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Compositional Verification of Component-based Real-time Systems

and Applications

Abstract:

Compositional Verification aims at breaking down the complexity of the verifica-

tion task by relying on the separate analysis of the sub-components and inferring

global properties of the system from their local properties. In the framework of

real-time systems, one main obstacle for developing fully compositional methods

is the synchronous model of time.

We propose a verification method based on the deductive approach where the set of

the reachable states of the system is over-approximated by an invariant computed

in a fully compositional manner. It comprises local component invariants and

an interaction invariant characterizing the interactions between the components.

In addition, we introduce auxiliary clocks, called history clocks, which allow to

automatically generate new invariants capturing the constraints induced by the

time-synchronizations between the different components. We completed this com-

positional invariant generation approach with a counterexample-based invariant

enforcement module analyzing iteratively the generated counterexamples.

Besides its scalability, the method can be extended to the uniform verification of

parameterized timed systems.

Our compositional verification method was implemented in the RTD-Finder tool.

The experimental results show that the verification time for large systems is dras-

tically reduced in comparison with exploration techniques, especially when the

global invariant catches the safety property of interest.

Keywords: verification, timed automata, real-time, component-based, com-
positional, deductive, invariant, safety property



Vérification Compositionnelle des Systèmes Temps-Réels à Base de Com-

posants et Applications

Résumé:

On s’intéresse à la vérification formelle des propriétés de sûreté pour les systèmes

temps-réels à base de composants. Le but est de proposer une alternative aux

techniques d’exploration où le produit de tous les composants d’un système donné

est calculé, résultant en une complexité exponentielle de vérification rendant

souvent impossible la vérification de larges systèmes.

La vérification compositionnelle a pour but d’alléger la complexité de vérification

du système en comptant sur l’analyse locale de ses composants. Les propriétés

globales en sont ensuite déduites. Dans le cas des systèmes temps-réels, une

difficulté majeure pour le développement d’une approche compositionnelle con-

siste au modèle synchrone du temps où les horloges des différents composants

avancent simultanément. En effet, cet aspect est difficile à considérer dans un

cadre compositionnel. Nous proposons une méthode basée sur l’approche dé-

ductive et consistant à calculer d’une manière purement compositionnelle une

sur-approximation de l’ensemble des états atteignables du système à travers un

invariant. Ce dernier se compose d’invariants locaux propres aux composants et

un invariant d’interaction caractérisant les interactions entre eux. En plus, pour

considérer le modèle synchrone du temps, nous introduisons des horloges auxili-

aires appelées “ Horloges d’Histoire “. Elles permettent de générer des invariants

supplémentaires permettant de détecter des relations induites par les synchroni-

sations temporelles des différents composants. Appliqué à plusieurs exemples

de systèmes, l’invariant s’est avéré souvent suffisamment fort avec une réduction

importante de la complexité de vérification. Toutefois, puisque la méthode est

basée sur une sur-approximation, des faux contre-exemples peuvent être générés.

Nous avons complété la méthode avec un module destiné pour leur analyse.

Au delà de son passage à l’échelle, la méthode est étendue pour la vérification

uniforme des systèmes paramétrés, où certains composants sont identiques. La

validité de la propriété peut être affirmée indépendamment de leur nombre.

Cette méthode est implémentée dans l’outil RTD-Finder conçu pour la vérification

des systèmes modélisés au langage BIP (Behavior-Interaction-Priority). Les résul-

tats d’expérimentation montrent la réduction de la complexité de vérification en



v

comparaison avec l’approche monolithique, surtout quand l’invariant global est en

mesure de détecter la propriété d’intérêt.

Mots-clés: vérification, automate, temps-réels, composant, modèle, déduc-
tive, invariant, sûreté
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Chapter 1

Introduction

1.1 Motivation

In the last decades, the usage of information and communication systems has

been spectacularly increasing. These systems become more and more complex

and their omnipresence increases as a result of the embedded systems conquering

our daily lives. We cite as examples the smart-phones, the medical devices and

the transportation and multimedia systems. Even though technological advances

try to enhance continuously the quality of service of such systems and reduce

for instance the response time, there are high priority and urge for establishing

error absence especially for systems with high degree of criticality. The presence

of unexpected errors can have dramatic impacts, ranging from significant financial

consequences for the producer to the loss of human lives. We mention for example

the tragic consequences due to a conversion of a 64-bit floating point into a 16-bit

integer value in the Ariane 5 maiden flight [Rep96].

Formal methods attempt to offer theories, methods and tools to ensure the correct

design of systems. The substantial task of validating the correctness is confronted

with the increasing complexity of the systems combined with the pressure to

reduce the system construction time. Therefore, the computational complexity

induced by the state space is a major hurdle in constructing large complex systems.

Furthermore, in order to accurately express real life situations and to specify

safety time bounds for the occurrence of events, some systems- the so-called

real-time systems- evolve to handle timing constraints. In time-critical systems, the

correctness does not rely only on the insurance of a desired logical output for

a given input but also on the time on which the result is generated. Real-time
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systems manifest another limiting character for correctness checking. It consists

in the presence of additional concurrent temporal observations expressed by the

local clocks of the different components. This induces a larger and more complex

reachable state space increasing the complexity issue and revealing the need

for adequate theories and methods for modeling, specification and correctness

checking.

Generally, for timed or untimed systems, there are two main approaches for

detecting a requirement violation:

– Formal testing is a dynamic method consisting in providing different input

values and feeding them to the system for execution in order to confirm that

the results respect the desired requirements. Only a complete testing can

assert the absence of property violation, meaning that the testing scenarios

should be exhaustively covered. Unfortunately, in practice, the number of

all possible execution paths is hard, if not impossible, to test. On the other

side, the testing of a partial set of execution paths can at best attest of the

presence of requirement violation but cannot give evidence of its absence.

Dijkstra gave a postulation on this in 1969.

“ Program testing can be used to show the presence of bugs, but

never to show their absence.

”
Edsger Dijkstra , [BR70] , 1969

– Formal verification Regarding the coverage limitation of the testing method-

ology, more complete alternatives have been proposed. The most investigated

approach, formal verification, relies upon perceiving systems as mathemati-

cal objects with well-defined behaviors. It allows to reduce the requirement

checking to a mathematical problem aiming to verify if the behavior of

a given system satisfies a specification formulated in mathematical logic.

Formal verification allows to attest that the system is correct by use of math-

ematically rigorous theories and tools, else provides the input scenarios that

violate the requirements if exist. Another advantage of formal verification is

that it can be performed at relatively early stages as it is applied to a system

model. At such stages, the costs of the errors’ correction is less important.

In the past three decades, promising formal verification techniques and

tools have been developed. At the beginning, in the early 80’s, the most

common framework for verification was theorem-proving where the system

and requirement are expressed in a formal system defined by axioms and
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inference rules. Theorem proving consists in inducing the property of the

system from its axioms by use of the rules. While many theorem prover

tools have been developed, the lack of automation is the main shortcoming

of the proof-theoretic reasoning since the search for the proofs may require

the interaction with a human.

Static analysis has shown big successes in the field of software verification. It

relies on a family of techniques for automatically examining a program and

getting information about its behavior without executing it. The behaviors

of the program can be abstracted into a decidable overapproximation or

underapproximation, then an attempt is conducted to prove the property in

the abstract version of the program. Cousot and Cousot [CC77] introduced

abstract interpretation as a framework to relating abstract analyses to the

program execution. It consists in defining a suitable abstract domain of

computation of the program and then interpreting a program relative to

this domain. A discrete approximation applied to the semantics of the C

programming language was implemented in the Astree tool [BCC+02]. For

instance, it proved the absence of errors for 132000 lines of flight control soft-

ware in less than an hour. As other commercial successes of static analysis,

we mention SLAM [BMMR01] and Java PathFinder [VHB+03].

In general, static analysis methods traded precision for efficiency by using

abstraction and by merging abstract states at join points.

This limitation led to a significant research focusing on another instance of

formal verification called model-checking. It offers a fully automatic method

for verifying finite-state systems through an efficient graph search in order to

decide whether or not the requirement holds over the system’s state graph.

The model-checking approach is algorithmic and is able to provide a coun-

terexample in case of property violation. Nevertheless, the model-checking

is hampered by the combinatorial explosion problem since an exhaustive

search should be performed over the state-space of the system’s model. The

complexity prevails even more in case of timed systems possessing additional

temporal observations.

Despite having been of prominent outcome in industrial hardware and software

community, model-checking has other shortcomings besides the state-space explo-

sion problem.

• Regarding the exploration of the entire state-space, explicit-state model check-

ing is not suitable for infinite-state systems. There is a need for abstraction

techniques to make the space graph to explore finite.
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• It does not allow the verification of generalizations, for instance the parame-

terized timed systems containing an arbitrary number of similar components.

• In case a counterexample is detected, it may be required to reconstruct the

global system.

In an introductory paper to formal verification, published 20 years ago, the future

directions for improvements were stated by Clarke as follows.

“ Significant advances in the practical use of formal methods have relied

on fundamental results drawn from all areas in computer science, not

necessarily directly intended for formal methods. Further work needs to

be done in the following areas: composition, decomposition, abstraction,

reusable models and theories, combination of mathematical theories, and

data structures and algorithms.

”
Edmund Clarke , [CW96] , 1996

In the following, we briefly relate the state-of-the-art of the advances on formal

verification and introduce in particular model-checking improvements. Besides,

we mention the existing proposals for handling real-time systems.

1.2 Improvements in Model-Checking

1.2.1 Reduction Techniques

In order to circumvent the state-space explosion problem inherent to model check-

ing, reduction techniques are investigated to construct a smaller state space to

search by algorithms. The theoretical foundations for such reductions rely mainly

on equivalences or abstraction. In fact, a considerable family of reduction tech-

niques relies on bisimulation equivalence [Mil89] which is a binary relation denot-

ing the possibility for two state transition systems to simulate each other, that is

the possibility for every step in the one to be matched to one or more steps from

the other. If two state spaces are bisimilarly equivalent, then checking the more

complex one can be reduced to model-checking the other.
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1.2.1.1 Partial Order Reduction

An execution of actions is said to be totally ordered if every action is compelled to

follow and precede precise actions. At the opposite, the partial ordering property

allows that some actions occur in different orders. Actions of an execution fragment

are independent if their swapping leads up to an execution fragment starting and

ending with the same states. Several strategies have been conducted in order to

exploit the commutativity of independant actions in partially ordered fragments.

We cite the Vlmari’s stubborn sets [Val89] and Godefroid’s persistent sets [God90,

God96] methods. The Ample sets method of Peled [Pel93, HP94, Pel94] focuses on

the modification of the state space generation algorithm. Usually, while building

the state graph of a given transition system, the successors of a state are computed

by consideration of all the possible actions. The Ample set method proposes to

explore instead a subset of the action set in the hope of buidling a transition system

that is drastically smaller and with a relatively small overhead. For the construction

of the representative transition system to be sound, it should guarantee that the

satisfaction of the property of interest is insensitive to the choice between the

original and the reduced systems. Since the partial order reduction technique

builds upon the assumption that the components are asynchronous, treating with

realistic systems requires the identification of path fragments which exclusively

differ on the concurrently executed actions.

The major obstacle encountered in the case of real-time systems is that the clocks

of the different components are implicitly synchronized since they do all advance

at the same rate. Therefore, even in the absence of explicit synchronization

between the components, different interleavings between independent actions

would engender different combinations of clocks valuations. In [BJLY98] [Min99],

a solution was proposed at the aim of applying standard partial order reduction

techniques in spite of the implicit synchronization of clocks. The basic idea was

to desynchronize the clocks, that is to let them run without synchronization, until

communication time. This solution was presented by a local-time semantics, along

with its symbolic version. The PORT extension [HCM+08] of the UPPAAL tool

implements these partial order reduction techniques to real-time systems.

1.2.1.2 Symmetry Reduction

In a concurrent system with many replicated components, the inherent symmetry

is reflected in the state space. It can result in subspaces of the full state set being

equivalent up to the rearrangement of components. Thereby, symmetry can serve
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as a basis to exploit the automorphisms of the system’s global state-space and hence

reduce its exploration during verification. Several strategies have been conducted

at this aim and some have been successfully implemented in model-checkers such

as SMV [McM93], Murϕ [ID96], and SPIN [Hol97, BDH01]. Symmetry reduction

was also extended for timed systems. In [Hen02], an extension to timed systems

of the method of [ID96] is proposed and is proven to be sound. It begins with the

introduction of the new data type, scalarsets, allowing the user to explicitly stress

the symmetry in the model. This is followed by the extraction of automorphisms on

the state graph of the system model. This method was successfully implemented

in the UPPAAL tool [HBL+03] and offered a drastic reduction of both computation

time and memory usage. Also, in the framework of real-time systems, Wang

et al. exploit symmetry by introduction of a BDD-like [Bry86] data structure

implemented in the RED tool [Wan00, WS02], but there an over-approximation of

the reachable states set is computed.

1.2.2 Approximation

At the aim of avoiding the full state-space exploration, several works based on

underapproximations and overapproximations were conducted.

In the hope of exploiting the rich progress in the verification of untimed systems,

Tripakis and Yovine [TY01] used a technique based on bisimulation to approximate

timed systems with untimed automata.

Abstraction is another strategy counting on an over-approximation of the reachable

state set and has been widely studied to timed systems and hybrid systems in gen-

eral. It combines the model-checking with finite-state abstraction. The advantage

of abstraction is to map the original model into a less complex model conserving

the behavior of concern, by merging ’similar’ states. The CEGAR (Counterexample-

Guided Abstraction Refinement) was first proposed for finite-state systems and of-

fers a method for the refinement and validation of the generated counterexamples

[CGJ+00]. It starts from an initial abstraction together with the property to check

and begins by searching for the parts of the model that violate it. Afterwards, it

validates and refines iteratively the counterexamples until one of them is proven to

be valid or until no further counterexamples are generated, in which case the va-

lidity of the property is asserted. This approach differs from the usual abstraction

techniques in that the property of interest is considered while building the initial

abstraction. The CEGAR approach was extended to infinite systems and to hybrid

systems in particular [CFH+03, FCJK05]. In [JM06], Craig interpolation and lazy

abstraction serve as basis for model-checking infinite-state sequential programs.
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In the field of timed automata, we cite the work in [KP07] based on SAT-solving

and an extension of CEGAR with syntactic information about Craig interpolants.

In [LL98], the proposed method starts with a small subset of the automata in order

to build an over-approximation and refines it by adding iteratively other automata.

The works in [DKL07], [PDMV13] differ from previous CEGAR approaches for

timed and hybrid systems in that the abstractions have also the form of hybrid

automata.

Clock-related Abstractions

Several research works have been conducted to circumvent the complexity issues

specific to timed systems and induced by the continous timed observations that

are the clocks. In [DY96], two algorithms were proposed at the aim of reducing

the number of clocks of a timed automaton. One of them consists in detecting sets

of clocks that are always equal and the other proposes to detect the clocks whose

values are not relevant for system evolution.

By essence, timed automata have infinite state space, whereas algorithmic verifica-

tion requires exact finite abstractions. Most of verification tools for timed systems

(eg. KRONOS [BDM+98] and UPPAAL[LPY97] use abstractions based on zones

at the aim of ensuring finiteness. One classical abstraction method is extrapola-

tion and it considers the maximum constants to which clocks are compared. It

merges states which are identical except from the clock values which exceed these

maximum constants. In [BBFL03], the authors suggest to make the maximum

constants depend not only of the particular clock but also of the particular location

of the timed automaton. In [BBLP06], maximal lower and upper bounds are

distinguished and coarser abstractions are obtained. Besides, the latter abstraction

is complete for both reachability and liveness properties.

In [DT98], other abstraction methods were proposed. The inclusion abstraction

maps subsets of concrete states to a same abstract state, allowing to reduce the

total number of symbolic states.

In order to overcome the infinite-state problem inherent to timed systems, Wong-

Toi [WT95] proposed to collapses symbolic states sharing the same location to

one symbolic state whose zone is the convex hull of their zones. This method

was called convex-hull approximation and was implemented in different tools

[BDM+98, BDL+06].



8 Chapter 1. Introduction

1.2.3 Bounded Model Checking

The practical method of bounded model checking (BMC) [BCCZ99] was first

proposed by Biere et al. and has gained much interest. It proposes to alleviate

the combinatorial explosion problem by settling for the verification of the safety

property for a given bound k of execution steps. The technique efficiently reduces

to a boolean satisfiability problem and can therefore benefit from the scalability of

the modern SAT-solvers which are capable of handling propositional satisfiability

problems with great number of variables. BMC was extended to timed systems

[ACKS02] where it boils down to deciding the satisfiabilty of a math-formula ob-

tained by combination of propositional variables and linear mathematical relations

over the real clock variables. The main disadvantage of BMC is its incompleteness

since it searches for the counterexamples refuting the property of interest under

the bound k. If no counterexample under this bound violates the property, either k

is increased or the algorithm stops for memory shortage, with no certainty about

the validity of the property.

1.3 Deductive Approach

The deductive verification method is characterized by that the target system as

well as the properties to verify are represented as logical predicates that need to

be proven . Their validity is proven by deduction in logical calculus. Deductive

verification enables proofs for systems with infinitely many states, in contrast

to model checking. To prove that a predicate Ψ is an invariant of the system S,

it is sufficient to find an auxiliary predicate Φaux which satisfies the following

conditions:

• Φaux is valid for the initial states of the system.

• Φaux is preserved by every transition of the system. That is for every state s

of the system satisfying Φaux, any state s0 reachable from s by any transition

τ does also satisfy it.

• Φaux implies Ψ.

If the two first conditions are valid, the predicate Φaux is called an inductive invariant

of S. If in addition the third condition is valid, then the predicate Ψ is an invariant

of the system, i.e every reachable state s of S satisfies it.

Init) Φaux
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(R1 )
{Φaux}τ{Φaux}, 8τ 2 S

Φaux ) Ψ

S |= ⇤Ψ

In [MP95], it is proven that the rule R1 is sound for proving invariance properties

of transition systems.

However, it does not give a clue on how to compute the auxiliary inductive

invariant Φaux. It keeps open two questions:

1. how to compute the auxiliary Φaux invariant implying Ψ without reducing

to the computation of the reachable state set of the system and

2. how to prove that Φaux is preserved by each transition of the system and is

valid at the initial state.

Our Approach: Overapproximation A recent trend in formal verification is to

trade off completeness for automation and complexity avoidance.

The core idea of our methodology lays upon the verification rule (R1) where an

over-approximation of the reachable state set is required. The verification rule in

R1 expresses that if the predicate Φaux is satisfied by the initial state Init and if it is

preserved with all the transitions of the system, then every reachable state of the

system satisfies it and it is an inductive invariant.

The most intuitive solution for the auxiliary predicate Φaux is the set of reachable

states of the system Reach(S). Yet its computation boils down to the same state-

space explosion problem inherent to model-checking. We propose at a first stage to

trade off completeness for the avoidance of the complexity issue by relying rather

on the computation of an over-approximation Reachapp(S) of the set Reach(S). If

Reachapp(S) implies the property Ψ, then the system satisfies it.

Reach(S) ✓ ReachApp(S), Reachapp(S)) Ψ

S |= ⇤Ψ

The main purpose of this work is to find the approximation Reachapp(S) in a fully

compositional manner.

1.4 Contribution

The main objective of this thesis is the verification of safety properties for real-time

systems. It aims at contributing to the applicability of formal verification methods
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to realistic systems with large numbers of components. In order to achieve this,

we are moving towards the compositional reasoning approach. Compositional

verification is aimed to avoid the construction of the product of all the states of the

global system. It relies on the decomposition of the verification problem to more

manageable sizes. Instead of verifying the system globally, the small components

(subsystems) composing the system are first verified, then global properties of

the system should be inferred. This is supposed to break down the complexity of

the verification task since the size of the subsystems is often quite smaller than

the size of the global system thus the state-space explosion is more likely to be

avoided. This work lays upon an over-approximation of the reachable state set

through the computation of a global invariant to function as Reachapp(S) and the

application of the above-mentioned deductive verification rule.

Compositional Invariant Generation

Our method aims at inferring global properties of the system from the properties

of its components. The extraction of the components’ properties is done through

local invariant computation, characterizing their behavior in isolation from each

other. In our framework, the components don’t evolve independently. They are

glued together through multi-party interactions synchronizing their actions. This

action synchronization restricts the global behavior of the system and constraints

the reachable state set. Therefore, in the hope of tightening the over-approximation

made by the global invariant, the interaction structure should be considered. This

results in additional type of invariant along with the component invariants, focus-

ing on the interaction structure. In [BBSN08, BBNS09], a compositional verification

approach was proposed for the verification of component-based untimed systems.

It takes advantage of that the invariant of a component is also an invariant of the

global system and that the conjunction of invariants is also an invariant. Thereby,

Reachapp(S) is computed as the conjunction of the following invariants:

• local component invariants: they characterize the behavior of the components

in isolation from each other,

• and an interaction invariant: it reflects constraints on the global state set

induced by the synchronization of the actions belonging to the different

components.

A simple illustration of this appoach is shown in Figure 1.1, where the invariants

of components B1 and B2 are φ1 and φ2 respectively and the interaction invariant

is I Iglue.
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B1

B2

I Iglue
Φ2

Φ1

Reach

Figure 1.1: Compositional verification of a system of two components

The computed global invariant is rather strong for untimed systems. The method

was implemented in a tool, D-Finder [BBNS09], yielding a drastic reduction in the

complexity of the verification task.

Compositional Invariant Generation for Timed Systems

Unfortunately, this global invariant is insufficient for timed systems since in no

way it takes into account the time synchronization between the components. In

fact, in the timed case, the clocks of the different components increase at the same

rate, resulting in additional restrictions on the moves of the different components

whose transitions are locally guided by timing constraints.

The main contribution of this work is an extension of the above method for timed

systems. It offers a proposal to resolve the outstanding issue of capturaing time

synchronization of different components in a fully compositional manner. For this

purpose, we introduce additional auxiliary clocks, called history clocks, allowing

to infer the time synchronization induced from the simultaneous execution of

actions through interactions. To each action, we introduce an action history clock

which is reset whenever the corresponding action occurs. Since an interaction

synchronizes a set of actions, all of their history clocks are reset simultaneously

and hence become equal. On the one hand, this information can be synthesized

in an additional type of invariant relating the history clocks. On the other hand,

the added history clocks are related to the inner clocks of the components and

may be injected in their components’ invariants. All in all, the conjunction of the

new proposed invariant constraining the history clocks’ relations and the local

invariants of components extended with history clocks results by transitivity in

relations between the original clocks of the different components. In this way,

the time synchronization can be inferred in the global invariant, yielding a more

successful implementation of the verification rule.
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Counterexample-Based Invariant Refinement

The applied verification rule searches for an over-approximation of the reachable

state set. If the computed invariant implies the property of interest, then the system

satisfies it. Else, a suspected counterexample is generated. It may be the outcome

of a behavior in the over-approximation which does not belong to the original

model. At a second stage of this work, we propose to analyze the generated

counter-examples in order to decide upon their validity. Subsequently, in case

the counterexample is spurious, the global invariant is refined with its negation.

The iterative analysis of the counterexamples remedies the incompleteness of the

method.

Compositional Verification of Parameterized timed systems

Unlike the model-checking which does not handle generalizations, particularly the

parameterized timed systems which rely on an arbitrary number of components

sharing the same behavior, the compositional invariant generation method can be

extended to handle uniform verification of such systems. In the parameterized

setting, the proposed invariant can be expressed under a particular shape, allowing

the elegant application of a small model theorem. As a result, it suffices to assert

the validity of the property of interest for small numbers of components and

deduce its validity for all numbers of the replicated component.

Tool Implementation

The proposed compositional verification method was implemented to verify sys-

tems modeled in the RT-BIP language [ACS13], where components are modeled

by timed automata and are synchronized through multi-party interactions. The

developed tool, called RTD-Finder, first computes the global invariant then inter-

acts with a satisfiability checking tool (SAT-solver) to verify if the invariant implies

the safety property of interest. This is performed by conjoining the predicate

characterizing the violation of the property with the invariant representing the

over-approximation of the reachable state set. The tool contains also a counterex-

ample analysis module, aiming at rendering the verification method complete.
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1.5 Organization of the Dissertation

The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of the compositional verification methods

proposed in the literature.

• Chapter 3 begins by introducing the BIP modeling framework. Subsequently,

the above-mentioned compositional verification method proposed for un-

timed systems is detailed. Its different modules were implemented in the

D-Finder tool which takes as input systems modeled in the untimed BIP

language.

• Chapter 4 presents timed component-based systems along with the related

syntax and semantics. We conclude this chapter by showing how the D-

Finder method, proposed for untimed system, is unable to track time syn-

chronization between components in the timed case. This gives a motivation

for the extension of the invariant generation method to handle timed systems.

• Chapter 5 introduces our compositional verification method proposed for

timed systems. It mainly builds upon the introduction of the auxiliary

history clocks and the extraction of the new invariants intended to offer a

more successful application of the verification rule.

• Chapter 6 explains how the generated counterexamples are analyzed and

how the global invariant is refined until the validity of the safety property is

asserted or a counterexample which truly violates it is revealed.

• Chapter 7 presents the extension of the verification method to parameterized

timed systems.

• Chapter 8 shows the implementation details of the RTD-Finder tool.

• Chapter 9 gives the experimental results for different case-studies. They

show that the computed invariant is strong enough to detect many safety

properties. In such cases, the compositional verification method drastically

reduces the verification time for systems with a large number of components.

• We conclude the dissertation in Chapter 10 with an overview of the work

and its perspectives.





Chapter 2

Compositional Verification
Methods: An overview

“ [. . . .] A captain should endeavor with every art to divide the forces

of the enemy, either by making him suspicious of his men in whom he

trusted, or by giving him cause that he has to separate his forces, and,

because of this, become weaker.

”
Machiavelli , Dell’arte della guerra, 1520

Contents

2.1 Assume-guarantee Reasoning . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Automation of Assumption Generation . . . . . . . . . . . . 17

2.1.2 Assume-guarantee Reasoning for Timed Systems . . . . . . . 18

2.1.3 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Contract-Based Reasoning and Interface Theories . . . . . . . . . . 19

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Standard monolithic techniques based on the computation of the reachable states

set are unpractical since the complexity increases exponentially with the number of

components. The compositional reasoning aims to circumvent the state-explosion

problem by substituting the single verification over the global state-space by the

local analysis of its different components. The verification should allow to infer
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global properties of the system from properties of its components. While the

local analysis of each component abstracts away the rest of the system, the global

properties cannot be inferred without consideration of the interactions gluing them

together. In the following of this chapter, we briefly relate some major approaches

for compositional verification.

2.1 Assume-guarantee Reasoning

While compositional reasoning aims to analyze the components separately, usually

a component satisfies some properties in a specific environment. This led to the

research on the assume-guarantee compositional style of reasoning. The works of

Owicki and Gries [OG76] and Lamport [Lam77] inspired the introduction of the

assume-guarantee compositional methods by Misra and Chandy [MC81], by Jones

[Jon83] and by Pnueli [Pnu85]. This approach has been extensively studied in the

literature [Sta85, CLM89, CM89, GL91, AL95, AH96, McM97].

Assume-guarantee relies on the separate analysis of components. Suppose that

a given system is composed of two components B and B0. The behavior of

component B0 depends on the behavior of component B. The assume-guarantee

method specifies a set of assumptions to be satisfied by B in order to guarantee the

correctness of B0. In a mutual manner, establishing the correctness of B requires

the validity of a set of assumptions over B0. By appropriately combining a set of

assumed and guaranteed properties of B and B0, properties of the global system

B||B0 can be inferred without resorting to the construction of the global state-

space. More generally, for a system composed of many components, the local

analysis focuses on a single component and abstracts the rest of the system as

an assumption for this component. Therefore, in the assume-guarantee paradigm,

there are two types of properties with respect to a given component: assumptions

about the global behavior of its environment and properties that it guarantees

if these assumptions are valid. A compositional proof rule should be applied

to adequate assumptions which should, on the one hand be obtained by local

analysis exclusively and on the one other hand be strong enough to prove the

global property of interest.

In the notation of Pnueli, the triple < f > B < g > is interpreted as “whenever B

is part of a system satisfying the assumption f , the system must guarantee also

the property g”.

A basic and typical proof rule relies therefore in the transitivity principle and may

be expressed by the following inference rule:
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Rule 2.1

< true > B < A >
< A > B0 < P >

< true > B||B0 < P >

In this inference rule, A denotes an assumption about the environment of com-

ponent B0 whereas P is a property holding for the system resulting from the

composition of B and B0.

In the assume guarantee reasoning, a particular attention should be paid to circu-

larity. We consider for illustration the following inference rule:

Rule 2.2

< P > B < A >
< A > B0 < P >

< true > B||B0 < P ^ A >

It is clear that this rule is unsound. The apparent circularity of such premises can

be removed by relying on induction over time. Yet, this is applicable to safety

properties and not to liveness properties.

Despite being simple, the asymmetric Rule 2.1 is quite useful for checking safety

properties, which are the focus of this work. For this rule to be efficient, the

assumption A should be smaller than B and it should be at the same time strong

enough to ensure that component B0 satisfies P. Finding the assumptions manually

is unpractical. To remedy this, learning-based techniques may be used.

2.1.1 Automation of Assumption Generation

Learning-Based Techniques In [CGP03], an automatic method to compute the

environment assumptions for each component is proposed. It is based on the

learning algorithm L⇤ that was first proposed by Angluin in [Ang87] and ame-

liorated in [RS93]. It is applied to generate iteratively a finite-state assumption

by making queries to a Teacher represented by a model checker which answers

queries and provides the counterexamples. In this framework, the L⇤ algorithm

targets the computation of the so-called Weakest Assumption. By definition, this

assumption is characterized by that the premises of the rule are not only sufficient,

but should be also necessary for the conclusion of the inference rule to hold.

In [GPB05], it has been proven that this assumption exists for any finite-state

component and that it can be algorithmically generated. In [AMN05, NMA08],

the BDD-based exploration is used to compactly and symbolically implement the

assume-guarantee technique through the L⇤ algorithm. The L⇤ learning algorithm

was first applied to the safety properties verification and the inference Rule 2.1

before being extended to other rules. For instance, in [BGP03], the L⇤ algorithm

targets the circular and symmetric proof rule. There, the number of premises to be
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learned increases linearly on the number of components.

