
HAL Id: tel-01680357
https://theses.hal.science/tel-01680357v2

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing resources for regular word transductions
Félix Baschenis

To cite this version:
Félix Baschenis. Minimizing resources for regular word transductions. Formal Languages and Au-
tomata Theory [cs.FL]. Université de Bordeaux, 2017. English. �NNT : 2017BORD0810�. �tel-
01680357v2�

https://theses.hal.science/tel-01680357v2
https://hal.archives-ouvertes.fr

THÈSE

PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

par Félix BASCHENIS

pour obtenir le grade de

DOCTEUR

SPÉCIALITÉ: INFORMATIQUE

Minimizing resources for regular word transductions

Soutenue le 05 Décembre 2017 devant un jury composé de:

Anca MUSCHOLL Professeur, Université de Bordeaux Directrice
Olivier GAUWIN Maitre de conférences, Université de Bordeaux . . Co-encadrant
Gabriele PUPPIS Chargé de recherches, CNRS Co-encadrant
Olivier CARTON Professeur, Université Paris Diderot Rapporteur
Pierre-Alain REYNIER Professeur Université de Aix-Marseille Rapporteur
Emmanuel FILIOT Chercheur qualifié, Université Libre de Bruxelles Examinateur
Sylvain LOMBARDY . Professeur, Université de Bordeaux Président du jury
Sylvain SALVATI Professeur, Université de Lille Examinateur

1

Laboratoire d’acceuil

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Unité mixte de recherche CNRS (UMR 5800)
351, cours de la libération F-33405 Talence cedex,
France

2

Abstract

The goal of this thesis was to study definability questions about finite-state
transducers and in particular two-way transducers. It is known that two-way
transducers cover a larger class of transductions than one-way transducers.
Then the first question we tackled is the one-way definability problem: is it
possible to realize a given two-way transduction by a one-way transducer?
This problem was shown to be decidable for functional transducers1 but
the decision procedure had non-elementary complexity [39]. We proposed a
characterization of one-way definability that allows us to decide it in double-
exponential space, and provide an equivalent one-way transducer of triple-
exponential size. We first studied this question for a restricted class, namely
sweeping transducers, for which the decision procedure and the construction
of the one-way transducer take one less exponential. For such transducers,
our procedure is optimal in the sense that we have shown that there exists
a family of functions that are one-way definable and for which an equivalent
one-way transducer requires doubly exponential size.

The study of sweeping transducers raised other definability questions: Is
a given transducer equivalent to some sweeping transducer? And to some
sweeping transducer that performs at most k passes? We showed that those
questions are decidable and the decision procedure, as well as the equivalent
transducer have the same complexity as in the one-way case. Moreover, as
we have shown that there exists a bound on the number of passes required
to realize a transduction by a sweeping transducer, we managed to obtain a
procedure to minimize the number of passes of a sweeping transducer.

Finally we tried to characterize sweeping transducers in other models
for regular transductions such as Streaming String transducers (SST) and
MSO transductions on graphs. As we obtained an equivalence between the

1We also show as a side result that one-way definability becomes undecidable for non-
functional transducers.

3

number of passes of a sweeping transducer and the number of registers of
the equivalent SST we provided a minimization procedure for the number of
registers of a large class of SST ’s. To conclude, our work allowed us to provide
a good overall understanding of the definability questions between the models
for regular transductions and in particular regarding the resources, whether
it is the number of passes (and of course one-way definability is crucial in
that aspect) or the number of registers.

Keywords: Automata, Logic, Transduction, One-way and two-way
transducers, SST , MSO transduction

4

Résumé

Cette thèse a eu pour objectif d’étudier des questions naturelles de
définissabilité autour des transducteurs bidirectionnels. Il est bien connu
que les transducteurs bidirectionnels forment une plus grande classe de trans-
ductions que celles définissables par les transducteurs unidirectionnels. La
première question que nous avons étudiée est donc de décider si un trans-
ducteurs bidirectionnel est définissable par un transducteur unidirectionnel.
Il a été montré en 2013 [39] que cette question est décidable pour des trans-
ducteurs fonctionnels 2 mais la complexité de la procédure de décision était
non-élémentaire.

Nous proposons une caractérisation de la ”définissabilité par transduc-
teur unidirectionnel” décidable en espace doublement exponentiel. Cette
caractérisation est effective en ce sens qu’elle produit en temps triplement ex-
ponentiel le transducteur équivalent. De plus, nous avons commencé à étudier
ce problème pour les transducteurs ”sweeping”, pour lesquels la procédure
de décision et la construction du transducteur équivalent requièrent une ex-
ponentielle de moins. Comme nous avons par ailleurs montré qu’il existe des
familles de fonctions réalisables de façon unidirectionnelle avec au minimum
deux sauts exponentiels, notre procédure est optimale dans le cas ”sweeping”.

Le fait d’avoir particulièrement étudié les transducteurs ”sweeping” nous
a poussé à étudier d’autres questions de définissabilité : est-ce qu’un trans-
ducteur donné est réalisable par un transducteur sweeping ? Et par un
transducteur sweeping réalisant au maximum k passages ? Nous mon-
trons que ces questions sont décidables avec les mêmes complexités obtenues
précédemment. Comme nous avons montré qu’il existe une borne sur le nom-
bre de passages nécéssaires pour réaliser avec un transducteur sweeping une
transduction donnée, cela nous permet de minimiser le nombre de passages

2Nous montrons aussi en paralèlle que cette question devient indécidable si les trans-
ducteurs ne sont plus fonctionnels.

5

d’un transducteur sweeping.
Enfin nous avons cherché à caractériser la classe des transductions sweep-

ing dans d’autres modèles de transductions, les Streaming String Transducers
(SST) et les transductions MSO . Cela a en autres permis, en établissant une
correspondance entre le nombre de passages des transducteurs sweeping et le
nombre de registres d’une sous-classe de SST , de minimiser le nombre de reg-
istres pour une classe intéressante de SST . Dans l’ensemble, notre travail a
permis de couvrir l’ensemble des relations entre ces modèles, et les questions
de définissabilité qui se posent naturellement.

Mots-clés: Automates, Logique, Transduction, Transducteur unidirec-
tionnel et bidirectionnel, SST , Transduction MSO

6

Description de la thèse en
français.

Théorie des languages.
Cette thèse s’inscrit dans le cadre de l’étude des langages formels. Un

langage est un ensemble de mots, c’est à dire de séquences de lettres. C’est
un outil théorique pour définir et étudier les langages naturels, les langages
de programmation, ou les langages des propriétés mathématiques de cer-
tains objects. La communauté scientifique a proposé au cours du vingtième
siècle plusieurs modèles de machines à calculer permettant de représenter
des langages (comme les machines de Turing, qui furent introduites avant les
automates) mais celui qui nous occupera dans cette thèse sont les automates:
des machines à mémoire finie, ce qui est une contrainte naturelle. Les auto-
mates sont des machines avec un ensemble fini d’états, un alphabet décrivant
les entrées possibles du calcul, et une fonction de transition permettant de
passer d’un état à un autre lors de la lecture (qui se fait de gauche à droite)
de l’entrée. Très vite les chercheurs ont étudiés des variantes de ce modèle,
en rajoutant du non-déterminisme, la possibilité de bouger la tête de lecture
sur l’entrée dans les deux directions (de gauche à droite et de droite à gauche)
ainsi que la possibilité d’étiquetter des transitions par le mot vide ε. Tout
ces modèles se sont trouvés être équivalents (en particulier, l’équivalence en-
tre les automates unidirectionnels et bidirectionnels a été montré de façon
indépendante par Shepherdson [78] d’une part, et part Rabin et Scott [66]
d’autre part, et ce de deux façon différente). De plus, des résultats comme
la description logique des langages acceptés par les automates (par MSO sur
les graphes) ou l’équivalence avec la présentation plus algébriques en terme
d’expression régulières ont montrés que cette classe de langage était robuste
et stable (par exemple en tant stable par union, concatenation ou produit),
et elle fut appelée Langages réguliers.

7

Transducteurs.
Nous nous sommes plus particulièrement intéressés aux transducteurs qui

sont une façon d’étendre les automates afin qu’ils reconnaissent des fonctions
ou des relations sur les mots, et non plus des ensemble de mots. Ces ma-
chines furent introduites à la même période que les automates, et ont de
nombreuses applications pratiques (en base de données, traitement du lan-
gage, reconaissance visuelle, etc). Par rapport aux automates, la notion de
fonction ou de relation régulière est beaucoup plus compliquées à dégager que
celle de langage régulier. En effet les transducteurs non-déterministe ne sont
pas équivalents aux transducteurs déterministes, de la même façon que les
transducteur unidirectionnel ne sont pas équivalents aux transducteurs bidi-
rectionnels. Des questions de définissabilité découlent de ces obversations:
Etant donné un transducteur bidirectionnel ou non-déterministe, est-il pos-
sible de réaliser la même transduction avec un transducteur unidirectionnel
ou déterministe? La procédure de décision pour décider la définissabilité
par transducteur déterministe fut trouvé relativement tôt [20], mais le seul
résultat avant cette thèse sur la définissabilité par transducteur unidirection-
nel date de 2013 et la preuve de la décidabilité de cette question [39], avec
une complexité non-élémentaire. Notre premier objectif fut de chercher à
améliorer cette complexité.

Motivations.
Il est bien sur important d’un point de vue théorique de connaitre les

relations entre différents modèles de transducteurs, mais une telle procédure
de décision aurait aussi des implications pratiques. Avec l’accroissement de
la vitesse des connexions et du coût du stockage des données, être capable de
traiter l’entrée d’une machine sans avoir à l’enregistrer est utile en pratique.
Un transducteur unidirectionnel déterministe, comme il lit l’entrée de gauche
à droite sans jamais y revenir n’a pas besoin de la garder en mémoire. Ce n’est
pas le cas d’un transducteur bidirectionnel qui a besoin d’accéder à la totalité
de l’entrée à n’importe quel moment de son calcul. C’est pourquoi il est
parfois plus intéressant d’utiliser des transducteurs unidirectionnels utilisant
plus de mémoire qu’un transducteur bidirectionnel, mais ne dépendant pas
de la taille de l’entrée (qui ne doit plus être stockée).

Ces questions nous ont amenées à réfléchir à la notion de coût en mémoire
pour les machines bidirectionneles. Nous avons étudié le nombre de retours
en arrière des transducteurs bidirectionnels (il se trouve, comme nous l’avons
montré dans [9] que c’est la même chose que le nombre de passages d’un trans-

8

ducteur à balayage). Nous avons donc cherché à résoudre la définissabilité par
transducteur à balayage réalisant k passages (cette question, quand k “ 1, est
exactement la définissabilité par transducteur unidirectionnel), puis la min-
imisation du nombre de passages. Enfin, il était logique de finir en étudiant
d’éventuelles correspondances avec d’autres notions de mémoire dans d’autres
modèles.

Chapitre 2: Présentation des modèles.
Ce chapitre introductif est dédié aux définitions des modèles utilisés, et

sert à illustrer les différences entre ces modèles ainsi que les questions na-
turelles qui se posent. Nous présentons trois grands modèles de transduction:
les transducteurs à état finis, les transductions MSO sur les mots, et les
SST . Nous nous sommes concentrés sur la présentation des outils techniques
utilisés dans cette thèse, comme les crossing sequences, et des relations im-
portantes permettant de dégager la notion de transduction régulière (Figure
2.18). L’on pourra remarquer que dans chacun des modèles, les questions
sont souvent les mêmes (déterminisation, fonctionalité, définissabilité par un
modèle plus simple, minimisation de ressources), et quelques fois, les idées
mises en place pour y répondre également. Bien que ce chapitre ait surtout
pour but de synthétiser la problématique autour des modèles de transduc-
tions, quelques unes de nos contributions sont présentées ici car elles donnent
une bonne compréhension globale du sujet.

Chapitre 3: définissabilité par transducteur unidirectionnel.
La complexité non élémentaire obtenue dans [39] repose en partie sur le

fait que les auteurs ont adaptés la transformation d’un automate bidirec-
tionnel en automate unidirectionnel de Rabin et Scott [66], qui élimine des
parties de runs dont la forme ressemble à un zigzag, en les contractant. Dans
le cas des transducteurs, il faut analyser chacun de ces zigzag afin de savoir
s’ils sont réalisables avec un seul passage de gauche à droite. Pour fournir
une complexité élémentaire à ce problème nous avons adaptés la méthode de
Shepherdson, qui permet de produire directement un automate équivalent en
regardant des tranches de run. C’est ce qui nous occupe dans le chapitre 3
de cette thèse. Il est séparé en deux parties. Nous avons d’abord étudié le
cas des transducteurs à balayage, pour ensuite étudier le cas général.

Notre preuve repose sur le fait que des productions périodiques réalisés
lors de deux passages consécutifs peuvent être produite de façon unidi-
rectionnel en produisant le nombre de lettre produit par chaque tranche,
dans l’ordre de la période. Cela nous permet d’introduire une notion de

9

décomposition d’un run en parties bornées (donc devinables en utilisant le
non-déterminisme), en parties de gauche à droite, et en parties périodiques.
Si chaque calcul acceptant admet une telle décomposition, alors nous pouvons
construire un transducteur qui devine une telle décomposition et produit sa
sortie de façon unidirectionnelle, selon cette décomposition. Ce transducteur,
qui devine un nombre fini de mots de taille exponentielle, a une taille double-
ment exponentielle. La partie délicate de ce théorème est de s’assurer qu’un
transducteur définissable par transducteur unidirectionnel admet toujours
une telle décomposition.

Nous réalisons cela en utilisant de la combinatoire sur les mots. Pour
obtenir des productions périodiques, nous introduisons la notion d’inversion,
c’est à dire des paires de positions dans le calcul, dont l’ordre horizontal est in-
verse à l’ordre vertical: l’une est à gauche et en haut de l’autre. Ainsi, l’ordre
des mots produits est inversé par rapport à l’ordre dans l’entrée, ce qui nous
permet d’obtenir une équation de mots aux propriétés remarquables. Une
analyse combinatoire de cette équation permet enfin d’obtenir la périodicité
de la sortie entre les deux positions considérées.

Le cas général est étudié dans la deuxième partie du chapitre 3. Les
notions d’inversions et de décompositions sont identiques, mais la présence
de retours en arrière au sein du calcul rend compliqué l’étude des boucles
de celui-ci. Leur étude a nécessité beaucoup de travail et d’attention, afin
de comprendre quelles propriétés étaient nécessaires pour obtenir les mêmes
équations sur les mots que dans le cas des transducteurs à balayage. La
formalisation de ces propriétés s’est révélée technique et a nécessitée d’utiliser
des outils issus de la théorie des Ramsey afin d’obtenir les objets adéquats.

Finalement nous avons réussi à obtenir une complexité élémentaire en es-
pace doublement exponentiel pour décider cette question, et ce de façon effec-
tive puisque nous somme capables de fournir un transducteur unidirectionnel
équivalent (lorsque c’est possible, évidemment) de taille triplement exponen-
tiel. Il est à noter que l’effort fait pour dénouer les boucles des transducteurs
bidirectionnels nous coute une exponentielle, et que notre construction est
optimale dans le cas des transducteurs à balayage puisque nous avons montré
l’existence de fonctions définissable par transducteurs unidirectionnels, dont
la taille est nécessairement doublement exponentielle.

Chapitre 4: définissabilité par transducteurs à balayage et minimi-
sation.

Nous avons d’abord remarqué que les idées utilisées pour la définissabilité

10

par transducteurs unidirectionnels fonctionnaient de la même manière pour la
définissabilité par transducteurs à balayage réalisant k passages. De plus, nos
travaux sur les boucles bidirectionnelles nous ont permis de trouver une borne
sur le nombre maximal de passages réalisé par un transducteur à balayage
équivalent à un transducteur bidirectionnel donné T . Cela nous a permis de
minimiser le nombre de passages à la fois pour les transducteurs à balayage
et pour les transducteurs bidirectionnels.

Enfin, nous avons identifiés une équivalence entre les transducteurs à k
passages et une sous-classe de SST possédant 2k registres. Cela nous a donc
permis de minimiser le nombre de registres dans cette sous-classe de SST .

Publications.
La preuve de définissabilité pour les transducteurs à balayage du Chapitre

3 a été publiée dans [8] ainsi que plusieurs résultats du Chapitre 2. Dans [9]
nous traitons principalement des questions de minimization du Chapitre 4.
Cet article contient également des résultats sur les transducteurs à balayage,
comme la sous-classe des transductions MSO qui leur correspond, ainsi que
leur équivalence avec les transducteurs bidirectionnels à allers-retours bornés.
Ce travail a été originellement écrit pour les transducteurs à balayage, mais
comme nous avons plus tard résolu la question de la définissabilité par trans-
ducteur unidirectionnel dans le cas général, nous avons adapté cet article
pour produire le Chapitre 2. Enfin, nous avons terminé ce travail par la pub-
lication du cas général de la définissabilité par transducteur unidirectionnel
dans [10], qui correspond à la deuxième partie du Chapitre 3

11

Remerciements

Cette thèse n’aurait pu voir le jour sans la présence d’un certain nombre
de personnes à mes cotés que je me dois de remercier ici. Tout d’abord
je remercie grandement Olivier Carton et Pierre-Alain Reynier pour avoir
accepté de rapporter mon travail. Je suis également honoré de compter
Emmanuel Filiot, Sylvain Lombardy et Sylvain Salvati parmi mon jury.

Un parcours scolaire est toujours marqué par des rencontres, sources
d’inspiration, de confiance, ou de satisfaction intellectuelle. Au secondaire,
Monsieur Ravassard, rapidement suivi par Madame Veyre, ont su cultiver ma
curiosité, respectivement en mathématiques et en physique. Mes deux pro-
fesseurs de mathématiques en classes préparatoires à Janson-de-Sailly, Sha-
ley Mohan et Luc Abergel ont énormément compté pour moi (je n’oublie pas
Marc-Antoine Blain, un professeur exceptionnel de physique, discipline que
j’avais malheureusement abandonné). Aussi différents dans leur approche que
passionnés et pédagogues, ils m’ont inculqué deux façons complémentaires de
comprendre et de faire des mathématiques qui coexistent encore en moi et
dans ce travail. Si toute l’équipe enseignante du département d’informatique
de l’ENS Cachan est de qualité, je tiens à remercier particulièrement Serge
Haddad, qui a été d’une patience et d’une compréhension exemplaire à mon
égard, ainsi que Sylvain Schmitz dont la gentillesse et le talent oratoire ne
sont plus à démontrer. Au cours de mes années à l’ENS, j’ai eu la chance
de faire des stages avec d’excellents encadrants, qui m’ont beaucoup appris:
Christophe Paul, Paul Blain Levy et Amélie Gheerbrant. Il me faut saluer
aussi mes directeurs de Master, Alexis Saurin et Arnaud Durand, que je ne
remercierai jamais assez de m’avoir mis le pied à l’étrier, que ce soit avec
Amélie (avec qui ce fut un réel plaisir de travailler!) ou avec cette thèse.
Je salue également les jeunes chercheurs que j’ai eu la chance de rencontrer
(certains sont des amis, d’autres j’espère le deviendront avec le temps) que ce
soit pendant mes études (Alice, Edon, Nathan, Louis-Marie) en conférence

12

(Michael, Ismaël, Guillermo) ou aux EJC (Florent, Bruno, Manon, Elise,
Florian, Hamza, Anastasia, et j’en oublie) et qui m’ont aidé à ressentir mon
appartenance à ce milieu particulier qu’est la recherche.

Enfin, je ne saurai quoi dire pour évoquer mes responsables lors de ces
trois années Anca Muscholl, Olivier Gauwin et Gabriele Puppis (qui, bien que
n’en n’ayant pas le titre, ont été tous les deux de réels directeurs de thèse à
mes yeux). Je ne peux imaginer meilleur encadrement pour une thèse, que ce
soit au niveau de la connaissance du sujet et des perspectives associées, qu’au
niveau du soutien personnel et de l’apprentissage du métier de chercheur. Ce
travail et mon avenir leur doivent (presque) tout.

Pour le reste, ma famille, mes amis, celles et ceux qui sont dans mon
coeur le savent (mis à part peut-être Anne, qui j’espère s’en rappellera si elle
tombe un jour sur cet ouvrage). J’ai beau tenir à mon indépendance je sais
tout ce que je dois à mes proches et ne l’oublie pas, mais n’utiliserai pas ces
lignes pour leur dire des choses que je tais habituellement.

13

”L’homme a beau étendre le cercle de ses idées,
sa lumière n’est toujours qu’une étincelle

promenée dans la nuit immense qui l’enveloppe.”

Pierre-Joseph Proudhon, Mélanges.

À Laetitia, puisse-t-elle à son tour
promener son étincelle où bon lui semble.

14

Contents

1 Introduction 17

2 Models for regular transductions 23
2.1 Words, languages, and automata 24

2.1.1 General definitions . 25
2.1.2 Equivalence properties 26
2.1.3 Representation of a run 28

2.2 Finite state transducers . 31
2.2.1 Definition . 31
2.2.2 Separating examples 33
2.2.3 Functionality and determinization 40

2.3 Logic and transductions . 45
2.3.1 MSO transductions . 45
2.3.2 Sweeping vs MSO . 47
2.3.3 FO-definability . 50

2.4 Streaming string transducers 51
2.4.1 Functionality and determinization 53
2.4.2 Number of registers . 53

2.5 Overview of the relations between models 55
2.5.1 Logic and finite state transducers 55
2.5.2 Streaming transducers 56
2.5.3 Other models . 58

3 One-way definability 59
3.1 Basic combinatorics in the sweeping case 61

3.1.1 Pumping loops. 61
3.1.2 Output minimality. 63

3.2 One-way definability in the sweeping case 72

15

3.2.1 Run decomposition. 72
3.2.2 From periodicity of inversions to existence of decom-

positions. 74
3.2.3 From existence of decompositions to an equivalent one-

way transducer. 82
3.3 The structure of two-way loops 83

3.3.1 Flows and effects. 84
3.3.2 Loops and components. 86
3.3.3 Pumping idempotent loops. 95

3.4 Combinatorics in the two-way case 97
3.4.1 Ramsey-type arguments. 97
3.4.2 Inversions and periodicity. 102

3.5 The characterization in the two-way case 106
3.5.1 From periodicity of inversions to existence of decom-

positions. 106
3.5.2 From existence of decompositions to an equivalent one-

way transducer. 112
3.5.3 Generality of the construction. 117

3.6 Complexity of the one-way definability problem 118
3.6.1 Complexity analysis 118
3.6.2 Lower bound . 119
3.6.3 Undecidability of the general case 121

4 Minimization of resources 125
4.1 Passes of a sweeping transducer 127

4.1.1 k-pass definability . 127
4.1.2 Soundness . 130
4.1.3 Completeness . 137
4.1.4 Minimization and sweeping definability 142

4.2 Registers of streaming string transducers 146
4.2.1 Translations between SST and 2DFT 146
4.2.2 From concatenation-free NSST to sweeping transducers 147
4.2.3 From sweeping transducers to concatenation-free NSST 149

5 Conclusion 151

Bibliography 153

16

Chapter 1

Introduction

General considerations. Computer science is a recent domain of modern
science, and is a consequence of the developments in logic and the founda-
tions of mathematics in the first half of the twentieth century, as well as
a theoretical tool needed to support the birth of modern computing in its
second half. This dichotomy still holds nowadays and most of the time,
the motivations behind a topic lie in a practical technological question (for
instance about networks or connected objects), and the theoretical aspects
involved in its resolution require some advanced mathematical notions. This
makes it difficult for a non-specialist (but very stimulating for the computer
scientist) to understand what computer science is about, that is the notion
of information, which can be studied from different points of view and with
different concerns in mind. What is a valid information and how do we ex-
press it? How can we process it and what is exactly a computation? How
is this information obtained, modified, and exchanged? All those questions
and many others required new frameworks and gave birth to different areas
of computer science. The domain that will interest us rose from the following
issue: what is the simplest device that provides a general computation for
any instance of a given problem?

After we understood that any finite information can be modeled by a
sequence of 0 and 1 (or as a mathematician would say, an element of the
free semigroup over a finite set) the study of formal languages (that is sets
of such sequences) became an efficient way to verify syntactical properties of
objects. As a scientist, my appeal for formal language theory, and in par-
ticular automata theory, is that it is a symbol of the specificity of computer
science. For instance the concept of automata, as a machine performing a

17

sequence of elementary operations using some instructions and a finite mem-
ory, is natural, practical, and visual. However the study of automata and
regular languages in general involves some very deep algebra. I hope this the-
sis will be a good example of how intuitive ideas can sometimes hide behind
advanced mathematics.

General context of formal language theory. A language is a set of
words, that is sequences of letters. It can be a framework for reasoning about
natural languages, programming languages, or mathematical properties of
some model of concrete objects. As the number of words is infinite, we
might have infinite languages and be unable to provide a list of the words
that belong to those. Then a first question arises: how can we use a language
if we cannot decide if a word belongs to that language ? This question, that is
representing an infinite set by a finite object is at the core of formal language
theory.

Of course one can provide several models of computation (for instance
Turing machines were introduced before automata) but deterministic finite-
state automata are the simplest object when we want to use a finite amount
of memory (which is a natural requirement given the current state of com-
puter technologies). In particular, contrary to Turing machines, many de-
cision problems are decidable thanks to this finite memory requirement (for
instance, model checking). Quickly the scientific community studied slight
variations of this model, for instance the introduction of non-determinism
[66], the possibility to move the head of the input tape in both directions
[66, 78], or the existence of ε-transitions, and those models have been proved
to be equivalent (in particular the equivalence between two-way and one-way
automata have been shown independently by Shepherdson, and by Rabin and
Scott [66, 78]). Moreover, some links with the languages described by logic
(in particular MSO on linear graphs [18, 34, 83]) or algebraic presentations
(what we called regular expressions [55]) were discovered at the same time.
Those equivalences implied that such languages were stable by union, con-
catenation, and product, and have been called regular languages as they form
a very robust class of languages.

Automata and regular languages have found a lot of applications in for-
mal verification, programming language theory in general and compilers in
particular but it remained a domain of theoretical research in itself, for in-
stance concerning the memory usage of the machines. Even if it is a natural
path to explore that many have tried to take, some problems such as the cost

18

of turning a non-deterministic automaton into a deterministic two-way one
(asked in 1978 by Sakoda and Sipser [74]) are open since almost forty years.
Such topics are now sometimes studied under the name minicomplexity [53].

In parallel, automata were enhanced either to read more complex inputs
(for instance trees [67], or infinite words [17]), or to provide more information
than accepting or not an input word (for instance weighted automata [75]
or more recently cost-register automata [3]). One of the most natural way
to extend automata is to provide them with an output tape so that they
define functions (or relations, in the non-deterministic setting) over the free
semigroup instead of subsets. We call such machines transducers and such
relations transductions. Transducers were introduced at the same time as
automata [63] and are used in a variety of fields of computer science including
database theory, image and language processing, and machine learning. It
is after all quite natural: computers are essentially machines that transform
information or provide a result. The study of finite transducers, the relations
they compute, how they compare to other models of transductions, and some
definability questions that they raise is the global goal of this thesis.

Overview of finite transducers. The notion of regularity became quickly
important and turned automata theory into one of the major fields of com-
puter science. It also became clear that the situation was much more complex
for transducers.

Indeed, two-way transducers, as well as non-deterministic ones, are not
equivalent to one-way deterministic transducers. The decision procedure for
checking if a one-way transducer can be turned into a deterministic one was
found quite early [20] but this area remained badly known for a long time.
For instance, the equivalence of transducers with a logical characterization
was only obtained in 2001 [36] after the introduction of the more general
model of graph transductions by Courcelle in the early 90’s [25]. Unfortu-
nately this equivalence is only true in the deterministic case, but this result
raised new interests for transducers. In particular, Alur introduced stream-
ing string transducers: a model of machines that are equivalent to the logical
characterization both in the deterministic and non-deterministic cases [2, 4].
One of the results following this renewed interest can be seen as the start-
ing point of this thesis: the decidability of the possibility to turn a two-way
transducer into a non-deterministic one-way transducer [39].

Motivations. The above result is quite important, and was only proved
more than fifty years after we understood that the equivalence between one-

19

way and two-way automata did not lift to transducers. The fact that the
demonstration of [39] yields a non-elementary complexity of the decision
procedure (while the best lower bound was in PSpace) led us to think that
there is something that we still did not understand about this problem. This
intractable complexity lies in the fact that the authors adapted the transla-
tion from two-way to one-way automata by Rabin and Scott [66], which tries
to eliminate factors of runs that are shaped like zigzags by squeezing them.
However in the transducer case, one does not know a priori which zigzag will
proved to be impossible to simulate with a single pass, which results in a lot
of applications of the squeezing procedure. The main goal of this thesis was
to provide an elementary effective procedure for deciding this problem, that
provides an equivalent transducer of reasonable size.

It is of course important to cover the relations between the different mod-
els of transducers, as those two models are natural ways to represent trans-
ductions, but such an efficient procedure is also interesting from a concrete
point of view. With the increasing speed of information transmission, and
the increasing cost of information storage, being able to process the infor-
mation a machine receives without storing it is very helpful. A deterministic
one-way transducer, as it reads its input once from left-to-right does not need
to keep all its input in memory in order to look back at it later: it computes
its result in real-time. However a two-way transducer needs to be able to
access the totality of the input at any time and does not have this practi-
cal streaming property. This is why it is often more interesting in practice
to use large one-way transducers than concise two-way ones. We managed
to obtain an elementary procedure for deciding one-way definability which
provides an equivalent one-way transducer. Moreover the size of that trans-
ducer is not too big, and even optimal for a subclass of two-way transducers,
namely sweeping transducers. We used for this result an approach similar
to the one of Shepherdson [78] (recall that the equivalence between one-way
and two-way automata was proven independently by Shepherdson, and Ra-
bin and Scott). Using a similar construction we can consider the whole run
of the transducer and provide a condition on its shape.

This question about one-way definability led us to review the notion of
memory cost for two-way machines. As the inputs of machines are of un-
bounded length, the issue of storing and accessing it is in practice at least as
much important as the usual notions of space such as the number of states.
Thus we naturally studied the number of reversals of two-way transducers
(or number of passes in the case of sweeping transducers), how it was linked

20

to other notions of space in different models, and if it was possible to mini-
mize it. Finally, thanks to an elegant equivalence between some restrictions
of Alur’s streaming transducers and sweeping transducers, we managed to
minimize the number of variables in some class of streaming transducers,
which is a very natural and interesting open problem.

Overview. Chapter 2 introduces the computational models that are used
in this thesis: finite-state transducers, MSO transductions on words, and
streaming string transducers. We focused on developing the technical notions
necessary to understand the questions of definability and equivalence that are
tackled in this thesis, and are summarized in Figure 2.18. The reader will
see that for each model the issues are often the same (determinization, one-
way definability, resource minimization) and most of the time, equivalences
between machines are helpful to derive new results for others models. Some
of our new contributions can be found in this chapter, often with short or
simple proofs, as they fit well in the presentation of the relations between
models.

In Chapter 3 we tackle the main question of this thesis, that is one-way
definability for finite-state transducers. This chapter contains two parts: the
first one solves this problem for the restricted class of sweeping transducers,
and the second one shows how to extend this result to the general case of two-
way transducers. We believe that this presentation is simpler, as the main
ideas are contained in the proof of the sweeping case, and the difficulties
of the general cases lie in the combinatorics details. The new ideas in that
case lie mainly in a good understanding of loops of two-way transducers.
Another reason to follow this presentation is that we provided the proof of
the sweeping case two years before the general case and it has lead us to look
a bit more carefully at this class and ask new questions about it.

Those questions are dealt with in Chapter 4. First we solve a generaliza-
tion of one-way definability, namely k-pass definability (that is, is the trans-
ducer equivalent to a sweeping transducer that performs at most k passes?).
Then, by providing a bound on the number of passes of an equivalent sweep-
ing transducer when it exists, we obtain a procedure for deciding sweeping
definability and the minimization of the number of passes of sweeping trans-
ducers. Finally we present an equivalence between sweeping transducers and
a restriction of streaming string transducers. This enhances the interest of
the class of sweeping transducer as it allows us to solve a variable minimiza-
tion problem for a large class of streaming transducers which is an important

21

question, still open in the general case.

Author’s publications. The proof of one-way definability for sweeping
transducers in the first half of Chapter 3 was published in [8] along some
results of Chapter 2 such as Proposition 2.2.8. In [9] we used this result
to solve k-pass definability and the minimization questions of Chapter 4.
This article also contains some insights about sweeping transducers, such as
the logical characterization of Theorem 2.3.5, and one result that we did not
present in this thesis: the equivalence between sweeping transducers and two-
way transducers with a bounded number of reversals. This work was written
in [9] for sweeping transducers, but as we managed later to solve one-way
definability in the general case, we adapted for this thesis those results to
two-way transducers. Finally we concluded this work with the publication
of the general case of one-way definability in [10] which is presented in the
second half of Chapter 3.

22

Chapter 2

Models for regular
transductions

If in formal language theory regular languages are well-studied, the analysis
of what we call transductions, that is functions or relations over words instead
of sets, is less advanced. In this chapter, we describe the formal models of
transductions that we will use and present how they relate together, justifying
the notion of regular transductions.

We focus on three models:

• finite state machines with output: 2-way (Non) Deterministic Finite
state Transducers (2DFT , 2NFT)

• logical formulas defining transductions: (Non) deterministic Monadic
Second Order Transducers (MSOT , NMSOT)

• automata with write-only registers: (Non) Deterministic Streaming
String Transducers (DSST , NSST)

The deterministic models yield to partial functions instead of relations.
Hence, determinization questions can only be asked in the functional setting
where transductions defined are partial functions. As a consequence, the
functionality of a transduction defined by a transducer will be studied in
each of those models.

First we will lay in Section 2.1 some common grounds on the basics of
formal language theory, that is automata and regular languages. It is well-
known that non-deterministic and deterministic automata are equivalent [71],

23

as well as two-way and one-way automata [66, 78]. We define in detail cross-
ing sequences (heavily used in [78]) as they will be at the core of some trans-
ducer transformations presented in this Thesis.

Adding an output component to the transition function is the natural
way to turn automata into machines computing functions, and finite state
transducers were the first model introduced [44, 63, 76]. Yet, it appeared
that they are more challenging than automata for which many questions
were quickly solved [55, 61, 66, 78]. In particular non-deterministic and
deterministic transducers are not equivalent (even in the functional case),
and neither two-way and one-way ones. After some formal definitions we
develop the new questions raised by transducers in Section 2.2.

One early and famous result in automata theory is the equivalence be-
tween regular languages and word languages described by Monadic Second
Order logic (MSO) [18, 34, 83]. An analoguous model for transductions using
a logical formalism (denoted MSOT and NMSOT) has been provided within
the more general framework of graph transductions introduced by Courcelle
[25]. The effective equivalence between MSOT and 2DFT is shown in [36],
but this equality is not true in the relational case, which is one of the rea-
sons to consider only functional models (equivalent to 2DFT). We define in
Section 2.3 a syntactic property on MSO formulas that characterizes one-
way (resp. sweeping) transducers [9, 15, 37]. If first-order logic corresponds
to aperiodic word languages [60, 77], the situation is more complex in the
transduction case that we will review at the end of the section.

Finally, Alur et al. introduced recently streaming string transducers
(DSST , NSST), automata with write-only registers, that are equivalent to
MSO transductions respectively in the deterministic and non-deterministic
setting with effective translations [2, 4]. We introduce the determinization
and minimization questions on SST in Section 2.4.

We conclude this chapter by giving an overview of the relations between
these models and their restrictions.

2.1 Words, languages, and automata

Automata and the study of formal languages on finite alphabets is historically
one of the first topics in theory of computation. Many results have been
produced over the years, and we present in detail only those useful to this
thesis. We will conclude by exhibiting some long-lasting open questions.

24

2.1.1 General definitions

Words over a finite alphabet are a natural way of representing linear infor-
mation: numbers, sequence of bits, texts, encodings, etc... Moreover, the
structure of such words is well-described in an algebraic framework.

Definition 2.1.1. A word w over a finite alphabet Σ is a finite sequence of
letters, that is an element of Σn for some n P N. The integer n is the length
of the word w and is denoted |w|. If w is the sequence a1, a2, . . . , an we write
w “ a1 ¨ ¨ ¨ an and wpiq “ ai, that is the letter at the i-th position of w.

The set Σ˚ “
Ť

kPN Σk of all words is a monoid whose composition rule is
the concatenation: pa0 ¨ ¨ ¨ anq ¨ pa

1
0 ¨ ¨ ¨ a

1
kq “ a0 ¨ ¨ ¨ ana

1
0 ¨ ¨ ¨ a

1
k, and the neutral

element is the empty word ε.

A language is a set (possibly infinite) of words over Σ, that is, a subset
of Σ˚. As we will see, regular languages are sets that may be infinite but
have a finite representation by mean of a machine, an expression or a logical
formula. As we focus here on the machine aspects of the theory of rational
languages, we will introduce this subject by defining recognizable languages
as those that are accepted by some kind of automaton. The reader can refer
to the usual textbooks in the domain [51, 71, 81] for more details on rational
languages and rational expressions.

Definition 2.1.2. A two-way non-deterministic automaton (2NFA) is a
tuple A “ pQ,Σ,$,%,∆, I, F q, where

• Q is a finite set of states,

• Σ is a finite alphabet such that t$,%u X Σ “ H,

• ∆ Ď Qˆ pΣY t$,%uq ˆQˆ tleft, rightu is a transition relation,

• I, F Ď Q are sets of initial and final states, respectively.

Runs and recognized language. Below we fix some vocabulary for two-
way automata (or later, transducers). We assume that every input word
can be written as w “ $ a1 ¨ ¨ ¨ an% with two special delimiting symbols $
and % that do not belong to Σ. By convention the automaton cannot move
to the left when reading $; on the other hand it can move to the right
when reading % but as we will see, necessarily as the last transition of some
successful run. A configuration of A is of the form u q v, where q P Q and

25

w “ uv P t$u ¨ Σ˚ ¨ t%u is the input word. A configuration u q v represents
the situation where the current state of A is q and its head reads the first
symbol of v (on input w). If pq, a, q1, rightq P ∆, then there is a transition from
any configuration of the form u q av to the configuration ua q1 v; we denote
such a transition by u q av a,right

ÝÝÝÑ ua q1 v. Symmetrically, if pq, a, q1, leftq P ∆,
then there is a transition from any configuration of the form ub q av to the
configuration u q1 bav, denoted as ub q av a,left

ÝÝÝÑ u q1 bav.
A run is a sequence of transitions such that each target configuration is

the source configuration of the next transition. It is successful on an input
word w if it starts in an initial configuration q w, with q P I, and ends in
a final configuration w q1, with q1 P F — note that this latter configuration
does not allow additional transitions.

A reversal is a pair of consecutive transitions going in opposite directions.

Definition 2.1.3. The language recognized by A is the set LpAq of words
w P Σ˚ such that there exists a successful run of A on $w%.

