
HAL Id: tel-01680284
https://theses.hal.science/tel-01680284v1
Submitted on 10 Jan 2018 (v1), last revised 10 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model simulation for trip planning recommendation
system in Tourism

Uyanga Sukhbaatar

To cite this version:
Uyanga Sukhbaatar. A model simulation for trip planning recommendation system in Tourism. Mobile
Computing. Université Grenoble Alpes, 2016. English. �NNT : 2016GREAM040�. �tel-01680284v1�

https://theses.hal.science/tel-01680284v1
https://hal.archives-ouvertes.fr


 

 

THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE 

préparée dans le cadre d’une cotutelle entre 
Communauté Université de Grenoble Alpes et 
L’Universite de Science et Technologie de la 

Mongolie 
 
Spécialité :Mathematique et Informatique 
Arrêté ministériel : le 6 janvier 2005 -7 août 2006 

 

Présentée par 

Uyanga SUKHBAATAR 
 

Thèse dirigée par Ahmed LBATH 

codirigée par Altangerel AYUSH 
 
préparée au sein des Laboratoires d’Informatique de Grenoble 
et de L’Ecole Doctorale Mathematiques, Sciences et de 
Technologies l’Information, Informatique (MSTII) 

 

Un modele de simulation pour une 
infrastructure logistique dediee a la 
fourniture de services mobiles sensibles au 
contexte: application au Tourism 

 

Thèse soutenue publiquement le« 07 Octobre,  2016 », 
devant le jury composé de : 

                                         
Prof. Sebti Foufou 
Universite de Bourgogne, President 

Prof. Enkhbat RENTSEN 
Institut of Mathematics, National University of Mongolia, Examinateur 

                                                Prof. Mend-Amar Majig 
                                                National University of Mongolia, Examinateur 

                                         Prof. Altangerel AYUSH 
                                                Mongolian University of Science and Technology,Co-directeur de these 

                                         Prof. Ahmed LBATH 
Joseph Fourier University of Grenoble, Directeur de these 

                                                Prof. Pradorn Sureephong 
                                                Univercite de Chiang Mai, Rapporteur 

                                         Prof. Santichai Wicha 
                                         Univercite de Chiang Mai, Examinateur



 

 

i 

 

Abstract 

When tourists visit a city for one or multiple days, they are unlikely to visit every 

tourist attraction places. But they have to deal with the dilemma of which points of 

interest (POI) would be worth to visit. These choices are normally based on 

information gathered by tourists via the Internet, magazines, printed tourist guides, 

etc. After deciding of which sights to visit, tourists have to consider on which route to 

take with respect to the visiting time required for each place, the POI's visiting 

days/hours and the timetable for sites, entrance fees and other constraints. All these 

kinds of requirements and questions are represented as a Tourist Trip Planning 

Problem in the field of Operations Research. 

This research work aims to investigate the several variants of trip planning problems 

and develop efficient technique to solve that optimization problem. In order to model 

this kind of problem the Orienteering Problem became the promising starting point 

which has originated from the group sport game so called “Orienteering”. The main 

objective of the OP is to collect the score which is associated to the each point. 

According to different type of optimization problems, this basic model is extended to 

several variants in order to enable additional tourist functionalities. In this thesis, we 

will discuss about one of the latest and hardest versions of the OP which we called 

the Time Dependent Multi Constraint Team Orienteering Problem with Time 

Windows. The simple MCTOPTW takes into account money budget limitation as 

multiple constraints in addition to time window and associated satisfaction score 

while the TDMCTOPTW considers the integration of urban public transportation 

network into the MCTOPTW. Based on the algorithm that is successfully applied to 

the certain version of problem, we proposed the Iterated Local Search Algorithm to 

tackle the Time Dependent Multi Constraint Team Orienteering Problem with Time 

Windows.  

Finally we applied the model and algorithm to mobile tourist tour recommendation 

system that enables to plan a tour for Ulaanbaatar city, so called UBTourPlanner. The 

real life test set of Ulaanbaatar city is experimented and implemented. 



ii 

 

Résumé 

Quand les touristes visitent une ville pour un ou plusieurs jours, ils sont peu 

susceptibles de visiter tous les lieux d'attraction touristique. Mais ils doivent faire 

face au dilemme de laquelle les points d'intérêt (POI) serait intéressant à visiter. Ces 

choix sont normalement basés sur des informations recueillies par les touristes via 

Internet, magazines, guides touristiques imprimés, etc. Après avoir décidé qui sites à 

visiter, les touristes doivent prendre en compte sur la route à prendre par rapport au 

temps de visite requis pour chaque place, visite jours / heures du POI et le calendrier 

pour les sites, les frais d'entrée et d'autres contraintes. Tous ces types d'exigences et 

les questions sont représentés comme un voyage touristique Planification problème 

dans le domaine des opérations de recherche. 

Ce travail de recherche vise à étudier les différentes variantes de problèmes de 

planification de voyage et de développer la technique efficace pour résoudre ce 

problème d'optimisation. Afin de modéliser ce genre de problème le problème 

Orienteering est devenu le point de départ prometteur qui a son origine dans le jeu de 

sport de groupe que l'on appelle "Orienteering". L'objectif principal de l'OP est de 

recueillir le score qui est associé à l'chaque point. Selon le type de problèmes 

d'optimisation différents, ce modèle de base est étendue à plusieurs variantes afin de 

permettre aux fonctionnalités touristiques supplémentaires. Dans cette thèse, nous 

allons discuter de l'une des versions les plus récentes et les plus difficiles de l'OP que 

nous avons appelé l'heure à charge multi Constraint équipe Orienteering un problème 

de temps Windows. Le MCTOPTW simple, prend en compte la limitation du budget 

de l'argent comme de multiples contraintes, en plus de la fenêtre de temps et le score 

de satisfaction associée tandis que le TDMCTOPTW considère l'intégration du réseau 

de transport public urbain dans le MCTOPTW. Sur la base de l'algorithme qui est 

appliqué avec succès à la certaine version du problème, nous avons proposé la 

Iterated Local Search Algorithme pour resoudre le problem de  TDMCTOPTW. 

Enfin, nous avons appliqué le modèle et l'algorithme de système de recommandation 

de circuit touristique mobile qui permet de planifier une visite de la ville d'Oulan-



 

 

iii 

 

Bator, ainsi appelé UBTourPlanner. L'ensemble de test de vie réelle de la ville 

d'Ulaanbaatar est expérimenté et mis en œuvre.  



 

 

iv 

 

Acknowledgements 

This thesis is a result of exciting four years of research. I want to express my 

gratitude for the people who have helped me and gave me continuous support until 

the end of this work. First of all, I wish to thank my supervisor, Professor Ahmed 

LBATH, for giving me this opportunity to pursue a PhD, for supervising me during 

these beautiful four years in Grenoble and in Ulaanbaatar by his broad knowledge and 

experience in this field. It was my honor to work with him and was a real pleasure. I 

always appreciate his generosity for giving me an opportunity to work with the very 

kind team MRIM of LIG, University of Grenoble (Modélisation et Recherche 

d’Information Multimédia of Laboratoire Informatique de Grenoble). I am also 

thankful to all Professors and colleagues from the MRIM team. 

I am so grateful to my co-supervisor, Prof Altangerel Ayush and examiner Dr Mend-

Amar Majig. This research work would have been much poorer without their 

inestimable advises and efficacious guidance. They influenced and supported this 

work in many ways. I also wish to thank the European Commission. This research 

work could not be done without great help and financial support of the European 

Union, E-tourism Program. I am really blessed that I had a very rare opportunity to 

study and live in a European country. I could not imagine my PhD life in Grenoble 

without my friends Pathathai Na Lumpoon, Mu lei, Teerawat Kamnerdsiri, Isaac 

Caicedo Castro and all my friends of the LIG. Also, I appreciate great help of my 

collegues doctorante Ariunbayr S. and Dr. Naranbaatar D. 

I wish to thank to my family, my mother, my father, brothers and sisters. Especially 

thank my grandmother Khumbaa Bat and my wonderful husband Ulziisaikhan 

Chuluunbaatar, for his care, unlimited support and effort by keep motivating me.  

Also, I express my gratitude to the members of my examination committee, Prof. 

Nopasit Chakpitak, Prof. Pradorn Sureephong and Prof Enkhbat Rentsen, generously 

gave useful remarks and carefully reviewed this work. This final manuscript is 

definitely improved from the previous version based on their great advises and 

remarks.



List of Symbols  v 

 
 

 

 

   

Contents 

 

Abstract                                                                                                                         i 

Resume                                                                                                                         ii 

Acknowledgements                                                                                                      iii 

 

Contents                                                                                                                        iv 

List of Figures                                                                                                              vii 

List of Tables                                                                                                              viii 

List of Symbols                                                                                                             ix 

List of Abbreviations                                                                                                    xi 

 

Chapter 1 ............................................................................................................................................... 1 

Introduction ........................................................................................................................................... 1 

1.1 Mobile Trip Planning Recommendation system................................................................................ 2 

1.1.1 Recommendation system functionality .................................................................................. 3 

1.1.2 Existing recommendation systems for tour planning ............................................................. 4 

1.1.3 Tourist Tour Planning Problem .............................................................................................. 8 

1.2 Motivation ......................................................................................................................................... 9 

1.2.1 Limitation of existing approaches ........................................................................................ 10 

1.3 Thesis objectives ............................................................................................................................. 10 

1.4 Thesis outline................................................................................................................................... 11 

Chapter 2 ............................................................................................................................................. 12 

Background and State- of the -Art .................................................................................................... 12 

2.1 The Orienteering Problem ............................................................................................................... 13 

2.1.1 Mathematical Formulation ................................................................................................... 17 

2.1.2 Exact solution methods for the Orienteering Problem ......................................................... 19 

2.1.3 Heuristic and meta-heuristic methods for the Orienteering Problem ................................... 20 



List of Symbols  vi 

 
 

 

 

2.2 Team Orienteering Problem ............................................................................................................ 23 

2.2.1 Mathematical Formulation ................................................................................................... 24 

2.2.2 Exact solution methods for the Team Orienteering Problem ............................................... 26 

2.2.3 Heuristic and meta-heuristic methods for the Team Orienteering Problem ......................... 27 

2.3 Team Orienteering Problem with Time Windows ........................................................................... 30 

2.3.1 Mathematical Formulation ................................................................................................... 31 

2.3.2 Heuristic and meta-heuristic methods for the (Team) Orienteering Problem with Time 

Windows .......................................................................................................................................... 33 

2.4 Summary ......................................................................................................................................... 37 

Chapter 3 ............................................................................................................................................. 38 

Problem statement .............................................................................................................................. 38 

3.1 Time Dependency for tour planning problem .................................................................................. 39 

3.1.1 Time Dependent Team Orienteering Problem with Time Windows .................................... 39 

3.1.2 Mathematical Formulation of the TDTOPTW ..................................................................... 40 

3.1.3 Heuristic and meta-heuristic methods for the Time Dependent Team Orienteering Problem 

with Time Windows ........................................................................................................................ 42 

3.2 Multi-Constraint Team Orienteering Problem with Time Windows ............................................... 44 

3.2.1        Mathematical Formulation ............................................................................................... 44 

3.2.2 Heuristic and meta-heuristic methods for the Multi Constraint Team Orienteering Problem 

with Time Windows ........................................................................................................................ 46 

3.2.3 Iterated Local Search Method for the MCTOPTW .............................................................. 48 

3.2.4   Tabu search method for the MCTOPTW…………………………………………………...49 

3.3 Integration of public transportation constraint ................................................................................. 50 

3.3.1 Integrating public transportation into the MCTOPTW ........................................................ 51 

3.3.2 Modeling the new TDMCTOPTW problem ........................................................................ 52 

3.4 Summary ......................................................................................................................................... 55 

Chapter 4 ............................................................................................................................................. 56 

Technique and Methodology .............................................................................................................. 56 

4.1 Local Search Heuristic..................................................................................................................... 57 

4.1.1 Insertion of neighborhood .................................................................................................... 58 

4.1.2 Wait and Maxshift ................................................................................................................ 59 

4.1.3 Shift and Ratio ...................................................................................................................... 59 

4.2 Iterated Local Search Meta-heuristic ............................................................................................... 60 

4.2.1 Shake Phase ………………………………………………………………………………….61 

4.3 The TDMCTOPTW Algorithm ....................................................................................................... 62 

4.3.1 TDMCTOPTW- main concept ............................................................................................. 64 

4.3.2 Example scenario ................................................................................................................. 65 



List of Symbols  vii 

 
 

 

 

4.4 Summary ......................................................................................................................................... 70 

Chapter 5 ............................................................................................................................................. 71 

Experimental Validation and Prototype Implementation ............................................................... 71 

5.1 Experiment Setup ............................................................................................................................ 72 

5.1.1 Satisfaction score estimation ................................................................................................ 72 

5.1.2 Data collection procedure ..................................................................................................... 72 

5.1.3 Survey result ......................................................................................................................... 73 

5.2 Test Set ............................................................................................................................................ 74 

5.2.1 Computational result ............................................................................................................ 79 

5.3 Implementation of the UB TOUR PLANNER ................................................................................ 81 

5.3.1 System Architecture ............................................................................................................. 84 

5.3.2 Database Input and User Input ............................................................................................. 85 

5.3.3 User Interface ....................................................................................................................... 87 

5.4 Summary ......................................................................................................................................... 90 

Chapter 6 ............................................................................................................................................. 91 

Conclusion ............................................................................................................................................ 91 

Appendix A .......................................................................................................................................... 94 

A.1 Benchmark test set for the Multi Constraint Team Orienteering Problem with Time Windows .... 94 

Appendix B .......................................................................................................................................... 95 

B.1 Sample of Questionnaire ................................................................................................................ 95 

B.2 Location of the bus stops in UB ..................................................................................................... 98 

B.3 The map of overlapping bus lines in UB ........................................................................................ 99 

Appendix C. Listing of the TDMCTOPTW Algorithm on C++ ......................................................... 100 

Bibliography ...................................................................................................................................... 123 

 

 

 

 



List of Symbols  viii 

 
 

 

 

List of Figures 

 

Figure 1.1: Tour Planning Functionalities ................................................................ 4 

Figure 1.2: P-Tour personal navigation system user interface and .......................... 5 

Figure 1.3: Screenshot of route recommendation system ROSE ............................. 6 

Figure 2.1: The Orienteering Problem ................................................................... 14 

Figure 2.2: Extensions of the TOP………………………………………………...17 

Figure 2.3: The Team Orienteering Problem……………………………………...24 

Figure 2.4: The Team Orienteering Problem with Time Windows……………….31 

Figure 3.1: The Time Dependent Team Orienteering Problem  

with Time Windows………………………………………………………………40 

Figure 3.2: The Multi Constraint Team Orienteering Problem  

with Time Windows………………………………………………………………44 

Figure 4.1:Walking or Taking bus scenario………………………………………65 

Figure 5.1. Location of Point of Interests in Ulaanbaatar city (Google map)…….78 

Figure 5.2: Map of Mongolia……………………………………………………...82 

Figure 5.3: Tourist map of Ulaanbaatar city………………………………………83  

Figure 5.4: System architecture of the UB TOUR PLANNER…………………...85 

Figure 5.5: Location of main bus stops at Peace Avenue…………………………86 

Figure 5.6: Screenshot of Ulaanbaatar Tour Planner (UBTP)…………………….87 

Figure 5.7: Screenshot of map result of UB………………………………………89 

Figure 5.8: Screenshot of UBTP tour planner……………………………………………90 

Figure B.2: Location of the bust stops in UB…………………………………………….98 

Figure B.3: The map of  overlapping bus lines in UB……………………………………99 



List of Symbols  ix 

 
 

 

 

 

List of Tables 

Table 2.1 Parameters and Decision variables ......................................................... 18 

Table 2.2 Approximation algorithms for the Orienteering Problem ...................... 22 

Table 2.3 Parameters and Decision variables ......................................................... 25 

Table 2.4 Summary of heuristic algorithms for Team Orienteering Problem ........ 28 

Table 2.5 Parameters and Decision variables ......................................................... 31 

Table 2.6 Summary of heuristics for the Team Orienteering Problem with Time 

Windows ................................................................................................................. 35 

Table 3.1 Parameters and Decision variables: ........................................................ 40 

Table 3.2 Summary of heuristic algorithms for the Time dependent team 

orienteering problem .............................................................................................. 43 

Table 3.3 Parameters and Decision variables..........................................................45 

Table 3.4 Heuristics methods and benchmark instances…………………………………47 

Table 3.5 Parameters and Decision variables…………………………………………….53 

Table 5.1 Satisfaction score of attraction points .................................................... 73 

Table 5.2 Real life data set of Ulaanbaatar city………………………………………….76 

Table 5.3 Computational experiment results of the TDMCTOPTW…………………….79 

Table A.1 New test set of MCTOPTW by (A.Garcia, P.Vansteenwegen, Wouter 

Souffriau, Olatz Arbelaitz , Maria Teresa Liaza, 2010) ......................................... 94 

Table B.2 Survey table…………………………………………………………………...96 

 

  



List of Symbols  x 

 
 

 

 

 

List of Symbols 
 

Aid                                    The arrival time at point I, in tour d 

Ci                           Closing hour of the point i 

Cij                          Distance from city i to city j 

eizd                                    Variable equal to 1 if location i is category z  in tour d,  

                              0 otherwise 

Ez                                      Maximun number of visits of the particular category 

fid                                       Spent money (entrance fee) to visit point i in tour d 

Fmax                                 Total money budget for each tour 

F(S)                       Value of the objective function in Local Search 

m                           Number of tours 

MaxArrivalDelayi How much the currently scheduled arrival time at a  

                              particular attraction point can be delayed without  

                              making any visit unfeasible 

maxDelay             The maximum time a departure from an attraction  

                              point i can be delayed 

maxshiftid                    Maximum time the service completion of a given visit  

                              of  point i can be delayed in tour d 

MaxTransi                 The maximum time the leave time of a visit can be  

                              delayed without changing  the bus between attraction 

                              points i and i+1 

MinTransi                  The maximum time the leave time can be decreased  

                              without changing the bus between attraction points i  

                              and i+1. 

n                        Number of point 



List of Symbols  xi 

 
 

 

 

Oi                                       Opening hour of point i 

Ratioijkd                         Evaluation of each visit that will be selected for  

                              insertion 

S’                          Neighbor of the current solution S 

Si                                        Satisfaction score of point i 

Shiftijkd                          The total time consumption to insert an extra visit j  

                              between visits i and k in tour d 

ti                                         Time duration to visit point i 

tij                                        Travel time between point i to point j 

Tmax                                 Total time budget of each tour 

TransPeriodi           The period of the bus service travelling between  

                              attraction points i and i+1. 

ui                                         An artificial variable 

Vid                                    Start of the visit i in tour d 

Vidt                                   Start of the visit at point i in tour d, started at the time t 

wi                                      Weight of itemsin Knapsack Problem 

waitid                               Waiting time at point i in tour d 

Xij                                      Variable equal to 1 if visit i is followed by visit j,  

                               otherwise equal to 0 

Xijd                                    Variable equal to1 if a visit point i is followed by a  

                               visit point j in a tour d, 0 Otherwise 

Xijdt                                   Variable equal to 1 if a visit point i is followed by a  

                               visit point j in tour d at the time period t, 0 otherwise 

Yid                                     Variable equal to1 if point i is visited in tour d, 0  

                               otherwise 

zn                           Number of items in Knapsack Problem



xii 

 

 

List of Abbreviations 

 

ACO                               Ant Colony Optimization 

AGA                               Adapted Genetic Algorithms 

AHP                               Analytical Hierarchy Process 

AMP                              Adaptive Memory Procedure 

BC                                  Butt and Cavalier 

ELS                                Evolutionary Local Search 

FPR                                Fast variant of the Path Relinking 

FVN                                Fast Variable Neighborhood Search 

GA                                  Genetic Algorithm 

GLS                                Guided Local Search 

GRASP                          Greedy Randomized Adaptive Search Procedure 

ILS                                  Iterated Local Search 

MCTOPTW                  Multi Constraint Team Orienteering Problem with Time  

                                        Windows 

OP                                   Orienteering Problem 

OPTW                            Orienteering Problem with Time Windows 

POI                                 Point Of Interest 

SPR                                 Slow variant of the Path Relinking 

STSP                               Selective Travelling Salesman Problem



Abbreviations  xiii 

 
 

 

 

 

SVN                               Slow Variable Neighborhood Search 

SVNS                             Skewed Variable Neighborhood Search 

SVRPTW                      Selective Vehicle Routing Problem with Time Windows 

TDTOPTW                   Time Dependent Team Orienteering Problem with Time  

                                        Windows 

TDMCTOPTW            Time Dependent Multi Constraint Team  

                                       Orienteering Problem with Time Windows 

TOP                               Team Orienteering Problem 

TOPTW                         Team Orienteering Problem with Time Windows 

TSP                                Traveling Salesman Problem 

TTPP                             Tourist Tour Planning Problem 

UBTP                             Ulaanbaatar Tour Planner 

VNS                                Variable Neighborhood Search



1 

 

 

Chapter 1 
 

Introduction 
 

Contents  

1.1 Mobile Trip Planning Recommendation system................................................................................ 2 

1.1.1 Recommendation system functionality .................................................................................. 3 

1.1.2 Existing recommendation systems for tour planning ............................................................. 4 

1.1.3 Tourist Tour Planning Problem .............................................................................................. 8 

1.2 Motivation ......................................................................................................................................... 9 

1.2.1 Limitation of existing approaches ........................................................................................ 10 

1.3 Thesis objectives ............................................................................................................................. 10 

1.4 Thesis outline................................................................................................................................... 11 

 

Abstract. In this opening Chapter of the thesis we discuss an overview of 

the trip planning recommendation system regarding to its functionalities 

and related problem definition. In this research work, we introduce one of 

the classes of tour planning problem so called Orienteering Problem 

which is used as the starting point to model the trip planning problem. In 

this chapter, we also present the overall view of the thesis objectives, 

motivations and contributions which are presented in detail on the 

following chapters.



Chapter 1. Introduction 2 

 
 

 

1.1 Mobile Trip Planning Recommendation system 

 

In our everyday life we face the decision making problem in any field. But making a 

decision without any suggestions or recommendations is always hard task to solve. 

Especially if we are in unknown place in the middle of unknown people it is hard to 

say where to go, where to eat and where to stay. These kinds of problem always occur 

to tourists since he/she has never been in that country.  

Based on that need, tourism related recommendation systems are offered by many 

resources to support tourists managing their long, medium and short tours. Basically, 

tourist recommendation systems can select and filter the relevant results to the user 

from the large database of tourist services starting by transportations, 

accommodations, attractions, Point of Interests and even fixed tour package. From the 

1990’s number of researchers presented a classification of different approaches and 

recommendations techniques based on their target applications, the way they 

formulate recommendations and the algorithms they implement in their paper such as 

collaborative filtering, content-based filtering, knowledge-based filtering and hybrid 

system. Recently, authors in (Gavalas, D. et al., 2014) presented different types of 

recommendation systems including: 

 

Collaborative filtering: This type of the recommendation system was mostly used in 

social media and e-commerce. Recommend similar items which were chosen by other 

users with similar interest and preferences to user.  

 

Content-based filtering: These recommendation systems based on content items that 

the user has selected before.  

 

Knowledge-based filtering: This type of recommendation system filters by reasoning 

about what match the user’s interest and requirements. In that type, the knowledge 

about user created by asking to provide user’s preferences and choices.  

 



Chapter 1. Introduction 3 

 
 

 

Hybrid system: Hybrid system can combine any systems of the previously mentioned 

techniques.  

 

Nowadays, there are plenty of tourist mobile recommendation systems that exist on 

the market and some of them operate in major tourism portals. We can categorize 

them by main features and their recommending items. In the fast developing 

computing era, we are using number of recommending and supporting applications. 

They are becoming more and more intelligent and effective thanks to developers’ 

wide knowledge and great experiments. Below, we present most common services 

which are offered by tourism related recommendation systems that we use in our 

everyday life. 

 

 Single tour planning recommendations 

 Multiple tour planning recommendations 

 Points of Interest recommendation  

 Services recommendation (accommodation, transport, restaurant etc.) 

 

1.1.1 Recommendation system functionality 

 

Most of the tourism related recommendation systems provide several main functions 

including selection of attractions, POIs, hotel & restaurants, information 

recommendations and complete tour planning  recommendations.  In this section, we 

focused on tour planning recommendation systems. Figure 1.1 shows tour planning 

functionalities presented in the recommendation systems. 

 

Single day tour planningfunction gives an option to plan one day tour in a city. Most 

of the tourist recommendation systems have that function but recently Multiple day 

tour planning function is developed due to user requirement and real time data. Some 

of the recommendation systems only suggest Accommodation and Restaurant 



Chapter 1. Introduction 4 

 
 

 

Selection which enables to select appropriate hotel and place to eat based on users 

preferences and budget. 

 

Figure1.1: Tour Planning Functionalities 

 

Almost, all of the tourist recommendation systems offer selection of tourist attraction 

places and routing while very few of the take into account public transportation 

integration. The weather forecast dependency function can help to manage a tour i.e. 

if it is rainy outside, tourist can enjoy indoor visits. In this thesis, we propose a new 

tourist recommendation system which offers multiple day tour planning, selection of 

attraction places and integration of public transportation functionalities. 

