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Introduction

Due to rapid increase in data size, the idea of discovering hidden information in datasets has

been exploded extensively in the last decade. This discovery has been centralized mainly on

data mining, classification and clustering. One major problem that arises during the mining

process is handling data with temporal feature. Temporal data naturally arise in various

emerging applications as sensor networks, dynamic social networks, human mobility or internet

of things. Temporal data refers to data, where changes over time or temporal aspects play

a central role or are of interest. Unlike static data, there is high dependency among time

series or sequences and the appropriate treatment of data dependency or correlation becomes

critical in any temporal data processing.

Temporal data mining has recently attracted great attention in the data mining community

[BF98]; [HBV01]; [KGP01]; [KLT03]. Basically temporal data mining is concerned with the

analysis of temporal data and for finding temporal patterns and regularities in sets of temporal

data. Since temporal data mining brings together techniques from different fields such as

statistics, machine learning and databases, the literature is diffused among many different

sources. According to the techniques of data mining and theory of statistical time series

analysis, the theory of temporal data mining may involve the following areas of investigation

since a general theory for this purpose is yet to be developed [LOW02]. Temporal data mining

tasks include: characterization and representation, similarity computation and comparison,

temporal association rules, clustering, classification, prediction and trend analysis, temporal

pattern discovery, etc.

Clustering temporal data is a fundamental and important task, usually applied prior to

any temporal data analysis or machine learning tasks, for summarization, extraction groups of

time series and highlight the main underlying dynamics; all the more crucial for dimensionality

reduction in big data context. Clustering problem is about partitioning a given dataset into

groups or clusters such that the data points in a cluster are more similar to each other than

data points in different clusters [GRS98]. It may be found under different names in different

contexts, such as "unsupervised learning" in pattern recognition, "numerical taxonomy" in

biology, "typology" in social sciences and "partition" in graph theory [TK99]. There are

many applications where a temporal data clustering activity is relevant. For example in web

activity logs, clusters can indicate navigation patterns of different user groups. In financial

data, it would be of interest to group stocks that exhibit similar trends in price movements.

Another example could be clustering of biological sequences like proteins or nucleic acids, so

that sequences within a group have similar functional properties [F.88]; [Mil+99]; [Osa+02].

Hense, there are a variety of methods for clustering of temporal data and many of usual

clustering methods need to compare the time series. Most of these comparison methods

are derived from the Dynamic Time Warping (DTW) and align the observations of pairs of

time series to identify the delays that can occur between times. Temporal clustering analysis

provides an effective manner to discover the inherent structure and condense information over

temporal data by exploring dynamic regularities underlying temporal data in an unsupervised

1



2 Introduction

learning way. In particular, recent empirical studies in temporal data mining reveal that most

of the existing clustering algorithms do not work well due to their complexity of underlying

structure and data dependency [KK02], which poses a real challenge in clustering temporal

data of a high dimensionality, complicated temporal correlation, and a substantial amount of

noise.

Earlier, the clustering techniques have been extensively applied in various scientific areas.

k-means-based clustering, viz. standard k-means [Mac67], k-means++ and all its variations,

is among the most popular clustering algorithms, as it provides a good trade-off between the

quality of obtained solution and its computational complexity [AV07]. However, time series

k-means clustering, under the commonly used dynamic time warping (DTW) [SC78]; [KL83]

or several well-established temporal kernels (e.g. κDTAK, κGA) [BHB02]; [Shi+02]; [Cut+07];

[Cut11], is challenging as estimating cluster centroids requires aligning multiple time series

simultaneously. Under temporal proximity measures, one standardway to estimate the centroid

of two time series is to embed the series into a new Euclidean space according to the optimal

mapping between them. To average more than two time series, the problem becomes more

complex as one needs to determine a multiple alignment that link simultaneously all the time

series. That multiple alignment defines, similarly, a new Euclidean embedding space where

time series can be projected and the global centroid estimated. Each dimension identifies,

this time, a hyper link that connects more than two elements. Such alignments, referred to as

multiple sequence alignment, become computationally prohibitive and impractical when the

number of time series and their length increase [THG94]; [WJ94]; [CNH00].

To bypass the centroid estimation problem, costly k-medoids [KR87] and kernel k-means

[Gir02]; [DGK04] are generally used for time series clustering [Lia05]. For k-medoids, a medoid

(i.e. the element that minimizes the distance to the other elements of the cluster), is a good

representative of the cluster mainly when time series have similar global dynamics within the

class; it is however a bad representative for time series that share only local features [FDCG13].

For kernel k-means [Gir02]; [DGK04], as centroids can not be estimated in the Hilbert space,

pairwise comparisons are used to assign a given time series to a cluster. While k-means, of

linear complexity, remains a fast algorithm, k-medoids and kernel k-means have a quadratic

complexity due to the pairwise comparisons involved.

This work proposes a fast, efficient and accurate approach that generalizes the k-means

based clustering algorithm for temporal data based on i) an extension of the standard time

warp measures to consider both global and local temporal differences and ii) a tractable and

fast estimation of the cluster representatives based on the extended time warp measures.

Temporal data centroid estimation is formalized as a non-convex quadratic constrained

optimization problem, while all the popular existing approaches are of heuristic nature,

with no guarantee of optimality. The developed solutions allow for estimating not only the

temporal data centroid but also its weighting vector, which indicates the representativeness

of the centroid elements. The solutions are particularly studied under the standard Dynamic

Time Warping (DTW) [KL83], Dynamic Temporal Alignment Kernel (κDTAK) [Shi+02] and

Global Alignment kernels (κGA and κTGA) [Cut+07]; [Cut11]. A wide range of public and

challenging datasets, which are non-isotropic (i.e., non-spherical), not well-isolated (and
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thus non linearly separable), are used to compare the proposed generalized k-means with

k-medoids and kernel k-means. The results of this comparison illustrate the benefits of the

proposed method, which outperforms the alternative ones on all datasets. The impact of

isotropy and isolation of clusters on the effectiveness of the clustering methods is also discussed.

The main contributions of the thesis are:

• Extend commonly used time warp measures: dynamic time warping, which is a dissim-

ilarity measure, dynamic time warping kernel, temporal alignment kernel, and global

alignment kernel, which are three similarity measures, to capture both global and local

temporal differences.

• Formalize the temporal centroid estimation issue as an optimization problem and propose

a fast and tractable solution under extended time warp measures.

• Propose a generalization of the k-means based clustering for temporal data under the

extended time warp measures.

• Show through a deep analysis on a wide range of non-isotropic, linearly non-separable

public and challenging datasets that the proposed solutions are faster and outperforms

alternative methods, through (a) their efficiency on clustering and (b) the relevance of

the centroids estimated.

In the remainder of the thesis, we use bold, lower-case letters for vectors, time series and

alignments, the context being clear to differentiate between these elements.

Organisation du manuscrit

This manuscript is organized in four chapters as follows. The first chapter presents the

major time series metrics, notations and definitions. As the most conventional metrics between

time series are based on the concept of alignment, we then present the definition of temporal

alignment, prior to introduce kernels for times series. In the second chapter, we will discuss

about time series averaging and state-of-the-art of centroid estimation approaches. To do so,

we present the consensus sequence and multiple alignment problem for time series averaging

under time warp and review the related progressive and iterative approaches for centroid

estimation. We show the importance of proposing a tractable and fast centroid estimation

method. In the next chapter, we first study the k-means based clustering algorithms and

its variations, their efficiency and complexities. While k-means based clustering is among the

most popular clustering algorithms, it is a challenging task because of centroid estimation that

needs to deal with the tricky multiple alignment problem under time warp. We then proposes

the generalized k-means based clustering for time series under time warp measures. For this, we

introduce motivation of this generalization, prior to the problem formalization. We give then

an extension of the standard time warp measures and discuss about their properties. In the

following, we describe the fully formalized centroid estimation procedure based on the extended

time warp measures. We present the generalized centroid-based clustering for temporal data

in the context of k-means under both dissimilarity and similarity measures, but as shown
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later, the proposed solutions being directly applicable to any other centroid-based clustering

algorithms. Lastly, the conducted experimentation and results obtained are discussed in the

chapter four and we show through a deep analysis on a wide range of non-isotropic, linearly

non-separable public data that the proposed solutions outperforms the alternative methods.

The quantitative evaluation is finally completed by the qualitative comparison of the obtained

centroids to the one of the time series they represent (i.e., ground truth). In the conclusion,

we summarize the contributions of this thesis and discuss possible perspectives obtained from

the thesis.
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Notations

X a set of data

X = {x1, ...,xN} a set of time series

N number of time series in a set

T time series length

S space of all time series

x a time series

t a time stamp

s similarity index

d dissimilarity index

D distance index

dE Euclidean distance

Lp Minkovski p-norm

||x||p p-norm of the vector x

π An alignment between two time series

B(., .) a behavior-based distance between two time series

V(., .) a value-based distance between two time series

BV(., .) a behavior-value-based distance between two time series

d(., .) a distance function

s(., .) a similarity function

κ(., .) a kernel similarity function

K gram matrix (kernel matrix)

k number of clusters

c a centroid (an average sequence of time series)

Ci representative of a cluster

p iteration numbers

Φ(.) a non-linear transformation

O time complexity
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The temporal sequences and time series are two frequently discussed topics in the

literature. The time series can be seen as a special case of sequences, where the

order criteria is time. In this chapter, we initially review the state-of-the-art of

comparison measurements between pairs of time series. As the most conventional

metrics between time series are based on the concept of alignment, we present the

definition of temporal alignment, prior to introducing the kernels for times series.

1.1 Introduction

What is a time series? A time series is a kind of sequence with an ordered set of observations

where the order criteria is time. A large variety of real world applications, such as meteorology,

marketing, geophysics and astrophysics, collect observations that can be represented as time

series. The most obvious example for a time series is probably the stock prices over successive

7
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trading days or hourly household electric power consumption over successive hours. But

not only the industry and financial sector produce a large amount of such data. Social media

platforms and messaging services record up to a billion daily interactions [Pir09], which can be

treated as time series. Besides the high dimensions of these data, the medical and biological

sector provide a great variety of time series, as gene expression data, electrocardiograms,

growth development charts and many more. In general, an increasingly large part of worlds

data is in the form of time series [MR05]. Although statisticians have worked with time series

for a century, the increasing use of temporal data and its special nature have attracted the

interest of many researchers in the field of data mining and analysis [MR05]; [Fu11].

Time series analysis includes methods for analyzing temporal data in order to discover the

inherent structure and condense information over temporal data, as well as the meaningful

statistics and other characteristics of the data. In the context of statistics, finance, geophysics

and meteorology the primary goal of time series analysis is forecasting. In the context of signal

processing, control engineering and communication engineering it is used for signal detection

and estimation, while in the context of data mining, pattern recognition and machine learning

time series analysis can be used for clustering, classification, anomaly detection as well

as forecasting. One major problem that arises during time series analysis is comparison of

time series or sequences. For this comparison, the most studied approaches rely on proximity

measures and metrics. Thus, a crucial question is establishing what we mean by “(dis)similar”

data objects (i.e. determining a suitable (dis)similarity measure between two objects). In

the specific context of time series data, the concept of (dis)similarity measure is particularly

complex due to the dynamic character of the series. Hence, different approaches to define the

(dis)similarity between time series have been proposed in the literature and a short overview

of well-established ones is presented below.

We start this section by defining the general notion of proximity measures. Next, we discuss

major basic proximity measures of time series. Later, we introduce definition of different

kernels proximity measures for time series, as well as the explanation of temporal alignment,

where the most conventional proximity measures between time series and sequences are based

on the concept of alignment.

1.2 Comparison of time series

Mining and comparing time series address a large range of challenges, among them: the

meaningfulness of the distance, similarity and dissimilarity measures. They are widely used

in many research areas and applications. Distances or (dis)similarity measures are essential

to solve many signal processing, image processing and pattern recognition problems such as

classification, clustering, and retrieval problems. Various distances, similarity and dissimilarity

measures that are applicable to compare time series, are presented over the past decade. We

start here by defining the general notion of proximity measures.
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Similarity measure

Let X be a set of data. A function s: X × X → R is called a similarity on X, it obeys to

the following properties, ∀ x, y ∈ X:

• non-negativity: s(x, y) ≥ 0

• symmetry: s(x, y) = s(y, x)

• if x 6= y, s(x, x) = s(y, y) > s(x, y)

A similarity measure takes on large values for similar objects and zero for very dissimilar

objects (e.g. in the context of cluster analysis). In general, the similarity interval is [0, 1],

where 1 indicates the maximum of similarity measure.

Dissimilarity measure

A function d: X × X → R is called a dissimilarity on X if, for all x, y ∈ X, it holds the

three fundamentals following properties:

• non-negativity: d(x, y) ≥ 0

• symmetry: d(x, y) = d(y, x)

• reflexivity: d(x, x) = 0

In some cases, the proximity measurement takes minimum values when the time series

are similar together. For this purpose, we introduce a new measure of proximity opposite

of the similarity index, called dissimilarity measure. The main transforms used to obtain a

dissimilarity d from a similarity s are:

• d(x, y) = (s(x, x)−s(x, y))

• d(x, y) = (s(x, x)−s(x, y)) / s(x, y)

• d(x, y) = (s(x, x)−s(x, y))1/2

Distance metric

Distance measures play an important role for (dis)similarity problem, in data mining tasks.

Concerning a distance measure, it is important to understand if it can be considered metric.

A function D: X × X → R is called a distance metric on X if, for all x, y and z ∈ X, it

holds the properties:
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• non-negativity: D(x, y) ≥ 0

• symmetry: D(x, y) = D(x, y)

• reflexivity: D(x, y) = 0, if and only if x = y

• triangle inequality: D(x, y) ≤ D(x, z)+ D(z, y)

It’s easy to prove that the non-negativity property is included in the last three properties.

If any of these is not obeyed, then the distance is non-metric. Although having the properties

of a metric is desirable, a (dis)similarity measure can be quite effective without being a metric.

In the following, to simplify, we use broadly the term metric to reference both.

1.3 Times series basic metrics

Time series analysis is an active research area with applications in a wide range of fields. One

key component in temporal analysis is determining a proper (dis)similarity metric between

two time series. This section is dedicated to briefly describe the major well-known measures

in a nutshell, which have been grouped into two categories: value-based and behavior-based

metrics.

1.3.1 Value-based metrics

A first way to compare time series data involves concept of values and distance metrics, where

time series are compared according to their values. This subsection relies on two standard

well-known division: (a) without delays (e.g. Minkowski distance) and (b) with delays (e.g.

Dynamic Time Warping).

1.3.1.1 Without delays

Euclidean- (or Euclidian) The most used distance function in many applications, which is

commonly accepted as the simplest distances between sequences. The Euclidean distance dE
(L2 norm) between two time series xi = (xi1, ..., xiT ) and xj = (xj1, ..., xjT ) of length T , is

defined as:

dE(xi,xj) =

√
√
√
√

T∑

t=1

(xit − xjt)
2

Minkowski Distance- The generalization of Euclidean Distance is Minkowski Distance,

called Lp norm. It is defined as:

dLp(xi,xj) =
p

√
√
√
√

T∑

t=1

(xit − xjt)
p
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where p is called the Minkowski order. In fact, for Manhattan distance p = 1, for the Euclidean

distance p = 2, while for the Maximum distance p =∞. All Lp-norm distances do not consider

the time warp. Unfortunately, they don’t correspond to the common understanding of what

a time series sequences is, and can not capture flexible similarities.

1.3.1.2 With delays

Dynamic time warping (DTW)- Searching the best alignment that matches two time

series is an important task for many researcher. One of the eminent techniques to execute

this task is Dynamic Time Warping (DTW) was introduced in [RD62]; [Ita75]; [KL83] with

application in speech recognition. It finds the optimal alignment between two time series, and

captures flexible similarities by aligning the elements inside both sequences. Intuitively, the

time series are warped non-linearly in the time dimension to match each other. Simply, it is a

generalization of Euclidean distance which allows a non-linear mapping of one time series to

another one by minimizing the distance between both. DTW does not require that the two

time series data have the same length, and it can handle local time shifting by duplicating (or

re-sampling) the previous element of the time sequence.