2.1.2 Equivalence properties

We will see that the class of languages that we defined can be characterized
in various other ways.

Automata. It is natural to restrict the non-determinism or the two-wayness
of 2NFA and ask whether they define different classes; and if not how diffi-
cult are the translations from one class to another. The following definition
describes natural restrictions:

Definition 2.1.4. An automaton is said to be:

• one-way (NFA) if it has only right transition rules.

• sweeping if it can perform reversals only at the borders of the input
word.

• unambiguous if for each input word, there is at most one accepting run.

• deterministic (2DFA, or DFA if it is also one-way) if the transition
relation is a function.

It is well-known that NFA and DFA define the same class of languages
[51, 71]: the subset construction of Rabin and Scott transforms any NFA into

26

an equivalent DFA at an exponential cost on the number of states [66]. It is
also possible to turn any 2NFA into an equivalent NFA with an exponential
blow-up [66, 78], using for instance the notion of crossing sequence as in
Shepherdson’s proof [78]. All models thus define the same class of languages.

If the cost of most translations is known and tight, Sakoda and Sipser
asked in 1978 the question of the cost of the transformation of a non-
deterministic (one-way or two-way) automaton into a 2DFA [74]. Despite
the study of sweeping automata by Sipser [80], some recent results [64] and
in particular a hierarchy of intermediate classes, this is still an open problem.

Logic. It is known since the early days of automata theory that word lan-
guages recognized by automata can be also described by logics. First, we
need to define Monadic Second Order formulas on words over the alphabet
Σ.

Definition 2.1.5. The formulas of Monadic Second-Order logic over the al-
phabet Σ (hereafter denoted MSOpΣ,ăq) use the classical syntax of MSOpăq
and a monadic predicate Pa for each a P Σ. They are defined using the
following grammar:

Φ ::“ x P X | Papxq | x ă y | x “ y | Dx Φpxq | DX ΦpXq | Φ1 ^ Φ2 | Φ

We can use the notation x Ñ y (y is the successor of x) for the formula
x ă y ^ @z x ă z ñ y ď z.

A non-empty word w “ a1 ¨ ¨ ¨ an of Σ˚ defines a structure pt1, . . . nu,ă, `q
where ă is the total order on the positions of w, and ` : t1, . . . nu Ñ Σ is the
labelling by letters. The semantics of an MSOpΣ,ăq formula are given by
w, i |ù Papxq iff the wpiq “ a, and the usual interpretation of MSO operators.

The set of all words satisfying Φ is the language defined by Φ, denoted
LpΦq. A language L is MSO-definable if there is a formula Φ of MSOpΣ,ăq
such that L “ LpΦq. The following theorem is due to Büchi, Elgot, and
Trakhtenbrot. This theorem was originally stated for NFA but the inclusion
of 2NFA in MSO is easy to obtain using the tools developed in next section.

Theorem 2.1.6 ([18, 34, 83]). A language L Ď Σ˚ is recognized by a 2NFA
if and only if it is MSO-definable. The transformations in both directions
are effective.

We will provide in Section 2.3 a way to use MSOpΣ,ăq in order to define
transductions.

27

A last well-known result of formal language theory is the equivalence
between rational languages and languages defined by rational expressions
–Kleene’s theorem–. Even if there is a notion of ”regular relations” for de-
scribing transductions [35] we will not present them and refer the reader to
the literature [51, 70] or recent works on rational relations [22].

2.1.3 Representation of a run

As we focus in Chapter 3 on the question of the translation from two-way to
one-way transducers, we will use several times the construction from 2NFA
to NFA and in particular, the crossing sequence construction of [78]. This is
why we introduce in this section the definitions used to describe a run, and
more precisely the global state of the transducer while reading the input.

Positions and locations. We follow the convenient presentation from [51],
which appeals to a graphical representation of runs of a two-way transducer,
where each configuration is seen as a point (location) in a two-dimensional
space.

A position is an integer representing ”cuts” between letters of a word
w “ $ a1 ¨ ¨ ¨ an%: 0 is before $, 1 between $ and a1, etc... Note that we
are not in the logical framework and thus that this notion of positions differs
from positions as elements of a word structure. Each configuration of a run
is associated with a position, but this position depends on the direction of
the last transition. If the transducer arrives in the configuration u q aiv with
a right transition, the associated position is i. If the same happens with
a left transition, the associated position is i ` 1. The main reason for this
distinction if that left and right transitions between the positions i and i` 1
both read the letter ai`1, that is the one between i and i` 1.

Definition 2.1.7. A location of a run ρ is a pair px, yq where x is a position
and y ě 0 is called the level of the location. The location px, yq represents
the py` 1q-th configuration associated with the position x that is visited by ρ.

As shown in Fig. 2.1, any two-way run can be represented as an annotated
path between locations. Note that in a successful run ρ every right (resp. left)
transition reaches a location with even (resp. odd) level. We can identify four
types of transitions between locations, depending on the parities of the levels:

28

q0 q1 q2

q3q4

q5 q6 q7 q8

$, right a1, right

a2, left

a1, left

$, right

a1, right a2, right %, right

$ a1 a2 %Input word:

Positions:

Run:

0 1 2 3 4

p0, 0q p1, 0q p2, 0q

p2, 1qp1, 1q

p1, 2q p2, 2q p3, 0q p4, 0q

Figure 2.1: Graphical presentation of a run of an automaton.

px, 2yq px`1, 2y1q

px´ 1, 2y`1q px, 2y1`1q

px, 2yq

px, 2y`1q

px, 2y`1q

px, 2y`2q

ax, right

ax´1, left

ax, left

ax´1, right

Hereafter, we will identify runs with the corresponding annotated paths be-
tween locations. It is also convenient to define a total order � on the locations
of a run ρ by letting `1 � `2 if `2 is reachable from `1 by following the path
described by ρ — the order � on locations is called run order.

Given two locations `1 � `2 of a run ρ, we write ρr`1, `2s for the factor of
the run that starts in `1 and ends in `2. Note that the latter is also a run.
Two runs ρ1, ρ2 can be concatenated, provided that ρ1 ends in location px, yq,
ρ2 starts in location px, y1q, y1 “ y pmod 2q and px, yq and px, y1q are labelled
by the same state. We denote by ρ1ρ2 the run resulting from concatenating
ρ1 with ρ2. Clearly, we have ρr`1, `2s ρr`2, `3s “ ρr`1, `3s for all locations
`1 � `2 � `3.

Crossing sequences. One of the main notion that we use through this

29

thesis is that of crossing sequence. Let w “ $ a1 ¨ ¨ ¨ an% be an input word
and let ρ be a run of a two-way automaton (or transducer) on w. Each
location is associated to a state. Formally, we say that q is the state at
location ` “ px, yq in ρ, and we denote this by writing ρp`q “ q, if the py`1q-
th configuration associated with position x can be written as uai q ai`1v. In
other words, the transducer is in the state q “ ρpx, yq when visiting position
x for the py ` 1q-th time.

Definition 2.1.8. The crossing sequence at position x of ρ is the tuple ρ|x “
pq0, . . . , qhq, where the qy’s are all the states at locations of the form px, yq.

Note that in a successful run ρ every crossing sequence has odd length: as
one can see in Figure 2.2, the last transition on each position is left-to-right.

q0 q1 q2

q3q4

q5 q6 q7 q8

$, right a1, right

a2, left

a1, left

$, right

a1, right a2, right %, right

$ a1 a2 %Input word:

Positions:

Run:

0 1 2 3 4

p0, 0q p1, 0q p2, 0q

p2, 1qp1, 1q

p1, 2q p2, 2q p3, 0q p4, 0q

Figure 2.2: The crossing sequence at position 2 is pq2, q3, q6q

The crossing number of a two-way automaton is the maximal length of a
crossing sequence.

Normalization. A run of A is normalized if it never visits two locations
with the same position, the same state, and both either at even or at odd
level. It is easy to see that for any run, there is an equivalent normalized
run. Indeed, if a successful run ρ is not normalized and visits two locations
`1 “ px, yq and `2 “ px, y1q with the same state ρp`1q “ ρp`2q and with

30

y “ y1 mod 2, then we can delete the factor ρr`1, `2s, thus obtaining a new
run equivalent to ρ. By repeating this operation, we obtain a normalized
run. This allows us to consider only successful, normalized runs.

We can notice that in every normalized successful run of an automaton
A, the crossing sequences have length at most hA “ 2|Q| ´ 1, and thus
that the crossing number of normalized automata is bounded. This implies
that the number of crossing sequences is exponential in |Q|. The idea of the
construction in [78] is to let a one-way automaton A1 guess those crossing
sequences, and check locally that the transitions between consecutive crossing
sequences are compatible. In Figure 2.2 we highlighted the crossing sequence
at position 2.

2.2 Finite state transducers

2.2.1 Definition

Transductions are relations over Σ˚ and Γ˚ (that is subsets of Σ˚ ˆ Γ˚). A
particular case of transductions occurs when, for any u P Σ˚ there is at most
one word v P Γ˚ such that pu, vq belongs to the transduction. The trans-
duction is then a partial function. As the important property here is being
functional, and as they define total functions over their domain of definition,
we will often refer to functional transductions simply as functions. Two-
way transducers have been introduced in the early days of automata theory
[63, 66, 76, 78] and they are our main model for describing transductions.
Compared to automata, they add outputs to transitions:

Definition 2.2.1. A two-way non-deterministic transducer (2NFT) is a
two-way automaton with an additional output alphabet Γ and such that the
transition relation ∆ is a finite subset of QˆpΣYt$,%uqˆΓ˚ˆQˆtleft, rightu.

For a two-way transducer T “ pQ,Σ,$,%,Γ,∆, I, F q, we have a transi-
tion of the form ub q av a,d|w

ÝÝÝÑ u1 q1 v1, outputting w, whenever pq, a, w, q1, dq P
∆ and either u1 “ uba ^ v1 “ v or u1 “ u ^ v1 “ bav, depending on
whether d “ right or d “ left. The transducers have no transition read-
ing ε (it is often called real-time in the literature). The output associated
with a run ρ “ u1 q1 v1

a1,d1|w1
ÝÝÝÝÑ . . . an,dn|wn

ÝÝÝÝÑ un`1 qn`1 vn`1 of T is the word
outpρq “ w1 ¨ ¨ ¨wn.

The domain of T , denoted dompT q, is the set of input words w such
that $w% has a successful run. A transducer T defines a relation RpT q

31

consisting of all pairs pw,w1q such that w1 “ outpρq, for some successful run
ρ on $w%.

For some transducers T , T 1, we write T 1 Ď T to mean that dompT 1q Ď
dompT q and the transductions computed by T , T 1 coincide on dompT 1q.
Given a transducer T and a regular language D Ď dompT q the restriction
of T to D, denoted T|D is the transducer that simulates T but only accepts
inputs in D. The transduction realized by T|D is tpx, yq P RpT q | x P Du.
We say that two transducers T , T 1 are equivalent if they define the same
transduction. One can notice that T 1 Ď T and T Ď T 1 imply that T and T 1
are equivalent.

Example 1. If w “ a1 ¨ ¨ ¨ an is a word, then w “ anan´1 ¨ ¨ ¨ a1 is called mirror
of w. Let f be the function on ta, bu˚ such that for all w P ta, bu˚, we have
fpwq “ www. In Figure 2.3, we describe a two-way transducer computing
the function f (in this example and the followings we write c to represent a
generic letter of the input alphabet Σ). It reads three times the input word,
one for each state qi: on q1 and q3 it reads the word from left to right and
outputs w, and on q2 it outputs w as it reads w from right to left.

Reversal and change of state are done when the transducer reads one of
the endmarker symbols. This transducer is thus sweeping, as one can see on
Figure 2.4.

qi q1 q2 q3 qf
$, right|ε

c, right|c c, left|c c, right|c

%, right|ε%, left|ε $, right|ε

Figure 2.3: A transducer computing the function w ÞÑ www

Transducers are extensions of automata: if we consider a transducer T
and we remove the output component of the transition relation we obtain an
automaton. It is called the underlying automaton of T .

Definition 2.2.2. A transducer T is one-way, sweeping, unambiguous if the
underlying automaton of T is. It is deterministic1 if the transition relation
is a function from Qˆ pΣY t$,%uq to Γ˚ ˆQˆ tleft, rightu. We write:

1Sometimes called sequential or subsequential in the literature.

32

q1

q2

q3

q1

q2

q3 qf

qi

ε

ε

ε a1

a1

an

ε

an

an

a1

a1$ an %

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

w

w

w

Figure 2.4: A run producing a1 ¨ ¨ ¨ anan ¨ ¨ ¨ a1a1 ¨ ¨ ¨ an on the input
$ a1 ¨ ¨ ¨ an%.

• 1DFT for 1-way Deterministic Finite state Transducers.

• 2DFT for 2-way Deterministic Finite state Transducers.

• 1NFT, 2NFT for their non-deterministic counterparts.

Moreover, we say that a transducer is functional2 if the defined transduction
is a partial function. We write 2fNFT and 1fNFT for functional transducers,
respectively two-way and one-way.

One can notice that deterministic and unambiguous transducers are al-
ways functional.

2.2.2 Separating examples

There are two kind of questions to ask about two-way transductions: de-
finability questions and semantic question. The first one considers a trans-
duction (represented by a transducer, but the object of the question is the
transduction) and asks whether it can be computed by a transducer satis-
fying some properties (for instance, deterministic). The latter considers the
properties of a transduction computed by a specific transducer (for instance,
its functionality). There are two main aspects of transducers that can be
considered by those questions: one-wayness (or its generalization, sweep-
ingness) and determinism (or its intermediate problems, ambiguousity and
functionality).

2Also called one-valued or single-valued in the literature.

33

One-way vs two-way. We first show that the definitions of sweeping and
one-way transducers are meaningful in the sense that they describe different
classes of relations than two-way transducers. This holds true even when we
restrict ourselves to the subclass of functional transducers.

Example 2. Let g be the mirror transduction, that is the function on ta, bu˚

such that for any w “ a1 ¨ ¨ ¨ an P ta, bu
˚ we have gpwq “ w “ an ¨ ¨ ¨ a1 . This

function is trivially definable by a sweeping transducer (see Figures 2.5 and
2.6).

Unlike the sweeping transducer, a one-way transducer would have to store
the entire input to be able to produce the correct letters after it has seen the
first output an, that is at the end of the word (remember it cannot go back).

Claim. The function g is definable by no 1NFT.

Proof. Indeed, assume that there is a 1NFT T computing g and let wi “ aibi

be an input word for any i P N. Let ρi “ ρ
p1q
i τiρ

p2q
i be an accepting run of

T on wi such that τi is the first transition reading b. As the number of
transitions is finite, there exist i ă j such that τi “ τj “ τ . This implies that

τi and τj arrive at the same configuration and that ρ
p1q
i τρ

p2q
j is a valid run of

T on the input aibj. Thus, the output of ρ
p1q
i is a prefix of biai and of bjai,

that is bk for some k ď i. As ρ
p1q
i τρ

p2q
j is an accepting run of T the output of

τρ
p2q
j is bj´kai. Since j ´ k ą 0 this word is not a suffix of bjaj which is in

contradiction with the fact that ρj “ ρ
p1q
j τρ

p2q
j is a run producing the output

bjaj.

qi q1 q2 q3 qf

c, right|ε

%, right|ε$, right|ε

c, left|c c, right|ε

%, left|ε $, right|ε

Figure 2.5: A transducer G computing the mirror transduction g

The mirror transduction is the natural example that comes to mind when
it comes to exploiting the right-to-left passes. Note that it is an example

34

q1

q2

q3

q1

q2

q3

ε

ε

ε

ε

an

ε

ε

ε

a1

a1$ an %

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Figure 2.6: A run of G on $ a1 ¨ ¨ ¨ an%

of a deterministic sweeping transducer that is not definable by a one-way
transducer, even a non-deterministic one. The next example illustrates the
ability of two-way transducers to perform reversals at any location of the run
and any number of times:

Example 3. Let g1 be a total function on ta, b,#u˚ such that
g1pw1#w2 ¨ ¨ ¨#wnq “ w1#w2 ¨ ¨ ¨#wn when wi P ta, b,#u

˚.
The two-way transducer in Figure 2.7 computes the function g1. It per-

forms a back-and-forth pass between two consecutive # symbols to produce
the letters of wi in the i-th right-to-left pass, as one can see in Figure 2.8.
With a sweeping transducer, one would have to store the integer i (which is
bounded by no constant) to know where to continue the run after a reversal.
Thus this function can be described by no sweeping (and in particular, no
one-way) transducer. This can be formally proved using the techniques of the
previous example where we use identical pairs of crossing sequences instead
of τi and τj to connect the different parts of the runs.

Note that in the two examples we reverse words over an alphabet of two
letters (in Example 3 the reversed words do not contain the symbol #). If
the alphabet had only one letter, then g and g1 would simply be the identity
function (because an “ an) which can be computed by a one-way transducer.
As a matter of fact, when the output alphabet is unary, two-way and one-way
transducers define the same class of transductions. The crucial point is that
when using the crossing sequence construction for the underlying automaton
we just need to count the number of letters produced on each transition of
the crossing sequence. Indeed the one-way transducer can produce the same
number of letters, as the order of how we produce them does not matter.

35

qi q1 q q2 qf

c, right|ε

$, right|ε %, right|ε

c, left|c c, right|ε

#, left|ε

$, right|ε

#, right|ε

#, right|ε

Figure 2.7: A transducer G 1 representing the function g1.

q1qi

q

q2

q1

q

q2 q1

ε

ε

ε ε

ε

w1pk1q

ε

ε

ε

w1p1q

w1p1q$ w1pk1q # wnp1q# wnpknq %¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨ q1

q

q2

q1

q

q2 qf

ε

ε

ε

ε

wnpknq

ε

ε

ε

wnp1q

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Figure 2.8: A run of G 1 on $w1# ¨ ¨ ¨#wn%.

This raises the following questions, that we call One-way definability and
Sweeping definability :

One-way definability
Input: A 2NFT T .

Question: Is T equivalent to some 1NFT ?

Sweeping definability
Input: A 2NFT T .

Question: Is T equivalent to some sweeping transducer?

One of the starting points of this thesis is a recent proof of the decidability
of the One-way definability problem in the functional case [39], which unfor-
tunately only gives a non-elementary complexity. We will see in Chapter 3

36

that the general problem (without the restriction to functional transducers)
is undecidable. The main result in Chapter 3 is a doubly exponential space
decision procedure for the One-way definability problem in the functional
case. When the given transducer is sweeping we gain one exponential and
the bound on the size of an equivalent one-way transducer is tight.

1NFT vs 1DFT . As non-deterministic transducers define relations and
deterministic ones define functions, transducers are not determinizable in the
general case. This remains to some extent true even when the transduction
is a function. Indeed, the classical subset construction (see for instance [71])
is not applicable to transducers: one would have to remember the outputs
from the whole run already done as part of the states, which is not possible
with a finite state machine.

The following example exploits this idea to show that there is sometimes
no equivalent 1DFT to a given 1fNFT :

Example 4. Let h be the function over Σ˚ such that hpεq “ ε and for any
w “ w1a where a P Σ, we have hpwq “ a|w|. The function h is clearly
definable by a one-way non-deterministic transducer described in Figure 2.9.
It simply has to guess the last letter, output it on each following transition,
and check its guess at the end of the word.

Such a transduction cannot be realized by a one-way deterministic trans-
ducer: the size of the input is unbounded, and cannot be guessed or stored
in the states of the 1DFT before reading the last letter a.

q1qi

qb

qa

q2 qf
% |εc|a$ |ε

a|a

b|b

c|a

c|b

c|b

c|a

Figure 2.9: A one-way non deterministic transducer H computing h.

This example leads to the following question, which was historically called
subsequentiality [20]:

37

Determinization of one-way transducers
Input: A 1fNFT T .

Question: Is T equivalent to some 1DFT ?

Choffrut proved in 1977 that the determinization of 1fNFT is equivalent
to a decidable property, called the twinning property [20]:

Definition 2.2.3. Two states q1 and q2 of a 1fNFT T are twinned if for all
pairs of runs of the form:

• i u|u1
ÝÝÝÑ q1

v|v1
ÝÝÝÑ q1

• i1 u|u2
ÝÝÝÑ q2

v|v2
ÝÝÝÑ q2

where i, i1 are initial states and u, v, u1, v1, u2, v2 are words such that |u1| ě

|u2| , we have one of the following properties:

• v1 “ v2 “ ε, or

• u1 “ u2w and wv2 “ v1w for some w P Σ˚.

We say that T has the twinning property if any pair of reachable and co-
reachable states is twinned (reachable states can be reached by the initial state
by some run, co-reachable states q are such that a final state is reachable by
some run starting in q).

Moreover, the algorithm for deciding the twinning property is polyno-
mial [12, 20] and when possible we can obtain an equivalent deterministic
transducer of exponential size [85].

Non-determinism for sweeping transducers Sweeping transducers be-
have like one-way transducers toward determinization: there exist functional
sweeping transducers that are not determinizable (by a sweeping transducer).
The following example is even stronger: it shows that there exist 1fNFT ’s
that can be simulated by no deterministic sweeping transducer. As determin-
istic sweeping can compute the mirror transduction and 1fNFT ’s can not, we
can conclude that these two subclasses of non-deterministic sweeping trans-
ducers are incomparable. As we provided a mirror-by-block transduction to
separate sweeping and two-way, the following example is a ”block” version
of the previous Example 4.

38

Example 5. Let h1 be the total function on ta, b,#u˚ such that
h1pw1#w2# ¨ ¨ ¨#wnq “ hpw1q#hpw2q# ¨ ¨ ¨#hpwnq where wi P ta, bu

˚ for any
i. The function h1 is easily computed by a 1fNFT : we simply have to mod-
ify H so that it comes back to q1 after each time it has read the symbol #
(see Figure 2.10). However h1 can be computed by no deterministic sweeping
transducer: indeed such a transducer would have to go to the end of the word
to read the last letter of wi in order to produce the right letter, and then
come back to wi in order to produce the right number of letters. But the
transducer would need to store the number i in memory, which is unbounded
as the number of blocks n is not fixed. As we have already seen, this is
impossible with finite memory.

q1qi

qb

qa

q2 qf
% |ε$ |ε

a|a

b|b

c|a

c|b

#|#

#|#
c|b

c|a

Figure 2.10: A one-way non-deterministic transducer H1 computing h1.

Thus we have the following open problem:

Open problem: sweeping-determinization
Input: A functional sweeping transducer T .

Question: Is T equivalent to some deterministic sweeping transducer?

This problem is open as the generalization of the arguments of the one-
way case is non-trivial: the pumping involved in the twinning property yield
to a more complicated output in the sweeping case. However, one interme-
diate construction that will be very useful for the constructions of the next
chapters is to turn a functional transducer into an unambiguous one.

Proposition 2.2.4. Let T be a functional sweeping transducer. It is equiv-
alent to some unambiguous sweeping transducer of exponential size in T .

39

Proof. As usual, this case can be dealt with by a form of subset construction:
we consider crossing sequences of subsets of states. The key observation is
that all successful runs of T can be followed simultaneously because they
perform the same reversals at the same positions, namely, at the extremi-
ties of the input word. In other words, one can determinize the underlying
sweeping automaton in simple exponential time.

1DFT

1fNFT

Deterministic Sweeping

functional Sweeping 2DFT
Example 3

Example 4

Example 5

Example 2

Example 2

Figure 2.11: A synthesis of separation examples.

We summarize in Figure 2.11 the separation results given by the examples
of this section. Remark that arrows are not inclusions yet: we have not shown
that functional sweeping transducers are included in 2DFT ’s. Moreover we
have seen that non-deterministic models are stronger in the one-way and the
sweeping case, but we have not mentioned the two-way case yet: indeed these
two questions are the subject of the next Section and we will see that such
separations do not hold in the two-way case.

2.2.3 Functionality and determinization

Example. We come back now to Example 4: we showed that function h
can be realized by no deterministic one-way transducer, but it could be done
by a deterministic two-way transducer. Indeed, the sweeping transducer of
Figure 2.12 computes h. As one can see in Figure 2.13, the transducer H
goes to the last position of the input word, stores the letter in memory, and
keeps producing it while going backward. Then it performs one last pass
without producing anything to reach the final configuration. This suggests
that determinization of functional transducers may be possible in the two-
way case.

40

qq1qi

qb

qa

q2 qf

c, right|ε

%, left|ε$, right|ε %, right|ε

c, left|a

c, left|b

b, left|b c, right|ε

a, left|a

$, right|ε

$, right|ε

Figure 2.12: A two-way deterministic transducer H computing function h.

qi q1

qan

q2

q1

qan

q2

q1

q

q2 qf

ε

ε

ε

an

ε

ε

ε

an

ε

ε

ε

an

a1$ an´1 an %

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Figure 2.13: A run of H on the input $ a1 ¨ ¨ ¨ an%.

Determinization. We recall that every deterministic transducer is func-
tional, while the opposite implication fails in general. The following results
state that the idea behind Example 4 can be generalized to any functional
two-way transducer. Even more, we can co-determinize it at the same time.

Theorem 2.2.5 ([28, 31]). Given a 2NFT T with n states, one can effectively
construct a deterministic and co-deterministic two-way transducer T 1 of size
exponential in n such that dompT 1q “ dompT q and RpT 1q Ď RpT q.

41

This theorem is what is called a uniformization theorem: we turn a re-
lation into a function by choosing images of elements of the domain. When
we apply this theorem to a functional transducer, we obtain an equivalent
deterministic (and co-deterministic) transducer:

Corollary 2.2.6. Every 2fNFT T is equivalent to some (co-deterministic)
2DFT of size exponential in |T |.

Functionality. The previous result motivates us to consider functional
transducers, and in particular, the problem of functionality for two-way trans-
ducers. We show here that this problem is decidable and in PSpace. The
proof is similar to the decidability proof for the equivalence problem of two-
way deterministic transducers [48], as it reduces the functionality problem
to the reachability problem of a 1-counter automaton of exponential size.
A matching PSpace lower bound follows by a reduction of the emptiness
problem for the intersection of finite-state automata [57].

Before presenting this result we need to remark that functional transduc-
ers can be normalized just like automata. It suffices to notice that when we
have two locations `1, `2 with the same state and the same parity, the output
produced between those locations is empty. Indeed one can repeat the run
between those locations, and obtain new accepting runs on the same input,
with repetitions of outpρr`1, `2sq in the output. If outpρr`1, `2sq is non-empty,
then we produce different outputs on the same input which is in contradic-
tion with functionality. The fact that such outputs are empty allows us to
use the normalization procedure as in the automata case.

Proposition 2.2.7. In every normalized successful run of a functional trans-
ducer, the crossing sequences have length at most 2|Q| ´ 1.

This allows us to assume that transducers are normalized in the following
proposition:

Proposition 2.2.8 ([8]). Functionality of two-way transducers can be de-
cided in polynomial space. This problem is PSpace-hard already for sweeping
transducers.

Proof. Showing that the problem is PSpace-hard for sweeping transducers
is easy: we do a reduction from the emptiness problem of the intersection of
NFA’s.

42

Given n NFAs A1, . . . ,An we build a sweeping transducer S which sim-
ulates the automaton Ai on its i-th pass. At the end of the i-th pass, if the
simulation of Ai is in an accepting state we non-deterministically choose to
produce either ε or i and then continue the computation (that is verifying if
the input is in LpAi`1q). If S ends the simulation in a non-accepting state S
rejects the input. That way, a word u is in the domain of the transduction
defined by S if and only if u P Ai for any i. Moreover, if the domain of
the transduction is not empty S is not functional as there are many possible
outputs. This yields exactly to the desired property of S: it is functional if
and only if

Ş

iďn LpAiq “ H.
To show that the functionality problem is in PSpace for two-way trans-

ducers we reduce it to the emptiness problem for 1-counter machines. These
are one-way, non-deterministic automata with a counter that can be incre-
mented, decremented or tested for zero. The machine accepts if it reaches
a final state. This problem belongs to Nlogspace and we will obtain an
exponential-sized 1-counter machine, that can be simulated on-the-fly. Al-
together this will give PSpace complexity. We recall that N “ 2|Q| ´ 1 is
the maximal crossing number of a normalized run in a functional transducer.
We first show the following claim:

Claim. If S is not functional, then either there exists p1q a successful run
with crossing number at most 2N and non-empty output on some repetition
in a crossing sequence, or p2q two normalized runs on the same input, each
with crossing number at most N , and with different outputs.

Proof. Let us consider two successful runs ρ1 and ρ2 producing two distinct
outputs u ‰ v on the same input w. We show that if ρ1 or ρ2 is not normal-
ized then p1q holds, and that otherwise p2q holds. Assume without loss of
generality that ρ1 is equivalent to no normalized run. That is, the crossing
sequence contains two locations with the same state and both on even/odd
level, such that the output on the factor run delimited by these locations is
non-empty. We can first remove from this run all repetitions that produce
empty outputs. Then, we can also remove the repetitions with non-empty
outputs, obtaining other successful runs, until there remains only one non-
empty repetition. The run produced is an instance of case p1q.

On the other hand, if ρ1 and ρ2 are equivalent to some normalized runs
ρ11 and ρ12, then ρ11 and ρ12 are an instance of p2q.

43

To determine non-functionality, the 1-counter machine M will guess be-
tween the two cases of the lemma: in p1q it will guess a run of S of crossing
number smaller than 2N , and in p2q it will guess two runs of S on the same
input of crossing number smaller than N . In the second case, we define u and
v to be the two outputs of the runs, and S decides if it will check |u| ‰ |v|
or the existence of a position i such that ui ‰ vi.

In p1q and p2q, M guesses two locations in the runs and marks locations
on the crossing sequences that will help to identify certain factors of runs.

In p1qM guesses two locations in the run at the same crossing sequence,
that have the same state, and the same movement of the input head, and
M marks all locations between those two locations. It checks then that the
output produced by the factor containing marked locations is non-empty.

In p2q, if the transducer has chosen to verify that |u| ă |v| (the case
|v| ă |u| is symmetric), it guesses one location in the second run, and marks
the locations before it in the corresponding crossing sequences. The counter
is incremented by the number of letters produced in the first run, and decre-
mented by those produced by marked locations of the second. The guessed
location represents the moment in the second run where it has produced an
output longer than |u|.

If it has chosen to check the existence of a position such that ui ‰ vi, it
guesses one location in each run, and marks the locations before those in the
corresponding crossing sequences. The counter is incremented (resp. decre-
mented) by the number of letters produced by marked locations of the first
(resp. second) run. The machine also checks that the letters produced at the
guessed locations are different, and the counter’s value is 0 at the end of the
run. This guarantees that the letters were produced at the same place.

We can now give in Figure 2.14 all the relations between finite state
transducers classes and the corresponding decision problems.

1DFT 1fNFT functional Sweeping 2DFT “ 2fNFT 2NFTĹ Ĺ Ĺ Ĺ

PTIME ? PSPACE

?

?

Figure 2.14: All finite state transducers classes and their relations.

The decision problem of one-way definability, that is the arrows arriving

44

to 1fNFT ’s, is dealt with in Chapter 3, and the decidability of sweeping-
definability is obtained in Chapter 4.

2.3 Logic and transductions

2.3.1 MSO transductions

We present here a model for transductions based on MSO logic, that was
originally developped by Courcelle [25, 26] in the more general setting of
graph transformations. Words are special instances of labelled graphs. One
of our goals in this section will be to characterize in this framework the
questions of one-way definability and sweepingness.

Definition 2.3.1. An MSO transduction (MSOT for short) from $Σ˚% to
Γ˚ is given by a finite set of copies C and the following MSO formulas over
pΣ,ăq:

• A domain formula Φdom

• Node formulas Φγ,cpxq for γ P Γ and c P C

• Edge formulas Φc1,c2px, yq for c1, c2 P C

For any word w satisfying Φdom , the transduction defines an output graph
as follows: for every position x of w, and every c P C there is a node xpcq if
and only if

Ž

γPΓ Φγ,cpxq is true over w. In addition, xpcq is labelled by the set

of γ such that Φγ,cpxq is true over x. Moreover ypc2q is the successor of xpc1q

if and only if Φc1,c2px, yq is true over w. The formulas can ensure that the
output graph represents a word w1 (that is, the edge formulas induce a linear
order, and each node is labelled by a single letter). This word w1 is the image
of the transduction on the word w P Σ˚. Moreover, we defined MSOT on
words of $Σ˚% in order to be able to define an output on the empty word.

Example 6. We exhibit an MSO transduction computing our running ex-
ample fpwq “ www. We have C “ t1, 2, 3u and Φdom “ J. The transduction
is given by the following formulas (recall that Ñ represents the successor
relation):

• Φγ,cpxq :“ Pγpxq for any c P C, γ P Γ: the copies of the nodes are
labeled by the input letter.

45

• Φc,cpx, yq :“ x Ñ y when c “ 1 or c “ 3: on the first and last copies
the transduction computes w.

• Φ2,2px, yq :“ y Ñ x: on the second copies the transduction computes
w.

• Φ1,2px, yq :“ px “ yq^@z z ď x: we connect the first and second copies
at the end of the input word.

• Φ2,3px, yq :“ px “ yq ^ @z x ď z: we connect the second and third
copies at the beginning of the input word.

One can see in Figure 2.15 the output graph of the transduction on w “

a1 ¨ ¨ ¨ an.

a1 a2 an

a
p1q
1

a
p2q
1

a
p3q
1

a
p1q
2

a
p2q
2

a
p3q
2

a
p1q
3

a
p2q
3

a
p3q
3

. . .

. . .

. . .

. . .

Input:

Output:

c “ 1

c “ 2

c “ 3

Figure 2.15: The output graph of the MSO transduction on a1 ¨ ¨ ¨ an.

A non-deterministic variant of MSOT can be obtained by allowing the
transducer to guess a finite number of sets of nodes, on the form of free set
variables. The transduction produces an output for each valuation satisfying
Φdom. By choosing canonically one particular set of variables using an MSO
formula, and bounding the variables with an existential quantifier we can then
perform a uniformization of the transducer and provide a function contained
in the transduction (as we have done in Theorem 2.2.5 for 2NFT).

Proposition 2.3.2. For any NMSOT T there exists an MSOT T 1 such that
dompT 1q “ dompT q and RpT 1q Ď RpT q.

46

Proof. Let T be a transduction definable in NMSOT with k free variables
X “ X1, . . . , Xk. We begin by choosing some total order ď on k-tuples
of finite subsets of N. We use the standard word-based representation of
tuples: each tuple X is identified with a word of length maxiďk,xPXi

pxq over
the alphabet Σ1 “ t0, 1uk. The letter pb1, . . . , bkq at position i is such that
bj “ 1 iff i P Xj, for every j ď k. For instance X “ pt2u, t2, 3u, t1uq is
identified with the word p0, 0, 1q ¨ p1, 1, 0q ¨ p0, 1, 0q. Our alphabet Σ1 is finite
and its size depends only on the transducer T ; we can thus fix an order
on the letters and express it in MSOpΣ1q. We also let ď be the induced
lexicographic order on words over the alphabet Σ1, and observe that this
order can be expressed in MSOpΣ,ăq.

Now, we replace each formula ΦpX, yq of T (e.g. Φc1,c2pX, y1, y2q) by the

formula Φminpyq “ DX ΦpX, yq ^ @ X
1

ΦdompX
1
q ñ X ď X

1
. Note that

the latter formula is equivalent to the former when X is interpreted as the
least tuple among those that satisfy Φdom. In this way we obtain an MSO-
transducer with the same domain as T , which chooses canonically a valuation
of X to associate at most one output with each input.

When we apply the last theorem to a function of NMSOT we obtain the
following corollary, similar to Corollary 2.2.6:

Corollary 2.3.3. If a function is NMSOT-definable, then it is MSOT-
definable.

This result can also be derived from the fact that non-deterministic MSO
transductions are relabellings of MSO transductions [36].

2.3.2 Sweeping vs MSO

Definition 2.3.4. Let T be an MSO transduction with m copies. We say
that T is

• order-preserving if each formula Φc1,c2px, yq entails x ď y;

• order-inversing if each formula Φc1,c2px, yq entails x ě y;

• k-phase if there is a partition C0, C1, . . . , Ck´1 of the copy set C such
that:

1. for all i even (resp. odd) and all c1, c2 P Ci, the formula Φc1,c2px, yq
entails x ď y (resp. y ď x),

47

2. for all i ă j and c1 P Ci, c2 P Cj, the formula Φc1,c2px, yq entails
x ď y.

We know from [15, 37] that order-preserving MSO transductions capture
precisely the functional 1NFT ’s. Symmetrically, order-inversing MSO trans-
ductions capture the transductions definable by one-way transducers that
read the input from right to left. So it is not surprising that k-phase MSO
transductions correspond to k-pass sweeping transducers, actually the proof
that we give is similar to the one in [37] for order-preserving transductions:

Theorem 2.3.5 ([9]). k-phase MSO transductions have the same expressive
power as functional, k-pass sweeping transducers.

Proof. We first show how to translate a k-pass sweeping, functional trans-
ducer T into an equivalent k-phase MSO transduction. The technique is a
variant of the classical translation from two-way transducers to MSO trans-
ductions (see for instance [37]). First, using the classical correspondence
between automata and MSO of Theorem 2.1.6 we can build an MSO sen-
tence Φdom that tells whether a word u belongs to the domain of the trans-
duction. Recall also from Proposition 2.2.4 that we can assume that T is
unambiguous.

Recall that T performs at most k passes, and let cT be the maximal
number of characters output by a single transition of T . To define the output
of the MSO transduction, we will take k ¨ cT copies of the input. Each copy
of the input is thus indexed by a pair ph, iq, where 0 ď h ă k and 1 ď i ď cT .
Intuitively, for a given position x, its copy indexed by ph, iq represents the
i-th letter of the output produced by the transition leaving location px, hq.
For each index 0 ď h ă k and each transition rule τ of T , we can build
an MSO formula Φh,τ pxq such that, for all u P dompT q, u |ù Φh,τ pxq iff the
transition rule τ is applied at the location ` “ px, hq of the unique successful
run of T induced by u. We complete the definition of the MSO transduction
equivalent to T as follows:

• For the formulas defining the output elements and their labels, we
let Φγ,ph,iqpxq be the disjunction of the formulas Φh,τ pxq, for all τ “
pp, γ, v, qq such that |v| ě i and vpiq “ γ. Note that, because only one
transition rule can be used at each location of the successful run, for
each 1 ď x ď |u| and each 0 ď h ă k, there can exist at most one letter
γ such that u |ù Φγ,ph,iqpxq.

48

• For the formulas representing the edges of the output elements, we
define Φph,iq,ph1,i1qpx, yq by a case distinction:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x “ y if h “ h1 and i1 “ i` 1

xÑ y ^
`
Ź

γPΓ Φγ,ph,i`1qpxq
˘

if h “ h1 is even and i1 “ 1

y Ñ x ^
`
Ź

γPΓ Φγ,ph,i1`1qpyq
˘

if h “ h1 is odd and i “ 1

x “ y ^ @z z ď x ^
`
Ź

γPΓ Φγ,ph,i`1qpxq
˘

if h is even, h1 “ h` 1, and i1 “ 1

x “ y ^ @z x ď z ^
`
Ź

γPΓ Φγ,ph,i`1qpxq
˘

if h is odd, h1 “ h` 1, and i1 “ 1.