 

1.1.2 Existing recommendation systems for tour planning 

 

Shiraishi.T et al., proposed P-Tour personal navigation system which provides near 

best schedule to visit multiple destinations under certain constraints. They formulated 

the planning as a multi-objective optimization problem and used the Genetic 

Algorithm based route search engine to solve their schedule planning problem. 

Authors used the satisfaction degree and the total travel expense as an evolution 

function in their algorithm(T. Shiraishi et al., 2005).  

 



Chapter 1. Introduction 5 

 
 

 

Then, P-tour navigation personal system was extended for multiple days tour by 

Kinoshita et al.[2006]. Authors designed the Genetic Alogrithm to tackle the 

scheduling problem in practical time and made various sighseeing schedules across 

multiple days using the digital map of the Tohoku area, Japan. They input 108 

sighseeing spots, measured calculation time and quality of output schedules. P-Tour 

navigation system is implemented for single day tour planning. The P-tour system 

was  re-extended by Nagata et al. [2006] in order to plan a tour for group of users. 

The advantage of this version is every person in the group can state a interest value, a 

duration and arrival time for each POI. The goal is to find a schedule that joins the 

group along the way to visit POIs. 

 

 

Figure1.2:P-Tour personal navigation system user interface and1 

 

J.Lee et al. [2007] implement an intelligent tour planning system based on the 

personalized tour recommender. They used Lin-Kernighen heuristic [Lin, 1965] to 

experiment 2n TSP test instances. Their system initiate selecting candidate POIs 

sorted by their rank and scores determined by specific criterions. Then it build subset 

                                                      
1http://www.slideshare.net/NaokiShibata/ptour-a-personal-navigation-system-for-tourist 



Chapter 1. Introduction 6 

 
 

 

from candidate POIs to create corresponding tour schedule considering calculated 

rank and given constraints  (J.Lee, E.Kang, G.Park, 2007).  

 

The ROSE (Routing System) is a mobile application which combines event 

recommendation and pedestrian navigation with public transportation support 

presented by Ludwig B. et al. [2009]. In this context, they proposed  ℎ∈ݑ  optimal 

algorithm. They used OpenStreetMap as map data. The system reacts in real time 

delays in the public transportation and calculates alternatives routes.  

 

 

Figure 1.3: Screenshot of route recommendation system ROSE 

The PECITAS built for the citizens and the travelers in Bolzano, Italy. This 

recommendation system calculates personalized route between two mandatory points 

in the city. Authors included public transportation in their system. PECITAS is 

formulated by knowledge based technology. Travel and user profile are introduced in 

order to rank different tours and to provide the highest ranked tour to user 

(Tumas.G.,Ricci.F, 2009). 



Chapter 1. Introduction 7 

 
 

 

 

Niaraki and Kim [2009] used Analytical Hierarchy Process method [Saaty,1980] to 

develop their personalizing route planning network impedances. The user state his 

preferences for attributes into the system .Then based on which  weights in the road 

are calculated.  

 

Yu and Chang [2009] presented a framework for the personalized recommendation 

system of hotels, restaurants and attractions. The author proposed nearest- neighbor 

constructive heuristic approach to tackle the problem with three functionalities.  

 

R.A.Abbaspour and F.Samadzadegan used also the Genetic algorithm to solve the 

tour problem by scheduling an itinerary in multimodal urban transportation network. 

They analyzed transportation network of Tehran city as a case study. The main goal 

of their work is to get many score as possible considering mobile user interests, 

preferences and some restrictions of interested points. This system used geodatabase 

to access the transportation network of Tehran (R.A.Abbaspour and F.Samadzadegan 

, 2009). Based on their previous study R.A.Abbaspour and F.Samadzadegan proposed 

two adapted Genetic Algorithms to search for the solution f the shortest multimodal 

path finding. Their problem was time dependent tour planning in complex large urban 

areas for group of users. But the aim was still same as collecting the maximum total 

priority value from points of interest  (R.A.Abbaspour and F.Samadzadegan, 2011).  

 

Damianos gavalos et al. [2012] present DailyTRIP model which aims to maximize 

the overall score associated with visited POIs while not exceeding the daily time limit 

for sightseeing and introduce a novel heuristic that provides a near-optimal solution 

to solve the problem. Their approach takes into account user preferences, time, 

opening days, visiting time. They proved their proposed algorithm is suitable for 

online applications, whereas simulation results showed good performance  

(D.Gavalas, M.Kenteris, C.Konstantopoulos, G., 2012).   



Chapter 1. Introduction 8 

 
 

 

From the survey we can see that all of these recommendation systems and planners 

have a common structure by considering only the time budget constraint. However 

money budget and selection of transport mean functions are included in addition to 

total time limitation. On the other hand, every tour planning systems and architectures 

are modeled as a Tourist Tour Planning Problem and solved by exact algorithms, 

heuristics and meta-heuristics. The illustration of formulation is very important in 

problem modeling. In the following section 1.1.3 tourist tour planning problem 

(TTPP) is presented. 

 

1.1.3 Tourist Tour Planning Problem 

 

  Once we decided to travel somewhere, we need to make a long list of things to do. 

Obviously, the most crucial things must be at the top of the list which is what to see, 

where to stay, where to eat and so on. When tourists visit a city or region, they cannot 

visit every available point of interest, as they are constrained in time and budget. It is 

not possible to visit every tourist attraction or interesting places during such a limited 

period, so the tourist has to make a selection of what is more important and valuable 

for him/her. Once the selection is made, the tourist keeps in mind the opening hours 

of the POIs, location, available time and entrance fee. They face many problems to 

solve. All of these requirements of the problem are considered as Tourist tour 

planning problem in the literature. The TTPP is illustrated by number of researchers 

and it has several versions and extensions. The main aim of the problem is to select 

attractions according to tourist’s interest and preferences in order to maximize tourist 

satisfaction while considering several constraints. In the planning problem, visiting 

days, opening/closing hours, entrance fees, weather dependency, traveling distance 

between points of interest, visiting time required to visit each attraction, timetable of 

each attractions are considered as a main constraints. 

The general TTPP assumes following data as an input (D.Gavalas, et al. 2012): 

 The number of tours. Tourist decides how many days to stay at the place, based on 

that decision the number of the tours will be generated. 



Chapter 1. Introduction 9 

 
 

 

 The time windows for each tour. Tourist has to indicate the overall daily time limit 

to spend on everything on that day start by going out from the hotel until coming 

back to hotel. It includes visiting duration of attractions, traveling time between 

attractions (POIs), and having break. 

 The candidate attractions (points of interest). Every point of interest has own 

attributes including its working timetable, location, type, rank, popularity, specialty 

and so forth. 

 The time duration to visit each attraction. It can be forecasted from the average 

duration of visit and tourist’s interest for that particular attraction. 

 The traveling time between points of interest. Tourist can use every transportation 

means which are available at that destination. Thus, if necessary tourist can walk 

between attraction points. 

 The satisfaction score of each point. This score indicates the weight of importance 

of each attraction based on tourist’s preference. 

Today, the number of researchers develops many theoretical approaches from the 

simplest version of tourist trip planning problem to the hardest version. The one of 

the most popular starting point to model TTPP is the Orienteering Problem. The OP 

consists of all necessity requirements of the TTPP. We introduce the OP in the 

Chapter 2.   

 

1.2 Motivation 

 

In this thesis, recent approaches with relevance to the TTPP are also examined, 

focusing on problem models that best capture a multitude of realistic user constraints, 

while also investigating several TTPP variants. We intend to study algorithmic 

techniques and methodologies concerning the problems related to tour planning 

problem. This dissertation deals with integrating the use of urban public 

transportation into the MCTOPTW problem. The problem takes into account the 

urban bus network, the travel time between locations will vary, and so far tourist has 

an option between walking and taking a bus. We present Iterated Local Search 



Chapter 1. Introduction 10 

 
 

 

algorithm to solve the Time Dependent Multi Constraint Team Orienteering Problem 

with Time Windows. Therefore, the proposed algorithm is applied to mobile based 

tour planning application so called, UB TOUR PLANNER. 

 

1.2.1 Limitation of existing approaches 

 

The reason why we integrate public transportation into the tour planning problem is 

transportation information has been identified as one of the most useful 

functionalities of tourist tour planning recommendation systems. In the literature 

review, authors successfully studied efficient algorithmic approaches to tackle the 

several variants of the Orienteering Problem which consists of some restrictions such 

as timetable of locations, entrance fees, travel distance and duration of the visits. 

However, they did not take into account the multi constraint problem with the use of 

public transportation. Inclusion of public transportation is much more complex as it 

has to consider traveling time, wide range of public transportation network including 

bus stops and bus lines, frequencies. 

 

1.3 Thesis objectives 

 

Based on the research gap of existing approaches we aim to integrate urban public bus to the 

problem and tackle the problem by Iterated Local Search meta-heuristic in this thesis. 

 We investigated the theoretical foundations of several variants of tour planning 

problem. 

 We studied the development of mathematical models and efficient algorithmic 

approaches to the problem of tourist tour planning. 

 Therefore, we proposed the Iterated Local Search meta-heuristic to solve the time 

dependent multi constraint team orienteering problem with time windows. 

 Finally, we applied and implemented the algorithm to tourist tour planning 

recommendation system. 



Chapter 1. Introduction 11 

 
 

 

 

1.4 Thesis outline 

 

This thesis is organized as follows: 

 Chapter 2 gives an overview of the state-of the-art in tourist tour planning 

problem. In the literature, the Orienteering Problem is confirmed as a very promising 

starting point to model the tour planning problem. This simplest case of tour planning 

problem represents all points as locations with assigned scores. According to the 

tourists need, this kind of tour planning problem has to be improved with other 

necessary constraints. Therefore, the several extensions of the OP and solution 

approaches are introduced in this chapter. 

 Chapter 3 presents the problem statement of the Time Dependent Multi Constraint 

Team Orienteering Problem with Time Windows that addresses the tour planning 

requirements of tourist that visit city for a number of days. When including public 

transportation into the problem, it becomes time dependent problem. The time 

dependency is presented and integration of urban bus network is also illustrated. The 

main goal of the TDMCTOPTW is to maximize the tourist satisfaction (collect 

satisfaction score which are assigned to each point) while considering several 

constraints, parameters and respecting the timetable of (time window) available 

attraction point. 

 In Chapter 4, our focus is on algorithmic approach to solve the hardest extension 

of the OP so called the TDMCTOPTW. The well-known local search meta-heuristic 

method is used to perform our algorithm.  

 Chapter 5 describes the experimental validation of our approach that is tested with 

real life test set of Ulaanbaatar city. At the end of this chapter, we illustrate an 

application and implementation of our system.  We implemented a mobile tourist 

recommendation system that enables to plan city tours for the Ulaanbaatar capital city 

of Mongolia. 

 Finally chapter 6 concludes our research work.



 

 

12 

 

 

Chapter 2 

 

Background and State- of the -Art 

 

Contents 

2.1 The Orienteering Problem ............................................................................................................... 13 

2.1.1 Mathematical Formulation ................................................................................................... 17 

2.1.2 Exact solution methods for the Orienteering Problem ......................................................... 19 

2.1.3 Heuristic and meta-heuristic methods for the Orienteering Problem ................................... 20 

2.2 Team Orienteering Problem ............................................................................................................ 23 

2.2.1 Mathematical Formulation ................................................................................................... 24 

2.2.2 Exact solution methods for the Team Orienteering Problem ............................................... 26 

2.2.3 Heuristic and meta-heuristic methods for the Team Orienteering Problem ......................... 27 

2.3 Team Orienteering Problem with Time Windows ........................................................................... 30 

2.3.1 Mathematical Formulation ................................................................................................... 31 

2.3.2 Heuristic and meta-heuristic methods for the (Team) Orienteering Problem with Time 

Windows .......................................................................................................................................... 33 

2.4 Summary ......................................................................................................................................... 37 

 

 

Abstract. This chapter focused on overview of the research in the field 

Orienteering Problem with Time Windows, the Time Dependent TOPTW 

and the Multi Constraint TOPTW. In the Section 2.3, the Team 

Orienteering Problem and the used heuristic methods to solve the 

problem are introduced. The TOP is the extension with several day tours. 

In the following section, the TOP is extended with time windows. The 

problem is becoming more challenging in this section due to the 



Chapter 2. Background and State-of the-Art 13 

 
 

 

additional timetable constraint. At end of the chapter, time dependency 

constraint and multi constraint are presented.  

 

2.1 The Orienteering Problem 
 

Researchers identified the Orienteering Problem (OP) is one of most well-known 

starting point to model tourist tour planning problem. An OP consists of a set of 

locations that are determined by coordinates and a score. The pair wise travel times 

between the locations are known. The goal is to find a tour that maximizes the total 

score earned by visiting locations. The start and end of the tour do not need to 

coincide. The total travel time cannot exceed a predetermined value, which is called 

the time budget. Each location can be visited at most once (T.Tsiligirides, 1984).   

Basically, the orienteering problem has originated from the group sport game so 

called “Orienteering” (I.Chao et al., 1996). The Orienteering is a family of sports that 

requires navigational skills using a map and compass to navigate from point to point 

in diverse and usually unfamiliar terrain, and normally moving at speed. Participants 

are given a topographical map, usually a specially prepared orienteering map, which 

they use to find control points2. In this game, players are given a map, points with 

coordinates and limited time. Then, players start at specified point, hurry to visit as 

many points as possible and return to the starting point. The main objective of the 

game is to collect the score which is associated to the each point. Obviously, players 

need to consider the total time constraint. The Orienteering Problem is based on the 

main concept of the Orienteering game. 

In the literature, the Orienteering Problem is known as combination of two well-

known optimization problems namely the Travelling Salesman Problem and the 

Knapsack Problem (P.Vansteenwegen et al.,2011). 

                                                      
2 http://en.wikipedia.org/wiki/Orienteering 

http://en.wikipedia.org/wiki/Sport
http://en.wikipedia.org/wiki/Navigation
http://en.wikipedia.org/wiki/Map
http://en.wikipedia.org/wiki/Compass
http://en.wikipedia.org/wiki/Orienteering_map
http://en.wikipedia.org/wiki/Control_point_(orienteering)


Chapter 2. Background and State-of the-Art 14 

 
 

 

 

Figure 2.1: The Orienteering Problem 

 

The Orienteering Problem showed some similarities to the popular Traveling 

Salesman Problem. This optimization problem is a NP-hard problem. TSP can be 

modeled as an undirected weighted graph, such that cities are the graph’s vertices, 

paths are the graph’s edges, and a path’s distance is the edge’s length. It is a 

minimization problem starting and finishing at a specified vertex after having visited 

each other vertex exactly once. Often, the model is a complete graph (i.e. each pair of 

vertices is connected by an edge). If no path exists between two cities, adding an 

arbitrarily long edge will complete the graph without affecting the optimal tour3.  The 

objective of the TSP is to define the shortest path between the cities while try to visit 

as many cities as possible in the give time. The main difference of the TSP from the 

OP is the limited travelling distance, no matter of the collecting score and 

minimization of the travel distance. 

TSP can be formulated as an integer linear program (Papadimitriou et al.,1998). Label 

the cities with the numbers 0, .., n and define: 

 

                                                      
3http://en.wikipedia.org/wiki/Travelling_salesman_problem 

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Basics
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Complete_graph
http://en.wikipedia.org/wiki/Integer_programming


Chapter 2. Background and State-of the-Art 15 

 
 

 

ܺ௜௝ = {ͳ  ݐℎ݁ ݐܽ݌ℎ ݃ݕݐ݅ܿ ݋ݐ ݅ ݕݐ݅ܿ ݉݋ݎ݂ ݏ݁݋ ݆Ͳ ݐ݋ℎ݁(2.1)                                                                                ݁ݏ݅ݓݎ 

 

 i = 1, ..., n   

ui-  an artificial variable 

 Cij - distance from city i to city j. Then TSP can be written as the following integer 

linear programming problem (Tucker, 1960): 

 ݉݅݊ ∑ ∑ ௜௝ܺ௜௝     ௡௝≠௜,௝=଴௡௜=଴ܥ                                                     (2.2) 

 Ͳ ≤ ܺ௜௝ ≤ ͳ ,    ∑ ܺ௜௝ = ͳ,    ݅, ݆ = Ͳ, … , ݊௡௜=଴,௜≠௝                      (2.3) 

௜ݑ  − ௝ݑ + ௜௝ݔ݊ ≤ ݊ − ͳ ≤ ݅ ≠ ݆ ≤ ݊                                          (2.4) 

 

The first set of equalities (2.2) requires that each city be arrived at from exactly one 

other city, and the second set of equalities (2.3) requires that from each city there is a 

departure to exactly one other city. The last constraints (2.4) enforce that there is only 

a single tour covering all cities, and not two or more disjointed tours that only 

collectively cover all cities4. Meanwhile the OP shows some similarities with one of 

the famous problem in optimization problem so called knapsack problem or rucksack 

problem. 

         In the Knapsack Problem, given a set of items associated with  mass and a 

value, aimed to define  the number of each item to include in a collection so that the 

total weight is less than or equal to a given bound and the total value is as large as 

possible. It derives its name from the problem faced by someone who is constrained 

by a fixed-size knapsack and must fill it with the most valuable items. Let there 

be n items, z1 to zn where zi has a value vi and weight wi. xi is the number of copies of 

the item zi, which, mentioned above, must be zero or one. The maximum weight that 

we can carry in the bag is W. It is common to assume that all values and weights are 

                                                      
4 http://en.wikipedia.org/wiki/Travelling_salesman_problem 

http://en.wikipedia.org/wiki/Knapsack






Chapter 2. Background and State-of the-Art 18 

 
 

 

Table2.1: Parameters and Decision variables 

NNotations Descriptions  

Xij = 1 if a visit point i is followed by a visit point j, 0 otherwise 

Si satisfaction score of point i 

n number of points 

ti time duration to visit point i 

Tmax time budget of each tour 

tij travel time between point i to point j 

ui the position of the point i. 

 

The Objective Function (2.6) is to maximize the total collected satisfaction score 

when visiting the points: 

ݔܽܯ  ∑ ∑ ௜ܵܺ௜௝௡௝=ଶ௡−ଵ௜=ଵ                                                         (2.6) 

 

Constraint (2.7) shows fixed number of starting point 1and ending point n: 

 ∑ ଵܺ௝ = ∑ ௜ܺ௡௡−ଵ௜=ଵ = ͳ௡௝=ଶ                                              (2.7) 

 

Constraint (2.8) ensures connection of the points and every point is visited at most 

once. 

 ∑ ௜ܺ௞ = ∑ ܺ௞௝ ≤ ͳ௡௝=ଶ௡−ଵ௜=ଵ                                             (2.8) 

 ∀݇ = ʹ, … , ݊ − ͳ 

 

 



Chapter 2. Background and State-of the-Art 19 

 
 

 

Constraint (2.9) ensures total time limit (available time) of the tour. 

 ∑ ∑ ௜௝ݐ ௜ܺ௝ ≤ ௠ܶ��௡௝=ଶ௡−ଵ௜=ଵ                                              (2.9) 

 

Constraint (2.10) and (2.11) show that single tour have to be constructed. 

 ʹ ≤ ௜ݑ ≤ ݊∀݅ = ͳ, … , ݊                                           (2.10) 

௜ݑ  − ௝ݑ + ͳ ≤ ሺ݊ − ͳሻ(ͳ − ௜ܺ௝);                ∀݅, ݆ = ʹ, … , ݊;                       (2.11) 

 ௜ܺ௝ ∈ {Ͳ,ͳ} ,            ∀݅, ݆ = ͳ, … , ݊ 

 

Sub-tours are not allowed. These sub-tours elimination constraints use an extra 

variable ui to order the points in the tour (Miller et al., 1960). 

 

2.1.2 Exact solution methods for the Orienteering Problem 

 

Number of exact algorithms (Zülal Sevkli et al. 2006) for the OP are introduced such 

as Variable Neighborhood Search, Branch and Bound method by G.Laporte and 

S.Martello (1990), Branch and cut approach by M.Fischetti et al. (1998) and integer 

programming by A.C.Leifer et al.(1994) and so on. 

G.Laporte and S.Martello (1990) presented the Integer Linear Programming 

formulations to solve the selective travelling salesman problem. They also used a 

standard constraint relaxation algorithm. The branch and bound approach is used if 

violated conditions have occurred. M.Fischetti et al. (1998) described exact and 

heuristic separation algorithms and heuristic procedures to generate near-optimal 

solutions. Authors used five classes of additional inequalities for OP in their 

algorithm.  Their branch and cut algorithm works in two stages. First stage branch 

cover cuts in order to avoid branching. Second stage works on sparse graph which is 



Chapter 2. Background and State-of the-Art 20 

 
 

 

resulted from branch cover cuts. They used classical branching strategy to close the 

integrality gap. Authors assumed that the second stage took advantage from a large 

number of relevant cuts. 

0-1 integer programming model for the orienteering problem is introduced in (A.C. 

Leifer and M.Rosenwein, 1994). They focused on tightening the linear programming 

relaxation by adding constraints and valid inequalities. The proposed method aims to 

obtain upper bounds by tackling three linear programs. They begin to model 0-1 

integer programming for the OP then relax the 0-1 conditions and put the other 

constraints. The cutting plane algorithm is used in order to get additional inequalities 

from constraint conditions. The OP with small sized data sets can be solved in 

reasonable amount of time by these exact methods above. Nevertheless, they are very 

time consuming if the amount of instances are increased. 

 

2.1.3 Heuristic and meta-heuristic methods for the Orienteering 

Problem 

 

  The Orienteering Problem is referred as NP-hard problem (B.L.Golden et al., 1987), 

so there is no polynomial time algorithm that has been introduced to solve it. They 

assume that exact algorithms are very time consuming rather than heuristics which 

are more efficient. Furthermore, Gendreau et al. (1998) present a Tabu Search 

algorithm to tackle the Selective Travelling Salesman Problem. The OP is also called 

as Selective Travelling Salesman Problem (STSP). Authors assume that STSP is 

more difficult to model compared to the simple TSP because of its two separate 

attributes, the score of the each vertex and the travelling distance between the 

vertices. They are both independent so it become complicated to select the particular 

vertex. The tabu search heuristic takes into account cluster of vertices rather than one 

single vertex for insert and remove step.  

Also, the OP is modeled as a multi-level optimization problem in (I.Chao etal. 1996). 

First, they choose subset of points to visit at the first level, then the TSP must be 

solved at the second level. Their heuristic approach includes two steps initialization 



Chapter 2. Background and State-of the-Art 21 

 
 

 

and improvement. They generate an ellipse over the entire set of points by using 

starting and ending points. The limited time budget is used as the length of the major 

axis. In order to generate a route, they only take into account the points that are in the 

ellipse because of the others outside the ellipse already violated the total time budget 

constraint. The greedy method is used to insert new points into the ellipse. Among all 

paths, the one with the highest score is chosen as the solution. This initial solution 

can be improved by two-point exchange. A point i is moved from the set of other 

paths and inserted onto the initial solution path. In same time, point j is moved from 

initial solution path and inserted onto the set of other paths in order to perform two-

point exchange. They also used one-point movement at the time between paths. At 

the clean-up step, they applied two-opt improvement in order to make shorten the 

length of the path. They assume there is more chance to insert point from set of the 

paths onto the initial solution path by decreasing the length of the path. Authors test 

their heuristics using benchmark test instances with 67 problems, then they generate 

more 40 new test instances in order to apply their heuristic. The result has been 

shown computationally efficient and well on all test instances. 

F.Tasgetiren (2001) propose genetic algorithm to solve the orienteering problem. 

Based on his previous study, author presents variable length permutation 

representation and injection crossover operator. Additionally, he adds a penalty 

function to the Genetic algorithm in order to penalize the infeasible solution since the 

orienteering problem is constraint problem. Proposed algorithm begins by 

constructing initial population based on distance between vertices. Two parents are 

iteratively generated by tournament selection procedure to produce an offspring. He 

applied local search method including several operators namely add, omit, replace 

and swap to individuals selected randomly from crossover operator. This procedure is 

iterated until the final criterion is reached. The algorithm is applied on 67 problems 

from the four test set and compared to previous methods. The computational results 

show the GA approach was able to outperform.  

(A.Levi et al, 2006) introduce the first algorithm based on Variable Neighborhood 

Search (VNS) to solve the Orienteering problem. They consider the Euclidean OP 



Chapter 2. Background and State-of the-Art 22 

 
 

 

where the graph is a complete graph and the score of the point is the distance between 

points. They applied three versions of VNS namely VNS with VND (Variable 

neighborhood descent), VNS with RVNS (reduced VNS) and Pure RVNS. Authors 

explain these variations of VNS and the neighborhood structures used in these 

variations. In the VNS, VND is used as local search method. But RVNS differs by 

selecting random solutions from neighborhood without having local search method. 

The last variation of VNS used RVNS instead of local search phase of basic VNS. 

They test their three variations of VNS with 107 benchmark test problems. It over 

performs previous two approaches. 

Table 2.2:Approximation algorithms for the Orienteering Problem 

 

                                 Reference 

 

Directed OP / Undirected OP 

 

Time 

(C. Chekuri, N. Korula, and M. Pal., 2008) Undirected Polynomial 

(C. Chekuri and A. Kumar., 2004) Directed Polynomial 

(C. Chekuri and M. Pal., 2005) Undirected Quasi-

polynomial 

(V. Nagarajan and R. Ravi., 2011) Undirected Polynomial 

(A. Blum, S. Chawla, D. R. Karger, Lane T., A. 