Let X = {xi}
N
i=1 be a set of time series xi = (xi1, ..., xiT ) assumed of length T 1. An

alignment π of length |π| = m between two time series xi and xj is defined as the set of m

(T ≤ m ≤ 2T − 1) couples of aligned elements of xi to elements of xj :

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(m), π2(m)))

where π defines a warping function that realizes a mapping from time axis of xi onto time

axis of xj , and the applications π1 and π2 defined from {1, ...,m} to {1, .., T} obey to the

following boundary and monotonicity conditions:

1 = π1(1) ≤ π1(2) ≤ ... ≤ π1(m) = T

1 = π2(1) ≤ π2(2) ≤ ... ≤ π2(m) = T

and ∀ l ∈ {1, ...,m},

π1(l + 1) ≤ π1(l) + 1 and π2(l + 1) ≤ π2(l) + 1,

(π1(l + 1)− π1(l)) + (π2(l + 1)− π2(l)) ≥ 1

Intuitively, an alignment π defines a way to associate all elements of two time series. The

alignments can be described by paths in the T × T grid as displayed in Figure 1.1, that

crosses the elements of xi and xj . For instance, the green path aligns the two time series as:

((xi1,xj1),(xi2,xj2),(xi2,xj3),(xi3,xj4),(xi4,xj4),(xi5,xj5),(xi6,xj6),(xi7,xj7)). We will denote A

as the set of all possible alignments between two time series.

1One can make this assumption as dynamic time warping can be applied equally on time series of same or

different lengths.
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Figure 1.1: Three possible alignments (paths) between xi and xj

Dynamic time warping is currently a well-known dissimilarity measure on time series and

sequences, since it makes them possible to capture temporal distortions. The Dynamic Time

Warping (DTW) between time series xi and time series xj , with the aim of minimization of

the mapping cost, is defined by:

dtw(xi,xj) = min
π∈A

1

|π|

∑

(t′,t)∈π

ϕ(xit′ , xjt) (1.1)

where ϕ : R × R → R+ is a positive, real-valued, divergence function (generally Euclidean

norm). Figure 1.2 shows the alignment between two sample time series with delay (dynamic

time warping) in comparison with the alignment without delay (Euclidean).

Figure 1.2: dynamic time warping alignment (left) vs. euclidean alignment (right)

While Dynamic Time Warping alignments deal with delays or time shifting (see Figure

1.2-left), the Euclidean alignment π between xi and xj aligns elements observed at the same

time:

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(T ), π2(T )))

where ∀t = 1, ..., T, π1(t) = π2(t) = t, |π| = T (see Figure 1.2-right). According to the

alignment definition, the euclidean distance (dE) between the time series xi and xj is given
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by:

dE(xi,xj)
def
=

1

|π|

|π|
∑

k=1

ϕ(xiπ1(k) , xjπ2(k)) =
1

T

T∑

t=1

ϕ(xit, xjt)

ϕ taken as the Euclidean norm.

Finally, Figure 1.3 shows the optimal alignment path between two sample time series with

and without considering time warp. To recall, boundary, monotonicity and continuity are

three important properties which are applied to the construction of the path. The boundary

condition imposes that the first elements of the two time series are aligned to each other, as

well as the last sequences elements. In other word, the alignment refers to the entire both

time series sequences. Monotonicity preserve the time-ordering of elements. It means, the

alignment path doesn’t go back in "time" index. Continuity limits the warping path from

long jumps and it guarantees that alignment does not omit important features.

Figure 1.3: The optimal alignment path between two sample time series with time warp (left), without

time warp (right)

A dynamic programming approach is used to find the minimum distance for alignment

path. Let xi and xj two time series. A two-dimensional |xi| by |xj | cost matrix D is built

up, where the value at D(t, t′) is the minimun distance warp path that can be constructed

from the two time series xi = (xi1, ..., xit) and xj = (xj1, ..., xjt′). Finally, the value

at D(|xi|, |xj |) will contain the minimum distance between the times series xi and time

series xj under time warp. Note that DTW is not a metric as not satisfy the triangle inequality.

Property 1.1

DTW does not follow triangle inequality.
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As we can see, for instance, given three time series data, xi = [0], xj = [1, 2] and xk = [2,3,3],

then: dtw(xi,xj) = 3 , dtw(xj ,xk) = 3 , dtw(xi,xk) = 8. Hense,

dtw(xi,xj) + dtw(xj ,xk) � dtw(xi,xk). �

Time and space complexity of the dynamic time warping is straightforward to define. Each

cell in the cost matrix is filled once in constant time. The cost of the optimal alignment can

be recursively computed by:

D(t, t′) = d(t, t′) + min







D(t− 1, t′)

D(t− 1, t′ − 1)

D(t, t′ − 1)







where d is a distance function between the elements of time series (e.g. Euclidean).

This yields complexity of O(N2). Dynamic time warping is able to find the optimal global

alignment path between time series and is probably the most commonly used measure to

assess the dissimilarity between them. Dynamic time warping (DTW) has enjoyed success in

many areas where its time complexity is not an issue. However, conventional DTW is much

too slow for searching an alignment path for large datasets. For this problem, the idea of

the DTW technique for aligning time series is changing with the aim of improvement time

and space complexity and accuracy. In general, the methods which make DTW faster divide

in three main different categories: 1) constraints (e.g., Sakoe-Chiba band), 2) indexing (e.g.,

piecewise), and 3) data abstraction (e.g., multiscale). Here we briefly mentioned some major

ideas that try to enhance this technique.

Constrained DTW

Constraints are widely used to speed up dynamic time warping algorithm. The most commonly

used ones is the Sakoe-Chiba band (symmetric and asymmetric) [SC71]; [SC78] and Itakura

parallelogram [Ita75], which are shown in Figure 1.4.

Figure 1.4: Speed up DTW using constraints: (a)Sakoe-Chiba band (b)Asymmetric Sakoe-Chiba

band (c)Itakura parallelogram

The cost matrix are filled by the DTW algorithm in the shaded areas around the diagonal.

In this case, the algorithm finds the optimal alignment warp math through the constraints
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window. However, the global optimal alignment path will not be found, if it is not fully inside

the window.

The Sakoe-Chiba dynamic time warping (DTWsc) between two time series, which is the

most well-used constrained DTW, is defined by:

dtwsc(xi,xj)
def
= min

π∈A
C(π)

C(π)
def
=

1

|π|

|π|
∑

k=1

wπ1(k),π2(k) ϕ(xiπ1(k) , xjπ2(k))

=
1

|π|

∑

(t,t′)∈π

wt,t′ ϕ(xit, xjt′)

where if |t − t′| < c then wt,t′ = 1, and else ∞. Function ϕ taken as the euclidean norm and

parameter c is the Sakoe-Chiba band width. Figure 1.5 shows examples of the cost matrix

and the two constrained optimal alignment path between two sample time series.

Figure 1.5: The constrained optimal alignment path between two sample time series (Sakoe-Chiba

band = 5 - left), (Itakura parallelogram - right)

Piecewise DTW

Piecewise Dynamic Time Warping (PDTW) [KP00], takes advantage of the fact that one can

efficiently approximate most of the time series by a Piecewise Aggregate Approximation

(PAA). Let xi = (xi1, xi2, . . . , xiT ) be a time series sequence that we wish to reduce its

dimensionality to T ′, where (1 ≤ T ′ ≤ T ). A time series x∗
i of length T ′ is represented by

x∗
i = (xi1, ..., xiT ′), which tth element of x∗

i is calculated by the following equation:
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x∗it =
T ′

T

T
T ′ t
∑

t′= T
T ′ (t−1)+1

xit′

Simply, to reduce the data from T dimensions to T ′ dimensions, the data is divided into T ′

frames with equal size. The average value of the data falling within each frame is computed

and a vector of these values becomes the data reduced representation. The compression

rate c (c = T
T ′ ) is equal to the ratio of the length of the original time series to the length of

its PAA representation. Choosing a value for c, is a trade-off between memory savings and

accuracy [KP00]. Figure 1.6 illustrates a time series and its PAA approximation.

x∗
i

xi

Figure 1.6: The time series sequence xi, and its PAA x∗
i

Finally, Figure 1.7 illustrates strong visual evidence that PDTW finds alignment that are

very similar to those produced by DTW. Hence, the time complexity for PDTW is O(T ′2),

which means the speedup obtained by PDTW should be O(T 2)
O(T ′2)

which is O(c2).

Figure 1.7: Alignment between two time series by (a)DTW (b)PDTW

Therefore, piecewise method by finding a time series which is most similar to a given one,

significantly speed up many DTW applications by reducing the number of times which the

DTW should be run.

MultiScale DTW (FastDTW)

To obtain an efficient as well as robust algorithm to compute DTW-based alignments, one

can combine the global constraints and dimensionality reduction strategies in some iterative

approaches to generate data-dependent constraint regions. The general strategy of multiscale

DTW (or FastDTW)[SC04] is to recursively project a warping path computed at a coarse

resolution level to the next level and then refine the projected warping path. Multiscale DTW

or fastDTW speeds up the dynamic time warping algorithm by running DTW on a reduced

representation of the data.
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Let xi = (xi1, ..., xiT ) and xj = (xj1, ..., xjT ) be the sequences to be aligned, having

lengths T . The aim is to compute an optimal warping path between two time series xi

and xj . The highest resolution level will be called as Level 1. By reducing the feature

sampling rate by a factor of f , one achieves time series of length T
f . Next, one computes an

optimal alignment warping path between two dimension-reduced time series on the resulting

resolution level (Level 2). The obtained path is projected onto highest level (Level 1) and

it defines a constraint region R. Lastly, an optimal alignment warping path relative to the

restricted area R is computed. In general, the overall number of cells to be computed in this

process is much smaller than the total number of cells on Level 1 (T 2). The constrained

warping path may not go along with the optimal alignment warping path. To mitigate this

problem, one can increase the constraint region R by adding δ cells to the left, right, top

and bottom of every cell in R. The resulting region Rδ will be called as δ-neighborhood of

R [ZM06]. Figure 1.8 demonstrates an example of multiscale DTW for alignment two time

series in the direction of reduce time and space complexity.

Figure 1.8: (a) The optimal alignment warp path on level 2. (b) The optimal alignment warp path

with respect to the constraint region R by projecting alignment path to level 1. (c) The optimal

alignment warp path with δ = 2

Finally, in spite of the great success of DTW and its variants in a diversity of domains,

there are still several persistent myths about it, as finding ways to speed up DTW with no

(or relaxed) constraints.

1.3.2 Behavior-based metrics

The second category of time series metrics concerns behavior-based metrics, where time series

are compared according to their behaviors regardless of their values. That is the case when

time series of a same class exhibit similar shape or behavior, and time series of different classes

have different shapes. Hence, comparing the time series on the base of their value may not be

valid assumption. In this context, we should define which time series are more similar together

and which ones are different. The definition of similar, opposite and different behaviors are

given as following.

Similar Behavior. Time series xi,xj are of similar behavior, if for each period [ti, ti+1],

i ∈ {1, ..., T}, they increase or decrease simultaneously with the same growth rate.
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Opposite Behavior. Time series xi,xj are of opposite behavior, if for each period

[ti, ti+1], i ∈ {1, ..., T}, when one time series increases, the other decreases with the same

growth rate in absolute value and vice-versa.

Different Behavior. Time series xi,xj are of different behavior, if they are not similar

nor opposite (linearly and stochastically independent).

Main techniques to recover time series behaviors are: slopes and derivatives comparison,

ranks comparison, Pearson and temporal correlation coefficient, and difference between

auto-correlation operators. In the following, we briefly describe some well-used behavior-based

metrics.

1.3.2.1 Pearson CORrelation coefficient (COR)

Let X = {x1, ...,xN} be a set of time series xi = (xi1, ..., xiT ) , i ∈ {1, ..., N}. The correlation

coefficient between sequences xi and xj is defined by:

cor(xi,xj) =

T∑

t=1

(xit − xi)(xjt − xj)

√
√
√
√

T∑

t=1

(xit − xi)
2

√
√
√
√

T∑

t=1

(xjt − xj)
2

(1.2)

and

xi =
1
T

T∑

t=1

xit

Correlation coefficient was first introduced by Bravais and later shown by Pearson [Pea96]

to be the best possible correlation between two time series. Till now, many applications

in different domains such as speech recognition, system design control, functional MRI and

gene expression analysis have used the Pearson correlation coefficient as a behavior proximity

measure between time series sequences [Mac+10]; [ENBJ05]; [AT10]; [Cab+07]; [RBK08].

The Pearson correlation coefficient changes between −1 and +1. The case COR = +1, called

perfect positive correlation, occurs when two time series sequences perfectly coincide, and the

case COR= −1, called the perfect negative correlation, occurs when two time series behave

completely opposite. COR= 0 shows that the time series sequences have different behavior.

Note that the higher correlation doesn’t conclude the similar dynamics.
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1.3.2.2 Temporal CORrelation coefficient (CORT)

To cope with temporal data, a variant of Pearson correlation coefficient, considering temporal

dependency within r, is proposed in [DCA12], called as Temporal CORrelation coefficient

(CORT). The authors considered an equivalent formula for the correlation coefficient relying

on pairwise values differences as:

cor(xi,xj) =

∑

t,t′

(xit − xit′ )(xjt − xjt′ )

√
∑

t,t′

(xit − xit′ )
2
√
∑

t,t′

(xjt − xjt′ )
2

(1.3)

One can see that the Pearson correlation coefficient assumes the independence of data

as based on the differences between all pairs of observations at [t, t′]; unlike, the behavior

proximity needs only to capture how they behave at [t, t+ r]. Therefore, the correlation

coefficient is biased by all of the remaining pairs of values observed at interval [t, t′] with

|t− t′| > r, r ∈ [1, ..., T − 1]. Temporal correlation coefficient defined as:

cort(xi,xj) =

∑

t,t′

mtt′(xit − xit′ )(xjt − xjt′ )

√
∑

t,t′

mtt′(xit − xit′ )
2
√
∑

t,t′

mtt′(xjt − xjt′ )
2

(1.4)

where mtt′ = 1 if |t− t′| ≤ r, otherwise 0. CORT belongs to the interval [−1,+1]. The value

CORT(xi,xj) = 1 means that in any observed period [t, t′], xi and xj have similar behaviors.

The value CORT(xi,xj) = −1 means that in any observed period [t, t′], xi and xj have

opposite behaviors. Lastly, CORT(xi,xj) = 0 indicates that the time series are stochastically

linearly independent. Temporal correlation is sensitive to noise. So, the parameter r can be

learned or fixed a priori, and for noisy time series higher value of r is advised.

Figure 1.9 illustrates the comparison of the Pearson correlation coefficient and the temporal

correlation coefficient between three samples time series.

Figure 1.9: Example of comparison of COR vs CORT (r = 1). COR(x1,x2) = – 0.90, COR(x1,x3)

= – 0.65, COR(x2,x3) = 0.87, CORT(x1,x2) = – 0.86, CORT(x1,x3) = – 0.71, CORT(x2,x3) = 0.93
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1.3.2.3 Difference between Auto-Correlation Operators (DACO)

Auto-correlation is a representation of the degree of similarity which measures the dependency

between a given time series and a shifted version of itself over successive time intervals. Let

X = {x1, ...,xN} be a set of time series xi = (xi1, ..., xiT ) i ∈ {1, ..., N}. The DACO between

the two time series xi and xj defined as [GHS11]:

daco(xi,xj) = ‖x̃i − x̃j‖
2 (1.5)

where,

x̃i = (ρ1(xi), ..., ρk(xi))

and

ρτ (xi) =

T−τ∑

t=1

(xit − xi)(xi(t+τ)
− xi)

T∑

t=1

(xit − xi)
2

and τ is the time lag. Therefore, DACO compares time series by computing the distance

between their dynamics, modeled by the auto-correlation operators. Note that the lower

DACO doesn’t represent the similar behavior.