It is easy to see that the formulas Φph,iq,ph1,i1qpx, yq define a total order
on the output structure.

It remains to show that the above MSO transduction is k-phase. For this, we
order lexicographically the index set

ph, iq : 0 ď h ă k, 1 ď i ď cS
(

, and
partition it into k subsets C0 ă C1 ă . . . , Ck´1, where Ch “

ph, iq : 1 ď
i ď cS

(

for all h “ 0, 1, . . . , k´1. We then observe that the defined partition
satisfies Definition 2.3.4: indeed, for all pairs ph, iq, ph, jq P Ch, Φph,iqph,jqpx, yq
entails either x ď y or x ě y, depending on whether h is even or odd.

We now prove the converse translation, from a k-phase MSO transduction
to an equivalent k-pass sweeping transducer. Let Φdom, Φγ,ipxq, and Φi,jpx, yq
be the formulas defining an arbitrary k-phase MSO transduction, where i, j
range over some finite set C. Further let C0 ă C1 ă . . . ,ă Ck´1 be a
partition of C satisfying the third item of Definition 2.3.4. Note that, for a
fixed 0 ď h ă k, the family of formulas Φγ,ipxq and Φi,jpx, yq where i, j range
over Ch define an MSO transduction that is either order-preserving or order-
inversing, depending on whether h is even or odd. For the sake of brevity, we
denote by T the original k-pass MSO transduction, and by T0, T1, . . . , Tk´1

the corresponding order-preserving/order-inversing MSO transductions.
If each Th maps an input word u to an output vh, then we know that T

maps u to the juxtaposition v0 ¨v1 ¨. . .¨vk´1. Moreover, we know from [37] that
we can translate the order-preserving transductions T0, T2, . . . , Tk to equiv-
alent one-way transducers T 10 , T 12 , . . . , T 1k . Similarly, we can translate the
order-inversing transductions T1, T3, . . . , Tk´1 to equivalent transducers per-
forming one single pass from right to left. T 11 , T 13 , . . . , T 1k´1. Thus, we can
obtain the desired k-pass sweeping transducer T 1 by simply concatenating
the transducers T 10 , T 11 , T 12 , T 13 , . . . , T 1n.

49

2.3.3 FO-definability

It is well-known [60, 77] that languages defined by first-order formulas on
words are equivalent to aperiodic languages, or equivalently, to languages
recognized by counter-free automata. Such automata have the property that
their transition monoid is aperiodic (for an overview of algrebraic theory of
finite automata see [65]). We focus here on aperiodic transducers [27].

Definition 2.3.6. We say that a transducer is aperiodic if its underlying
automaton has an aperiodic transition monoid.

The notion of transition monoid is standard only when the automaton is
one-way. For a generalization to two-way machines one can use the definition
of [19]. In that article, Carton and Dartois extend the classical result on
automata to transducers:

Theorem 2.3.7 ([19]). A 2fNFT is FO-definable iff it is aperiodic.

However, unlike as in the automata case, this does not allow to decide
FO-definability. Indeed, the fact that a transducer is not aperiodic does not
mean that all equivalent transducers are not either. What we lack here is a
notion of ”canonical (or minimal) transducer”.

When restricting to one-way transducers and order-preserving transduc-
tions, decidability of the FO-definability is recovered:

Theorem 2.3.8 ([38]). A transduction is definable by an aperiodic 1fNFT
iff it is definable by an order-preserving FO-transducer. Moreover, the latter
property is decidable.

One last open question is the FO-definability (not necessarily order-
preserving) of a 1fNFT . This question could be immediately solved using
Theorem 2.3.8 if FO-definable 1fNFT were equivalent to first-order trans-
ductions that are order-preserving. We conjecture that this is indeed the case
and we note that the conjecture is implied by another conjecture, saying that
any aperiodic 2NFT that is one-way-definable can be transformed into an
aperiodic 1NFT . Indeed, assume that the latter property were true. Since by
Theorem 2.3.7 any FO-definable 1fNFT is equivalent to an aperiodic 2NFT
that is one-way definable, it suffices to turn this aperiodic 2NFT into an
aperiodic 1NFT and the claim follows.

50

2.4 Streaming string transducers

Streaming transducers can implement the same functional transductions as
MSO transducers [2, 4], but they do so using a single left-to-right pass and
a fixed set of registers that can store words over an output alphabet.

Definition 2.4.1. A non-deterministic streaming transducer is a tuple T “
pQ,Σ,Γ, R, U, I, E, F q, where Q is a finite set of states, Σ (resp. Γ) is a finite
input (resp. output) alphabet, R is a finite set of registers disjoint from Γ,
U is a finite set of updates for the registers, namely, functions from R to
pRZΓq˚, I is a subset of Q representing the initial states, E Ď QˆΣˆUˆQ
is a finite set of transition rules, describing, for each state and input symbol,
the possible updates and target states, and F : Q á pR Z Γq˚ is a partial
output function.

A well-behaved class of streaming transducers [2] is obtained by restrict-
ing the allowed types of updates and partial output functions to be copyless.
A streaming transducer T “ pQ,Σ,Γ, R, U, I, E, F q is copyless if (1) for every
update f P U , every register z P R appears at most once in fpz1q ¨ ¨ ¨ fpzkq,
where R “ tz1, . . . , zku, and (2) for every state q P Q, every register z P R
appears at most once in F pqq. Hereafter we assume that all transducers be-
long to the class of copyless non-deterministic streaming transducers, denoted
NSST .

Semantic. In order to define the semantic of a streaming transducer T “
pQ,Σ,Γ, R, U, I, E, F q, we introduce valuations of registers in R. These are
functions of the form g : R Ñ Γ‹. Valuations can be homomorphically
extended to words over RYΓ and to updates, as follows. For every valuation
g : R Ñ Γ‹ and every word w P pR Y Γq‹, we let gpwq be the word over
Γ obtained from w by replacing every occurrence of a register z with its
valuation gpzq. Similarly, for every valuation g : R Ñ Γ‹ and every update
f : R Ñ pR Y Γq‹, we denote by g ˝ f the valuation that maps each register
z to the word gpfpzqq.

A configuration of T is a pair state-valuation pq, gq. This configuration
is said to be initial if q P I and gpzq “ ε for all registers z P R. When
reading a symbol a, the transducer can move from a configuration pq, gq to a
configuration pq1, g1q if there exists a transition rule pq, a, f, q1q P E such that
g1 “ g ˝ f . We denote this by pq, gq

a
Ñ pq1, g1q.

A run of T on u “ a1 . . . an is a sequence of configurations and transitions
of the form σ “ pq0, g0q

a1
Ñ pq1, g1q

a2
Ñ . . .

an
Ñ pqn, gnq. The run ρ is successful if

51

pq0, g0q is an initial configuration and the partial output function F is defined
on the last state qn. In this case, the output of T on u is gnpF pqnqq.

Deterministic, functional and unambiguous streaming transducers are de-
fined as in the two-way case. In particular, in a deterministic SST there is
only one possible register update for each transition of the automaton. The
class of copyless deterministic streaming transducer is denoted DSST . A
streaming transducer is called k-register if it uses at most k registers.

Example 7. Let f be our running example, that is the function on ta, bu˚

such that for all w P ta, bu˚, we have fpwq “ www. The streaming transducer
described in Figure 2.16 uses three registers: two where we store the word w
(remember that registers can only appear once in the output function F pqq
so we need two registers for that) by adding the input letters at the right of
the register, and one where we store w by adding the input letters at the left
of the register (see 2.17).

qstart

c

ˇ

ˇ

ˇ

ˇ

ˇ

X2 “ X2c
Y “ cY
X1 “ X1c

X1Y X2

Figure 2.16: A SST where F pqq “ X1Y X2 computing the function f .

q q q q F pqq “ X1Y X2 “ www

a1$ an´1 an %

¨ ¨ ¨

X2

Y
X1

+

: Registers
¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

a1

a1

a1

ε
ε
ε

a1 ¨ ¨ ¨ an´1

an´1 ¨ ¨ ¨ a1

a1 ¨ ¨ ¨ an´1

a1 ¨ ¨ ¨ an´1an
anan´1 ¨ ¨ ¨ a1

a1 ¨ ¨ ¨ an´1an

Figure 2.17: A run of a streaming transducer computing f on the word
w “ a1 ¨ ¨ ¨ an.

52

2.4.1 Functionality and determinization

As always the deterministic model can only compute functions. The first
step towards determinization is thus turning a functional transducer into an
unambiguous one.

Proposition 2.4.2 ([9]). For every k-register functional NSST, there exists
an equivalent k-register unambiguous NSST with exponentially many more
states.

Proof. The transformation from a k-register functional streaming transducer
T into an equivalent, unambiguous k-register streaming transducer T 1 can be
performed in exponential time by using standard techniques. More precisely,
one performs a subset construction on A the underlying finite state automa-
ton of T . This allows one to simulate deterministically all successful runs
of A on the input word. Then one exploits non-determinism to canonically
guess a single run among the successful ones —this can be the least run in
some lexicographic ordering. Finally, one simulates the register updates of T
along the guessed successful run. The resulting transducer T 1 has the same
number of registers as T , but exponentially many more states. In particular,
T 1 can be produced in exponential time from T .

The next question to ask is whether we can determinize functional
NSST ’s. We will see with Proposition 2.5.4 that the link between MSO
transductions and streaming transducers will give a positive answer to this
question.

As in the case of finite state transducers we have a relatively efficient
procedure to decide functionality. The proof of this result uses the same
techniques as Theorem 2.2.8.

Theorem 2.4.3 ([4]). The functionality of a NSST is decidable in PSPACE.

2.4.2 Number of registers

We can notice that in the last example X2 always follows Y in the output,
and letters are only added at the left of Y and at the right of X2. This means
that we could have used only one register Y with the update Y “ cY c when
reading the input letter c. We will look at a simpler version of this example,
to show that 2-register NSST ’s are strictly more expressive than 1-register
NSST ’s.

53

Proposition 2.4.4. Let f 1 be the function on ta, bu˚ such that for all w P
ta, bu˚, we have f 1pwq “ ww. The transduction f 1 is clearly definable by a
2-register NSST but cannot be computed by a 1-register NSST.

Proof. Suppose that T is a 1-register NSST computing the function f 1. As
f 1 is a function we can assume by Proposition 2.4.2 that T is unambiguous.
Let T1 be a right-to-left one-way transducer that reads the input word w from
right-to-left and guesses backwards the unique accepting run of T on w. For
each transition labeled with a register update X :“ uXv, T1 outputs u until
the first register update X :“ u. After having produced u the transducer
continues to read the input to verify that the run it has guessed is correct,
but produces no more output.

Analogously, we use an 1NFT T2 that simulates the computation of the
underlying automaton of T and guesses the last occurrence of a register
update X :“ u. After this, it produces the output v for each transition
labeled by X :“ uXv.

In this way, we have by construction that dompT q “ dompT1q “ dompT2q

and T pwq “ T1pwqT2pwq for any word w P dompT q. Thus T1 computes a
prefix of ww and T2 a suffix of ww. However, T1 as a right-to-left one-way
transducer can only produce a prefix of w bounded by |T1| (it is the argument
of Example 2 in reverse). At the same time T2 can only produce a suffix w1w
of ww where the length of w1 is bounded by |T2|. Altogether, T1 and T2

cannot produce ww if w is too long, hence the contradiction.

One can use a similar proof to show that the k-duplication u ÞÑ uk needs
at least k registers. It is natural to ask the following open (and difficult)
question:

Number of registers
Input: An NSST or a DSST T and a number k

Question: Is T equivalent to an NSST or a DSST T 1 with k registers.

As the determinization of functional NSST ’s may increase the number of
registers, there are in fact three distinct equivalence questions.

In some way, we simulated in the proof of Proposition 2.4.4 the 1-register
DSST by two passes of a finite state transducer. This idea will be used
in Chapter 4 to prove a correspondence between sweeping and streaming
transducers with a particular property. Moreover, as Chapter 3 will set

54

the basis for a decision procedure to minimize the number of passes of a
sweeping transducer, we will solve this question for a subclass of NSST that
corresponds to sweeping transducers in Chapter 4.

2.5 Overview of the relations between models

2.5.1 Logic and finite state transducers

Engelfriet and Hoogeboom showed that two-way transducers and MSO trans-
ductions define effectively the same class of transductions in the deterministic
case:

Theorem 2.5.1 ([36]). MSOT = 2DFT

This result, along Corollary 2.2.6, justifies the following definition, that
we adopt following the point of view of [36]:

Definition 2.5.2. We call regular transductions the class of transductions
defined by a 2DFT.

However the non-deterministic power of those transductions works dif-
ferently, and this theorem is not true in the non-deterministic setting. The
following separating examples can be found in [36] and show that NMSOT
and 2NFT are incomparable:

Example 8. Let R be a relation on Σ “ ta, bu˚ such that for any k P N, u P
Σ˚, we have pu, ukq P R. Clearly R is defined by a two-way transducer that
non-deterministically chooses to stop or do another back-and-forth pass each
time it has produced an occurrence of u.

However, this relation is infinitary that is one input word is associated
with infinitely many outputs. It is not possible to compute such a trans-
duction with NMSOT as the number of guessed valuations is finite. Let us
mention that this infinitary property is crucial, as finitary 2NFT ’s are in
NMSOT [36].

Example 9. Let R1 be a transduction from tau˚ to ta, b,#u˚ such that for
any n P N and w P ta, bun, we have pan, w#wq P R1. This can easily be
realized in NMSOT . We copy twice the input and label one copy with a and
one with b. Then we guess two sets of positions Xa and Xb representing the
positions for which we should consider the copy labelled by a or b.

55

However, R1 is not definable by a 2NFT . Let n P N such that 2n is larger
than the number of configurations |Q|pn`2q. As there are 2n possible outputs
on an, we can find two runs with different outputs u1#u1 and u2#u2 with
the same configuration when producing the # symbol. If we connect them
we produce the output u1#u2 which is impossible by definition of R1.

2.5.2 Streaming transducers

One of the reasons to consider copyless streaming transducers is that they
correspond to MSO transductions:

Theorem 2.5.3 ([2], [4]). We have the following equivalence between classes:

• DSST = MSOT

• NSST = NMSOT

As these equivalence are effective and in view of Corollary 2.3.3, we can
answer positively to the question of determinization of SST ’s. The construc-
tion involved in the following proposition does not preserve the number of
registers.

Proposition 2.5.4 ([4]). If a function is computed by a NSST then it can
also be computed by a DSST.

The proof of the first item of Theorem 2.5.3 in [2] uses Theorem 2.5.1
and only shows the following inclusions: 2DFT Ď DSST Ď MSOT . A direct
construction from MSOT to DSST is found in [5]. Moreover 2DFT Ď DSST
in [2] requires an intermediate model: a direct construction, as well as one
from DSST to 2DFT , can be found in [58]. More precisely we have the
following theorem:

Theorem 2.5.5 ([29]). • If T is a DSST with n states and m registers,
it is effectively equivalent to a 2DFT with Opmnnq states.

• If T is a 2DFT with n states, it is effectively equivalent to a DSST
with Opp2nq2nq states and 2n´ 1 registers.

We will do a very similar construction in Chapter 4 between sweeping
transducers and a subclass of NSST .

An interesting consequence of this equivalence between SST ’s and MSO
transductions is an efficient procedure for deciding FO-definability. The def-
inition of the following notion of aperiodic SST ’s can be found in [40]:

56

Theorem 2.5.6 ([40]). A DSST T is aperiodic if and only if the transduction
it computes is FO-definable. Moreover it is PSpace-complete to decide the
aperiodicity of a DSST.

If we add the other equivalence results mentionned in this chapter, we
obtain an overview of regular transductions depicted in Figure 2.18. The no-
tation o.p. MSOT stands for order-preserving MSO transductions of Section
2.3.2, and r.a. fNSST ’s are right-appending streaming transducers: the up-
dates are always of the form X :“ Xu. With one counter, those are syntaxi-
cally equivalent to one-way finite state transducers. Finally, concatenation-
free NSST ’s are introduced in Section 4.2.1.

1fNFT
o.p.

MSOT
1-register

r.a. fNSST

functional
sweeping

k-phase
MSOT

concatenation-
free fNSST

2DFT MSOT DSST

2fNFT
MSOT

functions
fNSST

2NFT NMSOT NSST

“

2.3.2

“

[37]

“

3.2.3

“

4.2.1

“ [28]

“

[36]

“

[2]

“ Cor 2.3.3 “ [4]

“

[4]

2.2.8 [4]

“

[4]

4.1.4

3.5.2

Regular

transductions

Rational

transductions

Figure 2.18: An overview of regular transductions. We highlighted in blue
our contributions.

57

2.5.3 Other models

As one can notice by looking at the examples we gave, the case where the
alphabet is unary is always particular. It has been for instance studied
recently by Guillon [22, 47].

We focus in this thesis on functional transducers. But it is possible
that several results presented for functional transducers hold for finite-valued
transducers. One possible approach is to try to decompose a k-valued trans-
ducer into k functional ones. Such a decomposition has been obtained for
one-way transducers [73, 84] and for SST ’s with one register [42] but the
problem is open in the general case.

Aperiodic transducers have been studied both for algrebraic reasons and
their connection with FO [19, 27, 29, 38]. In the next chapter we present a
decision procedure for the one-way definability of a 2NFT . To this regard it
would be interesting to know if a transformation into a one-way transducer
(when it is possible of course) preserves aperiodicity.

It is worth mentioning an algebraic characterization of regular transduc-
tions similar to the definition of regular languages using rational expressions
[6].

In Chapter 4 we describe how to minimize the number of registers for
a subclass of NSST . Other minimization results have been obtained for a
slightly different model, Cost-Register Automata, by using a generalization
of the twinning property described in Section 2.2 [30]. In the setting of SST ’s
those automata correspond to right-appending DSST ’s , that is transducers
that have updates only at the right of registers.

58

Chapter 3

One-way definability

We have seen in the previous chapter that one-way transducers are less ex-
pressive than two-way ones. In [39] the question of one-way definability is
shown decidable, but with non-elementary complexity. We provide here an
elementary procedure based on a proper understanding of the pumping of
two-way loops. This chapter is dedicated to the proof of the following theo-
rem:

Theorem 3.0.1. There is an algorithm that takes as input a functional two-
way transducer T and outputs in 3ExpTime a one-way transducer T 1 satis-
fying the following properties:

1. T 1 Ď T ,

2. dompT 1q “ dompT q if and only if T is one-way definable.

3. dompT 1q “ dompT q can be checked in 2ExpSpace.

Moreover, if T is a sweeping transducer, then T 1 can be constructed in
2ExpTime and dompT 1q “ dompT q is decidable in ExpSpace.

Remark 3.0.2.

• The transducer T 1 constructed in the above theorem is in a certain sense
maximal. We will make this more precise at the end of Section 3.5.

• There is a tight lower bound on the size of any one-way transducer
equivalent to some sweeping transducer. We will show this at the end
of Section 3.6

59

Let us start with an example illustrating the main idea behind this result.

Example 10. We consider two-way transducers that accept any input u
from a given regular language R and produce as output the word uu. We
will argue how, depending on R, these transducers may or may not be one-
way definable.

1. If R “ pa ` bq˚, then there is no equivalent one-way transducer, as
the output language is not regular. If R is finite, however, then the
transduction mapping u P R to uu can be implemented by a one-way
transducer that stores the input u (this requires at least as many states
as the cardinality of R), and outputs uu at the end of the computation.

2. Consider now the periodic language R “ pabcq˚. The function that
maps u P R to uu can be easily implemented by a one-way transducer:
it suffices to output alternatively ab, ca, bc for each input letter, while
checking that the input is in R.

The main idea to prove Theorem 3.0.1 is to decompose a run of the
two-way transducer T into factors that can be easily simulated in a one-
way manner. We defer the formal definition of such a decomposition to
Section 3.2, while here we refer to it simply as a “B-decomposition”, where
B is a suitable number computed from T . Intuitively, each factor of the
B-decomposition either looks like a computation of a one-way transducer,
or it produces a periodic output, where the period is bounded by B (we
have seen in Example 10 how this is helpful). The key notion that allows to
identify factors with periodic outputs is that of an “inversion”, and relies on
combinatorial results shown in Section 3.1.

In order to provide a roadmap of our proof, we state below the equiva-
lence between the key propositions and defer the technical definitions to the
corresponding sections. Here, the number B is doubly exponential in the
size of T in the general case, and simply exponential when T is sweeping.

Theorem 3.0.3. Given a functional two-way transducer T , an integer B
can be computed such that the following are equivalent:

P1) T is one-way definable,

P2) for every successful run of T and every inversion in it, the output
produced between the inversion has period at most B,

P3) every input has a successful run of T that admits a B-decomposition.

60

Overview.

As the notions of inversion and B-decomposition are simpler for sweeping
transducers, we will first show the above implications for sweeping trans-
ducers, and focus later on unrestricted two-way transducers. Specifically,
in Section 3.1 we introduce the basic combinatorics on words and the key
notion of inversion for a run of a sweeping transducer, and we prove the
implication P1 ñ P2. In Section 3.2 we define B-decompositions of runs of
sweeping transducers, prove the implication P2 ñ P3, and sketch a proof
of P3 ñ P1 (as a matter of fact, this latter implication can be proved in a
way that is independent of whether T is sweeping or not, which explains why
we only sketch the proof in the sweeping case). Section 3.3 lays down the
appropriate definitions concerning loops in a run of a two-way transducer,
and analyzes in detail the effect of pumping special idempotent loops. In
Section 3.4 we further develop the combinatorial arguments that are used to
prove the implication P1 ñ P2 in the two-way case. In Section 3.5 we prove
the implications P2 ñ P3 ñ P1 in the two-way setting, and show how to
decide the condition dompT 1q “ dompT q of Theorem 3.0.1. Finally, we anal-
yse the complexity in Section 3.6 and show that this problem is undecidable
for relations, which justify to consider only functional transducers.

3.1 Basic combinatorics in the sweeping case

In this section, we intend to pump some factors of the input, in order to
generate new accepting runs and use functionality to obtain words equations.
Then combinatorial arguments due to Fine and Wilf [41] and Saarela [69]
allow us to obtain the periodicity of some factors. We obtain equations whose
shape is similar to the ones obtain via a pumping lemma of Tim Smith [82]
but unlike this result we focus on pairs of input and output, and not only the
generated languages. We fix for the rest of the section a functional sweeping
transducer T , an input word u, and a (normalized) successful run ρ of T
on u.

3.1.1 Pumping loops.

For simplicity, we will denote by ω the maximal position of the input word.

61

I “ rx1, x2s

0 0

11

2 2

β

γ

δ

Figure 3.1: Intercepted factors.

We will consider intervals of positions of the form I “ rx1, x2s, with
0 ď x1 ă x2 ď ω. The containment relation Ď on intervals is defined
expected, as rx3, x4s Ď rx1, x2s if x1 ď x3 ă x4 ď x2.

A factor of a run ρ is a contiguous subsequence of ρ. A factor of ρ inter-
cepted by an interval I “ rx1, x2s is a maximal factor that visits only positions
x P I, and never uses a left transition from position x1 or a right transition
from position x2. Figure 3.1 on the right shows the factors α, β, γ, δ, ζ in-
tercepted by an interval I. The numbers that annotate the endpoints of the
factors represent their levels.

Loops are a basic concept needed for characterizing one-way definability.
Formally, a loop of ρ is an interval L “ rx1, x2s such that ρ|x1 “ ρ|x2,
namely, with the same crossing sequences at the extremities. The run ρ can
be pumped at any loop L “ rx1, x2s, and this gives rise to new runs with
iterated factors. Below we study precisely the shape of these pumped runs.

Definition 3.1.1 (anchor point, trace). Given a loop L and a location ` of
ρ, we say that ` is an anchor point in L if ` is the first location of some factor
of ρ that is intercepted by L; this factor is then called a trace and denoted1

as trp`q.

Observe that a loop can have at most H “ 2|Q| ´ 1 anchor points, since
we consider only normalized runs.

Given a loop L of ρ and a number n P N, we can replicate n times the
factor urx1, x2s of the input, obtaining a new input of the form

pumpn`1
L puq “ ur1, x1s ¨ purx1 ` 1, x2sq

n`1
¨ urx2 ` 1, |w|s. (3.1)

1This is a slight abuse of notation, since the factor trp`q is not determined by ` alone,
but requires also the knowledge of the loop L, which is usually clear from the context.

62

L

`1

`2

`3

trp`1q

trp`2q

trp`3q

1st copy of L 2nd copy of L 3rd copy of L

`1

`2

`3

trp`1q trp`1q trp`1q

trp`2qtrp`2qtrp`2q

trp`3q trp`3q trp`3q

Figure 3.2: A loop L with 3 anchor points, and the result of pumping.

Similarly, we can replicate n times the intercepted factors trp`q of ρ, for all
anchor points ` of L. In this way we obtain a successful run on pumpn`1

L puq
that is of the form

pumpn`1
L pρq “ ρ0 trp`1q

n ρ1 . . . ρk´1 trp`kq
n ρk (3.2)

where `1 � ¨ ¨ ¨ � `k are all the anchor points in L (listed according to the
run order �), ρ0 is the prefix of ρ ending at `1, ρk is the suffix of ρ starting at
`k, and for all i “ 1, . . . , k´ 1, ρi is the factor of ρ between `i and `i`1. Note
that pump1

Lpρq coincides with the original run ρ. As a matter of fact, one
could define in a similar way the run pump0

Lpρq obtained from removing the
loop L from ρ. However, we do not need this, and we will always parametrize
the operation pumpL by a positive number n` 1.

An example of a pumped run pump3
L1
pρq is given in Figure 3.2, together

with the indication of the anchor points `i and the intercepted factors trp`iq.

3.1.2 Output minimality.

We are interested into factors of the run ρ that lie on a single level and that
contribute to the final output, but in a minimal way, in the sense that is
formalized by the following definition:

Definition 3.1.2. Consider a factor α “ ρr`, `1s of ρ. We say that α is
output-minimal if ` “ px, yq and `1 “ px1, yq, and all loops L Ĺ rx, x1s produce
empty output at level y.

In this section, we set the constant B “ cmax|Q|
H ` 1, where cmax is the

capacity of the transducer, that is, the maximal length of an output produced
on a single transition (recall that |Q|H is the maximal number of crossing

63

sequences). As shown below, B bounds the length of the output produced
by an output-minimal factor:

Lemma 3.1.3. For all output-minimal factors α, |outpαq| ď B.

Proof. Suppose by contradiction that |outpαq| ą B, with α “ ρr`, `1s, ` “
px, yq and ` “ px1, yq.

Let X be the set of all positions x2, with minpx, x1q ă x2 ă maxpx, x1q,
that are sources of transitions of α that produce non-empty output. Clearly,
the total number of letters produced by the transitions that depart from
locations in X ˆ tyu is strictly larger than B ´ 1. Moreover, since each
transition emits at most cmax symbols, we have |X| ą B´1

cmax
“ |Q|H . Now,

recall that crossing sequences are sequences of states of length at most H .
Since |X| is larger than the number of crossing sequences, X contains two
positions x1 ă x2 such that ρ|x1 “ ρ|x2. In particular, L “ rx1, x2s is a loop
strictly between x, x1 with non-empty output on level y. This shows that
ρr`, `1s is not output-minimal.

Inversions and periodicity.

Next, we define the crucial notion of inversion. Intuitively, an inversion in
a run identifies a part of the run that is potentially difficult to simulate in
a one-way manner because the order of generating the output is reversed
w.r.t. the input. Inversions arise naturally in transducers that reverse ar-
bitrarily long portions of the input, as well as in transducers that produce
copies of arbitrarily long portions of the input.

Definition 3.1.4. An inversion of the run ρ is a tuple pL1, `1, L2, `2q such
that

1. L1, L2 are loops of ρ,

2. `1 “ px1, y1q and `2 “ px2, y2q are anchor points of L1 and L2, respec-
tively,

3. `1 � `2 and x1 ą x2

(namely, `2 follows `1 in the run, but the position of `2 precedes the
position of `1),

64

L2 L1

T :

`1

`2 v2

v1

output of T : v1 v1 . . . v2 v2 v2 v2

output of T 1: v12 v12 v12 v12 . . . v11 v11

L2 L1

T 1 :

`12 `11v12 v11

Figure 3.3: An inversion, and the effect of pumping in T and an equivalent
one-way transducer T 1.

4. for both i “ 1 and i “ 2, outptrp`iqq ‰ ε and trp`iq is output-minimal.

The left hand-side of Figure 3.3 gives an example of an inversion, assum-
ing that the outputs v1 “ trp`1q and v2 “ trp`2q are non-empty and the
intercepted factors are output-minimal.

The rest of the section is devoted to prove the implication P1 ñ P2 of
Theorem 3.0.3. We recall that a word w “ a1 ¨ ¨ ¨ an has period p if for every
1 ď i ď |w| ´ p, we have ai “ ai`p. For example, the word abc abc ab has
period 3.

We remark that, thanks to Lemma 3.1.3, for every inversion
pL1, `1, L2, `2q, the outputs outptrp`1qq and outptrp`2qq have length at most
B. By pairing this with the assumption that the transducer T is one-way
definable, and by using some classical word combinatorics, we show that the
output produced between the anchor points of every inversion has period that
divides the lengths of outptrp`1qq and outptrp`2qq. In particular, this period
is at most B. The proposition below shows a slightly stronger periodicity
property, which refers to the output produced between the anchor points
`1, `2 of an inversion, but extended on both sides with the words outptrp`1qq

and outptrp`2qq. We will exploit this stronger periodicity property later, when
dealing with overlapping portions of the run delimited by different inversions
(cf. Lemma 3.2.5).

Proposition 3.1.5. If T is one-way definable, then the following property
P2 holds:

65

For all inversions pL1, `1, L2, `2q of ρ, the period p of the word

outptrp`1qq outpρr`1, `2sq outptrp`2qq

divides both |outptrp`1qq| and |outptrp`2qq|. Moreover, p ď B.

The above proposition thus formalizes the implication P1 ñ P2 of The-
orem 3.0.3. Its proof relies on a few combinatorial results. The first one is
Fine and Wilf’s theorem [59]. In short, this theorem says that, whenever
two periodic words w1, w2 share a sufficiently long factor, then they have the
same period. Below, we state a slightly stronger variant of Fine and Wilf’s
theorem, which additionally shows how to align a common factor of the two
words w1, w2 so as to form a third word containing a prefix of w1 and a suffix
of w2. The additional claim will be exploited in the proof of Lemma 3.2.5.

Theorem 3.1.6 (Fine-Wilf’s theorem). If w1 “ w11ww
2
1 has period p1, w2 “

w12ww
2
2 has period p2, and the common factor w has length at least p1`p2´

gcdpp1, p2q, then w1, w2, and w3 “ w11ww
2
2 have period gcdpp1, p2q.

A second combinatorial result required in our proof was shown by Korte-
lainen [56], and later improved by Saarela [69]. The result is related to word
equations with iterated factors, like those that arise from considering outputs
of pumped runs. To improve readability, we highlight below the important
iterations of factors inside the considered equation.

Theorem 3.1.7 (Theorem 4.3 in [69]). Consider a word equation

v0 v
n
1 v2 ¨ ¨ ¨ vk´1 v

n
k vk`1 “ w0 w

n
1 w2 ¨ ¨ ¨ wk1´1 w

n
k1 wk1`1

where n is the unknown and vi, wj are words. Then the set of solutions of
the equation is either finite or N.

We will use the above result mainly to reason about periodicities of words
with iterated factors, as it is done by the following corollary:

Corollary 3.1.8. If v0 v
n
1 v2 ¨ ¨ ¨ vk´1 v

n
k vk`1 has period p for infinitely many

n, then it has period p for all n.

Proof. The fact that v0 v
n
1 v2 ¨ ¨ ¨ vk´1 v

n
k vk`1 has period p, for some given n,

can be expressed by the equation v0 v
n
1 v2 ¨ ¨ ¨ vk´1 v

n
k vk`1 “ wknn w1n, where

|wn| “ p, w1n is a prefix of wn of length smaller than p, and k does not depend

66

on n. Moreover, since the latter equation holds for infinitely many n, we can
assume, without loss of generality, that wn “ w and w1n “ w1 for some words
w,w1 (and for infinitely many n). This means that v0v

n
1 v2 ¨ ¨ ¨ vk´1v

n
k vk`1 “

wknw1 holds for infinitely many n, and for fixed words v0, v1, . . . , vk`1, w, w
1.

By Theorem 3.1.7, we know that the previous equation holds for all n, and
thus v0 v

n
1 v2 ¨ ¨ ¨ vk´1 v

n
k vk`1 has period p for all n.

Recall that our goal is to show that the output produced between every
inversion has period bounded by B. The general idea is to pump the loops
of the inversion and compare the outputs of the two-way transducer T with
those of an equivalent one-way transducer T 1. The comparison leads to
an equation between words with iterated factors, where the iterations are
parametrized by two unknowns n1, n2 that occur in opposite order in the left,
respectively right hand-side of the equation. Our third and last combinatorial
result considers a word equation of this precise form, and derives from it a
periodicity property. For the sake of brevity, we use the notation vpn1,n2q to
represent words with factors iterated n1 or n2 times, namely, words of the
form v0 v

ni1
1 v2 ¨ ¨ ¨ vk´1 v

nik
k vk`1, where the v0, v1, v2, . . . , vk´1, vk, vk`1 are

fixed words (possibly empty) and each index among i1, . . . , ik is either 1 or 2.

Lemma 3.1.9. Consider a word equation of the form

v
pn1,n2q

0 vn1

1 v
pn1,n2q

2 vn2

3 v
pn1,n2q

4 “ w0 w
n2

1 w2 w
n1

3 w4

where n1, n2 are the unknowns and v1, v3 are non-empty words. If the above
equation holds for all n1, n2 P N, then

v1 v
n1

1 v
pn1,n2q

2 vn2

3 v3

has period gcdp|v1|, |v3|q for all n1, n2 P N.

Proof. The idea of the proof is to let the parameters n1, n2 of the equation
grow independently, and exploit Fine and Wilf’s theorem (Theorem 3.1.6)
a certain number of times to establish periodicities in overlapping factors of
the considered words.

We begin by fixing n1 large enough so that the factor vn1
1 of the left

hand-side of the equation becomes longer than |w0| ` |w1| (this is possible
because v1 is non-empty). Now, if we let n2 grow arbitrarily large, we see
that the length of the periodic word wn2

1 is almost equal to the length of the

left hand-side term v
pn1,n2q

0 vn1
1 v

pn1,n2q

2 vn2
3 v

pn1,n2q

4 : indeed, the difference in

67

length is given by the constant |w0|` |w2|`n1 ¨ |w3|` |w4|. In particular, this

implies that wn2
1 covers arbitrarily long prefixes of v1 v

pn1,n2q

2 vn2
3 v3, (here

we add an occurrence of v3 so that the output is long enough if n2 “ 0) which
in its turn contains long repetitions of the word v3. Hence, by Theorem 3.1.6,
the word v1 v

pn1,n2q

2 vn2`1
3 has period |v3|.

We remark that the periodicity shown so far holds for a large enough n1

and for all but finitely many n2, where the threshold for n2 depends on n1:
once n1 is fixed, n2 needs to be larger than fpn1q, for a suitable function f .
In fact, by using Corollary 3.1.8, with n1 fixed and n “ n2, we deduce that
the periodicity holds for large enough n1 P N and for all n2 P N.

We could also apply a symmetric reasoning: we choose n2 large enough
and let n1 grow arbitrarily large. Doing so, we prove that for a large enough
n2 and for all but finitely many n1, the word v1 v

n1
1 v

pn1,n2q

2 v3 is periodic
with period |v1|. As before, with the help of Corollary 3.1.8, this can be
strengthened to hold for large enough n2 P N and for all n1 P N.

Putting together the results proven so far, we get that for all but finitely
many n1, n2,

loooooooooooooomoooooooooooooon

period |v1|

vn1

1 ¨

period |v3|
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

v1 ¨ v
pn1,n2q

2 ¨ v3 ¨ v
n2

3 .

Finally, we observe that the prefix vn1`1
1 ¨v

pn1,n2q

2 ¨v3 and the suffix v1 ¨v
pn1,n2q

2 ¨

vn2`1
3 share a common factor of length at least |v1|` |v3|. By Theorem 3.1.6,

we derive that vn1`1
1 ¨v

pn1,n2q

2 ¨vn2`1
3 has period gcdp|v1|, |v3|q for all but finitely

many n1, n2. Finally, by exploiting again Corollary 3.1.8, we conclude that
the periodicity holds for all n1, n2 P N.

We are now ready to prove the implication P1 ñ P2:

Proof of Proposition 3.1.5. Let T 1 be a one-way transducer equivalent to T ,
and consider an inversion pL1, `1, L2, `2q of the successful run ρ of T on input
u. The reader may refer to Figure 3.3 to get basic intuition about the proof
technique. For simplicity, we assume that the loops L1 and L2 are disjoint,
as shown in the figure. If this were not the case, we would have at least
maxpL1q ą minpL2q, since the anchor point `1 is strictly to the right of the
anchor point `2. We could then consider the pumped run pumpkL1

pρq for a
large enough k ą 1 in such a way that the rightmost copy of L1 turns out
to be disjoint from and strictly to the right of L2. We could thus reason as

68

we do below, by replacing everywhere (except in the final part of the proof,
cf. Transferring periodicity to the original run) the run ρ with the pumped
run pumpkL1

pρq, and the formal parameter m1 with m1 ` k.

Inducing loops in T 1. We begin by pumping the run ρ and the underlying
input u, on the loops L1 and L2, in order to induce new loops L11 and L12 that
are also loops in a successful run of T 1. Assuming that L1 is strictly to the
right of L2, we define for all numbers m1,m2 P N:

upm1,m2q “ pumpm1`1
L1

ppumpm2`1
L2

puqq

ρpm1,m2q “ pumpm1`1
L1

ppumpm2`1
L2

pρqq.

In the pumped run ρpm1,m2q, we identify the positions that mark the endpoints
of the occurrences of L1, L2. More precisely, if L1 “ rx1, x2s and L2 “ rx3, x4s,
with x1 ą x4, then the sets of these positions are

X
pm1,m2q

2 “

x3 ` ipx4 ´ x3q : 0 ď i ď m2 ` 1
(

X
pm1,m2q

1 “

x1 ` jpx2 ´ x1q `m2px4 ´ x3q : 0 ď j ď m1 ` 1
(

.

