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Introduction

Un des objectifs ultimes de la géométrie algébrique est la classification
des variétés algébriques. Par le théoréme des résolutions de singularités de
Hironaka, toute variété complexe est birationnellement équivalente & une
variété lisse. Rappelons que deux variétés algébriques X et X' sont dites
birationnellement équivalentes s’il existe un isomorphisme d’un ouvert de
X dans un ouvert de X’. Le but de la géométrie birationnelle est donc de
clagsifier les variétés algébriques & équivalence birationnelle prés.

Regardons d’abord le cas des courbes. Toute courbe est birationnelle-
ment équivalente & une unique courbe projective lisse. Soit C' une courbe
projective lisse. Le genre de C' est défini par g(C) = h%(C,w¢), ol we est
le fibré cotangent de C. Si on fixe le genre g, alors il existe une famille de
courbes projectives lisses de genre g. La famille est paramétrée par une va-
riété algébrique .#;, qui s’appelle la variété des modules des courbes lisses
projectives de genre g (voir par exemple [HM9S8, §2|).

En dimension supérieure, on introduit les plurigenres et la dimension de
Kodaira qui généralisent la notion de genre d’une courbe. Soit X une variété
projective complexe lisse de dimension n. Notons wx le fibré canonique de
X, qui est le déterminant du fibré cotangent de X. Soit Kx un diviseur
canonique, i.e. un diviseur tel que wy = Ox(Kx). Alors, pour un nombre
naturel m, on définit le m-plurigenre de X par

P (X) = (X, w™).
La dimension de Kodaira de X est définie par

log Py, (X
k(X) = limsup Lm().
m—oo  logm

La dimension de Kodaira prend ses valeurs dans {—00,0, 1, ...,n}. La variété
X est dite de type général si kK(X) = n.
Ezemple 0.0.1. Soit C une courbe projective lisse, alors

si g(C) =0, alors kK(C) = —oc0, C =2 P! et — K¢ est ample,

si g(C) =1, alors kK(C) =0, C est une courbe elliptique et K¢ = 0,
si g(C) > 2, alors kK(C) =1 et K¢ est ample
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Dans une classe d’équivalence birationnelle, il v a beaucoup de variétés
projectives lisses. Il est naturel de se demander si nous pouvons choisir un bon
représentant dans une classe d’équivalence birationnelle. Le cas des surfaces
complexes est complétement traité dans les années 1930 par les géomeétres
italiens. Soit X une surface complexe projective lisse. S’il existe une (—1)-
courbe C dans X (i.e. C = P! et le nombre d’intersection C? = —1), alors
par le théoréeme de Castelnuovo (voir par exemple [Har77, Thm. V.5.7]), il
existe une fibration (4.e. un morphisme propre surjective a fibres connexes)
X — Xj contractant exactement C' de sorte que X7 est encore lisse. En
répétant cette opération, nous pouvons obtenir une suite de morphismes
birationnels

X:X0—>X1—>'”—>Xk:X*

telle que X™* ne contienne aucune (—1)-courbe. Ce processus s’appelle un
programme des modéles minimaux (MMP en abrégé) pour la surface X. De
plus, nous avons

- ou bien X* est une surface réglée,
- ou bien X* = P2,
- ou bien K x+ est nef.

Rappelons qu’un diviseur de Cartier D dans une variété projective nor-
male X est dit nef si pour tout morphisme g d’une courbe C projective lisse
dans X, le diviseur ¢g*D est de degré positif ou nul sur C. Pour des surfaces
dont le diviseur canonique est nef, nous avons le théoréme suivant (voir par
exemple [Mat02, Thm. 1-5-6]).

Théoréme 0.0.2 (Théoréme d’Abondance pour les surfaces). Soit Y une
surface complexe projective lisse telle que Ky soit nef. Alors il existe un
nombre entier m > 0 tel que le faisceau Oy (mKy) soit engendré par ses
sections globales. Le systeme linéaire de Oy (mKy) induit une fibration f :
Y — Z, applée la fibration d’litaka (voir par exemple [Iit82, §2.9]), telle que
dim Z = k(Y).

Soit Y une surface projective complexe avec Ky nef. Selon sa dimension
de Kodaira, nous avons trois possibilités :

1. Si k(Y) =0, alors Y est une surface K3, une surface d’Enriques ou un
quotient étale d’une surface abélienne.

2. Si k(Y) = 1, alors la fibration d’litaka f : Y — Z définie dans le
théoréme précédent induit une structure de surface elliptique minimale
sur Y.

3. La surface Y est de type général.

De plus, sauf dans le dernier cas, il existe une classification détaillée de
Y (voir par exemple [BHPV04, §VIJ).
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D’aprés les travaux de Fano, Iskovskikh, litaka, Ueno, Shokurov, Reid,
etc, on conjecture qu’on puisse aussi établir des MMP pour les variétés de
dimensions supérieures. Cependant, plusiers obstacles apparaissent. Une des
difficultés est de généraliser les contractions de (—1)-courbes dans une sur-
face. L’idée de Mori est de remplacer les (—1)-courbes par les rayons extré-
maux de NE(X) qui ont intersection strictement négative avec Kx ([Mor82]).
Rappelons que NE(X) est le cone convexe fermé dans Ni(X) engendré par
les 1-cycles effectifs dans X', ot N1 (X)) est 'espace vectoriel réel engendré par
les classes numériques de courbes dans X. Il introduit aussi la notion d’espace
fibré de Mori, qui est la généralisation des surfaces réglées en grandes dimen-
sions. Une variété projective lisse Y est un espace fibré de Mori s’il existe
une contraction d’un rayon extrémal strictement Ky-négatif f : Y — Z telle
que dim Z < dimY.

Un autre probléme est qu’il existe des variétés de dimension 3 qui ne pos-
sedent pas de modéle minimal lisse. Il faut donc aussi considérer les variétés
singuliéres. A la suite des travaux de Kawamata, Reid, Shokurov, etc, nous
avons le théoréme du cone suivant pour les variétés peu singuliéres (voir par
exemple [Thm. 3-2-1 et Thm. 4-2-1]JKMMS87).

Théoréme 0.0.3 (Théoreme du Cone). Soit X une variété compleze Q-
factorielle projective & singularités Kawamata log terminales. Alors

1. Il existe un ensemble au plus dénombrable de courbes rationnelles C; C
X, avec j € J, telles que Kx - Cj < 0 pour tout j et

NE(X) = NE(X)ryz0 + Y _RT[C)].
jeJ

2. Pour tout € > 0 et tout diviseur ample H, il existe un sous-ensemble
fini I de J tel que
NE(X) = NE(X) 5y +emz0 + Y RT[C].
i€l

3. Soit R C NE(X) un rayon extrémal dont lintersection avec Ky est
strictement négative. Alors il existe une unique fibration projective cp :
X — Z telle qu’une courbe C C X soit contractée par cr si et seule-
ment si [C] C R. Le morphisme cg est appelé la contraction de R.

Meéme si nous avons le théoréme de contraction fourni par le théoréme
ci-dessus, il y a encore un obstacle. Considérons une contraction extrémale
c: X — Z.Sile lieu exceptionnel de ¢ est de codimension au moins 2
dans X, alors la base Z est trop singuliére pour lui appliquer le théoréme
du céne. En effet, dans ce cas, le diviseur Kz n’est jamais Q-Cartier. L’idée
de Mori pour ce probléme est d’introduire un autre type de transformation
birationnelle, le flip, pour X.
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L’existence des flips est démontrée par Mori (|[Mor88, Thm. 0.2.5]) en
dimension 3, par Shokurov en dimension 4 et par Birkar, Cascini, Hacon et
M¢Kernan ([BCHM10, Cor. 1.4.1]) dans le cas général.

Soit X une variété complexe projective lisse. Alors par le théoréme du
cone et 'existence des flips, nous avons une suite de transformations bira-
tionnelles de X

X:Xo ——-)Xl i AR

On conjecture qu’une telle suite est toujours finie et que si X* est le dernier
terme, alors ou bien Kx+ est nef, ou bien X* est un espace fibré de Mori. La
conjecture de terminaison de MMP est équivalente a la non-existence d’une
suite infinie de flips. Cette conjecture est démontrée par Shokurov dans le cas
de dimension 3 (|Sho86, Cor. 2.17|) et par Kawamata, Matsuda et Matsuki
dans le cas de dimension 4 ([KMMS87, Thm. 5-1-15]). En dimension au moins
5, la conjecture est encore ouverte.
Une autre conjecture dans le MMP est la conjecture d’Abondance.

Conjecture 0.0.4. (Conjecture d’Abondance) Soit Y une variété compleze
Q-factorielle projective 4 singularités Kawamata log terminales telle que Ky
soit nef. Alors il existe un nombre entier m > 0 tel que le faisceau Oy (mKy)
soit engendré par ses sections globales. Le systéme linéaire de Oy (mKy)
induit une fibration f:Y — Z telle que dim Z = k(Y).

La conjecture d’abondance est seulement démontrée en dimensions deux
et trois ([Kaw92]). Ces deux derniéres conjectures suggérent que toute variété
complexe X admet, & équivalence birationnelle prés, une fibration f: X —
Y telle que la fibre générale F vérifie que ou bien K est ample, ou bien
Krp = 0, ou bien —KF est ample. Remarquons que cette classification des
fibres ressemble & celle de I’Exemple 0.0.1 pour les courbes. Ces trois types
extrémaux des variétés forment la base de la classification des variétés. Les
variétés du troisiéme type sont appelées variétés de Fano.

Pour les variétés projectives lisses X telle que Kx = 0, nous avons le
théoréme de classification de Beauville-Bogomolov suivant.

Théoréme 0.0.5 ([Bea83, Thm. 1]). Soit X une variété projective compleze
lisse telle que Kx soit numériquement triviale. Alors il existe un revétement
fini étale X' — X tel que

X’%TXHWXHWj,
( J

ou T est un tore, V; est une variété de Calabi-Yau simplement connexe et
W; est une variété symplectique irréductible.
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Les variétés symplectiques irréductibles sont la généralisation des sur-
faces K3 en grandes dimensions. Dans le Chapitre 4, nous regardons les fi-
brations lagrangiennes sur des variétés complexes projectives symplectiques
irréductibles. Soit f : X — Y une fibration d’une variété complexe pro-
jective symplectique irréductible de dimension 2n sur une variété projective
normale de dimension strictement comprise entre 0 et 2n. Alors la fibration
f est toujours une fibration lagrangienne. De plus, la base Y est une variété
de Fano de dimension n, a singularités Kawamata log terminales, dont le
nombre de Picard est 1 ([Mat99, Thm. 2|). Dans ce chapitre, nous étudions
le cas ot n = 2 et prouvons qu’il existe au plus deux possibilités pour Y.

Le Chapitre 5 se consacre a I'étude des variétés de Fano complexes peu
singuliéres dont tout diviseur effectif est nef. Une variété X de ce type est
un objet minimal dans sa classe d’équivalence birationnelle : si f: X — Y
est un morphisme birationnel, alors f est un isomorphisme (|Drul4, Lem.
4.4]). 1l est connu que le nombre de Picard p(X) de X est au plus équal
a dim X ([Wig91, Thm. 2.2|, [Drul4, Lem. 4.7]). Druel classifie ces variétés
qui vérifient p(X) = dim X (|Drul4, Thm. 1.1]). Dans le Chapitre 5, nous
donnons une classification dans le cas ot p(X) = dim X — 1.

Une autre approche du probléme de classification est plus géométrique.
1l s’agit de comprendre la géométrie intrinséque des variétés en regardant
des courbes, particuliérement des courbes rationnelles, dans des variétés.

Soit f : P! — X une courbe rationnelle dans une variété lisse X. Alors
cette courbe est dite libre si f*Tx est un fibré vectoriel nef, 7.e. un fibré
vectoriel qui n’admet pas de quotient fibré en droites de degré strictement
negatif, ott Tx est le fibré tangent de X. La courbe est dite trés libre si
f*Tx est un fibré vectoriel ample, i.e. un fibré vectoriel qui n’admet pas
de quotient fibré en droites de degré négatif ou nul. Il est intéressant de
considérer des variétés qui contiennent beaucoup de courbes rationnelles.
Une variété projective complexe X est dite uniréglée si elle est recouverte par
des courbes rationnelles. Le critére suivant est important pour comprendre
la géométrie des courbes rationnelles dans une variété uniréglée lisse.

Théoréme 0.0.6 (|Kol96, Thm. IV.1.9]). Soit X une variété complexe pro-
jective lisse. Alors X est uniréglée si et seulement si elle contient une courbe
rationnelle libre.

De plus, si X est une variété complexe projective uniréglée lisse, alors les
courbes rationnelles libres recouvrent un sous-ensemble dense de X. Remar-
quons que, si f : P! — X est une courbe libre, alors —f*Kx est un diviseur
ample sur P!.

Corollaire 0.0.7. Soit X une variété complexe projective lisse uniréglée.
Alors, pour tout entier m > 0, h%(X, Ox(mKx)) = 0.

En particulier, la dimension de Kodaira d’une variété complexe projective
lisse uniréglée est —oo. Il est conjecturé que la réciproque du corollaire est
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aussi vraie. Remarquons que cette conjecture résulte de la conjecture du
terminaison de MMP et la conjecture d’abondance. En effet, soit X une
variété complexe projective lisse dont la dimension de Kodaira est —oo. Si la
conjecture de terminaison de MMP est vraie, alors soit X™* un résultat d’un
MMP de X. On a x(X*) = —o0. Si la conjecture d’abondance est vraie, alors
X* est un espace fibré de Mori. Comme les fibres générales d’une fibration
de Mori sont des variétés de Fano, et les variétés de Fano peu singuliéres sont
rationnellement connexes (voir ci-dessous), X* est uniréglée. Cela implique
que X est aussi uniréglée.

Une variété complexe projective X est dite rationnellement connexe par
chaines si pour deux points généraux de X, il existe une suite finie de courbes
rationnelles qui les joint. La variété X est dite rationnellement connexe si
pour deux points généraux de X, il existe une courbe rationnelle passant par
eux. Sila variété X est lisse, alors elle est rationnellement connexe par chaines
si et seulement si elle est rationnellement connexe ([KMM92b, 2.1]). Les va-
riétés de Fano lisses sont rationnellement connexes ([Cam92, 3.2, [KMM92a,
3.3]).

Théoréme 0.0.8 ([Kol96, Thm. IV.3.7]). Une variété complexe projective
est rationnellement connexe si et seulement si elle contient une courbe ra-
tionnelle trés libre.

Corollaire 0.0.9. Soit X une variété complexe projective lisse rationnelle-
ment connexe. Alors X ne porte pas de pluri-forme non nulle, i.e.

RO (X, (Q%)®™) =0
pour tout entier m > 0.

Mumford conjecture que la réciproque du corollaire ci-dessus est aussi
vraie. Dans le cas de la dimension 3, la conjecture est vraie ([Kol96, Cor.
5.7.1]).

Il est naturel de croire que les courbes rationnelles dans une variété
peu singuliére ont des comportements similaires & ceux des courbes ration-
nelles dans une variété lisse. Hacon et M°Kernan démontrent qu’une variété
complexe projective a singularités Kawamata log terminales est rationnelle-
ment connexe par chaines si et seulement si elle est rationnellement connexe
([HMO7, Cor. 1.8]). Il est encore vrai qu’une variété complexe de Fano a
singularités Kawamata log terminales est rationnellement connexe ([Zha06,
Thm. 1], [HMO07, Cor. 1.13]). Il y a aussi une version du Corollaire 0.0.9 pour
les variétés singuliéres.

Théoréme 0.0.10 (|GKP14, Thm. 3.3|). Soit X une variété compleze pro-
jective rationnellement conneze localement factorielle & singularités Kawa-

mata log terminales. Alors pour tout entier m > 0, on a h°(X, (%)) =
0, on ()™ est le double dual de ()®™.
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Les conditions sur les singularités dans le théoréme ci-dessus sont opti-
males. Il existe des variétés rationnellement connexes X a singularités Ka-
wamata log terminales telles que m K x soit linéairement équivalent a un di-
viseur effectif pour un certain entier m > 0 (|[Kol08, Example 43| ou [Tot12,
Example 10]). De plus, il existe des variétés rationnellement connexes X a
singularités canoniques non localement factorielles telles que h%(X, (24 )[®2))
soit non nulle ([GKP14, Example 3.7]).

Dans le Chapitre 6 et le Chapitre 7 de cette thése, nous nous concen-
trons sur la classification des variétés complexes projectives rationnellement
connexes peu singuliéres en petites dimensions qui portent des pluri-formes
non nulles.



Chapitre 1

Notations et Préliminaires

Nous allons donner des notations et allons rappeler quelques résultats
préliminaires. Une variété définie sur un corps k est un schéma géométrique-
ment intégre, séparé et de type fini sur k. Sauf dans la section 4.4.3, nous
travaillons sur C, le corps des nombres complexes. Un morphisme f: X — Y
entre deux variétés normales est appelé une fibration si f est propre, surjectif
et & fibres connexes. Si f : X — Y est un morphisme propre surjectif et si la
variété X est lisse, alors le discriminant de f est défini comme le sous-schéma
réduit de Y au-dessus de quelle f n’est pas lisse.

1.1 Diviseurs sur les variétés normales

Soit X une variété projective normale de dimension n. Nous allons utiliser
les notations suivantes :

Cl(X) := le groupe des classes d’équivalence linéaire de diviseurs de Weil
sur X.

Pic(X) := le groupe de Picard de X, i.e. le groupe des classes d’équiva-
lence linéaire de diviseurs de Cartier sur X.

Z1(X) := le groupe abélien libre engendré par les courbes projectives
dans X.

Un élément D dans Cl(X) ®7Q est appelé un Q-diviseur (de Weil). Il est
dit Q-Cartier si un multiple non nul de D est un diviseur de Cartier. Deux
Q-diviseurs D et D’ sont dits Q-linéairement équivalents s’il existe un entier
non nul 7 tel que rD et rD’ soient deux diviseurs de Weil entiers linéairement
équivalents. Si c’est le cas, on note D ~q D’. La variété X est dite localement
factorielle si le morphisme naturel Pic(X) — CI(X) est surjectif. Elle est dite
Q-factorielle si tout diviseur de Weil dans X est Q-Cartier.

Si C' est une courbe projective et D est un diviseur de Cartier dans
X, alors nous définissons le nombre d’intersection de C' et D par C' - D =
deg f*D, ou f : C — C et la normalisation. Nous pouvons alors introduire

13



Wenhao OU 14

un accouplement
-1 71(X) x Pic(X) — Z.

Soit = I’équivalence numérique pour cet accouplement. Alors, en prenant le
quotient par rapport aux équivalences numériques, nous obtenons une forme
bilinéaire non-dégénérée

i Ni(X) x NY(X) = R,

ot N1(X) = (Z1(X)/ =) ® R et N'(X) = (Pic(X)/ =) ® R. Ces deux
espaces vectoriels ont la méme dimension p(X) et nous ’appelons le nombre
de Picard de X.

Dans le cas des surfaces, une courbe C incluse dans le lieu lisse d’une
surface S est appelée une (—k)-courbe si elle isomorphe & P! et C - C = —k.

Soit D = 22:1 a; D; un Q-diviseur non nul, ou les D; sont des diviseurs
premiers et les a; sont des nombres rationnels non nuls. Alors D est dit effectif
si a; = 0 pour tout ¢. 1l est dit Q-effectif s’il est Q-linéairement équivalent &
un Q-diviseur effectif. Le diviseur Dyeq est défini par

Drod = ZT: Dz
=1

On appelle min{a;} le plus petit coefficient de D. Notons [D] = 37 [a;]D; €
Cl(X), ot [a;] est la partie entiere de a;. Le diviseur D est dit & croisements
normaux simples ou snc («simple normal crossing» en anglais) si tous les D;
sont lisses et toutes leurs intersections sont transverses.

Soit NE(X) le cone fermé convexe dans Ni(X) engendré par les classes
de courbes.

Définition 1.1.1. Un élément D dans NY(X) est dit nef si a- D >0 pour
toute classe o € NE(X). Notons Nef(X) le cone dans N*(X) des classes
nefs.

Soit Amp(X) le cone convexe dans N'(X) engendré par les classes de
diviseurs amples. Un Q-diviseur Q-Cartier D est dit Q-ample (ou ample) si
mD est un diviseur de Cartier ample pour un nombre entier m > 0. Par le
théoréme suivant, le cone Nef(X) est I'adhérence de Amp(X) et Amp(X)
est U'intérieur de Nef(X).

Théoréme 1.1.2 (Critére de Kleiman [Kle66, Prop. IV.2.2]). Un diviseur
de Cartier D € Pic(X) est ample si et seulement si - D > 0 pour toute
classe o € NE(X)\{0}.

Soit f : X — Y un morphisme projectif entre deux variétés normales
et soit D un Q-diviseur Q-Cartier sur X. Alors D est dit f-relativement
ample ou f-ample si la restriction de D sur chaque composante irréductible
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de chaque fibre de f est ample. De maniére équivalente, D est f-ample si et
seulement si o - D > 0 pour toute classe o € NE(X/Y)\{0}, ou NE(X/Y)
est le cone convexe fermé dans Np(X) engendré par les courbes contractées
par f (voir par exemple [KM98, Thm. 1.44]).

Soit Psef(X) C N1(X) le cone des diviseurs pseudo-effectifs, i.e. le cone
convexe fermé engendré par des diviseurs effectifs. Comme les diviseurs trés
amples sont effectifs, nous avons Nef(X) C Psef(X).

Soit f : Y — X un morphisme surjectif entre deux variétés normales
projectives. Soit D un élément dans Pic(X) ®z Q. Alors, nous définissons le
tiré-en-arriére de D par f par

f*D = f*(rD) € Pic(¥) 2 Q.

ou r est un entier non nul tel que rD € Pic(X). De plus, si f est equidi-
mensionnel et si D est un diviseur de Weil entier, alors f*D coincide avec
l'adhérence de (fly,)*(D|x,) dans Y, qui est aussi un diviseur de Weil entier,
ot Xq est le lieu lisse de X et Yy = f~1(Xp).

Soit f : X --» Y une application birationnelle et soit D € Cl(X) ®z Q.
La transformée stricte de D par f, fiD, est définie comme étant I’adhérence
de fly(U N D), ou U est le plus grand ouvert de X tel que f|y soit un
isomorphisme.

1.2 Faisceaux réflexifs

1.2.1 Propriétés de base

Soient X une variété normale et .% un faisceau cohérent sur X. Le fais-
ceau dual de .7 est défini par F* = Hom(F, Ox). Le faisceau .Z est dit
réflexif si le morphisme naturel .# — %** est un isomorphisme. En parti-
culier, .#** est un faisceau réflexif et est appelé I'enveloppe réflexive de ..
Nous avons le critére de réflexivité suivant.

Proposition 1.2.1 ([Har80, Prop 1.6]). Soit % un faisceau cohérent sur
une variété normale X. Alors F est réflexif si et seulement s’il est sans
torsion et pour tout ouvert U et tout fermé Y C U tel que codimy Y > 2, le
morphisme naturel F(U) — F(U\Y') est un isomorphisme.

Pour un faisceau cohérent .Z sur une variété normale X, notons .Z®™ =
(FOmY* ot FINM = (F/M)*Gi & est un autre faisceau cohérent sur X,
alors nous notons . [®|¥ = (¥ ® ¢)**. Soit D un diviseur de Weil sur X.
Définissons le faisceau Ox (D) par, pour tout ouvert U de X,

Ox(D)(U) = {f fonction rationnelle de X | div(f) + D est effectif} U {0},

ou div(f) est le diviseur associée a f. Remarquons que Ox (D) est réflexif
et que si deux diviseurs D et D’ sont linéairement équivalents, alors les



Wenhao OU 16

faisceaux Ox (D) et Ox(D') sont isomorphes (voir [Rei80, Appendix to §1]).
Nous obtenons donc un morphisme de groupe

Cl(X) — {faisceaux réflexifs de rang 1} /=

Proposition 1.2.2 (voir [Rei80, Appendix to §1]). Le morphisme défini
ci-dessus est un tsomorphisme.

Soit Q}( le faisceau des formes de Kéhler sur X. Soit Q[)T(] I’enveloppe
réflexive de Q% = (Q4)\" pour tout r > 0. Si dim X = n, alors on note

wx = Q[;} et on I'appelle le faisceau canonique de X . Soit K x un diviseur de
Weil tel que Ox (K x) = wx. Le diviseur K x est appelé un diviseur canonique
de X. La variété X est dite Gorenstein si elle est Cohen-Macaulay et Kx est
un diviseur de Cartier. Elle est dite Q-Gorenstein si Kx est Q-Cartier. Un
élément o dans HO(X, (Q4)®™)) est appelé une m-pluri-forme (réflexive)
sur X, ott m > 0 est un entier.

1.2.2 Pente des faisceaux cohérents

Soit X une variété complexe projective normale Q-factorielle. Soit o €
N1(X) une classe de courbe et soit .# faisceau réflexif de rang un. Alors par
Proposition 1.2.2, il existe un diviseur de Weil D tel que Ox (D) = .#. On
défini le nombre d’intersection « - .% par a- % =« D.

Une classe a € Ni(X) est dite mobile si a- D > 0 pour tout diviseur
effectif D ([BDPP13, Thm. 0.2]). Soit .# un faisceau cohérent sur X et soit
J# un sous-faisceau cohérent. Alors, le plus petit sous-faisceau cohérent 775
contenant 7 tel que le quotient .7 /% soit un faisceau sans torsion est
appelé la saturation de #. Le sous-faisceau 7 est dit saturé si J# = J#5%.

Soit a une classe mobile. Alors pour tout faisceau cohérent .# de rang
strictement positif sur X, nous définissons la pente de & par rapport i «

par
o - det F
ﬁ = =
Ho(F) rang .#

oil det . F = (FNrane F)y =+ De plus, soit
ur N (F) = sup{pa(¥) | ¢ C .Z un faisceau coherent}.

Pour tout faisceau cohérent .# de rang strictement positif, il existe un
sous-faisceau cohérent saturé .72 C .7 tel que ul'* (.7 ) = uo () (|GKP14,
App. A)).

Proposition 1.2.3 (|GKP14, App. A]). Soit X une variété projective nor-
male compleze Q-factorielle. Soit o une classe mobile. Alors pour tous fais-
ceauz cohérents F et 9 de rang strictement positif, on a

po((F @G)7) = 1o (F) + 1o (9)



Wenhao OU 17

et
pa “C((F @G)) = pg/*" (F) + po (D).
Si A est un diviseur ample dans X, alors A"~! est une classe mobile, ot n
est la dimension de X. Pour simplicité, on note pag = pran—1 et p’y** = pine, .

1.3 Singularités terminales, canoniques et Kawa-
mata log terminales

1.3.1 Définition des singularités

Rappelons quelques définitions sur les singularités du MMP. Les notions
sont expliquées en détail dans le livre [KM98|. Une paire (X, A) consiste en
une variété normale complexe X et un Q-diviseur effectif A. La paire (X, A)
est dite & croisements normaux simples (ou snc en abrégé) si X est lisse et
le support de A est un diviseur & croisements normaux simples.

Par le théoréme de Hironaka, il existe un morphisme birationnel f :Y —
X tel que, E, le lieu exceptionnel de f, soit de codimension pure 1 et que la
paire (Y, E+ f'A) soit snc. Un tel morphisme est appelé une résolution des
singularités pour la paire (X, A). Soient Ej, ..., Ej les composantes irréduc-
tibles de E. Si nous supposons que le Q-diviseur K x + A est Q-Cartier, alors
il existe des nombres rationnels a(f, X, A, Ey),...,a(f, X, A, E) tels que

k
Ky ~q [*(Kx + )+ a(f, X, A, E)E;.
=1

Remarquons que si f' : Y/ — X est une autre résolution des singulari-
tés pour la paire (X,A) qui se factorise & travers Y/ — Y, et si E| est
la transformée stricte de E; dans X', alors pour tout i € {1,...,k}, nous
avons a(f,X,A,E;) = a(f',X,A,El). Par conséquent, a(f, X,A,E;) =
a(X,A, E;) est indépendant du choix de résolution des singularités (voir
par exemple [KM98, Remark 2.23]). Ce nombre est appelé la discrépance
de E; (par rapport a (X, A)). La discrépance de (X, A), discrep(X, A), est
définie par

inf{a(X,A, E) | E un diviseur exceptionnel d'une résolution f:Y — X}
Définition 1.3.1. Soit (X, A) une paire telle que Kx + A soit Q-Cartier.
Alors la paire est dite

- terminale si discrep(X,A) > 0;
- canonique si discrep(X,A) > 0;

- Kawamata log terminale (ou kit en abrégé) si discrep(X,A) > —1 et
|A] <O0.
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Pour qu’une paire (X, A) soit terminale, (resp. canonique, klt), il suf-
fit qu’il existe une résolution f : Y — X telle que si Ky = f*(Kx +
A) + S8 a(X, A E)E; alors a(X,AE;) > 0 (resp. a(X,A,E;) > 0,
a(X,AE;)) > —1 et |A] < 0) pour tout ¢ € {1,....,k} ([KMM87, Lem.
0-2-12)).

Une variété normale complexe X est dite & singularités terminales (resp.
canoniques, klt) si la paire (X,0) est une paire terminale (resp. canonique,
klt).

Ezxemple 1.3.2. Soit X une variété complexe normale de dimension n et soit
x un point dans X. La variété X est dite a singularités quotient au voisinage
de z ¢’il existe un voisinage analytique U de x tel que U est analytiquement
isomorphe & V/G, ot V est une variété lisse et G est un groupe fini agissant
sur V. Les singularités quotients sont klt. Si X est une surface, alors elle est
a singularités klt si et seulement si elle est a singularités quotients [KM98,
Prop. 4.18].

1.3.2 Singularités de surfaces

Considérons le cas ou X est une surface normale. Il existe une résolution
des singularités minimale 7 : X — X telle que K ¢ -C > 0 pour toute courbe
C contractée par 7. Si g : Y — X est une résolution des singularités, alors il
existe un morphisme h : Y — X tel que g = r o h ([Kol07, Thm. 2.16]). Si
X est a singularités klt, alors elle est & singularités quotients. En particulier,
elle est a singularités Q-factorielles rationnelles ([KM98, §4.2]).

Rappelons la notion de graphe dual ([KM98, Def. 4.6]). Soit C = |J Cy
une collection de courbes projectives dans une surface lisse S. Le graphe dual
I" de C' est défini comme suit :

1. Les sommets de I représentent les courbes Cf.
2. Deux sommets Cj, # C} sont connectés par Cy - C) arétes.

Soit (X, &) un germe de surface a singularités canoniques telle que & soit
I'unique point singulier de X. Les singularités canoniques de surfaces sont
aussi appelées les singularités Du Val (voir par exemple [KM98, §4|). Les
singularités Du Val sont classifiées. Ce sont les singularités de type A;, D; et
E; (voir ci-dessous). Ainsi, les singularités canoniques de surfaces sont aussi
appelées singularités ADE. Soit r : X — X la résolution minimale de X et
soit C' = |J Cf le lieu exceptionnel de r. Alors C} est une (—2)-courbe pour
tout k. Nous avons la classification suivante :

1. (X,€)est de type 4;, oui € N*. Analytiquement, elle est isomorphe & la
singularité définie par I’équation 22 +y?+2! = 0. Le lieu exceptionnel
de r posséde ¢ composantes, et son graphe dual est une chaine comme
ci-dessous
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2. (X,&) est de type D;, ou i > 4. Analytiquement, elle est isomorphe
a la singularité définie par équation x? + y?z + z'~! = 0. Le lieu
exceptionnel de r possede ¢ composantes, et son graphe dual est comme
ci-dessous

[}
3. (X, &) est de type E;, ou i € {6,7,8}. Le lieu exceptionnel de r posséde
1 composantes, et son graphe dual est comme ci-dessous

[
Sii = 6, alors (X, {) est analytiquement isomorphe a la singularité défi-
nie par I'équation 22 +14%+2% = 0. Sii = 7, alors elle est analytiquement
isomorphe & la singularité définie par ’équation z? + y3 4+ yz3 = 0. Si
1 = 8, alors elle est analytiquement isomorphe & la singularité définie
par 1’équation x2 + 3 4+ 2° = 0.

En particuliére, les singularités ADFE sont des singularités d’hypersur-
faces donc sont Gorenstein.

1.4 Variétés rationnellement connexes, variétés de
Fano

Soit X une variété complexe projective. Alors elle est dite uniréglée si
par un point général x, il existe une courbe rationnelle passant par x. Elle
est dite rationnellement connexe si pour deux points généraux x, ¥’ de X,
il existe une courbe rationnelle passant par eux. (voir par exemple [Kol96,
§1V))

Une variété normale projective complexe X est appelée une variété de
Fano si — K x est un diviseur Q-Cartier et Q-ample. S’il existe un Q-diviseur
effectif A dans X tel que la paire (X,A) soit klt et que —(Kx + A) soit
Q-ample, alors la paire (X, A) est dite log Fano. Une fibration f : X — Y
entre deux variétés normales est dite de Fano si —Kx est de Q-Cartier et
f-ample.

Une courbe projective complexe lisse est une variété de Fano si et seule-
ment si elle est une courbe rationnelle. Si une surface projective complexe
lisse est une variété de Fano, alors elle est aussi une surface rationnelle, i.e.
elle est birationnelle 4 P2. En dimension supérieure, ce n’est plus vrai : il
existe des variétés de Fano projectives complexes lisses de dimension n > 3
qui ne sont pas birationnelles & P". Cependant, les variétés de Fano lisses
sont toujours rationnellement connexes ([Cam92|, [KMM92a|). Le théoréme
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suivant affirme que les variétés de Fano & singularités klt sont aussi ration-
nellement connexes (|[Zha06, Thm. 1], [HMO07, Cor. 1.13]).

Théoréme 1.4.1. Soit (X, A) une paire log Fano. Alors X est rationnelle-
ment connexe.

1.5 Programme des Modéles Minimaux

La motivation du programme des modéles minimaux, ou MMP («Mini-
mal Model Program» en anglais), est de trouver, pour une variété X, un
modéle birationnel X™* tel que ou bien Kx+ soit nef, ou bien il existe une
«fibration de Mori» f : X — Z (voir Proposition-Définition 1.5.3 ci-dessous)
vers une variété de dimension strictement plus petite. Un des théorémes les
plus importants est le théoréme du cone. Avant de présenter ce théoréme,
rappelons quelques notions de base de la géométrie des cones.

Soit V' un espace vectoriel réel de dimension finie. Un ensemble € C V est
appelé un cone si € est stable pour la multiplication par tout réel strictement
positif. Le cone est dit convexe si pour tous v,v’ € €, la somme v + v est
aussi dans €. Un sous-ensemble .# de € est appelé une face de € s'il est
convexe vérifiant la propriété suivante : si un segment ouvert |v, o[ tracé
dans € rencontre .#, alors le segment fermé [v,v'] est inclus dans .. Un
rayon extrémal de € est une face de dimension 1. Si (%;);cr est un ensemble
au plus dénombrable de cones dans V, alors la somme ), ; %; est définie
comme le plus petit cone convexe fermé contenant tous les %;.

Soit € C V un coéne convexe fermé et soit f € Hom(V,R) une forme
linéaire. Alors @y~ est le cone défini par

{ve?d| fv) =0}

Une face Z est dite strictement f-négative si f(v) < 0 pour tout v € #\{0}.
Dans le cas ou V = N1 (X) pour une variété normale X et f est induite par
I'intersection avec une classe D € N'(X), nous notons €pso = €=0. Une
face .Z est dite strictement D-négative si elle est strictement f-négative.

Le théoréme du cone est comme suit (voir par exemple [KMM87, Thm.
3-2-1 et Thm. 4-2-1]).

Théoréme 1.5.1 (Théoréme du Cone). Soit (X, A) une paire klt telle que
X soit projective Q-factorielle. Alors

1. 1T eziste un ensemble au plus dénombrable de courbes rationnelles C; C
X, avec j € J, telles que C; - (Kx + A) < 0 pour tout j et

NE(X) = NE(X) (g +a)z0 + > RV[C].
jeJ
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2. Pour tout € > 0 et tout diviseur ample H, il existe un sous-ensemble
fini I de J tel que
NE(X) = NE(X)(kx 1atem=o + Yy RF[C].
el

8. Soit F C NE(X) une face strictement (Kx + A)-négative. Alors il
existe une unique fibration projective cp : X — Z telle qu’une courbe
C C X soit contractée par cp si et seulement si [C] C F. Le morphisme
cp est appelé la contraction de F.

4. Soit cp la contraction d’une face strictement (Kx + A)-négative F' C
NE(X). Soit L un diviseur de Cartier dans X tel que C' - L = 0 pour
toute courbe C dont la classe est dans F. Alors il existe un diviseur de
Cartier Ly dans Z tel que Ox (L) = Ox(cyLz).

Remarque 1.5.2. Soit (X, A) une paire kIt log Fano. Alors par le théoréme
ci-dessus, le cone NE(X) est polyédral.

Soit (X, A) une paire klt telle que X soit projective Q-factorielle. Suppo-
sons qu'il existe un rayon extrémal R C NE(X) qui est strictement (Kx+A)-
négatif. Alors cp est appelée une contraction extrémale. Soit Ex(cg) son lieu
exceptionnel. Alors nous avons la proposition suivante ([KM98, Prop. 2.5]).

Proposition-Définition 1.5.3. Soit Z une composante irréductible du lieu
exceptionnel Ex(cg). Si Z est de codimension 1, alors Z = Ex(cg). Suivant
la codimension de Ex(cr), il y a trois possibilités :

1. 8i Ex(cr) contient un diviseur, alors cr est dite divisorielle.

2. Si Ex(cgr) est de codimension au moins 2, alors cr est appelée une
contraction pelite.

3. Si Ex(cr) = X, alors cr est dite de type fibré el appelée une fibration
de Mori. Dans ce cas, X est appelé un espace fibré de Mori.

Sicr: X — Z est de type fibré ou divisorielle, alors Z est aussi Q-
factorielle et p(Z) = p(X) — 1 (voir par exemple [KM98, Prop. 3.36]). Si cg
est une contraction petite, alors Z n’est jamais Q-factoriel. Pour le dernier
cas, introduisons la notion de flip ([KM98, Def. 3.33]).

Définition 1.5.4. Soit (X, A) une paire telle que Kx + A soit Q-Cartier.
Soit f: X — Z un morphisme birationnel tel que —(Kx + A) soit f-ample
et que Ex(f) soit de codimension au moins 2. Une variété X avec une
fibration birationnelle f+: X — Z est appelée un (Kx + A)-flip de f si

1. Kx+ + A" est Q-Cartier, ou AT est la transformée stricte de A dans
X,
2. Kx+ + AT est ft-ample,
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3. Ex(f*) est de codimension au moins 2.

Par abus de language, nous appelons aussi application birationnelle ¢ :
X --» Xt un (Kx + A)-flip.

Si f: X --» X' est une contraction extrémale divisorielle ou un flip asso-
ciée a une contraction extrémale petite, alors X’ est au plus aussi singuliére
que X. Plus précicément :

Proposition 1.5.5 ([KM98, Cor. 3.42]). Soit (X,A) une paire klt (resp.
canonique, terminale) telle que X soit Q-factorielle. Soit f : X — Z une
contraction extrémale petite. Si X+ est un (Kx + A)-flip de f, alors la paire

(XT,A™T) est klt (resp. canonique, terminale), ot AT est la transformée
stricte de A dans X .

Proposition 1.5.6 (|[KM98, Cor. 3.43]). Soit (X, A) une paire kit telle que
X soit Q-factorielle. Soit f : X — X' une contraction extrémale diviso-
rielle et soit E le lieu exceptionnel. Alors X' est Q-factorielle et (X', A') est
aussi une paire kit, ou A’ est la transformée stricte de A dans X'. De plus,
si (X,A) est terminale (resp. canonique) et si E ¢ A, alors (X', A’) est
terminale (resp. canonique).

Dans le cas d’une fibration de Mori, nous avons la proposition suivante.

Proposition 1.5.7 ([KMMS87, Lem. 5-1-5] et [Fuj99, Thm. 0.2]). Soit (X, A)
une paire kit telle que X soit Q-factorielle. St f : X — Z est une fibration
de Mori associée a une face strictement (Kx + A)-négative, alors Z est Q-
factorielle klt.

Soit (X, A) une paire klt telle que X soit projective Q-factorielle. Le
MMP pour la paire (X, A) est une suite de transformations birationnelles
que nous allons obtenir par récurrence,

(X,A) = (X0, A0)-->(X1, A1) == -+ (X, Ag) —=» -

Supposons qu’une paire klt (X;, A;) est construite pour certain entier
naturel ¢ et que X; est projective Q-factorielle. Si Kx, + A; est nef, alors
(Xi, A;) est un modéle minimal et le programme est terminé. Nous prenons
(X*, A*) = (X5, A;) comme le résultat du programme.

Si Kx, + A; n’est pas nef, alors il existe un rayon extrémal strictement
(Kx, + A;)-négatif R C NE(X;). Soit cg : X; — Z la contraction de R. Si
cr est une fibration de Mori, alors le programme est terminé et nous prenons
(X, A%) = (X, A;) comme le résultat du programme. Si cg est une contrac-
tion de type divisoriel, alors nous posons (X;1+1,Ai+1) = (Z, (cr)+A:). Si cr
est une contraction petite, alors il existe un flip (X;, A;) -=» (X1, Aiy1)
par [BCHM10, Cor. 1.4.1]. Dans les deux derniers cas, (X;4+1,Aj4+1) est une
paire klt et X; 11 est projective Q-factorielle.
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On conjecture que la suite de transformations birationnelles ci-dessus est
toujours finie et que nous pouvons obtenir un modeéle (X*, A*) tel que ou
bien Kx+ + A* soit nef, ou bien il existe une fibration de Mori f: X — Z.
Cette conjecture de terminaison de MMP est équivalente a la non-existence
de suite infinie de flips. Dans le cas dim X = 2, la conjecture est vraie. En
effet, si dim X = 2, alors il n’y a que des contractions divisorielles dans la
suite du programme. Dans le cas ot dim X = 3, 4, la conjecture est aussi vraie
([Sho86, Cor. 2.17|, [KMMS87, Thm. 5-1-15]). En plus grandes dimensions,

elle reste encore ouverte.



Chapitre 2

Résumé des résultats
principaux

2.1 Fibrations lagrangiennes sur les variétés sym-
plectiques de dimension quatre

Dans le Chapitre 4, nous étudions la base d’une fibration lagrangienne
d’une variété symplectique de dimension 4. Rappelons d’abord quelques dé-
finitions sur les variétés symplectiques.

Définition 2.1.1. Soit M une variété projective lisse de dimension 2n dé-
finie sur un corps k. Une 2-forme fermée Q2 € HY(M,Q3,) est dite symplec-
tique si elle est partout non-dégénérée. La variété M est dite symplectique

wrréductible si elle est simplement conneze et qu’il existe une forme symplec-
tique Q telle que HO(M,Q3%,) = kQ.

Les variétés symplectiques irréductibles sont ’analogue des surfaces K3
en grandes dimensions. Une variété complexe symplectique irréductible est
aussi appelée une variété hyperkihlerienne. On remarque que, si M est une
variété symplectique irréductible, alors Q" est un élément dans H°(M, Q37)
qui est partout non nul. Par conséquent, Q%‘ = 0. Beauville démontre le
théoréme suivant.

Théoréme 2.1.2 ([Bea83, Thm. 1]). Soit X une variété projective compleze
lisse telle que Kx = 0. Alors il existe un revétement fini étale X' — X tel

que
X' =T x[[vix[[ws,
i J

ot T est un tore, V; est une variété de Calabi-You simplement connexe et
W; est une variété symplectique irréductible.

24
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Ezxemple 2.1.3. Nous rassemblons deux exemples classiques des variétés sym-
plectiques irréductibles. Ce sont les variétés symplectiques irréductibles de
type K3 et de type Kummer généralisés (|[Bea83, §6 et §7]).

-Type K3I". Une surface projective complexe est symplectique irréduc-
tible si et seulement si elle est une surface K3. Soit S une surface K3. Alors
le schéma d’Hilbert des sous-schémas de S de dimension 0 et de longueur n,
Hilb™ (), est une variété symplectique irréductible de dimension 2n.

-Type Kummer généralisés. Soient, A un tore complexe de dimension 2 et
0 € Ale point zero. Soit Hilb"*1(A) le schéma d’Hilbert des sous-schémas de
A de dimension 0 et de longueur n+ 1 et soit S"*1(A) le produit symétrique
de n + 1 copies de A. Alors, il existe des morphismes naturels,

Hilb"t1(A) —s S"T1(4) = A,

ot + désigne la sommation de A. Soit K"t1(A) C Hilb"™!(A) la fibre au-
dessus de 0 € A de la composition des morphismes ci-dessus. Alors K" est
une variété symplectique irréductible de dimension 2n.

