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Abstract

Our research explores the intersection of academic, industrial and standardization

spheres to enable secure and energy-efficient Internet of Things. We study the

performance of cryptographic primitives on commodity hardware and observe that

hardware accelerators reduce execution times by as much as two orders of magni-

tude. Cryptographic overhead is, however, only one of the factors that influence the

overall performance in the networking context. To understand the energy – security

tradeoffs, we evaluate the effect of link-layer security features on the performance of

Wireless Sensor Networks. We show that for practical applications and implemen-

tations, link-layer security features introduce a degradation on the order of a couple

of percent, that is often acceptable even for the most energy-constrained systems,

such as those based on harvesting.

Because link-layer security puts trust on each node on the communication path

consisted of multiple, potentially compromised devices, we protect the informa-

tion flows by end-to-end security mechanisms. We therefore consider Datagram

Transport Layer Security (DTLS) protocol, the Internet standard for end-to-end

security in the Internet of Things and contribute to the debate in both the stan-

dardization and research communities on the applicability of DTLS to constrained

environments. We provide a thorough performance evaluation of DTLS in different

duty-cycled networks through real-world experimentation, emulation and analysis.

Our results demonstrate surprisingly poor performance of DTLS in networks where

energy efficiency is paramount. Because a DTLS client and a server exchange many

signaling packets, the DTLS handshake takes between a handful of seconds and

several tens of seconds, with similar results for different duty cycling protocols.

But apart from its performance issues, DTLS was designed for point-to-point

communication dominant in the traditional Internet. The novel Internet of Things

standard, Constrained Application Protocol (CoAP) was tailored for constrained

devices by facilitating asynchronous application traffic, group communication and

absolute need for caching. The security architecture based on DTLS is, however,

not able to keep up and advanced features of CoAP simply become futile when

used in conjunction with DTLS. We propose an architecture that leverages the

security concepts both from content-centric and traditional connection-oriented ap-

proaches. We rely on secure channels established by means of DTLS for key ex-

change, but we get rid of the notion of “state” among communicating entities by

leveraging the concept of object security. We provide a mechanism to protect from

replay attacks by coupling the capability-based access control with network com-

munication and CoAP header. Our Object Security Architecture for the Internet

of Things (OSCAR) intrinsically supports caching and group communication, and

does not affect the radio duty cycling operation of constrained devices. Concepts

from OSCAR have already found their way towards the Internet standards and are

widely discussed as potential solutions for standardization.

Keywords: Internet of Things, Wireless Sensor Networks, network perfor-

mance, object security, security architecture, energy efficiency.
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Résumé

Nos recherches se situent à l’intersection des sphères académiques et industrielles et

des organismes de standardisation pour permettre la mise en place d’un Internet des

objets (IoT) sécurisé et efficace. En premier lieu, nous constatons que l’accélération

matérielle des algorithmes de cryptographie est nécessaire pour les équipements for-

mant l’IoT car elle permet une réduction de deux ordres de grandeur des durées de

calcul. Le surcoût des opérations cryptographiques n’est cependant qu’un des fac-

teurs qui gouverne la performance globale dans le contexte des systèmes en réseau.

Nous montrons à travers l’implementation d’applications pratiques que les disposi-

tifs de sécurité de la couche liaison de données n’augmentent que de quelques pour

cents la dépense énergétique totale. Ceci est acceptable, même pour les systèmes

les plus contraints, comme ceux utilisant la recuperation d’énergie ambiante.

La sécurité de la couche liaison de données contraint de faire confiance à chacun

des noeuds du chemin de communication comprenant potentiellement des éléments

malveillants. Nous devons donc protéger le flux de données par un mécanisme de

bout en bout. Nous étudions le protocole DTLS, standard pour la sécurité de l’IoT.

Nous contribuons aux discussions sur l’intérêt de DTLS dans les environnements

contraints, à la fois dans les organismes de standardisation et de recherche. Nous

évaluons DTLS de manière étendue avec différents réseaux à rapport cyclique ou

duty cycle, au travers d’expérimentations, d’émulations et d’analyses. De manière

surprenante, nos résultats démontrent le coût prohibitif de DTLS dans ces réseaux

où l’efficacité énergétique est primordiale. Comme un client et un serveur DTLS

échangent beaucoup de paquets de signalisation, la connection DTLS prends entre

quelques secondes et quelques dizaines de secondes, dans chacun des protocoles à

rapport cyclique étudié.

DTLS a été conçu pour les communications de bout en bout dans l’Internet clas-

sique, contrairement au nouveau standard de l’IoT, le protocol CoAP qui est destiné

à des machines contraintes, facilite le traffic asynchrone et les communications de

groupe et autorise le stockage intermédiaire. Donc, en plus du problème de perfor-

mance, l’architecture de sécurité basée sur DTLS n’est pas capable de répondre aux

contraintes de l’IoT et CoAP devient inutilisable. Nous proposons une architec-

ture qui s’appuie à la fois sur une approche centrée sur le contenu et sur la notion

classique de connection. L’échange des clefs est fait à travers des canaux sécurisés

établis par DTLS, mais la notion d’états entre les entités de communication est

supprimée grâce au concept d’objets sécurisés. Le mécanisme proposé résiste aux

attaques par rejeu en regroupant les capacités de contrôle d’accès avec les en-têtes

de communication CoAP. Notre architecture à objets sécurisés (OSCAR), sup-

porte intrinsèquement les communications de groupe et le stockage intermédiaire,

sans perturber le fonctionnement à rapport cyclique de la radio des équipements

contraints. Les idées d’OSCAR sont considerées par les groupes de standardisation

de l’Internet en vue d’être intégrées dans les standards à venir.

Mots-clés : Internet des objets, réseaux de capteurs sans fil, performance du

réseau, objets sécurisés, architecture de sécurité, efficacité énergétique.
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[c8] Malǐsa Vučinić, Gabriele Romaniello, Laurene Guelorget, Bernard Touranch-

eau, Franck Rousseau, Olivier Alphand, Andrzej Duda, and Laurent Damon.

Topology construction in RPL networks over beacon-enabled 802.15.4. In

Computers and Communication (ISCC), 2014 IEEE Symposium on, pages

1–7, June 2014.

Standardization
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Chapter 1

Introduction

Our civilization has been irreversibly affected by the advent of the Internet. En-

abled by the global connectivity, the unprecedented means for knowledge sharing

has changed how we interact with the surroundings. Computing platforms have per-

mitted to us, humans, to engage in this global network of information and benefit

from knowledge, accumulated over millenniums of human history.

But we are witnessing a new era. An era where the information is no longer

required to be produced by humans. The technology is providing means to extend

civilization’s nervous system, the Internet, to our environment. We have become

able to coordinate our actions on local, national or global level, according to the

real-time inputs from the physical surroundings.

For the first time, we are able to make decisions grounded in the environmental

feedback. We expect our technology to play a crucial role towards the sustainable

planet. Today, because there are already 15 billion devices connected in 2015 [182]

and we expect an exponential growth in the future.

Billions of devices that sense and actuate on the environment form the Internet

of Things (IoT). These devices serve very different purposes, ranging from daily

rechargeable smart watches, mains-powered electricity meters in our house, to wire-

less sensors and actuators monitoring the production of a power plant. Some

can talk directly to our smartphones while others form Wireless Sensor Networks

(WSNs), an infrastructure of interconnected devices that can sense and actuate on

the environment. In this manuscript, we consider the Internet of Things formed of

Internet-integrated Wireless Sensor Networks, whether the integration applies to a

device, or the data it produces.

1.1 Enabling Technologies

Like many others, technologies behind Wireless Sensor Networks were first envi-

sioned for military applications. All the way back in 1967 [115], Remote Battlefield

Sensor System (REMBASS) was envisioned to detect battlefield activities in real-

time and transmit the information towards the control center, through various radio

repeaters.

The omnipresent wave of interest in WSN and IoT technology was triggered by

the Smart Dust project [122] proposed in 1997 [115] and led by Prof. Kris Pister at

the University of California, Berkeley, where the author had the privilege of carrying

out part of the research leading to this manuscript. Smart Dust aimed at designing
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a cubic millimeter device with a sensor, power supply, analog circuitry, bidirectional

optical communication and a programmable microprocessor [120].

The Smart Dust project attracted the interest of Computer Science community

and many proposals followed, albeit leveraging macro motes and commercial off-

the-shelf components. Nevertheless, the commercial interest was recognized soon

and various companies emerged. These companies had in one form or another

proprietary hardware and communication stacks, and it was quickly recognized

that having a multitude of proprietary systems connected to the Internet impedes

the much hoped-for scalability and explosion of the Internet of Things [115].

Standards followed. In 2003, IEEE 802.15.4 standard was published and it

specified the requirements of a low-power radio transceiver and a corresponding

medium access protocol. IEEE 802.15.4 served as the base of early wireless sensing

and automation solutions, like ZigBee 1.0 and ZigBee 2006 [185]. Even today, the

IEEE 802.15.4 standard is the main solution for the interconnection of low-power

devices with sensing capabilities into a Wireless Sensor Network. The integration

of such Wireless Sensor Networks with the Internet has been handled by Internet

Engineering Task Force (IETF), since 2007 when first IoT standards emerged.

1.2 The Current Status

Today, it is a daunting task to precisely identify the IoT use cases. Smart wearables

are often attributed as IoT products but due to their daily rechargeable batteries,

they pose technical challenges similar to smartphones, which we do not consider

in this thesis. Arguably the first commercial application of WSN technologies was

the industrial automation, where real-time sensor readings and remote actuation

facilitate the optimization of the production process. There are reports of at least

9200 such proprietary WSNs, clocking over 987 million operating hours and deployed

on all continents [115]. Remote metering is also a good example, and electricity,

water or gas providers are already providing services to users to monitor their

consumption. This happens at granularity levels much finer than once a month or

even a year, as it had been common once, thanks to smart meters installed at users’

premises. Home automation solutions have also been around for years, but the factor

of interoperability is much more a determining factor of success with a common user

than with a commercial enterprise in charge of an industrial plant or a network of

water meters. Certainly, householders rarely want to commit to the vendor of

“smart” lightbulbs to also be in control of every other smart appliance. Smart city

solutions controlling street lightning, monitoring traffic, pollution levels or available

parkings are also increasingly deployed in cities like Grenoble, Barcelona, Santander,

Moscow, Tokyo, ...

But we are waiting for their convergence, enabled by interoperability. Conver-

gence that will permit smart electric grids to operate on inputs from users’ house-

holds, smart cities to operate on inputs from circulating vehicles, and users, us, to

leverage the available information and improve our daily lives. The improvement
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to our lives can be regarded as a more efficient commute or a fresher air that we

breath.

1.3 The Dark Side

As does any technology, Internet of Things opens up new opportunities that can

be leveraged for the greater good, or the individual benefit. Oftentimes, the latter

leads to malicious actions that serve as the base motivation for the entire technical

discipline of computer security.

In the Internet of Things context, every sensor reading, no matter how benign

it may appear, is an input to a decision process. A temperature reading represents

much more than a pure physical value. It is a contextual information that may be

acted upon in various scenarios, from nuclear power plants to smart coffee machines.

Unauthorized modification of a couple of bytes of data is equivalent to someone

breaking in your house or the nearby nuclear power plant, through the unlocked

coffee machine.

Then, there is always the Orwellian path of surveillance. The path we seem

to be headed to, for quite some time now, with or without the Internet of Things.

But we believe that the Internet of Things can actually be a catalyst for change.

We might finally understand that our data is, well, ours. And because Internet of

Things is all about the data, we may start using solutions that allow us to protect

the data. Not only to “securely” give the data away.

Our research explores the protection mechanisms and their technical costs for

keeping the dark side consequences at minimal. Where existing solutions prioritize

the protection of means, that is the communication, rather than the protection of

content, we pursue the path of data-centric paradigms to provide finer control over

the user data.

1.4 Technical Challenges

The scale of the Internet of Things poses engineering challenges at many levels. The

basic requirement is that of low-cost, because mass market adoption is dependent

on product affordability. Since we consider hundreds of devices per user, the unit-

cost must be kept low which is reflected in the available hardware components.

Practically, this means much less computational power than what we are used to

on personal computers and smartphones, with system clocks on the order of a

megahertz, and very limited memory storage, tens of kilobytes for volatile, and

hundreds of kilobytes for non-volatile memory.

But the economic cost is not the only factor driving device design. Our devices

are typically powered by a single battery, throughout their lifetime. Since the

market requires the lifetime to be on the order of several years, we use both hardware

and software techniques to minimize average current draws. Available hardware

provides fundamental limits while software techniques allow us to maximize the
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lifetime while providing the desired functionality. Achieving energy-efficiency is not

only important from the point of view of a single device. Hundred billions of devices

pose global challenges on the availability of raw energy needed to power them or

raw materials needed to build enough batteries. Because we do not want the cost

of rolling out the Internet of Things technology to overweight its benefits for the

environment, we strongly believe that devices based on energy harvesting should be

the future. Security and networking mechanisms that we explore in this manuscript

are inspired by such a device – the GreenNet mote – and aim at enabling a

sustainable, interoperable and secure Internet of Things.

1.5 Manuscript and Contribution Overview

Contributions of this manuscript lie on the intersection of academic, standardization

and industrial spheres of security and networking. We evaluate standards-based so-

lutions in real-world, energy-constrained scenarios and draw conclusions on their

applicability and potential issues. Once we identify critical aspects, either from

performance or capability point of view, we propose novel mechanisms and archi-

tectures, rooted in the problematics of achieving 1) energy-efficiency for prolonging

device lifetime and local sustainability; 2) interoperability to enable convergence of

different technologies.

In Part I, we provide the background on the internals of a single device (Chap-

ter 2) and communication standards that we consider in this thesis (Chapter 3). In

Chapter 4, we continue by overviewing the basic building blocks of security solu-

tions – the cryptographic primitives – and focus on algorithms typically used in the

context of the Internet of Things. We illustrate the performance of these primitives

in the context of a single device by discussing the first, not yet published, contribu-

tion of this manuscript: An application programming interface that leverages the

hardware-software implementation of symmetric cryptographic primitives, together

with performance benchmarks for three different types of IoT devices.

Part II considers the security of Internet-integrated Wireless Sensor Networks.

We discuss the typical threats and state the art in securing the considered com-

munication stack in Chapter 5. We first evaluate security standards in charge of

protecting direct radio communication between two devices [c3] [c6] in Chapter 6.

We then proceed to the evaluation [c5] of the standard end-to-end security mecha-

nism in Chapter 7, where we identify both performance and capability issues. We

tackle these problems in Chapter 8 by proposing a system-level architecture [c4] [c1]

for protecting the IoT data.

Part III and Chapter 9 summarize the results and discuss future perspectives.

In order not to distract the reader from security-related material of this manuscript,

we present in the Appendix two contributions [c8] [c7] related to energy-efficient

construction and maintenance of the network. The content of the Appendix is

independent of Part II and can be followed after Part I.
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Chapter 2

Constrained Hardware

This chapter describes the internals of an IoT device. We provide some basic termi-

nology in Section 2.1. In Section 2.2, we give an overview of typical IoT hardware

by discussing the blocks that make an IoT device smart. We introduce the Green-

Net project of STMicroelectronics (ST) and the internal structure of GreenNet

boards in Section 2.3. We conclude the chapter in Section 2.4.

2.1 Terminology

We interchangeably use terms constrained device, device, smart object, thing, board,

and platform to denote a Printed Circuit Board (PCB) that contains different elec-

tronic components, e.g. Integrated Circuit (IC), energy supply, and is capable to

participate in the IoT. Once such a device becomes part of a network, it is referred

to as a mote or simply a node.

2.2 Building Blocks of a Thing

Analyzing, sensing and communicating are the three“cognitive”functions that make

a device smart. They are reflected in hardware that we are witnessing today.

Microcontroller Unit

Microcontroller Unit (MCU) is the brain of a device. In the most fundamental

setting, it integrates a processor, program memory (e.g. flash) and data memory

(e.g. RAM).

Digital logic within the MCU is driven by clock ticks generated by a crystal

oscillator that beats at a precise frequency. As MCU may draw a substantial amount

of current when in normal processing (i.e. active mode), typical design allows several

modes that a user can leverage. These sleep modes differ in whether data memory

is retained or not, or whether internal peripherals are still active while the rest of

the MCU is asleep.

Requirements on low-power drive memory sizes and processor capabilities. Larger

memory sizes imply larger cell and transistor count which directly influences leakage

currents. Consequently, MCU sleep modes that retain data memory have higher

power consumption in respect to those where data memory is not retained. We list

some typical examples and their characteristics in Table 2.1.
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Table 2.1: Examples of commercially available MCUs and their characteristics.

Part Number Instruction

Size [bits]

RAM

[kB]

CPU

on

[mA/

MHz]

CPU

sleep

[µA]

STM32L151 [148] 32 32 0.185 0.44

LTC5800-IPM SoC [94] 32 72 0.176 0.8

CC2538 SoC [157] 32 32 0.438 0.4

MSP430F1x [158] 16 10 1.8 5.1

ATmega128L [8] 8 4 1.25 <15

Once MCU is asleep, it can be woken up by an interrupt. The interrupt may be

generated either by 1) an external chip or 2) by MCU itself. As an example of (1),

MCU may be woken up by an interrupt from an accelerometer detecting unusual

acceleration pattern and thus signaling an alarm, or a pass to zero and thus signaling

a free fall. Case (2) may be due to the expiry of a hardware timer internal to the

MCU. Timer is a simple counter that increments with each clock tick. When this

counter reaches a value predefined in the corresponding comparator register, an

interrupt is raised. By configuring the comparator register, the programmer can

decide how long the MCU should sleep.

In MCU sleep modes, memory leakage currents and the active crystal oscillator

are the main contributors to the overall consumption. Low consumption in sleep

mode is of utmost importance as IoT devices spend more than 99.99% of time

sleeping.

Sensors and Actuators

As humans, we use our senses to interact with the environment. IoT devices reach

out into the physical world by integrating hardware sensors and actuators that can

either be queried by MCU for a physical reading or instructed to change a physi-

cal quantity. Advances in Microelectromechanical Sensors (MEMS) manufacturing

technology have reduced their cost and size and effectively enabled IoT [174]. Ex-

amples of commonly found sensors include: temperature, humidity, light, pressure,

carbon monoxide, carbon dioxide, accelerometer, gyroscope and on higher-end de-

vices a Global Positioning System (GPS) receiver.

Sensor design leverages different physical phenomena and material properties

in order to provide an easily measurable output such as voltage or current. For

instance, one can design a temperature sensor by using a temperature-sensitive

resistor and measuring the output voltage over constant input current. Light sensor

can be a simple p-n junction, i.e. a diode, whose bandgap energy corresponds to

the visible light spectrum and the absorbed photons cause current flow. As this
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current is related to the incident light, it is possible to estimate the light intensity

the sensor is exposed to. Depending on their proper hardware design, sensor circuits

can provide an analog or a digital output. In the analog case, output pin of the

sensor is connected to an Analog to Digital Converter (ADC) that MCU can read

and provide the programmer with a digital value. In the digital case, the sensor

circuitry directly provides a digital value as sensor output.

IoT devices can also be used to control the environment. By managing the

output voltage of a relay1, one can for example dim or brighten a “smart” light

bulb, lock or unlock a door, control the aperture of different valves.

Radio Transceiver

Human civilization as a whole owes its progress to a seemingly simple evolutive

capability – transfer of knowledge from one entity to the other, current generation

to the next. Sensing and local processing of a physical quantity do not allow us to

exploit the information in a wider context. In the IoT world, knowledge is trans-

ferred and diffused through a communication interface. Because wired interfaces

are simply too expensive for billions of devices and often not practical2 we use a

radio transceiver.

The basic role of a radio transceiver is on one hand to convert digital signal

into an electromagnetic wave that can propagate in free space. On the other hand,

it needs to be able to interpret the received signal into a meaningful information.

When it comes to electromagnetic propagation, fundamental physics drives power

loss between a transmitter and a receiver.

Before transmitter can emit the signal in the air, digital stream of data called

radio frame, needs to be encoded and converted to an analog signal using a modula-

tion scheme. Power Amplifier (PA) amplifies the analog signal before it is radiated

by an antenna and extends the range where the signal can be received. Output

power of PA can be configured by the programmer and for low power chips it typ-

ically ranges from -50dBm to 10dBm, with most commonly used setting of 0dBm

(1mW).

On the receiver side, if the signal picked up by the antenna is weaker than the

theoretical minimum, it is impossible to differentiate signal from noise and obtain a

meaningful information. For example, with 2MHz wide channels and coding gains of

IEEE 802.15.4 standard, theoretical minimum is approximately −113.2dBm [87].

That means that the theoretically weakest received signal must be greater than

−113.2dBm. Design techniques of radio transceivers influence the weakest signal

that can be successfully received by a certain radio. That measure is called sen-

sitivity and for commercially available radios with 2MHz wide channels is around

-90dBm [115]. Receiver has no means of detecting a transmission other than to

continuously amplify the input signal from the antenna using Low Noise Ampli-

1Relay is a simple electronic circuit that switches high voltage or current using a low power

command circuit, such as the output pin of a MCU.
2For example in rotating structures.
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Table 2.2: Examples of IEEE 802.15.4 radio transceivers and their consumption

characteristics.

Part Number TX

0dBm

[mA]

RX

[mA]

Testchip RF200 [c2] 4.9 4.5

LTC5800-IPM SoC [94] 5.4 4.5

AT86RF231 [7] 11.6 10.3

CC2538 SoC [157] 24 20

CC2520 [156] 25.8 18.5

CC2420 [19] 19.5 21.8

MPR2400 [101] 17.4 19.7

fier (LNA). Once it receives a predefined sequence of bits, known as preamble,

digital circuitry is triggered and the following bytes corresponding to the radio

frame are stored in a local buffer. If the receiver is turned on, LNA amplifies the

received signal even when there is no transmission on the air at all. This is called

idle listening and it is a power-hungry operation that must be minimized to pro-

long device lifetime. Minimization of idle listening is the main function of radio

duty-cycling protocols discussed in Chapter 6.

Many radio technologies exist, like IEEE 802.15.4, Bluetooth Low Energy (BTLE),

IEEE 802.11, LoRA, and they differ in modulation schemes used, data rates, frame

sizes, operating frequencies. We give examples of IEEE 802.15.4 radio transceiver

hardware in Table 2.2. IEEE 802.15.4 specifies both the physical layer (modu-

lation, data rate, frequency) and the Medium Access Control (MAC) protocol

that mediates access to the common wireless medium of multiple nodes present

in an IEEE 802.15.4 network. The MAC protocol of IEEE 802.15.4 standard

was amended in 2012 by IEEE 802.15.4e [63] to increase reliability and robustness

of wireless communication by supporting two channel hopping mechanisms: Time-

Slotted Channel Hopping (TSCH) and Deterministic and Synchronous Multichannel

Extension (DSME).

If we compare current draw values in Table 2.2 with those in Table 2.1, we

can observe an important characteristics of IoT devices: energy consumption is

dominated by radio usage. This is the key concept to keep in mind for any IoT

protocol design, including security and the leitmotif of this thesis – it is beneficial

to trade off radio exchanges for local computation.

Energy Source

Smart devices are used in various application contexts and it is typically the use

case that determines the main source of energy. The predominant scenario is that of
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a battery, but the IoT scale makes the daily battery recharge unfeasible, as we are

used to with smartphones or laptop computers. For that reason, we commonly find

devices powered by a pair of non-rechargeable AA batteries, each typically carrying

a capacity of around 2200mAh. How soon the batteries will be depleted depends

on the (average) current draw of the whole board, and we could see that radio

transmissions and receptions play the dominant role. This introduces the notion of

device lifetime, since the economical costs of battery replacement on hundreds or

thousands of devices are often prohibitive.

Some systems employ energy scavenging techniques, like solar cells, piezoelectric

elements, temperature gradients. We show some typical figures on achievable power

densities in Table 2.3.

Table 2.3: Typical power density of different harvesting approaches [133].

Harvester Power Density

Solar Cell 15 mW/cm2

Piezoelectric 0.330 mW/cm3

Vibration 0.115 mW/cm3

Thermoelectric 0.040 mW/cm3

The harvested energy can either be used only when available, or accumulated

in the energy buffer – a rechargeable battery or a super-capacitor. Systems without

any storage are small, unidirectional devices such as piezoelectric switches or im-

practical systems requiring large solar panels [133]. Medium term research projects

aim at designing such systems that are feasible, practical and miniature in size by

integrating all the necessary components on a single chip [121]. Today, we most

commonly find energy-harvested systems that employ the energy buffer, whose ca-

pacity is dependent on the envisioned application.

Finally, some use cases allow IoT devices to be mains-powered, i.e. attached to

the electric grid. Some examples are smart electricity meters, or smart light bulbs.

Technically this requires the device packaging to integrate an AC-DC converter.

Although in such cases energy is unlimited locally, we should always keep into

account the IoT scale and the requirements that billions of such devices put on

global energy production.

In conclusion, the amount of available energy per device in all cases stays very

low which mandates the development of very efficient hardware and software tech-

niques.

2.3 The GreenNet project

This thesis is part of the GreenNet project at STMicroelectronics. GreenNet

project was launched in 2011 with the goal of designing and manufacturing a self-

powered IoT device. The selected energy harvester for GreenNet boards was a
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Figure 2.1: GreenNet board.

Photovoltaic (PV) system, i.e. solar panel, optimized for indoor energy harvesting.

GreenNet targets IoT applications like home and building automation. We show

in Fig. 2.1 a photograph of a GreenNet board.

Main focus of GreenNet design was low power. Boards were designed to

operate in extremely low light conditions, as low as 150 lux. To put this number

in context, light intensity just bellow a typical fluorescent lamp commonly found

in office space is about 8000 lux [133]. At a distance less than 1.5 meters from

the lamp, light intensity decreases to 600 lux. On the surface of an office desk, 2

meters away from the lamp, one can obtain around 300 lux, while surfaces bellow

the desk get around 150 lux. The solar panel used on GreenNet boards (50 ×
48mm), in these conditions can harvest from 1mA to 0.020mA of current [133]. In

order for GreenNet boards to operate sustainably, internal hardware components

must have extremely low power consumption. We depict the layout of GreenNet

boards in Fig. 2.2.

Heart of GreenNet boards is STM32L1 [148] microcontroller based on ARM

Cortex-M3 core that embeds many peripherals such as ADC, Digital to Analog

Converter (DAC), several timers and comparators, and also the crypto acceleration

core. It controls the external peripherals such as various sensors and Light Emitting

Diodes (LEDs) (see Fig. 2.2). Prototype GreenNet boards also integrate an ad-

ditional STM32F1 MCU whose sole purpose is flashing and debugging of STM32L1

without the need for an external debugger.

GreenNet team designed a Testchip RF200 radio transceiver, compatible with

IEEE 802.15.4 standard and with best-in-class power consumption (see Table 2.2).

Low power characteristics of Testchip RF200 are crucial for meeting stringent energy

requirements of GreenNet.
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Figure 2.2: GreenNet board layout.

A small coin-cell Lithium-Ion rechargeable battery provides energy supply to the

whole board. Capacity of this battery is only 25mAh but it provides a healthy com-

promise among a number of factors such as number of recharges, leakage, maximum

energy capacity loss if the battery is repeatedly recharged after a partial discharge.

For comparison, one AA battery holds 2200mAh.

GreenNet team also designed a Power Management Unit (PMU) that recharges

the battery either from the solar panel or by leveraging the Universal Serial Bus

(USB) connection during development [159, 160].

The Near Field Communication (NFC) transceiver available on GreenNet

boards is used for device bootstrapping. For example, initial security keying mate-

rial and network parameters can be communicated to the device in order to facilitate

the joining of an IEEE 802.15.4 network.

2.4 Conclusion

We could notice that IoT devices pose interesting technical challenges to IoT system

designers. Their processing capabilities are much lower than what we are used to

with traditional computing platforms. In addition, both data and program memory

are limited in order to keep the per-unit cost low. Because majority of devices are

energy constrained, they need to sleep most of the time to preserve energy. Energy

spent while devices are sleeping is due to the sleep mode leakages. These leakages

are directly related to the size of data memory that needs to be retained while the

device is sleeping. Therefore, future increases in memory for IoT microcontrollers

are dependent on the advances related to leakage currents.

When the device is not sleeping, we could notice that radio receptions or trans-

missions dominate the energy consumption over local processing. Therefore, system
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design and network (security) protocols should prioritize local computations over

radio communication.

In the following chapter, we describe the communication stack and different pro-

tocols that allow IoT devices such as GreenNet boards to form self-sustainable net-

works and facilitate their integration with IoT. For a detailed overview of Green-

Net optimizations related to energy harvesting, the reader should refer to Varga et

al. [c2].



Chapter 3

Standards-based Protocol Stack

for Interoperatiblity

Efficient hardware is a prerequisite for low-power boards, such as GreenNet, to

participate in the Internet of Things (IoT). Networking protocols optimized for

low-power operation [133] [c2] complement bare metal and allow the formation of

networks that can meet application requirements.

In this chapter, we overview the communication stack that facilitates the inte-

gration of Wireless Sensor Networks (WSNs) with the IoT. This communication

stack stems from the IEEE 802.15.4 radio transceiver and builds upwards using

protocols standardized by Internet Engineering Task Force (IETF).

The chapter is organized as follows. In Section 3.1, we review the traditional

abstraction layers of the Internet and discuss the repercussions of the separation-of-

concerns concept on IoT system design. In Sections 3.2, 3.3, 3.4 and 3.5, we proceed

by overviewing bottom-up the existing IoT solutions at each layer of the protocol

stack. In Section 3.6, we brief the implementation choices of the GreenNet project.

We conclude the chapter in Section 3.7.

3.1 Independent Layers and a Limited Energy Supply

Since the dawn of the Internet, we have dealt with complexity of computer networks

through abstraction layers. Each layer has a specific service that it offers to the

layer above, and builds upon the services provided by the layer directly below.

Such a separation allows clean design of networking protocols and products that

can interoperate at different layers of the protocol stack. We follow the traditional

Internet protocol suite that consists of 5 layers: physical, link, network, transport

and application layers.

Physical layer. The fundamental abstraction is the physical layer that is in

charge of transmitting bits over the wire, air or any other transmission medium.

Physical-layer protocols specify how signaling between the transceiver and receiver

takes place and how upper-layer data units are encapsulated for physical transmis-

sion. For instance, IEEE 802.15.4 PHY specifies the format of the preamble used

for synchronizing the two transceivers and that the first “data” byte corresponds to

the length of the link-layer Protocol Data Unit (PDU). Physical-layer specifications

detail the technical aspects of the transceiver, such as modulation rates, frequency

bands, expected physical-layer timings and similar.
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Link layer. Physical transmission and reception are services offered to the

link layer which groups individual information bits into frames, the atomic unit

of transmission over a given link technology. Link layer is in charge of “moving”

frames from one node to the other. For wireless technologies, like IEEE 802.15.4,

link layer typically provides integrity protection and reliability. Integrity protection

detects any errors that may have occurred during reception by using error detection

techniques, such as Cyclic Redundancy Check (CRC). Once the receiver is certain

that the received frame does not contain any errors, for reliability, it can signal it

to the transmitter by sending an Acknowledgment (ACK) frame. Because wireless

medium is broadcast in nature, a Medium Access Control (MAC) protocol needs to

govern communication among multiple nodes and avoid the situations when multiple

nodes speak at the same time – collisions. Collisions are costly as they incapacitate

the receiver from decoding the frame correctly. Collisions lead to retransmissions

which increase delays and energy consumption. Another important role of the link

layer is to preserve energy – we saw in Chapter 2 how expensive it is to keep the radio

transceiver on and perform idle listening. Link-layer protocols in energy-constrained

environments switch the radio transceiver off as much as possible – this operation

is called Radio Duty-Cycling (RDC). When a transmitter decides to send a frame

over the air, the destination node needs to be awake and listening. Otherwise, the

intended receiver will not have received the frame which will cause the transmitter

to retransmit and waste energy. Concepts of RDC are tightly coupled with MAC

and considering one without the other often leads to severely degraded performance.

Network layer. Since the link layer handles communication of two nodes

directly connected to a given physical link, network layer abstracts various link

technologies and allows interconnection of heterogenous networks. Network layer

provides the abstraction of an endpoint – a network node reachable potentially

multiple link-layer hops away. Each of the hops on this path can be accessible

over a different link-layer technology, although we will mostly consider scenarios

where packets are forwarded multiple hops over IEEE 802.15.4. There are two

fundamental tasks of the network layer: addressing and routing. Addressing, as

each host needs to be (uniquely) addressable in the global network and routing

because packets need to find their route from the sender to the destination node, over

multiple hops. Internet Protocol (IP) is the glue that binds the Internet together

[84] and inevitably makes part of the IoT.

Transport layer. Because every router on the path examines network-layer

headers, network layer and IP do not provide any guarantees on reliable or orderly

delivery of packets exchanged between two endpoints. Although different link-layer

protocols provide reliability, this does not imply reliability between two endpoints,

multiple hops away, as packets can be dropped locally, for instance due to lim-

ited buffer sizes. Another important service that is offered by the transport layer

is multiplexing of different applications that can run on a host by port number

signaling.

Application layer. The layered approach reduces the complexity of design and

analysis of different problems that arise while interconnecting heterogeneous sys-
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Figure 3.1: Protocol suites typically used in (a) traditional Internet, and in (b) IP-

based Wireless Sensor Networks.

tems. Moreover, the layered approach allows the application developer to be unfa-

miliar with the problematics at different layers. The developer uses the Application

Programming Interface (API) to exchange information between its applications run-

ning on different hosts and does not need to worry about routing issues, wireless

channel characteristics and similar. Application-layer protocol is in charge of trans-

ferring information needed by the actual application – be it a web page, or a tem-

perature reading from a smart house. The separation of concerns provided by the

layered approach has indeed enabled a wide range of developers to contribute to

the interconnected world, as we know it today.

In Fig. 3.1 we depict the specific protocols as typically used in the Internet

(Web) and the one considered in this thesis for the integration of WSNs with IoT.

Before we overview different choices, it is important to stress an important differ-

ence between traditional Internet hosts and our constrained devices – energy supply.

Traditional Internet hosts are either mains-powered or have batteries that are con-

stantly recharged during their use (smart phones, laptops). Constrained devices are

expected to operate on a single battery for years or to be self-sustainable from the

harvested energy. This imposes a strict requirement on any IoT product, that at

times leads to violations of layer purity, as seen in the Internet. Being efficient is

paramount.

Efficiency leads to vertical integration and cross-layer interactions that aim to

optimize the stack as a whole. In practice, this means that the application often

needs to be aware of the underlying RDC schedule or a routing protocol that is

tightly integrated with the link-layer technology. Radio Duty-Cycling is often not

just the duty cycling of the radio. More often, it is the duty cycling of the whole

board, with both Microcontroller Unit (MCU) and radio in sleep mode and all but

most-necessary sensors switched off. There is a single and limited energy supply for

all the layers, after all.
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3.2 IEEE 802.15.4 Physical Layer

We begin our quest up the protocol stack in Fig. 3.1 from the physical layer (PHY).

IEEE 802.15.4 [62] is arguably the most prominent standard in low-power technol-

ogy and the one that was chosen for GreenNet project. IEEE 802.15.4 stan-

dard specifies multiple physical layers that can be used in different parts of the

world, depending on local regulations. Our focus is on the physical layer in the

Industrial, Scientific, Medical (ISM) band at 2.4GHz that guarantees world-wide

use free of any licensing requirements, that is in practice the most widely deployed.

The 2.405GHz - 2.480GHz band is split into 16 frequency channels that are 5MHz

apart. Each channel is only 2MHz wide, with the remaining band used as a guard

against adjacent-channel interference. The bands at 868MHz and 915MHz with

better propagation characteristics are also popular but they are only available in

certain geographical regions and have a single frequency channel available.

IEEE 802.15.4 physical layer at 2.4GHz uses Direct Sequence Spread Spec-

trum (DSSS) technique for robustness: each 4 bits of data are encoded as 32 chips

(physical bits) [115]. This helps recover from errors caused by narrow band inter-

ference. Offset Quadrature Phase-Shift Keying (O-QPSK) modulation is then used

and results in physical rate of 2 Mchips/s and effective data rate of 250 kb/s.