1.3.3 Combined (Behavior-value-based) metrics

Considering the definition of time series basic metrics, the value-based one is based on the

differences between the values of the time series and does not consider the dynamics and

behaviors within the time series. Figure 1.10 shows two configurations: the left side, two time

series x1 and x2 are definitely opposed, a decrease of one corresponding to a growth of the

other and vice-versa. While the right side, the two series x1 and x3 are in the same direction,

but have variations in intensity and scale. However, the overall behavior is similar. But,

according to the definition of a value-based metrics, the time series x1 and x2 in left, have the

same distance (in Euclidean) with the two time series x1 and x3 in right.

Figure 1.10: Comparison of time series: similar in value, opposite in behavior (left), similar in

behavior (right)
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Most of the time, two time series sharing same configuration are considered close, even

though they have very different values, and vice-versa. Hence, choosing a proper metric can

be crucial and very important for the time series comparison. In some cases, several behavior

and value-based metrics may be implied. Some propositions show the benefit of involving both

behavior and value-based metrics through a combination function. Therefore, to compare the

time series and define a proximity measure covering both the behaviors and values components,

a weighted linear (or geometric) function combines behavior and value-based metrics. In this

context, they could be shown as:

BVLin(xi,xj) = α.V(xi,xj) + (1− α).B(xi,xj)

BVGeom(xi,xj) = (V(xi,xj))
α . (B(xi,xj))

(1−α)

where V and B is a value-based and behavior-based metrics, respectively. The parameter

α ∈ [0, 1] is a trade-off between the behavior and value-based components.

On the other hand, a time series may be considered in the spectral representations, which

means the time series may be similar because they share the same frequency characteristics.

Hence, in some application, the frequential-based metrics (e.g. wavelet transforms, fourier

transforms) will be used. More specific works to combine two different metrics through a

combination function proposed in [DCN07]; [DCA12].

1.4 Kernels for time series

Over the last ten years estimation and learning methods using kernels have become rather

popular to cope with non-linearities, particularly in machine learning. Kernel methods [HSS08]

have been proved useful to handle and analyze structured data such as images, graphs and

texts. They map the data from the original space (i.e. input space) via a nonlinear mapping

function Φ(.) to a higher dimensional feature space (i.e. Hilbert space), to discover nonlinear

patterns (see Figure 1.11). These methods formulate learning problems, in a reproducing

kernel Hilbert space, of functions defined on the data domain expanded in terms of a

kernel.

< Φ(xi),Φ(xj) > = κ(xi,xj)< xi,xj >

Linearly separable

Φ(x)

Feature SpaceOriginal Space
Linearly non-separable

Figure 1.11: Kernel trick: embed data into high dimension space (feature space)
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Usually, a kernel function κ(xi,xj) is used to directly provide the inner products in a

feature space without explicitly defining transformation. The kernel corresponds to the dot

product in a (usually high-dimensional) feature space. In this space, the estimation methods

are linear, but as long as we can formulate everything in terms of kernel evaluations, we

explicitly never have to compute in the high-dimensional feature space. Such inner products

can be viewed as measuring the similarity between samples. Let X = {x1, ..., xN} a set of

samples.

Gram matrix (or kernel matrix) of function κ with respect to the {x1, ..., xN} is a

N ×N matrix defined by:

K := [κ(xi, xj) ]ij

where κ is a kernel function. If we use algorithms that only depend on the Gram matrix, K,

then we never have to know (or compute) the actual features Φ. This is the crucial point of

kernel methods.

Positive definite matrix is a real N ×N symmetric matrix, that Kij satisfying:

∑

i,j

cicjKij > 0

for all ci ∈ R.

Positive semidefinite matrix is a real N × N symmetric matrix, that the Gram

matrix Kij satisfying:

∑

i,j

cicjKij ≥ 0

for all ci ∈ R. In the following, to simplify, will call them definite. if we really need > 0, we

will say strictly positive definite.

A symmetric function κ : X ×X → R which for all xi ∈ X, ∀i ∈ {1, ..., N} gives rise to a

positive definite Gram matrix is called a Positive definite kernel.

For time series, several kernels are proposed in the last years, properties of which will

be discussed later. Ideally, a useful kernel for time series should be both positive definite

and able to handle time series of structured data. Here, we refer positive definite kernels

as kernels. Note that, for simplicity, we have restricted ourselves to the case of real valued

kernels. The linear kernel is the simplest kernel function. It is given by the inner product

< xi,xj > plus an optional constant γ. A polynomial kernel allows us to model feature

conjunctions up to the order of the polynomial, whereas the Gaussian kernel is an example

of Radial Basis Function (RBF) kernel. In Table 1.1, some kernel function examples

are given.
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Linear Kernel κ(xi,xj) = (xT
i xj + γ)

Polynomial Kernel κ(xi,xj) = (α.xT
i xj + γ)δ

Gaussian Kernel κ(xi,xj) = exp(
||xi−xj ||

2

−2σ2 )

Table 1.1: Kernel function examples

The adjustable parameters σ, α, γ play a major role in the performance of the kernel, and

should be carefully tuned to the problem at hand. In the following, different methods to

compute the kernel similarity Gram matrix presented.

1.4.1 Temporal correlation coefficient kernel (κCORT)

cort(xi,xj), which is a behavior-based metric between two time series xi and xj and described

in Section 1.3.2.2, is a linear kernel and κCORT defined as a positive definite linear kernel as

following:

κCORT(xi,xj) = cort(xi,xj) =< △xi , △xj >

It is easy to prove that κCORT(xi,xj) can be constructed from inner products in appropriate

Hilbert spaces.

1.4.2 Auto-correlation kernel (κDACO)

To compare the dynamics of two actions Gaidon [GHS11] proposed to compute the distance

between their respective auto-correlations. This distance is defined as the Hilbert-Schmidt

norm of the difference between auto-correlations detailed in Section 1.3.2.3, and called as

associated Gaussian RBF kernel "Difference between Auto-Correlation Operators Kernel".

κDACO is defined by:

κDACO(xi,xj) = e

[
−1

σ2
daco(xi,xj)

]

κDACO is a positive definite Gaussian kernel, designed specifically for action recognition.

Notice that, both κCORT and κDACO are temporal kernels under Euclidean alignments. Under

time warp, time series should be first synchronized by dtw, then kernels applied. In the

following, we introduce the major well-known temporal kernels under dynamic time warping

alignment.
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1.4.3 Gaussian dynamic time warping kernel (κGDTW)

Following [BHB02], the dynamic time warping distance can be used as a pseudo negative

definite kernel to define a pseudo positive definite kernel. κGDTW is determined by:

κGDTW(xi,xj) = e

[
−1

t
dtw(xi,xj)

]

and using Sakoe-Chiba constrained dynamic time warping distance, κGDTWsc is defined by:

κGDTWsc(xi,xj) = e

[
−1

t
dtwsc(xi,xj)

]

where t is a normalization parameter, and sc is a Sakoe-Chiba band. As the DTW is not

a metric (invalid triangle inequality), one could fear that the resulting kernel lacks some

necessary properties. Hence, general positive definiteness can not be proven for κGDTW, as

simple counterexamples can be found. However, this kernel can produce good results in

some cases [HK02]; [DS02], but a problem of this approach is the quadratic computational

complexity [BHB02].

1.4.4 Dynamic time-alignment kernel (κDTAK)

The Dynamic Time-Alignment Kernel (κDTAK) proposed in [Shi+02] adjusts another similarity

measure between two time series by considering the arithmetic mean of the kernel values along

the alignment path. κDTAK, a pseudo positive definite kernel , is then defined by:

κDTAK(xi,xj) = max
π∈A

C(π)

where,

C(π) =
1

|π|

|π|
∑

l=1

φ(xiπ1(l), xjπ2(l)) =
1

|π|

|π|
∑

(t,t′)∈π

φ(xit, xjt′)

and

φ(xit, xjt′) = κσ(xit, xjt′) = e

[
−1

σ2
‖xit − xjt′‖

2

]

Dynamic time-alignment kernel function is complicated and difficult to analyze because

the input data is a vector sequence with variable length and non-linear time normalization

is embedded in the function. It performs DTW in the transformed feature space and finds

the optimal path that maximizes the accumulated similarity. Indeed, the local similarity used

for the κGDTW is the Euclidian distance, whereas the one used in κDTAK is the Gaussian

kernel value. κDTAK is a symmetric kernel function, however, in general, it may still be a

non positive definite kernel. Note that, in practice, several ad-hoc methods (e.g. perturb the

whole diagonal by the absolute of the smallest eigenvalue) are used to ensure the positive

definiteness, when the Gram matrix is not positive definite.
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1.4.5 Global alignment kernel (κGA)

In kernel methods, both large and small similarities matter, they all contribute to the Gram

matrix. Global Alignment kernel (κGA) [Cut+07] is not based on an optimal path chosen given

a criterion, but takes advantage of all score values spanned by all possible alignments. The

κGA which is positive definite under mild conditions 2, seems to do a better job of quantifying

all similarities coherently, because it considers all possible alignments. κGA is defined by:

κGA(xi,xj) =
∑

π∈A

|π|
∏

l=1

k(xiπ1(l), xjπ2(l))

where k(x, y) = e−λΦσ(x,y), factor λ > 0, and

Φσ(x, y) =
1

2σ2
‖x− y‖2 + log(2− e

−1

2σ2 ‖x−y‖2)

In the sense of kernel κGA, two sequences are similar not only if they have one single

alignment with high score, which results in a small DTW distance, but also share numerous

efficient and suitable alignments. Hence, the function Φσ is a negative definite kernel, it can be

scaled by a factor λ to define a local positive definite kernel e−λΦσ . Global alignment kernels

have been relatively successful in different application fields [JER09]; [RTZ10]; [VS10] and

shown to be competitive when compared with other kernels. However, similar to the κGDTW

and κDTAK kernels, it has quadratic complexity, O(pT 2), where T is the length of time series

and p denotes the complexity of the measure between aligned instants.

1.4.6 Triangular global alignment kernel (κTGA)

The idea of Sakoe-Chiba [SC78], to speed up the computation of DTW, applied to the κGA to

introduce fast global alignment kernels, named as Triangular Global Alignment kernels. κTGA

kernel [Cut11] considers a smaller subset of such alignments rather than κGA. It is faster to

compute and positive definite, and can be seen as trade-off between the full κGA (accurate

but slow) and a Sakoe-Chiba Gaussian kernel (fast but limited). This kernel is defined by:

κTGA(xi,xj) =
∑

π∈A

|π|
∏

l=1

k(xiπ1(l), xjπ2(l))

k(xiπ1(l), xjπ2(l)) =
wπ1(l),π2(l)kσ(xiπ1(l), xjπ2(l))

2− wπ1(l),π2(l)kσ(xiπ1(l), xjπ2(l))

where, w is a radial basis kernel in R (a triangular kernel for integers):

w(t, t′) =

(

1−
|t− t′|

c

)

2κGA is positive definite, if κ/(1 + κ) is positive definite.
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which guarantees that only the alignments π that are close to the diagonal are considered and

the parameters c is the Sakoe-Chiba bandwidth. Note that as c increases the κTGA converges

to the κGA.

In fact, many generic kernels (e.g. Gaussian kernels), as well as very specific ones, describe

different notions of similarity between time series, which do not correspond to any intuitive or

easily interpretable high-dimensional representation. They can be used to compute similarities

(or distances) in feature spaces using the mapping functions. Precisely, the class of kernels

that can be used is larger than those commonly used in the kernel methods which known as

positive definite kernels.

1.5 Conclusion

A large variety of real world applications, such as meteorology, geophysics and astrophysics,

collect observations that can be represented as time series. Time series data mining and time

series analysis can be exploited from research areas dealing with sequences and signals, such

as pattern recognition, image and signal processing. The main problem that arises during

time series analysis is comparison of time series.

There has been active research on quantification of the "similarity", the "dissimilarity" or

the "distance" between time series. Even, looking for the patterns and dependencies in the

visualizations of time series can be a very exhausting task and the aim of this work is to find

the more similar behavior time series, while the value-based proximity measures are the most

studied approaches to compare the time series. Most of the time, two time series sharing same

configuration are considered close, even they have very different values, their appearances are

similar in terms of form. In both comparison metrics, a crucial question is establishing what

we mean by "similar" or "dissimilar" time series due to the dynamic of the series (with or

without considering delay).

To handle and analysis non-linearly structured data, a simple way is to treat the time

series as vectors and simply employ a linear kernel or Radial basis function kernel. For this,

different kernels have been proposed. To discover non-linear patterns, they map the data from

the original input space to a higher dimensional feature space, called Hilbert space. They

can be used to compute similarity between the time series. Ideally, a useful kernel for time

series should be positive definite and able to handle the temporal data. Notice that, the

computational complexity of kernel construction and evaluation can play a critical role in

applying kernel methods to time series data.

In summary, finding a suitable proximity measure is a crucial aspect when dealing with

the time series (e.g. a kernel similarity, a similarity or dissimilarity measure, a distance),

that captures the essence of the time series according to the domain of application. For

example, Euclidean distance is commonly used due to its computational efficiency; however,

it is very brittle for time series and small shifts of one time series can result in huge distance

changes. Therefore, more sophisticated distances have been devised to be more robust to small
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fluctuations of the input time series. Notably, Dynamic Time Warping (DTW) has enjoyed

success in many areas where its time complexity is not an issue. Using the discussed distances

and (dis)similarity proximity measures, we will be able to compare time series and analyze

them. This can provide useful insights on the time series, before the averaging and centroid

estimation step. In the next chapter, we will discuss about averaging time series problems,

difficulties and complexities.





Chapter 2

Time series averaging and centroid
estimation
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Averaging a set of time series, under the frequently used dynamic time warping,

needs to address the problem of multiple temporal alignments, a challenging issue

in various domains. Under temporal metrics, one standard way to average two time

series is to synchronize them and average each pairwise temporal warping alignment.

To average more than two time series, the problem becomes more complex as one

needs to determine a multiple alignment that link simultaneously all the time series

on their commonly shared similar elements. In this chapter, we present initially the

definition of a consensus sequence and multiple temporal alignment problems, then

we review major progressive and iterative centroid estimation approaches under time

warp, and discuss their properties and complexities.

2.1 Introduction

Estimating the centroid of a set of time series is an essential task of many data analysis and

mining processes, as summarizing a set of time series, extracting temporal prototypes, or

clustering time series. Averaging a set of time series, under the frequently used dynamic time

warping [KL83]; [SK83] metric or its variants [Ita75]; [Rab89]; [SC78], needs to address the

tricky multiple temporal alignments problem, a challenging issue in various domains.

29
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Under time warp, one standard way to estimate the centroid of two time series is first

to synchronize them (to find the pairwise links), and then average each pairwise temporal

warping alignment. In this way, the centroid can be estimated as the average of the linked

elements as illustrated in Figure 2.1.
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Figure 2.1: Pairwise temporal warping alignment between x and y (left), the estimation of the

centroid c of time series x and time series y in the embedding Euclidean space (right). A dimension i

in the embedded Euclidean space identifies a pairwise link ai.

Averaging more than two time series under time warp is a very complex problem, because

we need to determine a multiple alignment that links simultaneously all the time series on

their commonly shared similar elements. That multiple alignment defines, similarly, a new

Euclidean embedding space where time series can be projected and the global centroid

estimated. Note that each dimension identifies, this time, a hyper link that connects more

than two elements. Finding the multiple temporal alignment of a set of time series or its

average sequence is a chicken-or-egg problem: knowing the average sequence under time warp

provides a multiple temporal alignment and vice-versa.

