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M, Hidde de Jong
DR, INRIA Grenoble Rhône-Alpes, Président
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M, Arnaud Tonnelier
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Abstract/Résumé

abstract: This thesis analyses localized travelling waves for some classes of non-

linear lattice differential equations describing excitable mechanical systems. These

systems correspond to an infinite chain of blocks connected by springs and sliding on

a surface in the presence of a nonlinear velocity-dependent friction force. We inves-

tigate both the Burridge-Knopoff model (with blocks attached to springs pulled at

constant velocity) and a chain of free blocks sliding on an inclined plane under the

effect of gravity. For a class of non-monotonic friction functions, both systems dis-

play a large response to perturbations above a threshold, one of the main properties

of excitable systems. This response induces the propagation of either solitary waves

or fronts, depending on the model and parameter regime. We study these localized

waves numerically and theoretically for a broad range of friction laws and parameter

regimes, which leads to the analysis of nonlinear advance-delay differential equations.

Phenomena of propagation failure and oscillations of the travelling wave profile are

also investigated. The introduction of a piecewise linear friction function allows one to

construct localized waves explicitly in the form of oscillatory integrals and to analyse

some of their properties such as shape and wave speed. An existence proof for solitary

waves is obtained for the excitable Burridge-Knopoff model in the weak coupling regime.

keywords: localized travelling waves, solitary waves, fronts, lattice differential

equations, excitable mechanical systems, Burridge-Knopoff model, nonlinear friction,

advance-delay differential equations, piecewise linear dynamical systems, propagation

failure.



résumé: Cette thèse étudie des ondes localisées pour certaines classes d’équations

différentielles non linéaires décrivant des systèmes mécaniques excitables. Ces systèmes

correspondent à une châıne infinie de blocs reliés par des ressorts et qui glissent sur

une surface en présence d’une force de frottement non linéaire dépendant de la vitesse.

Nous analysons à la fois le modèle de Burridge-Knopoff (avec des blocs attachés à

des ressorts tirés à une vitesse constante) et une châıne de blocs libres glissant sur un

plan incliné sous l’effet de la gravité. Pour une classe de fonctions de frottement non-

monotones, ces deux systèmes présentent une réponse de grande amplitude à des per-

turbations au-dessus d’un certain seuil, ce qui constitue l’une des principales propriétés

des systèmes excitables. Cette réponse provoque la propagation d’ondes solitaires ou

de fronts, en fonction du modèle et des paramètres. Nous étudions ces ondes localisées

numériquement et théoriquement pour une grande gamme de lois de frottement et de

régimes de paramètres, ce qui conduit à l’analyse d’équations différentielles non linéaires

avec avance et retard. Les phénomènes d’extinction de propagation et d’apparition

d’oscillations sont également étudiés pour les ondes progressives. L’introduction d’une

fonction de frottement linéaire par morceaux permet de construire explicitement des

ondes localisées sous la forme d’intégrales oscillantes et d’analyser certaines de leurs

propriétés telles que la forme et la vitesse des ondes. Une preuve de l’existence d’ondes

solitaires est obtenue pour le modèle de Burridge-Knopoff pour un couplage faible.

mots-clés: ondes progressives localisées, ondes solitaires, fronts, équations différentielles

sur réseau, systèmes mécaniques excitables, modèle de Burridge-Knopoff, frottement

non linéaire, équations différentielles avec avance-retard, systèmes dynamiques linéaires

par morceaux, extinction de propagation.
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Chapter 1

Introduction

1.1 Wave propagation in excitable systems

An excitable unit is a dynamical system which is able to react to perturbations. Weak

perturbations, i.e. below a threshold value, lead to small responses. If the perturbation

surpasses a threshold value then the system undergoes over time a large excursion in

the state space before arriving (or returning) to an equilibrium point (see Fig. 1.1).

Excitable systems are commonly described by non-linear dynamical systems where, in

the simple case, two variables are involved

du

dt
= F (u, y),

dy

dt
= G(u, y),

(1.1)

where u may be seen as an activator and v as an inhibitor (or a recovery variable).

The FitzHugh-Nagumo model, which describes the firing of a nerve cell, is given by

the previous kind of equations and constitutes the prototypical example of an excitable

system where large amplitude trajectories and oscillatory dynamics are prevailing [1,

2]. The qualitative analysis of the dynamics in the phase plane helps to understand

the threshold effect. In particular, the nullcline configuration and the vector field

direction allow to identify the threshold manifold that separates subthreshold regions

from regions where the system has a large amplitude response. The coupling of excitable

units defines an excitable medium where it is possible to transmit the perturbation from

one unit to another. Different architectures may be found and the coupling of ODE

1
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Figure 1.1: Phase space of the FitzHugh-Nagumo model u̇ = u− u3/3− y + I, ẏ = 0.08(u+

0.7− 0.8y). The responses of the nerve cell for different stimuli are shown in the phase plane.

The nullclines are plotted (dotted lines). A small perturbation produces a small trajectory

(grey line), whereas a stronger perturbation elicits a significant response (black line).

systems defined by (1.1) could result in a PDE system of the form

∂u

∂t
= d

∂2u

∂x2
+ k

∂2y

∂x2
+ F (u, y),

∂y

∂t
= G(u, y),

(1.2)

where the spatial coupling includes: (i) a diffusive coupling corresponding to the term

∂2u/∂x2 where d is the diffusion coefficient and (ii) an elastic coupling corresponding

to the term ∂2y/∂x2 where k is the stiffness coefficient. Other coupling types, as linear

cross-diffusion, may also be included in the y-equation of (1.2) [3]. Diffusively coupled

excitable systems appear in biological, chemical or ecological contexts. A well known

example is Nagumo’s equation that captures some of the complex behaviours observed

in reaction-diffusion processes [1, 4, 5].

Excitable models with elastic (or dispersive) coupling are less abundant and they mainly

occur in a mechanical context. In most cases, the u variable represents a velocity and y

a position. A typical example is the Burridge-Knopoff model which has been considered

in the geoscience field in order to reproduce statistical features of earthquakes dynam-

ics [6, 7]. Cross-diffusion models have been developed for biophysical and biomedical

applications such as the modelling of bacteria population growth or predator-prey in-

teractions [5, 8]. It has been shown that spatially continuous models exhibit a wide

variety of dynamical behaviours including propagating fronts, solitary waves, periodic

wave trains, spiral waves, or chaotic behaviours [4].

Discrete excitable models. Several excitable systems are spatially discrete by
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Figure 1.2: Examples of pulse (left) and front (right) profiles from the discrete FitzHugh

Nagumo equation and the discrete Nagumo equation, respectively, and reproduced from [16, 17].

The pulse is plotted respect to the n coordinate, and the front respect to the n− ct coordinate

where c is the wave speed.

nature rather than continuous as encountered in electronic networks, chemical systems

[9–11], species invasion models [12], or biological neurons [13]. Discrete media are fre-

quently idealized as continuous media in order to simplify the mathematical analysis

by replacing the infinite system of ODEs by a PDE. However, a continuous approxi-

mation cannot capture all the dynamical features of discrete media, specially at low

coupling strength [14, 15]. In this case, discrete media have to be described using lattice

differential equations. The discrete counterpart of (1.2) reads

dun
dt

= d∆dun + k∆dyn + F (un, yn), n ∈ Z,

dyn
dt

= G(un, yn),

(1.3)

where ∆dxn = xn+1 − 2xn + xn−1 is the discrete Laplacian. Similar spatio-temporal

dynamics are found in both continuous and discrete models. For example, Fig. 1.2

illustrates the propagation of pulses and fronts in spatially discrete versions of the

FitzHugh-Nagumo and Nagumo models [16, 17]. However the well known phenomenon

of propagation failure or pinning effect that describes the inability of a wave to propa-

gate is inherent to the lattice structure [13]. Analysis of discrete excitable systems has

been mainly done for diffusively coupled systems. The discrete version of the Nagumo

equation [4] is a prototypical example of such systems where the analysis of travelling

waves and propagation failure has been well documented [18–21]. Keener presented

a rigorous proof of propagation failure at weak coupling strength [13]. Erneux and

Nicolis developed an asymptotic method to describe propagation failure [22]. Exis-

tence theorems for travelling fronts and travelling pulses have been proved [14, 16, 23].

Comparatively little insight has been obtained for discrete elastic excitable models and

propagating phenomena have been not much explored [6, 7, 24]. In particular, propa-

gation failure has not been addressed.
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Figure 1.3: Schematic representation of a friction stress as a function of the sliding velocity

for a gel that is adhesive to the substrate in liquid. The friction force presents a spinodal-type

profile. (Figure obtained from [28]).

Discrete excitable elastic models. The Burridge-Knopoff model is a discrete

elastic system that has been introduced in 1967 to describe statistical features of earth-

quake dynamics. The interaction of two plates is modelled as a block-spring chain

subject to a friction law. Cartwright et al. have revisited the BK model via the intro-

duction of a spinodal friction function. This friction function is velocity-strengthening

at both low and high slipping velocities and velocity-weakening for intermediate slip-

ping velocities (see Fig. 1.3 for a typical profile). This type of friction law is motivated

by laboratory experiments on materials such as metal, rocks, hydrogels and rubber

polymers, and from theoretical arguments [25–29]. Theoretical studies mainly rely

on the continuum approximation for which propagating fronts, global oscillations and

self-sustained travelling shock waves have been reported [6]. However, the existence

of travelling pulse solutions has not been explored [7, 24] and the excitable properties

of the model have been investigated only partially. In particular the influence of the

non-monotonic friction force on propagating patterns is still unclear.

1.2 Objectives of the thesis and methods

In this thesis we study localized travelling waves for some classes of nonlinear lattice

differential equations describing excitable mechanical systems. We consider two spe-

cific systems but the mathematical tools used and developed in this thesis could be

used as well for other applications. The two systems that we analyse correspond to an

infinite chain of blocks connected by springs and sliding over a surface in the presence

of a nonlinear velocity-dependent friction force. We investigate both a chain of free

blocks sliding on an inclined plane under the effect of gravity (chapter 2) and the BK

model (chapters 3 and 4). For a class of non-monotonic friction functions, both systems
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display a large response to perturbations above a threshold, one of the main properties

of excitable systems. This response induces the propagation of either solitary waves

or fronts, depending on the model and parameter regime. We study these localized

waves numerically and theoretically for a broad range of friction laws and parameter

regimes, which leads to the analysis of nonlinear advance-delay differential equations.

Phenomena of propagation failure and oscillations of the solitary wave profile are also

investigated in the BK model (chapter 3). The introduction of a piecewise linear friction

function allows one to construct explicitly front solutions (chapter 2) and solitary waves

(chapter 3) in the form of oscillatory integrals and to analyse some of their properties

such as shape and wave speed. An existence proof for solitary waves is obtained for the

excitable Burridge-Knopoff model in the weak coupling regime (chapter 4). Chapter 5

lists several open problems and perspectives opened by this work.

1.3 Spring-block chain sliding under gravity

In chapter 2 we study the dynamics of an infinite chain of identical blocks sliding on a

slope under the effect of gravity (see Fig. 1.4). The blocks are coupled to their nearest

neighbours through linear springs of stiffness k. We denote by F (v) the friction force

exerted on a block sliding at velocity v, G the tangential component of the gravity

force and m the mass of the blocks. The velocity V corresponds to the constant sliding

state F (V ) = G (we shall use V as a bifurcation parameter instead of G). We consider

the spatially uniform constant sliding state as our reference state. We denote by yn(t)

a perturbation of the position of the nth block and un = dyn
dt a perturbation of the

constant sliding velocity. The dynamical equations are

dyn
dt

= un,

m
dun
dt

= k∆dyn − F (V + un) +G, n ∈ Z,

(1.4)

where ∆dyn = yn+1 − 2yn + yn−1 is the discrete Laplacian.

We are not aware of previous studies of nonlinear waves in this lattice dynamical

system. Equation (1.4) will be analysed for spinodal friction laws F (v) qualitatively

similar to the one represented in Fig. 1.3.

In the case of a single block (or if k = 0), the spinodal friction law leads to bistability

between two constant sliding velocities. The coupling of such bistable units results in
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Figure 1.4: Schematic representation of the chain sliding on a slope. The steady state corre-

sponds to F (V ) = G with G = mg sin θ.

an excitable network that supports moving fronts and pulses. Numerically, we observe

in a certain range of pulling velocities V that the pulses broaden during propagation.

Pulses with a fixed width are also observed for a specific sliding velocity V = V ∗.

Equation (1.4) is studied analytically for a piecewise linear friction law F (v). We

construct a front solution by Fourier transform and derive a nonlinear equation for its

wave speed c. The equation is solved numerically and analytically in the small coupling

limit.

We observe that c → 0 for k → 0, hence propagation failure does not occur at low

coupling. This property contrasts with known results on front propagation in discrete

bistable diffusive systems, where pinning occurs at low coupling [13–16, 19, 30].

Using the explicit front solution, we explain the dynamics of pulse propagation on

system (1.4). Broadening pulses merely consist of two fronts propagating with different

wave speeds. Pulses with constant width correspond to both fronts propagating with

the same wave speed. We analytically compute the sliding velocity V = V ∗ for which

pulses with constant width exist.

Finally, we discuss a connection between system (1.4) and the BK model. The latter

sustains propagating pulses under the same friction laws and parameter values. The

fronts of system (1.4) can be used to approximate transition layers of pulse solutions

of the BK model.

1.4 Travelling pulses in the discrete excitable BK model

Chapter 3 is devoted to the BK model that describes the frictional interaction of two

surfaces, one being pulled at a constant speed V and the second discretized as a chain

of blocks. We first provide a summary of different types of friction laws considered

in previous work on the BK model and review the different types of wave phenomena
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that have been analysed. The main part of chapter 3 addresses the propagation of

localized waves in the BK model within a simplified physical framework. We assume

that the blocks are identical (with mass γ) and experience a friction force described

by a nonlinear function F (v) where v denotes the sliding velocity (see Fig. 1.5). The

blocks are connected to nearest neighbours by Hookean springs of stiffness kc and to

the upper plate by springs of stiffness kp (this effect was absent in system (1.4)). Using

the dimensionless coupling parameter k = kc/kp, the governing equations are

dyn
dt

= un,

γ
dun
dt

= k∆dyn − F (V + un)− yn,

(1.5)

where n ∈ Z. The spatial discreteness of the BK model is appropriate to describe the

frictional dynamics of micropatterned surfaces similar to the ones presented in Fig.

1.6. Other applications include earthquake modelling, nonlinear transmission lines and

mechanical oscillator networks.

We show that for a class of non-monotonic friction forces, similar to the one depicted

in Fig. 1.3, the BK model supports the propagation of solitary waves. We explore

numerically and analytically the characteristics of these travelling waves such as their

waveforms and wave speeds. Propagation failure phenomenon at weak coupling is stud-

V

kp

kc

γ

Figure 1.5: The mechanical interpretation of the Burridge-Knopoff model, where V is the

pulling velocity or slip rate of the loader plate, γ is the mass of a block, kc and kp are the

stiffness of the Hookean springs.

ied. The critical coupling value k∗ that determines propagation failure is investigated

for different pulling velocities V . The properties of the waves are qualitatively explained

using the geometry of single-block excitability.

Two special regimes are explored in detail: a bistability regime and the continuum

limit. A bistability regime appears close to the transition when the friction law switches

from a velocity-strengthening regime for large sliding velocities to a velocity weakening

regime. In this regime, a stable focus coexists with self-sustained oscillations inducing
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Figure 1.6: Micropattern surfaces fabricated for slip control under wet conditions. Left figure

reproduced from [31] and right figure reproduced from [32].

complex propagating patterns. The continuum limit is approached numerically and

analytically as k ≫ 1. Near the continuum limit, model (1.5) takes the form of a PDE

γ
∂2y

∂t2
+ F

(
V +

∂y

∂t

)
+ y =

∂2y

∂x2
+ h.o.t, (1.6)

for which we seek travelling wave solutions. We show that smooth solitary waves do not

exist in the continuum limit but weak solutions (shocks) exist. Numerical simulations

of the BK model with k ≫ 1 suggest the existence of solitary waves with shock-like

profiles that are related to the existence of the weak solutions obtained in the formal

continuum limit.

Finally, we construct analytically a formal solitary wave solution for a piecewise-linear

friction force with a jump discontinuity. The solution satisfies an advance-delay dif-

ferential equation and can be expressed using Fourier transform. We are interested

in studying the simplest type of solitary waves, i.e., a solution that crosses the jump

discontinuity only twice. For suitable parameter values, we show that stable solitary

waves coexist with slower solitary waves not observed in dynamical simulations (and

presumably unstable). The propagation failure that occurs at low coupling corresponds

to a fold bifurcation between these two solution branches. We also determine parameter

values for which spurious solutions occur in our formal calculations. This is the reason

why we establish an existence theorem for solitary waves under specific assumptions in

chapter 4.

1.5 Existence theorem for solitary waves in the BK model

Chapter 4 presents an existence theorem for solitary waves in the Burridge Knopoff

model with the piecewise-linear friction force

F (v) =
v

a
− αH(v − a), v > 0, (1.7)
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where H denotes the Heaviside function. Block velocities take the form un(t) = ϕ(ξ)

with ξ = n− ct (c denotes the wave speed) and limξ→±∞ ϕ(ξ) = 0. Using this Ansatz,

equation (1.5) yields the advance-delay differential equation

c2γϕ′′(ξ) = k∆dϕ(ξ) + c
d

dξ
F (V + ϕ(ξ)) − ϕ(ξ), (1.8)

with derivatives taken in the sense of distributions (due to the discontinuity of F at

v = a). We further assume that solitary waves possess the following structure with

only two discontinuity crossings





ϕ(0) = ϕ(ξ1) = a− V

V + ϕ(ξ) < a if ξ ∈]ξ1, 0[
V + ϕ(ξ) > a otherwise.

(1.9)

Under assumption (1.9), equation (1.8) takes the form of an affine advance-delay dif-

ferential equation which can be solved by Fourier transform and the two equality con-

straints in (1.9) determine the velocity c and the parameter ξ1 of the solitary wave. In

order to prove the existence of solitary waves, the main difficulty is then to check the

inequality constraints in (1.9). This step is not straightforward because ϕ is defined

through an oscillatory integral in the above setting. We overcome this difficulty in the

limit k ≈ 0, where (1.8) becomes close to an ODE. We prove the following result.

Theorem 1 (Existence of solitary waves). Assume γ < 1
4a2 . Fix c > b

aγ ln( 1+b
1−b)

with

b =
√

1− 4a2γ. Then there exist functions V̄ (k) and ξ1(k) such that the following

result holds. For all k small enough, for V = V̄ (k) = a+O(k), there exists a solution

of (1.7)-(1.8)-(1.9) such that limξ→±∞ ϕ(ξ) = 0. This solution takes the following form

when k → 0:

ϕ(ξ) = αc [K(ξ − ξ1)−K(ξ)] +O(k) (1.10)

where K denotes the fundamental solution of the operator c2γ d2K
dξ2

− c
a
dK
dξ +K. We have

in addition when k → 0

ξ1 = O(ln k). (1.11)

The assumption γ < 1
4a2

in Theorem 1 sets the analysis in the overdamped regime

which allows to simplify, to some extent, the verification of the inequality constraints.

The proof is based on an asymptotic expansion of ϕ for k ≈ 0, ODE techniques to study

inner approximations of ϕ near the two discontinuities of ϕ′ (at ξ = 0 and ξ = ξ1),
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and outer approximations of ϕ (based on the explicit form of K). Using the above

expansions, we also derive a lower bound on the coupling constant k in order to have

existence of solitary waves of the type (1.9), in the case where the pulling velocity V is

fixed and close to a.