Meyerson, and M. Minko, 2007) 

Directed Polynomial 

(N. Bansal, A. Blum, S. Chawla, and A. 

Meyerson., 200) 

Directed Polynomial 

 

 

Another effcient multi-level metaheuristic is proposed by (W.Souffriau et al, 2008). 

They intoduced an upper-level algorithm to determine the most appropriate set of 

parameters for lower-level metaheuristic, Ant Colony Optimization (ACO). An 

upper-level Genetic Algorithm is used to simulate the natural evolution in order to 

train ACO algorithm. Authors explain multi-level structure based on the general ant 

colony optimization. An ACO algorithm performs differently based on the actual 

setting of the parameters. The ACO is well known approach to tackle other 

optimization problems such as the Vehicle Routing Problem (VRP) (Bullnheimer, 

1999), the travelling salesman problem (TSP) (Feillet, D., Dejax, P., Gendreau, M, 

2005), the graph coloring problem (Costa, D., Hertz, A, 1997) and so forth.  



Chapter 2. Background and State-of the-Art 23 

 
 

 

They simulate natural evaluation using an upper–level genetic algorithm (GA), in 

order to train a general ACO algorithm. Ants build solutions to the OP by moving 

probabilistically from one point to another and the transition rule decides which 

location the ant should go to next. The considered locations are in the candidate list. 

Ants choose their move probabilistically according to a transition function, which is 

based on local observations, such as the length of the arc to traverse and the amount 

of pheromone on it. After adding a location to the solution, the available budget is 

reduced by the time needed for the movement and a certain amount of pheromone 

evaporates. The evaporation of pheromone is also known as local pheromone update 

(Bullnheimer, 1999).  

Recently, A.Bock and L.Sanita (2014) introduce another variant of OP so called 

Capacitated Orienteering Problem.  They consider the OP as subroutine and present a 

(3 + ε)-approximation algorithm by focusing on natural generalization considering 

node demand and capacity bound. Also, authors give a Polynomial time 

approximation scheme for Capacitated OP on tree metrics and on Euclidean metrics. 

Table 2.2 summarizes the approximation algorithms for the Orienteering Problem in 

directed and undirected graphs (D.Gavalos, Ch.Konstantopoulos, K.Mastakas. 

G.Pantziou and Y.Tasoulas, 2012). 

 

2.2 Team Orienteering Problem 

 

The idea of the team orienteering problem is from the sport with several competitors. 

It is the extension of single competitor orienteering game. The team consists of more 

than 2 members, they start the game at the same starting point and each member of 

the team aim to visit as many points as possible until the ending point, under the 

given time limit. The team orienteering problem keeps these concepts from the game.  

It allows multiple tours; each tour must be under given time budget.  



Chapter 2. Background and State-of the-Art 24 

 
 

 

 

Figure2.3:The Team Orienteering Problem 

 

Butt and Cavalier (1992) model high school athlete recruitment as a TOP under the 

name of multiple tour maximum collection problem. The recruiter has to visit schools 

nearby in order to pursuit member for the football team and return to his college. His 

goal is to maximize the recruiting potential but he has to come back to his college in 

same day and can meet only high school students during their class time.  On the 

other hand, Tricoire et al., (2010) define the problem as scheduling customer visits of 

sales representatives. They develop an exact algorithm for the route feasibility check 

when having multiple time windows. Boussier et al., (2007) propose a method based 

on easily adaptable approach so-called branch and price algorithm in order to solve 

team orienteering problem. Their algorithm is based on dynamic programming. 

 

2.2.1 Mathematical Formulation 

 

Based on the existing mathematical formulations of the OP, the TOP can be 

formulated as shown below. 



Chapter 2. Background and State-of the-Art 25 

 
 

 

Table2.3:Parameters and Decision variables 

NNotations Descriptions  

Xijd = 1 if a visit point i is followed by a visit point j in a tour d, 0 otherwise 

Yid =1 if point i is visited in tour d, 0 otherwise 

Si satisfaction score of point i 

M number of tour 

N number of points 

Ti time duration to visit point i 

Tmax time budget of each tour 

Tij travel time between point i to point j 

ui the position of the point i. 

 

 

The Objective function (2.12) is maximizing satisfaction score in tour d: 

ݔܽܯ  ∑ ∑ ௜ܵ௡−ଵ௜=ଶ ௜ܻ�௠�=ଵ  ,                                       (2.12) 

 

The (2.13) constraint shows fixed number of starting point 1and ending point n. 

 ∑ ௜ܺ௞� = ∑ ܺ௞௝��௝=ଶ = ௞ܻ��−ଵ௜=ଵ  ,   ∀௞= ʹ, … , ܰ − ͳ , ∀�= ͳ, … , ݉     (2.13) 

 

Next constraint (2.14) ensures connection of the points and every point is visited at most 

once. 

 ∑ ௜ܺ௞� = ∑ ܺ௞௝��௝=ଶ = ௞ܻ��−ଵ௜=ଵ  ,   ∀௞= ʹ, … , ܰ − ͳ , ∀�= ͳ, … , ݉     (2.14) 

 

Constraint (2.15) determines every point is visited at most once. 

 ∑ ௞ܻ� ≤ ͳ௠�=ଵ   ,  ∀௞= ʹ, . . . , ܰ − ͳ                           (2.15) 

 

Constraint (2.16) shows limited total time budget for each tour. 

 



Chapter 2. Background and State-of the-Art 26 

 
 

 

∑ ∑ ௜௝ݐ ௜ܺ௝� ≤ ௠ܶ��௡௝=ଶ௡−ଵ௜=ଵ ∀�= ͳ, … , ݉                                    (2.16) 

 

Lastly, (2.17) and (2.18) prevents sub tours.  

 ʹ ≤ �௜ݑ ≤ ݊∀݅ = ͳ, … , ݊, ∀�= ͳ, … , ݉                                    (2.17) 

�௜ݑ  − �௝ݑ + ͳ ≤ ሺ݊ − ͳሻ(ͳ − ௜ܺ௝�);                ∀݅, ݆ = ʹ, … , ݊; ∀�= ͳ, … , ݉            (2.18) 

 ௜ܺ௝� ∈ {Ͳ,ͳ} ,            ∀݅, ݆ = ͳ, … , ݊ , ∀�= ͳ, … , ݉ 

 

2.2.2 Exact solution methods for the Team Orienteering 

Problem 

 

As far as we know authors (S.Boussier, D.Feillet and M.Gendreau, 2007)present the 

first exact algorithm for team orienteering problem. Authors evaluate this algorithm 

on two different problems namely the TOP and another one is selective Vehicle 

Routing Problem with Time Windows. Their aim in this work is to propose a generic 

Branch and Price scheme which can solve any kinds of orienteering problem. As we 

mention in several part of this thesis, the OP has many additional constraints 

depending on its application. But branch and price algorithm has ability that most of 

these constraints only affect the sub-problem used to generate new columns. In the 

subsequent section the algorithm is written based on dynamic programming. The 

main idea is to associate a label with each possible partial path until the best feasible 

path reached and to extend these labels checking the resource constraints. They solve 

270out of the 387test instances. The remaining 117 instances could not be solved in 2 

hours.  

 



Chapter 2. Background and State-of the-Art 27 

 
 

 

2.2.3 Heuristic and meta-heuristic methods for the Team 

Orienteering Problem 

 

  Authors in (H.Tang and E.Miller-Hooks, 2005) first introduce one of the well-

known approach Tabu Search heuristic to solve the TOP. Their Tabu Search 

algorithm consists of three steps; initialization, solution improvement and evaluation. 

The initialization step is embedded in an Adaptive Memory Procedure. At the AMP 

current solution S must be determined and given, set tabu parameters to small 

neighborhood stage in which only a small number of neighborhood solutions will be 

explored. Then based on the current tabu parameters generate a number of feasible 

and infeasible solutions to the current solutions are generated by random procedures 

and greedy procedures. Basically the second step of the algorithm is focused on the 

generation of neighborhood solutions and improving these solutions. At the 

evaluation step, select the best non-tabu solution from the generated candidates at the 

improvement step. They tested and compared 320 test instances published from 

literature. The Tabu Search algorithm provides best average solutions in 14 out of 18 

instance categories. The other instances got obtained close to the best average 

solution values by Tabu Search procedures. 

Furthermore, C.Archetti et al. (2007) propose two well-known meta-heuristics for 

TOP which are calledthe Generalized Tabu Search Algorithm and the Variable 

Neighborhood Search Algorithm. The tabu search algorithm is developed with two 

possible different strategies. First strategy is to explore the set of feasible solutions; 

the second one is to visit admissible but not necessarily feasible solutions. They 

implement tabu search algorithm using two types of moves; 1-move and swap-move, 

respectively. In order to measure the quality of the solutions visited during the search, 

they used five functions including: the total profit of the routes in set of most 

profitable routes in s, total duration of the routes in set of most profitable routes in s, 

feasibility of the parameter s, number of the non-empty routes, total duration of the 

routes in all remaining routes. Authors test and compare three algorithms the 

generalized tabu feasible algorithm, the generalized tabu penalty algorithm and VNS 



Chapter 2. Background and State-of the-Art 28 

 
 

 

feasible algorithm. They test 320 benchmark test instances and with the proposed 

algorithm 128 of benchmark instances are shown improvement on the best known 

solution. 

Again, the Ant colony optimization approach used to solve TOP in (L.Ke, C.Archetti, 

Z.Feng, 2008). They propose four methods to construct candidate solutions in the 

framework so called sequential, deterministic-concurrent, random concurrent and 

simultaneous method. The main procedure of ACO is starting by initialization of all 

parameters and then ants constructs feasable solutions at each iteration. Each ant 

construct a feasible solution according to the transition rule, that one or more solution 

can be improved during local search procedure. The iteration process repeats until the 

maximum number of cycles has been reached. In the ACO framework, as mentioned 

above there are four construction methods that are illustrated to constructing feasible 

solution. In the sequential method complete tours are generated one after another 

tour. In the random-concurrent method, in order to insert new point tour is selected 

randomly at every iteration. In the deterministic-concurrent method, the order of the 

tours is fixed. In the simultaneous method, a point is inserted to one of the tours until 

all tours reach their limited length at every iteration process. Then authors used local 

search procedure based on (I.Chao, B.Golden, E.Wasil, 1996) by using 2-opt move to 

shorten each tour and add as many feasible solution as possible. 

 

Table2.4:Summary of heuristic algorithms for Team Orienteering Problem 

 

Reference 

 

Algorithm 

 

Technique 

(P. Vansteenwegen, W. Souffriau, G. 

Vanden Berghe, and D. Van 

Oudheusden., 2009) 

 

GLS (guided local search) 

 

Guided Local Search 

(P.Vansteennwegen, W.Souffria, 

G.V.Berghe, D.V.Oudheusden, 2009) 

 

SVNS (skewed variable 

neighborhood search) 

 

Variable Neighborhood 

Search 

(S.Butt and T.Cavalier, 1992) BC Greedy Insertions 

(W. Souffriau, P. Vansteenwegen, G. 

Vanden Berghe, and D. Van 

Oudheusden., 2010) 

FPR (fast variant of the 

algorithm) 

SPR(slow variant of the 

algorithm) 

Greedy randomized adaptive 

search procedure with path 

relinking 



Chapter 2. Background and State-of the-Art 29 

 
 

 

(Chao, B. L. Golden, and E. A. Wasil., 

1996) 

CGW Local search 

(C.Archetti, A.Hertz, M.Speranza, 2007) SVN (slow variable 

neighborhood search) 

FVN (fast variable neighborhood 

search) 

TS (tabu search) 

 

Variable neighborhood 

search 

Tabu search 

(L.Ke, C.Archetti, Z.Feng, 2008) ASe (sequential) 

ADC (deterministic concurrent) 

ARC (random-concurrent) 

ASi (simultaneous) 

 

 

Ant colony optimization 

 

 

This procedure repeats until no improvement can be made. They made computational 

experiment with seven test sets including 387 benchmark instances from literature. 

 

A hybrid method called Memetic Algorithm approach is presented in (H.Bouly, 

D.C.Dang, A.Moukrim, 2008). The Memetic algorithm is one of the recent 

techniques, combination of the genetic algorithm with local search method. A Genetic 

Algorithm considers solutions as a chromosome. Thus it needs encoding process to 

extract solutions from chromosomes. Authors use Optimal split procedure as the 

decoding process. In their algorithm, an evaluation procedure involves the splitting 

procedure corresponding to the chromosome decoding. Therefore, diversification 

process is obtained through mutation operation in order to avoid homogeneity in the 

population. During the mutation operation, authors use different neighborhood which 

is selected in random order. The well-known local search method works as mutation 

operator. They tested their algorithm on standard test instances of the TOP from 

previous literature. The Memetic Algorithm improves the best known solutions of 11 

benchmark test instances from the literature. 

 

In (Y.Kurata, 2009), researcher introduces another tour planning system CT-Planner. 

Author adopt cyclic model where the system shows a set of tour plans to the user, 

takes into account user’s interest and preferences based on the user’s response, then 

generate a new set of plans. The Collaborative Tour Planning system aims at the user-



Chapter 2. Background and State-of the-Art 30 

 
 

 

driven planning rather than computer based tour planning. Selection of one preferable 

tour from the number of possible tours becomes hard to solve. However author makes 

paired comparison by using Analytical Hierarchy Process (AHP) in order to display 

only two tour plans each time. He applies well known multi-criteria decision analysis 

to select the best tour plan from several possibilities. He uses five-dimensional unit 

vector to model user’s tour preference.  

 

2.3 Team Orienteering Problem with Time Windows 

 

The most common extension of the OP is the OPTW (Orienteering problem with 

Time Windows) and the TOPTW (Team orienteering problem with Time Windows).  

Extensions with time windows became hard to solve because of its constraint. In the 

OPTW, each point of interest has associated time window. The time window 

represents opening hour and closing hour of the each attraction. In this extension, if 

arrival happens before opening hour, waiting time is allowed until the opening hour 

of attraction point. In order to avoid violation of the constraint, ending time of the 

tour must be before or same time as closing time of the last visit. For the TOPTW, 

multiple days of tour planning is considered. In that case each point of interest 

(attraction) has an identical timetable (opening and closing time) for any day. 



Chapter 2. Background and State-of the-Art 31 

 
 

 

 

Figure2.4:The Team Orienteering Problem with Time Windows 

 

2.3.1 Mathematical Formulation 

 

The TOPTW can be formulated as an integer programming problem, in tour d, 

Xijd=1 if a visit i followed by visit j, 0 otherwise. Based on the notation presented on 

previous section, the TOPTW can be written as follows: 

Table2.5:Parameters and Decision variables 

Notations Descriptions  

Xijd = 1 if a visit point i is followed by a visit point j in tour d, 0 otherwise 

Yid =1 if point i is visited in tour d, 0 otherwise 

Si satisfaction score of point i 

M number of tour 

N number of points 

ti time duration to visit point i 

Tmax time budget of each tour 

tij travel time between point i to point j 

[Oi, Ci] Time window (opening/closing hour) 

Vid Start of the visit i in tour d 

D Artificial variable 



Chapter 2. Background and State-of the-Art 32 

 
 

 

 

The objective function (2.19) maximizes the total collected score: 

 

ݔܽܯ ∑ ∑ ௜ܵ௡−ଵ௜=ଶ ௜ܻ�௠�=ଵ  ,  ௜ܻ� ∈ {Ͳ,ͳ} , ∀௜,௝= ͳ, … , ܰ , ∀�= ͳ, … , ݉                 (2.19) 

 

Constraints (2.20) ensure each tour m start by point 1 and ends at point N.  

 ∑ ∑ ଵܺ௝��௝=ଶ௠�=ଵ = ∑ ∑ ௜ܺ�� = ݉�−ଵ௜=ଵ௠�=ଵ  ,  ௜ܺ௝� ∈ {Ͳ,ͳ}                        (2.20) 

 

Constraints (2.21) guarantee that each visit to a point is followed by another visit to a 

next point.  

 ∑ ௜ܺ௞� = ∑ ܺ௞௝��௝=ଶ = ௞ܻ��−ଵ௜=ଵ  ,   ∀௞= ʹ, … , ܰ − ͳ , ∀�= ͳ, … , ݉                 (2.21) 

 

Following constraint (2.22) allows that every point is visited at most once in a tour 

while constraint (2.23) limits the time budget.  

 ∑ ௞ܻ� ≤ ͳ௠�=ଵ   ,  ∀௞= ʹ, . . . , ܰ − ͳ                                (2.22) 

 ∑ ሺ�−ଵ௜=ଵ ௜ݐ ௜ܻ� + ∑ ௜௝ܺ௜௝�ሻ�௝=ଶݐ ≤ ௠ܶ�� ,  ∀�= ͳ, … , ݉                       (2.23) 

 

Constraint (2.24) restricts timeline of each tour. 

�௜ݒ  + ௜ݐ + ௜௝ݐ − �௝ݒ ≤ ሺͳܦ − ܺ௜௝�ሻ ,݅, ݆ = ͳ, … , ܰ; ݀ = ͳ, … ,  (2.24)             ܯ

 

The constraint (2.25) shows the start of the visit must be in its time window. 

 



Chapter 2. Background and State-of the-Art 33 

 
 

 

ܱ௜ ≤ ௜ܸ� ≤ ∋௜,  ∀௜ܥ ͳ, . . . , ܰ,   ∀�∈ ͳ, … , ݉                                (2.25) 

 

2.3.2 Heuristic and meta-heuristic methods for the (Team) 

Orienteering Problem with Time Windows 

 

The Iterated Local Search meta-heuristic is presented in (P.Vansteenwegen, 

W.Souffriau, G,V.Berghe, D.V.Oudhesden, 2009). General local search algorithms 

explore neighborhood by iteratively generating the neighborhood of the current 

solution and moving from this current solution to an improving neighboring solution. 

This process is repeated until the current solution cannot be improved anymore until 

local optimum is reached. This algorithm iteratively generates a neighborhood of 

insert moves and selects the move with highest ratio. But this local search approach 

gets stuck in a local optimum. So there is a need to escape from these local optima. In 

the literature [Lourenco et al., 2003] solved this problem with Iterated Local Search 

(ILS) meta-heuristic. Researchers proved this approach can successfully tackle this 

kind of problem with time windows. The ILS keeps the general procedure of local 

search algorithm but it created a sequence of local search instead of random repeats 

of local search. 

In the ILS they provide the insertion step to insert a new point into the tour one by 

one and the shake step as a diversification to escape from local optimium. The wait 

and maxshift parameters are calculated in order to avoid time consuming feasibility 

checking process. Based on the ratio calculation, selection of the point with the 

highest ratio for insertion is made. Then after each insertion process every point need 

to be updated. Furthermore, the shake step removes one or more points from the tour. 

After that step in order to avoid waiting, every point following the removed ones are 

relocated at the beginning of the tour. They tested the available benchmark instances. 

The average gap between ILS and the best known solution for all these instances is 

only 1.8%. 

 



Chapter 2. Background and State-of the-Art 34 

 
 

 

Therefore, authors in (P.Vansteennwegen, W.Souffria, G.V.Berghe, 

D.V.Oudheusden, 2009) present the application of Guided Local Search and Variable 

Neighborhood Search Method to tackle team orienteering problem. Also, they apply 

iterated local search method for team orienteering problem with time windows. Based 

on the utility function, guided local search penalizes unwanted solution features 

during the each local search iteration. During each iteration, the objective function is 

decreased by penalty. The penalty helps to escape from local optimum and to 

continue the search. Six steps are implemented in guided local search algorithm 

namely Insert, Replace, 2-opt, Swap, Disturb and Group. The GLS algorithm starts 

with Construct procedure and then the local search heuristics are implemented in 2 

loops. 

 

Furthermore, they applied SVNS (skewed variable neighborhood search) for TOP. 

The meta-heuristic VNS changes the neighborhood by escaping from the local 

optimum using shaking step. The SVNS is recent extension of VNS which is suitable 

for solving problems with near-optimal solutions. In SVNS algorithm, in order to 

generate the neighborhood, all the intensification steps are used. They test on large 

number of test instances from literature. The SVNS algorithm outperforms the GLS 

algorithm. 

Authors also focus on application of iterated local search algorithm to solve TOPTW 

in their work. Regarding to the ILS method, they combine two steps in order to 

escape from local optimum. Firstly, authors apply insertion step which can add new 

points one by one to a tour. The shake step removes one or more points from the tour. 

It mainly focuses on to escape from local optimum. After the removal procedure, all 

the visits following the removed ones are transferred forward as much as possible. 

This procedure prevents unnecessary waiting time. The iterated local search 

algorithm tested on existing benchmark instance. The ILS algorithm performs very 

good on a large number of problems with up to 288 points. The average computation 

time is 1.6s and for 39 problems with range of 3 up to 20 tours, the average gap is 

2.1% and the worst gap is 10%. 



Chapter 2. Background and State-of the-Art 35 

 
 

 

 

Table2.6: Summary of heuristics for the Team Orienteering Problem with Time 

Windows 

 

Reference 

 

Algorithm 

 

Technique 

(P.Vansteenwegen, W.Souffriau, 

G,V.Berghe, D.V.Oudhesden, 2009) 

ILS (Iterated Local Search) Iterated Local Search meta-heuristic 

(P. Vansteenwegen, W. Souffriau, G. 

Vanden Berghe, and D. Van 

Oudheusden., 2009) 

GLS (guided local search) 

VNS  

(variable neighborhood 

search) 

Guided local search and Variable 

neighborhood search 

(N.Labadi, J.Melechovsky, 

R.W.Calvo, 2010) 

 

GRASP-ELS 

Greedy randomized adaptive search 

procedure (GRASP) and the 

Evolutionary local search 

(D.Gavalas, M.Kenteris, 

Ch.Konstantopoulos, G.Pantziou, 

2011) 

DailyTRIP heuristic for deriving near-optimal 

solution 

(J.K.Chilinska and P.Zabielska, 

2013) 

 

GA 

Genetic algorithm 

Iterated local search 

 

 

The OP and the TOPTW are solved by an effective hybrid metaheuristics in 

(N.Labadi, J.Melechovsky, R.W.Calvo, 2010). This approach is combination of two 

known method which are the Greedy Randomized Adaptive Search Procedure 

(GRASP) and the Evolutionary Local Search (ELS). The GRASP generates random 

solutions using randomized heuristic and improved by a local search procedure. The 

ELS is extension of the iterated local search and it generates multiple copies of 

solutions, and then applies ILS on each copy. Their approach behaves as a random 

heuristic if the perturbation is too strong otherwise the solutions are trapped in local 

optima very fast. That is why perturbation phase is very important in this approach. 

Authors test their approach with two benchmark data by Solomon’s and Cordeau’s. 

The GRASP-ELS approach improved 141 best known solutions out of 304 tests and 

found best known solutions in 118 cases. 

 



Chapter 2. Background and State-of the-Art 36 

 
 

 

(D.Gavalas et al. 2011) introduce, DailyTRIP, personalized recommendations for 

daily sightseeing itineraries. They propose a heuristic for deriving near-optimal 

personalized daily tourist itineraries aiming to maximize the overall profit. Their 

algorithm includes five execution phases and considers user preferences, required 

time to visit attractions, opening time. In the first phase, definition of the problem’s 

model is involved. In order to decrease computational effort required to final valid 

solutions they reduce the problem space in the second phase. Phase three and phase 

four are for selection of set of nodes for first daily itinerary and constructing itinerary 

trees. Phase five is optional and goal is to improve previous solutions which are 

created on previous phase. The last phase is for transferring trees to multipoint lines 

through a post-order traversal of the corresponding trees. 

 

Recently, (J.K.Chilinska and P.Zabielska, 2013) propose the genetic algorithm 

approach to tackle orienteering problem with time windows. They used main idea of 

well-known iterated local search method. The genetic algorithm consists of four steps 

including initialization, selection, crossover and mutation step. The initialization step 

starts by encoding a solution into a chromosome. Since the number of points in the 

tour is not set, the length of the chromosome is not fixed. This step is inspired from 

insertion step and shake step of ILS method. In the next step, they used tournament 

grouping selection. In the crossover step, two random individuals are selected for the 

crossover phase. Then they find the genes to replace without violating the time 

window constraint. The random tour is selected from the individuals in the mutation 

step. There are two types of mutation process: insertion mutation and delete mutation. 

Insertion mutation considers all chances to inclusion of every new gene. Delete 

mutation removes the selected genes except first and last ones in order to shorten tour 

length. Authors use same benchmark instance from literature and computational 

result show that mutation step can improve the solution. It outperforms the result of 

the iterated local search algorithm.  



Chapter 2. Background and State-of the-Art 37 

 
 

 

 

2.4 Summary 

 

So far, we have been given the state-of the-art and background regarding to tourist 

tour planning problem. More specifically, the Orienteering Problem and its extended 

versions are introduced and mathematical formulations are provided. After every 

section of this chapter, an overview of existing efficient methods is presented. We 

summarized the exact algorithms, heuristic and meta-heuristic techniques since they 

will be needed to compare the result of the experimental validation. The promising 

results and newly generated data set of the iterated local search algorithm for the 

multi constraint team orienteering problem open new opportunities for further study 

on this subject.