The assume-guarantee approach shows a higher efficiency when the interfaces

between the components are smaller. Therefore, in [PGB+08], the authors propose

to automate the search for a smaller alphabet of the assumption automata that suf-

fices to prove the property. This work resulted in the alphabet refinement technique

proposed as an extension of the learning based approach in [CGP03].

Abstraction-Based Techniques In [BPG08], the Assume-guarantee-Abstraction

Refinement method is proposed for the automation of this compositional reasoning

paradigm and applied for Rule 2.1. It is mainly inspired by the CEGAR approach

and iteratively finds assumptions that represent the abstraction of the behavior of

component B0 which concerns its interaction with component B. Therefore, in each

iteration, the assumption A satisfies the first premise of the rule and is verified

for the second premise. The generated counterexamples are analyzed and those

which are spurious serve to strengthen iteratively the overapproximation made by

the abstraction.

2.1.2 Assume-guarantee Reasoning for Timed Systems

The above-mentioned research works are focused on the untimed systems. The

proposals to handle real-time systems are more limited. In [GJL04, GJP06, GJL10],

the authors extended the learning techniques which were first proposed by Angluin

for finite automata to the setting of real-time systems. In the field of timed

automata, one major obstacle for learning assumptions is that the set of clocks

is not known in advance. Regarding this difficulty, the authors restricted their

methods for event-recording-automata (ERA) [AFH99] where the last occurrence

of each action is registered. The three developed algorithms focus on ERA with

canonical shapes and which can be perceived as finite automata over a symbolic

alphabet.

Another method for learning timed systems was proposed in [VDWW06]. It deals

with timed automata containing one clock reset at every transition. There, the

generalization to automata with multiple clocks is difficult. In [LAL+14], another

method for learning the non circular rule of assume-guarantee method is proposed

for the verification of timed systems, focusing also on ERA. It consists in a two-

steps flow: first, an untimed assumption is generated in order to ensure the events

sequence is correct, then these assumptions are refined so that timing constraints

are satisfied.
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In [FHK04], an assume-guarantee reasoning approach is proposed for hybrid

I/O-automata [LSV03] where a novel rule is proposed on the basis of simulation

relations. One advantage of this approach is that circularity is countered by a

state-based non blocking condition that can be checked during the computation of

the simulation relations.

2.1.3 Limitation

Despite learning techniques may help the automation of the assumptions gen-

eration task, one other major prior problem remains, which is finding the right

decompositions into subsystems. In fact, systems are usually composed of more

than two components. For the application of Rule 2.1 for example, both compo-

nents B and B0 need to be made up of several components. This decomposition

task has a decisive impact on the complexity of the verification task and is cru-

cial. In [CAC08] , a study was conducted in order to investigate on finding the

best decomposition and assessing the complexity reduction offered by assume-

guarantee reasoning. The authors proved that in many cases, the selection of the

decompositions did not reduce the memory usage of the verifier in comparison

with monolithic verification.

2.2 Contract-Based Reasoning and Interface Theories

The notion of contracts first appeared in the object-oriented programming domain

[Mey92] and has been extended to other contexts. Contract-based reasoning aims

at defining abstract component specifications precising how it participates in the

achievement of a particular requirement in a given environment. When not all

the models of the components of the system are completely available, notably

at the early design phases, for example when the subsystems are developed by

different teams, one is led to think at the level of assumptions and guaranteed

properties. Contracts [BCP07, BFM+08] and interfaces appeared as an alternative

in such cases. Besides their usability as design constraints to preserve along the

development process, contracts may be also used at compositional verification aim.

The theory of interfaces has been proposed to handle incremental design by com-

position of interfaces. De Alfaro and Henzinger [dAH01a, dAH01b] introduce an

interface theory detailing how a component and its environment should interact
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through input/output composition. There, the constraint expressed on the inputs

represent the assumption whereas the constraint on outputs represent the guar-

antee. This work inspired the appearance of interface I/O automata proposed

by Larsen et al. in [LNW06]. An I/O interface clearly separates through two

I/O automata the assumption over the environment and the guarantee offered

by the component if this assumption is valid. The separation of the assumption

and guarantee offers a better flexibility and re-usability. For instance, it eases the

refinement checking in case a new environment refines a previous one.

In [QG08], a methodology to reason about contracts for a system obtained by

hierarchical composition of components is proposed. Like interface I/O automata,

it separates the assumption about the environment and the guarantee offered by

the component whenever this assumption is satisfied by the environment. This

methodology offers a meta-theory in the sense that it does not propose a new

generic design framework, but rather a set of conditions that a contract theory

must satisfy in order to apply some specific proofs. There, a special focus is paid

to circular reasoning.

Independently from contracts and in relation with interface theory, a number

of specification theories have been developed, including abstract specification

of modal finite-state transition systems, that is transition systems comprising

must transitions pointing out required behavior and may transitions modeling

optional, that is to say allowed but not necessary behavior. Such systems have the

particularity of allowing loose specifications with stepwise refinement. Concerning

real-time systems, we mention the works in [dAHS02, TWS06, BLPR09, DLL+10].

In [DLL+10], the proposed specification theory comes with the ECDAR branch of

UPPAAL [DLL+10] as a tool support.

Specification theories differ from contract-based reasoning in that they don’t

strictly separate the specification of guarantees from the specification of assump-

tions. Despite having some similarities and targeting similar objectives towards

compositional reasoning, contract and specification theories first progressed in-

dependently without a deep investigation of the degree of their complementarity.

In [BDH+12], Bauer et al. proposed a generic way to derive a contract framework

based on assume-guarantee pairs from a given component-based specification

theory supporting specification refinement and composition.
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2.3 Summary

In this chapter, we briefly reviewed some major research works conducted in

the field of compositional verification. A succinct presentation of the assume-

guarantee and contract-based reasoning methodologies was given. We note that

the proposals to handle compositional reasoning for real-time systems are rather

limited.

Our compositional method is based on the deductive approach and differs from

the mentioned frameworks in that it is not restricted to systems with binary inter-

actions but is directly applicable to systems containing multi-partly interactions.

Besides, in some way, it needs only guarantees about the components offered by the

local invariants, whereas assumptions about the environment are substituted by

the generation of interaction invariants along with another type of invariant which

reflects the time-synchronization between the different components. Furthermore,

in our framework, the computation of the global invariant is independent from

the property of interest.
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The design technique has a significant influence on the verification cost of a given

system. The aim of verification is to decide whether a system meets some require-

ments and to provide a diagnostic when it is not the case. However, with the
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growing complexity of nowadays systems, the correction can be very expensive.

The clearer is the design of the system, the easier and the less costly is its verifica-

tion. Component-based design techniques are proposed to tackle the complexity

of the design issue. The main idea consists in building complex systems by as-

sembling less complex entities. Therefore, the behavior of the system is split into

logical units encapsulating separate behaviors. This technique allows to construct

evolving and flexible systems where the addition, the removal or the modification

of a component does not affect the inner behavior of the others. Composition

operation allows to construct a system from a set of components. A component

has a well defined interface to interact with the other components while the

composition provides the glue operators which link the components with each

other. Beyond the evolutivity and flexibility, component-based design offers the

possibility to guarantee the correctness of the system by assembling components

with known properties. For the design framework to be constructive, it should

meet two conditions: composability and compositionality. The former requirement

implies that each component preserves its properties after composition with the

other components while compositionality allows to infer global properties of the

system from the properties of the sub-components.

In the first part of this chapter, we present BIP, a component-based design frame-

work which separates clearly the behaviors from the glue operations. In the

second part, we describe a fully compositional method which was proposed for

the verification of untimed systems modeled in the BIP language.

3.1 BIP framework

Component-based design consists in building complex systems from a set of

components described by their behaviors and a set of glue operations modeling

the coordination between the different components. BIP (Behavior-Interactions-

Priorities) is a framework for component-based design where the coordination

between components is introduced by two kind of glue operations: interactions

and priorities. Its architecture is depicted in Figure 3.1 and consists of three layers:

• Behavior: The behavior of a component is described by a labeled transition

system where the transitions are defined by an action name, a guard, that is

a condition for the transition to be enabled and an update function.

• Interactions: The interactions restrain the global behavior of the composi-

tion. They impose the possible synchronizations between the actions of the
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Priorities (Conflict Resolution)

Interactions (Coordination)

B ROIVAHE

Figure 3.1: BIP layers

different components.

• Priorities: They restrict the global behavior by filtering among a set of

possible interactions at a given time. They are useful to strengthen state

invariants and restrain non-determinism.

In the following, we give a formal description of the above layers.

3.1.1 Atomic Components

In BIP, the behavior of an atomic component is described by a labeled transition

system enriched with data variables. It possesses a set of locations, a set of

transitions, and a set of actions serving for the synchronization with the other

components.

Definition 3.1 (Labeled transition system). A labeled transition system is a quadruple

(L, A, T) where L is a set of locations, A is a set of actions, T ✓ L⇥ A⇥ L is a set of

transitions, each labeled by an action.

For any action a and pair of locations l and l0 , we write l
a
−! l0 iff (l, a, l0) 2 T

Definition 3.2 (Atomic component).

An atomic component B = (L, A, T,D, {gt}t2T, { ft}t2T, Init) is a transition system

enriched with data variables as follows:

• (L, A, T) is a labeled transition system.

– L = {l1, l2, . . . ln} is a set of locations.

– A = {a1, a2, . . . am} is a set of actions.

– T = L⇥ A⇥ L is a set of transitions.

• Init = (l0, ζ0) is an initial state. It is defined by a location l0 and a predicate ζ0

characterizing the initial values of the data variables.

• D = {d1, d2, . . . dk} is a set of data variables and
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• for each t 2 T, we designate by gt a guard relative to t, that is a predicate on D that

should be satisfied for the transition t to fire, and by ft(D,D0) an update relation

that is, a predicate on D (current) and D0 (next) state variables.

A transition in T has the form t = (l, a, gt, ft, l0) where l is the source location, l0 is

the destination location, a is the action from which the component is synchronized

to one or more interactions. An action can be also internal, meaning that it is not

synchronized with any action from other components. A transition can fire only

if the guard gt is satisfied for the current valuation of data variables while ft is

an update step consisting of local state transformation. It can be represented by

(l, a, l0) in case where gt is equal to true and where there is no internal update ft.

An action is enabled if one of its transitions is enabled and is disabled if all of its

transitions are disabled. A transition (l, a, gt, ft, l0) is enabled if the component is

in the source location l and the guard gt is true for the current data valuations. At

the opposite, it is disabled if the component is not at location l or the guard gt is

false. The behavior of an atomic component is expressed by a labeled transition

system with transitions of the from (l, d)
a
−! (l0, d0), where l and l0 are control

locations of the component and d and d0 are the valuations of the data variables

at locations l and l0 respectively. The move (l, d)
a
−! (l0, d0) is possible if there is a

transition t = (l, a, gt, ft, l0) such that gt(d) ⌘ true and ft(d, d0) ⌘ true.

Example 3.1 (An atomic component). Graphically, a component is presented by

a box containing its behavior. The circles depict the locations, the double circle

designates the initial location, the arrows show the transitions between the source

and destination locations, and the small rectangles on the borders of the component

box show the actions serving to connect the component with other components.

Each transition is labeled with the name of its triggering action. Figure 3.2 depicts

a component having the initial location lc1. Its initial state Init is defined by

Init = (lc1, θ = 100).

The semantics of an atomic component is defined by the following transition

system.

Definition 3.3 (Semantics of an atomic component).

The semantics of component B = (L, A, T,D, {gt}t2T, { ft}t2T, Init) is a transition system

(Q, A, Ts, Init) where

• Q = L⇥D is a set of states where D is the set of valuations of variables in D.

• Ts is a set of transitions ((l, ν), a, (l0, ν0)) such that gt(ν) ^ ft(ν, ν0) for some t =

(l, a, l0) 2 T. To express that ((l, ν), a, (l0, ν0)) 2 Ts, we write ((l, ν)
a
−! (l0, ν0)).
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Figure 3.2: An atomic component

Definition 3.4 (Reachable states of a component).

Given a component B having the initial state Init, a state s is reachable if there exists an

execution sequence Init
a1−! s1

a2−! . . .
an−! sn such that sn = s.

3.1.2 Interactions and Parallel Composition

In the BIP framework, the coordination between the components is insured by

the use of interactions. An interaction serves to synchronize a set of actions

from the different components. The synchronization is possible when each of the

interaction’s actions is ready to be executed through a transition of the component

to which it belongs.

Definition 3.5 (Interaction).

Given a set of components Bi = (Li, Ai, Ti,Di, {gti
}ti2Ti

, { fti
}t2Ti

, Initi), i = 1 . . . n an

interaction is a subset α ✓ [i2I Ai, with I ✓ {1 . . . n} such that 8i 2 I, |α \ Ai|  1

We denote by involved(α), the set of components which have one action participat-

ing in interaction α. Formally,

involved(α) = {Bi|Ai \ α 6= ∅}

For readability, we make use of the notation (a1|a2| . . . |ak) for interactions instead

of {ai}i=1...k. The interaction model is specified by a set of interactions γ ✓ 2A,

where A =
S

1...n Ai. For a subset λ of interactions, we denote by Act(λ) the set of

actions involved in the interactions belonging to λ.

During the execution, an interaction can be enabled or disabled. An interaction

is enabled iff all of its actions are enabled. Contrarily, it is disabled iff at least
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one of its actions is disabled. Two interactions are conflicting if they share one

action or more. In this case, one and only one of them can be executed. In the

BIP framework, the data transfer on interactions is possible. For an interaction

α, we denote by Gα (a boolean condition) the guard and by Fα the data transfer

function allowing the update of data variables during the interaction execution.

Both operate on the variables existing in the participating components.

The parallel composition of a set of components is defined as follows:

Definition 3.6 (Parallel composition).

Given n components Bi = (Li, Ai, Ti,Di, {gti
}ti2Ti

, { fti
}t2Ti

, Initi), where the sets Ai of

actions are disjoint, and a set of interactions γ, we define their parallel composition kγBi

as the component (L, γ, Tγ,D, {g}t2Tγ
, { f }t2Tγ

, Init), where

• L = L1 ⇥ L2 . . . Ln is the set of global locations.

• D = [iDi is the set of data variables.

• The set of global transitions obtained by synchronization of sets of transitions

{ti = (li, ai, gti
, fti

, l0i) 2 Ti}i2I for an arbitrary I ✓ {1, . . . , n}, is defined by

Tγ =

8

><

>:

(l̄, α, g, f , l̄0)

l̄ = (l1, ..., ln) 2 L, l̄0 = (l01, ..., l0n) 2 L

α = {ai}i2I 2 γ, 8i 2 I.(li, ai, gti
, fti

, l0i) 2 Ti, 8i 62 I.li = l0i
f ⌘ Fα ◦©i2I fti

, g ⌘ Gα ◦©i2I gti

9

>=

>;

• Init is the initial state of the obtained composite system. It gives the initial location

where each of the composing components initially is. It includes also the conjunction

of the initial constraints on data variables of all of them. Formally, if for every

component Bi, Initi = (l0i, ζ0i), then Init = ((l01, l02, . . . , l0n),
V

i ζ0i).

The behavior resulting from this parallel composition can thus execute a transition

relative to α 2 γ iff for every i 2 I, the action α \ Ai is enabled in component Bi.

The locations of the components which do not participate in the transition remain

unchanged.

Example 3.2 (Parallel composition). Figure 3.3 depicts the parallel composition

of two components B1 and B2 by a set of interactions γ = {(a), (b|c)}. Since

action b of component B1 and action c of component B2 are synchronized through

interaction b|c, each one of them can be executed only simultaneously with the

other. The system resulting from the parallel composition of B1 and B2 have two

possible actions bc and a.
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Figure 3.3: Parallel composition of two components

3.1.3 Priority Rules

Priorities serve to reduce the non-determinism. They allow to select interactions

among the enabled interactions at the current state of the system.

Definition 3.7 (Priority).

A priority is a relation ≺✓ γ⇥ L⇥ γ, where L is the global set of locations and γ is

the set of interactions. The formula α ≺l α0 expresses that interaction α has priority on

interaction α0 at location l 2 L. For all l, the relation ≺l represents a partial order on γ.

Intuitively, priorities of a composite system are ordered pairs of interactions. For

each pair, when both of the interactions are enabled, only the interaction with the

highest order of priority is allowed to fire.

3.1.4 An Example of BIP System

In the following, we illustrate the application of the BIP component-based system

design on the Temperature Control system [ACH+95].

Example 3.3 (The Temperature Control system modeled in BIP). This system

is aimed to control the temperature in a nuclear reactor and to keep it within

some bounds. In practice, this system is composed of a controller component

interacting with a set of rods. We show first the system for two rods. Those

latter components are used to cool the reactor when a maximum temperature

1000◦ of the reactor is reached in which case one of them starts cooling it until the

minimum temperature 100◦ is reached. At this time, the operating rod rests and

the temperature within the reactor rises again. When no rod is ready to refrigerate

the reactor when necessary, the system is completely shut down. As in the untimed

BIP framework, the time is not handled, it is substituted in this example by the

tick transitions. The rods Rod1 and Rod2 are identical up to locations and variable
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names. They have the same structure, two locations and four transitions. Among

them, there are two loop transitions triggered by tick actions and synchronized

with the Controller tick action. The interaction structure is modeled by γ =

{cool|cool1, cool|cool2, heat|rest1, heat|rest2, tick|tick1|tick2}. While the actions in

the interaction tick|tick1|tick2 are strongly synchronized, the interactions heat|rest1

and heat|rest2 are conflicting on action heat. Only one of them can be executed at

any given time. The initial state of the system is defined by Init = ((l11, lc1, l12), θ =

100^ t1 = 3600^ t2 = 3600).

The Controller component contains two locations: lc1 location meaning that the

reactor is in the heating position and lc2 location, reflecting that the temperature

is being decreased by use of one of the rods. The variable θ represents the

temperature which decreases by two units at lc2 when transition tick fires and

increases by one unit at lc1 location when when transition tick fires. The set of

transitions relative to this component are the following:

– the transition t1 triggered by tick action: t1 = (lc1, tick, gt1 = (θ < 1000), ft1 =

(θ := θ + 1), lc1). t1 is a loop transition, meaning that the component remains

at the same location lc1 after its execution.

– the transition t2 triggered by cool action: t2 = (lc1, cool, gt2 = (θ = 1000), lc2).

There is no internal computation, proper to this transition. This transition is

synchronized through action cool with either action cool1 from Rod1 or cool2

from Rod2. If none of them is at l11 (resp. l12 location), and has variable t3

(resp. t2) with a value bigger or equal to 3600◦, then the system is deadlocked,

meaning that it is unable to execute any action. In this case, it should be shut

down.

– the loop transition t3 triggered by tick action: t3 = (lc2, tick, gt3 = (θ >

100), ft3(θ := θ − 2), lc2). Every execution of t3 decreases the temperature

with 2 degrees. The action tick is synchronized with tick1 and tick2 from

Rod1 and Rod2 respectively.

– the transition t4 triggered by heat action: t4 = (lc2, tick, gt4 = (θ = 100), lc1).

It synchronizes with either action rest1 of Rod1 or rest2 of Rod2.
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Figure 3.4: Temperature Control system modeled in BIP

3.2 Properties of BIP Systems

3.2.1 Invariants

A state predicate I is an invariant of a component B if it is satisfied by all the

reachable states, meaning that every state reached during the computation of B

satisfies it.

The post predicate transformer computes the state successors of the atomic compo-

nents which are represented symbolically by state predicates.

Definition 3.8 (Post predicate transformer with respect to transition). Given a com-

ponent B = (L, A, T,D, {gt}t2T, { ft}t2T, Init), and a state predicate ϕ on the variables in

D, the post predicate transformer with respect to a transition t = (l, a, gt, ft, l0) is defined

as follows:

postt(ϕ)(D) ⌘ 9D0.gt(D
0) ^ ft(D

0,D) ^ ϕ(D0)

We refer by at(l) to the boolean variable expressing that a given component is at l

location.

Example 3.4 (Post predicate computation w.r.t transition). Figure 3.5 depicts the

propagation of the predicate ϕ(d) ⌘ (d ≥ 0) through transition t having the guard

gt = (d > 2) and the update function ft = (d := d + 1). The post condition of ϕ

with respect to the transition t is ϕ0(d) ⌘ 9d0.(d0 > 2) ^ (d := d0 + 1) = (d > 3).

For a component B = (L, A, T,D, {gt}t2T, { ft}t2T, Init), given a state predicate

φ =
W

l2L at(l) ^ ϕl , the post predicate with respect to the transition system is
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a, gt = (d > 2)

f = (d := d+ 1)
l l0

ϕ(d) = (d ≥ 0) ϕ0(d) = postt(ϕ) = (d > 3)

Figure 3.5: Example of post-predicate computation

defined as

post(φ) ⌘
_

l2l

at(l) ^ (
_

t=(l0,a,l)

postt(ϕl0))

The computation of post(φ) can be performed by forward propagation following

the control locations in φ.

Definition 3.9 (Inductive invariant). For a component B, a state predicate φ is

• an inductive invariant iff post(φ)) φ and φ is satisfied at the initial state.

• an invariant iff there is an inductive invariant φaux that implies it: φaux ) φ.

The set of reachable states of a given component forms an inductive invariant.

Every over-approximation of this set is therefore an invariant of the component.

3.2.2 Deadlocks

3.2.2.1 Local Deadlocks

A component is locally deadlock-free if one of its transitions can be executed.

Definition 3.10 (Local Deadlock-freedom).

Given a component B = (L, A, T,D, {gt}t2T, { ft}t2T, Init), the state predicate character-

izing the set of deadlock-free states is expressed as

DFS ⌘
_

l2L

_

t2l•

enabled(t)

where l• contains the transitions having l for source location and enabled(t) is the predicate

expressing the enabledness condition for transition t.

Formally, enabled(t) ⌘ at(l) ^ gt. This means that for the transition t to fire, the

component should be at its source location l and the guard gt should be satisfied.

The DFS implies that a component is deadlock-free if, whichever is the location

that it reaches, there exists an outgoing transition that is enabled.
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3.2.2.2 Global Deadlocks

A system is deadlocked if in the current state, no interaction is enabled. We first

introduce the enabledness condition for an interaction.

Definition 3.11 (Interaction enabledness). An interaction α is enabled if all of its

actions are enabled, that is for each of them, at least one of the associated transitions is

enabled.

enabled(α) ⌘
^

a2α

enabled(a)

where enabled(a) ⌘
V

t2trans(a) enabled(t) and trans(a) is the set of transitions triggered

by action a. In general, this set does not contain a unique transition because a component

can have many transitions labeled with the same action a.

The predicate DIS expresses the set of states where the system is deadlocked.

Definition 3.12 (Deadlock States Set). The predicate DIS characterizing the set of all

the states from which all the interactions are disabled is defined as

DIS ⌘
^

α2γ

¬enabled(α)

3.3 Compositional Verification

In [BBSN08], the set of reachable states is over-approximated by invariants. Mainly

two types of invariants were proposed: local invariants characterizing the compo-

nents and an interaction invariant characterizing their coordination.

• Component invariants: they are local invariants characterizing the internal

behavior of the components independently from their interactions with each

other. The invariant of a given component is thus preserved even if the other

components of the system are changed.

• Interactions invariants: the interactions synchronize actions of different com-

ponents. They restrain the possible global locations of the system. Interaction

invariants aim to capture constraints on the possible combinations of the loca-

tions of the different components. They can either be computed from Boolean

Behavioral Constraints which represent sets of implications induced from

the interaction structure and the local behaviors as shown in [BBSN08], or as

proposed in [BBBL13], they can be represented by sets of linear equations.
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By taking the conjunction of the above invariants for Reachapp(S), the verification

rule becomes:

8iBi |= ⇤CI(Bi), II(γ),
V

i CI(Bi) ^ II(γ)) Ψ

kγBi |= ⇤Ψ
(D-Finder VR)

In the above rule, II(γ) is the interaction invariant expressing constraints on the

global locations induced from the interaction structure γ. The component invariant

of Bi is formulated in CI(Bi). If the computed invariant (
V

i CI(Bi) ^ II(γ)) implies

the safety property Ψ, then the system kγBi obtained by the parallel composition

of the components Bi satisfies it. The verification of the invariance of Ψ is therefore

done by checking the satisfiability of (
V

i CI(Bi) ^ II(γ) ^ ¬Ψ).

3.3.1 D-Finder

The above rule was implemented in the D-Finder tool [BBNS09] designed to verify

safety properties for component-based systems described in the BIP language,

with a focus on deadlock-freedom. It takes as input a system modeled in the BIP

language and progressively finds and eliminates probable deadlocked configura-

tions. D-Finder consists of a set of interconnected modules and performs basically

following these steps:

1. Construction of the predicate DIS characterizing the deadlock states set.

2. Iterative computation of increasingly stronger component invariants.

3. The computation of interaction invariants by collaborating with the CUDD

package or a SAT-solver.

4. Satisfiability checking of
V

i CI(Bi) ^ II(γ) ^ DIS. In case of systems without

data, the CUDD package is used, else a Sat-Solver.

In the following, we give a detailed presentation of the computation of the pro-

posed invariants.

3.3.2 Component Invariants

Component invariants are local invariants over-approximating the set of reachable

states of the components separately from each other. In [BBSN08], they are gener-

ated the by use of the post predicate transformer computing the state successors of

the atomic components which are represented symbolically by state predicates.
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One method for generating inductive invariants for components is defined in the

following proposition.

Proposition 3.1 (Computation of inductive component invariant). Given a compo-

nent B with initial state Init = (l0, ζ0), the following iteration is a sequence of increasingly

stronger inductive invariants.

φ0 ⌘ true, φi+1 ⌘ (at(l0) ^ ζ0) _ post(φi)

One technique for generating such invariants consists in iterating until finding

strong enough invariants implying the desired safety property. The precise com-

putation of this sequence requires quantifier elimination. As an alternative, it was

proposed to compute rather an over-approximation of the post predicate based on

the predicates analysis. A syntactic technique was proposed to over-approximate

the post predicate transformer postt with respect to a given transition t. The main

idea lays upon finding predicates posta
t which are not affected by the transfer

function ft. They are proved to be invariants of the component since they are

implied by the inductive invariants postt.

3.3.3 Interaction Invariants

While component invariants are used to reflect the behaviors of the different

components in isolation from each other, the interaction invariant is intended

to capture the global locations induced from the coordination between them.

Interactions are used to constrain the global locations of the system. An interaction

gathers a set of actions which can occur simultaneously. Therefore, they engender

strong constraints on the moves of the components.

Figure 3.6 illustrates a system composed of two components B1 and B2 strongly

synchronized through interactions a1|a2 and b1|b2. They have the initial locations l0

and l2 and the component invariants l0 _ l1 and l2 _ l3 respectively. The conjunction

of these component invariants does not track the strong synchronization induced

by the interaction structure and is very likely to not detect invariance safety

properties. The interaction invariant aims to extract constraints on the global

location of the system based on the interaction structure.

In the following of this section, we first show the method that has been proposed

for the computation of interaction invariant for systems without data variables.

For infinite systems, that is systems with data variables, an abstraction step is first

performed before the application of the basic method for finite state systems.
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l0 l1

b1 b1

a1

l2 l3

a1 a2

b2 b2

a2

B1 B2

Figure 3.6: A BIP system with two components

3.3.3.1 Finite State Systems

If we consider a set of components {B1, B2, . . . Bn} which are synchronized through

a set of interactions γ, then the interaction invariant is a predicate in the disjunctive

form
W

l2Lγ
l where Lγ ✓

S

1...n Li. For any control location in Lγ, there exists for

the execution of any interaction in γ, a control location in Lγ which is reached.

Intuitively, every Lγ is a set of locations of components such that for any location

l 2 Lγ, the successor of l does also belong to Lγ. This predicate is an invariant if it

is initially true, that is it has at least an initial location of an atomic component

Bi. The interaction invariant is computed either by solving Boolean Behavioral

Constraints (BBCs) characterizing the successor locations of every location or

Fixed-point computation. In [BBBL13], another method was proposed to compute

incrementally linear interaction invariants.

In the following, we describe briefly the method based on solving BBCs.

Definition 3.13 (Forward interaction set). Given the parallel composition kγBi of a set

of components, for each location l 2
S

1...n Li, the forward interaction set relative to l is

defined as

l• = {{ti}i2I |8i.ti 2 Ti ^ (9i.•ti = l) ^ {action(ti)}i2I 2 γ}

For a set of locations L, the forward interactions set is L• =
S

l2L l•.

In the above definition, •t (resp. t•) denotes the set of source (resp. destination)

locations of the transition t. That is, for a location l, l• contains the set of transitions

belonging to an interaction involving a transition ti having l for source location.

Similarly, the backward interactions set is defined as •L =
S

l2L
•l where l• =

{{ti}i2I |8i.ti 2 Ti ^ (9i.t•i = l) ^ {action(ti)}i2I 2 γ}.
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Figure 3.7: Forward interaction sets

Example 3.5 (Forward interaction set). For example, in Figure 3.7, the set {t1, . . . , ti, . . . tk}

belongs to the forward interaction set l•1 of location l1. It does also belong to the

forward interaction sets of locations l2, . . . li, . . . lk.

Those sets can be perceived as transitions in 1−safe Petri nets where the notion of

traps is defined as follows:

Definition 3.14 (Traps). Given a system S defined as the parallel composition kγBi,

where Bi = (Li, Ai, Ti,Di, {gti
}t2T, { fti

}t2Ti
), a trap is a set L of locations such that

L• ✓ •L.

If the initial location of the system has a control location in some trap then

all of its successors have a control location belonging to the trap. If the set of

locations L ✓
S

1...n Li is a trap containing the initial location of one of the system

components, then
W

l2L at(l) is an invariant of S. The traps can be computed as

solutions of the following system of implications:

If a boolean valuation v :
S

i=1...n Li ! B satisfies the below set of applications,

then the set {l 2
S

i=1...n Li|v(l) = true} is a trap. The required implications for

l 2
S

i=1...n Li are defined as follows:

v(l))
^

{ti}i2I2l•

(
_

l02{t•i }i2I

v(l0))

This allows to generate the traps in an enumerative manner. This requires the use

of a SAT-solver in order to obtain the minimal solutions of the above system. It has

been demonstrated in [YW99] that this traps computation method is NP-complete.