Before the upper-layer information can be exchanged, transmitter starts by send-

ing a preamble, a pre-defined sequence of ones and zeros that allows the receiver to

synchronize. Transmission of the preamble lasts 128µs, and is followed by a Start

of Frame Delimiter (SFD), another pre-defined sequence. SFD signals that the sub-

sequent byte corresponds to the physical-layer payload. First byte of the payload

indicates the length of the encapsulated radio frame. IEEE 802.15.4 specifies that

the maximum length frame, i.e. link-layer Maximum Transmission Unit (MTU),

can be 127 bytes, which is commonly reflected in radio buffers [19].

3.3 Medium Access Control and Radio Duty-Cycling

Where the energy is not an issue, radio can continuously listen to the channel and

wait for a transmission. The problem in such wireless environments is mostly how

to access the common medium and how to maximize the throughput and fairness

among all the nodes in the network. This is typically handled using Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) protocol, as in IEEE 802.11

networks. We will refer to this mode of operation as always on.

In our case, consumption is dominated by radio usage (see Chapter 2) and

particularly idle listening. Duty cycling is therefore a cornerstone technique for

achieving long lifetimes of IoT devices. A typical IoT node with an IEEE 802.15.4

radio will deplete a 2200mAh AA battery in about a week, if the radio is left

on continuously (either receiving or transmitting). State-of-the-art duty cycling

protocols reduce the duty cycle below 1%, thereby extending the device lifetime to

several years. The price of such aggressive duty cycling is an increased network

delay and reduced throughput.
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Figure 3.2: Basic principle of preamble sampling techniques.

RDC techniques are tightly bound to the channel access method. In the follow-

ing, we overview RDC and MAC schemes with the most relevance for this thesis,

that are either a part of IEEE 802.15.4 standard or can leverage its frame format.

3.3.1 Preamble Sampling Techniques

The MAC part of IEEE 802.15.4 standard [62] defines two operating modes. In

the non-beacon mode, all nodes use CSMA-CA for channel access with contention,

which implies that they should be always on to avoid deafness. Fortunately, the re-

search community had taken over and many schemes were proposed to complement

the non-beacon mode of the standard. We focus on preamble sampling techniques,

arguably the most popular method that does not require network-wise synchroniza-

tion.

We depict in Fig. 3.2 the main principles of preamble sampling. The idea

is to precede every transmission with a long preamble. Although this preamble

could be implemented as a physical-layer preamble, it is more often implemented

as a sequence of radio frames with a pre-defined structure, called strobes, which

avoids hardware-level modifications. Receiver periodically wakes up and verifies if

it can detect a strobe on the channel. We refer to the wake-up period as Check

Interval (CI) and a typical value is 125ms. The lower the CI, the more often nodes

check the medium, and the higher their idle radio duty-cycle. For this to work, the

transmitter needs to emit the preamble for at least the CI. If the receiver detects

the preamble, it stays awake to receive the data frame that follows.

Many derivations exist [17, 33, 38, 9, 99] but we only attempt to present gen-

eral principles. X-MAC [17] adds the receiver address in each strobe, so only the

destination node keeps its radio on to receive the data. The duration between two

strobe transmissions is enough for the recipient to send a short ACK frame, letting

the transmitter know that it has woken up and is ready to receive the data frame.

Upon the reception of ACK frame, the transmitter halts sending new strobes and

instead, it transmits the data packet. Another protocol called ContikiMAC [33] op-

erates similarly and transmits the actual data frame multiple times until an ACK

is received.
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Nodes contend for the access to the wireless medium in a traditional manner –

using CSMA/CA. Operation in preamble sampling protocols effectively emulates

the always on mode of operation and presents a clean binding with the upper layer

– RDC protocol does not introduce any dependency on network topology. As such,

mesh networks (peer-to-peer) can be created using routing protocols at the network

layer. Most notably, preamble sampling approaches do not require the nodes in the

network to (re)synchronize their clocks.

There are several inhibitors to the wide adoption of preamble sampling RDC

schemes. They are not standardized and a product adhering to X-MAC would not

interoperate with another scheme. Broadcast transmissions can be prohibitively

expensive for the transmitter because there are no acknowledgment frames and the

solution is to transmit the maximum length preamble (or maximum number of

strobes). Another disadvantage is that all nodes in the network must use the same

CI value, which does not allow energy-wise heterogeneous networks to operate in a

deterministic way. To illustrate, one can imagine a network composed of battery-

operated and energy-harvested nodes. A lower bound on duty-cycle imposed by a

given CI value may be acceptable for battery-operated nodes but not their harvested

counterparts. Moreover, setting CI to a large value to reduce the lower bound of

RDC at the receiver imposes a significant burden on the transmitter. For that rea-

son, most commonly found CI is 125ms, which provides a healthy tradeoff between

the transmitter load and the achievable RDC of the receivers. Finally, depending

on the application requirements, duty cycling is often done for the whole board, not

just the radio. RDC based on preamble sampling would mandate the whole board

to be woken up with a fairly short interval1 when all that application needs is, for

example, one measurement every 4 minutes.

3.3.2 Beacon-enabled IEEE 802.15.4

The beacon-enabled mode of IEEE 802.15.4 aims at saving energy: nodes are syn-

chronized with periodic beacons and only wake up at specific instants to communi-

cate [c2]. Nodes in this mode have two different roles:

• Coordinators: they send beacons to delimit time intervals called superframes.

A beacon invites the devices associated with a given coordinator to send their

frames during the Contention Access Period (CAP).

• Devices: they are leaves in the tree-based topology and communicate only

with their coordinators.

A network node is configured either as a coordinator or a device, or both when

it forwards traffic. Fig. 3.3 presents the superframe structure used in the beacon-

enabled mode. Coordinators transmit beacons every Beacon Interval (BI) while a

1In general, we cannot assume that the radio hardware can wake up on its own to follow the

RDC schedule. This is generally managed by the MCU although the benefits of having a dedicated

hardware module for such a task are evident and present in some commercial products.
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Figure 3.3: 802.15.4 superframe structure. GreenNet nodes only use the Con-

tention Access Period (they do not use the Contention Free Period).

superframe lasts for a Superframe Duration (SD). The intervals depend on the

corresponding Beacon Order (BO) and Superframe Order (SO) parameters:

BI = aBaseSuperFrameDuration ∗ 2BO (3.1)

and

SD = aBaseSuperFrameDuration ∗ 2SO (3.2)

where (0 ≤ SO ≤ BO ≤ 14, i.e. 15.36ms ≤ SD, BI ≤ 4.2 min). Nodes may sleep

during the inactive period of the superframe.

3.3.2.1 Topology in Beacon-Enabled Mode

An IEEE 802.15.4 network in beacon-enabled mode can have a star or cluster-

tree topology. Star topologies at 2.4GHz are often not practical due to the limited

range where nodes can be deployed. In the cluster-tree topology (see Fig. 3.4), the

Personal Area Network (PAN) coordinator is the root of the multi-hop network. It

serves as a data sink and represents the first coordinator in the cluster-tree. Nodes

are unassociated at the beginning and they wait for beacons (passive scanning),

even on several channels, to join the network.

PAN Coordinator

Coordinator

Device

Figure 3.4: Example cluster-tree topology in beacon-enabled IEEE 802.15.4.

When a node receives a beacon from a neighbor, it may associate with it by

exchanging control frames. A coordinator maintains a list of devices and responds

with an association response if it has not reached the maximum limit of associated
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Figure 3.5: Incoming and Outgoing superframe structure in IEEE 802.15.4.

devices. After association, the node may become a coordinator itself: it periodically

sends its beacons to invite other nodes to associate.

Beacons also indicate the initial instant of the Active Period and contain the

list of destination addresses for frames stored at the coordinator. During the Active

Period, a device either retrieves frames by transmitting a data-request frame if

its address was present in the pending destination list or transmits its data frames

to the coordinator. Note that the coordinator never initiates a transmission, but

only replies to solicitations from its devices. Devices have to explicitly request

their frames from a coordinator, which enables switching off their radio and saving

energy without deafness. This also allows devices to sleep extensive periods of time,

as they are not obliged to wake up for every beacon [c2]. For instance, GreenNet

temperature sensor wakes up only once every 4 minutes. To avoid collisions, all

devices use the slotted CSMA/CA method to access the medium during CAP.

Coordinators act as devices with respect to other coordinators when they for-

ward packets to the root of the cluster-tree topology. To support forwarding over

multiple hops, IEEE 802.15.4 defines the Outgoing (maintained by a coordinator

on the path to the root) and the Incoming superframes (maintained by the node

for receiving frames from its devices) (see Fig. 3.5).

Beacon-enabled mode presents several advantages over preamble sampling tech-

niques. It is standardized, and it allows devices with heterogeneous energy require-

ments to form a network.

It does so at the cost of network-wise synchronization by using beacons and by

forcing a specific link-layer topology. The IEEE 802.15.4 standard does not specify

the details of the cluster-tree construction algorithm leaving its implementation

open. ZigBee [185] defines a protocol for cluster-tree construction based on three

constraints: a maximum number of devices, a maximum number of coordinators and

a maximum depth. If considered independently, the link-layer topology “forces” the

routing protocol to use paths that may not be optimal. For instance, if the cluster-

tree is constructed with the goal of minimizing the number of hops to the root,

paths in the network may not be optimal in terms of link quality. For this reason,

in Appendix B we study how the two processes – construction of the cluster-tree

and of the routing paths – can be merged.

Beacon-enabled mode of IEEE 802.15.4 is the principal energy-saving technique

for GreenNet. For more details on the specific mechanisms developed in the scope
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of the GreenNet project, the reader should refer to Varga et al. [c2].

3.3.3 Time-Slotted Channel Hopping
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Figure 3.6: Example mesh topology and TSCH schedule.

Both the non-beacon and beacon-enabled modes of IEEE 802.15.4 consider net-

work operation at a single frequency channel. Watteyne et al. showed [175, 176]

that external interference and multi-path fading severely degrade the quality of a

wireless link at 2.4GHz, both in indoor and outdoor deployments. As an extension

to IEEE 802.15.4-2011, the IEEE 802.15.4e-2012 standard [63] defines the Time-

Slotted Channel Hopping (TSCH) mode, which uses “channel hopping” to combat

external interference and multi-path fading.

In a TSCH network, time is cut into timeslots, each long enough for a trans-

mitter to send a data frame to a receiver, and for the receiver to send back an ACK

indicating successful reception. Duration of a timeslot is constant for the whole net-

work (typical value is 10ms) and timings within the timeslot are precisely defined.

L successive timeslots are grouped into a “slotframe”, which continuously repeats

over time. A communication schedule indicates to each node, for each slot in the

slotframe, what to do (transmit, receive or sleep) and on which channel offset. We

depict a simple example mesh topology in Fig. 3.6.

The scheduler provides the nodes with a channel offset corresponding to a given

communication slot. Nodes uniformly circulate over nch available physical chan-

nels, knowing Absolute Slot Number (ASN), the number of slots that elapsed since

the network was deployed and the channel offset in a given slot [115]. Physical

frequency f where a transmission occurs is calculated as:

f = F [(ASN + channelOffset) mod nch], (3.3)

where F is a lookup table that matches channel to a physical frequency. In the

2.4GHz band, nch is typically 16 but certain channels can be blacklisted if, for

example it is known that there is a strong interferer present. If the length of the

slotframe L is a relatively prime number, Eq. 3.3 ensures that a communication

slot in the schedule rotates over the available channels in successive slotframes.
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The communication schedule can be built in a centralized or distributed fash-

ion. The scheduler (either a centralized computer or a distributed protocol) builds

and maintains the schedule in order to match the link-layer resources (timeslots

scheduled between neighbor nodes) to the applications needs (number of packets

per second, latency requirements). In the centralized case, each node reports to

the scheduler its radio neighbors and the estimated link quality, which serves as an

input to the scheduling algorithm. Scheduler has precise control over throughput,

latency and energy consumption tradeoffs in the network, with the granularity of a

single node.

In TSCH networks, beacons are not necessary for synchronization purposes2.

Nodes keep synchronization with the network by using regular data frames. ACK

frames feedback how early or late the sender is in respect to the ideal boundary

when the packet should have been transmitted, from the perspective of the receiver.

Each node in the network has its time parent and uses the feedback in ACK frames to

correct its clock. When the time parent corresponds to the default route on the path

to the root, synchronization is maintained by using regular, convergecast application

traffic with no additional overhead. When a time parent initiates communication

with its child, the child can correct its clock by estimating how early or late the data

frame was sent. Nodes need to exchange packets to stay synchronized or they will

drift apart, as each node’s crystal oscillator beats at a slightly different frequency.

This puts a theoretical upper bound on the time without any communication. A

typical value with ±15ppm accuracy and 1ms guard times is around 30s. When the

application traffic is absent, a node can resynchronize to its time parent by sending

a short keep-alive packet, without any payload.

Main advantages of TSCH are efficiency due to tight synchronization within

a timeslot, and reliability due to channel hopping. Unlike beacon-enabled mode,

TSCH allows the formation of a full mesh network and therefore provides means

to the upper-layer routing protocol to leverage path redundancy in the mesh. The

exact topology that is exposed to the upper layer depends on the schedule. TSCH

naturally supports energy-wise heterogenous networks and the most constrained

nodes can sleep in all but a couple of slots during the slotframe.

The requirement to keep tight synchronization within one timeslot is in the

same time the biggest disadvantage of TSCH. To achieve sleep times on the order

of 4 minutes, as it was demonstrated with GreenNet and beacon-enabled mode,

it would be necessary to employ drift estimation and compensation techniques [23]

that have dependency on environmental conditions and hardware aging. TSCH

withstands as the most widely deployed and field-proven WSN technology that has

transitioned IoT from an academic concept to reality [115].

2Beacons in TSCH mode may be used only during the initial network formation to advertise

the presence of the network. Once the network is formed, beacons are no longer necessary and

their transmissions can be switched off.
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3.4 Internet Protocol and Routing in a Mesh

The limited address space of Internet Protocol version 4 (IPv4) has long been an

issue but the transition to Internet Protocol version 6 (IPv6) has been slow in

practice. In that sense, IoT can be regarded as an opportunity for a fresh start.

IoT devices are expected to and currently do run the version 6 of the infamous

Internet Protocol.

Addressing. An important piece of the IPv6 addressing structure in the IoT

context is the 64-bit Extended Unique Identifier (EUI-64), imprinted by a manufac-

turer for each communication interface. IPv6 in combination with EUI-64 allows the

device to self-assign its IP address, eliminating the need of external configuration by

a protocol or manually by an administrator. When the IoT device first joins a new

network, it learns the global IPv6 prefix that it uses in combination with EUI-64

to construct a globally reachable IPv6 address. Deployments that we witness today

commonly intersect communication from the outside at the network gateway, for se-

curity reasons due to the energy constraints. Devices are still uniquely addressable

among each other, within the local area network.

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)

adaptation layer. IPv6 header contains 40 bytes and it requires an MTU of 1280

bytes. When IPv6 is coupled with IEEE 802.15.4 frame sizes of 127 bytes, the

need for an adaptation layer is evident. 6LoWPAN [108] is a shim adaptation layer

in-between IP and IEEE 802.15.4. 6LoWPAN defines a mechanism for fragmen-

tation and re-assembly of IP packets carried in IEEE 802.15.4 frames. However,

fragmentation is undesirable due to severe performance issues with lossy wireless

links. For that reason, 6LoWPAN also specifies a compression mechanism, in order

to reduce the overhead of IP header. 6LoWPAN compression leverages shared state

of all devices in a local network (such as network prefix) or omits the fields that can

be inferred from other layers. Typically, this results in available application-level

payload size of around 80 bytes. For a detailed overview of 6LoWPAN compression

techniques, the reader should refer to RFC 4944 [108] and the subsequent updates.

Routing in a Mesh. Each node in a mesh is a router and can forward packets

originated at other nodes in the network towards their destination. Routing can be

performed either at the link layer or at the network layer. In the former case, it is

denoted as mesh-under and in the latter as route-over. Mesh-under schemes, forward

independently each radio frame and the IP-layer sees the whole local network as

a single hop [97]. This creates an undesirable effect with broadcast frames – each

broadcast at the IP level results in flooding over multiple hops at the link layer – and

prevents the design of upper-layer protocols that leverage a given physical topology.

In route-over schemes, IP header is examined at each hop on the path, which also

necessitates 6LoWPAN decompression, but allows multiple backhaul-interconnected

constrained networks to be a part of the same routing architecture. To forward

packets along a route, each node maintains a routing table that indicates the next

hop for a given destination address. As the convergecast traffic is dominant in

WSNs, the routing protocols typically build a tree, rooted at the PAN coordinator.
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We overview the principle routing protocol for IP-based WSNs in Appendix A and

study its interaction with beacon-enabled mode of IEEE 802.15.4 in Appendix B.

3.5 Transport and Application Layers

Internet hosts run multiple applications and the transport layer multiplexes among

them by using the concept of a port number. As the network-layer IP protocol

does not provide end-to-end reliability, Internet applications use Transmission Con-

trol Protocol (TCP) at the transport layer that establishes a reliable channel be-

tween two endpoints. The reliability and orderly delivery with TCP are achieved

with transport-layer sequence numbers and end-to-end retransmissions when a lost

packet is detected. Energy-wise, this has proven to be very costly in constrained net-

works as end-to-end retransmissions traverse the whole network and affect each hop

on the path [115]. The protocol stack in Fig. 3.1 reflects this, and the lightweight

User Datagram Protocol (UDP) is used instead of TCP, bearing no transport-

layer state between two endpoints. UDP header traditionally caries 8 bytes of

overhead for port number signaling, transport-layer length and checksum bytes

but 6LoWPAN additionally allows UDP compression leveraging inter-layer depen-

dencies. UDP, however, does not provide any guarantees on reliability or orderly

delivery, which is left to the application.

Application-layer protocols enable interoperability between different applica-

tions and provide application-independent semantics that facilitates content repre-

sentation [115]. The success of the Internet is much due to the success of Hypertext

Transfer Protocol (HTTP) and the Web that enabled unprecedented information

sharing. Benefits of integrating IoT data from ubiquitous sensors and actuators in

the same architecture are evident.

HTTP builds upon a Representational State Transfer (REST) architectural style

that provides properties such as scalability, performance or reliability, suitable for

the global scale of the Web [41]. Billions of IoT devices add unprecedented amounts

of data to the existing system(s) so holding on to the REST properties is paramount.

But one should in no circumstances forget the constraints that individual IoT de-

vices inherit. HTTP is in that sense not well adapted to IoT devices – it expects

a reliable TCP channel beneath, synchronous request-response communication be-

tween a client and a server, and adds considerable packet overhead, as it is not

concerned with payload sizes.

3.5.1 Constrained Application Protocol (CoAP)

IETF Constrained RESTful Environments (CORE) working group standardized

CoAP [144] to answer the needs of IoT devices. CoAP is not a blind compression

of HTTP, although it is commonly referred to as such due to the same RESTful

design and purpose. Instead, CoAP implements a subset of HTTP features relevant

to IoT devices and further specializes for constrained environments by leveraging

typical traffic patterns and by minimizing overhead.
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The most notable features of CoAP are [144]:

• UDP transport with optional reliability, supporting unicast and multicast

requests.

• Asynchronous message exchanges.

• Low header overhead and parsing complexity.

• Simple proxy and caching capabilities.

• A stateless HTTP mapping allowing proxies to be built providing access to

CoAP resources via HTTP in a uniform way or for HTTP interfaces to be

realized alternatively over CoAP.

CoAP leverages the traditional client-server architecture where a client inter-

ested in a given resource makes a request towards the server, hosting that resource.

The server prepares a response that potentially encapsulates a resource represen-

tation corresponding to the requested resource. For example, a request to resource

“temperature” would result in response containing temperature measurement in the

payload. There could also be a request to change the value of some resource on

the server, in which case the response typically acknowledges the change. The sep-

aration of client and server roles in IoT environments is not as straightforward as

in the traditional Internet. The same device often executes both roles, depending

on the application semantics. The term “server” should by no means be associated

with powerful machines hosting HTTP servers in the Internet, as in our context

CoAP “server” corresponds to a constrained IoT device exposing its resources to

CoAP clients (e.g. gateways, smart phones, or other IoT devices).

Resources in CoAP are, analogously to HTTP, identified with a Uniform Re-

source Identifier (URI) [14], and are organized in a hierarchical manner:

coap-URI = ”coap:” ”//” host [ ”:” port ] path-abempty [ ”?” query ] .

CoAP separates message and request-response semantics. A single request may

correspond to multiple exchanged messages, for example when the server asyn-

chronously notifies the client of resource changes. Server may also not be able to

respond with a resource representation immediately, in which case it indicates to

the client that it received the request and that it will respond at a later point in

time – the so-called separate response. Requests and responses share the common

message format, depicted in Fig. 3.7.

Each message carries an identifier, Message ID, that is used for duplicate detec-

tion and optional reliability. This functionality of CoAP effectively complements

UDP and leaves to the application to decide which messages, if lost, should trigger

expensive end-to-end retransmissions. Clients can mark a message as Confirmable

or Non-Confirmable by setting the appropriate Type (T) field. The corresponding

response can be marked as Acknowledgment or Reset, depending on the process-

ing outcome. If no response is received to a Confirmable message after a timeout
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(default value is 2s), the client starts the retransmission phase with exponential

backoff.

Figure 3.7: CoAP message format [144].

A response is matched to a request by using an optional identifier, called token

(see Fig. 3.7). Code field signals whether a message is a request or response and

the corresponding code. In the case it is a request, it encodes the request method,

while in the case of response it encode the response code. Similarly to HTTP,

response codes starting with “2” indicates success, “4” indicates client error, and “5”

signals server-side error. Variable number of CoAP options follow the header and

token. Options are Type-Length-Value (TLV) encoded and can carry URI, signal

content format in the payload, maximum time a response may be cached before it

is considered not fresh, and similar.

CoAP implements four REST methods:

• GET retrieves the resource representation that corresponds to the request

URI. It is an idempotent (multiple invocations have the same effect) and safe

(retrieval-only) operation.

• POST requests that the representation enclosed in the request be processed.

The actual function performed by the POST method is determined by the

origin server and dependent on the target resource. It usually results in a

new resource being created or the target resource being updated [144]. It is

neither safe nor idempotent.

• PUT updates the requested URI with the enclosed representation. It is not

safe but is idempotent.

• DELETE requests the deletion of the resource identified by request URI. It

is not safe but is idempotent.

Asynchronous exchanges and multicast. The dominant traffic pattern in

WSNs is convergecast, where sensors send their readings towards an aggregation

point, for example a gateway. It would be extremely inefficient if all the sensors in
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the network would need to be queried to send each new reading. Moreover, appli-

cations that make use of presence sensors, acceleration alarms, or critical changes

in sensor readings need to be informed asynchronously. CoAP handles this type of

traffic with the Observe option [55] – a client makes a single GET request to the

resource identified by request URI, but includes the Observe option which indicates

to the server that it should notify the client whenever the state of the “observed”

resource changes. Server then locally monitors the resource (e.g. temperature) and

sends a response, matching the token in the original request, with a new value.

This is an extremely important feature from the energy point of view, as the sensor

can adapt the CoAP “notification” rate to its local energy conditions (e.g. intensity

of harvested current). Finally, CoAP allows a client to make a request to an IP

multicast group, which can minimize the number of messages exchanged in the con-

strained network. This can be very convenient for applications involving actuation.

The typical example is simultaneous switching on or off the lights in a building

[123].

Proxying and caching. A proxy is an application-level intermediary that

stands between a client and a server and can perform requests on client’s behalf.

For instance, proxy can serve a request from a local cache and avoid the exchange

with the energy-constrained CoAP server. Proxies are a fundamental component

of REST architecture as they reduce traffic, response time and alleviate servers.

A CoAP server can also maintain a local cache in order to avoid performing an

expensive sensor reading3 for each request. A server indicates the validity of a

response by leveraging the Max-Age option, which signals the maximum time a

response may be cached before it is considered not fresh [144]. CoAP distinguishes

between two types of proxies:

• Forward proxy, that is explicitly selected by the client using Proxy-URI

option in the request. Forward proxy can serve the requests from the local

cache if they are still valid, or forward the request towards the CoAP server.

• Reverse proxy, transparent to the client that can for instance expose re-

sources of the entire local area network, as if they were its own. Reverse

proxy can be used on the network gateway to completely offload the con-

strained devices. For instance, gateway could act as a CoAP client towards

the WSN and observe various resources, but offer the proxying functionality

towards the Internet, serving responses from the local cache.

Mapping with HTTP. Since CoAP implements a subset of HTTP function-

alities, there is a straightforward mapping between the two protocols. This can

be implemented with a forward proxy that translates to HTTP when the message

leaves the constrained network, and to CoAP when a message comes from the out-

side. For instance, a legacy device that only supports HTTP could talk to IoT

3For instance, measuring carbon-monoxide is a power consuming operation that can last several

tens of milliseconds.
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devices over such a proxy, and there would be no need for memory-limited devices

to support complex HTTP semantics.

Security. CoAP mandates Datagram Transport Layer Security (DTLS) [129]

as the default security solution. It is interesting to remark that none of the features

discussed above behave satisfactorily when DTLS is considered in the picture:

• With asynchronous exchanges, DTLS necessitates keep-alive messages in the

other direction, which questions the original purpose of asynchronous notifi-

cations.

• DTLS and multicast are inherently incompatible.

• DTLS cannot provide end-to-end security over proxies and the workaround

in the Internet typically involves proxy server as a trusted intermediary or

a tunneled connection, which may not be possible in IoT environments with

CoAP.

• Mapping CoAP to HTTP and vise versa, cannot be performed when DTLS

is used because integrity protection is performed at the transport layer.

3.6 GreenNet Implementation Choices

The principal communication stack used by GreenNet project is based on beacon-

enabed IEEE 802.15.4 and is implemented as part of the Contiki Operating Sys-

tem (OS) for constrained devices [34]. Contiki has an event-based kernel and imple-

ments multithreading through protothreads [36], an efficient, stack-less construct,

particularly suited for memory-constrained devices. The absence of a dedicated

stack per protothread implies that local variables are not preserved over context

switches. Contiki implements the discussed protocols and many RDC mechanisms.

Contiki architecture is highly modular and allows customizations at each layer of

the protocol stack. GreenNet complemented Contiki through the implementation

of beacon-enabled mode of IEEE 802.15.4, Lightweight Routing Protocol (LRP)

[85] developed specifically for the constraints of GreenNet, a multitude of cross-

layer optimizations related to energy harvesting and beacon-enabled mode, and the

standards-based security solutions presented in the remaining of this thesis [c2].

In parallel to the principal GreenNet stack [c2] and in order to support a com-

plementary solution based on the prevailing TSCH protocol [115], we have extended

OpenWSN open-source project [177] with support for GreenNet boards. Core of

the OpenWSN project is an implementation of IEEE 802.15.4e that executes in the

interrupt context and is driven by hardware events. Advantage of such approach is

timing accuracy, that is mandatory for tight timing requirements of TSCH, as we

will see in Part II.
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3.7 Conclusion

We could notice that research efforts centered around constrained devices of the IoT

have resulted in solutions at different layers of the protocol stack. Physical layer

solutions, such as IEEE 802.15.4, provide requirements and guidelines on the design

of low-power and low-cost radio transceivers. Link-layer schemes aim at minimizing

the energy expenditure by reducing the idle listening of the radio transceiver. To

integrate the IoT devices with the existing Internet infrastructure while keeping the

overhead at minimal, standardization bodies defined the 6LoWPAN compression

scheme. Recognizing the performance issues of end-to-end acknowledgments and

the burden they put on constrained networks, IoT solutions typically use the UDP

protocol, instead of TCP widely used in the traditional Internet. Finally, to account

for the IoT communication paradigms such as asynchronous exchanges or group

communication and the need for caching in order to hide the unavailable devices

from the application developers, standardization bodies defined the CoAP protocol.

The resulting IoT communication stack is quite different from the one we use on

traditional computing platforms.

However, when it comes to security, we currently rely on the traditional Inter-

net solution, DTLS, which results in application-level incompatibilities and forces

the system designer to choose between product features and product security. We

tackle these incompatibilities in Part II, and proceed by discussing the cryptographic

primitives that are used on IoT devices and their performance.





Chapter 4

Cryptography and Constrained

Devices

The main contributions of this thesis tackle different security aspects of the Internet

of Things (IoT) communication stack. Whether the security issues are local to a sin-

gle device, radio exchange of two network motes or more global like communication

with a smart phone on the other side of the Globe, cryptography is used as a fun-

damental building block at multiple layers. In this chapter, we give a brief overview

of cryptographic algorithms typically used on constrained devices and mandated by

various IoT standards.

Cryptography is the study of mathematical techniques related to aspects of

information security such as confidentiality, data integrity, entity authentication

and data origin authentication [103]. Many of these aspects and related techniques

are fields on their own within the vast field of cryptography. Confidentiality is

typically achieved with encryption schemes, data integrity with hash functions,

entity and data origin authentication through keyed hash functions. However, in

the context of constrained devices and due to the need to minimize the code size

and thus the number of used algorithms, we tend to use the primitives that leverage

the fundamental building block – a symmetric block cipher.

We devote Section 4.1 to background overview of symmetric-key primitives based

on Advanced Encryption Standard (AES). We detail in Section 4.2 practical chal-

lenges of implementing some of these primitives on constrained hardware and discuss

the contributed software architecture that aims at maximizing the performance and

reducing the development time when implementing cryptographic support on a new

IoT device. In Section 4.3, we introduce Elliptic Curves as the de-facto public-key

algorithm for IoT and present some performance benchmarks when they are used

on constrained devices. We conclude the chapter in Section 4.4.

4.1 Symmetric-key Cryptography and Advanced En-

cryption Standard

With symmetric-key algorithms, both communicating parties use the same secret

key for forward and inverse transformations – e.g. encryption and decryption,

Message Integrity Code (MIC) generation and verification. An encryption scheme

consists of two publicly known algorithms E and D, such that:

c = E(k,m),
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and

m = D(k, c),

where k denotes a secret key, m denotes plaintext, i.e. message to be encrypted, and

c the ciphertext, ineligible representation of m. Key k has a fixed length, and the

longer the key, the harder it is to guess by brute force1. Latest recommendations [39]

declare key lengths of 128 bits appropriate for securing information whose “security

life” extends year 2031. Message m can be of any given length. A block cipher is

an encryption scheme which breaks up the plaintext messages into blocks of fixed

length and encrypts one block at a time [103].

The block cipher that transitioned cryptography from the proprietary worlds

of military, secret agencies and government applications to the wide public is Data

Encryption Standard (DES). The adoption of DES in 1976 as a federal standard

in the United States was unprecedented – never before had an algorithm evaluated

and declared “secure” by National Security Agency (NSA) been made public [137].

DES was purposely designed to be fast in hardware, and slow in software and

therefore prioritized the users who had means for costly hardware design. During the

standardization process, the 54-bit key length of DES received much criticism from

the community as too weak [137] which suggested that the government consciously

decided to weaken the security just enough so that NSA could break it [73]. Ever

since, from Edward Snowden’s revelations we have witnessed that secret agencies

have found more subtle ways of breaching computer security, without the explicit

need to weaken the cryptographic algorithms2. Indeed, Bruce Schneier states [138]

that although “cryptography is strong, computer security is weak”.

4.1.1 Advanced Encryption Standard

The call for a DES successor was issued in 1997, and came to be known as the

AES selection process. In October 2000, Rijndael cipher was selected and became

known as AES. The cryptographic community has praised the selection process and

the winner, AES, is as-of-today deemed appropriate for protection of US top-secret

documents, in its 192-bit or 256-bit key length variants.

AES is a block cipher which operates on 16-byte block size, and uses three

possible variants for key size: 128, 192 or 256 bits. In IoT application and this thesis,

we consider the 128-bit key length as sufficient, as it provides for “security life” far

greater than the expected lifetime of protected information. AES uses a series of

permutations and substitutions, and therefore executes fast when implemented in

both hardware and software. We only attempt here to give a high level description

of the algorithm and for details the reader should refer to the book of Daemen and

Rijmen [27].

1Brute force attack consists in exhaustive search over all the possible values of the secret key.
2Although such attempts are also not uncommon, for example with Dual EC random generator.
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Inner Workings of AES

AES consists of the repeated application of the round transformation on interme-

diate result, called state. Number of rounds NR depends on the key length LK :

NR =


10, LK = 128 bits

12, LK = 192 bits

14, LK = 256 bits

Block size LB is constant and is equal to 128 bits (16 bytes). Algorithm 1

depicts the operations of an AES encryption. The prerequisite is the KeyExpansion

procedure that takes as input the secret key provided by the user and expands it

into NR + 1 keys of length LB that are used for each round of the algorithm.

Algorithm 1 AES block encryption.

1: procedure Encryption(State, Key)

2: KeyExpansion(Key, ExpandedKey)

3: AddRoundKey(State, ExpandedKey[0])

4: for 0 < i < NR do

5: Round(State, ExpandedKey[i]);

6: FinalRound(State, ExpandedKey[NR])

The actual encryption starts with the AddRoundKey transformation where the

original 16-byte plaintext is xored with the first round key. AddRoundKey is followed

by NR − 1 iterations of Round transformation and one application of FinalRound.

Algorithm 2 Round transformation of AES.

1: procedure Round(State, ExpandedKey[i])

2: SubBytes(State)

3: ShiftRows(State)

4: MixColumns(State)

5: AddRoundKey(State, ExpandedKey[i])

Algorithm 3 FinalRound transformation of AES.

1: procedure FinalRound(State, ExpandedKey[NR])

2: SubBytes(State)

3: ShiftRows(State)

4: AddRoundKey(State, ExpandedKey[NR])

Algorithms 2 and 3 show the inner steps of Round and FinalRound transforma-

tions. Note that FinalRound differs from Round only in the absence of MixColumns

step.

SubBytes step is the substitution step of the cipher where each byte in the state

is substituted using a Rijndael substitution box (S-box). Practically, this results in
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a table lookup operation for each byte of the 16 bytes of state. The main property of

SubBytes step is non-linearity, and it is in fact the only non-linear transformation

of the cipher. S-box values are carefully constructed and are paramount for the

security of the cipher [27].

ShiftRows step cyclically shifts rows of the state represented as a 4× 4 matrix

over different offsets. The four offsets have to be different to achieve resistance

against differential and linear cryptoanalysis. First row of the state matrix is not

shifted, while second, third and fourth rows are shifted with offsets one, two and

three, respectively.

MixColumns step is another linear transformation where each column of the state

matrix is multiplied modulo x4 + 1 with a fixed polynomial. The coefficients of the

polynomial are selected in a way that the multiplication can be implemented very

efficiently even on 8-bit processors.

AddRoundKey step is a simple Exclusive OR (XOR) operation of the state with

a given round key. This step provides the binding of the state with the secret key.

AddRoundKey is its own inverse.

AES decryption can be performed by using the inverses of the above steps in the

reverse order. From the implementation point of view, this introduces additional

code-size complexity that can be avoided by techniques that we discuss in the fol-

lowing sections. The inverse of SubBytes step adds particular overhead as another

table (inverse S-box) needs to be stored in memory.

4.1.2 Block Cipher Modes of Operation

A block cipher, such as AES, encrypts plaintext of fixed size LB, that in the AES

case corresponds to 128 bits. As messages are often much longer than a single block,

a need arises to use the block cipher in a certain Mode of Operation (MOP). For

simplicity, let the length of message M be a multiple of block size LB, such that it

can be partitioned into t plaintext blocks, each LB bits long: x1, x2, . . . , xt.

Electronic Codebook. The straightforward way of encrypting message M

is to encrypt each block separately which is known as Electronic Codebook (ECB)

mode of operation. To encrypt, one needs to run the block cipher t times to produce

the t blocks of ciphertext.

ci = E(k, xi), 1 ≤ i ≤ t, (4.1)

and to decrypt:

xi = D(k, ci), 1 ≤ i ≤ t (4.2)

ECB mode has an undesirable property that identical plaintext blocks result in

identical ciphertext [103]. As fragments of messages tend to repeat (network pro-

tocols headers, same application data) it is fairly easy to mount an attack on such

a scheme by statistical analysis [137].