 

 

38 

 

 

 

 

Chapter 3 

 

Problem statement 

Content  

3.1 Time Dependency for tour planning problem .................................................................................. 39 

3.1.1 Time Dependent Team Orienteering Problem with Time Windows .................................... 39 

3.1.2 Mathematical Formulation of the TDTOPTW ..................................................................... 40 

3.1.3 Heuristic and meta-heuristic methods for the Time Dependent Team Orienteering Problem 

with Time Windows ........................................................................................................................ 42 

3.2 Multi-Constraint Team Orienteering Problem with Time Windows ............................................... 44 

3.2.1        Mathematical Formulation ............................................................................................... 45 

3.2.2 Heuristic and meta-heuristic methods for the Multi Constraint Team Orienteering Problem 

with Time Windows ........................................................................................................................ 47 

3.2.3 Iterated Local Search Method for the MCTOPTW .............................................................. 48 

3.2.4   Shake phase…………………………………………………………………………………49 

3.3 Integration of public transportation constraint ................................................................................. 50 

3.3.1 Integrating public transportation into the MCTOPTW ........................................................ 51 

3.3.2 Modeling the new TDMCTOPTW problem ........................................................................ 52 

3.4 Summary ......................................................................................................................................... 55 

 

Abstract. In this chapter we discuss the new model formulation by 

integrating time dependency constraint into the multi constraint team 

orienteering problem with time windows. In the section 3.1, existing time 

dependent tour planning model is illustrated. We integrate the use of 

public transportation to the problem by modeling the TDMCTOPTW in 

the section 3.2



Chapter 3. Problem Statement  39 

 
 

 

 

3.1 Time Dependency for tour planning problem 

 

Time dependency is mostly used to model traveling between points using multimodal 

transportation. Basically, this problem considers calculating the estimation of 

travelling time from one point to another point, therefore. The time dependent team 

orienteering problem with time windows is well known problem which comprises a 

number of points with associated data such as location of point, time windows 

(opening and closing hours) given score and so on. In the TDTOPTW, traveling 

between particular two points can be done by any of public transportation means or 

on foot.  In this section, we introduce the extended TOPTW problem with use of 

public bus. 

 

3.1.1 Time Dependent Team Orienteering Problem with Time 

Windows 

 

As aforementioned, the TDTOPTW problem extends the TOPTW considering time 

dependent traveling time between attraction places by using public transportation. 

Traveling time between places depends on the leaving time of the point i and the 

transportation mode.  

There are several things that make the TDTOPTW become tougher than others which 

are information and data related to public transportation network. It consists of a 

number of stops and different lines between these stops, each with a given frequency. 

In (R.Abbaspour and F.Samadzadegen, 2011) time dependent tour planning problem 

in urban area is presented. They model their problem as a TDOPTW and propose two 

adapted genetic algorithmic approach to solve. Authors assume that the previous 

literature reviews did not take into account any real dataset. They test their proposed 

framework and formulation using real dataset from Tehran city, Iran. 



Chapter 3. Problem Statement  40 

 
 

 

 

Figure3.1:The Time Dependent Team Orienteering Problem with Time Windows 

 

3.1.2 Mathematical Formulation of the TDTOPTW 

 

In the time dependent team orienteering problem with time windows, there is a give 

set of points, tourist has to visit the maximum number of points under limited time 

constraint aiming to maximize the satisfaction score. Herein, the traveling time 

between attraction places is fixed. 

Table3.1:Parameters and Decision variables: 

Notations Descriptions  

Xijdt = 1 if a visit point i is followed by a visit point j in tour d at the time 

period t, 0 otherwise 

Si satisfaction score of point i 

M number of tour 

n number of points 

ti time duration to visit point i 

Tmax time budget of each tour 

tij travel time between point i to point j 

vidt the start of the visit at point i in tour d, started at the time t 

[Oi, Ci] time window of point I 

Oi = opening time 

Ci = closing time 

 



Chapter 3. Problem Statement  41 

 
 

 

The objective function of the problem (3.1) is to maximize the collected satisfaction 

score when visiting points at certain time periods.  

ݔܽ݉  ∑ ∑ ∑ ௜ܵ × ܺ௜௝��்௠���=ଵ௡௝=ଵ,௝≠௜௡௜=ଵ                                   (3.1) 

 

Constraint (3.2) ensures that there is no sub tour (return tour) while constraint (3.3) 

describes starting point is 1.  

 ∑ ∑ ܺ௜ଵ� = Ͳ்௠���=ଵ௡௜>ଵ                                                  (3.2) 

 ∑ ∑ ܺଵ௝� = ͳ்௠���=ଵ௡௝>ଵ                                               (3.3) 

 

Constraint (3.4) and constraint (3.5) ensures that the last visited point is point n. 

 ∑ ∑ ܺ௡௝� = Ͳ்௠���=ଵ௡−ଵ௝=ଵ                                               (3.4) 

 ∑ ∑ ܺ௜௡� = ͳ்௠���=ଵ௡−ଵ௜=ଵ                                              (3.5) 

 

Next constraint guarantees (3.6) each point must be visited at most once.  

 ∑ ܺ௜௞ = ∑ ܺ௞௝ ≤ ͳ௡௝=ଶ௡−ଵ௜=ଵ                                             (3.6) 

 

The last constraint implies (3.7) every visit must be between its time windows. The 

time window represents an interval of daily opening and closing hour of that 

particular point. 

 ܱ௜� < ௜ܸ�� <  ௜�                                                 (3.7)ܥ

 



Chapter 3. Problem Statement  42 

 
 

 

3.1.3 Heuristic and meta-heuristic methods for the Time 

Dependent Team Orienteering Problem with Time Windows 

 

In (R.A.Abbaspour and F.Samadzadegen, 2011), authors propose the tour planner 

engine and the multimodal shortest pathfinder engine based on adapted genetic 

algorithms. First engine serves as main routine and second engine is modeled as 

subroutine that is called whenever it is necessary. Addition to the basic formulations 

of the OP, they formulized one key parameter which is the weight of paths connecting 

POIs. According to their formulations, the objective function comprises two general 

parts which are minimizing the weights of used arcs and minimizing the waiting time. 

The Genetic Algorithm is used as an engine to tackle tour planning problem. In order 

to create an itinerary, genetic algorithm engine uses a geospatial database and 

multimodal shortest path module. The first steps of the algorithm are coding the 

chromosome and initialization. Then the natural selection is made. At the third step 

authors use the roulette wheel pairing method for selection. Then mating and 

mutation steps are made. The process from step 2-5 is iterated until the termination 

criterion is satisfied and an acceptable solution is reached. They use data from Tehran 

city, capital of Iran. The computational experiment is made with 324 points which are 

categorized into 6 parts. 

 

On the other hand, (A.Garcia et al., 2013) adapt the heuristic approach based on 

existing method for TOPTW, so called Iterated Local Search. They present 

personalized electronic tourist guide by modeling time dependent team orienteering 

problem with time windows. The ILS algorithm is designed based on the algorithm 

proposed by (P.Vansteenwegen, W.Souffriau, G,V.Berghe, D.V.Oudhesden, 2009). 

The general procedure is done step by step until the termination solution is reached. 

Since the TDTOPTW is more complicated problem than the general TOPTW, it 

needs more adapted method to tackle this problem. Authors propose two different 

approaches to tackle the public transportation problem. First approach is based on 

pre-calculation of the average traveling time for each pair of points in order to handle 



Chapter 3. Problem Statement  43 

 
 

 

the integration of the public transportation. Then, they made some concepts into the 

basic operators of the ILS. The first approach has two main parts. Firstly, the pre-

calculation does not have the real-time requirement; secondly, in practice the average 

travel time is rather accurate due to the high frequency public transportation service. 

They design some concepts that allow fast local evaluation of each possible insertion 

in the second approach. They present a model considering the periodicity of the bus 

services which is limited to direct bus connections, having no transfer between lines. 

Finally, they extend this model to include transfers in public transportation, either 

pre-calculating some required values. They test the algorithm using real data set from 

San Sebastian in the Basque Country. They created 28 test instances to test their two 

approaches. The tours generated with two methods are very similar and there is 

average gap of 2.7% between them for 1 day tour, below 2% for two days tour. 

 

Table3.2: Summary of heuristic algorithms for the Time dependent team orienteering 

problem 

 

Reference 

 

Algorithm 

 

Technique  

(R.A.Abbaspour and 

F.Samadzadegen, 2011) 

AGA  

(adapted genetic algorithms) 

adapted genetic  

algorithms 

(A.Garcia, P.Vansteenwegen, 

o.Arbelaitz, W.Souffriau, M.T.Linaza, 

2013) 

 

ILS 

 

Iterated Local 

 Search 

(D.Gavalas, Ch.Konstantopoulos, 

K.Mastakas, G.Pantziou and 

N.Vathis, 2013) 

TDCSCroutes 

SlackCSCroutes 

 

Cluster based  

Heuristics 

(D.Gavalas, Ch.Konstantopoulos, 

K.Mastakas, G.Pantziou and 

N.Vathis, 2015) 

TDCSCroutes 

SlackCSCroutes 

 

Iterated Local Search 

Cluster based heuristics 

 

 

 

 

 



Chapter 3. Problem Statement  44 

 
 

 

3.2 Multi-Constraint Team Orienteering Problem 

with Time Windows 

 

The MCTOPTW includes set of locations, each of them with a certain score, a time 

window and one or more associated attributes, such as an entrance fee, max-n types, 

mandatory POI types etc. Each attribute type has an associated constraint with a 

maximum allowed value for a route, such as a limited budget. Visiting a location 

within its time window allows collecting its score as a reward. The goal is to 

determine routes that maximize the collected score without violating any of the 

constraints. The starting point 1 and ending point N of every tour are fixed. Traveling 

time between POI i and j is known for all points. In the following, we rewrite 

problem definition and the mathematical formulation of the MCTOPTW problem 

presented by A.Garcia et al, 2010.  

 

 

Figure 3.2 :The Multi Constraint Team Orienteering Problem with Time Windows 

 

3.2.1        Mathematical Formulation 
 



Chapter 3. Problem Statement  45 

 
 

 

Table 3.3:Parameters and Decision variables 

Notations Descriptions  

Xijd = 1 if a visit point i is followed by a visit point j in tour d, 0 otherwise 

Yid =1 if point i is visited in tour d, 0 otherwise 

Si satisfaction score of point i 

M number of tour 

N number of points 

Ti time duration to visit point i 

Tmax Total time budget of each tour d 

Tij travel time between point i to point j 

Vid  the start of the visit at point i in tour d 

[Oi, Ci] time window of point i 

Oi = opening time 

Ci = closing time 

fid spent money to visit point i in tour d (entrance fee) 

Fmax Total money budget for each tour 

eizd = is set to 1 if location i is category z  in tour d, 0 otherwise 

Ez maximun number of visits of the particular category z 

 

The Objective Function (3.8) is to maximize the total collected satisfaction score: 

ݔܽܯ  ∑ ∑ ௜ܵ௡−ଵ௜=ଶ ௜ܻ�௠�=ଵ   , ௜ܻ� ∈ {Ͳ,ͳ} , ∀௜,௝= ͳ, … , ܰ , ∀�= ͳ, … , ݉                      (3.8) 

 

Constraint (3.9) ensures each tour m start by point 1 and ends at point N. 

 ∑ ∑ ଵܺ௝��௝=ଶ௠�=ଵ = ∑ ∑ ௜ܺ�� = ݉�−ଵ௜=ଵ௠�=ଵ  ,  ௜ܺ௝� ∈ {Ͳ,ͳ}             (3.9) 

 

Constraints (3.10) guarantee that each visit to a point is followed by another visit to a 

next point. 



Chapter 3. Problem Statement  46 

 
 

 

 ∑ ௜ܺ௞� = ∑ ܺ௞௝��௝=ଶ = ௞ܻ��−ଵ௜=ଵ  ,   ∀௞= ʹ, … , ܰ − ͳ , ∀�= ͳ, … , ݉                     (3.10) 

 

 

Following constraints (3.12) allow that every point is visited at most once in a tour 

 ∑ ௞ܻ� ≤ ͳ௠�=ଵ   ,  ∀௞= ʹ, . . . , ܰ − ͳ                                                (3.11) 

 

Constraints (3.12) and (3.13) limit time budget of each tour, also timeline of each 

tour. 

 ∑ ሺ�−ଵ௜=ଵ ௜ݐ ௜ܻ� + ∑ ௜௝ܺ௜௝�ሻ�௝=ଶݐ ≤ ௠ܶ�� ,  ∀�= ͳ, … , ݉                     (3.12) 

 ௝ܸ� = ௜ܸ� + ௜ݐ + �௜௝ ,    ܺ௜௝ݐ = ͳ                                   (3.13)   

 

Constraint (3.14) restricts start of the visit in its time window. 

 ܱ௜ ≤ ௜ܸ� ≤ ∋௜ ,∀௜ܥ ͳ, . . . , ܰ,∀�∈ ͳ, … , ݉                            (3.14)  

 

Last two constraints (3.15) and (3.16) limit money budget for each tour and limit 

value of attribute constraint z of the point i.     

 ∑ ∑ ௜݂� ௜ܻ� ≤ ௠��௠�=ଵ�௜=ଵܨ  ,∀௜∈ ͳ, . . . , ܰ, ௜ܻ� ∈ {Ͳ,ͳ} , ∀�∈ ͳ, … , ݉         (3.15) 

 ∑ ∑ ݁௜�� ௜ܻ� ≤ ௜=ଵ௠�=ଵ��ܧ , ௜ܻ� ∈ {Ͳ,ͳ} , ∀�= ͳ, . . . , ܼ ,                      (3.16)          

 

3.2.2 Heuristic and meta-heuristic methods for the Multi 

Constraint Team Orienteering Problem with Time 

Windows 



Chapter 3. Problem Statement  47 

 
 

 

 

Tour planning problem is strongly NP-hard problem and there are certain efficient 

methodologies and techniques are introduced today to solve this kind of problem. The 

MCTOPTW is extended version of the TOPTW by adding multiple constraints. In the 

literature, (Montemanni and Gamberdella, 2009) solved the TOPTW by using Ant 

Colony System approach and recently (Lin and Yu, 2012) illustrated a Simulated 

Annealing approach to handle the TOPTW.  According to studies none of previous 

TOPTW algorithms can solve this problem with multiple constraints. But A.Garcia et 

al [2010] and Sylejmani, K.,et al [2012]  became the first to describe meta heuristics 

to tackle the MCTOPTW. A.Garcia et al [2010] used Iterated local search based 

algorithm which was already successfully used to solve TOPTW. Furthermore, they 

include new feasibility checks, a new ratio function to compare possible insertions 

and tabu list inside the perturbation phase. Authors compared their work with an 

existing method published for the SVRPTW (Selective Vehicle Routing Problem 

with Time Windows), their algorithm proves to solve the problem efficiently with an 

overall average gap of 4.4% and an overall average computation time of only 2.4 

seconds.  

Table 3.4: Heuristics methods and benchmark instances 

 

Methods 

 

Authors 

 

Origin of benchmark 

instances 

 

Number of  

test  

instance 

 

Number 

of tours 

(m) 

 

Number 

Of 

points(N) 

 

Multi      

const- 

Raint 

 

 

 

Ant Colony 

System 

 

 

 

Montemanni and  

Gamberdella(2009) 

Instances for TOPTW : 

Solomon (c10,r10,rc10) 

Solomon (c10,r10,rc10) 

Cordeau (pr1-pr10) 

Solomon (c20,r20,rc20) 

Cordeau (pr11-pr20) 

 

29 

29 

10 

27 

10 

 

2,3,4 

2,3,4 

2,3,4 

2,3,4 

2,3,4 

 

50 

100 

48-288 

100 

48-288 

 

 

Simulated 

Annealing 

heuristic 

 

 

 

Lin and Yu (2012) 

Instances for TOPTW : 

Solomon (c10,r10,rc10) 

Solomon (c10,r10,rc10) 

Cordeau (pr1-pr10) 

Solomon (c20,r20,rc20) 

Cordeau (pr11-pr20) 

 

29 

29 

10 

27 

10 

 

2,3,4 

2,3,4 

2,3,4 

2,3,4 

2,3,4 

 

50 

100 

48-288 

100 

48-288 

 



Chapter 3. Problem Statement  48 

 
 

 

 

Iterated 

 Local Search 

 

A.Garcia et al 

(2009) 

Instances for TOPTW : 

Solomon (c10,r10,rc10) 

Cordeau (pr11-pr20) 

 

29 

10 

 

9-19 

3-20 

 

100 

48-288 

 

 

 

Iterated 

 Local  

Search 

 

 

P.Vansteenwegen 

et al., (2010) 

   Instances for 

MCTOPTW: 

Solomon (c10,r10,rc10) 

Cordeau (pr1-pr10) 

Solomon (c20,r20,rc20) 

Cordeau (pr1-pr10) 

 

29 

10 

27 

10 

 

1 

1 

2 

1 

 

100 

48-288 

100 

48-288 

 

2 

2 

2 

2 

Tabu 

search 

approach 

 

K.Sulejmani et al., 

(2012) 

Instances for MCTOPTW: 

P.Vansteenwegen et al 

 

148 

 

1,2,3,4, 

1-4 

 

100 

48-288 

 

2 

 

Additionally, since there were not any tests instances for MCTOPTW they develop 

new test set for MCTOPTW with one, two routes and 1, 2 attributes based on 

TOPTW test set. For 39 problems with one tour and 2 attribute constraints, the 

average gap with optimal results is only 3.9% in 1.1 seconds average computation 

time. As for problem with 2 tours, the average gap with the best known results is 

0.9% and average computation time is 4 seconds.  Due to its simplicity and the high 

quality results, the algorithm can easily be applied for problems with more attribute 

constraints. 

 

Thereafter, (Sylejmani, K., et al 2012) propose A Tabu search approach for multi 

constrained team orienteering problem with time windows. They use same test 

instances as (A.Garcia et al. 2010). In this work, they apply three basic operators 

namely Insert, Replace, Swap and four additional operators so-called Delete, 

Perturbation, Restart and Penalize to escape from local optima. In 57.43% of test 

instances, the best solutions of (A.Garcia et al. 2010) were found or improved. So far, 

according to their results in 70 test instances, their algorithm shows up better 

solutions than results of (A.Garcia et al. 2010). We explain these two approaches in 

detail in next section 2.4.2.1 and section 2.4.2.2. 

 

3.2.3 Iterated Local Search Method for the MCTOPTW 

 



Chapter 3. Problem Statement  49 

 
 

 

The ILS for TOPTW checks only the time windows feasibility. But since 

MCTOPTW is included extra attribute constraints, it needs to check more insertion 

feasibility of each constraint. Based on their well-known method ILS which 

successfully tackled the TOPTW, P.Vansteenwegen et al. adapt their heuristic to 

solve the MCTOPTW [P.Vansteenwegen et al., 2010]. They make few changes by 

inspecting each constraint’s feasibility for each non included location and change the 

ratio function. Previous ratio function assumes only associated score of point and 

required time to visit that point. Nevertheless, there is a need to take into account 

attribute constraints to calculate the ratio. Authors in [P.Vansteenwegen et al., 2010] 

analyze certain different variants to define the best ratio function for the MCTOPTW. 

They keep nominator as a previous ratio function and suggested several different 

denominators by adding same weight for all constraints, a special weight for each 

attribute constraint k, and include the upper bound for each attribute constraint so 

forth. Finally, authors formulate the best ratio function by the combination of two 

functions. This option gives a special weight to each attribute constraint and includes 

the available quantity of each constraint on the route. Their empirical tests show the 

optimal weight for the attribute constraints was obtained by setting the weight of each 

constraint as the inverse of the number of constraints e.g. 0.5 for 2 attribute 

constraints [P.Vansteenwegen et al., 2010]. Then, authors make another change 

which actually improved the TOPTW algorithm. In the TOPTW, it was possible for 

points removed during one iteration to be inserted again immediately during the next 

iteration. So they try to avoid removing same points during consecutive iterations. A 

tabu list created in this shake step to improve the quality of the algorithm. At the end 

of the work, authors test their heuristic using existing test set for the Selective 

Vehicle Routing Problem with Time Windows SVRPTW. Therefore, they design new 

test set since there is no available test instances for the MCTOPTW. 

 

3.2.4 Tabu Search approach for the MCTOPTW  
 



Chapter 3. Problem Statement  50 

 
 

 

After the ILS [P.Vansteenwegen et al., 2010] approach for MCTOPTW, 

[K.Sylejmani et al. 2013] introduce the Tabu Search method to tackle this problem. 

They use tabu memory that has same duty as "tabu list" from the literature to keep 

record of the moves that cannot be performed for a certain number of iterations. 

Authors apply 3 basic operators so-called Insert, Replace and Swap to explore the 

neighborhood and 4 different extra operators to make search diversification process. 

While insert operator aims to insert a new point into the tour from the other non-

included points, replace operator exchanges a point from the tour with other point 

from out of the tour. The swap operator exchanges between any two points inside the 

tour. In the [P.Vansteenwegen et al., 2010] they allow waiting time to start a visit but 

they do not.  Instead of recording Wait and Maxshift value to accelerate the time 

window feasibility check process, authors save two variables for each point inside the 

tour meaning how much the point in tour m could be shifted forward or backward. 

Whenever a new point is inserted, replaced or swapped the corresponding two values 

need to be updated.  

Authors ( K.Sylejmani et al., 2012) make experiments using same data instances from 

the literature and compare their results with the results of ILS heuristic. They 

conclude that their algorithm outperforms by ILS heuristic regarding the average 

performance in the set of instances. 

 

3.3 Integration of public transportation constraint 

 

As aforementioned, tourist faces several problems to decide what to see, where to 

stay and which activities to do, how much money to spend and so on. Therefore, their 

next step is to decide sequence of the attraction points and to decide how to move 

from one attraction point to another following one. This kind of problem is tackled by 

few researchers and there is very limited literature survey on this. As authors 

knowledge the integration of public transportation constraint with the Orienteering 

Problem is presented only in (A.Garcia, P.Vansteenwegen, o.Arbelaitz, W.Souffriau, 

M.T.Linaza, 2013) , (Ander Garcia, Olatz Arbelaitz, Pieter Vansteenwegen,Wouter 



Chapter 3. Problem Statement  51 

 
 

 

Souffriau, and Maria Teresa Linaza, 2010) and (D.Gavalas, Ch.Konstantopoulos, 

K.Mastakas, G.Pantziou and N.Vathis, 2015). So far, there is no paper takes into 

account the use of public transportation into the optimization problem with all 

constraints including multi constraints, time window, money budget and  time 

dependency. 

 

Integration of public transportation differentiates the problem from the other tour 

planning problem by its certain characterizations as follows: 

 The public transportation networks consists of fixed number of bus stops 

 The fixed number of bus lines  

 Different lines between stops, each with given frequency 

In the existing tour planning problems, the traveling time between the attraction 

points is always fixed. Thus it was easier to solve rather than the time dependent 

problem. In the TDTOPTW, tourist can choose walking or using public bus in order 

to get the place. Thus traveling time between attraction points depends on leaving 

time of the previous visiting place and decision of the transportation mode. 

 

3.3.1 Integrating public transportation into the MCTOPTW 

 

Integrating public transportation constraint into the optimization problem is one of 

the hardest issues to solve. Especially the problem like the multi constraint team 

orienteering problem with time windows which is definitely NP-hard problem itself 

and plus adding new constraint of public transportation is becoming very challenging 

task to handle.  

 

In the literature, researchers use the time dependent team orienteering problem with 

time windows as a starting point to model in order to tackle tourist tour design 

problem with public transportation. In  (R.A.Abbaspour and F.Samadzadegan, 2011), 

authors propose an architecture including tour planning block as the main routine and 



Chapter 3. Problem Statement  52 

 
 

 

the finding multimodal shortest path is modeled as a subroutine that is called 

whenever required. The authors’ model their two engines based on evolutionary 

approach so called the genetic algorithm. These two engines interacts each other and 

include source/destination points, tour duration, starting time and transportation 

modes information. In order to search the multimodal shortest path route, they store 

the important information about transportation network, stations and service lines 

timetable. As the input of the algorithm, 500 points with different numbers of nodes 

and starting times are chosen to evaluate the multimodal shortest path algorithm. The 

authors discuss three different cases to illustrate the result. 

1. First case is the longest one; all kind of public transportation means are 

used including taxi, bus, subway and even walking. 

2. Second case is also combination of three transportation modes. 

3. Third case is combination of walking and bus. 

 

At the result, it indicates that number of iterations of the genetic algorithm increases 

as the tour duration increases. Also, sometimes the algorithm cannot find the tour 

during the experiment.  

 

3.3.2 Modeling the new TDMCTOPTW problem 

 

We propose the TDMCTOPTW model based on the mathematical formulation 

presented by (A.Garcia, P.Vansteenwegen, Wouter Souffriau, Olatz Arbelaitz , Maria 

Teresa Liaza, 2010). Later, this model is used in the implementation of the UB 

TOUR PLANNER (see chapter 5), this problem includes set of locations, each of 

them with a certain score, a time window, limited budget and time dependency of 

public transportation. Visiting a location within its time window allows collecting its 

score as a reward. Furthermore, the use of public bus is integrated. The bus network 

is included as well as bus stops. Tourist can move between two particular places by 

public bus or by foot. 



Chapter 3. Problem Statement  53 

 
 

 

The goal is to determine a tour that maximizes the collected score without violating 

any of the constraints. The starting point 1 and ending point N of every tour are fixed. 

Traveling time between POI i and j is known for all points. In the following, we 

rewrite problem definition and the mathematical formulation of the TDMCTOPTW 

problem based on equations presented by A.Garcia et al, 2010.  