Soit M une variété projective symplectique irréductible définie sur un
corps k de dimension 2n. Soit {2 une forme symplectique. Une sous-variété
N est dite lagrangienne si elle est de dimension n et si la restriction de
sur la partie lisse de N est une 2-forme identiquement nulle. Une fibration
f: M — X est dite lagrangienne si toute composante irreductible de toute
fibre de f est une sous-variété lagrangienne.

Les fibrations lagrangiennes sont un objet important pour la géométrie
des variétés symplectiques irréductibles. Il est conjecturé par plusieurs ma-
thématiciens (Beauville, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon,
Tyurin, ...) que toute variété symplectique irréductible peut étre déformée en
une variété symplectique irréductible qui admet une fibration lagrangienne
(voir par exemple [Beall, §1.6]). Ici nous supposons 'existence d’une fibra-
tion lagrangienne f : M — X et nous nous intéressons & X. Matsushita
démontre le résultat suivant ([Mat99, Thm. 2]).

Théoréme 2.1.4. Soit f : M — X une fibration d’une variété compleze
projective symplectique irréductible lisse M de dimension 2n dans une variété
projective normale X . Supposons que 0 < dim X < 2n. Alors nous avons les
propriétés suivantes :

1. f est une fibration lagrangienne ;

2. X est une variété de Fano de dimension n Q-factorielle o singularités
kit telle que p(X) = 1.

Dans les exemples connus de fibrations lagrangiennes, la base est toujours
isomorphe & un espace projectif. En effet, si nous supposons que la base est
lisse, alors Hwang prouve le théoréme suivant.
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Théoréme 2.1.5 ([Hwa08, Thm. 1.2]). Soit f une fibration lagrangienne
d’une variété complexe projective symplectique irréductible lisse M de di-
mension 2n dans une variété projective lisse X. Alors X = P,

Si la variété symplectique irréductible se déforme en une variété sym-
plectique irréductible du type K3 ou du type Kummer généralisés, alors
la base est toujours isomorphe a P™ ([Mat13, Cor. 1.1|, [Mar14, Thm. 1.3|,
[BM14, Thm. 1.5] et [Yos12, Prop. 3.38]). Cependant, il existe d’autres types
de variétés symplectiques irréductibles. O’Grady construit deux nouveaux
exemples de variétés symplectiques irréductibles dans [O’G99| et [O’GO3].
Dans le Chapitre 4, nous démontrons le théoréme suivant.

Théoréme 2.1.6. Soit f une fibration d’une wvariété compleze projective
symplectique irréductible lisse M de dimension 4 sur une surface projective
normale X. Alors, nous avons deuz possibilités. Soit X = P?, soit X =

S™(Eg).

La surface S™(Eg) est 'une des deux surfaces de Fano qui contiennent
un unique point singulier qui est canonique du type Fg. La construction
de ces deux surfaces est comme suit. Soit C' une courbe rationnelle cubique
singuliére dans X7 = P2. Soit 2 I'un des points d’inflection lisses de C' et soit
L la droite tangente & C en x. En éclatant le point x, nous obtenons une
surface X5. Nous construisons une surface rationnelle Xy par récurrence de
la maniére suivante. Supposons que X; est construite pour un ¢ > 2. Soit
X;+r1 — X; Véclatement du point d’intersection de la transformée stricte de
C et le diviseur exceptionnel de X; — X;_1. Alors Xg contient exactement
huit (—2)-courbes : la transformée stricte de L et les transformées strictes des
diviseurs exceptionnels de Xg — X7. Soit X9 — X le morphisme birationnnel
qui contracte exactement ces courbes. Alors X est une surface de Fano qui
contient un unique point singulier qui est canonique du type Eg. Si C est
une courbe cuspidale, alors le system linéaire | — Kx| contient une courbe
rationnelle cuspidale dans le lieu lisse de X. On note S¢(FEjg) cette surface.
Si C est une courbe nodale, alors le systéme linéaire | — K x| contient deux
courbes rationnelles nodales dans le lieu lisse de X. On note S™(Eg) cette
surface.
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courbe nodale courbe cuspidale
[ [
courbe nodale point singulier point singulier
X = S™(Ej) X = S¢(Ey)

courbes rationnelles dans | — Kx|

La preuve du Théoréme 2.1.6 consiste en plusieures étapes. Nous allons
d’abord démontrer le théoréme suivant, qui est une généralisation d’un ré-

sultat de Kollar ([Kol86b, Cor. 3.9]).

Théoréme 2.1.7. Soit g : V. — W une fibration projective équidimension-
nelle entre variétés complexes normales quasi-projectives. Supposons que V
est lisse, que wy = Oy, et que W est Cohen-Macaulay Q-Gorenstein. Soit L
un diviseur de Weil Q-Cartier dans W, et soit E = g*L. Alors Rig,0y(E)
est réflexif pour tout ¢ > 0.

En particulier, si f : M — X est une fibration lagrangienne, alors le
Théoréme 2.1.7 implique que R'f,O) est réflexif. Par la méthode de Mat-
sushita ([Mat05]), nous obtenons R!f, 0 = Q_@ Ensuite, nous démontrons
le théoréme d’annulation suivant.

Theorem 2.1.8. Soit f : M — X wune fibration lagrangienne d’une va-
riété complexe projective symplectique irréducible lisse M sur une variété
projective normale X. Soit H un diviseur de Weil Q-ample dans X et soil
D = f*H. Alors, pour tout j > 0 et pour tout i > 0, nous avons

W (X, R f,(00(D))) = 0 et hi(M, Gp (D)) = (X, QW [@] O (H)).
Dans le cas ou dim M = 4, nous en déduisons
WO(X, Ox(H)) — hO(X, 0 [®]0x (H)) + B(X, Ox (H + Kx)) = 3

pour tout diviseur de Weil Q-ample H dans X. Enfin, nous montrons le
théoréme de classification suivant qui implique le Théoréme 2.1.7.

Théoréme 2.1.9. Soit X une surface de Fano compleze & singularités kit

dont le lieu lisse est algébriquement simplement connexe. Supposons que
p(X)=1cet

WX, 0x (H)) — h°(X, QU@ ox (1)) + B(X, Ox (H + Kx)) = 3
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pour tout diviseur de Weil Q-ample H dans X. Alors soit X = P2, soit
X = S"(Eyg).

Rappelons qu’une variété X est dite algébriquement simplement connexe
si tout revétement étale fini X’ — X, avec X’ irréductible, est un isomor-
phism.

2.2 Variétés de Fano dont tout diviseur effectif est
nef

Soit X une variété projective normale. Alors nous avons l'inclusion
Nef(X) C Psef(X).

I est naturel de regarder des variétés X telles que Nef(X) = Psef(X). Les
exemples les plus simples sont les variétés de nombre Picard 1 et les espaces
homogeénes. Si X est une variété torique lisse, alors Nef(X) = Psef(X) si et
seulement si X est un produit d’espaces projectifs ([F'S09, Prop. 5.3]). Le cas
ou X est une variété horosphérique est traité dans [Lil3].

Ezemple 2.2.1 ([Fulll, Prop. 1.5]). Soit C' une coubre projective lisse et soit
& un fibré vectoriel sur C. Soit X = P(&) le fibré projectif associé & &. Alors
Nef(X) = Psef(X) si et seulement si & est semistable.

Dans le Chapitre 5, nous nous intéressons aux variétés de Fano X a
singularités canoniques telles que Nef(X) = Psef(X). Une telle variété est
un objet minimal dans sa classe d’équivalence birationnelle : si f : X — Y est
un morphisme birationnel, alors f est un isomorphisme ([Drul4, Lem. 4.4]).
De plus, le nombre de Picard de X est toujours au plus égal & la dimension
de X. Si p(X) est maximal, alors Druel montre le théoréme suivant (|Drul4,
Thm. 1.1] et [Drul4, Prop. 10.4]).

Théoréme 2.2.2. Soit X une variété de Fano localement factorielle 4 singu-
larités canoniques. Supposons que p(X) = dim X et que Nef(X) = Psef(X).
Alors X =2 X1 x -+ x Xy, ot pour tout i =1,.... k, ou bien X; =P, ou bien
dim X; > 3 et X; est un revétement double de P! x --- x P!, ramifié le long
d’un diviseur de degré (2, ...,2).

Nous étudions le cas ot le nombre de Picard de X est égal a la dimension
moins 1. Plus précicément, nous classifions les variétés de Fano X telles que

1. X est localement factorielle, a singularités canoniques;

2. X est lisse en codimension 2;

3. Nef(X) = Psef(X).

Dans le cas des surfaces, il n’est pas difficile de voir que X =2 P2, Dans
le cas de dimension 3, nous avons le résultat suivant.
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Théoréme 2.2.3. Soit X une variété de Fano de dimension trois locale-

ment factorielle o singularités canoniques isolées. Supposons que Nef(X) =
Psef(X). Alors

1. X =2 P! x P2
2. X est un revétement double de P* x P2, ramifié le long d’un diviseur
premier de degré (2,2).

3. X est un revétement double de P* x P2, ramifié le long d’un diviseur
premier de degré (2,4).

X est une hypersurface dans P? x P? de degré (1,1).
X est une hypersurface dans P? x P? de degré (1,2).
X est une hypersurface dans P? x P? de degré (2,2).

NS S

X est un revétement double d’une hypersurface lisse Y dans P? x P?
de degré (1,1), ramifié le long d’un diviseur premier D, ot D est l'in-
tersection de Y et une hypersurface de degré (2,2) dans P? x P2,

Plus généralement, nous démontrons le théoréme suivant.

Théoréme 2.2.4. Soit X une variété de Fano de dimension n > 3 loca-
lement factorielle o singularités canoniques. Supposons que X est lisse en
codimension 2, que p(X) = dim X — 1 et que Nef(X) = Psef(X). Alors
X =2 X1 x Xg, ot X1 est l'une des variétés du Théoréeme 2.2.2 et Xo est
lune des variétés dans le Théoréme 2.2.3 et ’Exemple 2.2.5.

Ezxemple 2.2.5. Dans la liste suivante, nous donnons quelques exemples des
variétés de Fano X.

1. X est un revétement double de (P')"~2 x P2, ramifi¢ le long d’un
diviseur premier de degré (2,...,2,2) ou (2,...,2,4).

2. Soit Z = (P1)* x P2 x (P!)" tel que r,s > 0 et 7+ s = n — 2. Soit Y7 un
revéetement double de (P!)* x P2, ramifié¢ le long d’un diviseur premier
de degré (2,...,2,2). Soit Y = Y7 x (P1)" et soit g : Y — P2 x (P!)" la
projection naturelle. Soit X un revétement double de Y, ramifié le long
d’un diviseur premier D, qui est le tiré-en-arriére par g d’un diviseur
de degré (2,2, ...,2) dans P2 x (P!)".

3. Soit W un diviseur lisse de degré (1,1) dans By x B, out By & By = P2,
Soit X un revétement double de (PY)"~3 x W, ramifi¢ le long d'un
diviseur premier D, qui est I'intersection de (P*)"~3 x W et un diviseur
de degré (2,...,2,2,2) dans (P')"3 x By x Bs.

4. Soient By & By = P2. Soit Y7 un revétement double de (P1)"=3 x By,
ramifié le long d’'un diviseur premier de degré (2,..,2,2). Soit Y =
Y1 X Bs. Soit p la projection naturelle de Y dans By X Ba. Soit W une
hypersurface normale dans By x By de degré (1,2), ou k € {1,2}. Soit
X =p'W.
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5. Soient By = By = P2. Supposons que n > 5. Soit V; = (P!)” x By et
soit Vo = By x (P1)%, oti 7,8 > 0 et r+5 = n— 3. Soit Y1 un revétement
double de V7, ramifié le long d’un diviseur premier de degré (2, ...,2,2)
et soit Yo un revétement double de V5, ramifié le long d'un diviseur
premier de degré (2,2,...,2). Soit Y = Y] x Y3 et soit p la projection
naturelle de Y dans By x Bs. Soit W une hypersurface normale dans
B; x By de degré (1,1). Soit X = p*W.

Expliquons I’idée des preuves des théorémes. Soit X une variété qui vérifie
les conditions du Théoréme 2.2.4. Considérons d’abord le cas ot dim X = 3.
Alors le cone NE(X) posséde exactement deux rayons extrémaux Ry, Ry. Soit
fi + X — B; la contraction de R; pour ¢ = 1,2. Nous pouvons démontrer
que soit B; = P!, soit B; = P2. De plus, le produit fi x fo est fini sur son
image. Par conséquent, X est un revétement fini de P! x P? ou un revétement
fini d’'une hypersurface de P? x P2. D’aprés une étude des morphismes finis
entre variétés de Fano de dimension 3, nous pouvons conclure la preuve du
Théoreme 2.2.3.

Ensuite, nous traitons le cas ot n = dim X > 4. Nous allons démontrer
le Théoréme 2.2.4 par récurrence sur la dimension de X. Nous montrons
d’abord qu’il existe toujours une fibration g : X — P!. Pour cela, nous nous
ramenons au cas ou n = 4.

Il existe une fibration h : X — Y telle que h x g : X — Y x P! soit
un morphisme fini surjectif. Nous pouvons démontrer que Y vérifie aussi les
conditions du Théoréme 2.2.4. Par récurrence, supposons que le Théoréme
2.2.4 est vrai en dimension strictement plus petite que n. Alors, h X g induit
un morphisme fini surjectif f : X — Z tel que Z =2 P! x .- x P! x P? ou
Z =Pl x ... xP' x W, ot W est une hypersurface normale dans P? x P2
Enfin, nous déduisons le Theorem 2.2.4 en étudiant les morphismes finis
entres des variétés de Fano.

2.3 Pluri-formes sur les variétés singuliéres ration-
nellement connexes

Soit X une variété complexe rationnellement connexe. Si X est lisse,
alors, par un point général x de X, il passe une courbe rationnelle trés libre
f : P! — X. Par définition, f*Tx est un fibré ample, ou Tx est le fibré
tangent de X. En particulier, pour toute pluri-forme o € HY(X, (Q%)®™),
le tiré-en-arriére f*o est identiquement nul. Par conséquent, la pluri-forme o
est nulle en point . Comme x est un point général, cela implique le théoréme
suivant ([Kol96, Cor 1V.3.8]).

Théoréme 2.3.1. Soit X une variété projective complexe lisse rationnelle-
ment connexe. Alors X ne porte pas de pluri-forme non nulle, i.e. pour tout
m >0, on a h°(X, (Q%)®™) = 0.
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Mumford conjecture que la réciproque du théoréme est aussi vraie.

Conjecture 2.3.2. Soit X une variété projective complexe lisse telle que
RO(X, (Q%)®%™) = 0 pour tout m > 0. Alors X est une variété rationnelle-
ment connexe.

Il est naturel de se demander §’il existe des annulations analogues lorsque
X est une variété projective complexe rationnellement connexe singuliére.
Greb, Kebekus, Kovacs et Peternell démontrent que les variétés projectives
complexes rationnellement connexes a singularités klt ne portent pas de
formes différentielles réflexives.

Théoréme 2.3.3. Soit (X, A) une paire klt. Supposons que X est ration-

nellement conneze. Alors hO(X, Q[)Zﬂ) = 0 pour tout m > 0.
Quant aux pluri-formes, la situation est plus délicate. Greb, Kekebus et
Peternell démontrent le théoréme suivant ([GKP14, Thm. 3.3]).

Théoréme 2.3.4. Soit X une variété projective complexe localement fac-
torielle o singularités canoniques. Si X est rationnellement connexe, alors

RO(X, () ®™)) = 0 pour tout m > 0.

Le Théoréme 2.3.1 n’est plus vrai pour les variétés a singularités klt. 11
existe des variétés rationnellement connexes a singularités klt dont le divi-
seur canonique est Q-effectif ([Kol08, Example 43| ou [Tot12, Example 10]).
La condition que X soit localement factorielle dans ce théoréme est aussi
indispensable. Il existe des variétés complexes projectives rationnellement
connexes 3 singularités canoniques qui portent des pluri-formes non nulles.

Ezample 2.3.5 ([GKP14, Example 3.7]). Soit X — P! une surface réglée
lisse. Soient qi, ..., q4 quatre points distincts dans P'. Pour chaque point ¢;,
on effectue la suite suivante de transformations birationnelles :

(i) On éclate un point x; dans la fibre de 7y au-dessus de ¢;. Alors on
obtient deux (—1)-courbes au-dessus de g;, qui se rencontrent trans-
versalement en point .

(ii) On éclate le point x}. Alors il y a deux (—2)-courbes et une (—1)-
courbes au dessus de ¢;. La (—1)-courbe est de multiplicité 2 dans la
fibre au-dessus g;.

(iii) On contracte les deux (—2)-courbes. Cela produit deux points singu-
liers de la surface au-dessus de g;. Les singularités sont canoniques de
type A;. La fibre au-dessus de g; est alors irréductible et de multiplicité
2.

Nous obtenons une surface rationnelle a singularités canoniques X ——
P!. De plus, nous avons h%(X, (Q4)®2]) £ 0.
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La raison pour laquelle la surface X construite dans I’Exemple 2.3.5
porte des 2-pluri-formes non nulles est la suivante. Soit X° le lieu lisse de X.
Comme Qﬁm = Op1(—2), il existe deux sections rationnelles o1 et o telles que
les uniques poles de o7 (resp. de o2) soient les points ¢; et ga (resp. g3 et q4).
De plus, les poles de o1 et o3 sont simples. Soit 0 = (7| x0)*(01 ® o2). Alors
o est une section rationnelle de (Q%.)®2. Montrons que o est une section
réguliére. Par symétrie, il suffit de montrer que o n’a pas de pole le long de
la fibre de 7|xo au-dessus de q1. Soit ¢ une coordonnée locale de P! telle que
q1 soit défini par t = 0 et telle que

1
01 ®og = ;dt@dt.

Soient (a, b) des coordonnées locales de X° telles que 7 s’exprime par (a, b) —
a?. Alors

1 1
o= w*(gdt ®dt) = ?dcﬂ ® da? = 4da ® da.

Cela implique que o est un élément non nul de H°(X°, (24.)®?). Donc
hO(X, (%)) # 0.

2.3.1 Le cas des surfaces

Dans le Chapitre 6, nous étudions les surfaces complexes projectives a sin-
gularités canoniques rationnellement connexes qui portent des pluri-formes
non nulles. Nous proposons deux méthodes pour construire de telles surfaces
et démontrons que toute telle surface peut étre construite par ces méthodes.

La premiére méthode au-dessous est analogue & la construction dans
I’Exemple 2.3.5. Nous construisons la surface par une suite de transforma-
tions birationnelles explicites & partir d’une surface réglée rationnelle lisse.

Construction 2.3.6. Soit Xg —% P! une surface réglée lisse. Prenons r
points distincts g1, go, ..., ¢ dans P! avec r > 4. On effectue les transforma-
tions birationnelles suivantes des surfaces :

(i) Pour tout point g;, on effectue la méme suite de transformations bira-
tionnelles que celle de ’Exemple 2.3.5. On obtient une surface ration-
nelle a singularités canoniques X3 Ty Pl Les fibres multiples de 7y
sont alors miq1, 71 q2, ..., T qr.

(ii) On effectue un nombre fini de fois la transformation birationnelle sui-
vante : on éclate un point lisse dans une fibre multiple au-dessus de
P!, ensuite, on contracte la transformée stricte de la fibre initiale. On
obtient une surface X* -2 P!,

(iii) A partir de X*, on effectue une suite d’éclatements de points lisses. On
obtient une surface X,—P!.

(iv) On contracte des chaines de (—2)-courbes qui sont exceptionnelles par
rapport & X, — X*.
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A la fin, nous obtenons une surface rationnelle & singularités canoniques
s
X 5 Pl

X,— X

éclatem& Jf

X***%leféXo

Nlva

Pl

Théoréme 2.3.7. Soit X une surface complexe projective rationnellement
conneze & singularités canoniques qui porte des pluri-formes non nulles.
Alors X peut étre construite par la méthode de la Construction 2.3.6

Remarquons que si X —— P! est une surface obtenue par la Construction
2.3.6, alors les fibres multiples de w sont 7*¢q1,7*qo, ..., 7*q.. Comme dans
I’Exemple 2.3.5, ces fibres multiples sont exactement la source des pluri-
formes non nulles.

Théoréme 2.3.8. Soit X une surface complexe projective rationnellement
conneze o singularités canoniques qui porte des pluri-formes non nulles. Si
X* est le résultat d’un MMP pour X, alors X* est un espace fibré de Mori
au-dessus de P'. Notons p: X* — P! la fibration de Mori. Soit r le nombre
des fibres multiples de p. Alors r > 4 et

RO(X, (%) ™) = RO, (@) E™) = hO(PY, Gpr (—2m + [%]7“))

pour tout m > 0. En particulier, @ m fizé, la dimension des m-pluri-formes
ne dépend que du nombre des fibres multiples de p.

Avec les mémes notations que dans le théoréme précédent, par réduction
semi-stable, il existe un revétement fini galoisien v : B — P! tel que la
fibration Z — B soit a fibres réduites, ol Z est la normalisation du produit
fibré X* xp1 B. On montre le théoréme suivant.

Théoréme 2.3.9. Soit X une surface complexe projective rationnellement
connexe G singularités canoniques qui porte des pluri-formes non nulles et
soit X* un résultat d’'un MMP. Soit © la composition X — X* — PL
Alors il existe une courbe projective lisse B de genre strictement positif et un

diagramme commutalif

y — Y . x

1

B—— P!
tel que v et T' soit des morphismes finis galoisiens de groupe de Galois G =2
Z)27 x 7)27. De plus, Y est la normalisation du produit fibré B xp1 X et
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I est étale en codimension 1. Nous avons
hO(X, (%)™ = (v, () ™) = hO(B, (Qf)®™)¢
pour tout m > 0.

Remarquons que h%(B, (25)%2)¢ £ 0. En effet, comme G est un groupe
commutatif et h°(B, QL) est non nulle, il existe une forme non nulle o €
H°(B, QlB) qui est un vecteur propre commun des éléments de G. Puisque
tout elémeént de G est d’ordre 2, on obtient que 0®? est un élément non nul
dans H°(B, (Q24)%2)¢.

Ce théoréme implique que toute surface rationnellement connexe com-
plexe a singularités canoniques qui porte des pluri-formes non nulles peut
étre construite par la méthode suivante.

Construction 2.3.10. Soit Y une surface complexe projective a singularités
canoniques et soit G un sous-groupe fini de Aut(Y), le groupe des automor-
phismes de Y, dont ’action sur Y est galoisienne et libre en codimension 1.
Supposons qu'’il existe une fibration G-équivariante 7’ de Y sur une courbe
lisse B de genre strictement positif telle que B/G = P! et que les fibres gé-
nérales de 7’ soient isomorphes & PL. Soit X = Y/G. Alors X est une surface
rationnellement connexe & singularités canoniques qui porte des pluri-formes
non nulles.

A la fin de ce chapitre, on démontre le théoréme suivant, qui donne
une réponse négative a une question de Debarre : "existe-t-il une surface
projective complexe & singularités canoniques dont le lieu lisse n’est pas
rationnellement connexe telle que h°(X, (Q4)®™)) = 0 pour tout m > 0?"

Théoréme 2.3.11. Soit X une surface projective complexe o singularités
canoniques. Alors le lieu lisse de X est rationnellement connexe si et seule-
ment si hO(X, (25)®™) = 0 pour tout m > 0.

2.3.2 Le cas de la dimension trois

Dans le Chapitre 7, nous étudions les variétés complexes rationnellement
connexes X de dimension 3 qui portent des pluri-formes non nulles. Dans le
cas de dimension 3, la situation est plus compliquée. Supposons que X est
Q-factorielle et & singularités canoniques. Par un programme des modéles
minimaux, nous obtenons une suite de transformations birationnelles

X = Xg - Xj —=» - —=» Xp = X%,

ol X* est un espace fibré de Mori. Comme dim X = 3, il peut y avoir des flips
dans la suite précédente. En particulier, la composition X --+» X* n’est pas
toujours un morphisme. Cependant, pour tout m > 0, il existe une injection
naturelle

HO(X, ()= — HO(X™, ().
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Donc X* porte des pluri-formes non nulles.

Supposons dans un premier temps que X = X* est un espace fibré de
Mori. Alors le nombre de Picard de X est au moins 2 par le théoréme suivant.
En particulier, la variété X est fibrée soit au-dessus de P!, soit au-dessus
d’une surface.

Théoréme 2.3.12. Soit X une variété de Fano o singularités kit telle que
p(X) = 1. Alors, pour tout m > 0, nous avons h®(X, ()®™) = 0.

Dans le théoréme suivant, nous démontrons que, comme dans le cas des
surfaces, il existe une fibration équidimensionnelle ¢ de X sur une variété
Q-factorielle Z, telle que les pluri-formes de X viennent de la base Z. Soient
Dy, ..., Dy, les diviseurs premiers dans Z tels que ¢*D; n’est pas réduit. Soit
m; le plus petit coefficient de ¢*D;. Définissons un Q-diviseur A dans Z par

A=Y 'p..

%

Théoréme 2.3.13. Soit X un espace fibré de Mori Q-factoriel & singularités
canoniques de dimension 3. Supposons que h°(X, (Qﬁ()@m]) % 0 pour un
entier m > 0. Alors il existe une fibration q : X — Z telle que dim Z > 0
et telle que Kz + A soit Q-effectif, oun A est défini comme ci-dessus. Nous
avons deuz possibilités.

1. La base Z est une surface et q est une fibration de Mori. Soitl un entier
strictement positif tel que [(Kz + A) soit linéairement équivalent o un
diviseur de Cartier effectif. Alors les sections globales de O(I(Kz+A))
induisent des (21)-pluri-formes sur X.

2. La base Z est isomorphe a P'. Pour tout m > 0, nous avons

mi—l)

HO(X, (Q)®m]) ~ HO(]P’l,ﬁPl(—Qm—i—Z[m( 1Dy)),

my;
ot | | désigne la partie entiére.

Considérons le cas général oil X n’est plus un espace fibré de Mori. Soit
X --» X* le résultat d'un MMP. Alors, par ce qui précéde, il existe une
fibration q : X* — Z telle que les pluri-formes de X* viennent de Z. Mal-
heureusement, ’application X --+ Z n’est pas toujours réguliére. Méme si
elle lest, elle n’est pas toujours équidimensionnelle. Il est donc difficile de
prédire quelles pluri-formes de X* peuvent se relever sur X. Toutefois, si nous
supposons que X est & singularités terminales, alors Z = P! et X --» Z est
toujours un morphisme par le théoréme suivant, qui ressemble au Théoréme
2.3.8 pour les surfaces.

Théoréme 2.3.14. Soit X une variété complexe rationnellement conneze a
singularités terminales de dimension 3 qui porte des pluri-formes non nulles.
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Alors il existe une fibration q : X — P! dont les fibres générales sont des
surfaces rationnellement connexes lisses. Soient z1, ...,z les points dans P!
tels que le diviseur de Cartier q*z; soit non réduit. Soit m; le plus petit
coefficient de q*z;. Alors pour tout m > 0,

RO(X, (Q_lx)[@vm}) = hO(PY, Op1 (—2m + i[w

i=1

1))

m;



Chapitre 3

Geometry of klt surfaces

In this chapter, we will prove some results on geometry of complex sur-
faces with klt singularities. In particular, we prove the following theorem.

Theorem 3.0.1. Let p : X — B be a Mori fibration from o kit quasi-
projective surface to a smooth curve. Let b be a point in B, and let C =
Supp(p*b). Assume that p*b = 2C. Then X has canonical singularities along
p*b. Let r : X — X be the minimal resolution of singularities along the fiber
p*b and let p = por. We have the following table of possibilities for p*b, and
each of these possibilities can occur. In the table, the dual graph is the one
of the support of p*b C )N(, the point with label s corresponds to C and the
other points correspond to the r-exceptional divisors, where C is the strict
transform of C in X.

Type of fiber Dual graph
(A1 + Ay) . 5 .
1 3 2
[ ] [ ] [ J
(Ds)
O
S
1 3 4 7 s
[ ] [ ] [ ] [ ] o
(D;) with ¢ >3
[ ]
2

In the table of the theorem above, we see that a multiple fiber of type
(A1 + Aj) is a multiple fiber which contains exactly two singular points and
both of them are of type A;. A multiple fiber of type (D;) with ¢ > 3 is a

37
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multiple fiber which contains exactly one singular point which is of type D;
(Note that the singularity D3 is the same as Ag).

3.1 Preparatory lemmas

The lemmas in this chapter may be well known for experts. For the
convenience of readers, we give account of the proofs here.

Lemma 3.1.1. Let ¢ : X --» X' be an extremal divisorial contraction or
a flip. Assume that X has Q-factorial canonical singularities. If Y is an
irreducible closed subvariety in X' such that it is the center of a divisor E
over X' which has discrepancy 0, then ¢~' is a morphism around the generic
point of Y.

Proof. Assume the opposite. Then the discrepancy of E in X is strictly
smaller than the one in X’ (see [KM98, Lem. 3.38]). This implies that X
does not have canonical singularities along the center of E' in X. This is a
contradiction. O

Lemma 3.1.2. Let X be a normal projective Q-factorial surface. Let C),
D be two different projective curves in X. Assume that both C' and D pass
through a smooth point x of X. Then C'- D > 1.

Proof. Let r: X — X be the minimal resolution of X. Then by the projec-
tion formula, we obtain

C-D=(r"YC D> @1.C- (rh,D.
Since 7 is minimal and X is smooth at z, r~! is an isomorphism around z.
Hence both (r~1),C and (r~').D pass through the smooth point y, where

{y} = r~t({x}). Since X is smooth, we have (r~1).C - (r71),D > 1 by
|Har77, Prop. V.1.4]. Hence C'- D > 1. O

Lemma 3.1.3. Let Y be a klt quasi-projective surface. Let E; CY (i =
1,...,7) be smooth projective Ky-non-negative rational curves forming an
snc divisor \J;_, E;. Assume that the intersection matriz (E; - Ej)1<i j<r 1S
negative definite, and that there are rational numbers —1 < a; < 0 such that
(Ky —>.i_1 aiE;) - Ej =0 for every j € {1,...,r}. Let {Ci} be any subset of
{E;}. Then there is a birational morphism 'Y — X contracting the Cy’s and
no other curves. Moreover, X has klt singularities.

Proof. We may assume that {C}} is not empty. By renumbering if necessary,
we may assume that {Cy} = {E1,..., Es} with 1 < s < r. Note that the
intersection matrix (E; - Ej)1<; j<s is negative definite. Hence there are real
numbers by, ..., bs such that (Ky — >/ bE;) - E; = 0for all 1 < j <'s.
Since Ky - F; is an integer for all ¢ and F; - I is integer for all 1 <4,7 < s,
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the b;’s are rational numbers. On the one hand, since Ky - E; > 0 for all i,
we have b; <0 for all 1 <i < s by [KM98, Cor. 4.2|. On the other hand, we
have that (Ky — 3, a;E;) - Ej =30 a;E;-E; >0forall 1 <j<s.
Hence by [KM98, Cor. 4.2|, we have —1 < a; < b; for all 1 < ¢ < s. Note
that the pair (Y,—) 7, b;E;) is klt. Hence by the same argument as in
[KM98, Prop. 4.10], there is a birational morphism g : Y — X contracting
the Ci’s and no other curves. Moreover, X has klt singularities since the pair
(Y, — Zzs':l bZEl) is klt and g*KX = Ky — Zle szz ]

Remark 3.1.4. One of the application of Lemma 3.1.3 is as follows. Let g :
Y — Z be a partial minimal resolution of singularities of a klt surface Z.
That is, if z € Z is a point such that g~! is not an isomorphism around z,
then z is singular, and g is the minimal resolution of the singularity at z. Let
{E;} be the set of the g-exceptional curves. Since Z has klt singularities, the
E;’s satisfy the conditions in the lemma. Hence for any subset {Cy} of {E;},
there is a birational morphism Y — X contracting exactly the Cy’s. The
morphism ¢ : Y — Z factors through Y — X. Moreover, if Z has canonical
singularities, then so has X (in this case a; = 0 for all 7 € {1,...,r}, and
b; =0 for all j € {1, ..., s} by the calculation in the proof of the lemma).

Similarly, we can prove the following lemma, which shows that we can
contract some connected collection of (—2)-curves in a surface.

Lemma 3.1.5. Let E = J,;.«; Bk be a connected collection of (—2)-curves
m a smooth quasi-projective surface V. whose dual graph is the same as the
one of the support of the exceptional set of a minimal resolution for a cano-
nical surface singularity. Then there exists a morphism ¢ : V. — W such that
W has canonical singularities and c contracts exactly E.

Proof. We have Ky - Ej, = 0 for every k. The intersection matrix {E} - E;}
is negative definite by [KM98, Lem. 3.40]. Thus there is a contraction c :
V — W contracting exactly £ by Lemma 3.1.3. Since V is smooth and
Ky = ¢* Ky, we obtain that W has canonical singularities. ]

Recall that a variety X is called algebraically simply connected if any
finite étale morphism 7 : X’ — X, with X’ irreducible, is an isomorphism.

Lemma 3.1.6. Let X be a variety. Let U be a non-empty Zariski open subset
of X. If U is algebraically simply connected, then so is X.

Proof. Let ¢: X’ — X be a finite étale cover such that X’ is irreducible. Let
U’ = ¢ Y(U). Then U’ is irreducible. Hence, c|y is an isomorphism for U is
algebraically simply connected. This implies that ¢ is an isomorphism. Thus
X is algebraically simply connected. O

Lemma 3.1.7 (|[KM99, Lem. 3.3|). Let X be a quasi-projective surface with
canonical singularities. Let f : X — Y be a divisorial contraction in the
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MMP. Assume that the smooth locus of X is algebraically simply connected.
Then the smooth locus of Y is algebraically simply connected.

Proof. Let 1 : X > Xands:Y — Y be minimal resolutions of X and Y.
Then there is a natural morphism f:X — Y. Moreover, X can be obtained
from Y by a sequence of blow-ups. B
Let E (resp. D) be the exceptional set of 7 (resp. of s). Then X\E
is algebraically simply connected, and we only have to prove that Y\D is
algebraically simply connected. Since f~! is an isomorphism around the
singular points of ¥ (See Lemma 3.1.1), we have f~YD) C FE. Hence,
X\E C fY(Y\D). By Lemma 3.1.6, we obtain that f~'(Y\D) is alge-
braically simply connected. Note that f~*(Y\D) can be obtained from Y\ D
by a sequence of blow-ups. Hence, }N/\D is also algebraically simply connec-
ted. O

3.2 Pl-fibrations over a curve

In this section, we will give some properties of fibered surfaces X — B
such that B is a smooth curve, and general fibers of the fibration are smooth
rational curves. The fibration X — B is called a P!-bundle if it is smooth.

3.2.1 Basic properties

Lemma 3.2.1. Letp: X — B be a projective fibration such that X is normal
and B is smooth. Assume that every fiber of p is reduced and irreducible, and
there is a smooth fiber isomorphic to PL. Then p is a P'-bundle.

Proof. Note that general fibers of p are smooth rational curves. By [Kol96,
Exercise 11.2.8.6.3], we obtain that every fiber of p is a rational curve. Thus
by [Kol96, Thm. I1.2.8], p is a P!-bundle. O

Recall that a Hirzebruch surface Yj is a smooth rational ruled surface
isomorphic to Ppi(Op1 @ Opi(—k)). In particular, if & > 0, then there is a
unique rational curve C in ¥, such that C? = —k (See [Har77, §V.2]).

Lemma 3.2.2. Let X = Y be a Hirzebruch surface with k > 0, and let C
be the unique rational curve in X such that C - C = —k. Let p: X — P! pe
the P'-bundle, and let F be a fiber of p. Let 7 : X — X be the morphism
contracting C. Then Kg( = 8—4—%, —Kx-m.F = 1—|—%, and T, F-m,F = %

In particular, K)Q( > —Kx -mF

Proof. We have —Kg = —m"Kx + %C, Ky Kg =8 and C-F = 1.

Hence Kx - Kx =8+ @, and —Kx -m, F =1+ % We also obtain that

T M F = % O
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Proposition 3.2.3. Let p : X — B be a Mori fibration from a quasi-
projective surface with kit singularities to o smooth curve. Let b be a point of
B. Then we have the following properties.

1. X is smooth along the support of p*b if and only if p*b is reduced ;

2. if X has canonical singularities along C, then the coefficient of C in
p*b is al most equal to 2.

Proof. 1. Since p is a Mori fibration, every fiber of p is irreducible. Note that
X is Cohen-Macaulay since it is a normal surface. Therefore the Cartier
divisor p*b is also Cohen-Macaulay. Hence it is generically reduced if and
only if it is a reduced subscheme. Moreover, since B is a smooth curve, the
morphism p is a flat morphism.

First we assume that p*b is reduced. Then by Lemma 3.2.1, X is smooth
along p*z. Conversely, assume that X is smooth along p*b. Then by adjunc-
tion formula, we have

201(C,00) —2=(Kx+C)-C=Kx-C<0.

Therefore, Kx - C' = —2 which is equal to Kx - p*b. Hence p*b is reduced.
2. Assume that X has canonical singularities along C'. Let « € N be the
coefficient of C' in p*z. Then

—2=Kg-p'z=aKgs-C.

However, since Kg is a Cartier divisor, Kg-C € Z. Thus —2 € aZ which
means o < 2. O

In the remainder of this section, our aim is to prove the Theorem 3.0.1.
We will prove the theorem in two steps. We will first show that the condition
that p*b = 2C implies that X has canonical singularities along C. Then we
will prove that each of the possibilities in the table of the theorem can occur.

3.2.2 Singularities and fiber multiplicities

In this subsection, we will prove the following proposition.

Proposition 3.2.4. Let p : X — B be a Mori fibration from a kit quasi-
projective surface to a smooth curve. Let b be a point in B, and let C =
Supp(p*b). Assume that p*b = 2C. Then X has canonical singularities along
p*b. More precisely, we have exactly two possibilities

1. there are two singular points on C, and both of them are of type Ay ;
2. there is one singular point on C, and the singularity is of type D; for

some 1 > 3.

We will first prove some lemmas.
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Lemma 3.2.5. Let p : X — B be a projective fibration from a smooth
quasi-projective surface to o smooth curve B such that general fibers of p are
smooth rational curves. Let b be a point in B. Then the divisor p*b has snc
support. Moreover, the dual graph of the support of p*b is a tree.

We recall that a tree is an undirected connected graph without simple
cycles.

Proof. Let X — X' be the result of a p-relative MMP. Then X' is smooth,
and there is a natural morphism p’ : X — B. Since general fibers of p are
rational curves, p’ is a Mori fibration. Hence, by Proposition 3.2.3, p*b is
a smooth rational curve for X’ is smooth. Since X can be obtained by a
sequence of blow-ups from X', the divisor p*b has snc support, and the dual
graph of the support of p*b is a tree. O

Lemma 3.2.6. Let p : X — B be a projective fibration from a smooth
quasi-projective surface to a smooth curve B such that general fibers of p are
smooth rational curves. Let b be a point in B. Assume that there is exactly
one (—1)-curve C in p*b, then the following properties hold.

1. One of the curves in p*b which meet C is a (—2)-curve.

2. Assume that there is a chain of rational curves E = Y7 | C; in the
fiber p*b such that the dual graph of C + (3_;_, C;) is as follows.

C C1 Ca Cs
. PEEETY .

Assume further that £+ C and ((p*b)rea — E — C) intersect only along
Cs. Then all of the C;’s are (—2)-curves.

3. The multiplicity of C in p*b is larger than one.

Proof. If p*b has one component, then it is a O-curve. If p*b has two compo-
nents, then both of them are (—1)-curves. Since there is exactly one (—1)-
curve in p*b by assumption, we obtain that p*b has at least three components.

1. Let X — Y be the birational morphism which contracts exactly C.
Then Y is smooth, and there is a fibration ¢ : Y — B induced by p. Note that
¢*b has at least two components. Hence, from the MMP, we know that there
is at least one (—1)-curve D in ¢*b. Since there is exactly one (—1)-curve C
in p*b, the strict transform of D in X meets C, and is a (—2)-curve.

2. We will prove by induction on i. If ¢ = 1, then from the first property,
we know that C; is a (—2)-curve. Assume that C1, ..., Cj are all (—2)-curves
for some j > 1. We will prove that Cj;1 is a (—2)-curve. Set Cy = C. There is
a birational morphism h : X — X’ which contracts exactly Cp, ..., Cj_1. Let
p': X’ — P! be the fibration induced by p. Then the strict transform of C;
in X’ becomes the unique (—1)-curve in p"*b since E+ C and ((p*b)req — E —
() intersect only along Cs. By the first property, we obtain that the strict
transform of Cj in X’ is a (—2)-curve. This shows that Cj1; is a (—2)-curve
since h is an isomorphism around C}41. This completes the induction.
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3. We will prove by induction on the number k of components of the fiber
p*b. If k = 3, then the multiplicity of C' is 2. Assume that the lemma is true
for k =1, where | > 3 is an integer.

Now we assume that kK =1+ 1. Let X — Y be the birational morphism
which contracts exactly C. Then X is the blow-up of a point y in Y. Let
q:Y — P! be the fibration induced by p. If there are more than one (—1)-
curves in ¢*b, then they intersect at the point y. In this case, the multiplicity
of C'is larger than one. If there is exactly one (—1)-curve D in ¢*b, then the
multiplicity m of D in ¢*b is larger than one. Note that the multiplicity of
C'in p*b is not less than m since y lies on D. This completes the induction
and the proof of the lemma. O

Lemma 3.2.7. Letp : X — B be a projective fibration from a smooth surface
to a smooth curve. Let b be o point in B. Let Cy,...,C,. be the components of
p*b. Then the intersection matriz (C;-Cj) is negative. Moreover, (3" a;C;)* =
0 if and only if > a;C; is proportional to the fiber. In particular, if C is an
irreducible component of p*b such that C'-C = 0, then p*b is irreducible with
support C.

Proof. See |Rei97, §A.7]. O

Lemma 3.2.8. Letp: X — B be a Mori fibration from o klt quasi-projective
surface to a smooth curve B. Let b be a point in B. Assume that X is not
smooth along p*b. Then there are at most 2 singular points of X on p*b.

Proof. Let r : X — X be the minimal resolution of X. Let p=por. Let
D be the support of p*b. Since p is a Mori fibration, D is irreducible. Let D
be the strict transform of D in X. Then D is the only K g-negative curve in
the fiber §*b. In fact, D is a (—1)-curve by Lemma 3.2.5 and Lemma 3.2.7.
Let X — S be the divisorial contraction which contracts D. Let qg:S—DP!
be the fibration induced by p. Then S is smooth, and ¢*b has snc support by
Lemma 3.2.5. This implies that Supp (p*b) — D has at most two connected
components. Thus there are at most 2 singular points of X on p*b. O

Lemma 3.2.9. Letp: X — B be a Mori fibration from o klt quasi-projective
surface to a smooth curve. Let b be a point in B, and let C' be the support of
p*b. Assume that p*b = 2C, and that there are two singular points of X on
C. Then X has canonical singularities along C, and the two singular points
are of type A;p.

Proof. Let r : X — X be the minimal resolution and let D X — B be
the fibration induced by p. If C is the strict transform of C in X , then it is
the unique (—1)-curve in p*b. Let X — Y be the morphism which contracts
exactly C. Let q : Y — B be the fibration induced by p.

Since there are two singular points of X on C, and the multiplicity of
the fiber p*b is two, we can decompose p*b — 2C as D + D' + R with D, D
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irreducible such that C-D = C-D' =1, D-D' =0, and C - R = 0. By
Lemma 3.2.6.1, either D or D’ is a (—2)-curve. Without loss of generality,
we may assume that D is a (—2)-curve. Then

0=pb-D=2C-D+D*+D -D+R-D=R-D.

In particular, the intersection of R and D is empty.

Let Y — Z be the morphism contracting exactly the strict transform of
D and s : Z — B be the fibration induced by q. Let E be the strict transform
of D' in Z. Then there is at least one component in s*b which has negative
intersection number with K. That is, there is at least one component in s*b
which has self-intersection number larger than —2. Since R does not meet D,
we obtain that E is the unique curve in s*b which can have self intersection
number larger than —2. Hence E? > —1. Since the multiplicity of E in s*b
is one, by Lemma 3.2.6.3, we have E? # —1. However, by Lemma 3.2.7, we
have E? < 0. Hence, E? = 0 and D' is a (—2)-curve. For the same reason as
before, we obtain that R - D’ = 0. N

Hence, R = 0 and p*b = D + D’ 4+ 2C. This proves the lemma. O

Now we can prove Proposition 3.2.4.