Cipher Block Chaining. A more secure encryption mode for a block cipher

is called Cipher Block Chaining (CBC). In order to remove the property of ECB
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that identical plaintext blocks result in identical ciphertext, CBC introduces depen-

dency between subsequent ciphertext blocks: the ith ciphertext block is obtained

by encrypting the ith plaintext block with (i − 1)th ciphertext block. This makes

sure that two identical blocks within a message result in different ciphertext blocks.

However, two identical messages will still result in the identical ciphertext which can

leak information3. To overcome this, it is necessary to introduce some randomness

in the encryption process. For that reason, the first plaintext block of a message is

xored with Initialization Vector (IV). Different IV will result in the same plaintext

producing different ciphertext when encrypted under the same key k.

Algorithm 4 Cipher Block Chaining (CBC) encryption and decryption.

1: procedure EncryptionCBC(k, IV, x1, x2, . . . , xt)

2: c0 = IV

3: for 1 ≤ i ≤ t do

4: ci = E(k, ci−1 ⊕ xj)
5: procedure DecryptionCBC(k, IV, c1, c2, . . . , ct)

6: c0 = IV

7: for 1 ≤ i ≤ t do

8: xi = ci−1 ⊕D(k, ci)

We depict the steps of CBC encryption and decryption in Algorithm 4. There

are several interesting remarks about this mode. If an error occurs on one of the ci-

phertext blocks, all the subsequent blocks are useless and they cannot be decrypted.

The use of IV adds communication overhead, as the party that is performing de-

cryption needs to be aware of it. IV does not need to be secure, but it must be

integrity protected, as by altering the IV, an attacker can make predictable changes

in the first plaintext block that is recovered [103].

Cipher Block Chaining Message Authentication Code (CBC-MAC).

Note that both CBC and ECB modes only ensure confidentiality of data. They do

not provide any guarantees that data has not been modified, before the decryption

takes place. Indeed, if a message is encrypted without any integrity protection, an

attacker can predictably affect the plaintext by changing bits in the ciphertext. To

prevent this, typically one uses keyed hash functions. The resulting hash depends

on both the message and the secret key. In such a way, only parties in possession of

the secret key can produce or verify the Message Authentication Code. However,

this can also be achieved with a block cipher and CBC mode of encryption. Note

how the last ciphertext block ct in the CBC encryption procedure of Algorithm 4

depends on all the previous blocks of the ciphertext and plaintext. If a single bit is

different on any bit in the message, ct will be affected. Consider now that message

is communicated in clear but ct is sent alongside the message. The receiving party

3Consider for instance a military agency that recorded a ciphertext of message “attack”, and

learned from previous experience that it gives the aerial unit of the enemy command to launch the

attack. Next time the same ciphertext appears on the air, there is no need to break the complicated

encryption scheme in order to figure out what is coming.
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simply needs to verify if the received ct matches the one that is calculated locally

and verify the message against alterations on the communication path. To generate

a CBC-MAC, it suffices to set the IV to an all-zero vector. We depict the steps

in Algorithm 5. Note that for both generation and verification of CBC-MAC, only

block cipher encryption is used.

Algorithm 5 Generation and verification of CBC-MAC.

1: procedure GenerateMAC(k, x1, x2, . . . , xt)

2: c0 = {0}LB

3: for 1 ≤ i ≤ t do

4: ci = E(k, ci−1 ⊕ xi)
5: mac = ct
6: return mac

7: procedure VerifyMAC(k, mac, x1, x2, . . . , xt)

8: c0 = {0}LB

9: for 1 ≤ i ≤ t do

10: ci = E(k, ci−1 ⊕ xj)
11: if ct ≡ mac then

12: return True

13: else

14: return False

Counter mode. Finally, we examine another mode of operation called Counter

(CTR) that allows encryption and decryption to be performed in parallel. CTR

mode uses the IV as a monotonic counter to encrypt/decrypt successive blocks. As

a matter of fact, CTR mode does not pass the plaintext blocks through the block

cipher encryption primitive at all. Instead, it simply xors the plaintext block with

the encryption of the monotonic counter with secret key k:

ci = xi ⊕ E(k, IVi), 1 ≤ i ≤ t. (4.3)

Seemingly simple, this is a powerful construct that owes its security to 1) the

randomness properties of the underlying block cipher; 2) the XOR property that

generates uniformly-distributed output when only one of the operators (the en-

crypted counter) is uniformly distributed. In fact, the “perfect security” of One

Time Pad (OTP) is due to the latter property of XOR and the random one-time

keys. If we extend Eq. 4.3 by xoring both sides with E(k, IVi), we obtain:

ci ⊕ E(k, IVi) = xi ⊕ E(k, IVi)⊕ E(k, IVi), (4.4)

and since x⊕ x = 0 and y ⊕ 0 = y, we get:

xi = ci ⊕ E(k, IVi), 1 ≤ i ≤ t, (4.5)

which is the decryption relation of the CTR mode. Note that the block cipher is

only used in encryption mode.
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Similarly as in OTP case, the security of CTR relies on the assumption that the

same message is never encrypted with the same IV and key k twice. Consider what

happens if two plaintext blocks, x and y are accidentally encrypted breaching this

assumption:

c1 = x⊕ E(k, IV ), c2 = y ⊕ E(k, IV ). (4.6)

Since the attacker is in possession of both c1 and c2, he only needs to perform an

XOR of the two ciphertexts:

c1 ⊕ c2 = x⊕ y, (4.7)

to get the XOR of the two plaintext blocks, which completely breaks the security,

as it is now trivial to obtain x and y with statistical analysis.

To avoid this, IV is typically constructed from two parts: 1) a nonce that should

never be reused; 2) a simple monotonic counter concatenated to the nonce, that

increments with each encrypted block of a message.

4.1.3 Authenticated Encryption with Associated Data and CCM

The modes we discussed above provide either confidentiality (ECB, CBC, CTR) or

data origin authentication4 (CBC-MAC). In networking applications, confidential-

ity without integrity is not of much use since the attacker can introduce predictable

changes in the plaintext by modifying bits of the ciphertext. Additionally, we often

need a part of the message to be in clear in order to facilitate the communication (for

example, addresses) while the rest of the message (payload) needs to be encrypted.

The part that is in clear, however, needs to be authenticated and integrity-protected.

This is achieved with Authenticated Encryption with Associated Data (AEAD)

primitives, which combine encryption with data origin authentication in a single

construct. The two most popular AEAD schemes are Counter Mode Encryption and

Cipher Block Chaining Message Authentication Code (CCM) and Galois/Counter

Mode (GCM). We focus on CCM, due to its wide availability in IoT hardware and

standards.

4.1.3.1 Description of CCM Mode

As its name states, CCM uses CTR mode for encryption and CBC-MAC for data

origin authentication. CCM [37] is based on MAC-then-Encrypt paradigm, where

the authentication tag (MAC) is first produced on the plaintext, and then the

plaintext and authentication tag are encrypted altogether. Note that a part of

the message, i.e. Associated Data, can be only authenticated. CCM requires two

block cipher encryptions for each block that is both encrypted and authenticated,

and one block cipher encryption per block that is only authenticated. Extension

of Counter Mode Encryption and Cipher Block Chaining Message Authentication

Code (CCM*) has also been defined in order to generalize CCM to the encryption-

only case and avoid some vulnerabilities for variable-length authentication tags that

apply to the original CCM mode.

4Data origin authentication is a stronger property than integrity and therefore implies it.



40 Chapter 4. Cryptography and Constrained Devices

CCM and CCM* specifications define how to construct the vectors that serve

as plaintext or ciphertext inputs to CBC-MAC and CTR modes. Since message

length is often not a multiple of block size, construction of CCM vectors implies

data padding. Also, CCM vectors encode the information on message length, and

authentication tags in order to avoid related attacks.

In summary, CCM and CCM* provide several interesting features for con-

strained devices. Since they are based on CTR and CBC-MAC primitives, they

only require the block cipher to be used in encryption mode. That means that AES

implementations for constrained devices do not need to account for inverse proce-

dures of AES steps discussed in Section 4.1.1, necessary for AES block decryption.

Furthermore, CCM and CCM* do not add any overhead for padding of the message,

because of the way plaintext and ciphertext vectors are constructed.

4.2 crypto engine: An Application Programming In-

terface for Hardware-Accelerated Symmetric Cryp-

tography

In this section, we present an Application Programming Interface (API) whose main

goal is to leverage the available acceleration of cryptographic primitives available

in hardware and by doing so to reduce development time while maximizing the

efficiency of a CCM implementation on a generic board56. CCM is the most widely

used symmetric cipher on constrained devices but we also aim to support other

modes that may be used by the application developer. It is important to understand

that efficiency of a given CCM implementation depends on many factors relevant

to chip-level and board-level design, as well as the actual application of CCM.

For instance, hardware acceleration block can be within the Microcontroller

Unit (MCU), radio chip or present as a separate chip. In the latter two cases, effi-

ciency of a CCM implementation can largely depend on chip-to-chip communication

protocol overhead (e.g. Serial Peripheral Interface (SPI)). Hardware acceleration

blocks embedded within the radio chip typically target usage for direct radio com-

munication (i.e. link-layer security) and are compliant to the same standard as the

radio transceiver. These, however, can still be leveraged for a generic usage, if the

MCU does not provide its own crypto acceleration block.

Capabilities of different crypto hardware acceleration blocks vary (see Table 4.1).

Common point is that stand-alone usage of AES is generally supported. An optimal

implementation of CCM for a given board will leverage the maximum number of

operations available in hardware, and complement the rest in software. While this

may seem simple, in the context of an open-source project [177], it is important to

5crypto engine with implementations for CC2538 SoC and CC2420 chips makes part of the

official OpenWSN project. Implementation for STM32L151 is part of the GreenNet project.
6crypto engine is based on the preliminary work of Marcelo Barros de Almeida. Author of

the manuscript contributed its redesign, integration with OpenWSN project and all hardware-

accelerated implementations.
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Table 4.1: Hardware acceleration capabilities for AES and different modes of

operation on IoT chips.

Part Number stand-alone

AES

CBC CTR CCM

STM32L1 [148] yes yes yes no

Testchip RF200 [c2] yes no no no

AT86RF231 [7] yes yes no no

CC2538 SoC [157] yes yes yes yes

CC2520 [156] yes yes yes yes

CC2420 [19] yes yes yes yes

stay generic and maximize code re-use across different hardware. In the same time,

such an approach renders minimal development time, as the developer can re-use

the available libraries to complement the hardware-specific implementation.

Interface

Because hardware capabilities are typically delimited by different Modes of Opera-

tion, we choose to expose CCM building blocks: stand-alone AES, CBC, CTR, as

well as the “highest level“ call to CCM forward and inverse transforms (see Table

4.2). Different standards and applications use CCM in different context (i.e. radio

frames, application data) so it is important to account for variable nonce length. For

example, IEEE 802.15.4 standard uses 13-byte long nonces [62], while CCM-based

cipher suites of Datagram Transport Layer Security (DTLS) use 12 bytes [100].

Table 4.2: crypto engine interface. API of CCM accounts for variable nonce

length; CBC, CTR and AES calls are generic.

CCM

CBC encryption

CTR encryption

Stand-Alone AES

Modularity

Following Table 4.2, we organize in modules different routines of the crypto en-

gine API. Modules are bound together in a static pointer structure which allows

linking of different hardware/software implementations. For example, one can im-

plement stand-alone AES acceleration for a given board and link that with software

implementations of CCM, CBC, and CTR modes. Similarly, any hardware/software
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Operations performed in 
software 

Operations accelerated 
in hardware 

CCM 

CBC encryption 

CTR encryption 

Stand-Alone AES 

Interface 

CCM 

CBC encryption 

CTR encryption 

Stand-Alone AES 

 Hardware-independent  
implementation 

CCM 

CBC encryption 

CTR encryption 

Stand-Alone AES 

Board specific, 
hardware-accelerated, 

implementation 

Figure 4.1: crypto engine implementation example with everything but CCM-

specific operations accelerated in hardware.

combination is possible, depending on desired, i.e. available, level of hardware ac-

celeration.

All-Software Implementation

Where acceleration is not possible, one needs to complement the crypto engine

implementation for a given board with software. Hardware-independent implemen-

tation of crypto engine is provided as part of the OpenWSN project in order to

reduce the development time.

Example Use Case

We show in Fig. 4.1 an example implementation of crypto engine for STM32L1

MCU. In this case, hardware provides acceleration for CBC and CTR modes.

Broadly speaking, call for a CCM forward transform will result in:

1. Creation of padded CCM vectors with encoded lengths of message, MIC and

nonce.

2. Call to hardware-accelerated CBC encryption routine.

3. Fetching of the last block of CBC encryption from hardware (CBC-MAC).

4. Call to hardware-accelerated CTR encryption routine.

In case of the inverse transform, steps 2 - 4 are executed in the reversed order:

4, 2, 3. In addition, one memory comparison operation is performed to verify the

MIC. Note that the call to stand-alone AES is not necessary since it is automatically

performed in hardware, as part of CBC and CTR routines.
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4.2.1 Performance on Constrained Devices

We implemented hardware-accelerated crypto engine for three IoT boards: Green-

Net, OpenMote-CC25387, and TelosB8. We summarize the three boards and their

salient characteristics in Table 4.3. Our goal in this section is to draw conclusions

on CCM performance depending on different design choices that can be useful to

chip-level, board-level, and network-level designers.

We perform all measurements using a logic analyzer connected to physical pins

on the board. In software, we set high the voltage of a MCU pin just before

the execution of the desired section and low once the device terminates execution.

Logic analyzer is connected to the same physical pin and samples its state with 8

Msamples/s rate. We record measurements by monitoring the output of the logic

analyzer using the provided software.

Table 4.3: Boards used for performance evaluation of hardware-accelerated sym-

metric cryptography. SPI access denotes whether crypto acceleration block is ac-

cessed over SPI (Y) or it is embedded in the MCU (N).

Board System

Clock

[MHz]

Hardware

Acceleration

Part

SPI

access

[Y/N]

GreenNet 32 STM32L1 N

OpenMote-CC2538 32 CC2538 N

TelosB 8 CC2420 Y

Computation Overhead of Stand-Alone AES

We first measure the computation overhead of block (i.e. 16 bytes) AES encryption

(see Table 4.4). For software AES, we use the open-source implementation by Uli

Kretzschmar that is optimized for MSP430 processors but can run on a generic

MCU. As a consequence, AES software results are not optimal for GreenNet and

OpenMote-CC2538 devices, but are rather presented for comparison purposes with

hardware-accelerated code. We leverage compiler optimization and use the −Os
flag in the corresponding toolchains.

From Table 4.4, we can notice that the gain factor obtained by hardware-

acceleration for GreenNet and OpenMote-CC2538 is around 14. The cost of

accessing the crypto acceleration block is high – it makes up for at least 55% of the

overall latency. STM32L1 (GreenNet) executes the same software AES code 23%

7OpenMote-CC2538 [112], released in 2013, is the flagship board of OpenWSN project with

CC2538 System on Chip (SoC) at its core. Radio transceiver and MCU are integrated on the same

chip and share RAM memory.
8TelosB [155], released in 2004, is the second generation of historic Berkeley motes, based on

MSP430 MCU and CC2420 radio, connected over SPI.
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Table 4.4: Computation overhead of block AES encryption.

Board Software Hardware-accelerated

total [µs] key expansion

and encryption

I/O access total

[µs]

GreenNet 212 44.9% 55.1% 16

OpenMote-CC2538 275 13.9% 86.1% 19

TelosB 2030 5.2% 94.8% 1114

faster than CC2538. In terms of overall latency, STM32L1 performs one hardware-

accelerated AES encryption 16% faster than CC2538, but the time distributions

reveal an interesting property. Access to the crypto block is more prohibitive on

CC2538, but its AES implementation seems more efficient than the one of STM32L1.

CC2538 spends around 1.9µs on loading and expanding the AES key and around

0.8µs for one AES encryption.

TelosB executes a block AES encryption in software in 2ms. Compared to more

recent boards and MCUs, we can see how computation capabilities have evolved

over the years: factor of 4 degradation is to be expected due to the lower system

clock frequency (i.e. 8MHz vs 32MHz), while the rest is due to differences in

MCU architectures. When hardware acceleration of CC2420 is used, one obtains

an improvement factor of 2. However, most of the delay (95%) comes from SPI

access.9 When software execution time is compared to pure AES encryption/key

expansion in hardware, we can notice a 35 improvement factor.

Computation overhead of CCM

We further quantify the computation overhead of CCM transform using the same

boards. As a use case for AEAD cipher, we consider the largest message that can

fit IEEE 802.15.4 radio frame with security enabled: 121-bytes10. Out of the 121

bytes, 30 bytes are only authenticated, while 91 bytes are both authenticated and

encrypted. We present these results in Table 4.5.

Faster execution of software AES block encryption on STM32L1 propagates to

the CCM use case: GreenNet performs 23.9% faster than OpenMote-CC2538.

With hardware acceleration, we can observe an interesting result. Even though

single block encryption on STM32L1 is 16% faster, OpenMote-CC2538 performs

better in the CCM use case. To understand why, we have quantified different

components contributing to the overall latency in Table 4.6. This is due to several

factors:

1. CC2538 provides full CCM support in hardware, including creation of padded

9For TelosB, we use the default SPI configuration of OpenWSN project with ∼500 Kb/s rate.
10Maximum Transmission Unit (MTU) of IEEE 802.15.4 is 127 bytes, but one needs to account

for 2 bytes of Cyclic Redundancy Check (CRC) and minimal MIC length of 4 bytes.
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Table 4.5: Computation overhead of CCM forward transform on 121-byte message,

where 91 bytes are encrypted/authenticated and 30 bytes are only authenticated.

This use case results in 9-block CBC encryption to produce the MIC, and 7-block

CTR encryption for confidentiality.

Board software

[ms]

hardware

[ms]

GreenNet 3.476 0.257

OpenMote-CC2538 4.567 0.056

TelosB 34.095 5.325

CCM vectors that with STM32L1 we had to perform in software: this results

in 19% software processing delay.

2. Absence of CCM support on STM32L111 necessitates to perform I/O access

for CCM vectors that are 16-blocks long, instead of transferring the 8 blocks of

the original message (121 bytes). In addition, we had to read the intermediate

results of CBC encryption, when we only needed the last block (CBC-MAC).

This results in 40% I/O access delay. Note that the figure of 40% also accounts

for software processing, that is a side-effect of such design.

3. Multiplicative effect of AES block encryption performance with STM32L1.

Table 4.6: Delay components contributing to total CCM latency with hardware

acceleration.

Board hardware

encryption

I/O access to

crypto block

software

processing

GreenNet 40.87% 40.04% 19.09%

OpenMote-CC2538 34.2% 45.6% 20.3%

TelosB 5.05% 87.95% 7.0%

TelosB software results (see Table 4.5) can be extrapolated from the execution

time of block AES encryption. Results in hardware, however, confirm the advantage

of having full hardware-accelerated MOP implementation: encryption of 16 blocks

only results in 5x degradation in respect to a single AES encryption. I/O access to

the crypto block proves to be the most prohibitive operation – it accounts for 88%

of the overall latency. However, as hardware acceleration is part of the CC2420

11Another hardware part from STMicroelectronics is available that trades off space for better

computational performance, provides full CCM implementation in hardware, and performs an AES

block encryption an order of magnitude faster than its smaller counterpart used on GreenNet

nodes.
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radio chip, its main envisioned application is link-layer security. In that context,

when CC2420 is used to transmit a frame, it can perform CCM forward transforms

on the frame already loaded in the radio buffer and thus almost completely avoid

the crypto-specific I/O overhead12. On the reception side, however, it is neces-

sary to read over SPI parts of the radio frame that are sent in clear and decide

which key/nonce to use for decryption of the frame still loaded in the radio buffer.

Nevertheless, such design enables TelosB to secure radio frames even in tightly

synchronized network protocols, such as Time-Slotted Channel Hopping (TSCH).

To put the above figures in energy-constrained context, in Table 4.7 we estimate

the energy equivalent number of bytes transmitted over the radio during the exam-

ple CCM use case. For energy estimation, we use datasheet consumption values of

different components that are summarized in Tables 2.1 and 2.2 and assume that

MCU is in sleep mode while radio is transmitting. An important point to note when

comparing GreenNet results with OpenMote-CC2538 is extremely low consump-

tion of prototype Testchip RF200 radio which consumes less in transmit mode than

commercially available STM32L1 MCU at 32MHz.

Table 4.7: Energy equivalent number of bytes transmitted over IEEE 802.15.4

radio during software/hardware CCM forward transform on 121-byte message.

Board software hardware

without I/O

hardware

GreenNet 131.24B 5.82B 9.70B

OpenMote-CC2538 83.35B 0.56B 1.02B

TelosB 786.81B 14.81B 122.88B

A common point for the three platforms is that software processing of CCM is in-

efficient. When performed in hardware, for every 121 bytes encrypted/authenticated

with CCM, energy-wise one can transmit from 1.02 to 14.81 bytes over the radio

(we consider link-layer encryption use case with TelosB).

Related Work

Some of the related work tackles optimized hardware designs of AES and CCM for

constrained devices [51, 57, 147]. Hamalainen et al. [51] describe a compact and

energy-efficient hardware implementation of IEEE 802.15.4 security, and show its

advantage in terms of execution speed and energy consumption. Huai et al. [57]

and similarly Song et al. [147] design an energy-efficient CCM hardware archi-

tecture for IEEE 802.15.4 networks. An interesting work of Otero et al. [114]

compares different hardware implementations approaches for the AES block cipher

and their performance in terms of throughput, power and memory overhead. In

their performance evaluation, they hint that throughput of a hardware AES block

12One still has to transfer 13-byte nonce for each frame, and select/write the corresponding key.
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on evaluated MSP430 SoC drops by 44% due to I/O operations, which is consistent

with our findings.

Raza et al. [126] evaluate different symmetric primitives implemented in software

and hardware on TelosB as part of their study on higher level protocols and conclude

that energy consumption can be reduced 50% by leveraging hardware acceleration.

They derived this figure from the overall performance of the upper-layer protocol

but our results suggest that pure gains in terms of cryptographic operations are

much higher. The focus and contribution of our performance evaluation was to

dissect different delays contributing to the overall latency in order to provide useful

inputs to chip-level and board-level designers. We study in more details the effect

of cryptographic algorithms on upper-layer protocols in Part II.

In the context of other open-source projects, Contiki recently released support

for security with its 3.0 release. Contiki uses two modules, one for AES and the

other for CCM which also allows linking of hardware-accelerated implementations

for different platforms. However, this approach does not allow clean code re-use in

cases when hardware partially supports various MOP, like CTR or CBC.

Conclusion

Our performance study revealed that hardware acceleration of symmetric-key cryp-

tography is a must, both in terms of energy and latency. Crypto acceleration blocks

within the MCU are more performant due to the lower I/O access latency. Flexibil-

ity is also very important as both AES and different MOP such as CCM can be used

in various contexts, ranging from link-layer to application-layer security. We could

learn from TelosB example that SPI access can incur significant overhead that may

cancel out the benefits of provided hardware acceleration. In such cases, hardware

acceleration makes sense only if complete, use case specific MOP implementation is

provided such that MCU does not need to handle each block. Additionally, benefits

of a full MOP implementation vs. implementation of different building blocks were

evident in the STM32L1 case, where the use of hardware accelerated CTR and

CBC modes resulted in unnecessary I/O transfers and associated processing that

significantly degraded the overall performance.

4.3 Public-Key Cryptography and Elliptic Curves

Symmetric-key primitives are very efficient but require shared knowledge of a secret

key. Everyone in possession of this key has unconditional access to protected data,

either to decrypt and verify the authentication or to encrypt new data and generate

a valid authentication tag. This poses challenges in terms of 1) key exchange, i.e.

how to establish the secret key; 2) group communication, because all members of

the group need to be fully trusted.

Public-key techniques [31] revolutionized the field of cryptography and enabled

secure key exchange between parties that are communicating for the very first time.

The basic notion of public-key cryptography is that keys can come in pairs, an
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encryption key and a decryption key, and that it could be infeasible to generate one

key from the other [137]. The challenge of public-key constructs is the definition of

“infeasible” that is both practically useful and secure.

4.3.1 Integer Factorization and RSA

The most-widely known public-key algorithm is Rivest, Shamir, Adelman (RSA)

[86], named after its inventors Ron Rivest, Adi Shamir and Leonard Adleman.

RSA dues its security to the difficulty of factoring large numbers. Key generation

consists of choosing two random large prime numbers p and q and computing their

product n = pq. The encryption key e is selected such that e and (p− 1)(q− 1) are

relatively prime, and the decryption key d is computed such that:

ed = 1 mod ((p− 1)(q − 1)). (4.8)

Integers e and n represent the public key and d is the private key. Block i of message

m is encrypted by exponentiation with e modulo n:

ci = me
i mod n. (4.9)

Decryption consists of exponentiating the ciphertext block ci with decryption key

d:

cdi mod n = (me
i )
d = med

i = mi mod n. (4.10)

Block size is chosen such that mi < n, which allows to recover the original plaintext.

Note that a message encrypted with e can only be decrypted with d. Since d is

private, anyone can encrypt a message but only the party in possession of d can

decrypt it. Security of RSA relies on intractability of the RSA problem: given n

and e, find an integer mi such that me
i ≡ ci mod n [103]. For the security level of

approximately 128 bits, RSA requires the usage of modulus n of 3072 bits [39], while

2048-bit modulus commonly used today, provides security level of approximately

112 bits.

RSA is not well suited to constrained devices due to 1) large keys that may need

to be exchanged over the network; 2) computational complexity that is prohibitively

expensive on constrained devices (100-10000× of the symmetric counterpart) [137,

173].

4.3.2 Discrete Logarithms in a Finite Field and Elliptic Curves

An operation frequently used in cryptography is modular exponentiation:

y = gx mod p, (4.11)

and it can be efficiently computed. Determining x, given y and domain parameters

g and p is known as the Discrete Logarithm Problem (DLP) [52]. Diffie-Hellman key

agreement, ElGamal encryption and signature schemes, Digital Signature Algorithm
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(DSA) are some of the examples of public-key schemes that rely on intractability

of DLP.

Schemes based on DLP can be implemented using elliptic curves, in which case

the problem is known as Elliptic Curve Discrete Logarithm Problem (ECDLP). The

best algorithms known to solve the ECDLP have fully exponential running time, in

contrast to the subexponential-time algorithms known for the integer factorization

problem [52]. The consequence is that schemes based on ECDLP can attain the

same level of security with significantly smaller key sizes than their integer factor-

ization counterparts, such as RSA. For instance, 128-bit security level with Elliptic

Curve Cryptography (ECC) requires approximately 256-bit keys, which is a factor

of 12 improvement over RSA. Smaller keys result in better efficiency, both in terms

of computational complexity and communication overhead.

Elliptic curves can be defined over a generic field F, such as the familiar number

systems of rational, real or complex numbers together with the operations of addi-

tion and multiplication. In cryptographic applications, elliptic curves are defined

over finite fields, also known as Galois fields. For instance, let p be a prime number.

The set {0, 1, . . . , p− 1} with addition and multiplication performed modulo p is

a finite field of order p, denoted Fp. An elliptic curve E over Fp is defined by an

equation of the form:

y2 = x3 + ax+ b, (4.12)

where a, b ∈ Fp and the discriminant is not equal to zero. A pair (x, y), where x, y ∈
Fp is the point on the curve, if (x, y) satisfy Eq. 4.12 [52].

Parameters prime p, equation E, a point on the curve P and its order13 n

characterize a curve for cryptographic use and represent public information. A

private key is generated by selecting an integer d randomly from [1, n − 1]. The

corresponding public key Q is simply Q = dP . Finding d from Q and public

parameters of the curve is in fact the ECDLP on whose intractability security of

different constructs depends. The length of parameter n therefore influences the

desired security level, which is roughly half the length of n.

Elliptic curves can be used to implement various public-key algorithms that

provide services such as key exchange, confidentiality, or data origin authentication.

Such mechanisms depend on arithmetic operations of points on a specific curve that

essentially depends on the underlying finite field. The two basic operations are

point multiplication and point addition. Point addition is a relatively inexpensive

operation, for example a hardware-accelerated implementation of a 256-bit curve

can consume roughly 9 × 104 clock cycles. Point multiplication, however, is much

more prohibitive and in the 256-bit scenario can consume roughly 5.5 × 106 clock

cycles.

Some fields were found to be weak [102] in terms of the ECDLP and security of

any elliptic curve over the affected fields is significantly reduced.

13Smallest positive integer n such that gn = 1 is called the order of g [52].
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4.3.2.1 Elliptic Curve Digital Signature Algorithm

In Section 4.1.2, we examined a symmetric construct that provides data origin au-

thentication – CBC-MAC. Problem with symmetric data authentication schemes is

that sender cannot be differentiated from receiver(s). This is elegantly solved with

asymmetric techniques and digital signatures where only the party in possession

of the private key can generate the signature while everyone in possession of the

public key can verify it. We consider here Elliptic Curve Digital Signature Algo-

rithm (ECDSA) that is very fit for constrained devices due to low computational

complexity in comparison to other public-key schemes. Signature length of ECDSA

is twice the length of n, prime order of P , and is roughly four times the desired

security level.

Algorithm 6 ECDSA signature generation and verification [52].

1: procedure Sign(private key d, message m, public parameters p,E, P, n)

2: Select random k from [1, n− 1]

3: k × P = (x1, y1), convert x1 to an integer x1
4: r = x1 mod n, if r = 0 then go to step 2

5: e = Hash(m)

6: s = k−1(e+ dr) mod n. if s = 0 then go to step 2.

7: return (r, s)

8: procedure Verify(signature (r, s), public key Q, message m, public param-

eters p,E, P, n)

9: Verify that r and s are integers in [1, n− 1]. If not true, return false.

10: e = Hash(m)

11: w = s−1 mod n

12: u1 = ew mod n and u2 = rw mod n

13: X = u1 × P + u2 ×Q
14: If X =∞ then return false

15: Convert x1 of X to an integer x1; v = x1 mod n

16: If v = r then return true

17: Else return false

We depict the steps of ECDSA signature generation in Algorithm 6 and denote

with × expensive point multiplication operation. Note that the signing operation

requires a single point multiplication, while the verification procedure performs the

point multiplication twice. This is the main reason why the performance of ECDSA

verification algorithm is much worse than that of the signing counterpart. For a

detailed proof why the signature verification steps in Algorithm 6 are indeed correct,

the reader should refer to Hankerson et al. [52].

Performance on Constrained Devices. Figs. 4.2(a) and 4.2(b) present com-

putation and energy benchmarks of the ECDSA primitives (secp160r1 and secp192r1

elliptic curves) on WiSMote14 and GreenNet boards, discussed in Chapter 2. We

14WiSMote board [179] is based on 16-bit MSP430 (series 5) MCU with 16 KB of RAM and an
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use the TinyECC open source library [95] and there is no hardware acceleration

involved. We can see that the use of a 32-bit MCU on GreenNet boards reduces

the computation time by a factor of 4, which translates into a reduction in the con-

sumed energy by a factor of 3.084 (as the 32-bit STM32L1 consumes 29.7% more

than 16-bit MSP430 in active mode). The computation overhead ranges from 0.3

to 0.9 seconds for GreenNet and from 1.18 to 3.63 seconds for WiSMote.
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Figure 4.2: ECDSA computation and energy benchmarks at 21.3 MHz for 16-

bit (WiSMote) and 32-bit (ST GreenNet) hardware platforms.

We can notice how computation capabilities on commodity hardware have changed

over the years and that ECC primitives are already feasible, even when implemented

purely in software with no hardware-specific instructions. That said, assembly

optimizations can further improve the software performance by a factor of 2 to

3. Hardware-acceleration parts are becoming increasingly available [157], typically

leading to improvements by at least one order of magnitude over software.

4.4 Conclusion

We conclude that public-key primitives based on ECC are much more affordable

than the common wisdom suggests, even on commodity IoT hardware. Availability

of hardware acceleration parts further reduces their cost, making them an ideal

candidate for IoT security protocols. Nevertheless, they should be used with care

802.15.4-compatible CC2520 radio transceiver.
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and to complement cheaper symmetric primitives that are already widely supported

in hardware, in which case they introduce a negligible overhead.

We explore how the discussed cryptographic primitives are used to secure the

IoT communication stack in Part II.
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Chapter 5

Security Challenges and

State of the Art

Network security is one of the most prominent applications of cryptography. We

leverage cryptographic algorithms as fundamental blocks to build secure distributed

systems, such as the Internet. It turns out that the attribute ”secure” is hard to

define and often has an inherent binding with the actual system that is to be secured.

Still, there have been various efforts [154, 145] on classifying and precisely defining

different architectural elements, high level goals, services or simply terminology in

the computer security arena.

We first overview some basic terminology in Section 5.1. Then, we discuss the

traditional types of attacks on network entities and put these in the context of

Wireless Sensor Networks (WSNs) and Internet of Things (IoT) in Section 5.2. In

Section 5.3, we summarize the research and standardization efforts around secure

WSNs and IoT. We conclude the chapter in Section 5.4.

5.1 Terminology and Definitions

In the following, we introduce the basic security terms that are useful for compre-

hension of this thesis. We use definitions from RFC 4949 [145].

• Security service – A processing or communication service that is provided by

a system to give a specific kind of protection to system resources.

• Security mechanism – A method or process that can be used in a system to

implement a security service that is provided by or within the system.

• Adversary, attacker – An entity that attacks a system, or an entity that is a

threat to the system.

• Attack – An intentional act by which an entity attempts to evade security

services and violate the security policy of a system.

• Access Control – protection of system resources against unauthorized access.

• Authenticity – The property of being genuine and able to be verified and be

trusted.

• (Data) Confidentiality – The property that data is not disclosed to system

entities unless they have been authorized to know the data.
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Additionally, we use terms Message Integrity Code (MIC) and authentication

tag interchangeably to denote a cryptographically secure checksum that is typically

appended at the end of a message to provide data origin authentication and integrity.

It is also known as Message Authentication Code (MAC) but we avoid this usage

due to a conflict with Medium Access Control (MAC).

5.2 Threat Models and Typical Attacks

Threat model formally defines capabilities of the attacker and security of a system

can be studied within a given model. Internet protocols typically consider the tra-

ditional Dolev-Yao model [32] where the attacker has full control over the network.

More precisely, the attacker can:

• Intercept messages,

• Modify messages,

• Block messages,

• Generate and insert new messages.

It is important to understand that cryptographic algorithms are considered“per-

fect” and the attacker can decrypt/forge a message only if he possesses the corre-

sponding key. In the network context, “message” corresponds to a Protocol Data

Unit (PDU) of a layer under study. For instance, if we consider security solution at

the link layer, message corresponds to a radio frame.

Traditionally, there are two typical classes of attacks:

• Passive attacks: Such as eavesdropping and traffic analysis, where the attacker

gains knowledge on ongoing communication by passive means. For instance,

if messages are sent in clear, attacker is able to read full message content.

If network messages are encrypted, attacker may still be able to infer some

information by studying communication patterns, timing, message length.

• Active attacks: Attacker actively participates in the communication by re-

playing old messages (replay attack), modifying messages and playing Man in

the Middle (MITM), pretending to be another entity in order to gain unau-

thorized access to a resource and similar. A particular class of active attacks

are Denial of Service (DoS) attacks, where the attacker’s ultimate goal is to

disrupt the availability of a network service, such as the alarm notification,

typically by exhausting physical resources (memory, energy, bandwidth) on

the target node.

An important point to note is that the Dolev-Yao model is a formal model that

does not take into account physical compromise of a node. Therefore, research

around WSNs [70, 169, 6, 130, 22] has often taken into account a more powerful,
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Byzantine attacker [10]. In such scenarios, attacker has access to local crypto-

graphic material on the node and we cannot rely on cryptographic techniques to

prevent attacks [130]. Indeed, Byzantine attacker can compromise a set of nodes

and through them inject false data that passes all cryptographic checks.

Becher et al. [11] conclude that physical compromise of a device in order to

extract keying material and obtain full control over it, as assumed by the Byzantine

model, is not as easy as often perceived in WSN literature. It requires costly

equipment, expert knowledge on hardware and hard determination of the attacker.