 

In addition to the presented mathematical formulation, we add an extra constraint for 

total money budget (Fmax) which limits total money spent during a tour (d). This 

constraint equals entrance fee and tax to visit attraction point i in tour d. But tourist’s 

accommodation, restaurant and personal shopping cost is not included.  

Table3.5: Parameters and Decision variables 

Notations Descriptions  

Xijdt = 1 if a visit point i is followed by a visit point j in tour d, in time t, 0 

otherwise 

Yidt =1 if point i is visited in tour d, in time t, 0 otherwise 

Si satisfaction score of point i 

M number of tour 

N number of points 

ti time duration to visit point i 

Tmax Total time budget of each tour 

tij travel time between point i to point j 

vidt the start of the visit at point i in tour d, in time t 

[Oi, Ci] time window of point I 

Oi = opening time 

Ci = closing time 

fid Entrance fee to visit point i in tour d 

Fmax Total money budget for each tour 

 

 

 

The objective function of the problem (3.17) is to maximize the collected satisfaction 

score when visiting points at certain time periods.  

ݔܽ݉  ∑ ∑ ∑ ௜ܵ × ܺ௜௝��்௠���=ଵ௡௝=ଵ,௝≠௜௡௜=ଵ                                      (3.17) 

 



Chapter 3. Problem Statement  54 

 
 

 

௜ܻ� ∈ {Ͳ,ͳ} , ∀௜,௝= ͳ, … , ܰ , ∀�= ͳ, … , ݉ 

 

Constraint (3.18) ensures that there is no sub tour (return tour) while constraint (3.19) 

describes starting point is 1.  

 ∑ ∑ ܺ௜ଵ� = Ͳ்௠���=ଵ௡௜>ଵ                                                 (3.18) 

 ∑ ∑ ܺଵ௝� = ͳ்௠���=ଵ௡௝>ଵ                                               (3.19) 

 

Constraint (3.20) and constraint (3.21) ensure that the last visited point is point n. 

 ∑ ∑ ܺ௡௝� = Ͳ்௠���=ଵ௡−ଵ௝=ଵ                                               (3.20) 

 ∑ ∑ ܺ௜௡� = ͳ்௠���=ଵ௡−ଵ௜=ଵ                                                (3.21) 

 

Next constraint guarantees (3.22) each point must be visited at most once.  

 ∑ ܺ௜௞ = ∑ ܺ௞௝ ≤ ͳ௡௝=ଶ௡−ଵ௜=ଵ                                         (3.22) 

 

Constraint (3.23) implies every visit must be between its time windows. The time 

window represents an interval of daily opening and closing hour of that particular 

point. 

 ܱ௜� < ௜ܸ�� <  ௜�                                                   (3.23)ܥ

 

Constraints (3.24) and (3.25) limit time budget of each tour, also timeline of each 

tour. 

 ∑ ሺ�−ଵ௜=ଵ ௜ݐ ௜ܻ� + ∑ ௜௝ܺ௜௝�ሻ�௝=ଶݐ ≤ ௠ܶ�� ,∀�= ͳ, … , ݉                         (3.24) 

 



Chapter 3. Problem Statement  55 

 
 

 

௝ܸ� = ௜ܸ� + ௜ݐ + �௜௝ ,    ܺ௜௝ݐ = ͳ                                    (3.25)   

 

Constraints (3.26) guarantee that restrict that start of the visit in its time window. 

       ܱ௜ ≤ ௜ܸ� ≤ ∋௜,  ∀௜ܥ ͳ, . . . , ܰ,   ∀�∈ ͳ, … , ݉                     (3.26)  

 

Next constraints (3.27) limit money budget for each tour and limit value of attribute 

constraint z of the point i.     

 ∑ ∑ ௜݂� ௜ܻ� ≤ ௠��௠�=ଵ�௜=ଵܨ   ,  ∀௜∈ ͳ, . . . , ܰ, 

 ௜ܻ� ∈ {Ͳ,ͳ} , ∀�∈ ͳ, … , ݉                                          (3.27) 

 

 

 

3.4 Summary 

 

This chapter extends the problems of the previous chapter to take time dependency 

into account. The time dependency is mostly used when the problem includes public 

transportation integration while multi constraint integrates the more attribute 

constraints such as money budget, mandatory categories and so on. 

Firstly, we emphasize the existing time dependent problem and the approaches to deal 

with that problem. Then we presented integration of the public bus into the problem 

with multi constraint and explain the mathematical model formulation of the time 

dependent multi constraint problem with time windows.



 

56 

 

 

 

 

 

Chapter 4 
 

Technique and Methodology 

 

Content  

4.1 Local Search Heuristic..................................................................................................................... 58 

4.1.1 Insertion of neighborhood .................................................................................................... 59 

4.1.2 Wait and Maxshift ................................................................................................................ 60 

4.1.3 Shift and Ratio ...................................................................................................................... 60 

4.2 Iterated Local Search Meta-heuristic ............................................................................................... 61 

4.3 The TDMCTOPTW Algorithm ....................................................................................................... 63 

4.3.1 TDMCTOPTW- main concept ............................................................................................. 65 

4.3.2 Example scenario ................................................................................................................. 66 

4.4 Summary ......................................................................................................................................... 70 

 

Abstract. In this chapter we explain the heuristic approach to tackle the 

TDMCTOPTW.  The heuristic method is based on Iterated Local Search 

which has shown efficient result by solving the 

MCTOPTW(P.Vansteenwegen, W.Souffriau, D.V.Oudheusden, 2011). 

The ILS is a meta-heuristic approach based on iteratively building 

sequences of solutions generated by an embedded heuristic called local 

search. In the section 4.1, the basic local search heuristic method is 

explained. 



Chapter 4. Technique and Methodology  57 

 
 

 

 

 

Section 4.2 presented iterated local search meta-heuristic and proposed 

new algorithm to tackle the TDMCTOPTW.  

4.1 Local Search Heuristic 

 

Heuristic search refers to techniques with the aim of finding ‘good’ solutions for a 

very hard optimization and decision within a reasonable amount of computation time. 

Local Search Heuristic technique that works with complete solutions and seeks to 

find better solutions by making small local changes. All heuristic search techniques 

share similar concepts; e.g. the search space, feasible/infeasible solutions, neighborhoods, 

and the relation(s) between neighbors6. Local search is an iterative algorithm that moves 

from one solution S to another S’ according to some neighborhood structure. Local 

search procedure usually consists of the following steps7. 

 

1. Initialization. Choose an initial schedule S to be the current solution and 

compute the value of the objective function F(S). 

2. Neighbor Generation. Select a neighbor S’ of the current solution S and 

compute F(S’). 

3. Acceptance Test. Test whether to accept the move from S to S’. If the move 

is accepted, then S’ replaces S as the current solution; otherwise S is 

retained as the current solution. 

4. Termination Test. Test whether the algorithm should terminate. If it 

terminates, output the best solution generated; otherwise, return to the 

neighbor generation step. 

 

                                                      
6http://unow.nottingham.ac.uk/resources/resource.aspx?hid=5ade2b04-6d82-79cf-24b1-

236084d32121 

7http://community.stern.nyu.edu/om/faculty/pinedo/scheduling/shakhlevich/handout10.pdf 



Chapter 4. Technique and Methodology  58 

 
 

 

 

4.1.1 Insertion of neighborhood 

 

As aforementioned, basic local search based algorithms explore a neighborhood by 

iteratively generating the neighborhood of the current solution and moving from this 

current solution to an improved neighboring solution. This process is repeated until 

the current solution cannot be improved anymore, and thus local optimum reached 

(W.Souffriau, 2010).  

In this section the local search based on insertion of neighborhood is described which 

is well known to solve the optimization problems with time 

windows(P.Vansteenwegen, W.Souffriau, G,V.Berghe, D.V.Oudhesden, 2009). The 

insertion step aims to add new visit of attraction points into a tour one by one. But, 

due to the time window constraint the problem becomes very hard to insert new visits 

into the tour without violating their time window. Therefore, there is necessity to 

verify that all visits scheduled after the insertion place still satisfy their time window 

an extra visit can be inserted in a tour.  

 

In the literature, there is a need to do a quick evaluation of each possible insertion 

thereto develop fast heuristic, thus the parameters called Wait and MaxShift are 

generated in order to avoid taking too much time for checking all other visits on their 

feasibility(A.Garcia, P.Vansteenwegen, Wouter Souffriau, Olatz Arbelaitz , Maria 

Teresa Liaza, 2010), (A.Garcia, P.Vansteenwegen, o.Arbelaitz, W.Souffriau, 

M.T.Linaza, 2013). In the following sections, useful parameters are discussed in 

detail. 

 

 

 

 

 

 



Chapter 4. Technique and Methodology  59 

 
 

 

 

4.1.2 Wait and Maxshift 
 

The definition of the Waitid parameter is waiting time in case the arrival time at point 

Aid takes place before the time window in tour d. The service of attraction points can 

only start when the time window opens, see equation 4.1. Obviously, Waitid equals to 

zero if the arrival at attraction point takes place during the time window.  

�௜ݐܹ݅ܽ  = ,Ͳ]ݔܽ݉ ܱ௜ − �௜�]                                             (4.1) 

 

The Maxshift is explained as the maximum delayed time of the service completion of the 

given visit without making any visit infeasible. Maxshift of the point i is equal to the sum of 

Wait and Maxshift of the next point i+1, unless Maxshift is limited by its own time window 

(closing time of point i ), see equation 4. 2. 

 

�௜ݐℎ݂݅ݏݔܽܯ  = ௜ܥ]݊݅݉ − ௜ܸ� , �,௜+ଵݐܹ݅ܽ +  ௜+ଵ,�]                 (4.2)ݐℎ݂݅ݏݔܽܯ

 

4.1.3 Shift and Ratio 
 

In equation (4.3) the total time consumption to insert an extra visit j between visits i 

and k in tour d is determined as Shiftijkd. 

 ܵℎ݂݅ݐ௜௝௞� = ௜௝ݐ + ௝ܶ + �௝ݐܹ݅ܽ + ௝௞ݐ −  ௜௞                               (4.3)ݐ

 

 

After the calculation of wait, maxshift and shift, the ratio should be calculated for 

each visit in order to determine the visit that will be selected for insertion.  

�௜௝௞݋݅ݐܽݎ  = ௌ೔మௌℎ௜��೔ೕೖ೏                                              (4.4) 



Chapter 4. Technique and Methodology  60 

 
 

 

 

 

Therefore, visits after the insertion require an update of the arrival time, starting time, 

Wait and Maxshift.  The local search method iteratively generates a neighborhood of 

insertion step and applies the visit with highest ratio score. But, this local search 

procedure has a disadvantage of stacking in local optimum solution. So in order to 

escape the local optimum there is a need of diversification procedure.  

 

4.2 Iterated Local Search Meta-heuristic 

 

The importance of high performance algorithms to tackle difficult optimization 

problems cannot be understated, and in many cases the most effective methods are 

meta-heuristics(H.Lourenco, O.Martin, T.Stutzle, 2003).In the ILS, a sequence of 

local search solutions is made instead of random repeats of the local search 

procedure. The ILS meta-heuristic perturbs the solution found by the local search to 

generate new solution. After that it takes the best solution as the new starting solution 

for the local search. The procedure is iterated until a termination condition is reached.  

According to basic local search heuristic the procedure terminated by selecting the 

visit with highest ratio score for insertion. However, it gets stuck to the local 

optimum and could not give the best feasible solution. Thus, the diversification step 

is added in the iterated local search algorithm. In (P.Vansteenwegen, W.Souffriau, 

G,V.Berghe, D.V.Oudhesden, 2009), the Shake step is executed in order to avoid the 

local optima. This phase aims to remove one or more consecutive visits (POI) from 

the tour. The shake step is presented in section 4.2.1. 

 

4.2.1 Shake phase 

 

In the shake phase, two integers are used as an input.  

 First integers defined as how many consecutive visits to remove in a tour 



Chapter 4. Technique and Methodology  61 

 
 

 

 

 Other one indicates the position in the tour to start the removing process. 

 

If during the removal process the end point is reached, it continues after the start 

point. Because of the varied tour length, during the performance of the algorithm the 

value of the second integer will become different for different tours.  

After the removal process in order to avoid unnecessary waiting time, all visits 

following the removed visits are shifted towards the beginning of the tour. Due to its 

time window if a visit cannot be shifted that visit and other visits sequenced after it 

will not be changed. At the end, the shifted visits should be updated as the process 

mentioned in previous section. Until the termination condition is reached, shake 

phase and the local search heuristic are performed. Finally, the heuristic returns the 

incumbent solution as the result. The ILS meta-heuristic can be summarized as 

follows: 

 

 

PositionStartRemove=1; 

NumberToRemove=1; 

NumberOfTimesNoImprovement=0; 

maxNumberToRemove=NumberOfPOIs/(3*NumberOfDays); 

maxIter=factorNoImprovement * SizeOfFirstTour; 

WhileNumberOfTimesNoImprovement <  MaxIter do 

Whilenot local optimumdo 

           For each non included visit; 

                 Determine the best possible insert position and Shift; 

 Calculate Ratio; 

             Insert visit with highest ratio; 

If Solution better than BestFound then 

          BestFound=Solution; 

          NumberToRemove=1; 

          NumberOfTimesNoImprovement=0; 

else 



Chapter 4. Technique and Methodology  62 

 
 

 

 

          NumberOfTimesNoImprovement+1; 

Shake Solution (NumberToRemove,PositionStartRemove); 

PositionStartRemove=PositionStartRemove+NumberToRemove; 

NumberToRemove+1; 

PositionStartRemove >= Size of smallest Tour; 

If NumberToRemove=maxNumberToRemove then 

NumberToRemove=1; 

Return BestFound; 

 

Listing 4.1 Pseudo code of Iterated Local Search meta-heuristic 

 

As aforementioned the local search heuristic adds new visits to a tour one by one. The 

least insert time (Shiftj) is calculated for each visit i. Then ratio should be determined 

for each of these visits by dividing the score of the point to the time required to visit 

that point. Heuristic selects the point with highest ratio for insertion based on the ratio 

calculation. This process is iterated until no more point can be inserted. The Shake 

step is applied in order to remove one or consecutive points from a tour. At the end of 

heuristic, the heuristic returns the incumbent solution as the result. 

 

4.3 The TDMCTOPTW Algorithm 

 

In order to solve the Time Dependent Multi Constraint Team Orienteering Problem 

with Time Windows, we need to adapt the Iterated Local Search method. Before 

inserting the most expected attraction point, many evaluations of possible insertions 

are taken into account every iteration of the algorithm. Therefore, adding use of 

public transportation into the problem makes the evaluation of possible insertion very 

difficult to tackle. 

In real time, tourist can face many simple problems such as spending little more time 

to visit at the current attraction point and miss the bus to travel to next attraction 

point. Thereupon, tourist needs to wait for the next bus or he can walk to the 



Chapter 4. Technique and Methodology  63 

 
 

 

 

attraction point instead of waiting. For the TDMCTOPTW, the calculation time for 

evaluation is very insufficient to verify because of the inclusion of public 

transportation network. Thus we make local evaluation of possible insertion, only 

including the attraction point that is inserted and two attraction points between which 

new attraction point is inserted. This way is illustrated based on the method proposed 

in (P.Vansteenwegen, W.Souffriau, G,V.Berghe, D.V.Oudhesden, 2009) and 

(A.Garcia, P.Vansteenwegen, o.Arbelaitz, W.Souffriau, M.T.Linaza, 2013). The 

pseudo code of TDMCTOPTW algorithm is shown as follows: 

 

 

PositionStartRemove=1; 

NumberToRemove=1; 

NumberOfTimesNoImprovement=0; 

maxNumberToRemove=NumberOfPOIs/(3*NumberOfDays); 

maxIter=factorNoImprovement * SizeOfFirstTour; 

WhileNumberOfTimesNoImprovement <  MaxIter do 

Whilenot local optimumdo 

           For each non included visit; 

                 Determine the best possible insert position and Shift; 

 Calculate Ratio; 

             Insert visit with highest ratio; 

If Solution better than BestFound then 

          BestFound=Solution; 

          NumberToRemove=1; 

          NumberOfTimesNoImprovement=0; 

else 

          NumberOfTimesNoImprovement+1; 

Shake Solution (NumberToRemove,PositionStartRemove); 

PositionStartRemove=PositionStartRemove+NumberToRemove; 

NumberToRemove+1; 

PositionStartRemove >= Size of smallest Tour; 

If NumberToRemove=maxNumberToRemove then 



Chapter 4. Technique and Methodology  64 

 
 

 

 

NumberToRemove=1; 

Return BestFound; 

For dt =0 to numberOfTravelingDays 

For each included Visits[d] in BestFound 

 if WalkDistanceToBusStop < WalkDistanceToNextVisitPlace then 

 find the nearest bus stop 

find the nbs near to the next visiting place; 

if next visiting place shares the bus stop then 

 walk to the next visiting place; 

else 

 get list of busses that stops  at nbs 

 select theshortest bus line to the nbs 

 take off the bus and walk to the next visiting place 

else 

 walk to the next visiting place; 

nbs – next bus stop 

 

Listing 4.2: ILS algorithm for the TDMCTOPTW 

 

The detail programming code of the ILS algorithm for TDMCTOPTW is listed on the 

Appendix C.  

 

4.3.1 TDMCTOPTW- main concept 

 

As we discussed before we need very fast and efficient local evaluation of each 

possible insertion. In order to adopt the ILS method to TDMCTOPTW algorithm 

there is a need to reconsider the Ratio function.  

We cannot use the same ratio function to the TDMCTOPTW due to the insufficiency 

of the previous ratio function which was used to calculate comparison of each point 



Chapter 4. Technique and Methodology  65 

 
 

 

 

that can be inserted to the tour. The previous ratio function only took into account the 

score of the attraction point and the visiting time required to visit that particular point. 

But we have to make some changes into the ratio function in the case of including 

several attributed constraints such as money budget and public transportation. Thus, 

we decided to add a special weight to each attribute constraint and include the 

available quantity of each constraint on the tour. 

݋݅ݐܽݎ  = ௌ೔మೞℎ೔೑೟೔�೔೘೐ೌ�ೌ೔೗ೌ್೗೐+∑ భ� ೑೔ೖೌ�ೌ೔೗ೌ್೗೐ೖ೗ೖ=భ                                                 (4.5) 

 

From the formulation (4.5) we can see that the weight of other attribute constraints (like 

money budget) are also important as well as time budget constraint and the more additional 

constraints will not raise the total weight of the denominator.  

 

4.3.2 Example scenario 

 

Based on the abovementioned concepts we can apply them into example scenario. We 

use “bus” as a public transportation option and “walk” as a second option. 

 

Walking or Taking bus 

This scenario depends on the exact leaving time of the attraction point i what the 

fastest option will be walking or taking the bus. The option one “walk” will be chosen 

when there is long waiting time for the bus. Thus second option “taking bus” will be 

chosen when the waiting time is short enough. Based on this, the traveling time 

between two attraction points equals to the walking time at most or equals to the 

traveling time of bus at least. 

If the tourists wait for the bus, they could leave later and still arrive at the same time. 

If they leave too late they will miss the bus and they will walk. 



Chapter 4. Technique and Methodology  66 

 
 

 

 

 

Figure 4.1: Walking or Taking bus scenario 

 

In order to explain the algorithm using the example scenario, we make the following 

example. 

Table 4.1 Example Scenario 

Tourist Information Name: Johnny Cooper 

Nationality: USA 

Age:31 

Personal Interest  Love to visit Buddhist monasteries. 

Also like to visit national history museums. 

Interested in statues and monuments. 

Like to walk by enjoying street life. 

Travel duration in  

UB city 

 

Only one day 

Travel estimated budget 200$ excluding accommodation cost 

Accommodation Chinggis Khaan Hotel (starting point and ending point) 

 

 

We import tourist’s data into to machine and the TDMCTOPTW algorithm calculate 

very fast. Our algorithm solves the problem in 3.6 seconds which is very good result 

compared to the existing methods for similar problems. The algorithm can be 

modified easily to solve these small instances efficiently. 

 

 



Chapter 4. Technique and Methodology  67 

 
 

 

 

 

The result of the TDMCTOPTW algorithm for above mentioned example is shown as below: 

 

1 visit: 8:: Wedding Palace 

2 visit: 20:: Statue of Natsagdorj 

3 visit: 24:: Statue of Political persecution victims 

4 visit: 26:: Statue of Marshal Choibalsan 

5 visit: 7:: Chinggis Khaan Square 

6 visit: 27:: Statue of National Seal 

7 visit: 29:: Peace Bridge 

8 visit: 2:: Museum of Choijin Lama 

***************************************** 

5 dugaariin zogsooloos: Chinggis Square 

6  dugaariin zogsool ruu: Yonsei Hospital 

Available bus lines : 

Found it!: M1, 5, 6 

Found it!: M2, 5, 6 

Found it!: M3, 5, 6 

Found it!: M7, 5, 17, 0, 0, 0 

Found it!: M29, 5, 6 

Found it!: M34, 5, 17, 18, 0, 0, 0 

Found it!: M37, 5, 6 

Found it!: M50, 5, 6 

Found it!: M55, 6, 18, 16, 5 

Found it!: T2, 5, 6 

Found it!: T4, 5, 6 

Found it!: T5, 5, 6 

Take busline : T5 

 

6 dugaariin zogsooloos: Yonsei Hospital 

18  dugaariin zogsool ruu: Ard Cinema 

Available bus lines : 

Found it!: M8, 18, 16, 15, 19, 20, 21, 22, 0, 0 



Chapter 4. Technique and Methodology  68 

 
 

 

 

Found it!: M29, 18, 5, 6 

Found it!: M34, 18, 0, 0, 0 

Found it!: M48, 6, 18 

Found it!: M53, 6, 17, 18 

Found it!: M55, 6, 18 

Take busline: M55 

 

18 dugaariin zogsooloos: Ard Cinema 

17  dugaariin zogsool ruu: NUM 

Available buslines: 

Found it!: M29, 17, 18 

Found it!: M30, 17, 18 

Found it!: M34, 17, 18 

Found it!: M48, 17, 6, 18 

Found it!: M53, 17, 18 

Take busline: M53 

 

17 dugaariin zogsooloos: NUM 

5  dugaariin zogsool ruu: Chinggis Square 

Available buslines: 

Found it!: M7, 5, 17 

Found it!: M29, 17, 18, 5 

Found it!: M30, 5, 6, 17 

Found it!: M34, 5, 17 

Take busline: M34 

 

5 dugaariin zogsooloos: Chinggis Square 

17  dugaariin zogsool ruu: NUM 

Available buslines: 

Found it!: M7, 5, 17 

Found it!: M29, 17, 18, 5 

Found it!: M30, 5, 6, 17 

Found it!: M34, 5, 17 



Chapter 4. Technique and Methodology  69 

 
 

 

 

Take busline: M34 

 

17 dugaariin zogsooloos: NUM 

16  dugaariin zogsool ruu: National Library 

Available bus lines: 

Found it!: M7, 16, 5, 17 

Found it!: M34, 16, 5, 17 

Found it!: M53, 16, 6, 17 

Take busline: M53 

 

16 dugaariin zogsooloos: National Library 

5  dugaariin zogsool ruu: Chinggis Square 

Available buslines: 

Found it!: M7, 16, 5 

Found it!: M34, 16, 5 

Found it!: M50, 16, 17, 5 

Found it!: M55, 16, 5 

Take busline: M55 

 

 

Figure 2 Screenshot of map "Example scenario" 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Technique and Methodology  70 

 
 

 

 

4.4 Summary 

 

In this chapter we present the meta-heuristic approach to deal with the time dependent 

multi constraint team orienteering problem with time windows. Several efficient 

techniques to tackle the previous extensions of this optimization problem are 

mentioned in Chapter 2 and Chapter 3.  However we select the iterated local search 

algorithm to solve the problem since it has been shown the best result and run on a 

mobile device with limited computational resources.The local search heuristic is 

introduced at the beginning of the chapter. In doing so, we adopt the iterated local 

search meta-heuristic to deal with the TDMCTOPTW problem. Furthermore, we 

adopt the classic ILS method to our algorithm by making some changes in calculation 

of Ratio function. 



 

71 

 

 

 

Chapter 5 
 

Experimental Validation and 

Prototype Implementation 
 

Content  

Chapter 5 ............................................................................................................................................. 72 

Experimental Validation and   Prototype Implementation ............................................................. 72 

5.1 Experiment Setup ............................................................................................................................ 73 

5.1.1 Satisfaction score estimation ................................................................................................ 73 

5.1.2 Data collection procedure ..................................................................................................... 73 

5.1.3 Survey result ......................................................................................................................... 74 

5.2 Test Set ............................................................................................................................................ 75 

5.2.1 Computational result ............................................................................................................ 80 

5.3 Implementation of the UB TOUR PLANNER ................................................................................ 81 

5.3.1 System Architecture ............................................................................................................. 85 

5.3.2 Database Input and User Input ............................................................................................. 86 

5.3.3 User Interface ....................................................................................................................... 88 

5.4 Summary ......................................................................................................................................... 90 

 

Abstract. In this experimental validation chapter, we applied the ILS 

algorithm to the real life data set of Ulaanbaatar city (UB) of Mongolia 

including 35 attraction points. The computational validation results are 

shown in section 5.2. Therefore, we implemented the new mobile tourist 

tour planning recommendation system so called UBTour Planner 



Chapter 5. Experimental Validation and Prototype Implementation 72 

 
 

 

 

(UBTP). The UBTP aims to help tourists to plan their travel in UB taking 

into account the tourist interest, preferences, budget and time to spend.  

