < n and k > 0, there exists
C < 400 such that for all 0 < € < %, the following is true for all 6 > 0
sufficiently small. Let A C R™ be a subset contained in the unit ball and p a
probability measure on Gr(R™, m). Assume that

(4.32) Ns(A) > 7«70,

Further assume the non-concentration property (4.3) for p if m < n. Then

p(E(A)) < o°.

When m divides n, this follows almost immediately from Lemma 4.11. Then
the task is to reduce to this special case. Since it shares the same set of ideas
as the proof of Theorem 4.4, the proof below will only be outlined and more
details can be found in the next section.

Proof. For 0 < m < n, denote by P(n, m) the statement we want to show. Note
that for all n > 1, P(n,n) is trivially true. We will proceed by an induction
similar to that in the proof of Theorem 4.4. It suffices to show the following
two types of inductive steps. Let 0 < m <n and ¢,r > 0 be integers.

(i) If mq < n, then P(n,gm) implies P(n,m).

(i) If n = g(n —m) +r with 0 < r < n —m, then P(n,r) and P(n —r,m)
imply P(n,m).
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Using the same argument in Proposition 4.17, we see that in order to show
P(n,m), it suffices to show p(E(A’")) < 6° for some subset A’ C A. In other
words, if the conclusion of P(n, m) fails for the set A then for any subset A’ C A,
H(EAT) > .

Proof of (i). Let V1, ..., V, be random elements of Gr(R"™,m) independently
distributed according to p. Write V- = V; + --- + V,. When ¢m < n, we have
by Lemma 4.25,

P[dim(V) = qm} >1—(g—1)6""".

Moreover the distribution of V' conditional to the event dim(V') = ¢gm has the
corresponding non-concentration property. By P(n,gm), we know that for any
C’ > 0, if the constant C in (4.32) is large enough (depending on C’) then the
probability that there exists A’ C A satisfying

Nis(A) > 69 Ns(A) and Nj(my (A')) < 5~ %=
is at most 6 + (¢ — 1)07 .
Suppose that P(n,m) fails for A. Then by a simple induction we show that
with probability at least 6°(9), we have
d&(vh ) Vq) > 50(6)
and there exists A, C A such that N5(4,) > 699 N;s(A) and
Vi=1,....q, Ns(my,(Ay) <& "o e

and hence, by (4.12) applied to 7y (A),

Ni (v (A)) < 6= 520=00),

We obtain a contradiction if C’ is large compared to any of the implied constants
in the previous Landau notations.

Proof of (ii), Case 1. Assume firstly that A contains large slice of dimension
n — r. More precisely, assume that there exists W € Gr(R",n —r) and z € R”
such that

N (AN (z+ W) > 5= a0

where C’ is the constant given by P(n — r,m) applied to 0 < m < n —r,
"« and k. Without loss of generality, we can assume that z = 0 and that
B = my (ANW®) is contained in A. Lemma 4.23 tells us that we can apply
P(n —r,m) to B C W with the image measure of u by 7. Then we can
conclude using Lemma 4.24.

Proof of (ii), Case 2. Otherwise A does not contain any large slice of di-

mension n — r :

(4.33) Vz e R", VW € Gr(R",n — 1), N (A N (z+ W(&))) <6 2= a—O(e)

Let V4,...,V, be random elements of Gr(R", m) independently distributed ac-
cording to p. Write V.=V N---NV,. By (4.7) and Lemma 4.25,

Pldim(V)=7r] > 1— (¢ —1)§""¢

and that the distribution of V' conditional to the event dim(V') = r has a non-
concentration property. By P(n,r), we know that for any C’ > 0, if the constant
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C in (4.32) is large enough (depending on C’) then the probability that there
exists A’ C A satisfying

Ns(A") > 69 “Ns(A) and N(my (A)) < § =

is at most 6C°¢ + (¢ — 1)6" .
Suppose that P(n,m) fails for A. Again by an induction we show that with
probability at least 6°(), we have

de(ViH, ... V) > 690

and there exists A, C A such that N5(A4,) > 69 N;s(A) and

Vi=1,...,q, Ns(my,(Aq)) < s maTe
Together with (4.33), this implies by Proposition 4.26 that there exists A’ C A4,
such that

N3(A") > 69O N5(A) and N(my (A)) < 6=~ 0),

Again we obtain a contradiction if C” is large compared to any of the implied
constants in the previous Landau notations. O

4.3 Proof of the main result

In this section, we prove Theorem 4.4 and thus Theorem 4.1. This is done
by proving first the base case where n = 2m (Propsoition 4.5) and then the
induction steps (Propositions 4.6-4.8). Note that by Proposition 4.17, for a given
pair (n,m), if Theorem 4.4 is true for these dimensions then so is Theorem 4.1.
Therefore, when we use Theorem 4.4 as induction hypothesis, the conclusion
is u(E(A)) > 6¢ while when we prove by contradiction by saying that A is a
counterexample for Theorem 4.4, we are assuming pu(E(A")) > §¢ for all subsets
A’ of A.

Like in the previous section, all implied constants in Landau and Vinogradov
notations in this section may depend on n and k. Again every statement in this
section is true only for 6 > 0 smaller than a constant depending on n, m, a, k
and e.

4.3.1 Half dimensional projections

For the special case n = 2m, we follow mainly the proof in [7] (which deals
with the case m = 1) and use a technique in the proof of Proposition 2 in
Bourgain-Glibichuk [12].

Proof of Proposition 4.5. Let A C R™ be a counterexample for Proposition 4.5.
In particular,

(4.34) VA C A, p(E(A) > 6.

We will get a contradiction when e is small enough. By Lemma 4.19, there is a
subspace V7 and a subset A; C A with the following properties:

N&(A1) 2 6—(¥+36;
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Ns(mv; (A1) < 6727

(4.35) Vp >0, Ve e Vi, Ns(my, (A1) Nal?)) < pss= 3790,

Let €, = 3¢, Then p(E(A1) \ Ve(V1,6)) > 6¢ — 6% > 0 by (4.34) and the

K

non-concentration property (4.3) of p. Let Vo € £(A1) \ Ve(V1,d) with Ay
such that Ns(Az) > 6~*+4€ and

(4.36) Ni(my, (Az)) < 6727€, i=1,2.

Consider f € GL(R™) which fixes V;* and sends isometrically Vi- to V;.
Since dg(Vi, V) > 6790, fis 6~ 9 bi-Lipschitz. By definition, fXV; = V;
and f+V, = Vi-. On account of Lemma 4.18, we can suppose without loss of
generality that Vo = Vit

Put X = my, (Az) and Y = my, (A2). We have, N5(As) < Ns(X)N5(Y) and
this together with the inequalities (4.36) implies

Ng(X), Ng(Y) > §— 310,

Write D = E(Az) \ (Ve(V1,0) UV (Va, ). We have, by (4.34) and (4.3),
w(D) > 6¢ — 26%¢ > §%¢. Let V € D. By (4.6) and (4.7), we have

|det(my ;)| = de(Vi, VE) = de(Va, V) > 6909,

The same is true for myy,. Then it follows easily from the Cartan decomposition
that

(4.37) 7 Il < 679 and ||7T;‘1V2 | <80,

Since V € £(Ay), there is a subset Ay C Ay such that Ns(Ay) > 6-*+0(
and Ns(my(Ay)) < 5~ 7€ Tt follows from (2.7) that

ws(my, X +Y) > ws(my, Ay) > 55 +0(),
By (4.37), the map R™ = Vi@V, — V XV defined by v14+vs — (7y (v1), 7y (v2))
is 6~()_bi-Lipschitz. Hence, by (2.8), we can bound from below the additive
energy between my X and 7wy Y,

ws(+,mv X x Ty Y) > 5= E O > 5O(E)N§(7TvX)%N5(7TVy)%.

That is why we can apply the Balog-Szemerédi-Gowers theorem (Theo-
rem 2.7) to get subsets Xy € X and Yy C Y such that

(4.38) Ns(Xv), Ns(Yy) > 63100
and
(439) Ng(ﬂva + 7Tvyv) S 5_%_0(5).

Applying w;‘lvl to the set in the last inequality and using (2.4), we obtain

(4.40) Ns(Xy 4+ ovYy) < 5_%_0(6),
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where oy : Vo — V1 is gy = W‘;llvl omy|y,. Note that from (4.37), ¢y is 50O
bi-Lipschitz.

Let us apply Lemma 4.15 to the collection of subsets X‘(/‘S) XY‘E‘S) c X0 xy©®)
with the restriction of u to D. We obtain V, € D, X, = Xy, and Y, = Yy,
such that

AMXD A XDINTD Ny > gnmeto©

whenever V € D', where D’ is a subset of D with
(4.41) W(D') > 5°€) (D) > 60,
By Ruzsa’s triangular inequality (Lemma 2.3), (4.40) implies, for all V € D’
Ns(Xy = XOnXP) < Ny(Xy — Xy) <6500,

For the same reason Nj(X, — Xié) N X‘(,é)) < 675706, Then by Ruzsa’s
triangular inequality again, we have

(4.42) Ns(X, — Xy) <6 3790,
Similarly, N5 (Y, — Yy) <659 which implies with (2.4),
(4.43) Nis(pvY, —ovYy) < 672700,
Moreover, (4.40) with (2.4) gives
(4.44) Ns(pvpl ' Xo 4+ ovYs) < 675790,
where ¢, = @y, .

Now successive use of Ruzsa’s triangular inequality (recalling (4.42), (4.40),
(4.43) and (4.44)) yields that for all V € D/,
(4.45) Ns(Xo = pve 1 X,) < 678790,
Moreover, by the Pliinnecke-Ruzsa inequality (Lemma 2.4),
(4.46) Ns(X, +X,) <672790),

Consider the set of endomorphisms A = {—py¢;! € End(V;) | V € D'}.
We claim that the assumptions of Theorem 3.2 are satisfied for A and X, with
e replaced by O(e) and & replaced by §. Therefore, when e is small enough,
(4.45) and (4.46) contradict Theorem 3.2.

Our claim about the assumptions (i), (iv) and (vi) are clear from what
precedes. The assumption (v) follows from (4.35) and (4.38) because for any
p =9,

N5 (X)) < N,(XL) Iréagc./\/(;(X* Nnz#),
zeV

Finally, to prove (ii) and (iii) we use Lemma 4.22 below. For any p > § and
any f € End(V}), Lemma 4.22 gives the existence of a subspace W' € Gr(R",m)
such that —py ;! € B(f, p) implies V € Ve (W', 69 p). Hence by (4.3),

n({VeD | —pvert €B(f,p)}) <6 99p"
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Observe that

(D) < N, (A) feg;%)((w)u({v €D | —pve, ' €B(f,p)}).

Together with (4.41), this gives the assumption (ii), namely,
N,y(A) > 50 p=r,

Moreover, for any nonzero proper linear subspace W € Vi, take w € W some
vector with |Jw|| = 1 and consider

po = sup d(—pyve; " (w), W).
VeD!

By Lemma 4.22 and (4.37), we have D' C V¢ (W', 6-9)py) for some W’ €
Gr(R™,m). In view of (4.41) and (4.3), we have §9(9) < §=9()ps Hence
po > 69 which establishes (iii). O

Lemma 4.22. We use the notations in the proof above. For any nonzero vector
vy € Vo and any proper linear subspace W C Vi, there is W' € Gr(R™, m) such
that for all V € Gr(R"™,m),

(4.47) de(V,W') < oo d(v (v2), W).