Chapter 2

Travelling waves in a block-spring

chain sliding down a slope

2.1 Introduction

Spatially discrete extended systems have a wide range of applications such as the

description of vibration in crystals or micromechanical arrays [33–35]. The type of

coupling between the elements is a distinctive feature of the application domain. In

mechanical systems, ideal mass spring systems with nearest-neighbours coupling are

frequently introduced to approximate the macroscopic behaviour of deformable sys-

tems [36]. In this work we consider the dynamics of an infinite chain of blocks coupled

by Hookean springs that slides down a slope due to gravity (see Fig. 2.1). Each

block is subjected to a nonlinear friction force. We consider a friction law of spinodal

type (see Fig. 1.3 for an example). Such friction laws have been reported to induce

excitable dynamics reminiscent of neural excitability [6], i.e., a perturbation above a

certain threshold produces a large excursion in the phase space before returning to

the equilibrium state. In biology, it is well documented that a large class of excitable

media is able to support nonlinear solitary waves [37]. It has been recently shown that

excitable mechanical systems also have the capacity to induce self-sustained solitary

waves [6, 7, 24].

In many studies, the analysis of discrete travelling patterns heavily relies on a contin-

uum approximation of the original model. In the spring-block model presented here,

we directly tackle the discrete nature of the equations and use an idealized piecewise-

linear friction force to derive exact expressions for propagating waves. This approach

11
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has been used in a variety of contexts to study travelling waves in lattices, see e.g.

[14, 19, 20, 38–45]. The structure of this chapter is as follows. We first derive the

governing equations for the chain of elastically coupled blocks. Then we study the

dynamical properties of an isolated block and demonstrate that a bistable behaviour

exists when a spinodal friction force is considered. For the coupled system, numerical

simulations show that the bistability property induces travelling patterns, as fronts and

pulses. For a piecewise-linear friction force we construct the travelling fronts analyti-

cally. The link between fronts and pulse waves is also studied. We then conclude by

connecting the results to the dynamics of the BK model.

2.2 The Model

Let us consider an isolated block of mass m and position x(t) that slips down a slope

under gravity and subject to a velocity-dependent friction force F
(
dx
dt

)
. The dynamical

equations read

m
d2x

dt2
+ F

(
dx

dt

)
= G (2.1)

where G is the tangential component of the gravity force. A steady state of (2.1) exists

when the block achieves a constant velocity motion dx
dt = V where F (V ) = G. Let us

consider an infinite chain of identical blocks linearly coupled through Hookean springs

of stiffness k that slips at the constant speed V over an inclined surface (see Fig. 2.1).

The dynamical equations in a frame moving at velocity V are given by:

dyn
dt

= un,

m
dun
dt

= k∆dyn − F (V + un) +G, n ∈ Z

(2.2)

where yn represents the displacement of the nth block from the steady sliding state and

un its velocity. The term ∆dyn = yn+1 − 2yn + yn−1 is the discrete Laplacian.

The system may be interpreted as a variant of the Burridge-Knopoff model [46]

where the shear stress described by the local potential is replaced by a constant tan-

gential force induced by gravity. The dynamics of system (2.2) is explored for three

normalized non-monotonic friction laws Fε, Fc and F0, depicted in Fig. 2.2A-C and

given by

Fε(v) =
[
1− α+

√
N(v)

] v√
ε+ v2

,

Fc(v) = 3.2v3 − 7.2v2 + 4.8v, (2.3)

F0(v) = v/a− αH(v − a),
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V
k

m

θ

g

Figure 2.1: Mechanical representation of the block-spring slider model where m is the mass, k

is the spring constant and V is the sliding velocity. The steady state corresponds to F (V ) = G

with G = mg sin θ.

Fε(v)

v

1

1− α

a

A

Fc(v)

v

1
1− α

b a

B

F0(v)

v

1
1− α

a

C

Figure 2.2: Non-monotonic friction laws. A Coulomb-like friction force Fε, where ε = 10−4.

B The cubic friction force Fc(v), where b = 0.5, a = 1 and α = 0.2. C The piecewise linear

friction force F0(v).

where N(v) = ε+ 4max(|v| − a, 0)2 + α2 max(a− |v|, 0)2, and H is the Heaviside step

function. For convenience, the cubic friction force Fc is given for a = 1 where a is

the location of the local minimum, i.e. the transition point from velocity-weakening

(v < a) to velocity-strengthening (v > a) regime. The friction function Fε describes a

regularized generalized Coulomb law as ε → 0. The cubic friction force Fc describes a

smooth spinodal friction law similar to the one introduced in [7]. The piecewise linear

function F0 captures some properties of these friction laws. It reduces the velocity-

weakening region to a jump discontinuity and is convenient for analytical computations.
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2.3 Bistable dynamics of a single block

For a single block, (2.2) reads

dy

dt
= u.

(2.4)

m
du

dt
= −F (V + u) + F (V ).

The y-nullcline is defined by u = 0 whereas the u-nullcline is obtained by solving

F (V + u) = F (V ) so that the vertical axis u = 0 always defines in the (u, y) plane

the set of fixed points for an isolated block. It is easy to check that the two associated

eigenvalues are given by λ1 = −F ′(V )
m , λ2 = 0 so that the equilibrium straight line is

stable (but not asymptotically stable). In (2.4), the dynamics of the velocity u does not

depend on the position y so that system (2.4) behaves as a one dimensional dynamical

system whose bifurcation diagram is shown in Fig. 2.3 for the three friction laws (2.3)

where V is taken as the bifurcation parameter.

For V ∈ (a, Vmax), where Vmax is the velocity value such that F (Vmax) equals the

local maximum in F and Vmax > a, there exist three fixed points U1 < U2 < U3 = 0

whose stability is governed by the eigenvalue µi =
−F ′(V+Ui)

m , i ∈ {1, 2, 3}, respectively.
A saddle-node bifurcation occurs at V = Vmax and a transcritical bifurcation takes

place at V = a. For V ∈ (a, Vmax), the two fixed points U1 and U3 are stable whereas

U2 is unstable and behaves as an excitation threshold. For an initial condition below

U2 the trajectory of the system tends towards U3 = 0, whereas for a sufficiently strong

perturbation the system reaches asymptotically the state U1 illustrating the excitable

dynamics of an isolated block. Depending on the initial state, the system can switch

from a neighbourhood of U3 to U1 and vice versa. For the cubic friction force Fc(v),

the threshold is given by

U2 = −3

2
V +

9

8
+

1

8
∆(V ) (2.5)

where ∆(V ) =
(
−48V 2 + 72V − 15

)1/2
(one has ∆(V ) ∈ R for V ∈ [1/4, 5/4]). We

have

U1 = −3

2
V +

9

8
− 1

8
∆ (V ) ,

and Vmax = 5/4. For the friction force F0(v), the threshold is simply defined as

U2 = a− V, (2.6)

the stable fixed point U1 is given by

U1 = −αa, (2.7)
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Figure 2.3: Bifurcation diagrams of the single block model. Stationary state, u, as a function

of the sliding velocity, V , for A regularized generalized Coulomb friction force Fε (a = 1,

α = 0.2, ε = 10−4) B the cubic friction force Fc (a = 1, b = 0.5, α = 0.2) and C the piecewise

linear friction force F0 (a = 1, α = 0.2). Solid lines represent stable states (denoted U1 and U3)

and dotted lines are for unstable states (U2).

and we have Vmax = a(1 + α). For the regularized generalized Coulomb law Fε, as

ε→ 0 the threshold converges to

U2 = (a− V )

[
1 +

2

α

]

and the stable fixed point U1 to

U1 = −V

and we have Vmax = a(1 + α
2 ). In the following we are interested in the excitability

regime where the velocity of the single block has two stable steady states and we fix a

V value in the interval delimited by the two bifurcation points, i.e. V ∈]a, Vmax[. As

we will show in the sequel, the bistability property is a key feature for the existence of

travelling fronts in the block-spring chain.
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Figure 2.4: Numerical simulations of equation (2.8) with the regularized Coulomb friction

force Fε with the same parameters as in Fig. 2.3. We display spatiotemporal plots of the

velocity variable un of A a travelling front (k = 0.5 and V = 1.01), B a broadening pulse

(k = 1 and V = 1.025), C a steadily propagating pulse solution (k = 1 and V = 1.046). An

initial perturbation u0(0) = −10 is applied on the first block of the chain. Computations are

performed for m = 0.15.

2.4 Travelling waves

Let us consider the block-spring slider model with the regularized generalized Coulomb

law Fε. We choose parameters so that each block exhibits a bistable behaviour. The

parameters of the friction law are those of Fig. 2.3A. Model (2.2) can be rewritten in

terms of velocity as

m
d2un
dt2

= k∆dun − dun
dt

F ′(V + un). (2.8)

We initialize the network by applying a suitable perturbation to the steady state U3 = 0.

A localized perturbation is applied on the first block at the left edge of the network,

see Fig. 2.4 for more details. We consider a finite chain of blocks with free boundary

conditions. For the numerical simulations, we use the adaptive Lsoda solver with a

time step ∆t = 0.001 and with a minimal error tolerance of 1.5e − 8.Unless stated

otherwise we take for the numerical simulations m = 0.15, this value was considered in

the study of the BK model in chapter 3 and allows a direct comparison of the dynamics

between both models. We observe the existence of travelling fronts as shown in Fig.

2.4A. In addition, two types of pulse solutions are observed: (i) pulse waves with

expanding width and (ii) pulse waves with constant shape as plotted in Fig. 2.4B and

C, respectively.

Propagating fronts (similar to the one shown in Fig. 2.4A) are the dominant pattern

when the threshold is close to the resting state, i.e., for V close to a (|U2| ≪ 1). The

speed of the propagating front increases with the coupling value k but, at the same
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Figure 2.5: Plots of the velocity waveforms un(t) of the block-spring model in the travelling

wave coordinate ξ = n − ct. The wave profiles in A,B are obtained with the regularized

generalized Coulomb law Fε and correspond to the travelling waves shown in Fig. 2.4A,C,

respectively. Plots C and D represent the wave profiles obtained with the cubic friction force,

Fc. Plots E and F represent the wave profiles obtained with the piecewise linear friction law

F0. The wave speed is A c = 1.95, B c = 2.21, C c = 3.06, D c = 3.16, E c = 3.16 F c = 1.45.

For the piecewise linear law, we use a = 1 and α = 0.2. Other parameters are those of Fig. 2.4

for A-B and we take C V = 1.025, k = 1 D V = 1.18, k = 2, E, V = 1.025, k = 1, F V = 1.1,

k = 1.



Chapter 2. Travelling waves in a block-spring chain sliding down a slope

18

−25  0  25

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

ξ

Figure 2.6: Plot of the velocity waveforms un(t) of the block-spring model. The two localized

pulses correspond to a snapshot of the travelling pattern shown in Fig. 2.4B at two different

locations (n = 25, n = 50). The initial front propagates at speed c = 2.45 and the rear front at

c = 2. Other parameters are those of Fig. 2.4B

time, the parameter range where front waves exist shrinks (without vanishing). As the

sliding velocity increases, a front to pulse transition occurs where the excitation spreads

over the network and leads to pulses with expanding width (see Fig. 2.4B). The rate

of expansion of the enlarging pulse decreases as the sliding velocity increases leading to

the existence of a pulse with constant width as shown in Fig. 2.4C. For V → Vmax, the

threshold approaches the fixed point U1 and a perturbation fails to produce a travelling

pattern. Qualitatively similar results are obtained for the cubic friction force Fc and

for the piecewise linear friction force F0.

The profiles of the travelling waves observed in Fig. 2.4A,C are shown in Fig. 2.5A,B,

respectively, and are compared with those obtained with the cubic law (Fig. 2.5C,D)

and the piecewise-linear law (Fig. 2.5E,F). The travelling patterns for the three friction

forces have similar shapes and mainly contrast in their amplitude that is determined

by the distance between the two stable fixed points. A non-monotonic wave profile

is observed for the travelling fronts with the existence of a dip behind the front (see

Fig. 2.5C,E) whereas the dip is too small to be seen in Fig. 2.5A. Interestingly,

similar profiles were obtained for travelling fronts in a chain of bistable oscillators [47].

Qualitatively, these results are not affected by the mass parameter (simulations not

shown).

The enlarging pulse observed in Fig. 2.4B may be seen as the superposition of two

travelling fronts with two different propagating speeds (see Fig. 2.6). The initial front is

qualitatively similar to the waveform shown in Fig. 2.5A and is followed by a travelling

front that propagates in the same direction but with a lower speed and that connects

the two stable states in a reversed order.
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The localized pulse waves shown in Fig. 2.5B,D,F are thus expected to appear

when the two travelling fronts have the same speed. These observations are analytically

explained in the next section for the piecewise-linear law F0.

2.5 Construction of travelling fronts for the piecewise-

linear friction force

A travelling front solution of (2.8) takes the form:

un(t) = ϕ(n− c t) (2.9)

where

ϕ(∞) = U3 = 0 and ϕ(−∞) = U1 (2.10)

with U1 6= 0 a stable equilibrium. The function ϕ describes the waveform, and c is

the wave speed that has to be determined. Substitution of (2.9) into (2.8) gives the

advance-delay differential equation

c2mϕ′′(ξ) = k(ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ)) + c
d

dξ
F0(V + ϕ(ξ)) (2.11)

where ξ = n − ct ∈ R is the travelling wave coordinate. The front solutions described

in section 2.4 connect two different stable steady states as n → ±∞. In contrast, the

travelling pulse tends towards the same stable equilibrium as n→ ±∞.

We consider here the piecewise linear force F0 and we assume that each block is in a

bistable regime, i.e. we have V ∈ (a, a(1 + α)) and U1 = −αa as in (2.7). We assume

that the travelling front solution crosses the threshold (2.6) for only one value of ξ.

Translation invariance of travelling waves allows us to fix this value to ξ = 0 and we

seek for a solution such that




ϕ(ξ) < a− V for ξ < 0,

ϕ(0) = a− V,

ϕ(ξ) > a− V for ξ > 0.

(2.12)

Using (2.12) to simplify the nonlinear term F (V + ϕ), system (2.11) takes the form

c2mϕ′′(ξ) = k(ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ)) +
c

a
ϕ′(ξ)− αcδ(ξ), (2.13)

where δ(ξ) is the Dirac delta function.

Equation (2.13) is a linear non-autonomous differential equation so that one may at-

tempt to use the Fourier transform to derive an analytic solution. However a certain
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amount of care is needed to correctly handle the Fourier transform of ϕ due to the

nonzero boundary condition at −∞. We look for ϕ(ξ) in the form

{
ϕ(ξ) = αa (ψ(ξ) +H(ξ)− 1) ,

ψ(ξ) ∈ L2(R), limξ→±∞ ψ(ξ) = 0,
(2.14)

where ψ(ξ) needs to be determined. Equation (2.13) is re-expressed in terms of ψ(ξ)

and Fourier transform is applied to determine ψ(ξ), and subsequently ϕ(ξ).

Integrating (2.13), gives

c2mϕ′ = k ∧′ ∗ ϕ+
c

a
ϕ+ αc(1 −H), (2.15)

where ∧(ξ) = max (1− |ξ|, 0) is the tent function, and where we used for any f ∈
L1
loc(R),

(∧′ ∗ f)(ξ) =
∫ ξ+1

ξ
f(s)ds−

∫ ξ

ξ−1
f(s)ds. (2.16)

Note that (2.15) together with (2.10) remains equivalent to the original problem (2.13)-

(2.10). Injecting (2.14) into (2.15), gives

c2mψ′ − c

a
ψ − k ∧′ ∗ ψ = k ∧ −c2mδ, (2.17)

where we used the property ∧′ ∗ (H − 1) = ∧. Taking the Fourier transform as ψ̂(λ) =
∫
R
e−2πiλξψ(ξ)dξ in (2.17), we obtain

(
2iπλc2m− c

a
− k2iπλsinc2(λ)

)
ψ̂(λ) = ksinc2(λ)− c2m, (2.18)

where we used ∧̂(λ) = sinc2(λ) with sinc(λ) = sin(πλ)/πλ. Let us introduce

K̂(λ) =
(
2iπλ

[
c2m− ksinc2(λ)

]
− c

a

)−1

where one has K̂(λ),K(ξ) ∈ L2(R) (K denotes the inverse Fourier transform of K̂).

From dK̂
dλ ∈ L1(R) and using −2iπξK = F−1

(
dK̂
dλ

)
∈ L∞(R), one has limξ→±∞K(ξ) =

0 (F−1 denotes the inverse Fourier transform). From (2.18), we obtain

ψ = kK ∗ ∧ − c2mK. (2.19)

Since ∧ ∈ L1(R) we have K ∗∧ ∈ L2(R), and because K,∧ ∈ L2(R) then K ∗∧ ∈ C0(R)

decays to zero when ξ → ±∞. Consequently ψ(ξ) given by (2.19) satisfies the properties

assumed in (2.14), and defines a unique solution in L2(R). Therefore (2.14) is a solution
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of (2.13) with boundary conditions (2.10). Regularity properties of ϕ(ξ) can be inferred

from the following identity obtained from (2.14) and (2.17)

c2m

αa
ϕ′ =

c

a
ψ + k ∧′ ∗ψ + k ∧ . (2.20)

This implies ϕ′ ∈ L1
loc(R) (since ∧′ ∗ψ ∈ L2(R)) and thus ones has ϕ ∈ C0(R). We also

get from (2.15) that ϕ′ ∈ C0(R+) ∩ C0(R−), hence ϕ ∈ C1(R+) ∩ C1(R−), and thus

(2.15) gives ϕ′ ∈ C1(R+) ∩ C1(R−). We get finally

ϕ ∈ C2(R+) ∩C2(R−) ∩ C0(R).

From the analytical expression of ϕ, we can determine an equation for the wave

speed of the front. Using (2.14), we set

ϕ(ξ) + ϕ(−ξ)
2

=
αa

2
[ψ(ξ) + ψ(−ξ) − 1]

:=
1

2
G(ξ, c) (2.21)

where ψ is defined by (2.19) (note that we used H(−ξ) = 1 − H(ξ) to eliminate the

Heaviside function). Using the threshold condition ϕ(0) = a− V from (2.12) together

with (2.21), we obtain that the wave speed satisfies

G(0, c) + 2(V − a) = 0. (2.22)

This scalar equation allows us to compute c numerically, using a Newton-type method.

Computation of K is done using a Gauss-Konrod quadrature formula in a truncated

interval [−106, 106]. We restrict to c > 0 (the case c < 0 can be deduced by symmetry,

see section 2.7). A plot of the resulting analytical profile (2.14) is shown in Fig. 2.7A

and compared with the numerical simulation of (2.8). A perfect matching is realized

between the two trajectories. For different sliding velocities, speed curves computed

from (2.22) are presented in Fig. 2.7B.