The one of the main features of UBTP is integration of public 

transportation into the system. The section 5.3 introduces implementation 

of the tour planning recommendation system.  

 

5.1 Experiment Setup 
 

5.1.1 Satisfaction score estimation 
 

In order to model and implement the TDMCTOPTW, the satisfaction score of every 

attraction points have to be defined. We made a survey “Tourist Interest and 

Satisfaction” and we are able to evaluate the satisfaction score based on the result of 

questionnaires. This survey is developed and distributed during the peak season of 

July and August of 2014 to determine the satisfaction levels of international tourists 

in Mongolia. The self-administered survey includes 6 attraction and public 

transportation related questions. All listed attraction points are situated in Ulaanbaatar 

city were measured on a five-point scale ranging from 1 to 5. Obviously, tourists’ rate 

1 for very dissatisfied, 2 for dissatisfied, 3 for Average, 4 for Satisfied and 5 for 

highly satisfied. The survey was written in English   

 

5.1.2 Data collection procedure 
 

Since Mongolia has only one international airport we collected the data at the 

Chinggis Khaan International Airport of Ulaanbaatar city. We assume that all airline 

passengers use this airport. The survey was conducted in the departure lounge from 

the beginning of July to end of August in 2014. Totally, 800 questionnaires are 

collected and 120 were incomplete. Questionnaire consisted of two sections: first 

section includes 6 questions related to general information about trip while second 



Chapter 5. Experimental Validation and Prototype Implementation 73 

 
 

 

 

section requested to indicate the satisfaction on main attraction points of UB city. See 

Appendix B for sample questionnaire. 

 

5.1.3 Survey result 
 

As the result of the survey, it was interesting to note that 66% of the international 

tourists had information about Mongolia from Internet. Therefore, 85% of the 

participated tourists stayed in UB city for 2 days and 15% of them stayed 3 days. 

Most of them were interested in nature and nomad life of Mongolia. Also, we can see 

from the survey that tourists preferred to use public transportation in the capital city.  

Tourists asked to evaluate the attraction points inside the UB city. We choose 35 

main tourist attraction points and tourists gave the score on every point on a 5-point 

scale ranging from 1(least satisfied) to 5 (highly satisfied). In the table 4.1, we 

summarize the average satisfaction score of 35 attraction points in UB based on the 

survey. The average satisfaction score is defined by dividing total given satisfaction 

scores by the number of total participants. In the table 4.1, satisfaction score of 35 

attraction points are listed which are resulted from the survey. 

 

Table 5.1: Satisfaction score of attraction points 

  

Category 

 

Name 

Average 

Satisfaction score 

1  

 

Palace& 

Center 

Wedding Palace 3 

2 National wrestling palace 3 

3 Palace of Sport 2 

4 Center of Culture 4 

5 Parliament Palace 5 

6 Palace of Children 4 

8 Monastery Geser Monastery 4 

9 Gandan Monastery 5 

10 Zaisan Hill 5 

11  

 

Statue 

Statue of Political persecution victims 5 

12 Statue of Sukhbaatar 5 

13 Statue of Natsagdorj 3 

http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=17
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=28
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=38
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=36
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=55
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=18
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=21
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=56
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=32


Chapter 5. Experimental Validation and Prototype Implementation 74 

 
 

 

 

14 Statue of Soviets soldiers 2 

15 Statue of Marshal Choibalsan 3 

16 Statue of National Seal 4 

17  

Bridge 

Lion Bridge 3 

18 Bridge of Tuul river 3 

19 Peace Bridge 5 

20 Park & 

Station& 

Square & 

Store 

Buddha’s park 5 

21 Ulaanbaatar station 4 

22 Chinggis Khaan’s Square 5 

23 State department store 5 

24  

 

Theatre& Circus 

 

 

 

National Circus 5 

25 National Theatre 4 

26 National Theatre of Opera 5 

27 Tsagaan darium art museum gallery  5 

28 Xanadu Art Gallery 4 

29  

 

 

 

 

Museum 

Museum of Choijin Lama 5 

30 International Intellectual Museum 4 

31 Winter palace of Bogd Khan 5 

32 Fine art museum of Zanabazar 5 

33 National museum of Mongolia 5 

34 Mongolian National Costume Museum 4 

35 Museum of National History 5 

 

 

 

5.2 Test Set 
 

The proposed algorithm and formulation are evaluated by conducting some 

experiments using data from the Ulaanbaatar, capital city of Mongolia. The 

Ulaanbaatar city is the biggest city in Mongolia, including 9 big districts and 

employed three kinds of public transportation modes: taxi, bus and trolleybus. Also, 

Ulaanbaatar city is famous for its interesting tourist attractions. The number of main 

tourist attraction points is more than fifty. In order to make our experiment we create 

a dataset including 35main tourist point of interest. The dataset is classified into main 

10 categories namely Palace, University, Square, Statue, Museum, Theatre, 

Petrography, Mountain, Bridge and Monastery. All data prepared as needed and 

http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=39
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=10
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=45
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=61
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=14
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=41
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=20
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=48
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=49
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=46
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=47
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=19
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=25
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=13
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=4
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=7
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=10
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=11
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=29


Chapter 5. Experimental Validation and Prototype Implementation 75 

 
 

 

 

tables are made including associated information such as coordination location, time 

needed to visit, entrance fee, related satisfaction score and timetable of attractions. 

Additionally, the associated satisfaction score is determined from the result of “tourist 

satisfaction and interest” survey which includes around 800 international tourists who 

have just finished their travel in Mongolia. 

 



                               Chapter 5. Experimental Validation and Prototype Implementation 76 

 
 

 

 

Table 5.2: Real life data set of Ulaanbaatar city 

  

 

Category 

 

 

Name 

Location Visiting 

duration 

 /di, min/ 

Entrance 

 fee /$/ 

Opening 

hour  

/Oi/ 

Closing 

hour /Ci/ 

Satis-

faction 

score /Si/ 
Xi Yi 

1  

Palace & 

Center 

Wedding Palace 47.914358 106.920015 120 0 180 660 5 

2 National wrestling palace 47.91787 106.93414 30 10 120 840 3 

3 Palace of Sport 47.92024 106.92396 120 0 60 750 2 

4 Center of Culture 47.91954 106.91932 120 10 120 850 4 

5 Parliament Palace 47.92065 106.91795 120 0 120 620 5 

6 Palace of Children 47.91306 106.9157 120 0 180 600 5 

7 Monastery & 

Temple 

Geser Monastery 47.92679 106.89453 100 5 180 600 4 

8 Gandan Monastery 47.921 106.905 90 10 0 960 5 

9  

 

Mountain & 

 Hill 

Mountain Bogd Khan 47.80389 106.98639 120 15 0 960 5 

10 Zaisan Hill 47.884 106.915 120 5 0 960 5 

11 Statue of Political 

persecution victims 

47.92043 106.91533 30 0 0 960 5 

12 Statue of Sukhbaatar 47.91822 106.91708 30 0 0 960 2 

13 Statue of Natsagdorj 47.91784 106.92305 30 0 0 960 4 

14 Statue of Soviets soldiers 47.91797 106.95093 40 0 0 960 5 

15 Statue of Marshal 

Choibalsan 

47.92172 106.91864 100 0 0 840 3 

16 Statue of National Seal 47.92154 106.91722 30 0 0 900 5 

17  

Bridge 

Lion Bridge 47.91844 106.93028 20 0 0 960 2 

18 Bridge of Tuul river 47.89007 106.90986 90 0 0 960 3 

19 Peace Bridge 47.90826 106.91312 30 0 0 960 4 

20 Park & 

Station& 

Square & 

Store 

Buddha’s park 47.88619 106.91225 90 0 120 840 5 

21 Chinggis Khaan’s Square 47.91822 106.91708 100 0 0 960 5 

22 State department store 47.91542 106.90614 150 0 180 840 5 

23  National Circus 47.91202 106.9072 120 15 480 780 5 

http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=17
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=28
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=38
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=36
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=55
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=18
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=13
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=21
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=56
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=32
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=39
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=10
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=45
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=61
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=14
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=20
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=48
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=49


                               Chapter 5. Experimental Validation and Prototype Implementation 77 

 
 

 

 

24  

Theatre& 

Circus 

 

 

 

National Theatre 47.91457 106.91457 90 12 480 850 5 

25 National Theatre of Opera 47.91851 106.91928 90 10 660 900 5 

26 Tsagaan darium art museum 

gallery  

47.88868 106.91135 90 20 240 700 4 

27 Xanadu Art Gallery 47.91917 106.90983 90 10 180 720 4 

28  

 

 

 

 

 

 

 

Museum 

Museum of Choijin Lama 47.915 106.91897 110 15 120 620 5 

29 International Intellectual 

Museum 

47.91743 106.9417 120 10 120 720 5 

30 Winter palace of Bogd Khan 47.89742 106.90703 150 15 240 600 5 

31 Fine art museum of 

Zanabazar 

47.92039 106.90956 120 10 120 660 5 

32 National museum of 

Mongolia 

47.92261 106.91464 80 5 120 540 5 

33 Mongolian National 

Costume Museum 

47.91637 106.92004 120 20 180 600 5 

34 Museum of National History 47.92099 106.91519 90 15 180 540 5 

35  Ulaanbaatar station 47.90832 106.88502 120 0 0 960 3 

 

http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=46
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=47
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=19
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=19
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=25
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=13
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=4
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=7
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=10
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=11
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=29
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=41


                               Chapter 5. Experimental Validation and Prototype Implementation 78 

 
 

 

 

 

  

Figure 5.1. Location of Point of Interests in Ulaanbaatar city (Google map) 



Chapter 5. Experimental Validation and Prototype Implementation 79 

 
 

 

 

 

5.2.1 Computational result 

In order to analyze the performance of our algorithm, we made our own data set 

based on the real data of Ulaanbaatar city which is presented on previous section. 

As we mentioned before, the ILS heuristic was shown very good results with 

Solomon’s data set and Cordeau’s data set. Since the TDMCTOPTW problem was 

more challenging to solve by its additional attribute constraints we adopt the ILS 

algorithm by changing some function. 

In the table 5.3, computational result of the experiment is presented. We run the 

test with 1 or 2 days tour and different starting point.  

 

Table 5.3: Computational experiment results of the TDMCTOPTW 

 

M 

 

CPU 

time 

(sec) 

Number of 

attraction 

Point 

 

Starting Point 

/hotel/ 

 

Location 

 

M 

 

CPU 

time 

(sec) 

1 3.5 35 Coco 47.918442, 106.862774 2 4 

1 5.5 35 Amure 47.918363, 106.883385 2 5.5 

1 4 35 Grand Hill 47.918269, 106.884189 2 5.5 

1 4 35 White House 47.918485, 106.889994 2 3 

1 3.5 35 Narantuul 47.915709, 106.895873 2 2.5 

1 2.8 30 Khongor Guest 

House  

47.916227, 106.903619 2 3.5 

1 2 30 Mongolian Steppe 47.918183, 106.906301 2 6 

1 2.2 30 Bishrelt 47.923561, 106.907149 2 3.3 

1 1 30 Sun Path 47.924582, 106.912825 2 4.4 

1 1.5 30 Blue Sky 47.916184, 106.918741 2 3.5 

1 3.7 35 Lotus Guest House 47.92944, 106.912256 2 5.5 

1 3.5 35 UB City  47.901089,  106.902198 2 5.6 

1 2.9 35 Khilchin  47.932648, 106.923392 2 1.5 

1 3.2 35 Peace Bridge 47.905185, 106.910266 2 4.3 

1 2.8 35 Ramada 47.915954, 106.893164 2 3.5 

1 1.5 30 Best Western 47.910445, 106.875097 2 4.3 



Chapter 5. Experimental Validation and Prototype Implementation 80 

 
 

 

 

1 2.9 30 New West 47.913955, 106.862179 2 3.8 

1 3.1 35 Chinggis Khaan 47.921965, 106.933998 2 3 

1 2 35 Kempinski 47.919189, 106.944383 2 4 

1 3.1 35 Continental 47.912617, 106.924857 2 4.5 

1 2.8 35 Corporate 47.913013, 106.914241 2 4 

1 3 35 Flower 47.924984, 106.938139 2 5 

1 1 30 Zaluuchuud 47.924510, 106.922008 2 3.5 

1 1 30 Bayangol 47.912315, 106.913940 2 2.7 

1 2 35 Khunnu Palace 47.930053, 106.931643 2 4.5 

1 3.5 35 Narlag Hotel 47.930556, 106.918371 2 3 

1 1.5 35 Ulaanbaatar 47.948736, 106.922856 2 3 

1 2 35 Topaz 47.932612, 106.923189 2 1.8 

1 5.5 35 Plantinium 47.916565, 106.926793 2 6.8 

1 2 35 New World 47.931850, 106.924594 2 5.5 

1 3 30 Kaiser 47.916436, 106.927158 2 5.5 

1 4.1 30 Springs 47.915522, 106.921472 2 5.8 

1 2.3 30 Edelweiss 47.915163, 106.928467 2 3.6 

1 3 30 Selenge 47.923302, 106.948718 2 6.3 

1 1.5 30 Park 47.921433, 106.952924 2 2.7 

 

 

 

The results for all new data instances are summarized in table 5.3. Totally, 35 

different hotels are tested as a starting point and experiment made by one day tour 

and two days tour with 35 attraction points. In some case, we tested only 30 

attraction points in order to check the performance of the algorithm. 

All computations were made on a laptop computer HP 12nr with AMD A6-3420M 

APU processor and 4 GB Ram. Our algorithm solves the problem with an average 

computation time of only 3 seconds with one day tour and an average computation 

time of 5 seconds with 2 days tour. The performance of the ILS shows that 

algorithm can easily be applied and adopted for problems with more extra 

constraints due to its simplicity. 

 

 

 

 

 



Chapter 5. Experimental Validation and Prototype Implementation 81 

 
 

 

 

 

5.3 Implementation of the UB TOUR PLANNER 

 

This chapter presents the UB TOUR PLANNER, a mobile tourist tour 

recommendation system. This recommendation system aims to give a suggestion of 

city tours based on the user’s personal interests, preferences and constraints. The UB 

TOUR PLANNER (UBTP) considers one or multiple day’s tour in Ulaanbaatar. It 

integrates the selection of attraction points and the ordering, routing, scheduling these 

points. 

Ulaanbaatar is the capital and the largest city of Mongolia. It might be the first stop of 

international tourists who want to travel in Mongolia. An independent municipality, 

the city is not part of any province, and its population as of 2014 is over 1.3 

million.8The city is located in north central Mongolia, the city lies at an elevation of 

about 1,310 meters (4,300 ft) in a valley on the Tuul river. It is the cultural, industrial, 

and financial heart of the country. It is the center of Mongolia's road network, and is 

connected by rail to both the Trans-Siberian Railway in Russia and the Chinese 

railway system. Tourism is becoming increasingly important for the Mongolian 

economy as the demand for tourism in Mongolia is increasing every year. Also, 

recent depreciation of MNT (tugriks) makes tourism products cheaper and more 

attractive. Mongolia's travel and tourism sector accounts for 9 % of Mongolia's GDP. 

However, the number of the tourists visited Mongolia was only 460,000 in 2011 and 

it has been increasing since after. 

                                                      
8 http://en.wikipedia.org/wiki/Ulan_Bator 



Chapter 5. Experimental Validation and Prototype Implementation 82 

 
 

 

 

 

Figure 5.2:Map of Mongolia 

 

The UB city is divided into six major districts, but there's a multitude of sub-districts 

and micro-districts. Mongolians rarely use the Western system of street names and 

numbers, so tracking down an address place can be difficult. Thus, there is huge need 

to have a recommendation system which can provide useful information including 

tour plan for the tourist. The UB Tour Planner can help to user to select the attractions 

and planning their city tour. In the following sections the components of the UBTP is 

organized. 

 



                               Chapter 5. Experimental Validation and Prototype Implementation 83 

 
 

 

 

 
 

Figure 5.3:Tourist map of Ulaanbaatar city



Chapter 5. Experimental Validation and Prototype Implementation 84 

 
 

 

 

 

5.3.1 System Architecture 

 

The UB TOUR PLANNER includes 35 main attraction points of the Ulaanbaatar city 

and its related information such as location of the point, timetable, entrance fee and 

popularity of the point. In order to plan tours, the one of the hardest extension of the 

Orienteering problem is used to model the planning problem namely Time Dependent  

Multi Constraint Team Orienteering Problem with Time Windows. 

 

The TDMCTOPTW takes into account certain hard constraints besides time 

windows. Each point is extended with extra attribute constraint like money budget or 

max-n types of attraction and also its opening and closing timetable. In the figure 

below, the system architecture of the UB TOUR PLANNER is shown. Main function 

of this system is mobile tourist provide his own preference of trip into the server to 

calculate optimal tour planning. Mobile tourist need to introduce his total trip budget, 

total time, preference for attractions (POIs), other specific requests to his device  in 

order to receive back as convenient as possible tour itinerary plan. According to these 

requirements we can give following framework for optimal tourist tour planning 

system (Figure 5.4). 

 



Chapter 5. Experimental Validation and Prototype Implementation 85 

 
 

 

 

 

Figure 5.4:System architecture of the UB TOUR PLANNER 

 

Before calculating tourist’s preferred city tour, the UB TOUR PLANNER estimates 

tourist’s interest and preference based on tourist satisfaction survey. At this stage 

tourist can express his interest’s level on the each types of attractions. Then 

information about each attraction points (opening, closing hours, location – GPS 

coordination, entrance fee), the tourist’s personal preference scores and other related 

information transferred to the tour planning algorithm in order to calculate specific 

tour suggestion. Obviously, right after the calculation of tour planning algorithm, the 

system provide the tour tailored to the tourist’s preferences, location, available time 

and destination.  

 

5.3.2 Database Input and User Input 

 

Database input includes road map on Google map, urban public transportation lines, 

bus stops and data of destinations. Road map is given as a directional graph. Each 

edge is assigned a length. The shortest distance between particular two points is 

fixed. Bus lines are fixed as well as all bus stops locations. 



Chapter 5. Experimental Validation and Prototype Implementation 86 

 
 

 

 

In UB city, public transportation service is well developed with fixed timetable. The 

public bus network consists overall 66bus lines thereof 40 lines serve in the city 

center where the most of the attraction points are located. Thus tourist can use direct 

bus to the attraction points without making transfers. Furthermore, there are 610 bus 

stops in UB city thereof approximately 50are situated in the tourist main street “Peace 

Avenue”. 

 

 

Figure 5.5:Location of main bus stops at Peace Avenue 

 

The length of the Peace Avenue is 8.9km. Approximately 300 buses travel through 

the Peace Avenue per day. According to the survey, the frequency of buses is around 

5-8 minutes. So far, 5 buses stop per a minute at the one bus stop(Kh.Bulga, 2015). 

See Appendix B.2 for location of the bus stops and overlapping public bus network. 



Chapter 5. Experimental Validation and Prototype Implementation 87 

 
 

 

 

As user input, tourist introduces personal data into the system including: 

- Date of arrival at UB city 

- Number of days to stay at UB 

- Rate of tourist’s travel interest 

- Starting and ending location of the each day tour 

- Starting and ending time of the each day tour 

 

Based on this information, system can calculate near optimal tours including the set 

of attraction points.  

The UB TOUR PLANNER recommendation system contains attraction point’s 

information of 35 main points of interests in Ulaanbaatar city. Each point of interest 

is included its database containing: 

- Location – GPS coordination  

- Timetable – Opening and Closing hours 

- An average duration to visit particular point of interest 

- Type of the POI. 

- Satisfaction scores 

- Entrance fee 

 

5.3.3 User Interface 

 

In the UBTP, the TDMCTOPTW algorithm is applied in order to tackle the planning 

problem. This problem includes set of locations, each of them with a certain 

satisfaction score, a time window and one or more associated attributes, such as an 

entrance fee. Each attribute type has an associated constraint with a maximum 

allowed value for a route, such as a limited budget. Visiting a location within its time 

window allows collecting its score as a reward. The problem is time dependent 

because of the public transportation lines and bus stop. The timetable of bus lines 

makes this problem very challenging. The goal is to determine routes that maximize 



Chapter 5. Experimental Validation and Prototype Implementation 88 

 
 

 

 

the collected score without violating any of the constraints. The starting point 1 and 

ending point N of every tour are fixed. Traveling time between poi i and j is known 

for all points. See chapter 3 section 3.2.2.  

 

 

Figure 5.6: Screenshot of Ulaanbaatar Tour Planner (UBTP) User Interface (on 
Android system) 

 



Chapter 5. Experimental Validation and Prototype Implementation 89 

 
 

 

 

 

Figure 5.7: Screenshot of map result of UBTP 

 



Chapter 5. Experimental Validation and Prototype Implementation 90 

 
 

 

 

 

Figure 5.8 Screenshot of UBTP tour planner 

 

5.4 Summary 

 

In this chapter we generated a new test set in order to make the experimental 

validation of the problem and we applied the meta-heuristic to the TDMCTOPTW. 

Therefore, we presented the estimation of the satisfaction score and test the data 

set that we collected from the survey. Our algorithm solves the problem with an 

average computation time of only 3 seconds with one day tour and an average 

computation time of 5 seconds with 2 days tour. The performance of the ILS 

shows that algorithm can easily be applied and adopted for problems with more 

extra constraints due to its simplicity. 

 

Then, the mobile tourist tour planning recommendation system, named UB Tour 

Planner, is introduced to demonstrate the applicability of the proposed model and ILS 

algorithm. The mobile application allows planning one or two day plans in UB city 

considering multiple constraints and time dependent public bus integration.



 

91 

 

 

 

 

Chapter 6 
 

Conclusion 

 
In this thesis, we investigated the well-known combinatorial optimization problem of 

Operations Research and the efficient heuristic techniques to deal with the problem. 

We aim to implement tourist tour planning problem including multiple tasks and 

functionalities. In order to develop the tourist tour planning recommendation system, 

we start by emphasizing the basic Orienteering Problem and its extended versions. 

The model of the Orienteering Problem has the all requirements of the tourist tour 

planning functionalities. We summarized all versions of the problem which are 

extended with multiple day tours, time windows, multiple constraints and time 

dependent constraint. Based on the literature review, we focus on the multi constraint 

problem which has not integration of the time dependency constraint.  

 

Also, number of implemented heuristic approaches is introduced in order to achieve 

near-optimal solution quality within limited calculation times. Several efficient 

methods like Tabu Search, Genetic Algorithm and Ant Colony Optimization 

techniques have been shown good solutions. But the Iterated Local Search meta-

heuristic has proven to be best approach to deal with the multi constraint problem. 

Thus we adopt the iterated local search method by adding several changes since the 

time dependent problem with multi constraint has extra hard constraints.



Chapter 6. Conclusions  92 

 
 

 

 

 

 

Time dependency is mostly used when the problem includes the use of public 

transportation besides other constraint like entrance fee, timetable of attraction points 

and so on. This is the one of the hardest extension of the Orienteering Problem, where 

the time needed to travel between attraction point 1 to attraction point 2 depends on 

the leaving time from attraction point 1. However, in our knowledge none of the 

previous papers summarized on state-of the-art are shown an algorithm which can 

tackle the problem includes time windows, multiple day tours, multiple constraints 

and use of public bus in same time. One of the key contributions of this thesis is 

combining all these constraints into the one problem and proposes the efficient 

technique to handle. 

 

The model we propose is the time dependent multi constraint team orienteering 

problem which combines the previous models and makes it possible to add public 

transportation networks to travel between attraction points. As aforementioned, we 

tried to adopt the iterated local search meta-heuristic to deal with our model which 

has already shown the good solution with TOPTW problem. In the proposed ILS 

algorithm, we made some changes in calculation ratio function. In the previous 

method, researchers calculate the ratio function depends on satisfaction score and 

required time to visit attraction point. But our problem is more complicated to solve 

because of its additional attribute constraints. Thus we add more weight related to the 

extra constraints in the formulation. In order to check the algorithm, we created an 

example scenario to select one of the transportation modes between walking or taking 

public bus. We have tested the algorithm with new generated test set of Ulaanbaatar 

including 35 main tourist attraction points and large public transportation network. 

Our algorithm solves the problem with an average computation time of only 3 

seconds with one day tour and an average computation time of 5 seconds with 2 days 

tour. The performance of the ILS shows that algorithm can easily be applied and 

adopted for problems with more extra constraints due to its simplicity. 



