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Résumé

Cette thèse est structurée autour de deux axes d’études : (1) développer des logiques épistémiques
formalisant la prise en compte de nouvelles données en présence d’informations incomplètes ou
incohérentes ; (2) caractériser les notions de bisimulation sur les modèles de ces nouvelles logiques.
Les logiques modales utilisées pour formaliser des raisonnements dans le cadre d’informations
incomplètes et incohérentes, telle que la logique modale de contingence, sont généralement plus
faibles que les logiques modales standards. Nos travaux se basent sur des méthodes logiques,
algébriques et co-algébriques.

Dans le Chapitre 2, nous étudions l’influence des connaissances sur le vote stratégique. Nous
introduisons une logique pour formaliser la manipulation des procédures de vote dans le cadre
d’une connaissance incomplète. Les principaux résultats présentés dans ce chapitre sont: (i)
l’introduction d’une logique modale de la connaissance qui tienne compte de l’incertitude d’un
électeur concernant les préférences des autres électeurs; (ii) Cela permet de modéliser des scénarios
dans lesquels tous les électeurs ont les mêmes préférences, mais peuvent avoir une incertitude
différente quant aux préférences des autres électeurs.

Dans le Chapitre 3, nous introduisons une sémantique algébrique pour la logique modale
d’action de raffinement. La logique du modèle d’action de raffinement est une extension de la
logique du modèle d’action avec des quantificateurs de raffinement. Notre contribution principale
est que nous montrons que la logique modale de l’action de raffinement est correcte et complète
par rapport à cette sémantique algébrique. Ce chapitre est intéressant car il s’agit d’une première
étape vers le développement de contreparties non-classiques de la logique modale de raffinement.

Dans le Chapitre 4, nous introduisons une logique épistémique dynamique pour raisonner
sur le changement d’information en présence d’informations incompatibles et incomplètes. La
logique que nous présentons dans ce chapitre est une extension de la logique du mode bilattice à
quatre valeurs avec des modalités dynamiques. La contribution principale de ce chapitre est une
axiomatisation correcte et complète. Ce chapitre contourne les cadres de la logique épistémique
dynamique et des logiques modales à plusieurs valeur. Il ouvre la voie à l’étude des fondements
mathématiques de la dynamique de la connaissance dans des contextes non-classiques.

Dans le Chapitre 5, nous introduisons la notion de bisimulation pour la logique modale
contingence interprété par rapport aux structures des voisinages. La logique de contingence est
une extension de la logique propositionnelle avec des modalités de non-contingence. La modalité
de contingence peut s’exprimer en fonction de la modalité de nécessité, mais pas l’inverse. Cela
rend la logique de contingence moins expressive que la logique modale de base, à la fois sur les
modèles Kripke et les modèles des voisinages. Par conséquent, les notions standard de Kripke et
de bisimulation des voisinages sont trop fortes pour la logique de contingence. Nous proposons
une notion de bisimulation de contingence de voisinage qui correspond à l’expressivité de la
logique de contingence. Nos principales contributions dans ce chapitre sont: (i) un théorème de
Hennessy-Milner pour la bisimulation de contingence de voisinage; (ii) une caractérisation de la
logique de contingence sur les modèles de voisinages comme le fragment invariant de bisimulation
de la logique de premier ordre et de la logique modale; (iii) montrant que la logique de contingence
possède la propriété d’interpolation Craig.

Dans le Chapitre 6, nous généralisons la notion de bisimulation développée dans le chapitre
précédent dans le cadre de la logique modale coalgébrique. Nous introduisons une notion de Λ
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-bisimulation pour des logiques modales faiblement expressives et étudions ses propriétés. Le
principal résultat technique de ce chapitre est que nous prouvons un théorème Hennessy-Milner
pour Λ-bisimulations.

Mots-clés: informations, incomplètes, incohérentes, logique modal, Logique épistémique dy-
namique, vote, manipulation, modèle Kripke, sémantique algébrique, logique modale de raffinement
modèle de voisinage, logique de contingence, logique modal coalgébrique, coalgébra, bisimulation.
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Contenu Détaillé

Raisonnement sur le changement d’information

Informations statiques: incomplétude

L’information joue un rôle essentiel dans nos vies. Nous recueillons fréquemment des informations
sur Internet, sur les réseaux sociaux, dans les livres ou auprès d’experts afin de prendre des décisions
et effectuer nos activités quotidiennes. Malgré le large accès à diverses sources d’information,
nous nous trouvons souvent dans des situations où nous avons des informations incomplètes pour
prendre des décisions. Des informations incomplètes proviennent, par exemple, d’une observations,
mesure inexacte et données manquantes. Dans les conversations quotidiennes, la mention de
l’incertitude, de l’imprécision ou de l’inconnu reflète une information incomplète sur une situation.

Dans cette thèse, nous travaillons avec deux formes d’informations incomplètes: l’incertitude
et l’information manquante. Ci-dessous nous présentons quelques exemples afin de clarifier ce
que nous voulons vraiment dire par les termes “incertitude” et “information manquante”.

Example 1 Notre premier exemple est emprunté à [50]. Considérons deux joueurs, Anne et Bill,
et un jeu composé de trois cartes différentes: Coeur, Pique et Trèfle. Chaque joueur pioche une
carte et ne regarde que sa propre carte. Supposons qu’Anne possède un Coeur, Bill un Pique et
que le Trèfle soit placé face cachée sur la table. Anne ne sait pas que Bill détient un Pique, ni que
les trèfles sont sur la table. Cependant, elle considère possible que Bill ait un Pique. De même,
Bill est incertain quant au fait qu’Anne détienne un Coeur ou un Trèfle. En d’autres termes,
Anne et Bill ont une incertitude quant à la répartition réelle des cartes Cette incertitude est une
sorte d’information incomplète. a

Example 2 Cathy et sa chef Amy organisent un atelier sur le “Raisonnement sous incertitude”.
Amy a envoyé un email à Cathy et lui a demandé d’aller vérifier si la salle de conférence était
disponible à la date prévue pour l’atelier. Cependant, Cathy, en raison de son emploi du temps
chargé, a oublié de vérifier la disponibilité de la salle. Après une semaine, Amy passe dans
le bureau de Cathy et lui demande: “Savez-vous si la salle de conférence est disponible pour
l’atelier?”. Malheureusement, très embarrassée, Cathy doit avouer à sa chef qu’elle a oublié
dénvoyer l’email et qu’elle ne sait pas si la salle est disponible. En d’autres termes, elle est
incertaine quant à la disponibilité de la salle de conférence à la date prévue pour l’atelier. a

Dans les exemples ci-dessus, la distribution des cartes et la disponibilité de la salle de conférence
sont des faits dont la véracité ou la ... sont fixés. L’incertitude porte sur les connaissances des
agents. En effet, chaque agent sait quelles sont les options possibles, ils sont juste incertains
quant aux choses qui sont vraies ou fausses. Etudions maintenant des exemples un peu différents.

Example 3 Supposons qu’Alice a décidé de planter des tulipes dans son jardin. Elle va au
magasin et achète une boîte de bulbes de tulipes. Quand elle arrive à la maison, elle remarque
que l’étiquette de la boîte est manquant. Ainsi, elle ne sait pas quelle est la couleur des tulipes,
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et elle ne sait même pas si ce sont effectivement des bulbes de tulipes. De fait, Alice manque
d’informations pour connaître la couleur et le type de bulbes. Elle devra attendre que les fleures
poussent pour connaître le type de bulbes qu’elle a acheté. a

Example 4 Une entreprise ouvre un nouveau poste pour un concepteur de sites Web et crée
une base de données composée des noms, des âges et des diplômes des candidats. Ceci est un
fragment de cette base de données:

Name Age Degree
Steve Cooper M.Sc.
Mary Lane 27 M.Sc.
John Green 25 B.Sc.

La source responsable d’alimenter la la base de données peut ne pas donner de valeurs pour
certains attributs des données. Par exemple, dans la table, nous voyons que la valeur de l’attribut
‘age ’ pour l’enregistrement relatif à Steve Cooper est manquante. Le comité de sélection ne
considère que les candidats âgés d’au plus 28 ans. Ainsi, ils interrogent la base de données pour
lister tous les candidats qui ont au maximum 28 ans. Lorsque la base de données répond à cette
requête, le nom de Steve Cooper ne figure pas dans la liste, car il n’y a aucune information sur
son âge. Le comité de sélection ne considère donc pas sa demande. a

Les informations incomplètes dans les exemples 3 et 4 prennent la forme d’informations manquantes.
L’exemple suivant illustre le rôle de l’incertitude dans la théorie du vote .

Example 5 Trois amis Leila, Mona et Sunil veulent voir un film samedi soir. Le cinéma projette
Wonder Woman, Life et Logan. Leurs préférences sont (le plus préféré est sur le dessus):

Leila Mona Sunil
Wonder Woman Wonder Woman Life

Life Life Logan
Logan Logan Wonder Woman

Cependant, il y a une complication supplémentaire: Leila est incertaine au sujet des préférences de
Mona et considère également que Mona préfère Logan over Life et Life over Wonder Woman. Ils
vont maintenant voter sur quel film ils iront voir. Lancer un vote signifie déclarer une préférence
entière. La règle de vote est la suivante: s’il y a une majorité pour un film préféré, alors ce film
gagne, sinon (si les votes sont à égalité) Logan gagne. Sunil jette d’abord son vote et déclare
sa vraie préférence (ce vote ne peut plus être changé). Maintenant, Leila et Mona doivent voter
simultanément. Que devrait faire Mona? Si Leila et Mona déclarent toutes deux leurs vraies
préférences, Wonder Woman gagne et elles sont toutes deux heureuses. Toutefois, Leila considère
également possible que Logan soit le film préféré de Mona. Si tel est le cas, et elles déclarent
tous les deux leurs véritables préférences, les votes sont à égalité et Logan gagne, le film le moins
préféré de Leila. Leila veut éviter la possibilité de ce résultat désagréable, et donc elle décide de
déclarer: Je préfère Life sur Wonder Woman et Wonder Woman sur Logan. Maintenant, Life
gagne. C’est mieux pour Leila que le résultat Logan. Malheureusement, Mona ne préfère pas
Logan à Wonder Woman, mais a la même préférence que Leila. Dans ce cas, le vote alternatif
de Leila fait gagner Life, ce qui est pire pour elle que si elle avait voté selon sa vraie préférence:
l’incertitude gache son vote! a

Dans l’exemple ci-dessus, Leila n’a pas voté sincèrement, elle a plutôt voté pour Life comme
moyen d’obtenir un résultat plus préférable que ce à quoi elle aurait pu s’attendre en votant
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sincèrement. Dans la théorie du vote, un tel vote s’appelle une manipulation [38, 32]. L’exemple
ci-dessus montre que si les électeurs connaissent les préférences des uns et des autres par rapport
aux candidats, cela peut affecter le résultat.

Informations statiques: incohérence

Comme nous l’avons mentionné au début, nous obtenons nos informations de plusieurs sources.
Les informations que nous obtenons de ces sources peuvent être incohérentes.

Example 6 Imaginez un robot conçu pour sortir d’un labyrinthe. Le robot a deux capteurs
qui l’aident à se déplacer le long d’une surface plane dans une direction libre, sans obstacles.
Supposons une situation dans laquelle l’un des capteurs détecte un obstacle et l’autre ne détecte
rien. En d’autres termes, le robot doit faire face à des informations contradictoires sur lesquelles
il doit raisonner pour déterminer dans quelle direction il doit se déplacer. a

Example 7 Reconsidérons l’ Exemple 4. Les tableaux suivants représentent maintenant les
données des candidats qui ont été fournies par deux sources différentes.

Name Age Degree Name Age Degree
Steve Cooper 26 M.Sc. Steve Cooper 26 M.Sc.
Mary Lane 27 M.Sc. Mary Lane 27 Ph.D.
John Green 25 B.Sc. John Green 25 B.Sc.

Les deux sources donnent des informations incohérentes sur le diplôme de Mary Lane. La
déclaration “Mary Lane a un doctorat” est à la fois vraie et fausse, car il existe une preuve (Source
2) qu’elle a un doctorat et il y a aussi une preuve (Source 1) qu’elle n’a pas de doctorat. a

Comme l’illustrent les exemples, l’incertitude et l’incohérence sont des caractéristiques communes
de l’information. Dans cette thèse, nous nous intéressons à raisonner sur l’information et à analyser
les situations dans lesquelles cette information est fournie. Les exemples que nous avons présentés
jusqu’à présent décrivent des situations faciles à analyser. Par exemple, dans l’exemple 1, on peut
facilement comprendre ce que Anne sait, ou à propos de quoi Bill est incertain. Cependant, les
situations peuvent être plus complexes. Par exemple, dans l’exemple 1, il peut y avoir plus de
deux joueurs et dans l’exemple 6 il peut y avoir plus d’un robot. Raisonner sur des informations
devient donc complexe et exige une analyse formelle plus minutieuse. Nous utilisons la logique
pour une telle analyse. Nous passons brièvement en revue les logiques pré-existantes sur lesquelles
cette thèse se base. Nous discutons de deux approches, l’une basée sur la logique classique (à deux
valeurs) et l’autre sur la logique à quatre valeurs. Dans ce qui suit, nous définissons knowledge
comme une information vraie et la considérons par rapport à un agent (être humain, ordinateur)
qui a une certaine perspective sur le monde.

L’analyse du raisonnement sur la connaissance en utilisant la logique formelle remonte à Von
Wright [155] et à l’ouvrage fondateur de Hintikka [94], qui a introduit une variante de la logique
modale formalisant la notion de connaissance.

Hintikka a fourni une interprétation sémantique de la logique modale de la connaissance en
termes de sémantique de Kripke mondes possibles [36, 101, 25].L’idée sous-jacente à cette approche
est que la connaissance d’un agent peut être caractérisée comme un ensemble de mondes qu’elle
considère comme indiscernables. Les mondes indiscernables s’appellent les mondes possibles. Un
agent sait que quelque chose est le cas si et seulement si c’est le cas dans tous les mondes que
l’agent considère possible [49]. Cette approche fournit un moyen naturel de modéliser l’incertitude
des agents: un agent est incertain de quelque chose si et seulement si c’est le cas dans certains
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mondes que l’agent considère comme possible et ce n’est pas le cas dans certains mondes que
l’agent considère comme possibles. Par exemple, dans l’Exemple 5, on peut modéliser l’incertitude
de Leila à propos des préférences de Mona comme suit. Leila considère deux mondes possibles:
dans un monde, Mona préfère Wonder Woman sur Life, et Life sur Logan, et dans l’autre monde,
elle préfère Logan sur Life, et Life sur Wonder Woman.

La sémantique des mondes possible fournit une manière intuitive et mathématiquement
élégante de représenter les connaissances de Mona et Leila et de raisonner sur ces connaissances.
Cependant, ce formalisme a certains défauts considérables de notre point de vue: (i) les agents
sont logiquement [154], c’est-à-dire qu’un agent connaît toutes les conséquences logiques de ses
connaissances; (ii) les agents ne peuvent pas avoir d’ informations contradictoires sans tout savoir
parce que d’une contradiction tout peut être déduit. Ces comportements ne sont pas réalistes
et ne sont pas souhaitables lors de la modélisation d’ agents limités en terme de ressources
[55]. Les agents limités en terme de ressources sont limités en puissance déductive, en durée de
raisonnement et en mémoire.

Une logique alternative qui permet aux agents de détenir des connaissances incohérentes
sans tout savoir est la bilattice logic d’Arieli et Avron [5], qui elle-même est basée sur la logique
à quatre valeurs de Belnap [15, 16]. dans la logique des En logique bilattice, les propositions
peuvent avoir, en plus des valeurs de vérité true et false, deux autres valeurs, à savoir: (i) true
et false pour gérer l’incohérence - cela correspond à la situation où plusieurs sources assignent
une valeur de vérité différente à une phrase, et (ii) ni vrai ni faux, par manque d’information. Il
est intéressant de noter que la valeur à la fois vrai et faux de la logique de Belnap remonte à la
proposition de Łukasiewicz [113] pour aborder le futur problème de contingence dans la logique
aristotélicienne, qui dit : la vérité des événements futurs ne peut être déterminée dans le présent
à moins que nous ayons des informations complètes sur le futur [51]. En ajoutant des modalités à
la logique d’Arieli et d’Avron, on peut raisonner sur différentes notions telles que la connaissance,
la croyance et le temps. Jung et Rivieccio [98] ont développé une telle extension de la logique des
bi-treillis de [5].

Les approches que nous avons mentionnées jusqu’à présent ne décrivent que des états
d’information et ne modélisent pas les l’accès à de nouvelles informations. Dans la section
suivante, nous discuterons de la dynamique de la connaissance.

Dynamique de l’information

Les connaissances d’un agent peuvent changer en réponse à un évènement informatif. Les exemples
suivants illustrent que des peuvent conduire à des changements dans les connaissances des agents.

Example 8 Reconsidérons l’exemple 1 et supposons qu’ Anne triche sans que Bill s’en aperçoive
et regarde la carte qui est sur la table. Dans ce cas, Anne apprend la distribution des cartes, tandis
que Bill ne sait pas que Anne la connaît . Dans un autre scénario, supposons qu’Anne marche
vers la table, prenne la carte face cachée et la regarde sans la montrer à Bill, mais Bill remarque
qu’Anne regarde la carte sur la table. Comme précédemment Anne apprend la répartition des
cartes et Bill ne connaît toujours pas la distribution des cartes. La différence entre ces deux
scénarios réside dans ce que Bill sait des connaissances d’Anne sur les cartes. Dans le premier
scénario, Bill ne sait pas qu’Anne connaît la distribution des cartes, alors que dans le deuxième
scénario, Bill sait que Anne connaît la distribution des cartes, bien qu’il reste incertain quant à la
distribution des cartes lui-même. a

Example 9 Reconsidérons l’ Exemple 5, et supposons que Mona, qui dit toujours la vérité, dit à
Leila “Je préfère Wonder Woman aux deux autres films, et vous ne le savez pas.” En conséquence,
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Leila sait maintenant que Wonder Woman est leur film préféré, et elle n’est plus ignorante de ce
fait. Par conséquent, elle n’est plus incitée à manipuler le vote car son film préféré sera choisi si
elle vote sincèrement. a

Il y a deux points dans l’exemple ci-dessus que nous aimerions souligner. Premièrement, l’état
d’information de Leila a changé en raison d’une annonce faite par Mona. Cette annonce réduit
l’incertitude de Leila et a donc un impact sur son désir de manipuler le vote. Les annonces
[135] sont des actions relativement simples qui fournissent aux agents de nouvelles informations
susceptibles de résoudre l’ignorance d’un agent à propos d’une situation. Deuxièmement, Mona a
annoncé quelque chose qui devient faux après l’annonce. Avant l’annonce, Leila ne connaissait
pas les préférences de Mona, mais maintenant qu’elle sait, la déclaration n’est plus vraie. Motivé
par ces points, l’un des objectifs de la thèse est d’étudier les aspects théoriques du vote et de la
manipulation, avec les logiques épistémiques dynamiques.

Logiques épistémiques dynamiques (DEL) [49, 11] sont une famille de logiques pour raisonner
sur le changement des connaissances. Ielles étendent la logique modale de la connaissance avec
des opérateurs dynamiques.

Une des questions qui nous intéresse avec DEL est : comment la connaissance peut-elle
être obtenue par un agent? Cette question relève du sujet “ quantification sur le changement
d’information” [45, 46, 86, 84, 31]. Une logique qui étudie la quantification du changement
d’information est appelée refinement modal logic. La logique modale de raffinement (RML),
introduite par Bozzelli et al. [31], est une extension de la logique modale avec des opérateurs qui
quantifient sur tous les raffinements d’un modèle. Un raffinement correspond intuitivement au
résultat d’une action qui peut changer les états de connaissance des agents.

DEL est un cadre bien adapté pour décrire la dynamique de la connaissance, bien que comme
mentionné dans la section 1.1.1, un inconvénient de cette approche est que cela ne tient pas
compte de situations où les agents doivent faire face à des connaissances inconsistantes (Exemples
6, 7) ou incomplètes (4). Ces situations sont mieux analysées avec des logiques non classiques
telles que la logique à quatre valeurs. Elle soulève la question de recherche suivante: (i) comment
formaliser le changement d’information et quantifier le changement d’information en présence
d’informations incomplètes et incohérentes? Pour répondre à cette question nous nous basons sur
la théorie de la dualité et appliquons une méthode développée dans [114, 105] et utilisée dans
[138] à la logique modale de raffinement et à la logique des bi-treillis développée dans [97].

Expressivité et bisimulation

Le sujet des chapitres 5 et 6 de cette dissertation est de trouver une notion adéquate de bisimulation
pour les logiques modales faiblement expressives.

Bisimulation de Kripke et expressivité de la logique modale de base

Les langages modaux sont utilisés pour exprimer les propriétés des modèles. Différents langages
modaux qui sont interprétés sur la même classe de modèles peuvent différer dans leur puissance
expressive. L’expressivité est une mesure du pouvoir qu’a un langage modal de distinguer différents
modèles. Donnons un exemple qui est emprunté à [26] avec de légères modifications. Considérez
les modèles montrés ci-dessous.

vii



w

M

v w1

M′

Le modèleM′ est réflexif, alors que le modèleM n’est pas réflexif, et comme la réflexivité peut
être exprimée comme une formule de premier ordre [25], cela signifie que les modèlesM etM′ se
distinguent par une formule de premier ordre. Cependant, il n’y a pas de formule dans le langage
modal de base qui puisse distinguer M et M′, c’est-à-dire qu’ils sont modalement équivalent.
Concernant cet exemple, on peut se demander pourquoi ces modèles sont indistingables ? Ou plus
généralement, on peut se demander quand deux modèles distincts sont modalement équivalents.
Un outil standard utilisé pour répondre à ces questions sont les bisimulations [17]. Il est bien
connu que les formules modales sont invariantes par des bisimulations, ce qui signifie que si deux
états dans un modèle de Kripke sont bisimilaires (c’est-à-dire liés par une bisimulation), alors ils
sont modalement équivalents. L’inverse est généralement faux (voir, par exemple, [25, Exemple
2.23]), mais c’est cependant vrai sur la classe des modèles Kripke à image-finis. Ce résultat est
appelé le théorème de Hennessy-Milner pour la logique modale de base [93].

Un autre lien important entre la bisimulation et l’expressivité de la logique modale a été établi
par le théorème de caractérisation de Van Benthem [17]. Ce théorème dit que toute propriété
invariante par bisimulation sur les modèles de Kripke qui peut être définie dans la logique du
premier ordre, est également définissable dans la logique modale de base.

Logiques modales faiblement expressives

Nous disons qu’un langage modal est faiblement expressif, si tout ce que nous pouvons dire dans
ce langage peut s’exprimer dans la logique modale de base, mais pas vice versa. Un exemple
d’un tel langage modal est donné par la logique de contingence [62] dans laquelle les modalités
désignent la (non) contingence des propositions. Une proposition est non-contingente si elle est
nécessairement vraie ou nécessairement fausse, sinon elle est contingente. Dans un contexte
épistémique, “la proposition est non-contingente” devient “l’agent sait si la proposition est vraie” et
“la proposition est contingente” devient “l’agent est incertain si la proposition est vraie”. La notion
de “savoir si” peut être exprimée en termes de “savoir cela”: un agent sait si une proposition est
vraie, si il sait qu’elle est vraie ou si il sait qu’elle est fausse. Aussi, “savoir que” peut être exprimé
comme “savoir si”: un agent sait qu’une proposition est vraie, si la proposition est vraie et qu’il
sait si la proposition est vraie. Cependant, en l’absence de la propriété de la connaissance que les
propositions connues sont vraies, la notion de nécessité (sachant que) ne peut pas nécessairement
être définie en termes de la notion de non-contingence (savoir si). La logique de contingence
est donc moins expressive que la logique modale de base. Deux sémantiques différentes sont
proposées pour la logique de contingence, l’une basée sur les modèles de Kripke [62, 63], et l’autre
basée sur les modèles de voisinages [61]. Ce dernier est motivé par le fait que la non-contingence
en tant qu’opérateur modal n’est pas monotone, et donc la logique de contingence n’est pas une
logique modale normale. Les modèles de voisinages [37, 121] sont une généralisation des modèles
de Kripke, et ils sont devenus l’outil sémantique standard pour raisonner sur les logiques modales
non normales.
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Énoncé du problème Comme mentionné ci-dessus, le théorème de Hennessy-Milner et le
théorème de caractérisation de Van Benthem montrent que la bisimilarité de Kripke correspond
au pouvoir expressif du langage modal de base sur les modèles de Kripke. Ces résultats ont été
généralisés aux modèles de voisinages et à la bisimilarité de voisinages dans [89]. Cependant,
pour des logiques faiblement expressives, telles que la logique de contingence, les notions de
bisimilarité de Kripke et de bisimilarité de voisinages sont trop fortes, ce qui signifie que deux
états qui satisfont les mêmes formules peuvent ne pas être Kripke/voisinage bisimilaires. Pour
remédier à cette situation pour la logique de contingence, Fan et al. [62] proposent une notion
de bisimulation de contingence sur des modèles de Kripke, et ils montrent un théorème de
Hennessy-Milner et un théorème de caractérisation. Cependant, leur définition est trouvée de
manière ad hoc, et il n’est pas clair comment généraliser les bisimulations de contingence aux
modèles de voisinages. Les questions suivantes se posent donc: Quelle est la bonne notion de
bisimulation de contingence de voisinages? Et plus généralement, avec une logique faiblement
expressive, peut-on systématiquement définir une notion de bisimulation?

Méthodologie et travail existant Pour aborder les questions ci-dessus, nous passons à un
niveau d’abstraction plus élevé et utilisons les coalgèbres et les logiques coalgébriques Les coalgèbres
[141] peuvent être vues comme une abstraction de systèmes basés sur l’état tels que les systèmes de
transitions étiquetés, les cadres de Kripke et les structures de voisinage [82]. Informellement, une
coalgebra est un ensemble de mondes avec une carte de transition dont le type est paramétrique
dans le choix du foncteur. La théorie des coalgebres est étroitement liée à la logique modale de
deux manières: Premièrement, les modèles de logique modale tels que les cadres de Kripke et
les structures de voisinage peuvent être représentés comme des coalgebres. Ainsi, les coalgebras
généralisent les modèles traditionnels de la logique modale. Deuxièmement, il est montré que la
logique modale est un outil adéquat pour raisonner sur les coalgebres, dans le même sens que la
logique équationnelle est la logique de base des algèbres [104]. En effet, les chercheurs ont introduit
une théorie générale connue sous le nom de logique modale coalgebrique [124, 131, 132] comme
cadre général dans quelles logiques modales pour différents types de structures peuvent être
développées dans un cadre uniforme. La logique modale coalgebrique développée par Pattinson
dans [131] utilise ce que l’on appelle des élévations de prédicats pour définir un langage modal.
Informellement, une levée de prédicat peut être vue comme une généralisation des modalités de
nécessité (possibilité) de la logique modale de base. Logique modale Coalgebraic est livré avec des
méthodes génériques et outils pour prouver la solidité et l’exhaustivité [131, 145], la décidabilité
[144], l’expressivité [132, 143], et développer la théorie de la correspondance [111]. Notre
motivation à utiliser un cadre coalgebraic est double. Premièrement, en raison de la paramétricité
du type mentionnée ci-dessus, la houille bitumineuse permet de développer des définitions et
des résultats uniformes pour différents types de structures. Ces résultats peuvent ensuite être
instanciés pour des classes de structures concrètes et leurs logiques modales. Deuxièmement,
la théorie des coalgebras s’accompagne de notions générales d’équivalence entre états, à savoir
les bisimulations coalgebriques [1, 141] et l’équivalence comportementale [104], ainsi que les
résultats généraux sur l’invariance de bisimulation et expressivité [132, 143].

La logique modale coalgebrique, telle qu’elle est consideree dans [131], est invariante par
une equivalence de comportement, mais l’inverse ne tient pas en general. Pattinson dans
[132] a proposé une condition sur les élévations de prédicats sous laquelle la logique modale
binébrique est expressive, signifiant que si deux états satisfont les mêmes formules, alors ils sont
comportementaux équivalents. Le travail existant dans la logique modale coalgebrique s’est
concentré sur l’identification des conditions qui assurent qu’un langage modal est expressif. Le but
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de cette thèse est de changer les choses et commencer à partir d’un faible expressive coalgebraic
logique modale, et trouver une notion de bisimulation qui correspond à son expressivité. Nos
résultats donc aussi contribuer à la théorie générale de modal coalgebrique logique.

Organisation et contributions

Nous concluons l’introduction en donnant un aperçu des chapitres de cette thèse, leur thèmes de
recherche et un bref énoncé de leurs contributions.

Dans le Chapitre 2, nous étudions l’influence des connaissances sur le vote stratégique. Nous
introduisons une logique pour formaliser la manipulation des procédures de vote dans le cadre
d’une connaissance incomplète. Les principaux résultats présentés dans ce chapitre sont: (i)
l’introduction d’une logique modale de la connaissance qui tienne compte de l’incertitude d’un
électeur concernant les préférences des autres électeurs; (ii) Cela permet de modéliser des scénarios
dans lesquels tous les électeurs ont les mêmes préférences, mais peuvent avoir une incertitude
différente quant aux préférences des autres électeurs.

Dans le Chapitre 3, nous introduisons une sémantique algébrique pour la logique modale
d’action de raffinement. La logique du modèle d’action de raffinement est une extension de la
logique du modèle d’action avec des quantificateurs de raffinement. Notre contribution principale
est que nous montrons que la logique modale de l’action de raffinement est correcte et complète
par rapport à cette sémantique algébrique. Ce chapitre est intéressant car il s’agit d’une première
étape vers le développement de contreparties non-classiques de la logique modale de raffinement.

Dans le Chapitre 4, nous introduisons une logique épistémique dynamique pour raisonner
sur le changement d’information en présence d’informations incompatibles et incomplètes. La
logique que nous présentons dans ce chapitre est une extension de la logique du mode bilattice à
quatre valeurs avec des modalités dynamiques. La contribution principale de ce chapitre est une
axiomatisation correcte et complète. Ce chapitre contourne les cadres de la logique épistémique
dynamique et des logiques modales à plusieurs valeur. Il ouvre la voie à l’étude des fondements
mathématiques de la dynamique de la connaissance dans des contextes non-classiques.

Dans le Chapitre 5, nous introduisons la notion de bisimulation pour la logique modale
contingence interprété par rapport aux structures des voisinages. La logique de contingence est
une extension de la logique propositionnelle avec des modalités de non-contingence. La modalité
de contingence peut s’exprimer en fonction de la modalité de nécessité, mais pas l’inverse. Cela
rend la logique de contingence moins expressive que la logique modale de base, à la fois sur les
modèles Kripke et les modèles des voisinages. Par conséquent, les notions standard de Kripke et
de bisimulation des voisinages sont trop fortes pour la logique de contingence. Nous proposons
une notion de bisimulation de contingence de voisinage qui correspond à l’expressivité de la
logique de contingence. Nos principales contributions dans ce chapitre sont: (i) un théorème de
Hennessy-Milner pour la bisimulation de contingence de voisinage; (ii) une caractérisation de la
logique de contingence sur les modèles de voisinages comme le fragment invariant de bisimulation
de la logique de premier ordre et de la logique modale; (iii) montrant que la logique de contingence
possède la propriété d’interpolation Craig.

Dans le Chapitre 6, nous généralisons la notion de bisimulation développée dans le chapitre
précédent dans le cadre de la logique modale coalgébrique. Nous introduisons une notion de Λ
-bisimulation pour des logiques modales faiblement expressives et étudions ses propriétés. Le
principal résultat technique de ce chapitre est que nous prouvons un théorème Hennessy-Milner
pour Λ-bisimulations.
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Abstract

In the present Ph.D. dissertation we investigate reasoning about information change in
the presence of incomplete or inconsistent information, and the characterization of notions of
bisimulation on models encoding such reasoning patterns. Modal logics for incomplete and
inconsistent information are typically weaker than the standard modal logics, such as the modal
logic of contingency. We use logical, algebraic and co-algebraic methods to achieve our aims. The
dissertation consists of two main parts. The first part focusses on reasoning about information
change, and the second part focusses on expressivity and bisimulation. In the following, we give
an overview of the contents of this dissertation.

In Chapter 1, we give an introduction to the main topics of the thesis.
Chapter 2 studies the influence of knowledge on strategic voting. We introduce a logical

framework to study manipulation of voting procedure under incomplete knowledge. The fact
that voters may or may not know each other’s preferences will affect their ability to manipulate.
Our main contributions in this chapter are: (i) the introduction of a modal logic of knowledge to
account for a voter’s uncertainty about other voters’ preferences; (ii) addressing the question of
how a reduction in uncertainty may affect manipulation. The main merit of these contributions is
that they enable us to model higher-order knowledge. For example, we can model that voter 1 is
uncertain about voter 2’s preferences, and voter 1 knows that voter 3 knows voter 2’s preferences.
This makes it possible to model scenarios wherein all voters have the same preferences, but may
have different uncertainty about the preferences of other voters. In Chapter 3, we introduce
an algebraic semantics for refinement action modal logic. Refinement action model logic is an
extension of action model logic with refinement quantifiers. Our main contribution is that we
show that refinement action modal logic is sound and complete with respect to this algebraic
semantics. This work is of interest as it a first step towards developing non-classical counterparts
of refinement modal logic.

In Chapter 4, we develop dynamic epistemic logic for reasoning about information change in
the presence of inconsistent and incomplete information. The logic we introduce in this chapter
is an extension of the four-valued bilattice modal logic with dynamic modalities. The main
contribution of this chapter is a sound and complete axiomatisation. This work bridges the
frameworks of dynamic epistemic logic and many-valued modal logics. It paves the way to study
the mathematical foundations of dynamics of knowledge in non-classical settings.

In Chapter 5, we introduce the notion of bisimulation for contingency logic interpreted
over neighbourhood models. Contingency logic is an extension of propositional logic with
(non-)contingency modalities. The contingency modality can be expressed in terms of the
necessity modality, but not the other way around. This makes contingency logic less expressive
than basic modal logic, both over Kripke models and neighbourhood models. Hence, the standard
notions of Kripke and neighbourhood bisimulation are too strong for contingency logic. We propose
a notion of neighbourhood contingency bisimulation that fits the expressivity of contingency logic.
Our main contributions in this chapter are: (i) a Hennessy-Milner theorem for neighbourhood
contingency bisimulation; (ii) a characterisation of contingency logic over neighbourhood models
as the bisimulation invariant fragment of first-order logic and of modal logic; (iii) showing that
contingency logic has the Craig interpolation property.

In Chapter 6, we generalise the notion of bisimulation developed in the previous chapter to
the framework of coalgebraic modal logic. We introduce a notion of Λ-bisimulation for weakly
expressive coalgebraic modal logics, and study its properties. The main technical result of this
chapter is that we prove a Hennessy-Milner theorem for Λ-bisimulations.
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1
Introduction

“What one knows is not as much as what
one does not know. There is a great
variety of things.”

Ko Huang

In this Ph.D. dissertation we investigate reasoning about information change in the presence
of incomplete or inconsistent information, and the characterisation of notions of bisimulation
on models encoding such reasoning patterns. Modal logics for incomplete and inconsistent
information are typically weaker than the standard modal logics, such as the modal logic of
contingency. We use both logical, algebraic and co-algebraic methods to achieve our aims. The
dissertation consists of two main parts. The first part focusses on reasoning about information
change, and the second part focusses on expressivity and bisimulation.

1.1 Reasoning about information change

The topic of Chapters 3, 4 and 5 of the dissertation is the study of reasoning about information
change in the presence of incomplete or inconsistent information.

1.1.1 Static information: incompleteness

Information plays a vital role in our lives. We frequently acquire information from the internet,
social media, books, and experts to make decisions and do our daily activities. Despite the
broad access to various information sources, we often find ourselves in situations where we have
incomplete information to make decisions. Incomplete information arises from, e.g., insufficient
observations, inaccurate measurement, and missing data. In daily conversations, the mention of
uncertainty, vagueness, or the unknown reflects one’s incomplete information about a situation.
In this dissertation, we work with two forms of incomplete information: uncertainty and missing
information. Let us provide some detailed examples such that it becomes clear what we mean by
uncertainty and missing information.
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Chapter 1. Introduction

Example 1.1.1 Our first example is borrowed from [50]. Consider two players, Anne and Bill,
and a deck consisting of three different cards: Hearts, Spades and Clubs. Each player draws a card
and looks only at her/his own card. Suppose Anne holds Hearts, Bill holds Spades, and Clubs is
put facedown on the table. Then, Anne does not know that Bill holds Spades and does not know
that Clubs is on the table. However, she considers it possible that Bill has Spades. Similarly, Bill
is uncertain whether Anne holds Hearts or Clubs. In other words, Anne and Bill are uncertain
about the actual deal of the cards. This uncertainty is a kind of incomplete information. a

Example 1.1.2 Cathy and her boss Amy organise a workshop on “Reasoning under uncertainty”.
Amy sent an email to Cathy and asked her to go and check whether the conference room is
available on the planned date of the workshop. However, Cathy, due to her busy schedule, forgot
to check the availability of the room. After a week, Amy stops by Cathy’s office and asks her:
“Do you know if the conference room is available for the workshop?”. Unfortunately, to her own
embarrassment, Cathy must admit to her boss that she forgot the email and she does not know if
the room is available. In other words, she has uncertainty about the availability of the conference
room on the planned date of the workshop. a

In the above examples, the incomplete information takes the form of uncertainty, in which the
actual state of affairs is completely determined but we know the possibilities. Let us continue
with more examples.

Example 1.1.3 Assume Alice has decided to plant tulips in her garden. She goes to the store
and buys a box of tulip bulbs. When she arrives home, she notices that the label of the box is
missing. Thus, she does not know what the colour of the tulips is, and she even does not know
whether they are tulip bulbs. Hence, Alice is missing information about the colour and the type
of the bulbs and she cannot find out until they grow and are in bloom.

Example 1.1.4 A company opens a new position for a web designer and makes a database
consisting of applicants’ names, ages, and degrees. This is a fragment of this database:

Name Age Degree
Steve Cooper M.Sc.
Mary Lane 27 M.Sc.
John Green 25 B.Sc.

The source responsible providing information to the database may fail to give values for some
attributes of the data. E.g., in the table, we see that the value of the ‘age’ attribute for the record
relating to Steve Cooper is missing. The selection committee only considers applicants who are at
most 28 years old. So, they query the database to list all applicants who are at most 28. When
the database answers this query, the name of Steve Cooper is not in the list, because there is no
evidence on his age. So, the selection committee does not consider his application. a

The incomplete information in Examples 1.1.3 and 1.1.4 takes the form of missing information.
The next example illustrates the role of uncertainty in voting theory.

Example 1.1.5 Three friends Leila, Mona, and Sunil want to see a movie on Saturday night.
The theatre shows Wonder Woman, Life, and Logan. Their preferences are (most preferred is on
top):
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Leila Mona Sunil
Wonder Woman Wonder Woman Life

Life Life Logan
Logan Logan Wonder Woman

However, there is an additional complication: Leila is uncertain about Mona’s movie preferences
and also considers it possible that Mona prefers Logan over Life, and Life over Wonder Woman.
They will now vote on which movie they will go to. Casting a vote means declaring an entire
preference. The voting rule is as follows: if there is a majority for a most preferred movie, then
that movie wins, otherwise (if the votes are tied) Logan wins. Sunil casts his vote first and
declares his true preference (this vote can no longer be changed). Now Leila and Mona have to
cast their votes simultaneously. What should Mona do? If Leila and Mona both declare their
true preference, Wonder Woman wins and they are both happy. However, Leila also considers it
possible that Logan is Mona’s preferred movie. If that is so, and they both declare their true
preference, the votes are tied and Logan wins, Leila’s least preferred movie. Leila wants to avoid
the possibility of that unpleasant outcome, and therefore she decides to declare: I prefer Life over
Wonder Woman and Wonder Woman over Logan. Now Life wins. This is better for Leila than
the outcome Logan. Unfortunately, Mona does not really prefer Logan over Wonder Woman, but
has the same preference as Leila. In this case, Leila’s alternative vote makes Life win, which is a
worse outcome for her than if she had voted according to her real preference: the uncertainty
spoils her vote! a

In the above example, Leila did not cast her sincere vote, instead she voted for Life as a way
of obtaining a more preferable outcome than what she would have expected by voting sincerely.
In the theory of voting, such a vote is called a manipulation [38, 32]. The above example shows
that whether voters know eachother’s preferences over the candidates may effect the outcome.

1.1.2 Static information: inconsistency

As we mentioned early on, we obtain our information from multiple sources. The information
that we obtain from these sources may be inconsistent.

Example 1.1.6 Consider a robot that has been designed to find its way out of a maze. The
robot has two sensors that help it to move along a flat surface in a free direction, without obstacles.
Assume a situation in which one of the sensors detects an obstacle and the other one detects
nothing. In other words, the robot has to cope with contradictory information about which it
should reason in order to determine in which direction it should move. a

Example 1.1.7 Reconsider Example 1.1.4. The following tables now represent the information
of the applicants that has been provided by two different sources.

Name Age Degree Name Age Degree
Steve Cooper 26 M.Sc. Steve Cooper 26 M.Sc.
Mary Lane 27 M.Sc. Mary Lane 27 Ph.D.
John Green 25 B.Sc. John Green 25 B.Sc.

The two sources give inconsistent information on the degree of Mary Lane. The statement “Mary
Lane has a Ph.D. degree” is both true and false, because there is an evidence (Source 2) that she
has a Ph.D. and there also is an evidence (Source 1) that she does not have a Ph.D. a
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As the examples illustrate, uncertainty and inconsistency are common features of information. In
this dissertation, we are interested in reasoning about information and analysing the situations
in which such information is provided. The examples we presented so far describe situations
that can be analysed easily. For instance, in Example 1.1.1, one can easily figure out what Anne
knows, or about what Bill is uncertain. However, the situations can be more complex. For
example, in Example 1.1.1 there might be more than two players and in Example 1.1.6 there
might be more than one robot. Then, reasoning about information can become intricate and
demand more careful formal analysis. We use logic for such an analysis. We briefly review the
existing work on logics for reasoning about knowledge on which this dissertation builds. We
discuss two approaches, one based on classical (two-valued) logic, and one based on four-valued
logic. In the following, we define knowledge as true information and consider it relative to an
agent (human-being, computer) who has a certain perspective on the world.

Formal logical analysis of reasoning about knowledge goes back to Von Wright [155] and the
seminal work by Hintikka [94], who introduced a variant of modal logic as a formal account of
knowledge. Hintikka provided a semantic interpretation of the modal logic of knowledge in terms
of a Kripke-style possible worlds semantics [36, 101, 25]. The idea behind this approach is that an
agent’s knowledge can be characterised as a set of worlds that she considers to be indistinguishable.
The indistinguishable worlds are called the possible worlds. An agent knows that something is
the case if and only if it is the case in all the worlds that the agent considers possible [49]. This
approach provides a natural way to model uncertainty of the agents: an agent is uncertain about
something if and only if it is the case in some worlds that the agent considers possible and it is
not the case in some worlds that the agent considers possible. For instance, in Example 1.1.5, one
can model Leila’s uncertainty about Mona’s preferences as follows. Leila considers two possible
worlds: in one world Mona prefers Wonder Woman over Life, and Life over Logan, and in the
other world she prefers Logan over Life, and Life over Wonder Woman. The possible worlds
semantics of knowledge provides an intuitive and mathematically elegant way of representing and
reasoning about knowledge. However, it has some defects that are important from our perspective:
(i) agents are logical omniscient [154], that is, an agent knows all logical consequences of her
knowledge; (ii) agents cannot hold contradictory information without knowing everything because
from a contradiction everything can be inferred. These features are not realistic and not desirable
when modelling resource-bounded agents [55]. Resource bounded agents are limited in deductive
power, duration of reasoning, and memory.

An alternative logic that allows agents to hold inconsistent knowledge without knowing
everything is the bilattice logic of Arieli and Avron [5], which itself is based on Belnap’s four-
valued logic [15, 16]. In bilattice logic, propositions can have, besides the truth values true and
false, two more values, namely: (i) both true and false for handling inconsistency- this corresponds
to the situation where several sources assign a different truth value to a sentence, and (ii) neither
true nor false, for lack of information. It is interesting to note that the value both true and false in
Belnap’s logic can be traced back to Łukasiewicz’s proposal [113] to address the future contingent
problem in Aristotelian logic, which says that the truth of future events cannot be determined
in the present unless we have complete information about future [51]. By adding modalities to
Arieli and Avron’s logic one can reason about different notions such as knowledge, belief, and
time. Jung and Rivieccio [98] developed such an expansion of the bilattice logic of [5].

The approaches we mentioned so far only describe states of information and do not model
information change. In the next section, we will discuss dynamics of knowledge.
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1.1.3 Dynamics of information

An agent’s knowledge may change in response to informative events. The following examples
illustrate that actions may lead to knowledge change.

Example 1.1.8 Reconsider Example 1.1.1 and assume Anne tricks Bill and peeps at the card
that is on the table, without Bill noticing it. In that case, Anne comes to know what the
distribution of cards is, while Bill does not know that Anne knows the cards. In another scenario,
suppose Anne walks towards the table, picks up the facedown card and looks at it without showing
it to Bill, but he notices that Anne is looking at the card on the table. Similar to the previous
scenario, Anne comes to know what the actual deal of the cards is, and Bill still does not know
the distribution of the cards. The difference between these two scenarios lies in what Bill knows
about Anne’s knowledge about the cards. In the first scenario, Bill does not know that Anne
knows the deal of the cards, while in the second scenario, Bill knows that Anne knows the deal of
the cards, although he remains uncertain about the distribution of the cards himself. a

Example 1.1.9 Reconsider Example 1.1.5, and assume Mona, who always speaks the truth,
tells Leila “I prefer Wonder Woman over the other two movies, and you do not know that.” As
a result, Leila now knows that Wonder Woman is their favourite movie, and she is no longer
ignorant about this fact. Consequently, she no longer has an incentive to manipulate the vote as
her favourite movie will be selected if she votes sincerely. a

There are two points in the above example that we would like to highlight. Firstly, Leila’s
state of information has changed due to an announcement that has been made by Mona. This
announcement reduces Leila’s uncertainty and accordingly has impact on her desire to manipulate.
Announcements [135] are a relatively simple kind of actions that provide agents with new
information that may resolve an agent’s ignorance about a situation. Secondly, Mona has
announced something that becomes false after the announcement. Before the announcement,
Leila did not know Mona’s preferences, but now that she knows, the statement is not true anymore.
Motivated by these points, one of the objectives of the dissertation is to study knowledge-theoretic
aspects of voting and manipulation, with dynamic epistemic logic.

Dynamic epistemic logic (DEL) [49, 11] is a family of logics for reasoning about change of
knowledge. They expand the modal logic of knowledge with dynamic operators. One of the
questions that is of interest in DEL is: how knowledge can be made known to an agent? This
question falls under the topic “quantifying over information change” [45, 46, 86, 84, 31]. One logic
that studies quantifying over information change is called refinement modal logic. Refinement
modal logic (RML), introduced by Bozzelli et al. [31], is an extension of modal logic with operators
that quantify over all the refinements of a model. A refinement intuitively corresponds to the
result of an action that may change the agents’ states of knowledge.

DEL is a well suited framework to describe the dynamics of knowledge, although as mentioned
in Section 1.1.1, a downside to this approach is that it does not account for situations where agents
have to cope with inconsistent knowledge (Examples 1.1.6, 1.1.7) or incomplete information (1.1.4).
These situations are better analysed with non-classical logics such as four-valued logic. It raises
the following research question: (i) how to formalise information change and quantifying over
information change in the presence of incomplete and inconsistent information? Our methodology
to answer this question is the duality theory in particular we apply the methods of [114, 105, 138]
to refinement modal logic and the four-valued modal logic developed in [97].
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1.2 Expressivity and bisimulation

The topic of Chapters 5 and 6 of this dissertation is finding an adequate notion of bisimulation
for weakly expressive modal logics.

1.2.1 Kripke bisimulation and expressivity of basic modal logic

Modal languages are used to express properties of models. Different modal languages that are
interpreted over the same class of models may differ in their expressive power. Expressivity is
a measure of the power that a modal language has in distinguishing between different models.
Let us provide an example which is borrowed from [26] with slight changes. Consider the models
shown below.

w

M

v w1

M′

The modelM′ is reflexive, while the modelM is not reflexive, and as reflexivity can be expressed
as a first-order formula [25], it means that the modelsM andM′ are distinguished by a first-
order formula. However, M and M′ satisfy the same formulas in the basic modal language,
i.e., they are modally equivalent. Concerning this example, one may ask why these models
are modally indistinguishable? Or more generally, one may ask when are two distinct models
modally equivalent. A standard tool used to answer these questions is bisimulations [17]. It
is well known that modal formulas are invariant under bisimulations, which means that if two
states in a Kripke model are bisimilar (i.e., related by a bisimulation), then they are modally
equivalent. The converse fails in general (see, e.g., [25, Example 2.23]), but it holds over the class
of image-finite Kripke models. This result is referred to as the Hennessy-Milner Theorem for basic
modal logic [93].

Another important link between bisimulation and expressivity of modal logic was established
by Van Benthem’s characterisation theorem [17]. This theorem says that every bisimulation
invariant property of Kripke models that can be defined in first-order logic, is also definable in
basic modal logic.

1.2.2 Weakly expressive modal logics

Modal languages differ in their power to express properties of the models they are interpreted in.
We say that a modal language is weakly expressive, if everything that we can say in this language
can be expressed in basic modal logic, but not vice versa. An example of such a modal language is
given by contingency logic [62] in which modalities denote (non-)contingency of propositions.. A
proposition is non-contingent if it is necessarily true or necessarily false, otherwise it is contingent.
In an epistemic setting, “the proposition is non-contingent” becomes “the agent knows whether the
proposition is true” and “the proposition is contingent” becomes “the agent is uncertain whether
the proposition is true”. The notion of “knowing whether” can be expressed in terms of “knowing
that”: an agent knows whether a proposition is true, if she knows that it is true or if she knows
that it is false. Also, “knowing that” can be expressed as “knowing whether”: an agent knows
that a proposition is true, if the proposition is true and she knows whether the proposition is
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true. However, in the absence of the property of knowledge that known propositions are true,
the notion of necessity (knowing that) can not necessarily be defined in terms of the notion of
non-contingency (knowing whether). Contingency logic is thus less expressive than basic modal
logic. Two different semantics are proposed for contingency logic, one based on Kripke models
[62, 63], and the other one based on neighbourhood models [61]. The latter is motivated by the fact
that non-contingency as a modal operator is not monotonic, and therefore contingency logic is
not a normal modal logic. Neighbourhood models [37, 121] are a generalisation of Kripke models,
and they have become the standard semantic tool for reasoning about non-normal modal logics.

Problem statement As mentioned above, the Hennessy-Milner theorem and Van Benthem’s
characterisation theorem show that Kripke bisimilarity matches the expressive power of the basic
modal language over Kripke models. These results have been generalised to neighbourhood
models and neighbourhood bisimilarity in [89]. However, for weakly expressive logics, such as
contingency logic, the notions of Kripke bisimilarity and neighbourhood bisimilarity are too strong,
meaning that two states that satisfy the same formulas may fail to be Kripke/neighbourhood
bisimilar. To remedy this situation for contingency logic, Fan et al. [62] propose a notion of
contingency bisimulation over Kripke models, and they show a Hennessy-Milner theorem and
a characterisation theorem. However, their definition is found in an ad hoc manner, and it is
not clear how to generalise contingency bisimulations to neighbourhood models. The following
questions therefore arise: What is the right notion of neighbourhood contingency bisimulation?
And more generally, given a weakly expressive logic, can we systematically define a matching
notion of bisimulation?

Methodology and existing work To approach the above questions, we move to a higher level
of abstraction and use the framework of coalgebra and coalgebraic modal logic. Coalgebras [141]
can be viewed as an abstraction of state-based systems such as labelled transitions systems,
Kripke frames, and neighbourhood structures [82]. Informally, a coalgebra is a set of worlds
together with a transition map the type of which is parametric in the choice of functor. The
theory of coalgebras is closely related to modal logic in two ways: Firstly, models of modal logic
such as Kripke frames and neighbourhood structures can be represented as coalgebras. Hence,
coalgebras generalise the traditional models of modal logic. Secondly, it is shown that modal
logic is an adequate tool for reasoning about coalgebras, in the same sense that equational logic
is the basic logic of algebras [104]. Indeed, researchers introduced a general theory known as
coalgebraic modal logic [124, 131, 132] as a general framework in which modal logics for different
types of structures can be developed in a uniform setting. The coalgebraic modal logic developed
by Pattinson in [131] uses so-called predicate liftings to define a modal language. Informally, a
predicate lifting can be seen as a generalisation of the necessity (possibility) modalities of basic
modal logic. Coalgebraic modal logic comes with general methods and tools to prove soundness
and completeness [131, 145], decidability [144], expressivity [132, 143], and develop correspondence
theory [111].

Our motivation to use a coalgebraic framework is twofold. First, due to the above-mentioned
parametricity in type, coalgebra allows for definitions and results to be developed uniformly
for different types of structures. These results can then be instantiated for concrete classes
of structures and their modal logics. Second, the theory of coalgebras comes with general
notions of equivalence between states, namely, coalgebraic bisimulations [1, 141] and behavioural
equivalence [104], as well as general results on bisimulation invariance and expressivity [132, 143].

Coalgebraic modal logic, as considered in [131], is invariant under behaviourally equivalence,
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however the converse does not hold in general. Pattinson in [132] proposed a condition on
predicate liftings under which coalgebraic modal logic is expressive, meaning that if two states
satisfy the same formulas, then they are behaviourally equivalent. Existing work in coalgebraic
modal logic has focused on identifying conditions that ensure a modal language is expressive.
The aim in this thesis is to turn things around and start from a weakly expressive coalgebraic
modal logic, and find a notion of bisimulation that matches its expressivity. Our results therefore
also contribute to the general theory of coalgebraic modal logic.

1.3 Organisation and contributions

We conclude the introduction by giving an overview of the chapters of this dissertation, their
research themes, and a brief statement of their contributions.

Chapter 2 provides a novel framework for discussing manipulation under incomplete knowledge.
Our main contributions in this chapter are: (i) the introduction of a modal logic of knowledge to
account for a voter’s uncertainty about other voters’ preferences; (ii) addressing the question of
how a reduction in uncertainty may affect manipulation. The main merit of these contributions is
that they enable us to model higher-order knowledge. For example, we can model that voter 1 is
uncertain about voter 2’s preferences, and voter 1 knows that voter 3 knows voter 2’s preferences.
This makes it possible to model scenarios wherein all voters have the same preferences, but may
have different uncertainty about the preferences of other voters.

Chapter 3 introduces an algebraic semantics for refinement action modal logic by following
the methods presented in [114, 105]. Our main contribution is that we show that refinement
action modal logic is sound and complete with respect to this algebraic semantics. This work is
of interest as it is a first step towards developing non-classical counterparts of refinement modal
logic.

Chapter 4 presents a dynamic epistemic logic for reasoning about information change in the
presence of inconsistent and incomplete information. The logic we introduce in this chapter is an
extension of the four-valued modal logic of [98] with dynamic modalities. The main contribution
of this chapter is that we propose a sound and complete axiomatisation. This work bridges the
frameworks of dynamic epistemic logic and many-valued modal logics [66, 98, 28]. It paves the
way to study the mathematical foundations of dynamics of knowledge in non-classical settings.

Chapter 5 introduces the notion of neighbourhood contingency bisimulation for contingency
logic interpreted over neighbourhood models. Our main contributions in this chapter are: (i) a
Hennessy-Milner theorem for neighbourhood contingency bisimulation; (ii) characterisation of
contingency logic over neighbourhood models as the bisimulation invariant fragment of first-order
logic and of basic modal logic; (iii) showing that contingency logic has the Craig interpolation
property.

Chapter 6 studies the notion of bisimulation developed in the previous chapter in the framework
of coalgebraic modal logic. We introduce a notion of Λ-bisimulation for weakly expressive
coalgebraic modal logics. The main technical result of this chapter is that we prove a Hennessy-
Milner theorem for Λ-bisimulations.
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1.4 Origin of materials

• Chapter 2 is based on:
Zeinab Bakhtiari, Hans van Ditmarsch, and Abdallah Saffidine. How does uncertainty about
other voters determine a strategic vote (2017). Under review.

• Chapter 3 is based on:
Zeinab Bakhtiari, Hans van Ditmarsch, and Sabine Frittella. Algebraic Semantics of
Refinement Modal Logic. In Lev D. Beklemishev, S. Demri, and A. Maté (eds.), Proceedings
of the 11th Conference on Advances in Modal Logic (AiML 2016), Budapest, Hungary,
August 30 - September 2, 2016. pp. 38–57, College Publications, 2016.

• Chapter 4 is based on two papers, where the latter is an extended version of the former:

• Zeinab Bakhtiari and Umberto Rivieccio. Epistemic Updates on Bilattices. In W. van
der Hoek, W. H. Holliday, and W. Wang (eds.), Proceedings of the 5th International
Workshop, Logic, Rationality and Interaction (LORI 2015), Taipei, Taiwan, October
28-31, 2015. Lecture Notes in Computer Science, volume 9394, pp. 426–428, Springer,
2015.

• Zeinab Bakhtiari, Hans van Ditmarsch, and Umberto Rivieccio. Bilattice Logic of
Epistemic Action and Knowledge (2017). Under review.

• Chapter 5 is based on:
Zeinab Bakhtiari, Hans van Ditmarsch, and Helle Hvid Hansen. Neighbourhood Contingency
Bisimulation. In S. Ghosh and S. Prasad (eds.), Proceedings of the 7th Indian Conference
on Logic and Its Applications - 7th Indian Conference, (ICLA 2017), Kanpur, India, January
5-7, 2017. Lecture Notes in Computer Science, volume 10119, pp. 48–63, Springer, 2017.

• Chapter 6 is based on:
Zeinab Bakhtiari and Helle Hvid Hansen. Bisimulation for Weakly Expressive Coalgebraic
Modal Logics. In F. Bonchi and B. König (eds.), Proceedings of the 7th Conference on
Algebra and Coalgebra in Computer Science (CALCO 2017), Ljubljana, Slovenia, 14-16
June 2017. Leibniz International Proceedings in Informatics (LIPIcs), to appear, 2017.
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2.1 Introduction

A well-known fact in social choice theory is that strategic voting, also known as manipulation,
becomes harder when voters know less about the preferences of other voters. Standard approaches
to manipulation in social choice theory [76, 142] as well as in computational social choice [13]
assume that the manipulating voter knows the true preferences of other voters. Some approaches
[52, 12] assume that voters have a probabilistic prior belief on the outcome of the vote, which
encompasses the case where each voter has a probability distribution over the set of profiles.
Coalitional manipulation was extended in [41] to contexts where manipulators have incomplete
knowledge about the non-manipulators’ votes. In some iterated voting settings, voters have
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incomplete knowledge of the other votes at the next iteration; this is the view taken by [120] and
[119]. Still, we think that the study of strategic voting under complex belief states deserves more
attention, especially when voters are uncertain about the uncertainties of other voters, i.e., when
we model higher-order beliefs of voters.

An extreme case of uncertainty is when a voter is completely ignorant about other voters’
preferences. In that case, if a manipulation under incomplete knowledge is defined in a pessimistic
way, i.e., if it is said to be successful if it succeeds for all possible votes of other voters, voting
rules may well be non-manipulable. For the special case where all other voters are non-strategic
this is shown for most common voting rules in [41].

In this chapter, we model how uncertainty about the preferences of other voters may determine
a strategic vote, and how a reduction in this uncertainty may change a strategic vote. We restrict
ourselves to the case where each voter is uncertain about the number of well-described possible
preference profiles, including the actual profile.

We also investigate the dynamics of uncertainty. The uncertainty reduction may be due to
receiving information on voting intentions in polls or to voters informing other voters of their
preferences. For simplicity we assume that received information is correct, or rather, we only model
the consequences of incorporating new information after the decision to consider the information
reliable. Such informative actions can then be modelled as truthful public announcements [135].
Does this information affect your strategic vote? There is a clear relation here to safe manipulation
[150], where the manipulating voter announces her vote to a (presumably large) set of voters
sharing her preferences but is unsure of how many will follow her.