Proof. Without loss of generality, we can assume that dim(W) = m — 1. For
any V € Gr(R™,m), any vy € V5 and any w € W, by (4.5), we have

de(VE R(vg — w)) = lImv (va = w)||

lvg = wl|

Note that ||ve — w]| > [Jvs|| since ve L w and ||wy (vy — w)|| < [|ov(v2) — w]|
since 7y (v (v2) — w) = my (v — w). Hence

di(vj_ R(’U _w)) < H@V(’UQ) _w”
e = el

As w can be any vector in W, we obtain
dé(vlﬂ Rog + W) < ||UZ||_1d((PV(U2)7 W)

We conclude by setting W’ = (Rvy + W)+ € Gr(R", m) and using (4.7). O

4.3.2 Projection of a slice

If the set A contains a relatively large slice of dimension 0 < n’ < n (a subset
B = A®ON(y+W) with dim(W) = n and N3(B) = 6~ %) and if it has a correct
non-concentration property then we can apply the induction hypothesis to B—1y
inside W. Instead of projecting to V distributed according to u, we project to
V' = mw (V). The first lemma below shows that V’ is not concentrated and the
next one shows the relationship between V' being in £(B) N Gr(W, m) and V
being in £(B). Using this idea we prove Proposition 4.6.
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Lemma 4.23. Let 0 < m < n' <n be integers and x,e¢ > 0 be parameters. Let
W e Gr(R",n') and V be a random element of Gr(R™, m) having the following
non-concentration property,

(4.48) Vp >4, VU € Gr(R",n —m), P[d (V,U) < p] <6 p".

Set V! = mw (V). Then with probability at least 1 — 5 ¢, dim(V') = m. Condi-
tional to this event the distribution of V' is a probability measure v on Gr(W, m).
It satisfies

Vp > 48, YU € Gr(W,n' —m), v(Ve(U,p)) <5 2p".

Proof. We know that dim(V’) = m if and only if d¢(V, W) > 0. The first part
follows immediately from (4.48). Let us show the non-concentration property
for v. Let U be a (n’ — m)-dimensional subspace of W. If d(V',U) < p then
dg(V,U + W) < p by (4.16). Hence

Pld (V',U) < p] <P[de(V,U+ W) < p| <6 p"
and hence v(Vy (U, p)) < 152 < 672p". O

Lemma 4.24. Let 0 < m < n' < n be integers. Let 0 < a < n and € > 0 be

parameters. Let B C W be a bounded subset in a n’-dimensional linear subspace
W C R™. Then

mw (E(B,€) \ Ve(W,6%)) C E(B,O(e)) N Gr(W, m).

Proof. Let V € £(B,¢) \ V¢ (W+,5¢). Then there exists B’ C B such that

m

N3(B') > 6°N5(B) and Ns(my (B')) <d~ .
Denote by V' the projection my (V). It follows from Lemma 4.13 that
Ns(mvi(B') < de(V,WH) "D N5 (my (B')) < 559,
That is why V' € £(B,O0(¢)) N Gr(W, m). 0

Proof of Proposition 4.6. Let n = gm and suppose that Theorem 4.4 holds for
n' = (¢ — 1)m and m. Let A and p be as in Theorem 4.4 but for which the
conclusion fails. By Lemma 4.20, there is an n’-dimensional affine subspace
y+ W and a subset B C A®) N (y + W) such that

Ns(B) > 678+ and

Vp >0, Yz e W, N3(BnzP)) < pz§=h-00)

where 3 = %a. Without loss of generality, we can assume y =0 and B C A.

Let V be a random element of Gr(R™, m) distributed according to u. Define
v be as in Lemma 4.23. By the lemma, we can apply Theorem 4.4 combined
with Proposition 4.17 to B C W with the probability measure v on Gr(W, m).
We obtain a constant ¢ > 0 depending only on n/, 8 and x such that when
e< ¢,

v(E(B,€) N Gr(W,m)) < 5.

7



Set €; = 3¢, By Lemma 4.24, we have

K

L(EB, &) \ Ve (W,6)) < v(E(B,0(e)) N Gr(W,m)).
When € < ﬁ, the last two inequalities together with (4.3) yield

(E(B, ) < u(E(B,e) \ Ve(W,6)) + (Ve (WH,5%)) < 69 4 6% < &,

which finishes the proof of Proposition 4.6. O

4.3.3 Projection to a sum of subspaces

In the situation where m < %, we consider the sum V' = V; +---+V, where g is a
positive integer such that ¢gm < n and Vi,...,V, are m-dimensional subspaces.
Using the inequality (4.12), the size of the projection to V' can be bounded in
terms of the sizes of the projections to each Vj. In the next lemma, we prove that
if V; are independently randomly distributed according to a measure with an
appropriate non-concentration property then the distribution of their sum V has
a non-concentration property as well. This allows us to apply Theorem 4.4 with
the dimensions n and m’ = ¢m. This idea leads to the proof of Proposition 4.7.

Lemma 4.25. Let n,m,q,r be positive integers such that gm +r = n. Let

0<e< %FL be parameters. Let Vy,...V, be independent random elements of

Gr(R™,m) satisfyingVj =1,...,q,

Vp > 6, VW € Gr(R",n —m) P[dg(V;, W) < p|] <5 p".
Then with probability at least 1 — (g — 1)0%~¢, we have
(4.49) dim(Vy 4 -+ + V) = gm.

Then the probability measure ' on Gr(R™,gm) defined as the distribution of
Vi + -+ + V, conditional to the event (4.49) satisfies the non-concentration
property

Vp > 6, YW € Gr(R™,r), ' (Ve(W,p)) <6 9pa.

Proof. Let Vi,...,V, be as in the statement. By their independence, for every

j:27"'7Q7
Plde (V) Vi + -+ Vjoy) < 8] <55,

Hence, on account of (4.9), with probability at least 1 — (¢ — 1)0"~¢, we have
de(Vi,...,Vy) 2 607D >0

and hence Vi + .- + V, is a direct sum.
Let p > 0, W € Gr(R",r). By (4.10), we know that if

de(Vid---+V,, W) <p
then for some j =1,...,q,

de(Vi, i+ + Vi + W) < pi,
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which happens with probability at most 5’6;)%. Therefore,
Plde(Vi+ -+ Vo, W) < p] < g6~ p7.

Hence

€,q "

W (Ve(W,p)) < l_g_’i)éﬁ_e <6795, m
Proof of Proposition 4.7. Let n, m, q,r be positive integers such that gm+r = n.
Suppose Theorem 4.4 is true for the dimensions n and m’ = gm but it fails for
the dimensions n and m with parameters 0 < o < n, k > 0 and ¢ > 0. Let A
and p be a counterexample, i.e. A and p satisfy (4.1)—(4.3) but u(E(A")) > ¢
for all subsets A" C A. We will get a contradiction when e is smaller than a
constant depending only on n, o and &.

Let V1,...V, be random elements of Gr(R"™, m) independently distributed
according to u. Let p/ be the probability measure on Gr(R™, gm) defined as in
Lemma 4.25. Thanks to Lemma 4.25, we can apply Theorem 4.4 combined with
Proposition 4.17 with dimensions n and m’ = ¢m to the set A and the measure
w'. Tt gives € = € (n, o, k) > 0 such that if € < ¢’ then the probability that there
exists A’ C A satisfying N5(A') > 6¢ N5(A) and

/

N5(7rV1+...+Vq (A/)) < 57%0676

is at most 8¢ 4 (g — 1)6" .

The rest of the proof consist of proving a lower bound for the same prob-
ability. First, V; € £(A) with probability at least 6°. When this happens,
there is A; C A with N5(A1) > §Ns(A) and Ns(my, (A1) < 6~ 7 2"c. Write
€ = % Then conditional to any choice of V1, we have Vo € £(A41) \ Ve (V7,)
with probability at least 2¢. When this happens, there is A, C A; with
Ns(Az) > §°Ns(A1) and Ns(my,(Ag)) < 6% ¢, Then conditional to any
choice of V7 and V4, the probability that V5 € £(As) \ Vi (V1 + V3, 0) is at least
§2¢. Then we continue this construction until we get A,,.

To summarize, we have with probability at least §(2¢—1¢,

de(Vh,...,V,) >890

and there exists a subset A, C A satisfying Ns(Aq) > 09°N;5(A) and for every

j = 17"‘7Q7 ™
Ni(y, (Ag)) < 6o

and hence, by Lemma 4.11,
No(v;41v, (Ag)) < 87270,

This leads to a contradiction when € < 05(/1 ] O

~—

4.3.4 Projection to intersection of subspaces I: a discrete
model

When the projections of a set A to subspaces Vi, ..., V; are all small, we would
like to say that its projection to the intersection V' = Vi N --- NV, is small
as well. This is not true. A typical example is A = (Re; @ Rez) U Res where
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(e1,e2,e3) is the standard basis in R®. While its projections to Re; @ Rez and
to Rey @ Res are both small (have dimension 1 in a 2-dimensional space), its
projection to Res is full dimensional. In this example, A contains a large slice
orthogonal to V. This happens to be the major obstruction.

Proposition 4.26. Let n,m,q,r be positive integers such that n = q(n—m)+r.
For any 0 < a < mn and € > 0, the following is true for sufficiently small § > 0.
Let ACR" and Vi,...,V, € Gr(R™",m). WriteV =ViN---NV,. Assume that

(i) de(ViH, ... V) = 6
(”) §—ate < Ng(A) < 5—04—5’.
(iii) For every j =1,...,q, N5(my,(A)) < d—wo¢;

n

(iv) For ally € V, N5(A0 75 (y) < 650

Then there exists A’ C A such that Ns(A') > §°IN5(A) and
Ns(my(A')) < 6700,

This proposition is deduced from the following discrete analogue. Let n,m, g, r
be as in Proposition 4.26. For I C {1,...,n}, we write @ : Z" — Z! to denote
the discrete projection (2;);ie(1,....ny = (2i)icr. Consider Iy = {n —r+1,...,n}
and for j=1,...,q

L={1l....n}]\{U—-Dn—m)+1,....5(n—m)}.

Proposition 4.27. We use the notations above. For any parameter K > 1 and
any finite subset Z C Z™. One of the following statements is true.

(i) There exists j € {1,...,q} such that |w,(Z)| > K|Z|~.

n—r

(ii) There exists y € 710 such that |Zﬁw1_01(y)| > K|Z| =
(iii) There exists Z' C Z such that |Z'| > 52— |Z| and |w,(Z')] < 2K Z| .

One of the ingredients is a discrete isoperimetric inequality due to Bollobas-
Thomason [5] known as the uniform cover theorem. Let P({1,...,n}) denote
the set of subsets of {1,...,n}. Recall that a multiset of subsets of {1,...,n}
is a collection of elements of P({1,...,n}) which can have repeats. Giving such
a multiset is equivalent to giving a map from P({1,...,n}) to N. Following
Bollobas-Thomason, we say a multiset C is k-uniform cover of {1,...,n} if each
element ¢ € {1,...,n} belongs to exactly k members of C. For exemple, with I;
defined above, (I \ Io,...,I; \ Ip) is a (¢ — 1)-uniform cover of {1,...,n} \ Ip.