Proof of Proposition 3.2.4. Since p is a Mori fibration, C is irreducible. By
Proposition 3.2.3, X is not smooth along C for p*b = 2C.

Let ¢ be the number of singular points of X on the support of p*b. Then
t < 2 by Lemma 3.2.8. Let r : X — X be the minimal resolution, and let
C be the strict transform of C'in X. Then C is a (—1)-curve. Let p =por.
Let F =p*b—2C.

First assume that there are exactly two singular points on C. Then the
singularities at these two points are canonical of type A; by Lemma 3.2.9.

Now assume that there is only one singular point on C. Let Cy = C, and
let Ey = E. We will show that there is a positive integer ¢ such that we can
decompose

po=2Co+Ci+---+C))+D+D' +R (*)

such that all of the C}’s with j > 0 are (—2)-curves, that both D and D’ are
smooth rational curves and that R is disjoint from Cy+- - -4 C;. Furthermore,
WehaveD-D/:(), CZ"D:CZ"D/:L Cj-0j+1:1f0r0<j<i—1,
and C; - Cp = 0if k — j > 1. In particular, the dual graph of p*b — R is as
follows.

Qe — 0T

Se
Q

|

Q
&
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We will construct the decomposition (*) by induction. Since there is only
one singular point over C, and p*b is an snc divisor, the support of FEjy
intersects Cj transversally at a point. Moreover since

Co-Ey=Cp-p*b—2C% =2,

we can decompose Ey into 2C7 + Ej, where C] is a smooth rational curve
and Cy - E1 = 0. From Lemma 3.2.6.1, we know that C is a (—2)-curve. We
have

Cy-Ey=C1-(p"b—2CH) = —2C1 - Cp = -2

and
E3 = (p*b— 2Cp)? = 4C3 = —4.

Hence we obtain that
E?=(FEy—2C))*=—-4and C,-E, = Cy - (Ey — 201) = 2.
Assume that we can decompose
pb=2(Co+C1+ -+ C) + Ey

for some k > 0 such that C1, ..., Cy are (—2)-curves, E,% =—4 Cy-Er=2
and Fj is disjoint from (Co + -+ 4+ Ci_1).

The condition C} - Ej), = 2 implies that C; and FEj, intersect at one or
two points. If they intersect at one point, then we can decompose Ej into
2C%41 + Ejxy1 such that Ckq is a smooth rational curve, Cy - Cyy1 = 1 and
Ek+1 . Ck = 0. Then

Fb=2(Co+Cr+ 4 Chs1) + Epsr.
From Lemma 3.2.6.2, we know that Cj41 is a (—2)-curve. We also have
Crs1 - B = Cpq1 - (00— 2(Co + -+ - Ck)) = —2Ck 41 - Cf, = —2.
Thus
Ef = (B —2Ck1)* = —4 and Ciy1 - Egg = Chp - (B, — 2Ck41) = 2.

We are in the same situation as before. In this case, we repeat the same
procedure.

Since there are only finitely many components in p*b, we can find a
positive integer ¢ such that

ﬁ*b=2(00+01+"'+0i)+Ei

and C; intersects F; at two different points. As in the proof of Lemma 3.2.9,
we can write B; = D+ D'+ R, where D, D’ are smooth rational curves such
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that D-D'=0,R-C; =0, D-C; =1, and D’-C; = 1. Hence we obtain the
decomposition (k)

Now we will prove that R = 0. There is a birational morphism X W
which contracts exactly C', ..., C;—1. The surface W is smooth and there is
a fibration ¢ : W — B induced by p. We still denote by C;, D, D' and R
their strict transformations in W. Then C; is the unique (—1)-curve in ¢*b
and ¢*b = 2C; + D + D’ + R. Similarly to the proof of Lemma 3.2.9, we can
prove that D? = D'? = —2, and R = 0. Hence, the singularity of the singular
point on p*b is canonical of type D;ys. O

Remark 3.2.10. We would like to thank Professor Horing for suggesting the
following simple proof for the first part of Theorem 3.0.1. Let r : X — X
be the minimal resolution. Then we can contract all (—2)-curves in X which
are r-exceptional and obtain a surface with canonical singularities X 4 X.
Then, in order to prove that X has canonical singularities along p*b, we only
need to prove that ¢ is an isomorphism along p*b. Assume the opposite. Let
C be the strict transform of C' in X and let ¢ : X — B be the natural
fibration. Then ¢*b is reducible and —K¢ - C > —Kx - C = 1. Since X has
canonical singularities, —K g - C' is an integer. Thus this number is at least
2. Moreover, by [Kol96, Exercise 11.1.3.4], this implies that the curve C' can
deform in X. This is a contradiction since C' is an irreducible component of
a reducible fiber of q.

3.2.3 Construction of singular fibers.

In this subsection, we will provide methods for constructions of all sin-
gular fibers in the table of Theorem 3.0.1.
We will first construct the fiber of type (A1 + Aj).

Construction 3.2.11. Let p’ : X’ — B be a smooth Mori fibration from a
quasi-projective surface to a smooth curve. Let b be a point in B. Perform
the following sequence of birational transformations of the ruled surface :

(i) Blow up a point x in the fiber over b. Then we get two (—1)-curves
which meet transversely at x’.

(ii) Blow up the point z’. Over b, we get two disjoint (—2)-curves and one
(—1)-curve. The (—1)-curve appears in the fiber with multiplicity two.

(iii) Blow down the two (—2)-curves. We get two singular points on the
fiber, each of them is of type A;.

In the end, we obtain a Mori fiber surface X 2 B such that the fiber
of p over b is of type (A1 + 41).

In order to construct the remaining singular fibers, we will prove the
following lemma.
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Lemma 3.2.12. Let p: X — B be a Mori fibration from a singular quasi-
projective surface with canonical singularities to a smooth curve. Let b be a
point in B, and let C' = Supp(p*b). Assume that p*b = 2C. Let © € X be
a smooth point over b and let W be the blow-up of X at x. Let E be the
exceptional divisor of W — X. Let D be the strict transform of C' in W.
Then we can blow down D and obtain another Mori fiber surface T 4 B.

Proof. Let h be the natural fibration from W to B. We have C' - C' = 0,
Kx - C=-1,Ky-E=-1,E-FE=—-1and D-FE =1. Thus

Kw-D=0and D-D = —

Let H be an ample divisor on W. Then there is a positive integer k
such that (H + kD) -D = 0. Let A = H + kD. Note that A is nef and
big and D is the only curve which has intersection number 0 with A. Since
Kw - D = 0, for a large enough positive integer a, the divisor aA — Ky
is nef and big. Hence by the relative basepoint-free theorem (see [KM98,
Thm. 3.24]), there is a positive integer b such that the natural morphism
h*(heOw (bA)) — Ow (bA) is surjective. Let ¢ : W — T be the fibration
induced by h*(h.Ow (bA)) — Ow (bA). Then c contracts exactly D and the
fibration A induces a fibration ¢ : T'— B which is also a Mori fibration. [

We can use the elementary transformation in Lemma 3.2.12 to construct
multiple fibers of type (D;), i > 3.

Lemma 3.2.13. Let p: X — B be a Mori fibration from a quasi-projective
surface with canonical singularities to a smooth curve. Let b € B and let
T % B be the Mori fiber surface obtain by the method in Lemma 3.2.12. If
the fiber of p is of type (A1 + A1) over b, then the fiber of q is of type (D3)
over b. If the fiber of p is of type (D;) over b, then the fiber of q is of type
(Djt+1) over b fori > 3.

Proof. Let T — T be the minimal resolution and let q: T — B be the
natural fibration. We will compute the dual graph of the support of the fiber
q"b. Let W be the same as in Lemma 3.2.12. From the construction of T', we
know that T — T factors through T — W and the last morphism is also the
minimal resolution of W. Since W — X is a blow-up of a smooth point of
X, the surface T can be obtained by blowing up the same point in X, where
X — X is the minimal resolution. Let p: X — B be the natural fibration.
Let C be the support of p*b. If the fiber p*b is of type (41 + A1), the
dual graph of the support of p*b in X is

1 s

2
L] e} [ ]

where s represents C , the strict transform of C in X. After blowing up the
point on C as we mentioned above, the new graph is
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Ow

®
t

This graph is the dual graph of the support of ¢*b and the point with
label ¢ corresponds to the strict transform of the support of ¢*b in T'. The
graph shows that there is only one singular point of T on ¢*b which is of
type Ds. Hence the fiber ¢*b is of type (D3).

If p*b is of type D;, then from the proof of Proposition 3.2.4, we know
that the dual graph of the support of p*b is

1 3 4
° ° °

0~
Ow

®
2

where the point with label s correspond to C (If i = 3, then s is just connec-
ted to the point with label 3). After blowing up the point on C, we obtain
the dual graph of the support of ¢*b, which is

1 3 4 i
[ ] [ ] ® --- O

O®

°
2

The point with label ¢ corresponds to the strict transform of the support
of ¢*b in T. This implies that ¢*b is of type (D;t1). O

Now we can complete the proof of Theorem 3.0.1.

Proof of Theorem 8.0.1. The table of fibers in the theorem follows from Pro-
position 3.2.4. By Construction 3.2.11 and Lemma 3.2.13, every type of fiber
in the table occurs. O

Now we will show that every singular fiber can be obtained from a smooth
fiber by the methods of Construction 3.2.11 and Lemma 3.2.12.

Lemma 3.2.14. Let p: X — B be a Mori fibration from a quasi-projective
surface with canonical singularities to a smooth curve. Let b € B such that
p*b is a singular fiber. Then this singular fiber can be obtained from a smooth
ruled surface X1 — B by the method of Construction 3.2.11 followed by a
finite sequence of elementary birational transformations described in Lemma
3.2.12.

Proof. Let X > X be the minimal resolution and let p : X — P! be the
natural fibration. Let X — Z be the result of a p-MMP. Then the natural
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fibration Z — B is a smooth Mori fibration. Moreover, S can be obtained
from Z by a sequence of blow-ups. B

If p*b is of type (A1 + A1), then X can be obtained from Z by two
blow-ups as in the first two step of Construction 3.2.11. Blow-down the two
(—2)-curves in X we obtain X. In this case, we take X; = Z.

If p*b is of type (D;), then the dual graph of p*b is

1 3 4 7

S
[ ] (] e --- O (¢]

°
2

We can blow down the curves which correspond to the points of labels
1,2,...,i — 1 (by Lemma 3.1.5) and the curve corresponding to the point of
label s (for it is a (—1)-curve). By blowing down these curves, we obtain a
fiber surface py : Y — B such that pj-b is irreducible. Hence py is a Mori
fibration. Moreover, the fiber pj.b is of type (D;—1) if ¢ > 3 and of type
(A1 + Ay) if ¢ = 3. Note that the image of the curve corresponding to s in
Y is a smooth point y. Hence if we perform the birational transformation in
Lemma 3.2.12 for Y, starting by blowing up y, then we will obtain X.

By induction, we can conclude the lemma. O



Chapitre 4

Lagrangian fibrations on
symplectic fourfolds

4.1 Introduction

A smooth variety M (defined over a field k) of dimension 2n equipped
with an everywhere non-degenerate closed two form Q € H°(M,Q32)) is called
a symplectic variety. Note that in this case Q" € HO(M,Q37) is non-zero
everywhere. Hence Q37 & ). A subvariety N C M of dimension n is said to
be Lagrangian if the restriction of 2 on the smooth locus of N is identically
zero. A fibration f : M — X from a symplectic variety to a normal variety
X is called a Lagrangian fibration if every component of every fiber of f is a
Lagrangian subvariety of M.

A simply connected complex projective manifold M is called a projec-
tive irreducible symplectic manifold if M has a symplectic 2-form €2, and
HO(M,032,) = CQ. Any non trivial fibration from a projective irreducible
symplectic manifold M to a normal variety X is a Lagrangian fibration by
the following theorem.

Theorem 4.1.1 (|[Mat99, Thm. 2|). Let f: M — X be a fibration from a
complex projective irreducible symplectic manifold M of dimension 2n to a
normal variety X. Assume that 0 < dim X < 2n. Then

(1) f is a Lagrangian fibration.

(2) X is a Q-factorial kit Fano variety of dimension n with Picard number
1.

Consider a Lagrangian fibration from a complex projective irreducible
symplectic manifold M to a normal variety X. We are interested in the base
variety X. In all examples of Lagrangian fibrations, X is always isomorphic
to P™. It is natural to ask if this is true for all Lagrangian fibrations. On
the one hand, if we assume that the base is smooth, then it is proved by
Hwang (see [Hwa08, Thm. 1.2]) that the base is always the projective space.

20
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On the other hand, if the irreducible symplectic manifold M is of K3 or
generalized Kummer deformation type, then the answer is also positive (see
[Mat13, Cor. 1.1], [Marl4, Thm. 1.3|, [BM14, Thm. 1.5] and |Yos12, Prop.
3.38]). However, it is still unclear if the base is always smooth. Moreover
there are also irreducible symplectic manifolds which are not of K3 or
generalized Kummer deformation type (see [0’G99| and [O’G03]). Thus the
answer to this question is still unknown in the general setting. In this chapter,
we study the case when M has dimension 4. We prove the following theorem.

Theorem 4.1.2. Let f: M — X be a Lagrangian fibration from a projective
wrreducible symplectic manifold M of dimension 4 to o normal surface X.
Then either X = P? or X = S"(Ejy).

The surface S™(Eg) is the unique Fano surface with exactly one singular
point which is Du Val of type Eg, and two nodal rational curves in its anti-
canonical system. For more details on this surface, see the end of section
4.3.1. We will prove the theorem in several steps. We will first prove the
following theorem (see section 4.2.3), which is a generalisation of a result of
Kollar (see [Kol86b, Cor. 3.9]).

Theorem 4.1.3. Let g : V — W be a projective equidimensional fibration
between complex normal quasi-projective varieties. Assume that V is smooth,
that wy = Oy, and that W is Cohen-Macaulay and Q-Gorenstein. Let H be
a Q-Cartier Weil divisor on W, and let D = g*H. Then R'g.0y (D) is
reflexive for all i > 0.

In particular, if f : M — X is a Lagrangian fibration, then R'f,0);
is reflexive. Similarly to the proof of [Mat05, Thm. 1.3|, we can show that

Rif.Oy = Q[)Z(] Afterwards, we will prove the following result (see section
4.2).

Theorem 4.1.4. Let f: M — X be a Lagrangian fibration from a complex
projective irreducible symplectic manifold M to a normal projective variety
X. Let H be a Q-ample integral Weil divisor in X, and let D = f*H. Then
for all 3 >0 and i > 0, we have

h (X, R f,(00(D))) = 0 and hi(M, 6p (D)) = (X, QW [] 6 (H)).
As a corollary, we conclude that if dim M = 4, then
(X, Ox(H)) — KX, QW [@)0x (H)) + hO(X, Ox(H + Kx)) = 3

for any Q-ample Weil divisor H on X. In the end, we will prove the follo-
wing classification result on rational surfaces and deduce Theorem 4.1.2 (see
section 4.3).
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Theorem 4.1.5. Let X be a complex Fano surface with klt singularities
whose smooth locus is algebraically simply connected. Assume that X has
Picard number 1, and

(X, Ox (H)) — B°(X, QW [@)0x (H)) + hO(X, Ox(H + Kx)) = 3

for any Q-ample integral Weil divisor H. Then there are exactly two possi-
bilities : either X = P? or X = S"(Ey).

4.2 Cohomology properties

The aim of this section is to prove Theorem 4.1.4. One of the applications
of this theorem is the following corollary.

Corollary 4.2.1. Let f : M — X be a Lagrangian fibration from a pro-
jective irreducible symplectic manifold M of dimension 2n to a normal pro-
jective variety X. Let H be a Q-ample integral Weil divisor in X. Then

S o(~D) (X, QY [@]0x (H)) = n+ 1.
Proof of Corollary 4.2.1. Let D = f*H. By Theorem 4.1.4, we have

(M, 6p (D)) = (X, [2)0x (H))

for all i > 0. Hence we only have to prove that > . (—1)"h*(M, On (D)) =
n+1. Note that Theorem 4.1.4 also shows that hi(M, Oy (D)) = 0 for i > n.
Hence it is enough to prove that

2n
S (-1)'R(M, 60 (D)) = n + 1.
=0

However, Z?go(—l)ihi(M, Oy (D)) is the Euler characteristic x (O (D)) of
the Cartier divisor D. Thus it suffices to prove that x(0x (D)) = n + 1.
Let gps be the Beauville-Bogomolov quadric form on M. Then gy (D) =0
since the intersection number D?" is zero. Moreover, we have x (O (D)) =
> %qM(D)i, where the a;’s are complex numbers depending only on M
(see [Huy99, 1.11]). Hence x(On (D)) = x(Onm) = n + 1. O

4.2.1 Notation and outline of the section

Let X and T be two schemes. Then X is called a T-scheme if there is a
morphism X — T'. Let A be a ring. Then we may call X a A-scheme if X is
a (Spec A)-scheme. Note that a point in a scheme may not be a closed point
in this section.

Let T be a scheme and let f: X — Y be a morphism of T-schemes. Let
Z,9 be two coherent sheaves on X and let a : F — ¢ be a morphism of
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sheaves. Let t be any scheme point of T and let x be the residue field of ¢.
There is a natural morphism ¢ : Spec k — T'. We denote the fiber product of
X, Y, 7,9, fand a under the base change ¢ by Xy, Y, %, %, fi and ay.
If U is an open subset of T, similarly we denote the fiber product of X, Y,
F,9, f and a under the base change U — T by Xy, Yy, %u, Y, fu and
ay.

Qutline of the proof of Theorem 4.1.4. We will first show that

R f.00 (D) = QY [2]0x (H)

for all 4 > 0 (see Proposition 4.2.6). Hence if h/ (X, R' f.Oy (D)) = 0 for all
j > 0andi > 0, then the Leray spectral sequence calculating H*(M, Oy (D))
degenerates at Fs, and we have hi(M, 0y (D)) = h°(X, Q[)? [®]0x(H)) for
all 2 > 0. Thus, in order to prove Theorem 4.1.4, it is enough to prove that
hi (X, Rt f.Op\ (D)) = 0 for j > 0 (Note that if D is Cartier, then this is true
by |Kol86a, Thm. 2.1] for wys = Op).

If we assume that dim M = 4, then we can prove this vanishing by
covering tricks and a theorem due to Kollar (See Remark 4.2.17). In higher
dimension, we will prove by reduction modulo p. We can reduce to the case
when f: M — X, H and D are defined over an algebraic number field K. In
this case, there is a Z-algebra of finite type A C K, which is a localisation of
the ring of integers of K, of Krull dimension 1 such that the coefficients of the
equations defining f : M — X, H and D are contained in A. Let T' = Spec A,
and let n be its generic point. Then f induces a morphism ¢ : #Z — 2 of
T-schemes such that ¢, coincides with f after a field extension. Let 2 be
the divisor on .# induced by D, and let ¢ be the divisor on 2" induced
by H. We will show that h7 (2, R (¢1)« O 4, (Z:)) = 0 for all j > 0,47 > 0
and general closed point t € T. By a base change property, this implies that
W (X, R (¢0)+ 0.4, (Zy)) = 0. Then we obtain b/ (X, R f,On (D)) = 0.

We will divide this section into four parts. In the first part, we will develop
some tools for the proof of Theorem 4.1.4. In the second part, we will show
the reflexivity of some higher direct images. Note that for general closed
t € T, the varieties 2} and .#; are defined over a finite field. We will prove
that h? (23, R fe0 4,(2;)) = 0 in the third part. In the last subsection we
will complete the proof of Theorem 4.1.4.

4.2.2 Base change properties

We will prove some properties on cohomology and base change. The aim
is to prove the following proposition.

Proposition 4.2.2. Let g : V — W be a projective morphism of integral
T-schemes of finite type, where T is an integral noetherian scheme. Let F
be a coherent sheaf on V. Then there is a non-empty open subset Ty of T
such that there is a natural isomorphism (R'g..7)|w, = R'(g)«F: for any
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point t € Ty and any © > 0, where g, : Vi — Wy is the restriction of g over t,
and % is the restriction of % on V.

Vi ——V

-

Wt%W

||

{t} —T
This proposition is similar to [Har77, Thm. I11.12.8|. In fact, our proof
follows that of [Har77, Thm. I11.12.8]. We will need two lemmas.

Lemma 4.2.3. Let A be a noetherian ring. Let V' be a projective A-scheme
of finite type, and let F be a coherent sheaf on V. Then there is a com-
plex, bounded from above, of finitely generated free A-modules L® such that
HY(L*) = HY(V,.F) for alli > 0.

Proof. Let (U;) be an affine open cover of V. Let C*® be the Cech complex of
Z with respect to (U;). Then H(C®) = H(V,.F) for all i > 0 (See [Har77,
Thm. 111.4.5]). Since V is projective, H(V,.%) is a finitely generated A-
module for all ¢ (See [Har77, Thm. I11.5.2]). Hence, by [Har77, Thm. I11.12.3|,

there is a complex of finitely generated free A-modules L® such that H(L®) &
H(C®) for all i > 0. Hence H'(L®) = H(V,.%) for all i > 0. O

Lemma 4.2.4. Let B be a noetherian ring, and let A be a B-algebra of
finite type. Let C® and L*® be two complexes, bounded from above, of A-
modules such that C7 and L7 are B-flat for all j. Assume that there is a
quasi-isomorphism L* — C*®. Then for any B-module R and any i > 0,
there is a natural isomorphism H (R ®p L*) = H (R ®p C*).

Proof. Tt is enough to prove the lemma for finitely generated B-modules
since every B-module is the direct limit of finitely generated modules and
both ® and H' commute with direct limits.

We will prove the lemma by induction on 4. For i large enough, C* and
L' are both 0. Hence the lemma, is true for large enough 4. Assume that
H*Y (R®p L*) =2 HH(R ®p C*) for any finitely generated B-module R,
we will show that H (R ®p L*) = H'(R ®p C*®) for any finitely generated
B-module R. Fix a finitely generated B-module R, then there is a free B-
module E and a finitely generated B-module K such that we have an exact
sequence 0 -+ K — E — R — 0. Since ¢V and L7 are B-flat for all j, we get
a commutative diagram of complexes with exact rows

00— KQL* —FEQL*— RQL*—0

Lo

00— KQ(C*—FEQC*—R®C*——0
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By taking the cohomology, we obtain the following diagram with exact
rows,

H(K®L*) —— H(E® L*) —— H(R® L*) —— HH(K @ L*) —— H*Y(E® L*)

| | | J |

Hi(K®C*) —— H(E® C*) — Hi(R® C*) — HY(K @ C*) —— HVY(E @ C*)
Since FE is free, and L® and C*® are quasi-isomorphic, the morphism from
HY(E®L®) to H(E®C®) is an isomorphism. By induction hypothesis, the
last two vertical morphisms in the last diagram are isomorphisms. Hence
H{(R®pL®*) — H'(R®pC®) is surjective. Since R is chosen arbitrarily, this
implies that the first vertical morphism is also surjective. Hence

H(R®p L*) = H(R®p C*).
This completes the induction and the proof of the lemma O

We will now prove Proposition 4.2.2.

Proof of Proposition 4.2.2. Without loss of generality, we may assume that
T = Spec B is affine. First we assume that W = Spec A is affine. Let (U;) be
a finite affine open cover of V. Let C*® be the Cech complex of .% with respect
to (U;). Let L® be the complex of finitely generated free A-modules given by
Lemma 4.2.3. Then H'(L®) = H(V,.%) for all i > 0. There is a non-empty
open affine subset Ty = Spec B of T such that for any point ¢t € Ty and for
any i > 0, we have H(A; ® L*) = H'(L®) ® A; (See [Gro66, Cor. 9.4.3]),
where Ay is the structure ring of the affine scheme W;.

Since V' — W is a separated morphism, the intersection of any two affine
open subsets of V is still affine. Hence for any 5, both C7 and L7 are finitely
generated modules over finitely generated B-algebras. Moreover, both C*®
and L* are bounded. Hence by shrinking Ty, we may assume that both CJ
and L7 are B-flat for any integer j (See [Gro65, Thm. 6.9.1]). By Lemma
4.2.4, this implies that

H(AC2H (A L) 2 H(L)® A = H(C*) ® A,

Note that 4; ® C* is the Cech complex of .%; with respect to ((U;)¢), where
(U;)¢ is the fiber of U; over t € Ty. Hence, we have

H(V,7)® Ay 2 H(C*) @ A; =2 H'(A; @ C*) = H'(V;, Fy).

Since R'g,.7 (resp. Ri(g;)«.%:) is the coherent sheaf associated to H'(V,.%)
(resp. to H'(V;,.%;)), we obtain that for all t € Tp, (R'g+.%)|w, = R (g¢)+«-Z.

Now we treat the general case. We cover W by finitely many affine open
subsets Wy, ..., Wi. Let V; = g~ Y (W;), F; = Flv; and g; = gly, for all
j- Then for every j = 1,...,k, there is a non-empty open subset T; of T
such that for any point ¢ € T}, we have the base change property for ¢,
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F; and g; : V; — Wj. Let Tj be the open set ﬂ?zl W;. Then for any
t € Tp and any 4 > 0, the natural morphism (R'g..%7)|w, — R'(g;)«% is an
isomorphism. O

As a corollary of the proposition, we obtain the following result.

Lemma 4.2.5. Let g : V. — W be a projective morphism of integral T -
schemes of finite type, where T is an integral noetherian scheme. Let n be
the generic point of T. Let F be a coherent sheaf on V. Let i, j be two non-
negative integers. If hi(Wy, RY(g¢)«%:) = 0 for general closed point t € T,
then hJ(Wy, R'(gy)«Fy) = 0.

Proof. For a general point ¢t € T, we have R'(g;)«% = (R'g«%)|w, by
Proposition 4.2.2. Hence H7 (Wy, (R'g..7)|w,) = {0} for general closed point
t € T. Since R'g..7 is a coherent sheaf on W (See [Har77, Thm. 1I1.5.2]),
by shrinking 7', we may assume that R'g..# is flat over T (See [Gro65,
Thm. 6.9.1]). By [Har77, Cor. I11.12.9], we obtain R/h,(R'g..%) = 0, where
h is the morphism from W to T. By [Har77, Cor. I11.12.9] again, we have
h (W, (R'g+.F )|w,) = 0. From Proposition 4.2.2, we conclude that

h‘j(Wna Ri(gn)*gzn) = 0.

4.2.3 Reflexivity of higher direct images

Consider a Lagrangian fibration f from a smooth complex projective
symplectic variety M to a projective variety X. Let H be a Weil divisor
on X, and let D = f*H. We will show the that the sheaf R'f.0y (D) is
reflexive and is isomorphic to Q% [®]0x (H) for all i > 0.

Proposition 4.2.6. Let f be a projective Lagrangian fibration from a com-
plex smooth quasi-projective symplectic variety M to a variety X with Q-
factorial Klt singularities. Let H be a Weil divisor on X, and let D = f*H.
Then R f.Or (D) is isomorphic to Q% [®]0x(H) for all i > 0.

Moreover, let B be a Z-subalgebra of finite type of C. Then T = Spec B
is integral. Let n be its generic point. Assume that f: M — X, H and D
are defined over B. There is a morphism ¢ : .# — 2 of T-schemes given by
the equations defining f : M — X. There is a divisor 4 on 2~ given by the
equations defining H. Let ¥ = ¢*. Then we will prove that for general
closed point ¢t € T, the sheaf R'(:)«0 4,(Z:) is reflexive and isomorphic to
R{(p1)« 0 4,|®|O 2, (74) for all i > 0 (see Corollary 4.2.8).

We will first prove Theorem 4.1.3 which implies that R!f.0) (D) is re-
flexive.
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Proof of Theorem 4.1.3. Set m =dim V and k =dim W.

First we assume that W is Gorenstein and H is Cartier. Then by the
projection formula, we have R'g,0y (D) = Rlg.0y @ Oy (H) for all i > 0.
Hence it is enough to prove that R'g, 0 is reflexive for all i. Let W < W be
a projective compactification of W such that W is normal. Let g : V — W
be a compactification of g such that V' is smooth. As in the proof of [Kol86b,
Cor. 3.9], the torsion-free part of R'g. Oy is #om(R™ *~ig.wp, wy). Since
Oy = wy, we have (R'g. Oy )|w =2 (R'g«wy)|w. Since R'g,wy is torsion-free
by [Kol86a, Thm. 2.1], we obtain that (R'g. 0y )|w is torsion free. Hence we
have

R'g.0y = (R'g.0p)lw = AHom(R™ gy, wy)lw
= :%”om(Rmfkfig*wV, W ).

Since W is Gorenstein, wyy is an invertible sheaf. This implies that the
sheaf JZom(R™ *~g,wy, wy) is reflexive. Hence Rg, Oy is reflexive.

Now we will treat the general case. Let w be a closed point in W. Then
the problem is local around w. Hence we may replace W by any open neigh-
bourhood of w. As in [KM98, Def. 5.19], by shrinking W if necessary, there
is a finite cover p : W’ — W which is étale in codimension 1 such that both
Ky = p*Kw and H' = p*H are Cartier. Let V' be the normalisation of
Vxw W' Let ¢ : V! — W and q : V' — V be the natural projections.
Write D' = ¢*D.

vV

]

w LW
Since p is étale in codimension 1, V' is smooth, and g is equidimensional,
the morphism ¢ is also étale in codimension 1. By the Zariski purity theorem
(See [Zar58, Prop. 2|), this implies that ¢ is étale. Hence V' is smooth, and
Oy = wyr. Hence Ry, Oy (D') is reflexive. Hence p,(Rg, Oy (D")) is reflexive
since p is finite (See [Har80, Cor. 1.7]). On the one hand, since ¢ is finite, from
the Leray spectral sequence, we know that R'g.(g.Oy+(D’)) is isomorphic to
p«(RigLOV/(D")), which is reflexive. On the other hand, since Oy is a direct
summand of ¢,0y, the sheaf 0y (D) is a direct summand of ¢,0y/(D’)
by the projection formula. Hence R'g.0y (D), as a direct summand of the
reflexive sheaf R'g,(q.Oy+(D")), is reflexive on W. O

Now we will complete the proof of Proposition 4.2.6.

Proof of Proposition 4.2.6. As in [Mat05, 2.12], there is an open subset U in
X which has the following properties

(1) codim X\U > 2;
(2) /\i((le*ﬁM)‘U) = (Rif*ﬁM”U for all i > 0;
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(3) (R'fOum)lu = Q.
Since R'f.0); is reflexive by Theorem 4.1.3, and codim X\U > 2, we
have R f, Oy = Q[)Z(] for all 4 > 0 by Proposition 1.2.1. From the projection

formula, R’ f, 0y (D)|x, is isomorphic to (Q[)Z(] [®]0x(H))|x,, where X is the
smooth locus of X. Since X is smooth in codimension 1, from Proposition
1.2.1, we conclude that R'f. 0y (D) = Q4 [®]0Ox (H). O

Now let T" be an integral affine noetherian scheme with the generic point
1. Consider a morphism g : V- — W of normal integral T-schemes of finite
type. Let .# be a coherent sheaf on V. In the remainder of this subsection,
we will prove the following proposition.

Proposition 4.2.7. With the notation as above, assume that R'(g,)«% is
reflerive. Then there is a non-empty open subset Ty of T such that for any
t € Ty and any i > 0, the sheaf R (g;)«F; is reflevive.

One of the applications of Proposition 4.2.7 is the following corollary.

Corollary 4.2.8. Let f: M — X be a Lagrangian fibration from a complex
projective symplectic manifold M to a normal variety X. Let H be a Weil
divisor on X, and let D = f*H. Let A be a subalgebra of C such that f, H
and D are defined over A. Let T = Spec A, and let n be its generic point. The
equations defining f : M — X, H and D induce a morphism ¢ : M — X
of T-schemes, and two divisors 7€ and 2 on X and M respectively. Then
for general t € T and any i > 0, the sheaf R (p1)«O 4,(Z;) is reflexive, and
Ri(00).0.(%0) = R (1), 0 11 [©]0 2, (H5).

Proof of Corollary 4.2.8. From Proposition 4.2.6, we know that R’ f.0y (D)
is reflexive for all 7. Note that ¢,, 77, and %, coincide with f, H and D
after a field extension. Since a field extension is a faithfully flat base change,
by [Har77, Prop. I111.9.3] and Lemma 4.2.9 below, Ri(gpn)*@///n(.@n) is also
reflexive for all i. From Proposition 4.2.7, we obtain that for general t € T'
and any i > 0, R (¢1)« 0 4,(2;) is reflexive.

By the projection formula, if (Z£31)o is the smooth locus of 23, then

(RU(e0)+O.t:( D)) (2300 = (R (90): 0.0 1210 2, ()

(Z)o-

Since %, is normal, Z; is normal for general t € T (See |Gro66, Prop.
9.9.4]). Hence for general t € T', R (04)+ 0. 4,(Z4) = R (04)+0 4, |0 2, (H6)
by Proposition 1.2.1. O

Lemma 4.2.9. Let f:V — W be a faithfully flat morphism of noetherian
integral schemes. Let F be a coherent sheaf on W. Then F is reflexive if
and only if f*F is reflexive.
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Proof. As in the proof of [Har80, Prop 1.8], we have f*(.%**) = (f*.#)** for
f is flat. Since f is faithfully flat, the natural morphism % — Z#** is an
isomorphism if and only if f*(#) — f*(.#**) is. Hence .% is reflexive if and
only if f*% — (f*.%)** is an isomorphism, that is, if and only if f*Z is
reflexive. O

In order to prove Proposition 4.2.7, we will need several lemmas. The
following lemma gives a criterion of reflexivity for coherent sheaves.

Lemma 4.2.10. A coherent sheaf F on an integral noetherian scheme V
is reflexive iof and only if it fits in an ezact sequence 0 — % — 7 — X,
where 7 and X are locally free.

Proof. If we have such an exact sequence, then by [Har80, Prop. 1.1], .Z is
reflexive since J¢ is torsion-free.

Conversely, assume that .# is reflexive. There are two locally free sheaves
., & and an exact sequence 0 — F** — ¢ — ¢ (See [Har80, Prop.
1.1]). Since .Z is reflexive, we have .# = .7**. Hence we obtain an exact
sequence 0 = % — 7 — K . O

In the three lemmas below, we prove that reflexivity is a “constructible”
property (Lemma 4.2.13).

Lemma 4.2.11. Let T = Spec B be an integral affine noetherian scheme.
Let V. — T be an integral T-scheme of finite type. Let n be the generic point
of T. Let a" : F" — 4" be a morphism of coherent sheaves on V,. Then
there is an open subset Ty of T and a morphism o« : F — 4 of coherent
sheaves on Vg, such that #, = F", 94, = 9", and o, = o". Moreover, if
FN (resp. 9G") is locally free, then F (resp. ) can be chosen to be locally
free.

The idea of the proof is as follows. There are only finitely many equations
which define o, " and ¢". Then there is a localisation By of B such that
all of these equations are defined over By. These equations define o : # — ¢
over Vp,, where Ty = Spec By.

Proof of Lemma 4.2.11. Let K be the fraction field of B. Note that V is
a noetherian scheme. Hence V' can be covered by finitely many open affine
subsets Uy, ..., U. Then V,, is covered by open affine subsets (Uy)y, ..., (Ug)y.
We can cover U; N U; by finitely many open affine subsets RY = Spec cy.
Let A; be the structure ring of U;, and let (A;), be the structure ring of
(Ui)y- Then for all 4, A; is a B-algebra of finite type. Since .#" is a coherent
sheaf, over each (U;),, there is an (4;),-module M of finite presentation
such that % 77|(Ul.)n is the coherent sheaf associated to M. For every i, we
have an exact sequence

((A))® — ((A)n)®" — M =0
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where r; and ¢; are some non negative integers. The first morphism 6; in
the sequence is defined by finitely many equations. Since .#" is a coherent
sheaf, there is an isomorphism (u5')" from M @p CJ to M} ®p C. Then

(ud)" is given by finitely many equations. There is an open affine subset
Ty = Spec By of T such that all of the equations defining the 6;’s and the

(ud)"s are defined over By. Hence, for every i, we have an exact sequence

of (A; ® p By)-modules, induced by the previous one,
(AL Xp B())@ti — (A, Xp Bo)EBm — MZ — 0.

The (A; ®p Bo)-module M; induces a coherent sheaf on (U;)1, = U; x1 Tp.
Moreover, since all of the equations defining the (u%)"’s are defined over
By, the function (ug')" induces a transition function pg from M; ®p C¢ to
M; ®p CJ. The modules M; and the isomorphisms pg define a coherent
sheaf .# on Vg, such that .7, is isomorphic to Z#". If #" is locally free, then
Z can also be constructed to be locally free (for example, we can take t; = 0
for all 7).

For the same reason as above, by shrinking Tp, we can construct a co-
herent sheaf & on V7, such that &, is isomorphic to ¥". Assume that ¢"|,),
is the sheaf associated to a (A;),-module N, of finite presentation. Then
there is a morphism of (A;),-modules ¢] : M’ — N} such that o|q,), is
associated to e]. Since €] is defined by finitely many equations, by shrinking
Ty, we may assume that all of the equations defining the e]’s are defined
over By. From these equations, we obtain morphisms e; : M; — N;. These
morphisms induce a morphism o« : # — ¢ such that «, is the same as
a'l. O

With the same method, we can obtain the following lemma.

Lemma 4.2.12. Let T = Spec B be an integral affine noetherian scheme. Let
V — T be a T-scheme of finite type. Let n be the generic point of T. Let F, 9
be coherent sheaves on V. Assume that there is a morphism o' : F#, — 9, of
coherent sheaves on V,,. Then there is an open subset Ty of T' and a morphism
o Fr, = Y1, of coherent sheaves on Vr, which extends .

Lemma 4.2.13. Let V be a T-scheme of finite type, where T is an integral
noetherian scheme. Let n be the generic point of T. Let % be a coherent sheaf
on V such that %, is a reflezive sheaf on V;. Then for general t € T', F; is
reflexive on V.

Proof. We may assume that 7' is affine. Since .7, is reflexive, by Lemma
4.2.10 there are two locally free sheaves _#", J¢" such that we have an

exact sequence 0 — 7, LN B o ., By Lemma 4.2.11, there is an
open subset T7 of T' and a morphism « : _# — J of locally free sheaves on

Vr,, such that ¢, = 7" J¢, = %", and a,; = o. From Lemma 4.2.12, by
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shrinking 7', we may assume that there is a morphism 3 : %7, — # such
that 3, = 3".

Consider the morphisms 8 : Fp — # and a: ¢ — . By [Gro66,
Prop. 9.4.4], the set Ty of points ¢ € T} such that the sequence 0 — %, —
F+ — J; is exact is constructible. Moreover, we know that n € Tp. Hence
Tp contains an open subset of T'. For any t € Ty, #; and J#; are locally free.
Hence for any t € Tp, the sheaf .%; is reflexive on V; by Lemma 4.2.10. This
completes the proof of the lemma. O

Combining Lemma 4.2.13 and Proposition 4.2.2, we can prove Proposi-
tion 4.2.7.

Proof of Proposition 4.2.7. From Proposition 4.2.2; there is an open subset
Ty of T such that for any t € Ty and any i > 0, we have R'(g;)..%; =
(R'9+7)|w,. By hypothesis, R(g,).%, is reflexive. By Proposition 4.2.2,
this implies that (Rig*i?)h/[/?7 is reflexive. Hence by Lemma 4.2.13, there is
an open subset Ty of 77 such that for all ¢ € Tp, the sheaf (R'g..%)|w, is
reflexive. Hence for all t € Ty, R*(g;)«.%; is reflexive. O

4.2.4 Vanishing in positive characteristic

We will prove a vanishing lemma (Lemma 4.2.15) in positive characte-
ristic. If Y is a variety defined over a perfect field of positive characteristic
(for example, a finite field), then Y is called Frobenius-split if Oy is a di-
rect summand of Fyps Oy, where Fus : Y — Y is the absolute Frobenius
morphism (See [BKO05, §1.1] for more details).

Lemma 4.2.14. Let Y be a normal projective variety. Let F be a reflexive
sheaf on' Y such that Z®™ is a very ample invertible sheaf for some m >
0. Let 4 be a coherent sheaf on Y. Then there is an integer | such that
RY,9[R).Z8) = 0 for all t > 1 and i > 0.

Proof. Since .Z1®™ is invertible, .Z[®ms] = (Z[®m))®s for all integer s (See
Proposition 1.2.1). For any integer r between 0 and m — 1, there is an integer
I, > 0 such that H' (Y, (¢[2]Z®") @ Z®msl) = [0} for all i > 0 and 5 > I,
(See [Har77, Thm. I11.5.2]). Let [ = m(lo + - - - + l;p—1), then for any integer
t > [, we have

9[2]F1® = (g|z]FOt-mlz]) g FlEmlz)]
with 0 < t—m[%] <m-—1, and [%] >lp+ -+ 1l,—1. Hence for all t > [
and i > 0, we have h!(Y,¥4[®].Z®1) =0 . O
Lemma 4.2.15. Let g : Y — Z be a morphism of normal projective varieties
over a field of characteristic p > 0. Let L be a Weil divisor on Z such that

mL is an ample Cartier divisor for some m > 0. Assume thatY is Frobenius-
split. Then h?(Z, R'g. Oy [®]0z(L)) =0 for all >0 and i > 0.
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Proof. Fix j > 0and ¢ > 0. Let Fy, : Y — Y and F} : Z — Z be the
compositions of e absolute Frobenius morphisms for e > 0. Then Oy is a
direct summand of (Fy:).0y since Y is Frobenius-split. Hence we only have
to prove W (Z, R'g.((F&)«0Oy)[®]0%(L)) = 0 for some e > 0. Since FY and
F% are finite morphisms, from the Leray spectral sequence, we have

R'g.((Fy)+Oy) = (F3)«(R'g. O ).

Moreover, if Zj is the smooth locus of Z, then L|z, is a Cartier divisor, and
((F%)*L)|z, = (p°L)|z,- Hence by the projection formula,

(F2)«(R'g.0y @ Oz(v°L)))| 2, = (FL)(R' f Oy)) @ Oz(L))| z,.

Since (F%)«(R'g.Oy[®]0z(p°L)) is a reflexive sheaf on Z (See [Har80, Cor.
1.7]), and Z is smooth in codimension 1, by Proposition 1.2.1, we obtain

(F2)+(R'9.0y[®]0z2(p°L)) = (F5)+(R'9:0y))[2]Oz(L).
Since
HY(Z, R'g.((Fy)+ 0y )[®]0z(L)) = HY(Z, ((Fg)«(R'9.0v))[©]0z(L)),
we have
HY(Z, R'g.((Fy )+ 0y)[®]07(L)) = H'(Z, (Fg).(R'g.0y[®] 07 (p°L)))

Since F7 is a finite morphism, the Leray spectral sequence shows that the
right-hand side is isomorphic to H?(Z, R'g. Oy [®]Oy (p°L)). Thus it is en-
ough to prove that

W (Z, Rl .0y (207 (p°L)) = 0.

for some e > 0. This is true by Lemma 4.2.14. O

4.2.5 Proof of Theorem 4.1.4

By the vanishing lemma in positive characteristic, we can prove Theorem
4.1.4 in the special case when everything is defined over an algebraic number
field.

Lemma 4.2.16. Let f : M — X, H and D be as in Theorem 4.1.4. Assume
further that everything is defined over an algebraic number field K. Then
(X, R f.On (D)) =0 for all j >0 and i > 0.

Proof. Since X has Q-factorial klt singularities (See Theorem 4.1.1), by Pro-
position 4.2.6, R f, Oy (D) is reflexive on X for all i > 0.

There is a Z-algebra of finite type A C K of Krull dimension 1 such
that the field of fraction of A is K, and the coefficients of equations defining
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f:M — X, H and D are contained in A. Let T = Spec A, and let n be its
generic point. Let ¢ : . # — %2 be the morphism of T-schemes given by the
equations defining f : M — X. Fix some ¢ > 0 and some j > 0.

Let 2 and 7 be the divisors on .# and 2 given by the equations de-
fining D and H. By shrinking T if necessary, we may assume that they are
Q-Cartier. Then for a general closed point t € T, .#; is a smooth symplectic
variety defined over the residue field of ¢, which is a finite field. Moreo-
ver, since 2, is normal, by |Gro66, Prop. 9.9.4|, %; is normal for general
t. From [Drul2, Thm. 1.1 and Lem. 3.3|, we know that .#; is Frobenius-
split for general closed point ¢t € T. Hence, by Lemma 4.2.15, we have
B (21, R (01)« O 4, [®) O 2,(74)) = 0 for general closed point t € T. By Co-
rollary 4.2.8, this shows that h'( 2, R{(0¢)«O0 4,(2;)) = 0.