We briefly survey existing approaches to representing incomplete knowledge about the prefer-
ence of a voter. In the theory of voting, the voters’ preferences over alternatives is modelled as a
linear order [32]. The literature on possible and necessary winners [158, 91] represents incomplete
knowledge about preferences as a collection of partial strict orders (one for each voter), while [91]
formalises it as a collection of probability distributions, or a collection of sets of linear orders (one
for each voter). Whereas the latter is more expressive (some sets of linear orders do not correspond
to the set of extensions of a partial order), the former is more succinct. Ours is a more expressive
modeling than those of [158, 91] because an uncertain profile can be any set of profiles. A set
consisting of the two profiles {a �1 b �1 c, a �2 b �2 c} and {b �1 a �1 c, b �2 a �2 c} expresses
uncertainty (ignorance) about which candidate voters 1 and 2 rank first, but also knowledge
(certainty) that voters 1 and 2 have identical preferences — which is not possible in [91], and
a fortiori also not in works on the possible winner problem [100] and more generally on voting
under incomplete knowledge (see [30] for a survey). Of course, this mode of representation is also
the least succinct of all. However, succinctness and complexity issues play no role in this chapter,
where we focus on modeling and expressivity. Our representation of incomplete knowledge is
independent from assumptions on the probability distribution (and therefore compatible with
any assumption of that kind).

The main novelty of our proposal is that there are scenarios that cannot be seen as uncertainty
between a number of given profiles: it may be that a voter cannot distinguish between two
situations with identical profiles, because in the first case yet another voter has some uncertainty
about the profile, but in the other case not. Such higher-order uncertainty is a common assumption
in multi-agent modal logics, but to our knowledge this has not yet been investigated in voting
theory.

Our investigation is restricted in various ways: (i) we model uncertainty and manipulability
of individuals but not of coalitions, (ii) we model knowledge but not belief, and, in the dynamics,
truthful announcements but not lying, (iii) we model incomplete knowledge (uncertainty) but not
other forms of incompleteness, and (iv) as already said, we have not investigated complexity and
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succinctness issues. The reason for the restrictions (i) and (ii) is expository and not theoretical,
anything we propose can be presented in that more general setting as well. In fact there are
many scenarios in which voters may have incorrect beliefs about others’ preferences, or where
information changing actions are intended to deceive. I may incorrectly believe that you prefer a
over b, whereas you really prefer b over a. I may tell you that I prefer a over b, but I may be lying.
Such scenarios can also be modelled in epistemic logic, with the same tools and techniques as
presented in this chapter. Restriction (iii) is more fundamental. An example is when the number
of voters or candidates may be unknown. This relates to unawareness [57].

A link between epistemic logic and voting has first been given, as far as we know, in [39]—they
use knowledge graphs to indicate that a voter is uncertain about the preferences of another
voter. A more recent approach, within the area known as social software, is [130] which discusses
games with knowledge manipulator agents. The works [41], [120] and [119] walk a middle way
namely where equivalence classes are called information sets, as in treatments of knowledge and
uncertainty in economics, but where the uncertain voter does not take the uncertainty of other
voters into account, the main novelty of our proposal. We will come back on these works in later
sections.

A different line of work, which has lead to a substantial amount of research, dating back to
[64], consists in analyzing strategic voting using game-theoretic models, where actions available
to voters are their votes, and where voters are assumed to have full knowledge of the preferences
of other voters. However, the multiplicity of Nash equilibria makes this analysis difficult as
soon as there are more than a few strategic voters. The case of few voters leads to interesting
findings, such as the recent work by [53] on two-manipulator voting games for the Borda and
k-approval voting rules. In this work too, voters’ preferences are common knowledge. Our work
can also be seen as a generalization of these voting games: we define equilibria for games with
several risk-averse strategic voters, i.e., voters who cast their vote to minimise their worst possible
consequences. We provide scenarios in which given the same profile, the equilibria are different,
because the voters have different knowledge about other voters.

Our setting shares some similarity with robust mechanism design [21], which generalizes
classical mechanism design by weakening the common knowledge assumptions of the environment
among the players and the planner. In [21] uncertainty is modelled with information partitions.
The main technical difference is that in our setting, as in classical social choice theory, preferences
are ordinal, whereas in (robust) mechanism design preferences are numerical payoffs, which
allows for payments (which we don’t). A recent proposal on uncertainty in voting is [119], whose
goals are similar to ours (when do equilibria exist, assume risk aversion) but whose methods are
statistical (there is no higher-order uncertainty).

Organisation of the chapter. In Section 2.2 we recall standard voting terminology. In
Section 2.3 we introduce knowledge profiles as a model for voters’ uncertainty about preferences.
Section 2.4 provides the links between knowledge and manipulation, and studies manipulation
under uncertainty from game theoretical and voting theoretical perspective. In Section 2.5, we
investigate the notion of dominant manipulation. Section 2.6 introduces the notion of equilibria
in the presence of uncertainty, and provides examples to illustrate how we can determine equilibra
when voters have uncertainty about preferences . In Section 2.7 we model actions that change
uncertainty about preferences, such as a voter revealing its voting preferences. We prove that
some forms of manipulation and equilibrium are preserved under such updates and others are not.
Section 2.8 formalises epistemic voting terminology in a simple logic. In Section 2.9 we collect
some conclusions and indicate further directions.

12



2.2. Voting

2.2 Voting

Assume a finite set Ag = {1, . . . , n} of n voters (or agents), and a finite set C = {a, b, c, . . . } of
m candidates (or alternatives). Voter variables are i and j, and candidate variables are x and y
(and x1, x2, ...). We denote by O(C) the set of linear orders on C. A linear order over a set A is a
binary relation which is irreflexive, transitive, complete, and antisymmetric.

Definition 2.2.1 (Vote, profile, voting rule) Elements of O(C) are referred to as votes or
preferences. A (voting) profile for Ag is an element P = (P1, . . . , Pn) of the product O(C)n where
Pi is the vote cast by voter i in P . A (resolute) voting rule is a function F : O(C)n → C from the
set of all profiles for Ag to the set of candidates.

We write �i to denote voter’s i preferences over candidates, where �i∈ O(C). For example, we
write a �i b, if voter i prefers candidate a to candidate b. A vote by voter i which is equal to
her preferences is a sincere vote, otherwise it is called an insincere vote. We write �′i,�′′i , etc.
to denote votes by voter i. Instead of �′i we may explicitly write x1 �′i · · · �′i xn, or depict �′i
vertically in a table. Profile variables are denoted by P, P ′, P ′′, etc. A sincere profile is a (unique)
profile that consists of sincere votes for each voter.

Given a profile P ∈ O(C)n, we define P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn) ∈ O(C)n−1 be a
profile without Pi. Thus we can write P = (P−i, Pi). If P ∈ O(C)n and �′i ∈ O(C), then
P ′ = (P−i,�′i) is the profile in which Pi is substituted by �′i in P .

For every a, b ∈ C, and i ∈ Ag with preference relation �i, we define the binary relation �i as
follows: a �i b iff a �i b or a = b. We say that voter i is indifferent between candidates a and b,
if a �i b and b �i a. Since the true preferences are linear orders, and we assume linear orders are
irreflexive, voters are assumed to not be indifferent between any candidates.

A voting rule F determines which candidate wins the election — F (P ) is the winner. In
case there is more than one tied co-winner we assume an exogeneously specified tie-breaking
mechanism, that is a linear order � over candidates.

Voters cannot be assumed to vote according to their true preferences. The voter may cast an
insincere vote that leads to a better outcome than the sincere vote. Such a vote called a strategic
vote or manipulation.

Throughout the present chapter, we assume the voters are rational; that is, they vote in a
manner to obtain a most preferred outcome. It is often assumed that the rationality of all voters
is common knowledge. We assume the reader is familiar with common voting procedures such as
plurality voting and Borda voting (also called Borda count). For more details on voting rules we
refer to [30, 27].

Definition 2.2.2 (Successful manipulation) Let i ∈ Ag, P ∈ O(C)n with Pi =�i, and �′i∈
O(C). If F (P−i,�′i) �i F (P ), then �′i is a successful manipulation by voter i in profile P . a

The combination of a profile P and a voting rule F defines a strategic game: a player is a
voter, an individual strategy for a player is a vote, a strategy profile (of players) is therefore a
profile in our defined sense (of voters), and the preferences of a player among the outcomes is
according to his (true) preferences: given profiles P ′, P ′′, voter i prefers outcome F (P ′) over
outcome F (P ′′) in the game theoretical sense iff (in the voting sense) F (P ′) �i F (P ′′), where �i
is i’s (true) preferences. Let us note that throughout the present chapter we only consider pure
strategies. The relevant notions of dominance and equilibrium are:
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Definition 2.2.3 (Domination) Let �′i and �′′i be two votes for voter i. Then

1. vote �′i strongly dominates �′′i , if for all P−i ∈ O(C)n−1: F (P−i,�′i) �i F (P−i,�′′i ).

2. vote �′i weakly dominates �′′i , if for all P−i ∈ O(C)n−1: F (P−i,�′i) �i F (P−i,�′′i ), and for
some P−i ∈ O(C)n−1: F (P−i,�′i) �i F (P−i,�′′i ). a

Now we can define dominant manipulation for a voter as a vote that is a manipulation and
dominates all other votes for voter i.

Definition 2.2.4 (Dominant manipulation) Let i ∈ Ag.

• The vote �′i ∈ O(C) is a weakly dominant manipulation for voter i if

1. �′i 6=�i, and
2. for all �′′i ∈ O(C) such that �′′i 6=�′i: �′i weakly dominates �′′i .

• The vote �′i ∈ O(C) is a strongly dominant manipulation for voter i if

1. �′i 6=�i, and
2. for all �′′i ∈ O(C), �′i strongly dominates �′′i . a

A weakly (strongly) dominant manipulation corresponds to the natural notion of weakly
(strongly) dominant strategy in game theory [110]. (Dominant manipulation with respect to a set
of profiles will be discussed in Section 2.5.)

Definition 2.2.5 (Equilibrium profile) A profile P is an equilibrium profile iff no voter has
a successful manipulation in P . a

An equilibrium profile corresponds to a Nash equilibrium (in game theory). An equivalent way of
defining equilibrium profile is: A profile P is an equilibrium profile iff

For all i ∈ Ag, and for all �′i ∈ O(C) : F (P ) �i F (P−i,�′i). (2.1)

We show that the equation (2.1) is equivalent to Definition 2.2.5. Consider the negation of (2.1),
i.e., there is a voter i and some vote �′i ∈ O(C) such that F (P ) ≺i F (P−i,�′i), i.e.,

F (P−i,�′i) �i F (P ). (2.2)

Note that since �i is irreflexive, this implies that �′i 6=�i. Thus, (2.2) is equivalent to saying that
the vote �′i is a successful manipulation for voter i in profile P . In other words, the condition
(2.1) holds iff no voter has a successful manipulation in P .

2.3 Knowledge profiles

We model uncertainty in voting as incomplete knowledge about voters’ preferences. The structures
we use to represent uncertainty and the terminology we use to describe uncertainty that we
introduce in this section, are fairly standard in modal logic [58, 49], but this application to social
choice theory is novel. From a modal logic point of view, the novelty consists in taking models
with profiles instead of valuations of propositional variables, whereas from a social choice theory
point of view, the novelty consists in making a relational structure consisting of profiles a semantic
primitive, instead of (only) a single profile or (only) a set of profiles. There are different ways in
which a profile may correspond to a valuation. This is explained in Section 2.8. In order to allow
for the definition of dominance and of equilibria under uncertainty, we further require that voters
know their own preferences.
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Definition 2.3.1 (Knowledge profile) Let O(C)n be the set of all profiles for a set Ag =
{1, . . . , n} of n voters. A profile model (Kripke model) is a structureM = (S, {∼1, . . . ,∼n}, V ),
where S is a domain of abstract objects called states, ∼i is an indistinguishability relation that is
an equivalence relation for i = 1, . . . , n, and V : S → O(C)n is a profile function that assigns a
profile to each state such that s ∼i t implies V (s)i = V (t)i, i.e., voters know their preferences.
We let [s]∼i denote {t | s ∼i t}, and we let V ([s]∼i) denote {V (t) | s ∼i t}. A knowledge profile
(pointed Kripke model) is a pointed structure (M, s) whereM is a profile model and s is a state
in the domain ofM. a

LetM = (S, {∼1, . . . ,∼n}, V ) be a profile model such that s, t ∈ S. If s ∼i t, and V (s) = P
and V (t) = P ′, then we say voter i is uncertain (ignorant) if the profile is P or P ′. Instead of
saying that “voter i is uncertain if ...” we also say “voter i does not know that ...”. Statements
such as “P is the profile”, “i prefers a over b”, “voter i does not know that... ”, “voter i knows
j’s preferences” and “voter j knows that i knows her preferences” are called propositions about
profiles. In Section 2.8 we present the logic of knowledge and voting formally, with a logical
language instead of natural language, in which we inductively introduce “proposition about profiles”.
However, in the present section by “propositions about profiles” we simply mean the kind of
statements that we mentioned above.

The next definition shows how we can model knowledge and uncertainty in terms of knowledge
profiles.

Definition 2.3.2 (Knowledge and ignorance) Let (M, s) be a knowledge profile, whereM =
(S, {∼1, . . . ,∼n}, V ). Let ϕ be a proposition about profiles. Voter i knows ϕ in (M, s), iff ϕ is
true in all t ∈ S such that s ∼i t. Voter i considers possible that (or does not know that not) ϕ
in (M, s), iff ϕ is true in some t ∈ S such that s ∼i t; if, in that case, there is an additional state
u ∈ S with s ∼i u in which ϕ is false, then we say that i does not know whether (or is uncertain
about, or is ignorant about) ϕ. a

The following Section 2.3.1 will provide examples. It will also demonstrate why profiles are
not sufficient for our knowledge representation and why we need states: different states may be
assigned the same profile, but have different knowledge properties. In scenarios where different
states are always assigned different profiles, we can say that the uncertainty of a voter is (only)
about a collection of profiles. In scenarios where different states are assigned the same profile,
the set V ([s]∼i) of profiles that voter i considers possible is potentially smaller than the set [s]∼i
of states that i considers possible.

In order to explain the interaction between knowledge and preference, very simple settings
with few voters and little uncertainty are sufficient. More realistic voting scenarios for larger
populations of voters that also involve uncertainty, quickly become very complex because of that
additional feature. Our running examples, as in the next section, will therefore be of the first
simple kind.

Partial preferences can not be expressed in our framework. In particular, uncertainty between
a �i b �i c and b �i a �i c does not mean that voter i is indifferent between candidates a and
b. Uncertainty between a �i b �i c and b �i a �i c means that (a �i b �i c or b �i a �i c) is
true. This entails (a �i b or b �i a), which is equivalent to (not (b �i a and a �i b)). That is the
opposite of indifference between a and b, as that means (b �i a and a �i b).

2.3.1 Example

Consider two voters, Leela (1) and Sunil (2), who are the children of Devi, and who ‘vote’
for an animated movie to see tonight before bedtime; where the choice is between a (Alice in
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Wonderland), b (Brave), and c (Cars). Let us be traditional: Alice in Wonderland is a girl’s
movie, Cars is a boy’s movie, and Brave (about a bow-and-arrow wielding girl hero in the Scottish
highlands) is both. Leela’s preferences are a �1 b �1 c and Sunil’s preferences are c �2 b �2 a.
(Mother Devi will feature only later as the tie-breaking mechanism — after all, they must go
to bed at some stage.) Sunil (2), who does not care about traditional gender-based preferences,
is uncertain if Alice in Wonderland is Leela’s top or bottom preference, and if Cars is Leela’s
bottom or top preference. Leela’s (1) uncertainty is of the more interesting kind: she knows what
Sunil likes, but she is uncertain if Sunil is uncertain or not.

We model this as the following knowledge profile (M, t) consisting of three states s, t, u for
two voters 1 and 2. Profile P is assigned to state s, in which a �1 b �1 c and c �2 b �2 a, etc.
States that are indistinguishable for a voter i are linked with an i-labelled edge. The partition for
1 on the domain is therefore {{s, t}, {u}}, and the partition for 2 on the domain is {{s}, {t, u}}.

1 2

a c
b b
c a

——1——

1 2

a c
b b
c a

——2——

1 2

c c
b b
a a

s, P t, P u, P ′

States s and t have been assigned the same profile P but have different epistemic properties.
In s, voter 2 knows that 1 prefers a over c, whereas in t voter 2 does not know that. We list some
relevant propositions that are true in the actual state t:

• Leela prefers Alice in Wonderland over Cars.
This is true, because a �1 c in t.

• Sunil does not know that Leela prefers Alice in Wonderland over Cars.
This is true, because t ∼2 u, and a �1 c is false in u.

• Leela knows what Sunil likes, but Leela is uncertain whether Sunil knows what Leela likes
(i.e., she is uncertain if Sunil is uncertain [about Leela’s preferences] or not).
The main observation here is that in u, Sunil knows that Leela’s preferences are c �1 b �1 a,
whereas in t, Sunil does not know that Leela’s preferences are c �1 b �1 a (because t ∼2 u,
and a �1 b �1 c in u).

• Leela and Sunil know their own preferences.
This can also be checked easily.

2.4 Manipulation and knowledge

In this section we present notions linking knowledge and successful manipulation. After that
we will present game theoretical and voting theoretical notions for manipulation under such
uncertainty.

In a knowledge profile it may be that a voter can successfully manipulate the vote but does not
know that, because she considers it possible that another profile is the case, in which she cannot
successfully manipulate the vote. Such scenarios call for more refined notions of manipulation
that also involve knowledge. They can be borrowed from the knowledge and action literature
[18, 96]. We now introduce these notions.
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Definition 2.4.1 (Knowledge of successful manipulation) Let (M, s) be a knowledge pro-
file.

1. Voter i can successfully manipulate (M, s) if she can successfully manipulate the profile
V (s).

2. Voter i considers it possible that she can successfully manipulate (M, s) if there is a t such
that s ∼i t and she can successfully manipulate V (t).

3. Voter i knows ‘de dicto’ that she can successfully manipulate (M, s), if for all t such that
s ∼i t she can successfully manipulate V (t).

4. Voter i knows ‘de re’ that she can successfully manipulate (M, s) if there is a vote �′i such
that for all t such that s ∼i t, �′i is a successful manipulation for profile V (t). a

Informally, the above definition says that:

1. Given a knowledge profile (M, s) where V (s) = P , if voter i can successfully manipulate
P , then voter i can also successfully manipulate (M, s). This is because manipulation is
defined with respect to the profile of the actual state of the knowledge profile. It is not
defined with respect to voters’ uncertainty about the profile. Although voters may be
uncertain about what the profile is, this does not affect that P is the actual profile.

2. In our modelling, if the voter can manipulate P , she always considers it possible that she
can manipulate P . This is a consequence of modelling uncertain knowledge instead of
uncertain belief. We can easily imagine scenarios in which she considers it possible that she
can manipulate, but where in fact she cannot manipulate. This can happen if she cannot
successfully manipulate the actual profile, but there is a state that she considers possible
in which she can successfully manipulate. As already said, for expository reasons we only
model knowledge and not belief.

3. De dicto knowledge manipulation refers to a curious situation where in all states that the
voter considers possible there is a successful manipulation, but where, unfortunately, this
is not the same strategic vote in all such states. So she knows that she has a successful
manipulation, but she does not know what the manipulation is. In other words, in ‘de
dicto’ manipulations the voter does not seem to have the ability to manipulate the election.
It is akin to ‘game of chicken’ type equilibria in game theory [128]. Therein, for each
strategy of a player there is a complementary strategy of the other player such that the
pair is an equilibrium. The existence of such equilibria cannot be guaranteed without
coordination. ‘De dicto’ manipulations therefore do not seem to be of practical interest.
Instead of a problem, we consider this a feature: the interest of voters in such a case is to
obtain additional information that reduces the uncertainty (such as informing each other
about their preferences), in order to get to know that successful manipulation is possible.
Such uncertainty reduction is modelled in Section 2.7. Section 2.4.1 illustrates ‘de dicto’
manipulability.

4. De re knowledge of successful manipulation is a stronger form of knowing. If voter i knows
‘de re’ that she can manipulate the election with vote �′i, she has the ability to manipulate,
namely by strategically voting �′i in all states that she considers possible. The reader
informed in voting theory will recognize this as a strongly dominant manipulation with
respect to the set of profiles V ([s]∼i). As we do not wish to mix up epistemic and game
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theoretical considerations, we will discuss this matter (and related matters) in a separate
Section 2.5.

5. We assume that voters know their own preferences in profile models. The successful
manipulations in all states she considers possible are all with respect to the same true
preferences. To define knowledge of successful manipulation this is irrelevant(a voter can
have the same successful manipulation but with respect to two different but indistinguishable
conflicting votes), but for the relation with game theoretical notions of dominance and
equilibrium, this is crucial.

Consider the profile model consisting of the domain S = O(C)n of all profiles, so we can
identify states s with their profiles P = V (s), and such that, whatever the profile is, all voters
only know their own preferences, so that the accessibility relation is defined as P ∼i P ′ iff Pi = P ′i .
In this (unique) model it is common knowledge that voters only know their own preferences, and
as voters know their preferences, i.e., their local state, this is the interpreted system [58] consisting
of all global states (i.e., profiles) known as a hypercube [112].

Proposition 2.4.2 Given the ‘hypercube’ profile model in which voters only know their own
preferences. Then ‘de re’ and ‘de dicto’ knowledge of successful manipulation is impossible for
plurality voting. a

Proof We start with the ‘de re’ case. The ‘de dicto’ case is an inessential variation of the ‘de re’
case. Let P be the profile. We may assume that there are at least two candidates and at least two
voters, as otherwise successful manipulation is not possible anyway. We first consider the case
that there are at least three voters. Assume towards a contradiction that voter i (with sincere
vote �i= Pi) knows ‘de re’ that �′i is a successful manipulation for her. This means that for all
P ′ such that P ′i = �i, F (P ′−i,�′i) �i F (P ′). This includes the profile P ′′ in which all other voters
j have the same preferences as i’s sincere preferences, i.e., for all j ∈ Ag: P ′′j =�i. In the profile
P ′′, i’s preferred candidate would have won by (unanimous) majority vote, contradicting the
assumption that �′i is a successful manipulation since this implies that the candidate F (P ′′−i,�′i)
is strictly more preferred by i than F (P ′′). It does not matter what the tie-breaking preferences
are, as a majority of two voters already overrules the tie. The other boundary case is when
there are exactly two voters, such that voting for the winner of the tie-breaking preference is
dominant. But although this is a manipulation, if the voter’s preferred candidate is different from
the tie’s preferred candidate, it is not a successful manipulation. In the ‘de dicto’ case there is a
successful manipulation for each profile that voter i considers possible (where the manipulation
may depend on the profile). As this also applies to the profile where all other voters j have the
same preferences as i’s sincere preferences, we again derive a contradiction. �

This result can be generalized to many other voting rules, such as the Borda voting rule in the
next example section. However, under conditions of anonymity (i.e., when the voting rule is
a symmetric function), it does not hold for all voting rules. Consider two voters 1, 2 and two
candidates a, b and and (a rather undemocratic) voting rule F defined as F ({a �1 b, a �2 b}) = b
and otherwise a, i.e., F ({a �1 b, b �2 a}) = F ({b �1 a, a �2 b}) = F ({b �1 a, b �2 a}) = a.
Observe that the voting function is symmetric. Let the true preferences of voter 1 be a �1 b and
of voter 2 be a �2 b and assume that the voters only know their own preferences. Then voter
1 knows that b �1 a is successful manipulation and voter 2 knows that b �2 a is a successful
manipulation.
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2.4.1 De dicto knowledge with Borda voting

We consider manipulation in the Borda voting rule. In Borda voting, the points for each candidate
in each vote are added, and the candidate with the highest sum wins, modulo the tie-breaking
preference. The preferred candidate gets 3 points, the 2nd choice 2 points, etc. Consider three
agents, four candidates, and two profiles P and P ′ that are indistinguishable for agent 1, but
that agents 2 and 3 can tell apart; as follows.

1 2 3

c d b
b a d
a c c
d b a

——1——

1 2 3

c d b
b a a
a c c
d b d

P P ′

The true preferences of the voters is given in profile P . There is also a tie-breaking preference
b � c � d � a. The difference between the profiles P and P ′ is that 3 prefers d over a in P but a
over d in P ′. We prove the following:

Voter 1 can successfully manipulate the election if the profile is P , and voter 1 can
successfully manipulate the election if the profile is P ′, but the manipulation for P
gives her a worse outcome for P ′, and the manipulation for P ′ gives her a worse
outcome for P .

Therefore voter 1 is not effectively able to successfully manipulate the outcome of the election.
She only knows ‘de dicto’ that she can successfully manipulate this election. She does not know
how to vote in order to achieve that.

First, the outcome when all three voters give their true preferences. We write (x, y, z, w) when
there are x points for a, y for b, z for c, w for d.

profile count observation outcome
P (3, 5, 5, 5) b, c, d are tied b
P ′ (5, 5, 5, 3) a, b, c are tied b

Voter 1 can manipulate P or P ′ by downgrading b. But this is tricky, because it comes at the
price of making a or d, or both, get a higher count than her preferred alternative c. This price is
indeed too high:

In P , voter 1 can achieve a better outcome by the vote �′1 defined as c �′1 a �′1 b �′1 d. Let
Q = (P−1,�′1), and Q′ = (P ′−1,�′1).

profile count observation outcome
Q (4, 4, 5, 5) c, d are tied c
Q′ (6, 4, 5, 3) a

Although voter 1 prefers the winner in Q over the winner in P , the winner in Q′ is less preferred
by her than the winner in P ′.

In P ′, voter 1 can achieve a better outcome by �′′1 defined as c �′′1 d �′′1 b �′′1 a. Let
R = (P ′−1,�′′1), and R′ = (P−1,�′′i ).

profile count observation outcome
R (2, 4, 5, 7) 1’s least preference d
R′ (4, 4, 5, 5) c, d are tied c
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Now, voter 1 prefers the winner in R′ over the winner in P ′, but the winner in R is less preferred
by her than the winner in P .

For the record, these are the winners for all different votes for voter 1 where c is most preferred
(we recall that 1 : cbad means c �′1 b �′1 a �′1 d, etc.).

profile 1 : cbad 1 : cabd 1 : cdba 1 : cadb 1 : cdab 1 : cbda

P b(3, 5, 5, 5) c(4, 4, 5, 5) d(2, 4, 5, 7) d(4, 3, 5, 6) d(3, 3, 5, 7) d(2, 5, 5, 6)
P ′ b(5, 5, 5, 3) a(6, 4, 5, 3) c(4, 4, 5, 5) a(6, 3, 5, 4) c(5, 3, 5, 5) b(4, 5, 5, 4)

2.5 Dominance and knowledge

The notions of successful manipulation and dominant manipulation are unrelated to uncertainty
over the profile. To model such uncertainty, the notion called dominant manipulation with respect
to an information set (i.e., with respect to an ∼i equivalence class for voter i) is used in voting
theory. Let us quote the clear description in [41]:

“We suppose the knowledge of the manipulator is described by an information set E.
This is some subset of possible profiles of the non-manipulators which is known to
contain the true profile. Given an information set and a pair of votes U and V , if for
every profile in E, the manipulator is not worse off voting U than voting V , and there
exists a profile in E such that the manipulator is strictly better off voting U , then we
say that U dominates V .” [41, page 1]

In our terminology this becomes the following that matches the prior definitions of successful and
(weakly) dominant manipulation in Section 2.2.

Definition 2.5.1 (Domination w.r.t. a set of profiles) Let a voter i ∈ Ag be given with
true preference �i ∈ O(C), and let P be a collection of profiles P−i ∈ O(C)n−1 that contains the
profile of sincere votes for all players different from i.

• vote �′i 6=�i strongly dominates �′′i with respect to P, if for all P−i ∈ P: F (P−i,�′i) �i
F (P−i,�′′i ).

• vote �′i 6=�i weakly dominates �′′i with respect to P, if for all P−i ∈ P: F (P−i,�′i) �i
F (P−i,�′′i ), and for some P−i ∈ P: F (P−i,�′i) �i F (P−i,�′′i ). a

Similar to Def. 2.2.4, we can define dominant manipulation with respect to a set of profiles as
follows:

Definition 2.5.2 (Dominant manipulation w.r.t a set of profiles) Let a voter i ∈ Ag be
given with true preference �i ∈ O(C), and let P be a collection of profiles P−i ∈ O(C)n−1 that
contains the profile of sincere votes for all players different from i. Vote �′i is a (weakly) dominant
manipulation for voter i with respect to P, if for all �′′i ∈ O(C) such that �′′i 6=�′i, vote �′i weakly
dominates �′′i with respect to P. a

For strong dominance we require that for all �′′i 6=�′i, vote �′i strongly dominates �′′i with
respect to P. We can immediately observe that (i) a dominant manipulation for voter i with
true preference �i in the set O(C)n of all profiles P corresponds to a dominant strategy in the
standard game theoretical sense, i.e., to the dominant manipulation of Def. 2.2.4; and that (ii) a
dominant manipulation in the singleton collection P = {P} of true preferences for all voters (so
including �i) is a successful manipulation by voter i in profile P , as in Def. 2.2.2.
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Observation (i) seems to suggest that dominant votes are about uncertainty. This is in a sense
true, but only to the extent that strategic uncertainty (what action will my opponent choose given
his freedom to act) is independent from epistemic uncertainty (what action will my opponent
choose given my uncertainty about his nature).

Definition 2.2.4 of dominant manipulation (in the game theoretical sense) and the definition of
dominant manipulation with respect to the set of all profiles containing the manipulator’s sincere
vote (in the sense of [41]) coincide in that set of profiles. Also, they coincide in the fact that the
preferences of other voters play no role in determining whether the property holds. However,
for notions other than dominance, such as equilibrium, in which the voter may reason about
the preferences of other voters, the above difference matters a great deal; in a way, it is all that
matters. That will be presented in the next section.

We conclude this subsection with some relations between dominance and knowledge. Given a
knowledge profile (M, s), we can define a notion of knowledge relative to the profiles V ([s]∼i)
indistinguishable for a voter, that captures the notion of dominant manipulation for information
set V ([s]∼i) in [41]:

Definition 2.5.3 (Weak knowledge of successful manipulation) Let (M, s) be a knowl-
edge profile. Voter i with true preference �i weakly knows that she can successfully manipulate
(M, s) if there is a vote �′i such that for all t such that s ∼i t, F (V (t)−i,�′i) �i F (V (t)), and
for some t such that s ∼i t, �′i is a successful manipulation for profile V (t), i.e., F (V (t)−i,�′i
) �i F (V (t)). a

This is a ‘de re’ notion of knowledge, although slightly different from the one in Def. 2.4.1:

Proposition 2.5.4 If voter i knows ‘de re’ that she has a successful manipulation, then this is
equivalent to her having a strongly dominant manipulation in the set V ([s]∼i). a

Some (but not all) of our results for knowledge of manipulation also hold for weak knowledge of
manipulation. Our proof of Proposition 2.4.2 stating that knowledge of successful manipulation is
impossible in the hypercube profile model (maximal ignorance of other voters’ preferences) cannot
be proved in the same way for weak knowledge of successful manipulation. For that, see [41],
where however their setting is different, as they do not consider the hypercube but the model in
which one designated voter, the manipulator, is ignorant of the preferences of all other voters,
the non-manipulators (that are assumed to know the profile).

Knowledge has the properties of positive and negative introspection: if a voter i knows a
proposition, then she also knows that she knows the proposition, and if a voter i does not know
a proposition, then she also knows that she does not know it. So a voter i who has (weak)
knowledge of successful manipulation also knows that she has (weak) knowledge of successful
manipulation.

In a multi-agent setting in which there are several equivalence classes for voter i, each
corresponding to a vote that i can cast, we can distinguish a profile model in which a voter has
knowledge of successful manipulation in all her equivalence classes from a model in which she
has knowledge of successful manipulation only in the actual equivalence class (but maybe not
in all of her equivalence classes). We do not know if voting theorists have considered a similar
distinction between local dominant manipulation (the actual information set) and global dominant
manipulation (all information sets for that voter).
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2.6 Equilibrium and knowledge

Determining equilibria under incomplete knowledge comes down to decision making under
incomplete knowledge. Therefore we have to choose a decision criterion. Expected utility makes
no sense here, because we didn’t start with probabilities over profiles in the first place, nor with
utilities. In the absence of prior probabilities, the following three criteria make sense. (i) The
insufficient reason (or Laplace) criterion is a probability distribution over states that assigns equal
probability to all possible states in a given equivalence class. This criterion was used in [4] to
determine equilibria of certain (Bayesian) games of imperfect information. (ii) The minimax
regret criterion selects the decision minimizing the maximum utility loss, taken over all possible
states, compared to the best decision, had the voter known the true state. (iii) The pessimistic
(or Wald, or maximin) criterion is a decision making rule that compares decisions according
to their worst possible consequences. This rule states that the decision maker should take the
strategy whose worst outcome is better than the worst outcome of the other strategies. The latter
criterion, which we also call risk aversion, fits well our probability-free and utility-free model; this
was also the criterion chosen in [41, 120, 119] ([119] also considers the minimax-regret criterion).
The only assumption here in this chapter is that the probability distribution is positive in all
states. In the rest of the chapter we work with criterion (iii). (Pessimistic, optimistic, and yet
other criteria only assuming positive probability are applied to social choice settings in [130]. We
think their interesting results can be modelled as games using our setting.)

In the presence of knowledge, and the assumption that voters know their own preferences
(so that, in game theoretical terms, a voter’s preferences are uniform throughout any of her
equivalence classes, the definition of an equilibrium extends naturally. For each agent, the
combination of an agent i and an equivalence class [s]∼i for that agent (for some state s in
the knowledge profile) defines a so-called virtual agent: we model these imperfect information
games as Bayesian games [90]. Thus, agent i is multiplied in as many virtual agents as there are
equivalences classes for ∼i in the model. Each virtual agent has the same set of strategies as the
‘original’ agent.

In our setting we can almost think of these equivalence classes as sets of indistinguishable
profiles. Almost but not quite: we recall that two states in the same equivalence class may be
assigned the same profile but have different knowledge properties.

An equilibrium is then a profile of strategies such that none of the virtual agents has an
interest to deviate. An alternative way to present a Bayesian game that does not use virtual
agents, applied in [4], is to stick to the agents one already has but to change the set of strategies.
Instead of each voter (‘virtual agent’) choosing a vote (‘strategy’) among the set of votes, in each
equivalence class (information set), we have each voter choosing a conditional vote among the
larger set of conditional votes, where the conditions are the equivalence classes for the agents.
This presentation we will now follow in the definition below. For risk-averse voters knowing their
own preferences we can effectively determine if a conditional profile is an equilibrium without
taking probability distributions into account, unlike in the more general setting of Bayesian games
that it originates from. (The difference with [4] is that they use the ‘insufficient reason’ decision
criterion: uniform random choice between possible states.)

Definition 2.6.1 (Pessimistic successful manipulation) Let i ∈ Ag and let P = {P ∈
O(C)n : Pi =�i}be the set of all profiles in which voter i votes sincerely. Assume P ∈ P
gives the worst (pessimistic) outcome in P for voter i. We say that (risk-averse) voter i has a
pessimistic successful manipulation �′i in P if �′i is a successful manipulation in P and gives
no worse outcome for any other profile in P, i.e.: for all P ′ ∈ P, F (P ′−i,�′i) �i F (P−i,�′i). A
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pessimistic successful manipulation for voter i in an equivalence class [s]∼i of a knowledge profile
(M, s) is a pessimistic successful manipulation with respect to the set V ([s]∼i) of profiles. a

Definition 2.6.2 (Conditional vote, conditional profile, conditional equilibrium)
LetM = (S, {∼1, . . . ,∼n}, V ) be a profile model. For each voter i, a conditional vote is a function
[�]i : S/∼i → O(C) that assigns a vote to each equivalence class for that voter. A conditional
profile is a collection of n conditional votes, one for each voter. A conditional voting game is
then a (standard) strategic game in which voters declare conditional votes. a

In order to set the stage for examples of the next section, we explain how we determine the
payoffs of the voters and equilibria under uncertainty. In the situation without uncertainty, given
n voters, a profile and a voting rule determine a winner. In the presence of uncertainty, the
outcome of a conditional profile consisting of conditional votes is an n-tuple of tuples or vectors
(x1
i , . . . , x

m
i ), where voter i has m equivalence classes and where x1

i , x
2
i , ..., x

m
i are the payoffs

associated with each of the equivalence classes. For example, let C = {a, b}, and let a voter i have
two equivalence classes x and y. If she prefers a over b in x and b over a in y, then the vectors
(0, 1) means that in x, voter i gets payoff 0, and in y she gets payoff 1, and the vector (1, 0)
means that in x, she gets payoff 1 and in y she gets 0. The vectors (x1

i , . . . , x
m
i ) are unordered, so

we have to compute equilibria differently. For example, we cannot say which of (0, 1) and (1, 0)
voter i prefers. But we can say that virtual voter (i, x) prefers the second (in which she gets 1)
over the first, and that virtual voter (i, y) prefers the first over the second. This is the Bayesian
game computation of equilibrium, where we determine manipulability for each virtual agent.
Therefore, in the definition we did not write ‘A conditional profile is an equilibrium iff no agent
has a successful manipulation,’ but ‘(. . . ) if no agent has a pessimistic successful manipulation in
any of its equivalence classes.’

A notable fact, which we consider one of the main modelling results of our contribution, is
that

Fact 2.6.3 States with the same profile can have different equilibria. a

Or, more precisely: even when all voters have the same voting preferences, if their knowledge
about each other’s voting preferences is different, their manipulative behaviour may also be
different. We now proceed with the examples.

2.6.1 Examples of conditional equilibria in plurality voting

We reconsider the example of Section 2.3.1 about voters Leela (1) and Sunil (2), voting for an
animated movie that may be a (Alice in Wonderland), b (Brave), and c (Cars), where Leela’s
preferences are a �1 b �1 c and Sunil’s preferences are c �2 b �2 a. This is the profile P .

As is often the case in game-theoretic models of voting, there exist many Nash equilibria,
most of which are irrelevant, i.e, give worse outcome to the voters than their sincere vote. The
point of this example however is to demonstrate that equilibria, and thus strategic votes, depend
on voters’ uncertainty about other voters’ preferences, even when their sincere preferences remain
the same.

In our running example we now present equilibria when there is: no uncertainty, uncertainty
between two profiles, and different kinds of uncertainty between three states (for two profiles). In
the following examples, we express the payoffs for both voters by their ranking (0, 1, or 2) for the
winner. In the following examples, we use the plurality voting rule, in which only the top-ranked
candidate in each ballot is important and we can ignore the rest of the ranking. In other words,
here a vote is a single candidate instead of a linear order.
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1 2
a a
b b
c c

(a) Profile P

1 2
c c
b b
a a

(b) Profile P ′

1/2 a b c
a a b a
b b b b
c a b c

(c) Matrix of winners

1/2 a b c

a 2.0 1.1 2.0
b 1.1 1.1 1.1
c 2.0 1.1 0.2

(d) Outcome matrix for P

1/2 a b c

a 0.0 1.1 0.0
b 1.1 1.1 1.1
c 0.0 1.1 2.2

(e) Outcome matrix for P ′

Figure 2.1. Voters have no uncertainty

Example 2.6.4 (No uncertainty) Let P be the profile. If voter 1 votes for a and voter 2 votes
for c, then the tie-breaking preferences determines a as the winner, 2’s least preferred candidate.
A strategic vote of 2 for candidate b, makes b win, a better outcome for voter 2. Equilibrium
pairs of votes are (a, b) and (b, b). For voter 1, casting the vote to a �1 b �1 c and a �′1 c �′1 b is
dominant.

The other profile used in the examples in this section is where 1 shares the preferences of 2.
This is the profile P ′. We also determine the equilibria of that profile. There is no dominant vote.
Although (c, c) is an equilibrium vote for P ′, there are other equilibria that give worse outcomes
to the voters compared to their sincere votes.

An overview of the equilibria for P and for P ′ is in Figure 2.1.Equilibria are boxed. We write
x.y instead of (x, y) to denote the payoffs for voters 1 and 2 of the outcome of the election.

Example 2.6.5 (Uncertainty between two profiles) Now consider the profile model con-
sisting of two states t with profile P and u with profile P ′. The accessibility relation for voter
1 is the identity on the model and for voter 2 it is the universal relation. Figure 2.2 gives the
two-state profile model, the strategic game matrix with conditional votes and winners, and the
strategic game matrix with payoffs. Let us explain conditional votes for each voter. First consider
voter 1. As voter 1 has two equivalence classes, there are nine conditional votes for her, each of
which is denoted by xy, where x and y are her votes in states t and u, respectively. For example,
conditional vote ba for 1 means that in state t, 1 votes b and in state u, 1 votes a. Also, vote ba
can be interpreted as “If 1 prefers a over c then 1 votes b, and if 1 prefers c over a then 1 votes a.”

The voter 2 has one equivalence class, so there are three conditional votes: a, b and c.
Conditional profiles are pairs (xy, z) where x is 1’s vote in t and y is 1’s vote in u, and z is 2’s
vote in {t, u}. For example, (ba, a) is a conditional profile that means voter 1 votes for b in state
t, and for a in t and voter 2 votes for a in {t, u}.

The winner matrix (the middle matrix in Figure 2.2) contains pairs xy in which x and y
are the winner in state t with profile P respectively in state u with profile P ′. For example, for
conditional vote (ba, c) we get ba as the entry in the winners matrix: if voter 1 votes b and voter
2 votes c then the tie (b � a � c) makes b win, and if 1 votes a and 2 votes c then a wins.

The payoff matrix next to the winners matrix contains triples xy.z where x is the rank of the
outcome for 1 in state t (P ) of the conditional profile, and y is the rank of the outcome for 1 in
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(a) Profile models

1 2

a c
b b
c a

——2——

1 2

c c
b b
a a

t, P u, P ′

(b) Matrix of winners

1\2 a b c

aa aa bb aa
ab ab bb ab
ac aa bb ac
ba ba bb ba
bb bb bb bb
bc ba bb bc
ca aa bb ca
cb ab bb cb
cc aa bb cc

(c) Outcome matrix and equilibria

1\2 a b c

aa 20.0 11.1 20.0

ab 21.0 11.1 21.0

ac 20.0 11.1 21.0

ba 10.0 11.1 10.0

bb 11.1 11.1 11.1

bc 10.0 11.1 12.1

ca 20.0 11.1 00.0

cb 21.0 11.1 01.1
cc 20.0 11.1 02.2

Figure 2.2. Voter 2 is uncertain whether voter 1 prefers a over c or c over a

state u (P ′), and z is the rank of the worst outcome for 2 in her only equivalence class {t, u}. For
example, for conditional profile (ba, c) we get (10.0) as the entry in the payoff matrix; if 1 votes b
and 2 votes c then b wins, so both voters get payoff 1 in P ; if 1 votes a and 2 votes c then a wins,
they both get payoff 0 in P ′; the worst of 0 and 1 is 0, so the payoff for voter 2 of this conditional
profile is 0.

Now, let us explain how to determine the equilibria. The equilibria are, maybe, as expected.
If the profile is P then it is still dominant for voter 1 to vote a. If the profile is P ′, voting for c is
not dominant for voter 1. Because voter 2 is risk averse, (cc, c) is no longer an equilibrium vote
in P ′. As 2 is uncertain whether 1 prefers c over a or a over c, the safer (risk avoiding) strategy
for 2 is now to vote b, even though 1 and 2 both prefer c. Voter 1 knows this as well.

Voter 2 does not have a dominant vote, because if he assumes that voter 1 always votes c, the
best response is also to vote c and not to vote b. So this is the only case where voting b is not an
equilibrium vote for 2. a

Example 2.6.6 (Uncertainty between three states) We now add further uncertainty to the
two-state profile model where 2 is uncertain between profiles P and P ′ (states t and u). Consider
the following two ways to do this.

1 2
a c
b b
c a

——1——

1 2
a c
b b
c a

——2——

1 2
c c
b b
a a

s, P t, P u, P ′

1 2
a c
b b
c a

——2——

1 2
c c
b b
a a

——1——

1 2
c c
b b
a a

t, P u, P ′ v, P ′

First, consider adding a state s (to t, u) which has the same profile P as the state t. In this three
state model voter 2 is not uncertain about P but 1 cannot distinguish s from t. (So the partition
for 1 on the domain is {s, t}, {u}; and the partition for 2 on the domain is {s}, {t, u}.) This is
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Chapter 2. Strategic voting and the logic of knowledge

the profile model of Section 2.3.1, where in state s Sunil (2) knows that Leela’s (1’s) preferences
are different from his own, but in state t he does not know that. Does 2 behave differently in s
and t? Next, consider adding a state v (to t, u) which has the same profile P ′ as in state u. In
this model, voter 1 but not 2 is uncertain between u and v. In v both 1 and 2 know that they
have the same preferences, but in u they don’t. Will 2 behave differently in u and v? In both
models, voter 1 in all states knows voter 2’s preferences. The point of the example is, that it is
not rational for 2 to behave (vote) differently in s and in t, but that it is rational for 2 to behave
differently in u and in v. Figure 2.3 (on page 27) gives an overview of the conditional equilibria
for both profile models, including the matrices with winners in order to calculate the payoffs.

As it may be confusing to see three winners but four payoff values let us explain once more
the mechanics of conditional profiles and conditional equilibria. For example, take the t, u, v
model. Consider conditional profile (ac, bc), in which we find bbc and 11.12 for the winners matrix
entry and the payoff matrix, respectively. Conditional profile (ac, bc) denotes that

• If 1 prefers a (i.e., in state t) then she votes a, and if 1 prefers c (i.e., in states u, v) then
she votes c.

• If 2 is uncertain whether 1 prefers a (i.e., in states t, u) then he votes b, and if 2 knows that
1 prefers c (i.e., in state v) then he votes c.

The winners in states t, u, v of these conditional votes are, respectively, b, b, c. If the state is t,
then 1 votes a and 2 votes b, so b wins. If u, then 1 votes c and 2 votes b, so b wins. If v, then 1
votes c and 2 votes c, so c wins.

The payoff entry is 11.12 because: for voter 1 in state t, the worst (and only) outcome is b
with payoff 1, for voter 1 in states u, v the worst of b and c, with payoffs 1 and 2, is (also) 1; for
voter 2 in states t, u the worst of b and b, both with payoff 1, is 1, and for voter 2 the worst and
only outcome in state v is c with payoff 2.

Now, we show that conditional profile (ac, bc) is an equilibrium. For this, we have to check
four virtual players. For example, player 1 in state t cannot do better, because the first digit
of the payoff entries for profiles (bc, bc), (cc, bc) are not greater than 1; player 1 in class {u, v}
cannot do better: we check the second digit of the entries for conditional profiles (aa, bc) and
(ab, bc). Player 2 cannot do better in t, u, check the third digit in entries for (ac, ac) and (ac, cc);
and player 2 also cannot do better in v, we check the fourth digit in the entries for (ac, ba) and
(ac, bb).

In the s, t, u model, there is no difference in payoffs of voter 2 whether he knows voter 1’s
preferences. If the profile is P , voter 1 knows that voting for a is dominant. On that assumption,
voter 2 should vote b, such that b wins. Indeed, in almost all equilibria (except (bc, bc)), b wins
and the payoff is 1 for both voters. Unlike for the two-state example, where in all equilibria voter
2 votes b, there are now equilibria in which voter 2 does not vote b. However, these are not really
interesting, as 1 votes b in these, which is dominated by 1 voting a.

In the t, u, v model, there is a difference in payoffs of voter 2 depending on whether 1 is
uncertain. There are equilibria in which both players vote c in state v, namely (ac, bc) and (bc, bc).
Whereas there is no equilibrium in which both players vote c in state u, even though they both
prefer c over b and a. We can easily backup this result by our intuitions. If voter 2 is uncertain
about 1’s preferences (in {t, u}), the worst-case avoiding strategy remains voting b. If voter 2
knows that 1’s preferences are the same as his (in {v}), even 1’s uncertainty is not enough to
make him change his vote. The same cannot be said for voter 1. In state v, she has to weigh the
odds against voter 2 playing safe and voting b instead of c; but either way, voting c then also
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1 2
a c
b b
c a

——1——

1 2
a c
b b
c a

——2——

1 2
c c
b b
a a

s, P t, P u, P ′

1\2 aa ab ac ba bb bc ca cb cc
aa aaa abb aaa baa bbb baa aaa abb aaa
ab aab abb aab bab bbb bab aab abb aab
ac aaa abb aac baa bbb bac aaa abb aac
ba bba bbb bba bba bbb bba bba bbb bba
bb bbb bbb bbb bbb bbb bbb bbb bbb bbb
bc bba bbb bbc bba bbb bbc bba bbb bbc
ca aaa abb aca baa bbb bca caa cbb cca
cb aab abb acb bab bbb bcb cab cbb ccb
cc aaa abb acc baa bbb bcc caa cbb ccc

1\2 aa ab ac ba bb bc ca cb cc

aa 20.00 11.01 20.00 10.10 11.11 10.10 20.00 11.01 20.00

ab 21.00 11.01 21.00 11.10 11.11 11.10 21.00 11.01 21.00

ac 20.00 11.01 22.00 10.10 11.11 12.10 20.00 11.01 22.00

ba 10.10 11.11 10.10 10.10 11.11 10.10 10.10 11.11 10.10

bb 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11

bc 10.10 11.11 12.11 10.10 11.11 12.11 10.10 11.11 12.11
ca 20.00 11.01 00.00 10.10 11.11 10.10 00.20 01.21 00.20
cb 21.00 11.01 01.01 11.10 11.11 01.11 01.20 01.21 01.21
cc 20.00 11.01 02.02 10.10 11.11 02.12 00.20 01.21 02.22

1 2
a c
b b
c a

——2——

1 2
c c
b b
a a

——1——

1 2
c c
b b
a a

t, P u, P ′ v, P ′

1\2 aa ab ac ba bb bc ca cb cc
aa aaa aab aaa bba bbb bba aaa aab aaa
ab abb abb abb bbb bbb bbb abb abb abb
ac aaa aab aac bba bbb bbc aca acb acc
ba baa bab baa bba bbb bba baa bab baa
bb bbb bbb bbb bbb bbb bbb bbb bbb bbb
bc baa bab bac bba bbb bbc bca bcb bcc
ca aaa aab aaa bba bbb bba caa cab caa
cb abb abb abb bbb bbb bbb cbb cbb cbb
cc aaa aab aac bba bbb bbc cca ccb ccc

1\2 aa ab ac ba bb bc ca cb cc

aa 20.00 20.01 20.00 10.10 11.11 10.10 20.00 20.01 20.00

ab 21.01 21.01 21.01 11.11 11.11 11.11 21.01 21.01 21.01

ac 20.00 20.01 20.02 10.10 11.11 11.12 20.00 21.01 22.02

ba 10.00 10.01 10.00 10.10 11.11 10.10 10.00 10.01 10.00

bb 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11

bc 10.00 10.01 10.02 10.10 11.11 11.12 10.10 11.11 12.12

ca 20.00 20.01 20.00 10.10 11.11 10.10 00.00 00.01 00.00

cb 21.01 21.01 21.01 11.11 11.11 11.11 01.11 01.11 01.11
cc 20.00 20.01 20.02 10.10 11.11 11.12 00.20 01.21 02.22

Figure 2.3. Conditional equilibria for profile models where two states have the same profile
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gives her best result. So for voter 1 voting b and c give the same outcome considering the worst
case scenario, and this is indeed the case: (ab, bc) and (bb, bc) are also equilibria. a

2.7 Revealing voting preferences

We can extend the setting for the interaction of voting preferences and knowledge of the previous
sections with operations in which voters are informed of other’s preferences, thus reducing
(‘updating’) their uncertainty. An obvious choice for such updates is the public announcement
[135] of propositions about profiles, such as voters informing each other about their preferences.

The dynamics of public announcements can be modelled as an operation (M, s) 7→ ((M|T ), s),
where T ⊆ S is the denotation inM of a proposition about profiles ϕ, andM|T means model
restriction to subdomain T . In that case we also write (M|ϕ)s.

Given a knowledge profile (M, s), the precondition for execution of the operation public
announcement of ϕ (or update with ϕ) is that ϕ is true in (M, s), and the way to execute it is
to restrict the modelM to all the states where ϕ is true. We can then investigate the truth of
propositions about profiles in that model restriction. This therefore allows us to evaluate more
complex propositions about profiles, namely of shape ‘after update with ϕ, ψ (is true),’ such
as: ‘After voter 1 reveals her preferences to voter 2, voter 2 knows that she has a successful
manipulation’ (but before that update, she didn’t know). This is embodied in the following
definitions, see Section 2.8 for a formal logical setting.

Definition 2.7.1 (Updated knowledge profile) Let (M, s) be a knowledge profile, where
M = (S, {∼1, . . . ,∼n}, V ), and let ϕ be a proposition about profiles with denotation S′ ⊆ S
and such that s ∈ S′. Then the updated knowledge profile ((M|ϕ), s) is defined as M|ϕ =
(S′, {∼′1, . . . ,∼′n}, V ′) where ∼′i = ∼i ∩ (S′ × S′) and for all P ∈ O(C)n, V ′ = V |S′ .

Let ψ also be a proposition about profiles. In (M, s) the proposition ψ is true after update
with ϕ, if whenever ϕ is true in (M, s), ψ is true in ((M|ϕ), s). a

It requires some reflection to realize what can count as a public announcement in the setting
of voting. Truthful public announcement logic, and other dynamic epistemic logics, are logics of
observation and do not have a notion of agency. The idea is that information coming from a further
unnamed external source is considered reliable enough to incorporate it (or merely to investigate
the consequences of incorporating it, for example when planning future actions). The semantics
of ‘public announcement’ merely reflects the effect on the agent’s uncertainties of the result of
incorporating information. Anything else, such as reasons to incorporate it, or doubts about the
source or the provenance of the information, are not modelled. The further important assumption
is that the information is public, i.e., that all agents observe the information similarly. This has
a certain legal connotation, as in proclaiming laws: agents cannot be excused from not having
incorporated the information, by, say, not having paid attention to what was announced. It is not
that this cannot be modelled: one can also model defective channels, and also announcements
of lies; but those are extensions of the framework from which public announcement logic is an
abstraction. Unfortunately the terminology does not help to put the reader on the right foot:
both the ‘truthful’ and the ‘announcement’ in truthful public announcement logic are misnomers.
There are other types of observation than listening (to what is said), such as seeing; and given
the anonymous source, no distinction can be made between ‘true’ and ‘truthful’ — the former
would therefore have been more appropriate. While there is no agency, it is common in dynamic
epistemic logic to import agency by the backdoor, namely by modeling an announcement ϕ by
an agent (voter) a as the public announcement of Kaϕ (agent a knows ϕ). This backdoor is also
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a trapdoor: if ϕ were not announced by the agent, but Kaϕ by an external source, that would
result in the same information change.

This background on the meaning of ‘announcement’ may help to justify that what voters reveal
about their own preferences can be modelled as truthful public announcements. A voter revealing
her preferences only to another voter does not make a public but a private announcement, that is
not observed by all voters (unless of course there are only two voters, as in the examples that we
give below). This requires a more complex framework. A voter revealing her preferences to me is
indistinguishable from someone else revealing to me that voter’s preferences. Lack of sincerity
when revealing preferences is not considered.

We proceed with some obvious results on the preservation of knowledge and manipulation
after updates, followed by less obvious results on the preservation and emergence of conditional
equilibria after updates, and concluded (in the next subsection) by a detailed example.

Proposition 2.7.2 Successful manipulation is preserved after update. Equilibrium profiles are
preserved after update. a

Proof The existence of a successful manipulation depends only on the profile of the actual state,
the point s of the knowledge profile (M, s). This remains the actual state after any update.
Similarly, for equilibrium profiles. �

Proposition 2.7.3 Knowledge of successful manipulation is preserved after update. a

Proof Let (M, s) be a knowledge profile such that M = (S, {∼1, . . . ,∼n}, V ). Let ϕ be a
proposition with denotation S′ ⊆ S, and let (M|ϕ, s) be the updated knowledge profile such that
M|ϕ = (S′, {∼′1, . . . ,∼′n}, V ′). Suppose that voter i knows ‘de dicto’ that she can successfully
manipulate (M, s). Then, by Def. 2.4.1, it means for all t ∈ S such that s ∼i t she can successfully
manipulate V (t). Since [s]∼i ∩ S′ ⊆ [s]∼i ⊆ S, Prop. 2.7.2 implies that voter i knows ‘de dicto’
that she can successfully manipulate (M|ϕ, s). The proof for ‘de re’ knowledge is similar. �

Proposition 2.7.4 Weak knowledge of successful manipulation is not preserved after update. a

Proof For weak knowledge of manipulation there were two requirements: (a) the profile of at
least one state in the equivalence class for voter i has a successful manipulation, and (b) that
manipulation gives an equal or better outcome for the profiles of all states in that equivalence
class. The state with the manipulation need not be the actual state, therefore, after model
restriction the existential requirement (a) may no longer hold. (A counterexample can be easily
constructed.) �

It is on first sight less clear what happens to conditional equilibria after updates. We first have
to define the update of a conditional profile.

Definition 2.7.5 (Updated conditional profile) Let profile modelM = (S, {∼1, . . . ,∼n}, V )
and conditional profile [P ] = {[�]1, . . . , [�]n} be given, where [�]i : S\∼i → O(C) are conditional
votes. Now let ϕ be a proposition about profiles such thatM|ϕ = (S′, {∼′1, . . . ,∼′n}, V ′). Then the
conditional profile [P ′] after the update with ϕ consists of conditional votes [�′]i : S′\∼′i → O(C)
defined as: for all s ∈ S′, [�′]i([s]∼′i) = [�]i([s]∼i). a

What may happen to a conditional vote [�]i : S\∼i → O(C) is that (1) an equivalence class for i
disappears, namely if none of the states in that class satisfies the update ϕ, (2) an equivalence
class for i shrinks, because some states satisfy ϕ and others do not, and (3) an equivalence
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class for i remains the same, because all of its states satisfy ϕ. In the first case, the virtual
voter (in the Bayesian game sense) (i, [s]∼i) ceases to exist; the conditional vote has one less
condition. In the second case we have that [s]∼′i ⊂ [s]∼i . This may affect the payoff for i of
vote �i in that class, because states with the least value may have been removed (namely if
min{F (V (s)) | s ∈ [s]∼i} ≺i min{F (V ′(s)) | s ∈ [s]∼′i}). In the third case there is no difference
in payoff.

Proposition 2.7.6 Given a conditional profile that is an equilibrium, the updated conditional
profile may not be an equilibrium. a

Proof The proposition says, in other words, that conditional equilibrium is not preserved after
update. We recall that a conditional profile is an equilibrium if no agent has a successful
manipulation in any of its equivalence classes, i.e., if the Bayesian game played between all virtual
voters (i, [s]∼i), where [s]∼i is an equivalence class for voter i, has the corresponding profile as an
equilibrium.

As said above, three different things can happen to a conditional profile after an update:
equivalence classes may disappear, so that virtual voters disappear from the game; equivalence
classes remain the same, so that the worst-case payoff of that class also remains the same; or
equivalence classes may become smaller, so that the worst outcome of the vote in that class may
no longer be so bad as before.