An interesting observation of this study is that such attacks often require that

a mote be removed from the network for a non-trivial amount of time making

detection of unusual activity via neighbor discovery protocols a simpler approach

than specialized Byzantine-tolerant schemes. Common sense practices, such as

disabling IEEE 1149.1 JTAG (JTAG) port or Bootstrap Loader (BSL) once the

product is deployed, go a long way towards making attacks in the field more difficult.

We do recognize that in many IoT deployments, devices will be physically avail-

able to the general public and as such, system designers should take into account

the threat of a physical compromise and extraction of the keying material. How-

ever, security mechanisms that protect against a Byzantine attacker are orthogonal

to the mechanisms that we consider and study in this thesis.

That said, we emphasize that final IoT products should either have hardware-

level or software-level protection against physical tampering, i.e. tamper-resistant

packages or schemes to detect unauthorized access to the hardware [11, 96].

In the following, we survey some of the typical attacks on WSNs that have

attracted attention of research community over the last decade. The more recent

efforts of integrating WSNs with the Internet have enabled additional security and

privacy concerns. We distinguish accordingly and brief on the main concerns in

each scenario.

5.2.1 Wireless Network Threats

Physical Jamming. The most basic attempt to disrupt the network service is

the attack on physical resources – the radio channel. Attacker can generate high-

powered signal that will interfere at different receivers in the network and increase

the error rate, possibly completely disrupting wireless operation [93, 124, 88]. This

DoS attack is often called jamming and is mostly a concern in military scenarios.

Common defense is channel hopping [63] that increases the bandwidth attacker has

to jam, which can require a substantial power supply and thus make the attack less

practical. Also, network-level redundancy can help in order to route around the

jammed area.

Traffic Injection. Injecting false traffic in the network can have multiple con-

sequences. Firstly, it is possible to affect network applications, e.g. by introducing a

bogus temperature reading to trigger the Heating, Ventilation, and Air Condition-

ing (HVAC) system, or even to directly control an actuator, such as the pressure

regulating valve in the industrial automation system. Similarly, one can obtain full
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control over the network by forging network maintenance packets [71], e.g. beacons,

and corrupting neighbor tables of the nodes. Secondly, attacker can launch easy

DoS attacks by generating significant traffic loads that can cause network collapse

in terms of depleted energy due to multihop forwarding or throughput.

First-level protection against such attacks is link-layer security – network nodes

should not accept any radio frame other than those secured with link-level keys they

possess locally. At the application level, access rights should be properly configured

in order to limit the damage if one of the nodes in the network is compromised. For

instance, node measuring the temperature should not be allowed to issue pressure

valve regulating commands. Second-level defense is common sense programming – if

some of the network nodes gets compromised and starts injecting cryptographically-

valid traffic, one should locally check the rate at which it is forwarding packets or

performing local operations instead of blindly following the protocol.

Attacks on Join Protocol. Link-layer security protects the wireless network

in “steady” state, when all the nodes have joined and have been provisioned with

necessary keying material. Before we admit a new node in the network, it is neces-

sary to perform some checks. For example, joining a new Wi-Fi network requires the

user to type in the Pre-Shared Key (PSK), which is then used to derive link-layer

keys. More precisely, the joining node and the Access Point (AP) authenticate each

other on the basis of this PSK. In WSNs and IoT in general, the principle is sim-

ilar with the difference being that the PSK is often pre-configured in the firmware

of the device by some out-of-band means. Join protocols are technology-specific

but some common points exist [150, 131, 149]: 1) the joining node may initiate

the join protocol multiple hops away from the gateway; 2) several messages may

need to be exchanged between the joining node and the gateway before the “admit-

tance” decision can be made. This necessitates that intermediate nodes in the mesh

forward the messages that may come from a rogue joining node (attacker), which

opens up the possibility of DoS attacks. Although this threat can never be fully

neutralized, a common strategy is to minimize the damage a potential attacker can

do. As such, one may ensure that joining messages do not instill state information

in the network and can control the rate at which intermediate nodes forward join

protocol messages. Caching at network edges is also a means to avoid unprotected

traffic to traverse the network [149]. The latter is often conflicting with centralized

Authentication, Authorization, and Accounting (AAA) systems, as it puts trust on

individual network nodes that may be compromised.

Attacks on Routing Protocol. Routing aspects of WSNs have long been

an interesting topic for scientific study [71, 119, 110, 1]. Due to their distributed

nature, WSNs are prone to attacks that involve an attacker that can for example

1) selectively forward messages if it is within the network, or jam radio transmissions

and cause collisions from the outside; 2) advertise false routes in order to attract

the surrounding traffic and create a sinkhole, 3) present multiple false identities

to other nodes in order to reduce effectiveness of fault-tolerant schemes; 4) create

radio “tunnels”, so called “wormholes”, between two distant parts of the network in

order to appear closer to the gateway and create a sinkhole at the other end of the
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tunnel. Such attacks can only partly be neutralized by using link-layer security in

order to reject radio frames coming from the outside. When an attacker is inside

the network, i.e. a compromised node, defense requires careful design of the routing

protocol that takes security into account from the beginning [71]. From the point

of view of confidentiality and data origin authentication, such attacks are defended

using end-to-end security mechanisms, where even the on-path attacker is not able

to modify or read the data, as it is not in possession of the end-to-end keys.

Privacy issues. Sensor and actuator networks that make part of our daily life

bring along various privacy issues. While management of data collected by these

networks in itself represents a privacy concern, we focus on information that may

leak to an outsider. Obviously, data confidentiality at the link layer (protected radio

frames) is the first step to improve user’s privacy. In many IoT scenarios, however,

radio communication alone suffices to reveal some information about the user. For

example, a presence sensor may initiate radio communication when a person enters

a building [164] or a light switch may indicate that the state has been toggled by

emitting a radio frame. Typical defense would involve injecting dummy traffic in

the network but that may not always be feasible due to the local energy constraints.

5.2.2 Internet Threats

We noticed in the previous section that link-layer security presents the first line of

defense against typical attacks launched in the radio range. The main disadvantage

of link-layer security is that each node on a potentially multi hop path1 needs to

be trusted. Limits of link-layer security are typically overcome by establishing an

end-to-end security channel between the node and final destination, whether the

destination is the network gateway or a device outside the local network.

Indeed, as if large networks of constrained devices did not have enough secu-

rity concerns on their own, IoT brings Internet Protocol (IP) connectivity to each

device and makes it potentially accessible globally. However, there are techniques

which can be used to ensure IP connectivity while the constrained nodes are well

protected behind the gateway. Most notably, IoT gateways can 1) provide fire-

wall and cautiously filter packets that are forwarded to the constrained part; 2)

run proxies that cache latest sensor readings and serve cached readings to external

clients, that perceive transparent communication with the constrained node; 3) run

application-level services and completely prevent the communication of constrained

nodes with the outside. To date, scenario 3) has been most widely deployed. In

that case, network gateway performs all security-related operations, such as au-

thentication, authorization and/or access control on behalf of the nodes and remote

users. Attacks to obtain control of the gateway are therefore the most attractive

to external attackers, but in our context are not interesting as they are defended

using traditional Internet protocols (TLS, OAuth).

1If we consider sinkhole and wormhole types of attacks, the attacker may very well be on every

path in the network.
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5.2.3 Application Requirements

Typical security requirements of IoT applications are similar to those in the tradi-

tional Internet:

1. End-to-end security. From the perspective of the user2, assurance that

the information (sensor readings, actuator status, possibly low-power video

surveillance) indeed comes from the network (or nodes) in question, and is not

forged by the attacker. In the same time to preserve privacy, confidentiality

of data in transit is required.

2. Authorization and Access Control. Authorized (remote) access to the

abstracted physical resources in multi-user settings.

In Chapter 8, we discuss why solutions adapted for the traditional Internet

are not necessarily suitable candidates for IoT and then attempt to meet these

requirements by proposing a system level architecture.

5.3 State of the art

Research and standardization efforts around secure IP-based WSNs follow the TCP/IP

architectural model by having security features embedded in different layers of the

protocol stack. In this section, we survey the state of the art accordingly and present

the most relevant literature for security-related contributions of this thesis.

5.3.1 Link-Layer Security and IEEE 802.15.4

First release of IEEE 802.15.4 standard from 2003 included support for confiden-

tiality, data integrity, replay protection, and basic access control through its security

extension based on Counter Mode Encryption and Cipher Block Chaining Message

Authentication Code (CCM) mode. Soon after, Sastry et al. published an analysis

discussing main concerns that may arise in practical implementations [136]. Most

notably, they discuss insecurity of the cipher suite that only provides encryption

without data integrity and possible DoS attack that can be mounted with a single

forged radio frame. It is interesting to note that the cipher suite in question will

finally be removed from the specification in the 2015 revision of the standard –

more than a decade later. The authors also discuss problems with Initialization

Vector (IV) management to avoid nonce reuse, as well as security concerns with dif-

ferent keying schemes. These have mostly been addressed in 2006 and 2011 revisions

of the standard.

Performance of IEEE 802.15.4 link-layer security has ever since been an inter-

esting topic for study. Many authors [28, 24, 3, 126] analyze the impact of IEEE

802.15.4 security processing on network performance. What is interesting is that

2User in this context simply represents the consumer of the information. It does not necessarily

imply a human user – it can be another (constrained) node outside of the local network.
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conclusions of these studies are somewhat contradictory and often related to the

methodology and idealization of practical issues.

On one hand, authors that use analytical approach to model energy consump-

tion [28, 109] or simulations [24] observe significant degradations to network per-

formance. For example, Daidone et al. [28] report energy consumption that is

61% higher when security features of IEEE 802.15.4 are used. Similarly, Mura et

al. [109] conclude that due to longer packets and intense calculations, security op-

erations may represent the dominant part of the overall consumption – up to 90%

depending on payload size and ciphers used. These figures, on their own, would

make any system designer think twice3 before enabling security features.

On the other hand, Altolini et al. [3] report on a hardware-accelerated imple-

mentation and present results that lead to 2% increase in energy consumption on

AVR XMEGA AU based board. Same authors discuss that if software-based imple-

mentation of Advanced Encryption Standard (AES) is used, overall energy penalty

increases up to 25%. In our studies, we find the cost of IEEE 802.15.4 security in

the context of energy harvesting devices to range from 1.75% to 3.96%. In Chapter

6, we discuss in more details the origins of such discrepancies.

Raza et al. [126] confront the performance of IEEE 802.15.4 link-layer security

with that of the end-to-end IPsec protocol. They show that IPsec outperforms link-

layer security with increasing payload size and increasing number of intermediate

hops. Although such result is indeed interesting, we believe that the two mechanisms

serve very different requirements and that their direct performance comparison

might be misleading.

Other authors tackle different aspects of key exchange schemes. Meulenaer et

al. compare the key exchange energy cost of a Kerberos trusted third-party system

against an Elliptic Curve Diffie-Hellman (ECDH)-Elliptic Curve Digital Signature

Algorithm (ECDSA) public-key protocol [29]. In their evaluations, authors clearly

distinguish the cost of the cryptographic processing from the communication cost

and show that Kerberos outperforms ECDH-ECDSA key exchange by one order of

magnitude. Khan et al. [78] evaluate a secure data exchange protocol built on top of

the IEEE 802.15.4 layer, including a key exchange mechanism using the simulation

engine Artifex. Mǐsić [105] analytically models different key exchange mechanisms

and evaluates their impact and computation complexity on the network lifetime.

5.3.2 End-to-End Security at the Network Layer

Ever since the efforts on integrating Wireless Sensor Networks with the Internet

have begun, the so-called blanket coverage at the network layer has been considered

a potential solution to provide end-to-end security services [98]. The literature

widely discussed the feasibility of porting the IPsec protocol suite to smart objects

[49, 132, 46, 125, 126, 47]. The authors mostly evaluated the processing overhead

and energy requirements of different cryptographic suites used by IPsec, but also

the memory footprints and system response time [125, 126]. Even though it was

3More likely infinite number of times.
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initially considered too heavy for constrained environments, these results led to the

common conclusion that a lightweight version of IPsec is a feasible option.

In the Internet, IPsec mostly secures Virtual Private Networks (VPNs). Being

at the network layer, it is perfectly suited for such applications where “blanket”

coverage is actually desirable (enterprise networks for example). However, as it

commonly resides in the Operating System kernel, it is impractical for typical IoT

applications. The requirement that an end user needs to configure the host Op-

erating System and IPsec for securing communication with smart objects would

probably result in questionable security practices. Moreover, integrity at the net-

work layer would prevent any protocol mappings. Namely, as the IP payload is

being authenticated, there would be no way of performing Hypertext Transfer Pro-

tocol (HTTP)/Constrained Application Protocol (CoAP) mapping at the network

gateway. CoAP, however, has been designed from the very beginning to facilitate

this for legacy hosts in the Internet.

5.3.3 End-to-End Security at the Transport Layer

Impracticality of IPsec has been overcome in the Internet by introducing the security

services just below the application layer, in the form of Transport Layer Security

(TLS)/Secure Sockets Layer (SSL). The wide and successful use of this model in

the Web has also suggested its use in IoT. Indeed, the first proposal on using

SSL for smart objects, nicknamed Sizzle, came in 2005 from SUN Microsystems

[50]. The authors evaluated the HTTPS stack that leverages assembly optimized

implementation of Elliptic Curve Cryptography (ECC) as a public-key algorithm.

At the time of the publication, however, there was no common agreement on the

transport protocol to use. Consequently, the authors implemented their own reliable

transport protocol. SNAIL [56] complemented this work by introducing SSL on

an all IP architecture, leveraging the 6LoWPAN adaptation efforts done in the

meantime. Together with the introduction of IP to the embedded world came the

dilemma whether Transmission Control Protocol (TCP) is suited or not, due to

its connection establishment overhead, poor performance in case of lossy networks

and short term connections. For this reason, latest standardization efforts [144]

assume User Datagram Protocol (UDP) at the transport layer, leaving reliability

as an option to the application.

Unreliable transport and possible out of order delivery make TLS as is, an im-

proper candidate for IoT. For the reason of securing application level protocols

running over UDP in the Internet, such as Session Initiation Protocol (SIP), Real

Time Protocol (RTP), or Media Gateway Control Protocol (MGCP), TLS has al-

ready been extended to Datagram Transport Layer Security (DTLS) [129, 107],

which introduced additional 8 bytes of packet overhead in the form of the sequence

and epoch numbers that were implicitly known with the reliable transport.

As a straightforward and standardized parallel to the successful model in the

Internet, DTLS has attracted attention of the research community around the In-

ternet of Things [128, 16, 82, 47, 127, 61, 18]. It is interesting to note, however,
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that apart from the known advantage of using an already standardized protocol,

no argument has been given on actual applicability of DTLS for IoT. Kothmayr et

al. [82] discuss the necessity of authenticating both the client and the server during

the DTLS handshake, but their experimental results show significant completion

delays, ranging from 2 to 6.5 seconds. Granjal et al. [47] performed a compara-

tive study on memory footprints, computational time, and required energy between

IPsec protocols and DTLS, using different cryptographic suites. They showed sim-

ilar performance of IPsec and DTLS, except when DTLS is additionally used to

exchange keys with ECDH exchange. Kumar et al. [83] summarized DTLS memory

requirements, communication overhead in terms of the number of messages, and

code size for different cryptographic primitives.

Recognizing the excessive overhead of the DTLS handshake, Hummen et al.

[61, 60] proposed different techniques to lower its impact on constrained devices—

certificate pre-validation and handshake delegation to the“delegation server”. Raza et

al. tackled the same problem by proposing a 6LoWPAN DTLS compression scheme

[128] to reduce packet overhead. This work has been integrated with CoAP and

released in the open-source form [127].

The recent work of Capossele et al. [18] explores the idea of abstracting the

DTLS handshake as a CoAP resource and implementing the handshake procedure

using CoAP methods. The advantage of this approach is that DTLS can leverage

the reliability of confirmable CoAP messages, as well as the blockwise transfer for

large messages. The drawback, however, is lost backward compatibility with the

existing Internet infrastructure.

A significant drawback of using DTLS to secure IoT is its incompatibility with

multicast traffic. As stated by its designers [107], DTLS targets typical connection-

oriented client-server architectures. While some of the IoT envisioned applications

could loosely undergo this assumption, the majority cannot (see Chapter 8). In

fact, group communication support is one of the main features why CoAP protocol

has been standardized at all [144].

Additional concern raised by the straightforward, point-to-point use of DTLS

is incompatibility with scenarios where the end-host in the Internet only supports

HTTP/TLS. Brachmann et al. [16] discussed a possible DTLS/TLS mapping done

at the gateway that preserves end-to-end security. While verifying integrity at the

transport layer, however, it is impossible to perform the CoAP/HTTP mapping

at the application layer, because DTLS will detect the alterations and drop the

packets.

Gerdes et al. [43] leverage DTLS to piggyback authorization information to the

constrained node. Such approach is interesting from the point of view of code size,

as an existing DTLS implementation can be extended to provide authorization func-

tionalities as well. Performance-wise and capability-wise, however, this approach

inherits the drawbacks of DTLS discussed above.
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“alg”: “ES256” 
“kid”: “temp.sensor.590E” 

Data 

Signature 
Signed Object 

“alg”: “A128CCM” 
“kid”: “temp-06-04-15” 

Ciphertext 

“IV”: “4ba8bcde39fe” 

Encrypted Object 

Encrypted Object 

Signed Object 

Nested Object 

Figure 5.1: Examples of different secured objects.

5.3.4 Application Layer and Object Security Approaches

Object security is a generic term for cryptographically protected self-contained in-

formation object. Secured objects are typically used to wrap application data, such

as electronic mails. An interesting property of secured objects is their statelessness

– all the information necessary for their decryption/verification is communicated

within the objects which makes object security interesting for secure data storage.

For example, encrypted object in Fig. 5.1 is encrypted with a key whose identi-

fier is “temp-06-04-15”. Party that is interested in decrypting this object should

have the key that corresponds to the “temp-06-04-15” identifier in order to be able

to decrypt the object and access information contained within. If the key is not

available locally, one could request the key from some online registry, such as the

Authorization Server in charge of the domain that manages data access. We show

some basic examples of signed, encrypted, and signed-encrypted objects in Fig. 5.1.

As it can be inferred from the figure, different object security formats allow nesting

of secured objects.

The benefits of object security were recognized and discussed as an option for

securing the IoT [142, 25]. Sethi et al. [142] proposed an architecture relying

on heavy utilization of public-key cryptography and Javascript Object Notation

(JSON) Web Signatures, in order to facilitate the usage of intermediate proxies

that can respond to requests with authentic data on behalf of constrained devices.

Their work, however, does not aim to provide confidentiality and the authors hint

that this could be achieved by performing a Diffie-Hellman (DH) exchange between

a constrained device and a proxy server. Granjal et al. [48] design CoAP security

options to facilitate the transport and signaling of the secured payload, over proxies

and across different security domains. On the other hand, Seitz et al. leverage the

benefits of object security to provide fine grained access control within an assertion-

based authorization framework [140].

5.3.5 Standardization Efforts of IETF

In the following, we briefly survey main standardization activities within Internet

Engineering Task Force (IETF), related to constrained devices and security.

IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH). 6TiSCH work-

ing group of IETF discusses a design of a security architecture to enable bootstrap-
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ping of IEEE 802.15.4 nodes [149, 150, 131]. The main challenge is initial network

access of devices that come from different vendors and therefore belong to different

security domains. Devices are assumed to be pre-configured by their vendor with

some cryptographic material, such as a PSK or a certificate. Once such a device

is admitted into the network, it is necessary to have a standardized mechanism to

setup link-layer keys and other parameters necessary for network operation.

Datagram Transport Layer Security (DTLS). One of the outcomes of

CoAP standardization was to mandate the usage of DTLS, as a parallel to secure

HTTP [144]. As we will see in Chapter 7, this was a heavy choice for networks

where duty cycle must be kept low in order to preserve energy. DTLS In Con-

strained Environments (DICE) working group of IETF works on a recommended

subset of DTLS features and extensions that can facilitate its deployment in IoT

scenarios [164]. For instance, this DTLS profile recommends default retransmission

timeout values to use, session resumption and keep-alive mechanisms in different

IoT settings, as well as general recommendations on random number generation,

among others.

Incompatibility of DTLS with multicast is bothersome in IoT scenarios. Some

proposals within IETF aimed at extending DTLS with multicast support by reusing

its record layer and relying on an independent group key management protocol [74].

These were quickly dismissed, as they revisit the core (D)TLS design assumption

– point-to-point communication. A promising approach to reduce the communica-

tion overhead of the DTLS handshake is the session resumption without server-side

state [135], and the latest version of the DTLS profile for constrained devices [164]

recommends its use. One opposing proposal to CoAP being secured with DTLS

was the establishment of security associations between two endpoints using CoAP

options [180]. While the proposal leverages benefits of having security at the ap-

plication layer, it essentially relies on the concept of a security handshake between

two parties, rendering multicast communication unsupported.

Object security. There are several existing standards that specify object se-

curity format. Cryptographic Message Syntax (CMS) is a historic standard that

is used to secure electronic mails with Secure/Multipurpose Internet Mail Exten-

sions (S/MIME). Another, more recent, examples are formats based on JSON

[66, 68, 65], that were standardized as part of the JSON Object Signing and En-

cryption (JOSE) working group. Both CMS that is based on Abstract Syntax

Notation One (ASN.1) and JSON-based JOSE, introduce significant encoding over-

head that is not acceptable for constrained devices and radio technologies with small

Maximum Transmission Unit (MTU) sizes. For this reason, Concise Binary Object

Representation (CBOR) objects are gaining popularity and in April 2015, a new

working group was created to standardize object security format for constrained

devices: CBOR Object Signing and Encryption (COSE).

Authorization. Authentication and Authorization for Constrained Environ-

ments (ACE) working group of IETF was created in June 2014 to standardize an

authorization solution for IoT. First step in this process was the collection of re-

quirements based on various IoT use-cases [139]. Requirements that are discussed
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by ACE, however, seem to be contradictory with the initial choice of DTLS as a

security protocol, particularly when it comes to proxies and caching. At the time

of the writing, there are three principal approaches that are discussed for the ACE

solution4:

• OAuth. Solution [165, 162, 163] based on the OAuth protocol [53], widely

deployed in the Internet.

• DTLS. A solution called Delegated CoAP Authentication and Authorization

Framework (DCAF) [44] based purely on DTLS.

• Object security. Solutions [141] [c9] that leverage object security to protect

against untrusted intermediaries (e.g. proxies) and support group communi-

cation.

5.4 Conclusion

There are several interesting points that can be taken from the surveyed work

tackling different security challenges around IoT.

On one hand, link-layer security mechanisms represent the first line of defense

to secure the local area network from outsiders and protect the users’ privacy by en-

crypting the data exchanged on the radio channel. The reported performance costs

of link-layer security in the literature are, however, contradictory and dependent on

the evaluation methodology. For this reason, the first question that we answer in

our research is the real-world cost of link-layer security mechanisms.

On the other hand, because IoT application data traverses multiple IoT and

Internet hosts that are not trusted by the user, end-to-end security mechanisms are

a necessary building block of IoT systems. The academic community has mostly fo-

cused on adapting the existing Internet end-to-end security standards to constrained

devices. Reported studies consider the performance costs of an already-established

security session and focus on optimizing the packet overheads by compression, mak-

ing these mechanisms feasible, once the end-to-end session has been established. In

parallel, developments in the standardization communities consider DTLS protocol

as the de-facto solution for securing the IoT. However, DTLS cannot be used to

meet all the IoT application requirements, due to the protocol-level design incom-

patibilities with CoAP.

The applicability of DTLS to IoT environments leads us to another two re-

search questions. To understand the costs of session establishment, the second

question addressed in our research is the performance cost of DTLS handshake in

energy-constrained environments, where network nodes are duty-cycled. As the

third research question, we explore whether it is possible to secure IoT applications

without posing requirements on the communication paradigms from the traditional

Internet, as done when DTLS is used.

4Latest developments in ACE, as of the meeting in Yokohama on Monday, November 2nd, 2015,

consider object security as a building block of all proposed solutions.
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The remaining of this Part details the answers to the three research questions:

1) In Chapter 6, we evaluate the cost of link-layer security in terms of network

performance for wireless networks based on IEEE 802.15.4 standard; 2) In Chapter

7, we study the establishment of a DTLS handshake with the overviewed duty cy-

cling mechanisms; 3) In Chapter 8, we leverage object security to design OSCAR, a

network security architecture that is compatible with caching at untrusted interme-

diaries and group communication, while being backwards compatible with existing

deployments based on DTLS.





Chapter 6

Wireless Network Security and

its Overhead

Link-layer security mechanisms are tightly bound to the underlying radio technol-

ogy. Our study in this chapter focuses on IEEE 802.15.4 networks. We aim at

answering the following question: How much does security degrade network perfor-

mance?

We give an overview of the main IEEE 802.15.4 security features in Section 6.1

in order to study their effect on network performance. On one hand, in beacon-

enabled mode of IEEE 802.15.4 that we use on GreenNet nodes, time latencies

are not critical. However, as with any harvested system, energy is of utmost impor-

tance. We therefore study the energy overhead of IEEE 802.15.4 security processing

on GreenNet nodes in Section 6.2 and compare that to contradictory conclusions

in the literature. On the other hand, Time-Slotted Channel Hopping (TSCH) mode

of IEEE 802.15.4e has an important dependency on security execution time. Min-

imal TSCH slot size that affects throughput and network delay is tightly bound to

security processing. This dependency is the main topic of our study in Section 6.3.

6.1 Security in IEEE802.15.4 networks

Security extension of the IEEE 802.15.4 standard addresses the typical privacy and

security concerns discussed in Chapter 5. The standard completely relies on sym-

AES 

CCM* header 
(in clear) 

key 

counter address 

payload 
(encrypted) MIC 

header 
(plaintext) 

payload 
(plaintext) 

N bytes 

N bytes 

authenticated portion 

encrypted portion 

nonce 

Figure 6.1: IEEE 802.15.4 uses Extension of Counter Mode Encryption and Ci-

pher Block Chaining Message Authentication Code (CCM*) to secure radio frames.

Nonce is created from the address of the sender and monotonic counter to avoid its

reuse and to protect from replay attacks.
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Table 6.1: The security levels in IEEE 802.15.4.

Level Encrypted payload MIC length

MIC-32 NO 4 bytes

MIC-64 NO 8 bytes

MIC-128 NO 16 bytes

ENC YES no MIC

ENC-MIC-32 YES 4 bytes

ENC-MIC-64 YES 8 bytes

ENC-MIC-128 YES 16 bytes

metric cryptographic primitives and it uses CCM* mode to provide confidentiality,

data origin authentication and protection from replay attacks on a per frame basis.

The standard delegates host authentication and key exchange functions to upper

layers of the network stack.

As we saw in Chapter 4, CCM* is a “wrapper” cryptographic primitive around

Advanced Encryption Standard (AES) that uses Counter (CTR) mode for encryp-

tion and Cipher Block Chaining Message Authentication Code (CBC-MAC) for

authentication. It encrypts and/or authenticates an arbitrarily long sequence of

plaintext bytes. When applied to a link-layer frame, this means that CCM* can

encrypt the Medium Access Control (MAC) payload while keeping the MAC header

intact. When used to authenticate a frame, CCM* calculates a Message Integrity

Code (MIC) over the complete frame. This MIC is truncated to the desired length

(4, 8 or 16 bytes), and appended at the end of the frame.

Each frame secured with a given key must use a different nonce. Encrypting

two frames with the same nonce has severe consequences on security: plaintext of

both frames may be easily recovered. By constructing the nonce with a monotonic

counter, it is possible to ensure replay protection for two communicating nodes. We

depict this in Fig. 6.1.

Table 6.1 presents the security levels of IEEE 802.15.4. Levels differ in MIC

length and whether encryption is applied on the payload or not. A longer MIC

provides higher security as the probability of blind forgery by guessing the code is

lower – 2−32, 2−64, 2−128 for 4, 8 or 16 bytes MIC, respectively [136]. A higher

security level induces a larger frame due to the longer MIC, but computational

overhead stays the same. Larger frames can be a concern since IEEE 802.15.4

Maximum Transmission Unit (MTU) is only 127 bytes so longer MIC translates to a

reduction in the available payload size. Each frame can use a different security level.

Local policies dictate if the security level of the received frame should be accepted

or not. These conformance checks are a pre-requisite for the CCM* verification to

be invoked.

Fig. 6.2 illustrates the frame format with security features enabled. Each secured

frame carries an Auxiliary Security Header (ASH) with signaling information related

to the key and nonce. In IEEE 802.15.4-2011, the nonce is created from the address
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of the sender and the local frame counter that increments for each transmitted

frame. The 4-byte frame counter must be signaled to the recipient, and is therefore

included in ASH. Because the recipient keeps track of the last frame counter it

received from a given neighbor, frames are protected against replay attacks. Key

signaling overhead varies with the key management scheme used, and can range

from 0 bytes for implicit keying to 9 bytes. The total ASH overhead (not including

the MIC) ranges from 5 to 14 bytes.

The upper layer sets the specific security level and the key to be used on bea-

con, command or data frames. However, Acknowledgment (ACK) frames in IEEE

802.15.4-2011 do not support security and are always sent in clear.

Header Auxiliary Security 
Header Payload MIC CRC

3B - 23B 0B - 14B 2B0B - 16B

Security
Control Frame Counter Key Identifier

1B 4B 0B - 9B

Security 
Level

KeyID
Mode Reserved

0-2b 3-4b 5-7b

Key Source Key Index

0B - 8B 1B

Figure 6.2: IEEE 802.15.4 frame format with security enabled. Reserved bits are

used for TSCH-related signaling.

6.2 Effect on Energy Consumption with IEEE 802.15.4

Beacon-Enabled Mode

Although beacon-enabled mode of IEEE 802.15.4 requires network-wide synchro-

nization, latency introduced by security operations is not a critical aspect. Rather,

we are interested in energy penalty that security brings along [c6]. One of our goals

is to revisit the results and conclusions published in the literature [109, 28] on the

overall cost of security that ranges up to 91%.

We implemented IEEE 802.15.4 security features for GreenNet nodes and

beacon-enabled mode. We leverage the available AES hardware accelerator. Simi-

larly to the crypto engine implementation presented in Chapter 4, we use hard-

ware implementations of CTR and Cipher Block Chaining (CBC) modes, and build

a CCM* implementation on top1.

We implemented and tested all the security levels specified in Table 6.1 but

present results for the three modes where both confidentiality and integrity of data

1Nodes were clocked at 12MHz in these experiments.
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is desired. It is important to stress that apart from the CCM* cryptographic pro-

cessing, an IEEE 802.15.4 security extension details verification procedures for in-

coming and outgoing frames. These procedures protect from protocol level attacks

on IEEE 802.15.4 nodes and in terms of processing can take as much as hardware-

accelerated crypto overhead. Fig. 6.3 presents the testbench in Crolles, France

where we performed the experiments.

Figure 6.3: Testbench with 18 energy-harvested GreenNet nodes. Nodes are

connected to Universal Serial Bus (USB) for the collection of experiment traces.

6.2.1 Methodology

In our experiments, we study the performance degradation in terms of energy for

a GreenNet leaf node sending temperature readings with a period of 4 minutes.

Therefore, a device spends most of the time sleeping and is woken up by an interrupt

just before the beacon preceding the desired application interval. Consequently, the

device receives the beacon, synchronizes with the rest of the network and transmits

the sensor reading using Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) algorithm. Sensor reading fits within one IEEE 802.15.4 radio frame

and there is no fragmentation even with the highest security level and 16-bytes long

MIC.

We estimate the average power consumption of a leaf node over a sufficiently

long period (6 hours) to derive conclusions regarding the overall effect of security

features on autonomy and lifetime of a GreenNet node.

We estimate energy consumption using Energest, a Contiki per component pro-

filing tool [35]. Energest measures the time spent by different components on a

platform in a given state (for instance, the time Central Processing Unit (CPU)

spent in active or low power mode; radio transceiver in receive or transmit). These

values are converted to energy by multiplying with the constant operating voltage

(we used 3V) and the current draw values from appropriate data sheets. All the
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Table 6.2: Experiment setup.

Settings Value

Operating System Contiki OS

Application Temperature sending, period of 4 min

Network stack CoAP + UDP + IPv6 + 6LoWPAN

MAC and Radio Duty-Cycling (RDC) beacon-enabled IEEE 802.15.4

Beacon Interval 492 ms

Superframe Duration 31 ms

TX power 0 dBm

RF channel 13 and 19 (2.415 MHz and 2.445 MHz)

Experiment duration 6 h

points in the following graphs were averaged over 10 experiment runs, each lasting

6 hours. We detail the experiment setup in Table 6.2.

During its lifetime, a GreenNet node undergoes two distinct phases: 1) boot-

strapping phase; 2) steady state operation according to application requirements.

In phase 1, node needs to discover its environment by passively scanning the ra-

dio channel, to associate (link-layer operation) to the nearest coordinator in the

network and register its application resources to the network gateway. In our de-

ployment, node registers to the network gateway using the ZigBee Smart Energy

Profile (SEP) specification [184]. During this initial phase, node performs extensive

application level negotiation with the network gateway, resulting in high traffic load

and occasionally large application payload. Once the registration is complete, the

node starts to follow its application schedule and wakes up every 4 minutes to send

its current temperature reading. In the evaluations, we distinguish the two phases.

6.2.2 Energy Consumption in Steady State

We first evaluate the main contributors to the overall energy consumption in steady

state (see Table 6.3). We focus on 4 main components: 1) energy spent due to sleep

mode leakages of the Microcontroller Unit (MCU) and the rest of the board – Low

Power Mode (LPM); 2) energy spent due to active CPU computations; 3) energy

spent while the radio transceiver is in receive mode (RX); 4) energy spent while the

radio transceiver is in transmit mode (TX).

We may note in Table 6.3 that without security, as much as 69% of energy is

spent for sleep mode leakages. An LPM drop observed in Table 6.3 with increasing

security level is due to the overhead introduced by other components which effec-

tively results in less time spent sleeping. Therefore, in terms of energy consumption,

security may have an effect on the components that roughly make up one third of

the overall consumption. We can note in Table 6.3 that the percentage of energy

spent on radio communication increases with the security level. A higher security

level corresponds to a longer MIC and a larger byte overhead, which directly affects
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the radio transmission/reception cost. Cryptographic processing causes a sharp

increase in CPU usage from No Security to ENC-MIC-32 modes, while there is a

slight increase among different security levels. CCM* algorithm has constant com-

putational complexity, independent of MIC length and the security level but longer

radio operations prolong the time MCU stays active.

Table 6.3: Steady-state contributors to energy consumption of GreenNet tem-

perature sensor.

Security Level Low

Power

Mode

CPU

active

Radio

RX

Radio

TX

No Security 69.77% 15.77% 10.92% 3.54%

ENC-MIC-32 68.57% 16.35% 11.30% 3.78%

ENC-MIC-64 67.62% 16.63% 11.69% 4.06%

ENC-MIC-128 67.11% 16.80% 11.81% 4.28%

Fig. 6.4 presents the average power consumption measured over the experiment

duration. It is interesting to note in Fig. 6.4 the amount of power drawn while

the radio transceiver is in receive mode. Although the application executing during

the experiments induced typical convergecast traffic, with no packets going in the

downward direction to the nodes, power drawn while receiving is 3 times higher

compared to power drawn while transmitting. Our node sleeps most of the time,

but just before transmitting the sensor reading, it needs to resynchronize to the

rest of the network by receiving a beacon frame at a precise interval. Delays caused

by hardware imperfections, such as crystal oscillator startup delay, calibrations,

clock drifts, and similar, induce margins that are an important component in the

overall power consumption. Roughly 15% of the receive mode consumption comes

from the actual physical reception of a beacon frame, whose size increases with the

security level. As a consequence, 85% of receive mode consumption is due to idle

listening and is security agnostic. Thus, hardware idealizations, as often done in

the literature, can result in misleading results.

We summarize in Fig. 6.5 the overall energetic cost of security for GreenNet

nodes. A clear effect of larger frames due to the larger MIC can be noted for

the radio transmit mode as its consumption is caused by physical transmission.