Example 3.6 (Traps and interaction invariant). The set of of minimal traps for the

example given in Figure 3.6 are:
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L1 = {l0, l1}, L2 = {l1, l2}, L3 = {l0, l3}, L4 = {l2, l3}

The resulting interaction invariant is II = (l1 _ l2) ^ (l0 _ l3)

A detailed presentation of interaction invariant computation methods is shown in

[Ngu10].

3.3.3.2 Infinite State Systems

In case of infinite systems, that is to say systems with data variables, an abstraction

step is first performed. It aims at computing an abstract component Bα
i from each

component Bi of the system through an abstraction function α. The interaction

invariant of the composite system S = kγBi is deduced from the interaction

invariant of kγBα
i . In fact, the abstract component Bα

i is derived from the concrete

one with respect to an invariant of Bi following the disjunctive form and with

respect to its abstraction function in such a way that the two following conditions

are guaranteed

• The system Sα resulting from the parallel composition of the abstract compo-

nents simulates S.

• If φα is an invariant of Sα then α−1(φα) is an invariant of S. It follows that it

is possible to obtain the interactions invariant of the concrete system S from

the traps corresponding to the interactions invariant of the abstract system

Sα.

3.3.3.3 Dealing with Data Transfer on Interactions

The explained method does not handle the data transfer on interactions. The

data transfer allows to update the data variable values during the execution of

the interactions, hence their values do not depend only on the behavior of the

component to which they belong. The above introduced method handles only pure

interactions, that is interactions without transfer of data variables. The absence of

data transfer on interactions is a hurdle in practice and its ignorance may cause

the global invariant not being tight enough to detect some properties. To preserve

the compositional verification reasoning and allow data transfer consideration for

stronger invariant computation at the same time, a two-fold scheme was proposed

in [Ngu10]. It lays upon these two major techniques:
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• The changes of the data variables in interactions are projected to the com-

ponents to which the data belong. This allows to transfer the data updates

on interactions to the level of the components’ transitions. This influences

the computation of the post-predicate transformers over transitions and by

consequence the local components’ invariants.

• For interaction invariant, the so-called interaction component is introduced

to mimic the data transfer over the set γ of interactions. The interaction

structure is subsequently updated by connecting the actions of the interaction

component. This results in an abstract system without data variables transfer

on interactions.

After performing the above two steps, consisting in the modification of the com-

ponents transitions and adding and connecting a new interaction component, the

compositional verification method can be applied on the obtained abstract system

allowing the global invariant to capture the effect of data transfer.

3.4 Summary

Component-based design aims to alleviate the complexity issue while building

complex system by assembling logical entities with less complex features. In this

chapter, we presented BIP, a modeling framework where the system construction

follows three layers: Behavior, Interactions and Priorities. The Behavior layer

includes the behaviors of the different components modeled mainly by transi-

tion systems which can be enriched with data variables. The Interactions layer

expresses the strong synchronization between the different components and the

Priorities layer allows to restrain the non-determinism by filtering among enabled

interactions at a given location.

In the second part of this chapter, we recalled a compositional verification method

proposed for such systems. It is based on a fully automatic and compositional

method for the computation of an invariant over-approximating the set of reach-

able states.

In the presented design framework, the time modeling is not supported. Besides,

in general, a direct application of the proposed verification rule to timed systems

would not be strong enough to capture the desired properties. In fact, in a timing

setting, the clocks of the different components do all advance at a common rate.

This induces time-synchronization relations which cannot be captured by the above

invariants.
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In the next chapter, we present a framework for modeling real-time systems which

can be perceived as an extension of the above framework where components are

modeled mainly as timed automata.



Chapter 4

Timed Component-Based Systems

“ We may say a thing is at rest when it has not changed its position

between now and then, but there is no ’then’ in ’now’, so there is no

being at rest. Both motion and rest, then, must necessarily occupy time. ”
Aristotle , Reply to Zeno’s paradoxes, 350 BC
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Several models have been proposed to describe the behavior of a timed system.

Logic theories may serve to model system description and specifications under

the same language: the system behavior is expressed by axioms and inference

rules while the specifications are represented as theorems, that is formula that can

be built through repetitive inference rules. Modecharts [JM94] represent the first

timed extension of statecharts [Har87] which allow the description of concurrent

systems graphically, while the Timed unified modeling language is proposed as

the real-time extension of UML [Dou98]. Conversion schemes have proposed

to translate UML systems into other frameworks in order to allow the reuse of

the already proposed verification methods or tools [FHD+99, KMR02, OGO06],

focusing mainly on systems of timed automata.

Timed automata were first proposed by Alur and Dill [AD94] and they represent a

prominent framework for the modeling of timed systems. An expressive model

having some common features with timed automata is Time Petri-Nets [Ram74,

BM83]. Despite the two models were growing independently from each other at

the beginning, a significant interest was dedicated to their mutual comparison (e.g

[Srb08]), sometimes with a focus on their expressiveness [BCH+05]. Since the tools

handling timed automata seem to be more numerous and developed, translation

approaches from particular Time Petri Nets were proposed (e.g [HKSLT02]). This

offers the reuse of cross techniques and tools which were successful on timed

automata.

In this chapter, we present a constructive component-based framework for real-time

systems where components are mainly timed automata.

4.1 Time Formalism

The theory of timed automata was proposed to support automated reasoning

about the real-time aspect of systems interacting with physical processes. It

handles dense-time models where the time values for event occurrences may

be real numbers. A timed automaton is mainly a finite-state Büchi automaton

extended with real-valued variables called the clocks. Before presenting the syntax

and semantics of timed systems, we give an overview of time-related notions.
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Clock

We consider real-time dense-time models where time is modeled by a set of real-

valued positive variables, the clocks. In a given system, all the clocks increase

synchronously with the same rate. The only operation allowed is clock reset.

Therefore, each clock variable records the amount of time elapsing since its latest

reset.

Definition 4.1 (Clock valuation). For a finite set of clocks X , an X -valuation is a

function v : X ! R≥0 assigning to each clock x a positive real value v(x).

The set of all valuations is R
X
≥0.

Definition 4.2 (Clock Constraint). A clock constraint is defined by the grammar:

C ::= true | x#ct | x− y#ct | C ^ C

where x, y are clocks in X , # 2 {<,,=,≥,>} and ct 2 Z.

A clock constraint is atomic if it is defined over one clock or two clocks, thus following this

grammar:

C ::= true | x#ct | x− y#ct

Given a clock constraint C and an X -valuation v , v |= C denotes the evaluation of

C in v. It expresses that the valuation satisfies C. The expression v 6|= C is used in

the opposite case, that is when valuation v does not satisfy C.

Definition 4.3 (Clock Reset). Given a clock x in X , the valuation v [x := 0] is obtained

from v by setting the clock x to 0 and keeping the rest of clocks unchanged.

v [x := 0] (x0) =

8

<

:

0 if x0 = x

v(x0) otherwise

For a subset r of X , the valuation v [r] is obtained by setting all clocks of r to 0 and keeping

the rest of clocks unchanged.

v [r] (x) =

8

<

:

0 if x 2 r

v(x) else

Definition 4.4 (Time Delay). For a real value δ, the notation v + δ defines a new

valuation v0 where every clock x in X is delayed by δ value. That is v0(x) = v(x) + δ.
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4.1.1 Zones

In the presence of infinite sets of valuations, the use of the so-called ’zone’ allows

a coarser representation.

Definition 4.5 (Zone). A zone corresponds to the set of clock valuations that satisfy a

clock constraint. A zone is convex by definition.

Operations on Zones

Several operations on zones are defined. They express the time elapsing, the reset

of clocks, the conjunction of zones, etc.

Reset Given a zone ζ and a set of clock reset operations r, the operations ζ[r]

and [r]ζ are defined as follows:

ζ[r] = {v[r] | v 2 ζ}

[r]ζ = {v | v[r] 2 ζ}

Intuitively, ζ[r] contains all valuations resulting from the execution of reset op-

erations in r. The notation [r]ζ defines the dual operator. It represents the zone

which, after resetting clocks in r, yields valuations in ζ.

Conjunction Given a zone ζ and a clock constraint c, their conjunction is defined

as

ζ ^ c = {v | v 2 ζ ^ v |= c}

Forward The forward diagonal projection of a zone ζ is the zone% ζ defined as

v0 2% ζ iff 9δ 2 R≥0.9v 2 ζ. v0 = v + δ 2 ζ

Backward The dual operator of Forward operation is the backward diagonal

projection. ζ:

v0 2. ζ iff 9δ 2 R≥0. v0 + δ 2 ζ
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ζ = 2  x  4 ^ 1  y  2
% ζ . ζ

ζ[{y := 0}]

x

xx

xx

x

x x

y

[{y := 0}]ζ

yy

y

y

y

free(ζ, y)

y

extrapk(ζ), k = 2

y

x

y

extrapk(ζ), k = 1ζ ^ x ≥ 3

Figure 4.1: Operations on zones

Definition 4.6 (k-extrapolation). Given a constant k 2 N, a zone is said to be k-bounded

if it is defined by a clock constraint C, where all clock difference bounds are smaller than k .

The k-extrapolation of a zone ζ, denoted extrapk(ζ) is the smallest k-bounded zone con-

taining ζ.

In Figure 4.1, these operations are illustrated for a given zone ζ = (2  x 

4^ 1  y  2). The operation free(ζ, y) performs sequentially reset operation on

clock y followed by the inverse operation of reset. That is, free(ζ, y) eliminates all

constraints on clock y.

Many data structures have been proposed in order to represent zones and ma-

nipulate them. The Difference Bound Matrices Difference Bound Matrice (DBM)

representation is the most common data structure used for timed systems anal-

ysis. We mention Clock Difference Diagrams (CDD) [LPWY99] and Federations
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[DHLP04].

4.1.2 Difference-Bound Matrices

Difference-Bound Matrices offer a practical representation of potential constraints,

that is to say, constraints of the form xi− xj 9 c, where xi and xj are clock variables,

92 {,<} and c 2 Z. The DBM representation is used to represent clock zones

in the following. We consider a set of clocks X = {x1, x2, . . . xn} and a constraint

C over X . Let x0 be a reference clock variable having a constant value equal to 0.

Given a constraint C, the related zone ζ can be rewritten as a DBM , with elements

mij as follows:

• For each atomic constraint xi− xj 9 c of ζ, let mij = (c,9). This includes also

constraints of the form xi 9 c and −xi 9 c which are rewritten as xi − x0 9 c

and x0 − xi 9 c, respectively.

• For each unbounded clock difference xi − xj, let mij = ∞, where the symbol

∞ expresses that no bound exists.

• Record the implicit constraint that every clock equals itself, that is, xi− xi  0.

If the correspondent matrix cell has not been already filled in by a stronger

constraint, record that every clock value is non-negative, that is x0 − xi  0 .

If we consider as example the zone ζ = (x1 ≥ 10^ x2  3^ x1 − x2  8), then the

DBM is:

M =

0

B
@

x0 x1 x2

x0 (0,) (−10,) ∞

x1 ∞ (0,) (8,)

x2 (3,) ∞ (0,)

1

C
A

Notation 4.1 (Bounds Comparison). We introduce two operations on bounds, which

are comparison and addition:

• (Comparison) For any constant c, (c,9) < ∞. In addition, if c < c0, then

(c,9) < (c0,90). Besides, (c,<) < (c,).

• (Addition) For every bound b, b + ∞ = ∞.

Given two integers c1 and c2, (c1,)+ (c2,) = (c1 + c2,) and (c1,<)+ (c2,9

) = (c1 + c2,<).
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4.1.2.1 Canonical Representation of Zones

When no constraint of a zone ζ can be strengthened without reducing the number

of included valuations, the zone is closed under entailment. For each zone ζ, there

exists a unique zone ζ 0 such that ζ and ζ 0 have the same valuation set and ζ 0 is

closed under entailment. The DBM relative to this unique zone ζ 0 is called the

canonical DBM representation of ζ.

Formally, the canonical DBM representation of a zone respects this condition:

8i, j. mij  mik + mkj

For example, the zone ζ = (x1 ≥ 10 ^ x2  3 ^ x1 − x2  8) is not closed under

entailment and its direct DBM representation violates the required condition.

Precisely, m20 + m01 = (−7,) < m21 = ∞. Since a zone can be interpreted

by a graph, deriving the tightest constraint for a difference constraint between

two clocks is equivalent to finding the shortest path between their nodes in the

corresponding graph. For this purpose, Floyd-Warshall [Flo62] algorithm is used.

The canonical form of the ζ zone is

M0 =

0

B
@

x0 x1 x2

x0 (0,) (−10,) ∞

x1 ∞ (0,) (8,)

x2 (3,) (−7,) (0,)

1

C
A

The correspondent zone is ζ 0 = (x1 ≥ 10^ x2  3^ x1 − x2  8^ x2 − x1 < −7).

The operation of normalization consists in computing the canonical DBM represen-

tation of the zone.

We note that all the operations on zones introduced in Subsection 4.1.1 are imple-

mented by use of DBM data structure.

4.2 Timed Components

Components are basically timed automata, that is finite automata extended with

real-valued variables modeling the logical clocks. A finite automaton is a graph

containing a finite set of locations and a finite set of edges relating them. We

slightly adapt the timed automata definition from [AD94] for notation uniformity.

At starting moment, the component clocks are equal to zero and they increase
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synchronously at the same rate. One main feature of timed components is that the

actions are timeless and instantaneous while time may pass in the locations. To

restrict the behavior of a component, the actions describing transitions between

two different locations are labeled with clock constraints called the guards. This

means that an action is allowed only if the guard of the transition is satisfied.

Besides, the locations are labeled with time progress conditions which represent a

restricted form of downward closed timing constraints. A component is allowed

to stay within a location as long as the time progress condition is satisfied. We

note that a component has external actions, used for synchronization with other

components, and internal actions which depend solely from the activity of the

component independently from the others. This aspect will be further detailed in

the next section.

4.2.1 Syntax

Definition 4.7 (Timed Component). A timed component is a tuple B = (L, A,X , T, tpc, s0)

where

• L is a finite set of locations.

• A a finite set of actions.

• X is a finite set of local clocks.

• tpc : L! C(X ) assigns a time progress condition to each location.

Time progress conditions are restricted to conjunctions of constraints as x  ct.

• T ✓ L⇥ (A⇥ C(X )⇥ 2R)⇥ L is a set of edges labeled with an action, a guard,

and a set of clock reset operations in R, the set of all possible clock reset functions.

• s0 2 L⇥C is the initial state, i.e s0 = (l0,
V

X x = 0) where l0 is the initial location.

Therefore, all the clocks of the components have initially null values.

To avoid confusion, the notation “time progress condition” (tpc) from [BS98] is

preferred to “location invariant”.

When t = (l, (a, g, r), l0) 2 T, the transition t can be expressed by l
a,g,r
−−! l0.

Intuitively, this notation defines respectively the source and destination locations l

and l0, the guard, the action and the set of clock reset operations happening when

the transition occurs. The transition t can be executed only if its guard g is true for
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the current valuation of clocks. An action is enabled if at least one of its transitions

is enabled. Contrarily, it is disabled if all of its transitions are disabled.

Example 4.1 (A Timed Component).

A timed component is depicted graphically by a box where locations are illustrated

by circles. The initial location is specified by a double circle. An example of

component Controller = (L, A,X , T, tpc, s0) is depicted in Figure 4.2 where:

• The set of locations is L = {lc0, lc1, lc2} and the initial location is lc0.

• the set of actions is A = {a, c}

• X = {x}

• T = (t1, t2, t3) where

– t1 = (lc0, τ, x ≥ 4, {x := 0}, lc1)

– t2 = (lc1, a, x = 4, {x := 0}, lc2)

– t3 = (lc2, c, true, {x := 0}, lc1)

• tpc assigns the following time progress conditions for locations: tpc(lc0) =

true, tpc(lc1) = x  4 and tpc(lc2) = true

We note that when a guard (respectively time progress condition) is not shown

on a transition (respectively location), then it has the default value true. A true

guard means that it suffices that the component reaches the source location for

the transition to fire, without any condition on clocks. This is the case for the

transition t3 of the shown component.

lc0

lc1

x  4

lc2

x ≥ 4
x := 0

a, x = 4
x:=0

c

x :=
0

a

c

Controller

Figure 4.2: A timed component
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4.2.2 Operational Semantics

For a given location and clocks valuation, the component can either execute a

transition or let time elapse in the current location.

Definition 4.8 (Semantics). The semantics of a timed component B = (L, A,X , T, tpc, s0)

is given by the labeled transition system (Q, A,!, Q0) where Q ✓ L⇥V denotes the

states of B,! ✓ Q⇥ (A [R≥0)⇥Q denotes the transitions according to the rules:

• (time progress) (l, v)
δ
! (l, v + δ) if

(
8δ0 2 [0, δ].tpc(l)(v + δ0)) ;

• (action step) (l, v)
a
! (l0, v[r]) if

(
l, (a, g, r), l0

)
2 T, g(v) ^ tpc(l0)(v[r]).

and Q0 = {(l0, v0)|s0 = (l0, c0) ^ v0 |= c0} denotes the initial states set.

The time progress relation describes the passing of time, whereas the action step

represents a timeless event with the possibility of clock reset. Intuitively, if the

current state is (l, v), time is allowed to elapse by δ without changing location if

the time progress condition of the location l is not exceeded, i.e. tpc(l) evaluates

to true for every valuation v + δ0, where δ0 is at most δ .

Example 4.2 (Execution sequence). We consider the component in Example. 4.1

where the execution sequence from the initial state (l0, x = 0) is described as

follows.

• Since tpc(lc0) is true, the component is allowed to stay infinitely at lc0

location. Thus any delay transition from (lc0, x = 0) is possible, i.e. 8δ 2

R≥0.(lc0, x = 0) δ
−! (lc0, x = δ). However, based on the guard of t1 , the

component is allowed to leave lc0 towards lc1 location only if the clock x

reaches 4 time units. At the execution of t, x is reset to 0.

• At location lc1, the component Controller is not allowed to stay more than 4

units of time. When x reaches exactly 4, t2 fires since it has the guard x = 4.

• Since tpc(lc2) is true, the component can stay there infinitely. In addition,

the transition t3 can be instantaneous since it has a true guard and hence

does not require that the clock reaches any minimum constant.

4.2.3 Symbolic Semantics

The above semantics defines a state of the system by a control location and values

of the component clocks. Due to the continuous time domain, the above labeled

transition system yields infinitely many states. We shall use a symbolic semantics
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allowing a finite symbolic representation of the state space. We work with the zone

graph as a symbolic representation. The elements of a zone graph are symbolic

states. A symbolic state is a pair (l, ζ), where l is a location of the component B

and ζ is a zone, a set of clock valuations defined by clock constraints. A symbolic

state (l, ζ) represents all the states (l, v) such that v satisfies ζ.

The initial configuration s0 = (l0, c0) corresponds to a symbolic state (l0, ζ0) taking

into account the time progress condition of the initial location. Recursively, given

a symbolic state (l, ζ), its successor with respect to a transition t of B is denoted

as succ(t, (l, ζ)) and is defined by means of its timed and its discrete successor as

follows:

• time_succ((l, ζ)) = (l,% ζ ^ tpc(l))

• disc_succ(t, (l, ζ)) = (l0, (ζ ^ g)[r] ^ tpc(l0)) if t =
(
l, _, g, r, l0

)

• succ(t, (l, ζ)) = extrapk(time_succ(disc_succ(t, (l, ζ))))

where k is the maximum constant appearing in the component and for a

symbolic state s = (l, ζ), extrapk(s) = (l, extrapk(ζ)) .

A symbolic execution of B is a sequence of symbolic states s0, . . . , si, . . . . For any

i ≥ 0, there exists a transition t such that si reaches si+1 through t. Formally,

si = succ(t, si−1). For a given state s, the set of states reachable from s is defined

as:

ReachB(s) = {s} [
[

t2T

ReachB(succ(t, s))

where T is the set of transitions of the component B.

Definition 4.9 (Reachable State Set). The reachable state set ReachB of a component is

the set of reachable states from its initial state: ReachB(time_succ(s0))

In order to have a finite set of reachable state set, we apply the extrapolation

operation on the zones (see Definition 4.6). It consists in making all the bounds on

clocks and clock differences either bounded by a constant value or infinite. This

over-approximation is sound only for timed automata without diagonal constraints

[BY03, Bou04].

Example 4.3 (Infinite zone-graph and extrapolated zone-graph). The timed com-

ponent in Figure 4.3 has an infinite zone graph. The extrapolation with a clock

ceiling k allows to have a finite zone-graph. The choice of k equal to the maximum

constant 10 appearing in the component results in the finite graph depicted in

Figure 4.4.
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(l0, x = y)

(l1 ∧ y ≤ 5 ∧ y = x)

(l1 ∧ y ≤ 5 ∧ x ≤ 10 ∧ x− y = 5)

(l1 ∧ y ≤ 5 ∧ x ≤ 15 ∧ x− y = 10)

(l1 ∧ y ≤ 5 ∧ x ≤ 20 ∧ x− y = 15)

(l2, x = y)

l0

l1

l2

y  5
y = 5
y := 0

x := 0

y := 0

x := 0

y := 0

x ≥ 10

Figure 4.3: A timed component and its infinite zone-graph

(l0, x = y)

(l1 ∧ y ≤ 5 ∧ y = x)

(l1 ∧ y ≤ 5 ∧ x ≤ 10 ∧ x− y = 5)

(l1 ∧ y ≤ 5 ∧ x− y = 10)

(l1 ∧ y ≤ 5 ∧ x ≤ 10 ∧ x− y > 10) (l2, x = y)

Figure 4.4: Extrapolated zone-graph for the timed component in Figure 4.3
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4.3 Timed Systems

In component-based timed systems, components execute in parallel and their

clocks increase synchronously. In addition, it is usually necessary to restrict the

product of the behaviors of the different components in order to achieve some

global properties. Components communicate by means of interactions, which offer

synchronization between actions of different components. Systems are built from

a set of components with disjoint sets of actions, locations, and clocks. Given a set

of n components {Bi = (Li, Ai,Xi, Ti, tpci, s0i)}i=1...n, we assume that their clock

sets and action sets are disjoint, i.e. for all i 6= j, Xi \ Xj = ∅, Li \ Lj = ∅ and

Ai \ Aj = ∅. An interaction is defined as a subset of actions containing at most an

action from each component. As in the BIP framework, an interaction is a subset

α ✓ [i2I Ai, with I ✓ {1 . . . n} such that 8i 2 I, |α \ Ai|  1

We denote by involved(α), the set of components which have one action participat-

ing in interaction α. Formally,

involved(α) = {Bi|Ai \ α 6= ∅}

Interactions and their enabledness conditions are defined as in the BIP framework.

Definition 4.10 (Timed System). Given n components Bi = (Li, Ai, Xi, Ti, tpci,

s0i) and a set of interactions γ, we define the timed system kγBi as the component

(L, γ,X , Tγ, tpc, s0), where

• L = L1 ⇥ L1 ⇥ · · · ⇥ Ln is the set of global locations.

• s0 = ((l01, ..., l0n),
V

i c0i) , where 8i, s0i = (l0i, c0i).

• X = [iXi is the set of clocks.

• tpc(l̄) =
V

i tpc(li), 8l̄ = (l1, ..., ln) 2 L.

• The set of global transitions is defined by

Tγ =

8

><

>:

(l̄, (α, g, r), l̄0)

l̄ = (l1, ..., ln) 2 L, l̄0 = (l01, ..., l0n) 2 L

α = {ai}i2I 2 γ, 8i 2 I.(li, (ai, gi, ri), l0i) 2 Ti, 8i 62 I.li = l0i
r =

S

i2I ri, g =
V

i2I gi

9

>=

>;

The obtained behavior kγBi can execute an interaction α 2 γ if for each Bi 2

involved(α), the action Ai \ α is enabled in Bi. Therefore, in kγBi, a component

Bi can execute an action ai only as part of an interaction to which it belongs,

along with the execution of all the other actions belonging to the same interaction.

This requires that all the guards of the involved transitions are satisfied. As
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for internal actions, i.e. actions forming unary interactions, the transitions are

executed without association with any action belonging to another component.

Example 4.4 (A Timed System). Figure 4.5 illustrates a timed system composed

of a Controller component interacting with two Worker components. The three

components are synchronized through interaction set γ = {a|b0, a|b1, c|d0, c|d1}.

The initial global location of the system is (lc0, l0
1 , l1

1). When x is at least 8, the

Controller component takes an internal transition and resets x to reach the lc1

location. When the Controller reaches 4 time units at lc1, the transition labeled

with a should fire. Since action a is shared between the two interactions a|b0 and

a|b1, either b0 or b1 should be executed. This requires that at least one of the clocks

y0 and y1 should reach 8 units of time when x is equal to 4. When the Controller

is at lc2 location, the execution of c action requires the parallel execution of b0 or

b1. Therefore, it suffices that one of the worker components is at its l2 location (l0
2

or l1
2), since c, d0 and d1 have no guards on transitions.

l0
1

l0
2

b0,
y0 ≥

8

d0,
y0 := 0

b0

d0

Worker0

lc0

lc1

x  4

lc2

x ≥ 8
x := 0

a, x = 4
x:=0

c

x :=
0

a

c

Controller

l1
1

l1
2

b1,
y1 ≥

8

d1,
y1 := 0

b1

d1

Worker1

Figure 4.5: A timed Controller-Workers system

Remark 4.1 (Semantics of a Timed System). The semantics of the system kγBi resulting

from the composition of the components Bi = (Li, Ai, Xi, Ti, tpci, s0i) corresponds to the

semantics of the component (L, γ,X , Tγ, tpc, s0) defined in Definition 4.10. It is therefore

defined as the labeled transition system (Q, γ,!γ, Q0), where Q ✓ L⇥V denotes the

states of kγBi, Q0 is the set of global initial states and!γ ✓ Q⇥ (γ[R≥0)⇥Q denotes

the transitions according to the following rules

• (time progress)

δ 2 R≥0, 8i 2 {1 . . . n}. tpc(li)(v + δ)

(l, v)
δ
−! (l, v + δ)

• (interaction execution)
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α = {ai}i2I , 8i 2 I. (l, v)
ai−! (l0, v[ri]), 8i /2 I. l = l0, g(v) ^ tpc(l̄0)(v[r])

(l̄, v)
α
−! (l̄0, v[r])

As for the notations l̄, l̄0, g and tpc(l̄), we follow those in definition.4.10 where they

are defined, respectively, as the global source location of the system, the destination

location, the global guard, and the time progress condition corresponding to the

global location l̄.

4.4 Timed Properties

4.4.1 Safety Properties and Invariants

We are interested in verifying invariant safety properties, that is properties de-

scribing that some ’bad state should never be reached’. For example, for safety

reasons, in a railway system, a train should never enter while the gate is not down.

We note the existence of safety properties that are not invariants. For instance,

’component B1 can execute action a only after component B2 executes action b’ is

not an invariant since it is not a state property.

4.4.1.1 Invariants

An invariant is a predicate φ that holds for every reachable state of the system.

The predicate φ should be fulfilled in the initial state and its satisfaction should be

preserved along the execution of transitions. This means that if φ holds at a source

state of a transition, then it holds also for the destination state.

Definition 4.11 (Invariant of a Component). Given a component B = (L, A,X , T, tpc, s0),

a state predicate φ is an invariant of B, denoted inv(B, φ) if it is satisfied by every reachable

state of the system.

Formally, φ is an invariant if it is satisfied by the initial state and for any reachable state s

and transition t 2 T:

(s |= φ ^ s
t
−! s0)) s0 |= φ

Proposition 4.1. Given two invariants φ1 and φ2 of a component B, then φ1 _ φ2 and

φ1 ^ φ2 are also invariants of B.



56 Chapter 4. Timed Component-Based Systems

It is possible to prove that a predicate φ is an invariant of a given component B by

finding a stronger predicate, that is a predicate implying it, which is an invariant

of the component. This is stated formally in the following proposition

((φstrong ) φ) ^ inv(B, φstrong))) inv(B, φ)

4.4.1.2 Safety Properties

State safety properties express that combinations of locations and clock constraints

are reachable or unreachable from the initial state. Formally, the checked properties

Ψ are represented by logical formulas combining locations of the components and

clock constraints following this grammar

Ψ ::⌘ a | at(l) | Ψ1 ^Ψ2 | ¬Ψ

where a is an atomic clock constraint and at(li) is a predicate expressing the

presence of component Bi at location li. We note that the predicate Ψ1 _Ψ2 (resp.

Ψ1 ) Ψ2) is included in this grammar since it is equivalent to ¬(¬Ψ1 ^ ¬Ψ2)

(resp.¬Ψ1 _Ψ2). Intuitively, a property Ψ is satisfied if all the reachable states of

the system satisfy it.

4.4.2 Deadlock-freedom

Deadlock-freedom is a significant property for concurrent systems safety. It

indicates their ability to always perform some action. The presence of deadlock

is one common cause of errors that hinders systems consisting of concurrent

components, that is components sharing common resources or which follow

strongly constraining synchronization. In fact, strong synchronization serves to

constraint the global behavior of the system and to eliminate undesirable global

locations, but this may cause the appearance of deadlock states. Furthermore,

in the case of real-time systems, time brings another degree of concurrency. In

fact, the presence of time progress conditions which should not be exceeded at

components locations and the necessity of a guard achievement for a transition

to occur may provoke conflicting requirements over two components or more,

making the execution of some global actions impossible. A deadlocked state of a

system implies that neither an unary interaction nor a global transition triggered
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by a multi-party interaction synchronizing many components are enabled. The

deadlocks therefore depend on the enabledness of the interactions. Accordingly,

we first introduce the enabledness condition of an interaction.

Interation Enabledness

For an interaction α of the system, α 2 γ, the predicate characterizing the enabled-

ness of α is defined as

enabled(α) ⌘
_

T2trans(α)

enabled(T)

where the set trans(α) contains the transitions of the system which are triggered

by α interaction. That is, enabled(α) expresses the states from which interaction α

can be executed. It is the case when all of its actions are ready for synchronizing

and when for each one of those actions, one transition is enabled.