Theorem 4.28 (Uniform Cover theorem, Bollobas-Thomason [5]). Let Z be a
finite subset of Z™. Let C be an k-uniform cover of {1,...,n}. Then we have

1Z1* < Tl=:1(2)].
IeC

For example, if we consider projections onto all canonical m-dimensional
subspaces. There is always one which has at least the expected size: there
exists I C {1,...,n} such that |I| = m and |w;(Z)| > |Z|™/™.
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Lemma 4.29. Let Iy C {1,...,n}. Let Z be a finite subset of Z" and C a

k-uniform cover of {1,...,n}\ Iy with q elements. Then
(4.50) 121797 < w(w,, 2)F [ [Iewrur(2)
IeC

This lemma is a refinement of the uniform cover theorem. Indeed, for Iy = @
we have w(wy,, Z) = |Z|? and we recover the uniform cover theorem from (4.50).

Proof. For all I € C, we have

lwur(Z) = > |w(Znwm @)l
ye€w,(2)

Hence, by Hélder’s inequality,

S Ilwineg el <] Zlm Znwi}( ))I)%—H\wwul 7.

yewr, (Z) I€C IeC IecC

For each y € wy,(Z), we apply the uniform cover theorem (Theorem 4.28) to
the set Z N wl_ol(y) seen as a finite subset of Z{1:nH\lo,

- k - 1
1Znwr W)ls < [[ler(Z nwg w)ls.
IeC

From the two inequalities above, we get

o 1z0% < [[lwnur(2)].
“ Jec

Finally, Holder’s inequality implies

_k 2qg—2k
|Z| = |lwryslzlli < ||wlo*1z||2q "llowr szl "

We finish the proof by putting the last two inequalities together and recalling
that w(wlO,Z)zﬂwlo*lZH%. O

Proof of Proposition 4.27. We use the notations introduced before Proposition 4.27.
By (4.50), we have

|Z|q+1 <w wloa H|w1

If the first statement does not hold. Then we have

1 n—r
w(wy,, Z) > E\ZP"‘ ol
If the second statement fails as well, we can apply Lemma 2.5 with M =
“+ and K’ = K971, The third statement follows immediately. O

Proof of Proposition 4.26. Let (ei,...,e,) denote the standard basis of R™.
First consider the special case where VjJ- is exactly Span(e(;—1)(n—m)+1- -+ €j(n—m))
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for each j =1,...,q. Then we conclude easily form Proposition 4.27 by setting
K =62 and
Z={zeZ"|And-(x+10,1]") # o}.

For the general case we consider amap f € GL(R™) which sends isometrically
V to Span(en—yi1,-.-,e,) and le- to Span(e(;—1)(n—m)+1;- - - » €j(n—m)) for each
j=1,...,q. Tt is easy to see that ||f~!|| <n and

det(f~1)] = de(Vi5,..., V5 V) =de (Vi V).
Therefore f is 6~(9)-bi-Lipschitz.

The conclusion for A follows from the special case applied to fA. Indeed,
by the inequality (2.4) and Lemma 4.18, the hypotheses are satisfied for fA
and f*Vi,..., f+V, with € replaced by O(¢). Moreover, the conclusion for fA
and f1V = fLvin...n fLV, implies that for A and V, again by (2.4) and
Lemma 4.18. O

4.3.5 Projection to intersection of subspaces II: conclud-
ing proof

Once we have Proposition 4.26, to prove Proposition 4.8, we can use Proposi-
tion 4.21 and ideas in Subsection 4.3.2 to rule out the case where A has a very
large slice and then apply the arguments in Subsection 4.3.3 to the dual.

Proof of Proposition 4.8. Let n,m,q,r be as in Proposition 4.8. Assume that
Theorem 4.4 is true for the dimensions n and m’ = r and assume that A and p
are counterexample to Theorem 4.4 for the dimensions n and m with parameters
0<a<n,k>0and e > 0. We begin by making two remarks. Firstly, we can
assume that

(4.51) Ns(A) < 6700,

for otherwise, we could conclude directly by using Proposition 4.21.
Secondly, we can also assume that A does not contain very large slice of
codimension r. More precisely, we can assume that

(4.52) YW € Gr(R",n—r), Yo € R", Nz(AN (x+W©®)) <7200,

Indeed, if (4.52) fails, then put B = my (A N (z+ W(‘s))) and we can apply
Proposition 4.21 to B C W to obtain that £(B) N Gr(W, m) does not support
any measure with the corresponding non-concentration property in Gr(W,m).
We can conclude as in Subsection 4.3.2 by using Lemma 4.23 and Lemma 4.24.

From now on assume (4.51) and (4.52). Let Vi,...,V, be random elements
of Gr(R™, m) independently distributed according to . On account of (4.7), the
non-concentration property (4.3) implies similar property for the distribution of
V-, namely,

Vp > 46, YW € Gr(R",m), P[d (Vi", W) < p| <5 p"

From Lemma 4.25 applied to Vi*, ..., ti’ we know that with probability
at least 1 — (¢ — 1)6"~¢, the intersection V' = V4 N --- NV, has dimension r.
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Let u' be the distribution of V' conditional to this event. Then g’ has the
non-concentration property

Vp >4, YW € Gr(R",n— ), P[d (V,W) < p] <567 99pa,

That is why we can apply Theorem 4.4 combined with Proposition 4.17 to
the set A and the measure p’ with n and m’ = r. We obtain ¢ = ¢/(n, o, k) > 0
such that if € < ¢’ then the probability that there exists A’ C A satisfying

’

N5(A') = 69 N5(A) and Nj(my (4)) < 577

is at most 8¢ + (¢ — 1)6" .

As the conclusion of Theorem 4.4 fails for A, we have u(€(A")) > §¢ for all
subsets A’ C A. Using a similar construction as in the proof of Proposition 4.7,
we prove that with probability at least 6°(9), we have

de(Vih, . Vh) > 690
and there exists A, C A satisfying Ns(A,) > 6%ON;(A) and forall j = 1,...,q,
Ty, (Ag) < —wase,

Therefore, all the hypotheses of Proposition 4.26 are satisfied for the set A,
with O(€) in the place of €. In particular, the assumption (ii) is guaranteed by
(4.1) and (4.51) and the assumption (iv) is guaranteed by (4.52). Hence there
exists a subset A’ C A, such that

N6(A,) > 5O(€)N§(A) and N5(7TV(A/)) < 6_%04—0(6).

This leads to a contradiction when e < Oe(/l). O

4.4 Projection of fractal sets

In this section we derive Corollary 4.2 and Corollary 4.3 from Theorem 4.1.
The ideas of the proof of Corollary 4.2 are contained in that of [7, Theorem
4]. We include the proof here for the sake of completeness.

Proof of Corollary 4.2. Let 0 < m < n, 0 < a <n, k> 0 be parameters. Let
€ > 0 be one fourth of the constant given by Theorem 4.1 applied to these
parameters. Let A and p be a counterexample for the corollary with these
parameters. Without loss of generality we can assume A C B(0,1).
After normalizing ;1 we can suppose that it is a probability measure such
that
Vp >0, VW e Gr(R",n—m), u(Ve(W,p)) <, p".

Thus, the non-concentration condition (4.3) of Theorem 4.1 is satisfied for suf-
ficiently small §.

By Frostman’s lemma (recalled in Theorem 1.1), there is a nonzero Radon
measure v compactly supported on A such that

(4.53) Vp >0, Ve e R", v(B(z,p)) < p* -
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For any V' € Supp(u) we have dimg(my (A4)) < n where n = ™« + 2¢. By the
definition of Hausdorff dimension, for any kg > 1, there is a cover

Wv(A) C U BV,k
E>ko

of 7y (A) such that each By is a union of at most 2¥” balls of radius 27% in V.
Set Ay = w;l(BVJg) for V' € Supp(p) and k > ko. Since the sets Ay,
k > ko, cover A, we have

Z v(Ayg) >, 1.

k>ko

Integrating with respect to du(V) and using Fubini’s theorem, we obtain

Z /V(Av,k)d/,b(‘/) >, 1.

k> ko
This in turn implies that there exists k > ko such that (&) >, k=2 where
E={V € Gr(R",m) | v(Ayyu) >, k2.

Now fix this k and set § = 27% so that Ns(my (Avi)) < 677, Note that as we
can choose kg arbitrarily large, we can make ¢ arbitrarily small.

Here we cannot apply Theorem 4.1 directly to the set A because it might
not be regular enough. The idea is to partition A into regular parts. Let Q
denotes the set of dyadic cubes in R™ of side length 4:

Q={z+[0,6" [z€0d-2"}.

Put L = [%] +1. For I =0,...,L, let A; be the union of all cubes @ € Q such
that
e (A) < v(Q) < v (A).

It is easy to see that A; are disjoint and ZlL:O v(A;) > (1-0%)v(A). Moreover
for any [ = 0,...,L and any A" C A; which is also a union of cubes in Q, we
have

SUHFDENG (AN (A) <, v(A') <4 8N (A ) (A)
Hence, if v(A;) > 0, then for such A’,

vA) _ Ns(A)
V(Al) <<n Ng(Al)

Consider £ ={0 <1< L|v(A;) > 6}, the set of levels with sufficient mass.
For any [ € L, by (4.53),

N&(Al) > 57Q+EV(AI) > 57a+25

v(A’)

(4.54) 5 (4

Ly 07°

and from (4.54) and (4.53), for any p > 0 and any = € R",

Ny(AnB(z.p) - v(Bz.p+ nd))
Ny 0Ty

<<n 5736p06 )

In other words, the assumptions of Theorem 4.1 are satisfied for A;.
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Now for I € Land V € &, let Ay ; be the union of @ € Q such that @ C 4;
and QN Ay, # . From the definition of £ and £, we know that for any V € £

D V(Avgg) > kT = (L+1)5 >, k2

leL
Hence there exists [ € £ such that % >, k~2. Therefore by setting
v(Av,,)

&= {v € Gr(R",m) | =k

>, k*r"},
we have £ = U & . Hence there exists [ € £ such that (&) >, 1 k2.

This contradicts Theorem 4.1 applied to the set A; and the measure p.
Indeed, & C E(A;). Because if V € &, then by (4.54), Ns(Av.k.) > 6> Ns(A;)
and moreover

Ns(my (Av)) < Ns(my (Avg)) <677 O

Now we deduce Corollary 4.3 from Corollary 4.2.

Proof of Corollary 4.3. We can choose a metric on the Grassmannian Gr(R"™, m)
which is invariant under the action of the group O(n). Observe that the excep-
tional set of directions

{V € Gr(R", m) | dimp(my-(A)) <

s|3

a+e}

is measurable for the Borel o-algebra on Gr(R", m). Suppose that the Hausdorff
dimension of the exceptional set is larger than m(n—m)— 1+« for some k. Then
by Frostman’s Lemma there exists a nonzero Radon measure p supported on
this exceptional set such that for all p > 0 and all V € Gr(R™, m), u(B(V, p)) <
pm(n=m)=1+rs  We are going to prove that p satisfies the non-concentration
property forbidden by Corollary 4.2.