From Lemma 4.2.5, we obtain h/(2y, R (¢n)«O.4,(Zy)) = 0. Note that
on @ My — Xy coincides with f : M — X after a field extension. Since
a field extension is a flat base change, by [Har77, Prop.I11.9.3] we have
R f.On (D) u*(Ri(gpn)*@%](@n)), where 1 : X — £, is the natural
morphism. By [Har77, Prop.I11.9.3] again, we have

W (X, R f.On (D)) = b (23, R (o)« O.11,,(Zy)) = 0.

We also obtain that h/(X, Q[)Zg [®]@x(H)) = 0 by Proposition 4.2.6. O
Now we will complete the proof of Theorem 4.1.4.

Proof of Theorem 4.1.4. Fix some j > 0 and some i > 0. Let Q be the field
of algebraic numbers over Q. Then there is a Q-algebra B C C of finite type
which contains all the coefficients of the equations defining f : M — X, D
and H. By Lemma 4.2.16, we may assume that B # Q.

Let T' = Spec B and let 1 be its generic point. Then the equations induce
a morphism ¢ : A4 — Z of T-schemes, a divisor 5 on £ and a divisor ¥
on .. Since R, 0 4(2) is a coherent sheaf on 2, by shrinking 7' we may
assume that this sheaf is flat over T' (See [Gro65, Thm. 6.9.1]).

For general closed point ¢t € T, ¢; is a Lagrangian fibration from a
smooth variety .#; to a normal variety 23. In addition, for general clo-
sed point ¢, we know that ¢, 4 and %; are all defined over an algebraic
number field since the residue field of ¢ is just Q. Hence by Lemma 4.2.16,
we have W/ (23, R(0)«O.4,(2;)) = 0. By Lemma 4.2.5, this shows that
W (2, R (¢y)«O 4, (2y)) = 0. Note that ¢, : .4, — 2 coincides with
f M — X after a field extension. Since a field extension is a flat base
change, we have H7 (X, R'f.O) (D)) = {0} (See [Har77, Prop.I11.9.3]).

By Proposition 4.2.6 and the Leray spectral sequence, this proves the
theorem. O

Remark 4.2.17. If we assume that dim M = 4 and dim X = 2, then we can
prove Theorem 4.1.4 without using reduction modulo p. In fact, we only
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have to prove that h?(X, Rif.0p (D)) = 0 for all j > 0 and i > 0. Since
wyr = Oy, this is true by the following lemma.

Lemma 4.2.18. Let g : V — W be a projective equidimensional fibration
from a smooth projective variety to a normal projective surface. Let H be a
Q-ample Weil divisor on W, and let D = g*H. Then

W (X, R'g.(Ov (D) @ wy)) =0
forall j >0 and i > 0.

Proof. Let k be a positive integer such that kH is very ample. Then, since
W is a surface, there is a prime Cartier divisor B on W such that

(1) Ow(B) = Ow(kH)

(2) B is smooth and is contained in the smooth locus of W

(3) the divisor A = f*B is smooth.

Let p: W/ — W be the normalisation of the cyclic cover with respect to
Ow(B) = (Ow(H))®*, and let ¢ : V! — V be the cyclic cover with respect
to Oy (A) = (Oy(D))®F (See [KM9S8, Def. 2.52]). Then V' is smooth, W’
is smooth along p~!(B), and there is a projective equidimensional fibration
g : V! — W’ induced by g. We obtain the following commutative diagram.

v,V
Il
w L w
Let D' = ¢*D and H' = p*H. Then H’ is linearly equivalent to the

support of p*B which is a Cartier divisor. Since H' is also ample, by the
projection formula and [Kol86a, Thm. 2.1], we have

W (W', R'g.(Oy/(D') @wy:)) =h (W', 0w (H') @ R'gwyr) =0

for all j > 0 and ¢ > 0.
Since g and p are finite morphisms, by the Leray spectral sequence, we
have

R'g.(q«(Ov/(D') @ wyr)) = pu(R'gL(Oy(D') @ wy))
and
W (W, p«(R' g (Oy(D") @ wy))) = W (W', R'g,(Oy:(D') @ wyr)) = 0
for all j > 0 and i > 0. Thus
W (W, R g.(g:(Oy:(D') @ wy))) = B (W, pu(R'g.(Oy:(D') @ wyr))) = 0

for all j > 0 and ¢ > 0. Note that ¢.wy = wy ® (Zf;é Oy (rD)). By the
projection formula, we obtain that Oy (D) ® wy is a direct summand of
q«(Oy1(D") ® wyr). Hence, b/ (W, Rig.(Oy (D) ® wy)) = 0 for all j > 0 and
12 0. O]
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4.3 Rational surfaces

In this section, we work over C. A point in a variety will always refer
to a closed point. The aim is to prove Theorem 4.1.5. Let X be a surface
satisfying the conditions in Theorem 4.1.5 and let 7" be a minimal curve in
X, that is, a curve which has minimal intersection number with —Kx. Then
we have the following lemma.

Lemma 4.3.1. Let X be a Fano surface with klt singularities whose smooth
locus s algebraically simply connected. Assume that X has Picard number
1, and that h°(X, Ox(H)) + h°(X, Ox(H + Kx)) > 3 for all Q-ample Weil
divisor H. Let T be a minimal curve in X. Then the Weil divisor class group
ClU(X) is generated by the class of T

Proof. Since h°(X, Ox(—Kx))+h°(X,0Ox(Kx — Kx)) > 3, we obtain that
h9(X,0x(—Kx)) = 2. Let D be a Weil divisor in X, and let a be the largest
integer such that (D —aT')-T > 0. Set G = D — aT. Then G is a Q-ample
Weil divisor since X has Picard number 1. By hypothesis, we have

(X, 0x(G)) +h(X,0x(Kx +G)) > 3.

Since h(X, Ox(—Kx)) = 1, we have h°(X, Ox(G)) = h°(X, Ox (K x +Q)).
Hence, h°(X, Ox(G)) > 1. However, by the choice of a, we have 0 < G- T <
T-T. Since T is a minimal curve, this implies that G is numerically equivalent
to T. Hence D is numerically equivalent to (a + 1)7. By [AD14, Lem. 2.6],
there is a smallest positive integer k such that k(D — (a + 1)T') is linearly
equivalent to the zero divisor.

There is a cyclic cover X’ — X with respect to Ox (D—(a+1)T)®* = Oy,
which is étale in codimension 1 (See [KM98, Def. 2.52]). Since the smooth
locus of X is algebraically simply connected, we can only have k = 1. Thus,
we obtain that D is linearly equivalent to (a+1)7". This shows that C1(X) =
Z - [T O

Qutline of the proof of Theorem 4.1.5. Let T be a minimal curve. Since
—Kx is ample, we have (T+ Kx)-(—Kx) < T-(—Kx). Thus T+ Kx cannot
be linearly equivalent to a curve. This shows that h%(X, Ox (T + Kx)) < 1,
and the equality holds if and only if — Kx is linearly equivalent to 7". Hence,
by Lemma 4.3.1, the conditions in Theorem 4.1.5 imply that

1. either h%(X,O0x(—Kx)) > 2 and CI(X) =Z- [Kx],

2. or h9(X,0x(T)) = 3, °(X,Ox(T + Kx)) =0, and CI(X) = Z - [T).
If we are in the first case, then we will prove that X has canonical singu-
larities. After that, with the help of the classification of Fano surfaces with
canonical singularities, we can show that X = S¢(Eg) or X = S"(Es) (see
Section 4.3.1 for the definitions). In the second case, we will show directly
that X = P2. Afterwards, we will exclude the case of S¢(Eg). The complete
proof of Theorem 4.1.5 will be given at the end of this section.
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4.3.1 Classification of Fano surfaces with canonical singula-
rities

We collect some classification results of Fano surfaces with canonical
singularities (See [MZ88| for more details). Let X be a complex Fano sur-
face with canonical singularities such that the smooth locus of X is simply
connected. Assume that X has Picard number 1. Then there are at most two
singular points in X. If X is smooth, then X = P2. If there is one singular
point, then possible types of singularities of this point are

Ala A4a D57 E67 E7a ES-

If there are two singular points, then one is of type A1, and the other is of
type As. Except the case when there is a singular point of type Fg, for each
type of singularities, there is exactly one isomorphism class for the surface.
If the surface has a singular point of type Eg, then there are exactly two
isomorphism classes S¢(Eg) (See [KM99, Lem. 3.6.(1)]) and S™(Eg) (See
[KM99, Lem. 3.6.(2)]) of such surfaces.

We recall some properties of the surfaces S¢(Eg) and S"(Eg). These two
surfaces can be constructed as follows. Choose a singular cubic rational curve
C in X1 = P2. Let x be one of the smooth inflection points of C. Recall that
x is an inflection point if the line L in X; tangent to C' at point z meets C
at = with order at least 3 (See [EHO00, §IV.1| for more details). Starting from
X1 = P2, we blow up the point x, and we get a surface X,. We construct a
rational surface Xg by induction as follows. Assume that X; is constructed
(i > 2). Then X;y; — X, is the blow-up of the intersection point of the
strict transform of C' in X; and the exceptional divisor of X; — X;_1. There
are exactly eight (—2)-curves in Xy : the strict transform of L, and the strict
transforms of all the exceptional curves of Xg — X7. Let X9 — X be the
blow-down of all (—2)-curves in Xy. Then X is isomorphic to S¢(Eg) if C is
a cuspidal rational curve, or is isomorphic to S™(FEg) if C' is a nodal curve.
(This is why we use the terminology of these two surfaces. The index “¢”
is for cuspidal, and the index “n” is for nodal) The linear system | — Kx]|
has dimension 1, and has a unique basepoint which is a smooth point of X.
A general member of this linear system is a smooth elliptic curve in X. If
Y — X is the blow up of the basepoint, then there is a fibration py : ¥ — P,
induced by |— K x|, whose general fibers are elliptic curves. There is a unique
rational curve in | — Kx| which passes through the singular point of X. If
X = S(Eg) then there exist exactly two rational curves in | — Kx|. The
one contained in the smooth locus of X is the strict transform of C'in X. If
X = S™(Eg), then there are exactly three rational curves in | — Kx|. Both
of the two rational curves contained in the smooth locus of X are singular
rational curves with a node (one of them is the strict transform of C in X).
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Nodal curve J./ Cuspidal curve J

Basepoint Basepoint
Nodal curve Singular point Singular point
X = 5"(Es) X = S°(Es)

Rational curves in | — Kx|

4.3.2 Construction of an intermediate surface

Consider a singular klt Fano surface X whose smooth locus is algebrai-
cally simply connected. In this subsection, we will construct a surface Z
which is birational to X and with many nice properties. More precisely, we
will prove the following proposition.

Proposition 4.3.2. Let X be a singular rational surface with klt singularities
whose smooth locus is algebraically simply connected. Then there is a rational
surface Z with klt singularities such that

(1) There is a fibration p : Z — P! whose general fibers are smooth rational
curves.

(2) There is a birational morphism w : Z — X such that every exceptional
curve of T is horizontal over P' with respect to p.

(3) The minimal resolution X — X factors through X — Z.

(4) There is at most one T-exceptional curve which is crepant over X, and
if there is such a curve, then it is a section of p over P.

X

.. . minimal resolution
minimal resolution

715X

/|
Pl

Recall that an exceptional divisor is called crepant if its discrepancy is
zero. This surface Z will be very useful for the proof of Theorem 4.1.5. In
the following lemma, we prove Proposition 4.3.2 under the assumption that
X has canonical singularities. For the proof, we use the classification of Fano
surfaces with canonical singularities which have Picard number 1 (See [MZ8§]
or [KM99, §3]).
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Lemma 4.3.3. Let X be a singular rational surface with canonical singula-
rities. Assume that the smooth locus of X is algebraically simply connected.
Let v : X — X be the mainimal resolution of singularities. Then there is a
rational surface X3 5 X with canonical singularities such that :

1. The minimal resolution X — X factors through X — X1 which is also
the minimal resolution of X1.

2. The morphism g contracts at most one curve.

3. There is a fibration p1 : X; — P! whose general fibers are smooth
rational curves.

4. If g contracts a curve Cy, then Cy 1s a section of p1 over P!, and
the strict transform of C1 in X is a (—2)—curve. In particular, Cy is
crepant over X.

X

. . minimal resolution
minimal resolution

g
X1 ——
crepant
p1 J

IP)I

Proof. Let f: X — X' be the result of a MMP for X. Then X’ has canonical
singularities, and the smooth locus of X’ is algebraically simply connected
by Lemma 3.1.7. If X’ has Picard number at least 2, then there is a Mori
fibration X’ — P! which induces a fibration X — P! In this case, we let
g : X1 — X be the identity map. In the following, we will assume that X’
has Picard number 1.

If X’ is not smooth, then by [MZ88, Lem. 10.1], we can extract a curve

over X’ and obtain a rational surface X7 9, X’ with canonical singularities
such that
1. The minimal resolution X’ — X' factors through X' — X{ which is
also the minimal resolution of X7.
2. The morphism ¢’ contracts exactly one curve C7.
3. There is a fibration p} : X — P! whose general fibers are smooth
rational curves.
4. The curve C1 is a section of pj over P!, and the strict transform of C]
in X’ is a (—2)—curve.
There is a natural morphism X - X By contracting all exceptional
curves of X — X, except maybe the strict transform of C] in X, we obtain

birational morphisms X — X; - X (See Remark 3.1.4). Then X has
canonical singularities, and there is a natural morphism f; : X7 — X|. The
composition p; = p} o fi gives a fibration from X; to P!. Hence X satisfies
the conditions in the lemma.
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If X’ is smooth, then X’ = P?. Let § : Y — X’ be the last step of the
MMP for X. Then there is a natural morphism ¢ : X — Y. Let s : Y Y
be the minimal resolution of Y. Then Y can be obtained from X’ (which
is isomorphic to P?) by a sequence of blow-ups. Since X is not smooth,
X is different from X’. Hence Y # X', and Y # X'. Since the singular
locus of Y is contained in the exceptional divisor of 6 : Y — X', we obtain
that every exceptional divisor of Y — X’ is over a point 2/ € X’. Blowing
up the point z’ in X', we obtain a surface Z, which is isomorphic to the
Hirzebruch surface ¥1. Then Y — X' factorise through Y — Z, and there
is a fibration from Z to P! Hence we obtain a fibration ¥ — Pi such that
there is at most one curve in Y which is both exceptional for s: Y — Y and
horizontal over P!. Moreover, if this curve exists, then it is a section over P
(it can only be the strict transform of the exceptional divisor of Z — X').
By contracting all of the s-exceptional curves in Y which are not horizontal

over P! (See Remark 3.1.4), we get a rational surface Y} 5 ¥ which has at
most canonical singularities such that

1. The minimal resolution Y — Y factors through Y — Y; which is also
the minimal resolution of Y;.

2. The morphism h contracts at most one curve.

3. There is a fibration ¢; : Y7 — P! whose general fibers are smooth
rational curves.

4. If h contracts a curve B, ,Nthen B is a section of ¢ over ]P’l, and the
strict transform of By in Y is a (—2)—curve.

There is a natural morphism X Y. By contracting all of the excep-
tional curves of X — X , except maybe the strict transform of By in X , We
obtain birational morphisms X — X; -2 X (See Remark 3.1.4). Then X,
has canonical singularities, and there is a natural morphism ¢; : X; — 7.
The composition p; = ¢ o ¢1 gives a fibration from X; to P'. Hence X;
satisfies the conditions in the lemma. ]

Now we can prove Proposition 4.3.2.

Proof of Proposition 4.3.2. Since X has isolated singularities, there is a bi-
rational morphism h : X; — X which resolves exactly the non-canonical sin-
gularities of X. We may also assume that this partial resolution is minimal.
Then X7 has at most canonical singularities, and none of the h-exceptional
curves is crepant over X (See [KM98, Cor. 4.3]). Moreover, if X — X is the
minimal resolution, then there is a natural morphism XX 1 which is also
the minimal resolution of X;. Since the smooth locus of X, which is algebrai-
cally simply connected, is isomorphic to an open subset of the smooth locus
of X1, the smooth locus of X is algebraically simply connected by Lemma
3.1.6.
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First we assume that X; is singular. Then by Lemma 4.3.3, there is a
rational surface Xo —2» X; with canonical singularities such that :

1. The minimal resolution X — X; factors through X — X, which is
also the minimal resolution of Xs.

2. The morphism ¢ contracts at most one curve.

3. There is a fibration ps : Xo — P! whose general fibers are smooth
rational curves.

4. If g contracts a curve Cp, then C1 is a section of py over P!, and the
strict transform of C in X is a (—2)—curve.

Let ¢ : X5 — X be the composition of Xy 25 X3 Iy X. Since g contracts
at most one curve, and none of the h-exceptional curves is crepant over X,
there is at most one curve in Xy which is crepant over X. By Remark 3.1.4,
we can contract all curves in X9 which are both contracted by ¢ and by ps.
We obtain a normal surface Z such that X — Z is the minimal resolution.
Then Z has klt singularities. There is a natural fibration p : Z — P! induced
by p2. Moreover there is a natural birational morphism 7 : Z — X induced

by ¢.

X
.. . minimal resolution
minimal resolution
X 2 — X 1
crepant
hJ(partial resolution

D2 775X
p
]P>l

Then there is at most one m-exceptional curve which is crepant over X
since there is at most one curve in Xy which is crepant over X. If this curve
exists, then it is the strict transform of C7 in Z. Hence it is a section over
P!

Now we assume that X7 is a smooth rational surface. Then X is different
from P2 since X is singular. Hence, there is a fibration p; : X1 — PL. Let
g : Xo — X; be the identity morphism and let pp = p; 0o g : X9 — PL. Let
p=hog: Xos — X. We can construct m : Z — X as before such that Z
satisfies all the conditions in the proposition. Moreover, in this case, none of
the m-exceptional curves is crepant over X. O

4.3.3 Proof of Theorem 4.1.5 and Theorem 4.1.2

We will first prove two theorems on classification of rational surfaces
(Theorem 4.3.4 and Theorem 4.3.5).
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Theorem 4.3.4. Let X be a Fano surface with klt singularities. Assume that
Cl(X) =7Z-[Kx] and h%(X,Ox(—Kx)) > 2. Then either X = S¢(FE3g) or
X = S"(Eg).

Proof. If X has canonical singularities, then Kx is a Cartier divisor. Hence
Pic(X) = CI(X). This implies that X has one singular point of type Eg by
[MZ88, Lem. 6]. Hence either X = S¢(Eg) or X = S™(Ejg).

Now we will prove that X has canonical singularities. First note that X is
singular. Let T be the curve given by a general member of H*(X, Ox(—Kx)).
Then T is a minimal curve.

Let Z be the surface described in Proposition 4.3.2. Then there are bira-
tional morphisms X — Z — X and a fibration p : Z — P!, where X — X
is the minimal resolution of X.

715X

|

Pl
Let F be a general fiber of the fibration p : Z — P!. We denote the
m-exceptional curves by Ej, ..., Fs. Since X has klt singularities, and the

minimal resolution X — X factors through X — Z, we obtain that Ky =
T Kx + Y. 4 a;E; with —1 < a; <0 for all 7. Hence,

S S
71 F=-m"Kx-F=-K; - F+» aE -F=2+)» aFE; F.
=1 =1

Since all of the E;’s are horizontal over P! with respect to the fibration p, we
have Y a;FE;- F < 0. Thus 7*T - F < 2, and the equality holds if and only if
all of the a;’s are equal to 0.

Moreover, we have 7T = 7, 1T + Y7_, b; E; with b; > 0 for all i. Hence

S
T F=rT-F-) bE-F<rT-F<2
i=1

for the same reason as before.

First assume that 7, '7 - F < 2. Then 7, 'T is either a section or a fiber
of p. Hence T is a rational curve. Let X --» P! be the rational map induced
by a general 1-dimensional linear subsystem of the linear system | — Kx|
which contains T'. Let Y be the normalisation of the graph of this rational
map. Let p; : Y — X and ps : Y — P! be natural projections. Note that if
a curve in Y is contained in the fiber of po, then it is not contracted by p;
since the graph of X --» P! is contained in X x P!, and the normalisation
map is finite. Hence every fiber of py : Y — P! is reduced and irreducible
for —Kx is minimal. Let 7" be the strict transform of 7' in Y. Then 7" is
smooth since Y is normal and 7' is a general member of | — Kx|. Since T is a
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rational curve, we have 77 = P!, Thus ps is a P!-bundle by Lemma 3.2.1. In
this case, Y = ¥, is a Hirzebruch surface for some k£ > 0. Since X is singular,
we obtain that £ > 2 and that p; : Y — X is the morphism which contracts
the special rational curve in Y with self intersection number —k. Thus —Kx
cannot be a minimal curve by Lemma 3.2.2 and we obtain a contradiction.

Hence we must have m LT . F = 2. This shows that a; = b; = 0 for all i.
By the construction of Z, this implies that there is exactly one m-exceptional
curve D in Z. Since X has Picard number 1, Z has Picard number 2. Hence
p is a Mori fibration, and every fiber of p is irreducible.

&nimal resolution
T
——

crepant

p

>

minimal resolution

<;

N

Mori fibration

<;

1

~

Moreover, since b; = 0 for all 4, the curve T is contained in the smooth
locus of X. In particular, we have

—Kx-T>1.

In order to prove that X has canonical singularities, it is enough to prove
that Z has canonical singularities since 7* Ky = Kz. Note that if every fiber
of p has multiplicity at most equal to 2, then by Theorem 3.0.1, Z has
canonical singularities. Now we will assume by contradiction that there is a
point b € P! such that p*b = mC with C reduced and m > 2. Since a; = 0
for all ¢, by the projection formula we have

2
—Ky m,C=—-7"Kx - C=—-K; - C=—<1<—-Kx-T.
m

This is a contradiction since 7T is a minimal curve. Thus X has canonical
singularities. This completes the proof of the theorem O

Theorem 4.3.5. Let X be a Fano surface with klt singularities and let T
be a minimal curve. Assume that CI(X) = Z - [T], h°(X, Ox(T)) = 3 and
(X, 0x (T + Kx)) = 0. Then X = P2

Proof. 1t is enough to prove that X is smooth. Assume that X is singular.
Since

(X, 0x(T)) > 3,

through a general point of X, there passes at least two different minimal
curve. Hence T? > 1 by Lemma 3.1.2. Let 7 : Z — X be the surface
described in Proposition 4.3.2.



Wenhao OU 73

75X

|

Pl
Let F be a general fiber of the fibration p : Z — P!. We denote the
m-exceptional curves by Fji,..., Es. As in the proof of Theorem 4.3.4, we

have

S S
~Kx mF=-1"Kx F=-Kz-F+Y aE-F=2+) aE -F<2.
=1 =1

If 7, F is a minimal curve, then every fiber of p is reduced and irreducible.
Thus Z = Y is a Hirzebruch surface for some k£ > 0 by Lemma 3.2.1. Since
X is singular, we obtain that k > 2 and that 7 : Z — X is the morphism
which contracts the special rational curve in Z with self intersection number
—k. Hence, by Lemma 3.2.2, we have

1<T-T:7T*F-7T*F:%.

This is a contradiction.

If . F" is not a minimal curve in X, then there is an integer o > 1 such
that mF is linearly equivalent to o1'. Moreover, since —Kx is Q-ample,
and h9(X,O0x(T + Kx)) = 0, there is an integer 8 > 1 such that —Kyx
is linearly equivalent to S7. Hence, —Kx - m,F = afT? > 4, yielding a
contradiction. O

We will prove that S¢(Eg) does not satisfy the conditions of Theorem
4.1.5 (see Lemma 4.3.8). Let X be a surface isomorphic to S¢(Eg). Let T
be a minimal curve in X. Then Ox(T) = Ox(—Kx). We will show that

hO(X, QY [®]0x(T)) > 1. In order to do this, we will need the following
results.

Lemma 4.3.6. Let X be a surface isomorphic to S¢(Eg). Then all of the
elliptic curves in the linear system | — Kx| are isomorphic.

Proof. We can obtain X after some birational transform from P? (See section
4.3.1). There is a unique cuspidal rational curve C’ in the linear system
| — Kx| which is contained in the smooth locus of X. Let C' be the strict
transform of this curve in P2, If z € X is the unique basepoint of | — Kx|,
then the image = of z in P? is the unique smooth inflection point on C. We
may assume that C is given by the equation aza3 = a3, and that x is the
point [0 : 1 : 0], where [a1 : a2 : a3] are coordinates of P2. Let E be the
strict transform in P? of a smooth elliptic curve E’ in the family induced by
|— K x/|. Since the intersection of C” and E’ is the point z, and the exceptional
divisors of X — P2 meet these two curves only at the point z, we obtain
that the intersection of ' and C'is the point z.
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Assume that F is given by the homogeneous equation

/\1@% + )\Qa‘; + /\3a§ + )\4&%@2 + /\5@%&3 + /\6a§a1
—H\m%al =+ Agagag + )\961%&3 + Appaiagas = 0.

With affine coordinates (b1, b3) = (51, ¢2), this equation becomes

A1b3 4 Ao + A3b3 + Agb? + Asbz 4+ Agb2by
+A7b1 + Agb3 + Agbibs + Aigbibs = 0.

The equation defining C' becomes b3 = b3. If we replace bg by b} in the
equation defining F, then we obtain

Ab} + Ag 4 Asby + Aabi + Asbi + Aeb] + Azbi + Asb] + Agb} + Aiobi = 0.

This equation should have by = 0 as a root with multiplicity 9 since £ and
C intersects at x with multiplicity 9. Hence we have Ay + A5 =0, and A\ =0
for £ # 1,3,5. Since E is smooth, A\; # 0. We may assume that A\; = 1,
then E is given by aza3 = af + Aa3 with A\ # 0. Hence the j-invariant of
E is 0. Thus all of the elliptic curves in this family induced by | — Kx| are
isomorphic. O

Proposition 4.3.7. Let X be a klt projective rational surface. Then p(X),
the Picard number of X, is eugal to h*(X, Q[)l(})

Proof. First assume that X is smooth. We have the following exponential
exact sequence

HY(X,0x) - HYX,0%) — H*(X,Z) — H*(X, 0%).

Since X is a smooth rational surface, we have h!'(X, Ox) = h?(X, 0x) = 0.
Hence H'(X, 0%) — H*(X,Z) is an isomorphism. Since H'(X, 0%) is iso-
morphic to the Picard group of X, we obtain that p(X) is equal to h?(X, C).
Since h?(X, Ox) = 0, we have h! (X, Q%) = h?(X, C) from the Hodge theory.
Hence h'(X, Q%) = p(X).

Now we assume that X is singular. Let r : X — X be the minimal
resolution of singularities. Then from the previous paragraph, we know that
h2(X,C) is equal to p(X). Since X is Q-factorial, we have p(X) = p(X) — 1,
where [ is the number of the r-exceptional curves. Hence p(X) = h(X, C)—L.

Since X has rational singularities, R'r, 05 = 0. Hence the Leray spectral
sequence for r gives an exact sequence

0 — H*(X,C) - H*(X,C) & H°(X, R?*r,C),

see [KM92, 12.1.3.2]. Moreover, from [KM92, Prop. 12.1.6], the image of p
is free and generated exactly by the class of the the r-exceptional divisors.
Hence we obtain that h?(X,C) = h?(X,C) — [ and p(X) = h?(X,C).
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Since X has quotient singularities (See [KM98, Prop. 4.18]), by [Ste77,
Thm. 1.12|, we have

W(X,C) = X, QF) +ht (X, Q) + n3(X, Ox)
= (X, Q) + 202X, 0x).

Since X is a rational surface with rational singularities, from the Leray spec-
tral sequence, we have

hA(X,0x) = h*(X,05) =0,
Thus, p(X) = h%(X,C) = (X, 0lY). m
Lemma 4.3.8. Let X = S°(FEg). Then
WO(X, Ox(—Kx)) — BO(X, Q¥ []0x (K x)) + hO(X, 0x) < 2.

Proof. Let E be a smooth elliptic curve in | — Kx|. Let ¢ : Y — X be the
blow-up of the basepoint x of | — Kx|. Then we have a fibration p : Y — P!
induced by | — Kx|. The general fibers of p are smooth elliptic curves. Since
X = S¢(Eg), this family of elliptic curves is isotrivial by Lemma 4.3.6. Let
D be the strict transform of E in Y. Since D is a fiber, Qi |p is an extension
of Op by Op. Since the family is isotrivial, the Kodaira-Spencer map is zero.
Hence Ty |p = Tp @® p*Ipi|p, where Ty and Tp are the tangent sheaves
of Y and D respectively. By taking the dual, we have Q%,|D = 0p ® Op.
Note that X is smooth along E and Y is smooth along D. From the natural
morphism c*Q}( — Q%/ and the conormal exact sequences, we obtain the
following commutative diagram with exact rows

0——c*Qr —— (¢*Q%)|p QL 0
Jal JQQ J
0 Qp Q%/|D QlD 0

The morphisms 65 and #; are injective, and the third is an isomorphism.
By the snake lemma, we have Coker 6; = Coker 5. Note that Qp is isomor-
phic to Op, and Qg is isomorphic to Og(—2). Hence h(D, Coker 61) = 1.
We obtain that h°(D, Coker f2) = 1. Hence

RO(E, Q% | k) = h(D, (c*QY)|p) = k%D, |p) — h°(D, Coker 63) = 1.

This shows that Q% |g & O ® Op(—x).

Moreover, since Ox (Kx)|g = Op(—x), we have (Q%[®]0x(—Kx))|p =
Op @ Og(x). Since X is smooth along E and Ox(E) = Ox(—Kx), we have
an exact sequence

0— ol ol @ oy (—Kx) = (Q4[2]0x (K x))|z — 0.
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This induces an exact sequence

0 — HX, oY)y Hx ol @ ox(~Kx))
—  H(E,(Q%[®]0x(~Kx))|z) — H'(X,0l).

Since X has Picard number 1, by Proposition 4.3.7, we have h! (X, Q[)l(]) =
1. Since h°(X, Q[)lc]) =0 (See [GKKP11, Thm. 5.1]), and

h(E, (Qx[®]0x(—Kx))|g) = h°(E, Op ® Op(x)) =2,

we obtain
(X, 0 @ ox(—Kx)) > 1.

Hence we have

(X, 0x(—Kx)) - h(X, Q[)lg] [®]Ox(—Kx))+h°(X, 0x) < 2.

Now we will complete the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. Let T be a minimal curve. From the discussion after
Lemma 4.3.1, we know that one of the following properties holds

1. %X, 0x(—Kx)) >2and Cl(X) =Z- [Kx];

2. (X, 0x(T)) =3, (X,0x(T+Kx)) =0, and Cl(X) = Z - [T]

By Theorem 4.3.4, Theorem 4.3.5 and Lemma 4.3.8, we obtain that X
is either isomorphic to P2 or isomorphic to S™(Eg). It remains to prove that
both of these two surfaces satisfies the conditions of the theorem.

It is not hard to check that P? satisfies the conditions. We will prove that
if X = S™(Eg), then X satisfies the conditions in the theorem. In fact, we can
show that the family of elliptic curves induced by |—K x| is not isotrivial by si-
milar method of Lemma 4.3.6. Hence we have h°(E, (04 [®]0x(—Kx))|g) =
1 in this case, where F is a smooth elliptic curve induced by a general member
of | — Kx|. Since E is contained in the smooth locus of X, the composition
of the natural morphisms

H?*(X,C) — H*(X,C) — H*(E,C)

is not zero, where X — X is the minimal resolution. Hence, the natural
morphism

H' (X, o) = H'(E, QL)

is not zero. Now consider the exact sequence

H' (X, 0¥ 0 0x(-E)) - H' (X, o) - H'(E, o |5).
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Since the composition of
mY(X, 0y = HY(E, o) |5) - H'(E, k)
is not zero, and h'(X, Q[;(]) = 1, we obtain that the morphism
H'(X, 0 @ 0x(—E)) = H'(X,0})

is zero. By taking the dual morphism, we obtain that the natural morphism
H(X, Q_[}{]) — HY(X, Q[)l(} ® Ox(—Kx)) is zero. Hence, as in the proof of
Theorem 4.1.5, we obtain that

(X, 0 @ ox(~Kx)) =0

in this case.
Note that every ample divisor 1" in X is linearly equivalent to aF for
some a > 0. Consider the following exact sequences for all k > 0,

0— Ox(kE) —» Ox((k+1)E) - Ox((k+ 1)E)|g — 0
and
0 = Ox(kBE)RIQY = Ox((k+1)E)[@)0
= (Ox((k+ 1) B)[2]2)|s - 0.
By taking cohomologies, we obtain that, for all k > 1,
RO(Ox((k+1)E)) = h%(Ox(kE)) + k+ 1

and
W0(Ox ((k+1)E)[@)QY) = W(0x (kE)[@]QY) + 2k + 1.

By induction on k, we have

2
FAEE2 na 0(oxkE) 2ol = k- 1

W (Ox (kE)) =
for all £ > 1. This shows that X satisfies the conditions of the theorem. O
Now we can deduce Theorem 4.1.2.
Proof of Theorem 4.1.2. By Corollary 4.2.1, we have
WX, Ox (H)) = h0(X, O [2]0x (H)) + hO(X, Ox (H + Kx)) = 3

for any Q-ample Weil divisor H on X. Since M is simply connected in
codimension 1, the smooth locus of X is algebraically simply connected.
Hence, by Theorem 4.1.5, either X = P? or X = S"(Eg). O



Chapitre 5

Fano varieties with Nef = Psef

5.1 Introduction

Let X be a complex Fano variety. Then there is an inclusion
Nef(X) C Psef(X).

If Nef(X) = Psef(X) and X has log canonical singularities, then p(X),
the Picard number of X, is at most equal to the dimension of X (see [Drul4,
Lem. 4.9]). If we assume further that p(X) = dim X and that X has locally
factorial canonical singularities, then X is a product of double covers of
P! x ... xPL More precisely, Druel proves the following theorem (see [Drul4,
Thm. 1.1] and |Drul4, Prop. 10.4]).

Theorem 5.1.1. Let X be a Fano variety with locally factorial canonical
singularities such that p(X) = dim X and Nef(X) = Psef(X). Then X =
X1 X -+ x X, such that for alli = 1,...,k, either X; = P!, or dim X; > 3
and X; is a double cover of P x --- x P, branched along a prime divisor of
degree (2, ...,2).

In this chapter, we consider Fano varieties X with locally factorial cano-
nical singularities such that X is smooth in codimension 2, p(X) = dim X —1
and Nef(X) = Psef(X). If the dimension of X is 2, then X is isomorphic to
P2. In dimension 3, we prove the following theorem.

Theorem 5.1.2. Let X be a Fano threefold with isolated locally factorial
canonical singularities such that p(X) = 2 and Nef(X) = Psef(X). Then
one of the following holds.
1. X 2Pl x P2
2. X is a double cover of P x P2, branched along a prime divisor of degree
(2,2).
3. X is a double cover of P* x P2, branched along a prime divisor of degree
(2,4).

78
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4. X is a hypersurface in P> x P? of degree (1,1).
5. X is a hypersurface in P? x P? of degree (1,2).
6. X is a hypersurface in P? x P2 of degree (2,2).
7. X is a double cover of a smooth hypersurface Y in P? x P2 of degree

(1,1), branched along a prime divisor D, which is the intersection of
Y and a hypersurface of degree (2,2) in P? x P2,

Note that if we assume that X is smooth, then Theorem 5.1.2 follows
from the classification of smooth Fano threefold due to Mori and Mukai
(IMM82]).

In higher dimensions, we will first introduce some examples. In the fol-
lowing examples, we provide methods of constructions of Fano varieties X
with p(X) = dim X — 1 and Nef(X) = Psef(X) (see Construction 5.2.7 for
more details).

Ezxample 5.1.3. We will give two examples of Fano varieties X of dimension
n > 4 which are finite covers of the product M = (P')"~2 x P2, of degree 2
or 4.

1. Let X be a double cover over M, branched along a prime prime divisor
of degree (2,...,2, k), where k € {2,4}.

2. We write M = (P')*xP?x (P!)" such that 7, s > 0 and r+s = n—2. Let
N be a double cover of (P1)* xP?, branched along a prime prime divisor
of degree (2, ...,2,2). Let My = Ny x (P1)" and let g : My — P2 x (PY)"
be the natural projection. Let X be a double cover of M, branched
along a prime divisor D which is the pullback by g of some divisor of
degree (2,2,...,2) in P? x (P!)". Equivalently, X is isomorphic to the
following fiber product

X = My Xy Mo —— Moy

| [

M1T>M

where p; is a double cover branched along a prime divisor of degree
(2,...,2,2,0,...,0) and py is a double cover branched along a prime
divisor of degree (0,...,0,2,2,...,2).

Example 5.1.4. Let By = By = P?. We will give three examples of Fano varie-
ties X of dimension n > 4 which are finite covers of the product (P*)" 3 x W,
of degree 2 or 4, where W is some normal ample hypersurface in By X Bo,
which is a Fano threefold.

1. Let W be a smooth divisor of degree (1,1) in B; X Ba. Let X be
a double cover of (P')"~3 x W, branched along a prime divisor D,
which is the intersection of (PY)"~3 x W and some divisor of degree
(2,...,2,2,2) in (P1)"3 x By x Bs.
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2. Let N7 be a double cover of (P')"~3 x By, branched along a prime
divisor of degree (2,..,2,2). Let M = N x By and let p be the natural
projection from M to By X Bs. Let W be a normal hypersurface of
degree (1,k) in By X By, where k € {1,2}. Let X = p*W. Equivalently,
X is isomorphic to the following fiber product

X (PH" 3 xW)xgM

M
| T
)n—3

P2 x W § = (P x By x By

where p; is the natural injection and po is a double cover branched
along a prime divisor of degree (2, ...,2,2,0).

3. Assume that n > 5. Let S; = (P!)” x By and let Sy = By x (P1)%,
where ;s > 0 and r +s = n — 3. Let N1 be a double cover of S,
branched along a prime divisor of degree (2,...,2,2) and let Ny be a
double cover of S, branched along a prime divisor of degree (2,2, ...,2).
Let N = N1 x Nj. Let p be the projection from N to By X By. Let W
be a normal hypersurface of degree (1,1) in By X Bo. Let X = p*W.
Equivalently, X is isomorphic to the following fiber product

X = ((PH 3 x W) xg N N

J |

(P 3 X W ————5— 8 = (P')"° x By x By

where p; is the natural injection.

The main objective of this chapter is to prove the following theorem.

Theorem 5.1.5. Let X be a Fano wvariety of dimension at least 3, with
locally factorial canonical singularities such that X is smooth in codimension
2, p(X) =dim X — 1 and Nef(X) = Psef(X). Then X = X x Xy such that

- X4 1s either a point or one of the varieties in Theorem 5.1.1;

- Xo s either one of the varieties in the list of Theorem 5.1.2, or a variety
constructed by the methods of Example 5.1.3 and Example 5.1.4.

Note that this theorem is false without assuming the variety is smooth in
codimension 2. In fact, even in dimension 2, there are surfaces X other than
P? which have Picard number 1 and locally factorial canonical singularities.
They are surfaces S™(Es) and S¢(Eg) introduced in section 4.3 (see [MZ88,
Lem. 6]).

Qutline of the proof of the theorems. Let X be a variety satisfying the
condition in Theorem 5.1.5. We first consider the case when dim X = 3. In
this case, the Mori cone NE(X) has exactly two extremal rays Ry, Ro. Let
fi + X — B; be the extremal contraction with respect to R; for ¢ = 1,2. We
can prove that B; is either P! or P2 and the product f; x fo is finite onto its
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image. Hence X is a finite cover of P! x P? or a finite cover of a hypersurface
of P? x P2. With the help of two results on finite morphisms between Fano
threefolds, we can deduce the proof of Theorem 5.1.2.

After this, we consider the case when n = dim X > 4. The proof of
Theorem 5.1.5 is by induction on the dimension of X. We will first prove
that there is a fibration g : X — P! since n > 4. We can reduce to the case
when n = 4. The proof of four-dimensional case is given in section 5.5.

There is a Mori fibration h : X — Y such that h x g : X — Y x Pl is
a finite surjective morphism. We can prove further that Y also satisfies the
condition in Theorem 5.1.5. By induction, we assume that Theorem 5.1.5
is true in dimension smaller than n. In particular, A X ¢ induces a finite
surjective morphism f : X — Z such that Z is either P* x --- x P! x P? or
P! x ... x P! x W, where W is a normal ample hypersurface in P? x P2. In
the end, we will conclude the proof of Theorem 5.1.5 by studying some finite
morphisms between Fano varieties.

In this chapter, we will work over C. If X is a variety, then we denote
by (X)* the product of k copies of X. Consider a Fano fibration f: X — Y
between projective normal varieties such that X has Q-factorial kit singula-
rities. The relative Picard number of f is the dimension of the closed convex
cone in N1 (X)) generated by the curves contracted by f. This number is equal
to p(X) — p(Y) since f is a Fano fibration (see [KMMS87, Lem. 3-2-5]). In
particular, a Mori fibration is a Fano fibration whose relative Picard number
is equal to one.

5.2 Double covers between normal varieties

We recall the notion of cyclic covers. Let Y be a normal variety and .&
a line bundle on Y. Assume that there is a positive integer k and a section
s € HO(Y, Z®%). Let D be the zero locus of s. Then there is a cyclic cover
g : Z — Y with respect to the isomorphism .Z%* = @y (D) induced by s.
The morphism ¢ is branched exactly along D and ¢*D = k - Supp (¢*D)
(see |[KM98, Def. 2.50]). Note that, by construction, Z may not be normal.
However, we have the following result.

Lemma 5.2.1. Let Y be a normal Cohen-Macaulay variety and let D be
a reduced divisor. Assume that there is o line bundle L on Y such that
Lk = 0y(D) for some k > 0. If f : Z — Y is the corresponding cyclic
cover, then Z is normal and Cohen-Macaulay.

Proof. We may assume that Y = Spec A is affine. Then Z 2 Spec A[T]/(T*—
s), where T is an indeterminate and s = 0 is the equation defining D.
Since Y is Cohen-Macaulay and Z is a Cartier divisor in Y x Al, the va-
riety Z is also Cohen-Macaulay. Hence, we only need to prove that Z is
smooth in codimension 1. However, there is an open subset Yy of Y such
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that codim Y'\Yy > 2 and both Yy and Dy, are smooth. Thus Zy = g~1(Yp)
is smooth and codim Z\Zy > 2. This shows that Z is normal. ]

Lemma 5.2.2. Let f : X — Y be an equidimensional fibration between
normal Cohen-Macaulay varieties. Assume that there is an open subset U
of Y whose complement has codimension at least 2 such that f has reduced
fibers over U. Let g : Y' — Y be a cyclic cover with Y’ normal. Let X' be
the fiber product X xy Y'. Then X' is a normal Cohen-Macaulay variety.

X — X

L]

Y’ ——Y
Proof. Assume that g is the cyclic cover with respect to some isomorphism
L%k =~ 0y (D), where D is a Cartier divisor and . is a line bundle on
Y. Since Y is normal, D is reduced. Then the natural morphism X’ — X
is the cyclic cover with respect to the isomorphism (f*.2)%* = Ox(f*D).
Since f is equidimensional and has reduced fibers over U, f*D is a reduced
divisor in X. Since X is Cohen-Macaulay, by Lemma 5.2.1, X’ is normal
Cohen-Macaulay. O

We will prove some properties on double covers.

Lemma 5.2.3. Let f : X — Y be a double cover between normal varieties
with Y locally factorial. Let D be the codimension 1 part of the discriminant
of f. Then there is a line bundle £ on Y such that £%? = Oy (D). If
g:Z —Y is the corresponding cyclic cover, then X is the normalisation of
Z. Moreover, if Y is Cohen-Macaulay, then X is smooth if and only if both
D and Y are smooth.

Proof. Let Yy be the largest open subset contained in the smooth locus of
Y such that Xo = f~1(Yp) and Dly, are smooth. Then codim Y'\Yy > 2 and
there is a line bundle % on Yj such that f|x, is the cyclic cover with respect
to ZE% = (0y(D))ly, (See [CD89, §0.1]). Since Y is locally factorial, there
is a line bundle . on Y such that £y, = .%. Then £%? = 0y (D). Let
g : Z — Y be the corresponding cyclic cover. Then X and Z are isomorphic
over Yy. Since X is normal, and both X and Z are finite over Y, we obtain
that X is the normalisation of Z.