Example 4.5 (Enabledness predicate for an interaction). If we consider the interac-

tion α = a|b0 of the system depicted in Figure 4.5, then the enabldness predicate

enabled(α) is expressed as

enabled(α) ⌘ enabled(T) _ enabled(T0)

where (lc1, l0
1 , l1

1)
T
−! (lc2, l0

2 , l1
1) and (lc1, l0

1 , l1
2)

T0
−! (lc2, l0

2 , l1
2)

4.4.2.1 Global Transition Enabledness

Let us consider a global transition T 2 Tγ, T = (l̄, (α, g, r), l̄0), where l̄ = (l1, ..., ln)

is the global source location, l̄0 = (l01, ..., l0n) is the global destination location and

α = {ai}i2I . The guard and the tpc of the global location follow Definition.4.10.

The predicate characterizing the enabledness of T is

enabled(T) ⌘ at(l̄) ^ tpc(l̄)^ . (g ^ tpc(l̄0)[r])

This predicate implies that for a transition to be enabled, not only the time progress

conditions of the source and destination locations of the components involved

in the transition are taken into account, but also the time progress conditions of

the non involved components. In other words, due to the synchronous nature of

time, the enabledness of a transition is not projected to the involved components
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only. The clocks of the other components do also increase with the same time

elapse and the time progress conditions of their current locations should not be

exceeded when the guard and tpc of the involved components would enable the

global transition.

Example 4.6 (Enabledness predicate for a transition). We consider the example

in Figure 4.5 and the transition T = (l̄, (α, g, r), l̄0), where l̄ = (lc1, l0
1 , l1

1), l̄0 =

(lc2, l0
2 , l1

1), α = a|b0, g = (y0 ≥ 8 ^ x = 4) and r = {x := 0}. The time progress

conditions of the two global locations are tpc(l̄) = x  4 and tpc(l̄0) = true. The

enabledness predicate of T is

enabled(T) ⌘ at(l̄) ^ x  4^ . (y0 ≥ 8^ x = 4) ⌘ at(l̄) ^ x  4^ y0 − x ≥ 4

For a more general case, we consider the system in Figure 4.6 which differs from

Figure 4.5 in that the location l1
1 of component Worker1 has a tpc equal to x  10.

We consider the transition T = (l̄, (α, g, r), l̄0), where l̄ = (lc1, l0
1 , l1

1), l̄0 = (lc2, l0
2 , l1

1),

α = a|b0, g = (y0 ≥ 8 ^ x = 4) and r = {x := 0}. The component Worker1 does

not participate in transition T. However, tpc(l1
1) is taken into account for the

computation of the enabledness predicate for the global transition T, since (l1
1)

belongs the global destination location :

enabled(T) ⌘ at(l̄) ^ x  4^ y1  10^ . (x = 4^ y0 ≥ 8^ y1  10)

⌘ at(l̄) ^ x  4^ y1  10^ y0 − x ≥ 4^ y1 − x  6

Definition 4.12 (Deadlock States Set). The predicate DIS characterizing the set of all

the states from which all the interactions are disabled is defined as

DIS ⌘
^

α2γ

¬enabled(α)

Example 4.7 (Predicate Characterizing Deadlocked States). For the system in

Figure 4.5, the deadlock states predicate is

DIS ⌘ ¬enabled(a|b0) ^ ¬enabled(a|b1) ^ ¬enabled(c|d0) ^ ¬enabled(c|d1)

4.5 Systems with Data

For better expressivity and applicability of the system model, the timed compo-

nents introduced in Definition 4.7 are extended with data variables. Similarly to
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Figure 4.6: A timed Controller-Workers system with a tpc at l1
1 location

clock variables, data variables may appear in the guard of transitions as enabling

conditions. In addition, their value may be updated when the transition fires.

Definition 4.13 (Guards on clocks and data variables). Let X be a set of clock variables

and D a set of data variables. We use G(X ,D) to denote the set of guards g, generated by

the following grammar:

g ::= gc|gd|g ^ g

where gc is an atomic constraint of the form x#ct, where x 2 X , # 2 {<,,=,≥,>}

and ct 2 N, and where gd is a predicate on a set of data variables belonging to D.

Thereby, a guard can be perceived as a conjunction of two families of guards:

guards on the clocks and guards on the data variables.

We enlarge the notion of valuation to take into account the data variables. Valu-

ations assign values for data variables in addition to the clocks. The satisfaction

relation v |= C extends in the straightforward way to data variables. As previously

mentioned, clock valuations increase simultaneously at the same rate. However,

data variables are insensitive to the passing of time. Formally,

• (v + δ)(x) = (v)(x) + δ for every clock x 2 X

• (v + δ)(d) = (v)(d) for every variable d 2 D

Assignment operations are defined for clocks and data variables. We denote by

R the set of all reset operations over elements of X and update operations over

elements of D.
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Definition 4.14 (Extended Timed Component). An extended timed component is a

tuple Be = (L, A,X ,D, T, tpc, s0) where

• L, A, X , tpc and s0 are defined as in Definition 4.7, that is:

– L is a finite set of locations.

– A a finite set of actions.

– X is a finite set of local clocks.

– tpc : L ! C assigns a time progress condition to each location, where C is a

set of downwards close timing constraints, in the form x  c or x < c.

– s0 2 L⇥ C is the initial state.

• D is a finite set of data variables.

• T ✓ L⇥ (A⇥G(X ,D)⇥ 2R)⇥ L is a set of edges labeled with an action, a guard,

and a set of reset and update operations over clocks and data variables in D.

Referring to Definition 4.7, the main extension consists in introducing the data

variable set D, in increasing the restrictiveness of guards by putting enabling

condition on data and in updating data when transitions fire. Concretely, a

transition t = (l, (a, g, r), l0) 2 T can be executed only if its guard g evaluates to

true for the current valuation of clocks and data variables. The set r ✓ R contains

respectively reset and update operations on clocks and data variables. These

operations are performed when the transition t fires.

Example 4.8 (An Extended Timed Component). In Figure 4.7, an extended timed

component with actions a, b and c is depicted. The data set is D = {k}, the guard

on the transition labeled with a is (x = 4^ k 5). The update operations on a

is r = {x := 0, k:=k+20}, whereas the update operation on the transition b is

k:=k−3.

Extended timed components can be composed together through interactions in

order to form a composite extended timed system.

Definition 4.15 (Extended Timed System). Given n extended components Be,i = (Li,

Ai, Xi, Di, Ti, tpci, s0i) and an interaction set γ, we define the extended timed system

kγBe,i as the timed component (L, γ,X ,D, Tγ, tpc, s0), where

• L, s0, X and tpc are defined as in Definition 4.10.
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x ≥ 4
x := 0

a
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x := 0, k:=k+20

c

x :=
0

a
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Figure 4.7: An extended timed component

• The set of data variables is D = [iDi

• The global transitions are extended in a straightforward way to timed systems by

considering the particularity that the guards put enabling conditions on data vari-

ables in D and that update operations on transitions affect them.

The semantics of an extended timed system extends the semantics introduced in

Definition 4.10 in that an interaction takes place if the guards on data variables are

also valid and in that their values are affected following the update operations on

transitions. We note that the data transfer on interactions is defined as in the BIP

framework.

4.6 Compositional Verification: Naive Approach

In Chapter 3, a compositional verification method was proposed for untimed

systems modeled in BIP language. It is based on the computation of an invariant

over-approximating the reachable state set and the application of the deductive

approach. The global invariant is computed as the conjunction of local invariants of

the different components and an interaction invariant deduced from the interaction

structure which ensures their synchronization. The component invariant CI(Bi)

is computed as the reachable state set of the component. In the following, we

propose an adaptation of the rule to timed systems. The computation of interaction

invariant may be automatically adapted for timed systems by abstracting it totally

from the timing characteristics of the components and applying the already intro-

duced methods for the computation of II(γ) in case of untimed systems. A direct

application of this rule to timed systems consists in redefining the computation of

the component invariant. In Section 4.2 of this chapter, we introduced a method
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for the computation of the reachable state set ReachB of a given component B.

and how to incorporate their effect in the global invariant in a way that accumulates

with the following method for handling with time.

In order to illustrate the global invariant computation in the timed case, we

consider the system in Figure 4.8. It is constituted of a controller synchronized

with one worker through interactions a|b1 and c|d1.

lc0

lc1

x  4

lc2

x ≥ 8
x := 0

a, x = 4
x:=0

c

x :=
0

a

c

Controller

l1
1

l1
2

b1,
y1 ≥

4

d1,
y1 := 0

b1

d1

Worker1

Figure 4.8: A timed system

The computation of the reachable state set for the two components results in the

following component invariants.

CI(Controller) ⌘ lc0 _ (lc1 ^ x  4) _ lc2

CI(Worker1) ⌘ l1
1 _ (l1

2 ^ y1 ≥ 4)

The interaction invariant for this system is

II ⌘ (lc0 _ lc1 _ lc2) ^ (l1
1 _ l1

2) ^ (lc0 _ lc1 _ l1
2) ^ (lc2 _ l1

1)

Now we want to check the following property: Ψ ⌘ lc1 ^ l1
1 ) y1 − x ≥ 0. In

fact, the property is valid because when the interaction c|d1 occurs, both clock

x and clock y1 are reset at the same time. Also, when the controller component

first reaches lc1 location from lc0 location, the clock x is reset whereas the clock

y1 in the worker component have not been reset since the start time. The global

invariant is:

GI ⌘ (lc0 ^ l1
1) _ (lc1 ^ x  4^ l1

1) _ (lc2 ^ l1
2 ^ y1 ≥ 4)



4.7. Summary 63

Unfortunately, GI is not strong enough to prove the property Ψ. In fact, the clocks

of the two components increase with the same rate. This engenders stronger

synchronization which neither of the above invariants can capture. In some

way, with the current version of the global invariant, the method deals with the

components as if their clocks are totally independent while the time model is

synchronous. For instance, two clocks which are reset at the same time remain

equal until one of them is updated.

This example highlights the limitation of the above invariant and reveals the need

to time synchronization capturing invariants.

4.7 Summary

In this chapter, we presented a component-based framework for modeling real-

time systems. A timed system is conceived as a set of components equipped with

local clocks and glued together through a set of multi-party interactions. The

application of the invariant computation method proposed with the D-Finder

tool reveals the need for timed invariants allowing to catch properties that are

induced by the synchronous model of time. In fact, the time-synchronization

aspect constrains further the system behavior but its effect would not be captured

by neither the components invariants which reflect the independent behavior of

each component, nor by the interaction invariant ignoring totally the synchronous

model of time.

In the next chapter, we introduce additional types of invariants tailored to timed

systems at the precise goal of capturing the time-synchronization between the

different components.
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By the end of the previous chapter, we illustrated the main limitation of the compo-

sitional verification method which was previously proposed for untimed systems.

The difficulty is that the global invariant does not consider the synchronous model

of time and therefore does not reflect the effects of the time synchronization be-

tween the clocks of the different components. This limitation is a major hurdle for

the application of compositional methods in the framework of real-time systems.

In the above method, the interaction invariant abstracts totally away the infor-

mation about the clocks while the component invariant reflects its independent

behavior in isolation from the other components. Ideally, a sufficiently strong

global invariant for timed systems should track the instants where actions from



66 Chapter 5. Compositional Invariant Generation

the different components are synchronized, precisely through the execution of

interactions. These dates of synchronization should be also reflected in the local

invariants of the different components.

In order to capture this dual information, we propose to add auxiliary clocks,

called history clocks, as follows. To each action a, we add an action history clock

ha which is reset whenever action a occurs. On the one hand, since an interaction

synchronizes actions from different components, their history clocks are reset at

the same time and their values remain equal as they increase at the same rate,

unless an action related to one of them occurs again during the execution of a

more recent interaction. As a result, relations between the history clocks of the

different components are deduced from the interaction structure and gathered

in a new type of invariant. On the other hand, the history clock of an action a

and the related reset operations are taken into account during the computation

of the invariant of the component containing a. Consequently, the local invariant

of each component extended with history clocks contains relations between the

added history clocks and the inner local clocks. By transitivity, relations between

the inner clocks of the different components are induced, serving to strengthen

the over-approximation of the reachable states set that is expressed by the global

invariant.

Besides the history clocks for actions, we introduce history clocks for interactions

which record the last occurrences of interactions. New invariants relating them to

each other and to the history clocks for actions are proposed and they generally

offer a stronger global invariant in case of conflicting interactions.

In this chapter, we formalize the notion of history clocks and detail the computation

of the new invariants.

5.1 History Clocks for Actions

In this section, we extend the components with the auxiliary history clocks at the

hope that the verification rule yields more successful application on timed systems.

For each action, we relate an action history clock which is reset whenever the action

occurs. When an interaction is executed, the history clocks of all the participating

actions are reset simultaneously. Therefore, a new invariant gathering relations

between the different history clocks can be generated based on the interactions

structure. Together with the invariants of the extended components and the

interaction invariant, it forms generally a stronger global invariant.

Definition 5.1 (Components with History Clocks).
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Given a component B = (L, A,X , T, tpc, s0), its extension with history clocks is the

component Bh = (L, A,X [HA, Th, tpc, sh
0) where

• HA = {h0} [ {ha | a 2 A} is the set of history clocks,

• Th =
{(

l, (a, g, r [ {ha}), l0
)
|
(
l, (a, g, r), l0

)
2 T

 
,

• sh
0 = (l0, ch

0), where ch
0 = (c0 ^ h0 = 0^

V

a2A ha > 0), given s0 = (l0, c0).

For simplicity and in order to focus on the issues relevant to timed systems, we

abstract away the data variables from the verification method in the following of

this dissertation.

5.1.1 Invariants for Action History Clocks

The history clocks are added for verification purpose and do not influence the

behavior of the system, since there is no guard and no progress condition defined

on their values. They appear exclusively in the reset operations. We deduce that

the component extended with history clocks is bisimilar to the original component.

Besides, the invariant of the extended component is also an invariant of the original

one. Abusing notation, for a set A = {a1, ..., am} of actions, we denote by 9HA the

notation 9ha19ha2 . . . 9ham9h0.

Proposition 5.1. If Φh is an invariant of the component Bh extended from B with history

clocks, then Φ = 9HA.Φh is an invariant of B.

Proof.

We decompose the proof in two steps in order to show that Φ = 9HA.Φh is an

overapproximation of ReachB(s0).

1. Any symbolic state (l, ζh) in the set ReachBh(sh
0) of the reachable states of Bh

corresponds to a symbolic state (l, ζ) in ReachB(s0). It can be obtained by the

projection of ζh on the set of original clocks X where the location remains

unchanged. Formally, ζ is equal to 9HA.ζh.

It results that 9HA.ReachBh(sh
0) ⌘ ReachB(s0).

2. Any invariant φh of the component Bh is an over-approximation of 9HA.ReachBh(sh
0):

9HA.ReachBh(sh
0) ✓ 9HA.Φh

The conjunction of (1) and (2) proves that Φ = 9HA.Φh is an invariant of B.

When an interaction is executed, all the participating actions are reset. It results

that their values are smaller than the history clocks of the non executed actions.
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Besides, they remain equal until a more recent interaction containing one of them

is executed. The relation that relates history clocks of the different components

participating in the different interactions bring in an additional invariant which is

defined in the following.

Definition 5.2 (History Clocks Inequalities). Given an interaction set γ containing

all the interactions of a timed system resulting from the parallel composition of a set of

components, the history clocks inequalities predicate E(γ) is defined as follows:

E(γ) ⌘
_

α2γ

⇣( ^

ai ,aj2α

ak2Act(γ α)

hai
= haj

 hak

)
^ E(γ α)

⌘

.

where γ α = {β \ α | β 2 γ ^ β 6✓ α} and E(∅) = true.

The predicate E(γ) characterizes relations between the history clocks at different

execution scenarios and can be understood as follows. If we suppose that α 2 γ

is the most recent interaction of the system, then lately all the history clocks

of its participating actions are reset at the same time. In addition, they are

smaller than all of the other history clocks, contained in γ α, since α is the most

recent interaction. This predicate is recursively expressed for the remaining set

of interactions γ α which eliminates from any interaction β in γ all the actions

from α. As an illustration, for β = (a | a1 | a2), α = (a1 | a2) and γ = {α, β},

γ α = {a}.

The function “min” can be used as syntactic sugar to have a more compact

formulation for E(γ):

E(γ) ⌘
_

α2γ

⇣ ^

ai ,aj2α

hai
= haj

 min
ak2Act(γ α)

hak
^ E(γ α)

⌘

.

As an example, for γ = {(a | b1), (c | d1)} modeling the interactions between the

controller and the worker from Figure 4.8, a more compact form is obtained:

E(γ) ⌘
(
ha = hb1  min(hc, hd1) ^ hc = hd1

)
_
(
hc = hd1  min(ha, hb1) ^ ha = hb1

)
.

This predicate constraining the history clocks inequalities is inductive for kγBh
i .

Proposition 5.2. E(γ) is an inductive assertion of kγBh
i .

Proof.

We reason by induction on the execution sequence. We assume that E(γ) is satisfied

at an arbitrary state s of the system and proceed to prove that it is satisfied by
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all of its successor states. There are two types of successors: time successors and

discrete successors. As for time successors, all the relations between the clocks are

preserved as they do all increase at the same rate. We propose to prove that E(γ)

is satisfied for any discrete successor of s.

We have the following equivalence by definition:

E(γ α) ⌘
_

α02γ α

⇣ ^

ai ,aj2α0

hai
= haj

 min
ak2Act(γ α0)

hak
^ E(γ α0)

⌘

⌘ 9α0 2 γ.
^

ai ,aj2α0^ai ,aj /2α

hai
= haj

 min
ak2Act(γ (α[α0))

hak
^ E(γ (α [ α0))

We suppose that E(γ) holds at state s, then the following predicate is satisfied at s:

9α0 2 γ.
⇣ ^

ai ,aj2α0

hai
= haj

 min
ak2Act(γ α0)

hak
^ E(γ α0)

⌘

(Eq.1)

If the interaction α, s
α
−! s0, occurs then all the history clocks related to its partici-

pating actions are reset while the other clocks are not modified:
^

ai ,aj2α

hai
= haj

= 0  min
ak2Act(γ α)

hak
(Eq.2)

When the state s0 is reached through interaction α, all the clocks outside α are

preserved and they are bigger than those which are reset. Therefore, the formula

(Eq.1) which is satisfied at s state is updated when executing α, and its conjunction

with (Eq.2) infers the following predicate which is satisfied at state s0:

^

ai ,aj2α

hai
= haj

= 0  min
ak2Act(γ α)

hak
^

9α0 2 γ.
^

ai ,aj2α0^ai ,aj /2α

hai
= haj

 min
ak2Act(γ (α[α0))

hak
^ E(γ (α [ α0)

| {z }

(3)

The underlined sub-formula is nothing but the definition of E(γ α) as shown

at the beginning of this proof. This implies that formula (3) is equivalent to the

following predicate, which is by consequence satisfied at s0 state.
^

ai ,aj2α

hai
= haj

= 0  min
ak2Act(γ α)

hak
^ E(γ α)

We note that this predicate is valid immediately after the execution of α interaction.

It is a subformula of E(γ) where the clocks of α are still equal to zero. The

predicate E(γ) is therefore preserved by discrete transitions.
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By increasing all the history clocks in the above formula by the same rate, E(γ)

remains valid. We deduce that E(γ) holds at s0 state and its time successors.

5.1.2 Strengthening the Global Invariant

In order to obtain a stronger invariant, we propose to conjunct
V

i CI(Bh
i ) ^ II(γ)

with E(γ). The obtained predicate is also an invariant.

Proposition 5.3. If Φh
1 is an invariant of Bh and Φh

2 is an inductive assertion on Bh

expressed on history clocks HA, then Φ = 9HA.(Φh
1 ^Φh

2) is an invariant of B.

Proof. We first show that Φh
2 is an invariant of a component Bh

φ which is an

extension of B with history clocks in HA and where the initial state satisfies the

predicate Φh
2. More precisely, if the initial state of B is (l0, c0), the initial state of

Bh
φ is defined as (l0, ch

0 ^ Φh
2). It can be shown that (Φh

1 ^ Φh
2) is an invariant of

Bh
φ. Following the same reasoning in the proof of Proposition 5.1, it is proven that

Φ = 9HA.(Φh
1 ^Φh

2) is an invariant of B.

By taking
V

i CI(Bh
i ) ^ II(γ) for Φh

1 and E(γ) for Φh
2, this proposition implies the

following corollary.

Corollary 5.1. Φ ⌘ 9HA.(
V

i CI(Bh
i ) ^ II(γ) ^ E(γ)) is an invariant of kγBi.

In general, this invariant is tighter than
V

i CI(Bi)^ II(γ) and offers more successful

applications of the verification rule.

Example 5.1. We reconsider the model of one controller interacting with one

worker depicted in Figure 4.8. We demonstrate that the conjunction of the new

generated invariant together with the interaction invariant and the local invariants

of the components extended with history clocks is strong enough to infer the

desired safety property Ψ ⌘ (lc1^ l1
1 ! x  y1). The invariants for the components

with history clocks are computed precisely as illustrated in Chapter 4 as the sets

of reachable states:

CI(Controllerh) ⌘(lc0 ^ x = h0 < ha ^ h0 < hc) _

(lc1 ^ x  h0 − 4^ x  4^ h0 < ha ^ h0 < hc) _

(lc1 ^ x  4^ x = hc  ha  h0 − 8) _

(lc2 ^ x  h0 − 8^ ha = x ^ h0 < hc) _

(lc2 ^ x = ha ^ hc = ha + 4  h0 − 8)
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CI(Workerh
1) ⌘(l

1
1 ^ y1 = h0 < hd1 ^ h0 < hb1) _

(l1
1 ^ y1 = hd1  hb1  h0 − 4) _

(l1
2 ^ hb1 + 4  y1 = h0 < hd1) _

(l1
2 ^ y1 = hd1  h0 − 4^ hb1  hd1 − 4)

The history clocks inequalities predicate E((a | b1), (c | d1)) is equal to ha =

hb1 ^ hc = hd1 . By using in addition the interaction invariant described in Section 4.6

and after the elimination of the existential quantifiers in

(
9ha.9hb1 .9hc.9hd1 .9h0

)
(CI(Controllerh) ^ CI(Workerh

1) ^ II(γ) ^ E(γ)
)

we obtain the following global invariant GI :

GI ⌘(l1
1 ^ lc0 ^ x = y1)_
(
l1
1 ^ lc1 ^ (y1 = x _ x + 4  y1)

)
_

(
l1
2 ^ lc2 ^ (y1 = x + 4 _ x + 8  y1)

)
.

The relations between x and y1 that are newly introduced thanks to the history

clocks are highlighted by the blue color. As demonstrated in Section 4.6, they

could not be deduced from the invariant CI(Controller) ^ CI(Worker1) ^ II(γ). At

the opposite, the new invariant allows to catch time synchronization between the

clocks of the different components and does capture the safety property Ψ.

In case where the interaction set is the union of disjunctive subsets of interactions,

the actions history clocks inequalities can have a simpler form.

Proposition 5.4. If γ = γ1 [ γ2 such that Act(γ1) \ Act(γ2) = ∅, then E(γ) ⌘

E(γ1) ^ E(γ2).

Proof. We reason by induction on the number of interactions in γ. In case where

the size is equal to one, the result is trivial since the set γ contains an only inter-

action. For the induction step, we use eq(α) and leq(α, γ) to denote respectively
V

ai ,aj2α hai
= haj

and
V

ai2α
ak2Act(γ α)

hai
 hak

, the history clocks inequalities E(γ) can
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be rewritten as follows:

E(γ) ⌘
_

α2γ1

eq(α) ^ leq(α, γ) ^ E((γ1 [ γ2) α) _
_

α2γ2

eq(α) ^ leq(α, γ) ^ E((γ1 [ γ2) α)

(
using γ2  α = γ2 for α /2 γ2 and by induction hypothesis on γ0 = γ2 [ (γ1  α)

)

⌘
_

α2γ1

eq(α) ^ leq(α, γ) ^ E(γ1  α) ^ E(γ2) _
_

α2γ2

eq(α) ^ leq(α, γ) ^ E(γ1) ^ E(γ2  α)

(
using for i 2 {1, 2}. E(γi) =

_

α2γi

eq(α) ^ leq(α, γi) ^ E(γi  α)
)

⌘ E(γ1) ^ E(γ2) ^
( _

α2γ1

leq(α, γ2) _
_

α2γ2

leq(α, γ1))

(using totality of "" and disjointness of γi)

⌘ E(γ1) ^ E(γ2)

This corollary follows from Proposition 5.4:

Corollary 5.2. If the interaction model γ has only disjoint interactions, i.e., for any

α1, α2 2 γ, α1 \ α2 ⌘ ∅, then E(γ) ⌘
^

α2γ

⇣ ^

ai ,aj2α

hai
= haj

⌘

.

For example the two interactions a | b1 and c | d1 are disjoint, thus this formula is

valid: E({(a | b1), (c | d1)}) ⌘ (ha = hb1) ^ (hc = hd1).

5.2 History Clocks for Interactions

The history clocks inequalities allow to obtain relations between the clocks of the

different components. In case of non conflicting interactions, they are expressed

in the conjunctive form and they result in rather a “tight” invariant. However,

in case of conflicting interactions, an action may be executed exclusively by one

interaction at a given time while the history clocks inequalities have a disjunctive

form reflecting an uncertainty about the effective participation of the action in one

of the interactions which share it. Therefore, in case of conflicting interactions,

the inequalities are relatively “loose”. The presence of conflicts is capitalized on

bringing up new invariants. In fact, when an action is executed as part of an

interaction, it should be again enabled in order to give the possibility for another

interaction sharing it to be executed. In some cases, a minimum time elapse is

required between two executive occurrences of the same action. In this case, a

minimum separation time is imposed between the execution of two conflicting

interactions.



5.2. History Clocks for Interactions 73

In order to capture this, we make use of history clocks for interactions which

behave in a way similar to the history clocks for actions. To each interaction,

we introduce a history clock which is reset whenever it is executed. This allows

to reason at interactions level, besides the relations that can be derived between

interactions history clocks and actions history clocks.

Definition 5.3 (System with Interaction History Clocks).

Given a timed system kγBi, its extension with history clocks for interactions is the timed

system B⇤kγh Bh
i where:

• B⇤ is an auxiliary component ({l⇤}, Aγ,Hγ, T, (l⇤ 7! true), (l⇤, true)) where:

– Aγ = {aα | α 2 γ} is the set of actions.

– Hγ = {hα | α 2 γ} is the set of interaction history clocks.

– T = {(l⇤, (aα, true, {hα}), l⇤) | α 2 γ} is the set of transitions.

• γh = {(aα | α) | α 2 γ} where (aα | α) denotes {aα} [ {a | a 2 α}.

Since the interaction history clocks do not affect the behavior of the system,

any invariant of B⇤kγh Bh
i corresponds to an invariant of kγBi obtained through

existential quantifiers elimination.

Proposition 5.5.

1. If Φh is an invariant of B⇤kγh Bh
i , then Φ = 9HA9Hγ.Φh is an invariant of kγBi.

2. If Φh is an invariant of B⇤kγh Bh
i and Ψh is an inductive predicate of B⇤kγh Bh

i

expressed on history clocks for actions and interactions Hγ [ HA, then Φ =

9HA9Hγ.(Φh ^Ψh) is an invariant of kγBi.

Proof. The proofs of (1) and (2) use similar arguments as the proofs of propositions

5.1 and 5.3 respectively.

5.2.1 Invariants for Interaction History Clocks

The interactions history clocks serve to introduce new invariants reflecting some

constraints on the execution of interactions. Given two interactions sharing an

action a, if one of them is executed, then the other should wait for the action a to

be again enabled. This characteristic is encoded in a new invariant, the so-called

separation constraints.
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Definition 5.4 (Separation Constraints for Interaction History Clocks). Given an

interaction set γ, the separation constraints S(γ) predicate is defined as follows:

S(γ) ⌘
^

a2Act(γ)

^

α 6=β2γ
a2α\β

| hα − hβ |≥ ka

where | h | denotes the absolute value of h and ka is a constant computed locally on

the component containing action a. It represents the minimum time elapse between two

consecutive occurrences of a.

As an example to illustrate the usage of separation constraints, we consider the

system composed of the controller interacting with two workers. Interactions

a|b1 and a|b2 are conflicting on action a, whereas interactions c|d1 and c|d2 are

conflicting on action c.

l0
1

l0
2

b0,
y0 ≥

8

d0,
y0 := 0

b0

d0

Worker0

lc0

lc1

x  4

lc2

x ≥ 8
x := 0

a, x = 4
x:=0

c

x :=
0

a

c

Controller

l1
1

l1
2

b1,
y1 ≥

8

d1,
y1 := 0

b1

d1

Worker1

Figure 5.1: A timed System

Both actions a and c of the controller component need 4 time units between

two executions. It results that constants ka and kc are equal to 4. The resulting

separation constraints are expressed as follows:

S((a | bi)i, (c | di)i) ⌘
^

i 6=j

|ha|bi
− ha|bj

| ≥ 4 ^
^

i 6=j

|hc|di
− hc|dj

| ≥ 4

On the Computation of the Separation Constants

Let B be a component with actions set A and let a be an action in A. The constant ka

is the minimal time required between two consecutive occurrences of a. Formally,

it is defined as follows:

ka = min
i≥1

(occ(i + 1, a)− occ(i, a))
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The value occ(i, a) denotes the minimum time elapse until the i-th occurrence of a

is reached, else it is equal to ∞ if the number of occurences is strictly smaller than

i. Its computation was detailed in [Cou91]. In the following, we show a dynamic

programming solution:

occ(i, a) = min
s2R

mt(s0, s, a, i)

where s0 is the initial symbolic state of Be, Be is the component B enriched with

the auxiliary clock h0 measuring the time elapse since the beginning. Given two

symbolic states s and f and a transition labeled with a, the value of mt(s, f , a, 1) is

computed as follows:

mt(s, f , a, 1) =

8

<

:

msol
(
ζ( f )

)
if s

a
! f

∞ otherwise

mt(s, f , a, p) = min
k2Reach(Be),b2A

(
mt(s, k, b, p− 1) + mt(k, f , a, 1)

)

where msol
(
ζ(s)

)
is the minimal solution over h0 to the constraints in the zone of

the symbolic state s.