We fix W € Gr(R",m) and apply the Lojasiewicz inequality (recalled at
Theorem 3.8) to the analytic function dg(-,W)?: Gr(R",m) — R. We con-
clude that there is a constant C' > 0 such that for any 0 < p < 1, Vo (W, p)
is contained in the p’-neighborhood of the Schubert cell V,(W,0) with p’ =
(Cp)e. By O(n)-invariance, the constant C is in fact uniform for all W &
Gr(R™,n — m). Since the Schubert cell V,(W,0) is a smooth submanifold, we
have N, (Ve (W, 0))) =, p/=™(=m)+1_ Here again, the estimate is uniform in
W thanks to the O(n)-invariance. Therefore,

u(Ve (W, p)) < Ny (Ve (W,0)%))  sup  u(B(V,p')) <n pE.
VeGr(R™,m)

This contradicts Corollary 4.2 if € is sufficiently small and finishes the proof of
Corollary 4.3. 0
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Chapter 5

Product estimates in perfect
Lie groups

This last chapter is a joint work with Nicolas de Saxcé. The aim is to generalize
Saxcé’s discretized product theorem (Theorem 1.7) to perfect Lie groups.

In this chapter, by default, Lie groups and Lie algebras are real. Recall that a
Lie group G is said to be perfect if its Lie algebra g satisfies the condition [g, g] =
g. The radical R of G is the unique maximal normal closed connected solvable
subgroup in G. The Lie algebra of R is the radical v of g. The quotient group
G/R is semisimple. If G is simply connected, then G/R is simply connected,
hence a direct product of simply connected simple Lie groups. Factors appearing
in this direct product are called simple factors of the group G.

Theorem 5.1 (Product theorem for perfect Lie groups). Let G be a simply-
connected perfect Lie group. There is a neighborhood U of the identity in G such
that the following holds. Given o < dim(G) and k > 0, there exists € > 0 such
that for all § > 0 sufficiently small, if a subset A C U satisfies

(i) N5(A) <6777

(ii) for any simple factor S of G, denote by 7g: G — S the canonical projec-
tion,
Vp =8, Ny(rs(A) = 5"

(iii) for any proper closed connected subgroup H < G, there exists a € A with
d(a,H) > 0%

then Ng(AS) > 576./\[5(14).

For G = SU(d), d > 2, this is due to Bourgain-Gamburd [9, 11]. For simple
groups, it is due to Saxcé [24].

Definition. A subset A satisfying condition (iii) will be said to be §¢-away from
closed connected subgroups.

As an intermediate result, we have a sum-product type estimate for repre-
sentations of Lie groups which is interesting on its own right. Throughout this
chapter, all linear representations are finite-dimensional and over the field of
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real numbers. They all come with a norm. Constants in our results depend not
only on the algebraic structure but also on the choice of the norm. However,
since all norms on a finite-dimensional linear space are all equivalent, if we have
the result for one norm, we have it for any norm at a loss of a constant factor.
In particular, we can always assume that the norm is Euclidean.

Let V' be a representation of G. Let A a subset of G and X a bounded
subset of V. For s > 1, recall that (A4, X), stands for the set of elements in V
that can be obtained as sums, differences and products of at most s elements of
A and X.

Definition. For p > 0, we say X is p-away from submodules if for any proper
submodule W < V| there is « € X such that d(xz, W) > p.

Theorem 5.2 (Sum-product estimates in representations). Let G be a Lie group
and V' finite-dimensional linear representation of G. There exists a neighborhood
U of the identity in G depending only on V' such that the following holds. Given
€0, k > 0, there exists s > 1 and € > 0 such that for all 6 > 0 sufficiently small,
if ACU and X C By(0,1) satisfy the following :

(i) There is a Jordan-Hélder sequence 0 = Vo < ... < Vi =V such that for
everyt=1,...,1

Vp >0, Ny(my, v, ,(A)) > dp "

where my, v, + G — GL(V;/V;_1) denotes the representation of G on
Vi/Vie1.
(ii) A is §¢-away from closed connected subgroups.

(iii) X is 6¢-away from submodules.

Then,
Bv(o, (560) C <A7X>S + Bv(o, (5)

In particular, considering R* acting on R, we can recover Bourgain’s dis-
cretized sum-product theorem (Theorem 1.4). Similarly, we can recover dis-
cretized sum-product estimates for C or H.

5.0.1 Outline of the proof

The proof of Theorem 5.1 goes as follows. In view of Lemma 2.13, we can
investigate the growth of (AU {1} U A~1)*, s > 1. The strategy is to prove that
after a bounded number of steps (depending on €), it becomes d-dense in a ball
of radius 6, for any prescribed ¢y > 0.

Theorem 5.3. Let G be a simply connected perfect Lie group. There exists a
neighborhood U of the identity in G such that the following holds. Given k > 0
and eg > 0, there exists € > 0 and s > 1 such that for all 6 > 0 sufficiently
small, if A is a subset of U such that

(i) for any simple factor S; of G denote by wg,: G — S; the projection,

Vp >4, Ny(ms,(A)) >dp";
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(ii) A is §¢-away from closed connected subgroups;

then
Bg(1,6%) Cc (AU{1}U A H*Bg(1,96).

This statement immediately implies Theorem 5.1, just like Theorem 3.4 im-
plies Theorem 3.1 in the sum-product setting.

The first step of the proof of Theorem 5.3 is to reduce to the case where the
radical of GG is abelian. In this reduction, we exploit the elementary algebraic
fact that if R is a nilpotent group and R; the last nontrivial term in its lower
central series and if H < G is a subgroup whose image under the projection
R/R; is full then H = G. For the special case we use the Theorem 5.2 to
show growth of log A C g under addition and action of A through the adjoint
representation. To get back inside G, we use Campbell-Hausdorff formula to
show that we can approximate sums in g by products in G.

The proof of Theorem 5.2 is by induction on the length of the Jordan-
Holder sequence. The base case where V' is an irreducible representation is
a variant of Theorem 3.2. The induction step exploits the fact that X is §¢-
away from submodules hence generates V as G-module. We use systematically
the Lojasiewicz inequality (recalled at Theorem 3.8) to extract quantitative
estimates from algebraic facts.

5.1 Sum-product estimates in representations

In this section, we introduce a class of representations called P(G), show some
basic properties of these representations and then prove Theorem 5.2.

5.1.1 Representations without trivial simple quotients

Definition. Let G be a connected Lie group. A representation V' is said to be
of class P(G) if there exists a sequence 0 = Vo < V; < ... < V; =V of subrep-
resentations of V' such that, for each ¢ = 1,...,[, the quotient representation
V;/Vi—1 is nontrivial and irreducible.

Equivalently, V' is in P(G) if the trivial representation does not appear as
a simple quotient in a Jordan-Hdélder decomposition of V. This property, of
course, does not depend on the choice of the Jordan-Holder decomposition. We
now list some elementary properties of representations in P(G).

Proposition 5.4. Let V be a representation of a connected Lie group G.

(i) (Subrepresentations and quotients representations) If W a subrepresenta-
tion of V, then V belongs to P(G) if and only if both W and V/W belong
to P(G).

(i1) If H is a closed subgroup of G and V € P(H) as a representation of H,
then V € P(G).

(iii) Let H be a normal subgroup of G. If the representation G — GL(V)
factors through G/H, then V € P(G/H) as a representation of G/H if
and only if V € P(G) as a representation of G.
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Proof. Indeed, (i) follows from the fact that the set of simple quotients of the
Jordan-Holder decomposition of V' is the union of those of W and V/W. For
(ii), note that a Jordan-Holder sequence of G-submodules in V' can be refined
to a Jordan-Holder sequence of H-submodules, and that if there is a trivial
quotient in the first sequence there must be also one in the refined sequence.
Finally, (iii) is clear, since Jordan-Ho6lder decompositions of V' into G-modules
coincide with Jordan-Holder decompositions into G/H-modules. O

Remark. The class P(G) is the smallest class of finite-dimensional representa-
tions of G containing all non-trivial irreducible representation of G is in P(G)
and such that if W and V’ are in P(G), and 0 - W —V — V’/ — 0 is a short
exact sequence of G-modules, then V is in P(G).

Example. e If a representation V' contains the trivial representation, then
it is not in P(G). Similarly, if V' admits the trivial representation as a
quotient, then it is not in P(G).

e The representation of G = R on R" given by g-v = gv (scalar multipli-
cation) is in P(G).

e The adjoint representation of a semisimple Lie group G is in P(G).
e Condition (i) of Theorem 5.2 implies V' € P(G).

Whenever V' is a normed vector space, we endow the space of linear endo-
morphisms End(V') with the associated operator norm. Moreover, the norm on
V induces a norm on each submodule W. There is also a natural norm on each
quotient V' = V/W | given by the formula

Yo eV, ||r(v)|| = d(v, W),

where m: V' — V' is the canonical projection. Throughout this chapter, quo-
tients will be equipped with this norm.

For example, with this convention, it is easy to see that if 7: V — V' is a
quotient map then 7(X) is p-away from submodules in V' whenever X is p-away
from submodules in V.

The proof of Theorem 5.2 goes by induction on the length of the Jordan-
Holder decomposition of V. We shall prove the base case, where V' is a nontrivial
irreducible representation, in the next subsection. The induction step will then
be carried out in subsection 5.1.3.

5.1.2 Irreducible representations

In the case V is an irreducible representation of G, Theorem 5.2 is a variant of
Theorem 3.2. We state it and prove it here for completeness.

Theorem 5.5 (Base case: irreducible representations). Let G be a Lie group
and m: G — GL(V) an irreducible representation. There is a neighborhood U of
the identity in G such that the following holds. Given e,k > 0, there exist s > 1
and € > 0 such that for all 6 > 0 sufficiently small, if A C U and X C By(0,1)
satisfy

(i) For all p > 6, N,(m(A)) > 6p~";
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(ii) A is §¢-away from closed connected subgroups;
(i1i) There ezists v € X such that ||v|| > 6¢;

then
Bv(o, 5€O> C <A7X>S + Bv(o, (5)

Observe that condition (i) implies that the representation V' is non-trivial.

Recall that we say a subset A C End(V) acts p-irreducibly on V for some
p > 0 if for any proper linear subspace W C V, there is a € A, w € By (0,1)
such that d(aw, W) > p.

Proposition 5.6. Let V' be a finite-dimensional normed vector space. Given
€0,k > 0, there exist s > 1 and € > 0 such that for all 6 > 0 sufficiently small,
if A C Bgha(v)(0,07°) and v € V satisfy

(i) for any p > 6, N,(A) > 6p™";
(ii) A acts §¢-irreducibly on V;
(iii) 6° < |[jvl| <67

then
Bv(o, 5€O> C <A>S -v A+ Bv(O,(S)

In the following proof, we use the notations in Chapter 3 : if K is a division
algebra over R then End(K™) denotes the space of real endomorphisms of K™
and M, (K) denotes the space of n x n matrices with coefficients in K. Further-
more, we identify M, (K) with the subspace of End(K") consisting of K-linear
maps.

Proof. Given ¢; > 0, it follows from Proposition 3.25 that there exists ¢ > 0
such that, provided e > 0 is small enough, there exists a 6~ °(€)-bi-Lipschitz
linear bijection f: V — K™, where K is R, C or the quaternions H, n is 3;2}?
and K™ is endowed with its usual L? norm, and a scale §; with § < §; < §¢
such that

A~ € My (K) + Bgnaxm (0,61)
and for every proper subalgebra F' < M,,(K),

Jac A: d(faf™' F) > 5.