Periodicity of outputs of pumped runs. We now exploit the fact that T 1 is
a one-way transducer equivalent to T . Let λpm1,m2q be a successful run of
T 1 on the input upm1,m2q. Since T 1 has finitely many states, we can find a
large enough number k0 and two positions x11 ă x12, both in X

pk0,k0q
1 , such that

L11 “ rx
1
1, x

1
2s is a loop of λpk0,k0q. Similarly, we can find two positions x13 ă x14,

both in X
pk0,k0q
2 , such that L12 “ rx

1
3, x

1
4s is a loop of λpk0,k0q. By construction

L11 (resp. L12) consists of k1 ď k0 (resp. k2 ď k0) copies of L1 (resp. L2), and
hence L11, L

1
2 are also loops of ρpk0,k0q. In particular, this implies that for all

n1, n2 P N:

pumpn1`1
L11

ppumpn2`1
L12

pupk0,k0qqq “ upfpn1q,gpn2qq

pumpn1`1
L11

ppumpn2`1
L12

pρpk0,k0qqq “ ρpfpn1q,gpm2qq

pumpn1`1
L11

ppumpn2`1
L12

pλpk0,k0qqq “ λpfpn1q,gpn2qq.

where fpn1q “ k1n1 ` k0 and gpn2q “ k2n2 ` k0.
Now recall that ρpfpn1q,gpn2qq and λpfpn1q,gpn2qq are runs of T and T 1 on

the same word upfpn1q,gpn2qq, and they produce the same output. Let us de-
note this output by wpfpn1q,gpn2qq. Below, we show two possible factorizations
of wpfpn1q,gpn2qq based on the shapes of the pumped runs λpfpn1q,gpn2qq and

69

ρpfpn1q,gpn2qq. For the first factorization, we recall that L12 precedes L11, ac-
cording to the ordering of positions, and that the run λpfpn1q,gpn2qq is one-way.
We thus obtain

wpfpn1q,gpn2qq “ w0 w
n2

1 w2 w
n1

3 w4 (3.3)

where

• w1 is the output produced by the (unique) factor of λpk0,k0q intercepted
by L12,

• w3 is the output produced by the (unique) factor of λpk0,k0q intercepted
by L11,

• w0 is the output produced by the prefix of λpk0,k0q up to the left border
of L12,

• w2 is the output produced by the factor of λpk0,k0q between the right
border of L12 and the left border of L11,

• w4 is the output produced by the suffix of λpk0,k0q after the right border
of L11.

For the second factorization, we consider L11 and L12 as loops of ρpk0,k0q.
We recall that `1, `2 are anchor points of the loops L1, L2 of ρ, and that
there are corresponding copies of these anchor points in the pumped run
ρpfpn1q,gpn2qq. We define `11 (resp. `12) to be the first (resp. last) location in
ρpfpn1q,gpn2qq that corresponds to `1 (resp. `2) and that is an anchor point of
a copy of L11 (resp. L12). For example, if `1 “ px1, y1q, with y1 even, then
`11 “

`

x1 ` fpn2qpx4 ´ x3q, y1

˘

. Thanks to Equation 3.2 we know that the

output produced by ρpfpn1q,gpn2qq is of the form

wpfpn1q,gpn2qq “ v
pn1,n2q

0 vn1

1 v
pn1,n2q

2 vn2

3 v
pn1,n2q

4 (3.4)

where

• v1 “ outptrp`11qq, where `11 is seen as an anchor point in a copy of L11,

• v3 “ outptrp`12qq, where `12 is seen as an anchor point in a copy of L12

(note that the words v1, v3 depend on k0, but not on n1, n2),

70

• v
pn1,n2q

0 is the output produced by the prefix of ρpfpn1q,gpn2qq that ends
before the first repetition of trp`11q (this word may depend on the pa-
rameters n1, n2 since the loops L11, L

1
2 may be traversed several times

before reaching the first occurrence of trp`11q),

• v
pn1,n2q

2 is the output produced by the factor of ρpfpn1q,gpn2qq between the
first repetition of trp`11q and the last repetition of trp`12q,

• v
pn1,n2q

4 is the output produced by the suffix of ρpfpn1q,gpn2qq after the last
repetition of trp`12q.

Putting together Equations (3.3) and (3.4), we get

v
pn1,n2q

0 vn1

1 v
pn1,n2q

2 vn2

3 v
pn1,n2q

4 “ w0 w
n2

1 w2 w
n1

3 w4. (3.5)

Recall that the definition of inversions (Definition 3.1.4) states that the words
v1, v3 are non-empty. This allows us to apply Lemma 3.1.9, which shows that
the word v1 v

n1
1 v

pn1,n2q

2 vn2
3 v3 has period p “ gcdp|v1|, |v3|q, for all n1, n2 P N.

Note that the latter period p still depends on T 1, since the words v1, v3

were obtained from loops L11, L
1
2 on the run λpk0,k0q of T 1. However, because

each loop L1i consists of ki copies of the original loop Li, we also know that
v1 “ poutptrp`1qqq

k1 and v3 “ poutptrp`2qqq
k2 . By Theorem 3.1.6, this implies

that for all n1, n2 P N, the word

`

outptrp`1qq
˘ `

outptrp`1qq
˘k1n1 v

pn1,n2q

2

`

outptrp`2qq
˘k2n2

`

outptrp`2qq
˘

has a period that divides |outptrp`1qq| and |outptrp`2qq|.

Transferring periodicity to the original run. The last part of the proof
amounts at showing a similar periodicity property for the output produced
by the original run ρ. By construction, the iterated factors inside v

pn1,n2q

2 in
the previous word are all of the form vk1n1`k0 or vk2n2`k0 , for some words
v. By taking out the constant factors vk0 from the latter repetitions, we
can write v

pn1,n2q

2 as a word with iterated factors of the form vk1n1 or vk2n2 ,

namely, as v12
pk1n1,k2n2q. So the word

`

outptrp`1qq
˘ `

outptrp`1qq
˘k11 v12

pk11,k
1
2q
`

outptrp`2qq
˘k12

`

outptrp`2qq
˘

is periodic, with period that divides |outptrp`1qq| and |outptrp`2qq|, for all
k11 P tk1n : n P Nu and all k12 P tk2n : n P Nu. We now apply Corollary

71

3.1.8, once with n “ k11 and once with n “ k12, to conclude that the latter
periodicity property holds also for k11 “ 1 and k12 “ 1. This shows that the
word when we take k11 “ k12 “ 1, which is:

outptrp`1qq outpρr`1, `2sq outptrp`2qq

is periodic, with period that divides |outptrp`1qq| and |outptrp`2qq|.

3.2 One-way definability in the sweeping case

In the previous section we have shown the implication P1 ñ P2 for a func-
tional sweeping transducer T . Here we close the cycle by proving the im-
plications P2 ñ P3 and P3 ñ P1. In particular, we show how to derive
the existence of successful runs admitting a B-decomposition and construct
a one-way transducer T 1 that simulates T on those runs. This will basically
prove Theorem 3.0.3 in the sweeping case.

3.2.1 Run decomposition.

We begin by giving the definition of B-decomposition for a run ρ of T .
Intuitively, a B-decomposition of ρ identifies factors of ρ that can be easily
simulated in a one-way manner. The definition below describes precisely the
shape of these factors.

First we need to recall the notion of almost periodicity: a word w is almost
periodic with bound p if w “ w0 w1 w2 for some words w0, w2 of length at
most p and some word w1 of period at most p.

We need to work with subsequences of the run ρ that are induced by
particular sets of locations, not necessarily consecutive. Recall that ρr`, `1s
denotes the factor of ρ delimited by two locations ` � `1. Similarly, given any
set Z of locations, we denote by ρ|Z the subsequence of ρ induced by Z. Note
that, even though ρ|Z might not be a valid run of the transducer, we can
still refer to the number of transitions in it and to the size of the produced
output outpρ|Zq. Formally, a transition in ρ|Z is a transition from some ` to
`1, where both `, `1 belong to Z. The output outpρ|Zq is the concatenation of
the outputs of the transitions of ρ|Z (according to the order given by ρ).

Definition 3.2.1. Consider a factor ρr`, `1s of a run ρ of T , where ` “ px, yq,
`1 “ px1, y1q are two locations with x ď x1. We call ρr`, `1s

72

`

`1

`1 `2

`4`3

Figure 3.4: A block ρr`, `1s and a diagonal ρr`1, `4s. The bounded outputs
are in bold font.

1. a floor if y “ y1 is even, i.e. ρr`, `1s lies on the same level and is
rightward oriented;

2. a B-diagonal if there is a sequence ` “ `0 � `1 � ¨ ¨ ¨ � `2n`1 “ `1,
where each ρr`2i`1, `2i`2s is a floor, each ρr`2i, `2i`1s produces an output
of length at most 2HB, and the position of each `i is to the left of the
position of `i`1;

3. a B-block if the output produced by ρr`, `1s is almost periodic with
bound 2B, and the output produced by the subsequence ρ|Z, where
Z “ r`, `1s z

`

rx, x1s ˆ ry, y1s
˘

, has length at most 2HB.

Before continuing we give some intuition on the notions defined above.
The simplest concept is that of floor, a rightwards oriented factor of a run.
Diagonals are sequences of consecutive floors interleaved by factors that pro-
duce bounded outputs. Blocks may appear between two consecutive diago-
nals. An important constraint in the definition of a block is that the output
produced by ρr`, `1s must be almost periodic. In addition, the block must
satisfy a constraint on the length of the output produced by the subsequence
ρ|Z, where Z “ r`, `1s z

`

rx, x1s ˆ ry, y1s
˘

is the set of locations of ρr`, `1s
outside the block defined by `, `1. Figure 3.4 represents the block of `, `1 by
a hatched rectangle, and the subsequence ρ|Z by some thick arrows.

Definition 3.2.2. A B-decomposition of a run ρ of T is a factorization
ś

i ρr`i, `i`1s of ρ into B-diagonals and B-blocks.

Figure 3.5 gives an example of a decomposition. Each factor is either
a diagonal Di or a block Bi, and each diagonal is built up of one or more
floors. The hatched rectangles represent the blocks. We observe that the
floors and the blocks of the decomposition are arranged along a diagonal,

73

i.e. following the natural order of positions and levels. Intuitively, this means
that the output produced inside these floors and blocks can be simulated in a
one-way manner. Moreover, most of the output of ρ is produced inside floors
and blocks: indeed, thanks to Definition 3.2.1, at most 2H2B symbols are
produced outside floors and blocks.

D1

D2

D2

D3

B1

B2

Figure 3.5: Decomposition of a run into diagonals and blocks.

3.2.2 From periodicity of inversions to existence of de-
compositions.

Now that we set up the definition of B-decomposition, we turn towards
proving the implication P2 ñ P3 of Theorem 3.0.3. In fact, we will prove
a slightly stronger result than P2 ñ P3, which is stated further below.
Formally, when we say that a run ρ satisfies P2 we mean that for every
inversion pL1, `1, L2, `2q of ρ, the word outptrp`1qq outpρr`1, `2sq outptrp`2qq

has period gcdp|outptrp`1qq|, |outptrp`2qq|q ď B. We aim at proving that every
run that satisfies P2 enjoys a decomposition, independently of whether other
runs do or do not satisfy P2:

Proposition 3.2.3. If ρ is a run of T that satisfies P2, then ρ admits a
B-decomposition.

Let us fix a run ρ of T and assume that it satisfies P2. To identify the
elements of a B-decomposition of ρ (i.e. the diagonals and the blocks), we
introduce a suitable equivalence relation between locations:

Definition 3.2.4. Let S be the relation that pairs every two locations `, `1 of
ρ whenever there is an inversion pL1, `1, L2, `2q of ρ such that `1 � `, `1 � `2,
namely, whenever ` and `1 occur within the same inversion. Let S˚ be the
reflexive and transitive closure of S.

74

`0

`2

`1

`4

`3

`6

`5

`n´3

`n´2

`n

Figure 3.6: A non-singleton S˚-equivalence class seen as a series of overlap-
ping inversions.

It is easy to see that every equivalence class of S˚ is a convex subset with
respect to the run order on locations of ρ. Moreover, every non-singleton
equivalence class of S˚ is a union of a series of inversions that are two-by-
two overlapping. One can refer to Figure 3.6 for an intuitive account of
what we mean by two-by-two overlapping: the thick arrows represent factors
of the run that lie entirely inside an S˚-equivalence class, each inversion is
identified by a pair of consecutive anchor points (given with the same color in
the Figure). According to the run order, between every pair of anchor points
with the same color, there is at least one anchor point of another inversion:
this is what we mean when we say that the two inversions considered are
overlapping.

Formally, we say that an inversion pL1, `1, L2, `2q covers a location ` when
`1 � ` � `2. We say that two inversions pL1, `1, L2, `2q and pL3, `3, L4, `4q are
overlapping if pL1, `1, L2, `2q covers `3 and pL3, `3, L4, `4q covers `2 (or the
other way around).

The next lemma exploits the fact that ρ satisfies P2 to deduce that the
output produced inside every S˚-equivalence class has period at most B.
Note that the proof below does not exploit the fact that the transducer is
sweeping.

Lemma 3.2.5. If ρ satisfies P2 and ` � `1 are two locations of ρ such
that ` S˚ `1, then the output outpρr`, `1sq produced between these locations has

75

period at most B.

Proof. The claim for ` “ `1 holds trivially, so we assume that ` � `1. Since
the S˚-equivalence class that contains `, `1 is non-singleton, we know that
there is a series of inversions

pL0, `0, L1, `1q pL2, `2, L3, `3q pL2k, `2k, L2k`1, `2k`1q

that are two-by-two overlapping and such that `0 � ` � `1 � `2k`1. Without
loss of generality, we can assume that every inversion pL2i, `2i, L2i`1, `2i`1q

is maximal in the following sense: there is no other inversion pL̃, ˜̀, L̃1, ˜̀1q ‰
pL2i, `2i, L2i`1, `2i`1q such that ˜̀� `2i � `2i`1 � ˜̀1.

For the sake of brevity, let vi “ outptrp`iqq and pi “ |vi|. Since ρ satisfies
P2 (recall Proposition 3.1.5), we know that, for all i “ 0, . . . , n, the word

v2i outpρr`2i, `2i`1sq v2i`1

has period that divides both p2i and p2i`1 and is at most B. In order to show
that the period of outpρr`, `1sq is also bounded by B, it suffices to prove the
following claim by induction on i:

Claim. For all i “ 0, . . . , k, the word out
`

ρr`0, `2i`1s
˘

v2i`1 has period at
most B that divides p2i`1.

The base case i “ 0 follows immediately from our hypothesis, since
pL0, `0, L1, `1q is an inversion. For the inductive step, we assume that the
claim holds for i ă k, and we prove it for i` 1. First of all, we factorize our
word as follows:

out
`

ρr`0, `2i`3s
˘

v2i`3 “
loooooooooooooooooooooooomoooooooooooooooooooooooon

period p2i`1

out
`

ρr`0, `2i`2s
˘

periods p2i`2 and p2i`3
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

out
`

ρr`2i`2, `2i`1s
˘

out
`

ρr`2i`1, `2i`3s
˘

v2i`3 .

By the inductive hypothesis, the output produced between `0 and `2i`1, ex-
tended to the right with v2i`1, has period that divides p2i`1. Moreover,
because ρ satisfies P2 and pL2i`2, `2i`2, L2i`3, `2i`3q is an inversion, the out-
put produced between the locations `2i`2 and `2i`3, extended to the left with
v2i`2 and to the right with v2i`3, has period that divides both p2i`2 and p2i`3.
Note that this is not yet sufficient for applying Fine-Wilf’s theorem, since the
common factor out

`

ρr`2i`2, `2i`1s
˘

might be too short (possibly just equal to
v2i`2). The key argument here is to prove that the interval r`2i`2, `2i`1s is cov-
ered by an inversion which is different from those that we considered above,

76

namely, i.e. pL2i`2, `2i`2, L2i`1, `2i`1q. For example, r`2, `1s in Figure 3.6 is
covered by the inversion pL2, `2, L1, `1q.

For this, we have to prove that the anchor points `2i`2 and `2i`1 are
correctly ordered w.r.t. � and the ordering of positions (recall Defini-
tion 3.1.4). First, we observe that `2i`2 � `2i`1, since pL2i, `2i, L2i`1, `2i`1q

and pL2i`2, `2i`2, L2i`3, `2i`3q are overlapping inversions. Next, we prove that
the position of `2i`1 is strictly to the left of the position of `2i`2. By way of
contradiction, suppose that this is not the case, namely, `2i`1 “ px2i`1, y2i`1q,
`2i`2 “ px2i`2, y2i`2q, and x2i`1 ě x2i`2. Because pL2i, `2i, L2i`1, `2i`1q and
pL2i`2, `2i`2, L2i`3, `2i`3q are inversions, we know that `2i`3 is strictly to the
left of `2i`2 and that `2i`1 is strictly to the left of `2i. This implies that
`2i`3 is strictly to the left of `2i, and hence pL2i, `2i, L2i`3, `2i`3q is also an
inversion. Moreover, recall that `2i � `2i`2 � `2i`1 � `2i`3. This contradicts
the maximality of pL2i, `2i, L2i`1, `2i`1q, which we assumed at the beginning
of the proof. Therefore, we must conclude that `2i`1 is strictly to the left of
`2i`2.

Now that we know that `2i`2 � `2i`1 and that `2i`1 is to the left of `2i`2,
we derive the existence of the inversion pL2i`2, `2i`2, L2i`1, `2i`1q. Again,
because ρ satisfies P2, we know that the word v2i`2 outpρr`2i`2, `2i`1sq v2i`1

has period at most B that divides p2i`2 and p2i`1. Summing up, we have:

1. w1 “ out
`

ρr`0, `2i`1s
˘

v2i`1 has period p2i`1,

2. w2 “ v2i`2 out
`

ρr`2i`2, `2i`1s
˘

v2i`1 has period p “ gcdpp2i`2, p2i`1q,

3. w3 “ v2i`2 out
`

ρr`2i`2, `2i`3s
˘

v2i`3 has period p1 “ gcdpp2i`2, p2i`3q.

We are now ready to exploit our stronger variant of Fine-Wilf’s theorem,
that is, Theorem 3.1.6.

We begin with (1) and (2) above. Let w “ out
`

ρr`2i`2, `2i`1s
˘

v2i`1 be
the common suffix of w1 and w2. First note that since p divides p2i`2, the
word w is also a prefix of w2, thus we can write w2 “ ww12. Second, note
that the length of w is at least |v2i`1| “ p2i`1 “ p2i`1` p´ gcdpp2i`1, pq. We
can apply now Theorem 3.1.6 to w1 “ w11w and w2 “ ww12 and obtain:

4. w4 “ w11 w w12 “ out
`

ρr`0, `2i`2s
˘

v2i`2 out
`

ρr`2i`2, `2i`1s
˘

v2i`1 has
period p.

We apply next Theorem 3.1.6 to (2) and (3), namely, to the words w2

and w3 with v2i`2 as common factor. It is not difficult to check that |v2i`2| “

77

p2i`2 ě p` p1 ´ p2 with p2 “ gcdpp, p1q, using the definitions of p and p1: we
can write p2i`2 “ p2rq “ p2r1q1 with p “ p2r and p1 “ p2r1. It suffices to
check that p2rq`p2r1q1 ě 2pp2r`p2r1´p2q, hence that rq`r1q1 ě 2r`2r1´2.
This is clear if minpq, q1q ą 1. Otherwise the inequality p2i`2 ě p ` p1 ´ p2

follows easily because p “ p2 or p1 “ p2 holds. Hence we obtain that w2 and
w3 have both period p2.

Applying once more Theorem 3.1.6 to w3 and w4 with v2i`2 as common
factor, yields period p2 for the word

w5 “ out
`

ρr`0, `2i`2s
˘

v2i`2 out
`

ρr`2i`2, `2i`3s
˘

v2i`3

Finally, the periodicity is not affected when we remove factors of length
multiple than the period. In particular, by removing the factor v2i`2 from
w5, we obtain the desired word out

`

ρr`0, `2i`3s
˘

v2i`3, whose period p2 divides
p2i`3. This proves the claim for the inductive step, and completes the proof
of the proposition.

The S˚-classes considered so far cannot be directly used to define the
blocks in the desired decomposition of ρ, since the x-coordinates of their
endpoints might not be in the appropriate order. The next definition takes
care of this, by enlarging the S˚-classes according to x-coordinates of the
anchor points in the equivalence class.

Definition 3.2.6. Consider a non-singleton S˚-equivalence class K “ r`, `1s.
Let anpKq be the restriction of K to the anchor points occurring in some
inversion, and XanpKq “ tx : Dy px, yq P anpKqu be the projection of anpKq

on positions. We define blockpKq “ r˜̀, ˜̀1s, where

• ˜̀ is the latest location px̃, ỹq � ` such that x̃ “ minpXanpKqq,

• ˜̀1 is the earliest location px̃, ỹq � `1 such that x̃ “ maxpXanpKqq

(note that the locations ˜̀, ˜̀1 exist since `, `1 are both anchor points in some
inversion).

Lemma 3.2.7. If K is a non-singleton S˚-equivalence class, then ρ|blockpKq
is a B-block.

Proof. Consider a non-singleton S˚-class K “ r`, `1s and let anpKq, XanpKq,

and blockpKq “ r˜̀, ˜̀1s be as in Definition 3.2.6. We need to verify that ρr˜̀, ˜̀1s
is a B-block (cf. Definition 3.2.1), namely, that:

78

minpXanpKqq maxpXanpKqq

˜̀

`

`1

˜̀1

Figure 3.7: Block construction.

• ˜̀“ px̃, ỹq, ˜̀1 “ px̃1, ỹ1q, with x̃ ď x̃1,

• the output produced by ρr˜̀, ˜̀1s is almost periodic with bound 2B,

• the output produced by the subsequence ρ|Z, where Z “

r˜̀, ˜̀1s z
`

rx̃, x̃1s ˆ rỹ, ỹ1s
˘

, has length at most 2HB.

The first condition x̃ ď x̃1 follows immediately from the definition of x̃ and
x̃1 as minpXanpKqq and maxpXanpKqq, respectively.

Next, we prove that the output produced by the factor ρr˜̀, ˜̀1s is almost
periodic with bound 2B. By Definition 3.2.6, we have ˜̀� ` � `1 � ˜̀1, and
by Lemma 3.2.5 we know that outpρr`, `1sq is periodic with period at most
B (ď 2B). So it suffices to show that the lengths of the words outpρr˜̀, `sq
and outpρr`1, ˜̀1sq are at most 2B. We shall focus on the former word, as the
arguments for the latter are similar.

First, we note that the factor ρr˜̀, `s lies entirely to the right of position x̃,
and in particular, it starts at an even level ỹ. This follows from the definition
of ˜̀, and whether ` itself is at an odd/even level. In particular, the location
` is either at the same level as ˜̀, or just one level above.

Now, suppose, by way of contradiction, that |outpρr˜̀, `sq| ą 2B. We head
towards a contradiction by finding a location `2 � ` that is S˚-equivalent to
the first location ` of the S˚-equivalence class K. Since the location ` is either
at the same level as ˜̀, or just above it, the factor ρr˜̀, `s is of the form αβ,
where α is rightward factor lying on the same level as ˜̀ and β is either empty
or a leftward factor on the next level. Moreover, since |outpρr˜̀, `sq| ą 2B,
we know that either |outpαq| ą B or |outpβq| ą B. Thus, Lemma 3.1.3 says
that one of the two factors α, β is not output-minimal. In particular, there

79

is a loop L1, strictly to the right of x̃, that intercepts a subfactor γ of ρr˜̀, `s,
with outpγq non-empty and output-minimal.

Let `2 be the first location of the factor γ. Clearly, `2 is an anchor
point of L and outptrp`2qq ‰ ε. Further recall that x̃ “ minpXanpKqq is the
leftmost position of locations in the class K “ r`, `1s that are also anchor
points of inversions. In particular, there is a loop L2 with some anchor point
`22 “ px̃, y

2
2q P anpKq, and such that trp`2q is non-empty and output-minimal.

Since `2 � ` � `22 and the position of `2 is to the right of the position of `22,
we know that pL1, `

2, L2, `
2
2q is also an inversion, and hence `2 S˚ `22 S˚ `. But

since `2 � `, we get a contradiction with the assumption that ` is the first
location of a S˚-class. In this way we have shown that |outpρr`1, `sq| ď 2B.

It remains to show that the output produced by the subsequence ρ|Z,
where Z “ r˜̀, ˜̀1s z

`

rx̃, x̃1s ˆ rỹ, ỹ1s
˘

, has length at most 2HB. For this

it suffices to prove that |outpαq| ď B for every factor α of ρr˜̀, ˜̀1s that lies
at a single level and either to the left of x̃ or to the right of x̃1. By sym-
metry, we consider only one of the two types of factors. Suppose, by way
of contradiction, that there is a factor α at level y2, to the left of x̃, and
such that |outpαq| ą B. By Lemma 3.1.3 we know that α is not output-
minimal, so there is some loop L2 strictly to the left of x̃ that intercepts an
output-minimal subfactor β of α with non-empty output. Let `2 be the first
location of β. We know that ˜̀ � `2 � ˜̀1. Since the level ỹ is even, this
means that the level of `2 is strictly greater than ỹ. Since we also know that
` is an anchor point of some inversion, we can take a suitable loop L1 with
anchor point ` and obtain that pL1, `, L2, `

2q is an inversion, so `2 S˚ `. But
this contradicts the fact that x̃ is the leftmost position of anpKq. We thus
conclude that |outpαq| ď B, and this completes the proof that ρ|blockpKq is
a B-block.

The next lemma shows that blocks do not overlap along the input axis:

Lemma 3.2.8. Suppose that K1 and K2 are two different non-singleton S˚-
classes such that ` � `1 for all ` P K1 and `1 P K2. Let blockpK1q “ r`1, `2s

and blockpK2q “ r`3, `4s, with `2 “ px2, y2q and `3 “ px3, y3q. Then x2 ă x3.

Proof. Suppose by contradiction that K1 and K2 are as in the statement,
but x2 ě x3. By Definition 3.2.6, x2 “ maxpXanpK1qq and x3 “ minpXanpK2qq.
This implies the existence of some inversions pL, `, L1, `1q and pL2, `2, L3, `3q
such that ` “ px2, yq and `3 “ px3, y

3q. Moreover, since ` � `3 and x2 ě x3,

80

we know that pL, `, L3, `3q is also an inversion, thus implying that K1 “

K2.

For the sake of brevity, we call S˚-block any factor of the form ρ|blockpKq
that is obtained by applying Definition 3.2.6 to a non-singleton S˚-class K.
The results obtained so far imply that every location covered by an inversion
is also covered by an S˚-block (Lemma 3.2.7), and that the order of occurrence
of S˚-blocks is the same as the order of positions (Lemma 3.2.8). So the S˚-
blocks can be used as factors for the B-decomposition of ρ we are looking
for. Below, we show that the remaining factors of ρ, which do not overlap
the S˚-blocks, are B-diagonals. This will complete the construction of a
B-decomposition of ρ.

Formally, we say that a factor ρr`, `1s overlaps another factor ρr`2, `3s if
r`, `1s X r`2, `3s ‰ H, `1 ‰ `2, and ` ‰ `3.

Lemma 3.2.9. Let ρr`, `1s be a factor of ρ, with ` “ px, yq, `1 “ px1, y1q, and
x ď x1, that does not overlap any S˚-block. Then ρr`, `1s is a B-diagonal.

Proof. Consider a factor ρr`, `1s, with ` “ px, yq, `1 “ px1, y1q, and x ď x1, that
does not overlap any S˚-block. We will focus on locations `2 with ` � `2 � `1

that are anchor points of some loop with outptrp`2qq ‰ ε. We denote by A
the set of all such locations.

First, we show that the locations in A are monotonic w.r.t. the position
order. Formally, we prove that for all `1, `2 P A, if `1 “ px1, y1q � `2 “

px2, y2q, then x1 ď x2. Suppose that this were not the case, namely, that
A contained two anchor points `1 “ px1, y1q and `2 “ px2, y2q with `1 � `2

and x1 ą x2. Let L1, L2 be the loops of `1, `2, respectively, and recall that
outptrp`1qq, outptrp`2qq ‰ ε. This means that pL1, `1, L2, `2q is an inversion,
and hence `1 S

˚ `2. But this contradicts the hypothesis that ρr`, `1s does not
overlap any S˚-block.

Next, we identify the floors of our diagonal. Let y0, y1, . . . , yn´1 be all
the even levels that have locations in A. For each i “ 0, . . . , n ´ 1, let `2i`1

(resp. `2i`2) be the first (resp. last) anchor point of A at level yi. Further
let `0 “ ` and `2n`1 “ `1. Clearly, each factor ρr`2i`1, `2i`2s is a floor.
Moreover, thanks to the previous arguments, each location `2i is to the left
of the location `2i`1.

It remains to prove that each factor ρr`2i, `2i`1s produces an output of
length at most 2HB. By construction, A contains no anchor point at an
even level and strictly between `2i and `2i`1. By Lemma 3.1.3 this means

81

that the outputs produced by subfactors of ρr`2i, `2i`1s that lie entirely at
an even level have length at most B. Let us now consider the subfactors
α of ρr`2i, `2i`1s that lie entirely at an odd level, and let us prove that they
produce outputs of length at most 2B. Suppose that this is not the case,
namely, that |outpαq| ą 2B. In this case we show that an inversion would
exist at this level. Formally, we can find two locations `2 � `3 in α such
that the prefix of α that ends at location `2 and the suffix of α that starts at
location `3 produce outputs of length greater thanB. By Lemma 3.1.3, those
two factors would not be output-minimal, and hence α would contain disjoint
loops L1, L2 with anchor points `21, `

2
2 forming an inversion pL1, `

2
1, L2, `

2
2q. But

this would imply that `21, `
2
2 belong to the same non-singleton S˚-equivalence

class, which contradicts the hypothesis that ρr`, `1s does not overlap any S˚-
block. We must conclude that the subfactors of ρr`2i, `2i`1s produce outputs
of length at most 2B.

Overall, this shows that the output produced by each factor ρr`2i, `2i`1s

has length at most 2HB.

We have just shown how to construct a B-decomposition of the run ρ
that satisfies P2. In particular, this proves Proposition 3.2.3, as well as the
implication P2 ñ P3 of Theorem 3.0.3.

3.2.3 From existence of decompositions to an equiva-
lent one-way transducer.

We now focus on the last implication P3 ñ P1 of Theorem 3.0.3. More pre-
cisely, we show how to construct a one-way transducer T 1 that simulates the
outputs produced by the successful runs of T that admit B-decompositions.
In particular, T 1 turns out to be equivalent to T when T is one-way definable.
Here we will only give a proof sketch of this construction assuming that T is
a sweeping transducer; a fully detailed construction of T 1 from an arbitrary
two-way transducer T will be given in Section 3.5 (Proposition 3.5.6), to-
gether with a procedure for deciding one-way definability of T (Proposition
3.6.2).

Proposition 3.2.10. Given a functional sweeping transducer T a one-way
transducer T 1 can be constructed in 2ExpTime such that the following hold:

1. T 1 Ď T ,

82

2. dompT 1q contains all words that induce successful runs of T admitting
B-decompositions.

In particular, T 1 is equivalent to T iff T is one-way definable.

Proof sketch. Given an input word u, the one-way transducer T 1 needs to
guess a successful run ρ of T on u that admits a B-decomposition. This can
be done by guessing the crossing sequences of ρ at each position, together
with a sequence of locations `i that identify the factors of a B-decomposition
of ρ. To check the correctness of the decomposition, T 1 also needs to guess a
bounded amount of information (words of bounded length) to reconstruct the
outputs produced by the B-diagonals and the B-blocks. For example, while
scanning a factor of the input underlying a diagonal, T 1 can easily reproduce
the outputs of the floors and the guessed outputs of factors between them.
In a similar way, while scanning a factor of the input underlying a block, T 1
can simulate the almost periodic output by guessing its repeating pattern
and the bounded prefix and suffix of it, and by emitting the correct amount
of letters, as it is done in the second item of Example 10. In particular, one
can verify that the capacity of T 1 is linear in HB. Moreover, because the
guessed objects are of size linear in HB and HB is a simple exponential in
the size of T , the one-way transducer T 1 has doubly exponential size in that
of T .

We can now focus on the two-way case, as we have proven Theorem 3.0.3
for sweeping transducers.

3.3 The structure of two-way loops

Whereas the pumping of the loops of a sweeping transducer is rather simple,
we need a much deeper understanding when it comes to pumping loops of
runs of two-way transducers. This section is precisely devoted to untangling
the structure of two-way loops. We will focus on specific types of loops,
called idempotent loops, that when pumped generate repetitions with a “nice
shape”, very similar to the pumped runs of a sweeping transducer.

We fix throughout this section a functional two-way transducer T , an
input word u, and a (normalized) successful run ρ of T on u. As usual,
H “ 2|Q| ´ 1 is the maximal length of a crossing sequence of ρ, and cmax is
the maximal number of letters output by a single transition.

83

3.3.1 Flows and effects.

We start by analyzing the shape of factors of ρ intercepted by an interval
I “ rx1, x2s. We identify four types of factors α intercepted by I depending
on the first location px, yq and the last location px1, y1q:

• α is an LL-factor if x “ x1 “ x1,

• α is an RR-factor if x “ x1 “ x2,

• α is an LR-factor if x “ x1 and x1 “ x2,

• α is an RL-factor if x “ x2 and x1 “ x1.

In Figure 3.1 we see that α is an LL-factor, β, δ are LR-factors, ζ is an RR-
factor, and γ is an RL-factor.

Definition 3.3.1. Let I “ rx1, x2s be an interval of ρ and hi the length of
the crossing sequence ρ|xi, for both i “ 1 and i “ 2.

The flow FI of I is the directed graph with set of nodes
t0, . . . ,maxph1, h2q ´ 1u and set of edges consisting of all py, y1q such that
there is a factor of ρ intercepted by I that starts at location pxi, yq and ends
at location pxj, y

1q, for i, j P t1, 2u.
The effect EI of I is the triple pFI , c1, c2q, where ci “ ρ|xi is the crossing

sequence at xi.

For example, the interval I of Figure 3.1 has the flow graph 0 ÞÑ 1 ÞÑ 3 ÞÑ
4 ÞÑ 2 ÞÑ 0.

It is easy to see that every node of a flow FI has at most one incoming and
at most one outgoing edge. More precisely, if y ă h1 is even, then it has one
outgoing edge (corresponding to an LR- or LL-factor intercepted by I), and
if it is odd it has one incoming edge (corresponding to an RL- or LL-factor
intercepted by I). Similarly, if y ă h2 is even, then it has one incoming edge
(corresponding to an LR- or RR-factor), and if it is odd it has one outgoing
edge (corresponding to an RL- or RR-factor).

In the following we consider effects that are not necessarily associated with
intervals of specific runs. The definition of such effects should be clear: they
are triples consisting of a graph (called flow) and two crossing sequences of
lengths h1, h2 ď H , with sets of nodes of the form t0, . . . ,maxph1, h2q ´ 1u,
that satisfy the in/out-degree properties stated above. It is convenient to
distinguish the edges in a flow based on the parity of the source and target
nodes. Formally, we partition any flow F into the following subgraphs:

84

• FLR consists of all edges of F between pairs of even nodes,

• FRL consists of all edges of F between pairs of odd nodes,

• FLL consists of all edges of F from an even node to an odd node,

• FRR consists of all edges of F from an odd node to an even node.

We denote by F (resp. E) the set of all flows (resp. effects) augmented
with a dummy element K. We equip both sets F and E with a semigroup
structure, where the corresponding products ˝ and d are defined below (sim-
ilar definitions appear in [14]). Later we will use the semigroup structure to
identify the idempotent loops, that play a crucial role in our characterization
of one-way definability.

Definition 3.3.2. For two graphs G,G1, we denote by G ¨G1 the graph with
edges of the form py, y2q such that py, y1q is an edge of G and py1, y2q is an
edge of G1, for some node y1 that belongs to both G and G1. Similarly, we
denote by G˚ the graph with edges py, y1q such that there exists a (possibly
empty) path in G from y to y1.

The product of two flows F, F 1 is the unique flow F ˝F 1 (if it exists) such
that:

• pF ˝ F 1qLR “ FLR ¨ pF
1
LL ¨ FRRq

˚ ¨ F 1LR,

• pF ˝ F 1qRL “ F 1RL ¨ pFRR ¨ F
1
LLq

˚ ¨ FRL,

• pF ˝ F 1qLL “ FLL Y FLR ¨ pF
1
LL ¨ FRRq

˚ ¨ F 1LL ¨ FRL,

• pF ˝ F 1qRR “ F 1RR Y F 1RL ¨ pFRR ¨ F
1
LLq

˚ ¨ FRR ¨ F
1
LR.

If no flow F ˝ F 1 exists with the above properties, then we let F ˝ F 1 “ K.
The product of two effects E “ pF, c1, c2q and E 1 “ pF 1, c11, c

1
2q is either

the effect E d E 1 “ pF ˝ F 1, c1, c
1
2q or the dummy element K, depending on

whether F ˝ F 1 ‰ K and c2 “ c11.

For example, let F be the flow of interval I in Figure 3.1. Then pF ˝ F qLL “
t0 ÞÑ 1, 2 ÞÑ 3u, pF ˝ F qRR “ t1 ÞÑ 2, 3 ÞÑ 4u, and pF ˝ F qLR “ t4 ÞÑ 0u —
one can quickly verify this with the help of Figure 3.8.

It is also easy to see that pF , ˝q and pE ,dq are finite semigroups, and
that for every run ρ and every pair of consecutive intervals I “ rx1, x2s and

85

I

α

β

γ

δ

ζ

I copy of I

α

β
α

γ

δ
β

γ

ζ
δ

ζ

I 2 copies of I

α

β
α

γ

δ
β

α
γ

ζ
δ

β

γ

ζ
δ

ζ

Figure 3.8: Pumping a loop in a two-way run.

J “ rx2, x3s of ρ, FIYJ “ FI ˝ FJ and EIYJ “ EI d EJ . In particular, the
function E that associates each interval I of ρ with the corresponding effect
EI can be seen as a semigroup homomorphism.

3.3.2 Loops and components.

Recall that a loop is an interval L “ rx1, x2s with the same crossing sequences
at x1 and x2. We will follow techniques similar to those presented in Section
3.1 to show that the outputs generated in non left-to-right manner are essen-
tially periodic. However, differently from the sweeping case, we will consider
only special types of loops:

Definition 3.3.3. A loop L is idempotent if EL “ EL d EL and EL ‰ K.

For example, the interval I of Figure 3.1 is a loop, if one assumes that the
crossing sequences at the borders of I are the same. By comparing with
Figure 3.8, it is easy to see that I is not idempotent. On the other hand, the
loop consisting of 2 copies of I is idempotent.

As usual, given a loop L “ rx1, x2s and a number n P N, we can introduce
n new copies of L and connect the intercepted factors in the obvious way.
This results in a new run pumpn`1

L pρq on the word pumpn`1
L puq. Figure 3.8

shows how to do this for n “ 1 and n “ 2. Below, we analyze in detail
the shape of the pumped run pumpn`1

L pρq (and the produced output as well)
when L is an idempotent loop. We will focus on idempotent loops because
pumping non-idempotent loops may induce permutations of factors that are

86

difficult to handle. For example, if we consider again the non-idempotent
loop I to the left of Figure 3.8, the factor of the run between β and γ (to the
right of I, highlighted in red) precedes the factor between γ and δ (to the
left of I, again in red), but this ordering is reversed when a new copy of I is
added.