A first direct approach to determine a multiple alignment is to search, by dynamic

programming, the optimal path within an N-dimensional grid that crosses the N time

series. The complexity of this approach prevents its use, as it constitutes an NP-complete

problem with a complexity of O(TN ) that increases exponentially with the number of time

series N and the time series length T [CL88]; [Jus01]. A second manner, that characterizes

progressive approaches, is based on combining progressively pairs of time series centroids

to estimate the global centroid. Progressive approaches may however suffer from the error

propagation problem: Early errors propagate in all subsequent centroids through the pairwise

combinations. The third approach is iterative. It works similarly to the progressive approach

but reduces the error propagation by repeatedly refining the centroid and realigning it to

the initial time series. The progressive and iterative approaches for centroid estimation are

mainly derived from the multiple sequence alignment methods to address the challenging

problem of aligning more than two time series [CNH00]; [SLY06]; [THG94]. In general,

the main progressive and iterative approaches are of heuristic nature and are limited to

the dynamic time warping metric [SKDCG16a]. Here, we first introduce the definition of

pairwise time series averaging, prior to study the consensus sequence. Next, we review some

major progressive and iterative approaches for time series averaging under the dynamic time

warping to handle the tricky multiple temporal alignment problem.
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Definition 2.1

Under the dynamic time warping, given xi and xj and their dynamic time warping alignment

π
∗, the centroid c(xi,xj) is defined by averaging their aligned elements as follows:

c(xi,xj) = (Avg(xiπ∗
1(1)

, xjπ∗
2(1)

), ..., Avg(xiπ∗
1(m), xjπ∗

2(m)))

where Avg is a standard numerical averaging function.

Figure 2.2 illustrates the pairwise time series centroid estimation under the dynamic time

warping. Note that the length T ≤ m ≤ 2T − 1 of the centroid c(xi,xj) is generally higher

than the length of the centered time series.

Figure 2.2: Three possible alignments (paths) are displayed between xi and xj , π
∗ (the green one)

being the dynamic time warping one. The centroid c(xi,xj) = (c1, ..., c8) is defined as the average of

the linked elements through π
∗, with for instance c3 = Avg(xi2, xj3).

2.2 Consensus sequence

The time series comparison is a key point for many problems, as finding a consensus sequence

in molecular biology, bioinformatics or data mining. In the context of sequences, this term is

used with two meanings: i) the medoid sequence, ii) the average sequence of the set of time

series.

2.2.1 Medoid sequence

The concept refers to a formal definition, corresponding to a sequence in the center of a set

of time series. A medoid is a representative time series in a set that minimizes the sum of

distances (i.e. inertia) to all other time series within the same set. Figure 2.3 shows a medoid

as a consensus between some time series sequences.

In the context of (un)supervised learning, many algorithms require a method to represent

information from a set of time series in one and only one sequence. Algorithms like k-medoids
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Figure 2.3: Medoid as a prototype

are using the medoid of a set of objects, which is better in handling noises and outliers than

k-means. But, mostly in other algorithms we need to average a set of time series as an optimal

consensus.

2.2.2 Average sequence

Since our purpose is to define an average sequence minimizing the sum of distances to all

time series of a set (i.e. inertia), we give the definition of an average sequence when the

corresponding distance is DTW.

Definition 2.2

Let X = {x1, ...,xN} a set of time series xi = (xi1, ..., xiT ) i ∈ {1, ..., N}, and S is the space

of all time series sequences. ∀s ∈ S, the average sequence c should satisfy the following:

N∑

i=1

DTW(xi, c) ≤
N∑

i=1

DTW(xi, s)

Since no information on the length of the average sequence c is available, the search cannot

be limited to sequences of a given length, so all possible length values for averages have to be

considered. In the following, we will review some techniques used to determine the multiple

temporal alignment (and average) of a set of time series.

2.3 Multiple temporal alignments

Multiple temporal alignment of time series is an important problem with applications in many

scientific domains such as speech recognition [RJ93], computer graphics [BW95], astronomy

[Lis+05], computer vision [CI02], and bio-informatics [AC01]. The multiple temporal

alignment is computable by extending DTW for aligning N time series. This idea can be

generalized by computing DTW in a N -dimensional hypercube. Given this global alignment,

the consensus can be found by averaging column by column of the multiple alignments. Thus,

the first direct approach to determine a multiple temporal alignment is to search, by dynamic

programming, the optimal path within an N -dimensional grid that crosses the N time series.
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2.3.1 Dynamic programming

Dynamic programming is a direct method to determine a multiple temporal alignment by

search the optimal path within an N-dimensional grid that crosses the N time series. The

complexity of this approach prevents its use, as it constitutes an NP-complete problem with

a complexity of O(TN ) that increases exponentially with N the number of time series, and T

the time series length [CL88]; [Jus01].

The progressive and iterative approaches for averaging a set of time series are mostly

derived from the multiple sequence alignment methods to address the challenging problem of

aligning more than two time series [CNH00]; [SLY06]; [THG94]. To estimate the centroid of

more than two time series, several heuristic approaches have been proposed. In the following,

we review the main studies related to time series multiple temporal alignments as well as the

major progressive and iterative approaches for time series averaging under time warp.

2.3.2 Progressive approaches

The progressive approaches estimate the global centroid c by combining pairwise time series

centroids through different strategies. Here, we present the most well-known ones.

2.3.2.1 NonLinear Alignment and Averaging Filters (NLAAF)

In the past decades, many averaging appraoches have been introduced, but only a few of them

have been adapted to time series averaging, mining and clustering. For instance, Gupta et

al. in [GDMS96], proposed a time series averaging method based on a tournament scheme,

called "NonLinear Alignment and Averaging Filters (NLAAF)". First, pairs of time series

are selected randomly, and then aligned according to the DTW. That way, (N/2) 1 averaged

sequences are created. The same process is iterated on the estimated centroids , until only one

sequence is obtained as a global centroid. In this approach, the averaging method between

two time series is applied (N − 1) times, as illustrated in Figure 2.4, where c(xi,xj) refers to

the estimated centroid of time series xi and time series xj .

c(c(c(x1,x5),c(x3,x2)),c(c(x8,x4),c(x6,x7)))

c(c(x8,x4),c(x6,x7))

c(x6,x7)

x7x6

c(x8,x4)

x4x8

c(c(x1,x5),c(x3,x2))

c(x3,x2)

x2x3

c(x1,x5)

x5x1

Global centroid

Intermediate centroids

Randomize selection pairs

Figure 2.4: Centroid estimation by random pairwise centroid combination.

1N denotes the number of total times series to be averaged.
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In this method, each element of a centroid is computed as the mean of each linked elements

in the DTW alignment. The major drawback of NLAAF lies in the growth of its resulting

length, because each use of the averaging method can almost double the length of the average

sequence. As classical datasets comprise thousands of time series, with each one including

hundreds of data points, simply storing the resulting average may be impossible. This length

problem is moreover worsened by the quadratic computational complexity of DTW, that

grows bi-linearly with the lengths of the sequences. That is why NLAAF method is generally

used in conjunction with a process reducing length of the average, unfortunately leading to

information loss and unsatisfactory approximation. Additionally, the average strongly depends

on the random selection of time series and different choices lead to different results.

2.3.2.2 Prioritized Shape Averaging (PSA)

To avoid the bias induced by random selection, Niennattrakul et al. among others [THG94];

[NR07]; [NR09] proposed a framework of shape averaging called "Prioritized Shape Averaging

(PSA)" based on the hierarchical clustering. The pairwaise time series centering is guided by

the dendrogram obtained through the hierarchical clustering.

The PSA uses hierarchical clustering as a manner to identify priorities between time series.

In particular, to estimate the global centroid, the set is first clustered using the agglomerative

clustering to get a hierarchical relationship among the whole time series. The simple linkage

or complete linkage is considered in general to fasten the dendrogram build, where almost

the average linkage or centroids are the best-performed methods in result. Subsequently,

the pairwise time series centroids are combined respectively to their clustering order in the

dendrogram (see Figure 2.5).

x1 x5 x3 x2 x4 x1 x5 x3 x2 x4

c(x1,x5)

c(x2,x4)

c(c(x1,x5),x3)

c(c(c(x1,x5),x3),c(x2,x4))

Figure 2.5: Centroid estimation by centroid combination through clustering dendrogram.

Each parent node is averaged in a bottom-up manner using a weighted DTW averaging,

called SDTW 2. So, the most similar time series are averaged first. Note that the weight of an

averaged sequence is calculated from the number of the time series upon which the averaged

sequence is formed. Initially, all the time series have the same weight of one.

2Scaled Dynamic Time Warping
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An example of averaging six sample time series using PSA is described in Figure 2.6.

According to the dendrogram obtained thorough hierarchical clustering, first the time series

x2 and x3 are averaged. The average sequence denoted by c(x2,x3), has the weight of two.

Then, the intermediate centroid c(x1, c(x2,x3)) is computed by averaging the time series x1

and the average sequence c(x2,x3). The intermediate centroid c(x1, c(x2,x3)) will have the

weight of three, since the time series x1 and c(x2,x3) have weight of one and two, respectively.

The process continues till one obtains a global centroid.
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Figure 2.6: Example of six time series sequence averaging using PSA

Although this hierarchical averaging approach aims to remove the bias induced by random

selection, the growth length of the average sequence remains a problem. Additionally, local

averaging strategies like NLAAF or PSA may let an initial approximation error propagate

throughout the averaging process. If the averaging process has to be repeated (e.g. during

k-means clustering iterations), the effects may dramatically alter the quality of the result.

This is why a global averaging approach is desirable, where time series would be averaged all

together, with no sensitivity to their order of consideration.

2.3.2.3 Cross-Words Reference Template (CWRT)

A direct way to estimate the centroid is proposed by Abdulla [ACS03], where a dynamic time

warping between each time series and a reference one, generally the time series medoid, is

first performed. Each time series is then described in a representation space defined by the

reference medoid by resampling, stretching and shortening operations (see Figure 2.7). Finally

the global centroid c is computed by averaging the time-aligned time series across each point.

The approach is called "Cross-Words Reference Template (CWRT)".

The global estimated centroid c has the same length as the reference time series (e.g.

medoid), and the result does not depend on the order in which time series are processed. But

the method is a heuristic approach, with no guarantee of optimality.
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Figure 2.7: Centroid estimation based on a reference time series. The DTW is performed

between time series x1, x2 and the reference time series x3 (left). Time series x1 and x2 are

embedded in the space defined by x3 (right) where the global centroid is estimated, and ’avg’

is the standard mean function.

2.3.3 Iterative approaches

The progressive approaches described above suffer from the early error propagation through

the set of pairwise centering combinations. To avoid that, iterative approaches proceed

similarly to the progressive ones, but reduce the error propagation by repeatedly refining the

centroid and realigning it to the initial time series, until its stabilization [HNF08]; [PKG11].

2.3.3.1 Dtw Barycenter Averaging (DBA)

Petitjean et al. in [PKG11] proposed a global averaging method, called "Dtw Barycenter

Averaging (DBA)". The method consists in iteratively refining an initially average sequence

(potentially arbitrary), in order to minimize its distance to the set of time series. The aim is

to minimize inertia as the sum of squared DTW distances from the average sequence to the

set of time series. Technically, for each refinement iteration DBA works in two steps:

• Computing the DTW between each time series and the temporary average sequence to

find the temporal alignments.

• Updating each element of the average sequence with the barycenter of the elements

aligned to it during the first step.

Figure 2.8 shows three iterations of DBA on an example with two time series xi and xj , while

c is the global estimated centroid.

(iteration 1) (iteration 2) (iteration n)

xi

xj

xi

xj

xi

xj

c

Figure 2.8: DBA iteratively adjusting the average of two time series xi and xj
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In a nutshell, the DBA under time warp is a global approach that can average a set of time

series all together. The global estimated centroid has the same length as the initial average

sequence, and like CWRT, the result is not depending on the order of time series. However

the time complexity of DBA approach is smaller than NLAAF and PSA [PKG11], but the

time complexity problem remains.

All the progressive and iterative methods discussed in this chapter are heuristic, with no

guarantee of optimality [SKDCG15]; [SKDCG16a]. Lastly, if the provided approximations are

accurate for globally similar time series, they are in general poor for time series which share

local characteristics with distinctive global behaviors. To circumvent these problems, we pro-

posed in [SKDCG16b] a tractable fast centroid estimation that captures both global and local

temporal features under time warp measures. It formalizes the multiple time series averaging

problem as an optimization problem and proposes a solution yielding a local optimum. We

will discuss the details of that in next sections.

2.4 Conclusion

We have seen that most of the works on averaging a set of time series can be analyzed

along two dimensions: first, the way they consider the individual time series for averaging,

and second, the way they compute the elements of the resulting average sequences. These

two characteristics have proved useful to classify the existing time series averaging techniques.

They are also useful to expand new solutions. The main shortcoming of most existing methods

is their use of pairwise averaging. To compute the mean of N time series by pairwise averaging,

the order of time series influences the quality of the result. This is why a global averaging

approach is desirable, with no sensitivity to their order of consideration.

Let us summarize the main characteristics of the described above approaches. In both

NLAAF and PSA, the length of the global centroid increases with the number of time series

to be averaged. The length of the centroids estimated by CWRT or DBA is however the same

as the reference time series length. Furthermore, all the progressive and iterative approaches

are heuristic, with no guarantee of optimality. Lastly, even if the provided approximations are

accurate for globally similar time series, they are in general poor for time series that share

local characteristics with distinctive global behaviors.

In next chapter, we present the k-means clustering approach, the most popular clustering

algorithm, and its variations, prior to introduce the proposed fast and accurate centroid

estimation approach under time warp to capture both global and local temporal features and

its application in clustering.
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Earlier, the clustering techniques have been extensively applied in various domains

such as pattern recognition, signal processing, biology, and so forth. k-means based

clustering and all its variations, is among the most popular clustering algorithms.

To generalize k-means for temporal data, centroid estimation is a key issue because

it requires aligning multiple temporal data simultaneously. In addition, one needs

to consider a suitable time warp metric, capable to extract both global and local

characteristics of time series. But how can we define a good metric? How can we

use it in a proper way for centroid estimation ? and what is its applicable usage in

clustering?

In this chapter, the above questions are addressed through the following points: i)

an extension of the standard time warp measures to consider both global and local

temporal differences, ii) a tractable and fast estimation of the cluster representatives

based on the extended time warp measures, and iii) a generalization of k-means

clustering for temporal data under the extended time warp measures.

39
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3.1 Clustering: An introduction

Clustering is a fundamental task in data mining and can be considered as one of the most

important unsupervised learning problems. There is an increasing interest in the use of

clustering methods in machine learning, pattern recognition, image processing and information

retrieval. It has also a rich history in other disciplines such as biology, psychology, archaeology,

geology and marketing. The goal of clustering is to partition data points into homogeneous

groups (or clusters) in such a manner that similar data points are grouped together, while

different data points belong to different groups. Formally, the clustering structure is

represented as a set of clusters C = {C1, ..., Ck} of X, the set of data, such that:

⋃k
i=1Ci = X

and for all i 6= j;

Ci
⋂
Cj = ∅

The clustering methods can be classified according to: i) the type of input data to the

algorithm, ii) the clustering criteria defining the similarity, dissimilarity or distance between

data points, and iii) the theory and fundamental concepts. Consequently many clustering

algorithms have been proposed in the literature, each one uses a different scientific discipline.

Fraley and Raftery [FR98] suggest dividing the clustering algorithms into two main groups:

hierarchical and partitioning. Han and Kamber [HK01] propose categorizing the algorithms

into additional three main categories: density-based, model-based clustering and grid-based

methods. Hierarchical methods make the clusters by recursively partitioning the data points in

either a top-down or bottom-up manner. For example, in agglomerative hierarchical clustering,

each data point initially represents a cluster of its own. Then clusters are merged, according

to some similarity measure, until the desired cluster structure is obtained. The result of

this clustering method is a dendrogram. Density-based methods assume the data points that

belong to each cluster are drawn from a specific probability distribution [DE93]. The idea is to

continue growing the given cluster as long as the density (or the number of data points) in the

neighborhood exceeds some pre-defined threshold. The density-based methods are designed

for discovering clusters of arbitrary shape which are not necessarily convex. Model-based

clustering methods attempt to optimize the fit between the given data and some mathematical

models. These methods find characteristic descriptions for each group. The most frequently

used model-based clustering methods are decision trees and neural networks. Grid-based

methods partition the space into a finite number of cells that form a grid structure. All of the

operations for clustering are performed on the grid structure. The grid-based have the fastest

processing time that typically depends on the number of the grid instead of the data points

[HK01].