Choosing €; small enough in terms of ¢y and x, we may then apply Theorem 3.4
to conclude that, provided € > 0 is sufficiently small, then for some integer s,

B, (1)(0,65°) C f(A)sf ™" + Brnacrn) (0, 01).
Therefore, without loss of generality, we may assume that V' = K™ and
(5.1) B, (k)(0,01°) C A+ Bgnav)(0,61).
We can further assume that ||v|| = 1. Then

By (0,60) C A-v+By(0,5,).
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In other words, the conclusion of the proposition holds at scale §;. It remains
to bring the scale back to 6. To do this, we note that from (5.1), we have in
particular

1
512 ide A + BEnd(V) (0, (51)

1
Hence, starting from (5.1), we may multiply both sides by §7 id to obtain

ot L 3
By (0,81) C By (0,87° %) C (A)s - v+ By(0,257),

and iterating this procedure, we get, for all £ > 2, for some integers s, depending
on k,

& Bt1
Bv(o, Sk512) C <A>S -V + Bv(O, Sk+1(51 2 )
2

c

for some integers kK > 0 and s > 1. Choosing k& >
inclusions, we find, for s = s1 + - - + s,

and combining all these

By (0,67°) C (A)s - v+ By(0,9),
which proves the proposition. O
The above proposition readily implies Theorem 5.5.

Proof of Theorem 5.5. It suffices to apply Proposition 5.6 to the set m(A) C
End(V). By assumption on A, conditions (i) and (iii) of the proposition are
satisfied for the set m(A). That condition (ii) is also satisfied is a consequence
of Lemma 5.7 below. O

Lemma 5.7. Let 0 < p < % be a parameter. Let m: G — GL(V) be a nontrivial
irreducible representation. There is a neighborhood U of 1 in G such that if A C
U is p-away from closed connected subgroups then w(A) acts pO~™M) -irreducibly
onV.

The proof of this lemma is an application of Lojasiewicz’s inequality, but
first, it is convenient to reduce to the case where A is finite. For that, we use
another lemma. Let 7: G — GL(V) be a representation and 0 < p < % a
parameter. We say that a subset A C G is p-away from proper stabilizers if for
any linear subspace W of V' which is not a G-submodule there exists an element

a in A whose distance to the stabilizer of W, i.e.,
Stabg(W)={geG|g-W C W}
is at least p.

Lemma 5.8. Let 0 < p < 3 be a parameter. Let 7: G — GL(V) be a repre-
sentation. There is a neighborhood U of 1 in G such that if A C U is p-away
from closed connected subgroups then A contains a subset of cardinality at most
dim G which is pO~)-away from proper stabilizers.

Here by O,(1) we mean a constant depending on the algebraic structure of
G and 7 and the distance on G.

Remark. Note that in this lemma, the neighborhood U depends on the rep-
resentation m, and not only on G. This is readily seen by considering G = R,
V =C ~R? and 7(z)v = €"®v where n is some integer.
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Proof. The representation 7 differentiates to a representation of the Lie algebra
g of G, which we denote by Tim: g — End(V). Then the stabilizer of W in g,

Stabg(W) ={zx € g | fim(x)W C W}

is the Lie algebra of Stabg(W). In particular, its image under the exponential
map exp is contained in Stabg(W)°, the identity component of Stabg(W).

We may assume that exp induces a diffeomorphism from U to its image,
and denote the inverse map by log. We say that log(A) is p-away from proper
stabilizers in g if for any linear subspace W < V which is not a G-submodule,
there exists a € A such that d(log(a),Stabg(W)) > p. The argument in [24,
Lemma 2.5] shows that if log(A) is p-away from proper stabilizers then log(A)
contains a subset of cardinality at most dimg which is p@dm@ M away from
stabilizers.

We claim that there is a neighborhood U of 1 in G such that if A C U is p-
away from identity components of proper stabilizers then log(A) is Z-away from
proper stabilizers in g and conversely if log(A) is p-away from proper stabilizers
then A is &-away from proper stabilizers. This finishes the proof of the lemma.

Let us prove this claim. Indeed, from the identity 7(exp(x)) = ™) we
can express Ti7(x) as an absolutely convergent series

Tim(z) = — Z %(idv —m(exp()))"
n>1

whenever ||7(exp(z)) —idy || < 1. It follows that there is > 0 depending only
on 7 such that
Stabg (W) N Bg(1,r) C exp(Stabg(W)).

Let U = Bg(1, 5). Then for any g € U and any proper linear subspace W,

1

¢ 4(g,Staba(W)?) < d(log(g), Staby (W) < Cd(g, Stabe(W))
where C > 0 is some constant depending only on the the representation. This
finishes the proof of the claim. O

Proof of Lemma 5.7. Let U be the neighborhood given by Lemma 5.8. On
account of this lemma we can assume that A is finite of cardinality n < dim G
and p-away from proper stabilizers. Let 0 < k < dim(V). Consider the analytic
map f: G" x Gr(V, k) — R defined by

n

f(gl7---7gn§W):Z/ d(gi - w,W)? dw.

i=1"Bw(0,1)

The zero set of f is exactly
Z ={(g,W) € G" x Gr(V, k) | Vi, g; € Stabg(W)}.

By Lojasiewicz inequality (Theorem 3.8) applied to U™ x Gr(V, k), there is a
constant C' > 0 depending only on 7 such that for any (g, W) € U™ x Gr(V, k),

1

S 1 c
- C

f(g. W) d((g, W), 2)
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Assuming that 7(A) does not act %pc—irreducibly on V, we can find W €
Gr(V, k) such that for all a € A and all w € By (0,1), m(a)w € W+By (0, &p%).
Then it follows from the inequality above that there exists W’ € Gr(V, k) such
that for all a € A, d(a,Stabg(W’)) < p, so that A is not p-away from proper
stabilizers. O

5.1.3 Induction step

The core of the induction step in the proof of Theorem 5.2 is the following
lemma.

Lemma 5.9. Let G be a Lie group acting on a finite-dimensional normed vector
space V. There exists a neighborhood U of the identity in G and a constant
C > 1 such that for any parameters 6, p1, ps with 0 < § < p; < p3 < 1, the
following holds when py is sufficiently small.

Let m: V — V' be a quotient morphism of G-submodules with kernel Vi < V.
Let AC U and X C By (0,1) and assume that

(i) (4, X)s " C By (0, 1),
(”) BV’ (Oap2) - 7T(X),
(iii) A is plé -away from closed connected subgroups.

Then there exists a submodule W <V supplementary to Vi such that

5.2 the restriction myw : W — V' is 3p5 2-bi-Lipschitz
\ 2

1 & L
(5.3) By (0, §p2) c X®) and X N Vl(pz) c W),

Proof. On account of Lemma 5.8, we may assume that A is finite of cardinal
1
n < dim(G) and is p{ -away from proper stabilizers. Shrinking again the neigh-
borhood U if necessary, we can further assume that the action on V of any
element in A is 2-bi-Lipschitz.
Let o : By/(0,p2) — X be a section of the projection 7, i.e. for any y €

By (0, p2), »
roo(y) =y.

Let x € X N Vl(p2), Y,z € By/(0,p2) and a € A. The assumption (i) yields
[z = o(m ()] < pu;
le()ll < pr if y € By(0,0);
lo(y) +o(2) —o(y+2)| <p1 ify+zeBv(0,p2);
la-o(y) —o(a-y)ll<p1 ifa-yeBy/(0p2).
because we have respectively x — o(n(z)) € (X — X)NVy, o(y) € X N 1/1(5),
oy)+o(z)—o(y+z)ed3XNVianda-o(y) —o(a-y) € (A- X - X)N V.

It follows from Lemma 5.10 that there exists a linear section ¢ : V' — V of
7 (i.e. mo @ =1Idy/) such that for all y € By-(0, p2),

lo(y) — o(y)l| < (—logd)ps.
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The properties of o imply the following properties for ¢. For all y € V'’ and all
a € A,

Iyl < le@)ll < 203 lIyll;
1 .
la-e(y) —pla -yl <pi ify, a-ye By (0,p2)

Let Wy be the image subspace of . From the above, it follows that

(5.4) the restriction myy, : Wo — V' is 2p5 2-bi-Lipschitz;
1

(5.5) XNV c Wy + By (0,p?);
1

(56) BWO(OﬂpZ) cX +BV(Oap12)a

(5.7) Ya € A, Yw € By, (0,1), d(a-w,Wo)? <4p1py? < 4p1%.

Let aq,...,a, be the elements of A and write a = (aq,...,a,). Consider the
analytic function defined on G*™ x Gr(V,dim(V")) defined by

i=1"B

W(O’l)

By (5.7), we have f(a,Wp) < pl%. By Lojasiewicz’s inequality (Theorem 3.8)
applied to the compact set U*¢ x Gr(V,dim(V")), there exists a constant C
depending only on the representation V' such that for all g = (g1,...,9,) € U*"
and W e Gr(V,dim(V")),

f(&W) > £d((g W), 2)°.

where Z is the zero set of f. Therefore there exists b = (b1,...,b,) and

W e Gr(V,dim(V')) such that f(b,W) = 0 and d((a, Wo), (b,W)) < pZ.
The equality f(b,W) = 0 exactly means that each b; belongs to the stabilizer
Stabg (W), and hence

1
A C Stabg (W)
But A is plé -away from proper stabilizers, hence W must be a G-submodule.
Finally, conclusions (5.2) and (5.3) follow from (5.4), (5.5), (5.6) and the fact
1
that W is p{’ -close to Wy. O
In the above proof, we made use of the following elementary lemma, a dis-

cretized version of the fact that any continuous additive map between two vector
spaces is automatically linear.

Lemma 5.10 (Almost additive maps). Let 0 < § < p; < pa < 1 be parameters.
Let V' and V be finite dimensional normed vector spaces. If o: By:(0,p2) =V
satisfies
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(i) o(By:(0,48)) C By (0, p1) and
(ii) for all x,y € By (0, p2), if © +y € By/(0, p2) then
o(x)+o(y) —o(z+y) € By(0,p1).
Then there is a linear map p: V' — V such that for all x € By (0, p2),
lo(z) = ()| <v' (—logd +1)p1.

Proof. Rescaling by a factor p; Lin V’, we can suppose without loss of generality
that po = 1.

We first consider the special case where V' = R. In this case define : R — V
to be the unique linear map such that ¢(1) = o(1). From the assumption (ii),
it follows that

1
Vel 5) [120() - o(22)] < 1.
Using this and a simple induction, we prove that
(5.8) vneN, |o27") =27 < p1.

Let N be the integer such that 2= < § < 2=N+1 It follows from (5.8) and the
assumption (i) that

(5.9) le2 ™) < 201

For any z € [0,1], let (z1,...,zn) € {0,1}" be the N first digits in its bi-
nary expansion, i.e. for some r € [0,4], x = 211:[:1 2™ ™ 4+ r. Then by the
assumption (ii), (5.8) and (5.9),

N
lo(@) = @)l <Y zallo@™) =@M + o) + 2Vr o2 + Npx
n=1
< (2N +5)p1.
Consequently,

[o(=z) — o(—2)|| < |lp(z) —o(@)|| + [[o(—2) + o(z) — a(0)[| + [lo(0) ]
< (2N +7)p1.