When pumping a loop L, subsets of factors intercepted by L are glued
together to form factors intercepted by the replication of L. The notion
of component introduced below identifies groups of factors that are glued
together.

Definition 3.3.4. A component of a loop L is any strongly connected com-
ponent of its flow FL (note that this is also a cycle, since every node in it
has in/out-degree 1).

Given a component C, we denote by minpCq (resp. maxpCq) the minimum
(resp. maximum) node in C. We say that C is left-to-right (resp. right-to-
left) if minpCq is even (resp., odd).

An pL,Cq-factor is a factor of the run that is intercepted by L and that
corresponds to an edge of C.

We will usually list the pL,Cq-factors based on their order of occurrence in
the run. For example, the loop I of Figure 3.8 contains a single component
C “ 0 ÞÑ 1 ÞÑ 3 ÞÑ 4 ÞÑ 2 ÞÑ 0 which is left-to-right. Another example
is given in Figure 3.9, where the loop L has three components C1, C2, C3

(colored in blue, red, and green, respectively): α1, α2, α3 are the pL,C1q-
factors, β1, β2, β3 are the pL,C2q-factors, and γ1 is the unique pL,C3q-factor.

Below, we show that the levels of each component of a loop (not neces-
sarily idempotent) form an interval.

Lemma 3.3.5. Let C be a component of a loop L “ rx1, x2s. The nodes of C
are precisely the levels in the interval rminpCq,maxpCqs. Moreover, if C is
left-to-right (resp. right-to-left), then maxpCq is the smallest level ě minpCq
such that between px1,minpCqq and px2,maxpCqq (resp. px2,minpCqq and
px1,maxpCqq) there are equally many LL-factors and RR-factors intercepted
by L.

Proof. To ease the understanding the reader may refer to Figure 3.10, that
shows some factors intercepted by L and the corresponding edges in the flow.

We begin the proof by partitioning the set of levels of the flow into suitable
intervals as follows. We observe that every loop L “ rx1, x2s intercepts

87

L

α1

α2

α3

β1

β2

β3

γ1

L 2 copies of L

α1

α2
α1

α3
α2

α1

α3
α2

α3

β1

β2
β1

β3
β2

β1

β3
β2

β3

γ1 γ1 γ1

Figure 3.9: Pumping an idempotent loop with three components.

equally many LL-factors and RR-factors. This is so because the crossing
sequences at x1, x2 have the same length h. We also observe that the sources
of the factors intercepted by L are either of the form px1, yq, with y even, or
px2, yq, with y odd. For any location ` P tx1, x2u ˆ N that is the source of
an intercepted factor, we define d` to be the difference between the number
of LL-factors and the number of RR-factors intercepted by L that end at a
location strictly before `. Intuitively, d` “ 0 when the prefix of the run up to

L

...

...

Ý�y i �Ýy i´1 ` 1

�Ýy iÝ�y i ` 1

FL

...

...

�Ýy i´1 ` 1

�Ýy i

Ý�y i

Ý�y i ` 1

Figure 3.10: Some factors intercepted by L and the corresponding edges in
the flow.

88

location ` has visited equally many times the position x1 and the position x2.
For the sake of brevity, we let dy “ dpx1,yq for an even level y, and dy “ dpx2,yq
for an odd level y. Note that d0 “ 0. We also let dh`1 “ 0, by convention.

We now consider the numbers z’s, with 0 ď z ď h` 1, such that dz “ 0,
that is: 0 “ z0 ă z1 ă ¨ ¨ ¨ ă zk “ h` 1. Using a simple induction, we prove
that for all i ď k, the parity of zi is the same as the parity of its index i.
The base case i “ 0 is trivial, since z0 “ 0. For the inductive case, suppose
that zi is even (the case of zi odd is similar). We prove that zi`1 is odd by a
case distinction based on the type of factor intercepted by L that starts at
level zi. If this factor is an LR-factor, then it ends at the same level zi, and
hence dzi`1 “ dzi “ 0, which implies that zi`1 “ zi ` 1 is odd. Otherwise, if
the factor is an LL-factor, then for all levels z strictly between zi and zi`1,
we have dz ą 0, and since dzi`1

“ 0, the last factor before zi`1 must decrease
dz, that is, must be an RR-factor. This implies that px2, zi`1q is the source
of an intercepted factor, and thus zi`1 is odd.

The levels 0 “ z0 ă z1 ă ¨ ¨ ¨ ă zk “ h` 1 induce a partition of the set of
nodes of the flow into intervals of the form Zi “ rzi, zi`1 ´ 1s. To prove the
lemma, it is suffices to show that the subgraph of the flow induced by each
interval Zi is connected. Indeed, because the union of the previous intervals
covers all the nodes of the flow, and because each node has one incoming
and one outgoing edge, this will imply that the intervals coincide with the
components of the flow.

Now, let us fix an interval of the partition, which we denote by Z to avoid
clumsy notation. Hereafter, we will focus on the edges of subgraph of the
flow induced by Z (we call it subgraph of Z for short). We prove a few basic
properties of these edges. For the sake of brevity, we call LL-edges the edges
of the subgraph of Z that correspond to the LL-factors intercepted by L, and
similarly for the RR-edges, LR-edges, and RL-edges.

We make a series of assumption to simplify our reasoning. First, we
assume that the edges are ordered based on the occurrences of the corre-
sponding factors in the run. For instance, we may say the first, second,
etc. LR-edge (of the subgraph of Z) — from now on, we tacitly assume that
the edges are inside the subgraph of Z. Second, we assume that the first
edge of the subgraph of Z starts at an even node, namely, it is an LL-edge or
an LR-edge (if this were not the case, one could apply symmetric arguments
to prove the lemma). From this it follows that the subgraph contains n LR-
edges interleaved by n´ 1 RL-edges, for some n ą 0. Third, we assume that

89

minpZq “ 0, in order to avoid clumsy notations (otherwise, we need to add
minpZq to all the levels considered hereafter).

Now, we observe that, by definition of Z, there are equally many LL-edges
and RR-edges: indeed, the difference between the number of LL-edges and
the number of RR-edges at the beginning and at the end of Z is the same,
namely, dz “ 0 for both z “ minpZq and z “ maxpZq. It is also easy to see
that the LL-edges and the RR-edges are all of the form y Ñ y ` 1, for some
level y. We call these edges incremental edges.

For the other edges, we denote by Ý�y i (resp. �Ýy i) the source level of the
i-th LR-edge (resp. the i-th RL-edge). Clearly, each Ý�y i is even, and each
�Ýy i is odd, and i ď j implies Ý�y i ă Ý�y j and �Ýy i ă �Ýy j. Consider the location
px1,

Ý�y iq, which is the source of the i-th LR-edge (e.g. the edge in blue in the
figure). The latest location at position x2 that precedes px1,

Ý�y iq must be of
the form px2,

�Ýy i´1q, provided that i ą 1. This implies that, for all 1 ă i ď n,
the i-th LR-edge is of the form Ý�y i Ñ �Ýy i´1 ` 1. For i “ 1, we recall that
minpZq “ 0 and observe that the first location at position x2 that occurs
after the location px1, 0q is px2, 0q, and thus the first LR-edge has a similar
form: Ý�y 1 Ñ

�Ýy 0 ` 1, where �Ýy 0 “ ´1 by convention.
Using symmetric arguments, we see that the i-th RL-edge (e.g. the one in

red in the figure) is of the form �Ýy i Ñ Ý�y i ` 1. In particular, the last LR-edge
starts at the level Ý�y n “ maxpZq.

Summing up, we have just seen that the edges of the subgraph of Z are
of the following forms:

• y Ñ y ` 1 (incremental edges),

• Ý�y i Ñ �Ýy i´1 ` 1 (i-th LR-edge, for i “ 1, . . . , n),

• �Ýy i Ñ Ý�y i ` 1 (i-th RL-edge, for i “ 1, . . . , n´ 1).

In addition, we have Ý�y i ` 1 “ �Ýy i ` 2d�Ýy i
. Since dz ą 0 for all minpZq ă z ă

maxpZq, this implies that Ý�y i ą �Ýy i.

The goal is to prove that the subgraph of Z is strongly connected, namely,
it contains a cycle that visits all its nodes. As a matter of fact, because
components are also strongly connected subgraphs, and because every node
in the flow has in-/out-degree 1, this will imply that the considered subgraph
coincides with a component C, thus implying that the nodes in C form an
interval. Towards this goal, we will prove a series of claims that aim at
identifying suitable sets of nodes that are covered by paths in the subgraph

90

of Z. Formally, we say that a path covers a set Y if it visits all the nodes in
Y , and possibly other nodes. As usual, when we talk of edges or paths, we
tacitly understand that they occur inside the subgraph of Z. On the other
hand, we do not need to assume Y Ď Z, since this would follow from the
fact that Y is covered by a path inside Z. For example, the right hand-
side of Figure 3.10 shows a path from Ý�y i to Ý�y i ` 1 that covers the set
Y “ tÝ�y i,Ý�y i ` 1u Y r�Ýy i´1 ` 1,�Ýy is.

The covered sets will be intervals of the form

Yi “ r
�Ýy i´1 ` 1,�Ýy is.

Note that the sets Yi are well-defined for all i “ 1, . . . , n ´ 1, but not for
i “ n since �Ýy n is not defined either (the subgraph of Z contains only n ´ 1
RL-edges).

Claim. For all i “ 1, . . . , n´ 1, there is a path from Ý�y i to Ý�y i` 1 that covers
Yi (for short, we call it an incremental path).

Proof. We prove the claim by induction on i. The base case i “ 1 is rather
easy. Indeed, we recall the convention that �Ýy 0 ` 1 “ minpZq “ 0. In
particular, the node �Ýy 0` 1 is the target of the first LR-edge of the subgraph
of Z. Before this edge, according to the order induced by the run, we can only
have LL-edges of the form y Ñ y`1, with y “ 0, 2, . . . ,Ý�y 1´2. Similarly, after
the LR-edge we have RR-edges of the form y Ñ y`1, with y “ 1, 3, . . . ,�Ýy 1´2.
Those incremental edges can be connected to form the path �Ýy i´1` 1 Ñ˚ �Ýy 1

that covers the interval r�Ýy 0`1,�Ýy 1s . By prepending to this path the LR-edge
Ý�y 1 Ñ

�Ýy 0 ` 1, and by appending the RL-edge �Ýy 1 Ñ
Ý�y 1 ` 1, we get a path

from Ý�y 1 to Ý�y 1 ` 1 that covers the interval r�Ýy 0 ` 1,�Ýy 1s. The latter interval
is precisely the set Y1.

For the inductive step, we fix 1 ă i ă n and we construct the desired path
from Ý�y i to Ý�y i ` 1. The initial edge of this path is defined to be the LR-edge
Ý�y i Ñ �Ýy i´1 ` 1. Similarly, the final edge of the path will be the RL-edge
�Ýy i Ñ Ý�y i ` 1, which exists since i ă n. It remains to connect �Ýy i´1 ` 1 to �Ýy i.
For this, we consider the edges that depart from nodes strictly between �Ýy i´1

and �Ýy i.
Let y be an arbitrary node in r�Ýy i´1 ` 1,�Ýy i ´ 1s. Clearly, y cannot be

of the form �Ýy j, for some j, because it is strictly between �Ýy i´1 and �Ýy i. So
y cannot be the source of an RL-edge. Moreover, recall that the LL-edges
and the RR-edges are the of the form y Ñ y` 1. As these incremental edges

91

do not pose particular problems for the construction of the path, we focus
mainly on the LR-edges that depart from nodes inside r�Ýy i´1 ` 1,�Ýy i ´ 1s.

Let Ý�y j Ñ �Ýy j´1 ` 1 be such an LR-edge, for some j such that Ý�y j P
r
�Ýy i´1 ` 1,�Ýy i ´ 1s. If we had j ě i, then we would have Ý�y j ě Ý�y i ą �Ýy i, but

this would contradict the assumption that Ý�y j P r�Ýy i´1 ` 1,�Ýy i ´ 1s. So we
know that j ă i. This enables the use of the inductive hypothesis, which
implies the existence of an incremental path from Ý�y j to Ý�y j ` 1 that covers
the interval Yj.

Finally, by connecting the above paths using the incremental edges, and
by adding the initial and final edges Ý�y i Ñ �Ýy i´1 ` 1 and �Ýy i Ñ Ý�y i ` 1, we
obtain a path from Ý�y i to Ý�y i ` 1. It is easy to see that this path covers the
interval Yi.

Next, we define

Y “ r
�Ýy n´1 ` 1,Ý�y ns Y

ď

1ďiăn

Yi.

We prove a claim similar to the previous one, but now aiming to cover Y
with a cycle. Towards the end of the proof we will argue that the set Y
coincides with the full interval Z, thus showing that there is a component C
whose set of notes is precisely Z.

Claim. There is a cycle that covers Y .

Proof. It is convenient to construct our cycle starting from the last LR-edge,
that is, Ý�y n Ñ �Ýy n´1 ` 1, since this will cover the upper node Ý�y n “ maxpZq.
From there we continue to add edges and incremental paths, following an
approach similar to the proof of the previous claim, until we reach the node
Ý�y n again. More precisely, we consider the edges that depart from nodes
strictly between �Ýy n´1 and Ý�y n. As there are only n ´ 1 RL-edges, we know
that every node in the interval r�Ýy n´1 ` 1,Ý�y n ´ 1s must be source of an LL-
edge, an RR-edge, or an LR-edge. As usual, incremental edges do not pose
particular problems for the construction of the cycle, so we focus on the LR-
edges. Let Ý�y i Ñ �Ýy i´1 ` 1 be such an LR-edge, with Ý�y i P r�Ýy n´1 ` 1,Ý�y n ´ 1s.
Since i ă n, we know from the previous claim that there is a path from Ý�y i to
Ý�y i ` 1 that covers Yi. We can thus build a cycle π by connecting the above
paths using the incremental edges and the LR-edge Ý�y n Ñ �Ýy n´1 ` 1.

By construction, the cycle π covers the interval r�Ýy n´1 ` 1,Ý�y ns, and for
every i ă n, if π visits Ý�y i, then π covers Yi. So to complete the proof —

92

namely, to show that π covers the entire set Y — it suffices to prove that π
visits each node Ý�y i, with i ă n.

Suppose, by way of contradiction, that Ý�y i is the node with the highest
index i ă n that is not visited by π. Recall that Ý�y i ą �Ýy i. This shows that

Ý�y i P r�Ýy i ` 1,Ý�y ns “
ď

iďjăn´1

r
�Ýy j ` 1,�Ýy j`1s Y r

�Ýy n´1 ` 1,Ý�y ns.

As we already proved that π covers the interval r�Ýy n´1`1,Ý�y ns, we know that
Ý�y i P r�Ýy j ` 1,�Ýy j`1s for some j with i ď j ă n´ 1. Now recall that Ý�y i is the
highest node that is not visited by π. This means that Ý�y j`1 is visited by π.
Moreover, since j ` 1 ă n, we know that π uses the incremental path from
Ý�y j`1 to Ý�y j`1 ` 1, which covers Yj`1 “ r

�Ýy j ` 1,�Ýy j`1s. But this contradicts
the fact that Ý�y i is not visited by π, since Ý�y i P r�Ýy j ` 1,�Ýy j`1s.

We know that the set Y is covered by a cycle of the subgraph of Z, and
that Z is an interval whose endpoints are consecutive levels z ă z1, with
dz “ dz1 “ 0. For the homestretch, we prove that Y “ Z. This will imply
that the nodes of the cycle are precisely the nodes of the interval Z. Moreover,
because the cycle must coincide with a component C of the flow (recall that
all the nodes have in-/out-degree 1), this will show that the nodes of C are
precisely those of Z.

To prove Y “ Z it suffices to recall its definition as the union of the
interval r�Ýy n´1 ` 1,Ý�y ns with the sets Yi, for all i “ 1, . . . , n ´ 1. Clearly, we
have that Y Ď Z. For the converse inclusion, we also recall that �Ýy 0 ` 1 “
0 “ minpZq and Ý�y n “ maxpZq. Consider an arbitrary level z P Z. Clearly,
we have either z ď �Ýy i, for some 1 ď i ă n, or z ą �Ýy n. In the former case,
by choosing the smallest index i such that z ď �Ýy i, we get z P r�Ýy i´1 ` 1,�Ýy is,
whence z P Yi Ď Y . In the latter case, we immediately have z P Y , by
construction.

The next lemma describes the precise shape and order of the intercepted
factors when the loop L is idempotent.

Lemma 3.3.6. If C is a left-to-right (resp. right-to-left) component of an
idempotent loop L, then the pL,Cq-factors are in the following order: k
LL-factors (resp. RR-factors), followed by one LR-factor (resp. RL-factor),
followed by k RR-factors (resp. LL-factors), for some k ě 0.

93

Proof. Suppose that C is a left-to-right component of L. We show by
way of contradiction that C has only one LR-factor and no RL-factor. By
Lemma 3.3.5 this will yield the claimed shape. Figure 3.11 can be used as a
reference example for the arguments that follow.

We begin by listing the pL,Cq-factors. As usual, we order them based on
their occurrences in the run ρ. Let γ be the first pL,Cq-factor that is not an
LL-factor, and let β1, . . . , βk be the pL,Cq-factors that precede γ (these are
all LL-factors). Because γ starts at an even level, it must be an LR-factor.
Suppose that there is another pL,Cq-factor, say ζ, that comes after γ and it
is neither an RR-factor nor an LL-factor. Because ζ starts at an odd level,
it must be an RL-factor. Further let δ1, . . . , δk1 be the intercepted RR-factors
that occur between γ and ζ. We claim that k1 ă k, namely, that the number
of RR-factors between γ and ζ is strictly less than the number of LL-factors
before γ. Indeed, if this were not the case, then, by Lemma 3.3.5, the level
where ζ starts would not belong to the component C.

Now, consider the pumped run ρ1 “ pump2
Lpρq, obtained by adding a

new copy of L. Let L1 be the loop of ρ1 obtained from the union of L and
its copy. Since L is idempotent, the components of L are isomorphic to
the components of L1. In particular, we can denote by C 1 the component
of L1 that is isomorphic to C. Let us consider the pL1, C 1q-factors of ρ1.
The first k factors are isomorphic to the k LL-factors β1, . . . , βk from ρ.
However, the pk ` 1q-th element has a different shape: it is isomorphic to
γ β1 δ1 β2 ¨ ¨ ¨ δk1 βk1`1 ζ, and in particular it is an LL-factor. This implies
that the pk`1q-th edge of C 1 is of the form py, y`1q, while the pk`1q-th edge
of C is of the form py, y´2kq. This contradiction comes from having assumed
the existence of the RL-factor ζ, and is illustrated in Figure 3.11.

L L1 ‰ L

”

L copy of L

Figure 3.11: Pumping a loop L with a wrong shape and showing it is not
idempotent.

94

Remark 3.3.7. Note that every loop in the sweeping case is idempotent.
Moreover, the pL,Cq-factors are precisely the factors intercepted by the loop
L.

3.3.3 Pumping idempotent loops.

To describe in a formal way the run obtained by pumping an idempotent
loop, we need to generalize the notion of anchor point in the two-way case
(the reader may compare this with the analogous definitions in Section 3.1
for the sweeping case). Intuitively, the anchor point of a component C of
an idempotent loop L is the source location of the unique LR- or RL-factor
intercepted by L that corresponds to an edge of C (recall Lemma 3.3.6):

Definition 3.3.8. Let C be a component of an idempotent loop L “ rx1, x2s.
The anchor point of C inside L, denoted2 anpCq, is either the location
px1,maxpCqq or the location px2,maxpCqq, depending on whether C is left-
to-right or right-to-left.

We will usually depict anchor points by black circles (like, for instance, in
Figure 3.9).

It is also convenient to redefine the notation trp`q for representing an
appropriate sequence of transitions associated with each anchor point ` of an
idempotent loop:

Definition 3.3.9. Let C be a component of some idempotent loop L, let
` “ anpCq be the anchor point of C inside L, and let i0 ÞÑ i1 ÞÑ i2 ÞÑ
¨ ¨ ¨ ÞÑ ik ÞÑ ik`1 be a cycle of C, where i0 “ ik`1 “ maxpCq. For every
j “ 0, . . . , k, further let βj be the factor intercepted by L that corresponds to
the edge ij ÞÑ ij`1 of C.

The trace of ` inside L is the run trp`q “ β0 β1 ¨ ¨ ¨ βk.

Note that trp`q is not necessarily a factor of the original run ρ. However,
trp`q is indeed a run, since L is a loop and the factors βi are concatenated
according to the flow. As we will see below, trp`q will appear as (iterated)
factor of the pumped version of ρ, where the loop L is iterated.

2In denoting the anchor point — and similarly the trace — of a component C inside
a loop L, we omit the annotation specifying L, since this is often understood from the
context.

95

As an example, by referring again to the components C1, C2, C3 of Fig-
ure 3.9, we have the following traces: trpanpC1qq “ α2 α1 α3, trpanpC2qq “

β2 β1 β3, and trpanpC3qq “ γ1.
The next proposition shows the effect of pumping idempotent loops. The

reader can note the similarity with the sweeping case.

Proposition 3.3.10. Let L be an idempotent loop of ρ with components
C1, . . . , Ck, listed according to the order of their anchor points: `1 “ anpC1q �

¨ ¨ ¨ � `k “ anpCkq. For all n P N, we have

pumpn`1
L pρq “ ρ0 trp`1q

n ρ1 ¨ ¨ ¨ ρk´1 trp`kq
n ρk

where

• ρ0 is the prefix of ρ that ends at the first anchor point `1,

• ρk is the suffix of ρ that starts at the last anchor point `k,

• ρi is the factor ρr`i, `i`1s, for all 1 ď i ă k.

Proof. Along the proof we sometimes refer to Figure 3.9 to ease the intuition
of some definitions and arguments. For example, in the left hand-side of
Figure 3.9, the run ρ0 goes until the first location marked by a black circle;
the runs ρ1 and ρ2, resp., are between the first and the second black dot, and
the second and third black dot; finally, ρ3 is the suffix starting at the last
black dot. The pumped run pumpn`1

L pρq for n “ 2 is depicted to the right of
the figure.

Let L “ rx1, x2s be an idempotent loop and, for all i “ 0, . . . , n, let L1i “
rx1i, x

1
i`1s be the i-th copy of the loop L in the pumped run ρ1 “ pumpn`1

L pρq,
where x1i “ x1`i¨px2´x1q (the “0-th copy of L” is the loop L itself). Further
let L1 “ L10Y¨ ¨ ¨YL

1
n “ rx

1
0, x

1
n`1s, that is, L1 is the loop of ρ1 that spans across

the n` 1 occurrences of L. As L is idempotent, the loops L10, . . . , L
1
n and L1

have all the same effect as L. In particular, the components of L10, . . . , L
1
n,

and L1 are isomorphic to and in same order as those of L. We denote these
components by C1, . . . , Ck.

We let `j “ anpCjq be the anchor point of each component Cj inside the
loop L of ρ (these locations are marked by black dots in the left hand-side of
Figure 3.9). Similarly, we let `1i,j (resp. `1j) be the anchor point of Cj inside
the loop L1i (resp. L1). From Definition 3.3.8, we have that either `1j “ `11,j or

96

`1j “ `1n,j, depending on whether Cj is left-to-right or right-to-left (or, equally,
on whether j is odd or even).

Now, let us consider the factorization of the pumped run ρ1 induced by
the locations `1i,j, for all i “ 0, . . . , n and for j “ 1, . . . , k (these locations are
marked by black dots in the right hand-side of the figure). By construction,
the prefix of ρ1 that ends at location `10,1 coincides with the prefix of ρ that
ends at `1, i.e. ρ0 in the statement of the proposition. Similarly, the suffix of
ρ1 that starts at location `1n,k is isomorphic to the suffix of ρ that starts at
`k, i.e. ρk in the statement. Moreover, for all odd (resp. even) indices j, the
factor ρ1r`1n,j, `

1
n,j`1s (resp. ρ1r`0,j, `0,j`1s) is isomorphic to ρr`j, `j`1s, i.e. the

ρj of the statement.
The remaining factors of ρ1 are those delimited by the pairs of locations

`1i,j and `1i`1,j, for all i “ 0, . . . , n´ 1 and all j “ 1, . . . , k. Consider one such
factor ρ1r`1i,j, `

1
i`1,js, and assume that the index j is odd (the case of an even j

is similar). This factor can be seen as a concatenation of factors intercepted
by L that correspond to edges of Cj inside L1i. More precisely, ρ1r`1i,j, `

1
i`1,js

is obtained by concatenating the unique LR-factor of Cj — recall that by
Lemma 3.3.6 there is exactly one such factor — with an interleaving of the
LL-factors and the RR-factors of Cj. As the components are the same for all
L1i’s and for L, this corresponds precisely to the trace trp`jq (cf. Definition
3.3.9). Now that we know that ρ1r`1i,j, `

1
i`1,js is isomorphic to trp`jq, we can

conclude that ρ1r`10,j, `
1
n,js “ ρ1r`10,j, `

1
1,js . . . ρ

1r`1n´1,j, `
1
n,js is isomorphic to

trp`jq
n.

3.4 Combinatorics in the two-way case

In this section we develop the main combinatorial techniques underlying the
characterization of one-way definability for two-way transducers. In par-
ticular, we will show how to derive the existence of idempotent loops with
bounded outputs using Ramsey-based arguments, and we will use this to
derive periodicity properties for the outputs produced between inversions.

As usual, ρ is a fixed successful run of T on some input word u.

3.4.1 Ramsey-type arguments.

We start with a technique used for bounding the lengths of the outputs
of certain factors, or subsequences of a two-way run. This technique is a

97

Ramsey-type argument, more precisely it relies on Simon’s “factorization
forest” theorem [24, 79], which is recalled below. The classical version of
Ramsey theorem would yield a similar result, but without the tight bounds
that we get here.

Let X be a set of positions of ρ. A factorization forest for X is an
unranked tree, where the nodes are intervals I with endpoints in X and
labeled with the corresponding effect EI , the ancestor relation is given by the
containment order on intervals, the leaves are the minimal intervals rx1, x2s,
with x2 successor of x1 in X, and for every internal node I with children
J1, . . . , Jk, we have:

• I “ J1 Y ¨ ¨ ¨ Y Jk,

• EI “ EJ1 d ¨ ¨ ¨ d EJk ,

• if k ą 2, then EI “ EJ1 “ ¨ ¨ ¨ “ EJk is an idempotent of the semigroup
pE ,dq.

Recall that in a normalized run there are at most |Q|H distinct crossing
sequences. Moreover, a flow contains at most H edges, and each edge has
one of the 4 possible types LL, LR,RL,RR. So the effect semigroup pE ,dq has
size at most E “ p2|Q|q2H . Further recall that cmax is the maximum number
of letters output by a single transition of T . Like we did in the sweeping
case, we define the constant B “ cmax ¨H ¨ p23E ` 4q ` 4cmax that will be
used to bound the lengths of some outputs of T .

Theorem 3.4.1 (Factorization forest theorem [24, 79]). For every set X of
positions of ρ, there is a factorization forest for X of height at most 3E.

The above theorem can be used to show that if ρ produces an output
longer than B, then it contains an idempotent loop and a trace with non-
empty output. Below, we present a result in the same spirit, but refined
in a way that it can be used to find anchor points inside specific intervals.
To formally state the result, we consider subsequences of ρ induced by sets
of locations that are not necessarily contiguous. Recall the notation ρ|Z
introduced at page 72: ρ|Z is the subsequence of ρ induced by the location
set Z. For example, Figure 3.12 depicts a set Z “ r`1, `2s X pI ˆ Nq by a
hatched area, together with the induced subrun ρ|Z, represented by thick
arrows.

98

I “ rx1, x2s

`1

`2

Figure 3.12: A sub-run ρ|Z.

Theorem 3.4.2. Let I “ rx1, x2s be an interval of positions, K “ r`1, `2s an
interval of locations, and Z “ K X pI ˆ Nq. If |outpρ|Zq| ą B, then there
exist an idempotent loop L and an anchor point ` of L such that

1. x1 ă minpLq ă maxpLq ă x2 (in particular, L Ĺ I),

2. `1 � ` � `2 (in particular, ` P K),

3. outptrp`qq ‰ ε.

Proof. Let I, K, Z be as in the statement, and suppose that
ˇ

ˇoutpρ|Zq
ˇ

ˇ ą B.
We define Z 1 “ Z z pt`1, `2uY ptx1, x2uq ˆNqq and we observe that there are
at most 2H ` 2 that are missing from Z 1. This means that ρ|Z 1 contains all
but 4H ` 4 transitions of ρ|Z, and because each transition outputs at most
cmax letters, we have |outpρ|Z 1q| ą B ´ 4cmax ¨H ´ 4cmax “ cmax ¨H ¨ 23E.

For every level y, let Xy be the set of positions x such that px, yq is the
source location of some transition of ρ|Z 1 that produces non-empty output.

L1 “ rx, x
1s L2 “ rx

1, x2s

˜̀
1

˜̀
2

Figure 3.13: Two consecutive idempotent loops with the same effect.

99

For example, if we refer to Figure 3.13, the vertical dashed lines represent the
positions of Xy for a particular level y; accordingly, the circles in the figure
represent the locations of the form px, yq, for all x P Xy. Since each transition
outputs at most cmax letters, we have

ř

y |Xy| ą H ¨ 23E. Moreover, since
there are at most H levels, there is a level y (which we fix hereafter) such
that |Xy| ą 23E.

We now prove the following:

Claim. There are two consecutive loops L1 “ rx, x
1s and L2 “ rx

1, x2s with
endpoints x, x1, x2 P Xy and such that EL1 “ EL2 “ EL1YL2.

Proof. By Theorem 3.4.1, there is a factorization forest for Xy of height
at most 3E. Since ρ is a valid run, the dummy element K of the effect
semigroup does not appear in this factorization forest. Moreover, since |Xy| ą

23E, we know that the factorization forest contains an internal node L1 “
rx11, x

1
k`1s with k ą 2 children, say L1 “ rx11, x

1
2s, . . . , Lk “ rx1k, x

1
k`1s. By

definition of factorization forest, the effects EL1 , EL1 , . . . , ELk
are all equal

and idempotent. In particular, the effect EL1 “ EL1 “ ¨ ¨ ¨ “ ELk
is a

triple of the form pFL1 , c1, c2q, where ci “ ρ|xi is the crossing sequence at x1i.
Finally, since EL1 is idempotent, we have that c1 “ c2 and this is equal to the
crossing sequences of ρ at the positions x11, . . . , x

1
k`1. This shows that L1, L2

are idempotent loops.

Turning back to the proof of the theorem, we know from the above claim
that there are two consecutive idempotent loops L1 “ rx, x

1s and L2 “ rx
1, x2s

with the same effect and with endpoints x, x1, x2 P Xy Ď I ztx1, x2u (see again
Figure 3.13).

Let ˜̀
1 “ px, yq and ˜̀

2 “ px
2, yq, and observe that ˜̀

1, ˜̀
2 P Z

1. In particular,
˜̀
1 and ˜̀

2 are strictly between `1 and `2. Suppose by symmetry that ˜̀
1 � ˜̀

2.
Further let C be the component of L1 Y L2 (or, equally, of L1 or L2) that
contains the node y. Below, we focus on the factors of ρr˜̀1, ˜̀

2s that are
intercepted by L1 Y L2: these are represented in Figure 3.13 by the thick
arrows. By Lemma 3.3.6 all these factors correspond to edges of the same
component C, namely, they are pL1 Y L2, Cq-factors.

Let us fix an arbitrary factor α of ρr˜̀1, ˜̀
2s that is intercepted by L1YL2,

and assume that α “ β1 ¨ ¨ ¨ βk, where β1, . . . , βk are the factors intercepted
by either L1 or L2.

Claim. If β, β1 are two factors intercepted by L1 “ rx, x
1s and L2 “ rx

1, x2s,
with EL1 “ EL2 “ EL1YL2, and β, β1 are adjacent in the run ρ (namely, they

100

share an endpoint at position x1), then β, β1 correspond to edges in the same
component of L1 (or, equally, L2).

Proof. Let C be the component of L1 and y1 ÞÑ y2 the edge of C that corre-
sponds to the factor β intercepted by L1. Similarly, let C 1 be the component
of L2 and y3 ÞÑ y4 the edge of C 1 that corresponds to the factor β1 intercepted
by L2. Since β and β1 share an endpoint at position x1, we know that y2 “ y3.
This shows that C X C 1 ‰ H, and hence C “ C 1.

The above claim shows that any two adjacent factors βi, βi`1 correspond
to edges in the same component of L1 and L2, respectively. Thus, by transi-
tivity, all factors β1, . . . , βk correspond to edges in the same component, say
C 1. We claim that C 1 “ C. Indeed, if β1 is intercepted by L1, then C 1 “ C
because α and β1 start from the same location and hence they correspond to
edges of the flow that depart from the same node. The other case is where
β1 is intercepted by L2, for which a symmetric argument can be applied.

So far we have shown that every factor of ρr˜̀1, ˜̀
2s intercepted by L1YL2

can be factorized into some pL1, Cq-factors and some pL2, Cq-factors. We
conclude the proof with the following observations:

• By construction, both loops L1, L2 are contained in the interval of po-
sitions I “ rx1, x2s, and have endpoints different from x1, x2.

• Both anchor points of C inside L1, L2 belong to the interval of locations
K z t`1, `2u. This holds because ρr˜̀1, ˜̀

2s contains a factor α that is
intercepted by L1 Y L2 and spans across all the positions from x to
x2, namely, an LR-factor. This factor starts at the anchor point of C
inside L1 and visits the anchor point of C inside L2. Moreover, by
construction, α is also a factor of the subsequence ρ|Z 1. This shows
that the anchor points of C inside L1 and L2 belong to Z 1, and in
particular to K z t`1, `2u.

• The first factor of ρr˜̀1, ˜̀
2s that is intercepted by L1YL2 starts at ˜̀

1 “

px, yq, which by construction is the source location of some transition
producing non-empty output. By the previous arguments, this factor
is a concatenation of pL1, Cq-factors and pL2, Cq-factors. This implies
that the trace of the anchor point of C inside L1, or the trace of C
inside L2 produces non-empty output.

101

L2 L1

`1

`2

Figure 3.14: An example of an inversion pL1, `1, L2, `2q of a two-way run.

3.4.2 Inversions and periodicity.

The first important notion that is used to characterize one-way definability is
that of inversion. It turns out that the definition of inversion in the sweeping
case (see page 64) can be reused almost verbatim in the two-way setting.
The only difference is that here we require the loops to be idempotent and
we do not enforce output-minimality (we will discuss this latter choice further
below, with a formal definition of output-minimality at hand).

Definition 3.4.3. An inversion of the run ρ is a tuple pL1, `1, L2, `2q such
that

1. L1, L2 are idempotent loops,

2. `1 “ px1, y1q and `2 “ px2, y2q are anchor points inside L1 and L2,
respectively,

3. `1 � `2 and x1 ą x2,

4. for both i “ 1 and i “ 2, outptrp`iqq ‰ ε.

Figure 3.14 gives an example of an inversion involving the idempotent loop
L1 with anchor point `1, and the idempotent loop L2 with anchor point `2.
The intercepted factors that form the corresponding traces are represented
by thick arrows; the one highlighted in red are those that produce non-empty
output.

The implication P1 ñ P2 of Theorem 3.0.3 in the two-way case is for-
malized below exactly as in Proposition 3.1.5, and the proof is very similar

102

to the sweeping case. More precisely, it can be checked that the proof of the
first claim in Proposition 3.1.5 is independent of the sweeping assumption
— one just needs to replace the use of Equation 3.2 with Proposition 3.3.10.
The sweeping assumption was used only for deriving the notion of output-
minimal factor, which was crucial to conclude that the period p is bounded
by the specific constant B. In this respect, the proof of Proposition 3.4.4
requires a different argument for showing that p ď B:

Proposition 3.4.4. If T is one-way definable, then the following property
P2 holds:

For all inversions pL1, `1, L2, `2q of ρ, the period p of the word

outptrp`1qq outpρr`1, `2sq outptrp`2qq

divides both |outptrp`1qq| and |outptrp`2qq|. Moreover, p ď B.

We only need to show here that p ď B. Recall that in the sweeping case
we relied on the assumption that the factors trp`1q and trp`2q of an inversion
are output-minimal, and on Lemma 3.1.3. In the general case we need to
replace output-minimality by the following notion:

Definition 3.4.5. Consider pairs pL,Cq consisting of an idempotent loop L
and a component C of L.

1. On such pairs, define the relation Ă by pL1, C 1q Ă pL,Cq if L1 Ĺ L and
at least one pL1, C 1q-factor is contained in some pL,Cq-factor.

2. A pair pL,Cq is output-minimal if pL1, C 1q Ă pL,Cq implies
outptrpanpC 1qqq “ ε.

Note that the relation Ă is not a partial order in general (it is however an-
tisymmetric). Moreover, it is easy to see that the notion of output-minimal
pair pL,Cq generalizes that of output-minimal factor introduced in the sweep-
ing case: indeed, if ` is the anchor point of a loop L of a sweeping transducer
and trp`q satisfies Definition 3.1.2, then the pair pL,Cq is output-minimal,
where C is the unique component whose edge corresponds to trp`q.

The following lemma bounds the length of the output trace outptrpanpCqqq
for an output-minimal pair pL,Cq:

Lemma 3.4.6. For every output-minimal pair pL,Cq, |outptrpanpCqqq| ď B.

103

Proof. Consider a pair pL,Cq consisting of an idempotent loop L “ rx1, x2s

and a component C of L. Suppose by contradiction that |outptrpanpCqqq| ą
B. We will show that pL,Cq is not output-minimal.

Recall that trpanpCqq is a concatenation of pL,Cq-factors, say, trpanpCqq “
β1 ¨ ¨ ¨ βk. Let `1 (resp. `2) be the first (resp. last) location that is visited
by these factors. Further let K “ r`1, `2s and Z “ K X pL ˆ Nq. By
construction, the subsequence ρ|Z can be seen as a concatenation of the
factors β1, . . . , βk, possibly in a different order than that of trpanpCqq. This
implies that |outpρ|Zq| ą B.

By Theorem 3.4.2, we know that there exist an idempotent loop L1 Ĺ L
and a component C 1 of L1 such that anpC 1q P K and outptrpanpC 1qqq ‰ ε.
Note that the pL1, C 1q-factor that starts at the anchor point anpC 1q (an LR-
or RL-factor) is entirely contained in some pL,Cq-factor. This implies that
pL1, C 1q Ă pL,Cq, and thus pL,Cq is not output-minimal.