In this thesis, we mainly focus on partitioning methods, which use an iterative way to

create the clusters by moving data points from one cluster to another, based on a distance
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measure, starting from an initial partitioning. Such clustering methods typically require that

the number of clusters k will be pre-set by the user (e.g. elbow method1, see Figure 3.1).
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Figure 3.1: The elbow method suggests k=3 cluster solutions

k-means clustering is among the most popular clustering algorithms, as it provides a

good trade-off between quality of the solution obtained and its computational complexity

[AV07]. In the following, we review the major k-means based clustering algorithms and their

formalization, difficulties and complexities.

k-means

k-means algorithm is one of the most popular and simplest unsupervised clustering techniques

and it is commonly used in medical imaging, bio-metrics, computer vision, pattern recognition

and related fields. Even though k-means was first proposed over 50 years ago [BH65]; [Mac67],

it is still one of the most widely used algorithms for clustering.

Generally, k-means is a clustering method that aims to find k centroids, one for each cluster,

that minimize the sum of distance of each data point from its respective cluster centroid. It

solves, for xi ∈ X:

argmin
{C1,...,Ck}

k∑

j=1

∑

xi∈Cj

d(xi, cj) (3.1)

where (C1, ...,Ck) are k non-overlapping clusters, cj is the representative of cluster Cj , and

d is a distance function (e.g., Euclidean, DTW).

1The idea is this: run k-means clustering on the dataset for a range of values of k (start with k = 1),

and for each value of k compute the inertia as the sum of distances between each member of a cluster and its

centroid. Then, plot a line chart of this inertia for each value of k. If the line chart looks like an arm, then

the "elbow" on the arm is the value of k that is the best.
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Algorithm 1 k-means clustering (X, k)

Input: X = (x1,x2, ...,xN )

Input: k the number of clusters

Output: {c1, c2, ..., ck} (set of cluster centroids)

p = 0

Randomly choose k objects and make them as initial centroids ({c
(0)
1 , c

(0)
2 , ..., c

(0)
k })

repeat

Assign each data point to the cluster with the nearest centroid

p← p+ 1

// Centroid update

for j:=1 to k do

Update the centroid c
(p)
j of each cluster using Eq. 3.2

end for

until c
(p)
j ≈ c

(p−1)
j ∀j = 1, 2, ..., k

Return c1 , c2 , ... , ck

The k-means clustering is presented in Algorithm 1. To initialize the k-means, one needs

to specify the number of clusters k. The algorithm starts with an initial set of cluster centers

(i.e. centroids) {c1, c2, ..., ck}, chosen at random or according to some heuristic procedure.

The clustering algorithm uses an iterative refinement technique. In each iteration, each data

point is assigned to its nearest cluster centroid. Then the cluster centroids are re-calculated.

The centroid c, the center of each cluster, is calculated as the mean of all the data points

belonging to that cluster:

cj =
1

Nj

∑

xi∈clusterj

xi (3.2)

where Nj = |clusterj | is the number of data points belonging to cluster j.

The refinement steps are repeated until the centroids no longer move. The complexity of

each iteration of the k-means algorithm performed on N data points is O(k×N). This linear

complexity is one of the reasons for the popularity of the k-means clustering algorithms.

Even if the number of data points is substantially large, this algorithm is computationally

attractive. Other reasons for the k−means clustering algorithm’s popularity are simplicity of

implementation and speed of convergence. A proof of the finite convergence of the k-means

algorithms is given in [SI84]. However, it is shown that under certain conditions the algorithm

may fail to converge to a local minimum.

The standard k-means algorithm has some limitations. Firstly, the empty clusters can be

obtained if no data points are allocated to a cluster during the assignment step. There exists

several strategies to handle the empty clusters; such as choosing a data point from the cluster

with the highest within inertia, instead of the centroid of the empty cluster. Secondly, the

solution depends heavily on the initial cluster centroids, since the k-means cost function is

non-convex. Sometimes different initializations lead to very different final clustering results
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(see Figure 3.2). A simple but very popular solution for this problem is the use of multiple

runs (restarts), where the clusters centroids are randomly placed at different initial positions,

hence better local minima can be found. Still we have to decide on the number of restarts and

also we are never sure if the initializations are sufficient or not. In addition, the algorithm is

sensitive to the noises and outliers. Data points with extremely large values as outliers may

substantially distort the distribution of the data. k-medoids clustering which is more robust

than k-means in the presence of outliers will be discuss in the following.

Figure 3.2: k-means: different initializations lead to different clustering results

k-medoids

k-medoids clustering [KR87] is very similar to the k-means clustering algorithm. The major

difference between them is that: while a cluster is represented with its center in the k-means

algorithm, it is represented with the most centrally located data point in a cluster (i.e. medoid)

in the k-medoids clustering. k-medoids uses representative data points as reference points

instead of taking the mean value of the data points in each cluster [Zho+05]. The k-medoid

minimizes the sum of distance of each data point from its respective cluster medoid, which

solves:



44 Chapter 3. Generalized k-means for time series under time warp measures

argmin
{C1,...,Ck}

k∑

j=1

∑

xi∈Cj

d(xi,mj) (3.3)

where (C1, ...,Ck) are k non-overlapping clusters, mj is the medoid of cluster Cj , and d is a

distance function.

centroid1

centroid2

medoid1

medoid2

outliersoutliers

Figure 3.3: Outliers effect: k-means clustering (left) vs. k-medoids clustering (right)

Similarly to the k-means, the k-medoids clustering also requires to specify k, number of

desired clusters, in advance. Output results and runtime depend upon initial centroids for

both of these clustering methods. As we mentioned before, the k-medoids clustering is less

sensitive to noisy data and outliers than the k-means, because a medoid is less influenced

by noises, outliers or other extreme values than a mean (see Figure 3.3). But in general,

k-medoids computationally are much costlier than the k-means clustering. The complexity

of each iteration is O(k × (N − k)2), where N is number of data points and k is number of

clusters. In a simple way, the comparison between k-means and k-medoids illustrated in Table

3.1.

k-means k-medoids

complexity per iteration O(k ×N) complexity per iteration O(k × (N − k)2)

sensitive to noises and outliers less sensitive to noises and outliers

implementation of algorithm is easy implementation of algorithm is complicated

require to specify k require to specify k

comparatively more efficient comparatively less efficient

Table 3.1: Comparison between k-means and k-medoids

The most common realization of k-medoid is Partitioning Around Medoids (PAM) [KR90],

which is known to be the most powerful. The algorithm has two phases: i) in the first phase,

"Build", a collection of k data points are selected for an initial set of cluster medoids, ii) in

the second phase, "Swap", one tries to improve the quality of clustering by exchanging the



3.1. Clustering: An introduction 45

selected data points with non-selected data points. PAM clustering works effectively for small

datasets, but does not scale well for large datasets due to its complexity [NH94]; [JHT01]. To

deal with very large datasets, a sampling-based method, called CLARA (Clustering LARge

Applications) can be used. The CLARA chooses multiple samples of data, applies the PAM

clustering on each sample, and returns its best clustering as output [KR90]. Finally, the choice

of clustering algorithm depends both on the type of data and on the particular purpose and

application.

Kernel k-means

A major drawback to k-means clustering algorithm is that it does not work for non-linearly

separable clusters (see Figure 3.4). Kernel-based clustering techniques address this limitation

by introducing a kernel function to capture the non-linear structure in data.

Figure 3.4: Non-linearly separable clusters

Kernel k-means is an extension of standard k-means algorithm that maps data points from

the input space to a higher dimensional feature space through a non-linear transformation Φ

and minimizes the clustering error in the feature space [DWK05]. When k-means is applied in

this feature space, the linear separators in the feature space correspond to nonlinear separators

in the input space. So, separation and clustering may be easier in higher dimensional feature

space (see Figure 3.5).

Figure 3.5: The kernel trick - complex in low dimension (left), simple in higher dimension (right)
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Figure 3.6 shows the clustering result comparison between the k-means vs. the kernel

k-means clustering for a sample non-linear dataset.

Figure 3.6: k-means clustering (left) vs. kernel k-means clustering (right)

The objective function that kernel k-means tries to minimize is the clustering error in

feature space, and can be written as:

argmin
{C1,...,Ck}

k∑

j=1

∑

xi∈Cj

‖Φ(xi)−mj‖
2 (3.4)

while (C1, ...,Ck) are k clusters in feature space, Φ is a nonlinear transformation, and the

centroid or pre-image of cluster Cj is denoted by mj , defined as:

mj =
1

|Cj |

∑

xi∈Cj

Φ(xi) (3.5)

Note that, cluster centroids in the feature space cannot be computed. We don’t have explicit

knowledge of representations of transformation function Φ(.) and the inverse of Φ to map from

feature space back to input space typically does not exist (the pre-image problem). Therefore,

on can expand the minimization problem to solve it. If we expand the distance computation

‖Φ(xi)−mj‖
2 in the objective function (Eq. 3.4) by using the scalar product and the kernel

trick2, we obtain the following:

‖Φ(xi)−mj‖
2 =







Φ(xi).Φ(xi) −

2
∑

xi′∈Cj

Φ(xi).Φ(xi′)

|Cj |
+

∑

xi′ ,xi′′∈Cj

Φ(xi′).Φ(xi′′)

|Cj |2








(3.6)

Hence only inner products are used in the computation of the Euclidean distance between

a data point and a centroid of the cluster in the high-dimensional feature space. As a result,

if we are given a kernel matrix K, where Kij = κ(xi,xi′) = Φ(xi).Φ(xi′), the clustering can

be performed without knowing explicit representations of Φ(xi) and Φ(xi′).

2‖Φ(xi)− Φ(xj)‖
2 = κ(xi,xi)− 2κ(xi,xj) + κ(xj ,xj)
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While, kernel-based clustering algorithm can capture the nonlinear structure in data, they

do not scale well in term of speed and memory requirements when the number of data points

to be clustered exceeds of thousands. It requires computation and storage of N × N kernel

matrix in memory, rendering it non-scalable to large dataset. But, what is the largest number

of data points, N , that can be handled? Using an intel xeon e7-8837 processor machine,

octa-core, 2.8GHz, 4TB max memory, with N greater than one million data points, may take

several days to compute the kernel matrix alone. Thus, distributed and approximate versions

of kernel k-means clustering algorithms recommended to handle large datasets.

Since a large fraction of attention from the data mining community has focuses on temporal

data, of all the techniques applied clustering is perhaps the most frequently used, we are

interested in clustering temporal data in this thesis.

3.2 Motivation

Clustering time series is an important task in providing useful information in various

domain, and usually applied prior to any temporal data analysis or machine learning tasks,

to extract groups of time series and highlight the main underlying dynamics. Recently, it

has attracted huge concentration in the data mining community [BF98]; [WW00]; [KGP01];

[KLT03]. k-means-based clustering, viz. standard k-means, k-means++, and all its variations,

is among the most popular clustering algorithms, because it provides a good trade-off between

the quality of the solution obtained and its computational complexity [AV07]. However, the

k-means clustering of temporal data under the widely used dynamic time warping (DTW) or

the several well-established temporal kernels [BHB02]; [Cut11]; [Cut+07]; [KL83]; [Shi+02];

[MG14] is challenging, because estimating the cluster centroids requires aligning multiple

temporal data simultaneously. Such alignments, referred to as multiple sequence alignments

[CNH00]; [THG94], become computationally prohibitive, costly and impractical when the

data size increases. To do so, some progressive and iterative heuristics have been proposed

but are limited to the standard DTW and to the temporal data of the same global behavior

[ACS03]; [CNH00]; [PKG11]; [THG94]. For temporal data clustering, to bypass the centroid

estimation problem, the k-medoids and the kernel k-means [DGK04]; [Gir02] are generally

used [Lia05]. For the k-medoids, a medoid is a good representative of data that has the

same global dynamic (or behavior) but inappropriate for capturing local temporal features

[FDCG13]. For the kernel k-means, although efficient for non-linearly separable clusters since

centroids cannot be estimated in the Hilbert space, it refers to pairwise comparisons for the

cluster assignment step. While k-means-based clustering, of linear complexity, remains a fast

algorithm, the k-medoids and the kernel k-means clustering have a quadratic complexity due

to the pairwise comparisons involved.

In this chapter, we propose a fast and accurate approach that generalizes the k-means based

clustering algorithm for temporal data based on i) an extension of the standard time warp

measures to consider both global and local temporal differences and ii) a tractable and fast

estimation of the cluster representatives based on the extended time warp measures. Temporal
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data centroid estimation is formalized as a non-convex quadratic constrained optimization

problem. The developed solutions allow to estimate not only the temporal data centroid but

also its weighting vector, which indicates the representativeness of the centroid elements.

The solutions are particularly studied on four time warp measures that are commonly used in

practice: the standard dynamic time warping [KL83], the dynamic temporal alignment kernel

[Shi+02], the Gaussian dynamic time warping kernel [BHB02], and the global alignment kernel

[Cut+07]; [Cut11].

3.3 Problem statement

The k-means algorithm aims at providing a partition of a set of data points in distinct clusters

such that the inertia3 within each cluster is minimized. The k-means clustering algorithm was

originally developed with the Euclidean distance, the representative of each cluster being

defined as the center of gravity of the cluster. This algorithm can, however, be generalized to

arbitrary dissimilarities (resp. similarities) by replacing the representative update step with an

explicit optimization problem that yields, for each cluster, the representative that minimizes

(resp. maximizes) the total dissimilarity (resp. similarity) to all the data points of that cluster

[SI84]; [Has+05]; [HH08]. Here we focus on (dis)similarity measures between time series that

are based on time alignments because such measures (which encompass the standard dynamic

time warping and its variants/extensions) are the ones most commonly used in the literature.

In the following, X denotes a set of univariate discrete time series x = (x1, ..., xT ) of

assumed length T 4. An alignment π of length |π| between two time series is defined as the

sequence of couples of aligned elements of the two time series. Intuitively, an alignment π

between two time series describes a way to associate each element of one time series to one

or more elements of another time series and vice-versa. Such an alignment can be simply

represented by a path in the T × T grid, where the monotonicity conditions ensure that the

alignment path is neither going back nor jumping. We will denote A as the set of all the

alignments between two time series. For measures based on the time warp alignments, the

integration of a weighting vector allows one to differently weigh the different time stamps of

the series under consideration. This notion is used for the centroid (or representative) of each

cluster c = (c1, ..., cT ), which is no longer a simple data point (i.e. a simple time series) but

rather a time series with an associated weighting vector w = (w1, ..., wT ). The role of the

weight vector is to indicate, for each cluster centroid (or representative), the importance of

each time stamp, while this importance varying from cluster to cluster. Let d be a dissimilarity

measure defined on RT×(RT )2, such that d provides a measure of dissimilarity between a given

time series x and a weighted centroid (c,w). The generalized k-means clustering algorithm

aims to find a partition of the data points in k clusters (C1, ...,Ck) such that the intra-cluster

3Inertia is defined as the sum of distances between any data point in the cluster and the centroid (or

representative) of the cluster
4All the results can however be directly extended to multivariate time series, possibly of different lengths,

as the temporal alignments, at the core of the (dis)similarity measures we consider, can be defined in those

cases as well.
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dissimilarity is minimized. The associated minimization problem for x ∈ X can be written as:

argmin
{C1,...,Ck}

k∑

i=1

∑

x∈Ci

d(x, (ci,wi)) (3.7)

where (ci,wi) ∈ RT × RT , the weighted representative of cluster Ci, is defined by:







(ci,wi) = argmin
c ,w

∑

x∈Ci

d(x, (c,w))

subject to :

T∑

t=1

wt = 1, wt > 0, ∀t
(3.8)

where the given constraints guarantee that the problem is not degenerate. The generalized

k-means clustering algorithm, given in Algorithm 2, is a direct generalization of the standard

k-means algorithm in which the representative (or centroid) update step has been replaced

with a more general representative update step that does not rely on the Euclidean distance.