This finishes the proof for the special case. For general normed vector space
V', pick a basis (ug,...,uq) consisting of vectors of unit length then apply the
special case to each partial function ¢ — o(tu;), ¢ = 1,...,d. Then by (ii),
we have the desired inequality for any vector in By/(0,1) N ([—1,1]us + -+ +
[~1,1]uq). This domain contains a ball By~ (0, ) where k € N depends only
on V' and the choice of the basis. We conclude by using k times the almost
additivity (ii). O

We can now prove Theorem 5.2.

Proof of Theorem 5.2. The proof goes by induction on the length [ of the Jordan-
Holder decomposition of V. The base case | = 1, where V is a nontrivial
irreducible representation, corresponds to Theorem 5.5, and is proved above.
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Assume that the result holds for all representations of length less than [ > 2,
let V€ P(G) be a representation of length [, and suppose A C G and X C V
satisfy conditions (i)-(iii) of the theorem, for some small € > 0, to be specified
later. Let 0 = Vy < ... < V; = V be the Jordan-Hdélder sequence given by
assumption (i). Write V' = V/V; and denote by w: V' — V' the projection.
Then the module V' has length I —1 and conditions (i) and (iii) are satisfied for
A acting on m(X) C V.

Note that it suffices to show that for some constant C' > 0, (4, X), is C6-

dense in By (0,°) because we can repeat the argument at the smaller scale

%. Consequently, we can replace X by (A, X >§5) at any moment in the proof

as long as s is a constant which depends only on the representation V' and the
parameters ¢y and k.

In what follows, we will use two methods to prove a subset is away from
submodules. First, if X is p-away from submodules then its projections to any
quotient module is also p-away from submodules. Secondly, if X C By (0,1)
satisfies Ns(X) > 6~ 4m(V)+e then X is §9(9)-away from submodules.

First step: We first prove that there exists ¢; > 0 and s; > 1 depending on V,
€0 and x such that

BV’ (0, (560) - 7T(<A,X>51 n BV(O, 661)) + BV’ (0,6)

Let ¢ > 0 be a small parameter, whose precise value will be specified at the
end of this step. By applying the induction hypothesis to V', whose length is
at most [ — 1 and replacing X by (A4, X),, we can suppose that By (0,5) C
(X)), Cover X with §~°() balls of radius 6!, pick a ball B such that
Ns(m(BN X)) is maximal and translate it back to the origin to get

Ni(m(X7)) > 5~ (V0%

with X’ = (X — X) N By (0,6). This lower size bound ensures that 7(X')
is 09(¢1)_away from proper linear subspaces in V’. The induction hypothesis,
applied to the subset 7(X’) C V', with acting set A, yields the desired inclusion
provided that €; is small enough.

Second step: Assuming X () NV} contains a large vector.

Let s2,€e2 > 0 be the quantities given by Theorem 5.5 applied to the repre-
sentation Vi, with constants r,e;, and assume that there exists v € X N1
with [Jv]| > d°2. Then, using the base case for the action of G on the irreducible
module Vi, we find that

(5.10) By, (0,0) C (A, X)), + By (0,6).

Recalling the inclusion obtained in the first step and setting s = s1 + Og, (s2),
we find
BV((): 560) - <A7 X>S + BV(Oa 081782 (6))

This finishes the proof of the theorem in this case.
Third step: Finally, we prove that there exists s3 > 1 depending on V', ¢, and

 such that (A, X >§§> N V1 contains a vector of length at least §°2, which allows
to conclude by using the second step.

Let 0 < e3 < iez be a parameter whose value will be chosen later according
to e2. Let 0 < €4 < €3 be a parameter whose value will be chosen later according
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to e3. Using the induction hypothesis for the representation V' with €4 and x,
we obtain
By (0,0) € m((A, X)),

where s > 1 is a constant depending only on V', ¢4 and k. Replacing (A, X >§‘”
by X, we may assume without loss of generality that

By (0,5) C w(X).

Lemma 5.9 applied with p; = §2 and ps = §°4 gives a submodule W < V such
that my is 30~ “-bi-Lipschitz and

o()

(5.11) By (0,6, ') c X0

where §; = §¢. We want to apply base case Theorem 5.5 to the nontrivial
irreducible representation V/W at scale 0; with ez and x. Observe that 7y
being 36~ “¢-bi-Lipschitz implies that my v, : Vi — V/W is 40~ “4-bi-Lipschitz.
Hence

Vo 28, Ny(myw(A)) 2 62N, (my; (A)).

Therefore when ¢4 and € are small enough (according to V1, €3 and k),

By,w(0,07°) C myyw ({4, X)s) +Byyw(0,01),

where s > 1 is a constant depending only on Vi, e3 and x. Together with
inclusion (5.11), this implies that

—dimV4+0(22)
N, ({4, X)s11) = 6y e

Cutting (A, X)sy1 into cylinders of axis V5 and diameter 6% and picking the
part with largest size, we see that

e —dim V+O(%)
N, (A, X)aera N VL)) > 6, :

e o(
which ensures that (A, X)25+2ﬁ1/1(5 ) is 5 (&) _ §9(s)_away from submodules.
Applying the induction hypothesis to A acting on 7(X) C V', we know that

By/(0,6%) C ({4, X)O),

where s’ > 1is a constant depending only on V', €5 and x. Let s” = max{s’,2s+

2} and set X' = (A4, X)s/ N Vl(‘sgg) so that X' is §9(¢3)-away from submodules
and
BV/(O7 563) - W(X/(é)).
At this stage apply Lemma 5.9 to the set X’(9) with p; = §° and py = §. If
€3 is chosen sufficiently small compared to ez, conclusion (5.3) fails. Therefore
there must be v € (4, X')3 N 1/1(6) with |Jv|| > d<.
This proves that (A, X(®)5., N Vl(é) contains a vector of length at least §°2.

If we did this argument at scale 546 with C a large constant depending on s”, we
would get the claim of the third step. This finishes the proof of the theorem. [
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5.2 Product theorem for perfect Lie groups

In this section we prove Theorem 5.3.
Here, we adhere to the convention that the metric d on G is left-invariant
and on any quotient G/N, the distance is defined by z,y € G,

d(z,5) = inf d(xzn,yn’) =d(y,zN) = d(z" 'y, N).
n,n’'€N
In particular the metric on G/N is left invariant and moreover if N’ is another
normal closed subgroup of G such that N’ < N then the canonical projection
G/N' — G/N is 1-Lipschitz.
Unless the contrary is stated, throughout this section, G denotes a simply
connected perfect Lie group and g its Lie algebra. Moreover R denotes the
radical of G and v the radical of g.

5.2.1 Perfect Lie algebras and Lie groups

We will list some elementary and standard facts about perfect Lie groups and
Lie algebras.

First, recall that v is nilpotent since g is perfect, see e.g. [2, Lemma 2.4].
Let s be a Levi factor of g, i.e. a Lie subalgebra s such that g = s X t, see
e.g. [54, Corollary 1, p. 49]. Note that the group theoretic Levi decomposition
holds for G, i.e. there is a closed connected subgroup S of Lie algebra s such
that G = S x R, because since G/R is simply connected, a section of g — g/t
integrates to a section of G — G/R (cf. [54, Theorem 1, p. 152]).

Lemma 5.11. The image of a proper ideal of g under the map g — g/t is a
proper ideal. In particular, the image of a mazimal proper ideal is a mazximal
proper ideal.

Recall also that ideals in a semisimple Lie algebra are sums of its simple
factors. Hence a maximal ideal is a sum of all simple factors except one.

Proof. Suppose the contrary, then n+v = g for some proper ideal n < g. Denote
by D't, i > 0 the derived series of t, i.e. D®t = tand D" ¢ = [D¢; D' ¢], Vi > 0.
We show by induction that Vi > 0,

(5.12) g=n+D'r,

which is impossible since t is solvable and n is proper. Indeed, (5.12) is true for
i = 0. Suppose that it is true for some 7 > 0 then from [g, g] = g follows that

g=[n,n+[nD't]+ [D'r,D't] C n+ Dy,

since n is an ideal. This is exactly (5.12) for ¢ 4+ 1 and finishes the proof of the
lemma. O

Lemma 5.12 (Perfect abelian extension of a semisimple group). If v is abelian,
then the adjoint representation of G is of class P.

Remark. If G is not perfect, then g/[g, g] is non-zero, and G acts trivially on
d/[g, g], so that the adjoint representation does not belong to P(G).
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Proof of Lemma 5.12. We have an exact sequence of G-modules
0—ot—g—g/t—0,

and by Proposition 5.4(i), all we need to check is that both v and g/t belong to
P(Q).

On the one hand, the representation G — GL(g/t) factors through G/R and
the adjoint representation of the semisimple group G/R belongs to P(G/R). By
Proposition 5.4(iii) , g/t is of class P as a representation of G.

On the other hand, v is totally reducible under the action of the semisimple
group S, and moreover,

t=s,1],

because g is perfect and v abelian. This implies that v is a representation of
class P for S, and therefore for G by Proposition 5.4(ii). O

Remark. It is not true in general that the adjoint representation of a perfect
connected Lie group is of class P; indeed, there exist perfect Lie algebras with
nontrivial centers. For instance, let G = SL(2,R) x F3 5, where Fpo is the
free 2-nilpotent Lie algebra over 2 generators x,y, and the action of SL(2,R)
is by linear substitution. The adjoint representation of G on its Lie algebra
g = sl(2,R) x Fa 2 is not of class P, because G acts trivially on the center of g,
generated by [x,y].

5.2.2 Abelian extensions of semisimple groups

Here, we prove Theorem 5.3 in the case where the radical ¢ is abelian. In some
sense, this is the most important case of the result, as we will see in 5.2.3 that
the general case follows from this one.

To prove Theorem 5.3 in this case, the idea is to apply Theorem 5.2 to the
adjoint representation of G on its Lie algebra, and then to use the Campbell-
Hausdorff formula. Before that, we note that condition (i) in Theorem 5.3
automatically implies non-concentration for the image of A under any non-
trivial group homomorphism.

Lemma 5.13. Let H be another Lie group. Let ¢: G — H be a nonitrivial
homomorphism. There exists a neighborhood U of the identity in G such that
the following holds. Let € > 0 and xk > 0 be parameters and let A C U be a
subset satisfying condition (i) of Theorem 5.8. Then

Vp >0, Ny(p(A) >, d6p "

Proof. The isomorphism G/ker¢ — (@) is bi-Lipschitz when restricted to
compact neighborhoods. Hence without loss of generality, we can suppose that
H = G/kery. Since kery is closed, there exists a neighborhood U of the
identity in G, such that Va,vy, d(z 1y, ker ) = d(x 1y, (ker ¢)°). This allows
us to further assume that ker ¢ is connected.

Let n be a maximal proper ideal of g containing the Lie algebra of ker .
By [54, Theorem 4, p. 154], n is the Lie algebra of a normal closed connected
subgroup N < G. This subgroup N contains ker ¢. By Lemma 5.11, n is exactly
the kernel of the projection of g to one of the simple factors of g/v. It follows
that G/N is one of the simple factors of G. We deduce the desired estimate
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from condition (i) of Theorem 5.3 by using the fact that G/kerp — G/N is
1-Lipschitz. ]

Proof of Theorem 5.3, case where t is abelian. We start by the case where the
radical ¢ of g is abelian. In this proof, implied constants in Landau and Vino-
gradov notations depend G and the parameter k.