If Y is Cohen-Macaulay, then X = Z by Lemma 5.2.1. Thus X is smooth
if and only if D and Y are smooth (see [KM98, Lem. 2.51]). O

Lemma 5.2.4. Let f : X — Y be a double cover between normal varieties.
Assume that Y is Q-factorial. Let D CY be the codimension 1 part of the
discriminant of f. Then X is Fano if and only if —Ky — %D is Q-ample.
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Proof. Since Y is Q-factorial, —Kx is Q-linearly equivalent to —f*(Ky +
%D). Since f is finite, we obtain that —Kx is Q-ample if and only if — Ky —
%D is Q-ample. O

Lemma 5.2.5. Let f : X — Y be an equidimensional Fano fibration of
relative dimension 1 between normal projective varieties with Q-factorial kit
singularities. Then the relative Picard number of f is 1 if and only if f*D 1is
wrreducible for every prime divisor D in Y.

Proof. If the relative Picard number of f is 1, then f*D is irreducible for
every prime divisor D in Y.

Assume that the relative Picard number of f is at least 2. Since f is a
Fano fibration and X has Q-factorial klt singularities, we can run a MMP
for X over Y by [BCHM10, Cor. 1.3.3]. We obtain the following sequence of
birational maps over Y

X()**%lef%”-fféXk
Y/

such that X = Xy and that X} is a Mori fiber space. Let X; — B be the
Mori fibration. Then there is a natural morphism B — Y. Since f has relative
dimension 1, the natural morphism B — Y is birational. On the one hand,
since f is equidimensional, for any prime divisor in X, its image by f has
codimension at most 1 in Y. Hence, the morphism B — Y does not contract
any divisor. On the other hand, since Y is Q-factorial, the exceptional locus
of B — Y is either empty or pure of codimension 1. Hence B — Y is an
isomorphism.

Since the relative Picard number of X is larger than 1, there is some X;
in the previous sequence such that X; — X;,; is a divisorial contraction.
In particular, if f; : X; — Y is the natural fibration, then there is a prime
divisor D in Y such that f/D is reducible. Hence f*D is also reducible. [J

Lemma 5.2.6. Let g : Y — Z be an equidimensional fibration between
smooth projective varieties. Let r : V. — Z be a Mori fibration with V' smooth.
Let X be the fiber product Y xz V. Let f : X =Y and 7 : X — V be the
natural fibrations.

X5V

1)

YT>Z

Assume that X is a smooth Fano variety and that the discriminants of g and
r do not have common components. Then the relative Picard number of f is
1.

Proof. Assume the opposite. Then by Lemma 5.2.5, there is a prime divisor
D in Y such that f*D is reducible. Let R = f~1(D) and let Ry, Ry be two
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different components of R. Let o be a general point in D. Let E = ¢(D)
and let 8 = g(a) € E. Then FE is irreducible. Since g is equidimensional, the
codimension of F is at most 1. Since X =Y x 2V, the fiber C’ of r over 3 is
isomorphic fiber C of f over a. Thus C” is reducible for C' is reducible. Since
[ is a general point in F, we obtain that F is a divisor and is contained in
the discriminant of r.

Let R' = r~Y(E). Then, by Lemma 5.2.5, it is irreducible since r is a
Mori fibration. We have the following commutative diagram

R, R

f{ lﬁ

D——F
glp

Since X =Y Xz V, the fibration 7 is equidimensional. Since R’ is irre-
ducible, we obtain that the projections 7|g, : R1 — R’ and 7|g, : Ro — R’
are surjective. In particular, general fibers of 7|g are reducible.

Let a be a general point of R’ and let b=1r(a) € E. Since X =Y xzV,
the fiber of 7|r over a is the same as the fiber of g|p over b. Since the
discriminants of g and r do not have common components and b is a general
point on E, the fiber of g|D over b is irreducible. Hence the fiber of 7|g over
a is irreducible. This is a contradiction. O

Thanks to this lemma, we can show that we can construct smooth Fano
varieties X such that p(X) = n—1 and Nef(X) = Psef(X) with the methods
in Example 5.1.3 and Example 5.1.4. For simplicity, we only look at the case
of Example 5.1.4.2. The other cases are similar.

Construction 5.2.7. We will construct a smooth Fano variety X, of di-
mension n, with the methods of Example 5.1.4.2, such that p(X) =n —1
and Nef(X) = Psef(X).

Let W be a smooth divisor of degree (1, k) in By x B, where k € {1,2}.
Then the Picard number of W is 2 by the Lefschetz theorem (see [Laz04,
Example 3.1.25]). We write

PHY* 3 x W =P' x T and (P')" 3 x B; =P! x R.

There is a natural equidimensional fibration T" — R. We can choose a double
cover Ny — P! x R, branched along some smooth divisor D of degree
(2,...,2,2), such that the discriminant of Ny — R and the discriminant
of T — R do not have common components. Moreover, we choose D such
that ¢* D is smooth, where ¢ : P! x T'— P! x R is the natural fibration.

Let X be the pullback of (P)"=3 x W by Ny x By — (P1)"=3 x B x Bs.
Then we have

X = ((PH" 3 x W) X (p1yn-3xp, N1 = (P! x T) xpiyg N1 =T xr Nj.
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Now we will show that p(X) =n—1 and Nef(X) = Psef(X). By [Drul4,
Lem. 3.4], the Picard number of Nj is the same as the Picard number of
P! x R. Thus the natural projection N1 — R is a Mori fibration. Note that
the natural morphism ¢ : X — P! x T is a double cover branched along ¢*D.
Since ¢*D and P! x T are smooth, X is smooth by Lemma 5.2.3. Moreover,
X is a Fano variety by Lemma 5.2.4. Hence, by Lemma 5.2.6, X — T has
relative Picard 1. Since T has Picard number n — 2, we have p(X) =n — 1.

Let E be a pseudo-effective divisor in X. Since p(X) =n—1, F is nume-
rically equivalent to the pullback of a Q-divisor of degree (aq, ..., an—3, b1, b2)
in (P1)"~3 x By x Bs. Let Fy be a fiber of the natural projection from X to
the product (P1)"~* x W (here, (P1)"* is the product of the last (n — 4)
PY’s of (P1)"=3 ). Then the intersection number F} - E is at least zero. Thus
ay > 0. Similarly, we obtain that as, ...,an_3 > 0. Let F’ be the fiber of the
natural projection X — (PY)"=3 x By. Then F’- E > 0. This shows that
ba > 0. Similarly, we have by > 0. Hence E is nef. Thus we obtain that
Nef(X) = Psef(X).

5.3 Fibrations on varieties of Theorem 5.1.5

Let X be a Q-factorial kit Fano variety. Then for every face V of NE(X),
there is a fibration f : X — Y which contracts exactly the curves whose
clagses are in V. Conversely, if f : X — Y is a fibration, then the curves
in the fibers of f generates a face V of NE(X) (See for example [KMMS87,

§3-2).

Lemma 5.3.1. Let X be a Fano variety with Q-factorial kit (resp. locally
factorial canonical) singularities such that Nef(X) = Psef(X). Let f : X —
Y be any fibration. Then Y is also a Fano variety with Q-factorial kit (resp.
locally factorial canonical) singularities such that Nef(Y) = Psef(Y').

Proof. By [Drul4, Lem. 4.2], we have Nef(Y) = Psef(Y'). If X is with locally
factorial canonical singularities, then so is Y by [Drul4, Cor. 4.8]. If X has Q-
factorial klt singularities, then the same argument of the proof of [Drul4, Cor.
4.8] shows that Y also has Q-factorial klt singularities. By [FG12, Thm. 3.1|,
— Ky is big. Since Nef(Y') = Psef(Y’), this implies that —Ky is ample. O

The objective of this section is to prove the two following lemmas.

Lemma 5.3.2. Let X be a Fano variety with locally factorial canonical sin-
gularities such that X is smooth in codimension 2, p(X) = dim X — 1 and
Nef(X) = Psef(X). Assume that there is no fibration from X to P'. Let
f X — Y be a fibration. Then Y 1is also a Fano variety with locally
factorial canonical singularities such that Y is smooth in codimension 2,
p(Y)=dimY — 1 and Nef(Y') = Psef(Y).
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Lemma 5.3.3. Let X be a Fano variety with locally factorial canonical sin-
gularities such that X is smooth in codimension 2, p(X) = dim X — 1 and
Nef(X) = Psef(X). Assume that there is a fibration fi : X — W and a
projective morphism fo : X — (PY)" such that the product fi x fo : X —
W x (PY)" is a finite surjective morphism. Then W is also a Fano variety with
locally factorial canonical singularities such that W is smooth in codimension

2, p(W) =dimW — 1 and Nef(W) = Psef(W).
We will first prove some preliminary results.

Lemma 5.3.4. Let X be a Q-factorial kIt Fano variety such that Nef(X) =
Psef(X). Let f : X — Y be a fibration. If the relative dimension of f is 1,
then f is a Mori fibration.

Proof. There is a Mori fibration X — Z over Y by [Drul4, Lem. 4.4|. The
variety Z is a Q-factorial klt Fano variety such that Nef(Z) = Psef(Z) by
Lemma 5.3.1. Since f has relative dimension 1, the natural fibration Z — Y
is birational. Since Nef(Z) = Psef(Z), we have Z =2 Y by [Drul4, Lem. 4.4].
This implies that f is a Mori fibration. O

Lemma 5.3.5. Let f: X = Y be a Mori fibration such that X has locally
factorial canonical singularities. If X is smooth in codimension k and f is
equidimensional of relative dimension 1, then Y 4s also smooth in codimen-
sion k.

Proof. Let y € Y be a point. The problem is local around y. Without loss
of generality, we may assume that Y is affine. Since f is a Fano fibration of
relative dimension 1, by the main theorem of [AW93], the linear system | —
Kx| is basepoint-free. Let Z be a general divisor in the linear system |— K x|.
Then Z is smooth in codimension k. Moreover, since f is equidimensional,
by shrinking Y if necessary, we may assume further that the morphism f|; :
Z — Y is finite surjective of degree 2.

Note that Y has klt singularities (see [Fuj99, Cor. 3.5]). Thus it is Cohen-
Macaulay. Moreover, it is locally factorial (see for example [Drul4, Lem.
4.6]). Since Z is smooth in codimension k, by Lemma 5.2.3, Y is smooth in
codimension k. O

Remark that this lemma is not true without assuming that X is locally
factorial. There is a Mori fibration f : X — Y such that X is a threefold with
terminal singularities and that Y is singular, see [MP08, Example-Definition
1.1.1]

Lemma 5.3.6. Let X be a Fano variety with Q-factorial kIt singularities
such that p(X) = dim X — 1 and Nef(X) = Psef(X). Let f : X — Y be a
Mori fibration. Then the dimension of Y is equal to p(Y) or p(Y') + 1.
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Proof. By Lemma 5.3.1, Y is a Q-factorial klt Fano variety with Nef(Y) =
Psef(Y). In particular, we have p(Y) < dimY by [Drul4, Lem. 4.9]. Since f
is a Mori fibration, we have p(Y) = p(X) — 1. Hence dimY < dim X — 1 =
p(X) = p(Y) + 1. Thus dimY is equal to p(Y) or p(Y) + 1. O

Lemma 5.3.7. Let X be a Q-factorial kit Fano variety such that Nef(X) =
Psef(X) and p(X) = dim X. Then there is a fibration from X to PL.

Proof. Let V be a face in NE(X) of codimension 1 and let f : X — B be the
corresponding contraction. Then dim B = p(B) = 1 by [Drul4, Lem. 4.9.2].
This shows that B = P! O

Lemma 5.3.8. Let X be a Fano variety with Q-factorial kit singularities
such that p(X) = dimX — 1 > 2 and Nef(X) = Psef(X). Assume that
there is no fibration from X to P'. Then every Mori fibration f : X — Y is
equidimensional of relative dimension 1.

Proof. We will prove the lemma by induction on the dimension of X. If
dim X = 3, then dimY = 2. In this case, the fibration f is equidimensional.
Assume that the lemma is true if dim X = n for some n > 3.

Now we assume that dim X = n+ 1. Suppose that there is a fiber F' of f
such that dim F' > 2. Assume that f is the fibration which corresponds to an
extremal ray R of NE(X). Let Ry be another extremal ray such that R and
Ry generates a face V of dimension 2. Let g : X — Z be the Mori fibration
which corresponds to R; and let X — W be the fibration corresponding to
V. By the rigidity lemma, we obtain the following commutative diagram

x- .y

[, b

z-Law
By Lemma 5.3.1, Z is a Q-factorial klt Fano variety such that Nef(Z) =
Psef(Z). By Lemma 5.3.6, p(Z) is either dim Z or dim Z — 1. Since there
is no fibration from Z to P!, we have p(Z) = dim Z — 1 by Lemma 5.3.7.
Since p(Z) = p(X) — 1 = n — 1, we obtain that dim Z = n. By induction
hypothesis, the morphism p is equidimensional of relative dimension 1. Since
none of the curves in F' is contracted by g, the dimension of E = g(F) is
also larger than 1. Moreover, since h(f(F)) is a point, p(F) is also a point.
We obtain a contradiction. This completes the induction and the proof of
the lemma. O

Now we will prove Lemma 5.3.2 and Lemma 5.3.3.

Proof of Lemma 5.3.2. We will prove the lemma by induction on the relative
Picard number k of f. If f is a Mori fibration, then by Lemma 5.3.8, f is
equidimensional of relative dimension 1. Hence p(Y') = dim(Y")—1. Moreover,
Y is a Fano variety with locally factorial canonical singularities such that
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Nef(Y) = Psef(Y) by Lemma 5.3.1 and is smooth in codimension 2 by
Lemma 5.3.5.

Assume that the lemma is true for k£ < [ for some [ > 1. Now we consider
the case when k = [ + 1. There is a Mori fibration g : X — Z over Y since
Nef(X) = Psef(X) (see [Drul4, Lem. 4.4]). Hence, by induction, Z is a Fano
variety with locally factorial canonical singularities such that Z is smooth
in codimension 2, p(Z) = dim Z — 1 and Nef(Z) = Psef(Z). Moreover, the
relative Picard number of Z — Y is [. Thus, by induction hypotheses, Y is
a Fano variety with locally factorial canonical singularities such that Y is
smooth in codimension 2, p(Y) = dimY — 1 and Nef(Y) = Psef(Y'). This
completes the proof of the Lemma. O

Proof of Lemma 5.3.3. We will prove the lemma by induction on r. If r =1,
then the morphism f; is equidimensional of relative dimension 1 since f; X fo
is finite. By Lemma 5.3.4, f; is a Mori fibration. By Lemma 5.3.1 and Lemma
5.3.5, we obtain that W is a Fano variety with locally factorial canonical
singularities such that W is smooth in codimension 2, p(W) = dimW — 1
and Nef(W) = Psef(W). Assume that the lemma is true for » < k where
k > 1 is an integer.

Now we assume that 7 = k + 1. We write (P1)*1 = (P1)* x PL. Let
Qrey1 : (PHFL — (PYH* be the natural projection onto the product of the
first & Ps and let ppi; : (PY)¥T! — P! be the natural projection onto
the last factor. Let m : X — Y be the Stein factorisation of the product
fi X @es1 : X — W x (PY)*. Then the product 7 x pp; : X — Y x P!
is also a finite surjective morphism. Hence, by induction hypotheses, Y is
a Fano variety with locally factorial canonical singularities such that Y is
smooth in codimension 2, p(Y) = dimY — 1 and Nef(Y) = Psef(Y"). There
is a natural fibration ¢g; : ¥ — W induced by X — W. There is a morphism
g2 : Y — (PYH¥ induced by X — (P1)*. Since X — W x (PY)* x P! is finite
surjective, we obtain that g; X go : Y — W x (P')* is also finite surjective.
By induction hypotheses, W is a Fano variety with locally factorial canonical
singularities such that W is smooth in codimension 2, p(W) = dimW — 1
and Nef(W) = Psef(W). This completes the proof of the lemma.

X finite Y x Pl finite W x (Pl)k—"—l

surjective J surjective
finite

Y S W ox (PLF
surjective

5.4 Finite morphisms between Fano threefolds

In this section, we will prove some results on finite morphisms between
Fano threefolds. As a corollary, we prove Theorem 5.1.2. Recall that if X is
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a Fano threefold with Gorenstein canonical singularities, then

1.
W(X,0x(-Kx)) = —§K§< + 3.

In particular, —K% is a positive even integer (see |[Rei83, §4.4]). We will first
prove some lemmas.

Lemma 5.4.1. Let f : X — Y be a Fano fibration of relative dimension
1 between normal quasi-projective varieties. Assume that X is smooth in
codimension 2. Then there is an open subset U of Y whose complement has
codimension at least 2 such that f has reduced fibers over U.

Proof. By taking general hyperplane sections in Y, we can reduce to the case
when X is a smooth surface and Y is a smooth curve.

Let y be a point in Y and let £ = f*y. Then —Kx - F = 2. Since Ky
is Cartier and f is a Fano fibration, this implies that E has at most two
components. If F has two components C' and D, then both of them are
reduced. If E has one component C, then E is reduced for X is smooth (by
a similar argument of Proposition 3.2.3). O

Lemma 5.4.2. Let X be a normal threefold and let By = By = P2, Assume
that there are two equidimensional fibrations f1 : X — By and fo : X — By
such that f1 X fo: X — B X By is finite onto its image W. Assume that W
is of degree (p,q) such that p,q € {1,2}. Then W is normal.

Proof. Since W is Cohen-Macaulay, we only need to prove that it is smooth
in codimension 1. Let Z be the singular locus of W. Let p; : W — B; be
the natural projection for ¢ = 1,2. Then p; is equidimensional. Since W is
Cohen-Macaulay and Bj is smooth, this implies that p; is flat.

Since general fibers of f; : X — Bj are irreducible, general fibers of p;
are irreducible. Since W is reduced, general fibers of p; are reduced. Since
q € {1,2}, we obtain that general fibers of p; are smooth rational curves.
Since p; is flat, this implies that p;(Z) is a proper subvariety of Bj.

By symmetry, we can obtain that py(Z) is also a proper subvariety of
Bs. Thus codim Z > 2. This completes the proof of the lemma. O

Lemma 5.4.3. Let W be an ample normal hypersurface in P2 x P?. Assume
that W is a Fano variety with Q-factorial klt singularities. Then the natural
morphisms from W to P? are equidimensional.

Proof. Since W is ample, it has Picard number 2 by the Lefschetz theorem
(see [Laz04, Example 3.1.25]). Thus, if g : W — P2 is a natural projection,
then it is a Mori fibration. Since W is a Q-factorial klt threefold, this implies
that g is equidimensional. O
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Lemma 5.4.4. Let f : X — Y be a finite surjective morphism between
normal Q-factorial varieties. Assume that —Kx is big. Then —Ky is a big
divisor.

Proof. See [Drul4, Lem. 8.1]. O

Lemma 5.4.5. Let f : X — Y be an equidimensional Fano fibration of
relative dimension 1 such that X has Gorenstein canonical singularities and
Y s smooth. Then f a conic bundle. That is, at least locally on Y, X can
be embedded in P? x Y such that every fiber of f is a conic in P?.

Proof. Since —Kx is relatively ample, R f,(Ox(—Kx)) = 0 for all i > 0
by the Kawamata-Viehweg vanishing theorem (see [KMMS87, Thm. 1-2-5]).
Since f is equidimensional of relative dimension 1, for every y € Y, we have
h%(Xy, Ox,(—Kx|x,)) = 0. By [Har77, Thm. TIT.12.11], we obtain that, for
ally €Y,

R'f(Ox(—Kx)) ©® k(y) — H'(Xy, Ox,(—Kx|x,))
is an isomorphism, where k(y) is the residue field of y. Hence
h'(Xy. Ox,(~Kxx,)) = 0
for all y € Y. By [Har77, Thm. II1.12.11] again, we obtain that

f(Ox(=Kx)) ® k(y) = H°(X,, Ox,(—Kx|x,))

is an isomorphism for all y € Y.

Note that general fibers of f are smooth rational curves. Hence the Euler
characteristic of the restriction of @x (—Kx) on a general fiber of f is 3. Since
f is equidimensional, X is Cohen-Macaulay and Y is smooth, the morphism
f is flat. Since Ox(—Kx) is locally free on X, it is flat over Y. Thus the
Euler characteristic of the restriction of Ox(—Kx) on every fiber of f is 3
(see the proof of [Har77, Thm. I11.9.9]). This shows that f.(Ox(—Kx)) is a
locally free sheaf of rank 3 by [Har77, Cor. 111.12.9].

The problem is local on Y. Thus, we may assume that Y is affine and
f«(Ox(—Kx)) is a free sheaf of rank 3. By the main theorem of [AW93],
Ox(—Kx) is f-relatively generated. Since the sheaf f,(Ox(—Kx)) has rank
3, f*f«(Ox(—Kx)) induces a morphism, over Y,

p: X P2 xY.

Since f.(Ox(—Kx)) ® k(y) — H°(X,, Ox,(—Kx|x,)) is an isomorphism
and the invertible sheaf Oy, (—Kx|x,) is very ample for general y € Y, the
morphism ¢ is birational onto its image. Since —Kx is f-relatively ample,
the morphism ¢ is in fact an isomorphism onto its image.

Since —Kx has degree 2 on every fiber of f, we obtain that ¢(X,) C
P2x{y} is a conic for every y € Y. This completes the proof of the lemma. [
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Lemma 5.4.6. Let Zy, Zo be two surfaces isomorphic to Pt x P'. Let Z be
a normal hypersurface of degree (1,1,1,1) in Zy X Zs. Assume that there is
a finite morphism f : X — Z of degree d < 2 such that

- X is Fano threefold with Gorenstein canonical singularities ;

- the natural morphisms f1: X — Z1 and fo : X — Zsy induced by [ are
equidimensional fibrations ;

- KX = éf*KZ

Then f is an isomorphism.

Proof. Assume that f is of degree 2. Let D be the codimension 1 part of
the discriminant of f : X — Z. Then Kx is linearly equivalent to f*(Kz) +
f~YD). Since Kx and Kz are Cartier divisors, we obtain that f~(D) is
Cartier. Since f is finite, this implies that D is Q-Cartier. Then Kx is Q-
linearly equivalent to f*(Kz + 3D). Thus we have D = —K (it is here we
use the condition Kx = éf*KZ). In particular, D is Q-ample.

There are two natural morphisms from Z to P! x Z5 induced by the
natural projections from Z; x Zs to P! x Z5. Let ¢ : Z — P! x Z5 be one of
them. Since Z is of degree (1,1, 1, 1), we obtain that ¢ is birational. Moreover,
 is not an isomorphism since the Picard number of Z is 4 by the Lefschetz
theorem ([Laz04, Example 3.1.25]). Thus its exceptional locus is non empty.
Moreover, it is pure of codimension 1 since P! x Z5 is smooth. Hence the
morphism ¢ contracts at least one divisor. Since the natural fibration g :
Z — Zj factors through ¢, we obtain that there is a prime divisor H in Z
such that g5 H is reducible.

The fibration go is equidimensional since f, is. Every fiber of g9 is isomor-
phic to a divisor of degree (1,1) in P! x P1. Hence it is either a reduced fiber
isomorphic to P! or the union of two smooth rational curves which intersect
at one point. This shows that g5H has two components R;, Ry and every
fiber of g2 over H has two components.

x-1.,z7

N{Levery fiber is a divisor of degree (1,1) in P!xP?
2

Zo

The divisor f5H has at least two components. Since X has Gorenstein
canonical singularities and fo is equidimensional of relative dimension 1,
every fiber of fo has at most two components by Lemma 5.4.5. We obtain
that f3H also has two components Si,Ss. Assume that f(S;) = Ry and
f(S2) = Rg. Let b be any point on H and let G be the fiber of g, over b.
Then G has exactly two irreducible components by the previous paragrah.
We write G = G1 U Go, where G1 = GN Ry and Go = G N Ry. Let F be
the fiber of fo over b. Since the natural morphism F' — G is surjective, F' is
reducible. By Lemma 5.4.5 again, the fiber F' is reduced and is the union of
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two smooth rational curves F} and F5 which meet at one point. In particular,
G is not contained in D. We assume that F; C S; for i = 1, 2.

Both f|p, : F1 — G1 and f|p, : Fo — G2 are finite morphisms of degree
2. Since G\ G2 is simply connected, it contains a point which is in the branch
locus of f|m : Fi — Gj. Since g9, being an equidimensional fibration from
a Cohen-Macaulay variety to a smooth variety, is flat, G1\G3 is contain in
Zns, the smooth locus of Z. Moreover, over Z,, the morphism f is branched
exactly along Z,s N D by the Zariski purity theorem (see [Zar58, Prop. 2]).
Thus D meets G1\G2 at at least one point. By symmetry, D meets G2\G1
at at least one point. However, since D = —K 7 and ¢o is a Fano fibration,
the intersection number D - G is equal to 2. Thus we obtain that G and D
meet at exactly two points which are smooth points of G.

Since b is chosen arbitrarily, we obtain that DNR1N Ry is empty. However,
since R; N Ry is a subscheme of dimension 1 and D is Q-ample, DN R1 N Ro
is not empty. We obtain a contradiction. O

5.4.1 Finite covers of P! x P?

Proposition 5.4.7. Let X be a Fano threefold with Gorenstein canonical
singularities. Assume that there are two fibrations fi : X — P! and fo :
X — P? such that f = f1 x fo : X — P! x P? is finite. Assume that Kx
is numerically equivalent to the pullback of some Q-divisor in P! x P? by f.
Then d = deg f is at most 2. Moreover, if d = 2, then f is a double cover
which is branched along a divisor of degree (2,k), where k € {2,4}.

Proof. Let Ay, A2 be two divisors in X such that Ox (A1) = ffOpi(1) and
Ox(A2) = f50p2(1). By assumption, there are two rational numbers aj, as
such that —Kx = a1 41 + asAs.

We will first prove that d < 2. Note that

AjA3 =d and A3A; = A3 = A3 = 0.

Since fs is a Fano fibration, general fibers of fs are smooth rational curves.
This implies that —Kx - A3 = 2. Hence, a; = %. Moreover, we have

(_KX)3 = 3(11(1%/11/1% = 3a1a%d = 6a%.

Since —K x is a Cartier divisor, we obtain that 6a% € Z. Hence ay € Z.

We have (—Kx — agAq) = 2 A;. Hence the Cartier divisor —Kx — agAs
is numerically trivial on every fiber of f;. Since f; is a Fano fibration, we
obtain that —Kx — a2As is linearly equivalent to some integral multiple of
A; by [KMMS87, Lem. 3-2-5]. Thus 2 € Z and d < 2.

If d =1, then X = P! x P2, If d = 2, then assume that f is branched
along a divisor D of degree (p,q). Then by Lemma 5.2.4, X is Fano if and

only if p < 3 and ¢ < 5. Since f is a double cover, by Lemma 5.2.3, there
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is a line bundle .Z on P! x P2 such that %2 = ¢(D). Hence p, q are even.
Moreover, since f1, fo have connected fibers, we have p,q > 0. Hence f is
branched along a divisor of degree (2,2) or (2,4). This completes the proof
of the proposition. O

Lemma 5.4.8. Let X be a Fano threefold with Gorenstein canonical sin-
gularities. Assume that there is a fibration fi : X — P! and a projective
surjective morphism fo : X — P2 such that general fibers of fo have two
connected components. Assume that f = f1 x fo : X — Pl x P? is fi-
nite. Let Ay, Ay be two divisors in X such that Ox (A1) = fiOp (1) and
Ox(A2) = f50p2(1). Assume that there are two rational numbers ay, as such
that —Kx = a1A1 + a2 As. Then f is of degree 2 or 4 and a1, a2 € Z.

Proof. Since general fibers of fy have two connected components, the degree
of f is an even integer. Set deg f = 2d. Then we have

A1 A% =2d and A3A; = A3 = A3 = 0.

Note that each component of a general fiber of f5 is a smooth rational curve.
This implies that
—Kx-A5=2x2=4

Hence, a1 = %. Moreover, we have
(—Kx)® = 3a1a3 A1 A% = 6a1a3d = 1243,

Since (—Kx)? is an even integer, we obtain that 6a3 € Z. This implies that
as € 7.
We have (—Kx — azAs)

= %Al. As in the proof of Proposition 5.4.7, we
obtain that % € Z. Hence d < 2

and a; € Z. O

5.4.2 Finite covers of hypersurfaces of P? x P?

Proposition 5.4.9. Let X be a Fano threefold with Gorenstein canonical
singularities. Assume that there are two equidimensional fibrations f1 : X —

By and fo: X — By such that B1 = By = P? and that f1 X fo : X — By x By
s finite onto its image W. Assume that Kx is numerically equivalent to the
pullback of some Q-divisor in By X By by f1 X fo. Let f : X — W be the
natural morphism. Then there are exactly four possibilities :

(1) f is an isomorphism, X is a hypersurface of degree (1,1);

(2) f is an isomorphism, X is a hypersurface of degree (2,1) or (1,2);

(8) f is an isomorphism, X is a hypersurface of degree (2,2) ;

(4) W is a smooth hypersurface of degree (1,1), f is a double cover bran-

ched along a divisor which is the intersection of W and a divisor of
degree (2,2) in By X Bs.
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Proof. Let Ay, A2 be two divisors in X such that Ox (A1) = fy0p,(1) and
Ox(A2) = f30p,(1). By assumption, there are two rational numbers aj, as
such that —Kx = a1 A1 + a2As. Set d = deg f. Assume that W is of degree
(p,q) in By x By. We have

A2 Ay = dq and A; A3 = dp.

Moreover, A3 = A3 = 0. Since general fibers of f; and f» are smooth rational

curves, we have —Kx - A% =—Kx- A% = 2. Hence
2
alzd—pandagzd—q.
We have
24 1 1
—K% = 3a1a3A, A3 + 3atag AT Ay = ﬁ(q—Q + ?)

Since — K §( a positive even integer, the number

12 1 1
is a positive integer. Without loss of generality, we may assume that ¢ < p.

If d =1, then r is an integer if and only if ¢,p € {1,2}. The morphism
f X — W is the normalisation map. However, W is normal by Lemma
5.4.2. Thus f is an isomorphism.

If d = 2, then we can only have ¢ = p = 1. Since f; : X — Bj is
equidimensional, so is the induced projection p; : W — Bj. Hence every
fiber of p; is a line in P2, which is smooth. Since W is Cohen-Macaulay
and P? is smooth, the morphism p; is flat. Hence p; is a smooth morphism
and W is smooth. Since W is ample in P? x P2, the natural morphism
Pic(P? x P?) — Pic(W) is an isomorphism by the Lefschetz theorem (see
|Laz04, Example 3.1.25]). Similarly to the last paragraph of the proof of
Proposition 5.4.7, we obtain that f is branched along a divisor which is the
intersection of W and a divisor of degree (2,2) in By x Bs.

If d > 3, then we have
1 N 1)
¢ 2/

IT X
3 p

Hence eitherg=1orq,p<2. Ifg=p=1, thenr = fl—ﬁ. In this case, r is an
integer if and only d = 1 or 2. This is impossible since d > 2. If ¢ = 1 and
p = 2, then the previous inequality implies that r < % Thus 7 = 1 and p?
divides 12. In this case, we can only have p=2and 1 =1 = % -% = Cll—g. This
is impossible. If ¢ = p = 2, then r = d% is an integer if and only if d = 1.
This is also a contradiction.

Hence d < 2. This completes the proof of the proposition. ]
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Lemma 5.4.10. Let X be a Fano threefold with Gorenstein canonical sin-
gularities. Let By = By = P2, Assume that there are two equidimensional
projective morphisms f1: X — By and fo : X — By such that general fibers
of fi have two connected components fori=1,2 and f1 X fo : X — By X By
1s finite onto its image W . Let g; : X — Z; — B; be the Stein factorisation of
fi fori=1,2. Let Ay, Ay be two divisors in X such that Ox (A1) = f{0p,(1)
and Ox(Az) = f50p,(1). Assume that

- W is a normal hypersurface with isolated Q-factorial klt singularities

of degree (p, CI)7 where p,q € {1>2} 5
- Z1 and Zy are smooth ;

- there are two rational numbers a1, as such that —Kx = a1 A1 + asAs.

Let f : X — W be the natural morphism. Then the degree of f is 4 and
ap=azx=p=q=1.

Proof. Let h be the natural morphism Z; X Zs — Bj X B and let Z =
h*W. We will first show that that Z is normal. Since Z; is smooth, the
double cover Z; — Bj is a cyclic cover with respect to some isomorphism
(L1)%? = 0p,(D1), where D is a smooth divisor (see Lemma 5.2.3). Let
p1 : W — Bj be the natural projection. Let V' C Z; x By be the pullback of
WbyZl XBQ—>Bl ><B2. ThenV%WxBl Zl.

Since W is a Fano threefold with Q-factorial klt singularities, p; is an
equidimensional Fano fibration by Lemma 5.4.3. Moreover, since W has iso-
lated singularities, by Lemma 5.4.1, we obtain that p; has reduced fibers
over some open subset of By whose complement has codimension at least 2.
Thus V is normal and Cohen-Macaulay by Lemma 5.2.2.

L ——— 79

| |

V%WTBQ

| -l
Zl —_— Bl

Let po : W — By and ro : V. — By be the natural projections. Then
there is an open subset U of B such that codim Bo\U > 2 and py has
reduced fibers over U by Lemma 5.4.3. Note that V' — W is branched along
p1D1 € W and every component of pyD; C W is horizontal over By. Hence
there is an open subset U’ of U such that codim Bo\U’' > 2 and 79 has
reduced fibers over U’. Since Z is the pullback of V by Z; x Zy — Z1 X B,
we have Z =V xp, Z. As in the previous paragraph, Lemma 5.2.2 implies
that Z is normal.

Hence Z is the image of X in Z; X Zs. Let g : X — Z be the natural
morphism. Let d = deg f. Since Z — W is of degree 4, we obtain that
d € 47.. We have

A3 Ay = qd and A A3 = pd.



Wenhao OU 96

Note that every component of general fibers of f; is a smooth rational curve
for ¢ = 1,2. Hence we have

—KxA? = —KxA2=4.

This shows that
4 d 4
a1 = —, and ag = —.
1 pd’ 2 qd
We have
192 1 1
2

—Kg)( = 30,1(1%14114% + SG%GQA%AQ = 7(*2 + q

dz “p )

Since —K ;5( is a positive even integer, we obtain that

96, 1 1
is an integer. Since d € 47, this implies that d =4 or d = 8.

Since g : X — Z is finite surjective, we obtain that — Kz is big by Lemma
5.4.4. Note that Z; and Zs are smooth. By the adjunction formula and the
ramification formula, — Ky is big if and only if Z; — B; is branched along a
smooth conic for i = 1,2 and p = ¢ = 1. Hence Z; = Zo, = P! x P!, Z is of
degree (1,1,1,1) in Z; x Zy = (P1)* and Kx = %g*Kz. Hence by Lemma
5.4.6, we obtain that X = Z and d = 4. Thus a; = as = 1. O

Lemma 5.4.11. Let X be a Fano threefold with Gorenstein canonical sin-
gularities. Let By = By = P2, Assume that there are two equidimensional
projective morphisms f1 : X — By and fo : X — By such that general fibers
of fi have i connected components fori = 1,2 and that f1 X fo : X — By X By
s finite onto its image W. Assume that

- W is a normal hypersurface with isolated Q-factorial klt singularities
of degree (p,q), where p,q € {1,2};
- If X — Zs — Bs is the Stein factorisation of fo, then Zs is smooth ;

- Kx is numerically equivalent to the pullback of some Q-divisor in By X
By by f1 X fa.
Then the degree of f is 2 and g = 1.

Proof. Let Z = h*W, where h is the natural morphism B x Zs — Bj X
By. Then Z = W xp, Z5. Since W has isolated klt singularities, W —
B> has reduced fibers over some open subset of By whose complement has
codimension at least 2. By Lemma 5.2.3, Zo — By is a cyclic cover. Hence
by Lemma 5.2.2, Z is normal. Thus Z equal to the image of X in By X Zs.
Moreover, since —K x is ample, — Kz is big by Lemma 5.4.4. Thus ¢ = 1 and
Zy = P! x P! is a double cover of Bs, branched along some smooth conic.
Moreover, if d = deg f, then d € 2Z.
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J——W

| |

Z2 —_— B2
Let f: X — W be the natural morphism. Let A1, A2 be two divisors in
X such that Ox (A1) = f{0p, (1) and Ox(A2) = f50p,(1). By assumption,
there are two rational numbers a1, as such that —Kx = a1A1 + asAs. We

have
A2Ay = qd = d and A A3 = pd.

Note that every component of a general fiber of f; is a smooth rational curve
for ¢ = 1,2. Hence we have

~KxA?=2and — KxA3 =4.

This shows that

2
alzp—dandagza
We have 48 5
—~K% = 3a1a3A; A3 + 3atag AT Ay = ﬁ(l + P)

Since —K ;’( is a positive even integer, we obtain that

24 2
is an integer. Since d € 27Z, this implies that d = 2 or 6.

Assume that d = 6. Then a1 = 3273 and ag = % The hypersurface Z is of
degree (p,1,1) in By x Zy 2 P2 x P! x P! and X — Z is of degree 3. Let ¢, 1)
be the natural projections from X to P! induced by X — Z,. Let F and G
be general fibers of ¢ and 9 respectively. Then Ox(F + G) = Ox(Az). We
have

A2F =3, A\/FG =3p, G*F =0

and

2 1 1
—-Kx=—A1+-F+ =G.
X 3 1+ 3 + 3

By the adjunction formula, we have

2 1
K# = (Kx+F)*F= (%Al + gG)2F
4 4 4 4 4
= —AF+ —AGF=— +-=—(p*+1).
g2 1 Tyt 37 T3 3@

Since F is a surface with canonical singularities, K% € Z. This implies that
3 divides (p? + 1) which is impossible since p € Z.
Thus we have d = 2. O
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5.4.3 Proof of Theorem 5.1.2
Theorem 5.1.2 follows from Proposition 5.4.7 and Proposition 5.4.9.

Proof of Theorem 5.1.2. Let R, Ry be the two extremal rays of the cone
NE(X). Let f; : X — B; be the Mori fibration corresponding R; for i = 1, 2.
Then by Lemma 5.3.1, B; is a Fano variety with Picard number 1 for ¢ = 1, 2.
By symmetry, we may assume that dim By < dim Bs. Since R; N Ry = {0},
the morphism f; X fo : X — By X Bs is finite onto its image.

Assume first that B; = P'. Then B, is of dimension 2 since fi x fo is
finite. By Lemma 5.3.3, we have By = P2. Since X has Picard number 2, by
Proposition 5.4.7, X is one of the threefolds in Proposition 5.4.7. Since X
is locally factorial, if f is of degree two, then f is branched along a prime
divisor by [Drul4, Lem. 3.7]. Hence X is one of the threefolds of 1 — 3 of
Theorem 5.1.2.

Assume that dim By = 2. Then dim By = 2. By Lemma 5.3.2, we have
By = By = P?. Then X is one of the threefold in Proposition 5.4.9. Since X
is locally factorial, as in the previous paragraph, we can conclude that X is
one of the threefolds of 4 — 7 of Theorem 5.1.2. [

The following observation will be useful for the proof of Theorem 5.1.5.

Lemma 5.4.12. Let X be a threefold in 4 — 7 of Theorem 5.1.2. Let W
be the image of the natural morphism X — P? x P2. Then W is a normal
variety with tsolated locally factorial canonical singularities.

Proof. If the natural morphism X — W is an isomorphism, then there is
nothing to prove. If X — W is of degree 2, then W is smooth of degree (1,1)
in P? x P? by Proposition 5.4.9. O

5.5 Case of dimension 4

We will study Fano fourfolds X with locally factorial canonical singu-
larities such that X is smooth in codimension 2, p(X) = 3 and Nef(X) =
Psef(X). Consider the cone NE(X). For every face Vo of dimension 2 of
NE(X), there are exactly two faces V4 and V3, of dimension 2, whose inter-
sections with V5 are extremal rays of NE(X). The aim of this section is to
prove the following proposition.

Proposition 5.5.1. If X is a Fano fourfold with locally factorial canoni-
cal singularities such that X is smooth in codimension 2, p(X) = 3 and
Nef(X) = Psef(X), then there is a fibration from X to P!

We will assume the existence of Fano fourfolds which satisfy the following
condition (%) and we will obtain a contradiction.
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(*) X is a Fano fourfold with locally factorial canonical singularities such
that X is smooth in codimension 2, p(X) = 3 and Nef(X) = Psef(X).
Moreover, there is no fibration from X to P!

We will first show that if X is a variety satisfying (x), then it is a finite

cover of the intersection of two hypersurfaces of degree (0,2,2) and (2,2,0)
in P2 x P2 x P2.
Lemma 5.5.2. Let X be a Fano fourfold satisfying the conditions in Pro-
position 5.5.1. Assume that there is no fibration from X to P'. Let Vi, Va, V3
be three distinct faces of dimensions 2 in NE(X) such that V4 N Va and
Vo N V3 are extremal rays. Let f; be the fibration from X to B; corres-
ponding to V; (i = 1,2,3). Then B; = P? for all i and the morphism
fi X fax f3: X = P2 x P? x P? is finite onto its image Z. Moreover,
Z is the intersection of hypersurfaces D and E of degree (r,s,0) and (0, a,b)
such that r,s,a,b € {1,2}.

Proof. For all 7, since the base B; has Picard number 1 and there is no
fibration from X to P!, by Lemma 5.3.2, we obtain that B; = P?.

By By B3

Let g : X — Y be the Mori fibration corresponding to the extremal ray
Ris = V1N Vs, Then g is equidimensional of relative dimension 1 by Lemma
5.3.8. By Lemma 5.3.2, Y is a Fano threefold with isolated locally factorial
canonical singularities such that p(Y) = 2 and Nef(Y) = Psef(Y). Hence Y
is one of the threefolds in 4 — 7 of Theorem 5.1.2. Let D’ be the image of
f1 X fa : X — Bi1 x Bs. Since fi x fy factorises through g : X — Y, D’
is a hypersurface of degree (r,s) in By x By with r,;s € {1,2} by Theorem
5.1.2. By the Lefschetz theorem, the natural map Pic(B; x By) — Pic(D')
is an isomorphism (see [Laz04, Example 3.1.25]). Moreover, D’ has isolated
locally factorial canonical singularities by Lemma 5.4.12.

Let h : X — D’ be the natural morphism. Since Ri3 N V3 = {0}, the
morphism h x f3 : X — D’ x Bz is finite onto its image Z. Let D = D’ x Bs.
Then D is a hypersurface of degree (r,s,0) in By x By x Bs. Since Bs is
smooth, the product D is locally factorial (this follows from the fact that
the ring of polynomials with coefficients in a unique factorization domain is
still a unique factorization domain). Hence Z is a Cartier divisor in D.

Note that the natural morphism Pic(D’) x Pic(Bs) — Pic(D) is an iso-
morphism since Bz = P? is a simply connected manifold (see [Har77, Ex.
111.12.6]). Hence the natural morphism

Pic(B1) x Pic(B2) x Pic(Bs) — Pic(D)
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is an isomorphism. Since Z is a Cartier divisor in D, we obtain that there
is a hypersurface E of degree (c,a,b) in By X By X Bz such that Z is the
intersection of E and D.

Note that V3 N Vs is an extremal ray Ro3. As in the first paragraph, we
obtain that the image of the morphism fs X f3 : X — By x Bg is a proper
subvariety. Thus the image of the natural morphism Z — By x Bj is also a
proper subvariety. This implies that ¢ = 0.

Let E' C By x Bs be the image of fo x f3. Since fo x f3 factors through
X — Z, we obtain that E’ is of degree (a,b) in By X Bs. As in the second
paragraph of the proof, we have a,b € {1,2} and F = B; x E’. This completes
the proof of the lemma. O

Lemma 5.5.3. Let X be a Fano fourfold satisfying the conditions in Propo-
sition 5.5.1. Assume that there is no fibration from X to P'. Then the cone
NE(X) is not simplicial.