2.6 Small coupling limit.

In this section the small coupling limit is explored. We consider the case c > 0 (see

section 2.7 for the case c < 0). From (2.17) and (2.19) with k → 0, we have the leading

order equation

c2mK ′ − c

a
K − k ∧′ ∗K = δ, (2.23)
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Figure 2.7: A Travelling front solution computed from the explicit formula (2.14) where

k = 0.3, V = 1.025, a = 1 and α = 0.2 (full line). The trajectory is indistinguishable from

the ones obtained from the numerical simulation of the chain. The asymptotic approximation

(2.29) obtained for k ≪ 1 is also shown (dashed grey). We have obtained c = 1.55 from the

threshold condition (2.12) (the dashed line defines the threshold U2 = a− V ). B Wave speed

curves in the (c, k) plane obtained from (2.22) for V = 1.025, 1.05, 1.075 and 1.1 (from right

to left, respectively).

where we look for a solution of the form

K = K0 + kK1 +O(k2). (2.24)

Inserting (2.24) in (2.23), and equating orders of leading terms in k, we obtain

c2m(K ′
0 − νK0) = δ, (2.25)

c2m(K ′
1 − νK1) = ∧′ ∗K0, (2.26)

where ν = (cam)−1. Observe (2.25) has the unique bounded solution

K0(ξ) = − 1

c2m
eνξH(−ξ), (2.27)

where K0 ∈ L1(R), hence the solution of (2.26) reads

K1 = K0 ∗ ∧′ ∗K0 = ∧ ∗K0 ∗K ′
0,

=
1

c2m
∧ ∗K0 + ν ∧ ∗K0 ∗K0, (2.28)

where we usedK ′
0 =

1
c2m

δ+νK0. Using (2.19) with (2.27) and (2.28), the approximation

for ϕ up to O(k2) reads

ϕ(ξ) = αa(eνξ − 1)H(−ξ) + αak
[
− c2mK1(ξ) +

(K0 ∗ ∧)(ξ)
]
+O(k2) (2.29)
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Figure 2.8: A Speed curves of the travelling front solution in the (c, k) plane for V =

1.0025, 1.005, 1.0075 and 1.01 (from right to left, respectively). Curve solutions (c, k) com-

puted with (2.33) (dashed grey) accurately describes the exact curves (c, k) computed with

(2.22) (black continuous) in the limit c→ 0. B A zoom of the dashed square region in panel A

is shown. Other parameters include α = 0.2, a = 1 and m = 0.15.

where we used the identity H(−ξ) = 1 −H(ξ). Expression (2.29) allows to obtain an

approximation of the wave speed c for small k. From ϕ(0) = a− V and (2.29), we get

a− V = αak
(
−c2mK1(0) + (K0 ∗ ∧)(0)

)
+O(k2),

= −αkc(∧ ∗K0 ∗K0)(0) +O(k2),

:= S(c)k +O(k2). (2.30)

We obtain after some computations (see appendix A)

S(c) =

[
2αma3 +

αa2

c
(g(c)− 1)

]
(2.31)

where g(c) = e−1/amc(−2amc− 1).

In order to approximate c, we drop O(k2) terms in (2.30), fix the value of V , and

look for solutions c ≈ 0 when k ≈ 0. Observing the exponential decay g(c) → 0 as

c→ 0, we have, from (2.31) and (2.30) the leading order approximation

[
2αma3 − αa2

c

]
=
a− V

k
(2.32)

for k, c→ 0. Therefore we obtain the following approximation for the wave speed

c ∼ αa2

V−a
k + 2a3mα

(2.33)

where the leading order approximation reads c ∼ αa2k
V−a .

Formula (2.33) was derived under the assumption that c is small for k small, and
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one can easily check that c given by (2.33) satisfies c → 0 as k → 0. To evaluate

the accuracy of the asymptotic approximation (2.33), we compare in Fig. 2.8 the

(c, k) curves obtained from (2.22) with those computed from (2.33) for different sliding

velocities V . The asymptotic approximation (2.29) of the waveform is compared with

the solution obtained for k = 0.3 in Fig. 2.7A and a good agreement is found.

2.7 Reverse travelling fronts and pulses

In the previous section we have constructed travelling fronts connecting the two stable

equilibria U1 = −αa (when n → −∞) and 0 (when n → +∞). In this analysis we

have restricted our attention to travelling fronts with positive velocity c(V ) (for now

we consider the dependency of front velocity in V and discard the other parameters).

Using symmetry arguments, we show in the sequel the existence of travelling fronts with

negative velocity satisfying the same boundary conditions. We also deduce the existence

of travelling fronts with positive velocity satisfying reverse boundary conditions (un →
−αa when n→ +∞ and un → 0 when n→ +∞).

Let us start with some symmetry considerations. Consider the advance-delay equa-

tion (2.11) with boundary conditions

ϕ(−∞) = U1, ϕ(+∞) = U3. (2.34)

This problem admits the invariance

ϕ(ξ) → ϕ(−ξ), c→ −c, (U1, U3) → (U3, U1). (2.35)

Moreover, the piecewise-linear friction force F0 is antisymmetric about v = a, i.e. we

have

F0(a+ h) + F0(a− h) = 2− α, for all h ∈ R.

As a consequence, one can readily check that (2.11)-(2.34) is invariant by the one-

parameter family of transformations

ϕ→ −λ− ϕ, V → 2 a+ λ− V, (U1, U3) → (−λ− U1,−λ− U3), (2.36)

where λ ∈ R is arbitrary.

Now let us use the above invariances in order to obtain reverse travelling fronts.

We define ζ̃ = −αa − ϕ, so that ζ̃ and ϕ connect stable equilibria in reverse order

at infinity. Applying invariance (2.36) for U3 = 0 and λ = αa = −U1, it follows
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that ϕ is a solution of (2.11) if and only if ζ̃ is a solution of the same equation with

modified sliding velocity Ṽ = a (2 + α) − V . From the results of section 2.5, this

problem admits for all Ṽ ∈ (a, a(1 + α)) a front solution ζ̃ satisfying the boundary

conditions ζ̃(−∞) = −αa, ζ̃(+∞) = 0, with velocity c(Ṽ ) > 0. From invariance (2.35),

this equation possesses another front solution ζ(ξ) = ζ̃(−ξ) with velocity −c(Ṽ ) < 0,

which satisfies the boundary conditions ζ(+∞) = −αa, ζ(−∞) = 0. It follows that for

all V ∈ (a, a(1 + α)), equation (2.11) with sliding velocity V admits the front solution

ϕ̃ = −αa− ζ, satisfying the boundary conditions (2.10) and having a negative velocity

−c(a (2 + α) − V ). Consequently, the search of front solutions of (2.10)-(2.11) can be

reduced to the case c > 0 examined in section 2.5, since all fronts with c < 0 can be

deduced by symmetry.

Furthermore, ϕ(ξ) = ϕ̃(−ξ) = −αa − ζ̃(ξ) defines another solution of (2.11) with

sliding velocity V . This front has a positive velocity c(Ṽ ) = c(a (2 + α) − V ) and

satisfies the reverse boundary conditions

ϕ(−∞) = 0, ϕ(+∞) = −αa. (2.37)

The coexistence of this reverse front and the front satisfying (2.10)-(2.11) with the

different velocity c(V ) can be used to understand the broadening of pulses reported

in section 2.4, as well as the existence of steadily propagating pulses observed for

particular sliding velocities. Indeed, we can see from Fig. 2.8B that the function

V 7→ c(V ) is decreasing (this is also clear from the leading order approximation (2.33)).

Consequently, gluing the two above fronts to form a pulse decaying to 0 at infinity, the

trailing front (at the rear of the propagating pulse) will be slower if V < Ṽ , resulting

in a broadening of the pulse. This regime occurs for V ∈ (a, a(1 + α
2 )). In the critical

case V = a(1+ α
2 ), we have V = Ṽ and the two fronts have identical velocities, thereby

maintaining a steadily propagating pulse (this case is shown in Fig. 2.5F). Conversely,

for V ∈ (a(1+ α
2 ), a(1+α)), the trailing front is faster and no pulse wave can propagate.

Starting from an initial bump condition, an annihilation occurs when the trailing front

reaches the leading front. In conclusion, the condition for the existence of broadening

pulses reads

V < V ∗ where V ∗ = a
(α
2
+ 1
)
. (2.38)

For V > V ∗, pulse fails to propagate whereas for V = V ∗ a stable pulse is observed,

with a width determined by the initial perturbation. In the small coupling limit, this

pulse has a wave speed c ∼ 2ak according to approximation (2.33).
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2.8 Discussion

We studied localized travelling waves in a nonlinear lattice describing a block-spring

chain sliding down a slope. Existence of stable localized travelling waves was illustrated

for different spinodal friction laws. For an idealized piecewise-linear friction force, we

constructed analytically travelling fronts and analysed their wave speeds. In contrast

with discrete Nagumo equations with generic nonlinearities, propagating fronts exist

at small coupling values, i.e., propagation failure does not occur for a weak coupling

strength. As already observed in a different context [48], the travelling pulses are shaped

by the concatenation of two travelling front solutions. We determined analytically the

parameter range where pulses of constant width occur, i.e., the leading front and the

trailing front have the same velocity. It is worth noting that this analysis does not rely

on a time scale separation and differs from the asymptotic construction of pulses done

in [16]. In particular, the pulse width is not determined by the equality of the velocity

of the two fronts but depends on the initial excitation.

−80 −60 −40 −20 0 20
−1

−0.8

−0.6
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0
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n− ct

Figure 2.9: Comparison of a front solution of (2.2) (solid line) with a pulse supported by the

Burridge-Knopoff model (dotted line). Computations are performed for the cubic friction law

F = Fc and the following parameters : γ = 0.05, kc = 10, V = 1.025.

The present study is also of interest for the understanding of the dynamics of the

Burridge-Knopoff model where the time evolution of the system is given by

γÿn = kc∆dyn − F (V + ẏn)− yn. (2.39)

Let us define yn(t) = −F (V ) + γzn(t/γ) and k = γkc. Assuming γ ≪ 1, then, the

Burridge-Knopoff model (2.39) can be rewritten in the fast time scale as

z̈n = k∆dzn − F (V + żn) + F (V )
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that coincides with (2.2). Therefore, for small γ values, the front waves of (2.2) provide

useful information on the dynamics of pulse propagation in the Burridge-Knopoff model

(2.39). More precisely, fronts approximate the transition region from the ground state

to the excited state. This is shown in Fig. 2.9 where the fast time scale of the BK

model is accurately reproduced by model (2.2).
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2.9 Appendix for chapter 2

We compute here the explicit expression of S(c) = −αc (∧ ∗K0 ∗K0) (0). We reexpress

K0 as K0(ξ) = −G(ξ)
c2m

where G(ξ) = eνH(−ξ), hence we have

S(c) = − α

c3m2
(∧ ∗G ∗G) (0). (2.40)

We have

(G ∗G)(−s) =
∫ 0

−s
G(τ)G(−s − τ)dτ = se−νsH(s)

with s > 0, therefore

(∧ ∗G ∗G) (0) =

∫

R

∧(τ)(G ∗G)(−τ)dτ

=

∫ 1

0
(1− τ)(τe−ντ )dτ

=
ν + e−νν − 2 + 2e−ν

ν3

=
e−ν

ν3
(2 + ν) +

−2 + ν

ν3

with ν = (cam)−1. We further calculate

e−ν

ν3
(2 + ν) +

−2 + ν

ν3
= −ν−2

[
g(ν) + 2ν−1 − 1

]
(2.41)

where g(ν) = e−ν(−2ν−1 − 1). Inserting (2.41) into (2.40), gives

S(c) =
αν−2

c3m2

[
g(ν) + 2ν−1 − 1

]
, (2.42)

and (2.31) follows.



Chapter 3

Travelling pulses in the

Burridge-Knopoff Model

3.1 Introduction

A significant body of work has been devoted to elucidating nonlinear mechanisms of

earthquakes [49–51]. Almost fifty years ago, Burridge and Knopoff [46] introduced a

nonlinear lattice model to investigate the generation of earthquakes along faults, or

more generally the occurrence of dynamical instabilities at frictional interfaces. The

Burridge-Knopoff (BK) model formally describes a chain of blocks connected by springs

and pulled over a surface, each block being attached to a spring pulled at constant

velocity and subject to a friction force with the surface. When considering two plates

under friction, the blocks can either correspond to a discretization of a plate or account

for an existing microstructure [32]. It has been shown that this simple slider-block

model is able to reproduce some statistical features of earthquakes generated by fault

dynamics [52].

A key feature of the BK model lies in the friction force between the blocks and the

fixed surface, which depends nonlinearly on sliding velocity. Experiments performed

with a broad range of materials have revealed that the steady-state kinetic friction

coefficient is non-monotone versus sliding velocity (see [53] for a review). Friction

is velocity-strengthening (i.e. frictional resistance increases with sliding velocity) for

high enough velocities and becomes velocity-weakening in a regime of low velocities,

a behaviour intimately linked with the occurrence of stick-slip instabilities and earth-

quake phenomena. Such velocity-weakening or velocity-strengthening regimes can be

29
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described by different types of friction laws. Rate-and-state friction laws incorporating

state variables for the frictional interface are frequently used, see e.g. [54] for a review

and a detailed bifurcation analysis in the case of a single block, and [55–57] for dynam-

ical simulations of the BK model. However, the mathematical analysis of such models

can be delicate due to the additional degrees of freedom introduced to describe the

state of the interface. Another class of widely used friction laws is given by generalized

Coulomb laws with velocity-dependent kinetic friction coefficient [58]. In that case,

the set-valued character of the friction laws requires an adapted numerical treatment

[59–61] and leads to analytical complications in dynamical studies [62]. Alternatively,

single-valued laws can be used to approximate set-valued friction laws [52] or account

for a velocity-strengthening regime at small enough velocities [27, 28, 46].

The dynamics of the BK model has been extensively studied in the case of steady-

state velocity-weakening friction. Depending on the choice of parameters and system

size, this regime can lead to chaotic dynamics or to the propagation of nonlinear wave-

trains [57, 63, 64]. In particular, periodic travelling waves close to solitary waves (with

highly localized slipping events propagating at constant velocity) have been reported

in numerical and analytical studies [57, 62, 64–66].

In this chapter, we consider a different situation corresponding to “spinodal” fric-

tion laws [46, 54, 67], where steady-state friction is velocity-strengthening both for

small and large enough velocities and an intermediate velocity-weakening region exists.

This situation has been reported in a number of friction experiments performed with

rocks, rubber and hydrogels [26, 28, 68]. In that case, the dynamics of a single block

is described by a Van der Pol type equation, a situation frequently encountered in the

modelling of excitable media [69–72]. Numerical studies of the BK model with spinodal

friction laws (either generalized Coulomb laws or regularizations thereof) have revealed

different types of wave patterns, ranging from synchronous oscillations, periodic travel-

ling waves and phase fronts [7, 24] to chimera-like states (see Fig. 8 of reference [73] for

an early observation of this phenomenon). These different studies were focused on the

oscillatory regime where the pulling velocity lies within the velocity-weakening region.

With regard to spatially localized travelling waves, the existence of fronts has been

established in a continuum limit of the BK model [6] (see also [74–76] for numerical

studies of rupture fronts in other continuum models based on rate-and-state laws).

However, the existence of localized waves was not established so far for the spatially

discrete BK model with spinodal friction laws. The analysis of finite amplitude trav-

elling waves in the discrete system is more delicate because it leads to a nonlinear
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advance-delay differential equation for the wave profiles. In order to tackle this prob-

lem, an interesting inverse approach was described in reference [77], where particular

friction laws were computed in order to fit prescribed explicit wave profiles. An ana-

lytical moving kink solution (with block displacements given by an odd function of the

moving frame coordinate z) was proposed but turns out to be erroneous (the velocity

dependent friction force induced by the kink is even in z, and cannot be balanced by

the odd inertial and stress terms in the dynamical equation (10) of [77]).

In the present chapter, we analyse in detail the existence of localized waves in

the discrete BK model with spinodal friction laws, using both extensive numerical

simulations and analytical techniques. We restrict our attention to solitary waves and

will treat the case of fronts in a forthcoming publication. We consider the excitable

regime where the pulling velocity lies within a velocity-strengthening domain of the

spinodal friction laws (above velocity-weakening). In that case, each single block admits

a stable state of continuous slip but displays a large response to perturbations above

some threshold. When blocks become coupled, our numerical simulations reveal that

this response generates a solitary wave for a broad range of friction laws (smooth

or nonsmooth) and parameter values. In the case of regularized Coulomb laws, the

solitary wave consists of a moving localized region where sticking occurs, in contrast to

the propagation of localized slipping events previously reported for velocity-weakening

friction [64].

We analyse in detail the influence of parameters on the existence and qualitative

properties of solitary waves. For low enough coupling between blocks, we observe a

phenomenon of propagation failure corresponding to the rapid extinction of initially

propagating pulses. We find that solitary waves develop shock-like profiles in the op-

posite limit of large coupling, a phenomenon connected with the existence of weak

solutions in a formal continuum limit. When the pulling velocity is decreased towards

the boundary of the velocity-strengthening domain, the dynamics of the blocks becomes

underdamped and we observe solitary waves with oscillatory tails, while propagation

failure takes place above some critical pulling velocity. For certain friction laws (near

the transition to a velocity-weakening law), we also observe bistability between contin-

uous slip and limit-cycle oscillations and the existence of propagating fronts connecting

these two stable states.

In order to obtain analytical expressions for solitary waves and explain some of

their qualitative properties, we introduce a simplified piecewise linear friction law with

two velocity-strengthening regions separated by a (negative) jump discontinuity. The
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discontinuity in the friction force can be interpreted as a rough approximation for the

existence of a small intermediate velocity-weakening region. Alternatively, we propose

a possible physical realization of this piecewise-linear system as a chain of impulsively

forced mechanical oscillators. Such types of nonlinearities have been extensively used

for the mathematical study of travelling waves in different types of PDEs [18, 21, 78]

and spatially discrete systems [14, 19, 20, 36, 38–40, 44, 45, 79–81]. Following this

approach allows us to obtain explicit solitary waves in the form of oscillatory integrals

and numerically compute their profiles and wave speed. Moreover, this method provides

analytical expansions of the solitary waves at small coupling and for pulling velocities

near the jump discontinuity [20]. In this limit, we explain the occurrence of propagation

failure below some critical coupling by the existence of a saddle-node bifurcation of

solitary waves.

It is worthwhile to stress that we obtain fully localized solitary waves, i.e. blocks lie

in the state of stable slip at infinity on both sides of the chain (this constitutes another

important difference with the previous works [62, 64]). Similar solutions have been

previously obtained for other types of excitable lattice dynamical systems where the

coupling is diffusive rather than elastic. These systems correspond to spatially discrete

FitzHugh-Nagumo equations with either smooth [15] or piecewise-linear [20] bistable

nonlinearities. While our analysis of solitary waves at small coupling closely follows the

lines of [20], the properties of solitary waves are quite different at large coupling with

the occurrence of shocks in the BK model.

The outline of the chapter is as follows. In section 3.2, we introduce the excitable

BK model with different types of spinodal friction laws, summarize several applications

of the model (frictional interfaces, mechanical oscillators, nonlinear transmission lines)

and illustrate the excitation of solitary waves. In section 3.3, we use numerical simula-

tions to study the existence and shape of solitary waves depending on parameters. We

also consider a continuum limit of the model and illustrate the bistable dynamics near

the transition to a velocity weakening law. Section 3.4 provides analytical results for

the idealized piecewise linear friction law. Section 3.5 summarizes the main findings,

describes potential applications of the present work and points out interesting open

problems.
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V

kp

kc

m

Figure 3.1: The mechanical interpretation of the Burridge-Knopoff model, where V is the

pulling velocity or slip rate of the loader plate, m is the mass of a block, kc and kp are the

stiffness of the Hookean springs.

3.2 The Burridge-Knopoff model and its applications

3.2.1 Dynamical equations and solitary waves

The BK model describes the interaction of two sheared surfaces, one being pulled at

a constant speed V and the second is discretized as a chain of N identical blocks

with mass m resting over a surface with frictional interaction described by a nonlinear

friction function F (v). The blocks are connected to each other through Hookean springs

of stiffness kc, and to the upper plate by springs of stiffness kp (see Fig. 3.1).

The motion of an isolated block is given by

m
d2x

dt2
+ kpx+ f0F

(
V + dx

dt

v1

)
= 0, (3.1)

where x(t) is the displacement of the block relative to the point of attachment on the

moving plate, f0 and v1 are two scaling parameters of the friction law. Using the change

of variables y = x/ρ, τ = ρ/v1, t̄ = t/τ , γ = mv21kp/f
2
0 , V̄ = V/v1 and ρ = f0/kp, Eq.