5.2.2 Strengthening the Global Invariant

In order to allow gluing together the history clocks inequalities defined on the

actions history clocks, and the separation constraints defined on the interactions

history clocks, we propose another formulation for the separations taking into

account the valid relations between these two kinds of history clocks.

Proposition 5.6. Let

S⇤(γ) ⌘
^

a2Act(γ)

^

α 6=β2γ
a2α\β

(ha  hα  hβ − ka _ ha  hβ  hα − ka)

We have that:

1. S⇤(γ) is an inductive predicate of B⇤kγh Bh
i .

2. The equivalence S(γ) ⌘ 9HA.S⇤(γ) is valid formula.

Proof.

1. We reason by induction on the execution sequence. We assume that S⇤(γ) is

satisfied at an arbitrary state s of the system and proceed to prove that it is satisfied
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by all of its successor states. There are two types of successors: time successors

and discrete successors. As for time successors, all the relations between the clocks

are preserved as they do all increase at the same rate. We propose to prove that

S⇤(γ) is preserved for any discrete successor of s.

We fix arbitrarily an action a, and two interactions α and β competing on a and

prove that the following predicate is inductive:

S(a, α, β) ⌘ (ha  hα  hβ − ka _ ha  hβ  hα − ka)

When a state s0 is reached from s through an interaction different from α and β, ha

is reset whereas the values of hα and hβ are not affected thus S(a, α, β) is preserved.

If we consider that β interaction is executed, then we distinguish two cases:

• ha  hβ  hα − ka is satisfied at s state: during the execution of β, ha and hβ

are reset whereas hα is changed. It results that the predicate remains satisfied

at the successor state.

• ha  hα  hβ − ka is satisfied at s state: Given that at least ka time units

are needed between two consecutive executions of a action, we deduce that

before the execution of β toward s0 state, the value of ha is bigger than ka.

Therefore hα is also bigger than ka. At the moment of execution, clocks

ha and hβ are reset. It results that at s0, ha = hα = 0 and the predicate

ha  hβ  hα − ka is valid at s0 state.

In a symmetric manner, we can show that the predicate is preserved if α is executed.

2. proof that the equivalence between S(γ) and 9HA.S⇤(γ) is a valid:

S⇤(γ) ⌘
^

a2Act(γ)

^

α 6=β2γ
a2α\β

(| hα − hβ |≥ ka ^ ha  hα ^ ha  hβ)

⌘
^

a2Act(γ)

^

α 6=β2γ
a2α\β

(| hα − hβ |≥ ka) ^
^

α 6=β2γ
a2α\β

(ha  hα ^ ha  hβ)

⌘ S(γ) ^
^

a2Act(γ)

^

α 6=β2γ
a2α\β

(ha  hα ^ ha  hβ)

The formula S(γ) is expressed over the interaction history clocks whereas the

components invariants CI(Bh
i ) are expressed over actions history clocks. In order

to glue them together in a relevant way, we need to introduce relations between

interactions and actions history clocks.
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Definition 5.5 (E ⇤).

Given an interaction set γ, the predicate E ⇤(γ) is defined as follows:

E ⇤(γ) ⌘
^

a2Act(γ)

ha = min
α2γ,a2α

hα.

Using the same reasoning as in Proposition 5.2, it can be shown that E ⇤(γ) is an

inductive predicate of the system B⇤kγh Bh
i enriched with history clocks.

Proposition 5.7.

1. E ⇤(γ) is an inductive predicate of B⇤kγh Bh
i .

2. The predicate 9Hγ.E ⇤(γ) is equivalent to E(γ).

Proof.

1. If E ⇤(γ) is satisfied at a state s of the system B⇤kγh Bh
i , then it is satisfied by

all the time successors since the clocks advance at the same rate. We consider

arbitrarily an action a and show that the predicate ha = min
α2γ,a2α

hα is inductive. If a

discrete state is reached from s through an interaction which does not contain a

action, then the predicate is preserved. Else, if it is reached through an interaction

α containing a, then the history clocks ha and hα are reset simultaneously and

remain equal whereas the history clocks relative to the other interaction are not

affected and thus remain bigger than hα.
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2. We consider that the set of interactions is γ = {α1, α2, ..., αm}:

9Hγ.E ⇤(γ) ⌘ 9Hγ.
_

αk1
≺αk2

≺...≺αkm

(
hαk1
 hαk2

 ...  hαkm
^ E ⇤(γ)

)

(disjointness on the possible orderings ≺ on interactions)

⌘ 9Hγ.
_

αk1
≺αk2

≺...≺αkm

(
hαk1
 hαk2

 ...  hαkm
^

^

a2αk1

(ha = hαk1
) ^

^

a2αk2
\αk1

(ha = hαk2
) ^ ...

^

a2αkm\αk1
...αkm−1

(ha = hαkm
)
)

(by expansion of E ⇤(γ) along the chosen order)

⌘ 9Hγ.
_

αk1
≺αk2

≺...≺αkm

(
hαk1
 hαk2

 ...  hαkm
^

m̂

`=1

^

a2αk`
\αk1

...αk`−1

(ha = hαk`
)
)

⌘
_

αk1
≺αk2

≺...≺αkm

9Hγ.
(
hαk1
 hαk2

 ...  hαkm
^

m̂

`=1

^

a2αk`
\αk1

...αk`−1

(ha = hαk`
)
)

(by distribution the existential quantifiers over the disjunction elements)

⌘
_

αk1
≺αk2

≺...≺αkm

m̂

`=1

^

ai ,aj2αk`
\αk1

...αk`−1
ak 62αk1

...αk`

(hai
= haj

 hak
)

⌘ E(γ)

From Propositions 5.5, 5.6 and 5.7, it results that 9HA9Hγ.(
V

i CI(Bh
i ) ^ II(γ) ^

E ⇤(γ) ^ S(γ)) is an invariant of kγBi. In general, this invariant is stronger than

9HA.(
V

i CI(Bh
i ) ^ II(γ) ^ E(γ)) in cases there are interactions conflicting on an

action a whose constant ka is strictly positive exist.

Example 5.2. To show the enhancement brought by the invariant generated using

separation constraints, we reconsider the example with two workers. The sub-

formula which is relative to the history clocks here is the conjunction of E ⇤ with S .

The interaction invariant is:

II(γ) ⌘(l1
1 _ lc1 _ lc2) ^ (l2

1 _ lc1 _ lc2) ^ (lc2 _ l1
1 _ l2

1) ^ (lc0 _ lc1 _ l1
2 _ l2

2)
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The components invariants are:

CI(Controllerh) ⌘(lc0 ^ x = h0 ^ h0 < ha ^ h0 < hc) _

(lc1 ^ x  h0 − 8^ x  4^ h0 < ha ^ h0 < hc) _

(lc1 ^ x  4^ x = hc  ha  h0 − 12) _

(lc2 ^ x  h0 − 12^ ha = x ^ h0 < hc) _

(lc2 ^ x = ha ^ hc = ha + 4  h0 − 12)

CI(Workerh
i ) ⌘(l

i
1 ^ yi = h0 ^ h0 < hdi

^ h0 < hbi
) _

(li
1 ^ yi = hdi

 hbi
 h0 − 8) _

(li
2 ^ yi ≥ hbi

+ 8  h0 < hdi
) _

(li
2 ^ yi = hdi

 h0 − 8^ hbi
 hdi

− 8)

The inequalities for action and interaction history clocks are:

E ⇤(γ) ⌘(hb1 = ha|b1
) ^ (hb2 = ha|b2

) ^ (ha = min
i=1,2

(ha|bi
))^

(hd1 = hc|d1
) ^ (hd2 = hc|d2

) ^ (hc = min
i=1,2

(hc|di
))

By recalling the expression of S(γ), we obtain that:

S(γ) ⌘ (|hb2 − hb1 | ≥ 4 ^ |hd2 − hd1 | ≥ 4)

and thus, after simplification and quantifier elimination in

9HA9Hγ.(CI(Controllerh) ^
^

i

CI(Workerh
i ) ^ II(γ) ^ E ⇤(γ) ^ S(γ))

we obtain the following global invariant GI:

GI ⌘
(
l1
1 ^ l2

1 ^ lc0 ^ x = y1 = y2
)
_

(
l1
1 ^ l2

1 ^ lc1 ^ x  4^ (y1 = y2 ≥ x + 8_

(y1 = x ^ y2 − y1 ≥ 4)_

(y1 ≥ x + 8^ y1 − y2 ≥ 8)_

(y2 = x ^ y1 − y2 ≥ 4)_

(y2 ≥ x + 8^ y2 − y1 ≥ 8))
)
_

(
l1
2 ^ l2

1 ^ lc2 ^ y1 ≥ x + 8^ ((y2 ≥ x + 4^ |y1 − y2| ≥ 4)_

y2 ≥ x + 12 )
)
_

(
l1
1 ^ l2

2 ^ lc2 ^ y2 ≥ x + 8^ ((y1 ≥ x + 4^ |y1 − y2| ≥ 4)_

y1 ≥ x + 12 )
)
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In this expression, we emphasize with the blue color the new relations induced

from the use of separation constraints. They make the global invariant GI strong

enough to prove that the property of interest Ψ ⌘ l0
1 ^ l1

1 ^ lc0 ) (y1 − x ≥

4_ y2 − x ≥ 4) is satisfied by the system.

5.3 Action Occurrence Invariants

The clock h0 measures the amount of time elapsed since the start moment. It

is never reset nor is there a guard on its value in the transitions. All the clocks

advance at the same, and so does h0 which is common to all the components of the

system. Besides, the clock h0 serves to deduce which actions have been executed

so far. The initialization of the history clocks helps to detect this information. All

the action history clocks are initialized to be strictly bigger than 0 whereas the

inner clocks of the components and the clock h0 are initialized to 0. It results that

when an action occurs, the related history clock is reset while the value of h0 is

positive. Therefore, an action history clock is strictly bigger than h0 if and only if

its action has not been executed at all.

We mention that if the history clocks were initialized to be equal to 0 at the start

date, the global invariant would inaccurately allow to reflect, for instance, that all

the actions have occurred at the start date, which is generally inaccurate.

Refining Relations between Conflicting Interactions The initialization of the

action and interaction history clocks and the clock h0 measuring the time elapsed

since the beginning allows to deduce whether or not an action or interaction has

been executed. In fact, the predicate h0 < hα intuitively means that interaction

α has not been executed yet, whereas the clock h0 is bigger or equal to hα only

if α has been executed at least once. In the following, we show a new family

of invariants related to conflicting interactions. We consider an action a from a

component B that is conflicting and two interactions α1 and α2 which share it.

Intuitively, we know that if both of these interactions have been executed, meaning

that action a has been executed at least twice, there must be at least one action

preceding a that has been executed. This allows the definition of a new invariant

expressed formally as follows:

hα1  h0 ^ hα2  h0 )
_

a02Prec(a)

ha0  h0
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The set Prec(a) contains the actions within component B that can be immediate

predecessors of action a, i.e Prec(a) = {a0 2 A | 9l, l0, l00 2 L. l
a0
! l0, l0

a
! l00}.

We note that this new invariant is implied by the component invariant CI(B) if a

is not enabled at the initial state. In this case, any state where a can be executed

should be reached by a non-empty execution sequence. Therefore, whenever a

has been executed, at least one of its preceding actions has been executed as well.

This is necessarily considered during the computation of the component invariant.

We deduce that if a is not enabled at the initial state, CI(B) implies the following

assertion:

ha  h0 )
_

a02Prec(a)

ha0  h0

At the opposite case, if a is an action enabled at the initial state, then it can be

the first action to be executed without need for precedency of any other action.

In such a case, a is executed once while none of its preceding action has been

executed and the new proposed invariant is relevant. Besides, the action history

clock ha reflects the last occurrence of action a and gives no clue of to distinguish

whether a was executed once or more. This can be deduced, if a is conflicting,

from the history clocks of the interactions sharing it.

Example 5.3. We consider the component depicted in Figure 5.2 where the port

a is shared between two interactions α1 and α2. The following predicate is an

invariant of the system:

hα1  h0 ^ hα2  h0 ) hb  h0

5.4 Component Invariants Revisited

In some cases, for example when the component is untimed, the computation of

the local invariant is itself costly. Even in absence of original component clocks,

all the possible orders of the history clocks at each of the locations are needed.

In such a case, the number of zones in the reachability graph are likely to be

large. In some way, the existence of inner component clocks does constrain the

dynamics of the component whereas their absence can result in an exponentially

big number of possible history clocks orders. It results that the reachability graph

computation method is unsuitable for the originally non timed components, which

are yet extended with history clocks, and is rather unpractical. In the following of

this section, we show a method for computing a shorter component invariant in

case where the original component is untimed.
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a

b

. . .
..
.

ab

. . .. . .
α1 α2

Figure 5.2: A timed component with action a involved in interactions α1 and α2

Example 5.4. We consider the untimed component illustrated in Figure 5.3 (left)

and its extension with history clocks (right). The entire zone graph reachable

from (l0, ζ0), where ζ0 = (h0 = 0, ha,b,c > 0), contains 16 symbolic states. It results

that the component invariant is expressed as a disjunction of 16 terms, 9 of them

correspond to location l0 while the seven others correspond to location l1.

l0 l1

b

b

ca

c

b

a

l0 l1

ca
b, hb := 0

b, hb := 0

ha := 0 hc := 0

ca

b

Figure 5.3: An untimed component and its extension with history clocks

The starting point of our method is the fact that the orders of actions for untimed

automata have elegant and compact encodings as regular expressions. More

concretely, given an untimed component B = (L, A, T), we show how to automat-

ically compute an invariant describing the relations between the history clocks

of Bh from the language accepted by B, known that every order on transitions is

equivalent to an order on history clocks. The main feature that we exploit is that

for the computation of the component invariant, only the last occurrence of each
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action is relevant. Therefore, for a given location, it is safe to simplify the regular

expressions relative to the accepted language by removing away all but the last

occurrences of the different actions. We note that regular expressions converted

to a restricted form offer the possibility to generate constraints on actions history

clocks that are less numerous than the orders induced by the reachability graph.

The method that we propose to generate the set of actions history clocks orders at

a given location l follows three main steps:

1. construct the regular expression E` representing the language accepted by B

at location `,

2. abstract E` with respect to the last occurrence retention operation towards a

restricted form E]
` = ∑i e]i where every action appears at most once in e]i , and

where no nested *-operators remain.

3. generate from every e]i a characteristic formula on history clocks φ(e]i ), such

that the assertion `) _iφ(e
]
i ) is an invariant for the component B .

A basic theorem in formal language theory states that every automata can be

effectively converted into a regular expression and several algorithms have been

proposed to achieve it [HMU03]. In this dissertation, we don’t give the details of

this conversion and we directly go into the second step. The restricted form of the

regular expression is achieved by use of two simplification rules:

Rule 1 [Last Occurrence Retention]: E · a −! (E r a) · a

Rule 2 [Back-unfolding]: E⇤ −! (E⇤ · E) + ε

Figure 5.4: Simplification Rules

Rule 1 keeps only the last occurrence of the trailing action a in the regular

expression of the form E r a. The “r” denotes a syntactic elimination operator

defined structurally on regular expressions as follows. Let a and x be two symbols
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and E, E1 and E2 be arbitrary regular expressions.

ε r a = ε

x r a =

8

<

:

ε if x = a

x if x 6= a

(E1 + E2)r a = (E1 r a) + (E2 r a)

(E1.E2)r a = (E1 r a).(E2 r a)

E⇤ r a = (E r a)⇤

Rule 2 frugally unfolds *-expressions once. By using this rule and basic processing

of regular expressions, further simplification occasions for Rule 1 are allowed.

Example 5.5. We again consider the example depicted in Figure 5.3. The language

accepted at l1 location is defined as (a + bc⇤b)⇤bc⇤. This expression is progressively

converted into the restricted form following these steps:

(a + bc⇤b)⇤bc⇤  (a + c⇤)⇤bc⇤ (by Rule 1)

⌘ (a + c⇤)⇤b(c⇤c + ε) (by Rule 2)

⌘ (a + c⇤)⇤bc⇤c + (a + c⇤)⇤b (by splitting the last +)

 (a + ε)⇤bc + (a + c⇤)⇤b (by Rule 1)

⌘ a⇤bc + (a + c)⇤b (by standard transformation)

In this example, we applied the iterative strategy consisting of alternating the

following two operations (1) choosing symbols from right to left and applying

Rule 1 as long as possible and then (2) applying Rule 2 to unfold the rightmost

*-expression and split the incoming +. This strategy always terminates with regular

expressions in the restricted form. In some way, Rule 2 expands the expressions

so that Rule 1 can be applied to eliminate the symbols repetitions.

As for the third step, orders on actions are inferred from the regular expression

under restricted form e]. These orders are formulated as follows, by use of history

clocks. They represent the possible orders on the set of actions, encoded by the

regular expression.

φ(e]) ⌘
_

a1...an2L(e])
distinct a1,...,an

(
h0 ≥ ha1 ≥ ... ≥ han ^

^

c 6=a1,...,an

hc > h0
)
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where L(e]) is the language of e].

Since only words with distinct symbols are considered, they are finitely many and

the disjunction is also finite. Intuitively, this formula if obtained by ordering the

actions following their appearances in the given string, while the remaining actions

of the component that do not appear in the string are supposed to not be executed,

thus their action history clocks are bigger than h0, the clock measuring the time

elapsed since the beginning. As an illustration, we denote here by e] the regular

expression under the restricted form a⇤bc + (a + c)⇤b obtained for Example 5.5.

We show at first a direct encoding of the orders resulting from the finite words on

which φ(e]) is built: abc and bc (from a⇤bc) and acb, cab, cb, ab, b from (a + c)⇤b.

(h0 ≥ ha ≥ hb ≥ hc) _ (ha > h0 ≥ hb ≥ hc)_ (corresponding. to abc, resp. bc)

(h0 ≥ ha ≥ hc ≥ hb) _ (ha > h0 ≥ hc ≥ hb)_ (corr. to acb, resp. cb)

(h0 ≥ hc ≥ ha ≥ hb) _ (hc > h0 ≥ ha ≥ hb)_ (corr. to cab, resp. ab)

(h0 ≥ hb ^ hc, ha > h0) (corr. to b)

Later, a more efficient translation from a given restricted regular expression to

the orders on action history clocks is detained, but we show before that such

encodings are invariants. The inequalities in φ(e]) reflect precisely the order in

which the last occurrence of each action has taken place. If it never occurred, its

history clock is bigger than h0.

Proposition 5.8. Let B be an untimed component, El the regular expression characterizing

the language accepted by B at location l, and E]
l be the result of applying the simplification

rules on El . The predicate
W

l(l ^ φ(E]
l )) is an invariant of the component Bh extended

with history clocks.

Proof. (a sketch)

Since the original component is untimed, the computation of its component

invariant aims exclusively at finding the order over the last occurrences of the

action history clocks when reaching the different locations. For a given location

l, the language of the last occurrences of actions is preserved by El and E]
l along

the simplification rules. Besides, for every regular expression e] of E]
l under the

restricted form, containing each action at most once, the following property is valid:

the language L(e]) of e] includes every word wlast resulting from the elimination

of all but the last occurrences from a word w in L(e]). Consequently, all the last

occurrence words wlast can be enumerated by taking all the accepted word of L(e])

having necessarily distinct symbols. Finally, we note that the inequalities in φ(E]
l )

encode exactly all the possible words corresponding to traces of component Bh

which reach l location.



86 Chapter 5. Compositional Invariant Generation

Obtaining more Compact Invariants from E]
l

The regular expression obtained under the restricted form can be further exploited

in order to obtain more compact orderings than those in φ(E]
l ). For illustration

purpose, we consider the regular expression e] = (b1 + ... + bm)⇤a1...an, where the

actions a1, . . . , an, b1, . . . , bm are distinct. This expression reflects that the actions

a1, ..., an are mandatory, meaning that they necessarily occur in the precise order

from a1 to an and their corresponding history clocks are unavoidably smaller

than h0. At the opposite, the actions b1, b2 . . . , bm are optional. Each one of them

can eventually occur, thus their history clocks can be smaller or bigger than h0.

Besides, if some of them occur, then the order on their executions in unconstrained.

Nevertheless, in all cases, their history clocks are necessarily bigger than the history

clock of the first executed mandatory action a1. We can also interpret that the

actions of Bh which do not appear in the regular expression have never occurred.

As a result, their history clocks have never been reset, hence they are strictly bigger

than h0. All in all, the following formula summarizes compactly the union of all

the possible orders at location l induced from the regular expression E]
l :

hb1 ≥ ha1 ^ ...^ hbm
≥ ha1 ^ h0 ≥ ha1 ≥ ... ≥ han ^

^

c 6=ai ,bj

hc > h0.

We notice that for this example, the obtained behavior is linear on the size of the

regular expression. At the opposite, the number of encoded strings is exponential

with respect to the number of the optional b actions, since their appearances

and mutual orders are unconstrained. We note that the above construction can

be conveniently generalized for any arbitrary regular expression following the

restricted form. The resulting formula is polynomial and at worse quadratic with

respect to the size of the given restricted regular expression.

Example 5.6. Following the above described approach, the regular expression in

the restricted form a⇤bc + (a + c)⇤b translates into the predicate

φcomp(E]
l ) ⌘ (h0 ≥ hb ≥ hc ^ ha ≥ hb) _ (h0 ≥ hb ^ ha ≥ hb ^ hc ≥ hb)

This expression is drastically smaller, yet logically equivalent to the disjunction of

the 7 distinct terms corresponding to the symbolic zones reached at l1 as initially

detailed in Example 5.5. In the following, we give the correspondence between

the words in Example 5.5 and their representing terms in the compact formula

φcomp(E]
l ).

• The term (h0 ≥ hb ≥ hc ^ ha ≥ hb) is nothing but the union of the terms

corresponding to words abc and bc.
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• The term (h0 ≥ hb ^ ha ≥ hb ^ hc ≥ hb) is the union of the terms correspond-

ing to the words acb, cb, cab ab and b, ending all with b action.

To summarize, we presented in this subsection a heuristic applicable to originally

untimed components. It allows to automatically generate an invariant for the

components extended with history clocks havong the advantage of being enough

compact to be handled by existing SMT-Solvers. The use of regular expressions

allows for the avoidance of the computation of the whole reachability graph for

such components, yielding generally a large number of symbolic states .

5.5 Summary

In this chapter, a method for fully compositional invariant generation for timed

systems is detailed. It lays upon the use of auxiliary history clocks in order to track

the time synchronization between the components. As later shown in Chapter 9,

this invariant is strong enough to prove several properties for different systems.

Nevertheless, the above method is based on an over-approximation of the reachable

states set, hence false positives may raise in some cases and they appear particularly

in heavily non-deterministic systems.

To remedy this, we completed our compositional verification method with a

counterexample-based invariant refinement module analyzing iteratively the gen-

erated counterexamples. A detailed presentation of this extension is given in the

next chapter.





Chapter 6

Counterexample-Based Invariant
Refinement

“ It is impossible to overestimate the importance of the counterexample

feature. The counterexamples are invaluable in debugging complex

systems.

”
Edmund Clarke, The Birth of Model Checking [Cla08]
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In order to avoid the state-space explosion inherent to model-checking timed

systems, we make twofold our verification approach. First, as explained in Chapter

5, we propose a fully compositional method for generating a global invariant of the
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system, over-approximating the set of reachable global states. Our compositional

invariant generation approach lays upon the combination of local invariants of

the different components, and additional invariants obtained from the analysis

of the interaction structure of the system. They allow to capture the time syn-

chronization between the components in a fully compositional manner. We find

their conjunction quite compromising in terms of tightness and complexity, but

the method is still incomplete and spurious counterexamples may appear. In fact,

if the safety property is satisfied by the global invariant, it is also satisfied by

the system. However, if a configuration satisfies the global invariant and violates

the desired safety property, then it may be the outcome of some behavior in the

over-approximation which does not belong to the original model.

In the second stage, which is the main subject of this chapter, we proceed to the

iterative analysis of the generated counterexamples in order to eliminate the false

positives. The suspected counterexamples are analyzed by use of a backward

search algorithm. If a counterexample cannot be reached from the initial state,

then the global invariant is restricted such that its configuration is eliminated. The

satisfiability checking-refining loop is iteratively performed until the cumulatively

refined global invariant does not contain any state violating the safety property, in

which case the system is confirmed to be safe, or until a counterexample is proven

to be reachable from the initial state, thus valid. In the latter case, we deduce that

the safety property is not satisfied.

6.1 The Algorithm

In our framework, the generated counterexamples precise the location of each com-

ponent, together with the clock valuations. They are generated by the SAT-solver

as configurations that refute the validity of GI ) Ψ. After analysis, the refuted

counterexamples serve to refine the invariant GI. To implement it and in order to

maneuver efficiently the counterexamples and their predecessors, we extend the

notion of symbolic state from components to systems of parallel composition. The

global location of a system is a n-tuple containing one location of each component

and the zone of a global symbolic state is the conjunction of constraints relating

the different components clocks.

The algorithm is shown in Figure 6.1. The backward computation starts from a

generalized counterexample and computes iteratively its preimage, resulting at
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Input : The global invariant GI ⌘
V

CI(Bh
i ) ^ E

⇤(γ) ^ S(γ) ^ II(γ)
The property Ψ

1 V  ∅ ;
2 while GI ^ ¬Ψ is satisfiable do
3 Let θ a solution of GI ^ ¬Ψ ;
4 Let (lθ , ζθ) generalize(θ, Ψ) ;
5 Let P  {(lθ , ζθ)} ;
6 while P \ Init = ∅ and P 6= ∅ do
7 V  V [ P ;
8 P  pre(P) \ V ;
9 end

10 if P \ Init 6= ∅ then
11 stop ;
12

13 else

14 GI  GI ^ ¬(at(lθ) ^ ζθ) ;
15

16 end

17 end
18 Ψ is satisfied

Figure 6.1: Counterexample-based invariant refinement algorithm

each step in a set of global symbolic states P , until the initial state Init is reached

or until the preimage is empty.

To ensure termination, at each step, the visited symbolic state set V relative to

the previous iterations is eliminated using the subtraction operator \ in order to

push the algorithm towards the initial state (line 10), else to conclude, if there is

no intersection between P and Init and if P is empty, that (lθ , ζθ) does not contain

any valid counterexample. The set V is cumulative: it contains the states that

have been visited during the analysis of the previous counterexamples. They are

all eliminated during the subtraction operation. If there exists a symbolic state

s0 2 P \ I , then the length of the shortest path from s0 to (lθ , ζθ) is equal to

the number of preimage computation operations required to reach s0. For each

analyzed counterexample, we denote by the depth d the shortest path from (lθ , ζθ)

to the first backwards reachable state belonging to I . If such a state does not exist,

that is if the backward reachability algorithm reaches a set of symbolic states that

has an empty preimage and has no intersection with I , then the counterexample

is spurious and the global invariant can be strengthened with its negation (line 14).

We note that the operators \ and \ on global symbolic state sets are slightly

different from the usual set difference and conjunction operations on sets since

symbolic states are defined by locations and zones. We consider the case where
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the zone of a symbolic state from a given set is strictly included in the zone of a

symbolic state from another set and has its same location.

Definition 6.1 (Predecessor of a symbolic state). Given S = (L, γ,X , Tγ, tpc, s̄0) a

timed system, we define the predecessor of a symbolic state s0 = (l̄0, ζ 0) as the set

pre(s0) =

(

(l̄, ζ) | 9τ 2 Tγ.τ = (l̄, α, g, r, l̄0) ^
⇣

ζ =.
(

g ^ [r](ζ 0 ^
^

x2r

(x = 0))
)⌘
)

.

For simplicity, we use the same notation to refer to the predecessor of a set of states O,

which is equal to the union of predecessor sets of its elements: pre(O) = [s2Opre(s).

Given an interaction α 2 γ, we denote by preα(s0) the set containing the predeces-

sors of s0 through interaction α.

6.2 Manipulation of Sets of Symbolic States

We note that a symbolic state is included in a set of symbolic states not only if

it is equal to one of its included symbolic states, but even when its zone is a

strict subset of a zone of a state in this set, given that their locations are identical.

Besides, it is included in a set if its zone is included in the union of zones of a

subset of symbolic states sharing its location. Thinking of a symbolic state (l, ζ) as

a set of symbolic states whose zones are included in ζ, we formalize the Join and

Discard operators as follows.

Definition 6.2 (Join Operator). Given two sets of symbolic states O and O0, we define

the set O \O0 as

O \O0 =
{
(l, ζ \ ζ 0) | (l, ζ) 2 O ^ (l, ζ 0) 2 O0

 

where l = (l1, . . . , ln) is an n-tuple of locations li of different components Bi.

Intuitively, discarding a symbolic state from a symbolic state set requires that its

zone or any part of it should be subtracted from the zone of each symbolic state

sharing its location from the set.

Definition 6.3 (Discard Operator). Discarding a symbolic state set O0 from O results

in the following set.

{(l, ζ) 2 O | l /2 Locations(O0)} [
n

(l, ζ r
S

(l,ζ 0)2O0 ζ
0) | (l, ζ) 2 O)

o
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Example 6.1.

We consider the system composed of 3 components B1, B2 and B3 having for clocks

x, y and z respectively. Let

O = {((l1
1 , l2

1 , l3
2), x ≥ 5^ y  10^ z < 3), ((l1

2 , l2
1 , l3

2), x  5^ y ≥ 2^ z < 10)}

where li
1 denotes a location of Bi component.