This may affect an equilibrium as follows. The payoff for a virtual voter (i, [s]∼i) casting vote
�′i in the conditional equilibrium is the worst outcome for voter i in class [s]∼i . This payoff is
greater or equal to (at least as good as) the worst outcome in class [s]∼i for any other vote �′′i .
This is fragile and not preserved after update: Namely, if a t ∈ [s]∼i\[s]∼′i exists such that

F (V (t)) �i F (V (t)−i,�′′i )

then we have that

min{F (V (t)) | t ∈ [s]∼i} �i min{F (V (t)−i,�′′i ) | t ∈ [s]∼i}
whereas min{F (V ′(t)) | t ∈ [s]∼′i} ≺i min{F (V ′(t)−i,�′′i )

where as before V ′ and ∼′i are the profile function and accessibility relation in the updated profile
model; Section 2.7.1 provides an example. �

Proposition 2.7.7 Given a conditional profile that is not an equilibrium, the updated conditional
profile may be an equilibrium. a

Proof In other words, not being a conditional equilibrium is also not preserved after update. This
requires that min{F (V (t)) | t ∈ [s]∼i} ≺i min{F (V (t)−i,�′′i ) | t ∈ [s]∼i} and min{F (V ′(t)) | t ∈
[s]∼′i} �i min{F (V ′(t)−i,�′′i )}. Again, the next subsection provides an example, for the plurality
voting rule. �

So conditional equilibria can both disappear and appear after updates. It is yet unclear to us
if there are general patterns here. However, additional strategic behaviour comes into the picture
with these negative results. An update may consist of a voter revealing her voting preferences. It
may be that this voter’s sincere vote is not part of an equilibrium conditional profile, but that
after this voter reveals her sincere vote, the updated conditional profile is an equilibrium. Or, for
another example, a voter may know that after revealing (part of) her voting preferences, other
voters may now vote differently because other voters’ preferences are now part of an equilibrium.
This interaction between strategic voting and strategic communication may well open up new
vistas in social choice theory. We will summarily address this as well in the next example section.
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2.7.1 Examples of updates in plurality voting

Consider again the examples for plurality voting of Section 2.3.1 and Section 2.6.1. The two-state
profile model M of Section 2.6.1 is reprinted again below, in the middle, together with two
updates, one on the left and one on the right.

InM in state t, after voter 1 informs voter 2 of her true preference a �1 c, no uncertainty
remains, and 1 and 2 commonly know that the actual profile is P . We recall that equilibrium
votes for P are (a, b), (b, b). All conditional equilibria are preserved after update. Conditional
equilibria for the t, u profile model had shape (xy, b), where x is voter 1’s vote in t and y is voter
1’s vote in u, and xy 6= cc. For example, given conditional profile (bc, b), the updated conditional
profile according to Definition 2.7.5 is (b, b). There is therefore no strategic incentive for voter 1
to inform voter 2. Because if she informs voter 2 about her preference, then 2 votes b, and the
outcome is not better than before for 1.

On the other hand, in state u voter 1 has an incentive to make her preferences known to 2.
In the model with P and P ′, there is no equilibrium in which 2 votes c. But after 1 informs 2
that her preferences are the same as his preferences, (c, c) is an equilibrium. (And, as both voters
then vote sincerely, this equilibrium is of more strategic value than the other equilibria.) Most
conditional equilibria of the two-state model are preserved, but not those where 1 votes c. For
example, (ac, b) was an equilibrium, but the updated profile (c, b) is not an equilibrium.

1 2

a c
b b
c a

⇐

1 2

a c
b b
c a

——2——

1 2

c c
b b
a a

⇒

1 2

c c
b b
a a

t, P t, P u, P ′ u, P ′

In principle we could give a similar story for the three-state profile models, but we have already
made our point: in this example voter 1 has a strategic interest to reveal her preferences to voter
2 because subsequently, she can expect the outcome of the vote to be better than before. Before
update it was b, after update it was c, and c �1 b. In other words, when there is uncertainty
about votes, voters have different ways of acting strategically: voting strategically or strategically
revealing voting preferences.

2.8 A logic of knowledge and voting

In the present section, we present a logic of knowledge and voting.

2.8.1 Syntax and semantics

Given n voters Ag = {1, . . . , n}, m candidates C = {a, b, . . . }, profiles O(C)n, the language LKV is
basically the language of public announcement logic [49] with a special set of atomic propositions
At = O(C)n ∪ C.

Definition 2.8.1 (Logical language) The formulas of the language LKV are defined by the
following grammar:

ϕ ::= P | x | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ϕ]ϕ

where i ∈ Ag, x ∈ C, and P ∈ O(C)n. We use all of the standard abbreviations for disjunction
(∨), implication (→) and bi-implication (↔). a
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A propositional variable x stands for ‘the winner is x’ (the interaction with a given profile is
prescribed with an axiom F given later); Kiϕ stands for ‘voter i knows that ϕ’; [ϕ]ψ stands for
‘after public announcement of ϕ, ψ (is true)’.

We define other voting concepts by notational abbreviation. The vote of voter i is defined as
the disjunction of all profiles containing it. Similarly we define that voter i prefers one candidate
over another (computational efficiency is not our goal):

For all linear orders �i∈ O(C)n : �i :=
∨
{P |Pi=�i} P

For all linear orders �i∈ O(C)n : a �i b :=
∨
{P |a�ib for Pi=�i}

We therefore liberally allow overloading in order to keep the further logical formalisation readable.
In view of readability we may enclose expressions of form �′i or a �′i b between parentheses.

Now, we define models, and the satisfaction relation for the language LKV .

Definition 2.8.2 (LKV -model) Given a set of n voters Ag = {1, . . . , n}, a set of m candidates
C, an LKV -model is a structure M = (S, {∼1, . . . ,∼n}, V ), where S is a set of states, for all
all i ∈ Ag, ∼i is an equivalence relation on S, and V : At → P(S) is a valuation in which
At = O(C)n ∪ C. a

The next definition introduces a class of LKV -models that corresponds to profile models of
Def. 2.3.1.

Definition 2.8.3 (Profile LKV -model) An LKV -model M = (S, {∼1, . . . ,∼n}) is a profile
LKV -model, if

1. Each state has exactly one profile assigned to it, that is, for all P, P ′ ∈ O(C)n: if P 6= P ′

then V (P ) ∩ V (P ′) = ∅, and for all s ∈ S there is P ∈ O(C)n such that s ∈ V (P ), and

2. all voters know their own preferences, that is, for all i ∈ Ag, for all P ∈ O(C)n and for all
s, s′ ∈ S: s ∼i s′ implies (s ∈ V (P ) iff s′ ∈ V (P )). a

So far we treated the voting function F as a meta-level concept, it was not part of the definition of
the LKV -models. Now, we deal with it more explicitly to introduce a class of profile LKV -models
in which a given voting rule F determines the winner candidate.

Definition 2.8.4 (F -voting model) Let F : O(C)n → C be a voting rule. An LKV -model
M = (S, {∼1, . . . ,∼n}, V ) is an F -voting model if it is a profile LKV -model and

1. for x, x′ ∈ C: if x 6= x′ then V (x) ∩ V (x′) = ∅, and

2. for all P ∈ O(C)n, for all s ∈ S: s ∈ V (P ) implies s ∈ V (F (P )).

Item (1) says that there is at most one winner in each state, and item (2) says that if P is the
profile at state s, then the winner at s is F (P ). a

The LKV -formulas are interpreted on pointed LKV -models (M, s) consisting of an LKV -model
M = (S, {∼1, . . . ,∼n}, V ) and a state s ∈ S.
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Definition 2.8.5 (Semantics) Given an LKV -model M = (S, {∼1, . . . ,∼n}, V ), we define
when formula ϕ ∈ LKV is true in (M, s), also written as (M, s) |= ϕ, as follows:

(M, s) |= P iff s ∈ V (P )
(M, s) |= x iff s ∈ V (x)
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= Kiϕ iff for every t such that s ∼i t, (M, t) |= ϕ
(M, s) |= [ϕ]ψ iff (M, s) |= ϕ implies ((M|ϕ), s) |= ψ

where M|ϕ = (S′, {∼′1, . . . ,∼′n}, V ′) with S′ = {t ∈ S : (M, t) |= ϕ}, ∼′i = ∼i ∩ (S′ × S′),
V ′(s) = V (s) ∩ S′, for all s ∈ S′. The expression (M, s) 6|= ϕ stands for ‘not ((M, s) |= ϕ)’. If
(M, s) |= ϕ for all s ∈ S, we writeM |= ϕ (ϕ is valid onM) and if this is the case for allM,
we say that ϕ is valid, and we write |= ϕ. a

We now present principles that are valid on the class of profile models, and that will feature
as axioms in the proof system. Let

∨
denote the exclusive disjunction which is a binary operator

that expresses a disjunction in which exactly one of the formulas is true.

P :
∨
P∈O(C)nP

C :
∨
x∈Cx

VFF :
∧
P∈O(C)n(P → F (P )) F is a voting rule.

N :
∧
i∈Ag

∧
�i∈O(C)((�i)→ Ki(�i))

Axiom P and C spell out, respectively, that there is exactly one profile is assigned to a state, and
that there is exactly one winner of the election. Axiom F is the definition of the voting function
F in the logic. The final axiom N says that voters know their own (complete) preferences.

Proposition 2.8.6 Let F be a voting rule, and letM an LKV -model. The axioms P, C, VFF ,
and N are valid onM iffM is a F -voting model.

Proof Straightforward. �

The logic of knowledge and voting is now defined essentially as public announcement logic [135]
over F -voting models.

Definition 2.8.7 (The logic of knowledge and voting) Given a voting rule F , the logic of
knowledge and F -voting is the set of LKV -formulas that are valid in all F -voting models. a

Proposition 2.8.8 Let F be a voting rule. The logic of knowledge and F -voting has a complete
axiomatization over the class of F -voting models. a

Proof The axiomatization of public announcement logic is standard [135]. To this we add the
axioms P, C, VFF , and N. For the completeness we observe that the canonical model of the logic
without public announcements is an F -voting model (Prop. 2.8.6), and that the completeness of
the logic with announcements is as usual obtained because every formula is equivalent to one
without announcements (the axioms are rewriting rules, pushing all logical connectives beyond
announcements, such as [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)). �
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Chapter 2. Strategic voting and the logic of knowledge

2.8.2 Example

We succinctly demonstrate the logic using the running example of Section 2.3.1 (page 15) about
Leela and Sunil, where the knowledge profile is (M, t).

• Leela prefers Alice in Wonderland over Cars:
(M, t) |= a �1 c

• Sunil does not know that Leela prefers Alice in Wonderland over Cars:
(M, t) |= ¬K2(a �1 c)

• Leela knows what Sunil likes, but Leela is uncertain whether Sunil knows what Leela likes
(i.e., she is uncertain whether Sunil knows Leela’s preferences):
(M, t) |= K1(�2) ∧ ¬K1(K2(�1) ∨K2¬(�1)) ∧ ¬K1¬(K2(�1) ∨K2¬(�1))

• Leela and Sunil know their own preferences (on the entire model):
M |= ((�1)→ K1(�1)) ∧ ((�2)→ K2(�2))

• Sunil does not know that Leela prefers Alice in Wonderland over Cars, but after he was
told so, he knows it:
(M, t) |= ¬K2(a �1 c) ∧ [a �1 c]K2(a �1 c)

2.9 Conclusion

Our results We presented a logic for the interaction of voting and knowledge. The semantic
primitive is the knowledge profile: a profile including uncertainty of voters about what the actual
profile is. This reveals different notions of knowledge of manipulation. In particular, we introduced
‘de re’ knowledge of manipulation and ‘de dicto’ knowledge of manipulation, and novel notions
of equilibria, including conditional equilibrium for risk-averse voters. We further modelled the
dynamics of uncertainty such as revealing preferences (by voters or by a central authority) and
its effects on knowledge of manipulation and conditional equilibrium. We proved that knowledge
of successful manipulation is preserved after such updates but that conditional equilibria are not.

Declaring votes by variable assignments Another form of dynamics than that of revealing
voters’ preferences is the dynamics of declaring votes. Just as there may be uncertainty about
truthful votes, there may also be uncertainty about declared votes. This is relevant for the
investigation of safe manipulation [150], where the manipulating voter announces her vote to a
(presumably large) set of voters sharing her preferences but is unsure of how many will follow her,
and also in Stackelberg voting games, in which voters declare their votes in sequence, following a
fixed, exogenously defined order.

Revealing preferences is informational (‘purely epistemic’) change, whereas declaring votes is
ontic/factual change. A dynamic epistemic logic equivalent of a declared vote is a so-called public
assignment [48, 20]. A succinct way to expand our framework with uncertainty about declared
votes is to add a duplicate set of propositional variables for voter preferences, to represent their
declared votes. Initially setting all these variables to false, declaring a vote then becomes an
assignment setting such a variable to true (whereas all other possible votes, for that voter, remain
false).
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Central authority Apart from the n voters, it is convenient to distinguish yet another agent:
a designated agent who is the central authority, or chair. This opens the door to the logical
modelling of well-studied problems in computational social choice, such as control by the chair,
or determining possible winners. In this work, the chair manifests as tie-breaking rule, and the
reason we did not explicitly model the chair is that her role is uniform throughout a knowledge
profile model. We assume that there is no uncertainty on what the voting rule (and thus the
tie-breaking preferences) is, we only considered uncertainty about preferences of other voters. So
in that sense the chair is exogenous.

The chair as designated agent can be called agent 0 (thus distinguishing the chair from the
voters 1, . . . , n). The universal relation on a knowledge profile model can then be seen as the
indistinguishability relation of the agent 0, the central authority. On a connected model (i.e.,
when there is always a path (with respect to the indistinguishability relation) between any two
states in the model) this is the same as common knowledge of the voters about their uncertainty.
The computational tasks of the central authority, such as determining the possible winners or
other form of control, may well be harder on knowledge profiles as it has to take uncertainty
into account. Identifying the central authority with an agent with universal access allows us to
determine whether it is harder.

Coalitional manipulation Coalitions play a big role in voting, because in realistic settings
the power of individual voters is very limited. Coalitional notions also play an important role
in epistemic logic. Two notions useful in our setting are common knowledge and distributed
knowledge. Given a knowledge profile, a proposition is commonly known in a coalition G, if it is
true in all states reachable (from the actual state of the knowledge profile) by arbitrarily long
finite paths in the model (reflexive transitive closure of the union of all accessibility relations
for voters in G). With the interpretation of common knowledge of coalition G we can associate
an equivalence relation ∼G, defined as (

⋃
i∈G ∼i)∗. A proposition is distributedly known in a

knowledge profile, if it is true in states reachable from the actual state via the intersection of
accessibility relations, i.e., the relation

⋂
i∈G ∼i.

By analogy, just as the vote of an individual agent depends on her knowledge, the vote of
a coalition would seem to depend on the common knowledge of that coalition. But that seems
wrong. In voting theory, the power of a coalition means the power of a set of agents that can
decide on a joint action as a result of communication between them. Communication makes the
uncertainty about each others’ profiles disappear. In terms of knowledge profiles, this means that
we are talking about another model, namely the model where for all agents i ∈ G, ∼i is refined
to
⋂
i∈G ∼i. What determines the voting power of a coalition is not common knowledge of that

coalition but distributed knowledge of that coalition, and involves an update of the knowledge
profile model. That is possible, but makes for an unlucky marriage of modelling constraints. A
more suitable restriction seems only to consider coalitions of voters having the same uncertainty
(i.e.,

⋂
i∈G ∼i = ∼i for all i ∈ G). Having the same uncertainty determines a type of voter. That

makes sense in voting and is a common modelling constraint: we only consider coalitions of
the same type. One can then define knowledge of manipulation and conditional equilibria for
coalitions.

Knowledge and belief We modelled knowledge of preferences. We did not model belief of
preferences. Unlike knowledge, beliefs may be incorrect. Somewhat similarly, unlike truthful
announcements, insincere announcements (e.g., lying about your true preferences in a voting poll)
may lead to false beliefs.
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Chapter 2. Strategic voting and the logic of knowledge

Consider the following variant in which two voters are uncertain between profiles P and P ′:
voter 1 knows which of P and P ′ is the case, but voter 2 believes (incorrectly) that P is the case,
i.e., te actual state is u.

1 2

a c
b b
c a

←− 2——

1 2

c c
b b
a a

t, P u, P ′

In state u of this knowledge profile, voter 2 will now not vote c, because he believes that voter 1
prefers a, to which b is the best response (with plurality voting, and tie breaking rule b � a � c).
Therefore, he will vote b. Unlike Example 2.6.5, he will do that even if he is not risk-averse.

Changing from knowledge to belief allows for truly counterintuitive scenarios, such as agents
believing their preferences to be different from what they really are. For example, above, swap
the preferences of 1 and 2 in P ; i.e., c �1 b �1 a and a �2 b �2 c. We now have that if voter 2
really prefers c, then he believes that he prefers a.

Clearly, the interaction between belief and voting is more complex than between knowledge
and voting. Technically there are few issues, the same logical framework as in Section 2.8 can be
used with minor adjustments.

Applications The logical setting defined in the chapter allows us to represent various classes
of situations already studied specifically in (computational) social choice, thus offering a general
representation framework in which, of course, new classes of problems will be representable as
well, thus providing an homogeneous, unified representation framework. To represent such classes
of problems we need the extensions of the framework that were discussed above: uncertainty for
coalitions, explicit modelling of the chair, and assignments (to represent declaring votes) instead
of merely announcements (to represent revealing preference). As a final example, we mention the
issue of possible and necessary winners [100]: Let there be one more agent (the chair), who has
incomplete knowledge of the votes. Voter x is a possible winner if the chair does not know that x
is not a (co)winner, and a necessary winner if the chair knows that x is a (co)winner. Describing
such knowledge and ignorance and its strategic consequences would be a typical application of
our framework.
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3.1 Introduction

In modal logic we attempt to formalise propositions about possibility and necessity. In epistemic
modal logics the modal operator is interpreted as knowledge or belief [94], initially for a single
knowing agent but later for a set of agents, including their higher-order knowledge (i.e., what they
know about each other) [58]. The knowledge of agents is encoded in a relational structure known
as a Kripke model or relational structure, consisting of a domain of worlds, a binary accessibility
relation for each agent, and a valuation of atomic propositions over the worlds. Informative
updates can be formalised as yet another modal operator, a dynamic modality, that is interpreted
as a relation between such Kripke models. A well-known form of informative updates are action
models [11], wherein the updates themselves also take the shape of a relational structure.
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Chapter 3. Algebraic semantics of refinement action logic

The Kripke model resulting from executing an action model in an initial Kripke model can
also be seen as a refinement of that initial model. A refinement relation is like a bisimulation
relation, except that from the three relational requirements only ‘Atoms’ and ‘Zag’ need to be
satisfied. This therefore results in structural loss. From the perspective of knowledge change,
this implies that in the refined model agents know more, namely they are less uncertain between
different worlds. In [31] refinement modal logic (RML) is introduced, wherein modal logic is
augmented with a new operator ∃ (and with its dual ∀, they are interdefinable as usual), which
quantifies over all refinements of a given pointed model. In this logic the expression ∃ϕ stands for
“there is a refinement after which ϕ.” In other words, ∃ϕ is true in a Kripke modelM with point
s (we write (M, s) for such a pair) if there is a pointed model (M′

, s′) such that ((M, s), (M, s)
′
)

is a pair in the refinement relation, (we also say that (M′
, s′) is a refinement of (M, s)), and such

that ϕ is true in (M′
, s
′
). The logic is equally expressive as basic modal logic [31]. A well-known

result is that action model execution results in a refinement [45]. We can similarly (although
not trivially) augment the modal logic of knowledge with refinement quantifiers, and also the
multi-agent logic of knowledge [31].

A different form of quantification is over action models. This has been investigated in [84].
This logic is called arbitrary action model logic [84]. It is an extension of action model logic
with an action model quantifier where ∃ϕ stands for “there is an action model such that after
its execution ϕ (is true).” Given such an expression ∃ϕ, in [84] Hales presents a method for
synthesizing a multi-pointed action model αT after which ϕ is true (in the sense that ∃ϕ is
logically equivalent to 〈αT 〉ϕ), and he also proved that the action model quantifier is equivalent to
the refinement quantifier. To show this equivalence, he introduced refinement action model logic
(RAML), that extends action model logic (AML) with refinement quantifiers. The syntax and
semantics of RAML are formed by combining the syntax and semantics of AML and RML.

In this chapter we develop an algebraic semantics of refinement action modal logic (RAML).
Already from close to the inception of dynamic epistemic logics, there has been a strong current
to model such logics in algebraic or coalgebraic settings [9, 10]. More recently, in [105, 114] an
algebraic semantics was proposed for public announcement logic and action model logic. This
methodology has further been productively used in [42] for a probabilistic dynamic epistemic
logic and in Chapter 4 of this thesis for epistemic updates on bilattices.

In [105, 114], product updates are dually characterised through a construction that transforms
the complex algebra associated with a given Kripke model into the complex algebra associated with
the model updated by means of an action model. Given a Kripke modelM and an action model
α, the result of executing that action model can be seen as a submodel of a so-called intermediate
model that contains copies ofM indexed by the domain of α. In this way, action model logic can
be endowed with an algebraic semantics that is dual (and equivalent) to the relational one, via a
Jónsson-Tarski-type duality [25]. In particular, this holds for the multi-pointed action model αT
such that ∃ϕ is equivalent to 〈αT 〉ϕ, according [84] mentioned above.

We use this result to define the algebraic semantics of RAML. Indeed, we can dually
characterise the algebraic notion of refinement relation as a lax-morphism (named refinement
morphism) between the complex algebras associated with a given initial Kripke model and a
‘resulting’ Kripke model that is in the refinement relation with the initial model. Then, via the
Jónsson-Tarski duality, we associate that resulting Kripke model to a modal Boolean algebra.
Given the set of all refinements of the initial Kripke model, we then take the product of all
corresponding modal Boolean algebra in order to define a unique algebra and the required
refinement morphism. The motivation behind our approach is to capture the non-constructive
notion of refinement. Whereas arbitrary action model logic approaches the notion of refinement
with brute force by having a witnessing action model that enforces the same postcondition ϕ
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bound by the quantifier, refinement modal logic only needs the existence of such an epistemic
action (and thus the possibility of synthesizing it) but not the actual construction.

Overview. In Section 3.2, we recall basic definition and results on modal logic, refinement
modal logic, action model logic, and refinement action model logic. In Section 3.3, we recall
relevant algebraic concepts and fix notation. In Section 3.4.1, we present the methodology based
on [105, 114] to define the algebraic semantics of dynamic epistemic logics. Finally, in Section
3.5, we present the algebraic semantics of refinement action modal logic. Section 3.6 describes
our results in view of prior works and concludes.

3.2 Logical preliminaries

In this section, we briefly recall basic modal logic [25], action model logic [11], refinement modal
logic [45, 31], and refinement action model logic [85]. Throughout this chapter, we assume a
countable set of atomic propositions At.

To ease the presentation, we present here the single-agent version of these logics. All results
in this section generalize to the multi-agent setting.

3.2.1 Basic modal logic

We recall standard definitions from modal logic. For an extensive introduction to modal logic we
refer to [25].

Definition 3.2.1 (Language L2) The language of basic modal logic is inductively defined as:

L2 3 ϕ ::= p ∈ At | ¬ϕ | ϕ ∧ ϕ | 2ϕ

We use the standard abbreviations from propositional logic. We also employ the abbreviation
3ϕ ::= ¬2¬ϕ. a

The formulas of L2 are interpreted over relational structures known as Kripke models [101, 94].

Definition 3.2.2 (Kripke frame/model) A Kripke frame F = 〈S,R〉 is a pair where S is the
domain consisting of worlds (or states), and R ⊆ S × S is a binary accessibility relation. A
Kripke model, or in this chapter just model, is a tripleM = 〈S,R, V 〉 where 〈S,R〉 is a Kripke
frame and V : At→ P(S) is a valuation assigning to each atomic proposition p ∈ At the subset
of the domain where the atomic proposition p is true. a

For every Kripke frame F = 〈S,R〉 and every s ∈ S, we write R(s) to denote the set of successors
of s, and we write t ∈ R(s) to denote that (s, t) ∈ R.

Given s ∈ S, a pointed Kripke frame is a pair (F , s), written as Fs. A multi-pointed Kripke
frame is a pair (F , T ), written as FT , consists of a Kripke frame F along with a non-empty set
of designated states T ⊆ S. is a multi-pointed frame denoted FT . Similarly, given s ∈ S, and a
non-empty set T ⊆ S, a pair (M, s) is a pointed model, and (M, T ) is a multi-pointed Kripke
model. We now define the semantics of modal logic.

Definition 3.2.3 (Semantics of basic modal logic) Let M = 〈S,R, V 〉 be a Kripke model.
The interpretation of ϕ ∈ L2 is defined inductively by

(M, s) |= p iff s ∈ V (p)
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ
(M, s) |= 2ϕ iff for all t ∈ R(s) : (M, t) |= ϕ
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We write [[ϕ]]M to denote the set of states satisfies ϕ, where [[ϕ]]M = {s ∈ S : (M, s) |= ϕ}. a

LetM = 〈S,R, V 〉 be a pointed Kripke model and let ϕ ∈ L2. The formula ϕ is valid onM,
notationM |=K ϕ, if for all s ∈ S, (M, s) |= ϕ. IfM |=K ϕ for every Kripke modelM then we
say that ϕ is valid and write |=K ϕ. The basic modal logic (K) is defined as the set of validities
of L2 over the class of all Kripke models.

In the following sections, we will use the cover modality ∇ following the definitions of [24].
For any finite set Φ ⊆ L2 of formulas we define ∇Φ as the syntactic abbreviation

∇Φ := 2
∨
ϕ∈Φ

ϕ ∧
∧
ϕ∈Φ

3ϕ.

where
∨
ϕ∈∅ ϕ := f (always false) and

∧
ϕ∈∅ ϕ := t (always true). We next recall cover disjunctive

normal form.

Definition 3.2.4 (Cover disjunctive normal form ) The set of formulas in L2 that are in
cover disjunctive normal form is generated by the following grammar:

ϕ ::= π ∧∇Φ | ϕ ∨ ϕ

where π is a propositional formula, and Φ is a finite set of formulas in cover disjunctive normal
form. a

Lemma 3.2.5 [cf. [83, Lemma 5.1.2]] Every formula ϕ ∈ L2 is equivalent to a formula in cover
disjunctive normal form in the logic K. a

Definition 3.2.6 (Bisimulation) LetM = 〈S,R, V 〉 andM′ = 〈S′, R′, V ′〉 be Kripke models.
A binary relation Z ⊆ S × S′ is a (Kripke) bisimulation betweenM andM′ if for all (s, s′) ∈ Z:

(Atoms) s and s′ satisfy the same atomic propositions;

(Zig) for all t ∈ S, if t ∈ R(s), then there exists t′ ∈ S′ such that t′ ∈ R′(s′) and (t, t′) ∈ Z;

(Zag) for all t′ ∈ S′, if t′ ∈ R′(s′), then there exists t ∈ S such that t ∈ R(s) and (t, t′) ∈ Z.

We write (M, s) - (M′, s′) ( and say that (M, s) and (M′, s′) are bisimilar) iff there exists a
bisimulation betweenM andM′ that links s and s′. a

We now recall the axiomatisation for basic modal logic K.

Definition 3.2.7 (Axiomatisation K) The axiomatisation K is a substitution schema consist-
ing of the following axioms and rules:

P All propositional tautologies
K 2(ϕ↔ ψ)↔ (2ϕ↔ 2ψ)

MP From ϕ↔ ψ and ϕ infer ψ
NecK From ϕ infer 2ϕ

where ϕ,ψ ∈ L2. a
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3.2.2 Action model logic

This section recalls definitions and results from the action model logic of Baltag, Moss and
Solecki [11]. For an extensive introduction on action model logic we refer the reader to [49].

Definition 3.2.8 (Language L2α) Let At be as countable set of atomic propositions. The set
L2α of formulas and the set AMAML of action models are defined by mutual induction by the
following grammar:

L2α 3 ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2ϕ | [αk]ϕ
AMAML 3 α ::= ((K,Rα), (ϕ1, ...ϕn))

where p ∈ At, α ∈ AMAML, k is a state in α, (K,Rα) is a finite Kripke frame, and ϕ1, ...., ϕn ∈
L2α, where n = |K|. a

The state space K of an action model ((K,R), ϕ1, ..., ϕn) is understood to be enumerated as
K = {1, ..., n} such that the sequence ϕ1, ..., ϕn corresponds to a function Preα : K → L2α which
we call the precondition function. From now on we write 〈K,Rα,Preα〉 for action models, where
Preα : K → L2α. The notation αk is formally to be understood as the pair (α, k), which we call
a pointed action model or epistemic action. A multi-pointed action model is a pair αT = 〈α, T 〉
where α ∈ AMAML is an action model and T ⊆ K.

We assume all the standard abbreviations from modal logic, in addition to the abbreviations

〈αk〉ϕ := ¬[αk]¬ϕ, 〈αT 〉ϕ :=
∨
k∈T
〈αk〉ϕ, [αT ]ϕ :=

∧
k∈T

[αk]ϕ,

where T ⊆ K.

Definition 3.2.9 (Semantics of action model logic) LetM = (S,R, V ) be a Kripke model
and let s be a state in M. The interpretation of ϕ ∈ L2α on the pointed Kripke model (M, s)
is the same as its interpretation in modal logic, defined in Definition 3.2.3, with an additional
inductive case:

(M, s) |= [αk]ϕ iff (M, s) |= Preα(k) implies (Mα, (s, k)) |= ϕ

whereMα = 〈S×, R×, V×〉 is the product update defined as

S× = {(t, j) ∈ S ×K | (M, t) |= Preα(j)}
(s, k)R×(s′, k′) iff (t, t′) ∈ R and (j, j′) ∈ Rα
(t, j) ∈ V×(p) iff t ∈ V (p)

We will also say that (Mα, (s, k)) is the result of executing αk in the pointed model (M, s). We
write [[ϕ]]M to denote the set of states in a Kripke modelM that satisfy ϕ. A formula ϕ ∈ L2α
is valid onM, notationM |=AML ϕ, if for all s ∈ S, (M, s) |= ϕ. IfM |=AML ϕ for all Kripke
modelsM then we say ϕ is valid and write |=AML ϕ. a

The logic AML is the set of L2α formulas that are valid.
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Definition 3.2.10 (Axiomatisation AML) The axiomatisation AML [84, Definition IV.1]
consists of the rules and axioms of K along with the following axioms and the rule of necessitation
for dynamic box modalities:

AP [αk]p↔ (Preα(k)→ p)
AN [αk]¬ϕ↔ (Preα(k)→ ¬[αk]ϕ)
AC [αk](ϕ ∧ ψ)↔ ([αk]ϕ ∧ [αk]ψ)
AK [αk]2ϕ↔ (Preα(k)→

∧
{2[αk′ ]ϕ | k′ ∈ Rα(k)})

NecA From ϕ infer [αk]ϕ

where ϕ,ψ ∈ L2α, α ∈ AMAML, and p ∈ At. a

Given a formula ϕ ∈ L2α, `AML ϕ means that ϕ is a theorem in AML, meaning that one can
derive ϕ from the axioms and rules of AML. The axiomatisation AML is sound and complete
with respect to the semantics of the logic AML [49].

3.2.3 Refinement modal logic

In this subsection, we recall the basic definitions and results on refinement modal logic of [31].
We begin with the definition of the refinement relation between Kripke models. Recall from
Def. 3.2.6 that a bisimulation between two Kripke models is a binary relation that satisfies three
conditions: (Atoms), (Zig), and (Zag). A refinement is like a bisimulation except it only needs
to satisfy conditions (Atoms) and (Zag).

Definition 3.2.11 (Refinement) Let M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉 be two Kripke
models. A binary relation R ⊆ S × S′ is a refinement betweenM andM′ if for all (s, s′) ∈ R:

(Atoms) s and s′ satisfy the same atomic propositions;

(Zag) for all t′ ∈ S′, if t′ ∈ R′(s′), then there exists t ∈ S such that t ∈ R(s) and (t, t′) ∈ R.

We write (M, s) � (M′, s′) is there exists a refinement R betweenM andM′ with (s, s′) ∈ R.a

It is clear that every bisimulation between two Kripke models is a refinement between them [31].
Now, we recall the syntax and semantics of the refinement modal logics.

Definition 3.2.12 (Language of refinement modal logic) The language of refinement modal
logic L2∀, is inductively defined as:

L2∀ 3 ϕ ::= p ∈ At | ¬ϕ | ϕ ∧ ϕ | 2ϕ | ∀ϕ

We use all of the standard abbreviations from modal logic, in addition to the abbreviations
∃ϕ := ¬∀¬ϕ. a

Definition 3.2.13 (Semantics of refinement modal logic) LetM = 〈S,R, V 〉 be a Kripke
model and let s be a state in M. The interpretation of a formula ϕ ∈ L2∀ is the same as its
interpretation in modal logic, defined in Definition 3.2.3, with an additional inductive case:

(M, s) |= ∀ϕ iff for all (M′, s′) : if (M, s) � (M′, s′) then (M′, s′) |= ϕ.

LetM = 〈S,R, V 〉 be a Kripke model and let ϕ ∈ L2∀. The formula ϕ is valid onM, notation
M |=RML ϕ, if for all s ∈ S, (M, s) |= ϕ. IfM |=RML ϕ for every Kripke modelM then we say
ϕ is valid and write |=RML ϕ.
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Definition 3.2.14 (Axiomatisation RML) The axiomatisation RML [31] consists of the rules
and axioms of K along with the following axioms and the rules:

R ∀(ϕ→ ψ)→ ∀ϕ→ ∀ψ
RProp ∀p↔ p and ∀¬p↔ ¬p

RK ∃∇Φ↔
∧
3∃Φ

NecR From ϕ infer ∀ϕ

where ϕ,ψ ∈ L2∀, Φ is a finite subset of L2∀, and p ∈ At. a

Given a formula ϕ ∈ L2∀, `RML ϕ means that ϕ is a theorem in RML, meaning that one can
derive ϕ from the axioms and rules of RML.

We recall an important result connecting refinement modal logic to action modal logic that
we will use later.

Lemma 3.2.15 [45, Prop. 4& 5] The result of executing an epistemic action in a pointed model
is a refinement of that model. Dually, for every refinement of a finite pointed model there is an
epistemic action such that its execution results in a model bisimilar to that refinement. a

We note that there is no result that shows the refinement of an infinite pointed model is the result
of the execution of an epistemic action.

3.2.4 Refinement action model logic

In this subsection, we recall the syntax and semantics of refinement action model logic of [85].
The results we recall here will play a vital role in section 3.5.

Definition 3.2.16 (Language L2α∀) Let At be a countable set of atomic propositions. The set
L2α∀ of formulas and the set AMRAML of action models are defined by mutual induction by the
following grammar:

L2α∀ 3 ϕ ::= p ∈ At | ¬ϕ | ϕ ∧ ϕ | 2ϕ | [αk]ϕ | ∀ϕ
AMRAML 3 α ::= ((K,Rα), (ϕ1, ...ϕn))

where α ∈ AMRAML, k is a state in α, (K,Rα) is a finite Kripke frame, and ϕ1, ...., ϕn ∈ L2α∀,
where n = |K|. We use all of the standard abbreviations from action model logic and refinement
modal logic. a

Definition 3.2.17 (Semantics of L2α∀) LetM = 〈S,R, V 〉 be a Kripke model and let s be a
state inM. The interpretation of a formula ϕ ∈ L2α∀ is the same as its interpretation in action
modal logic and refinement modal logic. a

LetM = 〈S,R, V 〉 be a Kripke model and let ϕ ∈ L2α∀. The formula ϕ is valid onM, notation
M |=RAML ϕ, if for all s ∈ S, (M, s) |= ϕ. IfM |=RAML ϕ for every Kripke modelM then we
say ϕ is valid and write |=RAML ϕ. The logic RAML is defined as the set of validities of L2α∀.

The logic RAML agrees with AML and RML on formulas from their respective sublanguages
because the syntax and semantics of RAML are formed by combining the semantics of AML and
RML. Moreover, a sound and complete axiomatisation for RAML can be given by combining
the axiomatisations AML and RML

Definition 3.2.18 (Axiomatisation RAML) The axiomatisation RAML [84] is a substitution
schema consisting of the rules and axioms of AML and RML. a
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For a given formula ϕ ∈ L2α∀, we write `RAML ϕ, if ϕ is derivable in RAML.
Hales in [84] shows that if there exists a refinement in which a given formula ϕ is satisfied

then one can construct a finite action model that results in ϕ being satisfied. He provides an
algorithm that computes such a finite multi-pointed action model for any formula ϕ ∈ L2α∀.

Theorem 3.2.19 [84, Theorem V.3] Let ϕ ∈ L2α∀. Then there exists a multi-pointed action
model αϕT such that `RAML [αϕT ]ϕ and `RAML 〈αϕT 〉ϕ↔ ∃ϕ. a

In Section 3.5, we will use the actual construction of this result to prove soundness with respect
to algebraic semantics. We therefore describe here the inductive construction of the action model
for atomic propositions and formulas of the form ∇Φ.

1. For a given atomic proposition p, we construct the multi-pointed action model αpKp =
((Kp, Rp, P rep),Kp) as follows:

Kp = {k?, skip}
Rpα = {(k?, skip), (skip, skip)}

Prepα = {(k?, p), (skip, t)}

Given a pointed Kripke model (M, s), we have

(M, s) |= 〈αpKp〉p iff (M, s) |= p.

Then since (M, s) |= p iff (M, s) |= ∃p [31, Theorem 28], it follows that

(M, s) |= 〈αpKp〉p iff (M, s) |= ∃p. (3.1)

2. Let Φ be a finite set of L2α∀-formulas. For every ϕ ∈ Φ let αϕKϕ = ((Kϕ, Rϕα,Pre
ϕ
α),Kϕ) be

a multi-pointed action model such that `RAML [αϕKϕ ]ϕ and `RAML 〈αϕKϕ〉ϕ↔ ∃ϕ. Without
loss of generality we can assume that each of the Kϕ are pair-wise disjoint. Then we
construct the action model α∇Φ

K∇Φ = ((K∇Φ, R∇Φ
α ,Pre∇Φ

α ),K∇Φ) as follows:

K∇Φ = {k?} ∪
⋃
ϕ∈Φ

Kϕ

R∇Φ
α = {(k?, k) : ϕ ∈ Φ, k ∈ Kϕ} ∪

⋃
ϕ∈Φ

Rϕα

Pre∇Φ
α = {(k?,

∧
ϕ∈Φ

3∃ϕ)} ∪
⋃
ϕ∈Φ

Preϕα.

As [84] has pointed out, α∇Φ is formed by the disjoint union of each action model αϕ, and
no outward edges are added to any state Kϕ in α∇Φ. Then we have

`RAML [α∇Φ
K∇ϕ ]∇ϕ and `RAML ∃∇Φ↔ 〈α∇ϕ

K∇ϕ
〉∇Φ (3.2)

Hence, given a pointed Kripke model (M, s), we have (M, s) |= ∃∇Φ iff (M, s) |=
〈α∇Φ

K∇Φ〉∇Φ.

We note that the action model synthesis described by Hales in [84] heavily relies on the following
fact:

Fact 3.2.20 The logics RAML, RML, AML and K are all equally expressive [11, 31, 84] .a
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3.3 Algebraic preliminaries

The aim of the present section is to collect relevant definitions and results on (modal) Boolean
algebras. For a more thorough introduction to universal algebra, we refer to [34].

Boolean algebras. A Boolean algebra A = 〈A,∨,∧,¬,0,1〉 is an algebra with two binary
operations ∨ (called ‘join’ or ‘or’) and ∧ (called ‘meet’ or ‘and’), one unary operation ¬ (called
‘not’ or ‘complement’), and two nullary operations 0 and 1 (called ‘bottom’ and top’) which
satisfy the following equations:

x ∧ y = y ∧ x x ∨ y = y ∨ x (commutativity)
x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity)
x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x (absorption)
x ∧ 1 = x x ∨ 0 = x (identity)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (distributivity)
x ∧ ¬x = 0 x ∨ ¬x = 1 (complementation)

We call the class of Boolean algebras BA. We may label the operators and constants with the
name of the algebra, as ∨A, 0A, etc., to distinguish them from those in other algebras.

Let X be a set and P(X) be the set of all the subsets of X. Denote with ∪, ∩ and (−)c

the operations union, intersection and complement on P(X), respectively. Then, the structure
〈P(X),∪,∩, (−)c, ∅, X〉 forms a Boolean algebra, so-called powerset algebra.

Underlying poset of a Boolean algebra. A Boolean algebra A = 〈A,∨,∧,¬,0,1〉 can also
be seen as a partially ordered set (poset). A poset is a pair (A,≤) where A is a set and ≤ is
a reflexive, antisymmetric (if x ≤ y, y ≤ x then x = y) and transitive relation on A. Given a
Boolean algebra A, the relation ≤ can be defined as follows: for every x, y ∈ A

x ≤ y iff x ∧ y = x iff x ∨ y = y

We call (A,≤) the underlying poset of A. Let (A,≤) be a poset, x ∈ A and S ⊆ A, x is an upper
bound (resp. lower bound) of S, if s ≤ x (resp. x ≤ s) for every s ∈ S. The element x ∈ A is the
least upper bound (lub) of S if it is an upper bound of S and if x ≤ s for every upper bound u of
S. The element x ∈ A is the greatest lower bound (glb) of S if it is a lower bound of S and if
s ≤ x for every lower bound s of S. If they exist, the least upper bound of S is denoted by

∨
S

and the greatest lower bound of S by
∧
S. For any Boolean algebra A = 〈A,∨,∧,¬,0,1〉,

∨
S

and
∧
S of a finite subset S ⊆ A always exist and are unique, however they may not exist if S is

infinite. This leads us to the following definition:

Complete Boolean algebra A Boolean algebra A = 〈A,∨,∧,¬,0,1〉 is complete if
∨
S and∧

S exist for every S ⊆ A.
For an arbitrary set X, the powerset algebra 〈P(X),∪,∩, (−)c, ∅, X〉 is complete. The

underlying order is given by the inclusion ⊆. From a logical perspective, the existence of arbitrary
joins and meets enables us to reason about properties of infinite sets.

Definition 3.3.1 (Modal Boolean algebra) A modal Boolean algebra is a structure
A = 〈A,∨,∧,¬, {3i}i∈I ,0,1〉 where 〈A,∧,∨,¬,0,1〉 is a Boolean algebra, I is a non-empty
finite set, and 3i : A→ A for every i ∈ I. A normal modal Boolean algebra is a modal Boolean
algebra A such that the unary operations {3i}i∈I on A satisfying the following conditions: for
every i ∈ I and x, y ∈ A
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1. (Normality) 3i0 = 0, and

2. (Additivity) 3i(x ∨ y) = 3ix ∨3iy. a

Convention 3.3.2 Throughout the present chapter, and unless specified otherwise, we assume
modal Boolean algebras are normal with only one operator 3, and we define a dual operator 2 of
3 by 2x := ¬3¬x. We denote by MBA the class of normal modal Boolean algebras. For the
sake of smooth presentation, we will sometimes write 〈A,3〉 instead of A = 〈A,∧,∨,¬,0,1,3〉.a

We now define the standard notion of structure preserving maps between algebras.

Definition 3.3.3 (MBA-Homomorphism) Let A and A′ be two modal Boolean algebras. A
map f : A→ A′ is an MBA-homomorphism, notation f : A→ A′, if for all x, y ∈ A

f(x ∧A y) = f(x) ∧A′ f(y)

f(x ∨A y) = f(x) ∧A′ f(y)

f(¬Ax) = ¬A′f(x)

f(3Ax) = 3A′f(x)

f(cA) = cA′ . (c ∈ {0,1})

An MBA-isomorphism is a bijective MBA-homomorphism and we say two modal Boolean
algebra A and A′ are isomorphic, if there is an MBA-isomorphism between them (notation:
A ∼= A′).

Every MBA-homomorphism between two modal Boolean algebra A and A′ is a monotone
map between their underlying posets. Recall that a map f : (A,≤A) → (A′,≤′A) between two
posets is monotone if whenever x ≤A y then f(x) ≤′A f(y) for all x, y ∈ A.

A closely related notion to MBA-homomorphism that we will use further on is the notion of
congruence. A congruence θ on a modal Boolean algebra A = 〈A,∧,∨,¬,3,0,1〉 is an equivalence
relation on A satisfying the following compatibility property: for all x, x′, y, y′ ∈ A, if x θ y and
x′ θ y′ then:

(¬x) θ (¬y), (x ∨ x′) θ (y ∨ y′), (x ∧ x′) θ (y ∧ y′) and (3x) θ (3y).

Congruences provides us with a way to construct quotient algebras. Let A = 〈A,∧,∨,¬,3,0,1〉
be a modal Boolean algebra, and let θ be a congruence on A. The quotient algebra A/θ has
as its carrier A/θ, the set of the equivalence classes defined by the congruence θ, namely
A/θ = {[x]θ : x ∈ A} with [x]θ = {x′ ∈ A : x θ y}. There is a natural way to define the
operations ∨′,∧′,¬′ and 3′ on the set A/θ of equivalence classes of A over θ. Namely, for all
x, y ∈ A, we define

[x]θ ∨′ [y]θ := [x ∨ y]θ,

[x]θ ∧′ [y]θ := [x ∧ y]θ,

¬′[x]θ := [¬x]θ

3′[x]θ := [3x]θ.

It can be easily shown that the operators defined above, are well-defined, in particular 3 is a
normal modality. Hence, the quotient algebra A/θ := 〈A/θ,∨′,∧′,¬′,3′, [0]θ, [1]θ〉 is a modal
Boolean algebra.
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As we will see in Section 3.4.1, a congruence θ on the 3-free reduct of a modal Boolean algebra
A = 〈A,∧,∨,¬,3,0,1〉 is not necessarily a congruence with respect to 3. In this situation, one
may need to modify the definition of the modality on A/θ to obtain a modal Boolean algebra,
so-called pseudo-quotient algebra.

The other way to form new algebras is to make a big algebra out of a collection of small ones.

Products. Let (Ai)i∈I be a family of modal Boolean algebras where Ai = 〈Ai,∧i,∨i,¬i,3i,0i,1i〉
and I is an index set. We define the product

∏
i∈I Ai as the modal Boolean algebra A =

〈A,∧,∨,¬,3B,0,1〉, where A is the Cartesian product
∏
i∈I Ai that is defined as∏

i∈I
Ai := {(xi)i∈I : ∀i ∈ I, xi ∈ Ai}

with the canonical projections πj :
∏
i∈I Ai → Aj defined as πj((xi)i∈I) := xj , and the operators

are defined cordinatewise; that is, for elements (xi)i∈I , (yi)i∈I ∈
∏
i∈I Ai,

(xi)i∈I ∧ (yi)i∈I := (xi ∧i yi)i∈I
(xi)i∈I ∨ (yi)i∈I := (xi ∨i yi)i∈I (• ∈ {∨,∧})

¬(xi)i∈I := (¬ixi)i∈I
3(xi)i∈I := (3ixi)i∈I

c := (ci)i∈I . (c ∈ {0,1})

We now recall the important concept over posets called adjunction that provides us with a
way to produce a complete Boolean algebra [44, 34].

Definition 3.3.4 (Adjunction) A pair (f, g) of monotone maps f : A → A′ and g : A′ → A
between two posets (A,≤A) and (A′,≤′A) forms an adjunction (notation: f a g) if f(x) ≤′A y is
equivalent to x ≤A g(y), for all x ∈ A and y ∈ A′. If f a g, then g is a right adjoint and f a left
adjoint. a

The importance of adjunctions stems from the interaction between adjoint maps and joins and
meets [44]. Let (f, g) be such that f a g, then f preserves existing arbitrary joins if and only if g
preserves existing arbitrary meets.

As modalities 3 and 2 can be seen as monotone operators on the underlying poset of a modal
Boolean algebra, it is natural to ask whether they have adjoint modalities? The answer is: yes.
In fact, there exist two unary operators � and � such that 3 a � and � a �. The modalities �
and � can be thought of as the backward looking diamond and forward looking box of tense logic,
respectively. Every modal Boolean algebra A = 〈A,∧,∨,¬,3B,0,1〉 expanded with � is called
a tense modal Boolean algebra (notation: 〈A,�〉). MBA provides as an algebraic semantics of
modal logic. The following class of powerset algebras plays a key role in algebraizing modal logic.

Complex algebras. Let F := 〈S,R〉 be a Kripke frame. The complex algebra of F (notation:
F+) is the powerset algebra 〈P(S),∪,∩, (−)c, ∅, S〉 expanded with the modality 3R : P(S) →
P(S) defined as

3R(X) := {s ∈ S : t ∈ R(s) for some t ∈ X} = R−1[X]

for every X ∈ P(S). We note that F+ is a normal modal Boolean algebra.
Complex algebras are the concrete modal Boolean algebras that algebraize relational semantics

[25, Theorem 5.25]. By means of complex algebras one can construct a modal Boolean algebra
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from a given Kripke frame. For the other direction we need to construct the ultrafilter frame
[25, Definition 5.34]. By transforming this frame in a complex algebra we get the Jònson-Tarski
Theorem underlying the algebraization of modal logic:

Every modal Boolean algebra can be embedded in the complex algebra of its ultrafilter
frame [25, Theorem 5.43].

Convention 3.3.5 Throughout this thesis, when we say complex algebra of a Kripke model
M = (F , V ), we mean complex algebra of the underlying Kripke frame F . a

As a final step to show that the class of complex algebras algebraizes the semantics of modal
logic, we need to interpret modal formulas in modal Boolean algebras. To this end, we introduce
algebraic models.

Definition 3.3.6 (Algebraic model) An algebraic model is a pair A = 〈A, V 〉 where A is a
modal Boolean algebra and V : At → A is a valuation that assigns an element from A to each
atomic proposition.

Also, given a Kripke modelM = 〈F , V 〉 with V : At→ P(S), the algebraic model associated
withM is the tuple A = 〈A, V 〉 where A is the complex algebra of F . a

We will rely on the duality between Kripke frames and normal modal Boolean algebras to
define the algebraic semantics of action model logic and refinement action modal logic.

3.4 Epistemic updates on algebras

In this section, we will report on how to define epistemic updates on modal Boolean algebras
(Subsection 3.4.1), and then, we will recall the algebraic semantics of action model logic (Subsection
3.4.3). Our presentation is a summary of the method presented in [105, 114].

3.4.1 Methodology

We first describe a two-step account of the product update construction on Kripke models from
Def. 3.2.9, and then the mathematical steps to compute the updated algebra from [105].

Throughout the present subsection, we fix a Kripke modelM = 〈S,R, V 〉 and an epistemic
action αk where α = (K,Rα,Preα). The product updateMα defined in Section 3.2 can be built
in two steps as follows.

Step 1 We define the following intermediate model∐
α

M = 〈
∐
K

S,R×Rα,
∐
α

V 〉

where

•
∐
K S ' S×K is the |K|-fold coproduct S, which is set-isomorphic to the Cartesian product

S ×K,

• R×Rα is the binary relation on
∐
K S defined as

(s′, k′) ∈ R×Rα((s′, k′)) iff s′ ∈ R(s′) and k′ ∈ Rα(k),
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•
∐
α V : At→ P(

∐
K S) such that for every p ∈ At∐

α

V (p) =
∐
α

(V (p)) = V (p)×K.

Step 2.Mα is the submodel of
∐
αM that contains exactly all the tuples (s, k) ∈

∐
K S such

that (M, s) |= Preα(k).

This two-step-account of the product update construction can be seen as a pseudo-coproduct
followed by taking a submodel as illustrated by the following diagram

M ↪→
∐
α

M←↩Mα.

This perspective makes it possible to use the duality between products and coproducts in category
theory (cf. [44, 8]): coproducts can be dually characterised as products, and subobjects as
quotients. Using this result, the update ofM with the action model α, regarded as a “subobject
after coproduct” concatenation, can be dually characterised on its algebraic counterpart 〈A, V 〉
by means of a “quotient after product” concatenation, as illustrated in the following diagram:

A �
∏
α

A � Aα. (3.3)

Indeed, the pseudo-coproduct
∐
αM is dually characterised as a pseudo-product

∏
αA and

an appropriate quotient of
∏
αA is then taken to dually characterise the submodel step. This

construction we now define.

3.4.2 Dual characterisation of the intermediate model

Definition 3.4.1 (Action model on modal Boolean algebras) Given a modal Boolean al-
gebra A = 〈A,∧,∨,¬,3,0,1〉, we define an action model over A as a tuple a = (K,Ra, P rea)
such that K is a finite nonempty set, Rα ⊆ K ×K and Prea : K → A. As for Kripke models,
one can define pointed action models (a, k) over A with k ∈ a denoted ak. An action model over
a Boolean algebra A = 〈A,∧,∨,¬,0,1〉 is defined in a similar way except that Prea maps every
k ∈ K to an element from A.

Given Kripke modelM = (F , V ), an action model α = 〈K,Rα,Preα〉 induces a corresponding
action model a = 〈K,Ra, P rea〉 over the complex algebra A of F , where Ra = Rα and Prea : K →
A is defined as Prea(k) = [[Preα(k)]]M where [[−]]M : L2α → A is an extension map associated
withM. a

Definition 3.4.2 (Intermediate algebra) For every modal Boolean algebra A = 〈A,3〉 and
every action model a = 〈K,Ra, P rea〉 over A, we define the intermediate modal Boolean algebra∏

aA = 〈AK ,3∏
a A〉 as a modal expansion of the |K|-fold product AK of A, which is the Boolean

algebra that has as its carrier the set AK of set maps f : K → A, and in which the Boolean
operations are defined pointwise, i.e., for all f, g : K → A:

(f ∨AK g)(k) := f(k) ∨A g(k),

(f ∧AK g)(k) := f(k) ∧A g(k),

(¬AKf)(k) := ¬Af(k),

cAK (k) := cA. (c ∈ {0,1})
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The modalities 3∏
a Af : K → A and 2∏

a Af : K → A are defined by:

(3∏
a Af)(k) =

∨
{3Af(k′) : k′ ∈ Ra(k)}, (3.4)

(2∏
a Af)(k) =

∧
{2Af(k′) : k′ ∈ Ra(k)}. (3.5)

We refer to [105, Section 3.1] for an extensive justification of the above definition. Similar
definitions apply to �∏

a A and �∏
a A.

Any property of 3A and 2A will be inherited by 3∏
a A and 2∏

a A, respectively. Hence,
3∏

a A and 2∏
a A are normal and 2∏

a A = ¬3∏
a A¬ (cf. [105]). Similarly, it can be shown that∏

aA = 〈AK ,3∏
a A,�

∏
a A〉 is a modal Boolean algebra, the so-called tense intermediate algebra.

Moreover, in the case that A = F+ is the complex algebra of a given Kripke modelM = (F , V )
and a is an action model over A induced by an action model α over L2α, the intermediate algebra∏
aA is isomorphic to the complex algebra of the intermediate model

∐
aM [105, Proposition

3.1].
At this point, we dually characterise the product update by defining a quotient structure over

the intermediate algebra.

(Pseudo-)quotient of the intermediate algebra. Let A be a modal Boolean algebra, and
let a = 〈K,Ra, P rea〉 be an action model over A. The equivalence relation ≡a on

∏
aA =

〈AK ,3∏
a A〉 is defined as follows: for all f, g ∈ AK ,

f ≡a g iff f ∧ Prea = g ∧ Prea. (3.6)

The equivalence relation ≡a is a congruence with respect to Boolean operations. We denote by
Aa the quotient Boolean algebra AK/≡a, and by [f ]a the equivalence class of every f ∈ AK .
The subscript will be dropped whenever it causes no confusion. However, ≡a is not compatible
with the modalities, indeed f ≡a g does not imply that 3f ≡a 3g. Hence, we need to choose a
definition for the modalities on Aa. To this end, 3a and 2a, for every f ∈ AK , are defined as
follows.

3a[f ] := [3∏
a A(f ∧ Prea)] (3.7)

�a[f ] := [2∏
a A(f → Prea)]. (3.8)

The modalities 3a and �a are normal and �a = ¬3a¬. So Aa = 〈Aa,3
a〉 belongs to MBA.

Moreover, Aa behaves in the desired way, in the sense that if A = F+ for some Kripke frame F ,
we get that Aa ∼= (Fα)+, where Fα is the underlying Kripke frame of the product updateMα.
The same definition as (3.7) and (3.8) applies to �a and �a, respectively.

Definition 3.4.3 (Updated algebra) Let A = 〈A,∧,∨,¬,3,0,1〉 be a modal Boolean algebra,
and let a be an action model over A. The pseudo-quotient modal Boolean algebra Aa = 〈Aa,3

a〉
defined as above, is called the updated algebra. Similarly, we define the tense updated algebra by
expanding Aa with �a. a

3.4.3 Algebraic semantics of action model logic

In this subsection, we briefly recall the algebraic semantics of action model logic proposed by
[105, 114].

In the previous subsection we introduced the algebraic counterparts of intermediate model
and product update model. We now turn these algebras into models.
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3.4. Epistemic updates on algebras

Definition 3.4.4 (Intermediate algebraic model) Let A = 〈A, V 〉 be an algebraic model
(Def. 3.3.6), and let α = 〈K,Rα,Preα〉 be an action model. Let a be the action model induced by
α via [[−]]M. The intermediate algebraic model

∏
αA is defined as∏

α

A := 〈
∏
a

A,
∏
a

V 〉

where, (i)
∏
aA is the intermediate modal Boolean algebra, and (ii) for any p ∈ At, the valuation

(
∏
a V )(p) : K →

∏
aA is defined by taking ((

∏
a V )(p)) (k) = V (p). a

Let us look at Diagram (3.3) again. Assume A is a modal Boolean algebra and a =
(K,Ra, P rea) is an action model over A. As Aa is the pseudo-quotient of

∏
aA, there is a

quotient map q :
∏
aA → Aa mapping each f ∈

∏
aA to the equivalence class [f ]a in Aa. It is

easy to check that the quotient map is monotone. On the other hand, one can define a mapping
i′ : Aa →

∏
aA by taking i′([f ]) = f ∧ Prea for all [f ] ∈ Aa, which is monotone, as well. It is not

difficult to check that the pair (q, i′) forms an adjunction. In addition, for each point k of K,
the projection on the k-indexed coordinate πk :

∏
aA→ A maps every f ∈

∏
aA to f(k). Let us

summarize what we have learned so far in the following diagram.

A
∏
aAπk

oooo
q
// // Aa

i′
ww

(3.9)

Definition 3.4.5 (Updated algebraic model) Let A = 〈A, V 〉 be an algebraic model, α =
〈K,Rα,Preα〉 is an action model. Let a be the action model induced by α via V . The updated
algebraic model Aα is defined as

Aα := 〈Aa, Va〉

where Va : At→ Aa is the map such that Va(p) = q ◦
∏
a V (p) = [

∏
a V (p)]a. a

Finally, here is how we obtain an algebraic semantics for AML.

Definition 3.4.6 (Algebraic semantics of AML) For every algebraic model A = 〈A, V 〉, the
extension map [[−]]A : L2α → A is defined recursively as follows:

[[p]]A := V (p)

[[¬ϕ]]A := ¬A[[ϕ]]A
[[2ϕ]]A := 2A[[ϕ]]A

[[ϕ • ψ]]A := [[ϕ]]A •A [[ψ]]A ( for • ∈ {∨,∧,→})
[[〈αk〉ϕ]]A := [[Preα(k)]]A ∧A πk ◦ i

′([[ϕ]]Aα)

[[[αk]ϕ]]A := [[Preα(k)]]A →A πk ◦ i′([[ϕ]]Aα)

where α = 〈K,Ra, P rea〉 ∈ AMAML is an action model and k ∈ K. a

Lemma 3.4.7 [105, Lemma 7.5,7.6,7.8] Let A = (A, V ) be an algebraic model and let α be a
pointed action model.

1. [[〈αk〉(ϕ ∨ ψ)]]A = [[〈αk〉ϕ ∨ 〈αk〉ϕ]]A.

2. [[[αk](ϕ ∨ ψ)]]A = [[Preα(k)]]A → ([[〈αk〉ϕ]]A ∨ [[〈αk〉ψ]]A).
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Chapter 3. Algebraic semantics of refinement action logic

3. [[〈αk〉(ϕ ∧ ψ)]]A = [[〈αk〉ϕ ∧ 〈αk〉ϕ]]A.

4. [[[αk](ϕ ∧ ψ)]]A = [[[αk]ϕ ∧ [αk]ψ]]A.

5. [[〈αk〉2ϕ]]A = [[Preα(k)]]A ∧
∧
{2[[[αj ]ϕ]]A : j ∈ Rα(k)}.

6. [[〈αk〉3ϕ]]A = [[Preα(k)]]A ∧
∨
{3[[〈αj〉ϕ]]A : j ∈ Rα(k)}.

7. [[〈αk〉¬ϕ]]A = [[Preα(k)]]A ∧ ¬[[〈αk〉ϕ]]A.

8. [[[αk]¬ϕ]]A = [[Preα(k)]]A → ¬[[[αk]ϕ]]A. a

3.5 Algebraic semantics of refinement action modal logic

In this section, we present our main result, namely an algebraic semantics for RAML. It is an
extension of the algebraic semantics for AML of the previous section. First we introduce the
notion of refinement morphism. It is the analogue on normal boolean algebras with operators of
the notion of refinement between Kripke models. Then we define the notion of refinement algebra.
This is used in the definition of the algebraic semantics of refinement action modal logic. Finally
we prove that RAML is sound and complete with respect to this semantics.