(3.1) can be reformulated as the dimensionless dynamical system on the plane:

dy

dt
= u,

γ
du

dt
= −F (V + u)− y,

(3.2)

where the rescaled time t̄ and pulling velocity V̄ have been rewritten as t and V . The

qualitative dynamics of (3.2) highly depends on the shape of the nonlinear function

F (v). For a spinodal friction law, similar to the one plotted in Fig. 3.2A, the sys-

tem shows excitability: a strong enough perturbation of the steady state (us, ys) =

(0,−F (V )) produces a large trajectory in the phase plane whereas small perturbations

monotonically decay to the resting state. In addition, there exists a refractory period

where the block is unresponsive to further perturbations. The geometrical illustration

of this threshold effect is shown in Fig. 3.2B. This excitability property contrasts with
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Figure 3.2: A The spinodal friction force defined by the cubic polynomial Fc(v) = 3.2v3 −
7.2v2 + 4.8v for v > 0. In B, the responses of an isolated block to perturbations of different

magnitudes are shown in the phase plane. The nullclines are represented (dashed lines). For

a strong enough perturbation of the resting state, a large trajectory is elicited (solid black),

whereas a small perturbation does not produce a significant response (grey line). C When

the blocks are connected, an initial perturbation of the network elicits the propagation of a

stable solitary wave with constant shape and speed. D Travelling wave profiles of the velocity

(filled line) and the displacement (dashed line) in the moving frame coordinate. Parameters

are: k = 3, V = 1.05, γ = 0.15. In B, the two perturbations are of magnitude 0.11 and 0.05. In

C, an initial perturbation (u0(0), y0(0)) = (us − 1, ys) is imposed on the first block (left edge)

of the chain.

the one due to static friction where a critical amount of stress has to be accumulated in

order to reach the unstable slipping mode. In our case, for a sufficiently large slip rate

V , the slip solution is stable and a temporary incursion in the velocity strengthening

creep region is performed following a strong enough perturbation.

When the blocks are interconnected, the resulting network is a discrete excitable

medium and the perturbation of one block may propagate to its neighbours producing

complex spatiotemporal dynamics, including periodic wave trains, propagating fronts,

global oscillations, chaotic dynamics or complex transitions [7, 24]. In the original one-
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dimensional BK model, the blocks are connected together by springs and the resulting

force on the n-th block is given by kc∆dxn where ∆dxn = xn+1− 2xn+xn−1 is the dis-

crete Laplacian and kc is the linear elastic coupling parameter. Using the dimensionless

coupling parameter k = kc/kp, the governing equations for the n-th block read

dyn
dt

= un,

γ
dun
dt

= k∆dyn − F (V + un)− yn,

(3.3)

where n ∈ Z.

We report here results on the existence of solitary wave solutions where each block

returns to the stable state of continuous slip after wave passage (see Fig. 3.2C,D). By

a solitary wave solution we mean a solution of (3.3) such that

un(t) = ϕ(n− ct),

yn(t) = ψ(n− ct),
(3.4)

with (ϕ(±∞), ψ(±∞)) = (0,−F (V )). The function (ϕ,ψ) defines the waveform, and c

is the wave speed that has to be determined. Substitution of (3.4) into (3.3) yields the

following advance-delay differential equation:

−cψ′(ξ) = ϕ(ξ),

−cγϕ′(ξ) = k[ψ(ξ + 1)− 2ψ(ξ) + ψ(ξ − 1)] − F (V + ϕ(ξ)) − ψ(ξ),
(3.5)

where ξ = n− ct ∈ R represents the travelling wave coordinate.

The spatiotemporal plot of a solitary wave for the cubic friction law is shown in Fig.

3.2C and the corresponding waveforms are depicted in Fig. 3.2D. In the forthcoming

sections, we show that the BK model exhibits solitary wave solutions for a large class

of nonlinearities F of spinodal type. We also review different physical contexts where

such nonlinearities arise.

3.2.2 Friction dynamics

Several non-monotonic friction laws have been proposed in the context of earthquake

fault dynamics. Many studies consider generalized Coulomb friction laws with a mul-

tivalued part at the origin (see Fig. 3.3A,B). This friction law involves a sticking

condition when a block achieves a zero velocity with respect to the lower plate. Single-

valued regularized Coulomb laws are also often considered for numerical purpose, or

to account for the existence of a velocity-strengthening region for low sliding veloci-

ties (this can represent e.g. lubrication effects). In addition, friction laws that switch
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Figure 3.3: Typical piecewise-linear friction laws for the Burridge-Knopoff model. A-E dis-

play different spinodal friction laws (velocity-weakening for an intermediate range of sliding

velocities) whereas F is velocity-weakening for large enough velocities. A, B correspond to

multivalued laws (generalized Coulomb laws). Velocity-weakening is assumed instantaneous in

cases B, C (the velocity-weakening domains are reduced to a jump discontinuity in the friction

force). The single-valued laws C-F are used in the present work, with a = 1 and α = 0.2.

from a velocity-weakening to a velocity-strengthening regime for large sliding veloci-

ties are also relevant for applications, see [25] and references therein. Combining these

different effects results in spinodal friction laws [7, 24] of the type depicted in Fig. 3.2A.

In this chapter, we investigate the dynamics of the BK model using the prototypical

smooth spinodal friction law given by the cubic function Fc(v) = 3.2v3 − 7.2v2 + 4.8v,

depicted in Fig. 3.2A. We shall denote by v = a the local minimum of the spinodal

friction force, the above cubic friction law corresponding to a = 1. In order to analyse

the effects of a larger class of spinodal friction laws (in particular with different degrees

of smoothness or stiffness), we also introduce the following class of piecewise linear

functions

FPL(v; a, b, µ) =





v
b , 0 ≤ v < b

α
(
v−b
b−a

)
+ 1, b < v < a

µ(v − a) + 1− α, a < v

(3.6)
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Figure 3.4: Solitary waves profiles ϕ(n − ct) = un(t) (solid) and ψ(n − ct) = yn(t) (dashed)

obtained with (A) Hertzian and (B) linear contact interactions in the Burridge-Knopoff model

(cubic friction law). The Hertzian coupling is obtained by replacing the discrete linear Laplacian

by k[(yn−1−yn)3/2+ −(yn−yn+1)
3/2
+ ], and the linear contact law corresponds to k[(yn−1−yn)+−

(yn−yn+1)+], where (x)+ = max(0, x). Parameters are: A, k = 20, V = 1.025 and B, k = 150,

V = 1.05. The wave speeds are A, c ≈ 6.36 and B, c ≈ 32.47, respectively. The wave is

generated from the chain at rest except for the last block, where the initial condition is A

(us − 2, ys) and B (us − 1, ys).

that have been normalized so that FPL(b) = 1. For v < 0 we set FPL(v) = −FPL(−v).
The parameter b is the threshold where the transition from velocity strengthening to

velocity weakening occurs. If µ ≥ 0, velocity strengthening is recovered above the

sliding velocity a and F (a) = 1− α (α ∈ (0, 1)) corresponds to a local minimum of the

friction force.

We shall consider more specifically four piecewise linear functions defined as fol-

lows and depicted in Fig. 3.3C-F. A crude approximation of spinodal friction laws

is given by F0(v) = FPL(v; a, a, 1/a) (Fig. 3.3C). In that case, the damping ratio

in the two velocity-strengthening regimes are identical and the velocity-weakening re-

gion is reduced to a jump discontinuity. This friction function can be rewritten as

F0(v) = v/a − αH(v − a) where H is the Heaviside step function. The friction law

defined by F1 = FPL(v; a, a/2, 2/a) is obtained from F0 with the addition of an inter-

mediate velocity-weakening region with finite thickness (Fig. 3.3D). To regularize a

multivalued generalized Coulomb law, we also consider F2(v) = FPL(v; a, b, 2/a) with

b = 0.01 (Fig. 3.3E). For this parameter value, the friction law is close to the multi-

valued case depicted in Fig. 3.3A. It would be also interesting to investigate the limit

case of Fig. 3.3B (considered e.g. in [6]), but the numerical simulation of the BK

model is more delicate in that case and will be investigated in future work. Finally,

to investigate the transition from a velocity-strengthening law to a velocity-weakening
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law at large sliding velocities we introduce F3(v) = FPL(v; a, a/2, µ) (Fig. 3.3F) where

the slope µ may be negative.

Note that the present study examines different types of friction laws but is limited

to purely linear nearest-neighbours coupling between blocks. Other types of couplings

would be relevant for applications, such as long-range elastic couplings or contact in-

teractions (unilateral springs). We have checked that solitary waves can be generated

as well in the case of Hertzian interactions or for a linear contact law (see Fig. 3.4A,B),

but a detailed investigation of such systems lies beyond the scope of the present study.

3.2.3 Oscillator chain with impulsive excitations

In this section we describe a possible physical implementation of the BK model with

piecewise-linear friction function F0 (Fig. 3.3-C). This system corresponds to a chain of

coupled linear oscillators, where each element is subject to an impulsive force (applied

e.g. using piezo actuators) when reaching a critical deflection z = ζ. The dynamical

equations read

m z̈n + ν żn + kp zn = kc∆dzn + λ
∑

tk ∈ R,

zn(tk) = ζ

sign(żn(t
−
k )) δtk , (3.7)

where zn(t) is the deflection of the nth oscillator in the chain. In the right side of

(3.7), δtk denotes the Dirac distribution at t = tk, sign the usual sign function (odd

and equal to unity on (0,+∞)), and we use the notation żn(t
−
k ) (resp. żn(t

+
k )) for the

left (resp. right) limit of żn at t = tk. For the series of impulses to be well defined as

a distribution, it is assumed that each component zn(t) crosses the critical value z = ζ

for a countable set of times tk (generally depending on n) without finite accumulation

point (i.e. Zeno behaviour does not occur). The external (state-dependent) impulsion

has a fixed magnitude λ > 0 and is always applied in the direction of motion. Each

oscillator is damped (ν > 0 denotes the associated damping constant) and the other

physical parameters in (3.7) are the same as in section 3.2.1.

The components zn correspond to continuous piecewise-differentiable functions, dis-

playing jumps of derivatives at t = tk. One obtains from (3.7)

[żn]tk =
λ

m
sign(żn(t

−
k )), (3.8)
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with [f ]t0 = f(t+0 ) − f(t−0 ) denoting the jump discontinuity of a function f at t0. In

order to map (3.7) to the piecewise-linear BK model, we need the following technical

lemma.

Lemma 1. Let u denote a continuous piecewise-differentiable function such that u(0) =

0, u̇(0−) 6= 0. The following properties are equivalent :

i) sign([u̇]0) = sign(u̇(0−)),

ii) sign([u̇]0) = [H(u)]0.

Proof. Let us first assume i) and show that ii) holds true. Since u̇(0+) = u̇(0−)+[u̇]0, i)

implies sign(u̇(0+)) = sign(u̇(0−)). This equality implies [H(u)]0 = sign(u̇(0±)) (since

u̇(0±) 6= 0), which leads to ii) using i).

Now let us show that ii) implies i). We prove this statement for u̇(0−) > 0, the proof

for u̇(0−) < 0 being similar. The above assumptions imply sign([u̇]0) = [H(u)]0 ≥ 0,

hence u̇(0+) ≥ u̇(0−) > 0, leading to [H(u)]0 = 1. From ii) we then get sign([u̇]0) = 1

and thus i) holds true. �

In the sequel we restrict our attention to solutions of (3.7) satisfying the following

transversality condition for all n and all crossing times tk :

żn(t
−
k ) 6= 0. (3.9)

Applying lemma 1 to u(t) = zn(t+ tk)− ζ, property i) is satisfied thanks to (3.8) (with

λ,m > 0) and thus sign(u̇(0−)) = [H(u)]0, meaning that

sign(żn(t
−
k )) = [H(zn − ζ)]tk . (3.10)

Consequently, equation (3.7) and the transversality condition (3.9) lead to

m z̈n + ν żn + kp zn = kc∆dzn + λ
d

dt
H(zn − ζ). (3.11)

Similarly, applying lemma 1-ii) to any solution of (3.11) satisfying (3.9), one establishes

the equivalence between equations (3.7) and (3.11) under the above transversality con-

dition.

Assuming further zn(0) 6= ζ for all n and integrating (3.11) on [0, t], one obtains

the equivalent formulation

m żn + ν (zn − ζ − λ

ν
H(zn − ζ)) = (kc ∆d − kp)

∫ t

0
zn(s) ds+ pn (3.12)
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with

pn = m żn(0) + ν(zn(0)− ζ)− λH(zn(0) − ζ).

Let us either consider an infinite lattice with periodic or free end boundary conditions,

or bounded sequences (zn, żn) on an infinite lattice. In each case the linear map kc ∆d−
kp is invertible (kc, kp > 0) and one can introduce the new variable

xn(t) =

∫ t

0
zn(s) ds+ (kc ∆d − kp)

−1pn − f0
kp
,

where f0 denotes an arbitrary constant. Substitution in (3.12) leads to the piecewise-

linear BK model

mẍn + F (ẋn) + kp xn = kc∆dxn, (3.13)

where

F (u) = ν (u− ζ)− λH(u− ζ) + f0. (3.14)

This family of piecewise-linear functions is parametrized by the slope ν, position ζ and

magnitude λ of the jump discontinuity and local maximum f0.

3.2.4 Nonlinear transmission lines

The mechanical BK system (3.3) has an electrical equivalent as an active transmission

line made of electronic L-C circuits coupled to a diode. The corresponding two-node

C

L

C

L

C

L

Lc LcVn−1 Vn Vn+1

Vd

Figure 3.5: Electrical analogue of the excitable Burridge-Knopoff model as a nonlinear trans-

mission line.

circuit has been already introduced and studied [82].

Application of Kirchoff’s current law at the node n (see Fig. 3.5) gives

C
d2Yn
dt2

+

(
1

L
+

1

Lc

)
Yn − 1

Lc
(Yn+1 + Yn−1) + F

(
Vd +

dYn
dt

)
= 0, (3.15)

where Yn =
∫
(Vn − Vd), Vn is the voltage at node n, Vd is the driving voltage, C is the

capacitance, L and Lc are inductances, and the function F defines the current-voltage
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relationship of the nonlinear component. For L = Lc/(1 + Lc), C = γ, k = 1/Lc,

yn(t) = Yn(t) we recover the BK system (3.3). The tunnel diode has a spinodal current-

voltage characteristic as the one depicted in Fig. 3.2A (in the I-V plane) where a

negative resistance occurs at intermediate voltage values. A sufficiently strong voltage

perturbation may initiate the propagation of a solitary wave along the transmission

line. Potential applications of nonlinear electrical wave propagation in electronic devices

include broadband circuits, microwaves, instrumentation and the electronic generation

of optical signals [10].

3.3 Qualitative properties of solitary waves

3.3.1 Regimes of solitary wave generation

Unless stated otherwise, simulations are done with a network size and for a time dura-

tion such that a stationary solution is reached. The network is initialized at its resting

state (us, ys)n and free boundary conditions are taken. For the numerical integration,

the adaptive scheme Lsoda is employed with a minimal error tolerance set at 1.5e−8.

A time step ∆t = 0.001 is used to follow the numerical solution. All the numerical re-

sults are illustrated with the fixed parameter γ = 0.15, which leads to an overdamped

regime for the piecewise-linear friction laws considered herein (the underdamped case

will be briefly discussed at the end of this section). The existence of solitary waves is

explored in the excitable regime, i.e. for a pulling velocity such that a < V < Vmax,

where Vmax > a is defined through F (Vmax) = 1. The two limiting regimes, V → a+

and V → V −
max, will be referred to as the small pulling velocity regime and the maxi-

mal pulling velocity regime, respectively. To explore intermediate velocity regimes, we

also consider a medium pulling velocity Vmed > a defined through F (Vmed) = 1− α/2.

For ensuring a stable localized wave propagation, typical network size is of order one

hundred for small pulling velocities, whereas medium velocities require around ten

thousands blocks. Such large network simulations have to be performed because the

increase of V also requires increasing k in order to excite solitary waves (see below).

This parameter regime results in higher wave speed, convergence time towards steady

state, and pulse width (simulations for these network sizes can be efficiently addressed

using Python programming language).

Propagating waves are initiated using a shock-like initial condition: a strong per-

turbation is applied on the resting state of a subset of blocks in the network, possibly
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reduced to a single block perturbation near the left edge of the network. The shock

excitation is applied to the position or to the velocity. The magnitude of the excita-

tion required to generate a propagation depends on V . In the regime of small pulling

velocity, a velocity perturbation of magnitude in the interval [0.125, 2.5] is sufficient

to excite a solitary wave for all friction forces. An excitation of the position is more

efficient to produce trains of solitary waves and a perturbation magnitude in the in-

terval [0.01, 0.5] is used (this higher sensitivity to perturbations of positions is clearly

illustrated for a single block by Fig. 3.2-B). For a medium pulling velocity (V ∼ Vmed),

a stronger perturbation on the velocity is needed, up to 10, whereas perturbations in

the position remain similar. In the maximal velocity regime, excitations of the network

fail to produce travelling waves.

Localized solutions can propagate stably along the network in the excitable regime

for a sufficiently large coupling value. The wave speed and width increase with the

coupling value when the other parameters are fixed, while increasing γ decreases the

wave speed. For a given pulling velocity, there exists a critical coupling value k∗ below

which no propagation occurs. This phenomenon has been coined propagation failure

and is well documented for excitable lattices of diffusive type [13]. As V increases, the

critical value k∗ increases and a vertical asymptote is observed near V = Vmax. This

is shown in Fig. 3.6B where the regime of existence and stability of solitary waves is

indicated in the V − k plane for the cubic friction law. Qualitatively similar results

are obtained for the other spinodal friction functions (results not shown). Table 3.1

presents computations of k∗ values for different friction laws and pulling velocities.

Friction function Small pulling velocity Medium pulling velocity

V = 1.025 Vmed

Fc(v) k∗ ≈ 1.4 k∗ ≈ 360.8

F0(v) k∗ ≈ 0.43 k∗ ≈ 1915.3

F1(v) k∗ ≈ 4.5 k∗ ≈ 99

F2(v) k∗ ≈ 48 k∗ ≈ 602

Table 3.1: Critical coupling k∗ for different friction functions and different pulling velocities.

Parameter values for a, b and α are as in Fig. 3.3.

The increase of k∗ versus V can be intuitively explained by the geometry of ex-

citability of a single block: for small pulling velocities, the initial state of the network

is near the right knee of the spinodal friction function and a small perturbation is

sufficient to reach the threshold of excitability. As V increases, the steady state gets
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Figure 3.6: A Wave profiles of the velocity ϕ(n− ct) (solid) and the displacement ψ(n− ct)

(dashed) for the cubic friction law Fc(v), V = 1.183 and k = 400. The wave speed of the

localized travelling wave is c ≈ 50.05. B Regimes of existence and stability of solitary waves

in the V − k plane (grey shading) for the cubic friction law. The solid line indicates the

critical coupling values k∗ below which propagation failure occurs. Regimes are computed from

numerical simulations in which the wave is initiated by imprinting a velocity up to the first

block in the chain (magnitude up to up = −10). Note that here Vmax = 1.25.

away from the threshold separatrix and the perturbation has to be stronger in order

to initiate a large response of the block. Above Vmax the excitability property of the

block disappears.

The waveforms obtained for different friction laws, pulling velocities V and coupling

strengths k share common features. The displacement profile presents a hump whereas

the velocity profile shows a rapid downstroke followed by an upstroke reminiscent to

the action potential of spiking neurons. This is illustrated in Fig. 3.7A-D using the dif-

ferent friction laws. Note that
∫
R
ϕdξ = c (ψ(+∞) − ψ(−∞)) = 0. The discontinuous

law defined by F0 produces a rather symmetric velocity profile where the positive and

negative peaks are quasi-equidistant from the resting state. This property is more pro-

nounced in the small pulling velocity regime and tends to break down as V increases.

The symmetry is broken for the other friction laws (Fc, F1, F2 and F3) with the exis-

tence of a velocity-weakening region. The positive peak of the velocity profile is less

marked and the magnitude of the negative spike is determined by the distance between

the stable steady state and the left branch of the velocity-nullcline (see Fig. 3.2B).

When the velocity weakening range increases, the amplitude of the negative peak of

the velocity profile becomes larger while the wave speed decreases.