Proof. Assume the opposite. Since the cone NE(X) is simplicial, it has three
faces Vi, Vo, V3 of dimension 2 and three extremal rays Vi N Vs, VoN Vs and
V3N Vi. As in the proof of Lemma 5.5.2, for every face V;, there is a fibration
fi + X — B corresponding V;, where B; = P? (i = 1,2,3). Let Z be the
image of f1 X fo X f3 : X — B1 X By x Bs. Then Z is the intersection of
hypersurfaces of degree (r,s,0) and (0, a,b) and that r,s,a,b € {1,2}. Since
Vs NV # {0}, we obtain that the image of f; X f3 : X — By X B3 is a
proper subvariety. This shows that the intersection number of six divisors
in By x By x Bg of degree (1,0,0), (1,0,0), (0,0,1), (0,0,1), (r,s,0) and
(0, a,b) respectively is zero. Hence as = 0. This is a contradiction. O

Lemma 5.5.4. Let W = By x By x Bs, where B; = P? fori=1,2,3. Let D’
and E' be normal Q-factorial klt hypersurfaces in By X By and By x B3 of
degree (a,1) and (b,c) with a,b,c € {1,2}. Let D = D'xBg and E = By x E'.
In other words, D and E are hypersurfaces of degree (a,1,0) and (0,b,¢) in
W. Let Z be the intersection of D and E. If f1, fs are the natural projections
from Z to By, B3 respectively, then f = fi1 X f3: Z — By x B3 is not finite.

Proof. Let py, pa (resp. 2, q3) be the natural projections from D’ (resp. E')
to By and Bj (resp. By and Bs). Since D' and E’ are Q-factorial klt Fano
varieties, the morphisms p1, p2, g2, q3 are equidimensional by Lemma 5.4.3.
Thus p; : D’ — By is a well-defined family of cycles in By = P? (see [Kol96,
Def. 1.3.11]). Since D' is of degree (a, 1), the cycles in this family are lines in
Bs. Thus there exist a natural morphism ch from B; to the Grassmannian
of lines in By (see [Kol96, Thm. 1.3.21]), which is isomorphic to P2. Since
a # 0, the morphism ch is not constant. Note that By has Picard number 1.
This shows that ch is finite. Hence it is surjective and for any line L in B,
there is a point x in B; such that the fiber of p; over x is mapped to L by
the projection po.
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3 B1XE/

" x Bs)

In order to prove the lemma, 1t is enough to find two points x € By
and z € Bg such that f~1({(z,2)}) contains a curve. First we assume that
b= 1. Let L be a line in Bs. From the previous paragraph, there is a point
x € By such that p;'({z}) is mapped to L by py. Similarly, there is a
point z € Bs such that g3 ({z}) is mapped to L by go. Hence the curve
{(x,y,2) € W | y € L} is contained in f~'({(z, 2)}). Thus, f is not finite.

Now we assume that b = 2. Since ¢3 is equidimensional, g3 : £/ — Bs is
a well-defined family of cycles in By = P2. Hence there is a morphism from
B3 to the Chow variety of conics in P2. Since B3 has Picard number 1 and
¢ # 0, this morphism is finite onto its image. Note that there is a hyperplane
H in the Chow variety of conics in P2 which parametrize the singular conics.
Hence there is a point z € Bs such that the fiber of g3 over z is the union of
two lines L and L’. There is a point € B such that pl_l({:v}) is mapped
to L by p2. This shows that the curve {(z,y,2) € W | y € L} is contained
in f~1({(x,2)}). Hence f is not finite. O

Lemma 5.5.5. With the notation in Lemma 5.5.2, the numbers a,b,r, s are
all equal to 2. Moreover, if we write D = D' x B3 and E = By x E', then the
natural projections from X to D' and E' are equidimensional Mori fibrations.

Proof. By Lemma 5.5.3, the cone NE(X) is not simplicial. Hence V3 N V3 =
{0}. This implies that fi; x f3 : X — B; x Bs is finite surjective. Since
f1 x f3 factors through X — 7, the natural morphism Z — By X Bj is finite
surjective. By Lemma 5.4.12, D’ and E’ are Fano varieties with isolated
locally factorial canonical singularities. Thus by Lemma 5.5.4, we have s =
a=2.

Note that there is a face Vj of dimension 2 of NE(X) such that V5 # Vj
and V3NVy is an extremal ray. Let f; : X — By be the fibration corresponding
to V4. Then, as in Lemma 5.5.2, B, = P? and

f2><f3Xf4:X—>BQ><Bg><B4

is finite onto its image T'. Moreover, 1" is the intersection of hypersurfaces
of degree of (a,b,0) and (0, p,q) such that p,q € {1,2}. As in the previous
paragraph, we have b = p = 2. Similarly, we can obtain that r = 2.

As in the proof of Lemma 5.5.2, D’ is in fact equal to the image of
fix fa: X = P2xP2 Let g: X — Y be the Mori fibration corresponding
the extremal ray V3 N V5. Then X — Y — D’ is just the Stein factorisation
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of X — D'. Since D’ is of degree (2,2) and Y is one of the varieties in 4 — 7
of Theorem 5.1.2, we obtain that Y — D’ is an isomorphism. Hence X — D’
is an equidimensional Mori fibration by Lemma 5.3.8. Similarly, X — E’ is
also an equidimensional Mori fibration. O

Lemma 5.5.6. With the notation in Lemma 5.5.2, the image Z of fi1 X fa X
f3: X = By X By x B3 is normal.

Proof. By Lemma 5.5.5, we have Z = D N E, where D = D' x B and
E 2~ By x E' are hypersurfaces of degree (2,2,0) and (0,2, 2) respectively in
B1 X B2 X Bg.

By Lemma 5.4.12, E’ is a Fano threefold with isolated singularities.
Hence, by Lemma 5.4.1, there is an open subset U of By whose complement
is of codimension at least 2 such that the natural projection ¢o : B/ — Bs
has reduced fibers over U.

Z = (D/ X Bg)ﬂ(B1 X El)

/ \
D' £
p2
q2
By B B3

Consider the natural projection ¢ : Z — D’. Let a be a point in D’. Then
the fiber of ¢ over a is a conic in Bs. Moreover, if § is the image of a by the
natural projection po : D’ — Bs, then the fiber of go over 3 is isomorphic to
the fiber of ¢ over a.. Hence general fibers of ¢ are smooth conics in B3 and
the fibers of ¢ over p, 1 (U) C D’ are reduced.

Note that D’ is a Fano threefold with locally factorial canonical singu-
larities by Lemma 5.4.12. Thus ps : D’ — Bs is equidimensional by Lemma
5.4.3. Since codim By\U > 2, the complement of p, *(U) in D’ has codimen-
sion at least 2. Let

V={2¢Z| ¢ ({p(z)}) is singular at z}.

Then codimV > 2. Since Z is Cohen-Macaulay and ¢ is equidimensional,
¢ is flat over the smooth locus of D’. Since D’ is smooth in codimension 1,
this implies that Z is smooth in codimension 1. Thus Z is normal for it is
Cohen-Macaulay. O

Now we can prove Proposition 5.5.1.

Proof of Proposition 5.5.1. Assume the opposite. With the same notation as
in Lemma 5.5.2, there are fibrations f; : X — B; such that fi; x fa x f3:
X — By X By x Bj is finite onto its image Z. By Lemma 5.5.5, Z is the
intersection of D' x B and By x E’ such that D’ is normal of degree (2,2) in
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Bj x By and E’ is normal of degree (2,2) in By x Bs. Moreover, g : X — D’
is an equidimensional Mori fibration.

By Lemma 5.5.6, Z is normal. Let p; : Z — B; be the natural fibration
and let H; be a divisor in Z such that 0z (H;) = p;Op,(1) for i = 1,2,3.
Then

—K7,=H, — Hy + Hs.

Since X is a Fano variety, —Kyz is big by Lemma 5.4.4. Moreover, since
NE(X) is not simplicial by Lemma 5.5.3, as in the proof of Lemma 5.5.5,
f1 x f3 : X — Bj x Bs is finite. We obtain that p; X p3s : Z — By X Bs is
also finite. Hence H; + Hj is an ample divisor and the intersection number
—Kz(Hy + H3)? is positive. However, we have

—Kyz(H,+ H3)® = (H,+ Hs— Hy)(3H?Hs + 3H,H?)
= G6H?H2 —3H?HyHs — 3H,HoH3 = 0.

We obtain a contradiction. O

5.6 Finite morphisms between Fano varieties.

In this section, we will study some finite morphisms between Fano varie-
ties.

5.6.1 Finite morphisms over (P')"~2 x P?

Lemma 5.6.1. Let Y be a variety constructed by the method of Example
5.1.83.2. Set n = dimY . Assume that Y satisfies the conditions of Theorem
5.1.5. Let X be a Fano wvariety with Gorenstein canonical singularities such
that there is o finite surjective morphism f : X — Y. Assume that the
projection from X to (P1)"~2 induced by f has connected fibers. Then f is
an isomorphism.

Proof. From the construction of Y, we have two double covers
Y 55 7 2 (PH2 < P2,

where 19 : T — (P1)"~2 x P2 is branched along some prime divisor of degree
(2,...,2,0,...,0,2). In particular, T = (P')" x T’, where 0 < r < n — 2 and
T' is a double cover over (P!)"=2=" x P2 branched along a divisor of degree
(2,...,2,2). Note that Y — T’ — (P!)"=27" x P? is the Stein factorisation.
By Lemma 5.3.3, we obtain that 7" is smooth in codimension 2. Thus T is
smooth in codimension 2.

We write

(PH"2 x P? = (P13 x (P! x P?) = (P})" 3 x Z.
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Let p be the natural morphism from Y to (P!)"~3. Let F be the fiber of p
over a general point s € (P!)"~3. By restricting 71 and 72 over the point s,
we obtain two double covers

PRy 2N a7

where V is the fiber of the natural projection T — (P!)"~3. Note that
V = P! x V' where V' is a general fiber of T — (PY)"~2. Moreover, the
natural morphism V — P2 is a double cover branched along a conic. Since T
is smooth in codimension 2, V' is smooth. Thus V' — P? is a double cover
branched along some smooth conic by Lemma 5.2.3.

Hence V = P! x P! x P!. Assume that F — V is branched along a
divisor D. Then D is the pullback of some divisor of degree (2,2) in Z by
construction. Thus D is a divisor of degree (2,2,2) in V = P! x P! x P!,

Let G be the fiber of the natural morphism X — (P!)"~3 over s. Then
fla : G — F is also a finite surjective morphism. Since s is a general point,
G is a Fano variety with Gorenstein canonical singularities. By [Drul4, Thm.
1.3], f|g is of degree 1. Hence f is of degree 1 and is an isomorphism.  [J

Lemma 5.6.2. Let X be a Fano variety with locally factorial canonical sin-
gularities such that X is smooth in codimension 2, p(X) = dim X — 1 and
Nef(X) = Psef(X). Set n = dim X and assume that n > 3. Assume that
Theorem 5.1.5 is true in dimension smaller than n. Assume that there is
a fibration X — (PY)"2 and a fibration X — P2 such that the product
morphism f : X — (P1)"=2 x P? is finite surjective. Then X is one of the
varieties in Theorem 5.1.5.

Proof. Let Z = (P1)"~3 be the product of the last n—3 factors in the product
(P1)"=2. Note that if X — Y is the Stein factorisation of the projection

X = Z xP? = (PH" 3 x P?,

then Y is a Fano variety with locally factorial canonical singularities such
that Y is smooth in codimension 2, p(Y') = dimY —1 and Nef(Y") = Psef(Y)
by Lemma 5.3.3. Moreover, since X — (P')"~2 has connected fibers, by
Theorem 5.1.5 in dimension n — 1, Y is of the form (P!)*~! x Y7, where
s > 1 and Y7 is either a variety constructed by the methods of Example
5.1.3 or a variety in the list of Theorem 5.1.2. Thus ¥ — Z x P? is of
degree 1, 2 or 4. Moreover, by Lemma 5.3.3, Y] is a Fano variety with locally
factorial canonical singularities such that Y7 is smooth in codimension 2,
p(Y1) = dimY; — 1 and Nef(Y;) = Psef(Y7). Let f; : X — P! be the
projection to the first factor of (P1)"~2.

Let A;p is be a fiber of f1. Let Ao, ..., A,_o be the fibers of X over the
other P'. Let H be the pullback of a line in P? by the natural projection
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X — P2, Note that Kx is numerically equivalent to the pullback of some Q-
divisor in (P')"~2 x P? since p(X) = n — 1. Hence there are positive rational
numbers ay, ..., a,_9,b such that —Kx =a1A1 + -+ an_2A,_o + bH.

X— V=P xY—Y2P)y!xy,—7ZxP?

g

Pl

We will discuss on three case.

Case 1. Assume that the morphism Y — Z x P? is of degree 4. Then Y}
is a variety which can be constructed by the method of Example 5.1.3.2 and
X is finite over (P')* x Y;. The natural morphism X — (P')* is a fibration
since X — (P!)"~2 is. Let F be a general fiber of X — (P1)*. Then F is
a Fano variety with Gorenstein canonical singularities. Since X — (P1)?~2
has connected fibers, the natural morphism F — (P')"~2=% given by X —
Y7 — (P')"~275 is a fibration. By Lemma 5.6.1, the natural finite morphism
F — Y7 is an isomorphism. Hence X = (P!)® x Y; in this case.

Case 2. Assume that the morphism Y — Z x P? is of degree 2. Let
G be a general fiber of the natural projection X — Z. Then G is a Fano
threefold with Gorenstein canonical singularities. Moreover, the restriction
filg : G — P! is a fibration, general fibers of the natural morphism G — P?
have two connected components and the product G — P! x P2 is finite. Note
that Kg = a1A1|g + bH|g. By Lemma 5.4.8, G — P! x P2 is of degree 2 or
4 and b € Z. Hence f is of degree 2 or 4.

The Cartier divisor —K x — bH is numerically trivial on the fibers of the
Fano fibration X — (P1)"~2. Thus it is linearly equivalent to the pullback of
some Cartier divisor in (P!)"~2 by [KMMS87, Lem. 3-2-5]. This implies that
A1y .eeyUp_9 € 7.

Note that Y7 is a double cover of (P!)” x P2, branched along some prime
divisor of degree (2,...,2,k) such that £k € {2,4} and r+s = n — 2. If
deg f = 2, then X = (P1)* x V7. If deg f = 4, then X is a double cover of
V=P xY =(P)*xYi.

There is a natural double cover h : V — (P1)% x (P!)" x P2, induced by
Y7 — (P')” x P2, branched along a prime divisor of degree (0, ...,0,2, ..., 2, k).
By the ramification formula, Ky, is linearly equivalent to the pullback by A
of a divisor of degree (—2,...,—2,—1,...,—1,—=3+k/2) in (P})* x (P})" x P2.
Since p(V') = n—1, we may assume that the double cover X — V is branched
along a divisor D C V which is numerically equivalent to the pullback by h of
a divisor of degree (dy, ..., ds, d}, ...,d.., e) in (P')® x (P!)" x P2, By the rami-
fication formula again, Kx is linearly equivalent to the pullbakc of a divisor
of degree (—2+d;y/2,...,—2+ds/2,—1+d}/2,....,—14+d./2, -3+ k/2+¢€/2)
in (P1)* x (PY)" x P2. Since ay, ..., an_2,b € Z and —Kx is ample, we obtian
that dy,...,ds, e € {0,2} and that d} = ... = d,. = 0. Since X — (P})"~2 has
connected fibers, we obtain that e > 0. Hence e = 2. Since b > 0, we obtain
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that k = 2. Moreover, since X — P? has connected fibers, di, ..., ds are not all
zero. Note that V is simply connected and locally factorial. Thus D is in fact
linearly equivalent to the pullback of a divisor of degree (dy, ..., ds,0, ..., 0, e)
in (P1)* x P2 x (P!)". Note that D is a prime divisor by [Drul4, Lem. 3.7].
Thus we obtain that X = X; x Xs, where X; = (P1)! with s > ¢ > 0 and
Xy is a variety which can be constructed by the method of Example 5.1.3.2.

Case 3. Assume Y — Z x P2 is an isomorphism. Let G be a general
fiber of the natural projection X — Z. Then G is a Fano threefold with
Gorenstein canonical singularities. Moreover, fi|g : G — P! and the natural
morphism G — P? are fibrations, and the product h : G — P! x P? is finite.
By Proposition 5.4.7, h is of degree at most 2. Hence f is of degree at most
2.

If the degree of f is 1, then f is an isomorphism. If deg f = 2, then
by Lemma 5.2.3 and Lemma 5.2.4, f : X — (P1)"2 x P? is a double
cover, branched along a prime divisor of degree (dy,...,d,—2,k) such that
di,...,dn_2 € {0,2} and that k € {0,2,4}. Since X — (P1)"~2 and X — P?
have connected fibers, we obtain that k& # 0 and djy, ..., d,,—2 are not all zero.
Hence X = X7 x X, where X7 = (P!)! for some ¢t > 0 and X is a double
cover of (P1)"~2-¢ x P2 branched along an prime divisor of degree (2, ...,2,2)
or (2,...,2,4). O

5.6.2 Finite morphisms over hypersurfaces of (P!)"3 x P? x P2

Lemma 5.6.3. Let Y be a variety constructed by the method of Example
5.1.8.2 of dimension n. Then there 1s a finite surjective morphism, of degree
4,Y — (P12 x By with By = P2, Let X be a hypersurface in Y x Ba,
where By =2 P2, Assume that the image of X in By x By by the natural pro-
jection is a normal hypersurface W of degree (p,q) with isolated Q-factorial
kit singularities, where p,q € {1,2}. Then X is normal and —Kx is not big.

Proof. There is a natural finite surjective morphism X — D, where
D= PHY" 2 x W C (P')"? x By x By

is a normal hypersurface. By the construction of Y, the natural morphism
Y x By — (P1)"=2 x By x By is the composition of the following two double
covers

Y x By -5 V x By - (P)"2 x By x By,

where V' — (P')"~2 x Bj is a double cover, branched along a prime divisor
of degree (0,...,0,2,...,2,2).

Note that the natural morphism D — (P1)"~2 x By is an equidimensional
Fano fibration since W — Bj is equidimensional by Lemma 5.4.3. Since W
has isolated singularities, D is smooth in codimension 2. There is an open
subset U in (P')"~2 x B; whose complement has codimension at least 2 such
that D — (P1)"2 x By has reduced fibers over U by Lemma 5.4.1. Note
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that V — (P1)"~2 x By is a cyclic cover branched along some prime divisor
and that
h*D = D X(]P’l)"72><Bl V.

Hence, h* D is normal Cohen-Macaulay by Lemma 5.2.2. Moreover, h*D — V
also has reduced fibers over some open subset of V' whose complement has
codimension at least 2. Similarly, by Lemma 5.2.2 again,

¢*(h*D) = (W*D) xy Y

is also normal. Hence, X = ¢*(h*D) and it is normal.
X = g¢*(h*D) ——h*D——— D

]

Y 1% (PH"=2 x By
Let Ay, ..., Ap_o be the fibers of the natural projections from X to the
factors P!. Let H; be a divisor in X which is the pullback of a line in B; for
i =1,2. Then by the adjunction formula, we have

—Kx EAl—l-"'—I—An,Q—l-(l—p)H1+(3—q)H2.
Since p > 1, —Kx is not big. ]

Lemma 5.6.4. Let X be a Fano variety with locally factorial canonical sin-
gularities such that X is smooth in codimension 2, p(X) = dim X — 1 and
Nef(X) = Psef(X). Set n = dim X and assume that n > 4. Assume that
Theorem 5.1.5 4s true in dimension smaller than n. Assume that there are
fibrations X — (PY"=3, X — By and X — B such that By = By = P? and
that the product morphism X — (P1)"=3 x By x By is finite onto ils image.
Then X s one of the varieties in Theorem 5.1.5

Proof. Let W be the image of X — By X By and let X — W' — W be
the Stein factorisation. Since the natural morphism X — (P13 x W’ is
finite surjective, by Lemma 5.3.3, W' is a Fano threefold of Theorem 5.1.2.
Thus by Lemma 5.4.12, W is a normal hypersurface of degree (p,q), with
isolated locally factorial canonical singularities, such that p,q € {1,2}. Let
f:X — (PH"=3 x W be the natural morphism.

Let Ay, ..., A,_3 be the fibers of the natural fibrations from X to P!. Let
H; be the pullback of a line in B; by the fibration from X to B; for i =1, 2.
Since the Picard number of X is n — 1, there are positive rational numbers
ai,...,an_3,b1,by such that —Kx = a1A1 + - an_3A,_3 + b1 H1 + boHo.
Let F be the fiber of X — (P1)"=3 over a general point a € (P1)"3, then
—Kr = (b1Hy + baH3)|F. Moreover, F' is a Fano threefold with isolated
Gorenstein canonical singularities and the natural morphism F' — W is
finite.
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Let X — Y be the Stein factorisation of X — (P1)"=3x By. Then X — Y
is a Mori fibration of relative dimension 1 (see Lemma 5.3.4). By Lemma
Lemma 5.3.1, Y is a Fano variety with locally factorial canonical singularities
such that p(Y) = dimY — 1 and Nef(Y') = Psef(Y'). The fibration X — Y
is equidimensional since (P)"™3 x W — (P1)"=3 x By is by Lemma 5.4.3.
Hence by Lemma 5.3.5, Y is smooth in codimension 2. Thus, by induction,
Y is one of the varieties in Theorem 5.1.5. In particular, Y — (P1)"=3 x By
is of degree 1, 2 or 4.

If it is of degree 4, then Y = (P!)" x X’ where r > 0 and X' is a variety
which can be constructed by the method of Example 5.1.3.2. Let S be a
general fiber of X — (PY)". Then S is a Fano variety. If T is the image of S
in X’ x Bo, then by Lemma 5.6.3, T is normal and — K7 is not big. Thus S
can not be a Fano variety by Lemma 5.4.4. This is a contradiction. Hence the
degree of Y — (P1)"=3 x By is 1 or 2. Similarly, fibers of X — (P1)"~3 x By
have at most two connected components.

We will discuss on four cases.

Case 1. Assume that the projection X — (P')"~3 x B; is a fibration for
i = 1,2. Then the natural projections from F' to B; and Bs are fibrations.
By Proposition 5.4.9, the finite morphism F — W is of degree 1 or 2.

If this degree is 1, then f : X — (P1)"=3 x W is an isomorphism. If the
degree of F' — W is 2, then f is a double cover. Moreover, W is smooth of
degree (1,1) in By x By by Proposition 5.4.9. Note that there is a natural iso-
morphism Pic((P!)"~3 x By x By) = Pic((P*)" 3 x W). By Lemma 5.2.3 and
Lemma 5.2.4, f is branched along a prime divisor D which is the intersection
of (P)"=3 x W and a divisor of degree (dy, ..., d,_3, k,1) in (P1)"=3 x By x By
such that dy,...,d,—3,k,l € {0,2}. Since the two morphisms F' — Bj and
f — By are fibrations, k,l # 0. Hence X = X; x X3, where X7 = (P!)” with
some r > 0 and Xy is a variety which can be constructed by the method of
Example 5.1.4.1.

Case 2. Assume that X — (P')"~3 x By is a fibration and general fibers
of X — (P')"~3x By have two connected components. We recall that X — Y
is the Stein factorisation of X — (P1)"~3 x B;. Then Y = (P!)" x Y7, where
r > 0 and Y] is a variety which can be constructed by the method of Example
5.1.3.1 or a variety of Theorem 5.1.2.2 and Theorem 5.1.2.3. If ' — Z; — B3
is the Stein factorisation, then Z; is isomorphic to the fiber of Y — (P1)"—3
over . Since Y is smooth in codimension 2, Z; is smooth. Thus F' satisfies
the conditions in Lemma 5.4.11. This implies that p = 1 and FF — W is of
degree 2. Thus X — (P1)"3 x W is of degree 2.

Let V be the pullback of (P')"~3 x W by the natural morphism Y x
By — (Pl)”’?’ X B1 X Bs. As in the proof of Lemma 5.6.3, V' is normal.
Since X — (P1)"=3 x W is of degree 2, we obtain that X = V. Since X
is a Fano variety, we obtain that the double cover Y — (P1)"=37" x By is
branched along some divisor of degree (2, ...,2,2). Hence X = X; x X9, where
X1 = (P)" and X3 is a variety which can be constructed by the method of
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Example 5.1.4.2.

Case. 3. Assume that X — (P')"~3 x B is a fibration and general fibers
of X — (P1)"3 x By have two connected components. By symmetry, we can
reduce to the second case.

Case 4. Assume that general fibers of the two projections X — (P1)"73 x
Bi and X — (P1)"~3 x By have two connected components. As in the second
case, if ' — Z; — B is the Stein factorisation for ¢ = 1,2, then Z; and Z5 are
smooth. Hence F' satisfies the conditions in Lemma 5.4.10. The morphism
F — W is of degree 4 and p = ¢ = by = by = 1. Hence the morphism
X — (P 3xW is of degree 4. Moreover, — K x —by Hy —by Hs is numerically
trivial on the fibers of the Fano fibration X — (P')"~3. Thus we obtain that
1y ey O3 € 2.

We recall that X — Y is the Stein factorisation of X — (P!)"=3 x By.
Then we have Y = (P!)” x Y7, where r > 0 and Y] is a variety which can
be constructed by the method of Example 5.1.3.1 or a variety of Theorem
5.1.2.2 and Theorem 5.1.2.3. Let V be the pullback of (P1)"~3 x W by the
natural morphism Y x By — (P')"~3 x By x By. Note that (P)" 3 x W —
(P1)"=3 x By has reduced fibers over some open subset of (P1)"~3 x B; whose
complement has codimension at least 2, for W is smooth in codimension 2
(see Lemma 5.4.1). Thus V is normal by the same argument as in the proof
of Lemma 5.6.3. Hence X — V' is a double cover.

X——V—sPH" 3 x W —— (P1)" 3 x By

|

Y —— (PHY" 3 x By

Similarly, there is an open subset U of (P')"~3 x By whose complement
has codimension at least 2 such that the (PH)"=3 x W — (P13 x By
has reduced fibers over U. The branch locus of V' — (P73 x W is the
intersection of (P1)"~3 x W and a divisor of degree (0, ...,0,2,...,2,2,0) in
(P1)"=3 x By x By. Thus this branch locus is horizontal over (P*)"~3 x Bs.
Hence, the natural morphism V — (PY)"=3 x By is a fibration and it has
reduced fibers over some open subset U’ C U such that codimU\U" > 2.
Thus the pullback of any prime divisor in (P')” x By by the fibration V —
(PYY" x By is reduced.

Assume that X — V is branched along some divisor D. Then D is a prime
divisor by [Drul4, Lem. 3.7] for X is locally factorial. Since aq, ..., an—3 € Z=g
and b; = by = 1, by the adjunction formula and the ramification formula, we
obtain that Y7 — (P1)"=3=" x By is branched along some divisor of degree
(2,..,2,2) and D is numerically equivalent to the pullback of a divisor E of
degree (dy, ...,dy,2) in (P')” x By by the natural projection V — (P!)" x By
such that dy, ..., d, € {0,2}. Since the pullback of any prime divisor in (P*)" x
By by the fibration V' — (P1)" x By is reduced, we have D = f*(f(D)) and
D is in fact linearly equivalent to the pullback of E.
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Since the projection from X to B is a fibration, we obtain that » > 1
and that dq, ..., d, are not all equal to 0. Hence we obtain that X & X7 x Xo,
where X7 = (P)! for some r >t > 0 and X» is a variety which can be
constructed by the method of Example 5.1.4.3. O

5.7 Proof of Theorem 5.1.5

We will first prove the following lemma.

Lemma 5.7.1. Let X be a Fano variety with locally factorial canonical sin-
gularities such that X is smooth in codimension 2, p(X) =dimX —1 > 3
and Nef(X) = Psef(X). Then there is a fibration from X to PL.

Proof. We will argue by contradiction. Set n = dim X. Assume that there
is no fibration from X to P!. Let V be a face of NE(X) of dimension n — 4.
Then there is a morphism X — Y corresponding to V. By Lemma 5.3.2, Y
is a Fano variety with locally factorial canonical singularities such that Y is
smooth in codimension 2, p(Y) = dimY — 1 and Nef(Y') = Psef(Y'). Note
that p(Y) = (n — 1) — (n — 4) = 3. Hence dimY = 4. By Proposition 5.5.1,
there is a fibration from Y to P! which induces a fibration from X to P!.
This is a contradiction. O

Now we can prove Theorem 5.1.5.

Proof of Theorem 5.1.5. We will prove by induction on the dimension of X.
If dim X = 3, then the theorem follows from Theorem 5.1.2. Assume that
the theorem is true in dimension smaller than n, where n > 4 is an integer.
Now we consider the case of dim X = n.

By Lemma 5.7.1, there is a fibration f; : X — P!. There is an extremal
ray R in NE(X) such that the class of any curve in X contracted by fi
is not contained in R. Let fo : X — Y be the fibration corresponding to
R. Then f = fi X fo : X — P! x Y is a finite surjective morphism. By
assumption, Theorem 5.1.5 is true in dimension smaller than n. Hence Y is
one of the varieties in Theorem 5.1.5 by Lemma 5.3.3. We have the following
two possibilities.

Case 1. The variety Y is a finite cover of (P1)"~3 x P? and f induces a
finite surjective morphism g : X — (P!)"~2 x P? such that the projections
from X to P! and the projection gs from X to P? induced by g are fibrations.
Let X 2% Z T (P1)"2 be the Stein factorisation of the natural projection
induced by g. Then Z is one of the varieties in Theorem 5.1.1 by Lemma
5.3.1 and Lemma 5.3.6.

If m is of degree at least 2, then we can write Z = Z; x Z3 such that
7y is a double cover of (P!)” for some > 3, branched along some prime
divisor of degree (2,...,2), and Z5 is one of the varieties of Theorem 5.1.1,
of dimension n — 2 — r. Let h; : X — Z; be the natural fibration. Let
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ha : X = X' be the Stein factorisation of the natural projection X — Z xP2.
Then, by Lemma 5.3.3, X’ is a Fano variety with locally factorial canonical
singularities such that X’ is smooth in codimension 2, p(X’) = dim X’ — 1
and Nef(X’) = Psef(X’). Hence it is one of the varieties in Theorem 5.1.5
by induction hypotheses. Let F' be a general fiber of ho. Then hy|p : F — Z;
is a finite surjective morphism. Since F' is a Fano variety with canonical
Gorenstein singularities, hy is an isomorphism by [Drul4, Thm. 1.3]. Hence
X = 71 x X' and it is one of the varieties in Theorem 5.1.5.

If 7 is of degree 1, then Z = (P')"~2. By Lemma 5.6.2, X is one of the
varieties in Theorem 5.1.5.

Case 2. The variety Y is a finite cover of (P1)"~% x W, where W is a
normal Q-factorial divisor of degree (p,q) in By x By = P? x P? such that
p,q € {1,2}. Moreover, f induces a finite surjective morphism g : X —
(PYH"=3 x W such that the projections from X to P! and the projections
from X to By and Bj induced by g are fibrations. Let X 2 Z - (P1)»—3
be the Stein factorisation of the natural projection induced by g. As in the
first case, if 7 is of degree at least 2, then X = Z; x X', where Z; is a double
cover of (P1)" for some r > 3, branched along some prime divisor of degree
(2,...,2), and

XX o PHr 3T xw

is the Stein factorisation. By Lemma 5.3.3 and induction hypotheses, X' is
one of the varieties in Theorem 5.1.5.

If 7 is of degree 1, then Z = (P')"~3. By Lemma 5.6.4, X is one of the
varieties in Theorem 5.1.5. O



Chapitre 6

Pluri-forms on rationally
connected surfaces

6.1 Introduction

It is known that for a smooth projective rationally connected variety
X, we have h%(X, (Q%)®™) = 0 for m > 0, see [Kol96, Cor. IV.3.8]. In
[GKKP11, Thm. 5.1|, it is shown that if a pair (X, D) is klt and X is ra-
tionally connected, then H°(X, Q[)T]) = {0} for m > 0, where Q[;(n} is the
reflexive hull of Q%. By [GKP14, Thm. 3.3|, if X is factorial, rationally
connected and has canonical singularities, then H°(X, (Q)[®™) = {0} for
m > 0, where (Q4)[®™ is the reflexive hull of (2} )®™. However, this is not
true without the assumption of being factorial, see [GKP14, Example 3.7]. In
this chapter, our aim is to classify rationally connected surfaces with canoni-
cal singularities which have non-zero reflexive pluri-forms. We will give two
methods to construct such surfaces (see Construction 6.1.2 and Construction
6.1.6) and we will also prove that every such surface can be constructed by
both of these methods (see Theorem 6.1.3 and Theorem 6.1.5). This gives
an affirmative answer to [GKP14, Remark and Question 3.8]

The following example is the one given in [GKP14, Example 3.7|.

Exzample 6.1.1. Let 7' : X’ — P! be any smooth ruled surface. Choose four
distinct points g1, g2, 3, g4 in P'. For each point ¢;, perform the birational
transformations of Construction 3.2.11. Then we get a rationally connected
surface  : X — P! with canonical singularities such that HO(X, (Q4)®2]) #
{0}

We will prove that every projective rationally connected surface X with
canonical singularities and having non-zero pluri-forms can be constructed
by a similar method (see Construction 6.1.2 below) from a smooth ruled
surface over P!.

112
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Construction 6.1.2. Take a smooth ruled surface Xy —% P! and choose
distinct points q1,...,q, in P! with r > 4. We perform a sequence of bira-
tional transformations as follows.

(i) For each ¢;, perform the birational transformations of Construction
3.2.11. We get a fiber surface m : X7 — P!, The non-reduced fibers of
T are mqi, ..., T qr-

(ii) Perform finitely many times this birational transformation : blow up
a smooth point on a non-reduced fiber and then blow down the strict
transform of the initial fiber. We obtain another fiber surface p : X* —
P! (see Lemma 3.2.12).

(iii) Starting from X*, perform a sequence of blow-ups of smooth points,
we get a surface X,.

(iv) Blow down some chains of exceptional (—2)-curves for X, — X* (this
is always possible by Lemma 3.1.5), we obtain a rational surface X.

Xe— X

blow—k Jf

X***%lefﬁXo

Nlva

Pl

Theorem 6.1.3. The surface obtained by Construction 6.1.2 is a rationally
connected surface which carries non-zero pluri-forms. Conversely, if X is a
projective rationally connected surface with canonical singularities such that
HO(X, (Q4)®™]) £ {0} for some m > 0, then X can be constructed by the
method described in Construction 6.1.2.

Note that if X is a rational surface obtained by Construction 6.1.2, then
there is a fibration 7 : X — P! induced by my. This fibration has multiple
fibers over the points q1, ..., g, that we have chosen at the beginning of the
construction. In fact, these multiple fibers are exactly the source of non-zero
forms on X by the theorem below.

Theorem 6.1.4. Let X be a projective rationally connected surface with
canonical singularities and having non-zero pluri-forms. If X™* is the result
of @ MMP, then X* is a Mori fiber space over P'. Let p : X* — P! be the
Mori fibration. If r is the number of points over which p has non-reduced
fibers, then we have r > 4 and
HOCX, (@4)() 2= FO(X, (904.)[7) 2 HOE!, 61 (~2m + [511)

form > 0. In particular, for fited m, the dimension of m-pluri-forms depends
only on the number of multiple fibers of p.
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We note that both in Theorem 6.1.4 and in Construction 6.1.2, we meet
a surface named X*. We will see later (in the proof of Theorem 6.1.3 in
§6.4) that, by choosing a good MMP, these two surfaces are identical. The
points qi, ..., q, are exactly the points over which p : X* — P! has multiple
fibers. By the semistable reduction, we can find a Galois cover v : E — P!
such that Z — FE has only reduced fibers, where Z is the normalisation of
X* xp1 E. Let Y be the normalisation of X xp1 E. The following theorem
shows that we can always choose a finite Galois cover v which has degree
4 and the pluri-forms on X are exactly the G-invariant pluri-forms on Y,
where G is the Galois group of 7.

Theorem 6.1.5. Let X be a projective rationally connected surface with
canonical singularities and having non-zero pluri-forms. Let w be the compo-
sition of X — X* — P'. Then there is a commutative diagram

Yy T

— X
4:1 cover
W’J{ lﬂ'

E— P!
4:1 cover
such that E is a smooth curve of positive genus and Y is a projective surface
with canonical singularities. Both v and T' are Galois covers with Galois
group G :=7/27 x Z.J]2Z and T is étale in codimension 1. Moreover, for all

m >0, we have HO(X, (Q4)1m) = HO(Y, (@) )l#m)6 = HO(E, (Q})2m)C.

Note that Y is not rationally connected since FE is not rationally connec-
ted. This theorem shows that every projective rationally connected surface
with canonical singularities which has non-zero pluri-forms can be construc-
ted by the following method.

Construction 6.1.6. Let Y be a projective surface with canonical singu-
larities and let G be a finite subgroup of Aut(Y’) whose action is étale in
codimension 1. Assume that there is a G-invariant fibration «’ from Y to
a smooth curve E of positive genus such that E/G = P! and that general
fibers of n" are smooth rational curves. Let X = Y/G. Then X is rationally
connected (see [GHS03, Thm. 1.1]) and H°(X, (Q%)®™) # {0} for some
m > 0.

As a corollary, we obtain the following result.

Theorem 6.1.7. If S is a Fano surface which has canonical singularities,
then for all m > 0, h%(S, (QL)Em)) =0 .

At the end of the chapter, we prove the following theorem.

Theorem 6.1.8. Let X be a projective surface with canonical singularities.
Then hO(X, (Qﬁ()[@)m}) = 0 for all positive m if and only if the smooth locus
of X is rationally connected.
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Throughout this chapter, we will work over C. If p : X — B is a fibration
from a normal variety to a smooth curve and the non-reduced fibers of p are
p*z1,...,p%2., then the ramification divisor of p is the divisor defined by

R= p*z1 + - +p*ZT’ - (P*Zl + - +p*z7“)red-

6.2 Vanishing theorem for Fano varieties with Pi-
card number 1

In this section, we will prove the following theorem.

Theorem 6.2.1. Let X be a Q-factorial kit Fano variety with Picard number
1. Then hO(X, (Q4)®™)) =0 for any m > 0.

Proof. We may assume that dim X > 1. We will argue by contradiction.
Assume that there is a positive integer m such that H°(X, (Q%)®™]) £ {0}.
Let H be an ample divisor on X.
Since HO(X, (Q%)®™) £ {0} for some m > 0, we have an injective
morphism of sheaves
Ox — (Q%)1Fm,

This shows that
P (Q5)P™) > pg (0x) = 0.
By Proposition 1.2.3, we have umax(Qm) m~Lumar ((QL ylemly > o,
Therefore, there is a non-zero saturated coherent sheaf % C Q[l] such

that pp(#) > 0. Observe that rank.# < dim X, otherwise .# = Q[)lf] and
det # = Kx. Thus pug(%#) < 0, a contradiction.

We have two possibilities, either puy(-#) > 0 or pu(#) = 0.

Case 1. Assume that pg(.#) > 0. Since X has Picard number 1, det .Z is
ample and its Kodaira-Ilitaka dimension is dim X. However this contradlcts
Bogomolov-Sommese vanishing theorem (see [Gral), Cor. 1.3]).

Case 2. Assume that pp(F) = 0. Let 4 =det.#. Then ¢ - H(dmX-1) —
0. Since X is Q-factorial and klt, by [AD14, Lem. 2.6], there exists an integer [
such that (¢®!)** is isomorphic to Ox. Let m be the smallest positive integer
such that (#®™)** = ¢x. Let ¢ : Z — X be normalisation of the cyclic cover
with respect to (99™)** = Ox (see [KM98, Def. 2.52|). Then (¢*¥4)** = 0.
Since ¢ is étale in codimension 1, Z is also kit by [Kol97, Prop. 3.16] and
—Kz = ¢*(—Kx) is ample. Thus Z is rationally connected by [HMO07, Cor.
1.3 and 1.5]. And there are natural injective morphisms

(9)" = (q*Q[;(ankf’])** o Q[Zrankﬁ].

Hence we have an injection 07 — Q[;nk'(}], but this contradicts [GKKP11,
Thm. 5.1]. O
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6.3 Proof of Theorem 6.1.4

We will first prove Theorem 6.1.4. Let X be a projective rationally
connected surface with canonical singularities which carries non-zero pluri-
forms. Run a MMP for X. We will get a sequence of divisorial contractions

X=Xg—> X1 > =2 X,=X"

Note that K x+ is not nef. Thus the surface X™* is a Mori fiber surface over
P! by Theorem 6.2.1. Let p : X* — P! be the Mori fibration. Let f : X —
X* be the composition of the sequence of the birational morphisms above
and let 71 = po f : X — P!. Then for any m € N, there is an injection
HO(X, () — m7O(Xx*, (0L.)®™]) by the following lemma.

Lemma 6.3.1. If o : Y --» Y’ is a birational map between normal projective
varieties such that o' does not contract any divisor, then we have a natural
ingection HO(Y, (QL)1E™) — HO(Y' (QL)IE™]) for any integer m > 0.

Proof. Since the birational map ¢! : Y’ --» Y does not contract any divi-

sor, it induces an isomorphism from an open subset W’ of Y’ onto an open
subset W of Y such that codim Y"\W' > 2. By Proposition 1.2.1, we have
HOY', (Q)emly = HO(W' (Q,)[®™]) for any m > 0. Moreover, since W
is an open subset of Y, we obtain H°(Y, (Q})1®™)) — HO(W, (04,,)lm]) =
HOW', (Qf,)Em) =2 FOY7, (QL,)1#m]) for all m > 0. O

6.3.1 Source of non-zero reflexive pluri-forms

In this subsection, we will find out the source of non-zero pluri-forms on
X*. Let U be the smooth locus of X*. Then the morphism of locally free
sheaves on U

P — Qp
factors through
¢ p* O @ Oy(R) = Qf

where

R=) p'z—(p"2)red

zePl!

is the ramification divisor of p. Let V' be the largest subset of U such that for
any point € V, the evaluation of ¢ at z is injective. Then codim X*\V > 2.
By Proposition 1.2.1, this implies that

HO(X", (2) ™) = HO(V, (2))*™)

for any m € N.
Consider the exact sequence of sheaves on V'
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0—p*Qp ® Ov(R) - N, =4 =0

where ¢ is isomorphic to Q%,/Pl /torsion. Note that p*Ql, ® Oy (R) — Q, is
an injection of vector bundles over V. Hence, ¢ is locally free. Then there is
a filtration (see Lemma 6.3.4 at the end of this subsection) over V

(Q)*" =F9 2 F12--- 2 F
such that for every i € {0,...,s — 1} and
T Fit1 = 9%% @ (p* Qb @ Oy (R))PMm—a)
where 0 < a; < m is an integer. Moreover, we have
Fs = (p*Qﬂﬂ ® Oy(R))®™ = (p*Q]%ﬂ)(@m ® Oy (mR).
Lemma 6.3.2. With the notation above, there 1s a natural isomorphism
HO(X*, (Q4.) 7)) 2 HO(PL, Gp1 (=2m) @ p. Ox-(mR))
for allm > 0.

Proof. Fix some m > 0. For a general point z € P!, the support C' of the
fiber p*z is isomorphic to P! and is contained in V. Since p is smooth along
C, we have

Y|c = 0o(~2) and (p"Qh © Oy (R))|c = Oc.

Thus (%;/Zi+1)|c is isomorphic O¢(—2a;) for ¢ < s. Since a; > 0, we
obtain that h®(V,.%;/.%;11) = 0 and HY(V,.%;) = H°(V,.%;41) for i < s.
This implies that

HO(V, (Q4)%™) = H(V, (p* Q)™ @ Oy (mR)).
By Proposition 1.2.1, the isomorphism above induces an isomorphism
HO(X*, (Q4)F) = HO(X*, (5" 02h)®™ © Ox- (mR)).

We note that the right hand side of the last isomorphism is isomorphic
to HO(P!, p.((p*Q,)®™ ® Ox+(mR))). By the projection formula, it is iso-
morphic to H(P!, (Q3,)®™ @ p.Ox+(mR)). Hence

HO(X*, (Q%)®) = HOPY, Opi (—2m) @ p.Ox-(mR)).
O]

Note that p,Ox+(mR) is a torsion-free sheaf of rank 1 on P!. Thus it is
an invertible sheaf and there is a k € Z such that Op1(k) is isomorphic to
p«Ox~(mR). In the following lemma we will compute the integer k.
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Lemma 6.3.3. Assume that the non-reduced fibers of p : X* — P are over
21, -.-52r. Then for m € N, we have

p-Ox+(MR) = Oy ([] (21 + -+ 2,)) = O ([,

where [ ] is the integer part. In particular,
HO(X*, (Q)Em) = HO®', Gps (—2m + []r)).