We remark that the above lemma cannot be used directly to bound the
period of the output produced between an inversion. The reason is that
we cannot restrict ourselves to inversions pL1, `1, L2, `2q that induce output-
minimal pairs pLi, Ciq for i “ 1, 2, where Ci is the unique component of
the anchor point `i. An example is given in Figure 3.14, assuming that the
factors depicted in red are the only ones that produce non-empty output,
and the lengths of these outputs exceed B. On the one hand pL1, `1, L2, `2q

is an inversion, but pL1, C1q is not output-minimal. On the other hand, it
is possible that ρ contains no other inversion than pL1, `1, L2, `2q: any loop
strictly contained in the red factor in L1 will have the anchor point after `2.

We are now ready to show the second claim of Proposition 3.4.4.

Proof of Proposition 3.4.4. The proof of the second claim requires a refine-
ment of the arguments that involve pumping the run ρ simultaneously on
three different loops. As usual, we assume that the loops L1, L2 of the in-
version are disjoint (otherwise, we preliminarily pump one of the two loops
a few times).

Recall that the word

outptrp`1qq outpρr`1, `2sq outptrp`2qq

has period p “ gcd
`

|outptrp`1qq|, |outptrp`2qq|
˘

, but that we cannot bound p
by assuming that pL1, `1, L2, `2q is output-minimal. However, in the pumped
run ρp2,1q we do find inversions with output-minimal pairs. For example,

104

as depicted in the right part of Figure 3.15, we can consider the left and

right copy of L1 in ρp2,1q, denoted by
�Ý
L1 and

Ý�
L1, respectively. Accordingly,

we denote by
�Ý
` 1 and

Ý�
` 1 the left and right copy of `1 in ρp2,1q. Now, let

pL0, C0q be any output-minimal pair such that L0 is an idempotent loop,

outptrpanpC0qqq ‰ ε, and either pL0, C0q “ p
�Ý
L1, C1q or pL0, C0q Ă p

�Ý
L1, C1q.

Such a loop L0 is represented in Figure 3.15 by the red vertical stripe. Further
let `0 “ anpC0q.

We claim that either pL0, `0, L2, `2q or p
Ý�
L1,

Ý�
` 1, L0, `0q is an inversion of

the run ρp2,1q, depending on whether `0 occurs before or after `2. First, note

that all the loops L0, L2,
Ý�
L1 are idempotent and non-overlapping; more pre-

cisely, we have maxpL2q ď minpL0q and maxpL0q ď minp
Ý�
L1q. Moreover,

the outputs of the traces trp`0q, trp
Ý�
` 1q, and trp`2q are all non-empty. So it

remains to distinguish two cases based on the ordering of the anchor points

`0,
Ý�
` 1, `2. If `0 � `2, then pL0, `0, L2, `2q is an inversion. Otherwise, be-

cause p
Ý�
L1,

Ý�
` 1, L2, `2q is an inversion, we know that

Ý�
` 1 � `2 � `0, and hence

p
Ý�
L1,

Ý�
` 1, L0, C0q is an inversion.

Now, we know that ρp2,1q contains the inversion p
Ý�
L1, `1, L2, `2q, but also an

inversion involving the output-minimal pair pL0, C0q, with L0 strictly between
Ý�
L1 and L2. For all m0,m1,m2, we define ρpm0,m1,m2q as the run obtained

from ρp2,1q by pumping m0,m1,m2 times the loops L0,
Ý�
L1, L2, respectively.

By reasoning as we did in the proof of Proposition 3.1.5 (cf. Periodicity

L2 L1

`1

`2

L2 two copies of L1

L0

Figure 3.15: An inversion pL1, `1, L2, `2q that induces non output-minimal
pairs pLi, Ciq.

105

of outputs of pumped runs), one can show that there are arbitrarily large
output factors of ρpm0,m1,m2q that are produced within the inversion on `0

(i.e. either pL0, `0, L2, `2q or p
Ý�
L1,

Ý�
` 1, L0, `0q) and that are periodic with period

p1 that divides |outptrp`0qq|. In particular, by Lemma 3.4.6, we know that
p1 ď B. Moreover, large portions of these factors are also produced within

the inversion p
Ý�
L1,

Ý�
` 1, L2, `2q, and hence by Theorem 3.1.6 they have period

gcdpp, p1q.
To conclude the proof we need to transfer the periodicity property from

the pumped runs ρpm0,m1,m2q to the original run ρ. This is done exactly
like in Proposition 3.1.5 by relying on Corollary 3.1.8: one observe that the
periodicity property holds for infinitely many parameters m0,m1,m2, and
hence also for m0 “ m1 “ m2 “ 1. This shows that the word

outptrp`1qq outpρr`1, `2sq outptrp`2qq

has period gcdpp, p1q ď B.

So far we have shown that the output produced between every inversion
of a run of a one-way definable two-way transducer is periodic, with period
bounded by B and dividing the lengths of the trace outputs of the inversion.
This basically proves the implication P1 ñ P2 of Theorem 3.0.3. In the
next section we will follow a line of arguments similar to that of Section 3.2
to prove the remaining implications P2 ñ P3 ñ P1.

3.5 The characterization in the two-way case

In this section we generalize the characterization of one-way definability of
sweeping transducers to the general two-way case. As usual, we fix through
the rest of the section a successful run ρ of T on some input word u.

3.5.1 From periodicity of inversions to existence of de-
compositions.

We continue by proving the second implication P2 ñ P3 of Theorem
3.0.3 in the two-way case. This requires showing the existence of a suit-
able decomposition of a run ρ that satisfies property P2. Recall that
P2 says that for every inversion pL1, `1, L2, `2q, the period of the word

106

outptrp`1qq outpρr`1, `2sq outptrp`2qq divides gcdp|outptrp`1qq|, |outptrp`2qq|q ď

B. The definitions underlying the decomposition of ρ are similar to those
given in the sweeping case:

Definition 3.5.1. Let ρr`, `1s be a factor of a run ρ of T , where ` “ px, yq,
`1 “ px1, y1q, and x ď x1. We call ρr`, `1s

•

`

`z

`1

Z
�
`z

Z
�

`z

Figure 3.16: Outputs bounded in a di-
agonal.

a B-diagonal if for all z P
rx, x1s, there is a location
`z at position z such that
` � `z � `1 and the words
outpρ|Z

�
`z
q and outpρ|Z

�
`z
q

have length at most B,
where Z

�
`z

“ r`z, `
1s X

`

r0, zs ˆ N
˘

and Z
�
`z

“

r`, `zs X
`

rz, ωs ˆ N
˘

;

•

`

`1

Z�

Z�

Figure 3.17: Outputs bounded in a
block.

a B-block if the word
outpρr`, `1sq is almost pe-
riodic with bound B, and
outpρ|Z�q and outpρ|Z�q

have length at most B,
where Z� “ r`, `1s X
`

r0, xs ˆ N
˘

and Z� “

r`, `1s X
`

rx1, ωs ˆ N
˘

.

The definition of B-decomposition is copied verbatim from the sweeping
case, but uses the new notions of B-diagonal and B-block:

Definition 3.5.2. A B-decomposition of a run ρ of T is a factorization
ś

i ρr`i, `i`1s of ρ into B-diagonals and B-blocks.

To provide further intuition, we consider the transduction of Example 10
and the two-way transducer T that implements it in the most natural way.
Figure 3.18 shows an example of a run of T on an input of the form
u1 # u2 # u3 # u4, where u2, u4 P pabcq

˚, u1 u3 R pabcq
˚, and u3 has even

length. The factors of the run that produce long outputs are highlighted by

107

the bold arrows. The first and third factors of the decomposition, i.e. ρr`1, `2s

and ρr`3, `4s, are diagonals (represented by the blue hatched areas); the sec-
ond and fourth factors ρr`2, `3s and ρr`4, `5s are blocks (represented by the
red hatched areas).

u1 # u2 # u3 # u4

`1

`2

`3

`4

`5

Figure 3.18: A decomposition of a run of a two-way transducer.

To identify the blocks of a possible decomposition of ρ, we reuse the
equivalence relation S˚ introduced in Definition 3.2.4. Recall that this is the
reflexive and transitive closure of the relation S that groups any two locations
`, `1 that occur between `1, `2, for some inversion pL1, `1, L2, `2q.

The proof that the output produced inside each S˚-equivalence class is
periodic, with period at most B (Lemma 3.2.5) carries over in the two-
way case without modifications. Similarly, every S˚-equivalence class can
be extended to the left and to the right by using Definition 3.2.6, which we
report here for the sake of readability.

Definition 3.5.3. Let K “ r`, `1s be a non-singleton S˚-equivalence class.
We let

anpKq “ t` P K : ` P t`1, `2u for some inversion pL1, `1, L2, `2qu

be the restriction of K to anchor points occurring in some inversion, and
XanpKq “ tx : Dy px, yq P anpKqu be the projection of anpKq on positions.

We define blockpKq “ r˜̀, ˜̀1s, where

• ˜̀ is the latest location px, yq � ` such that x “ minpXanpKqq,

• ˜̀1 is the earliest location px, yq � `1 such that x “ maxpXanpKqq

108

(note that the locations ˜̀, ˜̀1 exist since `, `1 are both anchor points in some
inversion).

As usual, we call S˚-block any factor of ρ of the form ρ|blockpKq that
is obtained by applying the above definition to a non-singleton S˚-class K.
Lemma 3.2.7, which shows that S˚-blocks can indeed be used as B-blocks in
a decomposition of ρ, generalizes easily to the two-way case:

Lemma 3.5.4. If K is a non-singleton S˚-equivalence class, then ρ|blockpKq
is a B-block.

Proof. The proof is similar to that of Lemma 3.2.7. The main difference is
that here we will bound the lengths of some outputs by using a Ramsey-type
argument (Theorem 3.4.2), instead of output-minimality of factors (Lemma
3.1.3).

Let K “ r`, `1s, anpKq, XanpKq, and blockpKq “ r˜̀, ˜̀1s be as in Definition

3.5.3, where ˜̀“ px̃, ỹq, ˜̀1 “ px̃1, ỹ1q, x̃ “ minpXanpKqq, and x̃1 “ maxpXanpKqq.
We need to verify that ρ|blockpKq is a B-block, namely, that:

• x̃ ď x̃1,

• outpρr`, `1sq is almost periodic with bound B,

• outpρ|Z�q and outpρ|Z�q have length at most B, where Z� “ r`, `1s X
`

r0, xs ˆ N
˘

and Z� “ r`, `1s X
`

rx1, ωs ˆ N
˘

.

The first condition x̃ ď x̃1 follows immediately from x̃ “ minpXanpKqq and
x̃1 “ maxpXanpKqq.

Next, we prove that the output produced by the factor ρr˜̀, ˜̀1s is almost
periodic with bound B. By Definition 3.5.3, we have ˜̀� ` � `1 � ˜̀1, and by
Lemma 3.2.5 we know that outpρr`, `1sq is periodic with period at most B. So
it suffices to bound the length of the words outpρr˜̀, `sq and outpρr`1, ˜̀1sq. We
shall focus on the former word, as the arguments for the latter are similar.

First, we show that the factor ρr˜̀, `s lies entirely to the right of position
x̃ (in particular, it starts at an even level ỹ). Indeed, if this were not the
case, there would exist another location `2 “ px̃, ỹ` 1q, on the same position
as ˜̀, but at a higher level, such that ˜̀� `2 � `. But this would contradict
Definition 3.5.3 (˜̀is the latest location px, yq � ` such that x “ minpXanpKqq).

Suppose now that the length of |outpρr˜̀, `sq| ą B. We head towards a
contradiction by finding a location `2 � ` that is S˚-equivalent to the first

109

location ` of the S˚-equivalence class K. Since the factor ρr˜̀, `s lies entirely
to the right of position x̃, it is intercepted by the interval I “ rx̃, ωs. So
|outpρr˜̀, `sq| ą B is equivalent to saying |outpρ|Zq| ą B, where Z “ r˜̀, `s X
`

rx̃, ωs ˆ N
˘

. Then, Theorem 3.4.2 implies the existence of an idempotent
loop L and an anchor point `2 of L such that

• minpLq ą x̃,

• ˜̀� `2 � `,

• outptrp`2qq ‰ ε.

Further recall that x̃ “ minpXanpKqq is the leftmost position of locations in
the class K “ r`, `1s that are also anchor points of inversions. In particular,
there is an inversion pL1, `

2
1, L2, `

2
2q, with `22 “ px̃, y

2
2q P K. Since `2 � ` � `22

and the position of `2 is to the right of the position of `22, we know that
pL, `2, L2, `

2
2q is also an inversion, and hence `2 S˚ `22 S˚ `. But since `2 ‰ `,

we get a contradiction with the assumption that ` is the first location of the
S˚-class K. In this way we have shown that |outpρr˜̀, `sq| ď B.

It remains to bound the lengths of the outputs produced by the sub-
sequences ρ|Z� and ρ|Z�, where Z� “ r˜̀, ˜̀1s X

`

r0, x̃s ˆ N
˘

and Z� “

r˜̀, ˜̀1s X
`

rx̃1, ωs ˆ N
˘

. As usual, we consider only one of the two symmetric
cases. Suppose, by way of contradiction, that |outpρ|Z�q| ą B. By Theorem
3.4.2, there exist an idempotent loop L and an anchor point `2 of L such that

• maxpLq ă x̃,

• ˜̀� `2 � ˜̀1,

• outptrp`2qq ‰ ε.

By following the same line of reasoning as before, we recall that ` is the first
location of the non-singleton class K. From this we derive the existence an
inversion pL1, `

2
1, L2, `

2
2q where `21 “ `. We claim that ` � `2. Indeed, if this

were not the case, then, because `2 is strictly to the left of x̃ and ` is to
the right of x̃, there would exist a location `3 between `2 and ` that lies at
position x̃. But ˜̀ � `2 � `3 � ` would contradict the fact that ˜̀ is the
latest location before ` that lies at the position x̃. Now that we know that
` � `2 and that `2 is to the left of x̃, we observe that pL1, `

2
1, L, `

2q is also an
inversion, and hence `2 P anpKq. Since `2 is strictly to the left of x̃, we get a
contradiction with the definition of x̃ as leftmost position of the locations in
anpKq. So we conclude that |outpρ|Z�q| ď B.

110

The proof of Lemma 3.2.8, which shows that S˚-blocks do not overlap
along the input axis, carries over in the two-way case, again without modifi-
cations. Finally, we generalize Lemma 3.2.9 to the new definition of diagonal,
which completes the construction of a B-decomposition for the run ρ:

Lemma 3.5.5. Let ρr`, `1s be a factor of ρ, with ` “ px, yq, `1 “ px1, y1q, and
x ď x1, that does not overlap any S˚-block. Then ρr`, `1s is a B-diagonal.

Proof. Suppose by way of contradiction that there is some z P rx, x1s such
that, for all locations `2 at position z and between ` and `1, one of the two
conditions holds:

1. |outpρ|Z
�

`2q| ą B, where Z
�

`2 “ r`
2, `1s X

`

r0, zs ˆ N
˘

,

2. |outpρ|Z
�
`2q| ą B, where Z

�
`2 “ r`, `

2s X
`

rz, ωs ˆ N
˘

.

First, we claim that each of the two conditions above are satisfied at some
locations `2 P r`, `1s at position z. Consider the highest even level y2 such
that `2 “ pz, y2q P r`, `1s (use Figure 3.16 as a reference). Since z ď x1, the

outgoing transition at `2 is rightward oriented, and the set Z
�

`2 is empty. This
means that condition (1) is trivially violated at `2, and hence condition (2)
holds at `2 by the initial assumption. Symmetrically, condition (1) holds at
the location `2 “ pz, y2q, where y2 is the lowest even level with `2 P r`, `1s.

Let us now compare the levels where the above conditions hold. Clearly,
the lower the level of location `2, the easier it is to satisfy condition (1), and
symmetrically for condition (2). So, let `` “ pz, y`q (resp. `´ “ pz, y´q)
be the highest (resp. lowest) location in r`, `1s at position z that satisfies
condition (1) (resp. condition (2)).

We claim that y` ě y´. For this, we first observe that y` ě y´´1, since
otherwise there would exist a location `2 “ pz, y2q, with y` ă y2 ă y´, that
violates both conditions (1) and (2). Moreover, y` must be odd, otherwise
the transition departing from `` “ pz, y`q would be rightward oriented and
the location `2 “ pz, y` ` 1q would still satisfy condition (1), contradicting
the definition of the highest location ``. For similar reasons, y´ must also
be odd, otherwise there would be a location `2 “ pz, y´ ´ 1q below `´ that
satisfies condition (2). But since y` ě y´ ´ 1 and both y` and y´ are odd,
we need to have y` ě y´.

In fact, from the previous arguments we know that the location `2 “
pz, y`q (or equally the location px, y´q) satisfies both conditions (1) and (2).

111

We can thus apply Theorem 3.4.2 to the sets Z
�
`2 and Z

�
`2 , deriving the exis-

tence of two idempotent loops L1, L2 and two anchor points `1, `2 of L1, L2,
respectively, such that

• maxpL2q ă z ă minpL1q,

• ` � `1 � `2 � `2 � `1,

• outptrp`1qq, outptrp`2qq ‰ ε.

In particular, since `1 is to the right of `2 w.r.t. the order of positions, we know
that pL1, `1, L2, `2q is an inversion, and hence `1 S˚ `2. But this contradicts
the assumption that ρr`, `1s does not overlap with any S˚-block.

3.5.2 From existence of decompositions to an equiva-
lent one-way transducer.

It remains to prove the last implication P3 ñ P1 of Theorem 3.0.3, which
amounts to construct a one-way transducer T 1 equivalent to T .

Hereafter, we denote by D the language of words u P dompT q such that
all successful runs of T on u admit a B-decomposition. So far, we know
that if T is one-way definable (P1), then D “ dompT q (P3). As a matter of
fact, this reduces the one-way definability problem for T to the containment
problem dompT q Ď D. We will see later how the latter problem can be
decided in double exponential space by further reducing it to checking the
emptiness of the intersection of the languages dompT q and DA, where DA is
the complement of D.

Below, we show how to construct a one-way transducer T 1 of triple
exponential size such that T 1 Ď T and dompT 1q is the set of all input
words that have some successful run admitting a B-decomposition (hence
dompT 1q Ě D). In particular, we will have that

T |D Ď T 1 Ď T .

Note that this will prove P3 to P1, as well as the second item of Theo-
rem 3.0.1, since D “ dompT q if and only if T is one-way definable. A sketch
of the proof of this construction when T is a sweeping transducer was given
at the end of Section 3.2.

112

Proposition 3.5.6. Given a functional two-way transducer T , a one-way
transducer T 1 satisfying

T 1 Ď T and dompT 1q Ě D

can be constructed in 3ExpTime. Moreover, if T is sweeping, then T 1 can
be constructed in 2ExpTime.

Proof. Given an input word u, the transducer T 1 will guess (and check) a
successful run ρ of T on u, together with a B-decomposition

ś

i ρr`i, `i`1s.
The latter decomposition will be used by T 1 to simulate the output of ρ in
left-to-right manner, thus proving that T 1 Ď T . Moreover, u P D implies
the existence of a successful run that can be decomposed, thus proving that
dompT 1q Ě D. We now provide the details of the construction of T 1.

Guessing the run ρ is standard (see, for instance, [51, 78]): it amounts to
guess the crossing sequences ρ|x for each position x of the input. Recall that
this is a bounded amount of information for each position x, since the run is
normalized. As concerns the decomposition of ρ, it can be encoded by the
endpoints `i of its factors, that is, by annotating the position of each `i as
the level of `i. In a similar way T 1 guesses the information of whether each
factor ρr`i, `i`1s is a B-diagonal or a B-block.

Thanks to the definition of decomposition (Definition 3.5.2), every two
distinct factors span across non-overlapping intervals of positions. This
means that each position x is covered by exactly one factor of the decom-
position. We call this factor the active factor at position x. The mode of
computation of the transducer will depend on the type of active factor: if the
active factor is a diagonal (resp. a block), then we say that T 1 is in diagonal
mode (resp. block mode). Below we describe the behaviour for these two
modes of computation.

Diagonal mode. We recall the key condition satisfied by the diagonal ρr`, `1s
that is active at position x (cf. Definition 3.5.1 and Figure 3.16): there is

a location `x “ px, yxq between ` and `1 such that the words outpρ|Z
�

`x
q and

outpρ|Z
�
`x
q have length at most B, where Z

�
`x
“ r`x, `

1s X
`

r0, xs ˆ N
˘

and

Z
�
`x
“ r`, `xs X

`

rx, ωs ˆ N
˘

.
Besides the run ρ and the decomposition, the transducer T 1 will also guess

the locations `x “ px, yxq, that is, will annotate each x with the correspond-
ing yx. Without loss of generality, we can assume that the function that

113

associates each position x with the guessed location `x “ px, yxq is mono-
tone, namely, x ď x1 implies `x � `x1 . While the transducer T 1 is in diagonal
mode, the goal is to preserve the following invariant:

After reaching a position x covered by the active diagonal, T 1
must have produced the output of ρ up to location `x.

To preserve the above invariant when moving from x to the next position
x ` 1, the transducer should output the word outpρr`x, `x`1sq. This word
consists of the following parts:

1. The words produced by the single transitions of ρr`x, `x`1s with end-
points in tx, x ` 1u ˆ N. Note that there are at most H such words,
each of them has length at most cmax, and they can all be determined
using the crossing sequences at x and x` 1 and the information about
the levels of `x and `x`1. We can thus assume that this information is
readily available to the transducer.

2. The words produced by the factors of ρr`x, `x`1s that are intercepted
by the interval r0, xs. Thanks to the definition of diagonal, we know
that the total length of these words is at most B. These words cannot
be determined from the information on ρ|x, ρ|x`1, `x, and `x`1 alone,
so they need to be constructed while scanning the input. For this, some
additional information needs to be stored.

More precisely, at each position x of the input, the transducer stores
all the outputs produced by the factors of ρ that are intercepted by
r0, xs and that occur after a location of the form `x1 , for any x1 ě
x that is covered by a diagonal. This clearly includes the previous
words when x1 “ x, but also other words that might be used later
for processing other diagonals. Moreover, by exploiting the properties
of diagonals, one can prove that those words have length at most B,
so they can be stored with triply exponentially many states. Using
classical techniques, the stored information can be maintained while
scanning the input u using the guessed crossing sequences of ρ.

3. The words produced by the factors of ρr`x, `x`1s that are intercepted by
the interval rx`1, ωs. These words must be guessed, since they depend
on a portion of the input that has not been processed yet. Accordingly,
the guesses need to be stored into memory, in such a way that they

114

can be checked later. For this, the transducer stores, for each position
x, the guessed words that correspond to the outputs produced by the
factors of ρ intercepted by rx, ωs and occurring before a location of the
form `x1 , for any x1 ď x that is covered by a diagonal.

Block mode. Suppose that the active factor ρr`, `1s is a B-block. Let I “
rx, x1s be the set of positions covered by this factor. Moreover, for each
position z P I, let Z�

z “ r`, `
1s X

`

r0, zs ˆN
˘

and Z�
z “ r`, `

1s X
`

rz, ωs ˆN
˘

.
We recall the key property of a block (cf. Definition 3.5.1 and Figure 3.4): the
word outpρr`, `1sq is almost periodic with bound B, and the words outpρ|Z�

x q

and outpρ|Z�
x1q have length at most B.

For the sake of brevity, suppose that outpρr`, `1sq “ w1w2, w3, where w2

is periodic with period B and w1, w2 have length at most B. Similarly, let
w0 “ outpρ|Z�

x q and w4 “ outpρ|Z�
x1q. The invariant preserved by T 1 in block

mode is the following:

After reaching a position z covered by the active block ρr`, `1s, T 1
must have produced the output of the prefix of ρ up to location `,
followed by a prefix of outpρr`, `1sq “ w1w2w3 of the same length
as outpρ|Z�

z q.

The initialization of the invariant is done when reaching the left endpoint
x. At this moment, it suffices that T 1 outputs a prefix of w1w2w3 of the
same length as w0 “ outpρ|Z�

x q, thus bounded by B. Symmetrically, when
reaching the right endpoint x1, T 1 will have produced almost the entire word
outpρr`, `1sqw1w2w3, but without the suffix w4 “ outpρ|Z�

x1q of length at
most B. Thus, before moving to the next factor of the decomposition, the
transducer will produce the remaining suffix, so as to complete the output of
ρ up to location `ix`1.

It remains to describe how the above invariant can be maintained when
moving from a position z to the next position z ` 1 inside I “ rx, x1s. For
this, it is convenient to succinctly represent the word w2 by its repeating
pattern, say v, of length at most B. To determine the symbols that have
to be output at each step, the transducer will maintain a pointer on either
w1 v or w3. The pointer is increased in a deterministic way, and precisely
by the amount |outpρ|Z�

z`1q| ´ |outpρ|Z
�
z q|. The only exception is when the

pointer lies in w1 v, but its increase would go over w1 v: in this case the
transducer has the choice to either bring the pointer back to the beginning

115

of v (representing a periodic output inside w2), or move it to w3. Of course,
this is a non-deterministic choice, but it can be validated when reaching the
right endpoint of I. Concerning the number of symbols that need to be
emitted at each step, this can be determined from the crossing sequences
at z and z ` 1, and from the knowledge of the lowest and highest levels of
locations that are at position z and between ` and `1. We denote the latter
levels by y´z and y`z , respectively.

Overall, this shows how to maintain the invariant of the block mode, as-
suming that the levels y´z , y

`
z are known, as well as the words w0, w1, v, w3, w4

of bounded length. Like the mapping z ÞÑ `z “ pz, yzq used in diagonal mode,
the mapping z ÞÑ py´z , y

`
z q can be guessed and checked using the crossing se-

quences. Similarly, the words w1, v, w3 can be guessed just before entering
the active block, and can be checked along the process. As concerns the
words w0, w4, these can be guessed and checked in a way similar to the words
that we used in diagonal mode. More precisely, for each position z of the
input, the transducer stores the following additional information:

1. the outputs produced by the factors of ρ that are intercepted by r0, zs
and that occur after the beginning `2 of some block, with `2 “ px2, y2q
and x2 ě z;

2. the outputs produced by the factors of ρ that are intercepted by rz, ωs
and that occur before the ending `3 of a block, where `3 “ px3, y3q
and x3 ď z.

By the definition of blocks, the above words have length at most B and
can be maintained while processing the input and the crossing sequences.
Finally, we observe that the words, together with the information given by
the lowest and highest levels y´z , y

`
z , for both z “ x and z “ x1, are sufficient

for determining the content of w0 and w4.

We have just shown how to construct a one-way transducer T 1 Ď T
such that dompT 1q Ě D. From the above construction it is easy to see that
the number of states and transitions of T 1, as well as the number of letters
emitted by each transition, are at most exponential in B. Since B is doubly
exponential in the size of T , this shows that T 1 can be constructed from
T in 3ExpTime. Note that the triple exponential complexity comes from
the lengths of the words that need to be guessed and stored in the control
states, and these lengths are bounded by B. However, if T is a sweeping
transducer, then, according to the results proved in Section 3.2, the bound B

116

is simply exponential. In particular, in the sweeping case we can construct
the one-way transducer T 1 in 2ExpTime.

3.5.3 Generality of the construction.

We conclude the section with a discussion on the properties of the one-
way transducer T 1 constructed from T . Roughly speaking, we would like to
show that, even when T is not one-way definable, T 1 is somehow the best
one-way under-approximation of T . However, strictly speaking, the latter
terminology is meaningless: if T 1 is a one-way transducer strictly contained
in T , then one can always find a better one-way transducer T 2 that satisfies
T 1 Ĺ T 2 Ĺ T , for instance by extending T 1 with a single input-output
pair. Below, we formalize in an appropriate way the notion of “best one-way
under-approximation”.

We are interested in comparing the domains of transducers, but only up
to a certain amount. In particular, we are interested in languages that are
preserved under pumping loops of runs of T . Formally, given a language
L, we say that L is T -pumpable if L Ď dompT q and for all words u P L,
all successful runs ρ of T on u, all loops L of ρ, and all positive numbers
n, the word pumpnLpuq also belongs to L. Clearly, the domain dompT q of a
transducer T is a regular T -pumpable language.

Another noticeable example of T -pumpable regular language is the do-
main of the one-way transducer T 1, as defined in Proposition 3.5.6. Indeed,
dompT 1q consists of words u P dompT q that induce successful runs with B-
decompositions, and the property of having a B-decomposition is preserved
under pumping.

The following result shows that T 1 is the best under-approximation of T
within the class of one-way transducers with T -pumpable domains:

Corollary 3.5.7. Given a functional two-way transducer T , one can con-
struct a one-way transducer T 1 such that

• T 1 Ď T and dompT 1q is T -pumpable,

• for all one-way transducers T 2, if T 2 Ď T and dompT 2q is T -pumpable,
then T 2 Ď T 1.

117

Proof. The transducer T 1 is precisely the one defined in Proposition 3.5.6.
As already explained, its domain dompT 1q is a T -pumpable language. In
particular, T 1 satisfies the conditions in the first item.

For the conditions in the second item, consider a one-way transducer
T 2 Ď T with a T -pumpable domain L “ dompT 2q. Let T̃ be the transducer
obtained from T by restricting its domain to L. Clearly, T̃ is one-way defin-
able, and one could apply Proposition 3.4.4 to T̃ , using T 2 as a witness of
one-way definability. In particular, when it comes to comparing the outputs
of the pumped runs of T̃ and T 2, one could exploit the fact that the domain
L of T 2, and hence the domain of T̃ as well, is T -pumpable. This permits to
derive periodicities of inversions with the same bound B as before, but only
restricted to the successful runs of T on the input words that belong to L. As
a consequence, one can define B-decompositions of successful runs of T on
words in L, thus showing that L Ď dompT 1q. This proves that T 2 Ď T 1.

3.6 Complexity of the one-way definability

problem

3.6.1 Complexity analysis

In this section we analyze the complexity of the problem of deciding whether
a transducer T is one-way definable. We begin with the case of a functional
two-way transducer. In this case, thanks to the results presented in Sec-
tion 3.5, we know that T is one-way definable if and only if dompT q Ď D,
where D is the language of words u P dompT q such that all successful runs
of T on u admit a B-decomposition. In particular, the one-way definability
problem reduces to an emptiness problem for the intersection of two lan-
guages:

T one-way definable if and only if dompT q XDA “ H.

The following lemma exploits the characterization of Theorem 3.0.3 to show
that the language DA can be recognized by a non-deterministic finite automa-
ton D of triply exponential size w.r.t. T . In fact, this lemma shows that
the automaton recognizing DA can be constructed using doubly exponential
workspace. As before, we gain an exponent when restricting to sweeping
transducers.

118

Lemma 3.6.1. Given a functional two-way transducer T , an NFA D recog-
nizing DA can be constructed in 2ExpSpace. Moreover, when T is sweeping,
the NFA D can be constructed in ExpSpace.

Proof. Consider an input word u. By Theorem 3.0.3 we know that u P DA iff
there exist a successful run ρ of T on u and an inversion I “ pL1, `1, L2, `2q

of ρ such that no positive number p ď B is a period of the word

wρ,I “ out
`

trp`1q
˘

out
`

ρr`1, `2s
˘

out
`

trp`2q
˘

.

The latter condition on wρ,I can be rephrased as follows: there is a function
f : t1, . . . ,Bu Ñ t1, . . . , |wρ,I |u such that wρ,I

`

fppq
˘

‰ wρ,I
`

fppq ` p
˘

for
all positive numbers p ď B. In particular, each of the images of the latter
function f , that is, fp1q, . . . , fpBq, can be encoded by a suitable marking of
the crossing sequences of ρ. This shows that the run ρ, the inversion I, and
the function f described above can all be guessed within space OpBq: ρ is
guessed on-the-fly, the inversion is guessed by marking the anchor points, and
for f we only store two symbols and a counter ď B, for each 1 ď i ď B. That
is, any state of D requires doubly exponential space, resp. simply exponential
space, depending on whether T is arbitrary two-way or sweeping.

As a consequence of the previous lemma, the emptiness problem for the
language dompT q X DA, and thus the one-way definability problem for T ,
can be decided in 2ExpSpace or ExpSpace, depending on whether T is
two-way or sweeping:

Proposition 3.6.2. The problem of deciding whether a functional two-way
transducer T is one-way definable is in 2ExpSpace. When T is sweeping,
the problem is in ExpSpace.

3.6.2 Lower bound

We provide a two-exponential lower bound for the size of the equivalent
transducer. As the lower bound is achieved by a sweeping transduction, this
gives a tight lower bound on the size of any one-way transducer equivalent
to some sweeping transducer.

Proposition 3.6.3. There is a family pfnqnPN of transductions such that

1. fn can be implemented by a sweeping transducer of size Opn2q,

119

2. fn can be implemented by a one-way transducer,

3. every one-way transducer that implements fn has size Ωp22nq.

Proof. The family of transformations is precisely the one described in Ex-
ample 10 (2), where fn maps inputs of the form u “ a0w0 ¨ ¨ ¨ a2n´1 w2n´1

to outputs of the form uu, where ai P ta, bu and wi P t0, 1u
n is the binary

encoding of i. A sweeping transducer implementing fn first checks that the
binary encodings wi, for i “ 0, . . . , 2n´1, are correct. This can be done with
n passes: the j-th pass uses Opnq states to check the correctness of the j-th
bits of the binary encodings. Then, the sweeping transducer performs two
additional passes to copy the input twice. Overall, the sweeping transducer
has size Opn2q.

As already mentioned, every one-way transducer that implements fn
needs to remember input words u of exponential length in order to out-
put uu, which roughly requires doubly exponentially many states. A more
formal argument providing a lower bound to the size of a one-way transducer
implementing fn goes as follows.

First of all, one observes that given a one-way transducer T , the language
of its outputs, i.e., Lout

T “ tw : pu,wq P L pT q for some uu is regular.
More precisely, if T has size N , then the language Lout

T is recognized by an
automaton of size linear in N . Indeed, while parsing w, the automaton can
guess an input word u and a run on u, together with a factorization of w in
which the i-th factor corresponds to the output of the transition on the i-th
letter of u. Basically, this requires storing as control states the transition
rules of T and the suffixes of outputs.

Now, suppose that the function fn is implemented by a one-way trans-
ducer T of size N . The language Lout

T “ tuu : u P dompfnqu is then
recognized by an automaton of size OpNq. Finally, we recall a result from
[45], which shows that, given a sequence of pairs of words pui, viq, for
i “ 1, . . . ,M , every non-deterministic automaton that separates the lan-
guage tui vi : 1 ď i ďMu from the language tui uj : 1 ď i ‰ j ďMu must
have at least M states. By applying this result to our language Lout

T , where
ui “ vi for all i “ 1, . . . ,M “ 22n , we get that N must be at least linear in
M , and hence N P Ωp22nq.

120

3.6.3 Undecidability of the general case

We conclude this chapter by showing that when the restriction to functional
transducers is removed, the problem becomes undecidable.

Proposition 3.6.4. The one-way definability problem for non-functional
sweeping transducers is undecidable.

Proof. The proof uses some ideas and variants of constructions provided in
[52], concerning the proof of undecidability of the equivalence problem for
one-way non-functional transducers.

We show a reduction from the Post Correspondence Problem (PCP). A
PCP instance is described by two finite alphabets Σ and ∆ and two mor-
phisms f, g : Σ˚ Ñ ∆˚. A solution of such an instance is any non-empty
word w P Σ` such that fpwq “ gpwq. We recall that the problem of testing
whether a PCP instance has a solution is undecidable.

Below, we fix a tuple τ “ pΣ,∆, f, gq describing a PCP instance and we
show how to reduce the problem of testing the non-existence of solutions of τ
to the problem of deciding one-way definability of a relation computed by a
sweeping transducer. Roughly, the idea is to construct a relation Bτ between
words over a suitable alphabet Γ that encodes all the non-solutions to the
PCP instance τ (this is simpler than encoding solutions because the presence
of errors can be easily checked). The goal is to have a relation Bτ that (i)
can be computed by a sweeping transducer and (ii) coincides with a trivial
one-way definable relation when τ has no solution.

We begin by describing the encodings for the solutions of the PCP in-
stance. We assume that the two alphabets of the PCP instance, Σ and ∆,
are disjoint and we use a fresh symbol # R ΣY∆. We define the new alpha-
bet Γ “ Σ Y∆ Y t#u that will serve both as input alphabet and as output
alphabet for the transduction. We call encoding any pair of words over Γ of
the form pw ¨ u,w ¨ vq, where w P Σ`, u P ∆˚, and v P t#u˚. We will write
the encodings as vectors to improve readability, e.g., as

ˆ

w ¨ u
w ¨ v

˙

.

We denote by Eτ the set of all encodings and we observe that Eτ is
computable by a one-way transducer (note that this transducer needs ε-
transitions). We then restrict our attention to the pairs in Eτ that are

121

encodings of valid solutions of the PCP instance. Formally, we call good
encodings the pairs in Eτ of the form

ˆ

w ¨ u
w ¨#|u|

˙

where u “ fpwq “ gpwq .

All the other pairs in Eτ are called bad encodings. Of course, the relation
that contains the good encodings is not computable by a transducer. On the
other hand, we can show that the complement of this relation w.r.t. Eτ is
computable by a sweeping transducer. Let Bτ be the set of all bad encodings.
Consider pw¨u,w¨#mq P Eτ , with w P Σ`, u P ∆˚, and m P N, and we observe
that this pair belongs to Bτ if and only if one of the following conditions is
satisfied:

1. m ă |u|,

2. m ą |u|,

3. u ‰ fpwq,

4. u ‰ gpwq.

We explain how to construct a sweeping transducer Sτ that computes Bτ .
Essentially, Sτ guesses which of the above conditions holds and processes the
input accordingly. More precisely, if Sτ guesses that the first condition holds,
then it performs a single left-to-right pass, first copying the prefix w to the
output and then producing a block of occurrences of the symbol # that is
shorter than the suffix u. This task can be easily performed while reading u:
it suffices to emit at most one occurrence of # for each position in u, and at
the same time guarantee that, for at least one such position, no occurrence of
is emitted. The second condition can be dealt with by a similar strategy:
first copy the prefix w, then output a block of # that is longer than the
suffix u. To deal with the third condition, the transducer Sτ has to perform
two left-to-right passes, interleaved by a backward pass that brings the head
back to the initial position. During the first left-to-right pass, Sτ copies the
prefix w to the output. During the second left-to-right pass, it reads again
the prefix w, but this time he guesses a factorization of it of the form w1aw2.
On reading w1, Sτ will output #|fpw1q|. After reading w1, Sτ will store the
symbol a and move to the position where the suffix u begins. From there, it
will guess a factorization of u of the form u1 u2, check that u2 does not begin

122

with fpaq, and emit one occurrence of # for each position in u2. The number
of occurrences of # produced in the output is thus m “ |fpw1q| ` |u2|, and
the fact that u2 does not begin with fpaq ensures that the factorizations of
w and u do not match, i.e.

m ‰ |fpwq|

Note that the described behaviour does not immediately guarantee that u ‰
fpwq. Indeed, it may still happen that u “ fpwq, but as a consequence
m ‰ |u|. This case is already covered by the first and second condition,
so the computation is still correct in the sense that it produces only bad
encodings. On the other hand, if m happens to be the same as |u|, then
|u| “ m ‰ |fpwq| and thus u ‰ fpwq. A similar behaviour can be used to
deal with the fourth condition.