Fig. 6.5 might be misleading in terms of the consumption in active CPU mode, as

we can observe an increase with the security level, although CCM* has constant

computational complexity. MCU, however, stays in active mode while (longer)

frames are received or transmitted by the radio transceiver. This introduces a

correlation of the nominal energetic cost of CPU computations with increasing

security levels.

Overall cost of IEEE 802.15.4 security in our scenario ranges from 1.75% to

3.96%, depending on the security level. For energy-harvested platforms, such as
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Figure 6.4: Average power consumption of GreenNet temperature sensor over

6 hours.
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GreenNet, this result directly corresponds to the requirement that 1.75% to 3.96%

extra energy needs to be harvested from the environment, in respect to the scenario

without security.

6.2.3 Application Registration Phase

ZigBee SEP [184] defines an application level negotiation protocol for the initial

resource subscription and discovery. In our deployment, we use an optimized ver-

sion over Constrained Application Protocol (CoAP). This initial negotiation phase

results in extensive communication (i.e. high traffic load) between a node and the

network gateway.

Table 6.4: Average power consumption during the application registration phase

(i.e. bootstrapping) using SEP.

Security Level Average Power

Consumption

[µW]

Cost

No Security 733.76

ENC-MIC-32 777.66 5.98%

ENC-MIC-64 802.92 9.43%

ENC-MIC-128 907.93 23.74%

Table 6.4 presents the average power consumption for different security modes

measured during the negotiation phase. First of all, we can notice higher power

consumption, even without security, as nodes do not spend as much time sleeping

but wake up to receive a beacon each 0.48s interval. They engage in bidirectional

communication with the gateway over a period of approximately 10s.

The lower two security levels (ENC-MIC-32 and ENC-MIC-64) cause a moderate

increase in consumption which is to be expected with the increased communication

load. However, the highest security level ENC-MIC-128 introduces a significant,

23.74% increase. The explanation is fairly simple and is due to fragmentation. With

the additional security overhead, some SEP packets exceed the IEEE 802.15.4 MTU

limit and therefore get fragmented. As there were no contending transmissions with

CSMA/CA, fragmented frames only slightly affect the SEP phase duration. Average

power consumption, on the other hand, sees a large increase.

6.3 Effect on TSCH Slot Duration

TSCH mode of IEEE 802.15.4e imposes strict constraints due to the precise timings

within a timeslot. We are interested in quantifying the effect of security processing
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Figure 6.6: The minimal duration of a timeslot in an IEEE 802.15.4e TSCH

network depends on how long link-layer security operations take.

on TSCH timeslot length2 [c3]. The shorter the timeslot, the lower the latency and

the higher the throughput of a network. Yet, how short a timeslot is can depend on

the time it takes to secure/unsecure frames, which involves encrypting/decrypting

and/or authenticating with CCM*. Different platforms have different hardware

capabilities: on some, link-layer security is implemented in hardware; on others,

these operations need to be done in software.

Fig. 6.6 depicts the operations that occur in a timeslot when A sends a data

frame to B:

- A secures the data frame following IEEE 802.15.4 outgoing security procedure

and CCM*. We call this operation sec1.

- At precisely TsTxOffset into the timeslot, A sends this (secured) frame to B.

The transmission of the data frame takes at most TsMaxTx.

- B unsecures the data frame, following incoming security procedure (operation

sec2).

- If the unsecuring operation is successful, B secures an ACK frame (operation

sec3).

- Exactly TsTxAckDelay after receiving the end of the data frame, B sends the

(secured) ACK frame. The transmission of the ACK frame takes at most

TsMaxAck.

- A unsecures the ACK frame (operation sec4). If successful, it removes the

data frame from its transmission queue.

Eq. (6.1) indicates the timing constraints the duration of the security operations

puts on the different TSCH timings. We denote dur(sec1) the duration of sec1.

2Experimentation results presented in this section were obtained by Savio Sciancalepore at

Politecnico di Bari.
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

TsTxOffset ≥ dur(sec1)

TsTxAckDelay ≥ dur(sec2) + dur(sec3)

TsSlotDuration ≥ TsTxOffset + TsMaxTx+

TsTxAckDelay + TsMaxAck+

dur(sec4)

(6.1)

6.3.1 Security Additions Introduced by IEEE 802.15.4e and TSCH

There are several important points that differ between IEEE 802.15.4 and IEEE

802.15.4e in terms of security which are important for understanding the following

results. IEEE 802.15.4e introduces Information Elements (IE) to exchange informa-

tion between neighbor nodes in TSCH networks. Nodes maintain synchronization

by indicating the time correction as part of an IE in ACK frames. An attacker

could perform Denial of Service (DoS) attacks by altering this time correction; for

this reason IEEE 802.15.4e added support for secured ACK frames.

Time synchronization in the network means that all nodes share the Absolute

Slot Number (ASN): the number of slots which have passed since the network has

started. The ASN is forever incrementing3. A common notion of time simplifies

replay protection as a node does not need to maintain a frame counter for each of its

neighbors. Instead, TSCH uses the ASN as a frame counter and omits its inclusion

in the ASH, reducing the overhead by 4 bytes.

The use of ASN in the nonce implies that the sec1 operation can only be done

once the ASN of the slot is known (see Fig. 6.6). In practice, this means that

pre-calculating the sec1 operation is not possible. Operation sec1 includes the key

lookup and CCM* encryption on a potentially maximum length frame (127 bytes).

Before the receiving node can transmit an ACK, it must verify the conformance of

the frame against local security policies and decrypt/authenticate it (sec2). Finally,

the node prepares and secures the ACK frame (sec3), which includes the time cor-

rection indication. Before the time correction can be applied on the transmitted side

(node A in Fig. 6.6), the ACK frame must pass the CCM* check and conformance

verifications (sec4). The duration of the sec1, sec2, sec3 and sec4 operations on

different hardware platforms directly influences the minimum slot duration, which

we evaluate experimentally.

6.3.2 Methodology

Our goal is to quantify the overhead of link-layer security on different hardware

and using different CCM* implementation strategies4. We use TelosB board as

an example platform that has MCU and radio connected over Serial Peripheral

3The ASN is encoded on 5 bytes. With a 10 ms timeslot duration, the ASN value rolls over

every 350 years.
4Following results leverage CCM* implementations that are independent of those presented in

Chapter 4.
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Table 6.5: Implementation Strategies.

strategy AES CCM*

“software” in software in software

“hybrid” in hardware in software

“hardware” in hardware in hardware

Interface (SPI), and OpenMote-CC2538 as an example board based on a System

on Chip (SoC) architecture (see Chapter 2).

We use the OpenWSN implementation on both platforms. OpenWSN protocol

stack includes IEEE 802.15.4e-2012 TSCH, IPv6 over Low-Power Wireless Personal

Area Networks (6LoWPAN), IPv6 Routing Protocol for Low-Power and Lossy Net-

works (RPL) and CoAP [177]. We augment OpenWSN with link-layer security,

implemented using three strategies: in software, in hardware, and a hybrid solu-

tion. As shown in Table 6.5, these strategies differ in whether they exploit hardware

acceleration for AES and/or CCM*.

The “software” implementation strategy consists in implementing both AES and

CCM* in software. The “hardware” implementation strategy consists in exploiting

hardware acceleration for both AES and CCM*. As we could see in Chapter 4, many

solutions offer AES hardware acceleration, but not CCM*. To measure the overhead

of link-layer security on those platforms, we adopt a “hybrid” implementation strat-

egy in which we rely on hardware for AES, but implement CCM* in software. The

hybrid implementation hence uses hardware-accelerated AES block cipher. The rest

of the CCM* algorithm, which includes CTR and CBC-MAC modes of operation,

creation of plaintext and ciphertext is handled through software instructions.

We evaluate minimum obtainable timeslot duration given the duration of the

link-layer security operations that include CCM*. The experimental setup consists

of two nodes forming one network [c3]. One of the nodes is the root of the network,

the other is a leaf node that attaches to the root. In each case, after loading the

appropriate software on the nodes, we boot the root node and wait for the leaf node

to synchronize to it. The root node is attached to a computer; from that computer

we use the ping program to verify connectivity to the leaf node. ping allows us to

choose the size of the payload sent in the ICMPv6 echo request/response packets;

we choose it so that the resulting link-layer frame is always 127 bytes long (the

maximum length for IEEE 802.15.4-compliant nodes).

In OpenWSN, IEEE 802.15.4e TSCH is implemented as a finite state machine.

Different timings, illustrated in Fig. 6.6, cause the state machine to advance. TsTx-

Offset is an example timing: when it expires, the state machine kicks off the

transmission of the frame. This means, at that point in the timeslot, all the opera-

tions for preparing the packet (including sec1) need to be complete. The OpenWSN

implementation is instrumented so that the different timings can be “read” on a set

of digital pins using a logic analyzer. This allows us to measure the duration of the

sec1, sec2, sec3 and sec4 operations, and verify the TsTxOffset, TsTxAckDelay and

TsSlotDuration durations. For a detailed overview of the measurement procedure,
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the reader should refer to Sciancalepore et al. [c3].

6.3.3 Minimal Slot Length

Figs. 6.7 and 6.8 present the minimum obtained TsTxOffset, TsTxAckDelay and

TsSlotDuration durations, for the TelosB and OpenMote-CC2538 platforms, re-

spectively. The hardware implementation strategy results in a shorter slotframe

than the software implementation. Depending on the security level, a hardware-

based implementation of link-layer security will result in a timeslot duration reduced

by a factor of 3 to 4.

The difference in timeslot duration between“software”and“hybrid” implementa-

tion strategies reflects the advantage of having AES execute in hardware. Similarly,

the comparison between “hybrid” and “hardware” implementations reflects the ad-

vantage of a hardware-based CCM*.

On slower platforms such as the TelosB (Fig. 6.7), the biggest gains are made

by running AES in hardware.

The most common security level in TSCH networks (including WirelessHART

and IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH)) is ENC-MIC-32, i.e. frames

are encrypted and a 4-byte MIC is used for authentication. We highlight that secu-

rity level in Figs. 6.7 and 6.8. A full software implementation on an older platform

such as the TelosB results in a minimal timeslot duration of 106 ms. Using hardware

acceleration reduces the time duration by a factor of 4, down to 25 ms. Switching to

a state-of-the-art platforms, which features both faster hardware implementation of

AES and Counter Mode Encryption and Cipher Block Chaining Message Authen-

tication Code (CCM)*, and a single-chip architecture, allows the timeslot duration

to be further reduced by a factor of 2, down to 12 ms5.

6.4 Conclusion

Results of performance evaluation from Sections 6.2 and 6.3 render some common

concluding points. The TSCH case study with stringent timing requirements made

it clear that hardware acceleration of cryptography is also necessary from the latency

perspective. With GreenNet nodes as an example, we could see that link-layer

security and symmetric-key primitives introduce a negligible overhead in terms of

energy, as long as the fragmentation threshold is not reached. Both cases studies

(beacon-enabled and TSCH) indicate that performance degradation of link-layer

security is acceptably low and overweighted by the added-value of services it brings

along. We therefore conclude that future challenges in this context are mostly re-

lated to implementation-level optimizations and tradeoffs that our crypto engine

Application Programming Interface (API) from Chapter 4 tries to tackle. For our

5Latest results that leverage more optimized implementations of IEEE 802.15.4 security proce-

dures and CCM* indicate that OpenMote-CC2538, as well as GreenNet boards using ENC-MIC-32

level can use timeslot duration bellow 10ms.
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Figure 6.7: Minimum timeslot duration for the TelosB mote [c3].
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study, we next consider the problem of end-to-end security, where any intermediate

node on the path of a message may be compromised.





Chapter 7

End-to-End Security with

(D)TLS

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS) [30]

are fundamental protocols supporting secure communication over the Internet. With

the advent of Internet of Things (IoT) and its applications, we face the problem of

supporting communication security for IoT devices that present stringent energy,

memory, and CPU constraints. Datagram Transport Layer Security (DTLS) [129]

is a version of TLS running over User Datagram Protocol (UDP) used by the

Constrained Application Protocol (CoAP) [144], ZigBee IP and Lightweight Ma-

chine to Machine (LWM2M) (other standards for constrained IoT networks) to

secure IoT application traffic.

Yet, running DTLS on constrained IoT devices is challenging, in particular

because of the amount of traffic needed to establish a DTLS session and due to the

memory footprint of a DTLS implementation [60]. DTLS benchmarks exist [47, 127]

and focus on memory footprint and message size for different cipher suites.

IoT devices follow a sleep/wakeup schedule to minimize the time their radio

transceivers are on, which reduces the energy consumption. Duty cycling results

in higher latency and lower throughput, which has a direct impact on the DTLS

performance. The goal of this chapter is to provide a thorough evaluation of the

DTLS performance on top of representative duty-cycled networks. More specifically,

our contributions are the following:

• We measure the duration of the DTLS handshake and energy consumption

for the following three duty cycling protocols: preamble sampling [17], IEEE

802.15.4 beacon-enabled mode [62], and IEEE 802.15.4e Time-Slotted Chan-

nel Hopping (TSCH) [63]. We use several evaluation methods (emulation,

measurements on a real-world testbed, and an analysis) to obtain meaningful

results. This part is the core of the chapter.

• We quantify the impact of the limited memory on the number of simultaneous

DTLS sessions a constrained IoT device can maintain.

• We show that the probability for a DTLS session establishment to fail because

the server runs out of memory to hold the associated state can be modeled

with the Engset loss formula.

The remainder of this chapter is organized as follows. Section 7.1 gives an

overview of the DTLS protocol. Sections 7.2.1, 7.2.2 and 7.2.3 present the experi-

mental and analytical performance results of DTLS on top of duty cycling protocols.
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Client Server

ClientHello
HelloVerifyRequest [cookie]

ClientHello [cookie]
ServerHello
(Certificate)

ServerKeyExchange
(CertificateRequest)

ServerHelloDone
(Certificate)

ClientKeyExchange

(CertificateVerify)
ChangeCipherSpec

Finished
ChangeCipherSpec

Finished
Application Data

Figure 7.1: Message exchange during a DTLS handshake. Messages in parentheses

are not sent for pre-shared key cipher suites.

Section 7.3 discusses the impact of memory constraints on DTLS. Section 7.4 con-

cludes the chapter.

7.1 Datagram Transport Layer Security

Securing application traffic is often achieved by transferring data over a secure

channel between the two communicating end-points. In the network stack, this

secure end-to-end channel can be established at the network layer (e.g. IPsec), the

transport layer (e.g. TLS), or the application layer (e.g. Secure Shell (SSH)). For

application development, security at the transport layer is the most common. The

de-facto security standard for the Internet application traffic is SSL and its Internet

Engineering Task Force (IETF) successor TLS [30]. TLS was designed for client-

server applications that operate over a reliable transport. To establish a secure

channel, a client and a server first perform the TLS handshake during which they

authenticate each other and derive the symmetric keys to use during the session.

DTLS [129] is an extension of TLS for datagram transport and runs over UDP

rather than Transmission Control Protocol (TCP). Like TLS, DTLS protects the

payload with encryption and authentication. DTLS records are 8 bytes longer than

in TLS, as DTLS adds an explicit 8-byte sequence number. Stream ciphers, such as

Rivest Cipher 4 (RC4), create an inter-record cryptographic context that introduces

vulnerabilities with dropped and reordered packets. Consequently, DTLS bans the

use of stream ciphers and relies on block ciphers for encrypting and authenticating

records.

All messages carried by DTLS are encapsulated within DTLS records that add



7.2. DTLS Performance in Duty-Cycled Networks 87

a constant 13 byte overhead per datagram. The Record Layer supports four DTLS

upper protocols: 1) Handshake protocol establishing a secure authenticated session

between two peers, negotiating algorithms, and the key material; 2) Alert protocol

signaling session closure or eventual errors; 3) Change Cipher Spec protocol signaling

modifications to encryption strategies; and 4) Application Data protocol carrying

application data. To deal with Denial of Service (DoS) attacks, the Handshake

protocol uses a stateless cookie exchange: before the server allocates any resources,

the client needs to resend the cookie thus proving that the client can receive messages

at a given Internet Protocol (IP) address.

Fig. 7.1 shows a message exchange during a DTLS handshake. Once the client

has replayed the stateless cookie from the server HelloVerifyRequest message,

the server allocates the necessary resources. It chooses its preferred cipher from

the client cipher set and notifies the client using a ServerHello message. The

messages exchanged during key negotiation depend on the cipher. When using a pre-

shared key, the message containing the server certificate is omitted and the server

optionally sends ServerKeyExchange indicating to the client which pre-shared key

to use. In this case, the two parties authenticate each other with the common secret,

established out-of-band (also used to derive the session keys).

Because of different application types, DTLS has been used differently in IoT

networks and on the traditional Internet. It is very common for a regular Internet

host to establish short-lived TLS sessions, for example when browsing the Internet

https Uniform Resource Locator (URL). An IoT device typically periodically re-

ports sensor readings to a server and therefore uses one long-lived DTLS session,

which is a good thing as constrained IoT networks cannot handle frequent expen-

sive DTLS handshakes, as highlighted in this chapter. However, we are witnessing

the emergence of applications in which mobile workers establish short-lived DTLS

sessions with individual nodes using hand-held devices, for example for mainte-

nance or drive-by metering [139]. In this context, it is important to understand the

limitations of DTLS when duty cycling protocols are used.

In the following sections, we study the effects of duty cycling protocols on the

performance of DTLS through emulation, real-world experimentation, and analysis.

7.2 DTLS Performance in Duty-Cycled Networks

7.2.1 Preamble Sampling Protocols

In this section, we use the preamble sampling protocol X-MAC [17] and its imple-

mentation in Contiki Operating System The period at which a node wakes up is

called the “Check Interval” (Check Interval (CI)); the lower the CI, the more

often nodes check the medium, and the higher their idle radio duty-cycle. Before

sending a data packet, the transmitter repeatedly transmits a special control frame

(called strobe) for at least the CI. For more details on preamble sampling techniques,

the reader should refer to Chapter 3.
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Figure 7.2: Cost of a DTLS handshake in preamble sampling protocols.
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We leverage tinyDTLS1, an open-source DTLS implementation and its port to

the Contiki operating system [151]. We use a pre-shared key cipher suite of DTLS

with Advanced Encryption Standard (AES) operating in Counter Mode Encryption

and Cipher Block Chaining Message Authentication Code (CCM) mode with 8-byte

long authentication tags (TLS_PSK_WITH_AES_128_CCM_8). We evaluate the perfor-

mance of this implementation by emulation, using the instruction-level MSP430

emulator MSPSim, and the Contiki Cooja simulator [113]. We emulate WiSMote,

a popular constrained IoT platform featuring a 16-bit MSP430 micro-controller with

16 kB of RAM running at 12 MHz, and the IEEE 802.15.4-compliant CC2520 radio.

The binary file used for emulation runs on WiSMote hardware.

In the Cooja simulator, we create a linear network of 2 to 5 nodes, depending on

the required number of hops. The DTLS client (on one end of the linear network)

repeatedly performs the handshake with the DTLS server (on the other end). There

is no other traffic in the network. Similarly to Chapter 6, we estimate the energy

consumption using Energest, a Contiki per-component profiling tool that measures

the consumption of both the micro-controller and radio. We average the results

over 1000 DTLS handshakes and present with a 95% confidence interval.

Overall results. Fig. 7.2 shows the measured average handshake duration and

the energy consumption when DTLS runs on preamble sampling protocols, in the

single/multi-hop case, and for different values of CI and link PDR2. The energy

consumption in Fig. 7.2(c) is that of the DTLS client (running at 2.8 V), during the

DTLS handshake. Although absolute energy values are specific to WiSMote, this

platform is representative of hardware commonly deployed today, and the trends in

Fig. 7.2(c) apply to all platforms. Overall, a DTLS handshake takes 1–50 s, with

an energy consumption in 10–200 mJ range.

Impact of CI. At PDR=100%, the DTLS handshake duration and energy

consumption grows linearly with CI. This is expected, as a larger CI reduces the

rate at which nodes can exchange packets (hence a longer duration).

Impact of the number of hops. Similarly, separating DTLS server and

client by additional hops increases the duration of the handshake. For PDR=100%,

the increase is linear (some retransmissions still occur due to the hidden terminal

problem); for PDR<100%, the increase is faster as a packet can be lost on each of

the hops.

Impact of PDR. In any wireless environment, external interference and multi-

path fading cause the PDR to be below 100%. When a DTLS message is lost, a

timeout event occurs at the DTLS layer, which triggers retransmission of DTLS

messages. X-MAC implicitly recovers from lost strobes, but does not detect failed

receptions of data frames as there are no link-layer acknowledgements. This means

that, when a DTLS packet is lost, the DTLS implementation waits for 2 s (the de-

fault tinyDTLS timeout value) before resending, causing a longer latency. Dropping

1 http://tinydtls.sourceforge.net/
2Packet Delivery Ratio (PDR) of a link is the percentage of frames successfully received at the

receiver node. We use the same PDR for all links in the emulated network and control its level

through the Unit Disk Graph (UDG) radio model of Cooja.

http://tinydtls.sourceforge.net/
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the PDR from 100% to 90% roughly triples the handshake duration (Fig. 7.2(a))

and doubles the energy (Fig. 7.2(c)).

Energy Consumption. Fig. 7.2(c) shows how a DTLS handshake consumes

more energy with a larger wakeup interval (longer sleep periods): increasing CI

requires a transmitter to send a longer preamble. At PDR=100%, this increase is

linear. To put this energy into perspective, a DTLS handshake cost of 29.05 mJ

(CI =500 ms, PDR=100%) represents a consumption 5 orders of magnitude lower

than the energy available in a pair of AA batteries. A single DTLS handshake has

hence a negligible effect on the constrained node lifetime. The cost of completing a

single DTLS handshake might be more prohibitive for energy harvesting nodes with

small rechargeable batteries, For example, GreenNet [c2] nodes have a 20 mAh

battery, or 201.6 J at 2.8 V. In this context, a single 29.05 mJ handshake accounts

for 0.0144% of the maximum available energy.

Packet overhead. Once the DTLS session has been established, DTLS with

AES CCM 8 cipher adds 29 bytes to each datagram (including an 8-byte nonce and

8-byte authentication tag), which represents 22.8% of the available link-layer pay-

load space (127 bytes). For the details on byte overhead and possible optimizations,

see Raza et al. [127].

7.2.2 Beacon-Enabled IEEE 802.15.4 Networks

Nodes in a beacon-enabled IEEE 802.15.4 network are organized as a cluster tree:

some nodes are cluster heads (or coordinators), others are leaf nodes. Cluster heads

periodically send beacon frames. A beacon frame indicates the start of a Contention

Access Period (CAP), during which leaf nodes associated with the emitting cluster

head communicate using Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) medium access. After the CAP, and before the next beacon, all nodes

switch their radio off. Because beacons are sent periodically, leaf nodes know when

to wake up for the next CAP. The beacon interval (BI) and the duration of the

CAP (CAP) are tunable, allowing a trade-off between the amount of data that can

be exchanged, and the radio duty cycle. We do not use the Contention Free Period

of beacon-enabled mode.

In our experiments, the DTLS client runs on a leaf node. In the single-hop case,

the DTLS server runs on the cluster tree root, otherwise as a leaf node associated

with the cluster tree root. We force a desired topology by tuning the parameters that

specify the maximum number of associated cluster heads/leaf nodes such that the

association requests are rejected until we obtain the desired topology. That is, we

chain intermediate cluster head nodes between the DTLS client and the cluster tree

root to obtain a linear network from 2 to 5 nodes, depending on the required number

of hops. These cluster heads do not generate any application traffic; they only

transmit periodic beacons and forward packets exchanged between DTLS server,

associated with the cluster tree root, and the client.

We evaluate beacon-enabled mode on GreenNet nodes [c2]. We port the tiny-

DTLS implementation to the GreenNet stack and modify it to use the AES hard-
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ware acceleration block. We run tinyDTLS with exactly the same configuration

as in Section 7.2.1 and estimate the energy consumption using Energest. We then

derive energy by multiplying the values by the supply voltage and the current draw

values from appropriate data sheets.

We obtain all the results in this section from measurements on GreenNet

hardware. They are averaged over at least 500 handshakes and presented with a

95% confidence interval.

Overall results. Fig. 7.3 shows the measured average handshake duration and

the energy consumption when DTLS runs on an IEEE 802.15.4 beacon-enabled

network, in the single/multi-hop case, and for different values of BI and CAP.

Impact of BI. Results in the single-hop case (Fig. 7.3(a)) show how a short

BI shortens the handshake as nodes get more frequent opportunities to transmit.

Similarly, a large CAP gives nodes a long period to communicate; largest evaluated

CAP of 123 ms yields shortest duration of the handshake. A larger CAP increases

the throughput between two nodes, which means that a DTLS endpoint (client or

server) can send its messages within the same CAP.

Impact of the number of hops. Fig. 7.3(b) presents the measured DTLS

handshake duration when DTLS client and server are separated by multiple hops.

As expected, the DTLS handshake duration increases almost linearly with the num-

ber of hops. For values of BI above 250 ms, the successful completion of a DTLS

handshake between client and server multiple hops away requires the configuration

of a large retransmission timeout value, even when there are no packets lost in the

network. We observe handshake durations from 1.88 s to 16.6 s.

Energy Consumption. Fig. 7.3(c) shows the energy consumed by an Green-

Net board running as a DTLS client during a DTLS handshake. The energy

consumption only very slightly increases with BI, as the energy consumption of a

transmitting node in beacon-enabled mode is not a function of the wakeup interval.

Why the energy increases at all with BI is a consequence of the energy spent by the

nodes when sitting idle.

7.2.3 IEEE 802.15.4e TSCH Networks

We derive the expected latency in a TSCH network analytically, and apply it to

DTLS. For more details on TSCH mode, the reader should refer to Chapter 3. We

assume that the centralized scheduler schedules a cell (a [timeslot, channel] pair) to

only a single pair of nodes, thereby avoiding self-interference in the network.

Let C denote the number of cells scheduled in a slotframe between two nodes in

a TSCH network and L the number of timeslots in a slotframe. We consider that

cells are distributed in the TSCH schedule in a uniform fashion, i.e. the probability

for a cell to be assigned to the appropriate timeslot is 1/L. Consider a single-hop

communication between two nodes; we are interested in finding the average latency

D that includes the time a frame spent in a node queue before its transmission and

reception at the destination node.

Let random variable T denote the instant in a slotframe when a frame has
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Figure 7.3: Cost of a DTLS handshake in a beacon-enabled IEEE 802.15.4 net-

work.
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Table 7.1: Single-hop DTLS handshake duration in a TSCH network.

C = 1 C = 2 C = 3

L = 101 5.15s 3.467s 2.625s

L = 1001 50.15s 33.467s 25.125s

been selected from a node queue for transmission. We consider T to be uniformly

distributed over the slotframe length. Note that the instant T corresponds to a

frame that is either self-originated, or received from a neighbor and to be forwarded.

Let X0, X1, . . . , XC−1 denote random variables that correspond to the interval from

instant T until the beginning of the corresponding cell slot. The average latency

until the beginning of the frame transmission is the expectancy of the random

variable Y = min(X0, X1, ..., XC−1). Since the slotframe repeats in time, variables

X0, X1, . . . , XC−1 are also uniformly distributed on (0, L− 1). Assuming L >> C,

the average latency until the beginning of the frame transmission is L/(C + 1)

timeslots. Eq. (7.1) expresses the single-hop latency (in timeslots), taking into

account the duration of the timeslot during which the frame is transmitted, and the

Packet Delivery Ratio P over the link.

Dsinglehop = (1 +
L

C + 1
) · 1

P
(7.1)

To extend Eq. (7.1) to the multi-hops case, we take into account the varying number

of cells on each link. Considering a centralized schedule, the total latency over H

intermediate hops is the sum of individual hop latencies:

Dmultihop =
H∑
i=1

(1 +
L

Ci + 1
) · 1

Pi
(7.2)

We use Eq. (7.1) and Eq. (7.2) to estimate the average duration of a DTLS hand-

shake for typical TSCH values. We consider the same scenario as experimentally

evaluated in Sections 7.2.1 and 7.2.2 (10 link-layer frames carrying DTLS messages)

and a default timeslot duration of 10ms. Tables 7.1 and 7.2 present the estimated

DTLS handshake duration for typical values of L and C and ideal Packet Delivery

Ratio.

We compared analytical results of TSCH with experimental results of beacon-

enabled mode in order to find scenarios where they perform similarly. For a slot-

frame length of 101 timeslots, estimated handshake durations with 1, 2, and 3 ded-

icated cells in TSCH case, roughly correspond to beacon-enabled [BI = 983 ms, CAP

= 61 ms], [BI = 492 ms, CAP = 31 ms], [BI = 492 ms, CAP = 61 ms] configurations,

respectively.
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Table 7.2: Multi-hop DTLS handshake duration in a TSCH network (C=1).

H = 2 H = 3 H = 4

L = 101 10.3s 15.45s 20.6s

L = 1001 100.3s 150.45s 200.6s

7.3 The Impact of Memory Constraints

We have so far focused on the communication aspects of DTLS in duty-cycled

networks. As the role of a DTLS server is often assumed by a constrained device, this

section focuses on the effect of memory limitations on DTLS session management.

RFC 7228 [15] defines three classes of constrained devices: Class 0 (� 10 kB RAM,

� 100 kB flash), Class 1 (∼ 10 kB RAM, ∼ 100 kB flash), Class 2 (∼ 50 kB RAM,

∼ 250 kB flash). According to this classification, WiSMote platform is a Class 1

device, while GreenNet falls in-between Classes 1 and 2.

Because of the way memory is allocated with embedded processors, a typical

implementation statically allocates a number of DTLS “session slots”, limiting the

number of sessions simultaneously open. The memory footprint for a single DTLS

session depends on the cipher suite and key length. The session state includes the

IPv6 address and a port number of the communicating peer, its role (i.e. client or

server), DTLS engine state, master secret, derived keys and other implementation

specific variables. As an example, the tinyDTLS implementation uses ∼ 400 B of

RAM per pre-shared key session, depending on the data type sizes used by different

compilers, memory alignment and hardware architecture. That said, the operating

system and the networking stack account for most of the available memory. For

instance, with 16 kB of RAM available on WiSMote nodes, we could only fit 3

DTLS session slots together with the full ContikiOS and the IPv6 networking stack

including tinyDTLS, and a simple application for evaluation purposes.

We therefore want to determine the probability PB that a DTLS client attempts

to establish a session with a DTLS server where all DTLS session slots are already

occupied. We call R the number of DTLS session slots available at a server. Let

N denote the number of clients interested in establishing a session with the given

server. We model the individual client rate with the exponential distribution of

parameter λ, and the duration of each established session with parameter µ. Gen-

erated traffic in Erlang by each client is then ρ = λ/µ. Under these assumptions,

the blocking probability PB of a DTLS server is simply the blocking probability of

a M/M/R/R/N queue, i.e. the Engset loss formula.

For instance, if we consider R = 3 (the case observed with WiSMote), N = 5

DTLS clients with ρ = 0.5, the blocking probability of a request is ∼ 17%. A DTLS

server may implement different strategies for handling such requests. It may discard

them or decide to close one of the open sessions in order to accommodate the newly

arriving one. In the latter case, performance depends on the session closure policy,

i.e. the appropriate “cache” replacement algorithm.
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7.4 Conclusion

The results of our evaluation reported in this chapter demonstrate surprisingly poor

performance of DTLS in radio duty-cycled networks. Experiments with preamble

sampling protocols show that the total duration of a DTLS handshake can be more

than 50 s, depending on the Check Interval. In the case of the IEEE 802.15.4

beacon-enabled mode, we measure durations up to 35 s with the largest used Beacon

Interval of ∼ 4 s. Handshake duration increases linearly with the number of hops

for both preamble-sampling and IEEE 802.15.4 beacon-enabled networks. We also

derived the analytic expression for latency in TSCH networks and applied it to

estimate the duration of DTLS handshake. For instance, in a typical TSCH network

with 101 timeslots per slotframe, where DTLS server and client are radio neighbors

and have a single dedicated cell for communication, it takes 5.5 s on the average to

complete the handshake. This value decreases to 2.6 s for 3 dedicated cells.

Our results show that using DTLS is acceptable for applications for which a

DTLS handshake is performed a limited number of times during the constrained

node lifetime. For scenarios that require multiple DTLS clients per DTLS server

with constrained resources, we study the blocking probability and show that it

corresponds to the Engset loss formula. Applications expecting a large number of

clients per DTLS server should cautiously weight the benefit of its use. Apart from

these performance issues, DTLS is inherently incompatible with any sort of group

communication and application-level, untrusted intermediaries. We discuss this in

more details in Chapter 8 and consequently propose a system-level solution.





Chapter 8

OSCAR:

Object Security Architecture

for the Internet of Things

Although constrained nodes of Internet of Things (IoT) may benefit from the

existing Internet Protocol (IP) security protocols, their core design assumptions

build upon the connection-oriented security model that poorly fits IoT require-

ments. Research efforts towards the secure IoT have mostly concerned designing

lightweight variants of security protocols and porting them to constrained nodes

[50, 127, 125, 128]. However, they do not pervade sufficiently, which led to a situa-

tion in which the recently standardized Constrained Application Protocol (CoAP)

[144] fully supports the application requirements, but security does not keep up.

Smart devices, due to their severe energy and memory constraints, heavily rely

on group communication, asynchronous traffic, and caching. Supporting a variety of

existing security protocols/mechanisms to specifically target these requirements is

practically impossible due to memory limitations. Internet Engineering Task Force

(IETF) has thus taken a position [144] to reuse Datagram Transport Layer Security

(DTLS), the all-round point-to-point security protocol, to secure the communication

channel between a constrained device running CoAP, in further text denoted as

constrained CoAP node, and a client.

Apart from the performance issues discussed in Chapter 7, incompatibility with

caching and multicast traffic, the DTLS approach has an important impact on

scalability: Memory limitations of constrained nodes restrict the number of DTLS

sessions.

In IoT scenarios such as Smart Cities in which a large number of clients may

communicate with constrained CoAP nodes, the limitations lead to a considerable

load that translates to an increased energy consumption and a shortened lifetime.

We follow the Representational State Transfer (REST) architecture model [41]

to address this problem from a networking perspective and to remove the notion of

state between server and client [c4] [c1]. We achieve this goal by leveraging the con-

cept of object security that concerns data instead of communication end-points. In

the proposed Object Security Architecture for the Internet of Things (OSCAR), we

offload some expensive operations from constrained CoAP nodes to more powerful

servers. Initially, constrained CoAP nodes publish their certificates to Authoriza-

tion Servers and clients contact them to obtain Access Secrets that enable clients

to request resources from constrained CoAP nodes. They reply with the requested
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resources that are signed and encrypted. The scheme couples the object security

principle with the capability-based access control and provides communication confi-

dentiality and protection against replay attacks. We use secure channels established

by (D)TLS for distribution of certificates and Access Secret.

The main contributions of this chapter are the following:

• A new scalable security architecture for IoT that jointly provides end-to-

end security and access control, decouples confidentiality and authenticity

trust domains, and intrinsically supports multicast, asynchronous traffic, and

caching,

• An evaluation of the architecture in a constrained Machine to Machine (M2M)

scenario for two hardware platforms and Medium Access Control (MAC)/Radio

Duty-Cycling (RDC) protocols, on a real testbed and on the instruction level

emulator of Cooja, demonstrating performance benefits with an increasing

number of clients.

The chapter is organized as follows. We discuss the current Internet security

model and the requirements of IoT applications in Section 8.1. We provide a detailed

description of the proposed architecture in Section 8.2. In Section 8.3, we elaborate

on how traditional Cloud services can integrate our architecture. We analyze and

discuss security considerations in Sections 8.4 and 8.5, and present evaluation re-

sults in Section 8.6. We summarize in Section 8.7 main ideas that were interesting

enough to be discussed and considered as potential solutions within standardization

bodies. In that context, Section 8.8 briefs on the typical authorization flows and

explains why concepts introduced by our architecture can be interesting from the

authorization point of view. We conclude in Section 8.9.

8.1 Internet Security Model and IoT Requirements

The Internet relies on the communication model involving end-points. Security de-

sign followed by placing the trust on end-points and securing the communication

channel. With evolving applications, the Internet has become a content distribu-

tion network leveraging the legacy client-server architecture. This paradigm has led

to substantial research efforts on future Internet architectures, such as information

centric networks, like DONA [80] and Content-Centric Networking [64]. Our work

leverages their contributions and applies the general concepts with the goal of pro-

viding a robust, but flexible security approach to IoT and its traffic requirements.