Proof. Since any two points in P! are linearly equivalent, the problem is
local around every point z;. We may assume that » = 1 for simplicity.
From Proposition 3.2.3, we know that p*z; = 2R. We may assume that
p«Ox+(mR) = Op1(k - z1) and we have to prove that k = [%]

Note that v € HO(P!, Op1 (k- 21)) is just a rational function on P! which
can only have pole at z; with multiplicity at most k. Its pull-back to X is a
rational function which can only have pole along R with multiplicity at most
2k. Thus k is the largest integer such that 2k < m, i.e. k = [%] O

In the following lemma, we will prove the existence of the filtration on
(e,

Lemma 6.3.4. Let 0 — & — F — ¢4 — 0 be an exact sequence of locally
free sheaves on a variety X. Then for any m > 0, there is a positive integer
s and a filtration

FOM = Fy D F1D D Fy = £
such that for every i € {0,...,s—1}, the quotient F; | F;11 is isomorphic to
@GP & é"®(m_ai), where 0 < a; < m s an integer.

Proof. We will prove by induction. If m = 1, then the assertion is true (s = 1
and % = &). Assume that the assertion is true for m = k. Then we have a
filtration

FHR=Fg2F1 22 F =

such that .%;/.%;,1 is isomorphic to ¥®% ® &®k=ai) where a; > 0 is an
integer.
Consider the following exact sequence

0= & F o o0 L go z9 .
By hypothesis of induction, we have a filtration

EQFH*=ERFDERQFLD D EQF =D,
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Since ¥ @ .Z®* is the quotient of ZF®¥+1) by & @ F®k we have a filtration,
induced by the filtration on .Z®* above,

FOkH) — 30 S D DD EQ FOF

such that % /6,1 is isomorphic to ¥ ® (9%% @ &2(k=%)) and #,/(E ®
FEk) >~ g @ &9 Hence we obtain a fibration

FOEH) — 5 S A D . D HDERTD D ER T, = &)

which satisfies the conditions in the lemma. O

6.3.2 Back to the initial variety

We have studied X* and now we have to reverse the MMP and pull back
pluri-forms to the initial variety X. Our aim is to prove that

HO(X, (%)) 2 HO(X™, (Q-)=).

By Lemma 3.1.1, every exceptional divisor of f : X — X is over a
smooth point of X*. Now we can prove the isomorphism we mentioned at
the beginning of this subsection.

Lemma 6.3.5. The injection HO(X, (Q4)@™)) — HO(X* (Q4.)1®™]) is an
isomorphism.
Proof. Let X, — X be a projective birational morphism which is the mini-

mal resolution for the singular points of X lying over smooth points of X*.
Then there is a natural injection

HO(X,, Q%)) — HO(X, (Q%)Em).

By Lemma 3.1.1, f~! is an isomorphism around the singular points of X*.
Hence all exceptional divisors of X, — X™* are over smooth points of X*.
This implies that X, can be obtain from X* by a sequence of blow-ups of
smooth points (see [Har77, Cor. V.5.4]).

Xa
resoluty Xl(zwup

X— X"
There is a natural isomorphism H°(X,, (Q}(a)[@’m]) ~ HO(X*, (QL.)Em),
which implies that HO(X, (Q%)®™)) = HO(X*, (QL.)Em]). O

We can conclude Theorem 6.1.4.

Proof of Theorem 6.1.4. By Theorem 6.2.1, we have a Mori fibration p :
X* — P'. Lemma 6.3.3 and Lemma 6.3.5 show that

HOCX, (@4)Em) 2 HO(X*, (04.)2™) 2 BB, 3 (~2m + [2]r))
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6.4 Proof of Theorem 6.1.3

We will prove Theorem 6.1.3 in this section. If X is a projective rationally
connected surface with canonical singularities such that h%(X, (Qx)®™) # 0
for some m > 0 and X™ is the result of a MMP, then X and X™* are isomorphic
around the singular locus of X* by Lemma 3.1.1. The proof of Lemma 6.3.5
gives us an idea of how to reconstruct X from X*. First we construct the
surface X, (the surface defined in the proof of Lemma 6.3.5) which can be
obtained from X* by a sequence of blow-ups of smooth points. Then we blow
down some exceptional (—2)-curves for X, — X* and we obtain X. Note
that these are just the birational transformations mentioned in step (iii) and
(iv) of Construction 6.1.2.

In order to contract the (—2)-curves in the transformation above, we want
to use Lemma 3.1.5. Thus, we have to study the structure of the exceptional
set of X, — X™.

Lemma 6.4.1. Denote a germ of smooth surface by (0 € S). Let h : 8" — S
be the composition of a sequence of blow-ups of smooth points over 0 € S. Let
D be the support of h= 0. Then any (—2)-curve in D meets at most 2 other
(—2)-curves. In another word, the dual graph of D cannot contain a subgraph
as below such that each vertex of the subgraph corresponds a (—2)-curve.

1 2 4
° ° °
°
3

Proof. Assume the opposite. We know that we can reverse the process of
blow-ups of smooth points by running a MMP relatively to S. Thus these
four curves will be successively contracted during the MMP. The first one
contracted cannot be the curve corresponding to the point with label 2,
since after the contraction, the dual graph of the remaining curves is a tree
by Lemma 3.2.5. Without loss of generality, we may assume that the curve
corresponding to the point with label 1 is the first one contracted.

If the curve corresponding to the point 3 (or 4) is contracted secondly,
then the self-intersection number of the curve corresponding to the point 2
becomes at least 0. If the curve corresponding to the point 2 is contracted
secondly, a further contraction will also produce a curve with self-intersection
number at least 0.

However, this curve of self intersection at least 0 is over 0 € S, it must
have negative self-intersection number by the negativity theorem (see [KM98,
Lem. 3.40|). This leads to a contradiction. O

Note that, in the lemma above, the dual graph of D is without simple



Wenhao OU 121

cycles. Hence this lemma shows that every connected collection of (—2)-
curves in D has a dual graph as below

° e .- @
This is the dual graph of the exceptional set of the minimal resolution for

the singularity of type A;. By Lemma 3.1.5, it is possible to contract such a
chain of (—2)-curves.
Now we can prove Theorem 6.1.3.

Proof of Theorem 6.1.3. First let X be a projective rationally connected sur-
face with canonical singularities which carries non-zero pluri-forms. We will
prove that X can be constructed by the method of Construction 6.1.2. Let
f X — X* be the result of a MMP and let X, be the surface defined
in the proof of Lemma 6.3.5. The surface X can be obtained from X, by
a contraction of chains of (—2)-curves by Lemma 6.3.5, Lemma 6.4.1 and
Lemma 3.1.5. By the proof of Lemma 6.3.5, X, can be obtained from X* by
a sequence of blow-ups of smooth points. Since X* — P! is a Mori fibration
and X* has canonical singularities, X™* can be obtain from a smooth ruled
surface Xo — P! by the method of step (i) and (ii) of Construction 6.1.2 (see
Lemma 3.2.14). Thus X can be constructed by the method of Construction
6.1.2.

Now, let X be a surface constructed by the method of Construction 6.1.2.
We will prove that X carries non-zero pluri-forms. Since X* — P! is a Mori
fibration, by running a f-relative MMP, we obtain that X* is the result of
this MMP (This is why we use the same notation X*). By Lemma 6.3.3, we
know that X™* carries non-zero pluri-forms. By Lemma 6.3.5, this shows that
X carries non-zero pluri-forms. O

6.5 Proof of Theorem 6.1.5

We would like to prove Theorem 6.1.5 in this section. In |GKP14, Remark
and Question 3.8], for X in Example 6.1.1, we can find a smooth elliptic curve
E, a smooth ruled surface Y (which is X in [GKP14]) such that P! is the
quotient of E by Z/27Z and X is the quotient of Y by the same group. In
this section, we would like to construct such a surface Y for any rationally
connected surface X with canonical singularities and having non-zero pluri-
forms.

We will first construct the curve F.

Proposition 6.5.1. Let q1,...,q. be r different points on P! with r > 4,
then there exist a smooth curve E, a 4 : 1 Galois cover v : E — P! with
Galois group G = 7/27 x )27 such that v is exactly ramified over the g;’s
and the degrees of ramification are all equal to 2.
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Proof. Since r > 4, we can find an elliptic curve D and a2 : 1 cover a: D —
P! such that « is ramified exactly over qi, g2, ¢3, qs. Let a1 ({g:}) = {54, t;}
for i > 4 and let a1 ({g;}) = {s;} for i = 1,2.

If r > 4, then Op((r — 4)s1)®? is isomorphic to Op(> ;04 8i + D juyti)-
Thus we can construct a ramified 2 : 1 cyclic cover of E, with respect to the
line bundle &p((r — 4)s1),

B:E—D
such that E is smooth and f is ramified exactly over {s;,t; | i > 4} (see
[KMO8, Def. 2.50]).

If r = 4, then Op(s; — 52)®? = Op and we can construct a 2 : 1 cyclic
cover of E, with respect to the non-trivial invertible sheaf &p(s; — s2),

B:E—D

such that F is a smooth elliptic curve and (3 is étale.
Finally, in both cases, the composition

y=aof:E—P!

is a 4 : 1 cover which is exactly ramified over the g¢;’s and the degrees of
ramification are all equal to 2.

We will show that v is a Galois cover with Galois group G = Z/2Z x
Z/27. For simplicity, we assume that r > 4. For the case of r = 4, the
argument is similar. We only need to prove that we can lift the action of
Aut(D/P') = Z/27 on D to E. There is a natural action of Aut(D/P') on
Op. Let & = Op((4 —1)s1). Then .# can be regarded as an ideal sheaf on
D. Since s; is invariant under the action of Aut(D/P') on D, the sheaf .7,
as a subsheaf of @p, is stable under the action of Aut(D/P!) on €p. This
gives an action of Aut(D/P') on .#. Hence Aut(D/P!) acts (diagonally) on
the sheaf 0p @ .. There is a rational function A on D such that the divisor

associated to h is

Z S; + Zti + 2(4 — 7“)51.

i>4 i>4
By multiplying h, we have a morphism from .#®2 to ¢p. This morphism
gives an Op-algebra structure on Op & .. By construction, with this p-
algebra structure, the sheaf Op @ £ is isomorphic to B.0g as Op-algebras.
Note that since

Z si + Zti = a*(z gi) and 2(4 —7)s1 = ™ ((4 — r)q1),
i>4 i>4 i>4
the rational function h is the pullback of a rational function on P'. Hence
h is invariant under the action of Aut(D/P!) on Op. This shows that the
action of Aut(D/P') on Op@®.# is compatible with the &'p-algebra structure
induced by h. Thus we obtain an extension of the action of Aut(D/P!) on
Op to Og. This proves that we can lift the action of Aut(D/P') on D to E.
Since v is a Galois cover, we have E/G = PL. O]
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Remark 6.5.2. What we want in the lemma above is to construct a finite
morphism v : E — P! which is exactly ramified over the ¢;’s and all of the
ramified degrees are equal to 2. Note that the finite cover v we constructed
above is of degree four and the one in [GKP14, Remark and Question 3.8] is
of degree two. However, if r is odd, then the Hurwitz’s theorem (see [Har77,
Cor. IV.2.4]) shows that it is not possible to have a 2 : 1 cover which satisfies
the condition.

Now we will prove Theorem 6.1.5.

Proof of Theorem 6.1.5. Let qi,...,q be all of the points in P! over which
p: X* — P! has multiple fibers. Let v : E — P! be 4 : 1 cover constructed
in Lemma 6.5.1. Let Z be the normalisation of the fiber product X* xp1 F.
Let g: Z — F and © : Z — X* be the natural projections. Then O is étale
over the smooth locus of X* and ¢ has only reduced fibers.

We know that we can reconstruct X from X* (see §6.4). Since © : Z —
X* is étale over the smooth locus of X*, and the exceptional divisors of
X — X* is over the smooth locus of X*, every operation we do with X*
can be done in the analogue way with Z. After the operations, the surface
Y %5 Z we obtained is just the normalisation of X xp1 E. We have a
commutative diagram as below

Then I' is étale over the smooth locus of X and X = Y/G where G is the
Galois group of . The sheaf F*(Qg?m}) is a G-sheaf on X (the action of G on
X is trivial) which is reflexive (see [Har80, Prop. 1.7]). Then (T (QlZ™))¢

is also reflexive (see [GKKP11, Lem. B.4]) and is isomorphic to Q[)?m} since
I" is étale over the smooth locus of X. Thus we have

HO(Y, (25)")E = HO(X, (Q%)!™).
Moreover, for any m > 0, the natural morphism
HO(Y, (Q4)™) — H(Z, (2)=™)

is an isomorphism by the same argument as in the proof of Lemma 6.3.5.
Since every fiber of ¢ is reduced and general fibers of ¢ are smooth rational
curves, by the same argument as Lemma 6.3.2, we have

HO(Y, () @m)) 2= HO(B, (2})%™).
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Hence we obtain isomorphisms
HO(X, () = BO(Y, ()1F™) = HO(E, (QF)®™)¢.
This completes the proof of the Theorem. O

Now we want to compute the dimension of H°(X, (2%)1®™]) in function
of multiple fibers of X* — P! with the formula above. We will first prove
the following lemma.

Lemma 6.5.3. Let R be the ramification divisor of the finite morphism
v : W =V, then we have (v.Ow (R))® = Oy .

Proof. We have H(U, (70w (R))) = HY(y~1(U), Ow (R))¢ for any open
set U C V. Let 6 be a rational function on W such that 6 represents an
non-zero element in HO(y~Y(U), Ow (R))C. Since @ is G-invariant, it can
also be regarded as a rational function on U. Since 8 can only have simple

poles at the support of R on v~1(U), it cannot have any pole on U. Thus
(10w (R))C = 0. O

With the notation in the proof of Theorem 6.1.5, we have
1\®m ~ * m m
()™ = (v Opr (~2m + ()1 + -+ ) © Op((m — 2/ D)) Ry).

By the projection formula, we have
m

5 5

14(25)5™ 2 Gpr (~2m + [5]r) © 7. 0n((m — 2/ TDR,).

By taking the G-invariant part, we obtain
m

(3+(Q5)°™) = G (~2m + [

Ir) @ (105 ((m — 2/ F)R,))%.
The lemma above implies that (7. (Q%)%™)¢ = (Op1 (—2m + [%]r)) Hence
HO(E, (Q5)*™)% = HO(P', (7.(2) °™)°) = HO(B', O (~2m + [T]1)).

This shows that HO(X, (Q)E™)) = HO(P!, G (—2m + [%]r)) and we re-
cover the same formula as in Theorem 6.1.4
Now we will prove Theorem 6.1.7.

Proof of Theorem 6.1.7. Assume the opposite. If S — S* is the result of a
MMP for S, then S* is a Mori fiber space. By Theorem 6.2.1, S* has Picard
number 2 and we have a Mori fibration S* — P'. Let p be the composition of
S — S§* — P'. By Theorem 6.1.5, there is a smooth curve B of positive genus
and a finite morphism B — P! such that the natural morphism Sp — S is
étale in codimension 1, where Sp is the normalisation of S xp1 B. Hence Sp



Wenhao OU 125

is a Fano surface. Moreover it has canonical singularities (see [KM98, Prop.
5.20]). So it is rationally connected by [HMO07, Cor. 1.3 and 1.5]. Hence
B is also rationally connected, which is a contradiction since its genus is
positive. ]

Ezample 6.5.4. We will give some examples. Let h(m,r) = h°(P!, Op1 (—2m+
m

[5]7")) This is just the number of m-pluri-forms as a function of the number

r of multiple fibers of X* — PL.
If r =4, then h(m,4) =1 if m > 0 is even and h(m,4) = 0 if m is odd.
If r =5, then h(2,5) =2, h(3,5) =0 and h(m,5) > 0if m > 4.
If » > 6, then h(m,r) > 0 for m > 2.

6.6 Rational connectedness and pluri-forms

In this section, we will prove Theorem 6.1.8. We recall that a quasi-
projective variety is called rationally connected if for any two general point,
there is a projective rational curve passing through them. A smooth quasi-
projective variety is rationally connected if and only if it contains a very free
curve (see [Kol96, Thm. IV.3.7]). We will first prove some lemmas.

Lemma 6.6.1. Let A be a set of points in P*. If the cardinality of A is at
most 3, then there is a finite cover v : P! — P! such that v*b = 2(7*b)req for
any b e A.

Proof. If A has at most two elements, then there is a double cover 7 : P! — P!
which satisfies the property of the lemma.

Now we assume that A = {a,b,c}. There is a double cover ¢ : P — P!
which is branched along a and b. Then ¢~!({c}) has two elements z, y. There
is a double cover v : P! — P! which is branched along x and y. Let v = @o1).
Then ~ satisfies the property of the lemma. O

Lemma 6.6.2. Let p : X — P! be a Mori fibration, where X is a surface
with canonical singularities. Assume that p has multiple fiber over at most
three points of P1. Then for any open subset U of the smooth locus of X such
that codim X\U > 2, it is rationally connected.

Proof. Let A be the set of points of P! over which p has multiple fibers. Then
there is a finite cover v : P — P! such that 4*b = 2(7*b),eq for any b € A
by Lemma 6.6.1. Let Z be the normalisation of the fiber product X xp1 P!
with respective to v. Let g : Z — P! be the natural fibration. Then ¢ has
only reduced fibers. Let I' : Z — X be the natural projection. Then I ig
étale in codimension 1. In particular, Z has canonical singularities [KM98,
Prop. 5.20.
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Let W =T'~}(U). Then codim Z\W > 2. Let f : Z — Y be the result of
a g-relative MMP for Z. Then we obtain a Mori fibration ¢ : Y — P! which
has reduced fibers. Hence it is smooth by Proposition 3.2.3.

Note that there is an open subset V' of Y contained in f(W) such that
codimY\V > 2 and that f~! induces an isomorphism from V onto its image.
Since codim Y'\V > 2, and Y is smooth rationally connected, we obtain that
V is rationally connected by [Kol96, Exercise IV.3.7.1]. Hence W is rationally
connected and so is U. 0

Now we will prove Theorem 6.1.8.

Proof of Theorem 6.1.8. If the smooth locus of X is rationally connected,
then for all positive m, we have hO(X, (Q%)®@™]) = 0.

Now we assume that h%(X, (Q4)[®™) = 0 for all positive m and we will
show that the smooth locus of X is rationally connected. Let f : X — X*
be the result of a MMP for X. Since h%(X, (Q%)[®™) = 0 for all positive
m, X* does not carry any non-zero pluri-form neither by the same argument
as the proof of Lemma 6.3.5. By the abundance theorem for surfaces (see
[AFKM92, Thm. 11.1.3]), we obtain that Kx~ is not nef. Hence there is a
Mori fibration p : X* — B, where B is either a curve or a point. Since
X* does not carry any non-zero pluri-form, B cannot be a curve of positive
genus. Thus B is either isomorphic to P! or a point.

There is a smooth open subset U of X* such that codim X*\U > 2 and
that f~! induces an isomorphism from U onto its image. Moreover, we may
choose U in order that f~1(U) is contained in the smooth locus of X. In
order to show that the smooth locus of X is rationally connected, we only
need to show that U is rationally connected. We will discuss on two cases.

Case 1. Assume that B = P'. Then the Mori fibration p has at most
three multiple fibers by the same argument of the proof of Lemma 6.3.2.
Thus, by Lemma 6.6.2, U is rationally connected.

Case 2. Assume that B is a point. Then X* has Picard number 1 and
is a Fano surface. Then the smooth locus of X* is rationally connected by
[KM99, Cor. 1.6]. Since codim X*\U > 2, we obtain that U is rationally
connected by [Kol96, Exercise IV.3.7.1]

O



Chapitre 7

Pluri-forms on rationally
connected threefolds

7.1 Introduction

In Chapter 6, we classify all rationally connected surfaces X with cano-
nical singularities such that h°(X, (Q%)®™]) #£ 0 for some m > 0. In this
chapter, we will study the case of threefolds. We are interested in the struc-
ture of rationally connected threefolds X with klt singularities which carry
non-zero pluri-forms and we try to find out the source of these forms. If
f: X — X is the Q-factorial model (see [BCHM10, Cor. 1.4.3]), then f is an
isomorphism in codimension 1 and any pluri-form of X lifts to X. Hence we
can reduce to the case when X is Q-factorial. If the threefold has terminal
singularities, we prove the following result which is similar to Theorem 6.1.4.

Theorem 7.1.1. Let X be a projective rationally connected threefold with Q-
factorial terminal singularities. Then h°(X, (%)) # 0 for some m > 0
if and only if there is a fibration p : X — P! whose general fibers are smooth
rationally connected surfaces such that ) p m&’;)zgl > 2, where m(p, z) is
the smallest positive coefficient in the divisor p*z. Moreover, if it is the case,
then for all m > 0, we have

RO(X, (%)) = OBY, Opi (—2m + Y [(m(fr;f; ;)1)7”

1))

zeP!

In particular, the dimenston of m-pluri-forms depends only on the ramifica-
tion of p.

Construction 7.1.2. Thanks to Theorem 7.1.1, every rationally connected
threefold X with Q-factorial terminal singularities which carries non-zero
pluri-forms can be constructed as follows. There is a fibration ¢ : T" — B
from a normal threefold T' to a smooth curve B which has positive genus

127
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such that m(q,b) =1 for all b € B. There is a finite group G which acts on
T and B such that ¢ is G-equivariant and that B/G = P! and T/G = X.
For more details, see §7.4.

If the threefold X has canonical singularities, we also obtain some neces-
sary conditions for existence of non-zero pluri-forms.

Theorem 7.1.3. Let X be a projective rationally connected threefold with
Q-factorial canonical singularities which carries non-zero pluri-forms. Let
X —-» X* be the result of a minimal model program. Then there is always an
equidimensional fibration q : X* — Z with dim Z > 0 such that Kz + A is
Q-effective. The divisor A is defined by A =", %Dh where the D;’s
are all the prime divisors in Z such that ¢* D; is not reduced and m(q, D;) is
the smallest coefficient in ¢*D;. More precisely, we have two possibilities :

(1) The variety Z is a surface and q : X* — Z is a Mori fibration such that
there is a positive integer | such that [(Kz + A) is an effective divisor.

Moreover, the sections of Oz(I(Kz + A)) lift to sections of Q[)(?*Ql].

(2) The variety Z is isomorphic to P! and for any m > 0, we have

HOK (@4 )571) = HOB! O (-2 + 30 [ E

1))

zeP!

The difficulty in the case of canonical singularities is that the rational map
X --» Z is not always regular. And even it is, it may not be equidimensional.
If klt singularities are permitted for our threefolds, then there exist other
structures. We give an example of rationally connected threefold of general
type in Example 7.2.6.

Qutline of the chapter. The main objective of this chapter is to prove
Theorem 7.1.1. We will do this in several steps. First, we consider a projec-
tive rationally connected threefold X with Q-factorial canonical singulari-
ties which carries non-zero pluri-forms. Since it is rationally connected and
has canonical singularities, its canonical divisor Kx is not pseudo-effective.
Henceif f : X --+ X™ is the result of a MMP for X, then Kx+ is not pseudo-
effective neither. Thus there is a Mori fibration p : X* — Z where Z is a
normal variety of dimension less than 3. However, since X carries non-zero
pluri-forms, we have h°(X*, (Q%.)[®™) £ 0 for some m > 0. This implies
that dim Z > 0 by Theorem 6.2.1. Hence either dimZ = 1 or dim Z = 2.
We will treat these two cases separately in §7.4 and §7.5. If dim Z = 1, then
Z = P! and we will show that

—1
K[Pnl + Z m(p77 z) z
z€P? m(p, z)
is Q-effective, which is the same condition as in Theorem 7.1.1. If dim Z = 2,
then we will define the Q-divisor A on Z as in Theorem 7.1.3. We will prove
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that either K7 + A is Q-effective or there is a fibration X* — P! such that
we can reduce to the situation of §7.4. In the last section, we assume that the
variety X has terminal singularities. In this case, there is always a fibration
from X* to P! and we are always in the situation of §7.4. This fibration
induces a dominant rational map from X to P!. In the end, we will prove
that this rational map is regular and complete the proof of Theorem 7.1.1.

Throughout this chapter, we will work over C. Let p : X — Z be a
morphism and D be a prime Q-Cartier Weil divisor in Z. We define the
number m(p, D) by

min{coefficient of E in p*D | F is an irreducible component
of p*D which dominates D}.

By generic smoothness, there are only finitely many divisors D such that
m(p, D) > 1. Moreover, if p : X — Z is a morphism from a normal variety
to a smooth curve, then we define the ramification divisor R as

Z p*z - (p*z)red-

2€Z

7.2 Examples

We will give some examples of rationally connected varieties which carry
non-zero pluri-forms. First we will give an example of such varieties which
have terminal singularities. For the construction of this example, we use the
method of Theorem 7.4.2.

Ezample 7.2.1. Let C1 = {[a : b: ¢] € P? | a®+(a+c)b*+c = 0} be a smooth
elliptic curve in P2 Let X1 ={([a:b:c|,[z:y:2:t]) €EP2xP3 | a3+ (a +
c)b?+c3 =0, (a?+2b%+ )22+ (a® +3b% + ?)y? + (a® +4b> +3c2) 22 + (a® +
5b% + 6¢2)t? = 0}. Then X; is a smooth threefold and we have an induced
fibration p; : X7 — C4 such that all fibers of p; are smooth quadric surfaces
which are Fano surfaces. Moreover, X; has Picard number 2 by the Lefschetz
theorem (see [Laz04, Exmp. 3.1.23|). Hence p; is a Mori fibration. Moreover,
since pi is smooth, we have H°(X1, (2% )®?) = HO(C1, (Qf,)®?) by Lemma
7.3.2. Let G be the group Z/27Z and let g € G be the generator. We have an
action of G on P? x P? defined by g- ([a : b:¢c),[x:y:z:t) = ([a: —b:
c],[—x : —y : z : t]). This action induces an action of G on X; and an action
of G on C such that p; in G-equivariant. We have C1/G = P!. The action
of G on X is free in codimension 2 and it has exactly 16 fixed points. Since
G = 7Z/2Z, the action of G on X satisfies the condition of the first theorem
in [Rei87, §5|. Thus X = X /G is a threefold which has Q-factorial terminal
singularities. We have a Fano fibration p : X — P! induced by p;. Moreover,
the Picard number of X is not larger than the Picard number of X;. Hence
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p is a Mori fibration. Since general fibers of p are smooth quadric surfaces
which are rationally connected, X is rationally connected by [GHS03, Thm.
1.1]. In addition, HO(X, (2%)®%) = HO(Xy, (Q4)®H)Y since X1 — X is
étale in codimension 1. Moreover H%(CY, (Qlcl)‘g’z)G =~ HO(P!, Op1) = C (see
Lemma 6.5.3). Hence we have HO(X, (Q%)[®%) = C.

Remark 7.2.2. If X is a normal rationally connected threefold and if X™ is
the result of a MMP for X, then HO(X, (Q4)[®™)) may be strictly included
in HO(X*, (Q4.)!®™]) for some m > 0. For example, let X* — P! be the
variety described in the example above. Then X* carries non-zero pluri-
forms. Let X — X* be a resolution of singularities of X*. Then X* is the
result of a MMP for X since X* has terminal singularities. However, since
X is rationally connected and smooth, we have H°(X, (Q4)®™) = {0} for
any m > 0 (see [Kol96, Cor. IV.3.8]).

We will give two examples of rationally connected threefolds with cano-
nical singularities which carry non-zero pluri-forms. In both cases, there is
always a Mori fibration from the threefold X to a surface Z. In Example
7.2.3, the base Z is a surface with klt singularities such that Kz ~g 0. In
Example 7.2.5, the base Z is isomorphic to P? which does not carry any
non-zero pluri-form.

Ezample 7.2.3. Let C be the curve in P? defined by C = {[z] : 22 : 23] €
P? | 23 + 23 + 23 = 0}. There exists an action of group G = Z/3Z on C
defined by ¢ - [x1 : @2 : @3] = [§x1 : z2 : x3] where g is a generator of G
and £ is a primitive 3rd root of unity. Let Z; = C x C. Then there is an
induced action of G on Z; which acts diagonally. We have Z = Z,/G is
a klt rationally connected surface such that Kz is Q-linearly equivalent to
the zero divisor (see [Tot12, Example 10]). Let X; = P! x Z; and define an
action of G on P! by g-[y1 : y2] — [€y1 : y2] where [y; : 2] are homogeneous
coordinates of P!. Then there is an induced action of G on the smooth
threefold X; which acts diagonally. Since G = Z/3Z and this action is free
in codimension 2, this action satisfies the condition of [Rei80, Thm. 3.1].
Hence X = X;/G has canonical singularities. We also have a Mori fibration
X — Z whose general fibers are isomorphic to P!. Since Z is rationally
connected, so is X by [GHS03, Thm. 1.1]. Moreover, since K is Q-effective,
we have HO(X, (Q%)[®™) £ {0} for some m > 0 (see §4.2).

In the example above, the non-zero pluri-forms come from Kz, the ca-
nonical divisor of the base surface. In the following example, — Kz is ample.
However X still carries non-zero pluri-forms. These forms come from the
multiple fibers of the fibration X — Z. Before giving the example, we will
first introduce a method to construct non-reduced fibers.

Construction 7.2.4. We want to construct a fibration p from a normal
threefold T with canonical singularities to a smooth surface S such that
p*C = 2(p*C)yeq, where C is a smooth curve in S.
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Let Ty = P! x S where S is a smooth projective surface. Let py, ps be the
natural projections Ty — P! and Ty — S. Let C C S be a smooth curve and
let Cy = {2} x C be a section of py over C in Ty, where z is a point of PL.
Let Ey = p5C, which is a smooth divisor in Tp. We will perform a sequence
of birational transformations of Tj.

First we blow up Cj, we obtain a morphism 77 — Ty with exceptional
divisor F1. Denote still by Ey the strict transform of Ey in T3. If F' is a fiber
of Ty — S over a point of C, then F' = Fy U Fy where F; C E; are rational
curves and Kp, - F; = -1, B - F; = —1.

Now we blow up C1, the intersection of Ey and E;. We obtain a mor-
phism T, — T with exceptional divisor Ey. Denote still by Ey, E; the strict
transforms of Ey and F4 in Ts. If F' is any set-theoretic fiber of T, — S over
a point of C, then F' = Fy U Fy U Fy where F; C E; are rational curves and
KT2 'Fi :0, EZE = —2f01‘i=0,1, KT2 -F2 = —1, EQ'FQ = —1. Let qbe
the fibration To — S.

We will blow down E7 and Ej in T5. Let H be an ample Q-divisor such
that (H + Ep) - Fy = 0. Since Ey - F} = 0, there is a positive rational number
b such that (H + Eyg+ bE;) - F1 = 0. Moreover (H + Eyg+ bE) - Fy = 0 since
E1 - Fy = 0. Let A be a sufficiently ample divisor on S. Then the Q-divisor
D = ¢*A+ H 4+ Ey + bE; is nef and big. Moreover, any curve B which
has intersection number 0 with D must be contracted by 75 — S since A
is sufficiently ample. The curve B is also contained in Fy U F; since H is
ample. Since K, - Fy = K, - I} = 0, there exists a large integer k such that
kD — Kr, is nef and big. Then by the basepoint-free theorem (see [KM98,
Thm. 3.3]), there is a large enough integer a such that aD is Cartier and
|aD| is basepoint-free. The linear system |aD| induces a contraction which
contracts Fy and Ej.

By contracting Fy and E7, we obtain a threefold 7. And there is an
induced fibration p : T' — S such that p*C = 2(p*C)yeq. Note that Ty — T
is a resolution of singularities and K7, = f*Kp. Hence V has canonical
singularities.

Now we will construct the example.
Ezample 7.2.5. Let C = {[x : y : 2] € P? | 28 + 45 + 25 = 0} be a smooth
curve in P2. Then 2Kp2 + C is linearly equivalent to the zero divisor. Let
Xo = P! x P2. By the method of Construction 7.2.4, we can construct a
fiber space p : X — P? such that p*C = 2(p*C)req- Then X has canonical
singularities. Since general fibers of p are isomorphic to P!, X is rationally
connected by [GHS03, Thm. 1.1]. Moreover, since 2(Kp2 + 5 D) is an effective
divisor and p is equidimensional, we have HO(X, (Q})[®4) # {0} (see §4.2).

Note that in the three examples above, the variety X we constructed is
a rationally connected variety with canonical singularities. The divisor Kx
is not pseudo-effective and we always have a Mori fibration from X to a
variety Z. The non-zero pluri-forms of X come from the base Z. However,
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in the following example, the variety we construct is a rationally connected
threefold with klt singularities whose canonical divisor is ample. Some non-
zero pluri-forms come from its canonical divisor.

Ezample 7.2.6. Let X1 be the Fermat hypersurface in P* defined xg—i—x(f—i-' -+
2§ = 0. Then X; is a smooth threefold such that Ky, is ample. Moreover,
the Picard number of X is 1 by the Lefschetz theorem (see [Laz04, Exmp.
3.1.23]). Let G be the group Z/6Z with generator g. Define an action of
GonPtbyg-log: - : x4 = [wre : way : T2 @ a3 : 4], Where w is
a primitive 6th root of unity. This action induces an action of G on X;
which is free in codimension 1. Denote the quotient X;/G by X and the
natural morphism X; — X by 7. Then X has Q-factorial klt singularities
but does not have canonical singularities (see [Rei80, Thm 3.1]). Now we
will prove that X is rationally connected. First we will prove X is uniruled.
If w is a general point in X, then there is a point w; € X; such that
m(wy) = w and the first two coordinates of w; are all non-zero. There are
two hyperplanes in P4 passing through wy, Hy = {agza+asrs+asrs = 0} and
Hy = {baxo+bsxs+bsxy = 0}, such that the intersection C; = HiNHyN X is
a smooth curve of genus 10. Moreover, there are exactly 6 points on C1, given
by X1 N{xy = x3 = x4 = 0}, which are fixed under the action of G. Hence
mley 1 C1 — w(C1) = C is ramified exactly at those 6 points with degree 6.
By the ramification formula g(C) =1+27! x 671 x (2x10-2—6 x5) =0,
where ¢(C) is the genus of C. Hence C is a smooth rational curve. This
implies that X is uniruled. Since X has Picard number 1, from the lemma
below, we conclude that X is rationally connected.

Lemma 7.2.7. Let X be a normal projective variety which is Q-factorial.
Assume that the Picard number of X is 1. Then X is rationally connected if
and only if it is uniruled.

Proof. Assume that X is uniruled and let 7 : X --» Z be the MRC fibration
for X (see for example [Kol96, Thm. V.5.2|). We will argue by contradiction.
Assume that dim X > dim Z > 0. Then there is a Zariski open subset Z;
of Z such that 7 is regular and proper over Zy. Let C' be a curve contained
in some fiber of 7|z,. Let D be a non-zero effective Cartier divisor on Zj.
Let Ey = 7*D. Then Ej is a non-zero effective divisor on Xo = 7~ 1Z;. Let
E be the closure of Fy in X, then E is a non-zero effective Q-Cartier Weil
divisor on X. However, the intersection number of E and C is zero, which
contradicts the fact that X has Picard number 1. O

7.3 Preliminaries

In this section, we will prove some preparatory lemmas.
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Lemma 7.3.1. Let &/ — B — € be a complex of coherent sheaves on
a normal variety X. Assume that there is an open subset W of X with
codim X\W > 2 such that the induced sequence

0— ANw — Blw — Clw—0

is an exact sequence of locally free sheaves on W. If hO(X, o/®"[2]€®) = 0
for allt >0 and r > 0, then HO(X, 1)) = HO(X, &7[®™]) for all m > 0.

Proof. On W, we have H'(W, o/ |57 @ €|5¢) = {0} for all t > 0 and r > 0
by Proposition 1.2.1. Fix m > 0, by Lemma 6.3.4, we have a filtration

such that, for all 0 < i < s — 1, the quotient %;4+1/%; is isomorphic to
o [ @ €5t for some a; > 0. Since hO(X, /|5 @ €[5) = 0 for all
t>0and 7 >0, we have HO(W, %;) = H*(W, %;11) for 0 <i < s— 1. Thus

H' W, B|57) = HO (W, o |5).
By Proposition 1.2.1, we have HO(X, #1®™) = HO(X, o7[®m]), O

One of the applications of the lemma above is the following, which gives
a relation between pluri-forms and fibrations.

Lemma 7.3.2. Let p : X — Z be a morphism between normal varieties.
Assume that general fibers of p do not carry any non-zero pluri-form. Then
for all integer m > 0, we have

HO(X, (2%)®™) 2 HO(X, ((p* Q)= ™),

where (p*Q})% is the saturation of the image of p*Q, in Q[)l(].

Proof. We have an exact sequence of coherent sheaves 0 — .% — Q[)l(] -9 -
0 on X, where Z = (p*Q})*" and ¢ is a torsion-free sheaf. In particular,
% is locally free in codimension 1. Let V' be the smooth locus of Z and let
W = p~Y(V). If U is the largest open subset of W on which .#, Q% and
¢ are locally free, then codim X\U > 2 and we have an exact sequence
0— Zlu — Qf — 9|y — 0 of locally free sheaves on U.

If F is a general fiber of p|y, then .Z | is the direct sum of Op and ¥|F is
isomorphic to Q}; Since general fibers of p do not carry any non-zero pluri-
form, neither does F' by Proposition 1.2.1. Hence we have HO(U,ﬁ]%T ®
9|5 = {0} for all t > 0 and r > 0. By Lemma 7.3.1, we have an isomor-
phism from HO(U, Z|5™) to HO(U, (Q},)®™) for all m > 0. By Proposition
1.2.1, we have HO(X, (Q4)®) = HO(X, Z1®™]) for all m > 0. O
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Proposition 7.3.3. Let X be a projective threefold which has canonical sin-
gularities. Let X* be the result of a MMP for X and denote the birational
map X --+» X* by f. Let I be the normalisation of the graph of f. Then
there is a natural isomorphism H°(X, (Q%)®™) = HO(T, (QL)®™)) for all
m > 0.

Proof. Since there is a natural birational projection p; : I' = X, by Lemma
6.3.1, there is an injection from HO(T, (QL)®™)) to HO(X, (QL)E™]). Let
p2 : I' = X™* be the natural projection and let ox be a non-zero element in
HO(X, (Q4)[®™]). Since X, T and X* are birational, ox induces a rational
section or of (21)[®™ and an element ox« of HO(X*, (24.)®™]) (see Lemma
6.3.1). In order to prove that or is a regular section it is enough to prove
that or does not have pole along any pi-exceptional divisor. Let E be an
exceptional divisor for p;. Let C' C F be a curve which is exceptional for p;.
Then C is not contracted by ps since the graph of f is included in X x X*
and the normalisation map is finite. Hence Y = po(E) C X* is a curve. Note
that f~! is not a morphism around the generic point of Y. By Lemma 3.1.1,
X* has terminal singularities around the generic point of Y. Hence X* is
smooth around the generic point of Y since the codimension of ¥ in X™ is
2 (see [KM98, Cor. 5.18]). Moreover, since 7', X and X* are birational, the
form or is just the pullback of ox= by pa. Hence or does not have pole along
E. O]

7.4 Fibrations over curves

In this section, we will give a method to construct rationally connected
varieties which carry non-zero pluri-forms (Theorem 7.4.2). Together with
Theorem 7.1.1, we will see that every rationally connected threefold with
Q-factorial terminal singularities which carries non-zero pluri-forms can be
constructed by this method.

By Lemma 7.3.2, if general fibers of an equidimensional fibration p :
X — Z do not carry any non-zero pluri-form, then for all m > 0, we have
HO(X, () = gO(X, ((p*Ql)seh)[®™]). Moreover,

HO(X, ((p*QY)*)em) = HO(Z, p.((p"Qh) ) E™)).

Hence we would like to know what p.((p*Q})*™)[®™]) is. In the case when
Z is a smooth curve, this is not difficult to compute. Note that if R is the
ramification divisor of p, then ((p*QL)**)®@m = (p*QL)®™ @ Ox(mR) for
m > 0. By the projection formula, we have

p((p" Q)™ )E™) 2 (Q)*™ @ p.Ox (mR).

Hence it is enough to compute p,Ox(mR).
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Lemma 7.4.1. Let p : X — Z be a fibration from a normal variety to
a smooth curve. Let z be a point in Z. Let D = p*z — (p*2)reqa- Then

peOx(mD) = 07 (™ L2=V]2) for any m > 0.

Proof. The problem is local and we may assume that Z is affine. We know
that p.Ow (mD) is an invertible sheaf. If 0 is a section of p. Oy (mD), then it
is a rational function on Z whose pullback on W is a rational function which
can only have pole along p*z. Hence 6 can only have pole at z. Let d be the
degree of the pole, then the pullback of § in V' is a section of Oy (mD) if

and only if m(p, 2)d < m(m(p,z) — 1), that is, d < [%]. O

This relation between ramification divisor and pluri-forms gives us an
idea of how to construct rationally connected varieties which carry non-zero
pluri-forms. Note that if p : X — P! is a fibration such that general fibers of
p are rationally connected, then X is rationally connected by |GHS03, Thm.
1.1]. Moreover, if general fibers of p do not carry any non-zero pluri-form,
then from the discussion above X carries non-zero pluri-forms if and only
if (Q4,)®™ ® p.Ox(mR) has non-zero sections for some m > 0, where R is
the ramification divisor of p. However, Q%P,l > Opi1(—2) and p.Ox(mR) =
ﬁpl(zzepl[w}) since any two points in P! are linearly equivalent.

m(p,z)
; - ; ; m(p,z)—1
Hence X carries non-zero pluri-forms if and only if ) _p G 2 2

Now we will try to construct this kind of varieties by taking quotients.
Let T be a normal projective variety, let B be a smooth projective curve and
let G be a finite commutative group. Assume that there are actions of G on
T and B. Assume that there is a G-equivariant fibration ¢ : T — B. Let
pr: T — T/G, pgp : B — B/G be natural projections and let p : T/G —
B/G be the induced fibration. Let S;, i = 1,...,7 be all the G-orbits in B
whose cardinality is less than the cardinality of G. Let z; be the image of 5;
under the map B — B/G. Then the z;’s are the points in B/G over which
B — B/G is ramified. Let G; be the stabilizer of a point b; in S;. Then G;
acts on the set-theoretic fiber ¢~ '{b;} = F;. If A; is a component in F; and
the stabilizer of a general point in A; has cardinality d;, then pr is ramified
along G; - A; of degree d;, where G; - A; is the orbit of A; under G;. In this

€iJi

case, pr(A4;) has coefficient 4% in p*z;, where e; is the coefficient of 4; in
q*b; and f; is the cardinality of G;. Denote min{e;—f" | A; a component in F;}
by s;. Then s; is equal to m(p, z;). We have the following theorem.

Theorem 7.4.2. Let T be a projective normal variety, B be a projective
smooth curve with positive genus and G be a finite commutative group. As-
sume they satisfy the following conditions :

1. There is a fibration q from T to B such that for any general fiber Fy
of q, Fy 1is rationally connected and does not carry any non-zero pluri-
form. Moreover, m(q,b) =1 for all b € B.
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2. There exist actions of G on B and on T such that q is G-equivariant.
3. The quotient B/G is isomorphic to P!,

Then the quotient X = T/G is a normal projective rationally connec-
ted variety and there is a fibration p : X — PY. Moreover, if we define
si, + = 1,...,7 as above, then X carries non-zero pluri-forms if and only if
ELI% > 2. More precisely,

0 1 \[®m] 0/l — (si = m
HO(X, (Q5)1®™) = HO(PY, Opa (—2m + ) [F——
i=1

1))

Si

form > 0.

Proof. The fibration p : X — P! is induced by ¢. Since general fibers of ¢
are rationally connected, general fibers of p are also rationally connected.
Hence X is rationally connected by |[GHS03, Thm. 1.1]. If F}, is a general
fiber of p, then F}, does not carry any non-zero pluri-form neither. Hence,
HO(X, (4)[®™]) is isomorphic to HO(P', Op1 (—2m) ® p.Ox(mR)) for m >
0, where R is the ramification divisor of p. However, since m(q, b) = 1 for all
b € B, we have Z:ZI[M] = Zzepl[w] by the definition of s;.

Si m(pzz)

Finally, we have p,Ox(mR) & Op (31, [B=HM]) and HO(X, (04 )/©™)) =

s

HO(PY, Op1 (—2m + 37, [“=1™))) by Lemma 7.4.1. O

Si

Remark 7.4.3. Conversely, let p : X — P! be a fibration such that general
fibers of p are rationally connected and do not carry non-zero pluri-form. If
X carries non-zero pluri-forms, then X can be constructed by the method
described above. In fact, by the discussion above, we have ) _p % >
2. In particular, there are at least three points in P! such that the multiplicity
of p is larger than 1 over these points. Let 21, ..., 2z, be all the points in P!
such that m(p, z;) > 1 for all 4. Since r > 3, there is a smooth curve B and
a Galois cover pg : B — P! with Galois group G such that pp is ramified
exactly over the z;’s and the degree of ramification is m; at each point over
z; (see |KO82, Lem. 6.1]). Let T" be the normalisation of the fiber product
X xp1 B. Then we obtain a natural fibration ¢ : T — B such that m(q,b) =1
for all b € B. Moreover, G acts naturally on T and T/G = X.