By Lemma 5.12, the adjoint representation of G on g is of class P. We
would like to apply Theorem 5.2 to A and X = log(AA~! N Bg(1,69)). The
hypotheses of Theorem 5.2 are all met with e replaced by O(e) : assumption (i)
is guaranteed by Lemma 5.13; A being a J°-away from subgroups is exactly
assumption (ii) of Theorem 5.3.

It remains to check that X is 6°(9-away from any proper submodule W in
g. We can assume W maximal. Hence it is a maximal proper ideal of g, which
by Lemma 5.11 is the Lie algebra of ker mg, where .S; is a simple factor of G. In
particular, there are only finitely many such W. Shrinking the neighborhood
U if necessary, it suffices to check that AA~' N Bg(1,6¢) is 6°(9-away from
ker 7g,. By assumption (i), for any p > ¢,

N, (7Ts,i (AA_l NBg(1, (56))) > mgaXNP (ﬂ'si (AN Bg(g, 56)))

> 59N, (s, (4))
> 6O(€)p7h}'

The last quantity is larger than 1 if we choose p = §°¢ with a large C' = O(1).
This shows that AA~' N Bg(1,5¢) is 6°(9)-away from ker 7g, .
That is why we can use Theorem 5.2 to get an integer s > 1 such that

(5.13) B, (0,0) C (A, X), + By(0,4)

when € is small enough.

The idea is now to apply the Campbell-Hausdorff formula at an order [ such
that the error term is of size at most 6. We identify an element of the free group
F generated by s elements and the word map G*® — G it induces. If z,y are
elements in g, we want to approximate e*™¥ by a word in €%, e¥. For example,
with a remainder term of order 2, e®*¥ = ezeveOUllP+IyI®) | In order to get
a remainder term of order 3, it is esasier to approximate e**+%) and then,
we get e2(TTY) = (e7)2(e¥)2(e¥)2e” (e¥) ~2(e®) ~LeOUI*+1vI®) | We shall use the
following lemma, which generalizes these elementary computations, and follows
from the Campbell-Hausdorff formula.

Lemma 5.14. Let exp: g — G denote the exponential map of a Lie group. We
fix a norm on g and a distance on G. For all integers s > 1 and [ > 1, there
exists an integer C > 1, a word map w € Fs and a neighborhood U of 0 in g
such that for all x1,...,z5s € U,

d(exp(C:rl + -+ Cxay),w(expxy,. .. 7expncs)) < (JJlza ]|+ -+ ||335H)l
This lemma is a metric analogue of [1, Lemma 3.5] and the proofs are similar.

Proof. Consider g-valued functions f defined on a neighborhood of 0 in g** that
can be written as a sum of a convergent series

+oo
fanoa) =Y fulan,. . x)
k=1
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where for each k, fr(x1,...,25) is a Q-linear combination of repeated brackets
[y -y @i] = [Tiys [Tigs - [Ti_y, 23, ]]] Of length k. The series converges on
Bg(0,7)** for some r > 0 in the sense that the numerical series obtained by
replacing each repeated bracket of length k by ¥ and each coefficient by its
absolute value is convergent. Identifying two such functions if they agree on a
neighborhood of 0, we get a linear space G; over Q. Equipped with its obvious
Lie bracket, G, is a graded Lie algebra over Q. For I > 1, we write O(d® > 1) to
denote an unspecified element in G, of valuation at least [.

By the Baker-Campbell-Hausdorff formula (cf. [26]), the map defined by
(z,y) — x xy = log(exp(z) exp(y)) belongs to G, and moreover,

1
(5.14) rxy =z +y+ eyl +0(d 2 3).

From that we deduce, by an induction on s, that
(515) xl**l-s:xl_’__’_xs_’_o(dOZQ)

We denote by [z, y]. the group commutator x*y*(—z)*(—y) and by [x1,..., T«
the repeated group commutator [z1, [ ..., [Zs—1,%s)«)«]«. We have by (5.14),

[z, Y]« = [z,y] + O(d° > 3)
and again by an induction on s,
(5.16) @1y, Tsle = [21, ..., 2] +O(d° > s+ 1).

Now we prove by an induction [, that there exists an integer C; and a word
w; € Fy such that

Tq Ts
5.17 s=w (=,...,—
(5.17) T4+ xe =wf( G G
where wy is the word map induced by w; which is well-defined on a neighborhood
of 0 in g**. For [ = 2, this is given by (5.15). Suppose it is true for I and we
will prove it for [ 4+ 1. Let f be the sums of terms of degree [ in the R>; on the
right-hand side of (5.17). Since f has rational coefficients, there is an integer
C > 1 such that we can write

) +0d° > 1),

N
f('rlv"'vws): mz(ﬁva&)
ZZ:; C C

where each m; is a repeated bracket of length . Hence by (5.16) and (5.15),
there is w’ € Fy a product of repeated commutators such that

Fxn,. .. xs) :w’*(%,...,%) L O > 1+ 1).
Hence
% (L1 Zs 1 L1 Ts o
.= = .= — ., =)+ 0d >1l+1
r+-tw wl(Cg Cz)+w (5 o) TO( +1)
(L1 Zs e (L1 Ls o
= e, — — e, =)+ 0 >1+1).
wl(cla ’Cl)*w (Ca 7C)+ ( - + )
In the last step we used the fact that w’*(%, ce %) has valuation at least
[. This finishes the proof of the induction step and concludes the proof of the
lemma. O
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We choose [ > % and apply the lemma to z; of the form z; = Ad(a;)y; with
a; € A® and y; € X. By definition X C By(0,6¢), so the error term is indeed of
size O,(6'¢) = O(9), and therefore,

exp[C Ad(a1)y; + - + C Ad(as)ys] € w(are¥ ar’, ... ase¥a; ") Bg(1,0(0))
€ (AUu{1}UuA~H¥ Bg(1,0(0)),

for some s’ = O, ;(1). Recalling (5.13), we obtain

Bg(1,6%) C exp[C - B4(0,6%)]
C exp[C - (A, X)s + By(0,C9))]
C A% Ba(1,0(6)).

This finishes the proof of the theorem in the case v is abelian. O

5.2.3 Proof of the product theorem, general case

We now have to explain how to deal with the case where the radical v is nilpotent
but not necessarily abelian. This will follow from the previous case, together
with a quantitative version of the following fact: If R is a nilpotent Lie group,
a subset A C R generates the group R if and only if A mod [R, R] generates
R/[R, R].

For A and B subsets of G, we shall write [A, B] to denote the set of all
commutators [a,b], a € A, b € B. This notation is in conflict with the group
theoretic commutator which is the subgroup generated by all commutators.
Despite this inconvenience, it will be clear from the context what [A, B] means.

The precise lemma that we shall use is as follows.

Lemma 5.15. Let R;, i > 1 denote the lower central series of R then fori > 1
there is k > 1 such that for all p > 0 small enough,

Br,.,(1,p°) C Br(1,p), Bg,(1,0)]".

Proof. Denote by v;, i > 1 the lower central series of the lie algebra v. Let
(21,...,2m) be a basis of v;;1 consisting of commutators z; = [z;,y;] with
x; € v and y; € vy, V4. Consider the map f;: R — R;;1 defined as

£i(t) = lexp(vtz;), exp(Viy;)] if ¢t >0
’ lexp(v/—ty;), exp(v/—tz;)] ift<0

and further define f: R™ — R; 1 by f(t1,...,tm) = f1(t1) - fm(tm). Thus f
is of class C' and its differential at 0 is

Tof(hh .. 7hm) = h121 + -4 hmZm

Hence f is a C''-diffeomorphism on a neighborhood of 0. We conclude by using
the fact that the exponential maps is a also bi-Lipschitz on a neighborhood of
0. O

We are now ready to finish the proof of Theorem 5.3.
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Proof of Theorem 5.3, general case. Here again implied constants in Landau
and Vinogradov notations depend on G and k.

Let R;, i > 1 denote the lower central series of the group R, i.e. Ry = R
and R;11 = [R,R;]. Recall that since G is simply connected, these normal
subgroups R; , i > 1 are all closed and connected. The Lie algebra of R; is
exactly the i-th term in the lower central series of t, see e.g. [47, Theorem 5.7,
p. 55]. The quotients G/R; are simply connected. We proceed by induction on
the nilpotency class [ of R. We already see that Theorem 5.3 holds if [ < 1.
Now suppose that R has nilpotency class equal to [ and that Theorem 5.3 has
been proved if the nilpotency class is strictly less that [.

We first remark that the assumptions of Theorem 5.3 are preserved when
projecting to a quotient. The nilpotency class of the radical of G/R; is [ — 1. So
by the induction hypothesis, we have when € is small enough compared to €1,

Bg(l, ) C (A U {1} U A_l)s Be(1,0)R;

where €; > 0 is a constant which we will choose according to ¢y and s > 1 is
an integer depending on k and €;. Without loss of generality, we can replace
(AU{1}U A=1)*Bg(1,9) by A. In particular,

Br(1,0) C (RNA)R;, and Bg, ,(1,6) C (Ri—1 NA)R;.
By Lemma 5.15, we have
By, (1,6°) C [Br(1,6%),Bg,_,(1,6%)]°0.
From these inclusions and the fact that R; is in the center of R, it follows that
(5.18) Bg,(1,0%1) ¢ A°D Bg(1,0(5)).

At this stage replace A°() Bg(1,0(6)) by A. The fact that Bg(1,6) C AR,
and Bg,(1,6%1) C A does not prove what we want yet but gives the lower
bound

Ns(A?) > Ni(ng r,(A)Ns(Ri N A) > 6~ @+,

where 7g /g, : G — G/R; denote the canonical projection.
Covering A? by balls of radius 163, we obtain

Ns(A2A72NBg(1,6%7)) > 67 Im@+0(),

Write A’ = A2472 N Bg(1,631). Then A’ satisfies the assumptions of Theo-
rem 5.3 with kK =1 and € = O(e;). Hence if € is small enough compared to €,
then by the induction hypothesis again,

Bg(1,0) C A’® Ba(1,0)R;

for some s depending on €y. Since any element in R; involving in this inclusion
is within distance §2¢! from the identity, we can conclude using (5.18) that

Ba(1,6%) c AP Bg(1,0)A.

This finishes the proof of Theorem 5.3. O

103



Bibliography

[1] M. Aka, E. Breuillard, L. Rosenzweig, and N. de Saxcé. Diophantine prop-
erties of nilpotent Lie groups. Compos. Math., 151(6):1157-1188, 2015.

[2] Y. Benoist and N. de Saxcé. Convolution in perfect Lie groups. Math. Proc.
Cambridge Philos. Soc., 161(1):31-45, 2016.

[3] Y. Benoist and N. de Saxcé. A spectral gap theorem in simple Lie groups.
Invent. Math., 205(2):337-361, 2016.

[4] Y. Benoist and J.-F. Quint. Mesures stationnaires et fermés invariants des
espaces homogénes. Ann. of Math. (2), 174(2):1111-1162, 2011.

[5] B. Bollobas and A. Thomason. Projections of bodies and hereditary prop-
erties of hypergraphs. Bull. London Math. Soc., 27(5):417-424, 1995.

[6] J. Bourgain. On the Erdgs-Volkmann and Katz-Tao ring conjectures.
Geom. Funct. Anal., 13(2):334-365, 2003.