Chapter 6. Conclusions  93 

 
 

 

 

 

 

In order to see the applicability of the model and algorithm we develop a mobile 

application for tourist tour planning which able to create tourist tour plans by 

considering mobile users interest and preferences. This tourist tour planning 

recommendation system targeted the international tourists in Ulaanbaatar, Mongolia



Appendix B  94 

 
 

 

 

Appendix A 
 

A.1 Benchmark test set for the Multi Constraint Team Orienteering Problem 

with Time Windows 

 

 

Table .A.1New test set of MCTOPTW by(A.Garcia, P.Vansteenwegen, Wouter 
Souffriau, Olatz Arbelaitz , Maria Teresa Liaza, 2010) 

 

Number of 

 points 

 

Coordination 

 

Number of 

 tours 

m 

 

 

Total time 

Ti 

 

Score of 

VisitSi 

 

Timetable 

of point 

Number of  

Attribute 

 constraint 

Xi Yi Oi Ci ei1 ei2 

0 40 50  

 

 

1 

- - 0 1236   

1 45 68 90 10 912 967 1 5 

2 45 70 90 30 825 870 2 5 

3 42 66 90 10 65 146 3 5 

4 42 68 90 10 727 782 4 5 

5 42 65 90 10 15 67 5 5 

6 40 69 90 20 621 702 6 10 

7 40 66 90 20 170 225 7 10 

8 38 68 90 20 255 324 8 10 

9 38 70 90 10 534 605 9 10 

10 35 66  

 

 

 

1 

90 10 357 410 10 10 

11 35 69 90 10 448 505 11 15 

12 25 85 90 20 652 721 12 15 

13 22 75 90 30 30 92 13 15 

14 22 85 90 10 567 620 14 15 

15 20 80 90 40 384 429 15 15 

16 20 85 90 40 475 528 16 5 

17 18 75 90 20 99 148 17 5 

18 15 75 90 20 179 254 18 5 

19 15 80 90 10 278 345 19 5 

 



Appendix B  95 

 
 

 

 

Appendix B 

B.1 Sample of Questionnaire 
 

Tourist Interest and Satisfaction Survey 

Dear Sir / Madam! 

First of all, thank you very much for your stay in Mongolia. We hope that your trip was nice 

as you expected. We kindly ask you to participate in a survey which will help us to improve 

the service in tourism and particularly the implementation work of Ph.D dissertation of  

Ms.Uyanga SUKHBAATAR who is a Ph.D candidate of University of Grenoble, France. The 

research work aims to develop tourist tour planning recommendation system by indicating 

the satisfaction score of the attraction points in Ulaanbaatar and proposing new algorithm to 

implement the UB Tour Planner, a new mobile application to help tourists. 

Thank you for your time. Hope we will see you again in Mongolia. 

Please circle your answers. 

Table B.1 Information table 

Questions Answers 

 Nationality 

 Have you visited Mongolia before? 1. Yes 

2. No 

 How many days did you stay in Ulaanbaatar city? 1. 1 day           3.  3 days 

2. 2days           4.  4 days 

 What is your information source about Mongolia? 1. TV 

2. Internet 

3. Guidebooks/magazines 

4. Tour Brochures 

 What is your travel interest and goal? 1. Nature/Adventure 

2. Religion/History 

3. Nomad life 

4. Business 

5. Others 

 What kind of transportation mode did you use  

in UB city? 

1. Public bus 

2. Taxi 

3. Walk 

 



Appendix B  96 

 
 

 

 

Please rate your satisfaction score on your visited attraction points in UB city. 

Table B.2 Survey table 

  

Category 

 

Name 

Ratings 

/1 dissatisfied to 5 highly satisfied/ 

1  

 

Palace& 

Center 

Wedding Palace       1          2          3          4           5 

2 National wrestling palace       1          2          3          4           5 

3 Palace of Sport       1          2          3          4           5 

4 Center of Culture       1          2          3          4           5 

5 Parliament Palace       1          2          3          4           5 

6 Palace of Children       1          2          3          4           5 

8  

Monastery 

Geser Monastery       1          2          3          4           5 

9 Gandan Monastery       1          2          3          4           5 

10 Zaisan Hill       1          2          3          4           5 

11  

 

Statue 

Statue of Political persecution victims       1          2          3          4           5 

12 Statue of Sukhbaatar       1          2          3          4           5 

13 Statue of Natsagdorj       1          2          3          4           5 

14 Statue of Soviets soldiers       1          2          3          4           5 

15 Statue of Marshal Choibalsan       1          2          3          4           5 

16 Statue of National Seal       1          2          3          4           5 

17 

Bridge 

Lion Bridge       1          2          3          4           5 

18 Bridge of Tuul river       1          2          3          4           5 

19 Peace Bridge       1          2          3          4           5 

20 Park & 

Station& 

Square & 

Store 

Buddha’s park       1          2          3          4           5 

21 Ulaanbaatar station       1          2          3          4           5 

22 Chinggis Khaan’s Square       1          2          3          4           5 

23 State department store       1          2          3          4           5 

24  

 

Theatre& 

Circus 

 

 

 

National Circus       1          2          3          4           5 

25 National Theatre      1          2          3          4           5 

26 National Theatre of Opera       1          2          3          4           5 

27 Tsagaan darium art museum gallery        1          2          3          4           5 

28 Xanadu Art Gallery 

 

 

      1          2          3          4           5 

http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=17
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=28
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=38
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=36
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=55
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=18
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=21
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=56
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=32
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=39
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=10
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=45
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=61
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=14
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=41
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=20
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=48
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=49
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=46
http://www.touristinfocenter.mn/cate9_more.aspx?CateID=9&ItemID=47
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=19
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=25


Appendix B  97 

 
 

 

 

29  

 

 

 

Museum 

Museum of Choijin Lama       1          2          3          4           5 

30 International Intellectual Museum       1          2          3          4           5 

31 Winter palace of Bogd Khan       1          2          3          4           5 

32 Fine art museum of Zanabazar       1          2          3          4           5 

33 National museum of Mongolia       1          2          3          4           5 

34 Mongolian National Costume Museum       1          2          3          4           5 

35 Museum of National History       1          2          3          4           5 

 

 

Thank you for your time and cooperation!!! Have a nice flight back home!!! 

 

 

http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=13
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=4
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=7
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=10
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=11
http://www.touristinfocenter.mn/cate37_more.aspx?CateID=37&ItemID=29


Appendix B  98 

 
 

 

 

B.2 Location of the bus stops in UB 
 

 

 

 



Appendix B  99 

 
 

 

 

B.3 The map of overlapping bus lines in UB 
 



Appendix C 100 

 
 

 

 

Appendix C. Listing of the TDMCTOPTW Algorithm on C++ 
 
#include<windows.h> 
#include<iostream> 
#include<fstream> 
#include<vector> 
#include"libxl.h" 
#include<string> 
 
usingnamespace std; 
usingnamespace libxl; 
 
#defineNUM 35 
 
structDataType 
{ 
 double Dugaar; 
 constwchar_t* name; 
 float X; 
 float Y; 
 int VisitDuration; 
 int EnteranceFee; 
 int OpeningHour; 
 int ClosingHour; 
 int SatisfactionScore; 
}; 
 
//Declarations 
void ReadData(); 
int minimum(inta, intb) 
{ 
 returna<b ? a :b; 
} 
int maximum(inta, intb) 
{ 



Appendix C 101 

 
 

 

 

 returna>b ? a :b; 
} 
 
void htmlRndr(ofstream&htmlFile, stringstr) 
{ 
 htmlFile<<str.c_str() << endl; 
} 
 
void main() 
{ 
 //Data load 
 int c[NUM][NUM]; // nem 
 for (int i = 0; i < 35; i += 2) 
 { 
Book* book2 = xlCreateBook(); 
if (book2->load(L"d:\\data\\data.xls")) 
     { 
  Sheet* sheet1 = book2->getSheet(1); 
  if (sheet1) 
  { 
  for (int row = sheet1->firstRow() + i; row < sheet1 >firstRow() + 2 + i; ++row) 
    { 
   for (int col = sheet1->firstCol(); col < sheet1->lastCol(); ++col) 
   { 
   c[row - 1][col] = sheet1->readNum(row, col); 
   } 
     } 
       } 
  } 
        book2->release(); 
  } 
 vector<string> BusName = { "M1", "M2", "M3", "M4", "M6", "M7", "M8", "M9", "M10", "M17B", "M17A", "M18A", "M18B", 
"M21B", "M24", "M25", "M27", "M29", "M30", "M32", "M34", "M36", "M37", "M39", "M40", "M42", "M45", "M47", "M48", "M49", 
"M50", "M51", "M52", "M53", "M55", "M56", "T2", "T3", "T4", "T5" }; 



Appendix C 102 

 
 

 

 

 vector<string> StopName = { "West 4 Zam", "UB Store", "State Dep.Store", "Mungun Zaviya", "Chinggis Square", "Yonsei 
Hospital", "Wrestling Palace", "East 4 zam", "Gandan", "Bayanburd", "UB Station", "Bars", "Narantuul Market", "Ajilchdiin 
Soyol tov", "120", "National Library", "NUM", "Ard Cinema", "MCS", "NUA", "Zaisan", "Statue of Soviet", "Tengis Cinema", 
"Bombogor Market", "National Park" }; 
 vector<vector<double>> StopLoc = { { 47.915292, 106.897627 }, { 47.915609, 106.90164 }, { 47.916184, 106.908265 }, { 
47.916428, 106.908678 },{ 47.916587, 106.918049 }, { 47.918039, 106.926337 }, { 47.918312, 106.933735 }, { 47.918758, 
106.941122 },{ 47.91934, 106.891034 }, { 47.928216, 106.908514 }, { 47.909633, 106.884726 }, { 47.908741, 106.891678 },{ 
47.908484, 106.948197 }, { 47.899132, 106.899682 }, { 47.901326, 106.909896 }, { 47.914379, 106.915614 },{ 47.922511, 
106.922062 }, { 47.91778, 106.911655 }, { 47.895492, 106.908544 }, { 47.886561, 106.910982 },{ 47.886561, 106.910982 }, { 
47.881636, 106.912141 }, { 47.922123, 106.904595 }, { 47.919952, 106.899521 }, { 47.908302, 106.922867 } }; 
 vector<vector<int>> BusStop; 
 vector<vector<int>> BusStopSq; 
 for (int i = 0; i < 40; i += 2) 
 { 
 Book* book = xlCreateBook(); 
 if (book->load(L"d:\\data\\data2.xls")) 
 { 
  Sheet* sheet = book->getSheet(0); 
  if (sheet) 
  { 
  for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; ++row) 
  { 
   vector<int> temp; 
   //cout << row << ": "; 
   for (int col = sheet->firstCol(); col < sheet >lastCol(); ++col) 
   { 
   //cout << sheet->readNum(row, col) << ", "; 
   temp.push_back(sheet->readNum(row, col)); 
   } 
   //cout << endl; 
   BusStop.push_back(temp); 
  } 
  } 
 } 
 book->release(); 



Appendix C 103 

 
 

 

 

 } 
 for (int i = 0; i < 40; i += 2) 
 { 
 Book* book = xlCreateBook(); 
 if (book->load(L"d:\\data\\data2.xls")) 
 { 
  Sheet* sheet = book->getSheet(1); 
  if (sheet) 
  { 
  for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; ++row) 
  { 
   vector<int> temp; 
   for (int col = sheet->firstCol(); col < sheet->lastCol(); ++col) 
   { 
   temp.push_back(sheet->readNum(row, col)); 
   } 
   BusStopSq.push_back(temp); 
  } 
  } 
 } 
 book->release(); 
 } 
 DataTypedt[NUM]; 
 for (int i = 0; i < 35; i += 2) 
 { 
 Book* book1 = xlCreateBook(); 
 if (book1->load(L"d:\\data\\DATA.xls")) 
 { 
  Sheet* sheet = book1->getSheet(0); 
  if (sheet) 
  { 
  for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; ++row) 
  { 
  dt[row - 1].Dugaar = sheet->readNum(row, 0); 
  dt[row - 1].name = sheet->readStr(row, 1); 



Appendix C 104 

 
 

 

 

  dt[row - 1].X = sheet->readNum(row, 2); 
  dt[row - 1].Y = sheet->readNum(row, 3); 
  dt[row - 1].VisitDuration = sheet->readNum(row, 4); 
  dt[row - 1].EnteranceFee = sheet->readNum(row, 5); 
  dt[row - 1].OpeningHour = sheet->readNum(row, 6); 
  dt[row - 1].ClosingHour = sheet->readNum(row, 7); 
  dt[row - 1].SatisfactionScore = sheet->readNum(row, 8); 
  } 
  } 
  } 
 } 
 //end Data load 
 //OD search 
 vector<int> Wait(NUM, 0); 
 vector<int> MaxShift(NUM, 0); 
 vector<int> Shift(NUM, 0); 
 vector<int> a(NUM, 0); 
 vector<int> s(NUM, 0); 
 
 float Lat = 47.912617, Lon = 106.924755; //47.921940, Lon = 106.934090; // UBHotel 
 
 // Search closest POI 
 float min1 = 99999999.9; 
 float min2 = 99999999.9; 
 float mini1 = 0, mini2 = 0; 
 for (int i = 0; i <NUM; i++) 
 { 
  float R = 6371.0; 
  float dLat = (dt[i].X - Lat) * 3.14159 / 180; 
  float dLon = (dt[i].Y - Lon) * 3.14159 / 180; 
  float Lat1 = Lat * 3.14159 / 180; 
  float Lat2 = dt[i].X * 3.14159 / 180; 
  float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
  float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
  float d = R * c; 



Appendix C 105 

 
 

 

 

 
  if (min1 > d) 
  { 
   min2 = min1; 
   mini2 = mini1; 
   min1 = d; 
   mini1 = i; 
  } 
 
  int bb; 
 } 
 
 int startPos = mini1; 
 int endPos = mini2; 
 
 // end of Search closest POT 
 vector<int> Visit; 
 
 // 1st POI 
 Visit.push_back(startPos); 
 a[startPos] = 120; 
 Wait[0] = maximum(0, dt[startPos].OpeningHour - a[startPos]); 
 s[startPos] = a[startPos] + Wait[startPos]; 
 MaxShift[0] = dt[startPos].ClosingHour - s[startPos]; 
 Shift[0] = 0; 
 
 // 2nd POI 
 Visit.push_back(endPos); 
 a[1] = a[0] + dt[0].VisitDuration + c[0][1]; 
 Wait[1] = maximum(0, dt[1].OpeningHour - a[1]); 
 s[1] = a[1] + Wait[1]; 
 MaxShift[1] = dt[1].ClosingHour - s[1]; 
 Shift[1] = 0; 
 
 vector<int> Bo(NUM, 1); 



Appendix C 106 

 
 

 

 

 Bo[Visit[0]] = 0; 
 Bo[Visit[1]] = 0; 
 int n = 2; 
 
 // Insertion method % Bo.insert(Bo.begin() + 2, 5); 
 for (int l = 0; l < 6; l++) 
 { 
 int Ratio = 0; 
 int Inc = 33; 
 int Shiftj; 
int Pos; 
 for (int j = 0; j <NUM; j++) 
 { 
 if (Bo[j]) 
 { 
 for (int i = 0; i < Visit.size() - 1/* length */; i++) 
  { 
  int aShift = s[i] + dt[Visit[i]].VisitDuration + c[Visit[i]][j]; 
  int Shift2 = maximum(0, dt[j].OpeningHour - aShift); 
  //cout << Shift2 << "+" <<c[Visit[i]][j] << "+" << c[j][Visit[i + 1]] << "-" << c[Visit[i]][Visit[i + 1]] << 
endl; 
  Shift2 = Shift2 + c[Visit[i]][j] + c[j][Visit[i + 1]] - c[Visit[i]][Visit[i + 1]]; 
  //cout << j << ", " << i << ", " << Shift2 << ", " <<Wait[i + 1] + MaxShift[i + 1] << endl; 
  if (Shift2 <= Wait[i + 1] + MaxShift[i + 1]) 
  { 
  if (Shift2 == 0) Shift2 = 1; 
  float iRatio = dt[j].SatisfactionScore * dt[j].SatisfactionScore / Shift2; 
  if (iRatio >= Ratio) 
  { 
   Ratio = iRatio; 
   Pos = i; 
   Inc = j; 
   Shiftj = Shift2; 
  } 
  } 



Appendix C 107 

 
 

 

 

  } 
 } 
} 
if (Inc <= NUM) 
{ 
 Bo[Inc] = 0; 
 n = Visit.size(); 
 Visit.insert(Visit.begin() + Pos + 1, Inc); 
 a.insert(a.begin() + Pos, s[Pos] + dt[Visit[Pos]].VisitDuration + c[Visit[Pos]][Inc]); 
s.insert(s.begin() + Pos, maximum(a[Pos + 1], dt[Inc].OpeningHour)); 
 Wait.insert(Wait.begin() + Pos, maximum(0, dt[Inc].OpeningHour - a[Pos + 1])); 
 MaxShift.insert(MaxShift.begin() + Pos, 0); 
 Shift.insert(Shift.begin() + Pos, 0); 
 
 for (int k = Pos + 2; k < n + 1; k++) 
 { 
 Wait[k] = maximum(0, Wait[k] - Shift[k - 1]); 
 a[k] = a[k] + Shift[k - 1]; 
 Shift[k] = maximum(0, Shift[k - 1] - Wait[k]); 
 s[k] = s[k] = Shift[k]; 
 MaxShift[k] = MaxShift[k] - Shift[k]; 
 } 
 MaxShift[Pos + 1] = minimum(dt[Inc].ClosingHour - s[Pos + 1], MaxShift[Pos + 2] + Wait[Pos + 2]); 
 for (int k = Pos; k < 1; k++) 
 { 
 MaxShift[k] = minimum(dt[Visit[k]].ClosingHour - s[k], MaxShift[k + 1] + Wait[k + 1]); 
 } 
 n++; 
 } 
} 
 for (int i = 0; i < Visit.size(); i++) 
 { 
  cout<< i + 1 <<" visit: "<< Visit[i] + 1 <<":: "; 
  wcout<< dt[Visit[i]].name << endl; 
 } 



Appendix C 108 

 
 

 

 

 cout<<"************"<< endl; 
 
 // Hotel to nearest Bus stop 
 for (int xaix = 0; xaix < Visit.size() - 1; xaix++) 
 { 
  float cl = 9999.9; 
  int st = 0; 
 
  for (int stopName = 0; stopName < 25; stopName++) 
  { 
   float R = 6371.0; 
   float dLat = (StopLoc[stopName][0] - dt[Visit[xaix]].X) * 3.14159 / 180; 
   float dLon = (StopLoc[stopName][1] - dt[Visit[xaix]].Y) * 3.14159 / 180; 
   float Lat1 = dt[Visit[0]].X * 3.14159 / 180; 
   float Lat2 = StopLoc[stopName][0] * 3.14159 / 180; 
   float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
   float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
   float d = R * c; 
   if (cl > d) 
   { 
    cl = d; 
    st = stopName; 
   } 
  } 
  cout<< st + 1 <<" dugaariin zogsooloos: "<< StopName[st] << endl; 
 
  // ochix gazriin xamgiin oirxon buudal 
  cl = 9999.9; 
  int st1 = 0; 
  for (int stopName = 0; stopName < 25; stopName++) 
  { 
   float R = 6371.0; 
   float dLat = (StopLoc[stopName][0] - dt[Visit[xaix + 1]].X) * 3.14159 / 180; 
   float dLon = (StopLoc[stopName][1] - dt[Visit[xaix + 1]].Y) * 3.14159 / 180; 
   float Lat1 = dt[Visit[1]].X * 3.14159 / 180; 



Appendix C 109 

 
 

 

 

   float Lat2 = StopLoc[stopName][0] * 3.14159 / 180; 
   float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
   float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
   float d = R * c; 
   //cout <<BusStopName[stopName] << ": " << d << endl; 
   if (cl > d) 
   { 
    cl = d; 
    st1 = stopName; 
   } 
  } 
  int num = 0; 
  cout<< st1 + 1 <<"  dugaariin zogsool ruu: "<< StopName[st1] << endl; 
  // 2 buudal deer zogsdog bus xaix BusStop vector 
  bool alx = false; 
  for (int i = 0; i < 40; i++) 
  { 
   if (BusStop[i][st] == 1 && BusStop[i][st1] == 1) 
   { 
    cout<<"Found it!: "<< BusName[i]; 
    alx = true; 
    bool started = false; 
    for (int k = 0; k < BusStopSq[i].size(); k++) 
    { 
     if (st + 1 == BusStopSq[i][k] || st1 + 1 == BusStopSq[i][k]) 
     { 
      cout<<", "<< BusStopSq[i][k]; 
      started = !started; 
     } 
     elseif (started) 
     { 
      cout<<", "<< BusStopSq[i][k]; 
      continue; 
 
 



Appendix C 110 

 
 

 

 

 
#include<windows.h> 
#include<iostream> 
#include<fstream> 
#include<vector> 
#include"libxl.h" 
#include<string> 
 
   usingnamespace std; 
   usingnamespace libxl; 
 
#defineNUM 35 
 
   structDataType 
   { 
    double Dugaar; 
    constwchar_t* name; 
    float X; 
    float Y; 
    int VisitDuration; 
    int EnteranceFee; 
    int OpeningHour; 
    int ClosingHour; 
    int SatisfactionScore; 
   }; 
 
   //Declarations 
   void ReadData(); 
   int minimum(int a, int b) 
   { 
    return a < b ? a : b; 
   } 
    int maximum(int a, int b) 
   { 
    return a > b ? a : b; 



Appendix C 111 

 
 

 

 

   } 
 
    void htmlRndr(ofstream &htmlFile, string str) 
   { 
    htmlFile<< str.c_str() << endl; 
   } 
 
    void main() 
   { 
    //Data load 
     int c[NUM][NUM]; // nem 
     for (int i = 0; i < 35; i += 2) 
     { 
     Book* book2 = xlCreateBook(); 
     if (book2->load(L"d:\\data\\data.xls")) 
     { 
      Sheet* sheet1 = book2->getSheet(1); 
      if (sheet1) 
      { 
      for (int row = sheet1->firstRow() + i; row < sheet1->firstRow() + 2 + i; ++row) 
      { 
      for (int col = sheet1->firstCol(); col < sheet1->lastCol(); ++col) 
      { 
        c[row - 1][col] = sheet1->readNum(row, col); 
       } 
      } 
      } 
     } 
     book2->release(); 
     } 
     vector<string> BusName = { "M1", "M2", "M3", "M4", "M6", "M7", "M8", "M9", "M10", "M17B", 
"M17A", "M18A", "M18B", "M21B", "M24", "M25", "M27", "M29", "M30", "M32", "M34", "M36", "M37", "M39", "M40", "M42", "M45", 
"M47", "M48", "M49", "M50", "M51", "M52", "M53", "M55", "M56", "T2", "T3", "T4", "T5" }; 
     vector<string> StopName = { "West 4 Zam", "UB Store", "State Dep.Store", "Mungun Zaviya", 
"Chinggis Square", "Yonsei Hospital", "Wrestling Palace", "East 4 zam", "Gandan", "Bayanburd", "UB Station", "Bars", 



Appendix C 112 

 
 

 

 

"Narantuul Market", "Ajilchdiin Soyol tov", "120", "National Library", "NUM", "Ard Cinema", "MCS", "NUA", "Zaisan", "Statue 
of Soviet", "Tengis Cinema", "Bombogor Market", "National Park" }; 
     vector<vector<double>> StopLoc = { { 47.915292, 106.897627 }, { 47.915609, 106.90164 }, { 
47.916184, 106.908265 }, { 47.916428, 106.908678 }, { 47.916587, 106.918049 }, { 47.918039, 106.926337 }, { 47.918312, 
106.933735 }, { 47.918758, 106.941122 }, { 47.91934, 106.891034 }, { 47.928216, 106.908514 }, { 47.909633, 106.884726 }, { 
47.908741, 106.891678 }, { 47.908484, 106.948197 }, { 47.899132, 106.899682 }, { 47.901326, 106.909896 }, { 47.914379, 
106.915614 }, { 47.922511, 106.922062 }, { 47.91778, 106.911655 }, { 47.895492, 106.908544 }, { 47.886561, 106.910982 }, { 
47.886561, 106.910982 }, { 47.881636, 106.912141 }, { 47.922123, 106.904595 }, { 47.919952, 106.899521 }, { 47.908302, 
106.922867 } }; 
     vector<vector<int>> BusStop; 
     vector<vector<int>> BusStopSq; 
     for (int i = 0; i < 40; i += 2) 
     { 
     Book* book = xlCreateBook(); 
     if (book->load(L"d:\\data\\data2.xls")) 
     { 
      Sheet* sheet = book->getSheet(0); 
      if (sheet) 
      { 
      for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; ++row) 
      { 
       vector<int> temp; 
       //cout << row << ": "; 
       for (int col = sheet->firstCol(); col < sheet->lastCol(); ++col) 
       { 
        //cout << sheet->readNum(row, col) << ", "; 
        temp.push_back(sheet->readNum(row, col)); 
       } 
       //cout << endl; 
       BusStop.push_back(temp); 
      } 
      } 
     } 
     book->release(); 
     } 



Appendix C 113 

 
 

 

 

     for (int i = 0; i < 40; i += 2) 
     { 
     Book* book = xlCreateBook(); 
     if (book->load(L"d:\\data\\data2.xls")) 
     { 
      Sheet* sheet = book->getSheet(1); 
      if (sheet) 
      { 
       for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; 
++row) 
       { 
       vector<int> temp; 
       for (int col = sheet->firstCol(); col < sheet->lastCol(); ++col) 
       { 
        temp.push_back(sheet->readNum(row, col)); 
       } 
       BusStopSq.push_back(temp); 
       } 
      } 
     } 
     book->release(); 
     } 
     DataTypedt[NUM]; 
       
 //********************************************************************************************* 
      
 //********************************************************************************************* 
 
  int choice1 = 0; //0~7 Love it 
  int choice2 = 1; //0~7 Like it 
  int choice3 = 2; //0~7 Okey 
 
 
      
 //********************************************************************************************* 



Appendix C 114 

 
 

 

 