Let the set O0 be defined as

O0 = {((l1
1 , l2

1 , l3
2), x ≥ 7^ y  8^ z < 3))}

let the set O00 be defined as

O00 = {((l1
1 , l2

1 , l3
2), 4  y  6), ((l1

2 , l2
1 , l3

1), x ≥ 5^ y  10^ z < 3)}

and let the set O3 be defined as

O3 = {((l1
1 , l2

1 , l3
2), x ≥ 3^ y  12^ z < 3)}

• Discarding all the configurations of O0 from O results in the following set

{((l1
1 , l2

1 , l3
2), 5  x < 7^ y  10), ((l1

1 , l2
1 , l3

2), x ≥ 7^ 8 < y  10^ z < 3)

, ((l1
2 , l2

1 , l3
2), x  5^ y ≥ 2^ z < 10)}

• Discarding all the configurations of O00 from O results in the following set

{((l1
1 , l2

1 , l3
2), x ≥ 5^ 6 < y  10^ z < 3)

, ((l1
1 , l2

1 , l3
2), x ≥ 5^ 0 ≥ y < 4^ z < 3)

, ((l1
2 , l2

1 , l3
2), x  5^ y ≥ 2^ z < 10))}

• Discarding all the configurations of O3 from O results in the following set

{((l1
2 , l2

1 , l3
2), x  5^ y ≥ 2^ z < 10)}

Limitation The subtraction operation on DBM is very costly in the sense that

it generally engenders a non convex zone where the splitting is necessary. This

problem was detailed in [DHLP04] where an algorithm was proposed in order to

perform more efficiently the DBM subtraction and to ensure that the generated

DBMs are disjoint, for redundancy avoidance and to make the number of splits

minimal.
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In this work, we choose to work rather in a simpler form of symbolic set subtraction.

A symbolic state (l, ζ) from O belongs henceforth to a set O0 to discard only if there

exists a state (l, ζ 0) in O0 such that ζ ⇢ ζ 0. This would ignore to subtract zones ζ

which are partly included in a given ζ 0 from O0 and would allow in some way the

redundant and partial analysis of a previous symbolic state. Nevertheless, this

approach is selected at the aim of drastically reducing the cost of the set difference

operation:

Definition 6.4 (Set difference Operator). Given two sets of symbolic states O and O0,

we define the set O \O0 as

O \O0 = {(l, ζ) 2 O |8(l0, ζ 0) 2 O0.l0 6= l _ ζ 6⇢ ζ 0}

Example 6.2. By using the set difference operator and based on the sets predefined

in Example 6.1, O \O0 = O and O \O00 = O while O \O3 = {((l21, l12, l23), x 

5^ y ≥ 2^ z < 10)}

This definition is adopted along the algorithm in Figure 6.1, at line 8 precisely. It

is clear that it yields a more compact result than the previously defined discard

operator.

6.3 Generalization of the counterexamples

In the timed case, the SAT-solver generates well-defined locations of components

together with a precise valuation ν of the clock variables of the counterexample

(line 3). The clock valuation ν is the conjunction of equalities of the form xij = cij

where the variable xij is a clock of the component Bh
i and cij is the constant which

it equals in the solution generated by the SAT-solver.

If the refinement is done with respect to these clocks values, infinite number of

counterexamples would be generally generated. As the clocks space is infinite

(R≥0), and in order to ensure the termination of the iteration in the satisfiability

checking loop, each counterexample needs to be generalized, before backward

analysis, to a global symbolic state aggregating a set of counterexample states

having the same location and whose clock valuations satisfy the same constraints.

The choice of the generalization zone raises the trade-off between the complexity

of the backward analysis of a given counterexample and the complexity of the

space partitioning induced by the generalization of all the counterexamples.
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The zone of the generated counterexample is generalized as follows:

generalize(θ, Ψ) = (l,
^

zk2L.ν|=zk

zk ^
^

zk2L.ν 6|=zk

¬zk)

where L stands for the set of literals constraining the clocks in the property Ψ.

The generalization reflects which literals of the safety property are satisfied by the

counterexample or not.

Example 6.3.

• We consider the property Ψ ⌘ (at(l1
2) ^ at(l3

1) ) x1 ≥ 5 ^ x2 ≥ 8). We

suppose that the counterexample θ generated by the SAT-solver is :

θ = ((l1
2 , l2

1 , l3
1), x1 = 4^ x2 = 10^ x3 = 0^ h0 = 9

^ha1 = 3^ ha2 = 1^ ha3 = 6

^hb1 = 11^ hb2 = 8^ hb3 = 0)

where l1
2 , l2

1 and l3
1 are locations, , x1 x2 and x3 are the clocks of components

B1, B2 and B3 respectively and ha1 , ha2 , ha3 hb1 , hb2 and hb3 are history clocks.

The generalized counterexample is:

generalize(θ, Ψ) = ((l1
2 , l2

1 , l3
1), x1 < 5^ x2 ≥ 8)

Example 6.4.

l2
1

l2
2

cool2,
t2 ≥

1800

rest2,
t2 := 0

cool2

rest2

Rod2

lc0

lc1

x  900

lc2

x ≥ 1800
x := 0

cool,
x = 900
x:=0

heat

x :=
0

cool

heat

Controller

l1
1

l1
2

cool1,
t1 ≥

1800

rest1,
t1 := 0

cool1

rest1

Rod1

Figure 6.2: A timed temperature control system

For illustration, we consider the temperature control system depicted in Figure

6.2 from head to tail. It is composed of one controller interacting with two rods

through interaction set γ = {heat|rest1, heat|rest2, cool|cool1, cool|cool2}.
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• We consider the property Ψ ⌘ at((lc1, l1
2 , l2

1))) (t1 ≥ 1800^ t1 − t2 < 1500),

which is satisfied. The SAT-solver checks if there is a configuration satisfying

GI ^ ¬Ψ. Using the tautology (A) B ⌘ B _ ¬A), the negation of the safety

property is:

¬Ψ ⌘ at((lc1, l1
2 , l2

1)) ^ (t1 < 1800_ t1 − t2 ≥ 1500)

The counterexample generated by the SAT-solver θ has for location (lc1, l1
2 , l2

1)

and has the following clock valuations:

location x t1 t2 h0 hcool hcool1 hcool2 hheat hrest1 hrest2

(lc1, l1
2 , l2

1) 451 2702 451 4502 901 901 2251 451 2702 451

Table 6.1: The generated counterexample

The generalized counterexample is expressed as

generalize(θ, Ψ) = ((lc1, l1
2 , l2

1), t1 ≥ 1800^ t1 − t2 ≥ 1500)

The state generalize(θ, Ψ) satisfies the literal (t1 − t2 ≥ 1500) of ¬Ψ and

negates its (t1 < 1800) literal. The computed predecessors of generalize(θ, Ψ)

are listed in the following. We refer with Oi to the set O obtained at the i-th

iteration, that is at depth i. We relate also the number of symbolic states

discarded from the preimage at each step. We recall that Oi  pre(Oi−1) \ Vi.

The backward reachability graph that follows from the algorithm is depicted

in Figure 6.3. It shows the computed preimage at each depth i of backward

reachability.

For example, for i = 0, O0 = {((lc1, l1
2 , l2

1), z0)}, and for i = 1, O1 =

pre(((lc1, l1
2 , l2

1), z0)) = {((lc2, l1
2 , l2

2), z1)}.

The graph indicates whether a reached symbolic state is discarded from the

preimage using the set difference operation in line 8 of the algorithm:

– If the predecessor of a symbolic state (l̄, ζ) equals a previously ana-

lyzed symbolic state then the red arrow is used to return to the firstly

computed state. For our example:

pre(((lc2, l1
1 , l2

2), z5)) = precool|cool1(((lc2, l1
1 , l2

2), z5)) [ precool|cool2(((lc2, l1
2 , l2

1), z5))

where

precool|cool1(((lc2, l1
1 , l2

2), z5)) = {(lc1, l1
1 , l2

2), z44)}
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precool|cool2(((lc2, l1
2 , l2

1), z5)) = {(lc1, l1
1 , l2

2), z43)}

– If the zone ζ of a symbolic state (l, ζ) in pre(Oi−1) is included in the zone

ζ 0 of a previously analyzed symbolic state (l, ζ 0) sharing its location,

then it is discarded from Oi. Such states are highlighted with the green

color. For our example, z41 ⇢ z21 , z42 ⇢ z43, and z44 ⇢ z21.

– The symbolic states having no predecessors are underlined with the red

cross mark.

6.4 Incremental Restriction of Pre-image Computation

To avoid combinatorial explosion during the exploration of the predecessors,

guiding the backward analysis by the global invariant GI at each step would

reduce the overall number of analyzed states. Guiding the analysis with GI means

that each backward computed state is restricted to satisfy it.This restriction is

denoted by preGI and defined by preGI(O) = {s 2 pre(O) | s |= GI}. If This

restriction is denoted by preGI and defined by preGI(O) = {s 2 pre(O) | s |= GI}.

The invariant GI is computed as the conjunction of local invariants of components

and invariants constraining the history clocks relations. Transforming the GI

predicate into a CNF or DNF form is very costly and complex, especially when

the number of components is great. This leads us to restrict in an incremental way

each state in a given set to satisfy GI, hence the different invariants composing GI

should be satisfied.

6.4.1 Restriction with II(γ)

As the interaction invariant constraints only locations, we consider to firstly refine

each state with respect to it. This allows to eliminate some global symbolic states

whose locations don’t satisfy II, preventing us from looking at their zones. The

symbolic states in a given set O which satisfy II(γ) are included in:

re f ineI I(O) = {(l, ζ) 2 O | l |= II(γ)}
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((lc1, l2, l1), z0)

((lc2, l2, l2), z1)

((lc1, l1, l2), z21) ((lc1, l2, l1), z22)

((lc2, l2, l2), z31) ((lc0, l1, l2), z32) ((lc2, l2, l2), z33) ((lc0, l2, l1), z34)

((lc1, l1, l2), z41) ((lc1, l2, l1), z43) ((lc1, l1, l2), z44)

((lc2, l2, l2), z5)
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a|b

No preimage
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Preimage through interaction α

Preimage leads to an analyzed state

Interaction synchronizing a and b

α

α

Figure 6.3: Graph resulting from the counterexample analysis algorithm
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6.4.2 Restriction with CI(Bh
i )

After computing O(0) = re f ineI I(O), we define the restriction of a set O(i−1) with

CI(Bh
i ), the local invariant of component Bi:

restrictCI(O
(i−1), CI(Bh

i )) =
n

(l, ζ \ ζ ij) | (l, ζ) 2 O(i−1) ^ (li, ζ ij) 2 Reach(Bh
i )
o

Given that components are numbered B1, · · · Bn, the set resulting from the restric-

tion with components invariants is computed as follows

For i = 1 . . . n

O(i) = restrictCI(O
(i−1), CI(Bh

i ))

6.4.3 Restriction with the history clocks constraints

Thereafter, the state set is refined with the history clocks constraints E ⇤(γ) and

S(γ). Both of them can be perceived as a disjunction of zones, or equivalently sets

of zones. The final set of restricted states is

restrict(O, GI) =
n

(l, ζ \ ζE⇤ \ ζS ) | (l, ζ) 2 O(n) ^ ζE⇤ 2 E
⇤(γ) ^ ζS 2 S(γ)

o

Every state in restrict(O, GI) satisfies GI. Concretely, the restriction of pre(O), the

set preGI(O), is

preGI(O) = restrict(pre(O), GI)

Example 6.5.

We reconsider Example 6.4 and apply the restriction operation to the analyzed

symbolic states. The new graph is shown in Figure 6.4. Before computing its

preimage, the generalized counterexample is restricted with respect to GI. This

results in two symbolic states sharing the same global location and differing in

their zones. Afterwards, the preimage of each of them is computed. The preimage

contains 4 different symbolic states. However, they are all eliminated since they do

not satisfy the global invariant. All in all, 7 symbolic states are computed, instead

of 13 when no restriction with GI is performed. In addition, the elimination of

this spurious counterexample is performed in fewer backward computation steps.

6.4.4 Discussion

In general, the restriction with the global invariant allows to reduce the number

of backward computation steps. In fact, the preimage of the sub-states which
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((lc1, l2, l1), z0)

((lc2, l2, l2), z11)

internalrest|heat2 internal

1

1

1

1

1

1 1

2

GI

2

22

2

22

a|b

Preimage through interaction α

Interaction synchronizing a and b

α

((lc0, l2, l2), z12)

O0

restrict(O0, GI) : ((lc1, l2, l1), z
0
01) ((lc1, l2, l1), z

0
02)

((lc2, l2, l2), z13) ((lc0, l2, l2), z14)

rest|heat2

pre(restrict(O0, GI)) :

pre (restrict(O0, GI)) is empty

Figure 6.4: Graph resulting from the counterexample analysis algorithm applying

restriction with GI

do not satisfy the global invariant is not performed, helping to reduce the size

of the overall explored state space. The restriction with the global invariant

drastically reduced the overall verification time for the untimed systems introduced

in [BGL+11]. However, the use of BDD is not possible for timed systems with the

existence of the real variables representing the clocks.

The restriction with the global invariant in case of timed systems with large number

of components needs to be efficiently implemented. In fact, the number of zones

representing the history clock constraints increases significantly with the number

of interactions. In some way, a partitioning of each backward reached symbolic

state with respect to the zones of the global invariant is required. Therefore,

the use of efficient data structures is necessary. Furthermore, in order to reduce

the complexity of the restriction operation, some previous techniques already

proposed for monolithic verification would be of great use. We cite for example

symmetry reduction techniques. Such techniques may be also applicable for the

basic algorithm where the preimage computation is not guided.

6.5 Summary

While the global invariant computation gives a first attempt to check the property

by avoiding the full state space exploration, this chapter proposes the analysis of
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the counterexamples as a second stage to ensure the completeness of the method.

The validation of a counterexample requires to find a backward path showing

that the suspected configuration can be reached from the initial state. Guiding the

basic backward computation with the global computed invariant would allow the

minimization of the number of the preimage computation operations. However,

regarding the particular form of the invariant, the restriction of the reached

preimages requires the use of efficient data structures.

The application of reduction techniques for the backward computation module

remains open to investigation. The implementation of the previous methods

already proposed to alleviate the complexity of monolithic verification to our

backward reachability analysis module would ensure that the verification time and

complexity of our method remains reduced in comparison with other techniques.

In case a valid counterexample exists, the algorithm could be extended to extract

the error trace.
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The parameterized verification proposes to check whether a uniform family of

systems satisfies a desired property. By uniform family, we refer to systems that

differ solely on the number of copies of a same replicated component. As exam-

ples of parameterized systems, we cite communication protocols, traffic control

protocols and swarm robots. The verification of such systems is challenging by

that they yield infinite-state space since the system description is parameterized

by a number of components while the verification aims to establish the correctness

independently from their number. Following from the Halting Problem for Turing

Machines, the parameterized model-checking problem is generally undecidable.

The proof is based on that a system of a given size n can simulate a Turing machine
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with the same number n of steps [AK86].

To remedy this problem, some research focused on restricted classes of param-

eterized systems where the problem is decidable. For instance, decidability is

insured for the parameterized verification of safety properties for timed networks

where each timed automata possesses either a finite number of discrete-valued

clocks or a single real-valued clock [CGR10, AJ03]. In [ADM05], special classes of

timed networks were studied. In case of timed networks containing exclusively

non-strict inequalities on the clock variables, the model-checking problem is de-

cidable independently from the number of clocks in each component. At the

opposite, in case of open timed networks where inequalities on clocks are all strict,

the undecidablilty remains.

One other direction of research accepts to give up on completeness for applicability

to more general classes of parameterized timed systems by relying on approxi-

mation methods. We mention regular model-checking [BJNT00, JN00, AJNd02],

abstraction and network invariants ( [WL90, AJ99, LHR01] for untimed systems

and [GL08] for timed systems).

In [CGR10], Satisfiability Modulo Theories (SMT) techniques are used to translate

timed and parameterized reachability problems to the declarative input language

of MCMT, the Model Checker Modulo Theories tool. For this purpose, the com-

ponents are encoded as formula in a decidable fragment of the arrays theory

[GNRZ08].

In the remainder of this chapter, an extension of our compositional verification

method is detailed. It is built upon a small model theorem proposed for rectangular

hybrid automata [JM12]. In [PRZ01], it has been demonstrated that for bounded-

data parameterized systems and for a precise category of properties, there exists

always a number n called the cutoff such that if the property is satisfied for any

number of components smaller than n, then it is also guaranteed for any number

of components beyond n. The work in [JM12] aims to find a method for the

computation of such a number in the context of hybrid rectangular automata. Our

compositional verification method offers an elegant application of the results in

[JM12] and shows relatively small formulas which express the computed invari-

ant in a parameterized setting. This chapter first relates the prerequisite results,

then recalls the semantics of parametrized timed systems and finally shows the

adaptation of our compositional verification to fit into this framework.
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7.1 A Small Model Theorem

In [JM12], the authors introduced a class of assertions called LH-assertions and

described how they can be used to express inductive invariants of rectangular

hybrid automata (RHA) systems, that is systems combining finite state machines

with continuous variables [HKPV98, ACH+95]. Networks of timed automata can

be perceived as a subclass of RHA systems and T-assertions are introduced as

a particular case of LH-assertions. They are used to assert on local and system

properties in the framework of this subclass of systems.

T-assertions

A and n are natural numbers in N. The signature of a T-assertion involves a finite

number of variables of different types:

(a) index variables: i1, . . . , ia 2 N

(b) discrete variables: l1, . . . , lb 2 L

(c) real variables: x1, . . . , xc 2 R

(d) discrete array variables: l̄1, . . . , l̄d : [n]! L

(e) real array variables: x̄1, . . . , x̄e : [n]! R
+

where [n] denotes the set {1, . . . , n}.

The terms of a T-assertion respect the following BNF grammar:

ITerm ::= 1 | n | ij DTerm ::= Lj | lk | l̄j[ITerm] RTerm ::= xj | x̄k[ITerm]

An index term ITerm can be one of the constants 1 or N or an index variable

ij. The discrete terms in DTerm are constructed as above specified, where Lj is a

constant in L, lk is a discrete variable and l̄j is a discrete array. The definition of

the real terms in RTerm is specified by use of real variable xj and a real array x̄k.

The formulas are defined structurally as:

Atom ::= ITerm < ITerm | DTerm = Lk | a · RTerm+ b · RTerm+ c < 0

Formula ::= Atom | ¬Formula | Formula^ Formula

where a, b and c are real-valued variables.

A formula Formula can be obtained by joining shorter formulas using the boolean

conjunction operator. The boolean disjunction operator _ and other comparison

operators like =, 6=,  and ≥ can be derived by combining ^ with ¬ and <. For

example i 6= j is equivalent to ¬(¬(i < j) ^ ¬(j < i)). A formula with no free
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variables can be obtained from a Formula F by quantification and is called a

sentence.

A T-assertion is a sentence of the following form:

8i1, . . . , ik 2 [n] 9j1, . . . , jm 2 [n].F

In the context of parameterized timed systems, the elements of the above grammar

are used as follows: the different index variables denote the different instances of

the replicated component, the discrete array variables l̄1, . . . , l̄d denote the locations

and the real array variables x̄1, . . . , x̄e denote the clocks.

For brevity, in the rest of this chapter, x[i + o] is used to stand for 9j.j = i + o ^ x[j].

T-assertions are used for instance to express safety properties of timed systems.

Example 7.1 (T-assertions expressing safety properties). We consider for illustra-

tion the following T-assertions:

1. There is a minimum time delay between the clocks of two different processes

being at the same location:

8i, j.(l̄[i] = l̄[j]!| x̄[i]− x̄[j] |≥ 2)

2. Two different processes cannot be in the critical state CS at the same time:

8i, j.(i = j) _ ¬(l̄[i] = CS ^ l̄[j] = CS)

Models for Assertions As in [JM12], a n-model gives interpretation to the ele-

ments for a given assertion. More precisely, it provides the ranges or the values to

which the variables may be assigned. For an assertion ψ, the n-model is denoted

by M(n, ψ). A n-model satisfies an assertion ψ if ψ evaluates to true with the

assignments of the free variables given by M(n, ψ). For example, a 3-model for

the minimum delay property is l̄ = [L1, L1, L2], x̄ = [1, 3, 2]. An assertion is said

to be valid if all of its models satisfy it. If some models satisfy it and some don’t,

then it is satisfiable.

In [JM12], a small model theorem was proposed for LH-assertions. It shows

that inductive invariants for networks of RHA can be expressed as LH-assertions.

Besides, it provides a threshold on the size of models such that if for all n-models

with n smaller than the threshold the LH-assertion is satisfied, then it is satisfied

by all the n-models. In the following proposition, a restriction of the theorem to

T-assertions is formulated.
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Proposition 7.1 (Adapted from [JM12]). Let Φ be a T-assertion in the form 8i1, . . . , ik 2

[n] 9j1, . . . , jm 2 [n].φ where φ is a quantifier-free formula involving the index variables

i1, . . . , ik, j1, . . . , jm and array variables.

The assertion Φ is valid iff, for all n  k + 2, Φ is satisfied by all n-models.

In the following of this chapter, we show how the small model theorem can be

applied to the global inductive invariant that is detailed in Chapter 5.

7.2 Syntax and Semantics of Parameterized Timed Systems

In our framework, a Parameterized Timed System (PTS) contains two families

of components: optionally components whose number is fixed and whose com-

position can be perceived as a single non parameterized component C, and the

isomorphic components Bi whose number is parameterized by n. All the compo-

nents are modeled as in Chapter 4. The system resulting from the composition

of the two parts is denoted Ckn
γBi. We denote by Ac, A and Ai the set of actions

of C, the generic component B and the component Bi respectively. The set Ai is

obtained from A by attaching to each action the index i.

Example 7.2 (A Parameterized Timed System). Figure 7.1 depicts a parameterized

timed system where a controller C interacts with a set of isomorphic components

Bi through interaction set {a|ai}. The components Bi are obtained from the generic

component B by adding the index i to the actions, locations and clocks. During

the execution of a transition labeled ai together with ac, the clocks xi and xc are

reset simultaneously.

Interaction Patterns In the parameterized setting, the interaction set is redefined

by interaction patterns instead of a fixed set of interactions. An interaction pattern

allows to define at an abstract level a family of interactions between the compo-

nent C and m components. It is defined by a tuple
(
ac, (a1, o1), . . . , (am, om)

)
2

Ac ⇥ (A ⇥N)m where 0 = o1 < o2 < · · · < om. For example, the pattern
(
ac, (a1, o1), . . . , (am, om)

)
generates n interactions αi =

(
ac, ai+o1

1 , . . . , ai+om
m

)
2 Ac ⇥

Ai+o1 ⇥ · · · ⇥ Ai+om such that all the terms are though of modulo n. The notation

gen(α) is used for the interactions generated by α. Depending from the context, γ

denotes either the set of interaction patterns, or [i2[n]α
i.
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Figure 7.1: A parameterized timed system

Example 7.3. The interaction pattern for the parameterized system in Figure 7.1 is

α =
(
ac, (a, 0)

)
and results in the set of interactions {(ac, a1), (ac, a2), . . . , (ac, an)}.

Equivalently to timed systems shown in Chapter 4, the semantics of a parameter-

ized timed system is defined by a labeled transition system as follows.

Definition 7.1. Semantics of Parameterized Timed Systems

Given C = (Lc, Ac, Tc,X c, tpcc, sc
0) and Bi = (Li, Ai, Ti,X i, tpci, si

0), the semantics of

the system obtained from the parallel composition of C with n components Bi is equal to

the semantics of the component Ckn
γBi. It corresponds therefore to the semantics of the

timed component (L, γ,X , Tγ, tpc, s0), where

• L = Lc ⇥i Li is the set of global locations.

• s0 = ((l1
0 , ..., ln

0 ),
V

i ci
0) , where 8i, si

0 = (li
0, ci

0).

• X = X c [i X
i is the set of clocks.

• tpc(l̄) = tpc(lc)
V

i tpc(l
i), 8l̄ = (lc, l1, ..., ln) 2 L.

• The set of global transitions is defined by

Tγ =

8

>>>>>><

>>>>>>:

(l̄, (αi, g, r), l̄0)

l̄ = (lc, l1, ..., ln) 2 L, l̄0 = (l0c, l01, ..., l0n) 2 L

αi =
(
ac, ai+o1

1 , . . . , ai+om
m

)
and O = {i + o1, . . . , i + om}

8i 2 O.(li, (ai, gi, ri), l0i) 2 Ti, ai 2 Ai \ αi, 8i 62 O.li = l0i

(lc, (ac, gc, rc), l0c) 2 Tc

r = rc S

i2O ri, g = gc V

i2O gi

9

>>>>>>=

>>>>>>;



7.3. Formulating Invariants for Parameterized Timed Systems 109

Interaction Patterns as Topologies In the field of graph theory, a topology is

the arrangement of different elements depicted logically by vertices and edges.

Interaction patterns have a straightforward encoding as topology graphs where the

vertices model the components and the edges model the communication between

them.

Figure 7.2 illustrates star, bus, ring and mesh topologies. The star topology

connects a controller C with a set of identical components whereas the star and

mesh topologies contain purely identical components. The interaction set of the

star topology is generated by the pattern (ac, (a, 0)). The classical ring topology

is generated by the pattern ((s, 0), (r, 1)). The corresponding interaction set links

each send action from a node i, abbreviated with s, to a receive action, abbreviated

r, from the node i + 1.

The mesh topology depicted in Figure 7.2 illustrates an interaction set obtained

by combination of the two patterns ((s, 0), (r, 1)) and ((a, 0), (b, 2)). It shows its

instantiation to the number 5 of components.
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Figure 7.2: Topologies for interaction structures

7.3 Formulating Invariants for Parameterized Timed Sys-

tems

In this section, we show how the global invariant detailed in Chapter 5 can be

perceived as a T-assertion in the context of parameterized timed systems. This

allows for the application of the small model theorem with the compositional

verification method.

We recall that the verification rule proposes to prove, for a fixed number n of
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components, the validity of the following formula:

CI(C) ^
^

i

CI(Bi) ^ II(γ) ^ E(γ) ^ S(γ)) Ψ

This reduces to the unsatisfiability checking of GI ^ ¬Ψ. In the following, we show

how the invariants composing GI can fit in the class of T-assertions.

7.3.1 Component Invariant

As related in Chapter 5, this invariant is computed as the set of the reachable states

of the component and is expressed as the disjunction of predicates at(lj)^ ζi. Each

of them is valid when the component is at the reachable state (li, ζi).

If the generic component has an action a, a clock x and a location l, then the corre-

sponding notations in the component Bi are referred to by ai, xi and li respectively,

In order to shape the component invariants into T-assertions, the clock xi is viewed

as the ith element of the array x̄ and the location li is perceived as the ith element

of the array l̄. Semantically, l̄[i] and li are equivalent, as well as x̄[i] and xi.

Example 7.4. The component invariants of C, B and Bi (where C, Bi, B are the ones

depicted in Figures 7.1) are:

CI(C) ⌘ (lc
0 ^ xc ≥ 0) _ (lc

1 ^ xc ≥ 0) (7.1)

CI(B) ⌘ (l0 ^ x ≥ 0) _ (l1 ^ x ≥ 0)

CI(Bi) ⌘ (l0[i] ^ x[i] ≥ 0) _ (l1[i] ^ x[i] ≥ 0) (7.2)

If we use the notation CI to denote the conjunction of the invariant of the compo-

nent C, if exists, with the local invariants of all the replicated components Bi, then

CI is an invariant of the parallel composition, following from that the conjunction

of invariants is an invariant. Formally, CI is defined as CI
4
⌘
(
CI(C) ^ 8i.CI(Bi)

)
.

7.3.2 History Clocks Constraints

As explained in Chapter 5, the history clocks aim to extract in the global invariant

relations resulting from the time synchronization between components. To each

action, an action history clock is introduced and is reset whenever the action

occurs. Similarly, interaction history clocks are related to interactions. Given that

interactions synchronize actions from the different components, all the related
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clocks are reset at the same time. They remain equal until a more recent inter-

action resets one of them, making it smaller than all the others. In this section,

the reformulation of the history clocks constraints S(γ) and E(γ) to fit in the

parameterized framework is detailed. The equivalent invariants are denoted by

S̄(γ) and Ē(γ) respectively.

To each interaction pattern α and each a 2 α, the array h̄α, respectively h̄a is

associated.

History Clocks Inequalities Given α of the form (. . . , (a, o), . . . ), that is to say,

for an index i, ai appears in αi−o. It results that ha[i] is the minimum among

hα[i− o].

Ē(ai) ⌘

0

@
_

(a,o)2α

ha[i] = hα[i− o]

1

A ^

0

@
^

(a,o)2α

ha[i]  hα[i− o]

1

A

Considering an action ac belonging to the component C, the related inequality

invariant is expressed as follows:

Ē(ac) ⌘ 9j.

 
_

ac2α

hac = hα[j]

!

^ 8i.

 
^

ac2α

hac  hα[i]

!

.

The existential quantifier serves to relate the unbounded number of interactions to

which ac belongs. Its history clock hac is equal to the minimum among the history

clocks of these interactions. The history clocks inequalities considering all the

actions are gathered in Ē(γ):

Ē(γ) ⌘ 8i ^a Ē(ai) ^ac Ē(ac)

We note that this predicate is the equivalent to E ⇤(γ), detailed in Chapter 5, in the

non parameterized case. The predicate Ē(γ) is an invariant of Chkn
γBih

.

Example 7.5.

1. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
we have that:

Ē(γ) ⌘ 8i.(ha[i] = hα[i] ^ ha[i]  hα[i])^

9j.(hac = hα[j]) ^ 8i.(hac  hα[i])
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2. As for the ring topology γ = {α} with α =
(
(s, 0), (r, 1)

)
we have:

Ē(γ) ⌘ 8i.
(
hs[i] = hα[i] ^ hs[i]  hα[i]

)

^
(
hr[i] = hα[i− 1] ^ hr[i]  hα[i− 1]

)
.

3. (a) We consider the mesh topology depicted in Figure. 7.2 generated

from the combination of the interaction patterns α = ((s, 0), (r, 1)) and

β = ((a, 0), (b, 2)). For the generic component the actions s, r, a and b

are all distinct.

Ē(γ) ⌘ 8i.
(
hs[i] = hα[i] ^ hs[i]  hα[i]

)

^
(
hr[i] = hα[i− 1] ^ hr[i]  hα[i− 1]

)

^
(
ha[i] = hβ[i] ^ ha[i]  hβ[i]

)

^
(
hb[i] = hβ[i− 2] ^ hr[i]  hβ[i− 2]

)
.