In the sequel, we assume A = 〈A, V 〉 is an algebraic model in which A is a complete modal
Boolean algebra.

Let us expand on how the refinement relation between Kripke models can be dualized as
a relation between modal Boolean algebras. Let R be a non-empty binary relation between
M = 〈S,R, V 〉 andM′ = 〈S′, R′, V ′〉. Let s ∈ S, then the (Zag) condition from Definition 3.2.6
can be rewritten as follows:

R′[R(s)] ⊆ R [R(s)]. (3.10)

In light of the Jónsson-Tarski theorem, (3.10) can be dually characterised on algebras by mean of
what we call refinement morphisms. We prove that refinement morphisms are right adjoints.

Definition 3.5.1 (Refinement morphism) Let A and A′ be two modal Boolean algebras. A
map g : A → A′ is a refinement morphism if (i) it preserves 0 and ∨, i.e., g(0A) = 0A′ and
g(x ∨A y) = g(x) ∨A′ g(y) for every x, y ∈ A, and (iii) satisfies the following inequality

(AlgZag) �A′ ◦ g ≤ g ◦ �A

where �A and �A′ are the left adjoints of 2A and 2A′ , respectively. a

The AlgZag inequality is the dual of the Zag condition in the refinement relation (cf. page 40).
Recall that by Theorem 3.2.19, for every formula ϕ ∈ L2α∀ and every Kripke modelM, there

is a multi-pointed action model αϕ = (〈Kϕ, Rϕα,Pre
ϕ
α〉,Kϕ) such thatMαϕ is a refinement ofM

and (M, s) |= ∃ϕ iff (Mαϕ , (s, k)) |= ϕ for some k ∈ Kϕ. By the dual characterisation introduced
in Subsection 3.4.1, for a given formula ϕ ∈ L2α∀, and for all algebraic model A = 〈A, V 〉,
αϕ = 〈Kϕ, Rϕα, P re

ϕ
α〉 induces an action model aϕ = 〈Kϕ, Rϕa , P re

ϕ
a 〉 over A, and we obtain the

updated algebra Aϕ := Aaϕ (see Definition 3.4.3), and a pair of maps (gϕ, fϕ) as follows:

52



3.5. Algebraic semantics of refinement action modal logic

gϕ : A→ Aϕ fϕ : Aϕ → A (3.11)

x 7→ [hx] [h] 7→
∨

k∈Kϕ

(h(k) ∧ Preϕa (k))

where hx : Kϕ → A is the map defined by hx(k) := x ∧ Preϕa (k) for every k ∈ Kϕ. We denote by
Aϕ the updated algebraic model Aαϕ = (Aϕ, V ϕ).

Remark 3.5.2 One can easily show that fϕ([h]) =
∨
k∈Kϕ π

ϕ
k ◦ i

′ϕ([h]) for every [h] ∈ Aϕ, where
πϕk :

∏
aϕ A→ A and i′ϕ : Aϕ →

∏
aϕ A are defined in the diagram (3.9). a

Lemma 3.5.3 For all algebraic model A = 〈A, V 〉 and all formula ϕ ∈ L2α∀, we have that

1. the map gϕ is a refinement morphism,

2. the map fϕ preserves arbitrary joins,

3. fϕ a gϕ.

4. fϕ([[ψ]]Aϕ) = [[〈αϕKϕ〉ψ]]A, for all ϕ,ψ ∈ L2α∀, where αϕ = (Kϕ, Rϕα,Pre
ϕ
α) is an action

model associated with ϕ and Aϕ = (Aϕ, V ϕ) is the update algebra. a

Proof Item 1. It follows from [105, Fact 3.7(4)] and Lemma 3.2.20 that for every ϕ ∈ L2α∀, gϕ
preserves 0 and ∨. It only remains to check that gϕ satisfies the (AlgZag) condition. To this end,
we first note that for every modal Boolean algebra A, and every action model a = 〈K,Ra, P rea〉
over A, [105, Fact 3.5(2)] shows that for every h, h′ ∈

∏
aA,

[h]a ≤ [h′]a ⇐⇒ h ∧ Prea ≤ h′ ∧ Prea (3.12)

Now, let x ∈ A. It follows from the definition of gϕ and (3.7) that

(�Aϕ ◦ gϕ)(x) =
[
�∏

α A(hx ∧ Preϕa )
]
a

and gϕ ◦ �A(x) = [�Ax]a .

We will show that for every k ∈ Kϕ,(
�∏

α A(hx ∧ Preϕa ) ∧ Preϕa
)

(k) ≤ (�Ax ∧ Preϕa ) (k).

Assume k ∈ Kϕ, we have(
�∏

α A(hx ∧ Preϕa ) ∧ Preϕa
)

(k)

=
∨
{�A(hx ∧ Preϕa )(j) : j ∈ Ra(k)} ∧ Preϕa (k) (3.4)

≤
∨
{�Ahx(j) ∧ �APre

ϕ
a (j) : j ∈ Ra(k)} ∧ Preϕa (k) (�(x ∧ y) ≤ �x ∧ �y)

=
∨
{�A(x ∧ Preϕa (j)) ∧ �APre

ϕ
a (j) : j ∈ Ra(k)} ∧ Preϕa (k) (Def. hx)

=
∨
{�Ax ∧ �Preϕa (j) ∧ �APre

ϕ
a (j) : j ∈ Ra(k)} ∧ Preϕa (k) (�(x ∧ y) ≤ �x ∧ �y)

≤
∨
{�Ax ∧ �APre

ϕ
a (j) : j ∈ Ra(k)} ∧ Preϕa (k) (x ∧ x = x)

≤
∨
{�Ax : j ∈ Ra(k)} ∧ Preϕa (k) (�x ∧ �y ≤ �x)

≤ �Ax ∧ Preϕa (k) (Kϕ finite, x ∨ x ∨ ... ∨ x︸ ︷︷ ︸
n−times

= x)
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Therefore, gϕ is a refinement morphism.
Item 2. We first show that fϕ is monotone. Let [h]a, [h

′] ∈ Aϕ be such that [h] ≤ [h′].
It follows from (3.12) that h(k) ∧ Preϕa (k) ≤ h′(k) ∧ Preϕa (k) for every k ∈ Kϕ. Hence,∨
k∈K (h(k) ∧ Preϕa (k)) ≤

∨
k∈K (k(k) ∧ Preϕa (k)), which shows that fϕ([h]) ≤ fϕ([k]). Thus,

fϕ preserves 0. In order to prove that fϕ preserves arbitrary joins, we have to show that
fϕ(
∨
i∈I [hi]) =

∨
i∈I f

ϕ([hi]), where [hi] ∈ Aϕ and i is taken from some index set I. First, as A
is complete modal Boolean algebra, the intermediate and updated algebras are complete, as well.
Thus,

∨
i∈I [hi] = [

∨
i∈I hi], where [hi] ∈ Aϕ. So, we have

fϕ

(∨
i∈I

[hi]

)
= fϕ

([∨
i∈I

hi

])

=
∨

k∈Kϕ

(
(
∨
i∈I

hi(k)) ∧ Preϕa (k)

)
(Def. of fϕ)

=
∨

k∈Kϕ

∨
i∈I

(hi(k) ∧ Preϕa (k)) (
∨
i∈I xi ∧ y =

∨
i∈I(xi ∧ y))

=
∨
i∈I

∨
k∈Kϕ

(hi(k) ∧ Preϕa (k)) (Kϕ finite)

=
∨
i∈I

(fϕ[hi]) . (Def. fϕ)

For item 3 we need to show that for every x ∈ A, and [h] ∈ Aϕ, [h] ≤ gϕ(x) iff fϕ([h]) ≤ x. By
(3.12) and the definition of gϕ and fϕ, it is equivalent to show that h ∧ Preϕa ≤ hx ∧ Preϕa iff∨
k∈Kϕ h(k) ∧ Preϕa (k) ≤ x. Let x ∈ A, then for all k ∈ Kϕ we have

h(k) ∧ Preϕa (k) ≤ hx(k) ∧ Preϕa (k)

iff h(k) ∧ Preϕa (k) ≤ (x ∧ Preϕa (k)) ∧ Preϕa (k) (Def. hx)
iff h(k) ∧ Preϕa (k) ≤ x ∧ Preϕa (k) ≤ x

iff
∨

k∈Kϕ

(h ∧ Preϕa ) (k) ≤ x (Def.
∨
)

iff fϕ([h]) ≤ x. (Def. fϕ)

Item 4. Without loss of generality, from Fact 3.2.20 we may assume ϕ ∈ L2α. By Def. 3.4.6, we
have [[〈αϕKϕ〉ψ]]A =

∨
k∈Kϕ [[Preϕα(k)]]A∧π

ϕ
k ◦i

′ϕ([[ψ]]Aϕ). For the sake of a smooth presentation, let
[hψ] := [[ψ]]Aϕ . As noted in Remark 3.5.2, πϕk ◦ i

′ϕ([hψ]) = Preϕa (k) ∧ hψ(k). Since [[Preϕα(k)]]A =
Preϕa (k), we have [[〈αϕKϕ〉ψ]]A =

∨
k∈Kϕ Pre

ϕ
a (k) ∧ hψ(k). Now, we compute fϕ([[ψ]]Aϕ). By

definition of fϕ, we have
fϕ([[ψ]]Aϕ) =

∨
k∈Kϕ

hψ(k) ∧ Preϕa (k). (3.13)

where [hψ] := [[ψ]]Aϕ . Hence f
ϕ([[ψ]]Aϕ) = [[〈αϕKϕ〉ψ]]A, as desired. �

The next lemma illustrates that the refinement relation between two Kripke models induces a
refinement morphism between the complex algebras associated with them, and vice versa.

Lemma 3.5.4 LetM = 〈S,R, V 〉 andM′ = (S′, R′, V ′) be two Kripke models with underlying
frames F and F ′, respectively. Assume that A = 〈A, V 〉 and A′ = 〈A′, V ′〉 are algebraic models
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3.5. Algebraic semantics of refinement action modal logic

such that A = F+ and A′ = F ′+. Then, (M, s) � (M′, s′) iff there exists a refinement morphism
g : A → A′ with {s′} ≤ g({s}) such that g(V (p)) ≤ V ′(p) and g−1(V ′(p)) ≤′ V (p) for every
p ∈ At. a

Proof For the direction from left to right, assume that (M, s) � (M′, s′). There is a refinement
R from M to M′ such that sRs′. We define the map g : A → A′ by g(X) = R[X], for every
X ⊆ S. It is easy to see that g is a refinement morphism with {s′} ≤ g({s}). It remains to show
that for every p ∈ At, g(V (p)) ≤ V ′(p) and g−1(V ′(p)) ≤′ V (p). Let p ∈ At. We first note that
≤ and ≤′ over A and A′ are interpreted as inclusion over P(S) and P(S′), respectively. So, if
s′ ∈ g(V (p)), then by the definition of g, s′ ∈ R[V (p)]. It implies that there is s ∈ V (p) such that
s′ ∈ R(s). As R is a refinement, by (Atoms), s ∈ V (p) iff s′ ∈ V ′(p). Thus, s′ ∈ V ′(p). The
other inequality is proved in a similar way.

For the other direction, let g : A→ A′ be a refinement morphism as in the statement of the
lemma. Define a binary relation on S × S′ by: R = {(s, s′) ∈ S × S′ : s′ ∈ f({s})}. It is easy to
see that R is a refinement. �

3.5.1 Algebraic model of refinement modality

We aim at proposing an algebraic semantics for the refinement quantifiers ∃, i.e. for all algebraic
model A = 〈A, V 〉, we want to find a modal Boolean algebra AA and a map F : AA → A such
that for any ϕ ∈ L2α∀,

J∃ϕKA = F (JϕKAA).

To do so, we introduce a modal Boolean algebra AA such that for each ϕ ∈ L2α∀, Aϕ is a
subalgebra of AA.

Definition 3.5.5 (Refinement algebra) Let A be a modal Boolean algebra, and let
(Aϕ)ϕ∈L2α∀ be the family of all updated algebras. The refinement algebra of A is defined as
the product of this family:

AA :=
∏

ϕ∈L2α∀

Aϕ.

The elements of AA are tuples (xϕ)ϕ∈L2α∀ where xϕ ∈ Aϕ. When there is no risk of confusion, we
write (xϕ)ϕ instead of (xϕ)ϕ∈L2α∀ and A instead of AA. The operations are defined coordinatewise
as follows: for all (xϕ)ϕ, (y

ϕ)ϕ ∈ A,

Constants Negation
0A = (0ϕ)ϕ, 1A = (1ϕ)ϕ ¬A(xϕ)ϕ = (¬Aϕxϕ)ϕ
Join and meet Modal operators
(xϕ)ϕ ∨A (yϕ)ϕ = (xϕ ∨Aϕ yϕ)ϕ 3A(xϕ)ϕ = (3Aϕx

ϕ)ϕ
(xϕ)ϕ ∧A (yϕ)ϕ = (xϕ ∧Aϕ yϕ)ϕ 2A(xϕ)ϕ = (2Aϕx

ϕ)ϕ

a

The product of a family of modal Boolean algebras {Ai}i∈I is a modal Boolean algebra, where I is
a (possibly uncountable) index set [34, Section 7]. Thus, A is a modal Boolean algebra. Notice that
one can also define the modal operators �A and �A pointwise as follows: �A(xϕ)ϕ =

(
�Aϕx

ϕ
)
ϕ

and �A(xϕ)ϕ =
(
�Aϕx

ϕ
)
ϕ
, for any (xϕ)ϕ ∈ A, such that �A a 2A and 3A a �A.

By Lemma 3.5.3 for every modal Boolean algebra A and for every ϕ ∈ L2α∀ there is a
refinement morphism gϕ from A to Aϕ. So it seems reasonable to expect that we can define a
refinement morphism from A to A. And indeed we can.
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Definition 3.5.6 For every modal Boolean algebra A, let the maps GA and FA be defined as
follows:

GA : A→ AA FA : AA → A

x 7→ (
∏

ϕ∈L2α∀

gϕ)(x) ([h]ϕ)ϕ 7→
∨
ϕ

fϕ([h]ϕ)

where gϕ : A→ Aϕ and fϕ : Aϕ → A are the maps defined in (3.11). a

For the sake of readability and when it causes no confusion, we drop the subscripts and write G
instead of GA and F instead of FA.

The next lemma is an analogue of Lemma 3.5.3 and shows that GA is indeed a refinement
morphism and together with FA forms an adjunction.

Lemma 3.5.7 Let A be a modal Boolean algebra, and let AA be the refinement algebra of A. We
have that

1. the map GA is a refinement morphism,

2. the map FA preserves 0 and finite joins,

3. FA a GA. a

Proof Item 1. Let us show that GA is a refinement morphism. Since for each ϕ ∈ L2α∀, gϕ
preserves 0Aϕ and ∨Aϕ , it follows that

∏
ϕ∈L2α∀

gϕ : A→
∏
ϕ∈L2α∀ A

ϕ also satisfies those properties.

It remains to prove that �A ◦ GA ≤ GA ◦ �A. It follows from Lemma 3.5.3 that each gϕ is a
refinement morphism and satisfies (AlgZag); that is: �Aϕ ◦ gϕ ≤ gϕ ◦ �A, for every ϕ ∈ L2α∀.
Let x ∈ A, we have that

�A ◦GA(x) = �A (gϕ(x))ϕ∈L2α∀ (Def. G)

= (�Aϕ(gϕ)(x))ϕ∈L2α∀ (Def. �A)

≤ (gϕ(�A(x)))ϕ∈L2α∀ (�Aϕ ◦ gϕ ≤ gϕ ◦ �A)

= (
∏

ϕ∈L2α∀

gϕ) (�A(x))

= GA ◦ �A(x). (Def. G)

Item 2. It is easy to see that FA is monotone and preserves 0. We proceed to show that FA
preserves binary joins and then by induction we can easily prove that it preserves finite joins. Let
([h]ϕ)ϕ∈L2α∀ , ([k]ϕ)ϕ∈L2α∀ ∈ A. Then

FA

((
([h]ϕ)ϕ ∨ ([k]ϕ)ϕ

))
=

∨
ϕ∈L2α∀

fϕ
((

([h]ϕ)ϕ ∨ ([k]ϕ)ϕ∈L2α∀
))

(Def. FA)

=
∨

ϕ∈L2α∀

fϕ([h]ϕ)ϕ ∨ fϕ([k]ϕ)ϕ (Lemma 3.5.3.2)

=
∨

ϕ∈L2α∀

fϕ([h]ϕ)ϕ ∨
∨

ϕ∈L2α∀

fϕ([k]ϕ)ϕ (∗)

= FA
(
([h]ϕ)ϕ ∨ FA

(
([k]ϕ)ϕ

)
. (Def. FA)

The equality marked (∗) holds because arbitrary joins distributes over finite joins.
Item 3 is immediate and follows from the fact that for each ϕ ∈ L2α∀, gϕ a fϕ. �
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It is now time to introduce the algebraic semantics of refinement action model logic.

Definition 3.5.8 (Algebraic semantics of RAML) Let A = 〈A, V 〉 be an algebraic model.
We define the refinement of A as the algebraic model E = (A,V) where A is the refinement algebra
of A, and V : At→ A where V(p) = (FA ◦ V )(p). The extension map J−K : L2α∀ → A of V over
L2α∀ is defined recursively as in Def. 3.4.6, plus the following additional clause

[[∃ϕ]]A := FA([[ϕ]]E).

We will need the next lemma to show the soundness of RAML with respect to the algebraic
semantics.

Lemma 3.5.9 For any formula ϕ ∈ L2α∀, we have: FA([[3ϕ]]E) ≤ 3FA([[ϕ]]E). a

Proof Fix an algebraic model A = 〈A, V 〉 and a formula ϕ ∈ L2α∀. We want to prove
FA([[3ϕ]]E) ≤ 3FA([[ϕ]]E).

FA([[3ϕ]]E) =
∨
γ

fγ([[3ϕ]]Aγ ) =
∨
γ

(
[[〈αγKγ 〉3ϕ]]A

)
(Def. F & Lemma 3.5.3(4))

=
∨
γ

∨
k∈Kγ

[[Preγα(k)]]A ∧ [[
∨

j∈Rγα(k)

3〈αγj 〉ϕ]]A

 (Lemma 3.4.7(6))

≤
∨
γ

∨
k∈Kγ

[[
∨

j∈Rγα(k)

3〈αγj 〉ϕ]]A (x ∧ y ≤ x)

=
∨
γ

∨
k∈Kγ

3[[
∨

j∈Rγα(k)

〈αγj 〉ϕ]]A (3(ϕ ∨ ψ) = 3ϕ ∨3ψ)

≤
∨
γ

∨
k∈Kγ

3[[
∨
k∈Kγ

〈αγk〉ϕ]]A (Rγα(k) ⊆ Kγ)

=
∨
γ

∨
k∈Kγ

3fγ([[ϕ]]Aγ ) (Lemma 3.5.3(4))

=
∨
γ

3fγ([[ϕ]]Aγ ) = 3
∨
γ

fγ([[ϕ]]Aγ )

= 3FA([[ϕ]]E) (Def. FA)

�

Theorem 3.5.10 (Soundness) The axiomatisation RAML is sound with respect to the algebraic
RAML-models. a

Proof We need to show that for any formula ϕ ∈ L2α∀, if `RAML ϕ then [[ϕ]]A = 1A for all
algebraic models A = 〈A, V 〉. The proof is by well-founded induction on the structure of ϕ refined
by refinement modal depth (maximum length of ∃ modalities binding each other) defined in the
obvious way, i.e., we consider the order < such that: if the refinement quantifier depth of ϕ is
smaller than that of ψ, then ϕ < ψ, whereas if they are the same, then ϕ < ψ if ϕ is a subformula
of ψ. We must show that for all ϕ ∈ LB2α,
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(For all ψ < ϕ : if `RAML ψ then for all algebraic models A = 〈A, V 〉, [[ψ]]A = 1A)

⇒
(if `RAML ϕ then for all algebraic models A = 〈A, V 〉, [[ϕ]]A = 1A).

So, suppose that ϕ ∈ L2α∀ and for every ψ ∈ L2α∀ with ψ < ϕ, if `RAML ψ then for all algebraic
models A = 〈A, V 〉, [[ψ]]A = 1A. We must show that if `RAML ϕ then for all algebraic models
A = 〈A, V 〉, [[ϕ]]A = 1A. The soundness of axioms and rules of AML follows from the same
reasoning used in [105] to show that AML is sound with respect to algebraic AML-models
because the definition of [[−]]A (Def. 3.5.8) for the L2α-fragment of L2α∀ is identical to the
algebraic semantics defined in [105]. So we only need to consider the axioms and rules of RML.

• Rule NecR. Suppose that ϕ ∈ L2α∀ and for all algebraic models A = 〈A, V 〉, [[ϕ]]A = 1A.
We will show that [[∀ϕ]]A = 1A, for all algebraic models A = 〈A, V 〉. Let A = 〈A, V 〉 be an
algebraic model. Since [[ϕ]]A = 1A, we have that [[¬ϕ]]A = 0A. Then we have

[[∀ϕ]]A = [[¬∃¬ϕ]]A = ¬FA([[¬ϕ]]A) = ¬FA([[0A]]A)

By Lemma 3.5.7(2), we have that FA(0A) = 0A. Hence, [[∀ϕ]]A = ¬0A = 1A.

• Axiom RProp. It suffices to show J∃pKA = JpKA and J∃¬pKA = J¬pKA. Let p ∈ At. First
of all, by Def. 3.4.4 we have

[[p]]Aϕ = [
∏
aϕ

V (p)].

Then for all formula ϕ ∈ L2α∀ and by the definition of fϕ, we have

fϕ([[p]]Aϕ) =
∨

k∈Kϕ

∏
aϕ

V (p)(k) ∧ Preϕa (k) =
∨

k∈Kϕ

V (p) ∧ Preϕa (k).

Hence, fϕ([[p]]Aϕ) ≤ V (p). But since ϕ was arbitrary, it follows by the definition of least
upper bound that ∨

ϕ∈L2α∀

fϕ([[p]]Aϕ) ≤ [[p]]A.

So, by the definition of V, and the definition of FA, we obtain that

FA([[p]]E) ≤ [[p]]A.

For the other direction, according to the construction of multi-pointed action model αpKp

for the atomic proposition p [84, Lemma V.2], [[〈αpKp〉p]]A = [[p]]A. This implies that
[[p]]A = fp([[p]]Ap) and [[p]]A ≤

∨
ϕ∈L2α∀ f

ϕ([[p]]Aϕ) = FA([[p]]E), as required. The other
identity for ¬p can be proved in a similar way.

• Axiom R. We need to show for a given algebraic model A = 〈A, V 〉, [[∀(ϕ→ ψ)]]A ≤
[[∀ϕ→ ∀ψ]]A. Since ∀ := ¬∃¬, we observe that

[[∀(ϕ→ ψ)]]A = [[¬∃¬(ϕ→ ψ)]]A = ¬FA([[¬(ϕ→ ψ)]]E)

and
[[∀ϕ→ ∀ψ]]A = [[∃¬ϕ ∨ ¬∃¬ψ]]A = FA([[¬ϕ]]E) ∨ ¬FA([[¬ψ]]E).

Hence, it is enough to show that
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3.5. Algebraic semantics of refinement action modal logic

¬FA([[¬(ϕ→ ψ)]]E) ≤ FA([[¬ϕ]]E) ∨ ¬FA([[¬ψ]]E)

Note that since ¬ϕ∨¬ψ ↔ ¬ϕ∨¬(ϕ→ ψ), it follows that [[¬ϕ ∨ ¬ψ]]E = [[¬ϕ ∨ ¬(ϕ→ ψ)]]E .
Hence, FA([[¬ϕ ∨ ¬ψ]]E) = FA([[¬ϕ ∨ ¬(ϕ→ ψ)]]E)). But FA preserves ∨, hence

FA([[¬ϕ]]E) ∨ FA([[¬ψ]]E) = FA([[¬ϕ]]E) ∨ FA([[¬(ϕ→ ψ)]]E)).

By applying negation on both sides we get

¬FA([[¬ϕ]]E) ∧ ¬FA([[¬ψ]]E) = ¬FA([[¬ϕ]]E) ∧ ¬FA([[¬(ϕ→ ψ)]]E)

And this implies that

¬FA([[¬ϕ]]E) ∧ ¬FA([[¬(ϕ→ ψ)]]E) ≤ ¬FA([[¬ϕ]]E) ∧ ¬FA([[¬ψ]]E) (3.14)

Using that in every Boolean algebra, x ∧ y ≤ x ∧ z implies that y ≤ ¬x ∨ z, (3.14) implies
that ¬FA([[¬(ϕ→ ψ)]]E) ≤ FA([[¬ϕ]]E) ∨ ¬FA([[¬ψ]]E).

• Axiom RK. We need to show that for every algebraic model A = 〈A, V 〉, and all Φ ⊆ L2α∀,
[[∃∇Φ]]A = [[

∧
3∃Φ]]A. We first show [[∃∇Φ]]A ≤ J

∧
3∃ΦKA.

[[∃∇Φ]]A = FA

[[2

∨
ϕ∈Φ

ϕ

 ∧ ∧
ϕ∈Φ

3ϕ]]E


≤ FA

[[
∧
ϕ∈Φ

3ϕ]]E

 ≤ ∧
ϕ∈Φ

FA([[3ϕ]]E) (monotony of FA)

≤
∧
ϕ∈Φ

3FA([[ϕ]]E) = [[
∧

3∃Φ]]A. (Lemma 3.5.9)

To show the other inequality, i.e., J
∧
3∃ΦKA ≤ [[∃∇Φ]]A, we first prove that∧

ϕ∈Φ

3FA([[ϕ]]E) ≤ f
∇Φ([[∇Φ]]A∇Φ). (3.15)

Let α∇Φ be the action model constructed by Hales as shown in Theorem 3.2.19. By the
definition of f∇Φ and the structure of α∇Φ, we have

f∇Φ(J∇ΦKA∇Φ) =
∨

k∈K∇Φ

J〈α∇Φ
k 〉∇ΦKA (Lemma 3.5.3(4))

= J〈α∇Φ
k? 〉∇ΦKA ∨

∨
ϕ∈Φ

∨
k∈Kϕ

J〈α∇Φ
k 〉∇ΦKA.

Therefore,
J〈α∇Φ

k? 〉∇ΦKA ≤ f∇Φ(J∇ΦKA∇Φ). (3.16)

Also, by the definition of ∇Φ and Lemma 3.4.7, we obtain that

J〈α∇Φ
k? 〉∇ΦKA = J〈α∇Φ

k? 〉(2
∨
ϕ∈Φ

ϕ ∧
∧
ϕ∈Φ

3ϕ)KA
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= J〈α∇Φ
k? 〉2

∨
ϕ∈Φ

ϕKA ∧ J〈α∇Φ
k? 〉

∧
ϕ∈Φ

3ϕKA.

Moreover, for every pointed action model αk = (〈K,Rα,Preα〉, k) over A, a simple semantic
argument shows that

[[〈αk〉γ]]A = [[Preα(k)]]A ∧ [[[αk]γ]]A (3.17)

So we have that

[[〈α∇Φ
k∗ 〉2

∨
ϕ∈Φ

ϕ]]A = [[Pre∇Φ
α (k∗)]]A ∧ [[[α∇Φ

k∗ ]2
∨
ϕ∈Φ

ϕ]]A

and
[[〈α∇Φ

k∗ 〉
∧
ϕ∈Φ

3ϕ]]A = [[Pre∇Φ
α (k∗)]]A ∧ [[[α∇Φ

k∗ ]
∧
ϕ∈Φ

3ϕ]]A.

By [84, Lemma V.2], it follows that `RAML [α∇Φ
k∗ ]2

∨
ϕ∈Φ ϕ and `RAML [α∇Φ

k∗ ]
∧
ϕ∈Φ 3ϕ.

Then since the refinement modal depth of [α∇Φ
k∗ ]2

∨
ϕ∈Φ ϕ and [α∇Φ

k∗ ]
∧
ϕ∈Φ 3ϕ is one less

than that of
∧
ϕ∈Φ 3∃ϕ, we can now use induction and it follows that [[[α∇Φ

k∗ ]2
∨
ϕ∈Φ ϕ]]A =

1A and [[[α∇Φ
k∗ ]

∧
ϕ∈Φ 3ϕ]]A = 1A. Hence, we obtain that

[[〈α∇Φ
k∗ 〉∇Φ]]A = [[Pre∇Φ

α (k∗)]]A = [[
∧
ϕ∈Φ

3∃ϕ]]A =
∨
ϕ∈Φ

FA([[ϕ]]E). (3.18)

The above identity together with (3.16) implies (3.15) holds, i.e.,∧
ϕ∈Φ

FA([[ϕ]]E) ≤ f
∇Φ(J∇ΦKA∇Φ).

It then follows from the definition of FA that∧
ϕ∈Φ

3FA([[ϕ]]E) ≤ f
∇Φ(J∇ΦKA∇Φ) (3.15)

≤
∨

ϕ∈L2α∀

fϕ([[∇Φ]]A∇Φ)

= FA([[∇Φ]]E).

Therefore, [[∃∇Φ]]A = [[
∧
ϕ∈Φ 3∃ϕ]]A, as desired.

�

Theorem 3.5.11 (Completeness) The axiomatisation RAML is complete with respect to the
algebraic RAML-models, i.e., for every formula ϕ ∈ L2α∀, and for every algebraic model
A = 〈A, V 〉, if [[ϕ]]A = 1A then `RAML ϕ. a

Proof Let ϕ ∈ L2α∀ be such that [[ϕ]]A = 1A for every algebraic model A = 〈A, V 〉. Then
there is a formula ψ in the sublanguage L2 that does not contain any refinement quantifier [31,
Prop. 36] or action model quantifiers [49] such that `RAML ϕ↔ ψ. By soundness, we have that
[[ϕ↔ ψ]]A = 1A and since [[ϕ]]A = 1A, it follows that [[ψ]]A = 1A. From the completeness of K
with respect to algebraic models [25], we obtain that ψ is a theorem in K. This implies that ϕ is
a theorem in RAML [31, Prop. 37]. �
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3.6 Conclusion and future work

We have proposed an algebraic semantics for refinement action modal logic. Using action model
synthesis and the algebraic characterisation of epistemic updates, we have introduced the abstract
notion of refinement on modal Boolean algebras, and showed the soundness and completeness of
RAML with respect to this algebraic semantics.

Our methodology builds on and further develops recent work [105, 114] applying duality theory
to dynamic epistemic logic. As part of this research program, proof systems for intuitionistic
AML have been introduced [80, 71], and gave rise to the novel methodology of multi-type
display calculi [70], which has been applied not only to AML [72], but also to propositional
dynamic logic [69] and inquisitive logic [73]. A natural direction is to pursue this research program
also on refinement modal logic. We plan to weaken the classical propositional modal logical
base to a non-classical propositional modal logical base, and to develop multi-type calculi for
such non-classical modal logics with refinement quantifiers, for example refinement intuitionistic
(modal) logic.

Another step to take would be to generalise the algebraic semantics of RAML to the multi-
agent framework. In this framework, the refinement modality ∃ is indexed by an agent, hence we
have modalities {∃i}i∈Ag where Ag is the set of agents. The only difficulty in generalising our
result is to prove, algebraically, the soundness of the additional axioms:

∃i∇jΦ↔ ∇j{∃iϕ}ϕ∈Φ where i 6= j

∃i
∧
j∈J
∇jΦj ↔

∧
j∈J
∃i∇jΦj where J ⊆ Ag.

Indeed, the soundness proofs can be quite involved, as the reader can see in Section 3.5. A good
proof system for the multi-agent refinement modal logic would be useful.
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You are lost on Place Stanislas in the historical center of Nancy and you need to catch
a train. So you accost a friendly and French looking person and there you go, pointing
to the right: “Is this the way to the railway station?” “Oui.” (Yes.) Merci, etc., you
each go your way, but, a few moments later, while still remaining in some doubt, you
ask another person, and then pointing in the opposite direction: “Is this the way to
the railway station?” “Oui.” What will you do? (First lesson: when asking directions,
never suggestively point in one direction.) You will probably resolve the inconsistency
by yet further communication (or consultation of a map, say) before you continue
on your way. And sure enough, the next person you ask does not even answer the
question and shrugs her shoulders before walking on. Inconsistent or absent responses
in dynamic interaction are just as common as inconsistency in static information.
Propositions that can be true, false, both (true and false), or neither are modelled with
bilattices. In this work we investigate the dynamic modal logic of bilattices, where not
only propositions but also actions have four-valued features.
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4.1. Introduction

4.1 Introduction

In the past decades, reasoning about knowledge and information change has gained a prominent
place in various areas of artificial intelligence and computer science such as distributed systems
[87], protocol verification [88], and game theory [7]. In these areas agents have to deal with
incomplete and inconsistent information, and by incomplete information we mean lacking or
missing information. For example, in distributed systems, agents receive information from multiple
sources that may be inconsistent. Moreover, in real-world situations, agents do not have complete
information about all aspects of the world and their reasoning power is bounded by thresholds
such as time and limited memory [55]. Under such circumstances, applying a classical approach to
model information change may not be appropriate because it suffers from the logical omniscience
problem [154]; that is, the agents know all the consequences of what they know. As a result, they
cannot hold contradictory knowledge without “knowing” every sentence of the language, because a
contradiction classically entails any formula. Several approaches have been proposed to formalise
inconsistent and incomplete information in the literature, see e.g. [15, 16, 108, 106, 55, 57]. To
set the stage for future discussion, we are going to review the most closely related works. In [15]
Belnap proposed a four-valued logic whose semantics involves, besides the classical truth values t
and f, two intermediate values: > (both true and false) for handling inconsistent information and
⊥ (neither true nor false) for incomplete information. In this logic, each atomic formula can be
assigned one of the four values chosen from the set 4 = {t, f,⊥,>}. Belnap observed that his
four values can be arranged in a lattice in two ways: ordering them either by information degree
(the knowledge order ≤k) or by the truth degree (the truth order ≤t). The set 4 together with
≤k and ≤t forms two complete, distributive lattices, which are shown in Figure 4.1.

>

f t

⊥≤k

t

⊥ >

f≤t

Figure 4.1. The four-element Belnap lattice in its two orders, the bilattice FOUR

Given two truth values x and y, x ≤t y can be read as “y is at least as true as x”, while x ≤k y
means that “y contains at least as much information as x”.

Belnap’s four-valued logic inspired Levesque to address the logical omniscience problem. In
[108] he proposed a logic of explicit and implicit belief. Explicit beliefs are actively entertained by
the agent, whereas implicit beliefs include the logical consequences of her explicit beliefs. This
logic has a modality for explicit belief and a modality for implicit belief. The interpretation of
these modalities is based on situation semantics [14]. Unlike in possible worlds, in a situation
a sentence can be true, false, both true and false (incoherent situation), or neither true nor
false (incomplete situation). From our perspective, [108] establishes a significant link between
many-valued logics and epistemic logics. An objection raised against Levesque’s model is that
it is restricted to a single agent environment and therefore does not account for nested beliefs
[136]. Fagin and Halpern address multi-agent belief in their logic of knowledge (or belief) and
awareness [57]. The semantics of this awareness logic is based on possible worlds and does not
allow the agents to have contradictory knowledge, but the awareness function at each possible
world provides an effect that is similar to an incomplete situation. In [149, 148], Sim compares
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Chapter 4. Bilattice dynamic epistemic logic

the approaches of [108] and [57] in detail and shows that the situations of [108] and the Kripke
models with (un)awareness of [57] can be associated with a model based on a bilattice structure.

Bilattices are algebraic structures introduced by Ginsberg [77] to unify logical formalisms for
default reasoning and non-monotonic reasoning. A bilattice is a set B equipped with two partial
orders, the knowledge order (≤k) and the truth order (≤t), such that (B,≤k) and (B,≤t) are
both complete lattices. The partial orders ≤k and ≤t have similar interpretations as in Belnap’s
logic. Belnap’s four-element lattice is the smallest non-trivial bilattice. It is called FOUR (see
Figure 4.1).

Bilattices have found applications in different research areas such as logic programming [66],
semantics of natural language questions [126] and philosophical logic [65, 68]. In the 1990s, Arieli
and Avron [5, 6] carried bilattices to a new stage introducing bilattice-based logical systems that
are suitable for non-monotonic and paraconsistent reasoning. Later on, Jung and Rivieccio [98]
introduced a modal expansion of the logic of [5] that can be used to reason about knowledge,
belief, time, and obligation. The formulas of this logic are interpreted in four-valued Kripke
models wherein both the accessibility relations and the valuations are four-valued. Four-valued
accessibility relations go back to Fitting [66, 67], who suggested a family of many-valued modal
logics and generalised Kripke models involving many-valued accessibility relations. He argued in
[67] that many-valued accessibility relations are natural to formalise that some worlds alternative
to the real world are more relevant than others.

A similar formalism to that of [98] was proposed by Odintsov and Wansing [127]. They
studied a Belnapian version of the basic modal logic K. The semantics of this logic is based on
Kripke models where valuations are four-valued (as in [98]), however, the accessibility relation is
two-valued. Because of this, the modal operators of [127] differ from those of [98], although the
propositional base of both logics is the same. The formalism of [98] is more general, because one
can define the modal operators of [127] in the language of [98], but not the other way round [98,
Prop. 2].

In this chapter we develop a bilattice-based modal logic with dynamic operators that enable
us to reason about information change in the presence of incomplete and inconsistent information.
We build the bilattice action model logic (BAML) by combining the action model logic (AML)
of [11] with the bilattice-valued modal logic of [98]. The logic AML extends basic modal logic
with an operator for reasoning about the effects of epistemic actions, as represented by action
models. Epistemic actions are events by which agents receive new information about the world,
whilst leaving the facts of the world itself unchanged. An action model is a relational structure
similar to a Kripke model, where the accessibility relation between two actions (points in the
action model domain) represents an agent’s uncertainty as to which action actually occurred. The
structure of action models should of course fit that of Kripke models, with four-valued accessibility
relations. How to give intuitive interpretations to such four-valued action models is non-trivial,
and we will give this ample attention. Formally, epistemic changes are modeled via the so-called
product update construction on the Kripke models that provides a relational semantics for AML.
Through the product update, a Kripke model encoding the current epistemic setup of a group of
agents is replaced by an updated model.

An adequate formal treatment of AML and dynamic epistemic logics, from a syntactic as well
as a semantic point of view, faces non-trivial technical problems which become even more serious
when moving to a non-classical setting [71]. Such problems can be addressed in an algebraic
framework. An elegant and versatile approach to the algebraic treatment of dynamic epistemic
logic has been developed in a recent series of papers [105, 114, 138, 139, 35], in which the authors
define non-classical counterparts of dynamic logics. In particular, the method from [114] has
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been applied by Rivieccio [138, 139] to obtain an algebraic semantics of bilattice-based public
announcement logic, together with a sound and complete axiomatisation.

The contributions of this chapter are as follows: We extend the results of [138, 139] to bilattice
action model logic (BAML). On the algebraic side, this extension consists of generalising the
product update construction on modal bilattices from public announcements to arbitrary epistemic
updates given by action models. The technical development relies on the methods from [105]
and the correspondence between modal bilattices and bimodal Boolean algebras via the twist
structure representation [137]. On the model side, this correspondence dualises to one between
Kripke models with a four-valued relation and bimodal Kripke models (i.e. Kripke models with
two two-valued relations). As a second contribution, we provide a Hilbert system for BAML,
which is sound and complete with respect to the algebraic semantics. We restrict ourselves to the
single-agent setting, but the multi-agent generalisation of our framework is straightforward. A
final contribution consists of some motivating examples for bilattice-based dynamic epistemic
logics such as BAML. Such examples have so far been missing in the literature.

The chapter is organised as follows. Section 4.2 recalls the necessary definitions and results on
bilattice modal logic. It describes the static modal fragment on which we build our bilattice-based
dynamic epistemic logic. Section 4.3 expounds the technical details of the update mechanism on
the algebraic structures (modal bilattices), and introduces an algebraic semantics and a relational
semantics for our logic. In Section 4.4 we introduce a Hilbert-style calculus for BAML, and
we show its soundness and completeness. Completeness is shown by a reduction to the static
fragment. Section 4.5 gives a detailed case study illustrating the usage of epistemic dynamics
in a bilattice setting. Readers wishing to sharpen their intuitions on knowledge (change) and
bilattices, or wanting to ascertain the relevance of our framework for such settings, are suggested
to read this section earlier.

4.2 Bilattice modal logic

In this section we recall basic definitions and facts about bilattice modal logic, mainly from [5, 98],
that will be needed to develop our bilattice-based action model logic. We refer the reader to
[98, 140] for further details, as well as for background discussion and motivation on bilattices (see
also Section 4.5).

4.2.1 Propositional logic of bilattices

The non-modal, propositional base of bilattice modal logic is the four-valued logic introduced by
Arieli and Avron [5], which can be defined using Belnap’s four-element lattice FOUR (Figure 4.1).
In this logic, FOUR is viewed as an algebra having operations 〈∧,∨,⊗,⊕,⊃,∼, f, t,⊥,>〉 of
type 〈2, 2, 2, 2, 2, 1, 0, 0, 0, 0〉 such that both reducts 〈FOUR,∧,∨, f, t〉 and 〈FOUR,⊗,⊕,⊥,>〉 are
bounded distributive lattices, where the lattice orders are denoted, respectively, by ≤t (truth
order) and ≤k (knowledge order). The truth table for the operations ∧ and ∨ is given as follows:

∧ t > ⊥ f ∨ t > ⊥ f
t t > ⊥ f t t t t t
> > > f f > t > t >
⊥ ⊥ f ⊥ f ⊥ t t ⊥ ⊥
f f f f f f t > ⊥ f
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The binary weak implication operation ⊃ is defined by

x ⊃ y =

{
y if x ∈ {t,>},
t if x /∈ {t,>}.

The truth table of ⊃ is given in Table 4.1.

The bilattice negation is a unary operation ∼ having ⊥ and > as fixed points and such
that ∼f = t and ∼t = f. The truth table of the bilattice negation ∼ is given in Table 4.1. The
operations ⊗ and ⊕ need not be included in the primitive signature because they can be defined
as terms in the language over 〈∧,∨,⊃,∼, f, t,⊥,>〉. We define them here together with a number
of other operations:

x⊗ y := (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y) x⊕ y := (x ∧ >) ∨ (y ∧ >) ∨ (x ∧ y)
x→ y := (x ⊃ y) ∧ (∼y ⊃ ∼x) x⇔ y := (x ⊃ y) ∧ (y ⊃ x)
x↔ y := (x→ y) ∧ (y → x). ¬x := x ⊃ f
x ∗ y := ¬(y → ¬x).

Table 4.1. Bilattice operations.

The operation ¬ provides an alternative negation (that one might call two-valued (classical)
negation, to distinguish it from the bilattice negation ∼; note that ¬x only takes values t and f).
We note that our notation for bilattice negation and two-valued negation is different from that
of [138, 139] where the bilattice negation is denoted by ¬ and two-valued negation is denoted by
∼. The operation → is an alternative implication called strong implication, which is adjoint to
the operation ∗ with respect to the truth order ≤t, called strong conjunction or fusion. The truth
tables of the bilattice operations in FOUR are displayed below:

⊗ t > ⊥ f ⊕ t > ⊥ f → t > ⊥ f ↔ t > ⊥ f
t t t ⊥ ⊥ t t > t > t t f ⊥ f t t f ⊥ f
> t > ⊥ f > > > > > > t > ⊥ f > f > ⊥ f
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ t > ⊥ f ⊥ t ⊥ t ⊥ ⊥ ⊥ ⊥ t ⊥
f ⊥ f ⊥ f f > > ⊥ f f t t t t f f f ⊥ t

t > ⊥ f ∗ t > ⊥ f ⇔ t > ⊥ f ⊃ t > ⊥ f
∼ f > ⊥ t t t t ⊥ f t t ⊥ t t t t > ⊥ f

> t > ⊥ f > > > ⊥ f > t > ⊥ f
t > ⊥ f ⊥ ⊥ ⊥ f f ⊥ ⊥ ⊥ t t ⊥ t t t t

¬ f f t t f f f f f f f f t t f t t t t

Table 4.2. The truth table of bilattice operations in FOUR.

The logic of bilattices of Arieli and Avron [5] can then be introduced as the propositional logic
defined by the pair 〈FOUR, {t,>}〉 as follows. Let At be a countable set of atomic propositions.
The language LB is defined by the following grammar:

LB 3 ϕ ::= f | t | > | ⊥ | p ∈ At | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | ∼ϕ.
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A valuation V : At→ FOUR is a function that assigns a truth value from FOUR to each atomic
proposition. Every valuation V has the unique extension [[.]] : LB → FOUR which is defined in
a standard way. Given subsets Γ, {ϕ} ⊆ LB, we say ϕ is entailed by Γ (notation: Γ |=LB ϕ),
if for all valuations V : At → FOUR, [[γ]] ∈ {t,>} for all γ ∈ Γ implies [[ϕ]] ∈ {t,>}. We call
a formula ϕ ∈ LB a tautology , if |=LB ϕ. The logic of bilattices (LB) is defined as the set of
formulas ϕ ∈ LB such that ϕ is a tautology. Arieli and Avron [5] provided an axiomatisation
LB for LB, which is given in Table 4.3. The axioms of LB are the axioms of propositional logic
in the language 〈∧,∨,⊃, f, t〉, plus the axioms that characterise the interaction of negation with
other operations and constants.

(⊃1⊃1⊃1) ϕ ⊃ (ψ ⊃ ϕ) (⊃ f⊃ f⊃ f) f ⊃ ϕ
(⊃2⊃2⊃2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ)) (⊃⊥⊃⊥⊃⊥) ⊥ ⊃ ϕ
(⊃3⊃3⊃3) ((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ (⊃>⊃>⊃>) ϕ ⊃ >
(∼∼∼∼∼∼) ϕ⇔ ∼∼ϕ (⊃ t⊃ t⊃ t) ϕ ⊃ t
(∧⊃∧⊃∧⊃) (ϕ ∧ ψ) ⊃ ϕ (ϕ ∧ ψ) ⊃ ψ (∼∨∼∨∼∨) ∼(ϕ ∨ ψ)⇔ (∼ϕ ∧ ∼ψ)
(⊃∧⊃∧⊃∧) ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ)) (∼⊃∼⊃∼⊃) ∼(ϕ ⊃ ψ)⇔ (ϕ ∧ ∼ψ)
(∼∧∼∧∼∧) ∼(ϕ ∧ ψ)⇔ (∼ϕ ∨ ∼ψ)
(⊃∨⊃∨⊃∨) ϕ ⊃ (ϕ ∨ ψ) ψ ⊃ (ϕ ∨ ψ) (MPMPMP) from ϕ and ϕ ⊃ ψ infer ψ
(∨⊃∨⊃∨⊃) (ϕ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ ((ϕ ∨ ψ) ⊃ χ))

Table 4.3. The proof system LB.

4.2.2 Bilattice modal logic: relational semantics

In this subsection, we recall the syntax and relational semantics of bilattice modal logic of [98].

Definition 4.2.1 (Syntax of LB2) Let At be a countable set of atomic propositions. The
language LB2 is defined by the following grammar:

LB2 3 ϕ ::= f | t | > | ⊥ | p ∈ At | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | ∼ϕ | 2ϕ,

The formulas of the language LB2 are interpreted in four-valued Kripke models.

Definition 4.2.2 (Four-valued Kripke frame (model)) A four-valued Kripke frame F =
〈S,R〉 is a pair, where S is a set of states and R : S × S → FOUR is a four-valued accessibility
relation. A four-valued Kripke modelM = 〈F , V 〉 is a pair, where F = 〈S,R〉 is a four-valued
Kripke frame and V : At × S → FOUR is a four-valued valuation, that assigns to each atomic
proposition p ∈ At and each state s ∈ S a truth value from FOUR. a

The collection of four-valued Kripke models (frames) is denoted by fourMdl (fourFrm).
Four-valued Kripke models were defined in [98], but no notion of morphism was given there.

We now introduce such a notion.

Definition 4.2.3 (fourMdl-bounded morphism ) Given two four-valued Kripke models
M1 = 〈S1, R1, V1〉 and M2 = (S2, R2, V2), a mapping f : S1 → S2 is a fourMdl-bounded mor-
phism (notation: f : M1 →M2) if it satisfies the following conditions:

1. V1(p, s) = V2(p, f(s)), for every p ∈ At and for every s ∈ S,

2. R1(s, t) = R2(f(s), f(t)), for all s, t ∈ S, and

3. for all s ∈ S1 and for all t ∈ S2, R2(f(s), t) = R1(s, s′), for some s′ ∈ S1 with f(s′) = t.
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Chapter 4. Bilattice dynamic epistemic logic

The definition of a fourFrm-bounded morphism between four-valued Kripke frames is obtained by
deleting the clause concerning valuations (item 1). a

Definition 4.2.4 (Extended four-valued valuation) Let M = 〈S,R, V 〉 be a four-valued
Kripke model. The extension of V to LB2 is a function [[−,−]]M : LB2 × S → FOUR that is
inductively defined as follows:

[[t, s]]M = t

[[>, s]]M = >
[[⊥, s]]M = ⊥
[[f, s]]M = f

[[p, s]]M = V (p, s)

[[ϕ ∧ ψ, s]]M = [[ϕ, s]]M ∧ [[ψ, s]]M
[[ϕ ∨ ψ, s]]M = [[ϕ, s]]M ∨ [[ψ, s]]M
[[ϕ ⊃ ψ, s]]M = [[ϕ, s]]M ⊃ [[ψ, s]]M

[[∼ϕ, s]]M = ∼[[ϕ, s]]M

[[2ϕ, s]]M =
∧
t∈S

(R(s, t)→ [[ϕ, t]]M)

where
∧

denotes the infinitary version of ∧ in FOUR and → is the strong implication introduced
in Table 4.1. We adopt the standard notational abbreviations for bilattice operations (Table 4.1).
We employ 3ϕ as an abbreviation for ∼2∼ϕ. a

For all four-valued Kripke modelsM = 〈S,R, V 〉 and state s ∈ S, it holds that

[[3ϕ, s]]M = [[∼2∼ϕ, s]]M =
∨
t∈S

(R(s, t) ∗ [[ϕ, t]]M),

where
∨

denotes the infinitary version of ∨ in FOUR and ∗ is the strong conjunction. This shows
that the two modal operators are inter-definable as in the classical case.

Definition 4.2.5 (Relational semantics for LB2) Given a four-valued Kripke model
M = 〈S,R, V 〉, a state s ∈ S, and a formula ϕ ∈ LB2, we say (M, s) satisfies ϕ and write
(M, s) |= ϕ if [[ϕ, s]]M ∈ {t,>}. This can be inductively defined as follows:

(M, s) |= c iff c ∈ {t,>}
(M, s) |= p iff V (p, s) ∈ {t,>}
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ or (M, s) |= ψ
(M, s) |= ∼ϕ iff (M, s) 6|= ϕ
(M, s) |= ϕ ⊃ ψ iff (M, s) |= ϕ implies (M, s) |= ψ
(M, s) |= 2ϕ iff for all t ∈ S : R(s, t) ∈ {t,>} implies (M, t) |= ϕ
(M, s) |= 3ϕ iff there exists t ∈ S : R(s, t) ∈ {t,>} and (M, s) |= ϕ.

A semantic consequence relation can now be introduced in the usual way. For a set of formulas
Γ ⊆ LB2, we write (M, s) |= Γ to mean that (M, s) |= γ for each γ ∈ Γ. The (local) consequence
Γ |=BML ϕ holds if, for every modelM = 〈S,R, V 〉 and every s ∈ S, it is the case that (M, s) |= Γ
implies (M, s) |= ϕ. For ∅ |=BML ϕ we write |=BML ϕ (for ‘ϕ is valid’). The bilattice modal
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(2t2t2t) 2t↔ t
(2∧2∧2∧) 2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ)
(2⊥2⊥2⊥) 2(⊥ → ϕ)↔ (⊥ → 2ϕ)
(222−monotonicity) from ϕ→ ψ infer 2ϕ→ 2ψ

Table 4.4. The proof system BML consists of all axioms and rules of LB (Table 4.3) plus these
three axioms and rule [98].

logic (BML) is defined as the set of valid formulas ϕ ∈ LB2. The consequence relation |=BML

inherits from the non-modal fragment the deduction theorem in the following form: Γ |=BML ϕ
if and only if there is a finite Γ′ ⊆ Γ such that |=BML

∧
Γ′ ⊃ ϕ, where

∧
Γ′ :=

∧
{γ ∈ Γ′}. It

implies that in the axiomatisation task, one can without loss of generality restrict attention to
valid formulas. This consequence relation is axiomatised in [98]. The axiomatisation BML is
displayed in Table 4.4.

A derivation in the proof system BML is a sequence of formulas such that every formula is an
instantiation of an axiom or the result of applying a rule to formulas prior in the sequence. If ϕ
occurs in a derivation we write `BML ϕ, for “ϕ is a theorem”. By Γ `BML ϕ we mean that there is
a finite subset Γ′ of Γ such that `BML

∧
Γ′ ⊃ ϕ.

We note that the necessitation rule “from ϕ, infer 2ϕ” is not valid [98, Section III.A], and the
normality axiom 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ) also is not valid [28]. In [98], the following soundness
and completeness result with respect to the four-valued Kripke semantics was shown.

Theorem 4.2.6 (Relational soundness and completeness [98, Theorem 19])
For all Γ, {ϕ} ⊆ LB2, Γ `BML ϕ iff Γ |=BML ϕ. a

4.2.3 Bilattice modal logic: algebraic semantics

We recall an algebraic semantics for bilattice modal logic based on modal bilattices [98]. We give
a brief account of the algebraic completeness for BML, as we will build on it later on. Let us first
recall some basic definitions.

Definition 4.2.7 (Bilattice) A (bounded) distributive bilattice is an algebra
B = 〈B,∧,∨,⊗,⊕,∼, t,>,⊥, f〉, where 〈B,∧,∨, t, f〉 and 〈B,⊗,⊕,>,⊥〉 are (bounded) distribu-
tive lattices [44], and for all x, y, z ∈ B, the following identity is satisfied:

x ◦ (y • z) = (x ◦ z) • (x ◦ y) ◦, • ∈ {∧,∨,⊗,⊕}.

The bilattice negation ∼ is required to satisfy the following conditions: for every x, y ∈ B

1. x ≤t y ⇐⇒ ∼y ≤t ∼x,

2. x ≤k y ⇐⇒ ∼x ≤k ∼y, and

3. ∼∼x = x. a

Similar to Belnap’s lattice FOUR, the order ≤t arising from ∧ and ∨ is called the truth-order,
and the order ≤k arising from ⊗ and ⊕ is called the knowledge order.

The conditions (1)-(3) determine the behaviour of the bilattice negation on FOUR: ∼t = f, ∼f = t,
∼> = >, and ∼⊥ = ⊥. Hence, FOUR is the smallest non-trivial bilattice. Figure 4.2 depicts
some examples of bilattices. We may label the operations and constants with the name of the
bilattice, as in 2B, fB, etc., to distinguish them from those in other bilattices.
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t f

>

⊥
(a) FOUR

t f

>

a

⊥
(b) FIVE

t f

>

c

⊥

a b

(c) SEVEN

t f

>

⊥
(d) NINE

Figure 4.2. Some examples of bilattices

Definition 4.2.8 (Bilattice homomorphism) Given two bilattices B and B′, a function
f : B → B′ is a bilattice homomorphism (notation: f : B→ B′), if f is a lattice homomorphism
with respect to both lattices 〈B,∧,∨,∼, t, f〉 and 〈B,⊗,⊕,∼,>,⊥〉. a

The collection of bilattices is denoted by Bilat.

Definition 4.2.9 (Implicative bilattice) An implicative bilattice is an algebraic structure
B = 〈B,∧,∨,⊗,⊕,∼,⊃, t,>,⊥, f〉, where 〈B,∧,∨,⊗,⊕,∼, t,>,⊥, f〉 is a bilattice, and the oper-
ation ⊃ satisfies the following identities: for every x, y, z ∈ B

1. (x ⊃ x) ⊃ y = y,

2. x ⊃ (y ⊃ z) = (x ∧ y) ⊃ z = (x⊕ y) ⊃ z,

3. ((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x,

4. (x ∨ y) ⊃ z = (x ⊃ z) ∧ (y ⊃ z) = (x⊕ y) ⊃ z,

5. x ⊃ (y ⊃ z) = (x ∧ y) ⊃ z = (x⊗ y) ⊃ z,

6. x ∧ ((x ⊃ y) ⊃ (x⊕ y)) = x,

7. ∼(x ⊃ y) ⊃ z = (x ∧ ∼y) ⊃ z. a

It is easy to check that FOUR, viewed as an algebra in the language 〈∧,∨,⊗,⊕,∼,⊃, t,>,⊥, f〉,
is the smallest non-trivial implicative bilattice.

Let B and B′ be two implicative bilattices. A mapping f : B → B′ is a imp-bilattice
homomorphism, if it is a bilattice homomorphism and f(x ⊃B y) = f(x) ⊃B′ f(y), for every
x, y ∈ B. The collection of implicative bilattices is denoted by ImpBilat. Now, we define modal
bilattices.

Definition 4.2.10 (Modal bilattice) A modal bilattice is an algebra

B = 〈B,∧,∨,⊗,⊕,⊃,∼, t,>,⊥, f,2〉

where the 2-free reduct of B is an implicative bilattice and the following identities are satisfied:
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1. 2t = t,

2. 2(x ∧ y) = 2x ∧2y, and

3. 2(⊥ → x) = ⊥ → 2x. a

We note that the identities (1)-(3) correspond, respectively, to axioms 2t, 2∧ and 2⊥ of
the calculus BML (Table 4.4). For notational convenience, we sometimes write B = 〈B,2〉
instead of B = 〈B,∧,∨,⊗,⊕,⊃,∼, t,>,⊥, f,2〉, where B is the 2-free reduct of B, i.e., B =
〈B,∧,∨,⊗,⊕,⊃,∼, t,>,⊥, f〉.

Definition 4.2.11 (Modal bilattice homomorphism) Given two modal bilattices B = 〈B,2B〉
and B′ = 〈B′,2B′〉, a mapping f : B → B′ is a modal bilattice homomorphism (notation
f : B→ B′), if f is an imp-bilattice homomorphism between B and B′, and f(2Bx) = 2B′f(x),
for every x ∈ B. a

The collection of modal bilattices is denoted by MBilat.

Definition 4.2.12 (Bifilter) A subset F ⊆ B of a modal bilattice B is a bifilter, if F is a lattice
filter with respect to both orders ≤t and ≤k [29, Prop. 2.11]. a

Given a pair 〈B, F 〉, where B is a modal bilattice and F is a bifilter of B, and sets of formulas
Γ, {ϕ} ⊆ LB2, we write Γ �〈B,F 〉 ϕ to mean that, for all functions h : LB2 → B, if h(γ) ∈ F for
all γ ∈ Γ, then also h(ϕ) ∈ F , where h is a logical homomorphism, i.e., for all ϕ,ψ ∈ LB2,

h(c) = cB (c ∈ {t,>,⊥, f})
h(∼ϕ) = ∼Bh(ϕ)

h(2ϕ) = 2Bh(ϕ)

h(ϕ ◦ ψ) = h(ϕ) ◦B h(ψ). (◦ ∈ {∧,∨,⊗,⊕,⊃})

A formula ϕ ∈ LB2 is valid over the class of modal bilattices, if for all modal bilattices B and
for all logical homomorphisms h : LB2 → B, h(ϕ) ≥t >B.

We can then state algebraic soundness and completeness [98, Theorem 10].

Theorem 4.2.13 (Algebraic soundness and completeness) For all Γ, {ϕ} ⊆ LB2, Γ `BML
ϕ iff for all modal bilattices B and all bifilters F ⊆ B, Γ �〈B,F 〉 ϕ . a

4.2.4 Duality for modal bilattices

Just as with basic modal logic, the relational and the algebraic semantics for bilattice modal
logic are related via a Stone-type duality [98, Theorem 18]. In the case of bilattices, another key
ingredient that greatly simplifies the picture is the so-called twist structure representation, which
works as follows. We first recall bimodal Boolean algebras.