Algorithm 2 Generalized k-means clustering (X, k)

1: Input: X, k

2: Output: {C1, ...,Ck}
3: p = 0

4: Select k representatives {c
(p)
1 , ..., c

(p)
k }, either randomly or through strategies à la k-means++ [AV07]

5: repeat

6: Cluster assignment

C
(p)
i ← {x ∈ X | c

(p)
i = argmin

cj ,1≤j≤k

d(x, (c
(p)
j ,w

(p)
j ))}, 1 ≤ i ≤ k

7: Representative update

(c
(p+1)
i ,w

(p+1)
i )← h(C

(p)
i )

where the function h : P(X)→ RT × RT satisfies:

∑

x∈C
(p)
i

d(x, h(C
(p)
i )) ≤

∑

x∈C
(p)
i

d(x, (c
(p)
i ,w

(p)
i )) (3.9)

8: p← p+ 1

9: until all clusters {C1, ...,Ck} are stable

10: Return {C1, ...,Ck}

The function h (line 7 of Algorithm2), referred to as the representative function, provides,

from a set of time series points, a point in RT with an associated weighting vector (h : P(X)→

RT × RT ). As soon as the function h satisfies the condition expressed in Inequality (3.9),

the intra-cluster dissimilarity decreases in the representative update step. This decrease is

maximum when the function h is defined using Eq. (3.8)5. The intra-cluster dissimilarity also

decreases in the cluster assignment step, which is identical to the one used in the standard

k-means clustering algorithm. Thus the generalized k-means clustering algorithm provided

above converges [SI84]; [Has+05]; [HH08]. The above formulation can of course be adapted

5Depending on the dissimilarity measure used, it may not be possible to obtain the point that minimizes

Eq.(3.8), and therefore "looser" functions, based on Inequality (3.9), have to be considered.



50 Chapter 3. Generalized k-means for time series under time warp measures

to the similarity measures, by substituting the dissimilarity d with a similarity s and argmin

with argmax in Eqs. (3.7) and (3.8), and by considering representative estimation functions

h satisfying:

∑

x∈C
(p)
i

s(x, h(C
(p)
i )) ≥

∑

x∈C
(p)
i

s(x, (c
(p)
i ,w

(p)
i ))

This condition indicates that the solution obtained at iteration p, h(C
(p)
i ), should be better

than the solution which obtained at the previous iteration, (c
(p)
i ,w

(p)
i ). In the following, we

first give the definition of the extended time warp measures, and then under these metrics we

formalize the problem of centroid estimation in the representative update step.

3.4 Extended time warp measures

We focus in this thesis on four time warp measures that are commonly used in practice: the

Dynamic Time Warping (DTW) [KL83], which is a dissimilarity measure, the Dynamic

Temporal Alignment Kernel (κDTAK) [Shi+02], the Gaussian Dynamic Time Warping

(κGDTW) [BHB02], and the Global Alignment kernel (κGA) [Cut+07]; [Cut11], which are

three similarity measures and constitute a reference in kernel machines in several domains,

such as computer vision, speech recognition or machine learning [Nom02]; [Bai12]; [ZTH13].

To take into account both global and local temporal differences, we propose an extension

of the four measures with a weighted centroid, as discussed above. The extensions mainly

introduce a weighted warping function that guides the learned alignments according to the

representative (or centroid) elements importance to capture both global and local temporal

features [SKDCG16b].

3.4.1 Weighted dynamic time warping (WDTW)

Definition 3.1

The Weighted Dynamic Time Warping (WDTW) between the time series x and the weighted

time series (c,w) is defined by:

WDTW(x, (c,w)) = min
π∈A

1

|π|

∑

(t′,t)∈π

f(wt)ϕ(xt′ , ct)

︸ ︷︷ ︸

C(π)

(3.10)

= C(π∗)

where A (as before) is the set of all alignments possible between two time series, f : (0, 1]→ R+

is a non-increasing function and ϕ : R × R → R+ is a positive, real-valued, dissimilarity

function.
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The cost function C computes the sum of the weighted dissimilarities ϕ between x and

(c,w) through the alignment π. When the weights are uniform (or f is a constant function)

and when ϕ is the Euclidean distance, Eq. 3.10 corresponds to the well known Dynamic Time

Warping (DTW) [KL83]; [SK83]. The above definition thus generalizes the DTW to the case

where the different instants are weighted. The fact that f is non-increasing guarantees that

the most important instants (i.e. the instants with the higher weights) of the centroid c should

be privileged in the optimal alignment that minimizes the cost function C. Lastly, the optimal

alignment π
∗ is obtained through the same dynamic programming procedure as the one used

for the standard dynamic time warping.

Figure 3.7: Three possible alignments are displayed between x = (x1, ..., x7) and c = (c1, ..., c7)

and w = (w1, ..., w7) in the 7 × 7 grid. The value of each cell is the weighted divergence

f(wt)ϕt′t = f(wt)ϕ(xit′ , ct) between the aligned elements xt′ and ct. The optimal path π
∗ (the

green one) that minimizes the average weighted divergence is given by π1 = (1, 2, 2, 3, 4, 5, 6, 7) and

π2 = (1, 2, 3, 4, 4, 5, 6, 7).

The complexity of computing the extended time warp measure WDTW is O(T 2), because

the optimal alignment is obtained by dynamic programming6. However, one can speed it

up by considering instead of A, a subset of alignments usually around the diagonal [SC71];

[Ita75]; [SC78].

3.4.2 Weighted dynamic temporal alignment kernel (WKDTAK)

More recently, several DTW-based temporal kernels that allow one to process time series

with kernel machines have been introduced. The most common is the Dynamic Temporal

Alignment Kernel (κDTAK) [Shi+02]. Here, we propose an extension of the pseudo-positive

definite kernel κDTAK.

6T is length of each time series.
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Definition 3.2

The Weighted Dynamic Temporal Alignment Kernel (WKDTAK) between the time series x and

the weighted time series (c,w) is defined by:

WKDTAK(x, (c,w)) = max
π∈A

1

|π|

∑

(t′,t)∈π

f(wt)κ(xt′ , ct)

︸ ︷︷ ︸

Cκ(π)

(3.11)

= Cκ(π
∗)

where f : (0, 1] → R+ is a non-decreasing function and κ is a Gaussian kernel (e−
1

2σ2 ‖x−y‖2)

with an associated free parameter σ corresponding to the standard deviation which used to

measure the similarity between aligned elements.

When the weights are uniform (or the warping function f is a constant function) and when

κ is the standard Gaussian kernel, the Eq. 3.11 corresponds to the Dynamic Time Alignment

Kernel (κDTAK) introduced in [Shi+02]. The non-decreasing property of f ensures that the

most important instants are privilaged in the optimal alignment that maximizes the cost

function Cκ. The complexity of WKDTAK, similar to the WDTW, is quadratic in T , since the

optimal alignment is again obtained by dynamic programming.

3.4.3 Weighted Gaussian dynamic time warping (WKGDTW)

Definition 3.3

The Weighted Gaussian Dynamic Time Warping Kernel (WKGDTW) between the time series

x and the weighted time series (c,w) is defined by:

WKGDTW(x, (c,w)) = max
π∈A

exp




−1

λ

1

|π|

∑

(t′,t)∈π

f(wt) ϕ(xt′ , ct)





︸ ︷︷ ︸

Cκ(π)

(3.12)

= Cκ(π
∗)

where f : (0, 1]→ R+ is a non-increasing function and ϕ : R×R→ R+ is an Euclidean norm.

The cost function Ck computes the exponential of the weighted dynamic time warping

distance between x and (c,w) through the alignment π. When the weights are uniform (or f

is a constant function), Eq. 3.11 corresponds to the Gaussian Dynamic Time Warping kernel

(κGDTW) introduced in [BHB02].

As before, the optimal alignment π
∗ is obtained through the same dynamic programming

procedure as the one used for the standard dynamic time warping.
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3.4.4 Weighted kernel global alignment (WKGA)

Similarly, the extension of the Global Alignment kernel [Cut+07], which defines a true positive

definite kernel, under fair conditions, on the basis of all of the alignments π ∈ A, can be defined

as follows.

Definition 3.4

The Weighted Global Alignment Kernel (WKGA) between the time series x and the weighted

time series (c,w) is defined by:

WKGA(x, (c,w)) =
∑

π∈A

∏

(t′,t)∈π

f(wt)κ(xt′ , ct)

︸ ︷︷ ︸

Cκ(π)

(3.13)

= Cκ(π
∗)

where f : (0, 1] → R+ is a non-decreasing function and κ is a local similarity kernel induced

from the divergence ϕ as κ = e−λϕ.

The centroid c, with its weight vector w, of a set of time series X corresponds to the

weighted time series that minimizes (or maximizes) a dissimilarity (or similarity) measure

with all the elements of X. Considering respectively WDTW, WKDTAK, WKGDTW and

WKGA metrics defined above as dissimilarity and similarity measures, we obtain following

optimization problems, solutions of which correspond to the weighted centroids:






wdtw Problem

argmin
c ,w

g (c,w) = argmin
c ,w

N∑

i=1

wdtw(xi, (c,w))







wkdtak Problem

argmax
c ,w

gκ(c,w) = argmax
c ,w

N∑

i=1

wkdtak(xi, (c,w))







wkgdtw Problem

argmax
c ,w

gκ(c,w) = argmax
c ,w

N∑

i=1

wkgdtw(xi, (c,w))

and






wkga Problem

argmax
c ,w

gκ(c,w) = argmax
c ,w

N∑

i=1

wkga(xi, (c,w))

where π∗
i corresponds to the optimal alignment (i.e. the alignment of minimal cost for WDTW,

or maximal cost for WKDTAK, WKGDTW or WKGA) between the time series xi and the

weighted time series (c,w), obtained through dynamic programming, subject to:

∑T
t=1wt = 1 and wt > 0, ∀t



54 Chapter 3. Generalized k-means for time series under time warp measures

Depending on the choice of f and ϕ, the restriction of g to w with c and Π
∗ fixed, denoted

here g(w/c,Π∗) with Π
∗ = (π∗

1, ...,π
∗
N ), as well as the restriction of g to c with w and Π

∗ fixed

(denoted g(c/w,Π∗)), are not necessarily pseudo-convex7. This makes the WDTW problem

difficult to solve and even ill-posed. The standard alternating procedure, that would amount

here for the WDTW problem to alternately minimizing g(w/c,Π∗) and g(c/w,Π∗), is not

guaranteed to converge and to find a local minimum. The same is true for the WKDTAK ,

WKGDTW or WKGA problems, for which the pseudo-concavity of the functions gκ(w/c,Π∗)

and gκ(c/w,Π∗) depends on the choice of f and κ. We establish here a theorem, the proof of

which is given in Appendix A, that provides sufficient conditions on f and ϕ for the functions

g(w/c,Π∗) and g(c/w,Π∗) to be pseudo-convex.

Theorem 3.1

Let f : [0, 1] → R+ be the non-increasing function used in g, and let ϕ : R × R → R+ be the

positive, real-valued function used in g. Let us furthermore define:

Condition 1: ∀a ∈ [−1, 1], ∀x ∈ [0, 1],
∑∞

k=2
ak

k! f
(k)(x) ≥ 0

Condition 2: ∀(c, c′) ∈ R2, ∀x ∈ R,
∑∞

k=2
(c′−c)k

k!
∂kϕ(x,c)

∂ck
≥ 0

Then:

If Condition 1 holds, then g(w/c,Π∗) is pseudo-convex;

If Condition 2 holds, then g(c/w,Π∗) is pseudo-convex.

A similar theorem, also proven in Appendix A, can be established for f and κ, with

conditions on their form so that the functions gκ(w/c,Π∗) and gκ(c/w,Π∗) are pseudo-

concave.

Theorem 3.2

Let f : [0, 1] → R+ be the non-decreasing function used in gκ, let κ be the positive definite

symmetric kernel used in gκ and let Conditions 3 and 4 be defined as:

Condition 3: ∀a ∈ [−1, 1], ∀x ∈ [0, 1],
∑∞

k=2
ak

k! f
(k)(x) ≤ 0

Condition 4: ∀(c, c′) ∈ R2, ∀x ∈ R,
∑∞

k=2
(c′−c)k

k!
∂kκ(x,c)

∂ck
≤ 0

Then:

If Condition 3 holds, then gκ(w/c,Π∗) is pseudo-concave;

If Condition 4 holds, then gκ(c/w,Π∗) is pseudo-concave.

These theorems allow one to choose functions that guarantee that the alternating approach

to solve the WDTW, WKDTAK, WKGDTW or WKGA problems is well-defined and converges

towards local minima (for WDTW) and maxima (for WKDTAK, WKGDTW or WKGA). We

now proceed to the presentation of this alternating approach as well as of the functions we

have retained.

7This is typically the case if ϕ is concave. A pseudo-convex function is a function that behaves like a

convex function with respect to finding its local minima, but need not actually be convex.
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3.5 Centroid estimation formalization and solution

We describe here the general strategy followed to estimate the representatives (or centroids)

of a cluster of data points (X), prior to study the solution. This strategy leads to the four

extended time warp measures introduced above.

3.5.1 Representative update through alternative optimization

The problem given in Eq. 3.8 (and its maximization counterpart for similarity measures) can

be solved by alternatively minimizing (or maximizing) for c and w, with the other one being

fixed, and by recomputing the optimal alignment warping path when necessary. This strategy

is based on the following steps:

1. Set initial values for c and w and compute for these values Π
∗ = {π∗

x /x ∈ X}, where Π
∗

denotes the optimal alignments warping path between c and the time series in X.

2. Compute: argmin
c

∑

x∈X

d(x, (c,w)) (resp. argmax
c

∑

x∈X

s(x, (c,w)))

3. Compute: argmin
w

∑

x∈X

d(x, (c,w)) (resp. argmax
w

∑

x∈X

s(x, (c,w))),

subject to:

T∑

t=1

wt = 1 and wt > 0, ∀t

4. Compute Π
∗ for the values of c and w obtained in the previous steps

5. Go back to step 2 until c and w are stable.

Note that for WKGA, computing Π
∗ is not needed because this kernel is based on the sum

of all alignments. Steps 2, 3 and 4 lead to a decrease (resp. increase) in the overall dissimilarity

(resp. similarity) between the weighted centroid (c,w) considered at each iteration and the

data points in X. Indeed, each step respectively aims at finding values of c, w and π that

minimize (resp. maximize) the objective function, while the other quantities being fixed. Thus,

the above strategy defines an algorithm that converges, and the associated function, which

from X produces (c,w), is a valid representative function. The minimum (resp. maximum)

in steps 2 and 3 can be obtained by computing the partial derivatives w.r.t c and w and

either setting those partial derivatives to 0 and solving for c and w or using gradient descent

approaches. Depending on the convexity (resp. concavity) properties of the measures, the

minimum (resp. maximum) in step 2 and 3 may be local. This is not a problem per se

because the procedure still converges while decreasing (resp. increasing) the inertia between

the current pair (c,w) and the data points in X. Now, we study the application of this

strategy to each of the time warp measures retained by proposing the corresponding solutions.
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3.5.2 Solution for WDTW

The extended form of the dynamic time warping measure is defined as:

WDTW(x, (c,w)) = min
π∈A




1

|π|

∑

(t′,t)∈π

f(wt)ϕ(xt′ , ct)



 (3.14)

in which f(wt) is a non increasing warping function. The constraints,
∑T

t=1wt = 1 and wt > 0,

in the WDTW problem are based on quasi-concave functions (respectively an hyperplan and

identity functions). Thus provided, that the functions f and ϕ in g satisfy Conditions 1 and

2 of Theorem 3.1, the Karush-Kuhn-Tucker conditions hold and the optimization problems

in steps 2 and 3 can be solved with the method of Lagrange multipliers. At each step (2, 3

and 4), the function g is thus non-increasing and the overall procedure converges to a local

minimum of g. For the function ϕ, we use here the standard Euclidean distance. In this case,

Condition 2 of Theorem 3.1 amounts to

∞∑

k=2

(c′ − c)k

k!