[7] J. Bourgain. The discretized sum-product and projection theorems. J.
Anal. Math., 112:193-236, 2010.

[8] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes. Stationary mea-
sures and equidistribution for orbits of nonabelian semigroups on the torus.
J. Amer. Math. Soc., 24(1):231-280, 2011.

[9] J. Bourgain and A. Gamburd. On the spectral gap for finitely-generated
subgroups of SU(2). Invent. Math., 171(1):83-121, 2008.

[10] J. Bourgain and A. Gamburd. Uniform expansion bounds for Cayley graphs
of SLy(F,). Ann. of Math. (2), 167(2):625-642, 2008.

[11] J. Bourgain and A. Gamburd. A spectral gap theorem in SU(d). J. Eur.
Math. Soc. (JEMS), 14(5):1455-1511, 2012.

[12] J. Bourgain and A. Glibichuk. Exponential sum estimates over a subgroup
in an arbitrary finite field. J. Anal. Math., 115:51-70, 2011.

[13] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields,
and applications. Geom. Funct. Anal., 14(1):27-57, 2004.

[14] J. Bourgain and P. P. Varju. Expansion in SL4(Z/qZ), q arbitrary. Invent.
Math., 188(1):151-173, 2012.

104



[15] J. Bourgain and A. Yehudayoff. Expansion in SLy(R) and monotone ex-
panders. Geom. Funct. Anal., 23(1):1-41, 2013.

[16] R. Boutonnet, A. Ioana, and A. S. Golsefidy. Local spectral gap in simple
lie groups and applications. Invent. math., 2016.

[17] E. Breuillard. Lectures on approximate groups. IHP, Paris, February-
March 2011, available at http://www.math.u-psud.fr/~breuilla/
ClermontLectures.pdf.

[18] E. Breuillard, B. Green, and T. Tao. Approximate subgroups of linear
groups. Geom. Funct. Anal.,; 21(4):774-819, 2011.

[19] E. Breuillard, B. Green, anfi T. Tao. The structure of approximate groups.
Publ. Math. Inst. Hautes FEtudes Sci., 116:115-221, 2012.

[20] M.-C. Chang. A polynomial bound in Freiman’s theorem. Duke Math. J.,
113(3):399-419, 2002.

[21] M.-C. Chang. Additive and multiplicative structure in matrix spaces. Com-
bin. Probab. Comput., 16(2):219-238, 2007.

[22] N. de Saxcé. Subgroups of fractional dimension in nilpotent or solvable Lie
groups. Mathematika, 59(2):497-511, 2013.

[23] N. de Saxcé. Trou dimensionnel dans les groupes de Lie compacts semisim-
ples via les séries de Fourier. J. Anal. Math., 120:311-331, 2013.

[24] N. de Saxcé. A product theorem in simple Lie groups. Geom. Funct. Anal.,
25(3):915-941, 2015.

[25] N. de Saxcé. Borelian subgroups of simple Lie groups. Duke Math. J.,
166(3):573-604, 2017.

[26] E. B. Dynkin. Calculation of the coeflicients in the Campbell-Hausdorff
formula. Doklady Akad. Nauk SSSR (N.S.), 57:323-326, 1947.

[27] G. A. Edgar and C. Miller. Borel subrings of the reals. Proc. Amer. Math.
Soc., 131(4):1121-1129, 2003.

[28] P. Erdds and E. Szemerédi. On sums and products of integers. In Studies
in pure mathematics, pages 213-218. Birkhduser, Basel, 1983.

[29] P. Erdgs and B. Volkmann. Additive Gruppen mit vorgegebener Hausdorff-
scher Dimension. J. Reine Angew. Math., 221:203-208, 1966.

[30] A. Eskin, S. Mozes, and H. Oh. On uniform exponential growth for linear
groups. Invent. Math., 160(1):1-30, 2005.

[31] K. Falconer, J. Fraser, and X. Jin. Sixty years of fractal projections. In
Fractal geometry and stochastics V. Selected papers of the 5th conference,
Tabarz, Germany, March 24-29, 201/, pages 3—25. Cham: Springer, 2015.

[32] K. J. Falconer. Hausdorff dimension and the exceptional set of projections.
Mathematika, 29(1):109-115, 1982.

105


http://www.math.u-psud.fr/~breuilla/ClermontLectures.pdf
http://www.math.u-psud.fr/~breuilla/ClermontLectures.pdf

33| H. Furstenberg. Stiffness of group actions. In Lie groups and ergodic theory
g g
(Mumbai, 1996), volume 14 of Tata Inst. Fund. Res. Stud. Math., pages
105-117. Tata Inst. Fund. Res., Bombay, 1998.

[34] W. T. Gowers. Quasirandom groups. Combin. Probab. Comput., 17(3):363—
387, 2008.

[35] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics
Library. John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978
original.

[36] H. A. Helfgott. Growth and generation in SLy(Z/pZ). Ann. of Math. (2),
167(2):601-623, 2008.

[37] H. A. Helfgott. Growth in SL3(Z/pZ). J. Eur. Math. Soc. (JEMS),
13(3):761-851, 2011.

[38] N. H. Katz and T. Tao. Some connections between Falconer’s distance set
conjecture and sets of Furstenburg type. New York J. Math., 7:149-187,
2001.

[39] Y. Katznelson. An introduction to harmonic analysis. Cambridge Math-
ematical Library. Cambridge University Press, Cambridge, third edition,
2004.

[40] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-
Verlag, New York, third edition, 2002.

[41] E. Lindenstrauss and N. de Saxcé. Hausdorff dimension and subgroups of
SU(2). Israel J. Math., 209(1):335-354, 2015.

[42] S. Lojasiewicz. Ensembles semi-analytiques, 2006. Notes from a course
given in Orsay, available at https://perso.univ-rennesl.fr/michel.
coste/Lojasiewicz.pdf.

[43] J. M. Marstrand. Some fundamental geometrical properties of plane sets
of fractional dimensions. Proc. London Math. Soc. (3), 4:257-302, 1954.

[44] P. Mattila. Hausdorff dimension, orthogonal projections and intersections
with planes. Ann. Acad. Sci. Fenn. Ser. A I Math., 1(2):227-244, 1975.

[45] P. Mattila. Geometry of sets and measures in Fuclidean spaces, volume 44
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1995. Fractals and rectifiability.

[46] P. Mattila. Fourier analysis and Hausdorff dimension. Cambridge: Cam-
bridge University Press, 2015.

[47] A. Onishchik and E. Vinberg. Foundations of Lie theory. In Lie groups
and Lie algebras I. Foundations of Lie theory. Lie transformation groups.
Transl. from the Russian by A. Kozlowski, page 1. Berlin: Springer-Verlag,
1988.

[48] T. Orponen. A discretised projection theorem in the plane. ArXiv e-prints
1407.6543, July 2014.

106


https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

G. Petridis. New proofs of Pliinnecke-type estimates for product sets in
groups. Combinatorica, 32(6):721-733, 2012.

R. S. Pierce. Associative algebras, volume 88 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York-Berlin, 1982. Studies in the History of
Modern Science, 9.

L. Pyber and E. Szab6. Growth in finite simple groups of Lie type. J.
Amer. Math. Soc., 29(1):95-146, 2016.

P. Sarnak and X. X. Xue. Bounds for multiplicities of automorphic repre-
sentations. Duke Math. J., 64(1):207-227, 1991.

J.-P. Serre. Applications algébriques de la cohomologie des groupes. ii :
théorie des algébres simples. In Séminaire Henri Cartan, 1950/51, Exp.
6, pages 1-9. Secrétariat mathématique, Paris, 1950/1951. Available at
http://www.numdam.org/item?id=SHC_1950-1951__3__A6_0.

J.-P. Serre. Lie algebras and Lie groups. 1964 lectures, given at Harvard
University. 2nd ed. Berlin etc.: Springer-Verlag, 2nd ed. edition, 1992.

P. Shmerkin. Projections of self-similar and related fractals: a survey of
recent developments. In Fractal geometry and stochastics V. Selected papers
of the 5th conference, Tabarz, Germany, March 24-29, 201/, pages 53-74.
Cham: Springer, 2015.

P. Shmerkin. On Furstenberg’s intersection conjecture, self-similar mea-
sures, and the L? norms of convolutions. ArXiv e-prints 1609.07802, Sept.
2016.

T. Tao. Product set estimates for non-commutative groups. Combinatorica,
28(5):547-594, 2008.

T. Tao. The sum-product phenomenon in arbitrary rings. Contrib. Discrete
Math., 4(2):59-82, 2009.

T. Tao and V. H. Vu. Additive combinatorics, volume 105 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2010.

P. P. Varju. Expansion in SLy(Ok/I), I square-free. J. Eur. Math. Soc.
(JEMS), 14(1):273-305, 2012.

M. Wu. A proof of Furstenberg’s conjecture on the intersections of xp and
X g-invariant sets. ArXiv e-prints 1609.08053, Sept. 2016.

107


http://www.numdam.org/item?id=SHC_1950-1951__3__A6_0

UNIVErSIte  tmainimatioues

PARIS-SACLAY Hadamard (EDMH)

Titre : Sommes, produits et projections des ensembles discrétisés

Mots Clefs : Phénomeéne somme-produit, entropie métrique, théoréme de projec-
tion, groupes de Lie, théoréme produit

Résumé : Dans le cadre discrétisé, la taille d’un ensemble & ’échelle § est évaluée
par son nombre de recouvrement par d-boules (également connu sous le nom de
'entropie métrique). Dans cette thése, nous étudions les propriétés combinatoires
des ensembles discrétisés sous 1’addition, la multiplication et les projections orthogo-
nales. Il y a trois parties principales. Premiérement, nous démontrons un théoréme
somme-produit dans les algébres de matrices, qui généralise un théoréme somme-
produit de Bourgain concernant ’anneau des réels. On améliore aussi des estimées
somme-produit en dimension supérieure obtenues précédemment par Bougain et
Gamburd. Deuxiémement, on étudie les projections orthogonales des sous-ensembles
de I'espace euclidien et étend ainsi le théoréme de projection discrétisé de Bourgain
aux projections de rang supérieur. Enfin, dans un travail en commun avec Nicolas
de Saxcé, nous démontrons un théoréme produit dans les groupes de Lie parfaits. Ce
dernier résultat généralise les travaux antérieurs de Bourgain-Gamburd et de Saxcé.

Title : Sums, products and projections of discretized sets

Keys words : Sum-product phenomenon, metric entropy, projection theorem, Lie
groups, product theorem

Abstract : In the discretized setting, the size of a set is measured by its covering
number by d-balls (a.k.a. metric entropy), where 4 is the scale. In this document, we
investigate combinatorial properties of discretized sets under addition, multiplica-
tion and orthogonal projection. There are three parts. First, we prove sum-product
estimates in matrix algebras, generalizing Bourgain’s sum-product theorem in the
ring of real numbers and improving higher dimensional sum-product estimates pre-
viously obtained by Bourgain-Gamburd. Then, we study orthogonal projections of
subsets in the Euclidean space, generalizing Bourgain’s discretized projection theo-
rem to higher rank situations. Finally, in a joint work with Nicolas de Saxcé, we
prove a product theorem for perfect Lie groups, generalizing previous results of
Bourgain-Gamburd and Saxcé.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