Definition 4.2.14 (Bimodal Boolean algebra) An algebra A = 〈A,∧,∨,¬,2+,2−,0,1〉 is
a bimodal Boolean algebra, if 〈A,∧,∨,¬,2+,0,1〉 and 〈A,∧,∨,¬,2−,0,1〉 are both modal
Boolean algebras (Def. 3.3.1). Note that no relation between 2+ and 2− is assumed. a

To simplify the notation, we will sometimes write 〈A,2+,2−〉 instead of
A = 〈A,∧,∨,¬,2+,2−,0,1〉, where A = 〈A,∧,∨,¬,0,1〉 is a Boolean algebra. The dual opera-
tions 3+ and 3− are defined in the usual way by setting 3+x := ¬2+¬x and 3−x := ¬2−¬x.
We denote by 2MBA the collection of bimodal Boolean algebras.
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Definition 4.2.15 (2MBA-homomorphism) Given two bimodal Boolean algebras
A1 = 〈A1,2

+
1 ,2

−
1 〉 and A2 = 〈A2,2

+
2 ,2

−
2 〉, a function f : A1 → A2 is a 2MBA-homomorphism

(notation: f : A1 → A2), if it is a modal Boolean algebra homomorphism from 〈A1,2
+
1 〉 to

〈A2,2
+
2 〉 and from 〈A1,2

−
1 〉 to 〈A2,2

−
2 〉. a

Definition 4.2.16 (Twist structure) Let A = 〈A,∧,∨,¬,2+,2−,0,1〉 be a bimodal Boolean
algebra. The twist structure over A is defined as the algebra

A./ = 〈A×A,∧,∨,⊗,⊕,⊃,∼,2, t,>,⊥, f〉

with operations given, for all 〈x1, x2〉, 〈y1, y2〉 ∈ A×A, by:

〈x1, x2〉 ∧ 〈y1, y2〉 := 〈x1 ∧ y1, x2 ∨ y2〉
〈x1, x2〉 ∨ 〈y1, y2〉 := 〈x1 ∨ y1, x2 ∧ y2〉
〈x1, x2〉 ⊗ 〈y1, y2〉 := 〈x1 ∧ y1, x2 ∧ y2〉
〈x1, x2〉 ⊕ 〈y1, y2〉 := 〈x1 ∨ y1, x2 ∨ y2〉
〈x1, x2〉 ⊃ 〈y1, y2〉 := 〈¬x1 ∨ y1, x1 ∧ y2〉

∼〈x1, x2〉 := 〈x2, x1〉
2〈x1, x2〉 := 〈2+x1 ∧2−¬x2, 3

+x2〉
t := 〈1,0〉
> := 〈1,1〉
⊥ := 〈0,0〉
f := 〈0,1〉

Every twist structure A./ over a bimodal Boolean algebra A is a modal bilattice [140, Prop. 5.17],
in which the dual modality of 2 is defined as follows:

3〈x1, x2〉 := 〈3+x1, 2
+x2 ∧2−¬x1〉.

Conversely, any modal bilattice B is isomorphic to a twist structure of a bimodal Boolean algebra
A [140, Theorem 5.18].

Definition 4.2.17 Let B = 〈B,∧,∨,⊗,⊕,∼,⊃, t,>,⊥, f,2〉 be a modal bilattice. We construct
a bimodal Boolean algebra B./ by defining an equivalence relation over B as follows: for all
a, b ∈ B

a ≡ b ⇐⇒ a ∧ b = a⊕ b. (4.1)

The set of equivalence classes B/ ≡ can be endowed with the following operators: for all [a], [b] ∈
B/ ≡

[a] ∧ [b] = [a ∧ b]
[a] ∨ [b] = [a ∨ b]
¬[a] = [a ⊃ f]

2+[a] = [3(a ⊃ f) ⊃ f]

2−[a] = [2(∼(a ⊃ f) ∨ >)]

1 = [t]

0 = [f].
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2MBA MBilat

(.)./

(.)./

Figure 4.3. Transformations between bimodal Boolean algebras and modal bilattices

It takes a simple check to verify that the algebra

B./ = 〈B/ ≡,∧,∨,¬,2+,2−,1,0〉 (4.2)

is a bimodal Boolean algebra. a

Then, [140, 5.18] shows that for every modal bilattice B and every bimodal Boolean algebra A,
we have

B ∼= (B./)./ and A ∼= (A./)./. (4.3)

through the isomorphism j./ : B→ (B./)./ which maps every a ∈ B to the pair ([a], [∼a]). The
relation between the MBilat and 2MBA is depicted in Figure 4.3.

Remark 4.2.18 Readers familiar with category theory may verify that the operation (.)./ is a
functor from the category of bimodal Boolean algebras with 2MBA-homomorphisms to the category
of modal bilattices with modal bilattice homomorphisms, and vice versa for (.)./. Moreover,it can
be shown that these functors, in fact, form an equivalence [98]. This categorical perspective is
implicit in what follows, but seldom comes to the surface. a

The twist structure construction allows us to relate four-valued Kripke frames and modal
bilattices via Jónsson-Tarski duality for basic modal logic (see, e.g., [78]). We first recall relevant
definitions.

Definition 4.2.19 (Bimodal Kripke frame (model)) A bimodal Kripke frame is a tuple
F = 〈S,R+, R−〉, where 〈S,R+〉 and 〈S,R−〉 are Kripke frames. Similarly, a bimodal Kripke
model is a tuple M = 〈F , V +, V −〉, where F = 〈S,R+, R−〉 is a bimodal Kripke frame and
V +, V − : At→ P(S) are valuations. The collection of bimodal Kripke frames (models) is denoted
by 2Frm (2Mdl).

Definition 4.2.20 (2Mdl-bounded morphism) Given two bimodal Kripke models
M1 = 〈S1, R

+
1 , R

−
1 , V

+
1 , V −1 〉 andM2 = 〈S2, R

+
2 , R

−
2 , V

+
2 , V +

2 〉, a mapping f : S1 → S2 is a 2Mdl-
bounded morphism (notation: f :M1 →M2), if it is a bounded morphism [25, Def. 2.10] between
〈S1, R

+
1 , V

+
1 〉 and 〈S2, R

+
2 , V

+
2 〉, and between 〈S1, R

−
1 , V

−
1 〉 and 〈S2, R

−
2 , V

−
2 〉. Similarly, a 2Frm-

bounded morphism between two bimodal Kripke frames F1 = 〈S1, R
+
1 , R

−
1 〉 and F2 = 〈S2, R

+
2 , R

−
2 〉

(notation: f : F1 → F2) is a bounded morphism between 〈S1, R
+
1 〉 and 〈S2, R

+
2 〉 and between

〈S1, R
−
1 〉 and 〈S2, R

−
1 〉. a

It is shown in [138, 139] that there is a correspondence between fourFrm (fourMdl) and 2Frm
(2Mdl).
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Definition 4.2.21 Given a four-valued Kripke frame F = 〈S,R〉, we define the bimodal Kripke
frame

F./ = (S,R+, R−)

where R+, R− ⊆ S × S are defined as follows: for every s, t ∈ S,

t ∈ R+(s) ⇐⇒ R(s, t) ∈ {t,>} and t ∈ R−(s) ⇐⇒ R(s, t) ∈ {t,⊥}. (4.4)

Given a four-valued Kripke modelM = 〈F , V 〉, we define the bimodal Kripke model

M./ = 〈F./, V +, V −〉

where V +, V − : At→ P(S) are defined as follows: for every p ∈ At,

V +(p) = {s ∈ S : V (p, s) ∈ {t,>}} and V −(p) = {s ∈ S : V (p, s) ∈ {f,>}}. (4.5)

We note that V +(p) = V −(∼ p), for every p ∈ At. a

Definition 4.2.22 Given a bimodal Kripke frame F = 〈S,R+, R−〉, we define the four-valued
Kripke frame F./ = 〈S,R〉 where R : S × S → FOUR is a four-valued relation defined by:

R(s, t) =


t if (s, t) ∈ R+ ∩R−,
> if (s, t) ∈ R+ \R−,
⊥ if (s, t) ∈ R− \R+,

f if (s, t) /∈ R+ ∪R−.

Similarly, for every bimodal Kripke model M = 〈F , V +, V −〉 we define the four-valued Kripke
model M./ = 〈F./, V 〉 where V : At × S → FOUR is a four-valued valuation defined by: for all
s, t ∈ S and p ∈ At

V (p, s) =


t if s ∈ V +(p) \ V −(p),

> if s ∈ V +(p) ∩ V −(p),

⊥ if s /∈ V +(p) ∪ V −(p),

f if s ∈ V −(p) \ V +(p).

Proposition 4.2.23 Let M1 = 〈S1, R1, V1〉 and M2 = 〈S2, R2, V2〉 be two four-valued Kripke
models. Every fourMdl-bounded morphism f : M1 → M2 is a 2Mdl-bounded morphism from
(M1)./ = 〈S1, R

+
1 , R

−
1 , V

+
1 , V −1 〉 to (M2)./ = 〈S2, R

+
2 , R

−
2 , V

+
2 , V −2 〉. a

Proof LetM1 = 〈S1, R1, V1〉 andM2 = 〈S2, R2, V2〉 be two four-valued Kripke models, and let
f :M1 →M2 be a bounded morphism. We need to show that for σ ∈ {+,−}, f is a bounded
morphism from 〈Sσ1 , Rσ1 , V σ

1 〉 to 〈Sσ2 , Rσ2 , V σ
2 〉. We only show the case for σ = +. The case for

σ = − is similar. So we show that:

1. For all s ∈ S1, s ∈ V +
1 (p) iff f(s) ∈ V +

2 (p).

2. For all s, t ∈ S1: if t ∈ R+
1 (s) then f(t) ∈ R+

2 (f(s)).

3. For all s, t ∈ S1: if t ∈ R+
2 (f(s)) then there is an s′ ∈ S1 such that s′ ∈ R+

1 (s) and f(s′) = t.
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2Frm 4Frm

(.)./

(.)./

Figure 4.4. Transformation between four-valued Kripke frames and bimodal Kripke frames

Item 1 Let s ∈ S1 and p ∈ At. We have

s ∈ V +
1 (p) ⇐⇒ V1(p, s) ∈ {t,>}

⇐⇒ V2(p, f(s)) ∈ {t,>} (Def. 4.2.3, f is a fourMdl-bounded morphism)
⇐⇒ f(s) ∈ V +

2 (p).

Item 2 Let s, t ∈ S1 be such that t ∈ R+
1 (s). By the definition of R+

1 (see (4.4)), it means that
R1(s, t) ∈ {t,>}. Since f is a four-valued bounded morphism, it follows thatR2(f(s), f(t)) ∈
{t,>}. Hence, by (4.4) we have that f(t) ∈ R+

2 (f(s)).

Item 3 Let s ∈ S1 and t ∈ S2 be such that t ∈ R+
2 (f(s)). By (4.4) we have that R2(f(s), t) ∈

{t,>}. Since f is a four-valued bounded morphism, there exists s′ ∈ S1 such that f(s′) = t
and R2(f(s), t) = R1(s, s′). It then follows from (4.4) that s′ ∈ R+

1 (s) and this completes
the proof.

�

Proposition 4.2.24 Let M1 = 〈S1, R
+
1 , R

−
1 , V

+
1 , V −1 〉 to M2 = 〈S2, R

+
2 , R

−
2 , V

+
2 , V −2 〉 be bi-

modal Kripke models, and let f : M1 → M2 be a 2Mdl-bounded morphism. Then f is a
fourMdl-bounded morphism fromM./

1 = 〈S1, R1, V1〉 toM./
2 = 〈S2, R2, V2〉. a

Proof This proof is analogous to that of Prop. 4.2.23. �

One can easily show that for every four-valued Kripke frame F , and four-valued Kripke model,
we have

F = (F./)./ and M = (M./)
./. (4.6)

Furthermore, for every bimodal Kripke frame F and bimodal Kripke modelM,

F = (F./)./ and M = (M./)./. (4.7)

The relation between bimodal Kripke frames and four-valued Kripke frames is depicted in
Figure 4.4.

Remark 4.2.25 Again, the reader who is familiar with category theory will have noticed that
(4.6) and (4.7) with Prop. 4.2.23 and Prop. 4.2.24 show that the category of four-valued Kripke
models with fourMdl-bounded morphisms is isomorphic to the category of bimodal Kripke models
with bimodal bounded morphisms. a

Duality between four-valued Kripke frames and modal bilattices. The complex duality
(or discrete duality) between so-called perfect modal Boolean algebras and Kripke frames (cf. [26,
Section 5.2] and [152]) can be easily extended to bimodal Kripke frames and perfect bimodal
Boolean algebras. To this end, we first recall perfect modal Boolean algebras and perfect modal
bilattices from [139, Section 5.2].
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Definition 4.2.26 (Perfect modal Boolean algebra) A modal Boolean algebra
A = 〈A,∧,∨,¬,2,0,1〉 is called perfect if (i) A is complete, (ii) atomic, i.e., A is completely join-
generated by its set of atoms At(A) := {x ∈ A : x 6= 0, and for all y ∈ A, y < x implies y = 0},
and 2 preserves infinitary meets. The collection of perfect modal Boolean algebras is denoted by
PrMBA. a

One can easily check that the complex algebra of a Kripke frame is a perfect modal Boolean
algebra.

Definition 4.2.27 (Perfect bimodal Boolean algebra) A bimodal Boolean algebra
A = 〈A,∧,∨,¬,2+,2−,0,1〉 is perfect if both 〈A,∧,∨,¬,2+,0,1〉 and 〈A,∧,∨,¬,2−,0,1〉
are perfect modal Boolean algebras. We denote by Pr2MBA the collection of perfect bimodal
Boolean algebras. a

Using the twist structure representation of modal bilattices, we can define a perfect modal bilattice
as follows.

Definition 4.2.28 (Perfect modal bilattice) A modal bilattice B is called perfect if B ∼= A./,
where A is a perfect bimodal Boolean algebra. The collection of perfect modal bilattices is denoted
by PrMBilat. a

In order to establish the duality between four-valued Kripke frames and modal bilattices, we first
describe the duality between bimodal Kripke frames and perfect bimodal Boolean algebras which
is easily obtained from the basic complex duality.

Definition 4.2.29 Let F = 〈S,R+, R−〉 be a bimodal Kripke frame. The complex bimodal
algebra of F is the bimodal Boolean algebra

F• = 〈P(S),∩,∪, (−)c,2+,2−, ∅, S〉,

where P(S) is the powerset of S, and 2+ and 2− are defined as follows: for every X ⊆ S

2+X = {s ∈ S : R+(s) ⊆ X}, and 2−X = {s ∈ S : R−(s) ⊆ X}. (4.8)

Notice that 〈P(S),∩,∪, (−)c,2+, S, ∅〉, 〈P(S),∩,∪, (−)c,2−, S, ∅〉 are the complex algebras of the
two-valued Kripke frames 〈S,R+〉 and 〈S,R−〉, respectively.

Going in the opposite direction, let A = 〈A,∧,∨,¬,2+,2−,0,1〉 be a perfect bimodal Boolean
algebra. The dual bimodal Kripke frame of A is defined as

A• = 〈At(A), R+, R−〉,

where R+ and R− are defined by

R+(s) = {s′ ∈ At(A) : s ≤ 3+s′}, and R−(s) = {s′ ∈ At(A) : s ≤ 3−s′}. (4.9)

where 3+s = ¬2+¬s and 3−s = ¬2−¬s, for every s ∈ At(A). a

Let F be a bimodal Kripke frame, and let A be a perfect bimodal Boolean algebra. Then, it
follows from basic complex duality theory, see e.g., [26, Section 5.2] and [152] that

(A•)• ∼= A and (F•)• ∼= F . (4.10)
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2Frm Pr2MBA

(.)•

(.)•

Figure 4.5. Transformations between bimodal Kripke frames and perfect bimodal Boolean
algebras.

Remark 4.2.30 The above correspondence between bimodal Kripke frames and perfect bimodal
Boolean algebras is, in fact, just the object part of the dual equivalence between the category of
bimodal Kripke frames with bimodal bounded morphisms and the category of bimodal Boolean
algebras with 2MBA-homomorphisms. a

By composing the constructions we have described so far, we obtain constructions between
four-valued Kripke frames and perfect modal bilattices. The constructions are summarised in
Figure 4.6.

Definition 4.2.31 Let B be a modal bilattice. We define its dual four-valued Kripke frame as

B∗ = ((B./)•)./.

On the other hand, for every four-valued Kripke frame F , we define its complex bilattice by

F∗ = ((F./)•)./.

Moreover, for every four-valued Kripke modelM = 〈F , V 〉, where V : At× S → FOUR is a
four-valued valuation, we define

M∗ = 〈F∗, V ∗〉

where F∗ is the complex bilattice of F and V ∗ : At→ F∗ is defined by

V ∗(p) = 〈V +(p), V −(p)〉

where V +, V − : At→ P(S) are the valuations that are defined in (4.5). a

We note that since complex bimodal algebras are perfect, it follows that complex bilattices
are perfect. The following theorem summarises the object part of the duality between perfect
modal bilattices and four-valued Kripke frames [139, Proposition 5.5].

Theorem 4.2.32 For every four-valued Kripke frame F and every perfect modal bilattice B, we
have that

F ∼= (F∗)∗ and B ∼= (B∗)∗ (4.11)
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Pr2MBA 2Frm

PrMBilat 4Frm

(.)•

(.)•

(.)./(.)./(.)./(.)./

(.)∗

(.)∗

Figure 4.6. Transformations between four-valued Kripke frames and perfect modal bilattices.

4.3 The bilattice action model logic: syntax and semantics

In this section we introduce the bilattice action model logic (BAML). In order to obtain an
algebraic semantics, we apply the methods of [114, 105] that we have explained in Section 3.4
(see page 37) to the class of modal bilattices using insights of [138, 139] and the relationship
between modal bilattices and twist structures. By doing so, we obtain the main ingredient of the
algebraic semantics of BAML, the notion of an intermediate bilattice. We then use the duality
between four-valued Kripke models and perfect modal bilattices to define a relational semantics
based on four-valued Kripke models which extends Definition 4.2.5.

Definition 4.3.1 (Language LB2α) Let At be a countable set of atomic propositions. The set
LB2α of formulas and the set AM4 of four-valued action models are defined by mutual induction
by the following grammar:

LB2α 3 ϕ ::= p | t | > | ⊥ | f | ϕ ∧ ϕ | ϕ ∨ ϕ | ∼ϕ | ϕ ⊃ ϕ | 2ϕ | [αk]ϕ
AM4 3 α ::= (〈K,Rα〉, (ϕ1, ...ϕn))

where p ∈ At and α ∈ AM4, k is a state in α, 〈K,Rα〉 is a finite four-valued Kripke frame, and
ϕ1, ...., ϕn ∈ LB2α, where n = |K|. a

Derived connectives ⊗,⊕,¬,3 →, ∗,↔ are defined as before. Moreover, we let 〈αk〉ϕ :=
∼[αk]∼ϕ. A pair 〈α, k〉, written as αk, is called a (four-valued) epistemic action, where α =
〈K,Rα, P reα〉 ∈ AM4 and k ∈ K.

Definition 4.3.2 (Bimodal action model) A bimodal action model (over LB2α) is a tuple
α = 〈K,R+

α , R
−
α , P reα〉 where 〈K,R+

α , R
−
α 〉 is a bimodal Kripke frame and Preα : K → LB2α is

the precondition map that assigns a formula ϕ ∈ LB2α to each k ∈ K. We denote by AM2 the
collection of bimodal action models (over LB2α). a

Definition 4.3.3 Let α = 〈K,Rα, P reα〉 ∈ AM4 be a four-valued action model. The bimodal
action model associated with α is a tuple α./ = 〈K,R+

α , R
−
α , P reα〉, where 〈K,R+

α , R
−
α 〉 = 〈K,Rα〉./

(Def. 4.2.21) is the bimodal Kripke frame associated with 〈K,Rα〉. a

Definition 4.3.4 Let α = 〈K,R+
α , R

−
α , P reα〉 be a bimodal action model, where Preα : K →

LB2α. The four-valued action model associated with α is a tuple α./ = 〈K,Rα, P reα〉 ∈ AM4,
where 〈K,Rα〉 = 〈K,R+

α , R
−
α 〉./ (Def. 4.2.22) is the four-valued Kripke frame associated with α.a
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It follows from (4.6) and (4.7) that for all four-valued action models α ∈ AM4, and all bimodal
action models α′ ∈ AM2, (α./)

./ = α and ((α′)./)./ = α′.

4.3.1 Algebraic semantics for BAML

Recall from Section 3.4 that epistemic updates on modal Boolean algebras are defined in two
steps:

1. We construct the intermediate algebra (Def. 3.4.2).

2. We define the updated algebra as the (pseudo-)quotient of the intermediate algebra
(Def. 3.4.3).

Here, we follow an analogous construction, but now on modal bilattices. To this end, we use the
correspondence between modal bilattices and bimodal Boolean algebras.

Epistemic updates on bimodal Boolean algebras and bimodal frames

In this part, we apply the methods of [105] to carry out the above steps (1) and (2) for bimodal
Boolean algebras and bimodal action models over them. We first recall the relevant definitions.

Definition 4.3.5 (Algebraic bimodal action models) Let A = 〈A,∧,∨,¬,2+,2−,0,1〉 be
a bimodal Boolean algebra. A bimodal action model over A is a tuple a = 〈K,R+

a , R
−
a , P rea〉

where 〈K,R+
a , R

−
a 〉 is a bimodal Kripke frame and Prea : K → A is a function that assigns to

each state of the action model an element in A. a

Definition 4.3.6 (Intermediate and updated bimodal frame (model)) For every bimodal
Kripke frame F = 〈S,R+, R−〉 and every bimodal action model a = 〈K,R+

a , R
−
a , P rea〉 over the

complex algebra of F , the intermediate bimodal Kripke frame is defined as∐
a

F = 〈
∐
K

S,R+ ×R+
a , R

− ×R−a 〉

where
∐
K S is the |K|-fold coproduct of S (which is isomorphic, as a set, to the Cartesian

product S ×K), and for all s, s′ ∈ S, and all i, j ∈ K:

(s′, j) ∈ (R+×R+
a )((s, i)) iff s′ ∈ R+(s) and j ∈ R+

a (i)

(s′, j) ∈ (R−×R−a )((s, i)) iff s′ ∈ R−(s) and j ∈ R−a (i).

The updated bimodal Kripke frame Fa is defined as the subframe of
∐
aF the domain of which is

the subset
Sa = {(s, j) ∈

∐
K

S : s ∈ Prea(j)}.

The intermediate bimodal Kripke model is defined as∐
a

M = 〈
∐
a

F ,
∐
a

V +,
∐
a

V −〉

where
∐
a V

+,
∐
a V
− : At→ P(

∐
K S) are valuations and defined as follows: for all p ∈ At∐

a

V +(p)(k) = V +(p) and
∐
a

V −(p)(k) = V −(p).
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The updated bimodal Kripke model is then defined as the submodel of
∐
aM

Ma = 〈Fa, V +
a , V

−
a 〉

where Fa is the updated bimodal Kripke frame and V +
a , V

−
a : At→ P(Sa) are defined as follows:

for all p ∈ At,
V +
a (p) =

∏
a

V +(p) ∩ Sa and V −a (p) =
∏
a

V −(p) ∩ Sa.

The notion of intermediate algebra for bimodal Boolean algebras is just the bimodal version
of the intermediate algebra for modal Boolean algebras (cf. Def. 3.4.2).

Definition 4.3.7 (Intermediate bimodal Boolean algebra) Let
A = 〈A,∧,∨,¬,2+,2−,0,1〉 be a bimodal Boolean algebra, and let a = 〈K,R+

a , R
−
a , P rea〉

be a bimodal action model over A. The intermediate bimodal Boolean algebra∏
a

A = 〈AK ,∧∏
a A,∨

∏
a A,¬

∏
a A2

+∏
a A
,2−∏

a A
,0∏

a A,1
∏
a A〉

is the bimodal Boolean algebra, where the Boolean operations are defined pointwise and for every
f : K → A, the functions 2+∏

a A
f : K → A and 2−∏

a A
f : K → A are defined as follows:

(2+∏
a A
f)(k) =

∧
k′∈R+

a (k)

2+
Af(k′) and (2−∏

a A
f)(k) =

∧
k′∈R−a (k)

2−Af(k′) (4.12)

It is straightforward to check that the intermediate bimodal algebra of a perfect bimodal Boolean
algebra is perfect.

As for step (2), we define the updated bimodal algebra via the pseudo-quotient.

Definition 4.3.8 (Updated bimodal algebra) Let A = 〈A,∧,∨,¬,2+,2−,0,1〉 be a bimodal
Boolean algebra and let a = 〈K,R+

a , R
−
a , P rea〉 be a bimodal action model over A. The updated

bimodal algebra is the pseudo-quotient of the intermediate bimodal algebra, i.e., it is the bimodal
Boolean algebra

Aa = 〈AK/ ≡a,∧a,∨a,¬a,2+
a ,2

−
a ,0a,1a〉

where ≡a is the equivalence relation on AK defined as for modal Boolean algebras (see page 50),
that is, for all f, g ∈ AK ,

f ≡a g iff f ∧ Prea = g ∧ Prea. (4.13)
The modal operators 2+

a and 2−a are defined by

2+
a [f ] = [2+∏

a A
(f → Prea)] and 2−a [f ] = [2−∏

a A
(f → Prea)]. (4.14)

The updated bimodal algebra of a perfect bimodal Boolean algebra is perfect [139].

Proposition 4.3.9 Let F = 〈S,R+, R−〉 be a bimodal Kripke frame and let a = 〈K,R+
a , R

−
a , P rea〉

be a bimodal action model over the complex algebra F• of F . Then, we have

(
∐
a

F)• ∼=
∏
a

F• and (Fa)• ∼= (F•)a.

Proof The proof is similar to the proof of [105, Prop. 3-1]. �

Proposition 4.3.10 For every perfect bimodal Boolean algebra A and every bimodal action model
a over A,

(
∏
a

A)• ∼=
∐
a

A• and (Aa)• ∼= (A•)a. (4.15)

Proof The proof is similar to the proof of [105, Fact 23]. �
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Epistemic updates on modal bilattices and four-valued Kripke frames

Similar to (bi)modal Boolean algebras, epistemic updates on modal bilattices is characterised in
two steps: (1) we define the intermediate bilattice, then (2) the updated bilattice is obtained as
quotient of the intermediate bilattice. We do these two steps using the transformation between
bimodal Boolean algebras and modal bilattices along with the definitions of intermediate bimodal
algebra and updated bimodal algebra. The following diagram illustrates the construction.

B
∏
a B

intermediate bilattice
Ba

updated bilattice

B./
∏
a./

B./ (B./)a./

(.)./(.)./ (.)./(.)./ (.)./(.)./

We begin by defining action models over modal bilattices.

Definition 4.3.11 (Four-valued action model over a modal bilattice) Let B be a modal
bilattice. A four-valued action model over B is a tuple a = 〈K,Ra,Prea〉 where 〈K,Ra〉 is a
four-valued Kripke frame, and Prea : K → B in a function that assigns to each state of K an
element from B. a

As we have seen (see Def. 4.2.21), for every four-valued Kripke frame F there is a bimodal
Kripke frame F./. Also, for every modal bilattice B there is a bimodal Boolean algebra B./ (see
Equation (4.2)). Hence, for every four-valued action model a = 〈K,Ra, P rea〉 over a modal
bilattice B, there is a bimodal action model

a./ = 〈K,R+
a./ , R

−
a./ , P rea./〉 (4.16)

over B./, where 〈K,R+
a./ , R

−
a./〉 is the bimodal Kripke frame associated with a (Def. 4.2.21), and

Prea./ : K → B./ maps each k ∈ K to [Prea(k)] where [Prea(k)] is the equivalence class of
Prea(k) under the relation defined in (4.1). Using these constructions we define the intermediate
and updated four-valued Kripke frame.

Definition 4.3.12 (Intermediate and updated four-valued Kripke frame) For every four-
valued Kripke frame F and every four-valued action model a over the complex bilattice of F , its
intermediate four-valued Kripke frame is defined as∐

a

F = (
∐
a./

F./)./

and the updated four-valued Kripke frame is defined as

Fa = ((F./)a./)./.

The intermediate four-valued Kripke model is defined as∐
a

M = (
∐
a./

M./)
./

Finally, the updated four-valued Kripke model is defined as

Ma = ((M./)a./)
./.
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The following notion of intermediate bilattices is based on the ideas used in [105].

Definition 4.3.13 (Intermediate modal bilattice) For every modal bilattice B = 〈B,2〉 and
all four-valued action models a = 〈K,Ra,Prea〉 over B, the intermediate modal bilattice is defined
as ∏

a

B = 〈BK ,2∏
aB〉

where BK is the |K|-fold direct product of the implicative bilattice B and the modal operator is
given, for each f ∈ BK and j ∈ K, by

2∏
aBf(j) =

∧
{2Bf(i) : i ∈ K and Ra(j, i) ∈ {t,>}}.

Using that 3 = ∼2∼, it follows that:

3∏
aBf(j) =

∨
{3Bf(i) : i ∈ K and Ra(j, i) ∈ {t,>}}

The next lemma shows that the intermediate modal bilattice of every modal bilattice is a modal
bilattice, and shows how one can construct up to isomorphism the intermediate modal bilattice
from the intermediate bimodal algebra via the operations (.)./ and (.)./.

Lemma 4.3.14 Let a = 〈K,Ra,Prea〉 be an action model over a modal bilattice B. Then∏
a

B ∼= (
∏
a./

B./)./.

Proof Let B = 〈B,2〉 be a modal bilattice and a = 〈K,Ra, P rea〉 be a four-valued action model
over B. We define the map h :

∏
a B→ (

∏
a./

B./)./ as follows: for every f : K → B,

h(f) = 〈f1, f2〉

where f1, f2 : K → B/ ≡ are such that f1(k) = [f(k)] and f2(k) = [∼f(k)] for every k ∈ K where
[f(k)] and [∼f(k)] are the equivalence classes of f(k) and ∼f(k) under ≡, the equivalence relation
defined in (4.1). It is clear that h is well-defined. Now we check that h is an injective and surjective
modal bilattice homomorphism. We first check that h is an injective map. Let f, g : K → B
be such that h(f) = h(g). Then it follows by the definition of h that 〈f1, f2〉 = 〈g1, g2〉, which
means f1(k) = g1(k) and f2(k) = g2(k), for all k ∈ K. This implies that [f(k)] = [g(k)] and
[∼f(k)] = [∼g(k)], i.e., f(k) ∧ g(k) = f(k)⊕ g(k) and ∼f(k) ∧ ∼g(k) = ∼f(k)⊕∼g(k). Then
we have that

f(k) ∨ g(k) = ∼∼(f(k) ∨ g(k)) = ∼(∼f(k) ∧ ∼g(k))

= ∼(∼f(k)⊕∼g(k)) ([∼f(k)] = [∼g(k)])
= ∼∼f(k)⊕∼∼g(k) (∼(x⊕ y) = ∼x⊕∼y)
= f(k)⊕ g(k) (∼∼x = x)
= f(k) ∧ g(k). ([f(k)] = [g(k)])

Hence, we obtain that f(k)∧ g(k) = f(k)∨ g(k) for all k ∈ K, which implies that f(k) = g(k) for
all k ∈ K. Therefore, h is a injection. Now, we show that h is surjective. Let f1, f2 : K → B/ ≡
be such that f1(k) = [g1(k)] and f2(k) = [g2(k)], for all k ∈ K, where g1, g2 ∈ BK . We
will show that there is g ∈ BK such that h(g) = 〈f1, f2〉. We define g : K → B by g(k) =
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(g1(k) ∧ >) ⊗ (∼g2(k) ∨ >). Then, by [137, Proposition 2.1.6]1, it follows that h(g) = 〈f1, f2〉.
Hence, h is surjective. Using a similar line of argumentation as in the proof of [140, Theorem
5.18], one can show that h preserves modal bilattice operations. �

The following result shows that the notion of intermediate bilattice is dual to the notion of
intermediate four-valued Kripke frame (Definition 4.3.13).

Theorem 4.3.15 Let F = 〈S,R〉 be a four-valued Kripke frame and let a = 〈K,Ra, P rea〉 be a
four-valued action model over the complex bilattice F∗. Then the intermediate modal bilattice∏
aF∗ is isomorphic to the complex bilattice of the intermediate four-valued Kripke frame. In

other words: ∏
a

F∗ ∼= (
∐
a

F)∗.

Proof We first compute the complex bilattice of the intermediate four-valued Kripke frame F ,
i.e., (

∐
aF)∗.

(
∐
a

F)∗ = (((
∐
a

F)./)
•)./ (Def. 4.2.31)

= ((((
∐
a./

F./)./)./)•)./ (Def. 4.3.12)

∼= ((
∐
a./

F./)•)./ (4.7)

∼= (
∏
a./

(F./)•)./ (Prop. 4.3.9)

On the other hand, by Def. 4.2.31 and (4.3) we have that (F∗)./ ∼= (F./)•. Hence,∏
a./

(F∗)./ ∼=
∏
a./

(F./)•,

and thus using Lemma 4.3.14,∏
a

F∗ ∼= (
∏
a./

(F∗)./)./ ∼= (
∏
a./

(F./)•)./ ∼= (
∐
a

F)∗.

�

At this point we can apply a similar definition of pseudo-quotient2 from [138, 139] to obtain a
suitable notion of quotient of an intermediate bilattice.

Definition 4.3.16 (Pseudo-quotient relation) Given a four-valued action model
a = 〈K,Ra,Prea〉 over a modal bilattice B = 〈B,2〉, we define the relation ≡a on

∏
aB as

follows: for all f, g ∈
∏
a B

f ≡a g iff f ∧ ¬¬Prea = g ∧ ¬¬Prea. (4.17)
1We note that Proposition 2.1.6 in [137] is about interlaced bilattices. Since distributive bilattices are interlaced

bilattices, this result also holds for our case.
2Note that in [138, 139], ∼ denotes the Boolean negation which we denote by ¬.
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Because Prea ∈
∏
aB and ∧,¬ are algebraic operations of

∏
aB, it follows from [138, Fact 2.2]

that ≡a is a congruence of the non-modal reduct BK of
∏
aB. We will denote the equivalence

class of f ∈
∏
a B by [f ]a (or simply by [f ] when there is no risk of confusion) and the quotient

set BK/≡a by Ba.

Proposition 4.3.17 Let B be a modal bilattice, and let a = 〈K,Ra,Prea〉 be a four-valued action
model over B. Then the following hold:

(i) [f ∧ ¬¬Prea] = [f ] for every f ∈
∏
aB. Hence, for every f ∈

∏
aB, there exists a unique

g ∈
∏
aB such that g ∈ [f ] and g ≤t ¬¬Prea.

(ii) For all f, g ∈
∏
aB, we have [f ] ≤t [g] iff f ∧ ¬¬Prea ≤t g ∧ ¬¬Prea. a

Proof Item (i) follows from that fact that ∧ is idempotent, hence:

(f ∧ ¬¬Prea) ∧ ¬¬Prea = f ∧ ¬¬Prea

for all f ∈
∏
a B. This proves the first part of the statement and the existence claim of the second

part. As for the uniqueness, if there is g ∈
∏
a B such that g ∈ [f ] and g ≤t ¬¬Prea, then we

have that g = g ∧ ¬¬Prea = f ∧ ¬¬Prea, as since g ∈ [f ].
Item (ii). The right to left direction follows from the definition of ≡a. For the other direction,

first we note that if [f ] ≤t [g] then there are f ′, g′ ∈
∏
a B such that f ′ ∈ [f ], g′ ∈ [g], and f ′ ≤t g′.

Then we have f ′ ∧ ¬¬Prea ≤ g′ ∧ ¬¬Prea, as desired.
�

The modalities on the pseudo-quotient can now be introduced as another application of the
definitions in [138, 139]. For every action model a = 〈K,Ra,Prea〉 over a modal bilattice B and
every f ∈

∏
aB, we let

2a[f ] := [2∏
aB(f → ¬¬Prea)].

The dual operator is given by 3a[f ] := ¬2a¬[f ].

Proposition 4.3.18 Let B be a modal bilattice, and let a = 〈K,Rα, P rea〉 be an action model
over B. Then

(i) the algebra Ba is a modal bilattice.

(ii) Ba ∼= ((B./)a./)./ a

Proof Item (i) follows from a similar line of argumentation as in the proof of Fact 2.4. in [138].
Item (ii). Define the isomorphism

h′ : Ba → ((B./)a./)./

[f ]a 7→ 〈[f1]a./ , [f2]a./〉,

where [f ]a is the equivalence class of f under ≡a (Def. 4.3.16) and [f1]a./ and [f2]a./ are the
equivalence classes of f1, f2 ∈

∏
a./

B./ under ≡a./ (Def. 4.3.8) such that f1(k) = [f(k)] and
f2(k) = [∼f(k)] in which [f(k)] and [∼f(k)] are the equivalence classes of f(k) and ∼f(k)
under the equivalence relation ≡ defined in (4.1). The proof that shows h′ is a modal bilattice
isomorphism is similar to the proof of Lemma 4.3.14. �
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4.3. The bilattice action model logic: syntax and semantics

Definition 4.3.19 (Updated modal bilattice) Given a modal bilattice B and a four-valued
action model a over B, the modal bilattice Ba is called the updated modal bilattice. a

Proposition 4.3.20 Let F = 〈S,R〉 be a four-valued Kripke frame, and let a = 〈K,Ra, P rea〉
be a four-valued action model over the complex bilattice of F . Then,

(Fa)∗ ∼= (F∗)a (4.18)

Proof It follows from the definition of complex bilattices and of updates on four-valued Kripke
frames and modal bilattices together with (4.3). �

Item (i) of Proposition 4.3.17 says that each ≡a-equivalence class has a canonical representative,
which is the unique element in the given class which is below the element ¬¬Prea in the truth
order. Hence we can define an (injective) map i′ : Ba →

∏
aB by

i′([f ]) = f ∧ ¬¬Prea (4.19)

for all [f ] ∈ Ba. Denoting by q :
∏
aB → Ba the canonical quotient map, we have that the

composition q ◦ i′ is the identity on Ba.
The map i′ : Ba →

∏
aB plays a key role in the definition of interpretation of BAML formulas

on algebraic models. In the next theorem we characterise i′ in terms of the inclusion map
in : Fa →

∐
aF (see Def. 4.3.12).

Lemma 4.3.21 Let F be a four-valued Kripke frame and let a = 〈K,Ra,Prea) be a four-valued
action model over F∗. Then the following diagram commutes:

(F∗)a (Fa)∗

∏
aF∗ (

∐
aF)∗

µ

ν

ζ

η

in′i′

where in′ = in[.]× in[.], µ : (F∗)a → (Fa)∗ and ν : (Fa)∗ → (F∗)a are the modal bilattice isomor-
phisms from Prop. 4.3.20 such that µ−1 = ν, and η :

∏
aF∗ → (

∐
aF)∗ and ζ : (

∐
aF)∗ →

∏
aF∗

are the modal bilattice isomorphisms from Thm. 4.3.15 such that η−1 = ζ. a

Proof Apply [105, Proposition 3.6] to the bimodal Boolean algebra ((F∗)a)./ and use the
correspondence between bimodal Boolean algebras and modal bilattices. �

Definition 4.3.22 (Bilattice model) A bilattice model of BAML is a tuple B = 〈B, V 〉 such
that B is a modal bilattice and V : At→ B. For every bilattice model B and every action model
α = 〈K,Rα,Preα〉 ∈ AM4. Let a = 〈K,Ra,Prea〉 be the action model over B induced by α via
the unique extension of V to LB2α, [[−]]B : LB2α → B with Prea(k) = [[Preα(k)]]B, for every
k ∈ K. We let

∏
αB = 〈

∏
αB,

∏
αV 〉, where (

∏
αV )(p) :=

∏
a V (p) for every p ∈ At. Likewise,

we define the updated bilattice model as Ba := 〈Ba, Va〉 where Va = q ◦
∏
αV and q :

∏
a B→ Ba

is the quotient map. a

85



Chapter 4. Bilattice dynamic epistemic logic

Definition 4.3.23 (Algebraic semantics for BAML) Given a bilattice model B = 〈B, V 〉,
the extension map [[.]]B : LB2α → B is defined as follows:

JpKB := V (p)

JcKB := cB for c ∈ {f, t,⊥,>}
J∼ϕKB := ∼BJϕKB
J2ϕKB := 2BJϕKB

Jϕ • ψKB := JϕKB •B JψKB for • ∈ {∧,∨,⊗,⊕ ⊃}
J〈αk〉ϕKB := ¬¬JPreα(k)KB ∧B (πk ◦ i′)(JϕKBa)

J[αk]ϕKB := JPreα(k)KB ⊃B (πk ◦ i′)(JϕKBa)

where α = 〈K,Rα, P reα〉 ∈ AM4 and k ∈ K, i′ : Ba →
∏
aB is defined in (4.19) and πk :

∏
α B→

B is the projection onto the k-th coordinate. a

For a set Γ of LB2α-formulas, we write Γ |=BAML ϕ if for every bilattice model B = 〈B, V 〉 and
every bifilter F ⊆ B, we have that JγKB ∈ F for all γ ∈ Γ implies JϕKB ∈ F . A formula ϕ is valid,
if for every bilattice model B = 〈B, V 〉, [[ϕ]]B ≥ >B.

4.3.2 Relational semantics for BAML

We will now use this algebraic semantics and duality theory to introduce a relational semantics for
BAML based on four-valued Kripke models. The epistemic updates on four-valued Kripke models
is obtained via duality from epistemic updates on bimodal Kripke models and correspondence
between bimodal Kripke models and four-valued Kripke models.

Epistemic updates on bimodal Kripke models

The following constructions are analogous to that of Def. 4.3.6. The only difference is that here we
use bimodal action models in which the preconditions are defined over LB2α whereas in Def. 4.3.6
we use bimodal action models in which the preconditions are defined over the complex algebras
of bimodal Kripke frames.

Definition 4.3.24 (α-intermediate and α-update bimodal Kripke frame (model)) Let
F = 〈S,R+, R−〉 be a bimodal Kripke frame and letM = 〈F , V +, V −〉 be a bimodal Kripke model
based on F , and let α = 〈K,R+, R−, P reα〉 be a bimodal action model. The α-intermediate
bimodal Kripke frame is defined in the same way as in Def. 4.3.6, i.e.,∐

α

F :=
∐
a

F (4.20)

where a = 〈K,R+, R−, P rea〉 is a bimodal action model over the complex algebra of F induced by
α via the unique extension of V +. The α-updated bimodal Kripke frame is defined as

Fα = Fa (4.21)

The α-intermediate bimodal Kripke model is then defined as the coproduct structure∐
α

M =
∐
a

M (4.22)

Finally, we define the α-updated bimodal Kripke model

Mα :=Ma. (4.23)
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We can now define a relational semantics of BAML with respect to bimodal Kripke models.

Definition 4.3.25 (2Mdl-semantics of BAML) LetM = 〈S,R+, R−, V +, V −〉 be a bimodal
Kripke model, s ∈ S. Then

(M, s) |= c iff c ∈ {t,>}
(M, s) |= p iff s ∈ V +(p)
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ or (M, s) |= ψ
(M, s) |= ∼ϕ iff (M, s) 6|= ϕ
(M, s) |= ϕ ⊃ ψ iff (M, s) |= ϕ implies (M, s) |= ψ
(M, s) |= 2ϕ iff for all t ∈ S : t ∈ R+(s) then (M, t) |= ϕ
(M, s) |= [αk]ϕ iff (M, s) |= Preα(k) implies (Mα./ , (s, k)) |= ϕ.

where α = 〈K,Rα, P reα〉 ∈ AM4 is a four-valued action model, and α./ = 〈K,R+
α./ , R

−
α./ , P reα〉 ∈

AM2 is the bimodal action model associated with α (Def. 4.3.3). We denote the truth set of ϕ
inM by [[ϕ]]M := {s ∈ S : (M, s) |= ϕ}. a

Epistemic updates on four-valued Kripke models

The following constructions are analogous to that of Def. 4.3.12. The only difference is that here
we use four-valued action models in which the preconditions are defined over LB2α whereas in
Def. 4.3.12 we use four-valued action models in which the preconditions are defined over the
complex bilattice of four-valued Kripke frames.

Definition 4.3.26 (α-intermediate and α-updated four-valued Kripke frame (model))
Let F = 〈S,R〉 be a four-valued Kripke frame, and let α = 〈K,R, Preα〉 ∈ AM4. The α-
intermediate four-valued Kripke frame is∐

α

F = (
∐
α./

F./)./, (4.24)

and the α-updated four-valued Kripke frame is

Fα = ((F./)α./)./, (4.25)

where α./ = 〈K,R+
α , R

−
α , P reα〉 is the bimodal action model associated with α. We note that by

Def. 4.3.24, ∐
α

F =
∐
a

F ,

where
∐
aF is defined in 4.3.12. Then, the α-intermediate four-valued Kripke model is defined as∐

α

M = (
∐
α./

M./)
./ (4.26)

and define the α-updated four-valued Kripke model as

Mα = ((M./)α./)
./, (4.27)

whereM./ and α./ are the bimodal Kripke model, and bimodal action model associated withM
and α (Def. 4.2.21). a
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We can now define a relational semantics for BAML with respect to four-valued Kripke models.

Definition 4.3.27 (fourMdl-semantics of BAML) LetM = 〈S,R, V 〉 be a four-valued Kripke
model and s ∈ S. Then

(M, s) |= c iff c ∈ {t,>}
(M, s) |= p iff V (p, s) ∈ {t,>}
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ or (M, s) |= ψ
(M, s) |= ∼ϕ iff (M, s) 6|= ϕ
(M, s) |= ϕ ⊃ ψ iff (M, s) |= ϕ implies (M, s) |= ψ
(M, s) |= 2ϕ iff for all t ∈ S : R(s, t) ∈ {t,>} implies (M, t) |= ϕ
(M, s) |= [αk]ϕ iff (M, s) |= Preα(k) implies (Mα, (s, k)) |= ϕ

where α = 〈K,Rα, P reα〉 ∈ AM4, and k ∈ K. a

The next proposition shows that the two relational semantics of BAML with respect to four-valued
Kripke models, and with respect to bimodal Kripke models are equivalent.

Proposition 4.3.28 Let ϕ ∈ LB2α be an arbitrary formula. Then,

1. For every four-valued Kripke modelM = 〈S,R, V 〉, and state s ∈ S,

(M, s) |= ϕ iff (M./, s) |= ϕ.

whereM./ is a bimodal Kripke model defined in Def. 4.2.21.

2. For every bimodal Kripke modelM = 〈S,R+, R−, V +, V −〉, and state s ∈ S,

(M, s) |= ϕ iff (M./, s) |= ϕ.

whereM./ is a four-valued Kripke model defined in Def. 4.2.22. a

Proof We only prove item 1, and leave item 2 to the reader. We first define the following order
on formulas and action models: Let ϕ,ψ ∈ LB2α and α = 〈K,Rα, P reα〉 ∈ AM4. Then

ψ < ϕ if ψ is a subformula of ϕ
ϕ < α if ϕ = Preα(k), for some k ∈ K
α < ϕ if ϕ = [αk]ψ, for some ψ ∈ LB2α, and for some k ∈ K.

We denote by <̄, the transitive closure of <.
The proof is then by well-founded induction on the relation <̄. We must show that for all

ϕ ∈ LB2α and all four-valued Kripke modelsM = 〈S,R, V 〉 and s ∈ S,

(For all ψ<̄ϕ : (M, s) |= ψ iff (M./, s) |= ψ) =⇒ ((M, s) |= ϕ iff (M./, s) |= ϕ)

So, suppose ϕ ∈ LB2α and for all ψ ∈ LB2α with ψ<̄ϕ, and all four-valued Kripke models
M = 〈S,R, V 〉, (M, s) |= ψ iff (M./, s) |= ψ. We show that (M, s) |= ϕ iff (M./, s) |= ϕ.
We distinguish between the different forms that ϕ can have. Cases for logical constants, the
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propositional variables and the bilattice connectives are elementary. Now consider the case where
ϕ := 2ψ. LetM be a four-valued Kripke model and s in a state inM. Then we have

(M, s) |= 2ψ ⇐⇒ for all t ∈ S : R(s, t) ∈ {t,>} implies (M, t) |= ψ

⇐⇒ for all t ∈ S : t ∈ R+(s) implies (M, t) |= ψ (Def. 4.2.21, Eq. 4.4)
⇐⇒ for all t ∈ S : t ∈ R+(s) implies (M./, t) |= ψ (Ind. hyp. , ψ<̄ϕ)
⇐⇒ (M./, s) |= 2ψ.

Now assume that ϕ := [αk]ψ. We first note that since ψ<̄ϕ, by the induction hypothesis,

(Mα, (s, j)) |= ψ ⇐⇒ ((Mα)./, (s, j)) |= ψ. (4.28)

where (s, j) ∈ S×. By the definition ofMα in (4.27) and (4.6), it follows that (Mα)./ ∼= (M./)α./ ,
hence by the fact that isomorphic models satisfy the same formulas, and (4.28), we obtain that

(Mα, (s, j)) |= ψ ⇐⇒ ((M./)a./ , (s, j)) |= ψ. (4.29)

Then we have

(M, s) |= [αk]ψ ⇐⇒ (M, s) |= Preα(k) implies (Mα, (s, k)) |= ψ

(Ind. hyp. and Preα(k)<̄ϕ) ⇐⇒ (M./, s) |= Preα(k) implies ((M./)a./ , (s, j)) |= ψ

⇐⇒ (M./, s) |= [αk]ψ.

�

The next proposition shows that the mechanism of epistemic updates remains essentially unchanged
when moving from the classical to a bilattice setting.

Proposition 4.3.29 For every perfect modal bilattice B and every four-valued action model
a = 〈K,Ra, P rea〉 over B, we have

1. (
∏
aB)∗ ∼=

∐
a B∗, and

2. (Ba)∗ ∼= (B∗)a. a

Proof Item (1). Let B be a modal bilattice and a be four-valued action model over B. We have

(
∏
a

B)∗ ∼= ((
∏
a./

B./)./)∗ (Lemma 4.3.14)

∼= (((
∏
a./

B./)•)./ (Def. 4.2.31, (4.3))

On the other hand, ∐
a

B∗ = (
∐
a./

(B∗)./)./ (4.24)

∼= (
∐
a./

(B./)•)./ (Def. 4.2.31, (4.7))
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Hence, by Prop. 4.3.10, it follows that (
∏
aB)∗ ∼=

∐
a B∗.

Item (2).

(Ba)∗ ∼= (((B./)a./)./)∗ (Prop. 4.3.18(2))
∼= (((B./)a./)•)./ (Def. 4.2.31, (4.3))

On the other hand,

(B∗)a = (((B∗)./)a./)./ (Def. 4.3.12)
∼= (((B./)•)a./)./ (Def. 4.2.31, (4.7))
∼= (((B./)a./)•)./ (4.3.10)

Hence, (Ba)∗ ∼= (B∗)a. �

4.4 Axiomatisation

In this section we give a Hilbert-style proof system for BAML on the class of four-valued
frames. We show that it is sound and complete. The proof system BAML for the logic BAML
consists of all the rules and axioms given in the Tables 4.3, 4.4, and 4.5. Table 4.3 contains the
propositional part, Table 4.4 contains the (static) modal part, and Table 4.5 contains the dynamic
(modal) part. The rules and principles of Table 4.5 for BAML resemble those for bilattice public
announcement logic introduced in [138, 139], the only difference is the rule RE. In the rule RE,
called ‘replacement of equivalents’, χ[ϕ/p] means uniform substitution of all occurrences of p in
χ by ϕ (this can be easily defined inductively). The derivation rule ‘replacement of equivalents’
(RE) was erroneously missing in previous axiomatizations of non-classical dynamic epistemic
logics [114, 105, 138, 139]. In the absence of (RE), the reduction strategy of BAML to its static
fragment, as sketched in the proof of Theorem 4.4.7, later, would not succeed.3

The axioms in Table 4.5 are the expected reduction rules for any logical structure following
a dynamic modality for action model execution. Clearly, as in BAML we have constants, we
have axioms for the reduction of each of those constants. But there is nothing surprising about
them. The other axioms may look more familiar to the reader informed about dynamic epistemic
logics, except for the occasional need of the ¬¬ binding of preconditions Preα: this is to ensure
the restriction of the possible values of ¬¬Preα, namely to t and f only.

The axiom 〈αk〉p ↔ (¬¬Preα(k) ∧ p), called (〈αk〉-atoms), guarantees that the value of
atoms is preserved after update. Such an axiom is often formulated both for positive and for
negative atoms (i.e., for literals). The axiom for negative atoms is indeed a theorem of our
axiomatization. We show its derivation as an example.

Example 4.4.1 〈αk〉∼p↔ ¬¬Preα(k) ∧ ∼p is a theorem of BAML.

(1)〈αk〉∼p↔ ¬¬Preα(k) ∧ ∼〈αk〉p (〈αk〉∼)
(2)〈αk〉∼p↔ ¬¬Preα(k) ∧ ∼(¬¬Preα(k) ∧ p) ( (1), (〈αk〉-atoms),RE)
(3)〈αk〉∼p↔ ¬¬Preα(k) ∧ (∼(¬¬Preα(k)) ∨ ∼p) ((2), (∼∧), RE)
(4)∼(¬¬Preα(k))↔ ¬Preα(k) ((∼ ⊃))

3The rule RE is needed because we use an inside-out reduction strategy. For the alternative outside-in reduction
strategy, RE is not needed, but then one needs a reduction axiom of shape “〈αk〉〈β〉ϕ↔ . . . ” as well as a rule
“from ϕ→ ψ infer 〈αk〉ϕ→ 〈αk〉ψ” (α-monotonicity). For classical dynamic epistemic logics, for the special case
of public announcement logics, such variants are discussed in detail in [157].
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(〈αk〉-constants) 〈αk〉f ↔ f 〈αk〉t↔ ¬¬Preα(k)
〈αk〉> ↔ (Preα(k) ∧ >) 〈αk〉⊥ ↔ ∼(Preα(k) ⊃ ⊥)

(〈αk〉-atoms) 〈αk〉p↔ (¬¬Preα(k) ∧ p)
(〈αk〉∧) 〈αk〉(ϕ ∧ ψ)↔ (〈αk〉ϕ ∧ 〈αk〉ψ)
(〈αk〉∨) 〈αk〉(ϕ ∨ ψ)↔ (〈αk〉ϕ ∨ 〈αk〉ψ)
(〈αk〉⊃) 〈αk〉(ϕ ⊃ ψ)↔ (¬¬Preα(k) ∧ (〈αk〉ϕ ⊃ 〈αk〉ψ))
(〈αk〉∼) 〈αk〉∼ϕ↔ (¬¬Preα(k) ∧ ∼〈αk〉ϕ))
(〈αk〉3) 〈αk〉3ϕ↔ (¬¬Preα(k) ∧

∨
{3〈αj〉ϕ : Rα(k, j) ∈ {t,>}})

(RE) from ϕ↔ ψ infer χ[ϕ/p]↔ χ[ψ/p]

Table 4.5. The axiomatization BAML for the logic BAML consists of all rules and axioms of
BML (see Tables 4.3 and 4.4) and the above axioms and rule.

(5)〈αk〉∼p↔ ¬¬Preα(k) ∧ (¬Preα(k) ∨ ∼p) ((3), (4), RE)
(6)〈αk〉∼p↔ (¬¬Preα(k) ∧ ¬Preα(k)) ∨ (¬¬Preα(k) ∧ ∼p) ((5), distributivity)
(7)(¬¬Preα(k) ∧ ¬Preα(k))↔ f (LB)
(8)〈αk〉∼p↔ f ∨ (¬¬Preα(k) ∧ ∼p) ((6), (7), RE)
(9)〈αk〉∼p↔ ¬¬Preα(k) ∧ ∼p ((8), f ∨ ϕ↔ ϕ)

We now proceed by showing soundness and completeness. The following lemmas are needed
to establish that BAML is sound with respect to the algebraic semantics. Most proofs are
straightforward adaptations of the lemmas from [138, 139].

Lemma 4.4.2 ([138], Lemma 4.1) LetM = 〈B, V 〉 be a bilattice model and ϕ a formula such
that JϕKMα = q(JϕK∏

αM) for any four-valued action α. Then:

• J〈αk〉ϕKM = ¬¬JPreα(k)KM ∧ JϕKM

• J[αk]ϕKM = JPreα(k)KM ⊃ JϕKM a

Lemma 4.4.3 ([138], Fact 4.2) Let B be a modal bilattice and a be a four-valued action model
over B, and let i′ : Ba →

∏
a B be given by [g] 7→ g ∧ ¬¬Prea. Then for every [b], [c] ∈ Ba:

• i′([b] ∧ [c]) = i′([b]) ∧ i′([c]);

• i′([b] ∨ [c]) = i′([b]) ∨ i′([c]);

• i′([b] ⊃ [c]) = ¬¬Prea ∧ (i′([b]) ⊃ i′([c]));

• i′(∼[b]) = ¬¬Prea ∧ ∼i′([b]);

• i′(2a[b]) = ¬¬Prea ∧2∏
aB(Prea ⊃ i′([b]));

• i′(3a[b]) = ¬¬Prea ∧3∏
aB(i′([b]) ∧ ¬¬Prea). a

Lemma 4.4.4 ([138, Lemma 4.3]) LetM = 〈B, V 〉 be a bilattice model with underlying modal
bilattice B = 〈B,∧,∨,⊃,∼,3,2, f, t,⊥,>〉. For every four-valued action model α and all formulas
ϕ and ψ:
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1. J〈αk〉(ϕ ∨ ψ)KM = J〈αk〉ϕKM ∨ J〈αk〉ψKM;

2. J〈αk〉(ϕ ∧ ψ)KM = J〈αk〉ϕKM ∧ J〈αk〉ψKM;

3. J〈αk〉(ϕ ⊃ ψ)KM = ¬¬JPreα(k)KM ∧ ([[〈αk〉ϕ]]M ⊃ [[〈αk〉ψ]]);

4. J〈αk〉∼ϕKM = ¬¬JPreα(k)KM ∧ ∼J〈αk〉ϕKM;

5. J[αk]ϕKM = J∼〈αk〉∼ϕKM;

6. J〈αk〉3ϕKM = ¬¬JPreα(k)KM ∧
∨
{3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}};

7. J〈αk〉2ϕKM = ¬¬JPreα(k)KM ∧
∧
{2B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}}. a

Proof Items (1)-(5) can be prove using the same line of arguments as in the proof of [138,
Lemma 4.3]. Here, we only show items (6) and (7). Concerning (6), first observe that:

πk ◦ i′(J3ϕKMα) = πk(¬¬Preα ∧3∏
αB(¬¬Preα ∧ i′(JϕKMα)))

= ¬¬Prea(k) ∧
∨{

3B(¬¬Prea(j) ∧ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∨{

3B(¬¬Prea(j)) ∧ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∨{

3B(¬¬JPreα(j)KM ∧ πj ◦ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∨{

3B(¬¬JPreα(j)KM ∧ πj ◦ i′(JϕKMαj ))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∨{

3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}
}
.

To justify the equality between lines 4 and 5 above, note thatMα is independent from the point
of α, i.e., (Mα =) Mαk =Mαj . Then:

J〈αk〉3ϕKM = ¬¬JPreα(k)KM ∧ πk ◦ i′(J3ϕKMαϕ)

= ¬¬JPreα(k)KM ∧ ¬¬JPreα(k)KM ∧
∨{

3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∨{

3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}
}

To show item (7), we preliminarily observe that

πk ◦ i′(J2ϕKMα) = πk(¬¬Prea(k) ∧2∏
αB(Prea ⊃ i′(JϕKMα)))

= ¬¬Prea(k) ∧
∧{

2B(Prea(j) ⊃ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ⊃
∧{

2B(Prea(j) ⊃ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}
}

= ¬¬JPreα(k)KM ∧
∧
{2B(JPreα(j)KM ⊃ πj ◦ i′(JϕKMα))(j) : Rα(k, j) ∈ {t,>}

}
= ¬¬JPreα(k)KM ∧

∧
{2B(JPreα(j)KM ⊃ πj ◦ i′(JϕKMαj ))(j) : Rα(k, j) ∈ {t,>}

}
= ¬¬JPreα(k)KM ∧

∧
{2B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}

}
.