The tail of the velocity profile presents either a monotonic or an oscillatory return to



Chapter 3. Travelling pulses in the Burridge-Knopoff Model 44

−30           10
    

    

  −1

    

−0.5

    

   0

    

 0.5

n− ct

A

−30           10
    

    

  −1

    

−0.5

    

   0

    

 0.5

n− ct

B

−30           10
    

    

  −1

    

−0.5

    

   0

    

 0.5

n− ct

C

−50                 10
    

    

  −1

    

−0.5

    

   0

    

 0.5

n− ct

D

Figure 3.7: Plot of the waveforms ϕ(n − ct) (solid) and ψ(n − ct) (dashed) for, A F0(v),

V = 1.025, k = 2, B F1(v), V = 1.025, k = 5, C F2(v), V = 1.025, k = 70 and, D Fc(v),

V = 1, k = 2. The local minimum of each spinodal friction force is located at a = 1. The

computed wave speed values are c = 4.39, c = 5.36, c = 21.23, c = 4.04 for A-D, respectively.

Simulations are done for a strong perturbation (up = −10) of the velocity of the first block.

the resting state. This feature is determined by the modes around the resting state.

Linearisation of (3.3) around the steady state (un, yn) = (0,−F (V )) reads

γÿn = k∆yn − yn − F ′(V )ẏn. (3.16)

In order to analyse the relaxation towards the rest state, we look for normal modes

yn(t) = Aeiqn+σ(q)t + c.c. where A 6= 0 and σ(q) are two complex numbers, q ∈ [0, π]

and c.c. stands for complex conjugate. This leads to

σ(q) =
[
−F ′(V )±

√
∆(q)

] 1

2γ
, (3.17)

where ∆(q) = F ′(V )2−4γ
[
1 + 4k sin2(q/2)

]
is a decreasing function of q on [0, π]. The

asymptotic decay rate is controlled by the slowest decaying mode (obtained for q = 0),
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which also describes the relaxation of the uncoupled system. When V approaches

the local minimum of the cubic friction force Fc, the value of F ′
c(V ) tends towards 0

and all modes become underdamped (σ being imaginary). The resulting feature is an

oscillatory tail of the wave as shown in Fig. 3.7D where the envelope of the oscillations

becomes larger as V decreases. Due to the constant derivative of the piecewise linear

friction forces F0, F1, F2 for sliding velocities above a, the modes do not depends on

V . In that case the occurrence of oscillatory behaviour can be analysed as above and

only depends on γ, k and the slope µ in (3.6).

In the following two subsections we explore two limiting regimes of particular interest:

the continuum limit and a bistability regime.

3.3.2 Continuum limit

We are interested in the study of solitary waves when the discrete BK model approaches

a continuum limit, i.e. for k ≫ 1. Near the continuum limit, system (3.3) takes the

form:

γ
∂2y

∂t2
+ F

(
V +

∂y

∂t

)
+ y =

∂2y

∂x2
+
h2

12

∂4y

∂x4
+O(h4) (3.18)

where we have set yn(t) = y(x, t), x = n/
√
k and h = 1/

√
k ≪ 1. The equation obtained

by neglecting O(h4) terms in (3.18) is known as a Boussinesq-type approximation. We

look for solitary wave solutions of (3.18) and set y(x, t) = Y (s) with s = x/c̃ − t (for

system (3.3), this corresponds to solitary waves with large velocity c = c̃
√
k). The

above Ansatz leads to the ODE

ΛY ′′ − F
(
V − Y ′)− Y = − h2

12c̃4
Y (4) +O(h4) (3.19)

where Λ = 1/c̃2 − γ.

The fourth derivative at the right side of (3.19) may be useful to account for the

appearance of high frequency oscillations (see below), but this problem will not be

analysed in the present study. In this work we restrict to the second order model

obtained by neglecting O(h2) terms, which reads

ΛY ′′(s)− F
(
V − Y ′(s)

)
− Y = 0. (3.20)

This equation admits the unique equilibrium (Y, Y ′) = (−F (V ), 0). In what follows

we study the case of the cubic friction law F = Fc. The equilibrium point is a saddle

point for Λ > 0, an unstable point (source) for Λ < 0 and ∆ ≥ 0, an unstable focus

for Λ < 0 and ∆ < 0, where ∆ = F ′(V )2 + 4Λ. The existence of a smooth solitary
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wave corresponds to the existence of an homoclinic orbit for equation (3.20). In the

unstable configuration (Λ < 0) it is clear that such an orbit cannot exist. In the saddle

case (Λ > 0), an additional equilibrium inside the homoclinic orbit has to be present

because the phase space is two-dimensional. Since there is only one single equilibrium

point, smooth solitary waves cannot exist in the continuum model (3.20).

However for large k values, numerical simulations of the discrete BK model reveal

the existence of solitary waves. Typical profiles of these waves are shown in Fig. 3.8.

The velocity component displays two shocks (resulting in two slope discontinuities for

the displacement component), and we observe long-lived (i.e. metastable) oscillations

in the vicinity of the rear shock. An interesting open question concerns the existence

of exact travelling wave solutions of this type (i.e. with an oscillatory shock) in the

BK model (3.3) or in the higher order continuum model obtained by neglecting O(h4)

terms in (3.19). These problems will be addressed in future works using numerical

continuation techniques. After a very long transient, the fast oscillations near the rear

shock disappear, which leads to the shock-wave profiles displayed in the right column

of Fig. 3.8. Given the long time scale of simulations, it is not clear whether this slow

drift towards a non-oscillatory shock is a dynamical property of the BK model or is

due to numerical integration errors.

The profile of the asymptotic non-oscillatory pulse can be analytically captured by

considering equation (3.20) with Λ = 0, which corresponds to fixing c̃ =
√

1/γ. In that

case, the solitary wave of (3.3) propagates at the sound velocity c =
√
k/γ. This case

leads to the differential-algebraic equation

Y = −F (V − Y ′). (3.21)

Solutions of (3.21) are plotted in Fig. 3.8 (blue lines). They correspond to weak

solutions y(x, t) = Y (x/c̃− t) of the nonlinear PDE obtained by setting h = 0 in

(3.18). In particular, the solution of (3.21) shown the right column of Fig. 3.8 perfectly

matches the stationary profiles shown in Fig. 3.8C,E. For the parameter values provided

in Fig. 3.8, the wave speed of the numerically observed solitary wave is c ≈ 2587 and

the analytical approximation c =
√
k/γ = 2582 is quite accurate (relative error <

2·10−3). In the case of oscillatory shocks, solutions of (3.21) provide reasonably accurate

approximations of block displacements (see Fig. 3.8D), but they only approximate

velocity oscillations on average near the rear shock (Fig. 3.8B).
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Figure 3.8: Simulation of the BK model (3.3) in the high coupling limit (k = 106), for V = 1.025 and

friction law Fc(v). A Spatiotemporal plot of un(t). When the pulse reaches n > 15000, a quasi-stationary state

is reached. B Plot of un(t) (black line) for n = 17500 and D, plot of yn(t) (black line) where the inset is an

enlargement that shows the small fluctuations of yn(t) in the highly oscillatory region of un(t). In C and E,

we plot the asymptotic solitary wave profiles for n > 95000 (time has been shifted for convenience). In F and

G, the blue lines are different solutions of (3.21) that match the quasi-stationary waveforms shown in B,C and

D,E, respectively. Nullclines of (3.20) are represented in the (Y, Y ′) plane as dashed lines. Solid arrows indicate

the time trajectory. Dotted arrows represent the fast transition between the blue lines of plots B and C. Initial

excitation: (u0(0), y0(0)) = (us − 10, ys).
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3.3.3 Bistability regime

The excitable nature of system (3.3) can give rise to an oscillatory behaviour, similar

to the self-sustained oscillations produced by excitable membranes in biology [1]. The

state of continuous slip loses its stability when the friction law operates a transition

from a velocity-strengthening regime to a velocity-weakening regime. For the friction

law F3 defined in section 3.2.2, this case occurs when V > a and the slope parameter

µ switches from positive to negative. The dynamics of a single block is illustrated

in the top panels of Fig. 3.9. In the velocity-weakening regime µ < 0, there exists

a large-amplitude stable limit cycle, which persists in the range µ > 0 provided µ is

not too large (see the bifurcation diagram in Fig. 3.9A). For the state of continuous

slip, a subcritical Hopf bifurcation occurs at µ = 0, leading to the existence of an

unstable periodic orbit when µ is positive and not too large. If µ further increases, the

two periodic orbits disappear through a saddle-node bifurcation. Consequently, there

exists a narrow interval of positive values of µ where the model exhibits bistability

between the state of continuous slip and a limit cycle (a typical phase portrait is shown

in Fig. 3.9B). The two attractors are separated by an unstable periodic orbit, and a

change of position (or velocity) can switch the system from rest to oscillation and vice

versa.

In this parameter regime, it is an interesting problem to examine the possible spa-

tiotemporal patterns which can be generated by coupling the bistable units. The stabil-

ity of steady sliding can be analysed through the linear system (3.16), with eigenvalues

given by (3.17) for F ′(V ) = µ. For µ > 0, the equilibrium state (us, ys) is locally

asymptotically stable, while for µ < 0 it becomes unstable. For µ > 0, different types

of dynamics can be observed depending on the initial perturbation, as exemplified by

Fig. 3.9C-D. In this example, velocity perturbations of one block with large magnitudes

produce a front wave with oscillations in the back (periodic travelling waves are clearly

visible), while much smaller perturbations produce complex oscillatory patterns. The

dynamics of the BK model in the bistable regime is likely to be very rich and needs to

be explored in more detail in future works.
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Figure 3.9: Simulations of the BK model with friction law F3(v) in a bistable regime, with

µ = 0.2, V = 1.025 and k = 5. A Bifurcation diagram of a single block that shows the

amplitudes of the stable (solid line) and unstable (dashed line) periodic orbits. The amplitude

is defined by maxt>0 ‖(u(t)−us, y(t)− ys)‖2, where (us, ys) is the equilibrium state. The latter

is stable (solid straight line) or unstable (dotted straight line) depending on µ. B Phase plane

of a single block. The nullclines (dashed lines), the stable limit cycle (bold solid circle) and

unstable limit cycle (dashed line) are represented. C,D Wave patterns generated in the chain

of blocks. A perturbation (u0(0), y0(0)) = (us + up, ys) with up = −10 is used in C, whereas

up = −0.25 is used in D. For the simulation shown in C, the asymptotic states of two blocks

(n = 0, n = 380) are also plotted in figure B, where the trajectory of the first block converges

towards the limit cycle.

3.4 Construction of solitary waves for the discontinuous

piecewise-linear friction force

In this section we study analytically and numerically the solutions of the following

travelling wave equation derived from (3.5):

c2γ
d2ϕ

dξ2
= k∆dϕ+ c

d

dξ
F (V + ϕ)− ϕ, (3.22)
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with ϕ(ξ) → 0 as ξ → ±∞. We consider the friction force given by the piecewise linear

function:

F0(v) =
v

a
− αH(v − a), v > 0,

where the velocity weakening regime is assumed to be instantaneous. A strict velocity

threshold occurs at the discontinuity ϕ = −β = a− V < 0 unlike the smooth velocity

threshold induced by the cubic friction law. Numerical simulations suggest that this

piecewise linear model captures the qualitative features of the localized solitary waves

observed for a broader class of friction forces.

The strict velocity threshold makes it possible to classify travelling waves based on

the threshold hitting. Let us define the decreasing (finite or infinite) sequence (ξk)k

through

ϕ(ξk) = −β.

Translation invariance of the solution allows us to fix ξ0 = 0. Different wave types can

be obtained according to their signature (σj)j defined as (see Fig. 3.10)

σj = [H(ϕ+ β)]ξj .

We distinguish between threshold crossing from above, threshold crossing from below,

and threshold reaching without crossing that read σj = −1, σj = 1, and σj = 0,

respectively. The solitary wave solutions are classified according to the changes of sign

of ϕ+ β that is given by the sequence (σj)j . It is worth nothing that travelling sliding

solutions are excluded, i.e. the solution is not allowed to remain on the discontinuity

line of the friction force.

Fixing (σj)j, we have:

d

dξ
F0(V + ϕ) =

{
d

dξ
F0(a+ ϕ+ β)

}
+
∑

i

[F0(a+ ϕ+ β) ]ξi δξi ,

=
{
F ′
0(a+ ϕ+ β)

} {
ϕ′}+ [F0]a

∑

i

σi δξi ,

=
ϕ′

a
− α

∑

i

σi δξi ,

where δξi is the Dirac distribution at ξi. Travelling waves in the class (σj)j satisfy the

linear non-homogeneous differential equation:

c2 γ ϕ′′ − c

a
ϕ′ + ϕ = k∆dϕ− c α

∑

i

σi δξi . (3.23)



Chapter 3. Travelling pulses in the Burridge-Knopoff Model 51

A solution of (3.23) is a travelling wave solution of (3.22) if the crossing conditions at

(ξj)j are satisfied together with the sign conditions given by the signature (σj)j . This

leads to the following admissibility conditions:





ϕ(ξ2j) = ϕ(ξ2j+1) = −β
ϕ(ξ) < −β if ξ ∈]ξ2j+1, ξ2j [

ϕ(ξ) > −β otherwise,

(3.24)

where we assume for clarity that there is no threshold reaching without crossing (no i

such that σi = 0).

0 ξξ−1ξ1

β

σ1 = −1 σ0 = 0 σ−1 = 1

ϕ(ξ) + β

Figure 3.10: Signature (σj)j for the different threshold crossings.

By Fourier transform, we construct a localized solution ϕ(ξ) of system (3.23). A

travelling wave solution can be expressed as

ϕ(ξ) =
∑

p

∫

R

ei2πλξgc,ξp(λ)dλ (3.25)

where

gc,ξp(λ) = αcσpe
−2πiλξp

[
4π2c2λ2γ − 4k sin2(πλ) +

2πicλ

a
− 1

]−1

.

The analytical expression (3.25) only provides trial solutions. Indeed, the admissi-

bility conditions (3.24) have to be fulfilled in order to define a solution of (3.22).

The simplest solitary waves cross the threshold only two times, at ξ0 = 0 and at ξ1 < 0,

which gives two nonlinear equations

{
ϕ(0) = −β,
ϕ(ξ1) = −β.

(3.26)

The crossing points of the two level curves (3.26) in the plane (c, ξ1) determine the

speed and the width of trial solutions. We numerically compute the two level curves
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Figure 3.11: In A plot of the two level curves ϕ(ξ1) = −β (black) and ϕ(0) = −β (grey) in the

(c, ξ1) parameter plane. Crossing points define trial solutions for solitary waves of the Burridge-

Knopoff model. The crossing point (B) ≈ (4.39,−6.21) is associated with the waveform shown

in B (black line). We also plot the solution obtained by the numerical simulation of the network

(grey dashed). A perfect match is realized with the analytical solution. The crossing point

(C) ≈ (1.65,−0.8) defines a spurious solution as shown in C where the enlargement (inset)

reveals the violation of the inequality constraints. Parameters are k = 2, V = 1.025.

using a grid with mesh size 0.001. A Gauss-Konrod quadrature formula in a truncated

interval [−106, 106] is used to evaluate (3.25). Approximate solutions for (3.26) are

found with a trust-region dogleg algorithm. As shown in Fig. 3.11A different crossing

points exist.

The inequality constraints of the admissibility conditions have to be checked in

order to exclude spurious solutions. Plot of the waveform (3.25) allows to determine if

the sign conditions are fulfilled (see Fig. 3.11B,C). It can be seen that one of the two

crossing points is not associated to a travelling wave solution (see the enlargement in

Fig. 3.11C).

In Fig. 3.12, we plot the (c, k) curve of the travelling wave solutions. The speed

curve is U-shaped with a fold at (c∗, k∗). For c > c∗ stable solitary wave solutions are
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Figure 3.12: A and B (zoom), curves of the coupling strength k with respect to the wave

speed c obtained by solving the non linear system (3.26). k∗ is the critical coupling where

propagation failure occurs and c∗ is the related wave speed. The full line corresponds to stable

solitary wave solutions. The dotted line represents solitary waves that are conjectured to be

unstable (not observed in dynamical simulations). The grey line denotes spurious solutions.

The red crosses are obtained from network simulations. The fold of the speed curve is located

at c∗ ≈ 1.34135, k∗ ≈ 0.42585. As k increases, the solitary waves with c < c∗ disappear through

a border collision bifurcation at (cs, ks) ≈ (1.2598, 0.4360). Parameter V = 1.025.

obtained. For c < c∗ solitary wave solutions are conjectured to be unstable (they are

not observed in dynamical simulations) and become spurious solutions as k increases. A

border collision bifurcation is reached below which no solution to (3.22) can be found

with exactly two threshold crossings. We suspect that a travelling sliding solution

appears or an additional threshold crossing occurs (both situations are not captured

by the present analysis).

3.5 Discussion

In this chapter, we have reported the existence of solitary waves and oscillatory patterns

in the excitable Burridge-Knopoff model. We have studied the influence of the friction

law and parameters on the robustness and qualitative properties of solitary waves.

Wave profiles have been obtained analytically for a piecewise-linear caricature of the

friction law. In that case, we have shown that two branches of solitary waves coexist:

one corresponding to stable waves whereas the other consists of presumably unstable

waves or spurious solutions.

Despite the very different nature of the coupling, the waves observed in the excitable

BK model share many similarities with the “taxis waves” recently reported in excitable

systems with cross-diffusion [3, 8, 83]. In particular, reflection from boundaries and
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penetration of solitary waves through each other are observed in both cases, and anni-

hilation of two solitary waves can be also observed in the discrete BK model (results

not shown).

A key problem left open in this chapter concerns the theoretical justification of the

trial solutions (3.25)-(3.26), which requires to check the inequality constraints in (3.24).

This problem will be addressed in the next chapter in the small coupling limit.



Chapter 4

Existence theorem for solitary

waves in the Burridge-Knopoff

model

4.1 Introduction

As in chapter 3, we consider the Burridge-Knopoff model

γÿn = k(yn+1 − 2yn + yn−1)− F (V + ẏn)− yn, n ∈ Z (4.1)

where yn denotes the displacement of the nth block in the moving frame (of velocity V ),

k is a rescaled linear coupling strength, and γ denotes a mass parameter. In this chapter

we consider the piecewise linear and discontinuous friction force (already introduced in

the two previous chapters)

F (v) =
v

a
− αH(v − a), v > 0, (4.2)

and prove an existence theorem for solitary wave solutions. Piecewise linear functions

have been introduced by several authors for the construction of travelling wave solutions

in lattice models. Examples of this approach include the work of Truskinovsky and

Vainchtein for martensitic phase transitions models [40] (see also [41]) and for the Fermi-

Pasta-Ulam model [42]. Other studies include the work of Rosakis and Vainchtein

for the analysis of the Frenkel-Kontorova model [43], Tonnelier [20] for the discrete

FitzHugh-Nagumo model and Cahn et al. [19] for the Nagumo equation on a two-

dimensional lattice.

55
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As we have seen in the previous chapter, trial solutions can be constructed explicitly

in the form of oscillatory integrals (using Fourier transform) once the spatiotemporal

structure of the solitary wave has been prescribed (admissibility conditions thereafter).

The pulse width and velocity are determined by two equality constraints (threshold

conditions), and the trial solutions must fulfil certain inequality constraints in order

to correspond to solutions of (4.1). In particular, it can happen that trial solutions

satisfy the threshold conditions but not the inequality constraints, so that they do not

satisfy (4.1). In that case, we shall refer to them as spurious solutions. The validity

of trial solutions is usually asserted by checking the inequality constraints numerically

(this is what was done in the previous chapters). In most cases, analytic proofs that

the inequality constraints are satisfied are quite technical [23, 44, 84] (see also [85] for

further extensions).

In order to show that the admissibility conditions are fulfilled by trial solutions,

we work in the weak coupling regime where perturbation and ODE techniques can be

used to estimate the solution. Although this limit introduces many simplifications, the

existence proof for solitary waves is not straightforward and requires to match different

estimates of the solution (inner and outer approximations) near and far from threshold

crossings.