As discussed by Smetters and Jacobson [146], the host oriented paradigm has

a direct consequence on trust – its transitivity: Once a logical connection between

the hosts is closed, the trust in the information is gone. The model serves very well

typical e-commerce, e-banking, or IP telephony applications, because the trust in

the information is implicitly dependent on the trust of the communicating entities

during the connection time. However, considerable issues arise when the notion of a

connection disappears. As stressed by Modadugu and Rescorla [107], Domain Name
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System (DNS) is purposely secured with the application level Domain Name System

Security Extensions (DNSSEC) and not with a connection-oriented protocol such

as DTLS. Content oriented security schemes such as Secure/Multipurpose Internet

Mail Extensions (S/MIME) or Pretty Good Privacy (PGP) secure electronic mails

that pass multiple application level gateways without a clear connection between

end-points. IoT applications behave similarly:

• Application traffic is asynchronous. Constrained CoAP nodes (event detec-

tors, monitoring sensors, smart meters) notify their clients (subscribers) of

measured values or physical state changes as they happen. Clients send com-

mands to actuating devices asynchronously in reaction to the changes in the

environment. DNS traffic is a good parallel as asynchronous human actions

trigger name resolution.

• Caching is a must. Severe energy constraints of sensor nodes lead to long

sleep periods with less than 1% of duty cycles. In this case, caching sensed

data at untrusted intermediaries appears as an important means for keeping

applications running independently. Electronic mails face a similar problem

as they may go through untrusted servers until delivery.

• Group communication is frequent. In common IoT applications, clients may

want to send messages to a subset of sensor/actuator nodes to perform an

action, for example to turn off all lights on nth floor or to update the firmware.

IPv6 multicast and User Datagram Protocol (UDP) provide support for this

type of traffic bearing no connection state between end-points.

Typical Web applications involve a single server and multiple clients [41]. As

a consequence, the server side application may control access after client authen-

tication. IoT reverses this paradigm by having many nodes serving as servers and

possibly many clients taking part in the same application. More importantly, CoAP

nodes may need to reduce their functionalities due to resource constraints. Subse-

quently, access control becomes a distributed problem, especially when taking into

account the recent efforts for decoupling the sensor network infrastructure from

applications [89, 40]. Furthermore, new applications have emerged that use local

databases to store parts of collected data. For example, in Antelope [166] each

constrained node in a network runs a database management system.

For these reasons, the connection-oriented security model does not fit well the

actual IoT needs. Connection time tweaking and keep-alive messages could probably

squeeze in connection-oriented security protocols, such as DTLS or IPsec, and work

around the asynchronous traffic requirement. Aside the overhead and performance

issues, this approach would still provide us only with the communication channel

security. To support caching, we would need to trust the intermediate nodes/proxies

to store the data in clear. To support group communications, we would need to open

separate secure connections among group members and/or add additional protocols
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on top of them, which effectively provides redundant security services necessary for

use cases. Such a solution is not a long term approach.

Nevertheless, we need to keep the existing connection-oriented security proto-

cols in the overall IoT picture. In fact, our OSCAR approach relies on secure and

authenticated channels established by DTLS for certificate and Access Secret dis-

tribution. We couple the concepts of connection-oriented security with those of

content-centric networking [64].

8.2 OSCAR

In this section, we introduce the OSCAR architecture and present its main advan-

tages.

8.2.1 Technological Trends and Design Goals

The following trends have guided our design:

• Constraints on energy are almost constant. Without a breakthrough in bat-

tery chemical engineering, the available energy is expected to remain the main

constraint for IoT devices.

• Available memory for embedded devices slowly increases. However, due to

the economical and energy costs caused by leakage, we expect that memory

will remain limited and a determining factor for the unit price.

• Processing capabilities constantly increase even for ultra low-power micro con-

trollers. Thus, we do not see the processing power as a limiting constraint in

the future.

Apart from the sleep mode leakage, radio communications are the main en-

ergy consumer. Thus, our primary design goal is to minimize the number of

frames/packets to transmit or receive for security purposes. We achieve this goal

by leveraging the benefits of public-key cryptography, sparse traffic patterns within

constrained node networks, and messages of limited size – we trade the radio usage

for a higher computation load.

8.2.2 Producer-Consumer Model

We consider IoT, its sensors and actuators, as an interface to the physical world.

Decision takers (human users, intelligence centers, or constrained actuating devices

themselves) base their reasoning and actions on data coming from the sensed phys-

ical phenomena. The relation between the decisions or actions and the sensed phe-

nomena is many to many – a single measurement data may affect multiple decisions

and a single decision may require many different measurements.

Consider for instance a traffic control application in a Smart City. A traffic light

management subsystem may use the current traffic intensity and pollution readings
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Figure 8.1: OSCAR, an object-based producer-consumer security architecture.

from all over the city as input data for control decisions. At the same time, local

readings may influence decisions made on luminosity of nearby street lights.

The producer-consumer model represents well the relations within IoT. Pro-

ducers (smart meters, traditional sensors, motion detectors, etc.) feed Consumers

with the required information. Consumers (actuating devices, collection centers,

human users) gather up the information and may further generate actions. Cloud

Computing and the recent work on data access control [69] take a similar view,

however, Producers in the IoT case are not access control decision makers for the

content they generate, which is rather a policy of the network owner.

8.2.3 OSCAR Security Architecture

Fig. 8.1 presents the OSCAR security architecture. Its main components are the

following:

• Producers: Constrained CoAP nodes that provide data in the form of signed

and encrypted resource representations (temperature, humidity, CO2, etc.).

• Consumers: CoAP clients that request resource representations from Produc-

ers.

• Authorization Servers: They are trusted entities that store certificates of Pro-

ducers, receive registrations of Producers for generated resources, and provide
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Access Secrets protecting Producer resource representations. When a Con-

sumer requests access to a Producer resource, an Authorization Server returns

the Access Secret that allows the reception of the Producer resource represen-

tation.

• Proxy Servers: Provide a caching service between Producers and Consumers

to hide unavailable Producers (when for instance constrained nodes go to sleep

to save energy). They present the same interface to Consumers as Producers.

We assume that Producers and Consumers have valid certificates issued by a

Certification Authority and they have root certificates. A Producer uses its private

key to sign resource representations. An Access Secret is a token generated by

an Authorization Server from which a Producer derives a symmetric encryption

key to encrypt a resource representation. Access Secrets have their corresponding

public identifiers and can be shared among multiple Producers to protect a common

resource. For example, all temperature readings in a building may be protected

using the same Access Secret. Producers/Consumers and Authorization Servers

use a secure DTLS session to exchange cryptographic materials (Access Secrets and

certificates).

Fig. 8.2 presents the principles of accessing resource representations on a con-

strained CoAP node with the role of Producer P . P manages a set of resources

Ri, 1 ≤ i ≤ N and a set of Access Secrets Sj , 1 ≤ i ≤ M obtained from an Au-

thorization Server. Access Secret Sj defines a group of access rights allowing for

different authorization levels. The relation between jth Access Secret Sj and ith

resource Ri depends on authorization policies. As a consequence, this introduces a

memory overhead as it defines the total number of Access Secrets that P needs to
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locally store.

{X}Kj denotes symmetric encryption of X with key Kj derived from Access

Secret Sj :

Kj = f(Sj ,MessageID,CertificateID), (8.1)

where f() is a generic pseudo-random function, MessageID is the message identifier

in the CoAP header, and CertificateID is the node unique identifier contained in

its certificate.

Consumers/Producers and Authorization Servers manage Access Secrets as re-

sources so an Authorization Server can use the idempotent PUT method of CoAP

to create or update them. Once a Consumer obtains Access Secret Sj from an

Authorization Server, it can then invoke the GET method of CoAP on resource

Ri. The Producer returns the resource signed with the Producer private key and

encrypted with key Kj . Fig. 8.3 presents the structure of the signed and encrypted

resource. Only the Consumer that has Access Secret Sj can decrypt the resource.

Note that the Producer pre-signs resources as soon as they become available.

We bind the certificate of a Producer or a Consumer with device firmware and

thus include the list of supported ciphers in the certificate itself. Producers and Con-

sumers can then learn about their supported ciphers from certificates distributed

by the Authorization Server and avoid the cost of cipher negotiation. To support

this way of operation, we require an additional Accept option in the CoAP header

to carry the cipher chosen by the party initiating the request or simply new content

types corresponding to different cipher suites protecting object security payload.

8.2.4 Cryptographic Overhead

OSCAR ensures authenticity and integrity of resources by leveraging digital sig-

natures, which may seem surprising as we target constrained devices with limited

computational resources. However, the use of public-key operations at the level

of semantic content allows decoupling the server-side cryptographic overhead from

network communication: Producers can update their resource representations when-

ever the semantic changes, when it suits their schedule (take for example energy-

harvested devices) and more importantly, while the radio transceiver is turned off.

The burden of digital signature verification is then put on Consumers that have suf-

ficient computational resources. In scenarios where Producers need to verify digital

signatures, like for instance with actuating devices, it is possible to cache already
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verified signed objects, i.e. actuating commands, and reduce the cost of signature

verification to a simple cache lookup.

8.2.5 Packet Overhead

Fig. 8.3 illustrates that apart from the cipher specific overhead, OSCAR requires

two additional fields with each transmitted packet: 1) Access Secret ID, an iden-

tifier of the Access Secret used for the encryption key derivation; 2) CertificateID,

an identifier of the node originating the signed object, that is related to the ap-

propriate certificate. On the reception side, Access Secret ID is used to index the

corresponding Access Secret, and if not locally available to request it from the Au-

thorization Server. Similarly, CertificateID is first included in the key derivation

procedure, and then used to look up the certificate needed for signature verification.

In case the certificate is not locally available, it can be requested from the Autho-

rization Server. The size of the two fields may vary according to the deployment

requirements and if cross-domain communication is desirable. In our prototype

implementation, we use one byte long domain unique identifiers. A major part of

the packet overhead, however, comes from the digital signature. For example, in

the case of Elliptic Curve Cryptography (ECC) and secp160r1 curve, the length of

the signature is 40 bytes, while in the case of a larger secp192r1 curve, it spans 48

bytes. We communicate the OSCAR payload type together with the used ciphers

within CoAP Content-Format option, adding 2 bytes for signaling with respect to

the minimal CoAP header size.

8.2.6 Implementation and Standardization Requirements

Components required for the implementation of OSCAR are already available in

open source form, for instance one can fully leverage the already available imple-

mentations of cipher suites used by DTLS. In effect, the only building block of

OSCAR that needs to complement a DTLS implementation is an object security

parsing library, introducing small memory overhead. For example, our prototype

implementation with custom object security and certificate formats, tailored for

constrained devices, introduced additional 2156 bytes of ROM overhead for the

parsing library and up to 500 bytes of RAM in order to store the minimal necessary

cryptographic material – ECC certificate of a device, the corresponding private key

and the root trust certificate. On top of this, depending on the application require-

ments, varying number of Access Secrets and other certificates may be cached to

improve the performance and avoid communication with the Authorization Server.

Operating at the application layer OSCAR does not require any changes in the

operating system kernel.

8.2.7 Examples

In this section, we give two examples of GET and PUT operations. Algorithm 7

shows the steps for a Consumer (C) requesting a temperature reading by means of a
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GET request to a Producer (P). Communication in Steps 1-6 in both examples uses

a secure authenticated channel established by DTLS. Notice that the Consumer

needs to go through Steps 1-6 only at the beginning and the Authorization Server

(AS) can later update the necessary Access Secret according to the key management

scheme and authorization policies as illustrated in Fig. 8.1.

Algorithm 7 Example of a GET request for example.net/temperature

1: P → AS: example.net has resource ”temperature”

2: AS → P: S1 is the Access Secret for resource ”temperature”

3: C → AS: Request authorization for ”GET URI-Host:example.net URI-Path:

temperature”

4: if AS grants authorization to C then

5: AS → C : (Certificate of P )

6: AS → C : S1, it allows access to ”temperature” at ”example.net”

7: C → P: CoAP GET to example.net /temperature

8: P → C: “ 25.5 ◦C ”, signed with the private key of P and encrypted with a

key derived from S1
9: C decrypts temperature and verifies the signature

Algorithm 8 Example of a PUT/POST request for example.net/frontDoor

1: P → AS: example.net has resource ”frontDoor”

2: AS → P: S2 is the Access Secret for resource ”frontDoor”

3: C → AS: Request authorization for ”PUT URI-Host:example.net URI-

Path:frontDoor Payload:open”

4: if AS grants authorization to C then

5: AS → C: S2, it allows access to ”frontDoor” at ”example.net”

6: C → AS or P: (Certificate of C)

7: C → P: CoAP PUT to example.net frontDoor Payload: ”open”, payload

signed by C and encrypted with a key derived from S2
8: if P decrypts the payload with the key derived from S2 then

9: if P verifies the signature of C then

10: P sets frontDoor to ”open”

The procedure for PUT/POST requests is very similar to GET (cf. Algorithm

8). P needs to decrypt and verify the payload of the request to decide if it is going

to grant it. P can learn the necessary certificate either directly from C or request it

from the Authorization Server. In the case of DELETE requests, a Consumer would

simply need to attach in the payload an encrypted and signed resource encapsulating

a pre-defined token. Similarly to the first example, P can locally cache different

signed resources to avoid signature verification for each request. As a consequence,

the impact on latency can be reduced to network communication delays, with the

processing overhead comparable to the case without security. This yields the effect

of OSCAR on user-triggered actions minimal, while fully leveraging the benefits of
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digital signatures and source authentication.

8.3 Integrating the Internet of Things with the Cloud

OSCAR enables secure integration of data generated within an IoT domain with

various Cloud services by leveraging the capability-based access control. However,

binding the encryption key with the underlying CoAP header prevents storing en-

crypted resources in the Cloud, as the key cannot be derived once the information

from the CoAP header is lost. To support access to IoT data in the Cloud inde-

pendent of CoAP, Authorization Servers can communicate two Access Secrets for a

single resource to Producers – Access Secret SL for protection on the communication

path, and Access Secret SH for protection of the content. The idea is to generate

by a Producer a double-encrypted payload that encapsulates the signed resource.

The Producer can first encrypt offline the signed resource with Access Secret SH
and then, encrypt it the second time with SL for the transmission over the network.

Therefore, Access Secret SH is used for the actual access to the data in the Cloud,

while the purpose of Access Secret SL is to protect from communication-related

attacks, while the data is traversing the network (cf. Fig. 8.4).

CoAP
SH 

Encrypted
Object

Signed
Object

SL 
Encrypted

Object

Figure 8.4: Double-encrypted resource traversing the network to support access-

protected storage in the Cloud. SL and SH denote two independent Access Secrets.

The arrow represents that the encryption key is derived as a function of the under-

lying CoAP header fields.

We assume the presence of a Cloud host that runs CoAP, has SL, and has

subscribed to receive the updates of different resources from Producers (cf. Fig.

8.1). Its role is to decrypt the first encrypted payload bound to the CoAP header

and to store its payload – an access-protected and signed resource. Note that

Authorization Servers provide access to Consumers of resources by sharing with

them Access Secret SH .

8.4 Replay Attack Analysis

Protecting the communication between a Producer and a Consumer against replay

attacks requires maintaining some state between them, which contradicts our goal

of providing a stateless approach to security. The way of deriving the encryption

key from the Access Secret and a MessageID allows the Consumer to detect a

resource replayed by an external attacker. However, this approach is vulnerable to
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Figure 8.5: Continuous-time Markov chain model for the probability analysis

of replay attacks with state space Z = {i, j}, where i ∈ [0, N ] is the number of

messages sent since the last Access Secret update and j ∈ {0, 1} is the possibility

of the replay attack. λ is the rate of outgoing messages and µ is the rate of Access

Secret updates initiated by Authorization Servers.

replay attacks once the Producer or a Consumer looses the MessageID context or

MessageID wraps up. To overcome this problem, we rely on updates of the Access

Secret provided by the key management scheme. Given that the Access Secret is

shared among the members of the group, possibly within the same local network, its

update may trigger a large communication overhead for the constrained network.

For this reason, the rate of Access Secret updates should be chosen in order to

reflect the tradeoff between security and network performance. Furthermore, in

some use cases like overseas container monitoring [139], Internet connection may

not be available at all times, rendering the remote Authorization Server unable to

enforce authorization decisions in real time. Therefore, in this section we consider

random Access Secret updates and obtain insights how the performance of the

system can be optimized depending on different traffic patterns.

We analyze the vulnerability to the replay attack by an external attacker under

the assumption that MessageID handling of CoAP is implemented such that it

can provide long-lived duplicate detection. In that sense, we assume that Producers

and Consumers monotonically increase local MessageID variables and keep track

of their communicating peers. We model the evolution of MessageID, local to the

sender of a given CoAP message containing a resource payload, with a continuous-

time Markov chain illustrated in Fig. 8.5. N represents the maximum number of

MessageID increments before the variable wraps up. Parameter λ is the rate of

outgoing messages and parameter µ is the rate of Access Secret updates initiated

by the Authorization Server. In CoAP specification [144], MessageID uses 16 bits

allowing for the maximum of 216 − 1 uniquely identified messages.

Once the MessageID wraps up, a network adversary can replay old messages

with a MessageID greater than the current one. Since the encryption key of the

message payload depends on MessageID, such an injection would pass unnoticed at

the Consumer, and it would accept an old message as a fresh one. Updating Access

Secrets over time can protect the nodes from such an attack. We need to keep the

probability of the attack as low as possible by using different Access Secrets, which

will help us to parametrize the frequency of Access Secret updates as a function of



108
Chapter 8. OSCAR:

Object Security Architecture for the Internet of Things

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

V
ul

ne
ra

bi
lit

y
to

R
ep

la
y

A
tt

ac
k

Access Secret Updates (updates/day)

λ = 60 packets/hour
λ = 30 packets/hour
λ = 15 packets/hour
λ = 7.5 packets/hour

Figure 8.6: Vulnerability to replay attacks for a varying Access Secret update

rate.

the expected λ.

As we can notice in Fig. 8.5, a node enters the states at which replay attacks

are possible, if there was no update of the Access Secret by the time MessageID

wraps up. At any instant, the update of the Access Secret effectively resets the

Markov chain to the initial state {0, 0}. We are interested in finding the sum of

stationary probabilities πi,j of the states at which the replay attack is possible:

Preplay =

N∑
i=0

πi,1 (8.2)

We can observe that:

πi,1 = π0,1(
λ

λ+ µ
)i, i ∈ [1, N ];π0,1 = π0,0

1

(λ+µλ )N+1 − 1
;π0,0 =

µ

λ+ µ
(8.3)

From Eqs. 8.2 and 8.3, with ρ = λ/µ, it follows that:

Preplay = π0,0
1

(λ+µλ )N+1 − 1

N∑
i=0

(
λ

λ+ µ
)i =

1

(1 + 1
ρ)N+1

(8.4)

Since the encryption key is bound to the Producer unique identifier (cf. Eq.

8.1), probability Preplay is independent of the number of nodes sharing the same

Access Secret, which is particularly important for the scalability of OSCAR. We

plot this probability in Fig. 8.6 for N = 216−1 and a varying Access Secret update

rate.
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8.5 Security Considerations

Denial of Service: OSCAR takes a non-traditional approach to fight Denial of

Service. It builds upon the assumption that typical IoT resource representations

are small in size (individual measurements of physical quantities, actuator state

changes) and directly responds to requests with access-protected resource repre-

sentations. Moreover, it does not keep any state between communicating entities,

which we find particularly important to fight memory exhaustion attacks. Note

also that since digital signing operations are done offline, the intensity of incom-

ing traffic is not correlated with asymmetric cryptographic overhead. Clearly, in

the case of large resource representations such an approach is a security concern.

Producers could limit the response rate locally and define a resource size threshold

above which a Consumer would need to include an encrypted object in the payload

of a request, proving the possession of the appropriate Access Secret.

Confidentiality: As nodes use resource encryption keys derived from Access

Secrets, OSCAR provides confidentiality within the resource access right group.

The actual security properties depend on the algorithm used for encryption. Note

that if an adversary is able to compromise Authorization Servers, it may only eaves-

drop – E2E integrity and authentication properties are preserved.

Replay Protection: Another concern related to the replay attack is a mali-

cious adversary within the resource access right group. Such an “insider” can inject

old resource representations making other members of the group believe they are

fresh (if within the content itself, there is no means allowing the detection of an old

reading/command, i.e. a timestamp). The protection of nodes from such adversary

would require the use of time within signed objects for replay protection or a more

complex Access Secret management scheme/protocol. For instance, one could use

the recently proposed one-to-many scheme by Szalachowski and Perrig [152] that

achieves asymmetry by using Berkovits’ protocol [13] and Shamir’s secret sharing

scheme [143]. The threat model assumed by Szalachowski and Perrig allows the at-

tacker to be within the “privileged” group, which in our case corresponds to nodes

sharing an Access Secret.

Integrity Protection of the CoAP Header: Since OSCAR does not pro-

vide integrity protection of the CoAP header, a network adversary can launch at-

tacks by altering its fields. For instance, an adversary could replace Uniform Re-

source Identifier (URI) of a PUT/POST/DELETE request with another one in case

the resources are protected with the same Access Secret. To protect nodes from

such attacks, it would suffice to include different fields of the CoAP header in the

key derivation procedure of Eq. 8.1 (URI path, method code, token, options, etc.).

Node Compromise: Similarly to the most Internet security protocols, OSCAR

in its design does not assume adversary’s capability to physically compromise end-
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points (producer, consumer) and the extraction of sensitive cryptographic material

(private keys, Access Secrets). However, given that in many IoT deployments nodes

may be physically accessible by third parties the risk should not be neglected. Note,

however, that the compromise of intermediary proxies, from the security point of

view, is oblivious to other participants in the architecture, as proxies are not re-

quired to decrypt secured objects and therefore do not keep Access Secrets in their

memory. On the other hand, in case producers or consumers can be tampered

with, OSCAR may be extended with an independent scheme for detection of com-

promised nodes which should trigger the update of affected Access Secrets in the

network. An adversary in possession of an appropriate access secret and the private

key is able to inject false data and more importantly, to control actuators within

the deployment. Therefore, to mitigate this risk vendors are encouraged to provide

tamper-resistant components with their IoT devices.

8.6 Performance Evaluation

We have implemented an OSCAR library with custom object security format tai-

lored for constrained devices under the Contiki operating system. The library builds

upon the open source implementation of ECC cryptographic primitives – TinyECC

[95]. We use Advanced Encryption Standard (AES) in Extension of Counter Mode

Encryption and Cipher Block Chaining Message Authentication Code (CCM*)

mode [37] for symmetric encryption. The library supports creation, parsing, and

verification of “encrypted” and “signed” object types. A certificate is then just a

particular type of a “signed object” with a pre-defined format, providing the binding

of a public key with device identity. We have coupled the object security library

with Erbium CoAP, a default CoAP implementation for Contiki (version 07) to add

cipher suite negotiation capabilities.

We have evaluated three important aspects of OSCAR: 1) The computation

overhead of Elliptic Curve Digital Signature Algorithm (ECDSA) on constrained

nodes, 2) Scalability in M2M communication scenarios, 3) The impact of radio duty

cycling mechanisms on the performance. We have performed our experiments on

two hardware platforms that represent the characteristics of two generations of IoT

devices:

• WiSMote board [179] based on 16-bit MSP430 (series 5) Microcontroller

Unit (MCU) with 16 KB of RAM and an 802.15.4-compatible CC2520 radio

transceiver. We obtain the WiSMote related results using the instruction level

MSP430 emulator MSPSim and the Contiki simulator Cooja [113]. We have

confronted the results of the ECDSA overhead from the emulator in Cooja

with those obtained on the real WiSMote hardware and we have measured a

maximum error of 2.67%.

• GreenNet board [c2], based on an ultra low power 32-bit ARM Cortex-M3

MCU (STM32L) with 32 KB of RAM and an 802.15.4 radio transceiver. Mote
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details on GreenNet boards are available in Chapter 2. We have obtained

the reported results on an operational hardware platform.

To eliminate the effect of a variable CPU frequency on results, we have config-

ured both platforms at 21.3 MHz. MSP430 series 5 may be configured up to 24

MHz, while the STM32L can be clocked up to 32 MHz. Both computation time

(inversely proportional) and MCU energy consumption (directly proportional) are

linearly dependent on frequency.

We estimate energy consumption using Energest, the Contiki per-component

profiling tool.

8.6.1 ECDSA Computation Overhead

In Chapter 4, we presented the evaluation of ECDSA overhead for GreenNet

and WiSMote boards. See Figs. 4.2(a) and 4.2(b). The computation overhead

ranging from 0.3 to 0.9 seconds for GreenNet and from 1.18 to 3.63 seconds for

WiSMote may seem a huge price to pay. In fact, Hummen et al. argued that for this

reason, we should minimize the number of public-key operations during the security

handshake [61]. OSCAR, however, compensates for this overhead by removing the

radio energy cost of the security handshake with every Consumer.

These figures for two generations of IoT devices strongly support our initial

design assumption on processing capabilities (cf. Section 8.2.1). Whatsoever, we

expect that further advancements in the chip manufacturing technology will addi-

tionally reduce the energy and computation costs for low power MCUs.

8.6.2 Scalability

Our goal in this section is to determine if OSCAR and the heavy use of ECC public-

key primitives outperform a connection-oriented approach with DTLS that uses only

lightweight symmetric key operations during the handshake (pre-shared key cipher

suite). Note that the use of cipher suites employing public-key cryptography during

the DTLS handshake significantly increases the computation overhead. As a result,

presented DTLS results correspond to its least expensive case.

We study scalability as a function of the ratio between the total number of

DTLS clients (in case of OSCAR, Consumers) and the maximum number of open

sessions at a DTLS server. Due to memory limitations, constrained CoAP nodes

may have a limited number of DTLS session“slots”. We have followed the guidelines

on DTLS practical issues (cf. Section 2.1 in the guidelines [54]) and extended

the TinyDTLS implementation [111] with the Least Recently Used (LRU) session

closure algorithm. The server immediately releases memory and sends a closing

alert to the LRU session as soon as a new client has demonstrated good intentions

by retransmitting the stateless cookie in the ClientHello message (recall the DTLS

handshake). Therefore, the handshake with the new client proceeds immediately.

Clients keep their sessions open as long as possible, i.e. until they receive the

closing alert from the server. In the case of OSCAR, the concept of session slots
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does not apply, and the horizontal axis simply denotes the number of Consumers.

For example, client/session slots ratio of 16/3 for OSCAR signifies 16 Consumers

in the network.

The maximum number of DTLS session slots depends on the platform mem-

ory capabilities and actual application memory requirements. With the full IPv6

networking stack of Contiki and a simple application for evaluation purposes, we

could have a maximum of 3 session slots on WiSMote (TinyDTLS implementation).

However, we should not generalize this number as it depends on the implementa-

tion specifics of an application and the operating system. We have used the same

number of slots on the GreenNet platform as well to obtain comparable results.

Note that we use two different RDC protocols for the two platforms to test the

performance of OSCAR and DTLS running on top of asynchronous (X-MAC / WiS-

Mote) and synchronous (beacon-enabled IEEE 802.15.4/GreenNet) RDC proto-

cols. We set the Beacon Interval of beacon-enabled IEEE 802.15.4 to 122.88 ms

to have comparable delays with X-MAC (default channel check interval of 125ms).

We summarize the experiment setup in Table 8.1. Simulations in Cooja assumed

a star network topology with one Producer (DTLS server) being at the center of

the network (it is a radio neighbor for each Consumer and the preferred parent in

the RPL DODAG). Note that due to the specifics of beacon-enabled 802.15.4, one

node in the network has a mere role of being the PAN coordinator and transmit-

ting periodic beacons. Other nodes in the network associate with it (L2 operation),

which effectively introduces an extra hop between Consumers and the Producer, in

respect to the network evaluated in Cooja.

Table 8.1: Experiment setup.

(a) GreenNet

Settings Value

Radio Duty-Cycling beacon-enabled

IEEE 802.15.4

Beacon Interval (ms) 122.88

Superframe Duration (ms) 15.36

(b) WiSMote

Settings Value

Radio Duty-Cycling X-MAC

Channel Check Interval (ms) 125

Channel Model Unit Disk Graph

We use a recent 6LoWPAN compression scheme of DTLS named Lithe [127]

to maximize its performance. OSCAR Consumers and DTLS clients send a single

GET request for a resource on the Producer node (DTLS server) according to the

exponential distribution with a mean of 0.5 requests per minute. If the DTLS
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session is found open, the request is sent directly without waiting for the handshake

to complete. If not, the client first performs a DTLS handshake with the server.

Responses contain a resource representation with 25 byte length. In case of OSCAR,

this representation is transferred as the appropriate encrypted and signed object

type.

Resource signing load at the Producer is an important aspect of performance

evaluation. We define parameter β as the mean re-signing interval such that

β = t/N , where N is the total number of secured resources on the Producer,

and t is the average resource update time (for instance, updates of temperature,

pressure, CO2, etc.). We evaluate OSCAR for β values of 30, 60, and 120 seconds,

to account for use cases in which high, medium, or low signing load is needed.

In the case of OSCAR, we use pre-shared access secrets and certificates to de-

crypt and verify encrypted and signed objects. Similarly to the work of Hummen

et al. [61], we use the secp160r1 elliptic curve. Objects are encrypted using the

CCM* mode of AES. Similar assumptions apply to DTLS as well: It uses the

TLS PSK WITH AES 128 CCM 8 pre-shared key based cipher suite. As a con-

sequence, DTLS only uses symmetric key operations during the handshake. We

have run experiments/emulations over 3 hours and plotted 5 run averages with

95% confidence intervals.

Figs. 8.7(a) and 8.7(b) show the impact of the traffic generated by OSCAR

on energy consumption. For medium intensity signing load (β = 60s), in case of

WiSMote, OSCAR crosses the energy performance of compressed DTLS when the

client/session slot ratio is approximately 1.3. In case of the GreenNet platform,

the crossing point increases to approximately 2.15. The crossing points of DTLS

and OSCAR curves are mainly influenced by the computation/transmission con-

sumption ratio specific for the MCU/radio transceiver pair. For instance, in the

case of WiSMote platform and DTLS with 16 clients in the network, 13.4% of total

consumed energy is spent on MCU computations, the rest accounting for radio com-

munication. In case of the GreenNet platform, due to the different MCU/radio

transceiver consumption ratio, the percentage accounting for MCU computations

increases to 21.2%. For OSCAR and the medium intensity signing load, this per-

centage increases to 27.9%, due to the heavy utilization of public-key operations

and less radio overhead. The results on crossing points are therefore particular for

the two evaluated platforms. Nevertheless, the MCU/radio transceiver combina-

tions on the evaluated platforms are very representative – 16-bit Central Processing

Unit (CPU) and an old generation radio (WiSMote) and a powerful 32-bit CPU with

a prototype low consumption radio transceiver (GreenNet), allowing to estimate

the crossing points for a wide range of platforms, between the two demonstrated in

our results.

Although our initial design goal was to relieve constrained Producers from traffic

and to place burden on Consumers, we can notice in Fig. 8.8(a) that even for

client/session slot ratio of 3.7 and 4.17, for WiSMote and GreenNet, respectively,

the ECDSA verification results in better performance than using the compressed

DTLS approach. Note that in our evaluations, we use constrained Consumers as
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Figure 8.7: Power consumption of a Producer averaged over the experiment time.
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well thus accounting for the worst case. In IoT use cases, we expect that a significant

part of Consumers will include more powerful devices such as smartphones, tablets,

laptops, or powerful Cloud servers. From the experimental data, we also obtained

an interesting indicator on how OSCAR trades off radio communication at the

cost of higher computation load. For example, in case 16 clients are present in

the network, a node running DTLS client on WiSMote spends 24.9% of energy

during a request-response exchange (possibly including the DTLS handshake) on

MCU computations, the rest accounting for radio communication. In the same

scenario, OSCAR Consumer spends 83.2% of the energy on MCU computations.

With GreenNet platform, the distribution is even more appealing – 20.3% of

energy spent on MCU computations with DTLS, and 90.1% with OSCAR.

Finally, we evaluate the request-response latency in Fig. 8.8(b). As we can see,

MCU computation capabilities greatly affect the result of OSCAR as most of the

latency comes from the ECDSA verification. On the GreenNet platform, we have

observed an increased number of failed DTLS handshakes for the largest evaluated

network with 16 clients due to the stochastic nature of radio links. Note that DTLS

curves exponentially increase with the number of clients, but are expected to satu-

rate for denser networks. The exact saturation point depends on the configuration

of the DTLS retransmission mechanism (we have used the default retransmission

timeout of 2 seconds).

The eventual usage of larger ECC curves will affect the performance results of

OSCAR in two main aspects: 1) Increased computation overhead for signing and

verification; 2) Radio communication due to the increased length of ECDSA signa-

tures. We believe that aspect 1) will be outweighed by the technological advance in

computation capabilities of low-power micro controllers, coupled with increasingly

popular adoption of ECC-based hardware accelerators. On the other hand, the us-

age of larger ECC curves will render larger ECDSA signatures and so the increased

per-packet overhead and radio communication. This may be a concern for networks

relying on link-layer technologies with very limited frame sizes, such as 802.15.4,

as fragmentation threshold may be reached, and thus a mechanism for signature

amortization over multiple packets would benefit OSCAR.

8.6.3 Impact of Radio Duty Cycling

We further demonstrate that the results of OSCAR are agnostic of the duty cycle

in the network by evaluating the performance over variable sleep schedules. We

study the impact of the main RDC parameters affecting the sleep schedule for the

two platforms: Channel Check Rate in the case of X-MAC on the WiSMote plat-

form and the Beacon Interval in the case of synchronous beacon-enabled 802.15.4

on GreenNet nodes. In both cases, the parameters define the periodic wakeup

interval of nodes in the network. We have obtained the results in this section for

the same traffic pattern as in Section 8.6.2 and the client to session slot ratio of

8/3.

Fig. 8.9(a) presents the total Consumer latency. We can see that the impact
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Figure 8.9: Consumer results per CoAP request-response as a function of channel

check rate for WiSMote / X-MAC and Beacon Interval for GreenNet / beacon-

enabled 802.15.4.
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of increasing the wakeup interval on OSCAR is minimal, as no security handshake

needs to be performed before the request is sent. Similarly to the result in Fig.

8.8(b), the major part of the latency comes from the processing overhead of signa-

ture verification. On the other hand, due to the numerous communications during

the handshake, in the case of a lower duty cycle (larger wakeup interval), the DTLS

approach results in intolerably high latency. From Fig. 8.9(a), we can conclude

that networks with low duty cycles largely benefit from using OSCAR in terms of

latency.

The increased latency directly affects the energy consumption as nodes spend

more energy on idle listening. As we measure the energy consumption over a request-

response exchange, the amount of data that needs to be transferred over the network

is independent of the wakeup interval. Therefore, it is not surprising that in Fig.

8.9(b), we observe an increasing energy consumption with the wakeup interval.

OSCAR demonstrates a desirable property for constrained networks as the slope of

the energy consumption curve is much smaller than that of DTLS. Thus, the results

in Figs. 8.9(a) and 8.9(b) show a clear performance advantage of using OSCAR over

DTLS even from the point of view of a (constrained) Consumer.

8.7 Impact on Standardization Bodies

Concepts of OSCAR have been widely discussed within IETF, in the context of

Authentication and Authorization for Constrained Environments (ACE), DTLS

In Constrained Environments (DICE) and IPv6 over the TSCH mode of IEEE

802.15.4e (6TiSCH) working groups.

End-to-end security. In the ACE working group, Selander et al. [141] pro-

posed Object Security for CoAP (OSCOAP), a specification for CoAP binding

with generic object security format that addresses replay by using sequence num-

bers within the secured objects. OSCOAP defines specific CoAP fields that can

be integrity protected or encrypted end-to-end while traversing proxies. OSCOAP

provides two security modes that a user can leverage for different use cases: 1) pro-

tection of CoAP header and payload; 2) protection of payload. The main goal of

OSCOAP is to provide end-to-end security in the presence of intermediaries (prox-

ies, application-level gateways) using already established keying material. Signaling

is done through a newly defined CoAP option. This draft serves as one of the main

inputs to the CBOR Object Signing and Encryption (COSE) working group that

works on an object security format optimized for constrained devices1.