Hence:

J〈αk〉2ϕKM = ¬¬JPreα(k)KM ∧ πk ◦ i′(J2ϕKMα)

= ¬¬JPreα(k)KM ∧ (¬¬JPreα(k)KM ∧
∧{

2B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}
}

)

= ¬¬JPreα(k)KM ∧
∧{

2B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}
}
.

�
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Item (v) of Lemma 4.4.4 justifies our usage of [αk]ϕ as an abbreviation for ∼〈αk〉∼ϕ.
The next lemma is also helpful for the intuition linking the relational and algebraic setting,

but is not strictly necessary in the completeness proof, wherein we use that 〈αk〉ϕ is a primitive
language construct and [αk]ϕ a derived one.

Lemma 4.4.5 ([138, Fact 4.4]) Let M = 〈B, V 〉 be a bilattice model with underlying modal
bilattice B = 〈B,∧,∨,⊃,∼,2, f, t,⊥,>〉. For every action model α and all formulas ϕ and ψ in
LB2α:

1. J[αk](ϕ ∧ ψ)KM = J[αk]ϕKM ∧ J[αk]ψKM

2. J[αk](ϕ ∨ ψ)KM = J[αk]PreαKM ⊃ (J〈αk〉ϕKM ∨ J〈αk〉ψKM)

3. J[αk](ϕ ⊃ ψ)KM = J〈αk〉ϕKM ⊃ J〈αk〉ψKM

4. J[αk]∼ϕKM = ∼J〈αk〉ϕKM

5. J[αk]ϕKM = J∼〈αk〉∼ϕKM

6. J[αk]3ϕKM = JPreα(k)KM ⊃
∨{

3B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}
}

7. J[αk]2ϕKM = JPreα(k)KM ⊃
∧{

2B(J[αj ]ϕKM) : Rα(k, j) ∈ {t,>}
}

a

Proof Item (7) follows from Lemma 4.4.4.vi. The only other item of interest is (6):

J[αk]3ϕKM = JPreα(k)KM ⊃ i′(J3ϕKMα)

= JPreα(k)KM ⊃ (¬¬JPreα(k)KM ∧
∨{

3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}
}

)

= JPreα(k)KM ⊃
∨{

3B(J〈αj〉ϕKM) : Rα(k, j) ∈ {t,>}
}

(∗)

Equivalence (∗) holds since in every modal bilattice we have that x ⊃ ¬¬x = t and that
(x ⊃ y) ∧ (x ⊃ z) = x ⊃ (y ∧ z). �

Lemma 4.4.6 The rule RE is sound: if |= ϕ↔ ψ then |= χ[ϕ/p]↔ χ[ψ/p]. a

Proof Let ϕ,ψ ∈ LBL be such that � ϕ ↔ ψ. We will prove that for all χ ∈ LBL, and any
Kripke modelM = 〈S,R, V 〉 and state s ∈ S:

[[χ[ϕ/p], s]]M = [[(χ[ψ/p], s)]]M.

where [[−,−]] : LB2α×S → FOUR is the unique extension of the valuation V to LB2α. Since every
four-valued Kripke model is isomorphic to a bimodal Kripke model, and the value of formulas
is preserved under isomorphism [25, Prop. 2.9(ii)], we prove the theorem for bimodal Kripke
models. So, letM = 〈S,R+, R−, V +, V −〉 be a bimodal Kripke model. We prove by induction
on the structure of χ that

[[χ[ϕ/p], s]]+M = [[(χ[ψ/p], s)]]+M and [[χ[ϕ/p], s]]−M = [[(χ[ψ/p], s)]]−M (4.30)

where [[.]]+ : LB2α → P(S) and [[.]]− : LB2α → P(S) are the extensions of V + and V − to LB2α,
respectively.
— The case where χ is a logical constant or an atomic proposition is immediate.
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— If χ = γ•δ, where • ∈ {∧,∨,⊃}, or χ = ∼γ, use that V is a homomorphism in its first argument
with respect to bilattice operators.
— If χ = 2γ, then

s ∈ [[(2γ[ϕ/p]]]+ ⇐⇒ for all s′ ∈ S : s′ ∈ R+(s) implies s ∈ [[γ[ϕ/p]]]+

⇐⇒ for all s′ ∈ S : s′ ∈ R+(s) implies s ∈ [[γ[ψ/p]]]+ (Indictive hyp.)

⇐⇒ s ∈ [[(2γ[ψ/p]]]+.

A similar argument shows that [[2γ[ϕ/p]]]− = [[2γ[ψ/p]]]−.
Finally, let χ = 〈αk〉γ. We show that [[(〈αk〉γ[ϕ/p])]]+ = [[(〈αk〉γ[ψ/p])]]+ and that [[〈αk〉γ[ϕ/p]]]− =

[[〈αk〉γ[ψ/p]]]−. LetMα./ = 〈S×, R+
×, R

−
×, V

+
× , V

−
× 〉. By inductive hypothesis, for every (s, k) ∈

S×, [[γ[ϕ/p]]]+Mα./
= [[γ[ψ/p]]]+Mα./

, [[γ[ϕ/p]]]−Mα./
= [[γ[ψ/p]]]−Mα./

, and Preα(k)[ϕ/p] = Preα(k)[ψ/p],
where [[.]]+Mα./

, [[.]]−Mα./
: LB2α → P(S×) are the extensions of V +

× and V −× , respectively. Then, for
every s ∈ S we have

s ∈ [[〈αk〉γ[ϕ/p]]]+M ⇐⇒ s ∈ [[Preα(k)[ϕ/p]]]+M and s ∈ ι−1
k (in([[γ[ϕ/p]]]+Mα./

))

(Inductive hyp.) ⇐⇒ s ∈ [[Preα(k)[ψ/p]]]+M and s ∈ ι−1
k (in([[γ[ψ/p]]]+Mα./

))

⇐⇒ s ∈ [[〈αk〉γ[ψ/p]]]+M.

A similar argument shows that [[γ[ϕ/p]]]−Mα./
= [[γ[ψ/p]]]−Mα./

.
�

We now get to the announced completeness result.

Theorem 4.4.7 The proof system BAML is sound and complete with respect to algebraic and
relational models. a

Proof The soundness of the preservation of logical constants and propositional variables follows
from Lemma 4.4.3. The soundness of the remaining axioms is proved in Lemma 4.4.4. The
soundness of RE is proved in Lemma 4.4.6.

The proof of completeness is analogous to that of classical and intuitionistic AML, and
follows from the reducibility of BAML to bilattice modal logic.

Let ϕ be valid. Let us assume that we only use primitive connectives of L (so, for example,
〈αk〉 but not [αk]). Consider some innermost occurrence 〈αk〉ψ of a dynamic modality in ϕ, where
ψ is in the static language. The axioms of BAML make it possible to transform 〈αk〉ψ into an
equivalent formula without a dynamic modality:

We ‘push’ the dynamic modality down the generation tree of the formula, through the static
connectives, until it binds a proposition letter or a constant symbol. There, the dynamic modality
disappears, thanks to an application of the appropriate axiom preserving proposition letters or
constants, and, crucially, applying the RE rule (we replace a subformula in a larger expression by
an equivalent formula without the dynamic modality).

This process is repeated for all the dynamic modalities of ϕ, so as to obtain a formula ϕ′

which is provably equivalent to ϕ. Since ϕ is valid by assumption, and since provable equivalence
preserves validity, by soundness we can conclude that ϕ′ is valid. By Theorem 4.2.13, we can
conclude that ϕ′ is a theorem in bilattice modal logic and thus in BAML. Therefore, as ϕ and ϕ′

are provably equivalent, ϕ is also a theorem. This concludes the proof.
�
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4.5 Case study: Knowledge of inconsistency and incompleteness

A good candidate for a recipient of possibly inconsistent information is the database. You are
Hendrik Edeling, a breeder of tulips. Consider the database D1-Acuminata containing information
on the colour of a particular tulip that is a candidate for selective breeding. It may contain the
information that the tulip is red, or that it is not red, or it may lack this information, or it may,
inconsistently so, contain the information that it is both red and not red. In other words, the
proposition p for ‘the tulip is red’ can have one of the four values t, f,>,⊥. Let us now consider
the perspective of Edeling wishing to consult the database. And let us assume that Edeling is
uncertain which of the four states t, f,>,⊥ the database is in, with respect to the proposition p.
That makes four possible worlds that he is unable to distinguish. If he now queries the database
and get ‘yes’ as an answer to the query ‘p?’, he can rule out two of these four possibilities and
keep the worlds wherein p has the value t and the value >. So this is a way to process a public
announcement of the proposition p. Now a further query to narrow down the options would be
querying the database on the value of ∼p, or, more properly said, querying it on the falsity of p.
A confirmation that p is false reduces Hendrik Edeling’s uncertainty because the only remaining
world satisfying it, is the one where the value of p is >. In another sense, Hendrik has become
more uncertain again, because he has confirmation that the database is inconsistent. We could
also have communicated directly (in one formula) to Edeling that the database is inconsistent. Or
that it is consistent, or that it is incomplete (value ⊥). How? Please read on.

Given initial uncertainty about p, Edeling may also have to interact with his colleague Sara
Burgerhart, another renowned tulip expert. Maybe even a competitor! Consider the action
of Burgerhart being informed that the database is lacking information on p (the database is
incomplete), while Edeling remains uncertain whether she gets this information.

The information that the agents receive may also be modal. Suppose that Hendrik is being told
that p ∧ ∼2p: “The tulip is red but you don’t know this!” Unlike in two-valued modal logic, this
formula may remain true after its announcement. It need not be an unsuccessful update. How
come? Again, please read on.

Bilattice modal logic We model the D1-Acuminata database containing information on that
tulip as a world. The proposition that the tulip is red is p. There are four possible worlds. We
use mnemonic names for the worlds: p⊥ is the world where V (p) = ⊥, pt is the world where
V (p) = t, pf is the world where V (p) = f, and p> is the world where V (p) = >. Uncertainty
about the four worlds is represented by the following modelM. The box enclosing the worlds
means that they are indistinguishable (the accessibility relation R is the universal relation on
this domain) for Hendrik Edeling.

M: p⊥ pf pt p>

We can now evaluate, for example, that (M, pt) |= p, or that (M, p>) |= p (we recall that
(M, s) |= ϕ means that V (ϕ, s) ∈ {t,>}). We do not have that (M, pt) |= 2p, as both p and ∼p
are considered possible. Hendrik is uncertain about p. A public announcement p! restricts the
model to the pt and p> state.

M: p⊥ pf pt p>
p!⇒ Mp: pt p>

A public announcement is a singleton action model with reflexive access. Instead of writing
that α is a public announcement of ϕ we write ϕ!; and for the corresponding model update we
writeMϕ instead ofMα. We can justify the restriction to t and > by considering this semantics
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of announcement to be the response to a query p?. In both cases the answer will be ‘yes’. In
two-valued public announcement logic, we are used to having [p!]2p as a validity for propositional
variables. This is no longer the case in our setting. In particular, for every state s in modelM,
(M, s) 6|= [p!]2p. We recall the semantics of 2 (Def. 4.2.4), namely

[[2ϕ, s]]M :=
∧
{R(s, s′)→ [[ϕ, s′]]M : s′ ∈ S},

where
∧

denotes the infinitary version of ∧ and → is the strong implication. For the sake of
a smooth presentation, we identify the valuation V and its unique extension [[−,−]]M. So far,
our models have two-valued accessibility relations, i.e., (s, s′) ∈ R or (s, s′) 6∈ R for all pairs in
M. This means that 2p takes the value

∧
{t→ V (p, s) : s ∈ {p⊥, pt, pf , p>}}. As V (p, p>) = >,

and t→ > = f (the other three values are t), 2p is therefore false (in all states ofM) and not
true. The intuition behind this is that in bilattice modal logic 2ϕ is false if ϕ is false in an
accessible world. It is not necessarily the case that 2ϕ is true if ϕ is true in all accessible worlds.
In fact, if in one or more of those accessible worlds ϕ has the value > (as in our example model
M), then ϕ is also false in an accessible world, and thus we are done for. From (Mp, s) 6|= 2p
then follows, using that ((M, s) |= [αk]ϕ iff ((M, s) |= Preα(k) implies (Mα, (s, k)) |= ϕ)), that
(M, s) 6|= [p!]2p.

]Now consider the announcement of p ∧ ∼2p. This formula is known as the Moore sentence
[123, 47]. In two-valued public announcement logic, as the result of truthfully announcing it, it
becomes false; [(p ∧ ∼2p)!]∼(p ∧ ∼2p) is valid in public announcement logic. It is not valid in
BAML. Similarly to above, we have:

M: p⊥ pf pt p>
(p∧∼2p)!⇒ Mp∧∼2p: pt p>

Thus, because in Mp∧∼2p we have that R(pt, p>) = t and that V (p, p>) = >, it follows that
Mp∧∼2p, pt 6|= 2p. In fact, we now have thatMp∧∼2p, pt |= p∧∼2p and thus the (from a modal
logical perspective) surprising result that:

[(p ∧ ∼2p)!](p ∧ ∼2p) is satisfiable in BAML.

Having seen some simple examples of announcements and of formulas, and modal formulas,
let us present some simple announcements on the status quo of a database, with regard to p.

• the database is consistent: announcement of ¬(p ∧ ∼p)

• the database is inconsistent: announcement of p ∧ ∼p

• the database is complete: announcement of p ∨ ∼p

• the database is incomplete: announcement of ¬(p ∨ ∼p)

The four-valued truth tables of these formulas are illustrative.

¬ (p ∧ ∼ p)

t ⊥ ⊥ ⊥ ⊥
t f f t f
t t f f t
f > > > >
⇑

p ∧ ∼ p

⊥ ⊥ ⊥ ⊥
f f t f
t f f t
> > > >
⇑
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p ∨ ∼ p

⊥ ⊥ ⊥ ⊥
f t t f
t t f t
> > > >
⇑

¬ (p ∨ ∼ p)

t ⊥ ⊥ ⊥ ⊥
f f t t f
f t t f t
f > > > >
⇑

Again, we do not necessarily have that after these announcements, the formulas of the an-
nouncement are known: [∼(p ∨ ¬p)!]2∼(p ∨ ¬p) and [¬(p ∧ ∼p)!]2∼(p ∨ ¬p) are valid, but
[(p ∨ ∼p)!]2(p ∨ ∼p) and [(p ∧ ∼p)!]2(p ∧ ∼p) are invalid. (Although [¬¬(p ∨ ∼p)!]2¬¬(p ∨ ∼p)
and [¬¬(p ∧ ∼p)!]2¬¬(p ∨ ∼p) are valid.)

It is illustrative to see announcements as answers of queries to the database. When Hendrik
queries the database with p? then the answer he gets will be ‘yes’ if the state of the database
is t or >, when he queries the database with ∼p? then the answer he gets will be ‘yes’ if the
state of the database is f or >. This is like Fitting’s Rosencrantz and Guildenstern (R and G)
setting in [66]. In question-answer analysis in two-valued logic [81], a question induces a partition
on the domain, and a yes/no question, such as a question ϕ? on the truth of ϕ, a dichotomy.
Fitting’s Rosencrantz and Guildenstern other answer is ‘no’. That is, for either of them, a classical
dichotomy. However, it is tempting to see a question in four-valued logic differently, namely as
inducing (a set of subsets that is) a partial cover of the domain. It is a cover, as two subsets may
have non-empty intersection (namely when they contain worlds where ϕ has the value >). It is
partial, as some worlds may not be in any subset, namely when ϕ has the value ⊥. If the world
has no information on ϕ (value ⊥), then ‘there is no answer’ or, differently said, the answer is: “I
don’t know.” This becomes like the introductory example where you were trying to find your
way to the railway station in Nancy. That example also serves to illustrate another, we think,
interesting feature of four-valued question-answer analysis: if the value of ϕ is >, then the answer
to the question ?ϕ is ‘yes’ (so not ‘yes and no’); whereas the answer to the question ¬ϕ? is also
‘yes’. Knowledge of inconsistency is a higher order feature for a database: whereas consulting
memory directly is more straightforward: if you already have the answer ‘yes’, why trying to rule
out the answer ‘no’? In other words, questions become leading questions. We do not know if this
analysis of questions in four-valued logics is common in inquisitive semantics [81].

Roles in dynamic epistemics To understand dynamic epistemics, also on bilattices, it is
important to distinguish different roles: (i) the agent/object/process identified with a propositional
variable (the holder of the information), (ii) the agent being uncertain about the proposition, and
(iii) the provider of reliable new information (on the proposition), the dynamic part. In our tulip
example we have distinguished (i) (the database) from (ii) (Hendrik Edeling), but not (i) from (iii)
(the database is queried and provides the answers). In the railway station example (i) and (iii)
are separate: accidental pedestrians perform the role of (iii). It is common to view the source of
new information, the ‘announcing agent’, as an anonymous oracle or trusted authority (Hendrik
Edeling’s system manager, so to speak). In the tulip example we can even think of the different
roles as different components of ‘the database’ as hardware: (i) is RAM, (ii) is the CPU, and
(iii) is the interface. In multi-agent examples (where each agent a has her own 2i in the logical
language) it is also easier to separate roles.

Truth values or possible worlds? If we see Hendrik Edeling as the database, we can consider
the value of p his uncertainty. Initially the value of p is ⊥. It then changes into t once Hendrik
gathers positive information on p, and may further change into > if he additionally receives
negative information on p. These are so-called factual (ontic) changes. But if we see Hendrik as
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different from the database, then his uncertainty is between four worlds of a Kripke model, where a
world represents the fixed value of p in the database. Receiving information now means restricting
this model in order to finally find out the true value of p. This is informational (epistemic) change.
The former is quite different from the latter. Factual change can also be modelled in dynamic
epistemics, but is outside our scope.

Multi-agent knowledge and actions Our framework generalizes to a multi-agent modal
setting, wherein instead of the modality 2 we have modalities 2i, for each agent i. The
accessibility relation that interprets such a knowledge modality is required to be an equivalence
relation (which, so far, is two-valued; four-valued accessibility relations will be considered next).
Other scenarios are conceivable, for example for belief, intentions or obligations, or time (with
temporal modalities).

Hendrik Edeling has a colleague Sara Burgerhart who is another expert on Acuminata tulips
and who may also have access to the same database. We model some scenarios and give typical
formulas. Elementary checks on their adequacy are left to the reader. The accessibility relation
(equivalence classes) for Hendrik are solid boxes and for Sara they are dashed boxes. Modality
2h represents Hendrik’s knowledge and 2s represents Sara’s knowledge.

• Sara knows that the tulip is red.
pt

pt |= 2sp

• Sara knows whether the tulip is red. Hendrik is uncertain whether she knows that. (And
we should now add; “and they are both aware of this scenario.” We will refrain from doing
so from now on.) Sara says to Hendrik: “I know that the tulip is red.”
pt pf p⊥ p>

2sp!⇒ pt

pt |= ∼2h(2sp ∨2s∼p) ∧ [2sp!]2hp

• Sara knows whether the tulip is red. Hendrik is uncertain whether she knows that. Sara
says to Hendrik: “I know whether the tulip is red.”

pt pf p⊥ p>
(2sp∨2s∼p)!⇒ pt pf

(pf or) pt |= ∼2h(2sp ∨2s∼p) ∧ [(2sp ∨2s∼p)!](∼2hp ∧2h(2sp ∨2s∼p))

• Sara knows that the database is consistent, but she doesn’t know that it is incomplete.
p⊥ pf pt

p⊥ |= 2s¬(p ∧ ∼p) ∧ ∼2s¬(p ∨ ∼p)

• Sara knows whether the database is consistent.
p⊥ pf pt p>

p⊥ |= 2s¬(p ∧ ∼p) ∨2s¬¬(p ∧ ∼p).

• Sara knows whether the database is consistent. Hendrik does not. Sara says to Hendrik:
“The system manager just informed me that the database is consistent.”

p⊥ pf pt p>
2i¬(p∧∼p)!⇒ p⊥ pf pt
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• Sara and Hendrik are both uncertain about the status of the database. The system manager
says: “I will now inform Sara whether the database is consistent.” He proceeds to do so,
but by whispering into her ear, so that Hendrik cannot hear what he says to Sara.
p⊥ pf pt p>

α⇒ p⊥ pf pt p>

Here, α represents the whisper action. This is non-deterministic choice between action
models αk and αl (and where for αk ∪ αl we write α), where αk = ((K,Rα,Preα), k) such
that K = {k, l}, Preα(k) = ¬(p ∧ ∼p); Preα(l) = ¬¬(p ∧ ∼p); Rsα(k, k) = t, Rsα(l, l) = t,
Rsα(k, l) = f, and Rsα(l, k) = f; Rhα(i, j) = t for all i, j ∈ {k, l}. Action structure αl is the
same as αk but with l as designated point.

In all the above, we only considered a single propositional variable, p. However, we can
also consider situations wherein Hendrik Edeling is the expert on p, and controls that database,
whereas Sara Burgerhart (possibly) has information on the tulip’s petals. Are they round and
wide, or are they narrow and sleek? Let that be a proposition q. (In fact Acuminata tulips have
sleek petals — they approach more the Turkish ideal tulip than the Dutch ideal tulip.) We could
think of her as controlling another database. Both databases could contain thousands of items of
possibly inconsistent information. The scenarios merely represent the most elementary setting to
reason about database consistency and completeness by interacting agents.

Four-valued accessibility relations Our framework does not only permit four-valued propo-
sitions but also four-valued relations. Using Fitting’s [66] fitting words:

Now, two kinds of judgments are possible. 1) A is true in situation w; and 2) w is a
situation that should be considered.

Here A is any proposition, for which we tend to write ϕ, and we call w a world. Fitting considered
many-valued logics in general, whereas we are in bilattice logic, with judgements on truth and
falsity. In other words, if R(s, s′) = t then s′ is in, and if R(s, s′) = f then s′ is out.

Let a Kripke model M = 〈S,R, V 〉 be given with a two-valued relation R ((s, s′) ∈ R or
(s, s′) 6∈ R). Let S′ be a set of worlds disjoint from S. ConsiderM′ with domain S∪S′ and define
a relation R′ by R′(s, s′) = R′(s′, s) = R′(s′, s′) = f for any world s′ ∈ S′ and any s ∈ S. Then
for all ϕ, (M, s) |= ϕ iff (M′, s) |= ϕ. This follows easily, as f is the bottom of the truth order ≤t.
For non-modal formulas it is obvious that (M, s) |= ϕ iff (M′, s) |= ϕ; for modal formulas we can
observe that V (3ϕ, s) =

∨
{R′(s, s′) ∗ V (ϕ, s′) : s′ ∈ S} =

∨
{R′(s, s′) ∗ V (ϕ, s′) : s′ ∈ S ∪ S′},

because when s′ ∈ S′ we have that R′(s, s′) ∗ V (ϕ, s′) = f. Thus, this conjunct does not affect the
value of the join. Similarly, R′(s, s′)→ V (ϕ, s′) = t does not affect the value of the meet defining
V (2ϕ, s).

Not surprisingly, with values ⊥ or > for pairs in the accessibility relation it becomes harder
to appeal to our modelling intuitions. For example, what does it mean that ‘Hendrik Edeling
considers world s possible’ has value >? Does he then consider it possible and impossible at the
same time? Our previous visualization with boxes is no longer suitable, and from now on we
depict all pairs in the accessibility relation explicitly as arrows, labelled with the value of that
pair in R (so, for example, below we have that R(pf , pt) = >).

pf pt

>

t

t >
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We could interpret this by saying that Hendrik’s beliefs are more inclined towards p being false
than towards p being true, as > is lower in the ≤t hierarchy than t (worlds considered t are more
plausible than worlds considered >). Still, > access is good enough to get to know p. Compare
the following three (distinct) models:

M : pt

t

M′ : pt

>

M′′ : p>

t

InM andM′, 2p is true, whereas inM′′, 2p is false. (InM′, V (2p, pt) = R(pt, pt)→ V (p, pt) =
> → t = t; whereas in M′′, V (2p, p>) = R(p>, p>) → V (p, p>) = t → > = f.) The latter is
easily explained: 2p is false if there is an accessible world where p is false. And value > means
that p is (also) false. To understand that 2p is true inM′, it is sufficient to observe that the pt
world is considered. It is in. That it is simultaneously out does not hurt. So Hendrik still knows
that tulips are red.

What properties are satisfied by Kripke models with four-valued relations that are used
to interpret knowledge modalities? Are they still equivalence relations? Take transitivity: if
(s, s′) ∈ R and (s′, s′′) ∈ R then (s, s′′) ∈ R; but if (s, s′) 6∈ R and (s′, s′′) 6∈ R then we need not
have that (s, s′′) 6∈ R (for example, suppose s′′ = s). Transitivity plays a role in the four-valued
logic BS4 of [127] (employing two-valued relations), and transitivity of four-valued relations is
summarily discussed in [67] in the context of combining knowledge of different experts. The
answer to our questions is in the logic, not in the structures: for transitivity we need the properties
enforcing the validity of 2ϕ→ 22ϕ. We can achieve this with simple means. First, an example.

Hendrik Edeling knows the colour of the tulips in the Acuminata database. They are red, or
white, or blue. His model of uncertainty is

r r′ s s′ b b′

There are three equivalence classes, and all pairs are either in or out (for (x, y) ∈ R read R(x, y) = t
and for (x, y) 6∈ R read R(x, y) = f). We have that: R(r, s) = f and R(s, r′) = f but R(r, r′) = t;
R(r, s) = f and R(s, b) = f and R(r, b) = f; R(r, s) = f and R(s, s′) = t and R(r, s′) = f. All
combinations are possible except that R(x, y) = t and R(y, z) = t imply R(x, z) = t. That is only
what matters: t or > related worlds should relate the same to all other worlds.

The structural requirements to enforce the validity of the properties of knowledge are as
follows.

• If R(s, x) = t and R(x, y) = t, then R(s, y) = t.

• If R(s, x) = > and R(x, y) = >, then R(s, y) = >.

• If R(s, x) = t and R(x, y) = >, then R(s, y) = >.

• If R(s, x) = > and R(x, y) = t, then R(s, y) = t.

• R(s, s) ∈ {t,>}.

• If R(s, x) ∈ {t,>} and R(s, y) = i, then R(x, y) = i (where i = ⊥, t, f,>).

These cannot be properly called ‘frame properties’, as the manipulation of the pairs in the relation
depends on their values in a given model. If these properties are fulfilled, then the schemata
2ϕ → ϕ, 2ϕ → 22ϕ, and 3ϕ → 23ϕ are all valid (this is easy to see). Similarly, we get
2iϕ→ 2i2iϕ, etc., for multi-agent bilattice epistemic logic.
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4.5. Case study: Knowledge of inconsistency and incompleteness

Four-valued action models In our logical framework not only the accessibility relations of
Kripke models are four-valued but also the accessibility relations of action models. Let us see
some variations on the announcement of p. We have replaced the names of action models by their
preconditions. (The boxes only serve to separate models and have no meaning.)

αi αii αiii αiv αv αvi αvii

p

t

p

>

t

t

>

t

p ∧ ∼p

t

p ∨ ∼p

t

∼p p
t

t t

Action αi is the public announcement of p (and also its correspondent in bilattice logic [139]).
The difference between αi and αii is that, when executed on a two-valued Kripke model, all
links between worlds get value > instead of t; and in both cases the domain is restricted to
the p-worlds (i.e., the V (p) ∈ {t,>} worlds). For example, in a Kripke model M with two
indistinguishable, two-valued, p and ∼p worlds, both [αip]2p and [αiip ]2p are true. The difference
between αi and αii only appears when evaluating knowledge of inconsistencies: [αip]2(p ∧ ∼p)
is false whereas [αiip ]2(p ∧ ∼p) is true, as t → > = f whereas > → > = >. Action structures
αiii and αiv result (when executed on a given model) in isomorphic models: they have the same
update effect (namely, none at all); the worlds preserved by precondition t are the same as those
preserved by precondition > (a public announcement of ϕ restricts the domain to worlds where
ϕ ∈ {t,>}; trivially, t ∈ {t,>} and > ∈ {t,>}). Actions αv and αvi we have already discussed:
these are the announcements that p is inconsistent, respectively, that p is complete. Action αvii

has the same update effect as αvi. Actions αvi and αvii are different from αiii and αiv: the latter
two preserve ⊥ worlds at their execution, the former two not. Given that, an interesting eighth
version, with the same update effect as αiii and αiv, is:

∼p p ¬(p ∨ ∼p)t t

t

t t t

Now consider the following four alternative depictions as action models of a public announcement
of ϕ. The rightmost of the two points (in case there are two) is the designated point.

αa αb αc αd

∼ϕ ϕ

f

t

∼ϕ ϕ
t

f

t

∼ϕ ϕ
t

f

f t

∼ϕ ϕ
f

f

f t

Again, αa (= αi) is the standard. Action structure αb is known as the Gerbrandy-style conscious
update [75]. Instead of eliminating worlds that do not satisfy the announcement formula, it
eliminates arrows (pairs in the accessibility relation) that do not point to worlds satisfying the
announcement. An obvious ‘four-valued completion’ of this action model is αc. A less obvious
four-valued completion of αa is αd. Clearly the update effect of αa and αd is the same, and also
the update effect of αb and αc. Actions αa and αb have also the same update effect (where it is
important that the ϕ-world is the designated point of αb; the correspondence only holds when the
announcement is true). This does not change for bilattice modal logic (it is about accessibility).
Thus, all four describe essentially the same action!

Similarly to above we could add a third point to αd with precondition ¬(∼ϕ ∨ ϕ), which is
f-accessible from and to the other points, and while keeping the ϕ point as the designated one.
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Chapter 4. Bilattice dynamic epistemic logic

Let this be αe. Again, αe has the same update effect as all the others. But executing αe does not
restrict the domain of the model. On any model, we get the same result (logically indistinguishable
results) by arrow elimination when executing αe as by world elimination when executing αa.
This can be applied to any action model: given any Kripke modelM with domain S and action
model α with domain K, once having computed the |K|-fold coproduct of S (cartesian product
S ×K), we need not restrict the domain as when computingMα, but it suffices to restrict the
accessibility relation, i.e., we need to make enough R(v, s) swap their value from t to f.

What is an announcement in four-valued logic? As is well known, public
announcement logic is a misnomer, it is rather a logic of public, information changing,
events. Various communicative phenomena including (informative) announcements
count as (information changing) events: (a) an oral announcement heard by all; (b) a
visual observation (by all) of a property of surrounding objects, for example, when you
see a red tulip blossoming in the fields; (c) written information observed by all, such as
a teacher writing 1 + 1 = 2 on a blackboard, or an envelope containing information on
p, opened in public. (Some events called ‘public announcements’ are not information
changing events at all, but factual changing events, as in “I hereby declare Donald
Trump to be the president of the USA.” We exclude those from consideration.) Not all
of these make sense in a setting where inconsistency or incompleteness plays a role.
Direct observations are hardly ever inconsistent. A tulip is red. Or it is not red. Now
it may be red or orange, or something indefinable in between. But then we would say
that the proposition ‘the tulip is red’ is in between true and false; we would not say that
it is simultaneously true and false. A visual illusion might count as a contradictory
observation (>): is the image below that of a young or of an old woman?

And what would it mean that a direct observation is absent (⊥)? Whereas the contents
of a letter can easily be contradictory or absent. You open it. It contains a leaf, with
p written on it. Or the leaf contains ∼p. Or there was no leaf enclosed. Or two, one
with p and the other with ∼p.

4.6 Conclusions and future research

We proposed a four-valued bilattice-based modal logic including dynamic modalities for the
consequences of actions. Our logic is suitable for reasoning about inconsistent and incomplete
information, and about change of information in such settings. We have presented an axiomatisa-
tion of the logic and shown completeness using algebraic logic and duality theory. We hope that
our logic may be useful in computer science applications.

The present paper is part of an ongoing enterprise that aims, on the applied logic side, at
extending dynamic epistemic logics beyond classical reasoning and, on the theoretical side, at
achieving a better understanding of the very mechanism of epistemic updates. From the latter
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4.6. Conclusions and future research

point of view, an intriguing direction for future research is the investigation of the most general
conditions for the algebraic/duality theoretic machinery to be applicable to epistemic updates.
The papers [114, 105, 138, 139, 35] have shown that a uniform methodology, with few ad hoc
adjustments, can be extended from the classical setting to those of intuitionistic, bilattice and
finite-valued Łukasiewicz modal logics. Other logics are likely to be easily dealt with, for example
positive (i.e. negation-free) modal logic and semilattice-based modal systems. The question then
arises what could be minimal requirements of algebraic/relational semantics that would allow for
a uniform definition of epistemic updates, perhaps one that does not heavily rely (as is so far
the case) on the particular algebraic language involved. For example, since the pseudo-quotient
construction involves the definition of a (partial) congruence by certain algebraic terms, we may
wonder what kind of terms we should postulate in an abstract setting. Algebraic logic may turn
out to be helpful here, and in particular the results from the general theory of the algebraization
of logics that establish a link between logical filters (theories of a logic) and congruences of the
associated algebraic semantics.
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Neighbourhood contingency bisimulation
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5.1 Introduction

A proposition is non-contingent if it is necessarily true or necessarily false, and otherwise it is
contingent. The notion of (non-)contingency goes back to Aristotle [33]. The modal logic of
contingency goes back to Montgomery & Routley [122]. They captured non-contingency by an
operator ∆ such that ∆ϕ means that formula ϕ is non-contingent (and where ∇ϕ means that ϕ is
contingent). In an epistemic modal logic, ‘ϕ is non-contingent’ means that you know whether ϕ,
and ‘ϕ is contingent’ means that you are ignorant about ϕ [153, 151, 63]. Contingency is definable
with necessity: ∆ϕ is definable as 2ϕ ∨ 2¬ϕ. But necessity cannot always be defined with
non-contingency. The definability of 2 with ∆ has been explored in various studies [62, 122, 134].
In [62] the almost-definability schema ∇ψ → (2ϕ↔ (∆ϕ∧∆(ψ → ϕ))) is proposed — as long as
there is a contingent proposition ψ, 2 is definable with ∆; which inspired a matching notion of
contingency bisimulation: back and forth only apply when non-bisimilar accessible worlds exist.

Schemas such as ∆(ϕ ∧ ψ)→ (∆ϕ ∧∆ψ) are invalid for the non-contingency operator. The
operator ∆ is therefore not monotone, and the logic of contingency is not a normal modal logic.
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5.2. Preliminaries

Non-normal logics are standardly interpreted on neighbourhood models [37, 146, 121]. Fan &
Van Ditmarsch proposed in [61] to interpret the contingency operator on neighbourhood models.
They left as an open question what a suitable notion of contingency bisimulation would be over
neighbourhood models. In this chapter, we answer this question.

The main contributions of this chapter are: (i) the introduction of a notion of neighbourhood
∆-bisimilarity, inspired by the semantics of the ∆-modality and [89], where different notions
of structural invariance among neighbourhood models were studied using the coalgebraic repre-
sentation of neighbourhood structures. By way of augmented neighbourhood models and their
correspondence to Kripke models we can provide a detailed comparison to the bisimulations of
[62]. We show that the two notions differ at the level of relations, but the ensuing bisimilarity
notions coincide; (ii) the introduction of the notions of ∆-morphisms and ∆-quotients which leads
us to prove analogues of results from [89], namely Hennessy-Milner theorem; (iii) characterisation
of neighbourhood contingency logic as the ∆-bisimulation invariant fragment of classical modal
logic and of first-order logic (similar to [62, Theorem 4.4, Theorem 4.5]) ; (iv) a model theoretic
proof of Craig interpolation for neighbourhood contingency logic.

Overview. Section 5.2 provides preliminaries on sets, functions and relations and fixes the
notations. Section 5.3 recalls contingency logic over Kripke models and introduces different
perspectives on relational contingency bisimulation. Section 5.4 introduces neighbourhood
contingency bisimulation, studies its properties, and provides Hennessy-Milner style theorem for
an appropriate notion of saturated models. It is then followed by the characterisation results
in Section 5.6. In Section 5.7 we prove Craig interpolation for neighbourhood contingency logic.
The concluding Section 3.6 reflects on the relevance of our work and indicates future directions.

5.2 Preliminaries

We assume that the reader is familiar with the standard notions of sets, functions and relations.
The following is merely to fix notations and to introduce the crucial notion of coherence.

5.2.1 Sets, functions and relations

Let X and U be sets. Given U ⊆ X, we write inU for the inclusion map inU : U → X, and we
denote by U c the complement of U in X. The disjoint union of two sets X1 and X2 is denoted
by X1 +X2 and the inclusion maps by ini : Xi → X1 +X2, i = l, r. Given a function f : X → Y ,
the f -image of U ⊆ X is f [U ] = {f(x) ∈ Y : x ∈ U}, and the inverse f -image of V ⊆ Y is
f−1[V ] = {x ∈ X : f(x) ∈ V }. The graph of f is the relation Gr(f) = {(x, f(x)) ⊆ X ×Y : x ∈
X}. The kernel of f is the relation ker(f) = {(x, y) ∈ X ×X : f(x) = f(y)}. Let R ⊆ X × Y
be a relation. We denote by πl : R→ X and πr : R→ Y the left and the right projections of R,
respectively. The R-image of U ⊆ X is the set R[U ] = {y ∈ Y : ∃x ∈ U : (x, y) ∈ R}, and the
inverse R-image of V ⊆ Y is R−1[V ] = {x ∈ X : ∃y ∈ V : (x, y) ∈ R}.

Given a relation R ⊆ X × Y , the relation R−1 = {(y, x) ∈ Y × X : (x, y) ∈ R} is the
converse of R, and the composition of R and the relation S ⊆ Y ×Z is written as R;S and defined
by R;S = {(x, z) ∈ X × Z : ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}. Let R ⊆ X ×X. The
reflexive closure of R is Rr = R ∪ IdX , where IdX = {(x, x) : x ∈ X}. The symmetric closure
of R is Rs = R ∪ R−1. (Note that R is symmetric if R = R−1.) The transitive closure of R
is R+ =

⋃
i≥1R

i, where Ri is defined inductively by R1 = R and Ri+1 = Ri;R for i ≥ 1. The
equivalence closure of R is defined as Re = ((Rr)s)+. If R is an equivalence relation, we often
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write [x]R (or simply [x]) instead of R(x). Every relation R ⊆ X × Y can be viewed as a relation
on X + Y which is defined as RX+Y = {(inl(x), inl(y)) : (x, y) ∈ R}.

5.2.2 Coherence

Throughout this chapter the notion of coherence will be used extensively.

Definition 5.2.1 (R-coherent pairs) Let R ⊆ X × Y be a relation, U ⊆ X and V ⊆ Y . The
pair (U, V ) is R-coherent if R[U ] ⊆ V and R−1[V ] ⊆ U , or equivalently, for all (x, y) ∈ R, x ∈ U
iff y ∈ V . Given a relation R ⊆ X ×X, we say that U ⊆ X is R-closed if (U,U) is R-coherent.a

For every relation R ⊆ X × Y , trivially (∅, ∅) and (X,Y ) are R-coherent. Let us consider a
simple example.

Example 5.2.2 Suppose X = {1, 2, 3}, Y = {a, b, c}. Let R = {(1, a), (2, a), (3, b)} be a relation
between X and Y . Then, the following are all R-coherent pairs: (∅, ∅), (∅, {c}), ({1, 2}, {a}),
({1, 2}, {a, c}), ({1, 2, 3}, {a, b}), ({1, 2, 3}, {a, b, c}). a

We list a number of useful (easily proven) properties of R-coherence in the following lemmas.

Lemma 5.2.3 Let R ⊆ X × Y a relation, and let U ⊆ X and V ⊆ Y .

1. If R ⊆ R′, where R′ ⊆ X × Y , and (U, V ) is R′-coherent, then (U, V ) is R-coherent.

2. If R = Gr(f) for a function f : X → Y , and (U, V ) is R-coherent, then U = f−1[V ].

3. (U, V ) is R-coherent iff (U + V,U + V ) is RX+Y -coherent.

4. (U, V ) is R-coherent iff π−1
l [U ] = π−1

r [V ]. a

Lemma 5.2.4 Let R ⊆ X ×X be a relation and U ⊆ X. Then, U is Re-closed iff U is a union
of Re-equivalence classes. a

5.3 Contingency Logic

In this section we recall the syntax and Kripke semantics of basic modal logic and contingency
logic, and contingency bisimulation following [62, 63]. We introduce a novel notion of relational
contingency bisimulation defined in terms of coherence, and compare it to the contingency
bisimulation of [62].

Definition 5.3.1 (Languages) Let At be a set of atomic propositions. The languages L2 and
L∆ are generated by the following grammars:

L2 3 ϕ ::= p ∈ At | ¬ϕ | ϕ ∧ ϕ | 2ϕ
L∆ 3 ϕ ::= p ∈ At | ¬ϕ | ϕ ∧ ϕ | ∆ϕ

The other Boolean connectives f, t, ∨ and ↔ are defined in the usual way.

The formula ∆ϕ should be read as ‘ϕ is non-contingent’, that is, ϕ is necessarily true or ϕ is
necessarily false. The language L∆ can be viewed as a fragment of L2 via an inductively defined
translation (−)t : L∆ → L2 with only non-trivial clause (∆ϕ)t = 2ϕt ∨2¬ϕt.

We interpret the language L∆ on Kripke models (Def. 3.2.2) as follows:
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Definition 5.3.2 (Semantics) LetM = (S,R, V ) be a Kripke model, and s ∈ S. The interpre-
tation of formulas from L∆ is defined inductively in the usual manner:

(M, s) |= p iff s ∈ V (p)
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ
(M, s) |= ∆ϕ iff for all t1, t2 ∈ R(s) : (M, t1 |= ϕ⇔ (M, t2) |= ϕ).

where p ∈ At. We say that (M, s) and (M′, s′) are (modally) L∆-equivalent (notation: (M, s) ≡∆

(M′, s′)) if for all ϕ ∈ L∆, (M, s) |= ϕ iff (M′, s′) |= ϕ. a

We say ϕ ∈ L∆ is valid in a Kripke modelM = 〈S,R, V 〉, denoted byM |= ϕ, if (M, s) |= ϕ
for all s ∈ S, and it is valid, denoted by |=CL ϕ, if M |= ϕ for every Kripke model. These
definitions can be easily extended to sets of formulas in the following way: a set Φ ⊆ L∆ is valid
in a Kripke modelM = 〈S,R, V 〉, ifM |= ϕ for all ϕ ∈ Φ. Let Φ ∪ {ϕ} ⊆ L∆. We write Φ |= ϕ,
if ϕ is a local semantic consequence of Φ, if for any modelM and s inM, if (M, s) |= Φ, then
(M, s) |= ϕ. We say Φ is consistent if Φ 6|= f, which means there is a Kripke model that satisfies
Φ. Finally, we define contingency logic CL as the set of validities over the class of Kripke models
in the language L∆, that is, for all formulas ϕ ∈ L∆: ϕ ∈ CL iff |=CL ϕ.

For all pointed Kripke models (M, s), and all ϕ ∈ L∆, (M, s) |= ϕ iff (M, s) |= ϕt.
Recall the definition of Kripke bisimulations from Chapter 3 (see Def. 3.2.6, page 40). In [62],

Fan, Wang & Van Ditmarsch defined a weaker notion (for ∆) which we refer to as o-∆-bisimulation
for “original ∆-bisimulation”.

Definition 5.3.3 (o-∆-bisimulation) LetM = 〈S,R, V 〉 be a Kripke model. A relation Z ⊆
S × S is an o-∆-bisimulation onM, if whenever (s, s′) ∈ Z:
(Atoms) s and s′ satisfy the same propositional variables;
(∆-Zig) for all t ∈ R(s), if there are t1, t2 ∈ R(s) such that (t1, t2) /∈ Z, then there is a t′ ∈ R(s′)
such that (t, t′) ∈ Z;
(∆-Zag) for all t′ ∈ R(s′), if there are t′1, t

′
2 ∈ R(s′) such that (t′1, t

′
2) /∈ Z, then there is a t ∈ R(s)

such that (t, t′) ∈ Z.
We write (M, s)≈on

∆ (M, s′), if there is an o-∆-bisimulation onM that contains (s, s′). We say
two pointed Kripke models (M, s) and (M′, s′) are o-∆-bisimilar, written (M, s)≈∆(M′, s′), if
(M+M′, inl(s))≈on

∆ (M+M′, inr(s′)), i.e., there is an o-∆-bisimulation on the disjoint union
ofM andM′ linking (the injection images of) s and s′, where the disjoint union of two Kripke
models is the disjoint union of M and M′ is the structure M+M′ = 〈S+, R+, V +〉 in which
S+ = S

⊎
S′, R+ = R

⊎
R′, and V +(p) = V (p)

⊎
V ′(p) for every p ∈ At. a

Note that (M, s) ≈∆ (M′, s′) is not witnessed by a relation Z ⊆ S × S′ since, by definition,
o-∆-bisimulation relations always live on a single model.

We introduced the notation ≈on
∆ , since, a priori, it is not clear whether (M, s) ≈on

∆ (M, s′) iff
(M, s) ≈∆ (M, s′). The next proposition shows that this is true, and hence we could dispense
with the notation ≈on

∆ , but for now we keep writing ≈on
∆ for clarity.

Proposition 5.3.4 LetM be a Kripke model that contains two states s and s′. Then we have:

(M, s) ≈on
∆ (M, s′) iff (M, s) ≈∆ (M, s′).

Proof (⇒): If Z is an o-∆-bisimulation onM, then it is easy to prove that Y := {(inl(s), inr(t)) :
(s, t) ∈ Z} is an o-∆-bisimulation onM+M.
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(⇐): Let Y be an o-∆-bisimulation onM+M. We denote by Rl the accessibility relation
of the left component ofM+M, and by Rr the accessibility relation of the right component
of M +M. Define Z := {(s, s′) ∈ S × S : ∃i, j ∈ {l, r} : (ini(s), inj(s

′)) ∈ Y }. To prove
∆-Zig for Z, suppose (s, s′) ∈ Z and t, t1, t2 ∈ R(s) such that (t1, t2) /∈ Z. This implies that
ini(t), ini(t1), ini(t2) ∈ Ri(ini(s)), and there are i, j ∈ {l, r} such that (ini(s), inj(s

′)) ∈ Y , and
by definition of Z, (ini(t1), ini(t2)) /∈ Y . By ∆-Zig for Y , there are inj(t

′), inj(t
′
1), inj(t

′
2) ∈

Rj(inj(s
′)) such that (ini(t), inj(t

′)), (ini(t1), inj(t
′
1)), (ini(t2), inj(t

′
2)) ∈ Y . Hence t′ ∈ R(s′) and

(t, t′), (t1, t
′
1), (t2, t

′
2) ∈ Z, which proves ∆-Zig. The condition ∆-Zag can be proved in a similar

manner. �

Given a modelM, we will also view ≈on
∆ as the relation on the state space ofM that contains

all pairs (s, s′) such that (M, s) ≈on
∆ (M, s′). In order to compare o-∆-bisimilarity with our later

notion (in Definition 5.3.6), we need the following result.

Proposition 5.3.5 On each Kripke model, ≈on
∆ is an o-∆-bisimulation that is an equivalence

relation. a

Proof We will first show that the set of o-∆-bisimulations on a Kripke modelM is closed under
taking unions, converse, and transitive symmetric closure. LetM = 〈S,R, V 〉 be a Kripke model.
Closure under unions and converse can be straightforwardly proved. To show closure under
transitive symmetric closure, let X be an o-∆-bisimulation onM, and let Z be the symmetric
closure of X. As the converse of an o-∆-bisimulation is an o-∆-bisimulation, it follows that
Z is an o-∆-bisimulation. We show Z+ is an o-∆-bisimulation, as well. Suppose (s, s′) ∈ Z+.
The clause (Atoms) is trivial. To prove (∆-Zig), let t, t1, t2 ∈ R(s) be such that (t1, t2) 6∈ Z+

(i.e., for all n ≥ 1, (t1, t2) 6∈ Zn). To produce a t′ ∈ R(s′) such that (t, t′) ∈ Z+, we claim that
for all m ≥ 1, for all u, v ∈ S, if (s, u) ∈ Zm and v ∈ R(s) then there is a t′ ∈ R(u) such that
(v, t′) ∈ Zm, where s is from our main assumption. This suffices to prove (∆-Zig) for Z+, since
(s, s′) ∈ Z+ implies that there is an m ≥ 1 such that (s, s′) ∈ Zm. From t ∈ R(s), we get from
the claim a t′ ∈ R(s′) such that (t, t′) ∈ Zm, hence also (t, t′) ∈ Z+. A similar argument shows
that (∆-Zag) also holds for Z+. Now we prove the claim by induction on m.

Base case (m = 1): Let (s, u) ∈ Z and v ∈ R(s). From (t1, t2) 6∈ Z+ follows (t1, t2) 6∈ Z.
From (∆-Zig) for Z we obtain a t′ ∈ R(u) such that (v, t′) ∈ Z.

Induction step (m + 1): Let (s, u) ∈ Zm+1 and v ∈ R(s). Then there is a u′ such that
(s, u′) ∈ Zm and (u′, u) ∈ Z. Applying the induction hypothesis to (s, u′) ∈ Zm and v, t1, t2 ∈
R(s) (where t1 and t2 are from our main assumption), we obtain v′, v′1, v

′
2 ∈ R(u′) such that

(v, v′), (t1, v
′
1), (t2, v

′
2) ∈ Zm. Towards a contradiction, suppose that (v′1, v

′
2) ∈ Z. Then from

(t1, v
′
1), (t2, v

′
2) ∈ Zm, (v′1, v

′
2) ∈ Z and symmetry of Z it follows that (t1, t2) ∈ Z2m+1 ⊆ Z+.

This contradicts the main assumption that (t1, t2) 6∈ Z+. Therefore, (v′1, v
′
2) 6∈ Z. Together

with v′, v′1, v′2 ∈ R(u′), we now get from (∆-Zig) for Z a t′ ∈ R(u) such that (v′, t′) ∈ Z and
(v, t′) ∈ Zm+1, as required.

Now using the above closure properties, we will show that ≈on
∆ is an o-∆-bisimulation that is

an equivalence relation. By definition, the relation ≈on
∆ onM is the union of all o-∆-bisimulations

onM, and hence the largest one. Reflexivity of ≈on
∆ is immediate since the identity relation is

an o-∆-bisimulation. Symmetry follows from closure under converse. For transitivity, we use
that the composition of two bisimulations is contained in the transitive symmetric closure of their
union, which is again a bisimulation. �

We note that the above proposition follows from the stronger result that says o-∆-bisimilarity
is an equivalence relation over the class of all pointed Kripke models [62]. Unlike the case for
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standard Kripke bisimulation, this is quite non-trivial to prove, since o-∆-bisimulations are not
closed under composition (Example 5.3.7).

It is shown in [62] that Kripke bisimilarity implies o-∆-bisimilarity, but the following example
shows that the other direction does not hold.

s : p s1 : p t : pM M′

The pointed models (M, s) and (M′, t) are o-∆-bisimilar, but there is no Kripke bisimulation
betweenM andM′ that links the states s and t.

In the following we will recall some known results about o-∆-bisimilarity from [62]. The
notion of o-∆-bisimilarity is adequate for L∆, that is, o-∆-bisimilarity implies L∆-equivalence
[62, Proposition 3.5], whereas the converse only holds for L∆-saturated [25] Kripke models [62,
Proposition 3.9]. Given a Kripke modelM = 〈S,R, V 〉, we sayM is L∆-saturated if for every
Γ ⊆ L∆ and every s ∈ S we have: if every finite subset of Γ is satisfiable in R(s) then Γ is
satisfiable in R(s). Contingency logic has been characterised as the o-∆-bisimulation invariant
fragment within basic modal logic and within first order logic; that is, an L2-formula (first-order
formula) is equivalent to an L∆-formula iff it is invariant under o-∆-bisimulation [62, Theorem
4.4, 4.5].

The notion of contingency bisimulation for neighbourhood models using coherent sets, intro-
duced later in Definition 5.4.4, has a natural analogue for Kripke models. The main intuition
behind this definition is the semantics of the ∆-modality over Kripke models. Given a Kripke
modelM = 〈S,R, V 〉 and s ∈ S, the satisfaction condition for the formulas of the form ∆ϕ is

(M, s) |= ∆ϕ iff for all t1, t2 ∈ R(s) : (M, t1 |= ϕ⇔ (M, t2) |= ϕ)

an it can be equivalently written as follows:

(M, s) |= ∆ϕ iff R(s) ⊆ [[ϕ]]M or R(s) ⊆ ([[ϕ]]M)c. (5.1)

where [[ϕ]]M = {s ∈ S : (M, s) |= ϕ} denoted the truth set of ϕ inM. Condition (5.1) gives rise
to the following definition.

Definition 5.3.6 (rel-∆-bisimulation) Let M = 〈S,R, V 〉 and M′ = 〈S′, R′, V ′〉 be Kripke
models. A relation Z ⊆ S × S′ is a rel-∆-bisimulation (for relational ∆-bisimulation) between
M andM′, if whenever (s, s′) ∈ Z:
(Atoms) s and s′ satisfy the same propositional variables;
(Coherence) for all Z-coherent pairs (U,U ′):

(R(s) ⊆ U or R(s) ⊆ U c) iff (R′(s′) ⊆ U ′ or R′(s′) ⊆ U ′c)

We write (M, s) ∼betw
∆ (M′, s′), when there is a rel-∆-bisimulation between M and M′ that

contains (s, s′). A rel-∆-bisimulation on a model M is a rel-∆-bisimulation between M and
M. We define the notion of rel-∆-bisimilarity between states in potentially different models via
the disjoint union (analogously to the notion of o-∆-bisimilarity): We say two pointed models
(M, s) and (M′, s′) are rel-∆-bisimilar, written (M, s) ∼∆ (M′, s′), if (M +M′, inl(s)) ∼betw

∆

(M+M′, inr(s′)), i.e,. if there is a rel-∆-bisimulation onM+M′ that contains (inl(s), inr(s
′)).a

In Proposition 5.3.12 we will see that over a single model, ∼betw
∆ and ∼∆ coincide, but in

general they differ. At first it would seem more natural to define rel-∆-bisimilarity between
pointed models as ∼betw

∆ . However, the following Example 5.3.7 (item 4) shows that this notion
is too restrictive. The example also shows that, in general, rel-∆-bisimulations are different from
o-∆-bisimulations.
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Example 5.3.7 Consider the four figures (and matching items below) where we assume a single
variable p to be false in all states of all models, except in figure 4 where p is true at s and t.

s t u

s1 s2 t1

M M′ M′′

1

Z1 Z2

Z1

Z1

s t

s1 s2

M, Z1

2

Z1

Z1

Z1

s t

s1 s2

M, Z2

3

Z2

Z2

Z2

s t

s1 s2

M1 M2

4

1 The composition of two o-∆-bisimulations may not be an o-∆-bisimulation. The relations
Z1 and Z2 are o-∆-bisimulations, but not Z1;Z2 = {(s, u)}, since s1, s2 ∈ R(s) and there is no
successor of u that is Z1;Z2-related to s1 and s2. Hence, Z1 fails to satisfy the ∆-Zig condition.

2 A rel-∆-bisimulation may not be an o-∆-bisimulation. The relation Z1 is not an o-∆-
bisimulation, as ∆-Zig fails for (s, t) ∈ Z1 because s1, s2 ∈ R(s) and there is no successor of t
that is Z1-related to s1 and s2. However, Z1 is a rel-∆-bisimulation on M. The Z1-coherent
pairs are: ({s, s1, s2}, U ′) and (S,U ′) for all U ′ with t ∈ U ′, ({t}, U ′) for all U ′ with t /∈ U ′, and
(∅, ∅). Since R(s1) = R(s2) = R(t) = ∅, (Coherence) for (s1, t) and (s2, t) is satisfied. For (s, t),
e.g., for ({s, s1, s2}, {t}): R(s) = {s1, s2} ⊆ {s, s1, s2} and R(t) = ∅ ⊆ {t}, and for ({t}, {s1}):
R(s) = {s1, s2} ⊆ {t}c and R(t) = ∅ ⊆ {s1}.

3 An o-∆-bisimulation may not be a rel-∆-bisimulation. It is easy to check that the
relation Z2 is an o-∆-bisimulation, but not a rel-∆-bisimulation, since ({s1}, {s2}) is Z2-coherent,
(s, t) ∈ Z2, and ∅ = R(t) ⊆ {s2}, but R(s) * {s1} and R(s) * {s1}c. Therefore, Z2 is not a
rel-∆-bisimulation.

4 A rel-∆-bisimulation on a disjoint union, but not between disjoints. The pictured relation
is a rel-∆-bisimulation on M1 +M2, but there is no rel-∆-bisimulation between M1 and M2

linking s and t. Since p is only true in s and t and not in s1 and s2, the only candidate is
{(s, t)}, but the coherent pair ({s, s1}, {t}) does not satisfy (Coherence), since R1(s) * {s, s1},
whereas R2(t) = ∅ ⊆ {t}. Hence, (M1 +M2, inl(s)) ∼betw

∆ (M1 +M2, inr(t)), but not (M1, s) ∼∆

(M2, t). a

Although the two notions of contingency bisimulations differ at the level of relations, we can
show that rel-∆-bisimilarity coincides with o-∆-bisimilarity. We will need the following lemma.

Lemma 5.3.8 Let M = 〈S,R, V 〉 be a Kripke model, and assume that Z ⊆ S × S is an
equivalence relation. Z is an o-∆-bisimulation iff Z is a rel-∆-bisimulation. a

Proof First, suppose Z is an o-∆-bisimulation and (s, s′) ∈ Z. Since Z is an equivalence relation,
we need to show that for all Z-closed subsets U ,

(R(s) ⊆ U or R(s) ⊆ U c) iff (R(s′) ⊆ U or R(s′) ⊆ U c) (5.2)

To see that (5.2) holds, let R(s) ⊆ U or R(s) ⊆ U c, where U is Z-closed. Suppose towards a
contradiction that R(s′) ∩ U 6= ∅ and R(s′) ∩ U c 6= ∅. Then, there are t1, t2 ∈ R(s′) such that
t1 ∈ U and t2 ∈ U c. Since U is Z-closed, (t1, t2) /∈ Z. By applying ∆-Zag, there are s1, s2 ∈ R(s)
such that (s1, t1), (s2, t2) ∈ Z. From R(s) ⊆ U or R(s) ⊆ U c, we obtain s1, s2 ∈ U or s1, s2 ∈ U c
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and since U is Z-closed, it follows that t1, t2 ∈ U or t1, t2 ∈ U c, which is a contradiction. Therefore,
R(s′) ⊆ U or R(s′) ⊆ U c. The other direction of (5.2) may be checked in a similar way.

Now, assume that Z is a rel-∆-bisimulation, and let (s, s′) ∈ Z. (Atoms) is immediate. For
(∆-Zig), assume t, t1, t2 ∈ R(s) such that (t1, t2) /∈ Z. Suppose towards a contradiction that
there is no t′ ∈ R(s′) such that (t, t′) ∈ Z, then Z(t) ∩ R(s′) = ∅ and hence R(s′) ⊆ (Z(t))c.
As Z(t) is Z-closed and Z is a rel-∆-bisimulation we get by (Coherence) that R(s) ⊆ Z(t)
or R(s) ⊆ (Z(t))c. But since Z is an equivalence relation and (t1, t2) /∈ Z, it implies that
R(s) ⊆ Z(t) is false. On the other hand, R(s) ⊆ (Z(t))c is also false since Z is an equivalence
relation and t ∈ R(s) ∩ Z(t). Hence we have a contradiction and conclude that Z satisfies the
(∆-Zig) condition. By a similar argument Z satisfies (∆-Zag). �

We have an analogue of Proposition 5.3.5 for rel-∆-bisimilarity (Proposition 5.3.10), namely
the relation ∼betw

∆ is the largest rel-∆-bisimulation on a given Kripke model M, and it is an
equivalence relation. It can be proved in a similar way as in the proof of Proposition 5.3.5 via the
following closure properties.

Lemma 5.3.9 LetM = 〈S,R, V 〉 andM′ = 〈S′, R′, V ′〉 be Kripke models.

1. The identity relation IdS ⊆ S × S is a rel-∆-bisimulation onM.

2. If Z ⊆ S × S′ is a rel-∆-bisimulation between M and M′ then Z−1 ⊆ S′ × S is a rel-∆-
bisimulation betweenM′ andM.

3. The set of rel-∆-bisimulations are closed under arbitrary unions: If Zi ⊆ S × S′, i ∈ I, are
rel-∆-bisimulations, then so is

⋃
i∈I Zi.