(b) To illustrate an interaction pattern with more conflicting interactions, we

consider the mesh topology where the two combined patterns have com-

mon actions. We suppose that α = ((s, 0), (r, 1)) and β = ((s, 0), (r, 2))

Ē(γ) ⌘ 8i.
(
(hs[i] = hα[i] ^ hα[i]  hβ[i])

_ (hs[i] = hβ[i] ^ hβ[i]  hα[i])
)

^
(
(hr[i] = hα[i− 1] ^ hα[i− 1]  hβ[i− 2])

_ (hr[i] = hβ[i− 2] ^ hβ[i− 2]  hα[i− 1])
)
.

Separation Constraints In Section 5.2, the separation constraints predicate is

defined as an invariant serving to tighten the over-approximation in case of

conflicting interactions. In the following, we show how it can be reformulated

in case of parameterized timed system to fit into the T-assertion grammar. We

distinguish two types of actions, actions in the Bi components and actions in the

component C.

S̄(ai) ⌘
^

(a,o1)2α
(a,o2)2β

o1 6=o2_α 6=β

∣
∣
∣hα[i− o1]− hβ[i− o2]

∣
∣
∣ ≥ ka

S̄(ac) ⌘ 8i1, i2.
^

α3ac

β3ac

i1 6=i2_α 6=β

∣
∣
∣hα[i1]− hβ[i2]

∣
∣
∣ ≥ kac
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where the constant ka (resp. kac ) is the minimum time elapse required between

two occurrences of a (resp. ac) action. Their computation is detailed in Section 5.2.

The separation constraints invariant is formulated for PTS as

S̄(γ) ⌘ 8i ^a S̄(ai) ^ac S̄(ac)

.

Example 7.6. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
, we have that:

S̄(γ) ⌘ 8i1, i2.
∣
∣
∣hα[i1]− hα[i2]

∣
∣
∣ ≥ kac (7.3)

As the ring topology γ = {α}, with α =
(
(s, 0)(r, 1)

)
, shows no conflicts, we con-

sider for illustration purpose the following slight variation α =
(
(r, 0), (s, 1), (r, 2)

)

corresponding to send actions being translated to the left and to the right. In this

case, we have that:

S̄(γ) ⌘ 8i.
∣
∣
∣hα[i]− hα[i− 2]

∣
∣
∣ ≥ kr (7.4)

where kr is the lower bound of the time elapsed between two consecutive r actions.

7.3.3 Interaction Invariant

Interaction invariant constrains the global locations of the system. It is deduced

from the synchronization between the actions of the components based on the

interaction structure and in total independence from all timing aspects. As ex-

plained in Chapter 3, the interaction invariant can be computed by boolean

behavioral constraints or by resolving linear constraints. Applying both methods

in the parameterized case is unpractical as it requires either the transformation of

quantified formula into the disjunctive form or the resolution of an unbounded

number of equations. To avoid this, we consider rather a k-window abstraction

obtained by generating interactions involving exclusively actions belonging to

Ai, the actions of the i-th component, where i  k. The interaction invariant is

generated for this k-window. For illustration, we consider the interaction pattern

α defined by
(
ac, (a1, o1), . . . , (am, om)

)
where the offsets oi have an ascending or-

der. The k-window gen(α, k) is computed as the disjunction [i2[k]proj(αi) where

proj(αi) =
(
ac, ai

1, ai+o2
2 , . . . , a

i+oj

j

)
. The addition is performed modulo n and j is the

last index satisfying that i + oj  k. Considering all the interaction patterns, the

interaction invariant is computed for γk = [α2γgen(α, k).

The k-window abstraction is performed in two steps:
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1. compute the interaction invariant for the k-window abstraction correspond-

ing to the component C interacting with only k components Bi. The generated

invariant is denoted IIk

4
⌘ II(γk). We note that the computation of the in-

teraction invariant for this abstraction can be done through the proposed

methods of boolean behavioral constraints or linear equations.

It can be also done through the computation of the global reachable locations

of the composed system after abstraction from all timing aspects. In fact, the

interaction invariant computation methods aim at over-approximating the

reachable locations since its exact computation suffers from the combinatorial

explosion problem in case of large systems. However, in the context of small

models of systems in our parameterized setting, the computation of this set

remains practical and we consider that it can be taken for IIk.

2. the generated invariant is re-indexed by renaming all the indices j 2 [k] to

j + i in order to get II⇤k of the form 8i.IIk[j j + i].

Each invariant of the abstraction is also an invariant of the system Ckn
γBi.

Proposition 7.2. The formula (k < n _ II⇤k ) is an invariant of Ckn
γBi.

Example 7.7. We reconsider the star topology present in the running example in

Figure 7.1 and propose to compute a 1-window abstraction. The first step consists

in computing the interaction invariant of the system composed of the controller

C interacting with an only component B1. After projection, the interaction set is

II1 ⌘ lc
1 _ l0[1]. After step (2), the interaction invariant for Ckn

γBi is II⇤ ⌘ 8i.lc
1 _ l0[i].

7.4 Parameterizing the Verification Rule

The verification rule becomes, after generalization to the parameterized framework:

CI ^ (k < n _ II⇤k ) ^ Ē(γ) ^ S̄(γ)
| {z }

GI

) Ψ (7.5)

Showing the validity of the property is equivalent to checking the unsatisfiability

of GI ^ ¬Ψ. If Ψ is a T-assertion itself, this formula is also a T-assertion.

Proposition 7.3. If the property Ψ is a T-assertion, GI! Ψ is a T-assertion itself.
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Proof.

Each invariant can be expressed in the prenex form and is a T-assertion.

S̄(γ) ⌘ 8i.^a S̄(ai) ^ac S̄(ac)

⌘ 8i.^a

^

(a,o1)2α
(a,o2)2β

o1 6=o2_α 6=β

∣
∣
∣hα[i− o1]− hβ[i− o2]

∣
∣
∣ ≥ ka ^

8i1, i2.^ac

^

α3ac

β3ac

∣
∣
∣hα[i1]− hβ[i2]

∣
∣
∣ ≥ kac

⌘ 8i, i1, i2.^a

^

(a,o1)2α
(a,o2)2β

o1 6=o2_α 6=β

∣
∣
∣hα[i− o1]− hβ[i− o2]

∣
∣
∣ ≥ ka

^ac

^

α3ac

β3ac

∣
∣
∣hα[i1]− hβ[i2]

∣
∣
∣ ≥ kac

Given the set of the controller’s actions Ac = {a1, . . . , am}, 9jAc denotes the prefix

9ja1 ja2 . . . jam . The index jac stands for an arbitrary element in jAc .

S̄(γ) ⌘ 8i ^a E(ai) ^ac E(ac)

⌘ 8i1, i2.9jAc .

0

@
_

(a,o)2α

ha[i1] = hα[i1 − o]

1

A ^

0

@
^

(a,o)2α

ha[i1]  hα[i1 − o]

1

A^

^ac

 
_

ac2α

hac = hα[jac ]

!

^

 
^

ac2α

hac  hα[i2]

!

(7.6)

Given that the quantified variables are not shared between the different invariants,

the following basic equivalences can be used to convert GI ) Ψ into a T-assertion

form.

QxQy.(P(x) op R(y)) ⌘ QyQx.(P(x) op R(y))

P op Qy.R(y) ⌘ Qy.(P op R(y))

op denotes any logical connective and Q any quantifier.

Since GI ) Ψ can be written under T-assertion form, the small model theorem

expressed in Proposition 7.1 can be applied.

Corollary 7.1. Given a PTS Ckn
γBi and a property Ψ

4
= 8s̄9t̄.Ψ◦, it suffices to check the

validity of ¬GI _Ψ for n  #s̄ + #Ac + 2 in order to assert the validity of Ψ for any n.

Example 7.8. For illustration, we summarize the obtained T-assertion for the

running example. The considered safety property is Ψ
4
⌘ 9i.xc = x[i]. It expresses
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that one of the clocks in x̄ has the same value as xc. We have already gone through

the conversion of the invariants into T-assertions, expressed in Examples 7.5, 7.6

and 7.4. What is left is to combine them and rename the quantified variables to

obtain:

8i 9j1, j2, j3, j4, j5.

 

¬
⇣

(lc
0 ^ hac ≥ 0^ xc ≥ 0_ lc

1 ^ xc = hac ≥ 0) ^

(l0[j1] ^ ha[j1] ≥ 0^ x[j1] ≥ 0_ l1[j1] ^ x[j1] = ha[j1] ≥ 0) ^

(ha[j2] = hα[j2] ≥ hac) ^ (hac = hα[i]) ^
∣
∣
∣hα[j3]− hα[j5]

∣
∣
∣ ≥ kac

⌘

_

xc = x[j4]

!

(7.7)

Above, we have used the component invariants with respect to the extensions with

history clocks. By applying Corollary 7.1, we can assert the correctness of Ψ from

the validity the formula (7.7) for n  3 processes.

By application of Corollary 7.1, the validity of Ψ can be asserted from the validity

of the formula (7.7) for every number n  3.

7.5 Towards Efficient Verification of Parameterized Timed

Systems

The present verification approach for parameterized timed systems states that if

the global invariant implies the property for the small models, then it is verified for

all numbers of replicas. We want to complete it in order to cover the cases where

the refinement of the invariant with the negation of the spurious counterexamples

is needed. Since the backward reachability computation is in general practical for

small models, this extension of our uniform verification method would drastically

reduce the verification time even when raised false positives are eliminated. The

main issue concerns the generalization of the concrete real valuations relative to a

given counterexample to a generic characterization which ensures convergence.

We suppose that all the counterexamples generated for small models are proven

to be spurious, meaning that the property is valid. We denote by D the set of the

analyzed counterexamples under the generalized form. The final refined global

invariant is expressed as follows:

GIr ⌘ GI ^
^

(l,ζ)2D

¬(at(l) ^ ζ)
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where GI is the initial invariant, that is the global invariant before refinement with

the counterexamples negation. If we prove that GIr ^ ¬Ψ can be always expressed

in the T-assertion grammar, then the use of the small model theorem could be

allowed even in case the spurious counterexamples are eliminated. This requires a

deep analysis of the generalized counterexamples that depend from the literals

appearing in the safety property and which they negate. Each counterexample

(l, ζ) in D is deduced from a valuation of the variables generated by the Sat-solver

as a solution to GI ^ ¬Ψ.

The refined global invariant negates the set of spurious counterexamples.

¬(at(l) ^ ζ) ⌘ ¬(at(l) ^
^

zk2L.ν|=zk

zk ^
^

zk2L.ν 6|=zk

¬zk)

⌘ ¬at(l) _
_

zk2L.ν|=zk

¬zk _
_

zk2L.ν 6|=zk

zk

The set L contains the literals forming the Ψ property. The property itself can be

expressed as a T-assertion for the parameterized setting. To show that the new

refined invariant can be also expressed as a T-assertion, symmetry techniques

could be useful to express the counterexamples set D as a generic characterization.

We give a brief clue for having such generic characterization. We suppose that all

the analyzed counterexamples for the small models are proven to be spurious by

use of the backward reachability computation. For a fixed number of processes, let

it be the number of universal quantifiers in GI ^ ¬Ψ, the generation of the coun-

terexamples and the refinement of the global invariant GI is iteratively performed

until no counterexample remains.

1. For a generated counterexample θ, the generalization with respect to the

literals of the safety property is first performed.

2. In in the next iteration, before The Sat-solver proceeds to the satisfiability

checking of GIr ^ ¬Ψ, the global invariant GIr is refined not only with the

counterexample example (l, ζ), but also with the set of symmetric states.

3. Depending from the safety property and the generated states that negate it,

the final set GIr could be generalized as a T-assertion.

The formalization of the above steps requires further investigation. In the following,

we give an intuition by showing two manually processed examples.

Example 7.9. 1. We consider a simple case for illustration purpose. Let the

safety property be Ψ
4
⌘ at(lc1) ^

V

i at(li
1) ) 9j.xj − y ≥ 0. The generated

counterexample is generalized with respect to the literals in Ψ.

The negation of the safety property is ¬Ψ ⌘ at(lc1)^
V

i at(li
1)^8j.xj− y < 0.
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Considering the universal quantifier 8j on the zones and the fact that ¬Ψ

precises the locations of all the components, there is an only configuration

for generalized counterexample that may satisfy it. In the parameterized

setting, the refined global invariant can be easily expressed as a T-assertion

GIr ⌘ GI ^ ¬
(
at(lc1) ^ 8i.(at(li

1) ^ xi − y < 0)
)

2. We consider a more complicated case where the safety property is

Ψ
4
⌘ at(lc1) ^

^

i

at(li
1)) 8i1, i2.(xi1 − xi2 ≥ 4_ xi2 − xi1 ≥ 4)

We suppose that the first counterexample θ generated by the Sat-solver for

k = 4 corresponds to the following generalization:

generalize(θ, Ψ) = ((lc1, l1
1 , l2

1 , l3
1 , l4

1), x1 − x2 < 4^ x2 − x1 < 4

^x1 − x3 ≥ 4^ x3 − x1 < 4

^x3 − x4 ≥ 4^ x4 − x3 < 4

^x1 − x4 ≥ 4^ x4 − x1 < 4)

Using symmetry arguments, we can deduce that the following set contains

symbolic states that do also violate the safety property:

Symm(generalize(θ, Ψ)) = {(lc1, l1
1 , l2

1 , l3
1 , l4

1), 9i1, i2 . xi1 − xi2 < 4^ xi2 − xi1 < 4}

^8j 6= i1, i2 . xi1 − xj ≥ 4)

This set can be iteratively built by iterating on the analyzed counterexamples,

but the use of symmetry may help finding a formulation of the final refined

invariant as a T-assertion.

We denote by GI4 (resp. GIr,4) the global (resp.refined global) invariant for

this precise number 4 of replicas, whereas the global invariant before and

after refinement are denoted in the parameterized setting by GI and GIr

respectively.

GIr,4 ⌘ GI4 ^
^

(l,ζ)2Symm(generalize(θ,Ψ))

¬(at(l) ^ ζ)

In order to check if GIr,4 refutes all the possible counterexamples, we proceed

to the satisfiability checking of GIr,4 ^ ¬Ψ. If no solution exists, the new

invariant GIr,4 is strong enough to detect the property. If other solutions exist,

we try to express them similarly as families of symmetric states. By finding an
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expression GIr generalized from GIr,4 to a T-assertion and implying the safety

property for all numbers of replicas in the small models, the application of

the small model theorem becomes possible. In some way, the negation of the

spurious counterexamples is a new type of invariant that we want to express

also as a T-assertion in the parameterized setting. For the current example:

GIr ⌘ GI ^ ¬
(
at(lc1) ^ 8i.(at(li

1) ^ 9i1, i2.xi1 − xi2 < 4^ xi2 − xi1 < 4}

^8j 6= i1, i2.xi1 − xj ≥ 4)
)

In order to apply the small model theorem to GIr ^ ¬Ψ, the negated counterexam-

ples should be proven to be invalid for the small models. The cutoff for which the

invalidity of the counterexamples should be proven through backward analysis is

deduced from the number of universal quantifiers in GIr ^ ¬Ψ.

7.6 Summary

The proposed compositional verification method supports an elegant application of

the small model theorem aiming to address the problem of uniform verification of

parameterized timed systems. In fact, the global invariant gathers local invariants

of its components implying similar characterizations among the replicas. Besides,

the modeling framework benefits from correspondences between typical interaction

structures and topologies.

Given that all the compositionally computed invariants can be expressed as T-

assertions, the application of this small model theorem is direct. However, in

case where spurious counterexamples exist, it is required that the refined global

invariant, obtained by elimination of these counterexamples, can be expressed

as a T-assertion. A further investigation in this direction is required in order to

demonstrate that the negation of the spurious counterexamples can be always

generalized to a T-assertion, which highly depends on the shape and the literals of

the safety property of interest.

The application of the small model theorem is restricted to systems of timed

automata and is not applicable to timed automata parametric in their indices. An

extension in this direction would be of interest.
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We present in this chapter RTD-Finder, a tool for the verification of safety properties

for real-time systems which implements our compositional invariant generation

method. The toolset contains the extension aimed to analyze the possible coun-

terexamples. First, we present the structure of RTD-Finder and briefly introduce

the RT-BIP language. Afterwards, we detail the implementation of the different

RTD-Finder modules.
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8.1 The RTD-Finder Tool

The tool takes as input a file modeling a timed system in the RT-BIP language. It

is implemented in the Java programming language and interacts with the Yices

Sat-Solver.

8.1.1 The RT-BIP Language

BIP (Behavior, Interaction, Priority) is a component-based language for modeling

and programming complex systems. It offers a practical implementation of the

three layers of BIP , Behavior, Interactions and Priorities, introduced at Chapter

3. The RT-BIP language [ACS13] is the timed extension of the BIP language

supporting the main timing features introduced in Chapter 4. RT-BIP was initially

designed to support the timing constraints on transitions as time intervals with

urgency types. In this type of models, the time progress at a given location

depends from the urgency level of the transitions enabled from that location. In

particular, time is not allowed to progress at a location if there exists an outgoing

urgent transition that is enabled.

In the framework of thesis, we don’t work on the RT-BIP model with urgencies.

Instead, we work on another version of RT-BIP supporting time progress conditions

on locations as defined in Chapter 4.

Compared to the untimed BIP framework, the main difference of RT-BIP lies on

the behavior layer which is extended to timed automata (and timed Petri nets). In

Appendix A, we recall the main constructs of the BIP language and illustrate the

syntax of RT-BIP by modeling the timed Controller-Workers system depicted in

Figure 4.5.

8.1.2 RTD-Finder Structure

The structure of RTD-Finder is depicted in Figure 8.1. The tool takes as input a

RT-BIP source file and a safety property Ψ to check for invariance. If the property

is not provided by the user, the tool proceeds by default to the verification of

deadlock-freedom. Following this, it computes the predicate characterizing the set

of deadlock states in the so-called DLK module. The tool proceeds basically as

follows:

1. The tool extends each component Bi from the input file with history clocks

(HC) into Bh
i .
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Figure 8.1: The RTD-Finder tool structure

2. It then computes the invariants of Bh
i as the set of reachable symbolic states.

These, in turn, are computed by means of a DBM library that we developed.

3. It computes the interaction invariant

4. The inequalities on history clocks (E ⇤(γ) and S(γ)) are computed.

5. The combination of all the above invariants forms the global invariant GIh.

6. Together with the property Ψ, this invariant is input to Yices [DdM06]

[Dut14], an SMT solver.

7. If GIh ^ ¬Ψ is unsatisfiable, the property is valid. Else, a counter-example is

generated. A backward analysis module is developed to decide upon their

validity (the dashed box in Figure 8.1).

In the following, more details are given for each of the above steps. We note

that the implementation of the interaction invariant computation method and the

data variables consideration through abstraction are not shown since a detailed

presentation can be found in [Ngu10].
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8.2 Invariants Construction

8.2.1 Component Invariant Generation

8.2.1.1 Difference Bound Matrices Library Implementation

As explained in Chapter 4, the operations on zones are defined in terms of

clocks assignments and DBM offer a convenient data structure to implement

them. In [BY03], most of the common operations on zones were detailed together

with pseudo code for their implementation. In the framework of this thesis, a

DBM library was implemented in the Java programming language to provide

the requisite operations on zones that are used in RTD-Finder. We mention

clock reset and its inverse operation, the extrapolation, the normalization, the

addition, the intersection, Floyd-Warshall algorithm, the inclusion test and the

forward and downward operations. In this section, we give pseudo codes for the

implementation of some operations on DBM which were not presented in [BY03].

The function “exists” shown in Algorithm 1 computes the zone resulting from

the deletion of a precise clock by omitting all the clocks constraints involving it

and keeping the remaining clocks and constraints relating them. In RTD-Finder,

this function serves to perform the inclusion test over zones independently from

the amount of time h0 elapsed since the beginning, whereas the function “msol”

shown in Algorithm 2 is used to compute the minimum time elapse required

between two occurrences of the same action as explained in Chapter.5.

8.2.1.2 Reachability Graph Computation

The local invariant implementation for an atomic component B = (L, A,X , T, tpc, s0)

lays upon the computation of the reachability graph. This step is preceded by the

extension of the component with the history clocks. An action is exported if it is

synchronized with actions of other components. In the opposite case, it is internal.

By Aexp we refer to the actions in A which are exported.

The reachability graph computation is shown in Algorithm 3 and starts from the

initial state of the component, defined by its initial location, its time progress con-

dition and the initialization of the clocks, including the history clocks. Afterwards,

the Depth-First-Search (DFS) graph strategy is performed to find the reachable

symbolic states. The symbolic states who are still to be explored are organized

in a stack toVisit while all the already visited symbolic states are added to the

set visited. The set visited is filled as long as the stack toVisit is not empty. The
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Algorithm 1: function exists(z, x) ;

Input : A zone z having M for DBM and a clock x

Output : z0 computed from z by totally omitting constraints on the clock x

1 Let C be the ordered set of clocks of M ;

2 n length(C) ;

3 if z does not contain x then

4 return z ;

5 end

6 else

7 k 0 ; r  0 ; c 0 ;

8 for i 0 to n do

9 if C(i) 6= x then

10 C 0(k) C(i) ;

11 k ++ ;

12 for j 0 to n do

13 if C(j) 6= x then

// Filling in the elements of the new DBM

14 m0rc  mij ;

15 c ++ ;

16 end

17 end

18 r ++ ;

19 c 0 ;

20 end

21 end

22 end

23 return the zone z0 having for DBM M0 with elements m0ij and clocks C 0 ;
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Algorithm 2: function msol((z, x)) ;

Input : A zone z having M for DBM, and a clock x.

Output : The minimal solution over x to the constraints in z.

1 Let i be the index of clock x in M ;

2 if m0i 6= ∞ then

// 9c. m0i = (9, c)

3 return c ;

4 end

5 else

6 return 0 ;

7 end

latter is filled in with the successors of each new visited state. To this purpose,

a test is performed over each new candidate symbolic state (Line 9 to 12). If a

symbolic state s has been already added to the visited set or if there exists a state

sv in visited which has the same location and whose zone includes the zone of s,

then s is considered visited as well. Its successors are not computed nor added to

the stack. The inclusion test on the zones (Line 10) is performed independently

from the value of h0. The function exists on zones is implemented in the DBM

library at this precise intent.

The function “getSuccessors” computes the set of the successors of a symbolic

state s = (l, ζ) and is shown in Algorithm 4. To this purpose, it computes the

successor with respect to each transition t having l for source location. The zone

of the successor state is computed by consideration of the guard of the transition,

the reset of the clocks and the time progress condition of the destination location.

Its computation is detailed in Algorithm 5. The obtained zone is extrapolated with

the maximum constant appearing in the component and is afterwards normalized

(Line 5).

The minimum time delay ka between two consecutive occurrences of the same

action a is dynamically computed during this step. In fact, when a new symbolic

state is reached through transition t labeled with a action, the minimum time

elapse ka is updated if required. This represents an application of the dynamic

programming solution introduced in Section 5.2 and implemented in Algorithm

6. We recall that the value msol
(
ζ, h0

)
is the minimal solution over h0 to the

constraints in the zone ζ. This function is implemented in the DBM library and is

presented in Algorithm 2.
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Algorithm 3: function computeReachGraph() ;

Input : An atomic component Bh extended from B = (L, A,X , T, tpc, s0) where

s0 = (l0, tpc0).

Output : The set of reachable states of Bh.

1 Set of states visited ∅ ;

2 Stack of states toVisit ε ;

3 boolean isVisited false ;

4 ζ0  % (tpc0 ^
V

x2X x = 0^ h0 = 0^
V

a2Aexp
ha = 0);

5 toVisit.push((l0, ζ0)) ;

6 while toVisit 6= ε do

7 s toVisit.pop() ;

8 isVisited false ;

9 for each state sv = (lv, zv) in visited do

10 if lv = l and exists(sv, h0) ✓ exists(s, h0) then

11 isVisited true ;

12 end

13 end

14 if isVisited is false then

15 visited visited [ {s} ;

16 for each state suc in getSuccessors(s) do

17 toVisit.push(suc) ;

18 end

19 end

20 end

21 return visited;
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Algorithm 4: function getSuccessors(s) ;

Input : A symbolic state s = (l, ζ) of the atomic component Bh

Output : The set of successors of s state

1 for each transition t = (l, (a, g, r), l0), having l for source location do

2 ζ 0  ζ ;

3 if l 6= l0 or g 6= ∅ or r 6= ∅ then

4 (l0, ζ 0) succ(s, t);

5 successors successors [ {(l0, ζ 0)} ;

6 end

7 updateMinTimeDelay(msol
(
ζ 0, h0

)
, a) ;

8 end

9 return successors;

Algorithm 5: function succ(s, t) ;

Input : A transition t = (l, (a, g, r), l0), a symbolic state (l, ζ).

Output : The successor symbolic state of s through t.

1 ζ 0  ζ ^ g ;

2 for each clock x to reset in r do

3 ζ 0  ζ 0 [x  0] ;

4 end

5 if a is exported then

6 ζ 0  ζ 0 [ha  0] ;

7 end

8 ζ 0  % (ζ 0 ^ tpc(l0)) ^ tpc(l0) ;

9 return (l0, extrapkmax
(ζ 0)) ;

Algorithm 6: function updateMinTimeDelay(occ, a) ;

Input : occ: the time elapsed since the beginning to reach a new occurrence of a

in component B.

Output : The constant ka relative to action a of the component is updated.

1 i ++ ;

2 oldOcc newOcc ;

3 newOcc occ ;

4 if 0  newOcc− oldOcc < ka and i > 1 then

5 ka  newOcc− oldOcc ;

6 end
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Algorithm 7: function ComputeHCconstraints() ;

Input : a system with interaction set {α1, α2, . . . , αm}.

Output : the constraints relating the history clocks.

1 Initialization: E  true, S  true ;

2 for each exported action a do

3 Ea,  true ; Ea,eq  false ; Sa  true ;

4 for each interaction α containing a do

5 Ea,  Ea, ^ ha  hα ;

6 Ea,eq  Ea,eq _ ha = hα ;

7 end

8 Ea  Ea,eq ^ Ea, ;

9 E  E ^ Ea ;

10 if a is conflicting and ka > 0 then

11 for each αi containing a do

12 for each αj containing a do

13 if i < j then

14 Sa  Sa ^ (hαj
≥ hαi

+ ka _ hαi
≥ hαj

+ ka) ;

15 end

16 end

17 end

18 end

19 S  S ^ Sa ;

20 end

21 return E ^ S ;
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The update of ka constant stops when the computation of the reachability graph is

completed, that is when no new symbolic state can be reached. We note that i is

initialized to 0 once for each a action, before the function call, while ka is initialized

to kmax.

8.2.2 History Clocks Constraints Generation

The history clocks constraints E(γ) and S(γ) allow to express the relations between

the history clocks which serve as auxiliary clocks. New relations between the

original clocks of the different components are induced from the history clocks

constraints. Their computation is illustrated in Algorithm 7. The resulting E and

S predicates are directly written under Yices format to the output file.

8.3 DIS Generation

Algorithm 8: function generateDIS(γ, kγBi) ;

Input : A timed system kγBi.

Output : The predicate characterizing the deadlocked states.

1 Initialization: en false ;

2 for each interaction α 2 γ do

3 en en _ getEnabledStates(α) ;

4 end

5 DIS ¬en ;

6 return DIS ;

The implementation of the deadlock predicate generation module requires the

computation of the enabled global transitions as explained in Section 4.4.2. The

system is deadlocked if none of the interactions is enabled as presented in Al-

gorithm 8. The enabledness of a global transition labeled α requires that all

the participating actions can be executed at the same time. For this aim, the

function getLocalZoneMap(a) is used to build a map giving for each location l

of the component the set of zones relative to the transitions labeled with a and

having for source location l. Therefore, the total number of zones mapped to l

is equal to the number of outgoing transitions. We take into account that many

local transitions may be labeled with the same action a and have the same source

location l. This is allowed since the components can be non-deterministic. The
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value mapped to such a location should contain the zones relative to all of these

transitions. As shown in Algorithm 9, for each transition t, the computation of the

zone requires the consideration of the time progress condition of the destination

location, the reset operations and the guard of the transition (Line 3). However, the

time progress condition of the source location is considered later, in the function

getEnabledStates(α) since the backward operation should be performed globally.

The generation of the predicate enabledα characterizing the enabledness of a given

interaction α is presented in Algorithm 9. At the system level, a mapM is used to

store all the zones relative to all the locations in the different components. A given

location may be the source of many transitions triggered by various interactions,

requiring that the values inM are cumulative (Line 5 of Algorithm 9).

In the case of a component which is not involved in the α interaction, meaning that

it remains at the same location, we map the zone set {tpc(l)} for every location

l that it contains. Besides, their time progress conditions should be considered

while computing the zone of the global enabled states expressed in Line 21. We

note that in order to build the predicate enabledα expressing the enabled global

states set, the cartesian product operation is required to get the global locations,

picking a location from each component, as well as to extract the related zones.

8.4 Satisfiability Checking

The satisfiability checking is required to verify if the global invariant implies

the safety property. The unsatisfiability of GIh ^ ¬Ψ implies the validity of the

property for all the states of the system. Since the predicate GIh is defined over the

clocks, represented as real-valued variables, the satisfiability checking by use of

the CUDD package for manipulating the Binary Decision Diagrams (BDDs) is not

possible. Instead, the unsatisfiability checking is performed by use of the Sat-solver

Yices. Yices 2 is an SMT (SAT modulo theories) solver that decides the satisfiability

of formulas containing uninterpreted function symbols with equality, linear integer

and real arithmetic, bitvectors, scalar types, and tuples. Given a formula f , Yices

checks whether there exists a configuration of the defined variables that satisfies f .

If such a solution exists, Yices generates a sat output together with the values of

the variables in the generated solution. If not, an unsat output is produced.

For illustration, we show how the invariants computed in Section 4.6 are encoded

in Yices. For each component, the locations are first defined as boolean variables
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Algorithm 9: function getEnabledStates(α) ;

Input : An interaction α.