The outline of this chapter is as follows. Section 4.2 presents the equivalent form

of (4.4) under the admissibility conditions and states the main result on the existence

of solitary waves (Theorem 1). Thereafter the key points supporting Theorem 1 are

summarized. In section 4.3, we construct trial solitary wave solutions for small k,

providing asymptotic expansions and error bounds. In particular, we derive the wave

speed and width of the solitary wave for small coupling k. We also show that a critical

coupling value k∗ exists below which solitary waves with exactly two threshold crossings

do not exist. Section 4.4 contains technical results on the monotonicity of trial solutions

in suitable neighbourhoods of threshold crossings (Theorem 2). These results are used

to check the inequality constraints in section 4.5 (Theorem 3), from which Theorem 1

follows.
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4.2 Statement of the main results

We look for a travelling wave solution of (4.1) in the form yn(t) = ψ(n− ct) with wave

speed c > 0. Substitution of ψ in (4.1) gives

c2γψ′′ = k∆dψ − F
(
V − cψ′)− ψ, (4.3)

where ∆dψ(ξ) = ψ(ξ + 1) − 2ψ(ξ) + ψ(ξ − 1) is the discrete Laplacian operator and

ξ = n− ct. Differentiating (4.3) with respect to ξ gives:

c2γϕ′′ = k∆dϕ+ c
d

dξ
F (V + ϕ)− ϕ, (4.4)

where ϕ = −cψ′ and derivatives are meant in the sense of distributions. We fix the

boundary conditions

ϕ(−∞) = ϕ(∞) = 0. (4.5)

We seek solutions ϕ ∈ C0(R) ∩ L1(R) of (4.4) and (4.5) that are piecewise smooth and

satisfy the admissibility conditions:

(AC):





ϕ(0) = ϕ(ξ1) = −β (4.6)

ϕ(ξ) < −β if ξ ∈ (ξ1, 0) (4.7)

ϕ(ξ) > −β otherwise (4.8)

where β = V − a > 0 and −β is referred to as the threshold. For values of ξ such that

ϕ(ξ) = −β, the friction force F (V +ϕ(ξ)) reaches a discontinuity. We assume that ϕ(ξ)

crosses the velocity threshold −β at exactly two different points on the ξ axis (note that

jumps in ϕ′ will occur at these points). The parameter ξ1 < 0 has to be determined and

defines the width of the solitary wave (studied in subsection 4.3.4). The admissibility

conditions (AC) presented here characterize the simplest form of solitary wave solution.

Using (AC) we obtain:

c2γϕ′′ − c

a
ϕ′ + ϕ = k∆dϕ+ αc (δξ1 − δ0) , (4.9)

where δx is the Dirac distribution located at ξ = x.

Integrating (4.9) over R yields
∫
R
ϕdξ = 0, hence ψ(ξ) = −1

c

∫ ξ
−∞ ϕ(s) ds corre-

sponds to a solitary wave solution of (4.3). We shall prove the following existence

theorem:

Theorem 1 (Existence of solitary waves). Assume γ < 1
4a2 . Fix c > b

aγ ln( 1+b
1−b)

with

b =
√

1− 4a2γ. Then there exist functions V̄ (k) and ξ1(k) such that the following
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result holds. For all k small enough, for V = V̄ (k) = a+O(k), there exists a solution

of (4.2)-(4.4)-(AC) such that limξ→±∞ ϕ(ξ) = 0. This solution takes the following form

when k → 0:

ϕ(ξ) = αc [K(ξ − ξ1)−K(ξ)] +O(k) (4.10)

where K denotes the fundamental solution of the operator c2γ d2K
dξ2 − c

a
dK
dξ +K. We have

in addition when k → 0

ξ1 = O(ln k). (4.11)

Comments on the proof of Theorem 1

We consider the trial solution of (4.2)-(4.4)-(AC) obtained in chapter 3. Expressed

as a Fourier transform, it takes the form

ϕ(ξ) =

∫

R

ei2πλξG(λ, c, ξ1)dλ, (4.12)

where

G(λ, c, ξ1) = αc(1 − e−2πiλξ1)

[
4π2c2λ2γ − 4k sin2(πλ) +

2πicλ

a
− 1

]−1

.

Expression (4.12) is useful for exact numerical integration (as shown in the previous

chapter) but is difficult to handle mathematically. In section 4.3.1, we derive a more

tractable expansion of ϕ for k ≈ 0 which is complemented by some error bounds.

In a second step, we take into account the two equality constraints, whose number

equals the number of unknown parameters of the solitary wave (velocity c and width

ξ1). To prove the existence theorem, we work at fixed velocity c and consider ξ1 and

the pulling velocity V as two unknowns. The two equality constraints form a nonlinear

system of equations for (V, ξ1) which is solved in the small coupling regime by a fixed

point argument, in a domain where ξ1 is large and V close to a (with V > a). This

provides us with an asymptotic expansion for the width of the solitary wave ξ1(k) at

small k. We show a slow (logarithmic) divergence of the width of the solitary wave

when k → 0 (see (4.11)). In that sense, the limit of vanishing coupling is singular for

solitary waves (a situation different from the case of periodic travelling waves [62]). We

also obtain in this way a pulling velocity V = a+O(k) and derive expansion (4.10).

The next step is the main difficulty of the proof. It concerns the verification of the

inequality constraints in (AC) for the trial solution obtained with the above (implicitly

defined) values of ξ1 and V . The assumption γ < 1
4a2

in Theorem 1 sets the analysis in
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the overdamped regime. As shown in the leading order approximation (4.10), the shape

of the solitary wave solution ϕ for small k is determined by the fundamental solution

K defined in (4.14) and shown in Fig. 4.1A. The form of K has a fundamental role

for the verification of the inequality constraints carried out through Theorems 2 and 3.

The absence of oscillations in K(ξ) in the overdamped regime makes the proofs much

more tractable (see Lemmas 2 and 3). We remark that a study of the underdamped

regime γ > 1
4a2

would require a more delicate analysis because the oscillations of the

solitary wave solution may lead to several crossings of the velocity threshold.

To check the inequality constraints, a first step consists in establishing the mono-

tonicity of ϕ in suitable neighbourhoods of the threshold crossings. This task (hereafter

denoted as local analysis) is carried out in Theorem 2. The proof of this result is com-

posed of four Lemmas which define monotonicity conditions for the trial solution ϕ(ξ)

in two local regions, an interval [ξ1 + xmin, ξ1 + xmax] around ξ = ξ1 and an interval

[xmin, x
+
max] around the origin, see Fig. 4.1B. It is shown that ϕ(ξ) crosses the thresh-

old ϕ = −β only once in each enclosed region. The analysis of monotonicity in these

regions is done through a O(k2) approximation of the trial solution and its derivative.

In Theorem 3, the admissibility constraints are checked using expansion (4.10), the

above local analysis and Proposition 1, which extends the monotonicity regions derived

previously. This step is achieved under the sufficient condition

σ2e
−σ2 > σ1e

−σ1 , (4.13)

where σ1 and σ2 are two positive eigenvalues controlling the spatial decay of K (see

Lemmas 2 and 3). From the definitions of σ1 and σ2, condition (4.13) reads

c >
b

aγ ln
(
1+b
1−b

) ,

which is the wave speed condition given in Theorem 1.

Connection with propagation failure

As illustrated in the previous chapter, propagation failure occurs at low enough

coupling k (when the pulling velocity V is fixed), a phenomenon related to a saddle-

node bifurcation of solitary waves occurring at some critical value k = k∗ (see Fig.

3.12). In section 4.3.4, we are able to partially analyse this bifurcation by working at

the level of the trial solutions satisfying the equality constraints. This is done using

the expansions of ξ1 and V obtained in Theorem 1. The corresponding family of trial
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Figure 4.1: A Typical graph of the function K defined in Lemma 3. B Solitary wave solution

ϕ of the BK model (4.9) with c > b

aγ ln( 1+b

1−b )
. We shall establish the monotonicity of ϕ(ξ)

close to threshold in the intervals [ξ1 + xmin, ξ1 + xmax] and [xmin, x
+
max] (grey strips). A global

analysis will be performed outside these local regions to check the constraints (4.7) and (4.8)

in (AC). The function K and the solitary wave solution ϕ shown here correspond to α = 0.2,

k = 0.5, γ = 0.15, a = 1, V = 1.01, ξ1 = 7.07, c = 3.12.

solutions is reparameterized by V ≈ a (instead of k), and ξ1, k are expressed as functions

of V . Using leading order expansions valid for V ≈ a, we study how the coupling k

depends on the wave velocity c (a typical wave speed curve in the (c, k) plane is shown

in Fig. 4.2). We obtain a lower bound for the coupling (corresponding to a leading

order approximation of k∗) below which solitary waves satisfying (AC) do not exist.

This minimum of k is obtained for a certain velocity c∗ > 0.

In the same Fig. 4.2, the minimal wave velocity available from Theorem 1 is plotted

as a vertical line and labelled as c̃. The corresponding solitary wave solutions are only

known to exist for c > c̃ > c∗, so the above analysis does not provide a bifurcation result

for exact solitary wave solutions. However, the nonexistence of trial solutions satisfying

the equality constraints is sufficient to conclude on the non-existence of solutions of

(4.2)-(4.4)-(AC) at low coupling.

4.3 Approximation of trial solutions at low coupling

4.3.1 Asymptotic expansions

To analyse the small coupling limit, we shall use the following properties of the differ-

ential operator at the left side of (4.9) (these results are elementary and stated without
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proof).

Lemma 2. For 0 < γ < 1
4a2

, the solutions of cγȳ′′(ξ)− c
a ȳ

′(ξ) + ȳ(ξ) = 0 are spanned

by ȳi(ξ) = eσ1ξ, i = 1, 2 where σ1 = 1
2c2γ

(
c
a −

√
∆
)
> 0, σ2 = 1

2c2γ

(
c
a +

√
∆
)
> σ1

and ∆ = 4c2
(

1
4a2

− γ
)
.

Lemma 3. For 0 < γ < 1
4a2 , the unique bounded solution of c2γy′′ − c

ay
′ + y = δξ0 is

y(ξ) = K(ξ − ξ0) with

K(ξ) =
H(−ξ)√

∆

(
eσ1ξ − eσ2ξ

)
, (4.14)

where H denotes the Heaviside function.

In what follows, we denote by Cm
b (R) the Banach space of m times differentiable

functions with bounded derivatives up to order m, equipped with the norm ‖f‖Cm
b

=
∑m

i=0 ‖∂if‖∞. We note Wm,p (R) the usual Sobolev space with the norm ‖f‖Wm,p =
∑m

i=0 ‖∂if‖p, and where Hm(R) =Wm,2(R) correspond to a Hilbert space. We set

ϕ(ξ) = αcRξ1Ψ(ξ) (4.15)

where Ψ(ξ) ∈ L1(R) is a function to be determined, and Rξ1(.) is the linear operator

Rξ1f(ξ) = f(ξ − ξ1)− f(ξ). Inserting (4.15) in (4.9) yields,

LΨ = k∆dΨ+ δ0 (4.16)

where L is the differential operator L ≡ c2γ∂2ξ − c
a∂ξ + 1. Equation (4.16) does not

depend on parameter ξ1 that will be determined in subsection 4.3.4. The issue here

is to construct Ψ(ξ) for small k. Setting k = 0 in (4.16), we define LΨ0 = δ0, the

fundamental solution given by

Ψ0 = K ∈ H1(R), (4.17)

as shown in Lemma 3. Having (4.17) as the fundamental solution associated with the

operator L, the unique bounded solution of

LΨ = f, (4.18)

then reads Ψ = Ψ0 ∗ f for all f ∈ L1(R). Using this relation in (4.16) gives

Ψ = Ψ0 + kΨ0 ∗∆dΨ. (4.19)

Observing that Ψ0 ∗∆df = ∆dΨ0 ∗ f , for all f ∈ L1(R), we thus have

Ψ = K + kG ∗ Ψ, (4.20)
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where we define

G = ∆dΨ0. (4.21)

From (4.18) with Ψ = Ψ0 ∗ f we observe that G ∗ f = ∆dL−1f where the operator L−1

maps Ck
b → Ck+2

b , so we observe that higher order terms in the expansion of Ψ are

more regular. Using this property, we consider the Ansatz

Ψ = K + kG ∗K + k2Ψ2, (4.22)

where Ψ2 is a unknown function. Using (4.20) and (4.22), we obtain

Ψ2 − kG ∗ Ψ = G ∗G ∗K

= ∆2
dL−2K.

Since K ∈ H1(R) and L−1 ∈ L
(
Hm(R),Hm+2(R)

)
we have G ∗ G ∗ K ∈ H5(R).

Because ‖G ∗ ‖L (Hm) ≤ ‖G‖1 hence we get for k < ‖G‖−1
1

Ψ2 = (I − kG∗)−1 (G ∗G ∗K) in H5(R), (4.23)

with Ψ2 being analytic in k ∈ (−‖G‖−1
1 , ‖G‖−1

1 ). Therefore, we have

ϕ = αcRξ1K +O(k) in H1(R),

ϕ− αcRξ1K = αckRξ1(G ∗K) +O(k2) in H3(R), (4.24)

ϕ− αcRξ1 [K + kG ∗K] = αck2Rξ1Ψ2 in H5(R). (4.25)

Setting

ϕ0 = αcRξ1K, (4.26)

and using (4.24), we define

ϕ̃ = ϕ0 + kG ∗ ϕ0, (4.27)

which defines the O(k2) expansion of the formal solitary wave solution. Expression

(4.27) takes a central part in the analysis of (AC).

4.3.2 Error bounds for the trial solutions

The elimination of the O(k2) terms in ϕ̄(ξ) induce a certain error magnitude in the

approximation of our trial solution ϕ(ξ). We shall introduce a bound for this error

magnitude which will be useful for the analysis of the (AC) using (4.27). From (4.20),

we set

G ∗ Ψ−G ∗K = kG ∗G ∗ Ψ,

= kG ∗ [G ∗ Ψ−G ∗K] + kG ∗G ∗K, (4.28)
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estimating (4.28) gives

‖G ∗ Ψ−G ∗K‖C1
b

≤ k‖G‖1‖G ∗ Ψ−G ∗K‖C1
b
+ k‖G ∗G ∗K‖C1

b
. (4.29)

For the last term in the right hand side of (4.29), we get

‖G ∗G ∗ ∂iK‖∞ ≤ ‖∂iK‖1‖G ∗G‖∞ < ‖∂iK‖1‖G‖22 (4.30)

for i = 0, 1. Using (4.29) and (4.30), we obtain

‖G ∗ Ψ−G ∗K‖C1
b
≤ k‖G‖22‖K‖W 1,1

1− k‖G‖1
, (4.31)

this gives with (4.20)

‖Ψ−K − kG ∗K‖C1
b
≤ k2‖G‖22‖K‖W 1,1

1− k‖G‖1
<

16k2‖K‖22‖K‖W 1,1

1− 4k‖K‖1
, (4.32)

where we used ‖G‖p ≤ 4‖K‖p for p = 1, 2. Therefore we have k2Ψ2(ξ) bounded by

(4.32). Using (4.32), an error estimate for (4.25) is then

‖ϕ− αcRξ1 [K + k(G ∗K)] ‖C1
b
<

32αck2‖K‖22‖K‖W 1,1

1− 4k‖K‖1
. (4.33)

The bounds (4.32) and (4.33) are recalled in the following sections.

4.3.3 Qualitative properties of the fundamental solution K

For the monotonicity analysis, we provide analytical computations of the functions

K ′(ξ), (K ∗ K)(ξ) and (K ∗ K ′)(ξ). Their properties relevant to the analysis are

presented. We start with the following Lemma that describes the sign of K ′(ξ),

Lemma 4. For γ < 1
4a2

, there exists

xc =
ln(σ1)− ln(σ2)

σ2 − σ1
< 0, (4.34)

such that for

K ′(x) =
1√
∆
(σ1e

σ1x − σ2e
σ2x)H(−x), (4.35)

we have that

K ′(x) > 0 for x ∈ (−∞, xc), K ′(xc) = 0, K ′(x) < 0 for x ∈ (xc, 0
−],

(4.36)

and where K ′(0−) = − 1
c2γ .
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Proof. We get (4.35) by deriving (4.14). Setting K ′(xc) = 0, we get (4.34) where xc < 0

assuming σ2 > σ1 > 0, i.e., γ < 1
4a2

. In the same way, we get (4.36) for σ2 > σ1 > 0. �

We now focus on the expressions of (K ∗K)(ξ) and (K ∗K ′)(ξ) given by

(K ∗K) (ξ) =
H(−ξ)

∆

[
−
(
ξ +

2

σ2 − σ1

)
eσ1ξ +

(
2

σ2 − σ1
− ξ

)
eσ2ξ

]
, (4.37)

(
K ∗K ′) (ξ) =

H(−ξ)
∆

[
−
(
σ1ξ +

σ1 + σ2
σ2 − σ1

)
eσ1ξ +

(
σ1 + σ2
σ2 − σ1

− σ2ξ

)
eσ2ξ

]
. (4.38)

Assuming γ < 1
4a2

, so σ2 > σ1 > 0, we have

lim
ξ→−∞

(K ∗K) (ξ) = 0, and lim
ξ→−∞

(
K ∗K ′) (ξ) = 0. (4.39)

Observe from (4.21) and (4.17) that G ∗K = ∆dK ∗K and G ∗K ′ = ∆dK ∗K ′, where

(∆dK ∗K)(ξ) = (K ∗K)(ξ + 1)− 2(K ∗K)(ξ) + (K ∗K)(ξ − 1), (4.40)

(∆dK ∗K ′)(ξ) = (K ∗K ′)(ξ + 1)− 2(K ∗K ′)(ξ) + (K ∗K ′)(ξ − 1), (4.41)

and where, using (4.39), we have that

lim
ξ→−∞

(G ∗K) (ξ) = 0, and lim
ξ→−∞

(G ∗K)′ (ξ) = 0. (4.42)

Let us now introduce the following Lemma that is related to expression (4.41),

Lemma 5. For all ξmax(k) such that ξmax(k) → −∞ as k → 0 then

lim
k→0

‖∆dK ∗K ′‖L∞(−∞,ξmax(k)) = 0.

Proof. For ∆dK,K
′ ∈ L2(R) then limξ→±∞(∆dK ∗ K ′)(ξ) = 0 holds. Therefore for

ε > 0 there exists A, where ξ ≤ A, such that ‖(∆dK ∗K ′)(ξ)‖ < ε. Equivalently, there

exists k0, where k ≥ k0, such that ξmax(k) ≤ A. Therefore ‖(∆dK ∗ K ′)(ξ)‖ < ε for

any ξ ≤ ξmax(k). �

We also have from (4.40) and (4.41) the following values at ξ = 0

(G ∗K)(0) = (∆dK ∗K)(0) = (K ∗K)(−1) := p, (4.43)

(G ∗K)′(0) = (∆dK ∗K ′)(0) = (K ∗K ′)(−1) := −µ. (4.44)

where parameters p and µ will be used later (in the local and global analysis). We can

simplify the expressions for p and µ using the auxiliary parameter

s =

√
∆

2c2γ
, (4.45)
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such that σ1 = 1
2cγa − s, σ2 = 1

2cγa + s, and σ2 − σ1 = 2s. Using those identities, we

can easily calculate that

(K ∗K)(−1) =
2

∆

[
cosh(s)− sinh(s)

s

]
e
− 1

2cγa = p, (4.46)

(K ∗K ′)(−1) =
1

∆

[
1

γac

(
cosh(s)− sinh(s)

s

)
− 2s sinh(s)

]
e−

1

2cγa = −µ. (4.47)

For convenience we will use in the sequel the parameter

d = −p (4.48)

and notice that d < 0 if s > 0.

4.3.4 Estimation of width and speed of the solitary wave

To determine ξ1 as a function of k, we first treat ξ1 as a parameter and obtain k as a

function of ξ1. For this purpose, we use a fixed point argument on a nonlinear equation

k = M(k, ξ1) for the coupling k, which is obtained from (4.6) in (AC). We show that

the function M is a contraction on an interval around k = 0 for large negative ξ1.