4. If Z ⊆ S × S a rel-∆-bisimulation onM, then the reflexive, symmetric closure of Z is also
a rel-∆-bisimulation.

5. If Z ⊆ S × S is a reflexive, symmetric rel-∆-bisimulation onM, then the transitive closure
Z+ is also a rel-∆-bisimulation. a

Proof Items 1-3 are straightforward, details are left to the reader. Item 4 follows from the
previous three, since the reflexive closure of a relation Z ⊆ S × S is Z ∪ IdS , and the symmetric
closure is Z ∪ Z−1.

To prove item 5, we show that for all n ≥ 1, Zn is a rel-∆-bisimulation. It follows by closure
under unions that Z+ =

⋃
n≥1 Z

n is a rel-∆-bisimulation. The proof is by induction on n.
The base case (n = 1) holds by assumption on Z. Assume it holds for n.
Induction step (n+1): First note that if (U,U ′′) is Zn+1-coherent, then since Zn+1 is reflexive,

it follows that U = U ′′. Moreover, since Z and Zn are reflexive and Zn+1 = Zn;Z, it follows
that Z ⊆ Zn+1 and Zn ⊆ Zn+1. As (U,U) is Zn+1-coherent, we obtain that (U,U) is Z-coherent
as well as Zn-coherent. Now suppose (s, s′) ∈ Zn, (s′, s′′) ∈ Z and (U,U) is Zn+1-coherent. We
then have

R(s) ⊆ U or R(s) ⊆ U c ⇐⇒ R(s′) ⊆ U or R(s′) ⊆ U c (by ind.hyp.)
⇐⇒ R(s′′) ⊆ U or R(s′′) ⊆ U c (Z is rel-∆-bisim.)

Hence, Zn+1 is a rel-∆-bisimulation. �

Proposition 5.3.10 On each Kripke model, ∼betw
∆ is a rel-∆-bisimulation that is an equivalence

relation. a
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Proof By definition, ∼betw
∆ is the union of all rel-∆-bisimulations onM, which is again a rel-∆-

bisimulation due to closure under unions (Lemma 5.3.9(3)), and hence the largest one. Also, the
equivalence closure of a rel-∆-bisimulation onM is again one (Lemma 5.3.9(5)). Hence ∼betw

∆ on
a modelM is the largest rel-∆-bisimulation onM and an equivalence relation. �

It follows from Propositions 5.3.5 and 5.3.10, and Lemma 5.3.8 that the two notions of
contingency bisimilarity coincide.

Proposition 5.3.11 LetM andM′ be Kripke models.

1. For all s, t inM: (M, s) ≈on
∆ (M, t) iff (M, s) ∼betw

∆ (M, t).

2. For all s inM and s′ inM′: (M, s) ≈∆ (M′, s′) iff (M, s) ∼∆ (M′, s′). a

Proof Item 1: LetM be a Kripke model. From Proposition 5.3.5, the relation ≈on
∆ onM is an

equivalence relation and an o-∆-bisimulation onM. From Proposition 5.3.10, the relation ∼betw
∆

onM is an equivalence relation and a rel-∆-bisimulation onM. The result now follows from
Lemma 5.3.8. Item 2: Follows from the definition of ≈∆ and ∼∆ over pointed models, and item
1. �

Recall that [59, 60] proved that over the class of all pointed Kripke models, o-∆-bisimilarity
≈∆ is an equivalence. Due to Proposition 5.3.11(2), it follows that also rel-∆-bisimilarity ∼∆ an
equivalence.

Finally, we show that we can dispense with the notation ≈on
∆ as item 1 of the next proposition

ensures that no ambiguity can arise when writing (M, s) ≈∆ (M, s′). We also clarify the similar
question regarding ∼betw

∆ and ∼∆.

Proposition 5.3.12 For all Kripke modelsM andM′:
1. (M, s) ≈on

∆ (M, s′) iff (M, s) ≈∆ (M, s′).

2. (M, s) ∼betw
∆ (M′, s′) implies (M, s) ∼∆ (M′, s′). The implication is strict.

3. (M, s) ∼betw
∆ (M, s′) iff (M, s) ∼∆ (M, s′). a

Proof Item 1. (⇒): If Z is an o-∆-bisimulation on M, then it is easy to prove that Y :=
{(inl(s), inr(t)) : (s, t) ∈ Z} is an o-∆-bisimulation onM+M.

(⇐): Let Y be an o-∆-bisimulation onM+M. We denote by Rl the accessibility relation
of the left component ofM+M, and by Rr the accessibility relation of the right component
of M +M. Define Z := {(s, s′) ∈ S × S : ∃i, j ∈ {l, r} : (ini(s), inj(s

′)) ∈ Y }. To prove
∆-Zig for Z, suppose (s, s′) ∈ Z and t, t1, t2 ∈ R(s) such that (t1, t2) /∈ Z. This implies that
ini(t), ini(t1), ini(t2) ∈ Ri(ini(s)), and there are i, j ∈ {l, r} such that (ini(s), inj(s

′)) ∈ Y , and
by definition of Z, (ini(t1), ini(t2)) /∈ Y . By ∆-Zig for Y , there are inj(t

′), inj(t
′
1), inj(t

′
2) ∈

Rj(inj(s
′)) such that (ini(t), inj(t

′)), (ini(t1), inj(t
′
1)), (ini(t2), inj(t

′
2)) ∈ Y . Hence t′ ∈ R(s′) and

(t, t′), (t1, t
′
1), (t2, t

′
2) ∈ Z, which proves ∆-Zig. The condition ∆-Zag can be proved in a similar

manner.
Item 2. (M, s) ∼betw

∆ (M, s′) ⇐⇒ (M, s) ≈on
∆ (M, s′) Proposition 5.3.11(2)

⇐⇒ (M, s) ≈∆ (M, s′) (Item 1)
⇐⇒ (M, s) ∼∆ (M, s′) Proposition 5.3.11(1)

Item 3. The implication can be proved using Lemma 5.4.6 and Proposition 5.4.5 of the next
section. The converse fails since item 4 of Example 5.3.7 shows models (M1, s) and (M2, t)
such that (M1, s) ∼∆ (M2, t), however, we do not have (M1, s) ∼betw

∆ (M2, t). �
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5.4 Neighbourhood Semantics of Contingency Logic

In this section we recall the neighbourhood semantics of L∆ from [63], and then we proceed
to introduce the notion of ∆-bisimulation between neighbourhood models, and investigate its
properties.

Definition 5.4.1 (Neighbourhood models) A neighbourhood frame is a pair (S, ν) where S
is a set of states and ν : S → P(P(S)) is a neighbourhood function which assigns to each s ∈ S
its collection ν(s) of neighbourhoods. A neighbourhood model is a triple M = (S, ν, V ) where
(S, ν) is a neighbourhood frame and V : At→ P(S) is a valuation. A neighbourhood morphism
betweenM = (S, ν, V ) andM′ = (S′, ν ′, V ′) is a function f : S → S′ such that (i) for all p ∈ At,
s ∈ V (p) iff f(s) ∈ V ′(p), and (ii) for all subsets U ⊆ S′, f−1[U ] ∈ ν(s) iff U ∈ ν ′(f(s)). a

Neighbourhood morphisms are the neighbourhood analogue of bounded morphisms, and
they indeed preserve truth of L2-formulas [89, Lem. 2.6], and hence also of L∆-formulas. The
semantics of L2 ∪ L∆-formulas is given below in Definition 5.4.3.

In what follows, we will also use disjoint unions (or coproducts) of neighbourhood models.
We recall the definition from [89, Def. 2.9].

Definition 5.4.2 (Disjoint union of neighbourhood models) Let M1 = (S1, ν1, V1) and
M2 = (S2, ν2, V2) be two neighbourhood models. Their disjoint union M1 +M2 is the model
M = (S, ν, V ) where S = S1 + S2, V (p) = inl[V1(p)] ∪ inr[V2(p)], and for all U ⊆ S1 + S2, all
i = l, r, and all si ∈ Si:

U ∈ ν(ini(si)) ⇐⇒ in−1
i [Si] ∈ νi(si) (5.3)

Being a bit sloppy and omitting explicit use of inclusion maps, the condition (5.3) can be
stated as: U ∈ ν(si) iff U ∩ Si ∈ νi(si). The definition of ν ensures that the inclusion maps
inl : S1 → S1 +S2 and inr : S2 → S1 +S2 are neighbourhood morphisms, and hence preserve truth
of L2 ∪ L∆-formulas.

Definition 5.4.3 (Neighbourhood Semantics of Contingency Logic) Given a neighbour-
hood model M = (S, ν, V ). The interpretation of formulas from L2 and L∆ in M is defined
inductively for atomic propositions and Boolean connectives as usual. Truth of modal formulas is
given by,

(M, s) |= 2ϕ iff [[ϕ]]M ∈ ν(s)
(M, s) |= ∆ϕ iff [[ϕ]]M ∈ ν(s) or [[ϕ]]cM ∈ ν(s).

where [[ϕ]]M = {s ∈ S : (M, s) |= ϕ} denotes the truth set of ϕ inM. We write (M, s) ≡∆ (M′, s′)
if (M, s) and (M′, s′) satisfy the same L∆-formulas. A subset X ⊆ S is L∆-definable, if there is
a ϕ ∈ L∆ such that X = [[ϕ]]M.

Truth and validity of a formula ϕ of L∆ (or L2) over neighbourhood models are defined in the
same way as for Kripke semantics. Here we apply similar notational conventions as we have set
in Section 5.3. The set of L2-validities over neighbourhood models is known as classical modal
logic [37] , and we denote it by ML. We define classical contingency logic CCL to be the set of
L∆-validities over the class of neighbourhood models.

Again, it is clear that over neighbourhood models we can view L∆ as a fragment of L2, since
for all neighbourhood modelsM, all states s inM, and all ϕ ∈ L∆, (M, s) |= ϕ iff (M, s) |= ϕt

(page 106).
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We now recall how Kripke models can be viewed as certain neighbourhood models [37]. For a
Kripke modelM = (S,R, V ), define nbh(M) = (S, νR, V ) where νR(s) = {X ⊆ S : R(s) ⊆ X}.
It is straightforward to check that for all ϕ ∈ L2 ∪ L∆,

(M, s) |= ϕ iff (nbh(M), s) |= ϕ. (5.4)

A neighbourhood model (S, ν, V ) is augmented (cf. [37]) if all neighbourhood collections are
closed under supersets and under arbitrary intersections, that is, for all s ∈ S, if U ∈ ν(s) and
U ⊆ U ′ ⊆ S, then U ′ ∈ ν(s); and

⋂
νR(s) ∈ νR(s). For an augmentedM = (S, ν, V ), define a

Kripke model krp(M) = (S,R, V ) by taking R(s) =
⋂
ν(s). Again,M and krp(M) are pointwise

equivalent, and we have nbh(krp(M)) =M and krp(nbh(K)) = K. Thus, Kripke models are in
1-1 correspondence with augmented neighbourhood models.

A proof system CL for contingency logic (CL) has been proposed by Fan et al. in [63] and
they showed that CL is sound and strongly complete with respect to the class of Kripke frames
[63, Theorem 19]. From equation (5.4) it follows immediately that CL is sound and strongly
complete with respect to the class of augmented neighbourhood frames. This question was left
open in [61].

We now define the notion of ∆-bisimulation between neighbourhood models. The definition is
inspired by the notion of precocongruences [89, Def. 5.3.3] and the semantics of the ∆-modality.
To see this, let us recall the satisfaction condition of ∆-formulas over neighbourhood models.
Given a neighbourhood modelM and state s inM,

(M, s) |= ∆ϕ iff [[ϕ]]M ∈ ν(s) or [[ϕ]]cM ∈ ν(s). (5.5)

Now, our notion of bisimulation is derived from the formulation of (5.5) using the notion of
coherent pairs.

Definition 5.4.4 (nbh-∆-bisimulation) Let M = (S, ν, V ) and M′ = (S′, ν ′, V ′) be neigh-
bourhood models. A relation Z ⊆ S × S′ is a nbh-∆-bisimulation (for “neighbourhood ∆-
bisimulation”) if for all (s, s′) ∈ Z, the following hold:

(Atoms) s and s′ satisfy the same atomic propositions.

(Coherence) for all Z-coherent pairs (U,U ′):

U ∈ ν(s) or U c ∈ ν(s) iff U ′ ∈ ν ′(s′) or U
′c ∈ ν ′(s′).

We write (M, s) ∼betw
∆ (M′, s′), if there is a nbh-∆-bisimulation betweenM andM′ that contains

(s, s′). A nbh-∆-bisimulation on a modelM is a nbh-∆-bisimulation betweenM andM. For the
same reason that we need to define the notion of rel-∆-bisimilarity on disjoint union of two Kripke
models, we also need to define the notion of nbhd-∆-bisimilarity between two potentially different
models via disjoint union. We say two pointed models (M, s) and (M′, s′) are nbh-∆-bisimilar,
written (M, s) ∼∆ (M′, s′), if (M +M′, inl(s)) ∼betw

∆ (M +M′, inr(s′)), i.e,. if there is a
nbh-∆-bisimulation onM+M′ that contains (inl(s), inr(s

′)). a

The following proposition shows that there is no conflict between the notions of nbh-∆-
bisimulations and rel-∆-bisimulations for augmented models. This allows us to simply speak of
∆-bisimulations, and it justifies the overloading of the notation ∼∆.

Proposition 5.4.5 A relation Z is a rel-∆-bisimulation between Kripke modelsM andM′ if
and only if Z is a nbh-∆-bisimulation between nbh(M) and nbh(M′). Consequently,
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1. (M, s) ∼betw
∆ (M′, s′) iff (nbh(M), s) ∼betw

∆ (nbh(M′), s′).

2. (M, s) ∼∆ (M′, s′) iff (nbh(M), s) ∼∆ (nbh(M′), s′). a

Proof Item 1 is straightforward to prove using the correspondence between Kripke models and
augmented neighbourhood models. Let M = (S,R, V ) and M′ = (S′, R′, V ′) be two Kripke
models. By definition of νR and νR′ , we have:

(a) U ∈ νR(s) or U c ∈ νR(s) ⇐⇒ (b) R(s) ⊆ U or R(s) ⊆ U c and

(a′) U ′ ∈ νR′(s′) or U ′c ∈ νR′(s′) ⇐⇒ (b′) R′(s′) ⊆ U ′ or R′(s′) ⊆ U ′c

If Z is a rel-∆-bisimulation, we have (b) ⇐⇒ (b′), and it follows that Z is a nbh-∆-bisimulation.
Conversely, if Z is a nbh-∆-bisimulation, then we have (a) ⇐⇒ (a′), and hence Z is a
rel-∆-bisimulation. Hence it is clear that item 1 holds.

For item 2 we use item 1 and the isomorphism nbh(M+M′) ∼= nbh(M) + nbh(M′), which
is easy to verify. We have

(M, s) ∼∆ (M′, s′) ⇐⇒ (def.)
(M+M′, s) ∼betw

∆ (M+M′, s′) ⇐⇒ (item 1)
(nbh(M+M′), s) ∼betw

∆ (nbh(M+M′), s′) ⇐⇒ (isomorphism)
(nbh(M) + nbh(M′), s) ∼betw

∆ (nbh(M) + nbh(M′), s′) ⇐⇒ (def.)
(nbh(M), s) ∼∆ (nbh(M′), s′)

�

Over arbitrary pointed neighbourhood models, ∼betw
∆ is strictly contained in ∼∆, but on a

single neighbourhood model they coincide.

Lemma 5.4.6 For all pointed neighbourhood models (M, s) and (M′, s′):

1. (M, s) ∼betw
∆ (M′, s′) implies (M, s) ∼∆ (M′, s′). The implication is strict.

2. (M, s) ∼betw
∆ (M, s′) iff (M, s) ∼∆ (M, s′). a

Proof Item 1. Let M1 = (S1, ν1, V1) and M2 = (S2, ν2, V2) be neighbourhood models. We
show that if Z is a nbh-∆-bisimulation between M1 and M2, then the embedding in(Z) =
{(inl(s1), inr(s2)) : (s1, s2) ∈ Z} is a nbh-∆-bisimulation onM1 +M2 = (S, ν, V ). We will use
the following fact about complements. For all X1 ⊆ S1 and X2 ⊆ S2:

(S1 + S2) \ (X1 +X2) = (S1 \X1) + (S2 \X2).

Now let (inl(s1), inr(s2)) ∈ in(Z) and let (U1 + U2, U
′
1 + U ′2) be in(Z)-coherent where U1, U

′
1 ⊆ S1

and U2, U
′
2 ⊆ S2. As (U1 + U2, U

′
1 + U ′2) is in(Z)-coherent, it follows that (U1, U

′
2) is Z-coherent,

and we have:

U1 + U2 ∈ ν(inl(s1)) or (S1 + S2) \ (U1 + U2) ∈ ν(inl(s1)) ⇐⇒ (def. ν)
U1 ∈ ν1(s1) or (S1 \ U1) ∈ ν1(s1) ⇐⇒ (Z is ∆-bis.)
U ′2 ∈ ν2(s2) or (S2 \ U ′2) ∈ ν2(s2) ⇐⇒ (def. ν)
U ′1 + U ′2 ∈ ν(inr(s2)) or (S1 + S2) \ (U ′1 + U ′2) ∈ ν(inr(s2))
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Hence, in(Z) is a ∆-bisimulation. The implication is strict due to Example 5.3.7 (item 4) and
Proposition 5.4.5.

Item 2. (⇒) follows from item 1. To prove (⇐), assume that Z ′ is a nbh-∆-bisimulation on
M+M. We show that Z := {(s, t) ∈ S × S : ∃i, j ∈ {l, r} : (ini(s), inj(t)) ∈ Z ′} is a nbh-∆-
bisimulation onM. First, note that for all s ∈ S, U ⊆ S, and all i ∈ {l, r}: ini(s) ∈ inl[U ]∪ inr[U ]
iff s ∈ U .

(Atoms): Let (s, t) ∈ Z witnessed by (ini(s), inj(t)) ∈ Y where i, j ∈ {l, r}. Since Y satisfies
(Atoms), we have ini(s) ∈ inr[V (p)]∪inl[V (p)] iff inj(t) ∈ inl[V (p)]∪inr[V (p)], and hence s ∈ V (p)
iff t ∈ V (p).

(Coherence): We first note that if the pair (U, V ) is Z-coherent, then (inl[U ]∪ inr[U ], inl[V ]∪
inr[V ]) is Z ′-coherent. Namely, take any pair (ini(s), inj(t)) ∈ Z ′ where i, j ∈ {l, r}. By definition
of Z, it follows that (s, t) ∈ Z. We now have ini(s) ∈ inl[U ] ∪ inr[U ] iff s ∈ U iff (by Z-coherence)
t ∈ V iff inj(t) ∈ inl[V ] ∪ inr[V ]. Furthermore, it is straightforward to show that for all s ∈ S, all
U ⊆ S, and all i ∈ {l, r}:

U ∈ ν(s) ⇐⇒ (inl[U ] ∪ inr[U ]) ∈ ν ′(ini(s)) (5.6)
U c ∈ ν(s) ⇐⇒ (inl[U ] ∪ inr[U ])c ∈ ν ′(ini(s)) (5.7)

(Coherence) for Z now follows easily from (5.6), (5.7) and coherence for Z ′. �

We state another basic fact about ∆-bisimilarity which can be proved using closure properties
as for Proposition 5.3.5.

Proposition 5.4.7 On each neighbourhood model, ∼∆ is a ∆-bisimulation that is an equivalence
relation. a

Proof It is straightforward to prove an analogue of Lemma 5.3.9 for neighbourhood models, and
the proposition follows. �

As desired, ∆-bisimilar states cannot be distinguished with the L∆-language.

Proposition 5.4.8 For all pointed neighbourhood models (M1, s1) and (M2, s2), we have

(M1, s1) ∼∆ (M2, s2) implies (M1, s1) ≡∆ (M2, s2).

Proof By definition, (M1, s1) ∼∆ (M2, s2) iff (M1 +M2, inl(s1)) ∼betw
∆ (M1 +M2, inr(s2)).

Since the inclusion morphisms preserve truth, we have for all L∆-formulas ϕ that (M1, s1) |= ϕ
iff ((M1 +M2), inl(s1)) |= ϕ, and similarly for (M2, s2). Hence it suffices to prove that for all
modelsM, (M, s) ∼betw

∆ (M, s′) implies (M, s) ≡∆ (M, s′).
So assume that Z is a ∆-bisimulation on a modelM. We prove that for all formulas ϕ ∈ L∆

and all (s, s′) ∈ Z, (M, s) |= ϕ iff (M, s′) |= ϕ, by induction on ϕ. The base case ϕ = p holds by
(Atoms). The Boolean cases are routine, so let’s turn to the case where ϕ = ∆ψ. By induction
hypothesis, we have for all (x, y) ∈ Z, x ∈ [[ψ]]M iff y ∈ [[ψ]]M. That is, the pair ([[ψ]]M, [[ψ]]M)
is Z-coherent. As Z is a ∆-bisimulation, it follows that for all (s, s′) ∈ Z, ([[ψ]]M ∈ ν(s) or
[[ψ]]cM ∈ ν(s)) iff ([[ψ]]M ∈ ν ′(s′) or [[ψ]]cM ∈ ν ′(s′)), that is, (M, s) |= ∆ψ iff (M, s′) |= ∆ψ. �

As with the standard notions of Kripke and neighbourhood bisimulations, L∆-equivalence does
not always imply ∆-bisimilarity. Namely, by Propositions 5.3.11(2) and 5.4.5(2), ∆-bisimilarity
coincides with o-∆-bisimilarity over Kripke frames, and in [62, Example 3.10] it was shown
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that L∆-equivalence does not imply o-∆-bisimilarity, hence L∆-equivalence also does not imply
∆-bisimilarity. However, a converse to Proposition 5.4.8 can be proved for an appropriate notion
of saturated models following a similar line of reasoning as in [89, section 4.1]. To this end, we
introduce ∆-morphisms and ∆-congruences. They will play the part of neighbourhood morphisms
and congruences from [89].

Definition 5.4.9 (∆-morphisms and ∆-congruences) LetM = (S, ν, V ) andM′ = (S′, ν ′, V ′)
be neighbourhood models. A function f : S → S′ is a ∆-morphism fromM toM′ if its graph
Gr(f) is a ∆-bisimulation. A relation is a ∆-congruence if it is the kernel of some ∆-morphism.a

It is natural to ask whether ∆-morphisms are a generalisation of neighbourhood morphisms
(cf. Definition 5.4.1). This is indeed the case.

Lemma 5.4.10 Every neighbourhood morphism is a ∆-morphism. a

Proof LetM = (S, ν, V ) andM′ = (S′, ν ′, V ′) be neighbourhood models, and let f : S → S′ be
a neighbourhood morphism between them. We show that Gr(f) is a ∆-bisimulation between
M andM′. Let (U,U ′) be Gr(f)-coherent. Then U = f−1[U ′] and since f is a neighbourhood
morphism and f−1[U ′]c = f−1[U ′c], we have:

f−1[U ′] ∈ ν(s) ⇐⇒ U ′ ∈ ν ′(f(s)) and
f−1[U ′]c ∈ ν(s) ⇐⇒ U ′c ∈ ν ′(f(s))

It follows that Gr(f) is a ∆-bisimulation. �

As a step towards showing that ∆-congruences are ∆-bisimulations, we show that we can take
quotients with respect to ∆-bisimulations that are also equivalence relations.

Proposition 5.4.11 (∆-quotient) LetM = (S, ν, V ) be a neighbourhood model and let Z be a
∆-bisimulation onM which is also an equivalence relation, i.e., for all Z-closed U ⊆ S and all
(s, t) ∈ Z,

(U ∈ ν(s) or U c ∈ ν(s)) ⇐⇒ (U ∈ ν(t) or U c ∈ ν(t)). (†)

We define the ∆-quotient ofM by Z as the modelMZ = (SZ , νZ , VZ) where SZ = {[s] : s ∈ S}
is the set of Z-equivalence classes, VZ(p) = {[s] : s ∈ V (p)}, and

νZ([s]) = {UZ ⊆ SZ : q−1[UZ ] ∈ ν(s) or q−1[UZ ]c ∈ ν(s)}.

The quotient map q : S → SZ given by q(s) = [s] is a ∆-morphism, and Z = ker(q). Consequently,
(M, s) ∼betw

∆ (MZ , [s]). a

Proof First, we verify that νZ is well defined, i.e., that [s] = [t] implies νZ([s]) = νZ([t]). For
U ⊆ SZ , we have that U := q−1[U ] ⊆ S is Z-closed. Hence for all s, t ∈ S such that [s] = [t] (i.e.
(s, t) ∈ Z) and all U ⊆ SZ , we have:

U ∈ νZ([s]) ⇐⇒ q−1[U ] ∈ ν(s) or q−1[U ]c ∈ ν(s)

⇐⇒ q−1[U ] ∈ ν(t) or q−1[U ]c ∈ ν(t)

⇐⇒ U ∈ νZ([t])

In order to check that q is a ∆-morphism, note that by Lemma 5.2.3(2) if (U, V ) is Gr(q)-coherent
then U = q−1[V ]. By the definition of νZ , we now have for all s ∈ S,

U ∈ ν(s) or U c ∈ ν(s) ⇐⇒ V ∈ νZ([s])

Moreover, for all V ⊆ SZ , q−1[V
c
] = q−1[V ]c, hence V ∈ νZ([s]) iff V

c ∈ νZ([s]), and we can
conclude that q is a ∆-morphism. �
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We can now show that ∆-congruences are indeed a special kind of ∆-bisimulations. This will
be used to prove the Hennessy-Milner theorem in a moment.

Proposition 5.4.12 LetM = (S, ν, V ) be a neighbourhood model and Z a relation on S. The
relation Z is a ∆-congruence iff Z is an equivalence relation and a ∆-bisimulation. a

Proof Assume Z = ker(f) for some ∆-morphism f fromM toM′. Note that if U is Z-closed
then (U, f [U ]) is Gr(f)-coherent. Equation (†) now easily follows from f being a ∆-morphism,
and Z = ker(f). Conversely, if Z is an equivalence relation and a ∆-bisimulation onM, then we
can form the ∆-quotientMZ , and it follows that Z is a ∆-congruence. �

Proposition 5.4.12 allows us to show a neighbourhood analogue of the fact that Kripke
bisimilarity implies o-∆-bisimilarity [62]. For neighbourhood models, the equivalence notion
that matches the expressiveness of the language L2 is called behavioural equivalence [89]: Two
pointed neighbourhood models (M, s) and (M′, s′) are behaviourally equivalent if there exists a
neighbourhood modelM′′ and neighbourhood morphisms f : M→M′′ and f ′ : M′ →M′′ such
that f(s) = f ′(s′).

Proposition 5.4.13 LetM be a neighbourhood model, and s, t two states inM. If (M, s) and
(M, t) are behaviourally equivalent then they are ∆-bisimilar. a

Proof If (M, s) and (M, t) are behaviourally equivalent, then by [89, Prop. 3.20] the pair
(s, t) is contained in a congruence, i.e. in the kernel of a neighbourhood morphism f . By
Lemma 5.4.10, ker(f) is a ∆-congruence, which by Proposition 5.4.12, is a ∆-bisimulation onM,
hence (M, s) ∼betw

∆ (M, t). Finally, it follows from Lemma 5.4.6 that (M, s) ∼∆ (M, t). �

Finally, we prove a Hennessy-Milner style theorem for an appropriate notion of saturated
models which essentially comes from [89, section 4.1].

Definition 5.4.14 (L∆-saturated model) Let M = (S, ν, V ) be a neighbourhood model. A
subset X ⊆ S is L∆-compact if for all sets Φ of L∆-formulas, if any finite subset Φ′ ⊆ Φ is
satisfiable in X, then Φ is satisfiable in X. M is L∆-saturated, if for all s ∈ S and all ≡∆-closed
neighbourhoods X ∈ ν(s), both X and Xc are L∆-compact. a

The next lemma is needed to prove the Hennessy-Milner theorem.

Lemma 5.4.15 LetM = (S, ν, V ) be a neighbourhood model.

1. If for all s ∈ S and all ≡∆-coherent neighbourhoods X ∈ ν(s), there is a ϕ ∈ L∆ such that
X = [[ϕ]]M, then ≡∆ is a ∆-congruence.

2. IfM is L∆-saturated then for all X ⊆ S, X is ≡∆-coherent iff X is L∆-definable.

3. IfM is L∆-saturated, then ≡∆ is ∆-congruence onM. a

Proof The proof is analogous to the proof of Lemma 4.3, Lemma 4.5 of [89].
Item (1). By Prop. 5.4.12, it suffices to show that ≡∆ is a ∆-bisimulation. Let s, s′ ∈ S be
such that (M, s) ≡∆ (M, s′). The condition (Atoms) is immediate. As for (Coherence), let
s, s′ ∈ S be such that (M, s) ≡∆ (M, s′) and let U ⊆ S be ≡∆-coherent. By the assumption there
is a ϕ ∈ L∆ such that U = [[ϕ]]M. Then the semantics of ∆ϕ implies that U ∈ ν(s) or U c ∈ ν(s)
iff (M, s) |= ∆ϕ. But as (M, s) ≡∆ (M, s′), it follows that (M, s) |= ∆ϕ iff (M, s′) |= ∆ϕ.
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Again by the semantics of ∆ϕ we obtain that (M, s′) |= ∆ϕ iff U ∈ ν(s′) or U c ∈ ν(s′). This
implies that U ∈ ν(s) or U c ∈ ν(s) iff U ∈ ν(s′) or U c ∈ ν(s′). Hence, ≡∆ is a ∆-bisimulation.

Item (2). Let X ⊆ S be an ≡∆-coherent subset. By Lemma 5.2.4, X =
⋃
i∈I [xi]≡∆ for

some index set I. For each i ∈ I and (M, y) 6≡∆ (M, xi), there is a modal L∆-formula γi,y
such that xi |= γi,y and y |= ¬γi,y. So by taking Γi = {γi,y : (M, y) 6≡∆ (M, xi)}, we have
[xi]≡∆ =

⋂
γi,y∈Γi

[[γi,y]] for each i ∈ I. Since Γi is not satisfiable in Xc andM is L∆-saturated,
it follows that there is Γi

0 ⊆ Γi such that [x]≡∆ ⊆
⋂
γi,y∈Γ0

i
[[γi,y]]. Defining γi =

∧
Γ0
i for each

i ∈ I, we therefore have X =
⋃
i∈I [[γi]]M. Now by L∆-compactness of X, we obtain a finite subset

Γ0 ⊆ {γi : i ∈ I} such that X = [[
∨

Γ0]]M. That is, X is definable by the formula γ =
∨

Γ0.
Item (3). It immediately follows from items 1 and 2. �

We now proceed with the Hennessy-Milner theorem.

Theorem 5.4.16 (Hennessy-Milner)
1. For all L∆-saturated neighbourhood modelsM, and all states s, t inM:

(M, s) ≡∆ (M, t) iff (M, s) ∼betw
∆ (M, t).

2. If N is a class of neighbourhood models in which the disjoint union of any two models is
L∆-saturated, then for allM,M′ in N,

(M, s) ≡∆ (M′, s′) iff (M, s) ∼∆ (M′, s′).

Proof Item 1 : It is an immediate consequence of Lemma 5.4.15.
Item 2: (M, s) ≡∆ (M′, s′) implies (M +M′, s) ≡∆ (M +M′, s′) since the inclusion

morphisms are ∆-bisimulations. By item 1, (M+M′, s) ∼betw
∆ (M+M′, s′), hence by definition,

(M, s) ∼∆ (M′, s′). �

As the disjoint union of two finite neighbourhood models is finite, and finite neighbourhood
models are clearly L∆-saturated, we have an immediate corollary.

Corollary 5.4.17 Over the class of finite neighbourhood models, L∆-equivalence implies
∆-bisimilarity. a

5.5 Frame class (un)definability

Modal logic formulas can be used to capture neighbourhood frame properties, for example,
2ϕ ∧ 2ψ → 2(ϕ ∧ ψ) defines the class of frames in which the neighbourhood collections are
closed under finite intersection [129]. In the section, we use ∆-bisimulations to demonstrate that
L∆ is too weak to define some well-known frame classes. These results were already proved in
[61, Prop. 7], but without the use of a bisimulation argument.

Definition 5.5.1 (Definability) A frame class F is L∆-definable if there is a set Φ ⊆ L∆ such
that for all frames F , F ∈ F iff F |= Φ. a

Let M be the class of (monotone) neighbourhood frames (S, ν) in which ν(s) is closed under
supersets, for all s ∈ S. Let C be the class of neighbourhood frames (S, ν) in which ν(s) is closed
under intersections, for all s ∈ S.
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Example 5.5.2 Consider the neighbourhood frames F1 = ({s1, s2}, ν1) and F2 = ({t1, t2}, ν2)
where ν1(s1) = {{s2}, {s1, s2}}, ν2(t1) = {∅, {t1}}, and ν1(s2) = ν2(t2) = ∅. These two frames
are illustrated here:

{s1, s2} {s2} ∅ {t2}

F1 : s1

gg 99

s2 F2 : t1

ee
99

t2

It can easily be checked that Z = {(s1, t1), (s2, t2)} is a ∆-bisimulation. The Z-coherent pairs
are: (∅, ∅), ({s1}, {t1}), ({s2}, {t2}) and ({s1, s2}, {t1, t2}). The coherence condition for the pair
(s1, t1) ∈ Z and the Z-coherent pairs (∅, ∅) and ({s1, s2}, {t1, t2}) holds since {s1, s2} ∈ ν1(s1)
and ∅ ∈ ν2(t1). For ({s1}, {t1}), we have that {s1}c = {s2} ∈ ν1(s1) and {t1}c = {t2} ∈ ν2(t1).
The case for ({s1}, {t1}) is clear. Since ν1(s2) = ν(t2) = ∅ the coherence condition trivially holds
for the pair (s2, t2) ∈ Z. Hence Z is a ∆-bisimulation. Note that F1 ∈M, but F2 6∈M. a

Example 5.5.3 Consider the neighbourhood frames F3 = ({s1, s2}, ν3) and F4 = ({t1, t2}, ν4)
where ν3(s1) = {{s1, s2}, {s2}, ∅}, ν3(s2) = ∅, ν4(t1) = {{t1}, {t1, t2}, {t2}}, and ν4(t2) = ∅. The
two frames are illustrated here:

{s1} ∅ {s2} {t1} {t1, t2} {t2}

F3 : s1

ee OO 77

s2 F4 : t1

gg OO 77

t2

It can easily be checked that Z = {(s1, t1), (s2, t2)} is a ∆-bisimulation. Note that F3 ∈ C, but
F4 /∈ C. a

Proposition 5.5.4 The frame classes M and C are not definable in L∆. a

Proof Example 5.5.2 shows that M is not L∆-definable, since suppose towards a contradiction
that Φ ⊆ L∆ defines M. Then F1 |= Φ and F2 6|= Φ. Hence there is a valuation V2 on F2, a state
tj in F2 and a ϕ ∈ Φ such that (F2, V2), tj 6|= ϕ. We define a valuation V1 on F1 by si ∈ V1(p)
iff ti ∈ V2(p) for i = 1, 2 and all p ∈ At. It follows that ((F1, V1), si) ∼∆ ((F2, V2), ti) for i = 1, 2,
and hence that (F1, V1), sj 6|= ϕ, which implies that F1 6|= Φ, a contradiction.

Similarly, Example 5.5.3 can be used to show that C is not L∆-definable. �

5.6 Characterisation Results

We first recall the basic definition of an ultrafilter. Let S be a nn-empty set. An ultrafilter over S
is a collection of sets u ⊆ P(S) satisfying (i) S ∈ u and ∅ /∈ u; (ii) U1, U2 ∈ u implies U1 ∩ U2 ∈ u;
(iii) U1 ∈ u and U1 ⊆ U2 ⊆ S implies U2 ∈ u; and (iv) for all U ⊆ S we have U ∈ u or U c ∈ u.

The collection of all ultrafilters over S will be denoted by Ult(S). For s ∈ S, the principal
ultrafilter generated by s is us = {U ⊆ S : s ∈ U}.

Definition 5.6.1 (Ultrafilter extension [89]) Let M = (S, ν, V ) be a neighbourhood model.
The ultrafilter extension of M is the triple Mue = (Ult(S), νue, V ue) where V ue(p) = {u ∈
Ult(S) : V (p) ∈ u} and νue : Ult(S)→ P(P(Ult(S))) is defined by

νue(u) = {Û ⊆ Ult(S) : U ⊆ S,2(U) ∈ u}

where 2(U) = {s ∈ S : U ∈ ν(s)} and Û = {v ∈ Ult(S) | U ∈ v}. a
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Lemma 5.6.2 Let (M, s) be a pointed neighbourhood model. Then, Mue is an L∆-saturated
model and (M, s) ≡∆ (Mue , us). a

Proof Since L∆ can be seen as a fragment of L2, [89, Lemma 4.24] ensures that
(M, s) ≡∆ (Mue , us) and [89, Proposition 4.25] ensures thatMue is L∆-saturated. �

As in the L2 case, modal L∆-equivalence in a model implies ∆-bisimilarity in the ultrafilter
extension.

Proposition 5.6.3 LetM be a neighbourhood model and s, s′ states inM. Then,

(M, s) ≡∆ (M, s′) implies (Mue , us) ∼∆ (Mue , us′).

Proof Suppose (M, s) ≡∆ (M, s′). Lemma 5.6.2 ensures thatMue is an L∆-saturated model
and (M, s) ≡∆ (Mue , us) and (M, s′) ≡∆ (Mue , us′). It follows that (Mue , us) ≡∆ (Mue , us′)
and hence by Theorem 5.4.16(1), we have (Mue , us) ∼∆ (Mue , us′). �

We are now ready to prove the characterisation theorems.

Theorem 5.6.4 An L2-formula is equivalent to an L∆-formula over the class of neighbourhood
models iff it is invariant under ∆-bisimulation. a

Proof The left-to-right direction is clear. The proof of the converse is analogous to the proof of
the characterisation result in [62, Theorem 4.4].

We will use the fact that classical modal logic ML is compact, i.e., for any set Φ ∪ {ϕ} of
L2-formulas, if Φ |= ϕ, then there is a finite subset Φ0 ⊆ Φ such that Φ0 |= ϕ. The compactness
of classical modal logic follows from strong completeness of the proof system ML of logic ML
with respect to neighbourhood frames, cf. [37, Section 9.2]. Let ϕ ∈ L∆ be invariant under
∆-bisimulation over the class of all neighbourhood models, and let

MOC(ϕ) = {ψt ∈ L2 | ϕ |= ψ, ψ ∈ L∆}

be the translations of modal L∆-consequences of ϕ. By compactness of classical modal logic, it
suffices to prove that MOC(ϕ) |= ϕ. So let (M, s) be a pointed neighbourhood model such that
(M, s) |= MOC(ϕ). A standard compactness argument shows that MOC(ϕ) ∪ {ϕ} is consistent,
and hence satisfable in a pointed neighbourhood model (M′, s′), and we have (M, s) ≡∆ (M′, s′),
since for all ψ ∈ L∆, (M, s) |= ψ implies that ψt ∈ MOC(ϕ) and hence (M′, s′) |= ψ. Conversely,
if (M, s) 6|= ψ then (¬ψ)t ∈ MOC(ϕ) and hence (M′, s′) 6|= ψ.

Take now the disjoint union M +M′. It follows by Lemma 5.4.10 that (M +M′, s) ≡∆

(M +M′, s′). Taking the ultrafilter extension of M +M′, Lemma 5.6.2 and Theorem 5.4.16
give us that ((M +M′)ue , us) ∼∆ ((M +M′)ue , us′). We now have: From (M′, s′) |= ϕ, it
follows from Lemmas 5.4.10 and 5.6.2 that ((M +M′)ue , us′) |= ϕ. As ϕ is invariant under
∆-bisimulations, ((M+M′)ue , us) |= ϕ, and consequently (M, s) |= ϕ, which concludes the proof
that MOC(ϕ) |= ϕ. �

In [89], a Van Benthem style characterisation theorem was given for classical modal logic with
respect to a two-sorted first-order correspondence language L1. The two sorts s and n correspond
to states and to neighbourhoods, respectively, and the basic idea of viewing a neighbourhood
model as a first-order L1-structure is to encode the neighbourhood function ν as a relation
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Rν ⊆ s× n between states and neighbourhoods, and encode subsets via the (inverse) element-of
relation R3 ⊆ n×s between neighbourhoods and states. The language L1 is a first-order language
with equality which contains a unary predicate symbol P (of sort s) for each p ∈ At, a binary
relation symbol N (interpreted by Rν), and a binary relation symbol E (interpreted by R3).
A translation (−)] : L2 → L1 is defined recursively over the Boolean connectives and atomic
propositions, and by (2ϕ)] = ∃u ( xNu ∧ ∀y (uEy ↔ ϕ] )). We refer to [89, section 5] for further
details.

Theorem 5.6.5 A first-order L1-formula is equivalent to an L∆-formula over the class of
neighbourhood models iff it is invariant under ∆-bisimulation. a

Proof Let α ∈ L1 be invariant under ∆-bisimulations. It follows from Lemma 5.4.10 that α is
invariant under neighbourhood morphisms, and hence under behavioural equivalence. From the
characterisation theorem [89, Theorem 5.5] it follows that α is equivalent to ϕ] for some formula
ϕ ∈ L2 which is necessarily also invariant under ∆-bisimulations. Hence by our Theorem 5.6.4,
ϕ is equivalent to ψt for some ψ ∈ L∆. �

5.7 Craig Interpolation for Contingency Logic

In this section, we prove that contingency logic has the Craig interpolation property [43]. A
logic has Craig interpolation property, if for all formulas ϕ,ψ such that |= ϕ → ψ, there is an
interpolant χ containing only common propositional variables of ϕ and ψ such that |= ϕ → χ
and |= χ → ψ. Craig interpolation is closely related to the expressive power of logics as it
entails Beth’s definability theorem [22]. Craig interpolation for modal logics has been explored
from algebraic perspective in various studies [115, 116, 118, 74]. Recently, Seifan et al. in
[147] studies interpolation from coalgebraic perspective. They propose a condition under which
coalgebraic modal logic has uniform interpolation. It can be shown that contingency logic falls
under their theorem, and hence it has uniform interpolation. Since uniform interpolation implies
Craig interpolation, it follows that contingency logic has Craig interpolation. Here, we provide
an elementary prove to show that classical contingency logic CCL enjoys Craig interpolation
property using a similar approach as in [89], where the authors show a similar result for classical
modal logic ML using ultrafilter extensions. We first need the following auxiliary definitions.

Let At be a set of atomic propositions and let At′ ⊆ At. We denote by L∆(At′) the sublanguage
of L∆ generated by At′. Now, we generalise the notions we have so far to the sublanguage
L∆(At′). LetM = (S, ν, V ) andM′ = (S′, ν ′, V ′) be neighbourhood models. This is completely
straightforward, but for the sake of completeness, we provide the details. A binary relation
Z ⊆ S × S′ is a ∆At′-bisimulation iff Z satisfies the (Coherence) condition (Def. 5.3.6), and for
all p ∈ At′, and (s, s′) ∈ Z: s ∈ V (p) iff s′ ∈ V ′(p). A function f :M→M′ is a ∆At′-morphism
betweenM andM′ if Gr(f) is a ∆At′-bisimulation. A ∆At′-congruence is defined as the kernel
of a ∆At′-morphism. We say two states s ∈ M and s′ ∈ M′ are L∆(At′)-equivalent, written
(M, s) ≡L∆(At′) (M′, s′), if s and s′ satisfy the same L∆(At)-formulas. A subset X ⊆ S is
L∆(At′)-compact if for all sets Γ of L∆(At′)-formulas, if any finite subset Γ′ ⊆ Γ is satisfiable in X,
then Γ is satisfiable in X. A modelM is L∆(At′)-saturated, if for all s ∈ S and all ≡L∆(At′)-closed
neighbourhoods X ∈ ν(s), both X and Xc are L∆(At′)-compact.

Before presenting the main theorem, we first state a number of results that can be proved by
retracing the arguments to At′.

Lemma 5.7.1 Suppose At′ ⊆ At, and let M = (S, ν, V ), M′ = (S′, ν ′, V ′) be neighbourhood
models. We have
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(1) Let f : M → M′ be a ∆At′-morphism. For all s in M, and all ϕ ∈ L∆(At′), we have
(M, s) |= ϕ iff (M′, f(s)) |= ϕ.

(2) Given an equivalence relation Z on S, Z is a ∆At′-congruence on M iff Z satisfies the
(Coherence) condition, and for all (s, t) ∈ R, and all p ∈ At′: s ∈ V (p) iff t ∈ V (p).

(3) If M is modally L∆(At′)-saturated, then all ≡L∆(At′)-closed subsets are definable by an
L∆(At′)-formula.

(4) A binary relation Z on S is a ∆At′-congruence iff Z is an equivalence relation and a
nbh-∆At′-bisimulation.

(5) IfM is modally L∆(At′)-saturated, then ≡L∆(At′) is an ∆At′-congruence.

(6) The ultrafilter extensionMue ofM is modally L∆(At′)-saturated. a

Given a formula ϕ ∈ L∆, we let At(ϕ) denote the atomic propositions that occur in ϕ. Let
ϕ,ψ ∈ L∆. Recall that for Γ ∪ {ϕ} ⊆ L∆, we write Γ |= ϕ if ϕ is a local semantic consequence of
Γ. We write |= ϕ if for all neighbourhood modelsM and all states s inM, (M, s) |= ϕ. Note
that as every formula ϕ ∈ L∆ is equivalent to a formula ϕt ∈ L2, and classical modal logic ML
is compact, it follows that contingency logic CCL is compact, as well. Now, we state the main
result of this section.

Theorem 5.7.2 (Craig interpolation) Let ϕ1, ϕ2 ∈ L∆. If |= ϕ1 → ϕ2, then there exists a
formula χ ∈ L∆ with At(ξ) ⊆ At(ϕ1) ∩ At(ϕ2) such that |= ϕ1 → χ and |= χ→ ϕ2. a

Proof We follow a similar method as in the proof of [89, Theorem 5.5.11]. Assume that
|= ϕ1 → ϕ2. For convenience of presentation, we let At1 = At(ϕ1), At2 = At(ϕ2), At0 = At1 ∩At2,
and L∆i = L∆(Ati), i = 0, 1, 2. Denote by ConsL∆0

(ϕ1) = {χ ∈ L∆0 : ϕ1 |= χ} the set
of L∆0-consequences of ϕ1. We claim that ConsL∆0

(ϕ1) |= ϕ2. If we prove this claim, then
by the compactness of contingency logic, there exist χ1, χ2, ..., χn ∈ ConsL∆0

(ϕ1) such that
ϕ1 |= χ1 ∧ ... ∧ χn and χ1 ∧ ... ∧ χn |= ϕ2, which implies that χ = χ1 ∧ ... ∧ χn ∈ L∆0 is a Craig
interpolant.

So, we will show that ConsL∆0
(ϕ1) |= ϕ2. Let (M, s) be a pointed neighbourhood model

such that (M, s) |= ConsL∆0
(ϕ1), and let Ψ = {ψ ∈ L∆0 : (M, s) |= ψ}. We claim that

Ψ ∪ {ϕ1} is consistent. Assume, for the sake of contradiction, that it is inconsistent. Then, by
compactness, for some finite subset {ψ1, ..., ψn} ⊆ Ψ we have |= ψ1 ∧ ... ∧ ψn → ¬ϕ1. Hence,
|= ϕ1 → ¬ψ1 ∨ ... ∨ ¬ψn, but this implies ¬ψ1 ∨ ... ∨ ¬ψn ∈ ConsL∆0

(ϕ1), which contradicts the
assumption that (M, s) |= ConsL∆0

(ϕ1).
Hence, there is a pointed neighbourhood model (M′, t) such that (M′, t) |= Ψ ∪ {ϕ1}. Due

to the way we defined Ψ, (M, s) ≡L∆0
(M′, t). Now we take the disjoint unionM+M′ with

inclusion maps inl : M → M +M′ and inr : M′ → M +M′. Since inl and inr preserve the
truth of formulas, it follows that (M+M′, inl(s)) ≡L∆0

(M+M′, inr(t)). Now, we construct
the ultrafilter extension ofM+M′, which we denote by U = (U, µ, V ). By Lemma 5.6.2, we
obtain that (U , uinl(s)) ≡L∆0

(U , uinr(t)). Since ultrafilter extensions are modally L∆0-saturated
(Lemma 5.7.1(6)), it follows from Lemma 5.7.1(5) that ≡L∆0

is an ∆At0-congruence on U . For
notational convenience, let us in the rest of this proof denote by Z the relation ≡L∆0

on U . We
observe that items 2 and 5 of Lemma 5.7.1 imply that Z is a ∆At0-bisimulation on U . Now, define
the neighbourhood function ζ : Z → P(P(Z)) for each (ul, ur) ∈ Z by

ζ ((ul, ur)) = {π−1
l [C] : C ∈ µ(ul) or C

c ∈ µ(ul)} ∪ {π−1
r [C] : C ∈ µ(ur) or C

c ∈ µ(ur)}
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where πi : Z → U are the projection maps for i = l, r. We first show that πl and πr satisfy the
(Coherence) condition, i.e.

π−1
i [B] ∈ ζ((ul, ur)) or (π−1

i [B])c ∈ ζ((ul, ur)) ⇐⇒ B ∈ µ(ui) or B
c ∈ µ(ui) (5.8)

where B ⊆ U , and i = l, r. We only provide the proof for πl, the proof for πr is similar. To see this,
let (ul, ur) ∈ Z, and let (π−1

l [B], B) be a Gr(πl)-coherent pair (cf. Lemma 5.2.3(2)). The right
to left direction of (5.8) is immediate. For the other direction, suppose that π−1

l [B] ∈ ζ((ul, ur))
or (π−1

l [B])c ∈ ζ((ul, ur)). For now, let us assume π−1
l [B] ∈ ζ((ul, ur)). By the definition of ζ,

the following cases can occur:

Case 1 π−1
l [B] = π−1

l [C] for some C ⊆ U with C ∈ µ(ul) or C
c ∈ µ(ul). If we prove that B = C,

then we have B ∈ µ(u1) or Bc ∈ µ(u1), as desired. So, let us prove that B = C. Let b ∈ B.
Since Z is an equivalence relation on U , we have (b, b) ∈ Z. Therefore, (b, b) ∈ π−1

l [B],
which implies that (b, b) ∈ π−1

l [C]. We hence have that b ∈ C. Similarly, we can show that
C ⊆ B.

Case 2 π−1
l [B] = π−1

r [C] for some C ⊆ U with C ∈ µ(ur) or C
c ∈ µ(ur). In this case, by

Lemma 5.2.3(4) we have that (B,C) is Z-coherent, and since Z is a nbh-∆At0-bisimulation
(by Lemma 5.7.1(4)), it follows that B ∈ µ(ul) or B

c ∈ µ(ul).

Similarly, since π−1
l [B]c = π−1

l [Bc], we can show that (5.8) also holds for the case that (π−1
l [B])c ∈

ζ((ul, ur)). We now define a valuation V̂ on (Z, ζ) such that πl and πr become ∆At1-morphism
and ∆At2-morphism, respectively. Let p ∈ At, and (ul, ur) ∈ Z we define

(ul, ur) ∈ V̂ (p) ⇐⇒


ul ∈ V (p) if p ∈ At1

ur ∈ V (p) if p ∈ At2

never if p ∈ At \ (At1 ∪ At2)

The valuation V̂ is well-defined due to Lemma 5.7.1(2). We now have: (M′, t) |= ϕ1 implies
that (U , uinr(t)) |= ϕ1. As πl is a ∆At1-morphism and preserves the truth of L∆(At1)-formulas,
it follows that (Z, (uinl(t), uinr(s))) |= ϕ1. So as (by assumption) |= ϕ1 → ϕ2, we have that
(Z, (uinl(t), uinr(s))) |= ϕ2, and since πr is an ∆At2-morphism, (U , uinl(s)) |= ϕ2. This implies that
(M, s) |= ϕ2, which completes the proof. �

5.8 Discussion and Future Work

We proposed a notion of contingency bisimulation on neighbourhood models, we related it to an
existing notion of contingency bisimulation on Kripke models, and also provided a characterisation
of (neighbourhood) contingency logic as a fragment of the modal logic of necessity, and of first-
order logic. Our work contributes to a research program aiming at generalizing knowing that to
knowing whether, knowing how, knowing value, etc. [156], including weaker modal notions than
knowledge.

In [63], the logic CL was axiomatised over the class of all Kripke frames. We observed (below
(5.4)) that the axiomatisation of CL, denoted by CL, is sound and complete with respect to the
class of augmented neighbourhood frames (which answers an open question in [62]). In [62] an
axiomatisation CCL of classical contingency logic CCL is also given. This raises the questions
of what the axiomatizations are of monotone contingency logic and regular contingency logic.
Prop. 5.5.4 entails that one cannot fill these gaps with the axioms ∆ϕ→ ∆(ϕ→ ψ)∨∆(¬ϕ→ χ)
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and ∆(ψ → ϕ) ∧∆(¬ψ → ϕ)→ ∆ϕ that are in CL but not in CCL. So these questions remain
open.

The (Coherence) condition in our definition of ∆-bisimulation is a non-local property, since
one needs to check all Z-coherent pairs, so over large Kripke models the ∆-Zig and ∆-Zag
conditions of o-∆-bisimulations will be easier to check. As we proved that (over Kripke models)
∆-bisimilarity coincides with o-∆-bisimilarity, one can view the ∆-Zig and ∆-Zag conditions as
a back-forth characterisation of ∆-bisimilarity over Kripke models. We would like to find local
zig-zag conditions also for ∆-bisimilarity over neighbourhood models.

The notion of ∆-bisimulation was based on the semantics of the modality ∆. It has a natural
generalisation to the framework of coalgebraic modal logic [131, 40] in which the semantics of
modalities is given by predicate liftings. In the next chapter 6, we work out this coalgebraic
perspective. We will show that many of our results hold at this general coalgebraic level, and
the notions of rel-∆-bisimulation and nbh-∆-bisimulation can be recovered by instantiating the
generalised notion to Kripke and neighbourhood models for an appropriate choice of predicate
liftings.
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6.1 Introduction

In the last decades, modal logic [26] has found applications in different areas of computer science
such as artificial intelligence, and verification of reactive and distributed systems. Different
modal languages have been defined to fit specific semantic domains such as game frames [133],
neighbourhood structures [121], probabilistic frames [56] and Markov chains [92]. Many definitions
and results for these modal logics share some similar features, and it was therefore of theoretical
interest to formulate a general framework in which modal logics and their semantic structures
can be studied in a uniform setting. Such a framework is provided by coalgebra [141]. In
coalgebra, state-based systems are defined parametric in the type of transitions and observations
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that the system can make. For example, a system could have nondeterministic or probabilistic
transitions, and each state could have certain properties such as being accepting or not. The
system type is formally specified by a functor. Given a functor T on the category of sets and
functions, a T -coalgebra is a pair (X, γ) where X is a set and γ : X → TX is a function. By
varying T , one obtains as concrete instances of T -coalgebras different systems such as automata,
labelled transition systems, Markov chains, Krikpe models, neighbourhood models and much
more [141, 82, 104].

Coalgebraic modal logic, as in [131, 103], is a framework in which modal logics for T -coalgebras
can be developed parametric in the signature of the modal language and the coalgebra type
functor T . Given a base logic (usually classical propositional logic), modalities are interpreted
via so-called predicate liftings for the functor T . These are natural transformations that turn a
predicate over the state space X into a predicate over TX. Given that T -coalgebras come with
general notions of T -bisimilarity [141] and behavioural equivalence [104], coalgebraic modal logics
are designed to respect those. In particular, if two states are behaviourally equivalent then they
should satisfy the same formulas. If the converse holds, then the logic is said to be expressive.
Such a result generalises the classic Hennessy-Milner theorem [93] which states that over the class
of image-finite Kripke models, two states are Kripke bisimilar if and only if they satisfy the same
formulas in Hennessy-Milner logic.

General conditions for when an expressive coalgebraic modal logic for T -coalgebras exists have
been identified in [132, 23, 143]. A condition that ensures that a coalgebraic logic is expressive is
when the set of predicate liftings chosen to interpret the modalities is separating [132]. Informally,
a collection of predicate liftings is separating if they are able to distinguish non-identical elements
from TX. This line of research in coalgebraic modal logic has thus taken as starting point the
semantic equivalence notion of behavioral equivalence (or T -bisimilarity), and provided results
for how to obtain an expressive logic. However, for some applications, modal logics that are not
expressive are of independent interest. Such an example is given by contingency logic [62, 122] as
we discussed in Chapter 5, where we proposed a notion of contingency bisimulation for contingency
logic interpreted over neighbourhood models and proved the Hennessy-Milner theorem for it. We
can now turn the question of expressiveness around and ask, given a modal language, whether we
can generalise the notion of contingency bisimulation to the level of coalgebraic modal logic?

In this chapter, we propose a notion of Λ-bisimulation which is parametric in a collection Λ of
predicate liftings, and therefore tailored to the expressiveness of a given coalgebraic modal logic.
The definition relies on the notion of Z-coherent pairs, where Z is a relation between the state
spaces of the relevant coalgebras. In particular, we see that if T is the neighbourhood functor
and Λ consists of the usual neighbourhood modality, then Λ-bisimulation amounts to the notion
of precocongruence for neighbourhood frames from [89]. We observe that coherent pairs have an
abstract characterisation in terms of pullbacks and pushouts which makes it possible to prove
most of our results using general category theoretical arguments. This suggests to us that Λ-
bisimulations are a natural concept, which may be useful when considering coalgebraic modal logics
over other categories than Sets. Moreover, we show that Λ-bisimulations, like T -bisimulations,
form a complete lattice, and we show how they relate to T -bisimulations, behavioural equivalences
and precocongruences. We also discuss their relationship to similar notions proposed by Gorin &
Schröder [79] and Enqvist [54]. Our main result is a finitary Hennessy-Milner theorem (which
does not assume Λ is separating): If T is finitary, then two states are Λ-bisimilar if and only if
they satisfy the same modal Λ-formulas.

Overview. In Section 6.2 we fix notation and equip the reader with the necessary background
material. In Section 6.3 we define our notion of Λ-bisimulation, study its properties, and relate
it to other existing equivalence notions. Our Hennessy-Milner theorem is proved in Section 6.4.
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The chapter concludes with a discussion of future and related work in Section 6.5.

6.2 Preliminaries

This section contains some basic definitions and results needed for reading this chapter and fixes
notation.

6.2.1 Categories and functors

We briefly recall the basic concepts from category theory. An extensive introduction into category
theory can be found in [107, 2].

A category C is a mathematical structure that consists of a collection Obj(C) of objects and
a collection Mor(C) of morphisms (or arrows) between objects. Each morphism in Mor(C),
written as f : X → Y , has a domain object X ∈ Obj(C) and a codomain object Y ∈ Obj(C). In
a category, morphisms with compatible codomain and domain can be composed associatively,
and each object has an identity morphism. More precisely, given two morphisms f : X → Y and
g : Y → Z in C, there is a morphism g ◦ f : X → Z in C called the composition of f and g, and
for each object X in C there is a morphism IdX : X → X such that for all f : X → Y , g : Y → Z
and h : Z →W in C, the following holds:

• h ◦ (g ◦ f) = (h ◦ g) ◦ f , and

• f ◦ IdX = IdY ◦ g.
A functor F : C→ D between categories C and D is a mapping that assigns to each object

X ∈ Obj(C) an object F (X) ∈ Obj(D), and to each morphism f : X → Y ∈ Mor(C) a
morphism F (f) : F (X)→ F (Y ) ∈Mor(D) such that for all X ∈ Obj(C), F (IdX) = IdF (X), and
for all f : X → Y and g : Y → Z ∈Mor(C), F (g ◦ f) = F (g) ◦ F (f).

In this chapter, we will work in the category Sets which has sets as objects and functions as
morphisms. We will consider functors from Sets to Sets or to the opposite category Setsop. The
category Setsop is like Sets as it has sets as objects but an arrow f from X to Y in Setsop is a
function f : Y → X in Sets. Note that a functor F : Sets→ Setsop can also be seen as a functor
F op : Setsop → Sets. We are mainly interested in the following three functors.