Authorization. OSCAR offloads constrained devices from enforcing the autho-

rization decisions by using Access Secrets - group keys that protect confidentiality

during transit and allow access to the protected resources. This is useful both when

the constrained node is behind a proxy and does not communicate with clients

1In the evaluations of OSCAR we used a custom, binary object security format as COSE working

group was not formed until April 2015 and the other available options were too heavyweight for

constrained devices and IEEE 802.15.4 radios.
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directly or when it communicates with a publish-subscribe broker [81]. Publish-

subscribe broker receives updates of sensor readings from constrained devices that

may sleep extensive periods of time and forwards them asynchronously to sub-

scribed clients. In this context we proposed to ACE a novel authorization flow,

called “Client-Pull” [c9] to handle such scenarios. ”Client-Pull” directly spans from

OSCAR and the flow presented in Fig. 8.2. We discuss advantages and drawbacks

of “Client-Pull” and other authorization flows in the next section.

Object security for network join. In 6TiSCH working group, we discuss

the use of object security for the network join protocol. A new node that is not yet

a part of the network, needs to reach the gateway that may be multiple hops away

and authenticate itself through some shared cryptographic material (a symmetric

key or certificate). We consider the encapsulation of the management information,

necessary for 6TiSCH join together with replay protection counters, in a secured

object. The authentication protocol can then be executed between the gateway and

the new node using these secured objects. Similarly to the centralized management

of Access Secrets with OSCAR, we are considering to leverage the gateway – Join

Coordination Entitiy (JCE) in 6TiSCH terminology – to distribute link-layer keys

and offload 6TiSCH nodes of potentially expensive key derivation exchanges.

8.8 OSCAR and Authorization in Constrained Envi-

ronments

ACE working group in IETF is expected to fill the gaps in compatibility between

DTLS and different CoAP features, as discussed in Section 8.1. Ongoing discussions

and the ACE charter stating that “the group is scoped to work only on the web

protocols and data carried within them” suggest that object security may represent

an important piece of the final solution(s). In this section, we overview some of

the discussed authorization flows, and brief on their advantages and drawbacks for

use in constrained environments. The following flows assume a three party protocol

with unconstrained Authorization Server (AS), constrained Resource Server (RS)

that corresponds to an OSCAR producer, and potentially constrained Client (C)

that corresponds to an OSCAR consumer. Client is interested in obtaining access

to a resource hosted at the Resource Server, and both Client and Resource Server

rely on the Authorization Server that processes access control policies and reaches

authorization decisions. We consider out-of-scope how those decisions are reached as

they are mainly dependent on bilateral agreements among different service providers

[170]. In the following, we focus on abstract communication exchanges that lead

to the enforcement of authorization decisions and discuss their advantages and

drawbacks for constrained environments.
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Figure 8.10: Pull scheme.

8.8.1 Pull Scheme

In the Pull scheme (see Fig. 8.10), RS handles the authorization-related exchanges

on behalf of the Client. RS contacts AS once it receives a request from the Client

and depending on the AS’s response, it grants or denies the request.

For RS to handle such a task, it first needs to authenticate C, which in our case

corresponds to establishing a DTLS channel. Then, over this secured channel, C

sends the necessary authorization information to RS. RS needs to establish another

secure connection with AS over which it forwards C’s request. Establishing two

DTLS channels simultaneously can be demanding for a constrained RS, but a good

point is that the channel with AS can be long-lived. Main disadvantage of this

scheme is that all the communication burden is put on RS which may lead to easy

Denial of Service (DoS) attacks and it requires constant connectivity of RS with

AS, which may be outside of the local network.

8.8.2 Push Scheme

Push scheme (see Fig. 8.11) removes the exchanges between AS and RS for each

request. When C first contacts RS, it is notified of the corresponding AS that

controls RS. Consequently, C can establish a secure, authenticated channel with AS

and request authorization for a given resource. AS grants this request by handling

to C a ticket, that C can present in the next request to RS. Once the ticket is

verified by RS, it can respond to the request.

This requires a secure communication channel between RS and C, as C needs

to be properly authenticated. A special type of ticket, called Bearer Token allows

anyone in its possession to access a resource [67], but requires to be exchanged over

a secure channel. The main concern with this scheme is that RS needs to perform

an expensive DTLS handshake with each client.

OSCAR with PUT/POST/DELETE requests corresponds to the Push scheme.

Instead of handling a special ticket or token, OSCAR AS hands to C a cryptographic
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Figure 8.11: Push scheme.

key, Access Secret, that C can use to both replay protect and prove its access rights.

In the web terminology, the OSCAR approach corresponds to Proof of Possession

authorization tokens. In this case, communication between C and RS does not need

to be performed over a secure channel, which significantly offloads RS. This is also

convenient for use cases where AS can be offline, such that C cannot contact AS

for each request. The downside of our approach is that each Client possesses the

Access Secret. Once the access rights of a given client are revoked, AS needs to

inform RS of the new Access Secret. Correspondingly, the remaining authorized

Clients will need to contact AS for the new Access Secret in order to perform new

requests.

8.8.3 Client-Pull Scheme

Authorization Response
"K"

Authorization Request

Client Resource 
Server

Authorization 
Server

Request  /resource 

Response "{resource}K "

Figure 8.12: Client-Pull scheme. {X}K denotes encryption of X with key K.

Finally, from OSCAR we derived a Client-Pull scheme (see Fig. 8.12) for GET

requests2 [c9]. Client-Pull completely offloads RS from enforcing authorization de-

cisions by giving unconditional access to protected resource representations. These

2This includes asynchronous notifications, i.e. convergecast traffic.
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protected resource representations contain enough information for C to contact AS.

AS enforces authorization decisions by sharing with authenticated Clients crypto-

graphic keys, i.e. Access Secrets, that can be used to access the resources.

Our constrained RS is exposed to every C. This is necessary to handle the use

cases when AS is offline. Communication between RS and C, however, does not

require a secure channel and expensive DTLS handshake. We saw in Chapter 4 that

symmetric encryption is negligibly cheap and much preferable to radio exchanges.

Note that sending a response “401: Unauthorized” involves a radio transmission, as

expensive as sending the protected resource due to the small size of sensor readings.

The obvious concern is DoS, which can be handled by throttling the response

rate at RS. Note that such DoS attack can also be performed using DTLS by

initiating fake handshakes that never complete. A second security concern is that

each response triggers a replay counter increment and an attacker may be able

to force RS to reuse the key3, which would break confidentiality. Our analysis in

Section 8.4 considers this case and gives an estimate how soon such an attack can

cause damage, given λ, the request rate. Additionally, RS and AS can agree on a

protocol that will allow RS to request a new Access Secret, once it detects that the

counter has wrapped.

This scheme is also applicable to any use case where RS communicates with

different Clients through intermediary. One example of such intermediary may be a

CoAP reverse proxy [144]. Another example is a publish-subscribe broker [81]. Last

but not the least is a generic application-level gateway present in GreenNet ar-

chitecture and also extremely common in existing Wireless Sensor Network (WSN)

deployments [42]. In those cases, RS communicates with a single node, which ad-

ditionally minimizes the discussed security concerns.

8.9 Conclusion

Our work explores a novel approach to the problem of end-to-end security in IoT. It

is based on the concept of object security that relates security with the application

payload.

In the proposed OSCAR architecture, we move expensive radio communications

from constrained CoAP nodes to more powerful servers. We introduce Authoriza-

tion Servers that store the certificates and provide Access Secrets to Consumers to

enable them to request resources from Producers.

The scheme separates confidentiality and authenticity trust domains. Confiden-

tiality is used as a means to provide capability-based access control and a protec-

tion against eavesdropping during the communication. The scheme allows source

authentication and the trust in the content generated by Producers. In turn, this

property enables local databases and caches to use the secured content. Moreover,

leveraging the access right confidentiality domain and the concept of object security,

3In a different setting from Eq. 8.1, this would equivalent to reusing the Initialization Vector

(IV).
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our proposal intrinsically supports multicast. We take off the burden of a security

handshake with every client from constrained nodes. Instead, we rely on secure

communication channels with Authorization Servers that are in charge of resource

access right key management. Cryptographic burden shifts to Consumers that need

to perform signature verifications for the content they are interested in.

We have demonstrated the feasibility of the proposed architecture by evaluating

its performance in several scenarios even for the highly constrained case of M2M

communications on two hardware platforms. The results show that OSCAR out-

performs a security scheme based on DTLS when the number of nodes increases.

OSCAR also results in low energy consumption and latency.
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Conclusions





Chapter 9

Lessons Learned and Future

Directions

Technologies that enable the Internet of Things are part of our reality for years.

First standards were published as of 2003, and the best example of technological

readiness is the level of attention security is getting today in the standardization

world. Products are shipping and few pieces are missing to enable the ubiquitous

connectivity and the most disruptive innovation since the emergence of the Internet.

Those pieces are interoperability and energy-efficiency. But tackling one without

the other is the path to either unsatisfactory products and frustrated users or to

the world of proprietary solutions we witnessed during the last decade.

9.1 Summary of Results

Our research explored the intersection of academic, industrial and standardization

spheres because we believe that advancing state-of-the-art for the public benefit

necessitates the convergence of all three. We apply the existing standards to con-

strained devices of the Internet of Things and draw conclusions on their applicability,

performance and potential gaps.

In that context, we start from the constrained hardware and implement and

evaluate the fundamental cryptographic primitives. We observe that hardware-

accelerated cryptography is a must for Internet of Things devices, as it leads to

reductions in execution time, as much as two orders of magnitude. We study in

details the origins of the computational overhead and conclude that there are many

benefits to implementing full block-cipher Mode of Operation in hardware, due to

the high I/O access latencies, that account for almost half of the total overhead,

even in case of System on Chip architectures. With these results in mind, we

contribute an Application Programming Interface that reduces the development

time and maximizes the performance, leveraging the available hardware, together

with implementations for three Internet of Things devices.

We pass from a single device to the wireless network by studying the cost of

communication security that protects the local area network from radio-range at-

tackers. Overhead of the cryptographic primitives is only one of the factors that

influences the overall performance in the networking context. To understand the

energy – security tradeoffs, we practically evaluate the effect of link-layer security

features on the performance of Wireless Sensors Networks and revisit the contradic-

tory conclusions found in the literature. We discuss that many real world, security
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agnostic factors affect the energy consumption of a device, and show that this leads

to exaggerated conclusions on the energetic cost of security. We show that for

practical applications and implementations, link-layer security features introduce a

negligible degradation on the order of a couple of percent, that is often acceptable

even for the most energy stringent systems, such as those based on energy har-

vesting. Similar conclusions hold for Time-Slotted Channel Hopping systems where

timings are critical – hardware acceleration of cryptography is simply a necessity,

and the performance of hardware acceleration blocks largely affects the minimum

achievable latencies and throughput in the network.

Because link-layer security puts trust on each node on the communication path

that consists of multiple, potentially compromised devices, we protect the infor-

mation flows by end-to-end security mechanisms. Furthermore, as we move away

from the local network, our IP-enabled constrained devices may be faced with an

adversary that may be located anywhere in the Internet. We therefore consider

Datagram Transport Layer Security (DTLS) protocol, the IETF standard for end-

to-end security in the Internet of Things and contribute to the debate in both the

standardization and research communities on the applicability of DTLS to con-

strained environments. The main concerns are the communication overhead and

latency of the DTLS handshake, and the memory footprint of a DTLS implemen-

tation. We provide a thorough performance evaluation of DTLS in different duty-

cycled networks through real-world experimentation, emulation and analysis. Our

results demonstrate surprisingly poor performance of DTLS in networks where en-

ergy efficiency is paramount. Because a DTLS client and a server exchange more

than 10 signaling packets, the DTLS handshake takes between a handful of seconds

and several tens of seconds, with similar results for different duty cycling proto-

cols. Moreover, because of their limited memory, typical constrained nodes can

only maintain several simultaneous DTLS sessions, which highlights the need for

using DTLS parsimoniously.

Apart from its performance issues, DTLS was designed for point-to-point com-

munication dominant in the traditional Internet. The novel Constrained Applica-

tion Protocol (CoAP) was tailored for constrained devices by taking into account

requirements such as asynchronous application traffic, group communication and

absolute need for caching. These requirements do not disappear when security is

considered in the picture. The security architecture based on DTLS is however, not

able to keep up and advanced features of CoAP simply become futile when used

in conjunction with DTLS. We therefore propose an architecture that leverages

the security concepts both from content-centric and traditional connection-oriented

approaches. We rely on secure channels established by means of DTLS for key

exchange, but we get rid of the notion of “state” among communicating entities

by leveraging the concept of object security. We provide a mechanism to protect

from replay attacks by coupling the capability-based access control with network

communication and CoAP header. OSCAR, our object-based security architecture,

intrinsically supports caching and multicast. Moreover, it does not affect the ra-

dio duty-cycling operation of constrained devices. We demonstrate the benefits of
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OSCAR for Machine to Machine communication, two different hardware platforms

and duty-cycle protocols on a real testbed and using an emulator. We show sig-

nificant energy savings at constrained servers and reasonable delays. Ideas from

OSCAR have already found their way towards the Internet standards and are heav-

ily discussed as potential solutions for standardization.

Apart from the challenges of securing IP-based Wireless Sensor Networks, we

also tackle two problems related to the construction and maintenance of the network.

First, motivated by incompatibilities of two prominent Internet of Things standards,

we propose a new scheme that allows coupling beacon-enabled IEEE 802.15.4 with

RPL, the Internet standard for routing in WSNs. Second, we analytically model the

mechanism that controls the emission of network maintenance packets with RPL

– the Trickle algorithm. We demonstrate unfairness that may arise in different

network topologies, that leads to unbalanced transmission load in the network,

when using Trickle. We present these results in the Appendix.

9.2 Evolutions of OSCAR and Future Perspectives

We first worked on OSCAR in the first quarter of 2013 when CoAP specification

[144] was still a draft. As such, our design made an (optimistic) assumption that

it was possible to re-define CoAP in order to meet different security requirements.

The best example is MessageID field that is used for duplicate detection of CoAP

messages that we decided to use as a proof-of-concept replay protection mechanism.

This was not necessarily a good choice as CoAP never intended this field to be

used for security purposes and implementations based upon it would therefore not

be secure. Latest efforts [141] simply shift the replay protection within protected

objects by including sequence numbers as one of the fields. However, we intended

to demonstrate an important concept that still holds whether replay protection

is based on a CoAP field or any specific mechanism within the protected objects

– separation of communication security from data security. We achieved this by

protecting with outermost encrypted objects communication-related fields, which

leaves the inner object(s) agnostic of network communication and facilitates off-line

usage.

We discussed the necessity that the outermost encrypted object should protect

CoAP header from altering, in order to prevent semantic attacks on CoAP appli-

cations. In group communication cases or when one Access Secret is shared on

multiple nodes, OSCAR on its own cannot protect against an insider attack. On

one hand, OSCAR provides means to integrate crypto mechanisms that are resilient

against such an attacker [153] with the network architecture in a clean way. On the

other hand, if malicious nodes can be detected by other means, one may simply up-

date the Access Secret and exclude the malicious node from the group using Access

Secret (key) management protocol [20, 168]. OSCAR is in that sense a placeholder

for such protocols/schemes and facilitates their adoption by defining an architecture

that accounts for multiple traffic patterns, specific for, but not only applicable to
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Internet of Things.

Another interesting research direction we want to pursue is the integration of

multicast authentication protocols [118, 21] in order to avoid the usage of expensive,

digital signatures while keeping the separation of confidentiality and authenticity

trust domains.

In summary, a fully-deployable solution based on OSCAR is composed of three

main components:

1. Binding of object security with CoAP for end-to-end secure communication

between a Producer and Consumer(s).

2. Protocol that runs among Producers, Consumers and Authorization Server(s)

to bind resources with different Access Secrets and enforce authorization de-

cisions by sharing those Access Secrets with appropriate Consumers.

3. Access Secret management protocol.

Points 1 and 2 are, at the time of the writing, being actively tackled in IETF

[141] [c9], and represent one of the standard candidates within the ACE working

group. Point 3 does not affect interoperability and we therefore expect proprietary

schemes to be present in different deployments, depending on the application se-

curity requirements. Nevertheless, we plan on adapting the different group key

management schemes proposed in the literature to the context of OSCAR.

Finally, OSCAR concepts are fully applicable outside of the constrained space of

Internet of Things. We believe that object security is the way towards the content-

centric security of the Web, and its facility of encapsulation a perfect means for

protecting our privacy.
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Appendix A

Standards-Based

Incompatibilities

In this part, we take a step back from Internet of Things (IoT) security challenges

and consider the local operation of an energy-constrained network. In that context,

we tackled two problems that stood on the way of seamless integration of IEEE

802.15.4-based Wireless Sensor Networks (WSNs), such as GreenNet, with the

Internet standards and so the Internet infrastructure. To be applicable to a wide

range of settings, standards often need to be sufficiently generic but this comes

at a performance price that may not always be acceptable. One example is the

interaction of the Internet standard for routing in WSNs with beacon-enabled mode

of IEEE 802.15.4, used on GreenNet nodes. Energy-constraints of GreenNet

are so severe that every exchanged packet in the network counts and only the most

necessary information need to be exchanged. Incompatibilities between abstraction

layers often lead to such unnecessary exchanges. For this reason, the GreenNet

team designed a proprietary routing protocol [85] that would specifically fit the

needs of GreenNet nodes.

Motivated by the underlying issues of such incompatibilities, we have explored

the path of standard-compliant optimizations. The two contributions presented in

this part are directly or indirectly motivated by IPv6 Routing Protocol for Low-

Power and Lossy Networks (RPL) – the Internet Engineering Task Force (IETF)

standard for routing that would allow WSN to be only a small cluster in the much

greater Internet routing infrastructure. First, in Appendix B we explore the prob-

lematics of running RPL on top of beacon-enabled IEEE 802.15.4, to provide a

means for GreenNet nodes to run the Internet standard. Second, in Appendix C

we study the crucial component of RPL for controlling the number of exchanged

packets in the network – the Trickle algorithm. As Trickle is a widely used algo-

rithm, we do so in a generic manner that is applicable to any of its applications,

not just the RPL.

In the remaining of this chapter, we present the necessary background for this

appendix. Section A.1 summarizes the functioning of RPL and is mainly an adap-

tation of the corresponding section in the author’s Master’s thesis. We overview the

functioning of the Trickle algorithm, in Section A.2 as its functioning is necessary

for comprehension of both Appendix B and C.
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A.1 Routing Protocol for Low-Power and Lossy Net-

works

IETF formed a Routing Over Low-Power and Lossy Networks (ROLL) working

group in 2008 that conducted an analysis of routing requirements for typical IoT

applications, such as home, building and industrial automation, and urban networks

including smart grids [171]. The question posed was whether any of the existing

routing protocols satisfy the IoT requirements. The conclusion of the study [92]

was that a new protocol is required and that it should not make any assumptions

on the underlying link layer, due to the wide variety of IoT link-layer technologies:

IEEE 802.15.4, low-power IEEE 802.11, Power Line Communication (PLC) using

IEEE 802.15.4 such as IEEE P1901.2.

The outcome of ROLL standardization is IPv6 Routing Protocol for Low-Power

and Lossy Networks (RPL). RPL was designed with a proactive approach in mind

– the routes are found and maintained without any considerations on the ongoing

traffic in the network. A Directed Acyclic Graph (DAG) is formed over a mesh

network by specifying how link costs and node attributes need to be combined to

compute paths costs.

In essence, RPL is a distance vector protocol that specifies how to construct a

Destination Oriented Directed Acyclic Graph (DODAG) with a defined objective

function and a set of metrics and constraints. An example of a DAG and an ap-

propriate DODAG is shown in Figure 1.1. Several DODAG instances may be used

for the same mesh network which allows for traffic differentiation in classes. For

instance, high priority traffic could use the minimal-delay path through the network

while low priority traffic could avoid battery-powered nodes and be routed along a

path consisted of mains-powered devices.

Routers DAG roots

DODAGDAG

Figure 1.1: An example of a DAG terminated at sink nodes and a possible

DODAG.



A.1. Routing Protocol for Low-Power and Lossy Networks 135

In order to define and maintain a topology, RPL uses four main identifiers:

• RPLInstanceID, identifier of a specific RPL instance within the network. Each

instance can serve different constraints and performance criteria.

• DODAGID, specifying one DODAG within a RPLInstance.

• DODAGVersionNumber, identifier used within the network in order to monitor

changes in the topology. It is incremented each time DODAG is rebuilt.

• Rank, identifier of a position of a node in respect to a DODAG root. The rank

must monotonically increase as the DODAG is followed towards the leafs. The

exact calculation depends on the objective function used.

The RPL routing protocol specifies a set of new Internet Control Message Protocol

version 6 (ICMPv6) control messages to exchange information related to a DODAG:

• DODAG Information Object (DIO) defines and maintains upward routes

to the root, i.e. the DODAG.

• DODAG Information Solicitation (DIS) message is used by a node in

order to pro-actively solicit DODAG related information from neighboring

nodes. They are typically transmitted when a node first joins a network.

• DODAG Destination Advertisement Object (DAO) messages are used

to advertise prefix reachability towards the leaf nodes of the DODAG. They

enable traffic to flow also in downward direction – from the root towards the

leaves.

The root1 starts the DODAG building process by transmitting a DIO message.

Neighboring nodes will process DIO messages potentially from multiple nodes and

make a decision on joining the DODAG based on the objective function and/or

local policy. A node has a route towards the root as soon as it joins the graph. The

node computes its Rank in respect to the root and starts advertising DIO messages

to the neighbors, with updated information. As the process converges, each node in

the network will have received one or more DIO messages and will have a preferred

parent selected. The preferred parent is therefore used as the next hop on the route

towards the root. The RPL protocol optimizes the upward routes for convergecast

traffic, as it is the dominant traffic pattern in WSNs.

In order to support downward routes, RPL uses DAO control messages that are

addressed as unicast packets and sent upwards. DAO messages describe prefix infor-

mation, route lifetime and other information about the distance of the prefix. RPL

defines two modes in which a network can operate in respect to the management of

downward routes:

1Although the root is most commonly the Personal Area Network (PAN) coordinator (WSN

sink), it is possible to have it outside of the local network, such that the WSN is merely a subnetwork

of an infrastructure with various link-layer technologies.
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• Storing mode – where each node keeps track of all downlink prefixes that

are accessible through it. Node learns the accessible downward prefixes af-

ter processing DAO messages from its children and advertizes them upwards

through its parents, towards the root. This requires all the routers to main-

tain a routing table with downlink entries which may be challenging due to

the memory limitations of constrained devices.

• Non-storing mode – Each node unicasts a DAO message containing one or

more of its parents towards the root of the DODAG. Intermediate routers do

not keep any state, just forward the packets. The root will eventually receive

a DAO from each node in the network and will therefore be able to construct

the downward routes. The root can then transmit a message towards a given

node by using source routing, where each intermediate hop towards a specific

destination is signaled in the header of a packet.

DIO and DAO control messages are used to enable multipoint-to-point (con-

vergecast) and point-to-multipoint (root towards sensors) communication, respec-

tively. Point-to-point communication is enabled as a combination of the two mech-

anisms. A packet destined towards a certain node in the network, in storing mode,

will travel up to the common ancestor in the DODAG, from where it will be for-

warded downwards. In the case of non-storing mode, the packet will travel all the

way up to the DODAG root which will then forward the packet downward using

source routing. This mechanism is far from optimal but RPL assumes that such

occurrences are rare.

Emission interval of DIO control messages, and therefore the control overhead of

RPL, is regulated by the Trickle algorithm [91]. The idea is to reduce DIO emissions

by transmitting less frequently when there is no change in the topology.

A.2 The Trickle Algorithm

The main idea of the Trickle algorithm is on one hand to exponentially reduce the

amount of control traffic in the network, while there are no detected inconsistencies.

On the other hand, once an inconsistency has been detected it quickly propagates

the new information state. Naturally, the ”consistency notion” is defined by the

protocol or application actually using Trickle. For instance, in the case of RPL,

consistency is checked by comparing the advertised DIO state in the network to

the local one. Trickle was originally designed for firmware versioning in WSNs [91].

In this case, consistency is checked by comparing the advertised and local software

versions.

Trickle splits time into intervals of variable length where transmissions may

occur following Trickle’s rules. The three parameters to configure Trickle are: i)

Imin, the minimum interval size; ii) Imax, the maximum interval size expressed as

the number of times the minimum interval may double; iii) K, the redundancy

constant.
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Figure 1.2: Example of Trickle algorithm in steady state with the lack of synchro-

nization among nodes. Redundancy constant K = 1, and all nodes are neighbors.

A node following the Trickle algorithm increments a local counter c for each

consistent reception. The node transmits at instant t if:

c < K, (1.1)

that is, if the number of consistent receptions is smaller than the redundancy con-

stant. Counter c is reset to zero at the beginning of each interval. Instant t at which

Trickle decides if it is going to transmit is selected randomly from the uniform inter-

val [12I, I), where I ∈ {Imin × 2n | n ∈ N0, n ≤ Imax}. Interval I is doubled upon

its expiration by incrementing n. When a node detects inconsistency, n becomes 0,

which sets interval I to Imin. Fig. 1.2 illustrates an example Trickle operation in

steady state for K = 1. As soon as c ≥ K, transmissions are suppressed. Note that

Trickle intervals among nodes are not necessarily synchronized.





Appendix B

Topology Construction in RPL

networks over Beacon-Enabled

IEEE 802.15.4

B.1 Introduction

In this chapter, we address the problem of running the IPv6 Routing Protocol

for Low-Power and Lossy Networks (RPL) [178], the IETF standard for routing

in Wireless Sensor Networks (WSNs), on top of IEEE 802.15.4 beacon-enabled

nodes [c8].

The forwarding structure built by RPL is a Destination Oriented Directed

Acyclic Graph (DODAG). Each node keeps a list of available parent nodes closer

to the DODAG root and selects one of them as the “preferred parent” based on an

objective function. When a link to the preferred parent fails, a node switches to an-

other parent in its list. At the link layer, the beacon-enabled IEEE 802.15.4 nodes

need to construct a cluster-tree anchored at the Personal Area Network (PAN)

coordinator (also the sink node) for supporting multi-hop communication. More-

over, a node joining the cluster-tree has to associate with a coordinator (a Layer

2 operation) before it may send any data frame. The choice of the coordinator

influences any possible choice of the RPL parent node. In the case of the beacon-

enabled IEEE 802.15.4 nodes, the problem is how to construct the IEEE 802.15.4

cluster-tree according to the RPL routing information based on a DODAG.

While both beacon-enabled IEEE 802.15.4 and RPL have been extensively stud-

ied within their abstraction layer, the joint operation is surprisingly still an open

problem. The existing work in the literature [116] requires extensive modifica-

tions to both standards, which is an unrealistic requirement at the current stage of

Internet of Things (IoT) stack development.

We propose a solution to the problem that satisfies the constraint of keeping RPL

and IEEE 802.15.4 unchanged. In our approach, RPL constructs its DODAG before

the cluster-tree at link layer and we use the RPL routing information (selection of

the preferred parent) in the association decision to establish links, i.e., to select the

coordinator in the cluster-tree that is the preferred parent in the DODAG.

The proposed solution takes advantage of cross-layer signaling: a node joining

the network requests RPL information from neighbor IEEE 802.15.4 coordinators

and associates with the right coordinator based on the information in a RPL mes-

sage. We adapt the operation of the Trickle timer [91] that governs the transmission
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of RPL messages to provide the required information to the link layer (the adapta-

tion remains compliant with the RPL specification).

The main contributions of this chapter are the following:

• a new scheme that allows RPL to run over the beacon-enabled IEEE 802.15.4

without any modification to the two standards,

• the scheme leading to energy savings both during the topology construction

and in the steady-state, due to the use of the Trickle timer,

• a simple probabilistic model of the Trickle timer and an analysis of the delay

of the proposed scheme,

• an evaluation of energy savings and the time for topology convergence based

on the implementation of the proposed scheme in Contiki.

The remaining of the chapter is organized as follows. We describe the problem

of running RPL over beacon-enabled IEEE 802.15.4 in Section B.2. We provide

a detailed description of the proposed scheme in Section B.3 and evaluate it in

Section B.4. Section B.5 summarizes the related work and Section B.6 concludes

the chapter.

B.2 Forming the Cluster-Tree in Beacon-Enabled Mode

As we could see in Chapter 3, the operation of nodes in the beacon-enabled mode

of IEEE 802.15.4 relies on beacons that delimit the start of a superframe. Immedi-

ately following is the Contention Access Period (CAP) during which nodes transmit

pending data frames to their parent (cluster coordinator) using the slotted Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) algorithm (a coordi-

nator node needs to stay active during CAP). Beacon Order (BO) and Superframe

Order (SO) are the key parameters to tune the desired level of radio duty cycling

in the beacon-enabled mode and the relation between them is given in Eqs. 3.1 and

3.2.

The network formed in the non-beacon mode may be a mesh in which each node

may communicate with its radio-range neighbors, so running RPL in this case does

not raise any problems. Nodes in the beacon-enabled mode have to form a cluster-

tree: a node selects one parent node, the cluster coordinator, and synchronizes

with its beacons. The node may become a coordinator itself on behalf of other

nodes, which enables multi-hop communication from leaf nodes to the root of the

cluster-tree.

The PAN coordinator is the root of the tree, the sink of the sensor network.

It starts the topology construction by transmitting the first beacon. Other nodes

are unassociated and have to switch their radio transceivers on to perform passive

scanning, the only mechanism for discovering potential coordinators available in

the beacon-enabled mode. The reception of a beacon initiates a scan period during
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which a node waits for beacons. At the end of this period, a node can initiate the

association with the best coordinator with the sequence of association-request,

ack, data-request, association-reply, ack control frames.

Note that most of the energy consumed during the topology construction phase

comes from idle listening during the scan period, which is unavoidable for any

association strategy that discovers the best available coordinator. The duration of

this interval should allow the discovery of all coordinators in the radio range.

Fig. 2.1 illustrates a timeline of the topology construction for an example cluster-

tree composed of four nodes. Note that Node 4 may receive beacons from Coordi-

nators 2 and 3, but it selects Node 3 as the best parent.

Figure 2.1: Topology construction in an example 802.15.4 cluster-tree.

Incompatibilities with RPL. As we could see in Appendix A, RPL [178] is a

Distance Vector protocol that specifies how to construct a DODAG with a defined

objective function and a set of metrics and constraints. In case of beacon-enabled

IEEE 802.15.4 at the link layer, the traditional layer-independent operation would

confine the selection of RPL routes to those in the already constructed L2 cluster-

tree. Consequently, the overall performance of RPL would be significantly degraded.

We exploit the approach of merging two structures: the 802.15.4 cluster-tree and

the DODAG of RPL, which allows us to benefit from low overhead, small delays,

and near optimal upward routes of RPL [161] while creating the IEEE 802.15.4

cluster-tree required for low duty cycle communications.

B.3 802.15.4 Cluster-Tree Construction Based on RPL

DODAG

We propose the selection of the best coordinator in the 802.15.4 cluster-tree based

on the preferred parent in the DODAG of RPL. The resulting cluster-tree will
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effectively be a subset of the DODAG initialized during the topology construction

phase. There are several issues with such an approach:

1. RPL is a network-layer protocol, but no communication among nodes at the

network layer may take place before links at the link layer are established

(node association with a coordinator).

2. An IEEE 802.15.4 node once associated can only communicate with its cluster

coordinator, so after association, a node can only receive DODAG Information

Object (DIO) messages from its cluster coordinator.

To address the first issue, we exploit the fact that DIO messages are multi-

cast. As network-layer multicasts translate to link-layer broadcasts, we use beacons

to broadcast DIO messages. There is no better broadcast mechanism in multi-

hop beacon-enabled networks than the beacons themselves—during the scan period

devices wait for beacons. We assume that IEEE 802.15.4 Reduced Function De-

vice (RFD) is configured as RPL leaf node, i.e., it does not send DIO messages.

Similarly, Full Function Device (FFD) may become cluster coordinator, i.e., has to

be configured as RPL router, which is a realistic assumption as the role of a device

mainly depends on its energy source. We assume that a node a priori knows if it is

an RFD or an FFD.

We propose the encapsulation of RPL DIO messages in the beacon frame payload

following an idea discussed in the team [2]. Link layer adds DIO to the payload of

the next scheduled beacon if the resulting frame does not exceed IEEE 802.15.4

Maximum Transmission Unit (MTU) of 127 bytes (cf. Fig. 2.2). In case the DIO

message cannot fit into the current beacon, it may be fragmented or delayed for the

following one as the beacon payload size varies as a function of downward traffic.

Figure 2.2: Encapsulation of DIO messages in beacon frames.

The exponential increase of the DIO transmission interval governed by Trickle

has an important side effect: arriving nodes would potentially wait a long time

interval before receiving the first DIO. RPL addresses this issue with DODAG

Information Solicitation (DIS) messages that can be broadcast to solicit the trans-

mission of a DIO: upon reception of a DIS, a node resets its Trickle interval I

to Imin so DIO will be transmitted shortly [178]. However, DIS broadcast is not
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enough for synchronous duty cycled networks—neighbor nodes in the radio range

may sleep at the instant of the DIS transmission. As explained above, the reception

of a beacon delimits the start of the CAP during which the coordinator is active.

Thus, CAP is the most suitable period during which an unassociated node may

solicit information from nearby coordinators. Note that a node wanting to join the

network is awake during the scanning period so it can receive beacons from several

neighbor coordinators. Thus, we propose that the node transmits a solicitation

message by performing CSMA/CA after the beacon if the following two conditions

hold:

• the received beacon is the first one received from a given coordinator,

• the beacon does not contain a DIO in its payload.

The solicitation message could be a RPL DIS message encapsulated in an IEEE

802.15.4 command frame. Note that a node cannot send data frames before asso-

ciation [62]. However, we have chosen to use the IEEE 802.15.4 beacon-request

command frame without any payload as a solicitation message—it has a small size

(8 bytes) so a very short transmission time. Additionally, the RPL specification

[178] allows the Trickle reset triggered by external events.

Note that the beacon-request command frame is typically used in the non-beacon

mode to solicit the information about the network. It has no use in the beacon-

enabled mode as beacons are periodically transmitted. We use its reception at link

layer to trigger the reset of the Trickle timer at the RPL layer to spawn a DIO

transmission. The goal is to encapsulate the DIO message in the following beacon

so that arriving nodes can select the best coordinator. As a node may send several

beacon-request solicitation frames during the scan period (and CAP of each detected

coordinator), the scheme ensures the reset of the Trickle timer for all RPL routers

in the range.

A possible drawback of the scheme could be its possible side effect on the du-

ration of the always-on scan period. In fact, with typical parent selection schemes

at link layer, each beacon carries a network-specific metric processed by arriving

nodes. Then, in case BO is a priori known, the worst-case scan duration is one

Beacon Interval (BI). However, a simple algorithm achieves the same duration with

our scheme as well—during the scan period of duration BI:

1. for each discovered coordinator, a node stores the expected instant of the next

beacon (current time() + BI),

2. for each discovered coordinator, a node solicits the reset of the Trickle timer

as explained above,

3. upon expiration of BI, a node goes to sleep and schedules its wake up at the

instants found in (1),

4. a node wakes up and receives the beacon with the DIO payload,
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5. upon reception of the DIO payload from the last discovered coordinator, a

node consults RPL about the best choice and schedules the next wake up

just before the beacon of the selected coordinator; then, the node follows the

standard association procedure.

This scheme ensures the discovery of all coordinators in the radio range while

allowing a node to start duty cycling after one BI from the boot time (cf. Fig.

2.3). During next BI, node receives DIOs and passes them to RPL. In the worst

case, by the end of the second BI, RPL will have the preferred parent selected.

The additional worst-case delay of one BI is the price to pay during the topology

construction for the benefit that comes later-on with the Trickle timer during the

network operation. As the node spends most of the second beacon interval sleeping,

it consumes energy only for receiving beacons. For n discovered coordinators, the

energy will be E = n×T × IRX ×V , where IRX is the radio current draw in receive

mode, V the operating voltage, and T transmission time of one IEEE 802.15.4

beacon with a DIO message in its payload (typically around 3.5 ms for 250 kb/s

IEEE 802.15.4 compliant radios).