We have just shown that there is a sweeping non-functional transducer Sτ
that computes the relation Bτ containing all the bad encodings. Note that,
if the PCP instance τ admits no solution, then all encodings are bad, i.e.,
Bτ “ Eτ , and hence Bτ is one-way definable. It remains to show that when
τ has a solution, Bτ is not one-way definable. Suppose that τ has solution
w P Σ` and let

`

w ¨ u, w ¨#|u|
˘

be the corresponding good encoding, where
u “ fpwq “ gpwq. Note that every exact repetition of w is also a solution,
and hence the pairs

`

wn ¨ un, wn ¨ #n¨|u|
˘

are also good encodings, for all
n ě 1.

Suppose, by way of contradiction, that there is a one-way transducer T
that computes the relation Bτ . For every n,m P N, we define the encoding

αn,m “

ˆ

wn ¨ um

wn ¨#m¨|u|

˙

and we observe that αn,m P Bτ if and only if n ‰ m (recall that w ‰ ε is the
solution of the PCP instance τ and u “ fpwq “ gpwq). Below, we consider
bad encodings like the above ones, where the parameter n is supposed to be
large enough. Formally, we define the set I of all pairs of indices pn,mq P N2

such that (i) n ‰ m (this guarantees that αn,m P Bτ) and (ii) n is larger than
the number |Q| of states of T .

We consider some pair pn,mq P I and we choose a successful run ρn,m of
T that witnesses the membership of αn,m in Bτ , namely, that reads the input
wn ¨ um and produces the output wn ¨#m¨|u|. We can split the run ρn,m into
a prefix �Ýρn,m and a suffix Ý�ρn,m in such a way that �Ýρn,m consumes the prefix
wn and Ý�ρn,m consumes the remaining suffix um. Since n is larger than the

123

number of state of T , we can find a factor ρ̂n,m of �Ýρn,m that starts and ends
with the same state and consumes a non-empty exact repetition of w, say
wn1 , for some 1 ď n1 ď |Q|. We claim that the output produced by the factor
ρ̂n,m must coincide with the consumed part wn1 of the input. Indeed, if this
were not the case, then deleting the factor ρ̂n,m from ρn,m would result in a
new successful run that reads wn´n1 ¨um and produces wn´n2 ¨#m¨|u| as output,
for some n2 ‰ n1. This however would contradict the fact that, by definition
of encoding, the possible outputs produced by T on input wn´n1 ¨ um must
agree on the prefix wn´n1 . We also remark that, even if we do not annotate
this explicitly, the number n1 depends on the choice of the pair pn,mq P I.
This number, however, range over the fixed finite set J “

“

1, |Q|
‰

.
We can now pump the factor ρ̂n,m of the run ρn,m any arbitrary number of

times. In this way, we obtain new successful runs of T that consume inputs
of the form wn`k¨n1 ¨ um and produce outputs of the form wn`k¨n1 ¨ #m, for
all k P N. In particular, we know that Bτ contains all pairs of the form
αn`k¨n1,m. Summing up, we can claim the following:

Claim. There is a function h : I Ñ J such that, for all pairs pn,mq P I,

pn` k ¨ hpn,mq,mq
ˇ

ˇ k P N
(

Ď I .

We can now head towards a contradiction. Let ñ be the maximum common
multiple of the numbers hpn,mq, for all pn,mq P I. Let m “ n ` ñ and
observe that n ‰ m, whence pn,mq P I. Since ñ is a multiple of hpn,mq, we
derive from the above claim that the pair pn ` ñ,mq “ pm,mq also belongs
to I. However, this contradicts the definition of I, since we observed earlier
that αn,m is a bad encoding if and only if n ‰ m. We conclude that Bτ is
not one-way definable when τ has a solution.

124

Chapter 4

Minimization of resources

Minimization problems have been studied for obvious reasons since the early
days of automata theory. For example, several algorithms have been pro-
posed for minimizing the number of states of (one-way) finite state automata
[16, 62, 63]. State minimization algorithms have been also proposed for
deterministic one-way finite state transducers [21]. However, for two-way
machines, much less is known about state minimization, and this holds true
even for automata.

Yet for two-way (and streaming) transducers, there are other kind of re-
sources than state space that are amenable to minimization. For example,
a parameter that should be kept low in order to “simplify” the evaluation
process of the transduction is the number of passes performed by a sweeping
transducer, namely, the number of times the machine has to read the input
in order to produce the correct output. This parameter if particularly im-
portant when the input is generated by a remote process and accessed by the
transducer, as minimizing the number of passes reduces the number of times
the machine has to wait to receive the input information. For similar reasons
one may want to minimize the number of registers in a streaming transducer:
even though the content of registers may grow arbitrarily, updating a large
number of registers simultaneously raises implementation issues.

The number of passes and the number of registers induce strict hierarchies
of machines. For example, the k-duplication function w ÞÑ wk is easily
computed by a k-pass sweeping transducer and by a k-register DSST , but is
not definable by a pk ´ 1q-pass sweeping transducer, nor a pk ´ 1q register
DSST . Formal proofs of the latter statements are similar to the proof of
Proposition 2.4.4.

125

In this chapter we provide a generalization of the methods described in
Chapter 3 to characterize k-pass definability:

k-pass definability
Input: A 2fNFT T and a number k

Question: Is T equivalent to some k-pass non-deterministic sweeping
transducer T 1?

In particular, an answer to the above question allows to minimize the
number of passes of a given sweeping transducer. Moreover, we provide a
bound on the number of passes for an equivalent sweeping transducer, when
one exists. Along with the procedure for deciding k-pass definability, this
allows us to characterize definability by some sweeping transducer (when the
number of passes is not fixed).

Later, in Section 4.2 we will focus on NSST (recall that this stands for
non-deterministic streaming string transducers), and consider the number of
registers as a natural notion of complexity for such machines. We will aim
at minimizing the number of registers for NSST ’s:

Register minimization
Input: An NSST T and a number k

Question: Is T equivalent to some NSST with at most k registers?

Similar problems concerning register minimization have been also con-
sidered in [7] and [30], but for rather different settings. In [7] the output
alphabet is unary and register concatenation is disallowed, whereas in [30]
the outputs lies in an unspecified monoid and the updates only allow multi-
plication from the right (while in the setting of the free monoid, our model
allows adding words at the right and the left).

We also remark that the minimum number of registers required to im-
plement a given transduction depends on whether we allow or not non-
determinism. For example, the function u Ñ a|u|, where a is the last letter
of u, can be implemented by an NSST with just 1 register, but any equiva-
lent SST will require as many registers as the size of the input alphabet. In
particular, since our register minimization problem allows non-determinism,
it is of rather different nature than those considered in [7, 30].

126

The register minimization problem for NSST is challenging, and we are
not able to solve it in full generality. However, we do provide a solution for
a subclass of NSST ’s that is obtained by disallowing register concatenation.
Intuitively, the solution exploits a suitable correspondence between the num-
ber of registers used by concatenation-free NSST ’s and the number of passes
performed by sweeping transducers. We will use this correspondence and the
minimization of the number of passes of a sweeping transducer to derive a
minimization procedure for the number of registers in the restricted class of
NSST ’s.

4.1 Passes of a sweeping transducer

In this section we show how to decide in 2ExpSpace the k-pass definability
problem (recall that this is the problem of telling whether a given two-way
transducer is equivalent to some k-pass sweeping transducer). As we will see,
when T is k-pass definable, we also provide a k-pass sweeping transducer
T 1 of triple exponential size w.r.t. |T | that is equivalent to T . We reuse
the notation B from the previous chapter: let us recall that B is doubly
exponential in the size of T in the general case, and simply exponential
when T is sweeping.

4.1.1 k-pass definability

We begin by defining the objects that need to be considered for characterizing
k-pass definability. Let T be a functional two-way transducer. The idea is to
identify factors of runs of T that can be simulated alternatively from left to
right and from right to left. We begin by introducing a notion of co-inversion,
which can be thought of just as an inversion, but when the input is read from
right to left. More precisely, the definition of co-inversion is obtained from
that of inversion (Definition 3.4.3) by reversing the order of the positions of
the witnessing loops (we highlight in bold this difference):

Definition 4.1.1. A co-inversion of a run ρ is a tuple pL1, `1, L2, `2q such
that:

• L1, L2 are idempotent loops,

• `1 “ px1, y1q and `2 “ px2, y2q are anchor points inside L1 and L2,
respectively,

127

• `1 � `2 and x1 ă x2,

• outptrp`iqq ‰ ε.

We say that the above loops L1 and L2 are the witnessing loops of the co-
inversion pL1, `1, L2, `2q.

We then combine inversions and co-inversions, as follows:

Definition 4.1.2. A k-inversion of ρ is a sequence ` “

pL1, `1, L2, `2q, . . . , pL2k´1, `2k´1, L2k, `2kq such that:

• `1 � `2 � . . . � `2k´1 � `2k are distinct locations in ρ,

• for all even i such that 0 ď i ă k, pL2i`1, `2i`1, L2i`2, `2i`2q is an
inversion of ρ,

• for all odd i such that 0 ď i ă k, pL2i`1, `2i`1, L2i`2, `2i`2q is a co-
inversion of ρ.

An example of a 3-inversion is depicted on Figure 4.1 (we did not show the
loops to keep the figure readable).

`1

`2 `3
`4

`5

`6

Figure 4.1: An example of a 3-inversion.

Definition 4.1.3. We say that ` is B-safe if outpρr`2i`1, `2i`2sq has period

at most B, for some i P t0, . . . , k ´ 1u. We denote by L
pkq
T the language of

words u P dompT q such that all k-inversions of all successful runs of T on u
are B-safe.

Example 11. Consider a 3-pass transducer T that receives an input u#v,
with u, v P ta, bu˚, and outputs pabq|uvv|pbaq|uuv|. The 2-inversion of T de-
picted on Figure 4.2 is B-safe, as the output ρr`3, `4s has period 2. In fact
we can see that every 2-inversion of T is B-safe because either `2 belongs to

128

u # v

pabq|u|

pbaq|u|

pbaq|u|

pabq|v|

pabq|v|

pbaq|v|

‚

‚

‚

”
pabq|u|

pbabaq|u|

pababq|v|

pbaq|v|

u # v

‚

‚

‚

`1

`2

`3 `4

u # v

Figure 4.2: A run of T with 3 passes, its equivalent with 2 passes, and a
B-safe 2-inversion of T .

the part producing ab or `3 belongs to the part producing ba (as in Figure
4.2). Thus the realized transduction can also be implemented in 2 passes:
one needs to output abab for each letter of v on the first pass and baba for
each letter of u on the second pass (as we can see in Figure 4.2) .

Note that the definition of 1-inversion is the same as Definition 3.4.3.
In particular, by Theorem 3.0.3, we know that T is one-way definable iff
L
p1q
T “ dompT q. The generalization of this result is provided in Theorem 4.1.4

below: k-pass definability is equivalent to asking that every k-inversion is B-
safe, in the same way as one-way definability is equivalent to asking that
every inversion has output with period at most B (property P2, see Propo-
sition 3.4.4).

Theorem 4.1.4. A functional two-way transducer T is k-pass sweeping de-
finable iff L

pkq
T “ dompT q, and this can be decided in 2ExpSpace w.r.t.

|T | and in polynomial space w.r.t. k. Moreover, given a 2fNFT T , one
can construct in 3ExpTime an unambiguous k-pass sweeping transducer T 1
equivalent to T |

L
pkq
T

.

If the given transducer is already sweeping, the decision procedure is in
ExpSpace and the construction is in 2ExpTime.

The proof of Theorem 4.1.4 is split into two parts. The first part deals
with the construction of the k-pass sweeping transducer T 1 of the second
claim in Section 4.1.2. Since L

pkq
T “ dompT q implies that T 1 is equivalent to

T , this construction also proves the right-to-left direction of the first claim.

129

Moreover, as a side result, we prove that whether L
pkq
T “ dompT q holds is

decidable in 2ExpSpace. We will show in Section 4.1.3 the other direction
of the first claim. The additional difficulty regarding k-inversions is that
in order to work out the combinatorics, we have to carefully separate the
(co-)inversions into separated one-way factors. The remark about the case of
sweeping transducers will be a consequence of the better complexity obtained
for sweeping transducers in Chapter 3.

4.1.2 Soundness

We show how to construct from T a k-pass sweeping transducer T 1 equivalent
to T |

L
pkq
T

. The idea is to consider a successful run ρ of T on a word u P L
pkq
T ,

and divide it into k factors. We then simulate each factor of the run in
a single pass, alternatively from left to right and from right to left, using
Theorem 3.0.1.

First we need a notion of k-B-factorization that can be used to separate
a run into k parts, each of them implementable by a one-way transducer
(either from left to right or from right to left).

Definition 4.1.5. A k-B-factorization of a successful run ρ of T is any
sequence of locations ` “ `0, `1, . . . , `k of ρ such that:

• `0 � `1 � ¨ ¨ ¨ � `k, `0 is the first location of ρ, and `k is the last location
of ρ,

• for all even indexes i, with 0 ď i ă k, and all inversions pL, `, L1, `1q of
ρ, with `i � ` � `1 � `i`1, the word outpρr`, `1sq has period at most B,

• for all odd indexes i, with 1 ď i ă k, and all co-inversions pL, `, L1, `1q
of ρ, with `i � ` � `1 � `i`1, the word outpρr`, `1sq has period at most
B.

Example 12. We consider the transducer of Example 11 and we depict a
2-B-factorization of a run of it (gray nodes) in Figure 4.3. All the inversions
between `0 and `1, and all the co-inversions between `1 and `2, have period
bounded by 2. Note that for every B there exists some run that does not
admit a 1-B-factorization.

The following lemma shows that we can reason equally in terms of B-safe
k-inversions (Definition 4.1.2) and in terms of k-B-factorizations.

130

`0

`1

`2

u # v

Figure 4.3: A 2-B-factorization of T

Lemma 4.1.6. For every word u P dompT q, we have that u P L
pkq
T if and

only if every successful run of T on u admits some k-B-factorization.

Proof. We prove the left-to-right direction. Let u P L
pkq
T and let ρ be a

successful run of T on u. We define the locations `0, `1, . . . , `k forming a
k-B-factorization of ρ inductively. The location `0 is the first of the run.
Let us now assume that we have defined the locations up to `i, with i ă k.
We distinguish two cases depending on the parity of i. If i is even, then we
look at the inversions pL, `, L1, `1q of ρ such that `i � ` and the period of
outpρr`, `1sq is strictly larger than B. For short, we call such inversions bad
inversions after `i. If there are no bad inversions after `i, then we simply
define `i`1 to be the last location of the run. Otherwise, we take the first
bad inversion after `i, following the lexicographic order on pairs of locations,
and we denote it by pL̃i, ˜̀

i, L̃1i,
˜̀1
iq. Accordingly, we define `i`1 to be the

immediate predecessor of ˜̀1
i in the run ρ. The case where i is odd is dealt

with in a similar way, by considering co-inversions instead of inversions.
We verify that the constructed sequence `0, `1, . . . , `k is indeed a k-B-

factorization. By definition, for all even (resp. odd) indexes 0 ď i ă k
and all inversions (resp. co-inversions) pL, `, L1, `1q, with `i � ` � `1 � `i`1,
the period of outpρr`, `1sq is at most B otherwise pL, `, L1, `1q would be a
bad inversion after `i smaller (in lexicograpical order) than pL̃i, ˜̀

i, L̃1i,
˜̀1
iq. By

construction, `0 is the first location of ρ, and `0 � `1 � ¨ ¨ ¨ � `k. It remains to
prove that `k is the last location of ρ. Suppose that this is not the case. This
can happen only if there is still some bad inversion or co-inversion after `k
(depending on k’s parity), so pL̃i, ˜̀

i, L̃1i,
˜̀1
iq is defined for all i “ 1, . . . , k. The

sequence pL̃1, ˜̀
1, L̃11,

˜̀1
1q, . . . , pL̃k,

˜̀
k, L̃1k,

˜̀1
kq is clearly a k-inversion. Moreover,

it is not B-safe, because the period of every word outpρr˜̀i, ˜̀1
isq exceeds B.

However, this contradicts the hypothesis that ρ is a successful run on u P L
pkq
T .

We thus conclude that ` “ `0, `1, . . . , `k is a k-B-factorization of ρ.
We now prove the converse direction. Fix a word u such that all successful

runs on u admit k-B-factorizations. Consider a successful run ρ on u and

131

a k-inversion `1 “ pL11, `
1
1, L

1
2, `

1
2q, . . . , pL

1
2k´1, `

1
2k´1, L

1
2k, `

1
2kq of ρ. The goal

is to prove that the k-inversion is B-safe. By assumption, ρ admits a k-
B-factorization, say ` “ `0, . . . , `k. As the locations of the k-inversion are
ordered, i.e. `11 ď `12 ď . . . ď `12k´1 ď `12k, there is an index i P t0, . . . , k ´ 1u
such that `i ď `12i`1 ď `12i`2 ď `i`1. By definition of k-B-factorization, this
means that the period of outpρr`12i`1, `

1
2i`2sq is at most B, and hence the k-

inversion `1 is B-safe. As we have chosen ρ and the k-inversion arbitrarily,
we conclude that u P L

pkq
T .

We can notice that, for k “ 1, u P L
p1q
T implies that u P dompT 1q, where

T 1 is the transducer described in Chapter 3. For short, we let LT “ L
p1q
T ,

and define a symmetric version of this language: RT is the set of inputs for
which all the co-inversions have a period at most B.

Encodings of the factors. Next we show that being a k-B-factorization is
a regular property. To formalize this, we need to explain how to encode runs
and sequences of locations as annotations of the underlying input. Formally,
given a word u P dompT q, a successful run ρ of T on u, and a sequence of
locations ` “ `1 � `2 . . . � `m in ρ, we denote by xu, ρ, `y the word obtained
by annotating each position 1 ď x ă |u| with the crossing sequence ρ|x and
with the m-tuple y “ py1pxq, . . . , ympxqq, where each yipxq is either the level
of `i (which is bounded by the crossing number of the transducer) or K,
depending on whether `i is at position x or not. Based on this encoding, we
can define the language of factorizations, and define transducers that produce
some parts of such factorizations:

Definition 4.1.7. Let T be a functional two-way transducer.

• We denote by F
pkq
T the set of all words of the form xu, ρ, `y, where ρ is

a successful run of T on u and ` “ `0, . . . , `k is a k-B-factorization of
ρ.

• We denote by Ti the two-way transducer that reads words of the form
xu, ρ, `y and produces outpρr`i, `i`1sq.

Note that Ti does not check that ` is a factorization, so its size is polynomial
in |T |.

Lemma 4.1.8 below proves that the language F
pkq
T is regular. In fact, in

order to better handle the complexity of our characterization, the lemma

132

shows that both F
pkq
T and its complement F

pkq
T

A

are recognized by automata
of triple-exponential size.

Lemma 4.1.8. The language F
pkq
T and its complement F

pkq
T

A

are recognized
by non-deterministic finite state automata of size triply exponential w.r.t. T .
Moreover, both automata can be constructed on-the-fly in double-exponential
space.

Proof. To prove that F
pkq
T is recognized by an automaton of doubly exponen-

tial size, we rely again on k applications of Theorem 3.0.1. Recall that L
p1q
T is

the language of words that induce successful runs such that, for all inversions
pL, `, L1, `1q, the period of outpρr`, `1sq is at most B. Theorem 3.0.3 shows

that L
p1q
T is the domain of a one-way transducer T 1 that can be constructed

from T in triple exponential time, so L
p1q
T is recognized by an automaton of

triple exponential size w.r.t. T . We can apply this theorem to the transducer
Ti for any i and obtain an automaton that recognizes the language of words
xu, ρ, `y for which the inversions (or co-inversions depending on the parity of
i) between `i and `i`1 have a period bounded by B.

This means that to recognize F
pkq
T , it is sufficient to construct an automa-

ton that reads a word xu, ρ, `y and checks that (i) ρ is a successful run of T
on u, (ii) `0 � . . . � `k are locations that delimit factors of ρ, and (iii) for
every i P t0, . . . , k ´ 1u, xu, ρ, `y belongs to either LTi or RTi , depending on
the parity of i. A close inspection to the above constructions shows that all
the automata can be produced in triple exponential time w.r.t. |T |.

We now show that the complement F
pkq
T

A

can also be recognized by an
automaton of triple exponential size.

Indeed, checking that a word xu, ρ, `y does not belong to F
pkq
T boils down

to verifying that one the following conditions holds (a similar technique was
used in the proof of Lemma 3.6.1):

1. ρ is not a successful run on u. This can be checked by looking at the
crossing sequences annotated on the positions of u, using an exponential
number of states.

2. The locations in ` do not define a factorization of ρ. This can be easily
checked with polynomially many states.

3. There exist an index i P t0, . . . , k´ 1u and an inversion pL, `, L1, `1q (or
a co-inversion, depending on the parity of i), with `i � ` � `1 ď `i`1,

133

such that, for all periods 0 ď p ď B, outpρr`, `1sqrzs ‰ outpρr`, `1sqrz`ps
for some position z. Note that this is equivalent to saying that ` is not
a k-factorization. The latter condition can be checked by guessing i,
p`, `1q, and a function that maps numbers p P t0, . . . ,Bu to positions
zp in outpρr`, `1sq. This can be done with triply exponentially many
states.

We conclude this paragraph by showing how to decide in double exponen-
tial space if L

pkq
T “ dompT q. In fact, as we already know that L

pkq
T Ď dompT q,

it suffices to decide the containment L
pkq
T Ě dompT q. We know from Lemma

4.1.6 that the language L
pkq
T coincides with the projection of F

pkq
T on the

underlying words u. Thus, we have

L
pkq
T Ě dompT q if and only if F

pkq
T

A

XD “ H

where D “ txu, ρ, `y : u P dompT qu. If we simulate the automaton for F
pkq
T

A

on-the-fly, we can check the emptiness of F
pkq
T

A

XD in 2ExpSpace.

Obtaining a canonical factorization. The main idea behind the construc-
tion of an equivalent k-pass sweeping transducer T 1 is to guess a factorization
and use Theorem 3.0.1 between consecutives locations of the factorization of
the run of T . To do that, we need to guess the same run of T and the same
k-B-factorization of ρ on each pass of T 1.

First, we set an arbitrary order on the set of states of T . It induces a
lexicographic order on crossing sequences and this order induces another one
on finite sequences of crossing sequences. As runs are matching sequences of
crossing sequences we obtain an order on runs.

Proposition 4.1.9. Given a 2fNFT T , there exists a NFA A of size doubly
exponential in T such that A recognizes the words xu, ρ, `y for which ρ is the
least accepting run on u according to the lexicographic order.

Proof. The construction of A is a variant of the classical technique from [78]
that uses crossing sequences (cf. end of Section 2.1).

First of all, the automaton A needs to check that the run ρ encoded
in its input xu, ρ, `y is a successful run of T on the word u. Formally, the
automaton A reads two consecutive crossing sequences cx “ pq0, . . . , qmq and
cx`1 “ pq

1
0, . . . , q

1
m1q around the the position x. To check that these crossing

sequences correctly represent transitions of a valid run of T on the x-th letter

134

ax of u, A verifies that there is a flow F such that, for every edge i Ñ j of
F , the following are valid transitions of T 1:
• qi

ax
Ñ q1j, if both i and j are even.

• q1i
ax`1
Ñ qj, if both i and j are odd.

• qi
ax
Ñ qj, if i is even and j is odd.

• q1i
ax`1
Ñ q1j, if i is odd and j is even.

In addition, A checks that the encode run ρ is successful (this can be easily
done by inspecting the first and the last crossing sequences).

Finally, the automaton needs to check that ρ is the least among all suc-
cessful runs of T on u. For this, A performs a sort of subset construction on
the series of crossing sequences that encode successful runs potentially below
ρ. More precisely, for each position x, A maintains two sets Ax, Bx of pairs
of crossing sequences that encode valid transitions of T on the letter ax. At
each transition, A discards those pairs in Ax that are strictly above the pair
of crossing sequences pcx, cx`1q, and moves from Ax to Bx those pairs that
are strictly below pcx, cx`1q. Intuitively, a pair is in Ax if the run encoded
up to that position coincides with a portion of ρ; similarly, it falls into Bx if
the encoded run is strictly below ρ. All other pairs encode runs above ρ. At
the end, the automaton accepts iff the only pairs that remain in the set Bx

encode non-successful runs.

Now we can order the factorizations over the same run ρ, in order to be
able to chose later a canonical one (e.g. the maximal). Given two factoriza-
tions ` and `1 we say that ` is greater than `1 if there exists i such that `j “ `1j
for all j ă i and `1i � `i. In other words, the maximal k-B-factorization is
obtained by iteratively defining `i as the latest location ` such that the in-
versions contained in `i´1 and ` have a small period. The next proposition
explains how one can efficiently guess such a factorization by characterizing
it with a simpler form. In order to keep the notations as simple as possible,
we will write `` 1 for the next location after ` in the run ρ when there is no
ambiguity about the latter.

Proposition 4.1.10. A k-B-factorization ` of a run ρ is maximal among
all k-B-factorizations of a run ρ if and only if for all i ă k ´ 1 there is a
(co-)inversion1 between `i and `i`1 ` 1 that produces an output with period

1Inversion for even i and co-inversion for odd i.

135

greater than B.
In particular, a maximal k-B-factorization can be guessed in double-
exponential space.

Proof. If there exists i ă k ´ 1 such that all (co-) inversions between `i and
`i`1 ` 1 have period at most B, then `0, ¨ ¨ ¨ , `i, `i`1 ` 1, . . . `k´1 would be a
k-B-factorization greater than `, which contradicts the assumption. If ` is
not maximal, we let `1 be a k-B-factorization greater than `, and i be the
first index such that `i � `1i. Then, ρr`i´1, `i ` 1s is contained in ρr`1i´1, `

1
is

and thus contains only (co-)inversions whose output has period bounded by
B, as `1 is a k-B-factorization.

When guessing a k-B-factorization ` we can check that it is maximal
among all k-B-factorizations by verifying that ` is in F

pkq
T and that for all

i, with 0 ă i ă k (it is important to notice here that k is a constant of the

problem), p`0, . . . , `i´1, `i ` 1, . . . , `k´1q is in F
pkq
T

A

. Thanks to Lemma 4.1.8,
this allows us to verify that a k-B-factorization is maximal within double
exponential space.

Construction of T 1. Here we exploit the previous properties to construct
a k-pass sweeping transducer T 1 equivalent to T |

L
pkq
T

, as in the claim of The-

orem 4.1.4.
Formally, we define T 1 from the transducer T xy that reads inputs of the

form xu, ρ, `y, checks that ρ is a valid run of T on u and outputs outpρrusq.
That is T 1 is a k-pass transducer that guesses a canonical run ρ and a canon-
ical k-B-factorization `, and simulates the transducer T xy on xu, ρ, `y, which
by construction has the same output as T on u.

If ` is indeed a k-B-factorization then for all even (resp. odd) i, xu, ρ, `y
belongs to LTi (resp. RTi). We let

ÝÑTi (resp.
ÐÝTi) e the left-to-right (resp. right-

to-left) one-way transducer obtained by applying Theorem 3.0.1 (resp. the
mirror of Theorem 3.0.1) to Ti when i is even (resp. odd). We define the
k-pass transducer T 1 as the concatenation

ÝÑT0pxu, ρ, `yq ¨
ÐÝT1pxu, ρ, `yq ¨ . . . ¨

ÝÝÑTk´1pxu, ρ, `yq.

There are two technical details here. The first one is that we want T 1 to
read an input word u, not an encoding xu, ρ, `y which is the form of the input
of the transducers Ti and thus

ÝÑTi and
ÐÝTi too. The second one is that ρ and

` must be the canonical run on u and the canonical factorization so that the
different passes of T 1 are coherent.

136

We can overcome those problems by guessing canonical encodings xu, ρ, `y

in the language F
pkq
T . This can be done by using Propositions 4.1.10 and 4.1.9,

and checking those guesses in parallel to the one-way construction.
This yields to a transducer T 1 of triple-exponential size, that is the size

of the equivalent transducer of Ti given by Theorem 3.0.1, and thus doubly-
exponential when T is sweeping. By construction, the transducer T 1 that we
just constructed is unambiguous.

4.1.3 Completeness

Here we prove the left-to-right direction of the first claim of Theorem 4.1.4:
we suppose that T is a functional two-way transducer and T 1 is an equivalent
k-pass sweeping transducer, and we derive from this L

pkq
T “ dompT q.

We fix, once and for all, a successful run ρ of T on u and a k-inversion ` “
pL1, `1, L2, `2q, . . . , pL2k´1, `2k´1, L2k, `2kq of ρ. The goal is to prove that ` is
B-safe, namely, that the factor of the output produced between the locations
of some (co-)inversion pL2i`1, `2i`1, L2i`2, `2i`2q of ` is periodic, with period
bounded by B. The main idea is to try to find a factor outpρr`2i`1, `2i`2sq

that is entirely covered by the output produced along a single pass of the
equivalent transducer T 1, and apply a suitable generalization of Proposition
3.4.4. Informally, this will be done by pumping the output produced by
ρr`2i`1, `2i`2s on the loops L2i`1 and L2i`2, and similarly, the output produced
by T 1 along the single pass. Then, by analyzing how the former outputs are
covered by the latter outputs, we deduce the periodicity of outpρr`2i`1, `2i`2sq.

The main difficulty in formalizing the above idea lies in the fact that the
k passes of the supposed transducer T 1 cannot be easily identified on the
run ρ of T . Therefore we need to reason in a proper way about families
of factors associated with (co-)inversions inside pumped runs. Below, we
introduce some terminology and notation to ease this task.

Pumping several loops at the same time.
Recall that ` “ pL1, `1, L2, `2q, . . . , pL2k´1, `2k´1, L2k, `2kq is a k-inversion

of the run ρ. For a given tuple of numbers n “ pn1, . . . , n2kq P N2k, we define
ρn “ pumpn

L
pρq, where L “ L1, . . . , L2k and n “ n1, . . . , n2k (recall that this

is the run obtained by pumping the loops L1, . . . , L2k respectively n1, . . . , n2k

times, as described in Section 3.3.3). Similarly, we denote by un the input
word parsed by the pumped run ρn.

Next, we need to map the inversions and the co-inversions of ` on the

137

pumped runs ρn. Consider an inversion pL2i`1, `2i`1, L2i`2, `2i`2q, for some
i P t1, . . . , 2ku (the case of a co-inversion is similar). Recall that when
pumping loops in ρ, several copies of the original loops (and therefore the
associated locations) may be introduced. In particular, among the possible
copies of the inversion pL2i`1, `2i`1, L2i`2, `2i`2q that appear in the pumped
run ρn, we are interested in the maximal one, which is identified by taking
the first copy pL̃2i`1, ˜̀

2i`1q of pL2i`1, `2i`1q and the last copy pL̃2i`2, ˜̀
2i`2q of

pL2i`2, `2i`2q, following the natural order on positions of the input. For the
sake of brevity, we say that pL̃2i`1, ˜̀

2i`1, L̃2i`2, ˜̀
2i`2q is the inversion of ρn

that corresponds to pL2i`1, `2i`1, L2i`2, `2i`2q.
We can now define the key objects for our reasoning, that is, the factors

of the output of a pumped run ρn that correspond in the original run ρ to the
factors produced between the locations of the (co-)inversions of `. Formally,
for every 2k-tuple n of natural numbers and every index i “ 0, . . . , k´ 1, we
define

vn
`
piq “ outpρnr˜̀2i`1, ˜̀

2i`2sq

Note that the above factors depend on the k-inversion ` and on the tuple
n, which represents the number of times we pump each witnessing loop of `.
For simplicity, since ` is understood from the context, we will often drop the
subscript from the notation, thus writing vnpiq.

Below we highlight the relevant factors inside the output T punq produced
by T on input un:

outpρnr˜̀0, ˜̀
1sq ¨v

n
p0q ¨outpρnr˜̀2, ˜̀

3sq ¨ . . . ¨v
n
pk ´ 1q ¨outpρnr˜̀2k, ˜̀

2k`1sq (4.1)

where ˜̀
0 is the first location of ρn, ˜̀

2k`1 is the last location of ρn.
In a similar way, we can factorize the output produced by the k-pass

sweeping transducer T 1 when reading the input un. However, the focus here
is on the factors of the output produced along each pass. Formally, given n P
N2k, we let σn be some successful run of T 1 on un. For every j “ 0, . . . , k´1,
we let `1j be the first location of σn at level j. We further let `1k be the last
location of σn, which is at level k ´ 1. We then define

wnpjq “ outpσnr`1j, `
1
j`1sq

and factorize the output T 1punq of T 1 on un as follows:

wn
p0q ¨ . . . ¨wn

pk ´ 1q. (4.2)

138

Below, we show how to exploit the hypothesis that T and T 1 are equiva-
lent and some combinatorial arguments to prove that the original k-inversion
is B-safe.

Combinatorics.
As T and T 1 are equivalent we know that Equations (4.1) and (4.2)

represent the same word. From this we derive that, for every n P N2k, at
least one of the words vnpiq highlighted in Equation (4.1) is a factor of the
word wnpiq highlighted in Equation (4.2). However, the index i for which this
coverability relation holds depends on the parameter n. In order to enable a
reasoning similar to that of Proposition 3.4.4, we need to find a single index i
such that, for “sufficiently many” parameters n, vnpiq is a factor of wnpiq. The
definition below, formalizes what we mean precisely by “sufficiently many” n
— intuitively, we require that specific coordinates of n are unbounded, and
the differences between these coordinates as well.

Definition 4.1.11. Let Ppnq denote an arbitrary property of tuples n P N2k.
Further let h, h1 be two distinct coordinates in t1, . . . , 2ku. We say that Ppnq
holds unboundedly on the coordinates h, h1 of n if, for all numbers n0 P N,
there exist n1, n2 P N2k such that:

• Ppn1q and Ppn2q hold,

• n1rhs ě n0 and n1rh
1s ´ n1rhs ě n0,

• n2rh
1s ě n0 and n2rhs ´ n2rh

1s ě n0.

We recall that each factor vnpiq is associated with the (co-)inversion
pL2i`1, `2i`1, L2i`2, `2i`2q, and that the corresponding components nr2i ` 1s
and nr2i ` 2s of the parameter n denote the number of times the witness-
ing loops L2i`1 and L2i`2 are pumped in ρn. The specific properties we are
interested in are the following ones, for i “ 0, . . . , k ´ 1:

Pipnq “ “ vnpiq is a factor of wnpiq”.

By the definitions of T punq and T 1punq we know that for every tuple
n P N2k, Pipnq holds for some i P t0, . . . , k ´ 1u. From this, using a suitable
counting argument, we can prove the crucial lemma below.

Lemma 4.1.12. There exists an index i P t0, . . . , k´1u such that the property
Pipnq “ “ vnpiq is a factor of wnpiq” holds unboundedly on the coordinates
2i` 1 and 2i` 2 of n.

139

Proof. The proof is rather technical, as we need to reason on coverability
between pairs of factors vnpiq and wnpjq, for possibly distinct indexes i, j P
t0, . . . , k ´ 1u. We define the following sets of tuples:

• Ci,j contains n P N2k iff vnpiq is a factor of wnpjq.

• Di,j contains n P N2k iff outpρnr˜̀2i`1, ˜̀
2k`1sq is a factor of outpσnr`1j, `

1
ksq

Note that outpρnr˜̀2i`1, ˜̀
2k`1sq is the suffix of T punq that starts with vnpiq

and outpσnr`1j, `
1
ksq is the suffix of T 1punq that starts with wnpjq. Moreover,

we have D0,0 “ N2k, since T punq “ T 1punq. As a convention, we let Ci,j “
Di,j “ H when i “ k or j “ k.

Claim. For all i, j P t0, . . . , k ´ 1u, we have Di,j Ď Ci,j YDi`1,j`1.

Proof. Consider a tuple n in Di,j. By definition, we know that the suffix of
T punq that starts with vnpiq is a factor of the suffix of T 1punq that starts
with wnpjq. We distinguish some cases depending on whether j “ k ´ 1 or
j ă k ´ 1, and whether n P Ci,j or not. If j “ k ´ 1, we prove the claim
by observing that n must belong to Ci,j: indeed, if this were not the case,
then the last factor wnpk ´ 1q of T 1punq would end strictly before the end of
the factor vnpiq, thus contradicting the hypothesis that T punq “ T 1punq. If
j ă k´ 1 and n P Ci,j, then the claim follows trivially. Finally, suppose that
j ă k ´ 1 and n R Ci,j. Since n P Di,j, we know that the factor vnpiq begins
after the beginning of wnpjq. However, because vnpiq is not a factor of wnpjq,
we also know that vnpiq ends after the ending of wnpjq. This implies that
vnpi` 1q begins after the beginning of wnpj ` 1q, whence n P Di`1,j`1.

Using the above claim we can derive the first important equation:

N2k
“ D0,0 Ď C0,0 YD1,1 Ď . . . Ď

ď

i
Ci,i Y Dk,k “

ď

i
Ci,i. (4.3)

This basically means that it is sufficient to consider only the coverability
between pairs of factors vnpiq and wnpiq, having the same index i.

Recall that Ci,i “ tn | Pipnqu. Let us now prove the lemma by way of
contradiction: we assume that for all indexes i the property Pipnq does not
hold unboundedly on 2i`1 and 2i`2. By Definition 4.1.11, this means that
there exists a number ni P N that satisfies one of the two cases below:

a) for all n P Ci,i, nr2i` 1s ă ni or nr2i` 2s ´ nr2i` 1s ă ni,

140

b) for all n P Ci,i, nr2i` 2s ă ni or nr2i` 1s ´ nr2i` 2s ă ni.

We define a tuple m P N2k such that, for all i ď k:
$

&

%

mr2i` 1s “ ni, mr2i` 2s “ 2ni if case a) holds

mr2i` 2s “ ni, mr2i` 1s “ 2ni if case b) holds.

By definition, m cannot belong to Ci,i for any i ď 2k. However, this is in
contradiction with N2k “

Ť

iCi,i as implied by Equation 4.3. This concludes
the proof that for some i, Pipnq holds unboundedly on 2i` 1 and 2i` 2.

The last piece of the puzzle consists of generalizing the statement of
Proposition 3.4.4. The idea is that we can replace the hypothesis that T is
one-way definable by the weaker assumption of Lemma 4.1.12. That is, if
Pipnq holds unboundedly on the coordinates 2i ` 1 and 2i ` 2 of n, we can
still use the same arguments based on pumping and Fine-Wilf’s Theorem as
in Proposition 3.4.4, in order to deduce that the output outpρr`2i`1, `2i`2sq

between the locations of the (co-)inversion is periodic:

Proposition 4.1.13. If the property Pipnq “ “ vnpiq is a factor of wnpiq ”
holds unboundedly on the coordinates 2i ` 1 and 2i ` 2 of n, then the out-
put outpρr`2i`1, `2i`2sq produced between the locations of the (co-)inversion
pL2i`1, `2i`1, L2i`2, `2i`2q is periodic, with period at most B. In particular,
the k-inversion ` “ pL1, `1, L2, `2q, . . . , pL2k´1, `2k´1, L2k, `2kq is B-safe.