• The covariant powerset functor P : Sets→ Sets maps a set X to P(X), the powerset of X,
and a function f : X → Y to the direct image map

P(f) : P(X)→ P(Y )

U 7→ f [U ] = {f(x) : x ∈ U}.

• The contravariant powerset functor Q : Sets→ Setsop sends a set X to P(X) and a function
f : X → Y to the inverse image map

Q(f) : Q(Y )→ Q(X)

V 7→ f−1[V ] = {x ∈ X : f(x) ∈ V }.

• The neighbourhood functor or double contravariant powerset functor N = QopQ maps a
set X to N (X) = QopQ(X) : Sets → Sets and a function f : X → Y to the function
N (f) : N (X)→ N (Y ) that is defined as follows:

N (f) : N (X)→ N (Y )

A 7→ {B ⊆ Y : f−1[B] ∈ A}.
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We will see that in the theory of coalgebras, the following class of functors plays an important
role.

Definition 6.2.1 (Finitary functor) A functor T : Sets → Sets is said to be finitary if it
satisfies for all sets X

TX =
⋃
{T inX′(TX ′) ⊆ TX : X ′ ⊆ X,X ′ is finite}

where inX′ : X
′ → X is the inclusion map of X ′ ⊆ X. a

An example of finitary functor is the functor Pω : Sets → Sets that maps a set X to Pω(X),
the set of all its finite subsets, and a function f : X → Y to the function Pωf : PωX → PωY
that is the restriction of Pf to PωX. One can easily show that the powerset functor P and the
neighbourhood functor N are not finitary.

Functors can themselves be viewed as objects in a category. The morphisms between them
are called natural transformations. We will use natural transformations when defining coalgebraic
semantics of modal logics. The definition is as follows. Given two categories C and D and two
functors F,G : C→ D, a natural transformation υ : F ⇒ G is a family of morphisms in D

(υX : FX → GX)X∈Obj(C)

such that for all f : X → Y in C, υY ◦ F (f) = G(f) ◦ υX , i.e., the following diagram commutes:

FY GY

FX GX

Ff Gf

υY

υX

Figure 6.1. A natural transformation

6.2.2 Coalgebras

We assume that the reader is familiar with basic coalgebraic concepts. For a more thorough
introduction to the theory of coalgebras, we refer to [141].

Definition 6.2.2 (T -coalgebra) Given a functor T : Sets→ Sets, a T -coalgebra is a pair (X, γ)
with γ : X → TX. The set X is called the carrier or the state space, and γ is called the transition
function. A T -coalgebra morphism from (X, γ) to (Y, δ), written f : (X, γ)→ (Y, δ), is a function
f : X → Y such that Tf ◦ γ = δ ◦ f , i.e., the following diagram commutes:

The collection of T -coalgebras together with T -coalgebra morphisms form a category denoted by
Coalg(T ). We will need some basic constructions in the category Coalg(T ) [141].

Definition 6.2.3 (Sub-coalgebra) Given a T -coalgebra X = (X, γ), a sub-coalgebra of X is a
T -coalgebra X0 = (X0, γ0) such that X0 ⊆ X and the inclusion inX0 : X0 → X is a T -coalgebra
morphism from X0 to X. a

The other construction that we will use further is the coproduct of T -coalgebras.
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Y TY

X TX

f Tf

δ

γ

Figure 6.2. Coalgebra morphism

Definition 6.2.4 (Coproduct of T -coalgebras) Given a functor T : Sets→ Sets, the coprod-
uct of two T -coalgebras Xl = (Xl, γl) and Xr = (Xr, γr) is the T -coalgebra Xl +Xr = (Xl +Xr, ζ),
where Xl +Xr is the disjoint union of Xl and Xr, and ζ : Xl +Xr → T (Xl +Xr) is defined by

ζ(x) = T ini ◦ γi(x′). (where x = ini(x
′), for i = l, r)

such that the inclusion maps inl : Xi → Xl+Xr and inr : Xr → Xl+Xr are T -coalgebra morphisms
[141]. a

6.2.3 Relations and coherence

We will use pullbacks and pushouts in what follows. We recall the general definitions and the
concrete constructions in Sets.

Definition 6.2.5 (Pullbacks) Let C be a category and let fl : X → Z and fr : Y → Z be
morphisms in C. A weak pullback of fl and fr in C is a triple (B, gl, gr) where B is an object
and gl : B → X, gr : B → Y are morphisms in C such that fl ◦ gl = fr ◦ gr. Moreover, if B′,
hl : B

′ → X and hr : B′ → Y are such that fl ◦ hl = fr ◦ hr, then there exists a morphism
m : B′ → B in C such that hl = gl ◦m and hr = gr ◦m. The situation is depicted in Fig. 6.3(a).
If the morphism m is unique, the triple (B, gl, gr) is called a pullback. a

In Sets, pullbacks can be obtained as follows. Given two functions fl : X → Z and fr : Y → Z,
we obtain a pullback of fl and fr by taking the triple (B, gl : B → X, gr : B → Y ), where

B = pb(fl, fr) = {(x, y) ∈ X × Y | fl(x) = fr(y)}

and gl = πl : B → X and gr = πr : B → Y are the projections. The next definition recalls the
dual notion of pullbacks.

Definition 6.2.6 (Pushouts) Let C be a category and let fl : Z → X and fr : Z → Y be two
morphisms in C. A pushout of fl and fr in C is a triple (P, pl, pr) where P is an object and
pl : X → P and pr : Y → P are morphisms is C such that pl ◦ fl = pr ◦ fr. Moreover, if P ′,
kl : X → P ′ and kr : Y → P ′ are such that kl ◦ fl = kr ◦ fr, then there exists a unique morphism
n : P → P ′ in C such that kl = n ◦ pl and kr = n ◦ pr, as illustrated in Figure 6.3(b). a

In Sets, given a relation R ⊆ X×Y the pushout of the projections πl : R→ X and πr : R→ Y
is a triple (P, pl : X → P, pr : Y → P ) in which P is obtained concretely as follows. The relation
R can be seen as a relation RX+Y on the coproduct X + Y by composing the projections with
the coproduct injections inl : X → X + Y and inr : Y → X + Y . More precisely, RX+Y =
(inl× inr)(R) = {(inl(x), inr(y)) | (x, y) ∈ R}. Let R be the smallest equivalence relation on X+Y
that contains RX+Y . Then we take P = (X + Y )/R to be the set of R-equivalence classes with
associated quotient map q : X + Y → P , and we take pl = q ◦ inl : X → P , pr = q ◦ inr : Y → P .

130



6.2. Preliminaries

X

B

B′

Z

Y

gl

gr

fr

fl

m

hr

hl

(a) Pullback

X

P

P ′

Z

Y

gl

gr

fr

fl

n

hr

hl

(b) Pushout

X + YX Y

P

P ′

R

inl inr

q

n

πrπl

prpl

krkl

(c) Pushout in Sets

Figure 6.3. Pullback and pushout

An important property of functors in the theory of coalgebras is weak pullback preservation.
A functor T : Sets→ Sets preserves weak pullbacks if it maps weak pullbacks to weak pullbacks.
More precisely, if whenever (B, gl : B → X, gr : B → Y ) is a weak pullback of fl : X → Z and
fr : Y → Z, then (TB, Tgl : TB → TX, Tgr : TB → TY ) is a weak pullback of Tfl : TX → TZ
and Tfr : TY → TZ. In terms of diagrams, it means that every weak pullback diagram on the
left side is sent to a weak pullback on the right side:

X

B

Z

Y

gl

gr

fr

fl
TX

TB

TZ

TY

Tgl

Tgr

Tfr

Tfl

From the functors that we introduced so far, only the powerset functor preserves weak pullbacks.
Our definition of Λ-bisimulation relies on the notion of coherent pairs. For convenience, we

recall the definition of coherent pairs from Chapter 5.

Definition 6.2.7 (R-coherent pairs) Let R ⊆ X×Y be a relation with projections πl : R→ X
and πr : R → Y , and let U ⊆ X and V ⊆ Y . The pair (U, V ) is R-coherent if R[U ] ⊆ V and
R−1[V ] ⊆ U . In case R ⊆ X ×X and U ⊆ X, then we say that U is R-coherent if (U,U) is
R-coherent. a

We add an easy, but useful observation about coherent pairs in Lemma 6.2.8. Further properties
of coherent pairs are found in Lemmas 5.2.3 and 5.2.4 (see page 106).

Lemma 6.2.8 Let R ⊆ X × Y be a relation with projections πl : R → X and πr : R → Y , and
let U ⊆ X and V ⊆ Y . The following are equivalent:

1. (U, V ) is R-coherent.

2. (U, V ) is in the pullback of Qπl and Qπr. a

Due to Lemma 6.2.8(2), we will refer to (pb(Qπl, Qπr), π
′
l, π
′
r) as the pullback of R-coherent

pairs.
The following lemma shows that there is a fundamental connection between coherent pairs

and pushouts of relations. It is also key in proving Propositions 6.3.11 and 6.3.12 later.

131



Chapter 6. Bisimulation for weakly expressive coalgebraic modal logic

Lemma 6.2.9 Let R ⊆ X × Y be a relation, and let (P, pl, pr) be the pushout of R. The triple
(QP,Qpl, Qpr) is also a pullback of (QR,Qπl, Qπr), and hence it is isomorphic to
(pb(Qπl, Qπr), π

′
l, π
′
r), the pullback of R-coherent pairs. a

Proof This lemma holds for the general reason that the contravariant powerset functor Q : Sets→
Setsop is a left adjoint of itself, more precisely of Qop : Setsop → Sets, and that left adjoints preserve
colimits. HenceQ turns the pushout into a pullback. Since pullbacks are unique up to isomorphism,
the result follows. The isomorphism is given concretely by the map h : QP → pb(Qπl, Qπr) defined
for all A ∈ Q(P ) by h(A) = (Qpl(A), Qpr(A)). We verify that (Q(pl(A)), Q(pr(A))) is R-coherent.
So let (x, y) ∈ R. It follows that pl(x) = pr(y), and hence x ∈ Qpl(A) iff pl(x) ∈ A iff pr(y) ∈ A
iff y ∈ Qpr(A). To see that h is injective, suppose A,A′ ⊆ P and a ∈ A \ A′. The maps pl
and pr are jointly surjective. If a ∈ pl[X], then there is a x ∈ Qpl(A) such that pl(x) = a. If
also x ∈ Qpl(A′), then pl(x) = a ∈ A′, a contradiction. Similarly, if a ∈ pr[Y ], then there is a
y ∈ Qpr(A) such that pr(y) = a, and it must be the case that y /∈ Qpr(A′). Hence h(A) 6= h(A′).
To see why h is surjective, it can be verified that if (U, V ) is R-coherent, and we take A ⊆ P to be
A = pl[U ] ∪ pr[V ], then h(A) = (U, V ). For example, to see why Qpl(pl[U ]) = U , first note that
the inclusion ⊇ always holds. Equality follows from the fact that (U, V ) is R-coherent. Finally, we
remark that (QP,Qpl, Qpr) is a competitor to the pullback of R-coherent pairs precisely because
(Qpl(A), Qpr(A)) is R-coherent for all A ⊆ P . �

6.2.4 Equivalence notions

We recall the equivalence notions in the theory of coalgebras, namely behavioural equivalence,
(coalgebraic) bisimilarity, and precocongruence.

Definition 6.2.10 (Behavioural equivalence) Let X = (X, γ) and Y = (Y, δ) be T -coalgebras.
Two states x ∈ X and y ∈ Y are behaviourally equivalent (notation: X, x ∼bh Y, y), if there is a
T -coalgebra E = (E, ε) and a pair of T -coalgebra morphisms f : X→ E and g : Y→ E such that
f(x) = g(y). The situation is depicted below.

TETX

EX

TY

Y

γ ∃ε δ

f g

Tf Tg

Figure 6.4. Behavioural equivalence

Definition 6.2.11 (T -bisimulation) A relation Z ⊆ X×Y is a T -bisimulation between X and
Y , if there exists a function ζ : Z → TZ such that the projections πl : Z → X and πr : Z → Y
are T -coalgebra morphisms, i.e., the following diagram commutes:
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TZTX

ZX

TY

Y

γ ∃ζ δ

πl πr

Tπl Tπr

Figure 6.5. Z is a T -bisimulation.

Two states x ∈ X and y ∈ Y are T -bisimilar (notation: X, x ∼T Y, y) if there is a T -
bisimulation between X and Y linking x and y. a

Definition 6.2.12 (Precocongruence) Let Z ⊆ X × Y be a relation with pushout (P, pl, pr).
The relation Z is a precocongruence between X and Y if there exists a function ρ : P → TP such
that the pushout morphisms pl : X → P and pr : Y → P are T -coalgebra morphisms, i.e., if the
following diagram commutes. If two states x ∈ X and y ∈ Y are related by some precocongruence,
we write X, x ∼p Y, y.

Z

TPTX

PX

TY

Y

γ ∃ρ δ

pl pr

Tpl Tpr

πl πr

Figure 6.6. Z is a precocongruence.

We summarise a number of well-known facts on these notions. For any functor T , T -bisimilarity
implies behavioural equivalence in T -coalgebras, however the converse only holds for the functors
that preserve weak pullbacks [141, 1]. Every T -bisimulation is a precocongruence [89, Prop.
3.10(1)]. Moreover, on a single T -coalgebra, behavioural equivalence and precocongruences
coincide [89, Theorem 3.12(2)].

6.2.5 Coalgebraic modal logic

Coalgebraic modal logic [131] is a uniform framework in which modal logics for coalgebras can be
developed parametric in the type functor T and a choice of predicate lifting.

Syntax. A similarity type Λ is a set of modal operators with finite arities. We define the
syntax of coalgebraic modal logic as follows.

Definition 6.2.13 The set LΛ of Λ-formulas is generated by the following grammar:
LΛ 3 ϕ ::= t | ¬ϕ | ϕ ∧ ϕ | ♥(ϕ, . . . , ϕ︸ ︷︷ ︸

n times

) (♥ ∈ Λ, n-ary)

We use the standard definitions of the Boolean operators f,∨ and →. a

A T -coalgebraic semantics of LΛ-formulas is given by providing a Λ-structure
(T, ([[♥]])♥∈Λ) where T is a functor on Sets, and for each n-ary ♥ ∈ Λ, [[♥]] is an n-ary predicate
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lifting, i.e., [[♥]] : QnX ⇒ QT is a natural transformation, i.e., for every set X, it provides a
function [[♥]]X : QnX → QTX such that for every mapping f : X → Y the following diagram
commutes:

QnY QTY

QnX QTX

Qf QTf

[[♥]]Y

[[♥]]X

Figure 6.7. Predicate lifting

where Qn denotes the functor from Sets× . . . Sets (n times) that maps a set X to P(X)×
· · · × P(X) (n times), and maps every function f : X → Y to a function Qnf : QnY → QnY
which is defined by Qnf = Qf × . . . Qf (n times).

An n-ary modal operator ♥ ∈ Λ is monotone, if it satisfies the following condition:

For all i = 1, . . . , n Ai ⊆ Bi ⊆ X ⇒ [[♥]]X(A1, . . . , An) ⊆ [[♥]]X(B1, . . . , Bn).

Different choices of predicate liftings yield different Λ-structures and consequently different
logics.

Semantics. Given a Λ-structure (T, ([[♥]])♥∈Λ), the truth of LΛ-formulas in a T -coalgebra
X = (X, γ : X → TX) is defined as follows:

X, x |= t always
X, x |= ¬ϕ iff X,x 6|= ϕ
X, x |= ϕ ∧ ψ iff X, x |= ϕ and X, x |= ψ
X, x |= ♥(ϕ1, . . . , ϕn) iff γ(x) ∈ [[♥]]X([[ϕ1]]X, . . . , [[ϕn]]X).

where [[ϕ]]X = {x ∈ X | X, x |= ϕ} for all ϕ ∈ LΛ. Two states x in X and y in Y are (modally)
LΛ-equivalent (notation: X, x ≡Λ Y, y), if they satisfy the same LΛ-formulas, i.e., X, x ≡Λ Y, y if
for all ϕ ∈ LΛ, X, x |= ϕ iff Y, y |= ϕ.

A logical language L is expressive if (modally) L-equivalent states are behaviourally equiva-
lent [132]. Pattinson in [132] introduced the notion of a separating set of predicate liftings when
studying expressive logics.

Definition 6.2.14 A set ([[♥]])♥∈Λ of predicate liftings for a functor T is separating (for T )
if every t ∈ TX is uniquely determined by the set {((A1, ..., An),♥) ∈ (P(X))n × Λ | t ∈
[[♥]]X(A1, ..., An)}. That is, if t1, t2 ∈ TX and t1 6= t2 then there is an n-ary ♥ ∈ Λ and
A1, . . . , An ∈ P(X) such that t1 ∈ [[♥]]X(A1, . . . , An) and t2 /∈ [[♥]]X(A1, . . . , An), or vice versa.a

We provide some examples of modal languages and their coalgebraic semantics.

Example 6.2.15 Coalgebras for the covariant powerset functor P are Kripke frames. This is
because every binary relation R ⊆ X ×X can be presented as a function R[−] : X → P(X) that
maps every state x ∈ X to R[x], the set of R-successors of x. The similarity type Λ = {2} for
the basic modal language (without proposition letters) is given the usual Kripke semantics by
interpreting 2 via the predicate lifting

[[2]]X(A) = {B ∈ P(X) | B ⊆ A},
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which is separating for P, cf. [132].
Proposition letters can be included in the language by interpreting them as nullary predicate

liftings. More precisely, given a set At of proposition letters, the basic modal language over At is
obtained from the similarity type Λ = {2} ∪ At, This language is given its usual semantics in
Kripke models which are coalgebras for the functor TX = P(X)×P(At) by taking the Λ-structure
(T, ([[♥]])♥∈Λ) where

[[2]]X(A) = {(B,P ) ∈ P(X)× P(At) | B ⊆ A}, and
[[p]]X(A) = {(B,P ) ∈ P(X)× P(At) | p ∈ P}. a

Example 6.2.16 The language of contingency logic (Def. 5.3.1) corresponds to the modal
similarity type Λ = {∆} and it is interpreted over Kripke frames (i.e. P-coalgebras) via the
predicate lifting

[[∆]]X(A) = {B ∈ P(X) | B ⊆ A or B ⊆ Ac}.
The predicate lifting [[∆]] is not separating for P . To see this, consider the following example: let
X = {x, y}, B1 = {x} and B2 = {y}. For every subset A ⊆ X, x ∈ A or x ∈ Ac and y ∈ A or
y ∈ Ac. This means that for every subset A ⊆ X, B1 ⊆ A or B1 ⊆ Ac and B2 ⊆ A or B2 ⊆ Ac.
Hence, [[∆]] is not separating for P. a

Example 6.2.17 Neighbourhood frames are coalgebras for the functor N . We obtain the
neighbourhood semantics of the basic modal language, where Λ = {2}, by taking

[[2]]X(A) = {B ∈ N (X) | A ∈ B},

which is separating for N . a

Example 6.2.18 The Neighbourhood semantics of contingency logic [61] is obtained by taking
T = N , Λ = {∆}, and

[[∆]]X(X) = {B ∈ N (X) | A ∈ B or Ac ∈ B}.

As in the Kripke case, [[∆]] is not separating for N . a

Example 6.2.19 The language of instantial neighbourhood logic (INL) [19] arises from the
similarity type Λ = {2n | n ∈ N} where 2n is n+ 1-ary for all n ∈ N. The semantics of instantial
neighbourhood logic is obtained by taking T = PP and

[[2n]]X(A1, ..., An, B) = {N ∈ P(P(X)) | ∃U ∈ N : U ⊆ B and for all i = 1, . . . , n : U ∩Ai 6= ∅}.

The collection {[[2n]] | n ∈ N} is separating for PPω: Suppose N,N ′ ∈ P(Pω(X)) and B ∈ N \N ′
with B = {x1, . . . , xn}. Then [[2n]]({x1}, . . . , {xn}, B) contains N , but not N ′. It is not hard to
see that any finite subset of {[[2n]] | n ∈ N} is not separating for PPω. a

6.3 Λ-bisimulation

In this section, we introduce the notion of Λ-bisimulation between T -coalgebras, and investigate
its properties. This notion is parametric in the choice of a signature Λ and a Λ-structure
(T, ([[♥]])♥∈Λ). In the remaining part of the chapter, we therefore assume that we have fixed a
functor T : Sets→ Sets, and for each ♥ ∈ Λ, a predicate lifting [[♥]] of appropriate arity. From now
on, by abuse of language, we will also refer to Λ as the set of these predicate liftings. Moreover,
we let X = (X, γ) and Y = (Y, δ) denote arbitrary T -coalgebras.
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6.3.1 Definition and basic properties

The definition of Λ-bisimulation is as follows.

Definition 6.3.1 (Λ-bisimulation ) Let Z ⊆ X×Y be a relation and let (pb(Qπl, Qπr), πl, πr)
be the associated pullback of Z-coherent pairs. The relation Z is a Λ-bisimulation between
X = (X, γ) and Y = (Y, δ), if for all ♥ ∈ Λ, with ♥ n-ary, the following diagram commutes:

Q(Z)

Q(TX)

Q(X)

Q(TY )

Q(Y )

pb(Qπl, Qπr)

Q(X) Q(Z) Q(Y )

Qπl Qπr

[[♥]]X [[♥]]Y

Qγ Qδ
Qπl Qπr

πl πr

Figure 6.8. Λ-bisimulation

I.e., the following equality holds:

Qπl ◦Qγ ◦ [[♥]]X ◦ π
n
l = Qπr ◦Qδ ◦ [[♥]]Y ◦ π

n
r (6.1)

where πnl : pb(Qπl, Qπr)
n → (QX)n and πnr : pb(Qπl, Qπr)

n → (QY )n are the pointwise projec-
tions, for example, πl((U1, V1), . . . , (Un, Vn)) = (U1, . . . , Un).

In other words, the relation Z is a Λ-bisimulation if whenever (x, y) ∈ Z, then for all ♥ ∈ Λ,
n-ary, and all Z-coherent pairs (U1, V1), . . . , (Un, Vn), we have that

γ(x) ∈ [[♥]]X(U1, . . . , Un) iff δ(y) ∈ [[♥]]Y (V1, . . . , Vn). (Coherence)

We write X, x ∼Λ Y, y, when there is a Λ-bisimulation between X and Y that contains (x, y).
A Λ-bisimulation on a T -coalgebra X is a Λ-bisimulation between X and X. We say two states x
in X and y in Y are Λ-bisimilar (notation: X, x ∼Λ+ Y, y) if X + Y, inl(x) ∼Λ X + Y, inr(y). a

Remark 6.3.2 We note that using the basic observation (Lemma 6.2.9) that the coherent pairs
is isomorphic to the dual of the pushout, Λ-bisimulations can be reformulated in terms of com-
plex algebras (i.e. algebras for the modal signature) as follows: A relation Z between two
T -coalgebras X = (X, γ) and Y = (Y, δ) is a Λ-bisimulation iff the pullback of Z-coherent pairs
(pb(Qπl, Qπr), Qπl, Qπr) is a congruence between the complex algebras X∗ = (LQX, γ∗) and
Y∗ = (LQY, δ∗), where L : BA → BA is the functor corresponding to the modal signature Λ,

i.e., LA =
∐
♥∈ΛA

ar(♥), γ∗ = LQX
σX //QTX

Qγ
//QX , δ∗ = LQY

σY //QTY
Qδ
//QY , and

σ : LQ =⇒ QT is the bundling up of all predicate liftings into one natural transformation. 4 a

We define Λ-bisimilarity via the coproduct for the same reason that rel-∆-bisimilarity was defined
via the coproduct in Chapter 5 (Def. 5.3.6). Namely, rel-∆-bisimulations are instances of Λ-
bisimulations, as we will see later in Example 6.2.16, and in Example 5.3.7(4) we saw that even

4This observation has been made by Alexander Kurz during the Ph.D. defense of the author of the thesis.
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(QZ)n

QTX

(QX)n

QTY

(QY )n

pb(Qπl, Qπr)
n

QX QZ QY

pb(Q(inl ◦ πl), Q(inr ◦ πr))n

Q(X + Y )n Q(X + Y )n

QT (X + Y ) QT (X + Y )
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π̂nl π̂nr

Figure 6.9. Diagram of the proof of Prop. 6.3.3

between Pω-coalgebras, it is possible for two states to satisfy the same modal L∆-formulas without
being linked by a rel-∆-bisimulation. So in order to obtain a Hennessy-Milner theorem over finite
models with respect to Λ-bisimilarity, we cannot define Λ-bisimilarity using the ∼Λ notion.

In the next proposition we will show that over a single T -coalgebra, ∼Λ and ∼Λ+ coincide,
however in general they differ.

Proposition 6.3.3 For all x, x′ ∈ X and y ∈ Y ,

1. X, x ∼Λ Y, y implies X, x ∼Λ+ Y, y. The implication is strict.

2. X, x ∼Λ X, x′ iff X, x ∼Λ+ X, x′. a

Proof Item 1. Let Z ⊆ X ×Y be a Λ-bisimulation between X and Y. We show that the relation
(inl × inr)(Z) = {(inl(x), inr(y)) | (x, y) ∈ Z} is a Λ-bisimulation on X + Y = (X + Y, ζ). The
proof follows from the commutativity of the diagram in Figure 6.9 where ♥ ∈ Λ is arbitrary. The
commutativity follows from observing that pb(Q(inl ◦ πl), Q(inr ◦ πr)) with π̂l ◦Qinl and π̂r ◦Qinr
is a competitor to the pullback (pb(Qπl, Qπr), πl, πr). This yields a mediating map (dashed arrow)
such that the upper part of the diagram commutes. The lower, outer parts commute due to
naturality of [[♥]] and the inclusions being T -coalgebra morphisms.

Item 2. The direction from left to right follows from item 1. For the other direction, assume
that Z is a Λ-bisimulation on X+X = (X +X, ζ). We show that Z ′ = {(w,w′) ∈ X ×X | ∃i, j ∈
{r, l} : (ini(w), inj(w

′)) ∈ Z} is a Λ-bisimulation on X. First, note that is (U, V ) if Z ′-coherent,
then (U+U, V +V ) is Z-coherent. Let (x, x′) ∈ Z ′, then (ini(x), inj(x

′)) ∈ Z, for some i, j ∈ {l, r}.
Since Z is a Λ-bisimulation, it follows that:

ζ(ini(x)) ∈ [[♥]]X+X(U + U) ⇐⇒ ζ(inj(x
′)) ∈ [[♥]]X+X(V + V ) (6.2)
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To complete the proof, it remains to show that for very U ⊆ X

γ(x) ∈ [[♥]]X [U ] ⇐⇒ ζ(ini(x)) ∈ [[♥]]X+X(U + U) (i = l, r) (6.3)

But this follows from naturality of [[♥]] and the fact that inclusion maps are T -coalgebra morphism.
Item 2 then follows from (6.2) and (6.3). �

The next lemma provides an easy observation about dual modal operators that we will use
further in the examples.

Lemma 6.3.4 Let ♥,♥′ ∈ Λ be two n-ary dual modalities, that is ♥ = ¬♥′¬. A relation Z is a
♥-bisimulation between X and Y iff Z is a ♥′-bisimulation between X and Y. a

Proof First, ♥ = ¬♥′¬ means that for all sets W , and all A1, . . . , An ⊆ W , we have that
[[♥]]W (A1, . . . , An) = ([[♥′]]W (Ac1, . . . , A

c
n))c. We note that if Z ⊆ X × Y , U ⊆ X and V ⊆ Y ,

then the pair (U, V ) is Z-coherent iff (U c, V c) is Z-coherent. Hence, γ(x) ∈ [[♥]]X(U1, ..., Un) iff
γ(x) /∈ [[♥′]]X(U c1 , ..., U

c
n) iff δ(y) /∈ [[♥′]]Y (V c

1 , ..., V
c
n ) iff δ(y) ∈ [[♥]]Y (V1, ..., Vn). �

We provide some examples of our notion of Λ-bisimulation.

Example 6.3.5 Taking T = P (i.e. T -coalgebras are Kripke frames) and Λ = {2} (or Λ = {3}),
then a relation Z between Kripke frames X = (X, γ) and Y = (Y, δ) is a Λ-bisimulation if
for all (x, y) ∈ Z and all Z-coherent pairs (U, V ): γ(x) ⊆ U iff δ(y) ⊆ V . An easy proof
shows that if Z is a Kripke bisimulation then Z is a Λ-bisimulation. However, a Λ-bisimulation
may not be a Kripke bisimulation. Consider the following Kripke frames: X = (X, γ) and
Y = (Y, δ), where X = {x, x1, x2}, γ(x) = {x1}, Y = {y, y1, y2} and δ(y) = {y1, y2}. The relation
Z = {(x, y), (x1, y1), (x2, y1), (x2, y2)} is a Λ-bisimulation, but it is not a Kripke bisimulation,
since the successor y2 of y is not related to a successor of x. The situation is depicted below,
where Z is indicated by dashed lines.

x

x1x2

X Y
y

y1 y2

Still, when considering the associated bisimilarity notions, we find that Λ-bisimilarity coincides
with Kripke bisimilarity. This follows from our Proposition 6.3.13, later, using that 2 (and 3) is
separating and P preserves weak pullbacks.

This choice of T and Λ demonstrates that, in general, Λ-bisimulations are not closed under
relational composition. To see this, let X = (X, γ), Y = (Y, δ) and W = (W,α) be the three
Kripke frames depicted below together with the two relations Z1 ⊆ X × Y and Z2 ⊆ Y ×W
(indicated by dashed lines): It is straightforward to check that Z1 and Z2 are Λ-bisimulations,
but the composition Z1;Z2 = {(x,w)} is not, because ({x, x1}, {w}) is Z1;Z2-coherent and
γ(x) 6⊆ {x, x1} and γ(x) 6⊆ {x2}, whereas α(w) ⊆ {w}.
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x y w

x1 x2 y1

X Y W

Z1 Z2

Z1

Z1

a

Example 6.3.6 Taking T = N (i.e. neighbourhood frames) and Λ = {2}, where 2 is the
neighbourhood modality from Example 6.2.17, we find that a relation Z is a Λ-bisimulation
between neighbourhood frames X = (X, γ) and Y = (Y, δ) if for all (x, y) ∈ Z and all Z-coherent
(U, V ): U ∈ γ(x) iff V ∈ δ(y). This shows that Λ-bisimulations are the same as precocongruences
(Def. 6.2.12) due to [89, Proposition 3.16]. We will discuss the relation between precocongruences
and Λ-bisimulations further in subsection 6.3.2. a

Example 6.3.7 Taking T = P and Λ = {∆}, where ∆ is the contingency modality from Example
6.2.16, then Z is a Λ-bisimulation between Kripke frames X = (X, γ) and Y = (Y, δ) if for all
(x, y) ∈ Z and all Z-coherent (U, V ): γ(x) ⊆ U or γ(x) ⊆ U c iff δ(y) ⊆ V or δ(y) ⊆ V c. This is
exactly the definition of a rel-∆-bisimulation which was introduced in Def. 5.3.6 on page 109. a

Example 6.3.8 Taking T = N and Λ = {∆}, where ∆ is the neighbourhood contingency
modality from Example 6.2.18, then by instantiating (Coherence) for ∆, we have that Z is a
Λ-bisimulation between neighbourhood frames X = (X, γ) and Y = (Y, δ) if for all (x, y) ∈ Z
and all Z-coherent (U, V ): U ∈ γ(x) or U c ∈ γ(x) iff V ∈ δ(y) or V c ∈ δ(y). This is exactly the
definition of a nbh-∆-bisimulation which was introduced in Def. 5.4.4 on page 114. a

The following proposition shows that Λ-bisimulations enjoy many of the properties known to hold
for Kripke bisimulations. In particular, even though Λ-bisimulations do not need to be closed
under composition (cf. Example 6.3.5), we can still show that on a single T -coalgebra, ∼Λ is an
equivalence relation.

For the sake of a smooth presentation, in the reminder of this chapter we assume that the
predicate liftings are unary, unless we specify otherwise.

Proposition 6.3.9 Let X = (X, γ) and Y = (Y, δ) be T -coalgebras.

1. The identity relation Id ⊆ X ×X is a Λ-bisimulation on X.

2. If Z ⊆ X × Y is a Λ-bisimulation between X and Y then Z−1 ⊆ Y ×X is a Λ-bisimulation
between Y and X.

3. The set of Λ-bisimulations is closed under arbitrary unions: If Zi ⊆ X × Y , i ∈ I, are
Λ-bisimulations, then so is

⋃
i∈I Zi.

4. The relation ∼Λ is the largest Λ-bisimulation between X and Y.

5. The relation ∼Λ on X is an equivalence relation. a
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Proof Item 1 is straightforward to check. We omit the details.
Item 2 follows from the fact that for every relation R ⊆ X × Y , the pair (U, V ) is R-coherent if
and only if (V,U) is R−1-coherent.
Item 3 : Let Zi ⊆ X × Y , i ∈ I, be Λ-bisimulations, and let Z =

⋃
i∈I Zi. To show that Z is a

Λ-bisimulation, assume that (x, y) ∈ Z, ♥ ∈ Λ, and (U, V ) is a Z-coherent pair. From (x, y) ∈ Z
it follows that (x, y) ∈ Zi for some i ∈ I, and since Zi ⊆ Z we also have that (U, V ) is Zi-coherent.
Hence

γ(x) ∈ J♥KX(U) ⇐⇒ δ(y) ∈ J♥KX(V ).

This implies that Z is a Λ-bisimulation.
Item 4 is an immediate consequence of item 3.
Item 5 : We show that if Z is a Λ-bisimulation on X, then the equivalence closure of Z is again a
Λ-bisimulation on X, which suffices due to item 4. So let Z be a Λ-bisimulation on X. By items 1
and 2, we may assume that Z is reflexive and symmetric. The result follows by showing that the
transitive closure Z+ =

⋃
n≥1 Z

n is a Λ-bisimulation. Due to item 3 it suffices to show that for all
n ≥ 1, Zn is a ∆-bisimulation. The proof is by induction on n. The base case (n = 1) holds by
assumption on Z. Assume it holds for n. To prove the inductive step, we first note that if (U,U ′′)
is Zn+1-coherent, then since Zn+1 is reflexive, it follows that U = U ′′. Now suppose (x, x′) ∈ Zn,
(x′, x′′) ∈ Z and (U,U) is Zn+1-coherent. Since Z and Zn are reflexive and Zn+1 = Zn;Z, it
follows that Z ⊆ Zn+1 and Zn ⊆ Zn+1, and hence (U,U) is Z-coherent as well as Zn-coherent.
We then have

γ(x) ∈ [[♥]]X(U) ⇐⇒ γ(x′) ∈ [[♥]]X(U) (by induction hypothesis)
⇐⇒ γ(x′′) ∈ [[♥]]X(U) (since Z is a Λ-bisimulation).

Hence Zn+1 is a Λ-bisimulation which concludes the proof. �

Λ-bisimulations were designed to match the expressiveness of the modal language. In the next
proposition we show that indeed, Λ-bisimilar states satisfy the same LΛ-formulas.

Proposition 6.3.10 If X, x ∼Λ Y, y then X, x ≡Λ Y, y. a

Proof Let X, x ∼Λ Y, y, so there exists a Λ-bisimulation Z ⊆ X × Y such that (x, y) ∈ Z. The
proof is by induction on ϕ. The only interesting part is the modal case of the inductive step.
Assume that ϕ is of the form ♥ψ. By induction hypothesis, ([[ψ]]X, [[ψ]]Y) is Z-coherent. Since
Z is a Λ-bisimulation, we have γ(x) ∈ [[♥]]X([[ψ]]X) iff δ(y) ∈ [[♥]]Y ([[ψ]]Y), which means that
X, x |= ♥ψ iff Y, y |= ♥ψ. �

6.3.2 Comparison with other notions

In this part, we compare our notion of Λ-bisimulation to the equivalence notions that are defined in
Subsection 6.2.4, namely behavioural equivalence (Def. 6.2.10), T -bisimulations (Def. 6.2.11) and
precogongruences (Def. 6.2.12). It turns out that Λ-bisimulations are closest to precocongruences.
Finally, we also compare our notion to another similar proposal by Gorín and Schröder [79].

In the following proposition we give the first comparison between precocongruences, T -
bisimulations and Λ-bisimulations.

Proposition 6.3.11 Let X = (X, γ) and Y = (Y, δ) be T -coalgebras, and Z be a relation between
X and Y .

1. If Z is a T -bisimulation then Z is a Λ-bisimulation.
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2. If Z is a precocongruence then Z is a Λ-bisimulation. a

Proof Item 1. Apply Q to the diagram of T -bisimulation (Figure 6.5), and take the pullback of
Qπl and Qπr. Then, by naturality of [[♥]], and the fact that πl and πr are coalgebra morphisms,
the diagram in Figure 6.10(a) commutes and hence, Z is a Λ-bisimulation.
Item 2. Let Z ⊆ X × Y be a precocongruence relation with pushout (P, pl, pr), and let (U, V )
be Z-coherent. By Lemma 6.2.9, there is a map g : pb(Qπl, Qπr)→ QP such that Qpl ◦ g = πl
and Qpr ◦ g = πr. Then, by naturality of [[♥]] and the fact that pl and pr are T -coalgebra
morphisms, it follows that the outer part of the diagram in Figure 6.10(b) commutes. Hence, Z
is a Λ-bisimulation.
Item 2: Let Z ⊆ X × Y be a precocongruence relation with pushout (P, pl, pr), and let (U, V )
be Z-coherent. By Lemma 6.2.9, there is a map g : pb(Qπl, Qπr)→ QP such that Qpl ◦ g = πl
and Qpr ◦ g = πr. Then, by naturality of [[♥]] and the fact that pl and pr are T -coalgebra
morphisms, it follows that the outer part of the diagram in Figure 6.10(b) commutes. Hence, Z
is a Λ-bisimulation. �
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(a) T -bisimulations are Λ-bisimulations. (b) Precocongruences are Λ-bisimulations.

Figure 6.10. Precongruences and T -bisimulations are Λ-bisimulations.

The next proposition shows that, if Λ is separating, then we have the converse of Proposi-
tion 6.3.11(2).

Proposition 6.3.12 If Λ is separating and Z ⊆ X × Y is a Λ-bisimulation between X and Y,
then Z is a precocongruence between X and Y. a

Proof Let Z ⊆ X × Y be a Λ-bisimulation with projections πl : Z → X and πr : Z → Y ,
and pushout (P, pl, pr) We need to define ρ : P → TP such that ρ ◦ pl = Tpl ◦ γ and
ρ ◦ pr = Tpr ◦ δ. We obtain such a ρ from the universal property of the pushout, if we
can show that for all (x, y) ∈ Z: Tpl(γ(x)) = Tpr(δ(y)). To prove this, since Λ is separat-
ing, it suffices to show that for arbitrary ♥ ∈ Λ, n-ary, and A1, . . . , An ⊆ P , Tpl(γ(x)) ∈
[[♥]]P (A1, . . . , An) iff Tpr(δ(y)) ∈ [[♥]]P (A1, . . . , An), which is equivalent to, Qπl ◦ Qγ ◦ QTpl ◦
[[♥]]P = Qπr ◦ Qδ ◦ QTpr ◦ [[♥]]P . This holds because of the commutativity of the diagram in
Figure 6.3.12, where the map h is obtained from Lemma 6.2.9. �

141



Chapter 6. Bisimulation for weakly expressive coalgebraic modal logic

QZ

QTX

QX

QTY

QY

pb(Qπl, Qπr)
n

(QX)n (QP )n (QY )n

QTP
QTpl QTpr

[[♥]]P

Qπl Qπr

Qγ Qδ

[[♥]]X [[♥]]Y
(Qpl)

n (Qpr)
n

πnl πnr

hn

Figure 6.11. Proof of Proposition 6.3.12

It was shown in [89, Proposition 3.10] that, in general, T -bisimilarity implies precocongruence
equivalence which in turn implies behavioural equivalence. This fact together with Proposition
6.3.12 tells us that Λ-bisimilarity implies behavioural equivalence, whenever Λ is separating. As
mentioned in Subsection 6.2.4 if T preserves weak pulbacks, then T -bisimilarity coincides with
behavioural equivalence. Hence in this case, by Proposition 6.3.12, it follows that Λ-bisimilarity
coincides with T -bisimilarity and behavioural equivalence. The following proposition summarises
our discussion so far.

Proposition 6.3.13 Let Λ be a set of predicate liftings for T .

1. X, x ∼T Y, y =⇒ X, x ∼p Y, y =⇒ X, x ∼Λ Y, y.

2. If Λ is separating, then

X, x ∼p Y, y ⇐⇒ X, x ∼Λ Y, y =⇒ X, x ∼bh Y, y.

3. If Λ is separating and T preserves weak pullbacks, then all four notions coincide:

X, x ∼T Y, y ⇐⇒ X, x ∼p Y, y ⇐⇒ X, x ∼Λ Y, y ⇐⇒ X, x ∼bh Y, y.
a

The next lemma states that similar to the fact that T -coalgebra morphisms preserve and reflect
behavioural equivalence, one can show that they preserve and reflect Λ-bisimilarity as well. We
will use this fact to prove the Hennessy-Milner theorem in Section 6.4.

Proposition 6.3.14 If f : X→ Y is a T -coalgebra morphism, then for all x, x′ ∈ X:

X, x ∼Λ X, x′ iff Y, f(x) ∼Λ Y, f(x′).

Proof For the direction from left to right, assume X, x ∼Λ X, x′. Then, there exists a Λ-
bisimulation Z on X such that (x, x′) ∈ Z. We show that (f × f)(Z) = {(f(x), f(x′)) ∈
Y × Y | (x, x′) ∈ Z} is a Λ-bisimulation. Let (f(x), f(x′)) ∈ (f × f)(Z) and ♥ ∈ Λ. Note that if
(U, V ) is (f ×f)(Z)-coherent, then the pair (f−1[U ], f−1[V ]) is Z-coherent. By naturality and the
fact that f is a coalgebra morphism, we have δ(f(x)) ∈ [[♥]]Y (U) iff γ(x) ∈ [[♥]]X(f−1[U ]), and
δ(f(x′)) ∈ [[♥]]Y (V ) iff γ(x′) ∈ [[♥]]X(f−1[V ]). Since Z is a Λ-bisimulation and (f−1[U ], f−1[V ])
is Z-coherent, we obtain δ(f(x)) ∈ [[♥]]Y (U) iff δ(f(x′)) ∈ [[♥]]Y [V ]. A similar argument shows
that if Z is a Λ-bisimulation on Y then (f−1 × f−1)(Z) = {(x, x′) ∈ X ×X | (f(x), f(x′)) ∈ Z}
is a Λ-bisimulation on X. �
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Λ-bisimulations: a different approach

Gorín and Schröder introduced in [79] a similar notion of Λ-bisimulation. To distinguish their
notion from the one presented here, we refer to it as GS-Λ-bisimulation. One difference with
our work is that Gorín and Schröder assume that Λ is a set of monotone predicate liftings. For
convenience, we recall their definition. It can be stated without the assumption of monotonicity.

Definition 6.3.15 (GS-Λ-bisimulation) A relation Z ⊆ X × Y is a GS-Λ-bisimulation if
whenever (x, y) ∈ Z then for all ♥ ∈ Λ with ♥ n-ary, and for all A1, . . . , An ⊆ X and B1, . . . , Bn ⊆
Y

(Zig-GS) γ(x) ∈ [[♥]]X(A1, . . . , An)⇒ δ(y) ∈ [[♥]]Y (Z[A1], . . . , Z[An])

(Zag-GS) δ(y) ∈ [[♥]]Y (B1, . . . , Bn)⇒ γ(x) ∈ [[♥]]X(Z−1[B1], . . . , Z−1[Bn]) a

Under the assumption that all ♥ ∈ Λ are monotone, it is straightforward to show that a
GS-Λ-bisimulation is also a Λ-bisimulation. Example 6.3.5 demonstrates that there exists a
choice of T and monotone Λ such that the two notions differ at the level of relations. Namely,
the relation Z given there is a Λ-bisimulation, but not a GS-Λ-bisimulation. To see this, take
A = {x1, x2}. We have that γ(x) = {x1} ⊆ A, but δ(y) = {y1, y2} 6⊆ Z[A] = {y1}. However, the
next proposition shows that under the assumption that Λ is monotone, difunctional (also called
zig-zag closed) Λ-bisimulations are GS-Λ-bisimulations. We first recall the relevant definition.

Definition 6.3.16 (Difunctional relation) Let R ⊆ X × Y be a binary relation. We say R is
difunctional if for all x, u ∈ X and y, w ∈ Y , whenever (x, y) ∈ R, (u, y) ∈ R and (u,w) ∈ R,
then (x,w) ∈ R. a

Proposition 6.3.17 Let X = (X, γ) and Y = (Y, δ) be two T -coalgebras. If Λ is monotone, then
difunctional Λ-bisimulation Z ⊆ X × Y is a GS-Λ-bisimulation. a

Proof Suppose that Z is a difunctional Λ-bisimulation, and let A ⊆ X and B ⊆ Y . We
will show that Z satisfies the (Zig-GS) and (Zag-GS) conditions. We only prove (Zig-GS),
since (Zag-GS) can be proved in a similar manner. Let ♥ ∈ Λ, and let (x, y) ∈ Z be such that
γ(x) ∈ [[♥]]X(A). Define A′ ⊆ X to be the set A′ = {x ∈ X : Z[{x}] ⊆ Z[A]}. By monotonicity of
Λ, it follows that γ(x) ∈ [[♥]]X(A∪A′). As Z is difunctional, one can easily show that (A∪A′, Z[A])
is Z-coherent, and then since Z is a Λ-bisimulation, it follows that δ(y) ∈ [[♥]]X(Z[A]). �

One can easily show that the relation ∼Λ between any two coalgebras is a difunctional. Hence,
the two notions of GS-Λ-bisimilarity and Λ-bisimilarity coincide for monotone Λ. In [79, Theorem
26] it was shown that when Λ is separating and monotone, then GS-Λ-bisimilarity coincides with
behavioural equivalence, and hence under these assumptions, Λ-bisimilarity coincides both with
GS-Λ-bisimilarity and with behavioural equivalence.

Proposition 6.3.18 If Λ is separating and monotone, then

X, x ∼GS-Λ Y, y ⇐⇒ X, x ∼Λ Y, y ⇐⇒ X, x ∼bh Y, y. a

We point out that our results on Λ-bisimulation do not require Λ to be monotone. Furthermore,
our aims and results differ from those of [79] where the starting point was to investigate simulations
between T -coalgebras. In this context, GS-Λ-bisimulations arose naturally as two-way simulations.
The results in [79] focus on identifying conditions that ensure that GS-Λ-bisimilarity coincides
with behavioural equivalence and/or T -bisimilarity. Our approach is to accept that the language
is not expressive, and show that Λ-bisimilarity allows us to generalise several results that are
known to hold for expressive languages.
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Example 6.3.19 Consider INL from Example 6.2.19 (i.e. T = PP). Since [[2n]] is monotone
[19], it follows that 2n-bisimilarity coincides with GS-2n-bisimilarity. The predicate lifting
[[20]]X(A) = {N ∈ P(P(X)) | ∃U ∈ N : U ⊆ A} is similar to the monotone neighbourhood
modality (which is usually interpreted in N -coalgebras). It is straightforward to prove that
GS-20-bisimulations coincide with monotonic bisimulations (see e.g. [19]). a

In the following proposition, we give a zig-zag characterisation of GS-2n-bisimulation over
PP-coalgebras. For all sets X and U , U ⊆n X means that U ⊆ X and |U | = n.

Proposition 6.3.20 Let X = (X, γ) and Y = (Y, δ) be two PP-coalgebras. For n ≥ 1, Z ⊆ X×Y
is a GS-2n-bisimulation iff for all (x, y) ∈ Z:

(Zig)n ∀U 6= ∅ : U ∈ γ(x) =⇒ ∀U ′ ⊆n U ∃V 6= ∅ : V ∈ δ(y), V ⊆ Z[U ] and U ′ ⊆ Z−1[V ].

(Zag)n ∀V 6= ∅ : V ∈ δ(y) =⇒ ∀V ′ ⊆n V ∃U 6= ∅ : U ∈ γ(x), U ⊆ Z−1[V ] and V ′ ⊆ Z[U ]. a

Proof We first prove the direction from left to right. Suppose that n ≥ 1 and Z ⊆ X × Y is a
GS-2n-bisimulation. We will show that Z satisfies (Zig)n and (Zag)n.
(Zig)n: Let (x, y) ∈ Z, U 6= ∅, U ∈ γ(x), and U ′ ⊆n U with U ′ = {x1, .., xn}. By the definition
of [[2n]], γ(x) ∈ [[2n]]X({x1}, ..., {xn}, U). Since Z is a GS-2n-bisimulation, (Zig-GS) implies
that δ(y) ∈ [[2n]]Y (Z[{x1}], ..., Z[{xn}], Z[U ]). Again by the definition of [[2n]], we obtain that
there is a nonempty subset V ⊆ Y with V ∈ δ(y) such that V ⊆ Z[U ] and Z[{xi}] ∩ V 6= ∅, for
all i ∈ {1, ..., n}. This means that, for every xi ∈ U ′, there is vi ∈ V such that xi ∈ Z−1[{vi}] for
i = 1, . . . , n. Hence, U ′ ⊆ Z−1[V ]. (Zag)n can be proved in a similar way using the condition
(Zag-GS).

For the other direction, suppose that Z satisfies the conditions (Zig)n and (Zag)n. We show
that Z satisfies (Zig-GS) and (Zag-GS).
For (Zig-GS) suppose ♥ ∈ Λ, (x, y) ∈ Z. Let the subsets A1, ..., An, An+1 ⊆ X be such that
γ(x) ∈ [[2n]]X(A1, ..., An+1). By the definition of [[2n]], there is U ⊆ An+1 such that U ∩Ai 6= ∅,
for all i = 1, ..., n, so U 6= ∅. For each i ∈ {1, ..., n}, choose xi ∈ U ∩Ai, and let U ′ = {x1, ..., xn}.
By (Zig)n, there is a nonempty subset V ∈ δ(y) such that V ⊆ Z[U ] and U ′ ⊆ Z−1[V ]. This
means that xi ∈ Z−1[V ], for all i ∈ {1, . . . , n}, i.e., for every xi ∈ U ′, there is yi ∈ V such that
(xi, yi) ∈ Z, for i = 1, ..., n , i.e., for all i ∈ {1, ..., n} : Z[Ai] ∩ V 6= ∅. Since U ⊆ An+1, we get
that V ⊆ Z[An+1]. Hence, δ(y) ∈ [[2n]]X(Z[A1], . . . , Z[An+1]). A similar argument works for
(Zag-GS). �

6.3.3 Λ-morphisms

Given the fact that the graph of a T -coalgebra morphism is a T -bisimulation (cf. [141, Theorem
2.5.]), it is natural to define a Λ-morphism from X to Y to be a function f : X → Y such that the
graph Gr(f) = {(x, f(x)) | x ∈ X} is a Λ-bisimulation. It then follows from Proposition 6.3.11(1)
that T -coalgebra morphisms are also Λ-morphisms.

Moreover, one can show that unlike Λ-bisimulations, Λ-homomorphisms are closed under
composition. Therefore, T -coalgebras together with Λ-morphisms form a category.

In Enqvist [54], a weak notion of morphism for T -coalgebras was proposed which, like ours, is
parametric in a set Λ of predicate liftings. To distinguish this notion from ours, we refer to it as
E-Λ-morphism. We briefly recall the definition (which we state only for unary ♥, as is the case
in [54]).
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Definition 6.3.21 (E-Λ-morphism) Given two T -coalgebras X = (X, γ) and Y = (Y, δ), a
function f : X → Y is an E-Λ-morphism from X to Y if for all B ⊆ Y , x ∈ X, and ♥ ∈ Λ:

δ(f(x)) ∈ [[♥]]Y (B) implies γ(x) ∈ [[♥]]X(f−1[B]). (6.4)

Taking Z = Gr(f), by Lemma 5.2.3(2) we know that a pair (U, V ) is Z-coherent iff U = f−1[V ] =
Qf(V ). It then follows that Λ-morphisms are E-Λ-morphisms. However, an E-Λ-morphism may
not a Λ-morphism, as the following example shows.

Example 6.3.22 Consider the following P-coalgebras X = (X, γ) and Y = (Y, δ), where X =
{x, x1, x2}, γ(x) = {x1, x2}, γ(x1) = γ(x2) = ∅, Y = {y, y1, y2}, δ(y) = {y1, y2}, and δ(y1) =
δ(y2) = ∅. It is straightforward to check that the f : X → Y with f(x) = y, and f(x1) = f(x2) =
y1 is an E-Λ-morphism. But it is not a Λ-morphism because the (Coherence) condition fails for
the Gr(f)-coherent pair ({x1, x2}, {y1}), that is γ(x) ⊆{x1, x2}, whereas δ(y) *{y1}. a

x

x1x2

X Y
y

y1 y2

f

f

f

We do not investigate our notion of Λ-morphisms further in the present chapter. Several
interesting questions could be asked, though. We discuss those in Section 6.5.

6.4 Hennessy-Milner theorem

This section is devoted proving a coalgebraic Hennessy-Milner theorem for Λ-bisimilarity. It is
the main technical result of the chapter:

As we saw in Proposition 6.3.10, LΛ-formulas are invariant under Λ-bisimulation. Given that
our modal language has only finite conjunctions, we will need to assume our coalgebra functor is
finitary (see Def. 6.2.1). This is the analogue of restricting to image-finite Kripke frames (i.e.,
Pω-coalgebras), as is done in the classic Hennessy-Milner theorem. As mentioned earlier, similar
to the Hennessy-Milner for ∆-bisimilarity (Theorem 5.4.16), we define Hennessy-Milner classes of
T -coalgebras with respect to ∼Λ+ .

Definition 6.4.1 A class C of T -coalgebras is a Hennessy-Milner class, if for every X and Y in
C, we have X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y. a

As a first step towards our main result, we show that the class of finite T -coalgebras is a Hennessy-
Milner class. We will use the following terminology. Given a T -coalgebra X = (X, γ), a subset
U ⊆ X is modally coherent if U is ≡Λ-closed. (Recall that ≡Λ denotes the modal equivalence
relation.) The next lemma provides us with a characterisation of modally coherent sets.

Lemma 6.4.2 Let X be a finite T -coalgebra. For all U ⊆ X, U is modally coherent iff U is
definable by a modal LΛ-formula. a
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Proof It can be proved using the same line of argumentation as in the proof of Lemma 5.4.15(2).
If U = [[ϕ]]X for some ϕ ∈ LΛ, then clearly U is modally coherent. For the converse implication,
assume U is modally coherent, i.e., U is a union of modal equivalence classes: U =

⋃
i∈I [xi]≡Λ .

Since X is finite, we may assume that I is finite. For i, j ∈ I and i 6= j, there is a modal
LΛ-formula δi,j such that xi |= δi,j and xj |= ¬δi,j , so by taking Di = {δi,j | j ∈ I, i 6= j},
and using that I is finite, defining δi =

∧
Di, then we have that [xi] = [[δi]]X and U =

⋃
i [[δi]]X.

Therefore, U is definable by the formula δ =
∨
i δi. �

First, we state the finite version of Hennessy-Milner theorem for Λ-bisimulation.

Theorem 6.4.3 Let X = (X, γ) and Y = (Y, δ) be finite T -coalgebras, and let Λ be a set of
predicate liftings for T .

1. For all states x, x′ ∈ X: X, x ≡Λ X, x′ iff X, x ∼Λ X, x′.

2. For all states x ∈ X and y ∈ Y : X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y. a

Proof Item 1: The direction from right to left has been shown in Proposition 6.3.10. For the
other direction, we show that ≡Λ is a Λ-bisimulation. Let x, x′ ∈ X be such that X, x ≡Λ X, x′,
and let ♥ ∈ Λ. For simplicity, we just give the argument for unary [[♥]]. The n-ary generalisation
is straightforward. Let U ⊆ X be modally coherent. By Lemma 6.4.2, U is definable by a
LΛ-formula ψ. We therefore have x ∈ [[♥ψ]]X iff x′ ∈ [[♥ψ]]X because x and x′ are modally
equivalent. It follows that γ(x) ∈ [[♥]]X(U) iff γ(x′) ∈ [[♥]]X(U). Hence, ≡Λ is a Λ-bisimulation
on X.

Item 2: Follows from item 1 and the fact that the inclusion maps preserve truth of modal
formulas: X, x ∼Λ+ Y, y iff X+Y, inl(x) ∼Λ X+Y, inr(y) iff X+Y, inl(x) ≡Λ iff X, x ≡Λ Y, y. �

We leverage the result for finite T -coalgebras to coalgebras for finitary functors.

Theorem 6.4.4 (Finitary Hennessy-Milner theorem) Suppose T is a finitary functor, and
X = (X, γ), Y = (Y, δ) are T -coalgebras.

1. For all states x, x′ ∈ X: X, x ≡Λ X, x′ iff X, x ∼Λ X, x.′

2. For every x ∈ X and y ∈ Y : X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y. a

Proof Item 1: Let x, x′ ∈ X be such that X, x ≡Λ X, x′. By [3, Theorem 4.1] there exists a
finite sub-coalgebra X0 = (X0, γ0) of X with x, x′ ∈ X0. Since, the inclusion inX0 : X0 → X is a
T -coalgebra morphism and hence preserves truth of formulas, it follows that X0, x ≡Λ X0, x

′. By
Theorem 6.4.3(1) we obtain X0, x ∼Λ X0, x

′, and from Proposition 6.3.14, using again that inX0

is a T -coalgebra morphism that X, x ∼Λ X, x′.
Item 2: can be proved using item 1 in a similar way as item 2 of Theorem 6.4.3. �

6.5 Discussion and future work

We have defined a notion of Λ-bisimulation for weakly expressive coalgebraic modal logics, which
is parametric in a collection of predicate liftings. The notions of rel-∆-bisimulations and nbh-
∆-bisimulations of Chapter 5 are special cases of Λ-bismulations. We also have shown that
our notion of Λ-bisimulation gives rise to a Hennessy-Milner theorem, which generalises the
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Hennessy-Milner theorem for nbh-∆-bisimilarity (Theorem 5.4.16). In other words, we have
shown that Λ-bisimilarity fits exactly the expressiveness of the modal language.

As we discussed in Chapter 5, the coherence condition in the definition of Λ-bisimulation is,
however, a non-local property as one would need to compute all coherent pairs over the state
space in order to verify that two states are Λ-bisimilar. For concrete instances of Λ-bisimulations,
it would be desirable to have a local back-and-forth style characterisation, similar to, e.g., the
usual ones for Kripke frames, and the zig-zag conditions for ∆-bisimulations over Kripke frames
in [62]. Such a local condition would obtain if Λ-bisimilarity could be charaterised in terms of
relation liftings. In the case that Λ is separating, respectively monotone, Λ-bisimilarity coincides
with precocongruences, respectively GS-Λ-bisimilarity, both of which have a relation lifting
characterisation, cf. [89, 79]. We would like to investigate whether approaches such as those of
[109, 117] can be used to obtain a relation lifting characterisation of Λ-bisimilarity under weaker
conditions.

In Chapter 5, a Van Benthem characterisation theorem was proved for contingency logic over
neighbourhood frames. That is, over neighbourhood frames, contingency logic is the fragment of
first-order logic which is invariant under Λ-bisimilarity, where Λ = {∆}. We would like to generalise
this result and show a coalgebraic version for Λ-bisimilarity, using as correspondence language
coalgebraic predicate logic (CPL), which was introduced in [111] as a first order correspondence
language of coalgebraic modal logic.

We hardly explored the notion of Λ-morphisms in the present chapter. It would be interesting
to know which constructions are possible in the category of T -coalgebras and Λ-morphisms. For
example, in Chapter 5 we showed that for T = N and Λ = {∆} one can construct Λ-quotients,
i.e., quotients of T -coalgebras with respect to Λ-bisimilarity. We would like to know whether
this is possible, in general. That would mean that we can minimise T -coalgebras with respect
to Λ-bisimilarity. Finally, we would also like to know if a final object can be constructed from
satisfied theories using techniques along the lines of [102, 125], and whether the Hennessy-Milner
theorem for Λ-bisimilarity fits into the more abstract picture where a coalgebraic modal logic is
obtained via a dual adjunctions, as in e.g. [99, 95].
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