∂kϕ(x, c)

∂ck
= (c− c′)2 > 0

as all the partial derivatives of order greater than 2 are null. ϕ thus satisfies condition 2. For

the function f , we consider here two different families:

f(x) =

{
x−α

e−αx

where α ∈ R+ controls the influence of the weighting scheme. The negative exponent

guarantees that the most important instants (i.e., those highly weighted) are privileged in the

optimal alignment that minimizes the WDTW. For α = 0, Eq. 3.14 leads to the standard

DTW.

The dominating term, for sufficiently smooth functions, in
∑∞

k=2
ak

k! f
(k)(x) used in

Condition 1 of Theorem 3.1 is obtained with the second order derivative (as a ∈ [−1, 1]).

Condition 1 thus amounts, for sufficiently smooth functions, to a convexity condition that is

satisfied by the two smooth families of functions above. The solution of step 2 can thus be

obtained by equating the partial derivative of g(c/w,Π∗) with respect to c to 0 and solving

for c. The following proposition, the proof of which is given in Appendix B, provides the form

of the solution obtained by doing so.

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, the function defined in Eq. 3.14 is

convex in c and the centroid (or representative) c that minimizes the sum of within cluster

dissimilarities is obtained by solving the partial derivative equation, leading to, ∀t, 1 ≤ t ≤ T :
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ct =

∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

xt′

∑

x∈X

|N(t,x)|

|π∗
x|

(3.15)

where π
∗
x denotes the optimal alignment path for x ∈ X and |N(t,x)| = {t′ / (t′, t) ∈ π

∗
x}

denotes the number of time instants of x aligned to time t of centroid c.

For step 3, the solution for weight estimation of WDTW is obtained by equating the

partial derivative of the Lagrangian of g(w/c,Π∗), subject to
∑T

t=1wt = 1 and wt > 0, ∀t,

with respect to w to 0 and solving for w. The following propositions, also proven in Appendix

B, provide the form of solutions obtained. Note that closed form solutions are obtained here

for both step 2 and 3. Given c = (c1, ..., cT ) and Π
∗ = {π∗

x /x ∈ X}, the weight vector w

that minimizes g(w/c,Π∗), ∀t, 1 ≤ t ≤ T is given by:

for f(x) = x−α;

wt =
A

1
1+α

t
T∑

t=1

A
1

1+α

t

for f(x) = e−αx;

wt =
1

α
log










At

(
T∏

t=1

At)
1/T










+
1

T

with

At =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

(xt′ − ct)
2 (3.16)

The solution to Eq. 3.8, corresponding to the representative update step of the generalized

k-means clustering algorithm (Algorithm 2), is thus finally obtained through Algorithm 3.
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Algorithm 3 Centroidwdtw

1: Input: X = {x1, ...,xN}
2: Output: (c,w)

3: Initialization:

• c(0) randomly selected from X

• w(0) = ( 1
T
, ..., 1

T
)

• Π
∗(0): optimal alignments between X and (c(0),w(0))

• p = 0

4: repeat

5: p← p+ 1

6: Update c
(p)
t using Eq. 3.15, 1 ≤ t ≤ T

7: Update w
(p)
t using Eq. 3.16, 1 ≤ t ≤ T

8: Update Π
∗(p): optimal alignments between X and (c(p),w(p))

9: until (c(p),w(p)) ≈ (c(p−1),w(p−1))

10: Return (c,w)

3.5.3 Solution for WKDTAK

The extension of the κDTAK is defined as:

WKDTAK(x, (c,w)) = max
π∈A




1

|π|

∑

(t′,t)∈π

f(wt)κ(xt′ , ct)



 (3.17)

where a Gaussian kernel (e−
1

2σ2 ‖x−y‖2) with an associated free parameter σ corresponding to

the standard deviation is used to measure the similarity between aligned elements. Similarly,

the constraints,
∑T

t=1wt = 1 and wt > 0, ∀t, provided that the functions f and κ in gκ
satisfy Conditions 3 and 4 of Theorem 3.2, the Karush-Kuhn-Tucker conditions hold and the

optimization problems in steps 2 and 3 can be solved with the method of Lagrange multipliers.

At each step (2, 3 and 4), the function gκ is thus non-decreasing and the overall procedure

converges to a local maximum of gκ. We consider here a simple gaussian kernel for κ, that is

at the basis of several DTW kernels, as in [Shi+02]; [Cut+07]; [ZTH08]; [Cut11]; [ZT12].

For the function f , we consider the two families of functions, which can be seen as the

counterpart of the functions used for WDTW:

f(x) =

{
xα α < 1

log(αx) α > 0

In this case, f is a non-decreasing warping function that ensures that the most important

instants are privileged in the optimal alignment. The standard κDTAK formulation is obtained

with α = 0. Note also that Eq. 3.17 can be viewed as a pre-image problem [HR11] that aims

at estimating the pre-image, in the input space, of the barycenter of the data points in the

feature space induced by the WKDTAK kernel.

As before, the dominating term, for sufficiently smooth functions, in
∑∞

k=2
ak

k! f
(k)(x) used

in Condition 3 of Theorem 3.2 is obtained with the second order derivative (as a ∈ [−1, 1]).
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Condition 3 thus amounts, for sufficiently smooth functions, to a concavity condition that is

satisfied by the two smooth families of functions above.

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, the function defined in Eq. 3.17 is

concave in c. The solution of step 2 can be thus be obtained by equating the partial derivative

of gκ(c/w,Π∗) with respect to c to 0 and solving to c. We however know of no closed-form

solution in this case, and resort to a stochastics gradient ascent method based on the following

update rules at iteration p:

c
(p+1)
t = c

(p)
t + η(p)

∂L

∂c
(p)
t

and

η(p+1) =
η(p)

p
(η(0) = 1)

with the partial derivative equation ∀t, 1 ≤ t ≤ T :

∂L

∂ct
=
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π
∗

x

f(wt)
(xt′ − ct)

σ2
e(−

(x
t′

−ct)
2

2σ2 ) (3.18)

where L is given by Eq. 3.17.

For the weights estimation, for step 3, the function defined in Eq. 3.17 is concave in w as

α ∈ [0; 1]. The solution of the partial derivative equation, obtained by equating the partial

derivative of the Lagrangian, integrating the constraints on w to 0, can easily be obtained

(proof is given in Appendix C). Given c = (c1, ..., cT ) and Π
∗ = {π∗

x /x ∈ X}, the weight

vector w that maximizes the sum of intra-cluster similarities subject to
∑T

t=1wt = 1 and

wt > 0, ∀t, is defined by:

for f(x) = xα;

wt =
A

1
1−α

t
T∑

t=1

A
1

1−α

t

for f(x) = log (αx);

wt =
At

T∑

t=1

At

with

At =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

e(−
(x

t′−ct)
2

2σ2 ) (3.19)
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Algorithm 4 Centroidwkdtak

1: Input: X = {x1, ...,xN}
2: Output: (c,w)

3: Initialization:

• c(0) randomly selected from X

• w(0) = ( 1
T
, ..., 1

T
)

• Π
∗(0): optimal alignments between X and (c(0),w(0))

• p = 0

4: repeat

5: p← p+ 1

6: // Update c
(p)
t , 1 ≤ t ≤ T :

7: q = 0, η = 1

8: repeat

9: q ← (q + 1), η ← η
q

10: c(q+1) ← c(q) + η ∂L
∂c

, with ∂L
∂c

given by Eq. 3.18

11: until ∂L
∂c
≈ 0

12: Update w
(p)
t using Eq. 3.19, 1 ≤ t ≤ T

13: Update Π
∗(p): optimal alignments between X and (c(p),w(p))

14: until (c(p),w(p)) ≈ (c(p−1),w(p−1))

15: Return (c,w)

Algorithm 4 summarizes the steps required to solve the centroid estimation problem

(Eq. 3.8) for WKDTAK, corresponding to the representative update step of the generalized

k-means algorithm. The gradient ascent steps for estimating centroid c correspond to lines 4

to 11.

3.5.4 Solution for WKGDTW

The extended form of the Gaussian dynamic time warping kernel is defined as:

WKDTAK(x, (c,w)) = max
π∈A










exp




−1

λ

1

|π∗|

∑

(t′,t)∈π
∗

f(wt) (xt′ − ct)
2





︸ ︷︷ ︸

A(w,c)










(3.20)

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, considering f(wt) a non-increasing

function, the solution can thus be obtained with the method of Lagrange multipliers. The

solutions for both centroid and weight estimation lead however to no closed form solutions,

and resort to a stochastic gradient ascent method based on the following update rules at

iteration p, for the centroid c:

c
(p+1)
t = c

(p)
t + η(p)

∂L

∂c
(p)
t
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and

η(p+1) =
η(p)

p
(η(0) = 1)

with

∂L

∂ct
=
−2

λ




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

f(wt)(ct − xt′′)



 . A(w, c)



 (3.21)

and for the weights vector w:

w
(p+1)
t = w

(p)
t + η(p)

∂Lw

∂c
(p)
t

and

η(p+1) =
η(p)

p
(η(0) = 1)

with

∂Lw

∂wt
=

α

λ
w

−(α+1)
t




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)





for f(x) = x−α, and

∂Lw

∂wt
=

α

λ
e(−αwt)




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)





(3.22)

for f(x) = e−αx.

The solutions, for step 2 and 3, are obtained by equating the partial derivative of the

Lagrangian (integrating the constraints) of gκ(c/w,Π∗) with respect to c to 0 and solving for

c and gκ(w/c,Π∗) with respect to w to 0 and solving for w. The proofs are given in Appendix

D. Algorithm 5 summarizes the steps to solve the centroid estimation problem (Eq. 3.8) for

WKGDTW. Both centroid and weight estimated by a gradiant ascent method.
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Algorithm 5 Centroidwkgdtw

1: Input: X = {x1, ...,xN}
2: Output: (c,w)

3: Initialization:

• c(0) randomly selected from X

• w(0) = ( 1
T
, ..., 1

T
)

• Π
∗(0): optimal alignments between X and (c(0),w(0))

• p = 0

4: repeat

5: p← p+ 1

6: // Centroid update

7: c
(p)
t ← Gradient-Ascent(c

(p−1)
t , w

(p−1)
t , Π∗(p−1)), 1 ≤ t ≤ T

8: // Weight update

9: w
(p)
t ← Gradient-Ascent(c

(p)
t , w

(p−1)
t , Π∗(p−1)), 1 ≤ t ≤ T

10: // Alignment update

11: Π
∗(p): optimal alignments between X and (c(p),w(p))

12: until gκ(c
(p),w(p)) ≈ gκ(c

(p−1),w(p−1))

13: Return (c,w)

3.5.5 The case of WKGA

The extension of the κGA, for f(wt) = wα
t , is defined as:

WKGA(x, (c,w)) =
∑

π∈A

∏

(t′,t)∈π

wα
t e−λΦ(xt′ ,ct) (3.23)

with

Φ(xt′ , ct) =
1

2σ2
‖xt′ − ct‖

2 + log(2− e−
1

2σ2 ‖xt′ − ct‖2)

where, similar to the WKDTAK, a Gaussian kernel is used as the similarity measure between

aligned elements. α plays the same role as before and lies again in interval [0; 1]. The parameter

λ is used to attenuate the diagonal dominance problem which arises mainly for time series

of significantly different lengths. Although diagonal dominance leads to the positive definite

Gram matrices, it reduces the performance of the measure in practice. Lastly, the complexity

of WKGA is similar to that of WDTW, WKDTAK and WKGDTW as one can rely on a recurrence

formula to estimate the cost of a given pair (t′, t) on the basis of the costs of the three previous

pairs (t′−1, t), (t′−1, t−1) and (t′, t−1) [Cut+07]; [Cut11]. As for WKDTAK and WKGDTW

the time computation can be reduced by considering only a subset of alignments; for WKGA,

a fastest version exists based on a pairing of Gaussian and triangular kernels [Cut11].
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Given w = (w1, ..., wT ), the partial derivative of WKGA for updating the centroid c is,

∀t, 1 ≤ t ≤ T :

∂L

∂ct
=
∑

x∈X

∑

π∈A




∑

(t′,t)∈π

−
(xt′ − ct)

σ2 (2− e
−1

2σ2 (xt′−ct)2)



×
∏

(t′,t)∈π

wα
t e−λΦ(xt′ , ct) (3.24)

where Φ(xt′ , ct) and L correspond to Eq. 3.23. We know that there is no closed-form solution

to the equation ∂L
∂ct

= 0. More importantly, the computation of the above derivative given

in Eq. 3.24 cannot benefit from the recurrence formulas of WKGA, which ensure an efficient

computation of the measure (see proofs in Appendix E). Thus, if we want to use gradient

ascend methods, we need to compute the scores associated with each alignment and sum

them, which is impractical in situations where T is large (more than a few tens). For this

reason, we will not use WKGA in generalized k-means.

In the remainder of this thesis, for the experiments, we thus focus on the following extended

(dis)similarity measures for time series: 1) WDTW as defined by Eq. 3.14, 2) WKDTAK as

defined by Eq. 3.17, and 3) WKGDTW as defined by Eq. 3.20.

3.6 Conclusion

The k-means-based clustering is among the most popular clustering algorithms, because it

provides a good trade-off between the quality of solution obtained and its computational

complexity. However, the k-means clustering of temporal data under the widely used dynamic

time warping or temporal kernels is challenging, because estimating cluster centroids requires

aligning multiple temporal data simultaneously. Such alignments, become computationally

prohibitive, costly and impractical when the data size increases. For temporal data clustering,

to bypass the centroid estimation problem, the k-medoids and the kernel k-means are generally

used. But, while k-means-based clustering of linear complexity, remains a fast algorithm, the

k-medoids and kernel k-means clustering have a quadratic complexity due to the pairwise

comparisons involved.

Here, we introduced a generalized centroid-based clustering algorithm for temporal data

under time warp measures. For this, we proposed an extension of the common time warp

measures to capture both global and local differences, and a tractable, fast and efficient

estimation of the cluster centroids, under the extended time warp measures. This cluster

centroid estimation is formalized as a quadratic constrained optimization problem. Finally,

the developed solutions allow for estimating not only the temporal data centroid but also its

weight vector, which indicates the importance of centroid’s elements. The solutions generalize

the averaging problem to time series of distinct behaviors that share local characteristics,

through several warping functions.
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In this chapter, we first describe the datasets retained to conduct our experiments

to evaluate the effectiveness of the proposed approach, then specify the validation

process, prior to present and discuss about the results obtained. Later, we mainly

compare the proposed generalized k-means algorithm based on the extended time

warp measures, to the alternative k-means clustering, standard k-medoids and kernel

k-means clustering approaches. A wide range of datasets is used to evaluate the

efficiency of the proposed approach, in the context of classification. The quantitative

evaluation is finally completed by a visualization and qualitative comparison of the

centroids obtained.

4.1 Data description

Our experiments are conducted on 24 public datasets1. The classes composing the datasets

are known in advance and define the ground truth partitions. The experimentations are first

carried out on standard well-known datasets, which define a favorable case for the averaging

and clustering task as time series behave similarly within classes (e.g. cbf, cc and gunpoint),

as illustrated in Figure 4.1. We then consider more complex datasets (e.g. bme, umd and

consseason). The second type of datasets is more challenging: a) it is related to time series

that have different global behaviors within classes, while still sharing local characteristics, b)

the commonly shared characteristics may appear at varying time stamps within the classes,

1umd, bme at http://ama.liglab.fr/~douzal/tools.html, the rest of the data at http://www.cs.ucr.

edu/~eamonn/time_series_data/

65

http://ama.liglab.fr/~douzal/tools.html
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/


66 Chapter 4. Experimental study

and c) be hidden by noise (see Figure 4.2). For example, bme includes two challenging classes

begin and end characterized by a small bell arising at the initial and final period respectively.

The overall behavior may be different depending on whether the large bell is pointing upward

or downward. umd introduces more complexity with the classes up and down characterized

by a small bell that may occur at different time stamps.