Moreover, we show that to each small k given by k = M(k, ξ1) corresponds a unique

ξ1.

Using (4.15) in the equality condition ϕ(0) = ϕ(ξ1) of (AC), we obtain:

2Ψ(0) − Ψ(ξ1)− Ψ(−ξ1) = 0.

Using (4.22) this yields,

2kp −K(ξ1)− k (G ∗K) (ξ1) + k2 (2Ψ2(0, k)− Ψ2(ξ1, k)− Ψ2(−ξ1, k)) = 0, (4.49)

where p > 0 (see (4.46)) and where we assumed ξ1 ≤ −1. Hence using (4.49), we define

the fixed point problem

k =
1

2p

[
K(ξ1) + k (G ∗K) (ξ1)− k2 (2Ψ2(0, k) − Ψ2(ξ1, k),−Ψ2(−ξ1, k))

]

:= M(k, ξ1). (4.50)

The next Lemma shows that the map k 7→ M(k, ξ1) is a contraction mapping.

Lemma 6. There exists a constant η small enough, such that 0 < η < ‖G‖−1
1 and the

following properties hold for k ∈ E = [−η,η]. For all large enough negative ξ1 < −1,

the map k 7→ M(k, ξ1) is a contraction on E and (4.50) admits a unique solution

k = κ(ξ1) ∈ E depending smoothly on ξ1. The function κ is increasing on an interval

(−∞, ξmax
1 ] and satisfies limξ1→−∞ κ(ξ1) = 0. Moreover, each small k given as a fixed

point of (4.50) in E is positive and provided by a unique ξ1.
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Proof. Let us first estimate the term D(k, ξ1) = Ψ2(ξ1, k) + Ψ2(−ξ1, k) − 2Ψ2(0, k).

Using the bound (4.32), we have for any |k| ≤ η

sup
k<η

|D| < 48‖K‖22‖K‖W 1,1

1− 4η‖K‖1
= BΨ. (4.51)

From this estimate and the decay of K(ξ1) when ξ1 → −∞, it follows that E is invariant

by M(., ξ1) for all large enough negative ξ1. Now for |k|, |k̄| ≤ η, we have

|M(k, ξ1)−M(k̄, ξ1)|

=
1

2p

∣∣(k − k̄) (G ∗K) (ξ1) +
(
k2 − k̄2

)
D(k, ξ1) + k̄2 (D(k, ξ1)−D(k̄, ξ1))

∣∣ .

(4.52)

We know from (4.23) that k 7→ Ψ2(., k) is analytic from (−‖G‖−1
1 , ‖G‖−1

1 ) into H5(R).

Using this property in the above identity, we obtain

|M(k, ξ1)−M(k̄, ξ1)|

≤ 1

2p

(
|(G ∗K)(ξ1)|+ 2η |BΨ|+ ‖∂kD‖C1

b
(E,L∞(R))η

2
)
|k − k̄|. (4.53)

To have a contraction in E = [−η,η], it is necessary to have a Lipschitz constant

< 1 in the right side of inequality (4.53). This is the case provided ξ1 is sufficiently

large negative and η sufficiently small, due to the fact that |(G ∗ K)(ξ1)| → 0 as

ξ1 → −∞. Then from the contraction mapping theorem, (4.50) admits a unique

solution k = κ(ξ1) ∈ E . The function κ is smooth with respect to ξ1 as a result of

the uniform contraction principle. The property limξ1→−∞ κ(ξ1) = 0 simply follows

from letting ξ1 → −∞ in (4.50).

Now we address the monotonicity of ξ1 7→ κ(ξ1) in the domain of large negative

ξ1. For notational simplicity we shall use the same symbol for the variable k and

the function k(ξ1) = κ(ξ1). From (4.50), we get k(ξ1) = M(k(ξ1), ξ1) and obtain by

differentiating with respect to ξ1

k′(ξ1)

(
1− ∂M(ξ1, k)

∂k

)
=
∂M(ξ1, k)

∂ξ1
. (4.54)

Returning to the definition of M, we always have 1 − ∂M(ξ1,k)
∂k > 0 if ξ1 is sufficiently

large negative and η sufficiently small. This means that the sign of k′(ξ1) is given by

the sign of the right hand side of (4.54). We have

∂M(ξ1, k)

∂ξ1
=

1

2p

[
K ′(ξ1) + k(G ∗K ′)(ξ1) + h.o.t.

]
, (4.55)
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for small k, where p > 0 and h.o.t. stands for higher order terms. In the regime of k

small and large negative ξ1, the sign of (4.55) is determined by the sign of K ′(ξ1). From

Lemma 4, we have K ′(ξ1) > 0 for any ξ1 < xc (and hence for any large negative ξ1).

Therefore in the regime of k small, k(ξ1) is monotone increasing for all large negative

ξ1 < xc. In this domain, it follows that the map ξ1 7→ k(ξ1) is invertible, and k is

positive because limξ1→−∞ k(ξ1) = 0. �

Identity (4.50) takes the form

k =
1

2p
[K(ξ1) + h.o.t.] , (4.56)

for small k and large negative ξ1. From Lemma 6, the function ξ1 7→ k is invertible in

this regime (we shall denote this inverse function by ξ1(k) for notational simplicity).

At leading order, we obtain from (4.56) with (4.14),

ξ1(k) =
1

σ1
ln
[
−2kd

√
∆
]
+ o(1), (4.57)

where we recall that −d = p with p defined in (4.46). As previously stated in Theorem

1, we have from (4.57)

ξ1 = O (ln k) (4.58)

for k → 0.

To complete the proof of the expansions announced in Theorem 1, it remains to

evaluate β = V − a for k ≈ 0. For this purpose we consider the remaining equality

constraint in (AC) given by ϕ(0) = −β. Using (4.24) yields

ϕ(0) = αckRξ1(G ∗K)(0) +O(k2)

= −αcpk +O(k2) = −β. (4.59)

Since p and c are positive, we obtain for k → 0+

β = O(k) > 0, (4.60)

V = a+O(k) > a, (4.61)

as stated in Theorem 1.

Using (4.57) and (4.35), we now prove the following technical Lemma which will be

needed in the proof of Theorem 2.
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Figure 4.2: Graph of coupling strength k with respect to the wave speed c obtained from (4.62)

for certain parameter values. Note that k∗ is the critical coupling where propagation failure

occurs and c∗ the related wave speed. The vertical dashed line at c̃ = b

aγ ln( 1+b

1−b )
corresponds to

the wave speed given in the existence theorem (Theorem 1). Parameters are α = 0.2, γ = 0.15,

a = 1, V = 1.01, and we get c̃ = 2.72.

Lemma 7. Fix δ = σ2

σ1
> 1 and assume x ∈ [xmin, xmax]. Then for k → 0, we have

K ′(ξ1 + x) = −2σ1kde
σ1x + kRk(x),

where ‖Rk‖L∞(xmin,xmax) ≤ eσ2xmaxε(k) with ε(k) → 0 independently of x.

Proof. Using (4.57), we have σ1ξ1 = ln
(
−2kd

√
∆
)
+ o(1) for k → 0. This gives with

K ′(ξ) defined in (4.35)

K ′(ξ1 + x) =
1√
∆

[
σ1e

σ1ξ1eσ1x − σ2e
σ2ξ1eσ2x

]

=
1√
∆
σ1

(
−2

√
∆kd

)
eσ1x + o(k)O(eσ1xmax) +O(kδeσ2xmax).

�

We are now interested in deriving a lower bound on the coupling k for the existence

of trial solutions when β is fixed and small. Hence, it remains to study the velocity c

of the trial solution for small k and β. We show that a critical value k∗ exists, such

that if k < k∗, no wave speed c exists satisfying (AC). Using (4.59) and the implicit

function theorem, we have

k(c) =
β

αcp(c)
+O(β2),

= βνN(s(c)) +O(β2), (4.62)
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where we reexpress p(c) = (αcνN(s(c)))−1 with ν = b3

4αa3γ , b =
√

1− 4a2γ,

N(s(c)) =
es(c)/b

s(c) cosh(s(c)) − sinh(s(c))
,

and s(c) =
√
∆

2c2γ
. The existence of a global minimum k∗ > 0 in (4.62) is proved in the

following Lemma.

Lemma 8. Assume γ < 1
4a2 . Then for k(c) defined in (4.62), there exists c∗ > 0 such

that k(c) ≥ k(c∗) > 0 for all c ∈ (0,∞).

Proof. From (4.62) we have to study the variations of N(s(c)). We observe that

N(s)s→0+ ∼ 3
s3

(case c → +∞) and N(s)s→+∞ ∼ 2
se

s(1/b−1) (case c → 0+). We have

also N(s) > 0 since s > tanh(s) for any s ∈ (0,∞), and consequently for any c ∈ (0,∞).

So N(s(c)) diverges at both limits of the interval (0,∞) and is always positive, hence

N(s(c)) has a lower bound for a certain c∗, such that minN(s(c)) = N(s(c∗)). Conse-

quently we have that min k(c) = βν
2 N(s(c∗)) +O(β2). �

The function k(c) is plotted in Fig. 4.2 for certain parameter values. In the same

figure, as established by Theorem 1, the values c > c̃ correspond to wave speeds of

exact solitary wave solutions of the BK model (i.e. trial solutions that satisfy (AC)).

4.4 Local monotonicity of the solution

4.4.1 Statement of the main results

The Local Monotonicity Theorem given below identifies a neighbourhood of ξ = ξ1

where ϕ(ξ) is decreasing, and a second local region enclosing ξ = 0 where ϕ(ξ) is

increasing (see Fig 4.1B). This result is valid under some conditions on parameters

(condition µ > 0 assumed below).

Theorem 2 (Local Monotonicity Theorem). Assume µ > 0 defined at (4.47). Let

λ < 0 be defined by (4.70), xmin ∈ (xc, 0) with xc < 0 defined by eq. (4.34), xmax > 0

defined by eq. (4.73) and x+max > 0 defined by (4.74). Then for all k small enough,

ϕ̃(ξ) = ϕ0(ξ) + k(G ∗ ϕ0)(ξ) satisfies

ϕ̃′(ξ) ≤ αc

2
K ′(xmin) < 0 for ξ ∈ [ξ1 + xmin, ξ1] , (4.63)

ϕ̃′(ξ) ≤ αc

2
λk < 0 for ξ ∈ [ξ1, ξ1 + xmax] , (4.64)

ϕ̃′(ξ) ≥ αc

2

∣∣K ′(xmin)
∣∣ > 0 for ξ ∈ [xmin, 0] , (4.65)

ϕ̃′(ξ) ≥ αc

2
µk > 0 for ξ ∈

[
0, x+max

]
. (4.66)
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Moreover, for all k small enough, ϕ(ξ) is decreasing in [ξ1 + xmin, ξ1 + xmax] and in-

creasing in [xmin, x
+
max].

Corollary 1. For µ > 0, then ϕ(ξ) = −β has the the unique solutions ξ = ξ1 and

ξ = 0 in the intervals [ξ1 + xmin, ξ1 + xmax] and [xmin, x
+
max] respectively.

The monotonicity of ϕ in Theorem 2 simply follows from the results stated for

its approximation ϕ̃ and the error bound (4.33). The main difficulty in the proof of

Theorem 2 concerns the estimates of ϕ̃′. These results are proved in four Lemmas

(9,10,11,12). Lemmas 9 and 10, correspond to the statements (4.63) and (4.65) (Left

neighbourhood for ξ = ξ1 and ξ = 0). Because the proofs of statements (4.63) and (4.65)

are brief, those are presented first. Lemmas 11 and 12 correspond to the statements

(4.64) and (4.66) (Right neighbourhood for ξ = ξ1 and ξ = 0). Because their proofs

are more elaborated we present them afterwards. For the analysis around ξ = 0, we

consider the definition of ϕ̃′(ξ) given by

ϕ̃′(ξ) = αc
[
K ′(ξ − ξ1)−K ′(ξ)− k

(
∆dK ∗K ′) (ξ) + k

(
∆dK ∗K ′) (ξ − ξ1)

]
(4.67)

obtained by deriving (4.27). By setting ξ = ξ1 + x, we can reexpress (4.67) as

ϕ̃′(ξ1 + x) = αc
[
K ′(x)−K ′(ξ1 + x) + k

(
∆dK ∗K ′) (x)− k

(
∆dK ∗K ′) (ξ1 + x)

]
,

(4.68)

which is useful to simplify the analysis around ξ = ξ1. Note that (4.67) and (4.68)

significantly involve the function K ′(ξ). The statements (4.63) and (4.65) (Lemmas 9

and 10) are mainly deduced from the study of the sign of K ′(ξ) which is characterized

in Lemma 4.

The statements (4.64) and (4.66) (Lemmas 11 and 12) are associated with the sign

of parameters

µ = −(K ∗K ′)(−1), (4.69)

λ = −µ+ 2σ1d, (4.70)

where µ was previously defined in (4.47). A main sign property for µ will be proved to

be

µ > 0 if γac >
1

6
. (4.71)

Parameter λ is derived in the local analysis. Its construction relies on µ and d. Note

that d < 0 and σ1 > 0, hence

µ > 0 implies λ < 0, (4.72)
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which allows to set Corollary 1. Using the sign conditions in µ and λ, the values xmax

and x+max will be derived in the local analysis. The value for xmax is defined implicitly

by

xmax

[
M̃ +M1σ1e

σ1xmax

]
=

|λ|
3

(4.73)

where M1 = 2σ1|d| > 0 and M̃ = ‖K ′‖22 > 0. Note that xmax → 0+ when |λ| → 0. For

the case of x+max, we will derive that

x+max = min

(
1,

µ

2M̃

)
. (4.74)

In what follows, we present the development of the local analysis.

4.4.2 Proof of Theorem 2

Lemma 9. Assume x ∈ [xmin, 0] with xmin ∈ (xc, 0) and xc given by (4.34). Then for

k small enough

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) ≤ αc

2
K ′(xmin) < 0 for ξ ∈ [xmin + ξ1, ξ1].

Proof. Fix xmin ∈ (xc, 0) and assume x ∈ [xmin, 0], then by Lemma 7

K ′(ξ1 + x) = O(k)

uniformly in x ∈ [xmin, 0]. Set ξ = ξ1 + x in ϕ̃′(ξ), then (4.68) and Lemma 5 yield

1

αc

[
ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
]
=K ′(x) +O(k) ≤ K ′(xmin) +O(k)

uniformly for x ∈ [xmin, 0]. So considering (4.36) in Lemma 4, we get for k small enough

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) ≤ αc

2
K ′(xmin) < 0 for ξ ∈ [xmin + ξ1, ξ1]. (4.75)

�

Lemma 10. Assume ξ1 + 1 ≤ ξ ≤ 0, then for k small enough

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) ≥

∣∣∣αc
2
K ′(xmin)

∣∣∣ > 0 for ξ ∈ [xmin, 0].

Proof. Assume ξ1 + 1 ≤ ξ ≤ 0, therefore

K ′(ξ − ξ1) = 0,
(
K ∗K ′) (ξ − ξ1 − 1) = 0 and

(
∆dK ∗K ′) (ξ − ξ1) = 0
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hence we have for (4.67)

1

αc

[
ϕ′
0(ξ) + k(G ∗ ϕ′

0)(ξ)
]
= −K ′(ξ)− k

(
∆dK ∗K ′) (ξ).

So considering (4.36) in Lemma 4, for k small enough:

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) ≥ αc

2

∣∣K ′(xmin)
∣∣ > 0 for ξ ∈ [xmin, 0]. (4.76)

�

Lemma 11. Assume λ 6= 0 and x ∈ [0, xmax] with xmax defined by (4.73). Then there

exists k0 such that for all k ≤ k0, we have

∣∣ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
∣∣ ≥ αck

|λ|
2

for ξ ∈ [ξ1, ξ1 + xmax] . (4.77)

Proof. From definition (4.35), we have K ′(x) = 0 for any x ≥ 0 and (∆dK ∗K ′) (x) = 0

for any x ≥ 1 by definition (4.41). Therefore for any x ≥ 0:

(
∆dK ∗K ′) (x) =

(
K ∗K ′) (x− 1)

=
(
K ∗K ′) (−1) + xR(x) = −µ+ xR(x) (4.78)

with

‖R‖∞ ≤ ‖K ′ ∗K ′‖∞ ≤ ‖K ′‖22 = M̃. (4.79)

Assume x ≤ xmax(k) with limk→0 (ξ1 + xmax) = −∞, and set ξ = ξ1 + x in ϕ′(ξ).

Therefore (4.68) with Lemma 5 and (4.78) yield

1

αc

[
ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
]
= −K ′(ξ1 + x)− kµ+ kxR(x) + o(k),

uniformly in x ∈ [0, xmax]. Let us assume xmax independent of k, then with −µ given

in (4.47), d given in (4.48), and using Lemma 7, we get

1

αc

[
ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
]

= 2σ1kde
σ1x +

k

∆

[
1

γac

(
cosh(s)− sinh(s)

s

)
− 2s sinh(s)

]
e
− 1

2cγa + kxR(x) + o(k)

= 2σ1kde
σ1x − k

2γac
d− 2k

∆
s sinh(s)e−

1

2cγa + kxR(x) + o(k)

=
kd

c2γ

[
eσ1x

( c
a
−

√
∆
)
− c

2a

]
− 2k

∆
s sinh(s)e

− 1

2γac + kxR(x) + o(k) (4.80)
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uniformly in x ∈ [0, xmax], where s =
√
∆

c2γ
. We define now,

λ =
2

∆
e−

1

2γac s sinh(s)Λ (4.81)

Λ =
f(s)

c2γ

[(√
∆− c

a

)
+

c

2a

]
− 1 (4.82)

f(s) =

(
cosh(s)− sinh(s)

s

)
[s sinh(s)]−1 , (4.83)

where we note that f(s) is even, decreasing in s ∈ [0,∞] and ‖f‖∞ = f(0) = 1/3. We

then have for (4.80) with (4.81), (4.82) and (4.83),

1

αc

[
ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
]
= k

[
λ+ ε̃(k) + x

(
R(x) +

d

c2γ

( c
a
−

√
∆
) eσ1x − 1

x

)]

(4.84)

uniformly in x ∈ [0, xmax], where ε̃(k) → 0 as k → 0. To study the sign behaviour of

(4.84), we need to know the sign behaviour of λ. We have
√
∆ < c

a so Λ < f(s)
2aγc − 1 ≤

1
6aγc − 1 and therefore

λ < 0 for γac ≥ 1

6
. (4.85)

To find when λ > 0, we fix c = θ
γa with θ = 1

6 , so γac <
1
6 (i.e., we have 2γac < ‖f‖∞).

Let smax > 0 such that f(smax) = 2θ and assume s ∈ [0, smax], so f(s) > 2γac. This

gives with (4.81) and (4.82)

λ > 0 for f(s)
[
2
√

1− 4a2γ − 1
]
> 2aγc, (4.86)

where
[
2
√

1− 4a2γ − 1
]
∈ (−1, 2) for γ < 1

4a2
. Therefore if f(s) > 2γac for s ∈

[0, smax], then (4.86) holds true provided γ is small enough.

Now we can study the sign of (4.84). Assume λ 6= 0 and set |d|
c2γ

(
c
a −

√
∆
)

= M1.

Then for all x ∈ [0, xmax]
∣∣∣∣λ+ x

(
R(x)−M1

eσ1x − 1

x

)∣∣∣∣ ≥ |λ| − x
(
M̃ +M1σ1e

σ1xmax

)
≥ 2

3
|λ| > 0 (4.87)

for xmax implicitly defined by:

xmax

(
M̃ +M1σ1e

σ1xmax

)
=

|λ|
3
. (4.88)

We have clearly xmax > 0 for |λ| > 0. Knowing (4.87) and assuming λ 6= 0 and

x ∈ [0, xmax], then letting k → 0 yields in (4.84):

∣∣ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ)
∣∣ ≥ αck

|λ|
2

for ξ ∈ [ξ1, ξ1 + xmax]

with xmax defined implicitly by (4.88). This ends the proof of Lemma 11. �
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Lemma 12. Set x+max = min
(
1, µ

2M̃

)
, with µ defined by (4.69) and M̃ by (4.79).