Figure 2.3: Soliciting DIO during the scan period.

Note, however, that in many deployments, BO is not apriori known. In such

cases, devices have to scan for longer periods to account for the largest expected

BI in presence of multiple PANs [72]. Our scheme in such scenarios introduces no

additional delay as long as the preconfigured scan duration is greater than or equal

to half the actual BI in the network.
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B.3.1 Imin Parameter Tuning and Analysis

The successful operation of the proposed scheme requires that, upon solicitation,

the subsequent beacon includes a DIO message. To achieve such behavior while

keeping the operation of two layers independent, we need to configure the Trickle

Imin parameter as a function of BI, because the reception of a solicitation frame

triggers the Trickle timer reset and the next timer value will be uniformly drawn

from the interval [Imin/2, Imin). Thus, to ensure the arrival of the next DIO before

the subsequent beacon, the following condition needs to hold:

Imin ≤ BI− SD, (2.1)

where SD denotes CAP duration. Similarly, as previously discussed, the worst case

scan period when BO is a priori known, is BI. The optimal performance of Trickle

with our scheme is obtained when Imin = BI − SD, which ensures the successful

operation while having the lowest overhead.

B.3.2 Analysis of DIO Reception Delay

We evaluate here the expected delay of DIO messages encapsulated in periodic bea-

cons. We define the Trickle timer value as random variable X uniformly distributed

in [I/2, I), where I is a random variable denoting the current Trickle state. Then,

from the link-layer point of view, a DIO message arrives during a beacon interval

at instant X mod BI. Delay D is the interval remaining until the transmission of

the next beacon:

D = BI − (X −
⌊
X

BI

⌋
∗ BI). (2.2)

The expected delay is then:

E[D] = BI− E[X] + E[

⌊
X

BI

⌋
] ∗BI. (2.3)

Now, recall that I is a discrete random variable in {Imin × 2n}, where n =

0, 1, . . . , Imax.

We model I with a discrete-time Markov chain shown in Fig. 2.4, where p

denotes the probability of the Trickle reset. We can notice from Fig. 2.4 that

. . .

1-p

IImax
I2I1I0

1-p
1-p 1-p

p
p p

p

Figure 2.4: Markov chain with Imax+1 states for Trickle.

stationary probabilities of states I0, . . . , IImax−1 follow a geometric distribution with
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reset probability p:

ΠIi = (1 − p)ip, i = 0, . . . , Imax − 1.

The last state, IImax has the stationary probability:

ΠIImax
= (1− p)Imax .

We can find the expected Trickle timer value as E[X] = E[E[X|I]].

As our scheme uses the beacon-request solicitation frame at L2 to reset Trickle,

the case I = Imin is of a particular interest. From Eq. 2.3, it follows that:

E[D|I=Imin ] = BI− E[X|I=Imin ] + E[

⌊
X

BI

⌋
|I=Imin ] ∗ BI. (2.4)

Given the condition of Eq. 2.1 and also the fact that the right endpoint is excluded

from the uniform interval, term E[b XBI c] goes to zero leaving:

E[D | I = Imin] = BI − E[X | I = Imin].

Finally, as X is now a uniform random variable in [Imin/2, Imin), the expected DIO

delay becomes:

E[D|I = Imin] = BI− 3

4
Imin, Imin ≤ BI. (2.5)

We have validated Eq. 2.5 by emulating a real node running the Contiki operat-

ing system for constrained devices. We have timestamped the expiration instants of

Trickle and the instants of the beacon with DIO transmission. We have configured

Imin to an approximate value of BI/2 (Contiki accepts the values of Imin in power

of 2). The emulation results over 5000 samples strongly corroborate our analysis

with a maximal error of 2.799%.

From Eqs. 2.1 and 2.5, it follows that for setting Imin = BI − SD, our scheme

introduces the least additional delay to Trickle after reset, while ensuring successful

operation.

B.4 Performance Evaluation

To evaluate our scheme, we have used an implementation of the IEEE 802.15.4

beacon-enabled mode developed in the context of GreenNet project. To benefit

from the Cooja simulator [113] that uses the MSPsim instruction-level emulator of

the Tmote Sky platform, our team ported the beacon-enabled layer developed for

GreenNet motes to the Tmote Sky platform1. Note that the only imperfection

of Cooja with respect to the real world environment comes from the Unit Disk

Graph (UDG) radio channel model. Fig. 2.5 presents the evaluated topology.

Many authors in the literature discussed the method of encapsulating informa-

tion necessary for topology construction in the beacon payload (parent selection,

1Tmote Sky is a commercial clone of TelosB motes discussed in Part I.
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Figure 2.5: Topology used for the evaluation of the proposed scheme.

neighbor discovery) [79, 117, 181]. Consequently, they assume the information to

be present in each beacon. As our goal in this chapter was to present benefits in

terms of 802.15.4 topology construction, we have compared our scheme against this

approach and denote the scheme Systematic Beacon Payload (SBP). To be fair and

not to loose the generality of our results, we have studied the effects of varying the

SBP message size and how it affects performance. We found that the two schemes

have similar performance when the SBP message size is approximately 1/3 of the

DIO size (cf. Fig. B.6(a)), that is, when one coordinator from Fig. 2.5 sends 1 DIO

message for every 3 beacons with SBP on the average during topology construction.

Note that this ratio depends on the duration of the scan period and the configu-

ration of Trickle. For a given implementation, one can easily evaluate such a ratio

and derive the gain or loss depending on the message size parameters.

We set the Imin Trickle parameter to approximately BI − SD and keep SO

equal to 2. We compute the radio energy consumption from the current draw values

reported in the Tmote Sky data sheet. We average all the points in the following

graphs over 20 emulation runs and show them with 95% confidence intervals.

We can notice in Fig. 2.5 that nodes have only one coordinator in their radio

range. We have chosen such topology to focus on topology construction in RPL

networks over beacon-enabled 802.15.4 and evaluate the effect of our scheme. In

this way, we isolate topology construction aspects from the problems related to

routing that may depend on the choice of routing metrics or objective functions.

Moreover, a single coordinator discovered during the scan period BI means that

the solicitation scheme is put under stress. Indeed, if a single DIO message does not

arrive with the subsequent beacon upon solicitation, the node will have to initiate

another scan period, which would unnecessarily increase the topology convergence

delay. Nevertheless, the example topology in Fig. 2.5 is favorable to the proposed
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scheme in terms of delay—it does not introduce additional delay in case BO is a

priori known, i.e., the first discovered coordinator is also the last one, so a node

can initiate the association procedure after the scan period of one BI. However, we

discuss the worst case delay in the presence of multiple coordinators in Section B.3.
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Figure 2.6: Results from emulation during topology construction.

Also note that in some cases, the first beacon discovered during the scan period

may already contain a DIO message. As the Trickle timer randomly selects its

expiration interval and our scheme keeps the operation of two layers independent,

it is a lucky outcome. In this case, a node does not need to solicit DIO as detailed

in Section B.3. However, a node still has to wait for the expiration of the scan

period before initiating its association procedure to ensure that it has discovered

all potential coordinators.

We present the results for the case in which two schemes have the most similar

performance, i.e., we set the message size of SBP to 1/3 of DIO (cf. Fig.B.6(a)).
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Figure 2.7: Results from emulation during topology construction for variable scan

duration and BO = 5.

Larger SBP message sizes result in worse performance while smaller SBP messages

result in better performance during topology construction in case BO is a priori

known.

B.4.1 Topology Construction

We study the topology construction phase for two cases: 1) BO is a priori known

so the scan period can be set to the minimal value of BI; 2) there is no a priori

knowledge of BO so nodes use a sub-optimal scan duration to account for the worst

case. In both cases, simulations last until the association of the last node.

For case 1), Figs. B.6(b)-B.6(d) present the results for varying BO. We can

see in Fig. B.6(b) that our scheme does not introduce any additional delay for the

evaluated topology and the results for two schemes are similar within confidence

intervals. Fig. B.6(c) shows similar results in terms of cumulative energy spent

in transmission, a consequence of the choice of the parameters for two schemes.

Notably, coordinators at hop 1 and 2 spend approximately the same energy trans-

mitting beacons. The major part of the energy spent in reception comes from idle

listening during the scan period so two schemes perform equally (cf. Fig. B.6(d)).

For case 2), when BO is not a priori known, we vary the scan period. As nodes

remain in reception mode much longer, the energy spent in reception makes the

major part of the total consumption. Similarly to Figs. B.6(b) and B.6(d), two

schemes perform equally. However, as the scan period is longer, there is a larger

number of beacons transmitted before the topology converges. We can thus see

the effect of the Trickle algorithm and the proposed solicitation scheme (cf. Fig.

B.7(a)) that results in energy savings for hop 1 nodes as they transmit beacons the

longest until the end of the tree construction (cf. Fig. B.7(b)).
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B.4.2 Steady-state

Furthermore, we have evaluated the benefits in terms of energy savings in the steady

state, i.e., after topology construction. There was no application traffic in the

network and nodes simply duty cycle according to their schedules. The presented

results concern 6 minutes of the network operation after the association of the last

node. We can see the effect of the reduction in control overhead by the Trickle

algorithm in Fig. B.8(a). In particular, FFD nodes (hop 1 and 2) transmit short

beacons without any payload most of the time, which results in energy savings

both during reception and transmission. During reception, however, a major part of

energy consumption comes from active listening during the CAP of each coordinator

so this effect is masked (cf. Fig. B.8(b)). Note that in Fig. B.8(a), the consumption

of RFDs is zero as there is no application traffic in the network. Also, during the

steady state, the reception consumption of FFDs (hop 1 and 2) is the same, as

devices remain active during the same amount of time (CAP duration).
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Figure 2.8: Energy consumption during 6 min of steady state.

B.5 Related Work

The performance of multi-hop IEEE 802.15.4 networks has been well studied during

the last years both using probabilistic approaches [106] and simulations [4]. Energy

consumption introduced during the scan period is widely recognized as a significant

problem. The recent work of Karowski et al. [72] lowered this cost by optimizing the

number of slots to listen over different channels. Romaniello et al. [134] proposed

the Multichannel Beacon Train Protocol for faster discovery over multiple channels

in the presence of varying beacon intervals. Kohvakka et al. discussed a protocol

that carries the time offset and the frequency channel in beacons to ease the scanning

process for the joining node [79]. It is important to stress that our scheme is agnostic

of the scanning process. Namely, the solicitation scheme we propose starts once a
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node has discovered all neighboring coordinators.

As the de-facto standard for routing in IP-based WSNs, RPL has been exten-

sively studied in terms of convergence delays, route optimality, path availability, and

incurred overheads [172, 75]. Coupled with the common wisdom that cross-layer

signaling is necessary for a successful operation of a routing protocol in low power

and lossy networks, this fact provides a strong support to the approach presented

in our paper.

The work of Pavković et al. is closely related to ours [117]. The authors proposed

the adaptations to the IEEE 802.15.4 standard to integrate its operation with RPL.

Moreover, they proposed an opportunistic version of RPL to improve the delivery

of time-sensitive traffic and evaluated the proposal in terms of packet delivery ratio

and delay. In recent work [116], they discussed the RPL performance benefits

of modifying the IEEE 802.15.4 cluster-tree structure into a “cluster-DAG”. Our

work was basically motivated by the same problem—the incompatibility of two

structures, the IEEE 802.15.4 cluster-tree and the DODAG. While the approach

of Pavković et al. presents performance improvement, its main drawback is the need

for modifications of two standards, RPL and IEEE 802.15.4. We have addressed

the same problem from a different perspective—instead of modifying the standards,

we provide a means for constructing the RPL DODAG and forming the cluster-tree

as its subset. As a consequence, we obtain full compliance with both standards.

B.6 Conclusion

We have presented a scheme that allows coupling beacon-enabled IEEE 802.15.4

with the RPL routing protocol. The scheme does not require any modification to

both standards. We provide a means for RPL to pass the routing information to

the link layer before the IEEE 802.15.4 topology is created by encapsulating RPL

DIO messages in beacon frames. The scheme takes advantage of IEEE 802.15.4

command frames to solicit DIO messages. The effect of the command frames is to

reset the Trickle timer that governs sending of DIO messages.

We have evaluated the proposed scheme using the Contiki operating system

for constrained nodes and the instruction-level Cooja simulator. The results show

energy savings during the topology construction phase and in the steady state.





Appendix C

Multiple Redundancy

Constants with Trickle

The Trickle algorithm is a timer based control algorithm relying on recursive dou-

bling time intervals and “polite gossip” policy [c7]. It quickly propagates updates

in the network but avoids unnecessary transmissions. Due to its wide-spread use,

it has been standardized in RFC 6206 [90]. Apart from IPv6 Routing Protocol for

Low-Power and Lossy Networks (RPL) [178] that utilizes Trickle for topology main-

tenance, protocols such as Multicast Protocol for Low Power and Lossy Networks

[59] and other proposals [183, 45, 58] build upon it, leveraging Trickle’s benefits.

This makes the understanding of its behavior crucial for performance optimization

of control overhead. The related work in the literature [12, 77, 167, 104, 5, 76] has

already tackled many aspects of its operation through analytical models and perfor-

mance studies. Still, all authors seem to consider the crucial “politeness” parameter

– the redundancy constant, controlling the number of redundant transmissions in

the network – fixed and common for all nodes in the network. To the best of our

knowledge, this is also true for real world deployments of Trickle-based networks.

In this chapter, we model and study the operation of Trickle, which leads to a

better understanding of the impact of its redundancy constant. We demonstrate

that the usage of a common redundancy constant for the whole network leads to

communication unfairness when the underlying topology density is not homoge-

neous. The root cause of this unfairness is the increased probability of transmission

of nodes with less neighbors in their radio vicinity. This results in uneven transmis-

sion load, e.g. message count, across the network. Moreover, in battery powered

networks, these nodes with a higher transmission probability will cease functioning

sooner because of on board energy depletion as broadcasting is very expensive in

Wireless Sensor Networks (WSNs). We model the individual transmission probabili-

ties with individual node redundancy constants across the network. The model with

multiple redundancy constants can be numerically resolved for arbitrary topologies

but also simplified to closed-form in specific cases.

From the model’s results, we propose a simple heuristic algorithm in order to

improve Trickle fairness by a local computation of each redundancy constant as a

function of the number of neighbors. We demonstrate the resulting improvements in

terms of transmission load balance both by leveraging our analytical model results

and by emulating constrained-node networks running the full Contiki Operating

System network stack.

The main contributions of this chapter are the following:
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• A new probabilistic model estimating the message count and average trans-

mission probabilities of individual nodes in steady state networks. This model

works for arbitrary topologies without any synchronization requirement, and

accounts for multiple redundancy constants among nodes,

• A demonstration of transmission load unfairness in networks utilizing a fixed

redundancy constant among nodes,

• A new algorithm improving fairness in the network by locally computing the

redundancy constants as a function of the number of neighbors in the node’s

radio vicinity,

• A validation of the model and an evaluation of the proposed algorithm im-

provements. The emulation uses highly accurate instruction-level execution

of the binary file that contains our code and the Contiki network stack and

normally runs on real hardware.

The reader is expected to be familiar with the Trickle algorithm, as presented in

Appendix A. We use the same notation throughout this chapter and model Trickle

networks in steady state, such that I = Imin 2Imax , and focus on the effect of the

redundancy constant.

The rest of the chapter is structured as follows. In Section C.1, we discuss

in details the related work regarding the Trickle algorithm. Section C.2 presents

our probabilistic model design. We validate the model and discuss common redun-

dancy constant unfairness in Section C.3. In Section C.4, we present our heuristic

algorithm that locally computes each redundancy constant and discuss its achieved

improvements. Finally, we conclude and discuss future work in Section C.5.

C.1 Related Work

Due to its wide-spread use, the Trickle algorithm has been subject to many studies

[12, 77, 167, 104, 5, 76]. Becker et al. [12] develop a model to study the propagation

time of new information in a network using Laplace transforms.

Meyfroyt et al. [104] recently published a model generalizing the algorithm by

introducing the listen-only parameter η. In the standardized version of Trickle [90]

and the original paper [91] η = 1
2 and is introduced in order to avoid broadcast

storms in unsynchronized networks at the beginning of intervals, by forcing nodes

to keep listening before attempting transmissions (i.e. listen-only period). The

authors demonstrate that using a short listen-only period provides advantage in

terms of smaller propagation time, but in the same time increases the number

of transmitted messages in the network. They derive the cumulative distribution

function of inter-transmission times for large number of nodes in a steady state,

unsynchronized, single cell network (i.e. all nodes are within each other’s radio range

and I = Imin 2Imax) and the mean number of transmissions (message count). Their

model is based on the observation that the process of nodes attempting to broadcast
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behaves as a Poisson process as the number of nodes in the single cell network

grows large, under the assumption of uniformly distributed interval skew in an

unsynchronized network. The model provides very accurate estimates but is limited

by the single-cell network assumption. The authors briefly discuss the extension of a

single-cell model to multi-cells by introducing a fixed radio range for each node in a

grid topology. Apart from being limited by the topology assumption, this approach

requires knowledge of nodes’ transmission ranges which is not realistic in wireless

deployments. Moreover, the approach does not allow insights on individual node

behavior. It rather considers the behavior of the network as a whole. Nevertheless,

the model gives a very useful, global view study of the effect of Trickle parameters

on the message count.

On the opposite, Kermajani et al. [77] approach the problem of estimating the

Trickle message count in steady state by deriving the average probability P that a

node in the network will transmit in a given interval. Then, the average message

count in a given interval is simply N × P , where N denotes the number of nodes

in the network. To derive P , the authors make two assumptions: i) a uniformly

random spatial distribution of nodes, ii) synchronized Trickle intervals (i.e. the

interval start time is the same for all nodes). The first assumption is used in order

to derive the probability of two nodes being each other’s neighbors, assuming a

common, known, radio coverage range of each node in the network. Regarding the

second assumption on synchronized intervals, which is rarely met in practice, the

authors demonstrate and discuss surprisingly small differences of their model with

simulation results without synchronization. In respect to the model of Meyfroyt

et al. [104], the approach of Kermajani et al. [77] implicitly supports multi-cell

topologies.

Other authors [167, 5, 76] have studied Trickle and its performance in the specific

use case of RPL and how it affects the convergence and route optimality of the

Destination Oriented Directed Acyclic Graph (DODAG) building process. Vallati

and Mingozzi [167] observe that the setting of the redundancy constant in RPL

highly affects the constructed route optimality. They demonstrate that lower values

of the redundancy constant decrease energy consumption but also decrease the

quality of constructed routes, due to the fact that some nodes stay silent. This

phenomena is related to the fact that Trickle aims at providing equal transmission

probability in the long run, while for routing purposes it is important that every

node shares its state on the shorted possible scale [167]. The authors tackle the

problem by reducing the listen-only period with every suppressed transmission.

Their approach results in better short-term fairness but at the cost of increased

number of transmitted messages [104].

A common point on published Trickle models and optimizations [12, 104, 77, 167]

(and deployments) is that they all consider a common, fixed redundancy constant

among nodes. The common redundancy constant leads to long-term unfairness as

nodes with less neighbors have less incoming packets and thus a higher probability

to transmit, and will therefore deplete their available energy source sooner. In

order to model this phenomena, like Kermajani et al. [77] we calculate the message
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count in steady state using the average transmission probability. Instead of making

assumptions on topology, we assume networks where the number of radio neighbors

of a node is a locally available information, which is often met in practice. We then

consider that each node may have a different redundancy constant and calculate

the average probability of transmission per node, which allows us to estimate the

average message count individually, and for the whole network. This sets ground for

the testing of different algorithms for the computation of the redundancy constant.

We consequently give a heuristic algorithm and demonstrate its effects on long-

term load distribution. In our model, we also relax the assumption on synchronized

intervals and consider a uniformly distributed interval skew among nodes, which is

often met in practice.

C.2 Modelling the Trickle Message Count

Our model calculates the message count of individual nodes in a steady state Trickle-

based network. Similarly to Kermajani et al. [77], we derive the average probability

of transmission. However, we use a different decomposition that allows us to extend

their approach in order to calculate per node probabilities, rather than the network

average. Hence we can give insights on the fairness of the algorithm. To render the

model more practical, we do not make explicit assumptions on topology. Rather,

we assume that each node i is able to know its number of neighbors yi. Therefore,

our model requires for each node its redundancy constant Ki, and its neighbors list.

The main idea of our analysis is to express the average probability of transmis-

sion of a node as a function of the transmission probabilities of its neighbors. This

will yield a system of N equations with N unknowns, where N is the number of

nodes in the network, that can be numerically resolved.

Distribution of Transmission Times. In networks with synchronized Trickle

intervals, transmission times simply follow a uniform distribution [77]. However,

with the lack of synchronization, this does not longer hold. Let X1, . . . , Xyi be i.i.d.

random variables of uniform distribution modeling the transmission time positions

of the yi nodes into an interval of length I. Let T be the selected transmission time

of node i, T ∈ [12 I, I]. Let YT denote the number of selected transmission times

before T . Let n be the positive integer that denotes the position of transmission

time of node i in the set of increasingly ordered transmission times. The probability

that n is selected by node i and by its neighbors is equal to P (YT = n− 1). YT can

be shown to follow a binomial distribution with parameters yi and
T

I
[26].

C.2.1 Probabilistic Model

The average probability that node i will send a message in a given interval is denoted

PTX [i]. A node will surely transmit in the case where its number of neighbors yi
is less than its redundancy constant Ki, because the counter c can never reach

Ki. Otherwise, the node transmits in two cases: i) if it selects any of the first Ki
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transmission times, ii) if it selects any of the last yi+1−Ki transmission times and

at most Ki − 1 of its neighbors have already transmitted. Consequently, PTX [i],

can be written as follows:

PTX [i] =

{
1, yi < Ki

PF [i] + PLO[i], yi ≥ Ki.

where:

• PF [i] is the probability that node i selects one of the first Ki transmission

times. We can find this probability simply as: PF [i] =

Ki−1∑
n=0

P (YT = n).

• PLO[i] is the probability that node i selects any of the last yi + 1−Ki trans-

mission times and at most Ki− 1 nodes, with a lower transmission time than

node i, will transmit before it. We refer to this probability as the last oppor-

tunity transmission probability. This probability depends on PTX [j], where j

is a neighbor of node i.

Fig. 3.1 presents an overall summary of the probability decomposition. The

idea is to decompose the algorithm in outcomes and to compute the probabilities

associated to each of them. Then, each sub-problem is tractable and the model can

lead to numerical computations in the general case, and to closed form solutions for

specific topologies.

Last Opportunity Transmission Probability. We are considering the case

where node i selected one of the last yi+1−Ki transmission times. The probability

that at most Ki − 1 nodes, with a lower transmission time than node i transmit

before, depends on transmission time of node i. We will compute the probability

PLO[i] by conditioning on transmission time of node i. As YT ∈ {Ki, . . . , yi}, PLO[i]

can be derived as:

PLO[i] =

yi∑
n=Ki

PLO[i | YT = n]× P (YT = n). (3.1)

Let Bset be the set of n neighbors of node i, denoted by {1, . . . , n} whose

transmission times are lower than the one of node i. Let < be the set composed of(
yi
n

)
possible sets of nodes B that possibly match Bset.

Therefore, PLO[i | YT = n] can be obtained as:

PLO[i|YT = n] =
1(
yi
n

) ∑
B∈<

PLO[i|YT = n ∧Bset = B]. (3.2)

The probability that node i transmits in this case, PLO[i | YT = n ∧ Bset = B],

is the probability that at most Ki − 1 nodes of B transmit before:

PLO[i | YT = n ∧ Bset = B] =

Ki−1∑
j=0

γ(j, n,B), (3.3)
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where γ(j, n,B) denotes the probability that j nodes of the set B = {1, . . . , n}
transmit before node i. By definition of PTX , we have:

γ(0, n,B) =
n∏
l=1

(1− PTX [l]),

γ(1, n,B) =
n∑

i1=1

[PTX [i1]×
n∏
l=1
l 6=i1

(1− PTX [l])],

γ(2, n,B) =

n∑
i1=1

n∑
i2=1
i2 6=i1

[PTX [i1]× PTX [i2]×
n∏
l=1

l 6=i1,i2

(1− PTX [l])].

Then:

γ(k, n,B) =
n∑

i1=1

n∑
i2=1
i2 6=i1

. . .

n∑
ik=1,

ik 6=i1,...,ik−1

[PTX [i1]× PTX [ik]×
n∏
l=1,

l 6=i1,...,ik

(1− PTX [l])].

But we can express

n∑
i1=1

. . .

n∑
ik=1,

ik 6=i1,...,ik−1

as
∑

(i1,...,ik)∈A

, where A is a set of combinations

without repetition of k elements selected among n. Thus:

γ(k, n,B) =
∑

(i1,...,ik)∈A

[PTX [i1] × . . . × PTX [ik] ×
n∏
l=1,

l 6=i1,...,ik

(1 − PTX [l])].

The right side can be rearranged in:

∑
v=(i1,...,ik)∈A

[

k∏
m=1

PTX [v[m]]×
n∏
l=1,

l 6=i1,...,ik

(1− PTX [l])],

which leads to:

PLO[i] =

yi∑
n=Ki

P (YT = n)× 1(
yi
n

) ∑
B∈<

Ki−1∑
j=0

γ(j, n,B). (3.4)

The main steps of our derivation can be followed in Fig. 3.1: (Probability that

node i selects the (n+ 1)th transmission time) AND (Probability to have the set B

of n neighbors with lower transmission time than node i) AND (Probability that

at most Ki − 1 nodes in set B transmit). For example, let us consider the case

where node i has yi = 4 neighbors, {a, b, c, d}, and n = 2 of them have selected a

transmission time lower than its own. We can have

(
4

2

)
different sets of neighbors
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Figure 3.1: Probability decomposition of the model. We present possible events

in boxes and their associated probabilities on the corresponding arrows.
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B1 = {a, b}, B2 = {a, c}, B3 = {a, d}, B4 = {b, c}, B5 = {b, d}, B6 = {c, d}, whose

nodes have a lower transmission time. For instance, when B = B1 = {a, b} and

Ki = 2, node i will transmit either if j = 0 nodes of B transmit, or if j = 1 = Ki−1

nodes of B transmit. The probability that j nodes of the set B transmit is γ(j, n,B).

We now have PF [i] and PLO[i] expressed according PTX [j], where j is a neighbor

of node i. In order to find PTX [i] ∀i ∈ {1, . . . , N}, following our decomposition, we

need to solve the N equations with N unknowns, i.e. the system PTX [i] = PF [i] +

PLO[i]. The solutions of the system are the average probabilities of transmission for

each node in the network and in the same time the average message count per node

during one interval. In its general form, the system of equations models arbitrary

network topologies and can be resolved numerically. For specific topologies which

are outside of the scope of our work, a closed form solution may be obtained.

Due to its complexity, the general form of the model does not allow a direct

practical implementation for constrained devices. However, its numerical resolution

gives precise insights on node behavior and where the imbalance in the network

occurs. Based on this, in Section C.4 we propose a practical, heuristic approach

that is easily computable locally.

C.3 Model Validation and Trickle Unfairness

To validate our model we implemented a tool resolving the model in Python and

Sage 1, an open-source computational software program. We emulate the Tmote Sky

sensor motes running Contiki Operating System, by using the MSPSim emulator,

and the Cooja simulator, in order to obtain real world results of Trickle. We use

the Trickle application-level library code available in Contiki. The same binary

file used for emulations runs on real hardware without any modifications. Note

that due to the use of the emulator, some imperfections of results in respect to the

real deployments come from the Unit Disk Graph (UDG) radio model in Cooja.

We validate the model for 49 node networks: i) using a 7 × 7 grid topology, to

demonstrate unfairness, ii) using a randomly generated topology, to demonstrate

the validity of the model for the general case. Transmission range for the grid

topology was R =
√

2, with the average node degree of 6.37. In the case of randomly

generated topology, the average node degree was 3.92. We average emulation results

over 30 runs, and calculate the model for the same topology based on the list of

neighbors of each node. We count the number of transmissions of each node over 10

steady state Trickle intervals of 16 seconds. We calculated 95% confidence intervals

but do not present them on the graphs for the sake of clarity, as they are graphically

indistinguishable from the plotted averages.

Fig. 3.2 presents the results for the total message count in the network using a

common, fixed redundancy constant among nodes. The model accurately predicts

the number of messages in the network. Numerical values of maximum, minimum

probabilities, variance and their comparison with the emulation results are shown

1http://sagemath.org
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Figure 3.2: Message count in networks with fixed redundancy constant.

in Tables 3.1 and 3.2. The imperfections of the model come from the fact that

with the lack of synchronization of Trickle intervals among nodes, if we consider

a node with y neighbors, y is only the mean number of transmission times that

can occur during one interval. Also, the assumption that transmission probabilities

of nodes are independent events does not hold. As discussed by Kermajani et al.

[77], a transmission performed by a node causes the increment of the counter c

and therefore decreases the transmission probability of its neighbors. Nevertheless,

emulation results are obtained by running the binary file that normally executes

on real hardware. They show that our model provides accurate estimations of the

average transmission probabilities of nodes in the network, and consequently of the

message count.

Trickle Unfairness with Fixed Redundancy Constant. As most real

world deployments using Trickle utilize a common, fixed redundancy constant among

nodes, we demonstrate the transmission unfairness that arises due to the hetero-

geneous network topologies, as nodes do not have the same number of neighbors.

Fig. 3.3 presents the three dimensional graphs on probability of transmission cal-

culated by our model for the grid topology, where the effects are easily noted. We

present results for K ∈ {1, 2, 3, 4}, as the probabilities quickly approach 1.0 for

larger K (average node degree of 6.37). Inside the grid with 8 neighbors (R =
√

2),

for K = 1, we can see that the nodes have average transmission probabilities of

approximately 0.2, while the nodes on the edges with 5 neighbors have around 0.5,

and the nodes in the corners with 3 neighbors on the average transmit with the

probability of approximately 0.7. Increasing the redundancy constant increases the

transmission probabilities in the network. However, as the number of neighbors can

be considered fixed, nodes with less neighbors are affected more and their transmis-

sion probabilities increase faster in respect to those in the middle of the grid. This

can be best seen for the case K = 4 in Fig. 3.3(d), as the nodes in the corners of
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Figure 3.3: Transmission probability of nodes in the grid estimated by the model

for fixed redundancy constant.

the grid transmit with probability 1.0, while nodes on the edges have probability

0.85, and nodes inside the grid have probability 0.45.

To validate the estimations of our model, we have confronted the results with

emulations. For the sake of brevity, Figs. 3.4 and 3.5 presents the comparison for

K ∈ {1, 2, 3}, in the grid and the randomly generated topology.

C.4 Local Computation of the Redundancy Constant

to Improve Fairness

As discussed, the average transmission probability of a node in the network depends

on the number of neighbors and the redundancy constant. The usage of a fixed

redundancy constant in the network causes unbalanced transmission load and may

cause early depletion of energy sources of nodes with less neighbors. Notice that

the number of neighbors is generally available locally due to the common use of

either Neighbor Advertisement/Solicitation control packets or L2 synchronization
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Figure 3.4: Transmission probability of nodes in the grid topology.
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Figure 3.5: Transmission probability of nodes in a random topology.
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mechanisms. We leverage this fact to introduce multiple redundancy constants

among nodes in the network, dependent on the number of neighbors.

Although our first attempt was to derive a closed form expression that will

provide a locally optimal value of Ki, due to the complexity of the model this

remains an open problem. Instead, we propose a simple calculation of Ki feasible

on constrained devices. The idea is to increment Ki for each redundancy step

number of neighbors. On the other hand, parameter redundancy offset, specifies

the number of neighbors for each node that corresponds to the minimal value of

K = 1. The calculation is outlined in Algorithm 9.

Algorithm 9 Local calculation of the redundancy constant Ki

1: procedure calculate k(num neighbors, step, offset)

2: if num neighbors ≤ offset then return 1

3: else

4: return dnum neighbors−offset
step e

We show the effect estimated by the model of the locally computed redundancy

constant for the most interesting combinations of parameters in Figs. 3.6 and 3.7.

We also confront the estimations with emulation results in Table 3.3.

We can see that the use of the locally computed redundancy constant greatly

reduced the effects observed in Fig. 3.3. Depending on the parameters passed to

the procedure, we note that the effect can be either reversed such that the nodes

in the corners transmit with smaller probability than the nodes inside the grid, or

reduced which is the case for nodes on the edges of the grid. Clearly, the absolute

value of the ideally balanced transmission probability in the network depends on

the requirements of the application actually using Trickle.

As an example of better load distribution with our algorithm, we can consider

a grid network, as above, where the nodes can, for instance, send 1000 messages

before depleting their battery. Consider the maximum transmission probability for

K = 1 in Table 3.1 (0.673 / 0.606). This will force the first node to shut down after

1480/1650 steady state Trickle intervals, whereas in a network using K ∈ {1, 2},
the maximum probability will be 0.479/0.493 (cf. Table 3.3) and will force the first

node to shut down only after 2087/2028 intervals.

Parameter Selection. In original Trickle, the redundancy constant K is a

parameter that effectively depends on the application requirements. With our al-

gorithm, we extend this concept in order to catch the topology characteristics and

to provide a better transmission load distribution among nodes. However, both re-

dundancy step and redundancy offset effectively depend on the application using

Trickle and are semantically equivalent to K. The notion of ”redundancy” from the

application point of view is in our case defined as a function of the network topology,

i.e. how many transmissions are needed for a given neighborhood to reach appli-

cation needs. For instance, with step = 2 and offset = 0 application specifies

that a transmission should be suppressed when at least half of the neighbors have

advertised their state as consistent. In parallel, step regulates the granularity of
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Figure 3.6: Transmission probability of nodes in the grid estimated by the model

for locally-computed redundancy constant.



168 Appendix C. Multiple Redundancy Constants with Trickle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
P

ro
ba

bi
lit

y

Node ID

Model
Emulation

(a) Offset = 0, Step = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
P

ro
ba

bi
lit

y

Node ID

Model
Emulation

(b) Offset = 0, Step = 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
P

ro
ba

bi
lit

y

Node ID

Model
Emulation

(c) Offset = 2, Step = 3

Figure 3.7: Comparison of model estimations with emulation results for locally-

computed redundancy constant.
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local Ki increments This directly affects the distribution of the transmission load in

the network. Thus, instead of blindly defining K, the application will have a finer

control on the redundancy depending on the topology. In the same time it achieves

better a transmission load distribution.

Table 3.3: Model and emulation results for the locally computed redundancy

constant on the grid. To obtain K ∈ {1, 2}, we used offset = 2, step = 3, and for

K ∈ {1, 2, 3}, offset = 0, step = 3.

results /

redundancy

constant

model

K ∈ {1, 2}
emulation

K ∈ {1, 2}
model

K ∈ {1, 2, 3}
emulation

K ∈ {1, 2, 3}

average mes-

sage count

15.734 15.326 21.587 21.66

max proba-

bility

0.479 0.493 0.520 0.586

min probabil-

ity

0.011 0.15 0.239 0.213

Variance 0.01188 0.00947 0.00511 0.00800

C.5 Conclusion

In this chapter we presented a model of the Trickle algorithm that estimates the

message count in steady state. We do this by calculating average transmission prob-

abilities of individual nodes in the network. This allowed us to demonstrate load

misbalance and unfairness of the algorithm when used with a common redundancy

constant in the network. The root cause of the unfairness is the heterogeneity of

the underlying topology as nodes do not have the same number of radio neighbors

in their range. As a consequence, with a common redundancy constant, nodes with

less neighbors transmit Trickle broadcast messages more often. We validated our

model by comparing it with emulation results and demonstrated its high accuracy.

In order to improve the fairness of Trickle, we proposed a simple heuristic algorithm

that locally computes the redundancy constant of a node based on the number of

neighbors in its vicinity. We demonstrated that by using our algorithm, nodes in

the network achieved better transmission load distribution. However, deriving an

optimal value of the redundancy constant that will perfectly balance the transmis-

sion probabilities of nodes in heterogeneous topologies remains an open problem

that we plan to study as future work.
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