      
 //********************************************************************************************* 
       
  for (int i = 0; i < 35; i += 2) 
  { 
   Book* book1 = xlCreateBook(); 
   if (book1->load(L"d:\\data\\DATA.xls")) 
   { 
    Sheet* sheet = book1->getSheet(0); 
    if (sheet) 
    { 
     for (int row = sheet->firstRow() + i; row < sheet->firstRow() + 2 + i; ++row) 
     { 
      dt[row - 1].Dugaar = sheet->readNum(row, 0); 
      dt[row - 1].name = sheet->readStr(row, 1); 
      dt[row - 1].X = sheet->readNum(row, 2); 
      dt[row - 1].Y = sheet->readNum(row, 3); 
      dt[row - 1].VisitDuration = sheet->readNum(row, 4); 
      dt[row - 1].EnteranceFee = sheet->readNum(row, 5); 
      dt[row - 1].OpeningHour = sheet->readNum(row, 6); 
      dt[row - 1].ClosingHour = sheet->readNum(row, 7); 
      int add1 = sheet->readNum(row, 8 + choice1); 
      int add2 = sheet->readNum(row, 8 + choice2); 
     int add3 = sheet->readNum(row, 8 + choice3); 
      dt[row - 1].SatisfactionScore = add1 * 3 + add2 * 2 + add3; 
     } 
    } 
   } 
  } 
 //end Data load 
 //OD search 
 vector<int> Wait(NUM, 0); 
 vector<int> MaxShift(NUM, 0); 
 vector<int> Shift(NUM, 0); 
 vector<int> a(NUM, 0); 



Appendix C 115 

 
 

 

 

 vector<int> s(NUM, 0); 
 
 float Lat = 47.908892, Lon = 106.899553; //47.921940, Lon = 106.934090; // UBHotel 
 
 // Search closest POI 
 float min1 = 99999999.9; 
 float min2 = 99999999.9; 
 float mini1 = 0, mini2 = 0; 
 for (int i = 0; i <NUM; i++) 
 { 
  float R = 6371.0; 
  float dLat = (dt[i].X - Lat) * 3.14159 / 180; 
  float dLon = (dt[i].Y - Lon) * 3.14159 / 180; 
  float Lat1 = Lat * 3.14159 / 180; 
  float Lat2 = dt[i].X * 3.14159 / 180; 
  float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
  float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
  float d = R * c; 
 
  if (min1 > d) 
  { 
   min2 = min1; 
   mini2 = mini1; 
   min1 = d; 
   mini1 = i; 
  } 
 
  int bb; 
 } 
 
 int bestSat = 0; 
 int GoodSat = 0; 
int idx1 = 0, idx2 = 0; 
 bool isChosen = false; 
 for (int i = 0; i <NUM; i++) 



Appendix C 116 

 
 

 

 

 { 
  cout<< dt[i].SatisfactionScore << endl; 
  if (dt[i].SatisfactionScore >= bestSat) 
 { 
   if (isChosen) 
   { 
    GoodSat = bestSat; 
    idx2 = idx1; 
   } 
    bestSat = dt[i].SatisfactionScore; 
    idx1 = i; 
    isChosen = true; 
  } 
 } 
 cout<< bestSat <<" at "<< idx1 <<", "<< GoodSat <<" at "<< idx2 << endl; 
 int startPos = idx1; 
 int endPos = idx2; 
 
 // end of Search closest POT 
 vector<int> Visit; 
 
 // 1st POI 
 Visit.push_back(startPos); 
 a[startPos] = 120; 
 Wait[0] = maximum(0, dt[startPos].OpeningHour - a[startPos]); 
 s[startPos] = a[startPos] + Wait[startPos]; 
 MaxShift[0] = dt[startPos].ClosingHour - s[startPos]; 
 Shift[0] = 0; 
 
 // 2nd POI 
 Visit.push_back(endPos); 
 a[1] = a[0] + dt[0].VisitDuration + c[0][1]; 
 Wait[1] = maximum(0, dt[1].OpeningHour - a[1]); 
 s[1] = a[1] + Wait[1]; 
 MaxShift[1] = dt[1].ClosingHour - s[1]; 



Appendix C 117 

 
 

 

 

 Shift[1] = 0; 
 
 vector<int> Bo(NUM, 1); 
 Bo[Visit[0]] = 0; 
 Bo[Visit[1]] = 0; 
 int n = 2; 
 
 // Insertion method % Bo.insert(Bo.begin() + 2, 5); 
 for (int l = 0; l < 6; l++) 
 { 
  int Ratio = 0; 
  int Inc = 33; 
  int Shiftj; 
  int Pos; 
  for (int j = 0; j <NUM; j++) 
  { 
   if (Bo[j]) 
   { 
   for (int i = 0; i < Visit.size() - 1/* length */; i++) 
   { 
    int aShift = s[i] + dt[Visit[i]].VisitDuration + c[Visit[i]][j]; 
    int Shift2 = maximum(0, dt[j].OpeningHour - aShift); 
    //cout << Shift2 << "+" <<c[Visit[i]][j] << "+" << c[j][Visit[i + 1]] << "-" << 
c[Visit[i]][Visit[i + 1]] << endl; 
    Shift2 = Shift2 + c[Visit[i]][j] + c[j][Visit[i + 1]] - c[Visit[i]][Visit[i + 1]]; 
    //cout << j << ", " << i << ", " << Shift2 << ", " <<Wait[i + 1] + MaxShift[i + 1] << endl; 
    if (Shift2 <= Wait[i + 1] + MaxShift[i + 1]) 
    { 
     if (Shift2 == 0) Shift2 = 1; 
     float iRatio = dt[j].SatisfactionScore * dt[j].SatisfactionScore / Shift2; 
     if (iRatio >= Ratio) 
     { 
      Ratio = iRatio; 
      Pos = i; 
      Inc = j; 



Appendix C 118 

 
 

 

 

      Shiftj = Shift2; 
     } 
    } 
   } 
  } 
 } 
 if (Inc <= NUM) 
 { 
 Bo[Inc] = 0; 
  n = Visit.size(); 
  Visit.insert(Visit.begin() + Pos + 1, Inc); 
  a.insert(a.begin() + Pos, s[Pos] + dt[Visit[Pos]].VisitDuration + c[Visit[Pos]][Inc]); 
  s.insert(s.begin() + Pos, maximum(a[Pos + 1], dt[Inc].OpeningHour)); 
  Wait.insert(Wait.begin() + Pos, maximum(0, dt[Inc].OpeningHour - a[Pos + 1])); 
  MaxShift.insert(MaxShift.begin() + Pos, 0); 
  Shift.insert(Shift.begin() + Pos, 0); 
 
  for (int k = Pos + 2; k < n + 1; k++) 
  { 
   Wait[k] = maximum(0, Wait[k] - Shift[k - 1]); 
   a[k] = a[k] + Shift[k - 1]; 
   Shift[k] = maximum(0, Shift[k - 1] - Wait[k]); 
   s[k] = s[k] = Shift[k]; 
   MaxShift[k] = MaxShift[k] - Shift[k]; 
  } 
  MaxShift[Pos + 1] = minimum(dt[Inc].ClosingHour - s[Pos + 1], MaxShift[Pos + 2] + Wait[Pos + 2]); 
  for (int k = Pos; k < 1; k++) 
  { 
   MaxShift[k] = minimum(dt[Visit[k]].ClosingHour - s[k], MaxShift[k + 1] + Wait[k + 1]); 
  } 
  n++; 
 } 
} 
for (int i = 0; i < Visit.size(); i++) 
{ 



Appendix C 119 

 
 

 

 

 cout<< i + 1 <<" visit: "<< Visit[i] + 1 <<":: "; 
 wcout<< dt[Visit[i]].name << endl; 
} 
 cout<<"************"<< endl; 
 
// For each included Visits in BestFound 
for (int xaix = 0; xaix < Visit.size() - 1; xaix++) 
{ 
 float cl = 9999.9; 
 int st = 0; 
 //find the nearest bus stop 
 for (int stopName = 0; stopName < 25; stopName++) 
{ 
  float R = 6371.0; 
  float dLat = (StopLoc[stopName][0] - dt[Visit[xaix]].X) * 3.14159 / 180; 
  float dLon = (StopLoc[stopName][1] - dt[Visit[xaix]].Y) * 3.14159 / 180; 
  float Lat1 = dt[Visit[0]].X * 3.14159 / 180; 
  float Lat2 = StopLoc[stopName][0] * 3.14159 / 180; 
  float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
  float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
  float d = R * c; 
  if (cl > d) 
  { 
   cl = d; 
   st = stopName; 
  } 
 } 
 // find the nbs near to the next visiting place; 
 cl = 9999.9; 
 int st1 = 0; 
 for (int stopName = 0; stopName < 25; stopName++) 
 { 
  float R = 6371.0; 
  float dLat = (StopLoc[stopName][0] - dt[Visit[xaix + 1]].X) * 3.14159 / 180; 
  float dLon = (StopLoc[stopName][1] - dt[Visit[xaix + 1]].Y) * 3.14159 / 180; 



Appendix C 120 

 
 

 

 

  float Lat1 = dt[Visit[1]].X * 3.14159 / 180; 
  float Lat2 = StopLoc[stopName][0] * 3.14159 / 180; 
  float a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(Lat1) * cos(Lat2); 
  float c = 2 * atan2(sqrtf(a), sqrtf(1 - a)); 
  float d = R * c; 
  if (cl > d) 
  { 
   cl = d; 
   st1 = stopName; 
  } 
 } 
 int num = 0; 
 bool alx = false; 
 //walk to the next visiting place 
 if (st == st1) 
 { 
  cout<<"Alxsan n deerdee xajuud chin!\n"<< endl; 
  alx = true; 
 } 
 else 
{ 
  cout<< st + 1 <<" dugaariin zogsooloos: "<< StopName[st] << endl; 
  //get list of busses that stops  at nbs 
  for (int i = 0; i < 40; i++) 
  { 
   if (BusStop[i][st] == 1 && BusStop[i][st1] == 1) 
   { 
    cout<<"Found it!: "<< BusName[i]; 
    alx = true; 
    bool started = false; 
    for (int k = 0; k < BusStopSq[i].size(); k++) 
    { 
     //select the shortest bus line to the nbs 
    if (st + 1 == BusStopSq[i][k] || st1 + 1 == BusStopSq[i][k]) 
     { 



Appendix C 121 

 
 

 

 

      cout<<", "<< BusStopSq[i][k]; 
      started = !started; 
     } 
     elseif (started) 
     { 
      cout<<", "<< BusStopSq[i][k]; 
      continue; 
     } 
    } 
    cout<< endl; 
    num = i; 
   } 
  } 
 } 
 if (!alx) cout <<"Alxsan n deerdee!\n"<< endl; 
 else { 
  if (st != st1) 
  { 
   cout<< num + 1 <<": "<< BusName[num] << endl; 
   cout<< st1 + 1 <<"  dugaariin zogsool ruu: "<< StopName[st1] << endl; 
  } 
 } 
//take off the bus and walk to the next visiting place 
        wcout<< dt[Visit[xaix + 1]].name << endl; 
        cout<< endl <<"************************"<< endl << endl; 
       } 
       int aa = 0; 
       system("PAUSE"); 
      } 
    } 
    cout<< endl; 
    num = i; 
   } 
  } 
  if (!alx) cout <<"Alxsan n deerdee!\n"<< endl; 



Appendix C 122 

 
 

 

 

  else { 
   cout<< num + 1 <<": "<< BusName[num] << endl; 
   cout<< endl; 
  } 
 } 
 system("PAUSE"); 

}



Bibliography                                                                                                                123 

 
 

 

 

Bibliography 

(n.d.). Retrieved from http://www.doc.ic.ac.uk/: 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/tcw2/article1.html#ECON 

A Bock and L.Sanita. (2014). A Capacited orienteering problem. Discrete Applied 

mathematics. 

A.Garcia, P.Vansteenwegen, o.Arbelaitz, W.Souffriau, M.T.Linaza. (2013). Integrating 

public transportation in personalized electronic tourist guides. Computers and Operations 

research 40, 758-774. 

A.Garcia, P.Vansteenwegen, Wouter Souffriau, Olatz Arbelaitz , Maria Teresa Liaza. 

(2010). Solving Multi constrained team orienteering problems to generate tourist routes. . 

Computers and Industrial engineering, 1-19. 

A.Leifer,M.Rosenwein,. (1994). Strong linear programming relaxations for the 

Orienteering problem. European Journal Operations Research, (pp. 517-523). 

Ander Garcia, Olatz Arbelaitz, Pieter Vansteenwegen,Wouter Souffriau, and Maria Teresa 

Linaza. (2010). Hybrid Approach for the Public Transportation Time Dependent 

Orienteering Problem with Time Windows. Springer-Verlag Berlin Heidelberg , 151-158. 

B.L.Golden, L.Levy and R.Vohra. (1987). The Orienteering Problem. Naval Research 

Logistics, 307-318. 

C.Archetti, A.Hertz, M.Speranza. (2007). Metaheuristics for the team orienteering 

problem . Journal of Heurictics, 49-76. 

Chao, B. L. Golden, and E. A. Wasil. (1996). The team orienteering problem. European 

Journal of Operational Research, 88, 464-474. 

D.Gavalas, Ch.Konstantopoulos, K.Mastakas, G.Pantziou and N.Vathis. (2013). Efficient 

heuristics for the time dependent team orienteering problem with time windows. 

eCompass. 

D.Gavalas, Ch.Konstantopoulos, K.Mastakas, G.Pantziou and N.Vathis. (2015). 

Heuristics for the time dependent team orienteering problem: Application to tourist route 

planning. Computers and Operations research, 36-50. 

D.Gavalas, Ch.Konstantopoulos, K.Mastakas, G.Pantziou, Y.Tasoulas. (2012). A Survey 

on Algorithmic Approaches for Solving Tourist Trip Design Problems. eCOMPASS. 



Bibliography                                                                                                                124 

 
 

 

 

D.Gavalas, M.Kenteris, Ch.Konstantopoulos, G.Pantziou. (2011). Personalized routes for 

mobile tourism. International coneference on wireless and mobile computing, networking 

and comunications (pp. 295-300). IEEE. 

E.Miller, A.W.Tucker, R.A.Zemlin. (1960). Integer Programming formulations and 

traveling salesman problems. Journal of the ACM, 326-329. 

F.Tricoire, M.Romauch, M.Doerner and R.Hartl. (2010). Heuristics for the multi-period 

orienteering problem with multiple time windows. Computers and Operations Rsearch, 

351-367. 

G.Laporte and S.Martello. (1990). The selective travelling salesman problem. Discrete a 

pplied mathematics 26 , 193-207. 

H.Bouly, D.C.Dang, A.Moukrim. (2008). A Memetic algorithm for the team orienteering 

problem . Evo Workshop 2008, LNCS 4974 (pp. 649-658). Berlin: Springer. 

H.Lourenco, O.Martin, T.Stutzle. (2003). Iterated local search. In Handbook of 

Metaheuristics (pp. 321-353). Springer. 

H.Tang and E.Miller-Hooks. (2005). A tabu search heuristic for the team orienteering 

problem. Computers and Operations research 32, 1379-1407. 

Helena R. Louren¸co, Olivier C. Martin, and Thomas Stutzle. (n.d.). Iterated Local 

Search: Framework and Applications. 1-38. 

I.Chao, B.Golden, E.Wasil. (1996). A fast and effective heuristic for the orienteering 

problem. European Journal of Operational Research 88, 475-489. 

J.K.Chilinska and P.Zabielska. (2013). Genetic Algorithm solving the Orienteering 

Problem with time windows. Proceedings of the International Conference on Systems 

Science (pp. 609-619). Springer International Publishing. 

Joanna Karbowska-Chilinska and Pawel Zabielski. (2013). Genetic Algorithm with Path 

Relinking for the. 245-258. 

Kh.Bulga. (2015). Improving the public transportation system in Ulaanbaatar city. PhD 

thesis. 

L.Ke, C.Archetti, Z.Feng. (2008). Ants can solve the team orienteering problem. 

Computers and Industrial Engineering, 648-665. 

M.Fischetti, J.Salazar, P.Toth. (1998). Solving the orienteering problem through branch 

and cut. INFORMS Journal on Computing 10, 133-148. 



Bibliography                                                                                                                125 

 
 

 

 

M.Gendreau, G.Laporte, F.Semet. (1998). A Tabu search heuristic for the undirective 

selective traveling salesman problem. European Journal of Operational research 106, 

539-545. 

N.Labadi, J.Melechovsky, R.W.Calvo. (2010). An effective hybrid evolutionary local 

search for orienteering and team orienteering problem with time windows. PPSN 11, Part 

2, LNCS 6239 (pp. 219-228). Berlin: Springer. 

P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. (2009). A 

guided local search metaheuristic for the team orienteering problem. European Journal of 

Operation research, 118-127. 

P.Vansteennwegen, W.Souffria, G.V.Berghe, D.V.Oudheusden. (2009). Metaheuristics 

for Tourist trip planning. Metaheuristics in the Service Industry, 15-31. 

P.Vansteenwegen, W.Souffriau, D.V.Oudheusden. (2011). The orienteering problem: A 

Survey. European Journal of Operational Research, 1-10. 

P.Vansteenwegen, W.Souffriau, G,V.Berghe, D.V.Oudhesden. (2009). Iterated Local 

Search for the team orienteering problem with time windows. Computers and operations 

research 36, 3281-3290. 

Papadimitriou, C.H.; Steiglitz, K. (1998). Combinatorial optimization: algorithms and 

complexity. 308-309. 

Pieter Vansteenwegen, Wouter Souffriau, GreetVanden Berghe, and DirkVan 

Oudheusden. (2009). Metaheuristics for tourist trip planning. Metaheuristics in the Service 

Industry, 15-31. 

R.A.Abbaspour and F.Samadzadegen. (2011). Time-dependent personal tour planning and 

scheduling in metropolises. Expert systems with Applications, 12439-12452. 

R.A.Abbaspour and F.Samadzadegen. (2011). Time-dependent personal tour planning and 

scheduling in metropolises. Expert Systems with Applications, 12439–12452. 

R.Chelouah and P.Siarry. (2000). A Continuous genetic algorithm designed for the Global 

optimization of Multimodal functions. Journal of Heuristics, 191-213. 

R.Montemmani, L. Gamberdella, . (2009). Ant Colony System for Team Orienteering 

Problems with Time Windows. Found.Comput.Decision Sci.34(4) , 287-306. 

Rodrigues, A. M. and Soeiro Ferreira, J. (2015). Waste Collection Routing—Limited 

Multiple Landfills and Hetergenous Fleet. Wiley Online library, Networks. doi: 

10.1002/net.21597. 



Bibliography                                                                                                                126 

 
 

 

 

S.Boussier, D.Feillet and M.Gendreau. (2007). An exact algorithm for team orienteering 

problems. Operational Research, 211-230. 

S.Butt and T.Cavalier. (1992). A heuristic for the multiple tour maximum collection 

problem. Computers and Operations Research, 101-111. 

S.N.Sivanandam and S.N.Deepa. (2008). Introduction to Genetic Algorithms. Berlin 

Heidelberg: Springer. 

Sh.X.Lin, F.V.Yu. (2012). A simulated annealing heuristic for the team orienteering 

problem with time windows. European Journal of Operational Research 217 , 94-107. 

Sylejmani, K., Dorn, J.& Muslua,N. (2012). A Tabu search approach for multi constrained 

team orienteering problem and its application in touristic trip planning. Proceedings of 2th 

International Conference of Hybrid Intelligent Systems. 

T.Kinoshita, M.nagata, Yo.Murata, N.Shibata, K.Yasumoto, M.Ito. (2006). A Personal 

navigation system for sightseeing across multiple days. ISMU, 254-259. 

T.Shiraishi, M.Nagata, N.Shibata, Y.Murata, K.Yasumoto, M.Ito. (2005a). A Personal 

navigation system with a Schedule planning facility based on multi-objective criteria. 

International conference on mobile computing and ubiquitous networking, (pp. 104-109). 

T.Tsiligirides. (1984). Heuristic methods applied to orienteering. The Journal of the 

Operational Research Society, 797-809. 

Tasgetiren, M. (2001). A Genetic Algorithm with an adaptive penalty function for the 

orienteering problem. Journal of economic and social research 4 (2), 1-26. 

Tucker, A. W. (1960). On Directed Graphs and Integer Programs. IBM Mathematical 

research Project (Princeton University). 

W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oudheusden. (2010). A 

path relinking approach for the team orienteering problem. Computers & Operations 

Research (37), 1853 -1859. 

W.Souffriau. (2010). Automated Tourist Decision Support. Leuven: Katholoieke 

Universiteit Leuven. 

W.Souffriau, P.Vansteenwegen, J.Vertommen, G.B.Vanden.V.Oudhesden. (2008). A 

personalized tourist trip design algorithm for mobile tourist guides . Applied Artificial 

Intelligence 22 (10), 964-985. 

Y.Kurata. (2009). Interactive Assistance for Tour Planning. AGILE 09 (pp. 1-14). GISA-

japan research conference. 

Z.Michalewicz and David B.Fogel. (2004). How to solve it:Modern heuristics. 



Bibliography                                                                                                                127 

 
 

 

 

Zulal Sevkli and Erdogen Sevilgen. (2006). Variable Neighborhood Search for the 

Orienteering Problem. ISCIS 2006, LNCS 4263 (pp. 134-143). Berlin: Springer. 

Zülal Sevkli and F. Erdoğan Sevilgen. (2006). Variable Neighborhood Search for the 
Orienteering Problem. ISCIS, 134-143. 

 

 

 


	devant le jury composé de :
	Prof. Sebti Foufou
	Universite de Bourgogne, President
	Prof. Enkhbat RENTSEN
	Institut of Mathematics, National University of Mongolia, Examinateur
	Joseph Fourier University of Grenoble, Directeur de these
	Prof. Pradorn Sureephong
	Univercite de Chiang Mai, Rapporteur
	Prof. Santichai Wicha
	Univercite de Chiang Mai, Examinateur
	Chapter 1
	Introduction
	1.1 Mobile Trip Planning Recommendation system
	1.1.1 Recommendation system functionality
	1.1.2 Existing recommendation systems for tour planning
	1.1.3 Tourist Tour Planning Problem

	1.2 Motivation
	1.2.1 Limitation of existing approaches

	1.3 Thesis objectives
	1.4 Thesis outline

	Chapter 2
	Background and State- of the -Art
	2
	2.1 The Orienteering Problem
	2.1.1 Mathematical Formulation
	2.1.2 Exact solution methods for the Orienteering Problem
	2.1.3 Heuristic and meta-heuristic methods for the Orienteering Problem

	2.2 Team Orienteering Problem
	2.2.1 Mathematical Formulation
	2.2.2 Exact solution methods for the Team Orienteering Problem
	2.2.3 Heuristic and meta-heuristic methods for the Team Orienteering Problem

	2.3 Team Orienteering Problem with Time Windows
	2.3.1 Mathematical Formulation
	2.3.2 Heuristic and meta-heuristic methods for the (Team) Orienteering Problem with Time Windows

	2.4 Summary

	Chapter 3
	Problem statement
	3.1 Time Dependency for tour planning problem
	3.1.1 Time Dependent Team Orienteering Problem with Time Windows
	3.1.2 Mathematical Formulation of the TDTOPTW
	3.1.3 Heuristic and meta-heuristic methods for the Time Dependent Team Orienteering Problem with Time Windows

	3.2 Multi-Constraint Team Orienteering Problem with Time Windows
	3.2.1        Mathematical Formulation
	3.2.2 Heuristic and meta-heuristic methods for the Multi Constraint Team Orienteering Problem with Time Windows
	3.2.3 Iterated Local Search Method for the MCTOPTW
	3.2.4 Tabu Search approach for the MCTOPTW


	3.3 Integration of public transportation constraint
	3.3.1 Integrating public transportation into the MCTOPTW
	3.3.2 Modeling the new TDMCTOPTW problem

	3.4 Summary

	Chapter 4
	Technique and Methodology
	4.1 Local Search Heuristic
	4.1.1 Insertion of neighborhood
	4.1.2 Wait and Maxshift
	The definition of the Waitid parameter is waiting time in case the arrival time at point Aid takes place before the time window in tour d. The service of attraction points can only start when the time window opens, see equation 4.1. Obviously, Waitid ...

	4.1.3 Shift and Ratio

	4.2 Iterated Local Search Meta-heuristic
	4.2.1 Shake phase

	4.3 The TDMCTOPTW Algorithm
	4.3.1 TDMCTOPTW- main concept
	4.3.2 Example scenario
	Walking or Taking bus


	4.4 Summary

	Chapter 5
	Experimental Validation and Prototype Implementation
	5.1 Experiment Setup
	5.1.1 Satisfaction score estimation
	5.1.2 Data collection procedure
	5.1.3 Survey result

	5.2 Test Set
	5.2.1 Computational result

	5.3 Implementation of the UB TOUR PLANNER
	5.3.1 System Architecture
	5.3.2 Database Input and User Input
	5.3.3 User Interface

	5.4 Summary

	Chapter 6
	Conclusion
	Appendix A
	A.1 Benchmark test set for the Multi Constraint Team Orienteering Problem with Time Windows

	Appendix B
	B.1 Sample of Questionnaire
	B.2 Location of the bus stops in UB
	B.3 The map of overlapping bus lines in UB
	Appendix C. Listing of the TDMCTOPTW Algorithm on C++

	Bibliography