Assume f(s) 6= 2γac and ξ ∈ [0, x+max]. Then ϕ′
0(ξ) + k (G ∗ ϕ′

0) (ξ) has the same sign

as µ and
∣∣ϕ′

0(ξ) + k(G ∗ ϕ′
0)(ξ)

∣∣ ≥ kαc
|µ|
2

for ξ ∈ [0, x+max].

In addition, the critical coefficient λ defined in eq. (4.81) satisfies

λ = −µ+ 2σ1d < −µ. (4.89)

In particular, µ > 0 implies λ < 0 and λ > 0 implies µ < 0.

Proof. Note that for ξ ≥ 0 we have K ′(ξ) = 0, while for ξ ≥ 1 we get (∆K ∗K ′) (ξ) = 0

and so ϕ0(ξ)+k (G ∗ ϕ′
0) (ξ) = 0. Hence we only consider the interval ξ ∈ [0, 1] in (4.67),

which gives

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) =− kαc

(
K ∗K ′) (ξ − 1)

=− kαc
[
(K ∗K ′)(−1) + ξR(ξ)

]
= kαc[µ − ξR(ξ)]. (4.90)

Using (4.47) and (4.83), we reexpress µ as

µ =
2

∆
e
− 1

2γac s sinh(s)

(
1− f(s)

2γac

)
, (4.91)

in order to study its sign. Recall that ‖f‖∞ = 1/3, therefore we get from (4.91) that

µ > 0 for γac > 1/6. (4.92)

If γac < 1/6, then there exists smax > 0 such that 2γac = f(smax), and we have µ > 0

for s ∈ (smax,∞) and µ < 0 for s ∈ (0, smax). Assuming µ 6= 0, and then considering

R(ξ) and its estimate (4.79), we have

|µ− ξR(ξ)| ≥ |µ| − ξM̃ ≥ |µ|
2

if ξ ≤ |µ|
2M̃

. (4.93)

Then from (4.93), we obtain from (4.90)

ϕ′
0(ξ) + k

(
G ∗ ϕ′

0

)
(ξ) ≥ kαc

|µ|
2

for ξ ∈ [0, x+max]

where x+max = min
(
1, µ

2M̃

)
. This proves the first claim of the Lemma.

For the second claim, observe that λ in (4.81) is equal to

λ = −µ+
( c
a
−

√
∆
) d

c2γ
= −µ+ 2σ1d (4.94)

by using (4.91). Because σ1 > 0 and d < 0 as shown in Lemma 2 and (4.48), we have

then

λ = −µ+ 2σ1d < −µ,

and we conclude that µ < 0 implies λ > 0 and λ < 0 implies µ > 0. �
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4.5 Global analysis

This section completes the analysis of the trial solution ϕ in order to check (AC) on

the whole interval ξ ∈ (−∞,∞). The main result corresponds to Theorem 3 below.

Theorem 3 (Global verification of (AC)). Assume σ2e
−σ2 > σ1e

−σ1 and consider x+max

defined by (4.74). Then for all k small enough:

ϕ(ξ) is increasing on
[
−1, x+max

]
, (4.95)

ϕ(ξ) is decreasing on

[
ξ1 − 1,

ξ1
2

]
, (4.96)

ϕ(ξ) > −β for ξ ≤ ξ1 − 1 and ξ ≥ x+max, (4.97)

ϕ(ξ) < −β for ξ ∈
[
ξ1
2
,−1

]
. (4.98)

Corollary 2. Assume c > b
aγ ln( 1+b

1−b)
with b =

√
1− 4a2γ ∈ R. Then for all k small

enough, there exists a solitary wave solution of the BK model (4.9) satisfying (AC) and

given by (4.10).

The proof of Theorem (3) is based on Theorem 2 and Proposition 1 (to be shown be-

low). In particular, we derive in Proposition 1 the condition σ2e
−σ2 > σ1e

−σ1 appearing

in Theorem 3. From this inequality we obtain the wave speed condition c > b
aγ ln( 1+b

1−b )
of Corollary 2, which is also assumed in the main existence theorem (Theorem 1).

Proposition 1. Assume σ2e
−σ2 > σ1e

−σ1 . Then one has µ > 0 and ϕ̃′(ξ) ≥ αcku(ξ) >

0 for ξ ∈ [0, 1), where

u(ξ) =
1

∆

[
σ2e

−σ2 − σ1e
−σ1
]
[
1− eσ1(ξ−1)

σ1
− 1− eσ2(ξ−1)

σ2

]
. (4.99)

We also have ϕ̃′(1) = 0 and ϕ̃(ξ) = 0 for ξ ∈ [1,∞). Moreover, let xmax(k) satisfying

limk→0(ξ1 + xmax(k)) = −∞. Then if k is small enough, one has ϕ̃′(ξ) ≤ kσ1dαc < 0

for ξ ∈ [ξ1, ξ1 + xmax(k)].

We first present the proof of Proposition 1 and then continue with the proof of

Theorem 3 in section 4.5.2.

4.5.1 Proof of Proposition 1

Proof. From (4.27) we have ϕ̃(ξ) = 0 for ξ ≥ 1 and ϕ̃(ξ) = −kαc (K ∗K) (ξ − 1) for

ξ ∈ [0, 1]. Set

y(ξ) = (K ∗K)(ξ) and J(ξ) = y′(ξ) = (K ∗K ′)(ξ).
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We want to find conditions ensuring ϕ̃′(ξ) ≥ 0 for ξ ∈ [0, 1], which is equivalent to

J(ξ) ≤ 0 for ξ ∈ [−1, 0]. We infer from (4.69) that

if µ > 0 then J(−1) < 0. (4.100)

We also have J(0) = J′(0) = 0. Hence having J(x) =
∫ 0
x K(x − s)K ′(s)ds, where

K(x) > 0 for x ∈ (−∞, 0), we have

J(x) < 0 for x ∈ [−1, 0) if K ′(x) ≤ 0 for x ∈ [−1, 0], (4.101)

and K ′(x) ≤ 0 for x ∈ [−1, 0] if xc ≤ −1 (see Lemma 4). Hence setting xc ≤ −1 and

using (4.34), we find the main condition

σ2e
−σ2 ≥ σ1e

−σ1 . (4.102)

Inequality (4.102) holds if 1 ≥ σ2. Note from Lemma 2 that σ2 >
1

2γac , hence if 1 ≥ σ2

we have γac > 1/2. So by (4.92), we have µ > 0 and therefore J(−1) < 0 by (4.100),

and we conclude that a sufficient condition for (4.102) is 1 ≥ σ2.

If xc < −1 then K ′(x) ≤ K ′(−1) < 0 for x ∈ [−1, 0], and therefore

|J(x)| ≥
∣∣K ′(−1)

∣∣
(∫ 0

x
K(t)dt

)

=
|K ′(−1)|√

∆

[
1− eσ1x

σ1
− 1− eσ2x

σ2

]

≥ 1

∆

[
σ2e

−σ2 − σ1e
−σ1
] [1− eσ1x

σ1
− 1− eσ2x

σ2

]
:= u(x). (4.103)

Note that when (4.102) holds true we have

ϕ̃′(ξ) = −kαc(K ∗K ′)(ξ − 1) = −kαcJ(ξ − 1) > 0 for ξ ∈ [0, 1)

because (4.101) holds when (4.102) holds. Then using (4.103), we have

ϕ̃′(ξ) ≥ kαcu(ξ − 1) > 0 for ξ ∈ [0, 1)

when (4.102) holds. This ends the proof of the first claim.

We address the second claim. Set ξ = ξ1 + x in ϕ̃′(ξ) and assume (4.102) holds.

Using (4.68), we find for x ≥ 0

1

αc
ϕ̃′(ξ1 + x) = −K ′ (ξ1 + x) + k

(
K ∗K ′) (x− 1)− k

(
∆dK ∗K ′) (ξ1 + x)

≤ −K ′(ξ1 + x)− k∆d

(
K ∗K ′) (ξ1 + x), (4.104)



Chapter 4. Existence theorem for solitary waves in the Burridge-Knopoff

model 77

because (K ∗K ′) (x− 1) = J(x− 1) ≤ 0 for x ∈ [0, 1] (by (4.101)) and (K ∗K ′) (x− 1)

vanishes for x ≥ 1. Note that K ′(x) defined in (4.35) has a unique global maximum at

x∗ = 2xc, where K
′′(x∗) = 0 and x∗ < xc < 0, and so K ′(x∗) > 0. From Lemma 7, we

have

K ′(ξ1) = −2σ1dk + o(k) (4.105)

as k → 0, and therefore we have 0 < K ′(ξ1) < K ′(x∗) and ξ1 < x∗ for k small

enough. So by the intermediate value theorem, there exists ξ2(k) ∈ (x∗, xc) such that

K ′(ξ1) = K ′(ξ2). Because limk→0 ξ1(k) = −∞ then limk→0K
′(ξ1(k)) = 0+, and thus

limk→0 ξ2(k) = xc. If ξ1+x ∈ [ξ1, ξ2] then K
′(ξ1+x) ≥ K ′(ξ1) for x ∈ [0, ξ2 − ξ1]. This

property gives in (4.104)

1

αc
ϕ̃′(ξ1 + x) ≤ −K ′(ξ1)− k∆d

(
K ∗K ′) (ξ1 + x). (4.106)

Now let us assume x ∈ [0, xmax(k)] with limk→0 (ξ1 + xmax(k)) = −∞. Then by (4.105)

and Lemma 5, we obtain from (4.106)

1

αc
ϕ̃′(ξ1 + x) ≤2σ1dk + o(k) ≤ σ1dk

uniformly in x ∈ [0, xmax], for all k small enough. This completes the proof of Propo-

sition 1. �

4.5.2 Proof of Theorem 3

Let x+max = min
(
1, µ

2M̃

)
as in Lemma 12. Then with Theorem 2 we have

ϕ̃(x+max) = ϕ̃(0) + x+maxϕ̃
′(θ), θ ∈ (0, x+max)

≥ x+max

αc

2
µk − β +O(k2),

where the last inequality holds from the error estimate (4.33). From Proposition 1,

ϕ̃(ξ) is increasing for ξ ≥ x+max, so

ϕ̃(ξ) ≥ x+max

αc

2
µk − β +O(k2), for ξ ≥ x+max.

Then using the error estimate (4.33), we have

ϕ(ξ) ≥ x+max

αc

2
µk +O(k2)− β > −β for ξ ≥ x+max. (4.107)

Let us now estimate ϕ(ξ) for ξ < xmin + ξ1. Set ξ = ξ1 + x and assume x ≤ xmin < 0.

Then we get using (4.27),

1

αc
ϕ̃(ξ) = K(x)−K(x+ ξ1) + k (∆dK ∗K) (x)− k (∆dK ∗K) (x+ ξ1). (4.108)
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Then by setting K(ξ) = eσ1ξη(ξ), where we define

η(ξ) = H(−ξ) 1√
∆

[
1− e(σ1−σ2)ξ

]
,

we obtain from (4.108),

1

αc
e−σ1x [ϕ̃(ξ)− αcK(x)] = −eσ1ξ1η(x+ ξ1) + 2k[cosh(σ1)− 1] (∆dη ∗ η) (x)

−2keσ1ξ1 [cosh(σ1)− 1] (∆dη ∗ η) (x+ ξ1)

= −eσ1ξ1τξ1η(x)

+2k [cosh(σ1)− 1]
(
1− eσ1ξ1τξ1

) (
δ+η ∗ δ−η

)
(x) (4.109)

where we denote τξ1η(x) = η(x+ ξ1), δ
+ = τ1−1, δ− = 1− τ−1, and ∆d = δ+δ−. From

(4.57), we have eσ1ξ1 = −2kd
√
∆+ o(k) for k ≈ 0, and we get from (4.109),

1

αc
‖e−σ1x (τξ1ϕ̃− αcK) ‖∞ ≤ 3k|d|

√
∆‖η‖∞ + 4k (cosh(σ1)− 1) ‖δ+η‖22 :=

b

αc
k,

(4.110)

where b = αc
[
3|d|

√
∆‖η‖∞ + 4 (cosh(σ1)− 1) ‖δ+η‖22

]
. Using estimate (4.110) in

(4.109), we get

ϕ̃(ξ1 + x) ≥ −bkeσ1x + αcK(x)

= eσ1x [αcη(x) − bk]

≥ eσ1x [αcη(xmin)− bk] > 0 for k ≤ αc

b
η(xmin),

uniformly in x ∈ R. Therefore with the error estimate (4.33) it follows that

ϕ(ξ) ≥ ϕ̃(ξ) +O(k2) ≥ O(k2) > −β for ξ ≤ xmin + ξ1 (4.111)

for all k small enough.

Let us now estimate ϕ(ξ) for ξ ∈ [ξ1/2, xmin]. Using (4.57), we have

K

(
ξ1
2

)
=

1√
∆

(
eσ1ξ1/2 − eσ2ξ1/2

)
≈
√

2k|d|∆−1/4 (4.112)

for k → 0. Then, assuming k small enough in order to have ξ1 ≤ −2 (so that ξ1
2 −ξ1−1 ≥

0), one has for all ξ ∈
[
ξ1
2 , xmin

]
(where xmin < 0), using (4.27) and (4.112),

ϕ̃(ξ) = −αcK(ξ)− αck (∆dK ∗K) (ξ)

≤ −αcK
(
ξ1
2

)
+ αck‖∆dK ∗K‖∞

= −αc
√

2|d|∆−1/4
√
k + o(k).
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By using the error estimate (4.33), we have then

ϕ(ξ) ≤ ϕ̃(ξ) +O(k2) ≤ −αc
√

2|d|∆−1/4
√
k + o(

√
k) < −β for ξ ∈

[
ξ1
2
, xmin

]
.

(4.113)

Let us now set xmax(k) = |ξ1|
2 , so that we have ξ1 + xmax(k) = ξ1

2 → −∞ as k → 0.

Then Proposition 1 ensures that for all k small enough

ϕ̃′(ξ) ≤ kσ1dαc < 0 for ξ ∈
[
ξ1,

ξ1
2

]
.

Then using the error estimate (4.33) yields

ϕ′(ξ) ≤ kσ1dαc+O(k2) < 0 for ξ ∈
[
ξ1,

ξ1
2

]
, (4.114)

which means ϕ(ξ) is decreasing on
[
ξ1,

ξ1
2

]
. Fixing xmin = −1, it follows that (4.95)

holds by Theorem 2, (4.96) holds by (4.114), (4.97) holds by (4.107) and (4.111), (4.98)

holds by (4.113). This completes the proof of Theorem 3. �



Chapter 5

Conclusions and perspectives

The main goal of this thesis was the understanding of propagation phenomena in elas-

tic discrete excitable systems. We have considered two mechanical models. The first

one describes the displacement of an infinite spring-block chain subjected to gravity

and sliding down a slope. The second corresponds to the Burridge-Knopoff model that

has been previously introduced to describe the dynamics of two elastic media under

frictional contact. Both models involve a nonlinear friction law of spinodal type (with

velocity-strengthening regions at both low and high sliding velocities) which induces

excitable properties. We have studied the consequences of such friction laws on the

dynamics of travelling fronts and pulses.

The analysis of the chain sliding down a slope was done in chapter 2. We have

shown the existence of propagation phenomena that have not been previously reported

in the discrete diffusive counterpart (discrete Nagumo-type equations). A first example

is the existence of pulses made out of two front solutions (a leading front and a trailing

front). This property has been observed in a totally different context corresponding to

feedforward neural networks with excitatory and inhibitory connections [48]. A second

difference with respect to previous works [14–16, 20, 30] is that front propagation failure

does not occur at weak coupling strengths. In discrete Nagumo equations, this situ-

ation occurs only for special nonlinearities [81, 86]. The propagation failure of pulses

occurs through the collision and annihilation of two travelling fronts propagating in the

same direction, with the trailing front faster than the leading front. Such phenomenon

occurs when the pulling velocity is greater than a critical value. At the end of chapter

2, we have drawn a link between the above front solutions and solitary waves of the

Burridge-Knopoff model, showing that the fronts can approximate small transition re-

80



Chapter 5. Conclusions and perspectives 81

gions of solitary waves. This suggest the possibility of an asymptotic construction of

pulses in the BK model based on the solutions of the falling chain model. Similar ideas

have been previously exploited in FitzHugh-Nagumo systems to construct travelling

pulses [30].

In chapters 3 and 4, several spinodal friction laws were considered for the analysis

of solitary waves in the BK model, including a piecewise-linear discontinuous function

of the sliding velocity. The use of this piecewise linear function allowed us to construct

solitary waves explicitly in the form of oscillatory integrals and prove an existence the-

orem at low coupling. Flytzanis et al. [38] considered a similar approach based on

piecewise-linear nonlinearities to study a lattice model of dislocation. Using the same

idea, Vainchtein et al. [40–43] have obtained travelling fronts and solitary waves in

Frenkel-Kontorova and Fermi-Pasta-Ulam chains. Herrmann et al. [87] have shown the

robustness of this approach when nonlinear terms are regularized by adding of a small

spinodal layer. It would be very interesting to adapt the approach of [87] in order to

establish the existence of solitary waves in the BK model with smooth spinodal friction

laws close to the idealized piecewise-linear law considered in this thesis. On another

aspect, it would be interesting to extend our theoretical results to more general friction

laws. Different analytical techniques could be applied to bilinear laws regularized by a

small spinodal layer, discontinuous laws with two different slopes or the trilinear law,

see e.g. [38, 41, 42, 85, 88–91] and references therein.

Another important extension of this work would be to treat the case of multivalued

friction laws, i.e. generalized Coulomb laws of spinodal type. Such friction force will

require a careful treatment in the numerical and in the analytical study, since differen-

tial inclusions should be considered if sliding solutions occur. In the present work, we

have numerically observed solitary wave propagation in the BK model with regularized

spinodal Coulomb laws, hence we conjecture the persistence of such waves for multi-

valued friction laws. In the case of the piecewise-linear discontinuous friction law, the

jump discontinuity did not require special attention since we considered solutions that

cross the discontinuity transversally, discarding any sliding solutions.

It would be also interesting to compute the travelling waves numerically using

Newton-type methods and path following (in particular to study the transition from

low coupling to the continuum limit) and to analyse the linear stability of solitary
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waves and fronts. The linear stability problems may be also addressed analytically in

the case of the piecewise-linear friction law. Such analysis may clarify the similarities

with reaction-diffusion systems of FitzHugh-Nagumo type where two travelling pulse

solutions have been found: a stable fast pulse and an unstable slow pulse [18]. Other

studies on the stability of travelling waves in lattices which could be useful in the

present context include the works of Hupkes et al. [92] and Carpio et. al [93].

The models studied here are one-dimensional. The generalization to two-dimensional

networks is a challenging problem with, in particular, the following issues: understand-

ing propagation failure, derivation of the wave speed, shape of the travelling wave

profiles, influence of the propagation angle. The investigation of spiral waves in 2-

dimensional excitable elastic media remains to be done. Spiral waves are well-known

patterns in two-dimensional reaction-diffusion systems [8, 83, 94], hence we can wonder

if those patterns may exist in elastic excitable systems [95]. Another aspect not explored

in the BK model was the reflection of pulses at the boundaries and the penetration of

waves with and without annihilation. Those properties are reported in excitable sys-

tems with linear-cross diffusion and are also found in the BK model [83].

Finally, we have proposed in chapters 3 a possible mechanical implementation of the

BK model with piecewise-linear discontinuous nonlinearity. This system corresponds

to a chain of linear oscillators subjected to impulsive forces applied in the direction of

motion when their deflection crosses a specific threshold. It would be interesting to re-

alize such an experimental setup (for example using MEMS) in order to investigate the

excitation of solitary waves. Along the same line, the experimental observation of soli-

tary waves along regular patterned interfaces displaying spinodal frictional resistance

constitutes a challenging open problem.
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