Proof. We begin by distinguishing two cases, depending on whether i is even
or odd. If i is even, then pL2i`1, `2i`1, L2i`2, `2i`2q is an inversion and the
factor wnpiq is produced along a left-to-right pass of T 1, exactly like in a
one-way transduction. Otherwise, if i is odd, then pL2i`1, `2i`1, L2i`2, `2i`2q

is a co-inversion and the factor wnpiq is produced along a right-to-left pass
of T 1. As the two cases are symmetric, we can focus only on one of the two,
say the case where i is even. The proof that outpρr`2i`1, `2i`2sq is periodic is
exactly the same as that of Proposition 3.4.4. We briefly recall the crucial
arguments below.

In that proof we considered an inversion pL1, `1, L2, `2q and the outputs
produced by runs of the form pumpn2

L2
ppumpn1

L1
pρqq between the locations `1

and `2. The latter outputs were then compared with the outputs produced
by an equivalent one-way transducer T 1. In particular, we observed that the
former outputs are factors of the latter outputs. More precisely, by letting

141

the parameters n1 and n2 grow independently, it was possible to exploit
Fine-Wilf’s Theorem and derive the periodicity of the former outputs.

The same argument can be applied here with the inversion
pL2i`1, `2i`1, L2i`2, `2i`2q and the factors vnpiq and wnpiq, produced respec-
tively by T and T 1. Indeed, to apply Fine-Wilf’s Theorem, it is sufficient
that the coverability relationship holds for pairs of arbitrarily large numbers
nr2i ` 1s and nr2i ` 2s, and that these numbers can vary independently of
each other. This is precisely what it means for the property Pipnq to hold
unboundedly on the coordinates 2i` 1 and 2i` 2 of n.

To conclude, we assumed that the two-way transducer T is equivalent
to a k-pass sweeping transducer T 1. We considered a successful run ρ of
T and an arbitrary k-inversion ` of it. Using Lemma 4.1.12, we derived
the existence of an index i P t0, . . . , k ´ 1u such that the property Pipnq “
“ vnpiq is a factor of wnpiq ” holds unboundedly on the coordinates 2i ` 1
and 2i ` 2 of n. From this, using Proposition 4.1.13, we derived that the
k-inversion ` is B-safe. This proves the left-to-right direction of the first
claim of Theorem 4.1.4.

4.1.4 Minimization and sweeping definability

Recall that, without loss of generality, we can focus on normalized runs of
functional transducers, and from this we know that 2|Q| passes suffice to
implement every transduction definable by a sweeping transducer. Then,
Theorem 4.1.4 immediately gives a procedure for minimizing the number of
passes of a given sweeping transducer T : one simply needs to decide k-pass
definability on T , for every k “ 1, . . . , 2|Q|.

Corollary 4.1.14. One can compute in ExpSpace the minimum number
of passes needed to implement a transduction given as a functional sweeping
transducer.

A transducer with a minimal number of passes can be constructed in
2ExpTime.

Analogous results can be proven for arbitrary two-way (not necessarily
sweeping) transducers. The idea relies on bounding the number of passes
required by any sweeping transducer in order to compute a function defined
by a two-way transducer. Of course, the argument is more complicated than

142

the one based on normalized runs, since a two-way transducer can perform
an arbitrary number of reversals on its inputs.

Bounding the number of passes.
Recall that E “ p2|Q|q2H is the number of distinct effects. We prove the

following result:

Theorem 4.1.15. A functional two-way transducer T is sweeping definable
if and only if

it is k-pass sweeping definable for k “ 2Hp23E ` 1q.

As the k-pass definability complexity is polynomial in k, and 2Hp23E`1q
is a double exponential in T we immediately have the following corollary:

Corollary 4.1.16. 1. The problem of deciding sweeping definability of a
functional two-way transducer is in 2ExpSpace.

2. One can compute in 2ExpSpace the minimum number of passes needed
to implement a transduction given as a functional two-way transducer.

A transducer with a minimal number of passes can be constructed in
3ExpTime.

Proof. Suppose that T is not k-pass sweeping definable for k “ 2H ¨p23E`1q.
We aim at proving that T is not m-pass sweeping definable for all m ą 0.
By Theorem 4.1.4, we know that there exist a successful run ρ and a k-
inversion I “ pI0, . . . , Ik´1q of it, with Ii “ pLi, `i, L1i, `1iq, that is not B-safe.
We consider the locations of ρ that are visited between the beginning of an
inversion Ii and the ending of the next co-inversion Ii`1. Formally, for all
even indices i “ 0, 2, . . . , k ´ 1, we consider the interval of locations

Ki “ r`i, `
1
i`1s.

We then project each interval Ki on the x-coordinates:

Xi “ tx : D ` “ px, yq P Kiu.

Since each Ki is an interval of locations and the transducer T can only move
its head between consecutive positions, we know that each Xi is an interval
of positions. Hereafter, we often use the term “interval” to denote a set of
the form Xi, for some even index i P t0, 2, . . . , κ´ 1u.

Below we prove that there is a large enough set of pairwise non-
overlapping intervals Xi:

143

Lemma 4.1.17. There is a set X “ tXiuiPI of n intervals, where n “ 23E`1
and I Ď t0, 2, . . . , k´1u (recall that k “ 2H ¨p23E`1q), such that XXX 1 “ H

for all X ‰ X 1 P X .

Proof. In this proof, we consider an ordering on the intervals Xi differ-
ent from the one induced by the indices i. This is given by the lexico-
graphic order on the endpoints, where the dominant element is the right-
most endpoint, namely, we let Xi ă Xj if either maxpXiq ă maxpXjq, or
maxpXiq “ maxpXjq and minpXiq ă minpXjq.

We construct the set X inductively, by following the lexicographic order-
ing. Formally, for all j “ 0, . . . , n, we construct:

• a set Xj of size j such that X XX 1 “ H for all X ‰ X 1 P Xj

• a set X 1j of size at least H ¨ p23E ` 1´ jq such that, for all X P Xj and
all X 1 P X 1j , maxpXq ă minpX 1q (namely, all intervals of X 1j are strictly
to the right of the intervals of Xj).

The base case j “ 0 of the induction is immediate: we let X0 “ H and X 10
be the set of all intervals. It only suffices to observe that X 10 has cardinality
k
2
“H ¨ p23E ` 1q.

For the inductive step, suppose that j ă n “ 23E ` 1 and that we con-
structed Xj and X 1j satisfying the inductive hypothesis. We let X be the
least element in X 1j according to the lexicographic order (note that X 1j ‰ H
since j ă n). Accordingly, we define Xj`1 “ XjYtXu and X 1j`1 as the subset
of X 1j that contains the intervals strictly to the right of X. It remains to

verify that X 1j`1 has cardinality at least H ¨
`

23E ` 1 ´ pj ` 1q
˘

. For this
we recall that the run ρ is normalized. This implies that there are at most
H intervals in X 1j that cover the position x “ maxpXq. All other intervals
of X 1j are necessarily to the right of X: indeed, because X is minimal in
the lexicographic ordering, we know that every interval of X 1j has the right
endpoint to the right of x, and as they do not cover the position x, their left
endpoint too. This shows that there are at most H intervals in X 1j zX 1j`1, so

|X 1j`1| ěH ¨
`

23E ` 1´ pj ` 1q
˘

.

Turning back to the proof of the theorem, we consider the left endpoints
of the intervals in X , say

�Ý
X “ tminpXq : X P X u.

144

Since |
�Ý
X| ą 23E, we can use Theorem 3.4.1 to derive the existence of three

distinct positions x ă x1 ă x2 P
�Ý
X such that rx, x1s and rx1, x2s are consec-

utive idempotent loops of ρ with the same effect. We let L “ rx, x2s be the
union of those two loops, and we consider the intermediate position x1. We re-
call that x1 is the left endpoint of an interval of X , which we denote by Xi for
simplicity. We also recall that Xi is the set of positions visited by a factor of
the run ρ that goes from the first anchor `i of the inversion Ii “ pLi, `i, L1i, `1iq
to the second anchor `1i`1 of the co-inversion Ii`1 “ pLi`1, `i`1, L

1
i`1, `

1
i`1q.

We claim that the inversion Ii and the co-inversion Ii`1 occur in the same
factor intercepted by L. Indeed, the factor ρr`i, `

1
i`1s visits only positions

inside the interval Xi. Moreover, the endpoints of Xi are strictly between
the endpoints of L, namely,

minpLq “ x ă x1 “ minpXiq ď maxpXiq ă x2 “ maxpLq.

This shows that the inversion Ii “ pLi, `i, L1i, `1iq and the co-inversion Ii`1 “

pLi`1, `i`1, L
1
i`1, `

1
i`1q occur in the same factor intercepted by L, which we

denote by α.
Now, we can easily introduce new copies of the factor α, and hence new

copies of the (co)-inversions Ii and Ii`1, by pumping the idempotent loop

L. Formally, for all m ą 0, we denote by Ip1qi , . . . , Ipmqi (resp. Ip1qi`1, . . . , I
pmq
i`1)

the m copies of the inversion Ii (resp. the m copies of the co-inversion Ii`1)
that appear in the pumped run pumpmL pρq. For the sake of simplicity, we
assume that those copies are listed according to their order of occurrence in
the pumped run, namely,

Ip1qi � Ip1qi`1 � Ip2qi � Ip2qi`1 � . . . � Ipmqi � Ipmqi`1

(the order � is extended from locations to (co-)inversions in the natural way).

Towards a conclusion, we observe that
`

Ip1qi , Ip1qi`1, . . . , I
pmq
i , Ipmqi`1

˘

is a 2m-inversion of the successful run pumpmL pρq of T . More-
over, this 2m-inversion is not B-safe, since it consists of
(co-)inversions that do not generate periodic outputs — more pre-
cisely, the period of the word outptrp`iqq outpρr`i, `

1
isq outptrp`1iqq

(resp. outptrp`i`1qq outpρr`i`1, `
1
i`1sq outptrp`1i`1qq) is larger than B or

does not divide |outptrp`iqq| and |outptrp`1iqq| (resp. |outptrp`i`1qq| and
|outptrp`1i`1qq|). By Theorem 4.1.4, this proves that T is not m-pass
sweeping definable. Finally, since the above holds for all m ą 0, we conclude
that T is not sweeping definable.

145

4.2 Registers of streaming string transducers

In this section we focus on the register minimization problem for the re-
stricted class of NSST ’s that is obtained by disallowing register concatena-
tion in the updates:

Definition 4.2.1. An NSST T “ pQ,Σ,Γ, R, U, I, E, F q is concatenation-
free if, for all registers z P R and all updates f P U , we have fpzq P Γ‹ ¨ pRY
tεuq ¨ Γ‹.

Intuitively, a concatenation-free NSST forbids register updates f : R Ñ
pR Z Γq˚ that have two or more registers inside the same right-hand side
fpzq. Concatenations of registers can still appear in the output function.

If needed, this restriction can be relaxed slightly, without increasing the
expressive power: for this, one can allow boundedly many updates with
concatenations, and still the resulting transductions could be simulated by
a concatenation-free NSST (just like one can allow a sweeping transducer
to perform boundedly many reversals in the middle of the word, and remain
sweeping definable [9]). One should note, however, that this comes at the
cost of increasing the number of registers.

The register minimization problem is solved by exploiting a suitable cor-
respondence between the number of registers used by concatenation-free
NSST ’s and the number of passes performed by sweeping transducers.

4.2.1 Translations between SST and 2DFT

It is known (see Chapter 2) that SST ’s are equivalent to 2DFT ’s, and that
the latter are equivalent to 2fNFT ’s. Direct constructions can be found in
[29], and can be generalized to some extent to concatenation-free NSST and
sweeping transducers.

We have already seen in Chapter 2 that the function u ÞÑ uu can be
implemented by an SST with one register. The same function can also be
implemented by a sweeping transducer that performs first a right-to-left pass
to produce u, and then a left-to-right pass to produce u. More generally,
an arbitrary SST with one register can be simulated by a 2-pass sweeping
transducer that starts its computation from the right endpoint. It is then
natural to try to lift such a correspondence to SST ’s with multiple registers,
by considering sweeping transducers that start their computation at the right
endpoint of their input — we call such transducers R-sweeping.

146

The following theorem shows that, indeed, there is a correspondence be-
tween the number of registers of concatenation-free SST ’s (or even functional
NSST ’s) and the number of passes of R-sweeping transducers:

Theorem 4.2.2. Every concatenation-free functional NSST with k registers
can be transformed in ExpTime into an equivalent unambiguous 2k-pass R-
sweeping transducer. If the NSST is unambiguous, then the transformation
is in Ptime.

Conversely, every k-pass R-sweeping functional transducer can be trans-
formed in 2ExpTime into an equivalent concatenation-free unambiguous
NSST with rk

2
s registers. If the R-sweeping transducer is unambiguous, then

the transformation is in ExpTime.

The two directions of the theorem will be proven in the next two sections.
Here, we briefly explain how this correspondence, paired with the characteri-
zation of k-pass sweeping definability (Theorem 4.1.4), can be used to derive
a procedure for minimizing the number of registers in a concatenation-free
NSST . Given an NSST , one first constructs an equivalent R-sweeping trans-
ducer, using the first claim of Theorem 4.2.2. Then, one derives the analogous
of Theorem 4.1.4 for characterizing k-pass sweeping definability: this is easily
done by mirroring the input and by reversing the transition directions. Fi-
nally, one uses the characterization to compute the minimum k for which the
given transduction is definable by a 2k-pass R-sweeping transducers: in view
of the second claim of Theorem 4.2.2, the resulting k is precisely the min-
imum number of registers needed by a concatenation-free NSST equivalent
to the original one. We sum up the result in the following corollary:

Corollary 4.2.3. One can compute in 2ExpSpace the minimum number
of registers needed to implement a transduction given as a concatenation-free
NSST. The complexity is ExpSpace if the given NSST is unambiguous.

4.2.2 From concatenation-free NSST
to sweeping transducers

Here we prove the first claim of Theorem 4.2.2.
Recall that Proposition 2.4.2 shows how to turn in ExpTime an NSST

into an equivalent unambiguous NSST with the same number of registers.
Thanks to this, we can focus on proving only the part of the claim that con-
cerns the transformation of a given concatenation-free unambiguous NSST .

147

We fix for the rest of the section a concatenation-free unambiguous NSST
T “ pQ,Σ,Γ, R, U, I, E, F q with k “ |R| registers. We show how to trans-
form T into an equivalent unambiguous 2k-pass R-sweeping transducer T 1.

Let u “ a1 . . . an be an arbitrary input for T and σ “ pq0, g0q
a1
Ñ pq1, g1q

a2
Ñ

. . .
an
Ñ pqn, gnq the unique successful run of T on u. We can write the corre-

sponding output as

T puq “ v0 ¨ gnpz1q ¨ v1 ¨ gnpz2q ¨ . . . ¨ gnpzhq ¨ vh

where gn is the final register valuation and F pqnq “ v0 ¨ z1 ¨ v1 ¨ z2 ¨ . . . ¨ zh ¨ vh,
for some h ď k, describes how the final output is produced from the registers
(note that F pqnq, and in particular the order of the registers in it, depends on
the final state qn). Further let f1, . . . , fn be the sequence of register updates
induced by the above transitions, in such a way that gx “ gx´1 ˝ fx for all
x “ 1, . . . , n.

The idea underlying the construction of T 1 is to output each factor vi´1 ¨

gnpziq during two consecutive passes that start and end at the rightmost
position. For this, we fix an index i P t1, . . . , hu and we consider how the
factor gnpziq is produced along the run σ. Since T is concatenation-free and
unambiguous, there exist a unique position xi P t0, . . . , nu, a unique sequence
of registers zi “ zi,n, zi,n´1, . . ., zi,xi P R, and a unique sequence of words
wi,n, w

1
i,n, . . ., wi,xi P Γ˚ such that

$

’

’

’

&

’

’

’

%

gnpzi,nq “ wi,n ¨ gn´1pzi,n´1q ¨ w
1
i,n

...
gxi`1pzi,xi`1q “ wi,xi`1 ¨ gxipzi,xiq ¨ w

1
i,xi`1

fxipzi,xiq “ wi,xi .

By convention we set w1i,xi “ ε and we can write fxipzi,xiq “ wi,xi ¨ w
1
i,xi

.
This basically means that the factor gnpziq is obtained from the empty word
by repeatedly prepending and appending finite words wi,x and w1i,x, where x
goes from xi to n. Moreover, each pair of words wi,x and w1i,x is determined

by the x-th transition pqx´1, gx´1q
ax
Ñpqx, gxq of T .

The R-sweeping transducer T 1 will behave as follows.
At the beginning of a right-to-left pass at level 2i´1, T 1 guesses which zi it

has to produce, outputs the word vi´1 that precedes the factor gnpznq in T puq.
Then, during that pass, it reads the input in backward direction and, while
guessing the transitions pqx´1, gx´1q

ax
Ñpqx, gxq, it outputs the corresponding

148

words wi,x. Once the position xi is reached, T 1 continues to move leftward
while simulating the transitions of T , but this time without producing any
output. This is needed to check that the state of T reached at the leftmost
position is initial (and moreover to have a sweeping run). Then T 1 performs
a reversal. Similarly, during the left-to-right pass at level 2i, the transducer
T 1 guesses the transitions pqx´1, gx´1q

ax
Ñ pqx, gxq and, if x ě xi, it outputs

the corresponding words w1i,x. Once the rightmost position is reached again,
it checks that the last guessed state is final and performs the next reversal.
The last pass performed by T 1 is the left-to-right pass at level 2h, where the
last piece vh of the output can be produced.

Clearly, T 1 can be implemented with approximately 2k copies of the state
space of T (one copy for each pass), and it performs at most 2k passes on any
input. We remark that for this construction it is crucial that the streaming
transducer T is unambiguous, as otherwise the described R-sweeping trans-
ducer T 1 may guess different runs along two consecutive passes, eventually
producing an output that differs from T puq.

4.2.3 From sweeping transducers
to concatenation-free NSST

Let us now prove the second claim of Theorem 4.2.2. As before, in view of
Proposition 2.2.4, we can focus only of the part of claim that concerns the
transformation of a k-pass R-sweeping unambiguous transducer T .

Let A be the R-sweeping unambiguous automaton underlying T , which
recognizes the language dompT q. By applying the classical construction
based on crossing sequences [78], we transform A into an equivalent un-
ambiguous one-way automaton B of exponential size. To obtain an NSST
equivalent to T , we equip the automaton B with rk

2
s registers, say z1, . . . , zr k

2
s,

and we extend the transitions with suitable register updates. The idea is that
each register zi stores the output produced along the passes of T at levels
2i´ 1 and 2i.

Consider an arbitrary input u “ a1 . . . an for T , where a1 “ � and
an “ �, and recall that B admits a unique run on a2 . . . an´1, say:

σ “ s1
a2
Ñ s2

a3
Ñ . . .

an´1
Ñ sn´1.

Recall that the run σ determines a unique successful run ρ of T on u. In par-
ticular, each state sx determines a crossing sequence ρ|x. If ρ|x “ pq1, . . . , qhq

149

and ρ|x ` 1 “ pq11, . . . , q
1
hq are the crossing sequences of ρ at two adjacent

positions x and x ` 1, for some h ď k, then the corresponding update fx`1

for the registers of B must satisfy:

fx`1pziq “ wx`1 ¨ zi ¨ w
1
x`1

where wx`1 is the output produced by T with the right-to-left transition

q12i´1

ax`1
Ñ q2i´1 and w1x`1 is the output produced by T with the left-to-right

transition q2i
ax`1
Ñ q12i. Since fx`1 is uniquely determined by the control

states sx and sx`1 and by the input symbol ax`1, the above equations can be
easily turned into transition rules for an NSST T 1 having B as underlying
automaton. In particular, the NSST T 1 is unambiguous, since B is so.

Finally, we specify the partial output function of T 1, which maps any
state s of B to the juxtaposition z1 ¨ . . . ¨zrh

2
s of the first rh

2
s registers, where h

is the length of the crossing sequence determined by s. The resulting NSST
T 1 is unambiguous, uses at most rk

2
s registers, and is equivalent to T .

150

Chapter 5

Conclusion

We conclude this thesis by summarizing our work and giving some ideas for
the future.

One-way definability. The main subject of this thesis is the proof of the
decidability of one-way definability for two-way transducers and sweeping
transducers in elementary complexity. Our decision procedure requires to
build the equivalent one-way transducer (or the best approximation of it when
it is not possible) and by consequence is probably not optimal. One possible
goal for further research would be to obtain a decision procedure without
constructing this transducer but we believe it is less important in practice
to have a fast but non-effective algorithm to decide one-way definability. A
more interesting goal would be to understand the precise bounds for the
effective characterization. We obtained a tight two-exponential construction
for sweeping transducers but we do not know if a two-exponential one exists
in the two-way case or if our three-exponential procedure is optimal in that
case. However we believe our approach about analysing two-way loops with
the concept of component is the right one, and that if a two-exponential
construction exists, the improvement would come from finding idempotent
loops in polynomial time. Personal communications with Ismaël Jecker lead
us to believe this is possible.

Sweeping definability. An aspect of our work that was not planned is
the understanding of the sweeping class, which is also the class of bounded-
reversal two-way transducers. The fact that we were able to solve k-pass
definability, and sweeping definability sets up sweeping transducers as one
sound intermediate class of transductions between rational and regular. How-
ever, in the framework of finite state transducers, there is one definability

151

question that remains open: given a non-deterministic sweeping (or two-way)
transducer, is it equivalent to a deterministic sweeping one? One possible
approach would be to try to extend modern proofs of the one-way procedure
[11] to sweeping transducers.

Streaming transducers. Our work on streaming transducers in Section
4.2 is a first step for a minimization procedure for the registers of SST ’s. To
our knowledge it is the first time this question was shown decidable for a
large class of SST ’s. In 2013, it was solved in the case of a unary alphabet
(which is always quite a particular case) [3]. More recently, a procedure was
obtained for the minimization of a subclass of cost-register automata [30].
These automata have an output that belong to any kind of monoid, but if we
restrict this class to the free monoid over the alphabet Σ, our model allows
more kinds of updates. Anyway, the main difference with [30] lies in the
determinism of cost-register automata.

Other models. A model whose popularity is increasing is the one of trans-
ducers with origin information (that is, we know for each letter of the output
from which part of the input it derives), proposed by Bojańczyk [15]. In
the model of origin semantics, the one-way definability problem is PSpace-
complete and an equivalent one-way transducer has exponential size. One
can ask whether a given set of “origin graphs” can be realized for instance
by a sweeping transducer.

One can also look at aperiodic two-way transducers and try to provide a
characterization of the definability in first-order logic. As we mentioned in
this thesis, the fact that a transducer is not aperiodic does not mean that all
equivalent transducers are not either [19], and is the main obstacle to such
a characterization. One important result in that regard would be to know if
the constructions we presented preserve aperiodicity.

Finally, one can consider tree transducers and visibly pushdown transduc-
ers, and ask similar definability questions over for such machines. However,
our proofs being based on word combinatorics, one will have to find new
techniques to lift the regular look-ahead condition that some tree transducer
have [13].

152

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. A general theory of translation.
Math. Syst. Theory, 3(3):193–221, 1969.

[2] R. Alur and P. Cerný. Expressiveness of streaming string transducers.
In FSTTCS, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2010.

[3] R. Alur, L. D’Antoni, J. Deshmukh, M. Raghothaman, and Y. Yuan.
Regular functions and cost register automata. In Proceedings of the 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’13, pages 13–22, Washington, DC, USA, 2013. IEEE Computer
Society.

[4] R. Alur and J. V. Deshmukh. Nondeterministic streaming string trans-
ducers. In L. Aceto, M. Henzinger, and J. Sgall, editors, Automata,
Languages and Programming: 38th International Colloquium, ICALP
2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, pages
1–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[5] R. Alur, A. Durand-Gasselin, and A. Trivedi. From monadic second-
order definable string transformations to transducers. In Proceedings of
the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’13, pages 458–467, Washington, DC, USA, 2013. IEEE
Computer Society.

[6] R. Alur, A. Freilich, and M. Raghothaman. Regular combinators for
string transformations. In Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic

153

in Computer Science (LICS), CSL-LICS ’14, pages 9:1–9:10, New York,
NY, USA, 2014. ACM.

[7] R. Alur and M. Raghothaman. Decision problems for additive regular
functions. In Automata, Languages, and Programming - 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceed-
ings, Part II, pages 37–48, 2013.

[8] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. One-way defin-
ability of sweeping transducer. In 35th IARCS Annual Conference on
Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45 of
LIPIcs, pages 178–191. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2015.

[9] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. Minimizing
resources of sweeping and streaming string transducers. In 43rd In-
ternational Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs,
pages 114:1–114:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. Full version available at https://hal.archives-ouvertes.fr/

hal-01274992.

[10] F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. Untwisting two-
way transducers in elementary time. In 32nd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017, pages 1–12, 2017.

[11] M. Béal, O. Carton, C. Prieur, and J. Sakarovitch. Squaring transduc-
ers: an efficient procedure for deciding functionality and sequentiality.
Theoretical Computer Science, 292(1):45–63, 2003.

[12] M.-P. Béal and O. Carton. Determinization of transducers over finite
and infinite words. Theoretical Computer Science, 289(1):225–251, 2002.

[13] M. Benedikt, J. Engelfriet, and S. Maneth. Determinacy and rewriting
of functional top-down and MSO tree transformations. J. Comput. Syst.
Sci., 85:57–73, 2017.

154

https://hal.archives-ouvertes.fr/hal-01274992
https://hal.archives-ouvertes.fr/hal-01274992

[14] J. Birget. Two-way automaton computations. RAIRO - Theoretical
Informatics and Applications - Informatique Théorique et Applications,
24(1):47–66, 1990.

[15] M. Bojańczyk. Transducers with origin information. In Automata,
Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II,
pages 26–37, 2014.

[16] J. A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. In Mathematical theory of Automata, Volume
12 of MRI Symposia Series, pages 529–561. Polytechnic Press, Polytech-
nic Institute of Brooklyn, N.Y., 1962.

[17] J. Büchi. On a decision method in restricted second- order arithmetic. In
Froceed- ings of the 1960 Congress on Logic, Methdology and Philosoph
y of Science. Stanford University Press, 1962.

[18] J. R. Büchi. Weak second-order arithmetic and finite automata. Math-
ematical Logic Quarterly, 6(1-6):66–92, 1960.

[19] O. Carton and L. Dartois. Aperiodic two-way transducers and FO-
transductions. In 24th EACSL Annual Conference on Computer Science
Logic (CSL), volume 41 of LIPIcs, pages 160–174. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[20] C. Choffrut. Une caracterisation des fonctions sequentielles et des fonc-
tions sous-sequentielles en tant que relations rationnelles. Theor. Com-
put. Sci., 5(3):325–337, 1977.

[21] C. Choffrut. Minimizing subsequential transducers: a survey. Theor.
Comput. Sci., 292(1):131–143, 2003.

[22] C. Choffrut and B. Guillon. An algebraic characterization of unary
two-way transducers. In Proceedings of the 15th Italian Conference on
Theoretical Computer Science, Perugia, Italy, September 17-19, 2014.,
volume 1231 of CEUR Workshop Proceedings, pages 279–283. CEUR-
WS.org, 2014.

[23] C. Choffrut and B. Guillon. An algebraic characterization of unary two-
way transducers. In Mathematical Foundations of Computer Science

155

2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary,
August 25-29, 2014. Proceedings, Part I, volume 8634 of Lecture Notes
in Computer Science, pages 196–207. Springer, 2014.

[24] T. Colcombet. Factorisation forests for infinite words. In FCT, volume
4639 of LNCS, pages 226–237. Springer, 2007.

[25] B. Courcelle. Monadic second-order definable graph transductions: A
survey. Theor. Comput. Sci., 126(1):53–75, 1994.

[26] B. Courcelle and J. Engelfriet. Graph structure and monadic second-
order logic. A language-theoretic approach. Encyclopedia of Mathemat-
ics and its applications, Vol. 138. Cambridge University Press, June
2012. Collection Encyclopedia of Mathematics and Applications, Vol.
138.

[27] L. Dartois. Méthodes algébriques pour la théorie des automates. PhD
thesis, Université Paris-Diderot, 2014.

[28] L. Dartois, P. Fournier, I. Jecker, and N. Lhote. On reversible trans-
ducers. In 44rd International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[29] L. Dartois, I. Jecker, and P.-A. Reynier. Aperiodic string transducers.
In Proc. 20th International Conference on Developments in Language
Theory (DLT 2016), volume 9840 of Lecture Notes in Computer Science,
pages 125–137, Montreal, Canada, 2016. Springer.

[30] L. Daviaud, P. Reynier, and J. Talbot. A generalised twinning property
for minimisation of cost register automata. In Proceedings of the 31st An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS’16,
New York, NY, USA, July 5-8, 2016, pages 857–866. ACM, 2016.

[31] R. de Souza. Uniformisation of two-way transducers. In A.-H. Dediu,
C. Mart́ın-Vide, and B. Truthe, editors, Language and Automata The-
ory and Applications: 7th International Conference, LATA 2013, Bil-
bao, Spain, April 2-5, 2013. Proceedings, pages 547–558. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

156

[32] V. Diekert and P. Gastin. First-order definable languages. In Logic and
Automata: History and Perspectives, Texts in Logic and Games, pages
261–306. Amsterdam University Press, 2008.

[33] S. Eilenberg. Automata, Langages and Machines. Academic Press, 1976.

[34] C. C. Elgot. Decision problems of finite automata design and re-
lated arithmetics. Transactions of the American Mathematical Society,
98(1):21–51, 1961.

[35] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite
automata. IBM J. Res. Dev., 9(1):47–68, Jan. 1965.

[36] J. Engelfriet and H. J. Hoogeboom. MSO definable string transduc-
tions and two-way finite-state transducers. ACM Trans. Comput. Logic,
2(2):216–254, 2001.

[37] E. Filiot. Logic-automata connections for transformations. In M. Baner-
jee and S. N. Krishna, editors, Logic and Its Applications: 6th Indian
Conference, ICLA 2015, Mumbai, India, January 8-10, 2015. Proceed-
ings, pages 30–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[38] E. Filiot, O. Gauwin, and N. Lhote. First-order definability of rational
transductions: An algebraic approach. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS’16, New
York, NY, USA, July 5-8, 2016, pages 387–396. ACM, 2016.

[39] E. Filiot, O. Gauwin, P. Reynier, and F. Servais. From two-way to one-
way finite state transducers. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pages 468–477. IEEE Computer Society, 2013.

[40] E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string
transformations. In 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages
147–159. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[41] N. Fine and H. Wilf. Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society, 16:109–114, 1965.

157

[42] P. Gallot, A. Muscholl, G. Puppis, and S. Salvati. On the Decomposi-
tion of Finite-Valued Streaming String Transducers. In H. Vollmer and
B. Vallee, editors, 34th Symposium on Theoretical Aspects of Computer
Science (STACS 2017), volume 66 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 34:1–34:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[43] S. Ginsburg and G. F. Rose. Operations which preserve definability in
languages. J. ACM, 10(2):175–195, Apr. 1963.

[44] S. Ginsburg and G. F. Rose. Preservation of languages by transducers.
Information and Control, 9(2):153 – 176, 1966.

[45] I. Glaister and J. Shallit. A lower bound technique for the size of nonde-
terministic finite automata. Information Processing Letters, 59:75–77,
1996.

[46] B. Guillon. Sweeping weakens two-way transducers even with a unary
output alphabet. In Seventh Workshop on Non-Classical Models of Au-
tomata and Applications - NCMA 2015, Porto, Portugal, August 31 -
September 1, 2015. Proceedings, volume 318 of books@ocg.at, pages 91–
108. Österreichische Computer Gesellschaft, 2015.

[47] B. Guillon. Input- or output-unary sweeping transducers are weaker
than their 2-way counterparts. RAIRO-Theor. Inf. Appl., 50(4):275–
294, 2016.

[48] E. M. Gurari. The equivalence problem for deterministic two-way se-
quential transducers is decidable. In 21st Annual Symposium on Foun-
dations of Computer Science, Syracuse, New York, USA, 13-15 October
1980, pages 83–85, 1980.

[49] E. M. Gurari and O. H. Ibarra. A note on finite-valued and finitely
ambiguous transducers. Mathematical systems theory, 16(1):61–66, Dec
1983.

[50] J. Hopcroft and J. Ullman. An approach to a unified theory of automata.
In SWAT, FOCS ’67, pages 140–147. IEEE Computer Society, 1967.

[51] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

158

[52] O. H. Ibarra. The unsolvability of the equivalence problem for epsilon-
free NGSM’s with unary input (output) alphabet and applications.
SIAM J. Comput., 7(4):524–532, 1978.

[53] C. A. Kapoutsis. Minicomplexity. JALC, 17(2–4):205–224, 2012.

[54] J. Karhumäki and C. Choffrut. Combinatorics of words. Springer-Verlag,
1997.

[55] S. C. Kleene. Representation of events in nerve nets and finite automata.
In C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press, Princeton, NJ, 1956.

[56] J. Kortelainen. On the system of word equations x0u
i
1x1u

i
2x2 . . . u

i
mxm “

y0v
i
1y1v

i
2y2 . . . v

i
mym (i “ 0, 1, 2, . . .) in a free monoid. Journal of Au-

tomata, Languages and Combinatorics, 3(1):43–57, 1998.

[57] D. Kozen. Lower bounds for natural proof systems. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS’77,
pages 254–266. IEEE Computer Society, 1977.

[58] J. Ledent. Internship report: Streaming string transducers. Technical
report, LaBRI, University of Bordeaux, 2013.

[59] M. Lothaire. Combinatorics on words. Cambridge University Press,
1997.

[60] R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T. Re-
search Monograph No. 65). The MIT Press, 1971.

[61] R. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IRE Transactions on Electronic Computers, EC-9(1):39–
47, March 1960.

[62] G. H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[63] E. F. Moore. Gedanken experiments on sequential machines. In Au-
tomata Studies, pages 129–153. Princeton U., 1956.

[64] G. Pighizzini. Two-way finite automata: Old and recent results. Fun-
dam. Inform., 126(2-3):225–246, 2013.

159

[65] J.-E. Pin. Syntactic semigroups. In Handbook of formal languages, pages
679–746. Springer Berlin Heidelberg, 1997.

[66] M. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. Dev., 3(2):114–125, 1959.

[67] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Bull. Amer. Math. Soc., 74(5):1025–1029, 09 1968.

[68] F. Ramsey. On a problem of formal logic. In Proceedings of the London
Mathematical Society, volume 30, pages 264–286, 1929.

[69] A. Saarela. Systems of word equations, polynomials and linear algebra:
a new approach. European Journal of Combinatorics, 47(5):1–14, 2015.

[70] J. Sakarovitch. Kleene’s theorem revisited. In A. Kelemenová and
J. Kelemen, editors, Trends, Techniques, and Problems in Theoretical
Computer Science: 4th International Meeting of Young Computer Sci-
entists Smolenice, Czechoslovakia, October 13–17, 1986 Selected Con-
tributions, pages 39–50. Springer Berlin Heidelberg, Berlin, Heidelberg,
1987.

[71] J. Sakarovitch. Elements of Automata Theory. Cambridge University
Press, New York, NY, USA, 2009.

[72] J. Sakarovitch and R. de Souza. On the decidability of bounded valued-
ness for transducers. In 33rd International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS), volume 5162 of Lecture
Notes in Computer Science, pages 588–600. Springer, 2008.

[73] J. Sakarovitch and R. de Souza. On the decomposition of k-valued
rational relations. CoRR, abs/0802.2823, 2008.

[74] W. J. Sakoda and M. Sipser. Nondeterminism and the size of two way
finite automata. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing, STOC ’78, pages 275–286, New York, NY,
USA, 1978. ACM.

[75] M. Schützenberger. On the definition of a family of automata. Infor-
mation and Control, 4(2):245 – 270, 1961.

160

[76] M. Schützenberger. A remark on finite transducers. Information and
Control, 4(2-3):185–196, 1961.

[77] M. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190 – 194, 1965.

[78] J. Shepherdson. The reduction of two-way automata to one-way au-
tomata. IBM J. Res. Dev., 3(2):198–200, 1959.

[79] I. Simon. Factorization forests of finite height. Theoretical Computer
Science, 72(1):65–94, 1990.

[80] M. Sipser. Lower bounds on the size of sweeping automata. Journal of
Computer and System Sciences, 21(2):195 – 202, 1980.

[81] M. Sipser. Introduction to the Theory of Computation. International
Thomson Publishing, 1st edition, 1996.

[82] T. Smith. A pumping lemma for two-way finite transducers. In Proceed-
ings of the 39th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 523–534. Springer Berlin Heidel-
berg, 2014.

[83] B. A. Trakhtenbrot. Finite automata and logic of monadic predicates.
Doklady Akademii Nauk, SSSR 140:326 – 329, 1962. In Russian.

[84] A. Weber. Decomposing a k-valued transducer into k unambiguous ones,
pages 503–515. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992.

[85] A. Weber and R. Klemm. Economy of description for single-valued
transducers. Information and Computation, 118(2):327 – 340, 1995.

161

	Introduction
	Models for regular transductions
	Words, languages, and automata
	General definitions
	Equivalence properties
	Representation of a run

	Finite state transducers
	Definition
	Separating examples
	Functionality and determinization

	Logic and transductions
	MSO transductions
	Sweeping vs MSO
	FO-definability

	Streaming string transducers
	Functionality and determinization
	Number of registers

	Overview of the relations between models
	Logic and finite state transducers
	Streaming transducers
	Other models

	One-way definability
	Basic combinatorics in the sweeping case
	Pumping loops.
	Output minimality.

	One-way definability in the sweeping case
	Run decomposition.
	From periodicity of inversions to existence of decompositions.
	From existence of decompositions to an equivalent one-way transducer.

	The structure of two-way loops
	Flows and effects.
	Loops and components.
	Pumping idempotent loops.

	Combinatorics in the two-way case
	Ramsey-type arguments.
	Inversions and periodicity.

	The characterization in the two-way case
	From periodicity of inversions to existence of decompositions.
	From existence of decompositions to an equivalent one-way transducer.
	Generality of the construction.

	Complexity of the one-way definability problem
	Complexity analysis
	Lower bound
	Undecidability of the general case

	Minimization of resources
	Passes of a sweeping transducer
	k-pass definability
	Soundness
	Completeness
	Minimization and sweeping definability

	Registers of streaming string transducers
	Translations between SST and 2DFT
	From concatenation-free NSST to sweeping transducers
	From sweeping transducers to concatenation-free NSST

	Conclusion
	 Bibliography