Output : The predicate characterizing the set of global states enabling α

1 Initialization: M an empty map, L = {{ }} an empty set of sets of locations ;

2 enabledα  false ;

3 for each action a 2 α do

4 Ma  getLocalZoneMap(a);

5 putAllCumulative(M,Ma);

6 L  L[ getKeySet(Ma) ;

7 end

8 for each component B = (L, A,X , T, tpc, s0) non involved in α do

9 L  L[ {L} ;

10 for each location l 2 L do

11 map(M, (l, {tpc(l)})) ;

12 end

13 end

14 Lglobal  Xi L(i)

15 for each global location l̄ 2 Lglobal do

16 Zglobal  Xl2l̄ get(M, l) ;

17 Zen  {} ;

18 for each zone set Z̄ in Zglobal do

19 Zen  Zen [ {
V

z2Z̄ z} ;

20 end

21 enabledα  enabledα _ (at(l̄) ^ tpc(l̄) ^
W

z2Zen
. z)

22 end

23 return enabledα
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Algorithm 10: function getLocalZoneMap(a) ;

Input : An action a.

Output : The mapM matching to each location the set of successor zones

1 for each transition t = (l, (a, g, r), l0), labeled with a do

2 z g ^ tpc(l0)[r];

3 if l already belongs to the keys ofM then

4 get(M, l) get(M, l) [ {z}

5 end

6 else

7 map(M, (l, {z}))

8 end

9 end

10 return M

Algorithm 11: function putAllCumulative(M,Ma) ;

Input : Two mapsM andMa.

Output : Update the values ofM with the values of Ma.

1 for each key location l inMa do

2 if la already belongs to the keys ofM then

3 get(M, l) get(M, l) [ get(Ma, l) ;

4 end

5 else

6 map(M, (l, get(Ma, l))) ;

7 end

8 end
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and the clocks are defined as real variables. These definitions are followed by the

formulation of the component invariants. For example, the component invariant

of worker1 is denoted by worker1CI. After the components invariants, the

interaction invariant II and the history clocks constraints are presented, followed

by the global invariant which is defined as their conjunction. The negation of the

safety property is formulated in the notSafe predicate.

The three last lines give an order to Yices to check the satisfiability of GI ^ ¬Ψ and

to generate a solution if exists.
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(define y1 :: real)

(define l1worker1::bool)

(define l2worker1::bool)

(define worker1CI :: bool (and (or l1worker1

( and l2worker1 ( >= y1 4 ) )

)

( >= y1 0 )

(not (and l1worker1 l2worker1 ) )

) )

(define x :: real)

(define lc0controller::bool)

(define lc1controller::bool)

(define lc2controller::bool)

(define controllerCI :: bool (and (or lc0controller

(and lc1controller (<= x 4))

lc2controller )

(>= x 0)

(not (or (and lc0controller lc1controller )

(and lc0controller lc2controller )

(and lc1controller lc2controller )

) )

) )

(define II :: bool ( and (or l1worker1 lc2controller )

(or l2worker1 lc0controller lc1controller )

))

(define GI :: bool (and worker1CI controllerCI II ) )

(define notSafe :: bool (and (and lc1controller l1worker1 )

(< y1 x ) ) )

(assert (and GI notSafe ))

(check)

(show-model)

The above example does not apply our compositional verification method which

lays upon introducing the history clocks and asserting the constraints relating

them as invariants and shows a direct application of the invariant computation

method in the D-Finder tool. It results that the above global invariant GI fails to

capture the safety property of interest and the output generated by Yices is:

sat

(= l2worker1 false)
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(= lc0controller false)

(= lc2controller false)

(= l1worker1 true)

(= lc1controller true)

(= y1 3)

(= x 4)

The generated solution satisfies the global invariant and nonetheless contradicts Ψ

since y1 − x = −1 < 0.

RTD-Finder computes the global invariant by use of the verification method

presented in Chapter 5. To this purpose, it defines the history clocks in the Yices

file as real variables and the related invariants as boolean variables conjoined to

the component and interaction invariants in order to make stronger GI.

8.5 Counterexample Analysis for Global Invariant Refine-

ment

The counterexample analysis module implements the algorithm presented in

Figure 6.1. For each execution, The Sat-solver Yices generates a solution to the

predicate GIh ^ ¬Ψ. The generated counterexample is analyzed in order to check

its validity. If it is spurious, the global invariant GIh is strengthened with its

negation. The generated counterexamples are iteratively parsed until Yices testifies

the unsatisfiability of GIh ^ ¬Ψ, or until a generated counterexample is proven to

be reachable. The first step for the analysis of a given counterexample consists

in parsing the solution generated by Yices and satisfying GIh ^ ¬Ψ. Secondly,

the generalization of the zone of the counterexample is performed based on the

atomic constraints appearing in the safety property Ψ. The DBM library is used at

this aim. Thirdly, the backward reachability computation is performed in order to

check the validity of the generalized counterexample.

8.6 Summary

In this chapter, we gave an overview of the implementation of the RTD-Finder tool

for checking safety properties of real-time systems modeled in the RT-BIP language.

We first described the structure of the tool, followed by the implementation details

of the different modules.

In the next chapter, we present the experimental results for different benchmarks,
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reflecting the efficiency of the compositional invariant generation method as well

as its scalability.
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This chapter shows several case-studies verified using the RTD-Finder tool. The

classical Train-Gate-Controller and Token Ring systems are first described and

verified. Afterwards, we introduce three other benchmarks which are represented

by a temperature control system, a gear controller system and a dual chamber

implantable pacemaker. A comparison of the verification time is carried out

between RTD-Finder and the UPPAAL tool [BDL+06]. The experimental results

witness the efficiency of the proposed invariant generation method in many cases

as well as the scalability of the method, especially when no counterexample is

generated.

9.1 Train-Gate-Controller System

We note that all the experiments are run on Linux machine Intel Core 3.20 GHz

⇥4 and 15.6 GiB Ram.
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The first example is the classical Train-Gate-Controller (TGC) system, where a

controller, a gate and a number of trains interact together. For simplicity, in Figure

9.1 we show only the gate and the controller interacting with one train. The

controller ensures that the gate is down when one of the trains enters the crossing.

It also ensures that when all the trains are far away, the gate is raised. We note that

when there is more then one train, the actions approach and exit of the controller

are conflicting. They are shared between the interactions approachi | approach

(respectively exiti | exit).
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Figure 9.1: A controller interacting with a train and a gate

We verified two properties:

1. (P1) Utility property: The gate does not go down if all the trains are far from

the crossing.

P1 ⌘
^

i

at(Fari)) ¬at(low)

Trains number Property n q c |γ| h t tyices

50 P1 52 158 52 102 106 0.5s 0.3s

100 P1 102 308 102 202 206 5.3s 0.6s

200 P1 202 608 202 402 406 1m33s 5s

300 P1 302 908 302 602 606 9m8s 20s

500 P1 502 1508 502 1002 1006 1h13m20s 2m52s

Table 9.1: Verification results for P1 property

The generated invariant was strong enough to verify this utility property.

The verification results are depicted in Table 9.1. In this table, n is the number

of components in the considered example, q is the total number of control

locations of its components and c (resp. h) is the number of system clocks

(resp. actions history clocks) and |γ| is the number of interactions. Finally,

t shows the total verification time required for GIh invariant computation

and satisfiability checking of GIh ^ ¬Ψ and tyices specifies the satisfiablity
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checking time required by the Sat-solver. Henceforth, we use the same

notation for the tables relative to the other checked systems.

RTD-Finder succeeds in verifying the P1 property in few minutes for 500

trains. The components invariants of the the train components are computed

only once, since there is a unique BIP Train type. This local invariant is later

instantiated with the replicated trains numbers. Besides, the computation

time relative to the history clocks inequalities is polynomial on the number

of components.

We note that thanks to the use of reduction techniques applicable for this

particular type of systems, UPPAAL was able to check this property for 124

trains in 2 seconds (we used the UPPAAL 4.0.13 release).

2. (P2) Mutual exclusion property: The gate is not at up location when the train

is in the crossing

P2 ⌘ (9j.at(Inj) ^
^

i 6=j

at(Fari))) ¬at(up)

The counterexample-based invariant refinement algorithm was necessary for

verifying this safety property. The verification results are illustrated in Table

9.2.

Trains number Property n |γ| dmax p kcex tcex

3 P2 5 8 22 440 1 0.6s

5 P2 7 12 22 2452 1 3.2s

10 P2 12 22 22 22982 1 45s

20 P2 22 42 22 199192 1 19m45s

Table 9.2: Verification results for P2 property

For a spurious counterexample, d is the length of the path from the suspected

state (lθ , ζθ) to the symbolic states set P having an empty preimage. Intu-

itively, the depth d is the number of backward computation steps required

to deduce the invalidity of the counterexample. The number dmax is the

maximum depth d among the analyzed spurious counterexamples. By p, we

note the total number of all the symbolic states computed and visited during

the backward analysis and contained in the P sets, while by kcex we refer

to the number of analyzed counterexamples. The total verification time is tcex.
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3. Deadlock-freedom

The deadlock freedom property was verified considering that the TGC system

is parameterized. Following the small model theorem explained in Chapter 6, it

suffices to check the property for all numbers of trains ranging from 1 to 5. The

total RTD-Finder verification time for those small models is 1.4s.

This unifrom verification method serves also to check the P1 property since it has

the form of a T-assertion and the global invariant implies it.

9.2 Token Ring System

The protocol depicted in Figure 9.2 is an adaption from [Rei12] where each process

is linked to a timer component. We introduce instead timed processes. The token

ring system consists of n processes numbered P1 to Pn. They are organized in

a unidirectional ring. A process possesses the token if it is not in ai location. It

should stay within this location for at least 2 time units, imposed by the guard

of si transition. In the token ring protocol, every process Pi receives the token

from Pi−1 through the interaction (si−1, ri). It then moves to ti
1 location and after

passing the token, it moves from ti
2 to ai, meaning that it possesses the token. Once

Pi delivers the token to the next process, it cannot have it again before 2 time units.

This constraint is expressed on the clock xi. Initially, P1 is in t1
1 location while all

the other processes Pi are at location ai, waiting for the reception of the token. The

property that we want to check states that exactly one process is not at ai location

at a given time.

Ψ = 9i.8j 6= i.
(
¬at(ai) ^ at(aj)

)

a1 t1
1

t1
2

P1

r1

x1 > 2,
x1 := 0

τ1s1, x1 := 0

r1 s1

a2 t2
1

t2
2

P2

r2

x2 > 2,
x2 := 0

τ2s2, x2 := 0

r2 s2

. . .

an tn
1

tn
2

Pn

rn

xn > 2,
xn := 0

τnsn, xn := 0

rn sn

Figure 9.2: A timed token ring system

The property has the form of a T-assertion, which means that the small model

theorem presented in Chapter 7 can be applied. What is interesting about this

system is that the interaction invariant implies that the token is not lost while the

conjunction of the other invariants implies that at most one process possesses the
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ring at any given time. Formally, the interaction invariant is expressed as follows:

9j. (at(t
j
1) _ at(t

j
2))

All in all, the global invariant implies the desired property: one and only one

process possesses the ring. The global invariant can be expressed as a T-assertion

containing 3 universal quantifies. It follows from the results in Chapter 7 that it

suffices to verify the system from token ring systems ranging from 1 to 5 processes.

The overall verification time required by RTD-Finder to check these small models

is equal to 0.4 s. We recall that this time is sufficient to show the validity of the

property for any number of processes in the token ring protocol.

9.3 Temperature Control System

This benchmark is a timed adaptation of the temperature control (TC) system in

[BBSN08]. It represents a simplified model of a nuclear plant. The system consists

of a controller interacting with an arbitrary number of rods aimed to maintain the

temperature within some bounds (between 450 and 900). When the reactor spends

900 units of time in heating, a rod must be used to cool the reactor.

We verified two properties:

1. (P3) At least one rode is ready to take cool action together with the controller

when necessary (deadlock-freedom) in this state. For one rod, E(γ) is enough

to show the property. However, for more rods, since the interactions are

conflicting, the separation constraints are needed and they bring in new

invariants as ^i(hresti
− hrestj

≥ 1350) for any two different indices i and j.
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Figure 9.3: A Controller interacting with two rods
Formally, the property P3 is expressed as follows.

P3 ⌘ at(lc1) ^
^

i

at(l1i)) 9j.(tj − t ≥ 900)
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The generated invariant is tight enough to imply the property P3 and the

verification results are shown in Table 9.3.

We made a comparison of RTD-Finder with UPPAAL on this system. We

increased the number of rods and compared the verification time. For 10

rods, UPPAAL generated no results after five hours and 436519 explored

states. Nevertheless, RTD-Finder checked the property for 300 rods in few

minutes, as shown in Table 9.3.

Rods number Property n q c |γ| h t tyices

20 P3 21 42 21 40 42 0.07s 0.01s

50 P3 51 102 51 100 102 0.35s 0.04s

100 P3 101 204 102 200 204 3.7s 0.08s

300 P3 301 602 302 600 602 5m47s 0.9s

Table 9.3: Verification results for P3 property

2. (P4) No rod is in cool position if the controller and the remaining rods are

in heat position. For a given rod Rodi, the following property should be

satisfied.

P4 ⌘ (at(lc1) ^
^

j 6=i

at(l1j))) at(l1i)

The counterexample analysis module is needed for P4 property. The verifi-

Rods number Property n |γ| dmax p kcex tcex

3 P4 4 6 7 48 1 0.2s

5 P4 6 10 7 218 1 0.6s

20 P4 21 40 7 8914 1 3m46s

50 P4 51 100 7 128794 1 14h14m

Table 9.4: Verification results for P4 property

cation time is visibly less important when the invariant is strong enough to

detect the desired property. In some cases, even when the counterexample

analysis is needed, RTD-Finder remains competitive to model checking using

forward reachability analysis. This is for instance the case of the temperature

control system and (P4) property which is verified in 3 minutes for 20 rods

using the counterexample analysis module compared to the inability to check

the property in 5 hours for 10 rods with UPPAAL.
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9.4 Gear Controller System

The third benchmark is taken from [LPY98] and models a gear controller system

embedded inside vehicles. A gear controller is composed of an interface sending

gear change requests to a gear controller component which interacts with the

engine, the clutch and the gear-box components. The interface sends signals to

the controller to change the gear. The controller interacts with the engine, the

clutch and the gear-box. The engine is responsible for regulating the torque or

synchronizing the speed while the gear-box sets the gear between some fixed

bounds. The clutch works as the gear-box and it is used whenever the engine is

not able to function correctly (for example in case of difficult driving conditions).

The components are illustrated in Appendix B. One requirement that such a system

should satisfy in order to be correct is predictability. We verified the following

properties after making abstraction from the data variables of the system:

1. Predictability:

• (P5) When the engine is regulating the torque, the clutch should be

closed.

P5 ⌘ at(Torque)) at(Closed)

• (P6) When the engine is regulating torque, the gear has to be set in the

gear-box.

P6 ⌘ (
^

i=1...5

at(Gear) ^ at(Geari))) at(Torque)

2. Error detection: The controller detects and indicates the precise errors when

the clutch is not opened or closed at time and when the gear-box is unable

to set or release a gear at time.

P7 ⌘ at(CCloseError)) at(ErrorClose)

P8 ⌘ at(CCloseError)) at(ErrorClose)

P9 ⌘ at(GSetError)) at(ErrorIdle)

P10 ⌘ at(GNeuError)) at(ErrorNeu)

3. The gear controller system is deadlock-free.

RTD-Finder verified the predictability properties (P5) and (P6) as well as the error

detection properties (from P7 to P10) in 15.2 seconds while the deadlock-freedom

was checked in 17.6 seconds. The global invariant was tight enough to check all of

them.
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9.5 Dual Chamber Implantable Pacemaker

We considered the verification of a dual chamber implantable pacemaker modeled

and verified in [JPM+12]. Its illustration is given in Figure 9.4. The system is

designed to manage the cardiac rhythm. In the considered pacemaker mode, both

the atrium and ventricle of the heart are paced. Based on the sensing of both

chambers, the pacing can be restrained or activated. For a safe operation, it is

essential that the ventricles of the heart should not be paced beyond a maximum

rate equal to a TURI constant. A ventricle pace (VP) can occur at least TURI

time units after a ventricle event. This requirement expresses the Upper rate limit

property.

We summarize the verified properties in the following:

1. (P11) There is a minimum time elapse TURI between a ventricle (VS) sense

and a ventricle pace (VP) event. This LTL property is verified by adding the

matching monitor component to the system and synchronizing its actions

(VP and VS) to the other components through interactions. We verified that

when the monitor reaches the location interval, its clock t is greater than

TURI. The corresponding property is at(interval) ! t ≥ TURI.

As in [JPM+12], we verified both of the properties by translating them into

a monitor component. The interval between a VS venticular event and a VP

venticular event should be longer than TURI. In addition, our method offers

another way to check the first property without resorting to the monitor.

We expressed it by means of the already introduced history clocks. The

difference between the interactions history clocks relative to those two events

is bigger than the desired time elapse.

2. (P12) There is a minimum time elapse TURI between two ventricle pace

(VP) events. This property is verified by use of a monitor. However, using

history clocks to express the safety requirement is not possible for this second

property since it compares two occurrences of the same action VP.

3. The pacemaker system is deadlock-free.

RTD-Finder verified (P11) property in 0.25 seconds and the computed invariant

was sufficient for its detection while (P12) and the deadlock-freedom where verified

in 0.6 seconds and 0.5 seconds respectively. The counterexample-based invariant

refinement module was needed to eliminate 28 and 11 spurious counterexamples

respectively.
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Figure 9.4: Pacemaker system
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Figure 9.5: Monitor for the upper rate limit property

9.6 Summary

This chapter provided the experimental results for the verification of various

case studies using RTD-Finder. They have shown the efficiency of the proposed

invariant computation method for many properties. When the global invariant

is strong enough and when no counterexample analysis is needed, RTD-Finder

offers generally a drastic reduction of the verification time in comparison with

UPPAAL. In some cases, it succeeds in verifying systems composed of hundreds

of components while UPPAAL is unable to exceed 20 of them.

We mention also the important reduction of the verification time for the previously

introduced class of parameterized timed systems. For this particular class, the

validity of the property is asserted for all numbers of replicas by relying on the

verification of the small models, which is usually drastically rapid.
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Conclusions and Perspectives

In this chapter, we conclude the thesis by recalling the main objectives of the work,

the achieved goals and the future work directions.

10.1 Conclusions

The main objective of the present work is to contribute to resolving the combi-

natorial explosion problem inherent to the verification of real-time systems. At

this aim, we proposed a fully compositional and automatic method for timed

invariant generation designated for safety properties verification. It is based on the

deductive approach and a verification rule that states that if an over-approximation

of the reachable states set implies the property of interest, then the system satisfies

it. In this work, one main contribution consists in answering to the question: how

to compute such an over-approximation for timed systems in a fully compositional

manner?

In the context of real-time systems, the question is even hardened due to the

synchronous model of time. In fact, while the clocks of the different components

advance at the same rate, the local analysis of each component is performed in

isolation with respect to the others. The use of the history clocks lays on the

core of our answer. The local invariants of the components extended with the

actions history clocks contain relations between them and the original local clocks.

In conjunction with the invariants relating the different history clocks, they in-

duce relations between the clocks of the different components. In our framework,

components are modeled as timed automata and are glued together by a set of
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multiparty interactions. This modeling framework is constructive and is aimed to

subserve compositional verification methods: the properties of components are

preserved with parallel composition and the global properties can be inferred from

the local properties of the components.

The method is implemented in the RTD-Finder tool where the input system is

modeled in the RT-BIP language. As shown in the experiments section, where a

comparison with the UPPAAL tool is conducted, the global invariant was strong

enough to capture the safety property of interest in many cases. There, the verifica-

tion time is drastically reduced in comparison with exploration-based techniques,

particularly when the number of components is very large. Beyond its scalability,

the proposed approach has other advantages.

• Unlike model-checking where the verification of generalizations is not possi-

ble, it allows the uniform verification of parameterized timed systems. In

fact, the global invariant can be expressed at a particular form suitable for

the application of a small model theorem.

• In case a valid counterexample is detected, the correction of the global system

does not necessarily go through its full reconstruction.

10.2 Perspectives

Following the above contributions, several extensions and improvements are

sought to enhance the scalability of the method or enable covering additional

aspects and hence ensure more generality and applicability.

Method Extension

Counterexamples Analysis Module Improvement At the current version of the

tool, the counterexamples are analyzed by simple backward reachability compu-

tation. We proposed to restrict the preimage computation to satisfy the global

invariant at each step. At the implementation level, this requires specific data struc-

tures to efficiently restrict and manipulate the sets of symbolic states. Furthermore,

a rich set of reduction techniques that have been widely studied in the literature

may be implemented to reduce the complexity of this backward computation task.

Handling Richer Classes of Models
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Urgency types

Two different approaches may be considered to restrict a component, or more

generally a system, from remaining infinitely at a given location. While in this

work, we focus on time-progress-conditions, the urgency framework [BS00] is

proposed at the aim of ensuring additionally a well-timedness property of systems,

which is reactivity, meaning that if no discrete transition can fire, then time can

progress in the current location of the component. Besides the guard, a transition is

labeled with a deadline. Their relative position defines the degree of urgency: lazy,

delayable and eager transitions. One future work direction would be a method for

compositional invariant generation for such systems. One major difficulty for a

direct application of our method is that in the urgency framework, the computation

of the local invariants based on the reachability graph would result rather in weak

component invariants. In fact, due to the urgency types, the actual time progress

on locations depends from the interactions and is not only locally determined.

Parametric Timed Systems

The method can be extended to parametric timed systems, that is timed systems

containing unknown constraints. The aim would be inferring parameter valuations

consistent with given safety properties. To reason parametrically, unknown time

delays can be perceived as parameters. Parametric timed automata [AHV93]

were proposed to approach this problem. Several verification and synthesis

techniques were proposed for parametric timed automata. We cite the works

in [HRSV01], [AS11] and [JLR13]. In relation with our framework, the use of

parametric DBM would allow to generate parameteric invariants for components

modeled by parameteric timed automata.

Based on the work in [CARB15], a parametric invariant of the system may serve

as a cheap over-approximation of the reachable states set allowing to formulate a

98SMT satisfiability problem for parameter synthesis.

Properties

Deadlock

RTD-Finder offers high scalability especially when the property to check is not

combinatorial. Checking the absence of deadlock is currently more problematic. If

in the untimed case one can provide an exact formalization of deadlock by means of

local characterizations, this is no longer the case for timed systems. More precisely,
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in a timed context, the condition which expresses that an interaction is eventually

enabled cannot be decided by the consideration of the involved components only,

but depends also from the timing constraints of the non involved components.

The use of approximation techniques could be envisaged to counter this problem.

Timelock

Unlike timed systems where the notion of progress is linked to discrete state

changes, progress in timed systems may result from the passing of time. A state of

the system contains a timelock if for every path starting from this state, time can

advance only to a certain value, while by nature time always progresses. A system

is not timelock-free if at least one of its states has a timelock. The verification of

such a property for real-time systems is of high interest.

Temporal properties

Currently, RTD-Finder handles only safety properties but we want to study the

extension to check Temporal Logic Properties. Linear Temporal Logic (LTL)

properties by use of Timed Buchi automata is possible. Actually, LTL properties

[Pnu77] can be transformed into state-based safety properties. This translation lays

on the construction of a deterministic progress monitor component representing

the LTL property of interest. An adaptation of the bounded LTL synthesis method

in [FS13] for the timed setting is detailed in [CARB15].

With the rich research advancement in timed models, some timed extensions of LTL

logic were proposed. We mention the Metric temporal Logic (MTL) [Koy90] where

the modalities are augmented with timing constraints. To extend our method

to such properties, their transformation to state-based safety properties could be

analogously studied.

Further applications of the Global Invariant

Beyond the verification of safety properties, the compositional invariant generation

method can be applied for other purposes. For instance, we mention the runtime

verification and the distributed implementation of real-time systems.

Distributed implementations of real-time systems One solution to face com-

munication delays in distributed systems consists in notifying the participating

components in advance. However, due to the synchronous model of time, the

scheduler should be able to observe, not only the components participating in the

scheduled interaction, but also the non participating components such that their
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time-progress-conditions are not violated at the execution time. In [Tri15][TCB15],

a solution was proposed at the aim of minimizing the number of observed com-

ponents. The authors formulate a predicate characterizing if for the scheduled

interaction, a given component can be correctly removed from the set of compo-

nents that should be necessarily observed. In [Tri15][TCB15], RTD-Finder is used

as a static analyzer to check the satisfiability of such a predicate. This work is

being generalized to remove some restriction on the systems, for instance the non

determinism condition.

In a general manner, the invariants can be used in the distributed setting in order

to infer information about the other components based on local knowledge, hence

help partial decision making.
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Appendix A

RT-BIP Syntax

A.1 BIP Tool-Chain

BIP offers a practical implementation of the three layers of BIP introduced at

Chapter 3 as follows:

• The Behavior is specified by a set of components.

• The connectors serve to structure the interactions. A connector corresponds

to a subset of interactions.

• Priorities serve to resolve conflicts between interactions.

Concretely, the main constructs of the BIP language are:

• atomic component: to model the behavior described by a set of transitions

labeled by port names.

The ports serve for interface to interact with the other components, taking

the role of actions as defined in Chapter 4. In some cases, the interface is

enriched with data variables visible to the other components.

• connector: to model the synchronization between the ports of different

components.

• priority: to restrict among the possible interactions based on the states of the

interacting components.

• coumpound components: to compose a set of atomic components or other

coumpound components.

The term component refers to either an atomic component or a coumpound
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component. Both types of components have ports and optionally data

variables.

• model: to encapsulate the definition of the different components types, and

to describe the top level instance of the system to simulate, analyze or verify.

Compared to the untimed BIP framework, the main difference of RT-BIP lies on

the behavior layer which is extended to timed automata (and timed Petri nets). In

the following, we show the different elements of RT-BIP models.

In RT-BIP, the different types for components, connectors and ports are first defined.

These types are later instantiated, meaning that a given type may be instantiated

many times. For example, if many atomic components share the same behavior, it

is sufficient to model their common behavior in one atomic component type and

instantiate it later as many times as required.

The system illustrated in Figure 4.5 is composed of a controller interacting with

two workers. This Appendix shows how this system is modeled in the RT-BIP

language.

The two components Worker0 and Worker1 are perceived as two different instan-

tiations of a same atomic type Worker. Its description in RT-BIP language is

illustrated in the following:

port type Port()

atom type Worker()

clock y

export port Port d()

export port Port b()

place l1, l2

initial to l1

on b

from l1 to l2

when (y >= 8 second)

do {}

on d

from l2 to l1

reset y

do {}
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end

The definition of the Worker atomic type is preceded by the definition of a port

type Port. In the definition of Worker atomic component type, two locations

are defined, which are l1 and l2. Since the ports d and b are exported, they are

intended to interact with ports of other components. The clock y is reset whenever

the transition labeled with d is executed, moving the component from location l2

to l1 whereas the transition labeled with b has for guard (y ≥ 8) and moves the

component from l1 to l2 location. The constructor initialto precises which location

is initial, and eventually some possible initial update function to execute. Each

transition is labeled with a port (after on), a source location and a destination

location. The update functions and the guards on clocks are have a C-like syntax.

The definition of the Controller atomic type contains the definition of a time

progress condition tpc1. The time progress conditions on locations are specified

by the invariant key. The time progress condition tpc1 is linked to location

lc1 and introduces the constraint x  4 second, meaning that the clock x cannot

exceed 4 seconds at location lc1.

atom type Controller()

clock x

export port Port a()

export port Port c()

port Port initi()

place lc0, lc1, lc2

initial to lc0

on initi

from lc0 to lc1

when (x >= 8 second)

reset x

do {}

on a

from lc1 to lc2

when (x == 4 second)

reset x

do {}

on c
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from lc2 to lc1

reset x

do {}

invariant tpc1 at lc1 when (x<= 4 second)

end

The port initi is not exported, it is not designed to interact with ports of other

ports and is related to the internal transition from lc0 to lc1.

A connector type is parameterized by a list of ports describing its support. The

construct define gives the types of the associated ports. For each interaction, a

guard and a data transfer function can be eventually defined. In the following

definition, the Link2 connector models a strong synchronization between two

ports of type Port from two different components. The guard associated to the

interaction is true by default.

connector type Link2(Port p1, Port p2)

define p1 p2

end

A compound component is defined by gathering instances of predefined atomic

components or other compound types. The components instances are glued

together through instantiated connectors synchronizing instantiated ports.

compound type CW()

component Worker worker1()

component Worker worker2()

component Controller controller()

connector Link ab1(worker1.b, controller.a)

connector Link ab2(worker2.b, controller.a)

connector Link cd1(worker1.d, controller.c)

connector Link cd2(worker2.d, controller.c)

end
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During the instantiation of the main compound, the three components that consti-

tute the system, worker1, worker2 and controller, are first instantiated. This

induces the instantiation of the respective ports. For example, for worker1, the

port instances worker1.b and worker1.d are created, referring to ports b and d

of the atomic component worker1.

Afterwards, the instantiation of the connectors is performed. For instance, the

connector ab1 links port b of worker1 with port a of controller.





Appendix B

Gear Controller System

The gear controller system is composed of the GearControl, Interface, GearBox,

Clutch and Engine components, depicted respectively in figures B.1, B.5, B.2, B.3

and , B.4. This figures are taken from [LPY98] and illustrate the components as in

UPPAAL tool. Translating the system to a BIP model, all the interactions between

the components are binary. The GearControl component interacts with Interface

through one interaction synchronizing their NewGear actions and one interaction

synchronizing their NewGear actions. The Interface component keeps record of

whether GearControl is changing gear or idling. GearControl performs the gear

change in 5 steps. After reception of the gear change request from Interface, a zero

torque transmission is performed, meaning that the current gear can be changed.

Once the gear is released, the GearControl applies the synchronous speed mode

over the transmission and sets a new gear. The engine torque is subsequently

increased.

In case of difficulty in driving, the engine may become unable to perform zero

torque or synchronous speed over transmission, in which case the gear change

is accomplished my means of the clutch. By opening it, the connection between

the wheels and the engine is broken and the gear is able to set and release the

new gear. A complete and detailed presentation of the functionality and the error

states of the system can be found in [LPY98].
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Figure B.1: The GearControl component
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Figure B.2: The GearBox component
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Figure B.3: The Clutch component
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Figure B.4: The Engine component
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Figure B.5: The Interface component
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