Proposition 7.4.4. Let X be a rationally connected threefold which has
Q-factorial canonical singularities. Assume that X carries non-zero pluri-
forms. Let X™ be the result of a MMP for X and assume that there is a Mori
fibration p : X* — P, Let Y be the normalisation of the graph of X --» X*.
Then Y can be constructed by the method of Theorem 7.4.2.

Proof. By Theorem 6.1.7 and Lemma 7.3.2, we know that every element in
the space HO(X*, (Q%.)[®™) comes from the base P!, so does every ele-
ment in HO(X, (Q%)®™) by Lemma 6.3.1. We have a rational map X --»
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P! induced by p. By Proposition 7.3.3, we know that HO(X, (Q4)®m]) =~
HO(Y, (Q})1®m]). Moreover, we have a natural fibration g : ¥ — P! which is
the composition of Y — X* — P! If F, is a general fiber of g, then there is a
birational morphism F,; — S, where S is a general fiber of p : X* — P!, Since
S does not carry any non-zero pluri-form by Theorem 6.1.7, neither does F
by Lemma 6.3.1. From Remark 7.4.3, we know that Y can be constructed
by the method of Theorem 7.4.2. O

7.5 Mori fibrations and non-zero pluri-form

In this section, we study relations between Mori fibrations and non-zero
pluri-forms. We will consider Mori fibrations from a normal threefold to a
normal surface.

7.5.1 General properties

Consider a Mori fibration p : X — Z from a normal rationally connected
threefold to a normal variety Z of positive dimension. Assume that X has Q-
factorial kit singularities. Let Dy, ..., D be all prime Weil divisors in Z such
that m; = m(p,D;) > 1. Let A = Y5, ™=1D, Then det ((p*Q})**) =
Ox(p*(Kz+ A)) (see Remark 7.5.5). Assume that X carries non-zero pluri-
forms and general fibers of p do not carry any non-zero pluri-form. If dim Z =
1, then Kz + A is an effective Q-divisor of degree —2—1—2?:1 m#:l on P! (see
§3). The aim of this subsection is to prove something analogue in the case
when dim Z = 2. We prove that if K7+ A is not pseudo-effective, then there
will be a fibration form Z to P'. In this case, we have an induced fibration
X — P! and we are in the same situation as in §3 (see Lemma 7.5.10). In
order to do this, we will run a MMP for the pair (Z,A). To this end, we
prove the following proposition which implies that the pair (Z, A) is klt.

Proposition 7.5.1. Letp: X — Z be a Mori fibration from a Q-factorial klt
quasi-projective variety X to a normal variety Z. Let D1, ..., Dy be pairwise
distinct prime Weil divisors in Z such that p* D; = m;(p* D;)req with m; > 2.
Then the pair (Z, Zle mizl .y s kit.

mg

Proof. Let D = Dy + -+ + Dy. By [KMMS87, Lem. 5-1-5|, Z is Q-factorial.
Note that the problem is local in Z, we may assume that Z is affine.

We will construct by induction a finite morphism ¢ : Zy — Z which
is ramified over D such that ¢;D; = m;(c;D;)req for all i. Let ki be the
smallest positive integer such that k1D is a Cartier divisor. By taking the
k1-th root of the function defining the Cartier divisor k1 D1, we can construct
a finite morphism ¢; 1 : Z1,1 — Z which is étale in codimension 1. Moreover,
ci D1 is a reduced Cartier divisor (see [Mor88, Prop.-Def. 1.11]). By taking
the my-th root of the function defining the Cartier divisor ¢j; D1, we can
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find a finite morphism c¢12 : Z1 — Z1,;; which is ramified exactly over D
with ramification degree m; (see |Laz04, §4.1B]). Let ¢; = c1p0¢11: Z1 —
Z. Then ¢iD1 = mi(¢jD1)reda. Assume that we have constructed a finite
morphism ¢; : Z; — Z such that c;fDi = mi(c;Di)red for any 1 <7 < j
and chi is reduced for any ¢ > j, where 1 < j < k. Let E = c;ij+1.
Then FE is a reduced divisor. By the same method above, we can construct
a finite morphism d : Zj;1 — Z; which is ramified exactly over F with
ramification degree m;i1. Let ¢;41 : Z;41 — Z be the composition ¢; o d.
Then ¢}, D; = m,'(c;f_HDi)red for any 1 < ¢ < j+1 and ¢, D; is reduced
for any ¢ > 5 + 1. By induction, we can construct the finite morphism c.
We have Kz, = cj(Kz + Zle mnilDZ) Let X}, be the normalisation of
X Xz Zg. Then the natural projection cx : X — X is étale in codimension
1 and Kx, = ¢\ Kx. Hence X}, is kit by [KM98, Prop. 5.20]. Moreover,
X} — Zi is a Fano fibration since X — Z is a Mori fibration. Hence there is a
Q-divisor Ay, such that the pair (Zy, Ag) is kit by [Fuj99, Cor. 4.7|. Since Kz,
is Q-Cartier, Zy, is klt (see [KM98, Cor. 2.35]). So the pair (Z, Zle m#:lDl)
is also klt by [KM98, Prop. 5.20]. O

In the remaining of this subsection, our aim is to prove the following
theorem.

Theorem 7.5.2. Letp: X — Z be a Mori fibration from a projective normal
threefold to a normal projective surface. Assume that X has Q-factorial kit
singularities. Let Dy, ..., Dy be all prime Weil divisors in Z such that m; =
m(p,D;) > 1. Let A = Zle m,;;lDz" If X carries non-zero pluri-forms and
Kz + A is not pseudo-effective, then the result Z' of any MMP for the pair
(Z,A) has Picard number 2.

First we would like to illustrate the idea of the proof in a simple case. Let
f:(Z,A) = (Z',A") be the result of a MMP for the pair (Z, A). Assume in
a first stage that Z = Z’. We will argue by contradiction. Assume that Z’ has
Picard number 1. Since general fibers of p are isomorphic to P!, they don’t
carry any non-zero pluri-form. By Lemma 7.3.2, the non-zero pluri-forms of
X come from (p*Q})%®. Since Kz + A is not pseudo-effective, we can prove
that there is a rank 1 coherent subsheaf J# of (p*Q})** such that #1®!l is an
invertible sheaf which has non-zero global sections for some positive integer
I. Next, we can prove that #®! is isomorphic to @x under the assumption
that Z has Picard number 1 (by using Lemma 7.5.8). Let W — X be the
normalisation of the cyclic cover with respect to the isomorphism 2! =~
Ox (see [KM98, Def. 2.52|). Let W — V' — Z be the Stein factorisation, then
V will be a kIt Fano variety (by Lemma 7.5.7). Moreover H(V, Qg]) # {0}
(we use Lemma 7.5.9). This contradicts [GKKP11, Thm. 5.1].

However, in general Z’ is different from Z and the fibration X — Z’ is
not equidimensional. The idea of the proof will be the same as above but
details will be more complicated. We will work over an open subset Zy of Z
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such that f|z, is an isomorphism and codim Z'\ f(Zy) > 2. For the complete
proof of the theorem, we will need several lemmas.

Lemma 7.5.3. Let p : X — Z be an equidimensional morphism between
smooth varieties. Let n be the dimension of X and d be the dimension of Z.
Let D be a prime divisor in Z and E be a prime divisor in X such that E
is a component of p*D. Assume that the coefficient of E in p*D is k. Then
for any general point x € E, there is an open neighbourhood U C X of x
such that (p*Q%L)% |y = Ox(p*Kz + (k — 1)E)|y, where (p*Q%)%® is the
saturation of p*QdZ mn Qg(.

Proof. We may assume that F is smooth around x and D is smooth around
p(x). There exist local coordinates (a1, ag, ..., a,) and (b1, ba, ..., bg) of X and
Z around z and p(z) such that E is defined by {a; = 0}, D is defined
by {by = 0} and p is given by (a1,as, ...,a,) — (af,as, ..., aq). With these
coordinates, the natural morphism p*Q} — QL is given by

(dby,dby, ..., dbg) — (ka¥~'day, das, ..., dag)

and the image of the natural morphism p*Q% — le( is generated by p*(db; A
dby A -+~ Adbg) = (ka® 1 day) Adag A - - - Adag. Hence (p*Q%)*® is generated
by da; A dag A -+ A dag. Since {a1 = 0} defines the divisor E, we have
(p*Q4)st|; =2 Ox(p* Kz + (k — 1)E)|y for some open neighbourhood U of
T. O

Lemma 7.5.4. Let p : X — Z be an equidimensional morphism between
normal varieties. Assume that Z is Q-factorial. Let D, ..., D, be all the prime
divisors in Z such that m(p, D;) is larger than 1. Write det ((p*(Q2},))%) =
Ox (M) where M is a divisor on X. Then M —(p*(Kz+;_, %Di))
15 Q-effective.

Proof. By Proposition 1.2.1, we only have to prove the assertion on an open
subset of X whose complement is of codimension at least 2. Hence we may
assume that both X and Z are smooth and that ) . ; D; is smooth. In
this case, by Lemma 7.5.3, the divisor M is linearly equivalent to p* Kz +
iy Zj;l(n” —1)E; ; where the E; 1, ..., E; 5, are the components of p*D;
and n; j is the coefficient of E; j in p*D;. Since m(p, D;) is the smallest integer

among 7 1, ..., Njs;, we have n; ; —1 > % -n; j. Thus
ro8; T

ng; —1)B;; = ———F—p'D;.

;z_:l( (% ) L,J/; m(p, D;) p L
=1 y= 1=
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Remark 7.5.5. With the notation above, if in addition p is a Mori fibration,
then p*D; is irreducible for all ¢ since p has relative Picard number 1. In this
case we obtain that

det (7 ()" = O30 (K2 + 30 "2 S ),
i=1 T

Lemma 7.5.6. Let p : X — Z be an equidimensional fibration between
normal varieties. Let (p*le)‘mt be the saturation of the image of p*le in

O Then p.((p*QL)* )M = Q) for r > 0.

Proof. Let D be the sum of the divisors in Z over which p does not have
reduced fibers. Applying Proposition 1.2.1 several times, we can suppose
without loss of generality that Z is smooth and D is a snc divisor. Let
M = pu(((p*2)* M)

First we will prove that there is a natural injection from 7, to .#Z. We
have an injection from p*Q} to (p*Q})**. Hence the natural morphism from
(p* QL) to ((p*QL)*)" is generically injective. Since (p*Q%)"" is without
torsion, the natural morphism from (p*Q,)"" to ((p*QL)%)""] is injective.
Since p(X) = Z, we have an injection from p.((p*Q%)"\") to 4. By the
projection formula, this implies that 27, is a subsheaf of .Z.

Now we will prove that QY = .#. Let W = p~(Z\D). Then the mor-
phism plw : W — Z\D is smooth in codimension 1. Thus,

((r )™ lw = p* Q|

(see the proof of Lemma 7.5.3). Then we obtain .#|, p = QTZ\D by the
projection formula. Let U be any open set in Z and let 8 be any element of
A (U), that is, a section of .#|y. Then (3 is a rational section of Q7 |y which
can only have pole along D since .# |, p = QTZ\ p- However, by the definition

of # , 3 induces a regular section of Q% on the smooth locus of p~(U). This
implies that 3 does not have pole along D. Thus .#Z(U) = Q7,(U). Hence
O, > . O

Lemma 7.5.7. Letp : X — Z be an equidimensional fibration from a normal
variety X to a smooth variety Z. Let D1, ..., D, be all the prime divisors in
Z such that the multiplicity m(p, D;) is larger than 1. If cx : X1 — X is a
finite morphism which is étale in codimension 1 and X, Py 70 2 7 s the
Stein factorisation, then Kz < c¢,(Kz+> ., %Di). That is, there
is an effective Q-divisor A1 on Zy such that

(p,D;) — 1

.
. m
Koy + Ay =c(Kz + ) m(p, D;) Di)
i=1 P
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Proof. If D is a prime divisor in Z, then pic,D = cXp*D. Let E be any
irreducible component of ¢, D. Since cy is étale in codimension 1, by com-

paring the coeflicients of F in pjc, D = cp*D, the coeflicient mg of E in
(puD)_l
m(p,D) -
Now from Lemma 7.5.3, we obtain Kz, = ¢z Kz + ¥]_(m; — 1)Ej, where

the Ej’s are all prime divisors along which ¢7, is ramified and m; is the
degree of ramification of cz along Ej;. By the discussion above, we have

p(E; ,Dy)—1
(mj —1) <my - % Hence Kz, < ¢y (Kz+> i 1PP7D))DZ). O

Lemma 7.5.8. Let p: X — Z be a Mori fibration from a normal threefold
X to a smooth surface Z. Let D, ..., D, be all the prime divisors in Z such
that the multiplicity m; = m(p, D;) is larger than 1. Assume that there is

a projective Q-factorial variety V' such that we have an open embedding j :
Z — V with codim V\Z > 2. Assume further that the pair (V,>;_, ™=1D,)

m;
is klt, where D; is the closure of D; in V. If F is a rank 1 reflevive subsheaf
of Q[ such that F1®ml = Gy (p* Dy) for some positive integer mg and some

dim'sor Dg on Z, then Dy, the closure of Dy in V., is not ample.

¢, D is not larger than m(p, D). This implies that (mg—1) < mpg-

Proof. Assume the opposite. First we assume further that mg = 1 and
Oz(Dy) has non-zero global sections. Let E = p* Dy which is effective. Then

= Ox(E). Since general fibers of p are isomorphic to P! which does not
carry any non-zero pluri-form, by Lemma 7.3.2, the injection Ox (F) < Q[)l(}
factorises through (p*Qz)%*. Hence by the projection formula, we have an
injection from 0z(Dp) to p«((p*Q})**). However, by Lemma 7.5.6, we have
p«((p*Q%)%%) = QL. By Proposition 1.2.1, we get an injection from &y (Do)
to Q[ ). Hence by Bogomolov-Sommese theorem (see [Grals, Cor. 1.3]), the
Kodalra dimension of @y (Dy) is not larger than 1. Hence Dy is not ample.
We obtain a contradiction.

Now we will treat the general case. We will show that we can reduce to
the previous case. By replacing mg with a large multiple, we may assume
that Dy is very ample. We may also assume that both Dg and p* Dy are prime
and the pair (V, Y7, mT;Zjll_?l) is klt. Let c¢x : X7 — X be the normalisation
of the ramified cyclic cover with respect to .#, mg and p* Dy (see [KM98, Def.
2.52]). Then cy is ramified over p* Dy with degree m and (¢%.%)** = Ox, (E),
where E = (¢ p*Do)red- Moreover, over the smooth locus of X, there is an

injection of sheaves from C}Q}( to Q}(l. Hence by Proposition 1.2.1, we have

an injection Oy, (E) — Q[)lf]l.

Let X3 EEN A 2y 7 be the Stein factorisation. Let cy : Vi = V be
the normalisation of V' in the function field of X;1. Then we obtain an open
embedding j; : Z1 — V; such that codim Vj\Z; > 2. If F, is a general fiber
of p and if F,, is a general fiber of p; which is mapped to F},, then F},, — F),
is étale. Since p is a Mori fibration, F}, is a smooth rational curve which is
simply connected. Hence F},, — F}, is an isomorphism and F, = P'. Hence
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cz is of degree my. Let H = (¢}, Do)red- Since czopy : X1 — Z has connected
fibers over Dy, we have ¢, Dy = moH . Hence Ey = piH. Let H be the closure
of H in V4. Then it is ample since cy is finite.

Note that cx|x,\g is étale in codimension 1 and ¢, Dy = moH. By
Lemma 7.5.7, we conclude that there is an effective Q-divisor A} in Z; such
that Kz + A} = p"(Kz + >, mglei). Hence if A; is the closure of A}

in Vi, then Ky, + Ay =p*(Kv + i, m;nlel) This implies that (Vi,Aq)
is klt by [KM98, Prop. 5.20 and Cor. 2.35].

Hence p1 : X1 — Z; satisfies the conditions in the lemma. There is an
injection from Ox, (E) to Q[)l(}l and Oy, (E) = Ox,(p{H) such that H is
ample in V7. We are in the same situation as in the first case. This leads to
a contradiction. O

Lemma 7.5.9. Let p : X — Z be an equidimensional fibration such that
general fibers of p do not carry any non-zero pluri-form. Assume that Z is
smooth and there is an open embedding j : Z — V such that codim V\Z > 2.
Assume that HO(V, Qg]) = {0} for all v > 0. Then H(X, Q[)T(}) = {0} for all
r > 0.

Proof. Assume the opposite. Let .# = (p*Q})% be the saturation of the

image of p*le in Q[)lf]. Since general fibers of p do not carry any non-zero

pluri-form, we have H°(X, Q[;;]) ~ HO(X,ZM) by Lemma 7.3.2. Hence
there is an injection from Ox to .Z"). By taking the direct image, we have
an injection from Oy to p.(F"). By Lemma 7.5.6, p.(F"") =2 Q7. This
implies that HO(V, Q@) # {0} by Proposition 1.2.1, which is a contradiction.

O

Now we are ready to prove Theorem 7.5.2.

Proof of Theorem 7.5.2. We will argue by contradiction. Let f: Z — Z’ be
the result of a (Kz + A)-MMP. Assume that Z’ has Picard number 1. Set
A" = f,A. Then Kz + A’ is not pseudo-effective neither. Thus —(Kz +
A’) is ample. We know that there is a smooth open subset Z; C Z’ with
codim Z'\Z} > 2 such that f~! is an isomorphism from Z} onto its image.
Let Zo be f~1(Z}), which is an open subset in Z. Let Xo = p~(Zy).

Since codim Z'\ Z|, = 2, there is a projective curve C{j in Z|, such that it
is an ample divisor in Z’. Let Cy be the strict transform of C{ in Zy. Let «
be the class of the curve p*Cy N H, where H is a very ample divisor in X.
Then the class a is movable and p,a proportional to the class of Cy.

Since general fibers of p do not carry any non-zero pluri-form, by Lemma
7.3.2, we obtain that HO(X, (Q%)®™) = HO(X, ((p*QL)*H)®™]) for any
m > 0, where (p*Q2},)** is the saturation of the image of (p*Q2},) in Q[)I(].
Hence pm®((p*Q2})*®) > 0 and there is a coherent sheaf # saturated in

«

(p*Q})%% such that e () > 0.
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However, since p|x, is a Mori fibration and Zj is smooth, the Q-Cartier di-
visor which associates to the determinant of (p*Q},)**|x, is equal to p*(Kz+
A)|x, by Remark 7.5.5. Hence

det ((p*le)sat) ca=p"(Kz+A)-a=(pof)(Kz+A") -a<0.

This implies that # # (p*Q%)%%. If ¢ is the quotient (p*Q)*® /7, then
rank ¢ =rank . =1 and #[®] ¢ = det ((p*Q})**). Thus 7 - a < 0.
Since HO(X, ((p*QL)*)[®m]) £ {0} for some m > 0, we have

HO(X, 2% (@] 7 ') # {0}

for some s,¢ > 0 by Proposition 1.2.1 and Lemma 6.3.4. In this case, we have
s>t for (H[®] 7)-a<0and 7 -a<O0.

Let F, be a general fiber of p. Then the class of F}, is movable. Hence
(s1%4)[2) #®1) . F, > 0. Moreover, we have

(H12] 7) - Fy = det (5" Q)™) - B, = 0.

This implies that J# - F,, > 0 since s > t. However, since the restriction of
(p*Q%)%¢ on F), is isomorphic to OF, ® OF,, we have 7 - F, = 0.

Let k be the smallest positive integer such that #®¥! is invertible. Then
there is a Cartier divisor L in Z such that #1®F = Gy (p*L). Let L' = f,L.
Then L' - C{ > 0 since uq(5°) > 0. Note that if L’ - C}, > 0, then L' is ample
on Z' since Z' has Picard number 1. Hence by Lemma 7.5.8, we can only
have L' - C{; = 0 and L' is numerically equal to the zero divisor since Z’ has
Picard number 1. By [AD14, Lem. 2.6], there is a positive integer k' such
that k'L’ is linearly equivalent to the zero divisor. Hence Oz(k'L)|z, = O,
and #®FF]| = Oy, . Let | be the smallest positive integer such that
AUy =2 Ox,. Let ¢ : Wy — Xg be the normalisation of the cyclic cover
with respect to the isomorphism 14|y, = O, (see [KM98, Def. 2.52]).
Then c is étale in codimension 1. We have Oy, = (¢*7)** and there is an
injection (¢* 7)™ < ("0, )™ = QU . Hence HO(Wp, Q)] ) # {0}.

Let Wy — Vo — Z[ be the Stein factorisation. Let h : V. — Z' be
the normalisation of Z’ in the function field of Wy. Then there is an open
embedding from Vj to V such that codim V\Vy > 2. By Lemma 7.5.7, we
have Ky, < (h*(Kz + A'))|y,. Since codim V\Vy > 2, there is an effective
Q-divisor Ay in V such that Ky + Ay = h*(Kz + A’). Thus the pair
(V, Ay ) is kit by [KM98, Prop. 5.20]. Moreover, —(Ky + Ay) is ample since
—(Kz + A') is ample, hence V is rationally connected by [HMO07, Cor. 1.13].
By [GKKP11, Thm. 5.1], we have H°(V, Qg]) = 0. However, since general
fibers of Wy — Vp are isomorphic to P' which does not carry any non-zero
pluri-form, we conclude that H®(Wp, Q%,]O) = {0} from Lemma 7.5.9. This is
a contradiction. O
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7.5.2 Proof of Theorem 7.1.3

The object of this subsection is to prove Theorem 7.1.3. We will study
Mori fibrations X — Z such that X is a projective threefold with Q-factorial
canonical singularities and Z is a projective normal surface. Assume that X
carries non-zero pluri-forms. Then by Theorem 7.5.2, either the result Z’ of
any (Kz 4+ A)-MMP has Picard number 2 or (Kz + A) is pseudo-effective,
where A the Q-divisor defined in Theorem 7.5.2. We will study the first case
in Proposition 7.5.10 and the second case in Proposition 7.5.12.

Proposition 7.5.10. Let p : X — Z be a Mori fibration from a projec-
tive threefold to a projective surface such that X has Q-factorial canonical
singularities. Let A be the divisor in Z defined in Theorem 7.5.2. Assume
that Kz + A is not pseudo-effective. Let [ : Z — Z' be the result of a
(Kz+A)-MMP and let A’ be the strict transform of A in Z'. Then there is a
(K z1+A"-Mori fibration 7 : Z' — PL. Let 7 = n'of and ¢ = mop : X — P!,
Then we have HO(X, (%)®™) = HO(X, ((q*Q%,l)sat)@m]) for any m > 0,

where (q*Qpy )5 is the saturation of the image of ¢*Qp, in Q[)l(].

Proof. Let A = (q*Q4,)** and let .F = (p*Q[ZI])S‘”. Then we have an exact
sequence of coherent sheaves 0 — 7 — # — # — 0, where 7 is a
torsion-free sheaf such that det.# = 7#[®] #. Let a be a class of movable
curves in X whose image in Z is not zero and is proportional to the class of
general fibers of 7 : Z — P!. Then J# - a = 0. Moreover, we have

(K] F) a=detF -a=p"(Kz+A) «

by Remark 7.5.5. This intersection number is negative since for a general
fiber Fy of 7w : Z — P!, we have (Kz + A) - Fr = (Kz + A') - (foFx) < 0.
Hence 7 -a <0.

There is an open subset U of X with codim X\U > 2 such that we have an
exact sequence of locally free sheaves over U, 0 — |y — Fluy = FLlv —
0. Since pq (%@ _F®) < 0ift > 0, we have HO(U, #|5°® 7|9 = {0} if
t > 0 by Proposition 1.2.1. Hence by Lemma 7.3.2 and Lemma 7.3.1, we have
HO(X, () = go(x, (7)) = gO(X, ()@ for any m > 0. O

Example 7.5.11. We will give an example of this kind of threefolds. Let
Z = P! x P'. Denote by p1, p2 the two natural projections from Z to P
Let 21,...,2, be r > 4 different points in P! and let C; = piz fori=1,..,r.
Let Xg = P! x Z. By the method of Construction 7.2.4, we can construct a
Mori fibration 7 : X — Z such that m(w,C;) = 2 for ¢ = 1,...,r. Note that
KZ+%(C’1 +---4+C}) is not pseudo-effective since it has negative intersection
number with general fibers of p;. Moreover, we have

H(X, Q%)) = HOP', (05:)%* @ Op (C1 + -+ + Cr))
>~ HYP!, Opi(—4 + 7)) # {0}.
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Now we will treat the second case. Note that this is the case for Example
7.2.3 and Example 7.2.5.

Proposition 7.5.12. Let p : X — Z be a Mori fibration from a projective
threefold to a projective surface. Assume that X has Q-factorial klt singula-
rities. Assume that (Kz + A) is pseudo-effective, where A is the Q-divisor
defined in Theorem 7.5.2. Then X carries non-zero pluri-forms.

Proof. By the abundance theorem for log surface (see. |[AFKM92, Thm.
11.1.3]), (Kz+A) is Q-effective. Hence there is a positive integer [ such that
I(Kz + A) is an effective Cartier divisor. This implies that h°(X, (2} )[®2!)
is non-zero by the Lemma 7.5.4. O

We can now conclude Theorem 7.1.3.

Proof of Theorem 7.1.3. Let X* — Z be a Mori fibration. If Z is a curve,
then we are in the second case of the theorem. Assume that dim Z = 2. If
Kz + A is Q-effective, then we are in the situation of Proposition 7.5.12. If
Kz 4+ A is not Q-effective, then by Proposition 7.5.10, there is a fibration
p: X* — P'such that HO(X*, (Q%.)®") = HO(X, ((p*QIﬁl)sat)[@m]) for any
m > 0. By Lemma 7.4.1 we have HO(X*, (Q%.)®™) = HO(P', Opi (—2m +

Zzepl[%])) for any m > 0. O

7.6 Proof of Theorem 7.1.1

In this section, we will complete the proof of Theorem 7.1.1. First we
will show that if X is a rationally connected projective threefold with Q-
factorial terminal singularities which carries non-zero pluri-forms, then there
is a dominant rational map from X to P!.

Lemma 7.6.1. Let X be a rationally connected projective threefold with Q-
factorial terminal singularities such that HO(X, (Q%)I®™) £ {0} for some
m > 0. Let f: X --+ X* be the result of a MMP for X. Then there is a
fibration p : X* — PL.

Proof. Note that X™* is a Mori fiber space. Then we have a Mori fibration
q: X* — Z, where Z is a normal rationally connected variety. If dim Z =1,
then we are done.

By Lemma 6.3.1, we know that X* carries non-zero pluri-forms. Hence
dim Z > 0 by Theorem 6.2.1. Assume that dim Z = 2. Then Z has canonical
singularities by [MP08, Cor. 1.2.8]. Hence K is not pseudo-effective by
[Kol96, Cor. 1.11]. Moreover, by Lemma 5.4.1, m(q, D) = 1 for any effective
divisor D on Z. Hence, by Theorem 7.5.2, if Z — Z’ is the result of a MMP
for Z, then Z’ has Picard number 2. Hence we have a Mori fibration Z’ — P!.
Let p be the composition of X* — Z — Z’ — P!. Then p is a fibration from
X* to P! O
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With the notation as above, note that a general fiber F’ of p : X* — P! is
a smooth rationally connected surface. Hence F’ does not carry any non-zero
pluri-form. Let U be the largest open subset in X over which f: X --» X*
is regular. Then codim X\U > 2, codim X*\ f(U) > 2 and the rational map
p: X --» Pl is regular over U. If F is a general fiber of U — P!, then
f(F) C F', where F' is a general fiber of p. Moreover codim F'\ f(F) > 2.
Hence f(F') does not carry any non-zero pluri-form and neither does F' by
Lemma 6.3.1. The following lemma shows that the rational map X --» P!
is regular. Moreover, general fibers of X — P! are birational to the ones of
X* — P! which are rationally connected. Hence general fibers of X — P!
are rationally connected.

Lemma 7.6.2. Let X be a projective threefold with Q-factorial terminal
singularities. Assume that there is a non constant rational map p: X —-» P!
which is regular over U such that codim X\U > 2. Assume that general fibers
of U — P! do not carry any pluri-form. If HO(X, (%)) £ {0} for some
m > 0, then p is regular.

Proof. Let I be the normalisation of the graph of p. Let p; : I' —» X,
po : I' = P! be the natural projections. Then there is a natural injection
from HO(T, (Q})[®™) to HO(X, (Q4)®™)) by Lemma 6.3.1. Let ¢ be a non-
zero element in HO(X, (Q)[®™). Then o induces a rational section or of
(QR)®m] on T. Let E be a pi-exceptional divisor. Then there is a curve
in E' which is contracted by ps since dim £ = 2 > 1. Hence this curve is
not contracted by p; since the graph of p is included in X x P! and the
normalisation map is finite. Thus p;(F) is a curve in X and X is smooth
around the generic point of p;(FE) since X is smooth in codimension 2 (see
[KM98, Cor. 5.18]). Hence or does not have pole along E. This implies that
we have an isomorphism from H°(T, (21)[®™)) to HO(X, (Q%)1®™)) induced
by p1.

Note that pfl\U induces an isomorphism from U onto its image. If Fy;
is the fiber of p|y over a general point z, then pl_l(FU) is an open subset of
Fr, where Fr is the fiber of py : I' — P! over z. Since Fyy does not carry
any non-zero pluri-form, neither does Fr. By Lemma 7.3.2, this implies that
HO(D, (QF)7) = HO(T, ((p2L,))em)).

We will first prove that p is regular in codimension 2. Assume the op-
posite. Then there is a divisor D in I' which is exceptional for p; : I' — X
and the codimension of p;(D) in X is 2. Since X is smooth in codimension
2 (see [KM98, Cor. 5.18]), X is smooth around the generic point of p; (D).
Thus there is a smooth quasi-projective curve C' in D such that I' is smooth
along C and C is contracted to a smooth point of X by p;. Note that C
is horizontal over P! under the projection py : I' — P! for the same reason
as before. Let o be a non-zero element in HO(T, (Q})[®™]). By the exact
sequence of locally free sheaves QHC — Qlc — 0, o induce an element o¢ in
HY(C, (24)®™). On the one hand, C is horizontal over P! and o is non-zero
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in HO(T, ((p5Q5,)%7")[®™), we have o # 0. On the other hand, since C' is
contracted to a smooth point in X, we obtain oo = 0 for o is the pullback
of certain element in H°(X, (Q%)[®™). This is a contradiction.

Now we will prove that p is regular. Let F; and Fy be two different
fibers of U — P'. Then their closures in X are two Weil divisors and their
intersection is included in a closed subset of codimension at most 3. Hence
their intersection is empty since X is Q-factorial. This implies that p is
regular. O

Together with Lemma 7.3.2 and Lemma 7.4.1, we can conclude Theorem
7.1.1.

Proof of Theorem 7.1.1. By Lemma 7.6.1 and 7.6.2, there is a fibration p :
X — P! such that general fibers of p do not carry any non-zero pluri-form.
Lemma, 7.3.2 shows that all pluri-forms on X come from the base P!. Finally,
we obtain the formula in the theorem from Lemma 7.4.1. O



Bibliographie

[AD14]

[AFKM92]

[AW93]

[BCHM10]

[BDPP13]

[Bea83]

[Beall]

[BHPV04

[BKOS5]

Carolina Araujo and Stéphane Druel. On codimension 1 del
Pezzo foliations on varieties with mild singularities. Math. Ann.,
360(3-4) :769-798, 2014.

Dan Abramovich, Lung-Ying Fong, Janos Kollar, and James
M¢Kernan. Semi log canonical surfaces. In Flips and abundance
for algebraic threefolds. A summer seminar at the University of
Utah, Salt Lake City, 1991. Paris : Société Mathématique de
France, Astérisque. 211, 139-158, 1992.

Marco Andreatta and Jarostaw A. Wisniewski. A note on nonva-
nishing and applications. Duke Math. J., 72(3) :739-755, 1993.

Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James
M¢Kernan. Existence of minimal models for varieties of log ge-
neral type. J. Amer. Math. Soc., 23(2) :405-468, 2010.

Sébastien Boucksom, Jean-Pierre Demailly, Mihai Pdun, and
Thomas Peternell. The pseudo-effective cone of a compact Kah-
ler manifold and varieties of negative Kodaira dimension. J.
Algebraic Geom., 22(2) :201-248, 2013.

Arnaud Beauville. Variétés Kdhleriennes dont la premiére classe
de Chern est nulle. J. Differential Geom., 18(4) :755-782, 1983.

Arnaud Beauville. Holomorphic symplectic geometry : a problem
list. In Complex and differential geometry, volume 8 of Springer
Proc. Math., pages 49-63. Springer, Heidelberg, 2011.

Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius
Van de Ven. Compact complex surfaces, second enlarged edition,
volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics. Springer-
Verlag, Berlin, 2004.

Michel Brion and Shrawan Kumar. Frobenius splitting methods
in geometry and representation theory, volume 231 of Progress
in Mathematics. Birkhduser Boston, Inc., Boston, MA, 2005.

148



Wenhao OU 149

[BM14]

[Cam92|

[CDS8Y]

[Drul2]

[Drul4]

[EHO00]

[FG12]

[FS09]

[Fujo9|
[Fulll]
[GHSO03|

[GKKP11]

|GKP14]

|Gralb|

[Gro65|

Arend Bayer and Emanuele Macri. MMP for moduli of sheaves
on K3s via wall-crossing : nef and movable cones, Lagrangian

fibrations. Invent. Math., 198(3) :505-590, 2014.

Frédéric Campana. Connexité rationnelle des variétés de Fano.
Ann. Sci. Ecole Norm. Sup. (4), 25(5) :539-545, 1992.

Francois R. Cossec and Igor V. Dolgachev. Enrigues surfaces. I,
volume 76 of Progress in Mathematics. Birkhduser Boston, Inc.,
Boston, MA, 1989.

Stéphane Druel. Invariants de Hasse-Witt des réductions de cer-
taines variétés symplectiques irréductibles. Michigan Math. J.,
61(3) :615-630, 2012.

Stéphane Druel. On Fano varieties whose effective divisors are

numerically eventually free. arXiv preprint arXiv :1411.2413,
2014.

David Eisenbud and Joe Harris. The geometry of schemes, vo-
lume 197 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 2000.

Osamu Fujino and Yoshinori Gongyo. On images of weak Fano
manifolds. Math. Z., 270(1-2) :531-544, 2012.

Osamu Fujino and Hiroshi Sato. Smooth projective toric varie-
ties whose nontrivial nef line bundles are big. Proc. Japan Acad.
Ser. A Math. Sci., 85(7) :89-94, 2009.

Osamu Fujino. Applications of Kawamata’s positivity theorem.
Proc. Japan Acad. Ser. A Math. Sci., 75(6) :75-79, 1999.

Mihai Fulger. The cones of effective cycles on projective bundles
over curves. Math. Z., 269(1-2) :449-459, 2011.

Tom Graber, Joe Harris, and Jason Starr. Families of rationally
connected varieties. J. Amer. Math. Soc., 16(1) :57-67, 2003.

Daniel Greb, Stefan Kebekus, Sdndor J. Kovécs, and Thomas
Peternell. Differential forms on log canonical spaces. Publ. Math.
Inst. Hautes Etudes Sci., (114) :87-169, 2011.

Daniel Greb, Stefan Kebekus, and Thomas Peternell. Reflexive
differential forms on singular spaces. Geometry and cohomology.
J. Reine Angew. Math., 697 :57-89, 2014.

Patrick Graf. Bogomolov-Sommese vanishing on log canonical
pairs. J. Reine Angew. Math., 702 :109-142, 2015.

Alexander Grothendieck. Eléments de géométrie algébrique. IV.
Etude locale des schémas et des morphismes de schémas. I1. Inst.
Hautes Etudes Sci. Publ. Math., (24) :5-231, 1965.



Wenhao OU 150

[Gro66]

[Har77]

|Har80]

[HMOS]

[HMO07]

[Huy99)

[Hwa08]

[Tit82]

[Kaw92]
[K1e66]
[KM92]

[KMO3]

[KM99)

[KMMS7]

[KMM92a

Alexander Grothendieck. Eléments de géométrie algébrique. IV.
Etude locale des schémas et des morphismes de schémas. II1.
Inst. Hautes Etudes Sci. Publ. Math., (28) :5-255, 1966.

Robin Hartshorne. Algebraic geometry, volume 52 of Graduate
Texts in Mathematics. Springer-Verlag, New York-Heidelberg,
1977.

Robin Hartshorne.  Stable reflexive sheaves. Math. Ann.,
254(2) :121-176, 1980.
Joe Harris and Ian Morrison. Moduli of curves, volume 187

of Graduate Texts in Mathematics. Springer-Verlag, New York,
1998.

Christopher D. Hacon and James M®Kernan. On Shokurov’s
rational connectedness conjecture. Duke Math. J., 138(1) :119—
136, 2007.

Daniel Huybrechts. Compact hyper-Kdhler manifolds : basic re-
sults. Invent. Math., 135(1) :63-113, 1999.

Jun-Muk Hwang. Base manifolds for fibrations of projective
irreducible symplectic manifolds. Invent. Math., 174(3) :625—
644, 2008.

Shigeru litaka. Algebraic geometry : An introduction to birational
geometry of algebraic varieties, volume 76 of Graduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, 1982.

Yujiro Kawamata. Abundance theorem for minimal threefolds.
Invent. Math., 108(2) :229-246, 1992.

Steven L. Kleiman. Toward a numerical theory of ampleness.
Ann. of Math. (2), 84 :293-344, 1966.

Janos Kollar and Shigefumi Mori. Classification of three-
dimensional flips. J. Amer. Math. Soc., 5(3) :533-703, 1992.

Janos Kollar and Shigefumi Mori. Birational geometry of alge-
braic varieties, volume 134 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 1998.

Seian Keel and James M¢®Kernan. Rational curves on quasi-
projective surfaces. Mem. Amer. Math. Soc., 140(669) :viii-+153,
1999.

Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki. Intro-
duction to the minimal model problem. In Algebraic geometry,
Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 283—
360. North-Holland, Amsterdam, 1987.

Janos Kollar, Yoichi Miyaoka, and Shigefumi Mori. Rational
connectedness and boundedness of Fano manifolds. J. Differen-
tial Geom., 36(3) :765-779, 1992.



Wenhao OU 151

[KMMO92b] Janos Kollar, Yoichi Miyaoka, and Shigefumi Mori. Rationally

[KOS82)

[Kol86a]

[Kol86b]

[Kol96]

[Kol97]

[Kol07]

[Kol08]

[Laz04]

[Li13]

[Mar14]

[Mat99]
[Mat02]
[Mat05]

[Mat13]

connected varieties. J. Algebraic Geom., 1(3) :429-448, 1992.

Shoshichi Kobayashi and Takushiro Ochiai. Holomorphic struc-
tures modeled after hyperquadrics.  Tohoku Math. J. (2),
34(4) :587-629, 1982.

Janos Kollar. Higher direct images of dualizing sheaves. I. Ann.
of Math. (2), 123(1) :11-42, 1986.

Janos Kollar. Higher direct images of dualizing sheaves. II. Ann.
of Math. (2), 124(1) :171-202, 1986.

Janos Kollar. Rational curves on algebraic varteties, volume 32
of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.

A Series of Modern Surveys in Mathematics. Springer-Verlag,
Berlin, 1996.

Janos Kollar. Singularities of pairs. In Algebraic geometry—
Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages
221-287. Amer. Math. Soc., Providence, RI, 1997.

Janos Kollar. Lectures on resolution of singularities, volume 166
of Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 2007.

Janos Kollar. Is there a topological Bogomolov-Miyaoka-Yau
inequality 7 Pure Appl. Math. Q., 4(2, Special Issue : In honor
of Fedor Bogomolov. Part 1) :203-236, 2008.

Robert Lazarsfeld. Positivity in algebraic geometry I : Classical
setting : line bundles and linear series, volume 48 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of
Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2004.

Qifeng Li. Pseudo-effective and nef cones on spherical varieties.
arXw preprint arXiwv :1411.2413, 2013.

Eyal Markman. Lagrangian fibrations of holomorphic-symplectic
varieties of K3["-type. In Algebraic and complex geometry, vo-
lume 71 of Springer Proc. Math. Stat., pages 241-283. Springer,
Cham, 2014.

Daisuke Matsushita. On fibre space structures of a projective
irreducible symplectic manifold. Topology, 38(1) :79-83, 1999.

Kenji Matsuki. Introduction to the Mori program. Universitext.
Springer-Verlag, New York, 2002.

Daisuke Matsushita. Higher direct images of dualizing sheaves
of Lagrangian fibrations. Amer. J. Math., 127(2) :243-259, 2005.

Daisuke Matsushita. On isotropic divisors on irreducible sym-
plectic manifolds. arXiv preprint arXiv :1310.0896, 2013.



Wenhao OU 152

[MM82]
[Mor82]
[Mor88]
[MPOS]
[MZ88]
[0°G99)
[0°Go3]

[Rei80]

[Rei83]

[Rei87]

[Rei97]

[Sho86]

[Ste77]

[Tot12]

[Wig91]

Shigefumi Mori and Shigeru Mukai. Classification of Fano 3-folds
with By > 2. Manuscripta Math., 36(2) :147-162, 1981/82.

Shigefumi Mori. Threefolds whose canonical bundles are not
numerically effective. Ann. of Math. (2), 116(1) :133-176, 1982.

Shigefumi Mori. Flip theorem and the existence of minimal mo-
dels for 3-folds. J. Amer. Math. Soc., 1(1) :117-253, 1988.

Shigefumi Mori and Yuri Prokhorov. On Q-conic bundles. Publ.
Res. Inst. Math. Sci., 44(2) :315-369, 2008.

Masayoshi Miyanishi and De-Qi Zhang. Gorenstein log del Pezzo
surfaces of rank one. J. Algebra, 118(1) :63-84, 1988.

Kieran G. O’Grady. Desingularized moduli spaces of sheaves on
a K3. J. Reine Angew. Math., 512 :49-117, 1999.

Kieran G. O’Grady. A new six-dimensional irreducible symplec-
tic variety. J. Algebraic Geom., 12(3) :435-505, 2003.

Miles Reid. Canonical 3-folds. In Journées de Géometrie Algé-
brique d’Angers, Juillet 1979/ Algebraic Geometry, Angers, 1979,
pages 273-310. Sijthoff & Noordhoff, Alphen aan den Rijn—
Germantown, Md., 1980.

Miles Reid. Projective morphisms according to Kawamata. War-
wick Preprint, 1983.

Miles Reid. Young person’s guide to canonical singularities. In
Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985),
volume 46 of Proc. Sympos. Pure Math., pages 345-414. Amer.
Math. Soc., Providence, RI, 1987.

Miles Reid. Chapters on algebraic surfaces. In Complex alge-
braic geometry (Park City, UT, 1993), volume 3 of IAS/Park
City Math. Ser., pages 3-159. Amer. Math. Soc., Providence,
RI, 1997.

Vyacheslav Shokurov. The non-vanishing theorem. Math. USSR,
Izv., 26 :591-604, 1986.

Joseph H. M. Steenbrink. Mixed Hodge structure on the vani-
shing cohomology. In Real and complez singularities (Proc. Ninth
Nordic Summer School/NAVE Sympos. Math., Oslo, 1976),
pages 525-563. Sijthoff and Noordhoff, Alphen aan den Rijn,
1977.

Burt Totaro. Algebraic surfaces and hyperbolic geometry. In
Current developments in algebraic geometry, volume 59 of Math.
Sci. Res. Inst. Publ., pages 405-426. Cambridge Univ. Press,
Cambridge, 2012.

Jarostaw A. Wisniewski. On contractions of extremal rays of
Fano manifolds. J. Reine Angew. Math., 417 :141-157, 1991.



[Yos12]

|Zar58]

[Zha06]

Kota Yoshioka. Bridgeland’s stability and the positive cone of
the moduli spaces of stable objects on an abelian surface. arXiv
preprint arXw :1206.4838, 2012.

Oscar Zariski. On the purity of the branch locus of algebraic
functions. Proc. Nat. Acad. Sci. U.S.A., 44 :791-796, 1958.

Qi Zhang. Rational connectedness of log Q-Fano varieties. J.
Reine Angew. Math., 590 :131-142, 2006.