Figure 4.1: The time series behaviors within the classes "Funnel", "Cyclic" and "Gun" of the datasets

cbf, cc and gunpoint, respectively.

Figure 4.2: The time series behaviors within the classes "Begin", "Down" and "Warm" of the datasets

bme, umd and consseason, respectively.

To characterize these datasets, and because clustering methods such as k-means algorithms

are known to be more efficient when the clusters are isotropic (i.e. spherical) and well isolated,

for each dataset we computed the Bartlett’s test of sphericity2 [CL71]; [Jac93] as well as the

isolation ratio. The isotropy is measured as the average of Bartlett’s p-values for each cluster,

as the p-value corresponds to the probability of being spherical. The cluster isolation ratio

corresponds to the ratio of the sum of the dynamic time warping dissimilarities within clusters

to the total DTW dissimilarities. The lower isolation ratio indicates the more isolated clusters.

Table 4.1 describes the datasets considered, with their main characteristics: number of clusters

(k), number of time series as dataset size (N), time series length (T ), p-values for the isotropy

and an isolation ratio. In particular, Bartlett’s p-values ≤ 0.15 indicative of non-isotropic

datasets, and isolation ratio ≥ 0.2, indicative of non-well-isolated datasets, are in bold. For

instance, twopatterns is composed of clusters that are globally non-spherical but reasonably

well-isolated, whereas yoga clusters are relatively spherical but not well-isolated. As one can

note from the Bartlett’s p-values and isolation ratios displayed in Table 4.1, most of the

datasets considered are composed of clusters that are either non-isotropic or not well-isolated

(or both) and are thus challenging for the k-means and kernel k-means clustering algorithms

[Gir02]. In addition, to visualize the underlying structure of the datasets, we performed

a multidimensional scaling3 [CC01] on the DTW pairwise dissimilarity matrix. Figure 4.3

2Barspher Matlab function
3mdscale Matlab function
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displays the cluster structures on the first plan; with a stress4 lower than 20%, while the

representations obtained can be considered as accurate images of the underlying structures.

Finally, as one can note, the datasets retained have very diverse structures (and shapes) and

many of them are not linearly separable.

Figure 4.3: Structures underlying datasets

4Stress is defined as the error between the distances induced by the first plan and the original dissimilarities.
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Class Nb. Size(Train) Size(Test) TS. length Isotropy Isolation

k N N T (p-value, std.) ratio

adiac 37 390 391 176 (0.34, 0.31) 0.01
beef 5 30 30 470 (0.30, 0.35) 0.05
bme 3 30 150 128 (0.00, 0.00) 0.25
car 4 60 60 577 (0.08, 0.06) 0.20
cbf 3 30 900 128 (0.00, 0.00) 0.23
cc 6 300 300 60 (0.06, 0.11) 0.05
coffee 2 28 28 286 (0.46, 0.18) 0.48
consseason 2 180 180 144 (0.19, 0.18) 0.48
ecg200 2 100 100 96 (0.53, 0.27) 0.50
facefour 4 24 88 350 (0.39, 0.46) 0.19
fish 7 175 175 463 (0.32, 0.33) 0.09
gunpoint 2 50 150 150 (0.24, 0.34) 0.49
lighting2 2 60 61 637 (0.42, 0.59) 0.52
lighting7 7 70 73 319 (0.23, 0.30) 0.08
medicalimages 10 381 760 99 (0.02, 0.03) 0.29
oliveoil 4 30 30 570 (0.29, 0.30) 0.15
osuleaf 6 200 242 427 (0.29, 0.29) 0.16
plane 7 105 105 144 (0.14, 0.24) 0.01
swedishleaf 15 500 625 128 (0.13, 0.28) 0.03
symboles 6 25 995 398 (0.31, 0.36) 0.01
trace 4 100 100 275 (0.15, 0.23) 0.00
twopatterns 4 100 400 128 (0.17, 0.26) 0.10
umd 3 36 144 150 (0.00, 0.00) 0.20
yoga 2 30 300 426 (0.29, 0.04) 0.50

Table 4.1: Data description

4.2 Validation process

We compare here the proposed generalized k-means-based clustering algorithm (denoted as

Gk-means) with the k-means based on the four well-known averaging methods (i.e., NLAAF,

PSA, CWRT and DBA), k-medoids (k-med) under Euclidean and the standard DTW, and

kernel k-means5 (Kk-means) based on Euclidean, the standard κGDTW, κDTAK, κGA and

κTGA. We focus here on the above approaches because they constitute the most frequently

used variants of the k-means for time series clustering. As mentioned earlier, the k-medoids

and the kernel k-means clustering algorithms are mainly used to bypass the centroid estimation

process required by k-means with time warp measures. For our comparison, we rely on the

Rand index6 [Ran71], which measures the agreement between the obtained clusters and the

ground truth ones, to evaluate each method. The Rand index lies in [0, 1] and the higher

index, the better the agreement is. In particular, the maximal value of Rand index, 1, is

reached when the clusters (or partitions) are identical. For all the methods, the parameters

taken within a validation set through a standard line/grid search process, as described in

Table 4.2, and the parameters retained are the ones that maximize the Rand index on the

validation set. Finally, the results reported hereafter are averaged after 10 repetitions of the

corresponding algorithm. Because κGDTW and κDTAK are not strictly definite positive kernels

[Cut+07]; [Cut11], we systematically added a scaled identity matrix δ I to the Gram matrices

with negative eigenvalues, while δ is the absolute value of the smallest negative eigenvalue and

5kmedoids, kernelkmeans Matlab functions
6RandIndex Matlab function
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Method Metric Line / Grid values

Kernel kgdtw t ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(dtw(x,y))

k-means kdtak σ ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(‖x− y‖)
kga σ ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(‖x− y‖) , λ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10}
ktga σ ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(‖x− y‖) , c ∈ {0.25, 0.5} ⊙ med(‖x‖)

Generelized wdtw α ∈ {10−2, 10−1, 100}
k-means wkgdtw α ∈ {10−2, 10−1, 100} , t ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(dtw(x,y))

wkdtak α ∈ {10−2, 10−1, 100} , σ ∈ {0.2, 0.5, 1, 2, 5} ⊙ med(‖x− y‖)

Table 4.2: Parameter Line / Grid: The ⊙ multiplication operator is element-wise (e.g. {1, 2, 3} ⊙
med = {med, 2med, 3med}). med(x) stands for the empirical median of x evaluated on the valida-

tion set and x and y are vectors sampled randomly within time series in the validation set.

I is the identity matrix. For κGA method, the estimated value of the regularization parameter

λ ≈ 1 demonstrates that the problem of diagonal dominance has not been encountered for the

retained datasets.

4.3 Experimental results

4.3.1 Results for time series clustering

In the context of clustering, the Rand indices and time consumptions for each method, on

each dataset, are reported in Tables 4.3 and 4.4, respectively. Results in bold correspond to

the best values, while the statistically significantly lower or higher ones (two-sided t-test at

5% risk),respectively, are shown with the down or up arrows.

Based on the Rand indices displayed in Table 4.3, one can note that Gk-means clustering

method with WDTW leads to the best clustering results overall (23 datasets out of 24),

followed by Gk-means method with WKDTAK . Furthermore, the clustering approaches based

on Gk-means introduced here outperform k-medoids and kernel k-means clustering almost

on all datasets. Table 4.4 shows that Gk-means with WDTW leads almost to the fastest

clustering method (18 datasets out of 24).

Impact of isotropy and isolation on clustering quality

Two most challenging datasets are apparently umd and bme, with almost the lowest Rand

indices varying in [0.52, 0.62] for k-means, k-medoids and kernel k-means and in [0.60, 0.69]

for Gk-means clustering methods. In addition, umd and bme are composed of weakly

isolated and weakly spherical classes (see Table 4.1), include time series of distinct global

behaviors within clusters [FDCG13]. Figure 4.4 shows the time series behaviors within the

three classes begin, middle and end of dataset bme, and Figure 4.5 illustrates the time

series behaviors within the three classes up, middle and down of dataset umd. Thus they

require a similarity or dissimilarity measure able to capture the commonly shared features

within clusters. Gk-means clustering method, by relying on weighted centroids, can capture
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the characteristics shared locally within the clusters and improves the performances over the

standard clustering methods, which fail to capture such local features.

Figure 4.4: The time series behaviors within the three classes of dataset bme

Figure 4.5: The time series behaviors within the three classes of dataset umd

The second category of challenging datasets consists of coffee, ecg200 ,gunpoint,

lighting2 and yoga and is composed of weakly isolated but highly (or mildly) spherical

clusters (see Table 4.1). All the k-means clustering, k-medoids and kernel k-means methods

lead to weak clustering results with a Rand index lying in [0.48, 0.59], where the Gk-means

clustering (with WDTW) leads to noticeably better clustering performances with a Rand

index in [0.60, 0.72]. A third category of datasets is defined by car, cbf and medicalimages

is composed of mildly isolated but weakly spherical (or isotropic) clusters. Although k-means

clustering, k-medoids and kernel k-means methods yield reasonable clustering performances,

with a Rand index in [0.50, 0.74], the Gk-means clustering (with WDTW) yields the best

clustering results with a Rand index in [0.77, 0.87]. For the remaining datasets, composed

of highly isolated and highly (or mildly) spherical clusters, good clustering results (Rand

index in [0.54, 0.97]) are obtained using k-means clustering, k-medoids and kernel k-means

methods, but are improved almost significantly by using Gk-means clustering (with WDTW)

with a Rand index in [0.75, 0.98]. From the above results, we can obtain that all the k-means

clustering, k-medoids and kernel k-means methods provide relatively good results even when

the clusters are non-spherical (or non-isotropic); however, they are limited when the clusters

are non-isolated. By contrast, Gk-means clustering with WDTW obtains very good clustering

performances on all datasets, particularly on challenging datasets composed of clusters that

are both non-spherical and not well-isolated.
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Kernel k-means k-medoid k-means Generalized k-means
(Kk-means) (k-med) nlaaf psa cwrt dba (Gk-means)

rbf kgdtw kgdtwsc kdtak kdtaksc kga ktga ed dtw dtwsc dtw dtw dtw dtw wdtw wkdtak wkgdtw

adiac 0.749↓ 0.916↓ 0.922↓ 0.915↓ 0.932 0.876↓ 0.920↓ 0.943 0.952 0.950 0.867↓ 0.909↓ 0.911↓ 0.939 0.958 0.950 0.944
beef 0.717 0.726 0.694 0.735 0.708 0.737 0.694 0.689 0.710 0.712 0.677 0.733 0.712 0.735 0.752 0.738 0.699
bme 0.600 0.597 0.603 0.584 0.599 0.615 0.581 0.602 0.609 0.603 0.524↓ 0.551↓ 0.563 0.574 0.668 0.605 0.626
car 0.699 0.672 0.694 0.565↓ 0.577↓ 0.493↓ 0.558↓ 0.688 0.584↓ 0.649 0.635 0.694 0.567↓ 0.650 0.775 0.712 0.701
cbf 0.675↓ 0.688↓ 0.677↓ 0.712↓ 0.706↓ 0.739 0.702↓ 0.666↓ 0.712↓ 0.706↓ 0.652↓ 0.708↓ 0.692↓ 0.740 0.769 0.755 0.709↓
cc 0.755↓ 0.789↓ 0.773↓ 0.812↓ 0.810↓ 0.804↓ 0.792↓ 0.818↓ 0.897 0.877↓ 0.714↓ 0.805↓ 0.793↓ 0.889↓ 0.935 0.909 0.902
coffee 0.484 0.492 0.505 0.505 0.484 0.547 0.492 0.484 0.484 0.484 0.484 0.547 0.492 0.492 0.605 0.563 0.558
consseason 0.769 0.709 0.679↓ 0.735 0.728 0.770 0.678↓ 0.692↓ 0.703 0.701↓ 0.617↓ 0.709 0.597↓ 0.618↓ 0.792 0.750 0.732
ecg200 0.564 0.560 0.575 0.578 0.583 0.590 0.576 0.544 0.519↓ 0.584 0.505↓ 0.524 0.507↓ 0.534 0.658 0.608 0.553
facefour 0.719 0.742 0.714 0.744 0.707 0.697 0.539↓ 0.721 0.714 0.619↓ 0.590↓ 0.613↓ 0.629↓ 0.677↓ 0.816 0.774 0.749
fish 0.707↓ 0.800↓ 0.825 0.828 0.802↓ 0.844 0.822 0.624↓ 0.768↓ 0.766↓ 0.708↓ 0.779↓ 0.766↓ 0.807↓ 0.893 0.839 0.827
gunpoint 0.503↓ 0.495↓ 0.498↓ 0.502↓ 0.499↓ 0.497↓ 0.503↓ 0.548↓ 0.497↓ 0.497↓ 0.491↓ 0.497↓ 0.497↓ 0.517↓ 0.719 0.761 0.529↓
lighting2 0.511↓ 0.531↓ 0.499↓ 0.503↓ 0.508↓ 0.496↓ 0.492↓ 0.536↓ 0.563 0.495↓ 0.495↓ 0.522↓ 0.522↓ 0.531↓ 0.718 0.540↓ 0.533↓
lighting7 0.793 0.801 0.820 0.827 0.816 0.815 0.818 0.802 0.816 0.816 0.788 0.806 0.794 0.839 0.881 0.835 0.829
medicalimages 0.671↓ 0.689↓ 0.681↓ 0.688↓ 0.677↓ 0.683↓ 0.591↓ 0.672↓ 0.682↓ 0.669↓ 0.577↓ 0.625↓ 0.675↓ 0.690↓ 0.866 0.699↓ 0.702↓
oliveoil 0.825 0.827 0.806 0.832 0.797 0.826 0.814 0.747 0.793 0.797 0.703 0.819 0.723 0.767 0.848 0.833 0.820
osuleaf 0.713↓ 0.751↓ 0.748↓ 0.752↓ 0.755↓ 0.772↓ 0.744↓ 0.735↓ 0.730↓ 0.731↓ 0.716↓ 0.726↓ 0.722↓ 0.733↓ 0.914 0.726↓ 0.740↓
plane 0.923↓ 0.886↓ 0.829↓ 0.914↓ 0.921↓ 0.909↓ 0.842↓ 0.948 0.977 0.974 0.908↓ 0.899↓ 0.896↓ 0.967 0.989 0.950 0.939
swedishleaf 0.839↓ 0.892 0.890 0.892 0.892 0.841↓ 0.826↓ 0.893 0.891 0.878 0.822↓ 0.833↓ 0.873↓ 0.898 0.909 0.896 0.894
symboles 0.855↓ 0.861↓ 0.849↓ 0.886↓ 0.888↓ 0.904 0.878↓ 0.663↓ 0.853↓ 0.780↓ 0.612↓ 0.660↓ 0.826↓ 0.853↓ 0.927 0.845↓ 0.814↓
trace 0.753↓ 0.747↓ 0.713↓ 0.822 0.799 0.751↓ 0.744↓ 0.751↓ 0.840 0.832 0.695↓ 0.717↓ 0.814 0.873 0.890 0.876 0.796
twopatterns 0.628↓ 0.792↓ 0.656↓ 0.696↓ 0.623↓ 0.684↓ 0.615↓ 0.627↓ 0.842↓ 0.681↓ 0.666↓ 0.733↓ 0.787↓ 0.841↓ 0.947 0.852↓ 0.799↓
umd 0.614 0.610 0.552↓ 0.623 0.552↓ 0.621 0.609 0.600 0.606 0.586 0.533↓ 0.562↓ 0.546↓ 0.574↓ 0.694 0.652 0.628
yoga 0.506↓ 0.505↓ 0.538 0.507↓ 0.499↓ 0.499↓ 0.500↓ 0.499↓ 0.508↓ 0.501↓ 0.499↓ 0.500↓ 0.501↓ 0.500↓ 0.603 0.510↓ 0.505↓

Table 4.3: Clustering Rand index



72 Chapter 4. Experimental study

Relationships between methods and datasets

To compare globally the different clustering methods, we rely on a multiple correspondence

analysis (MCA7), to analyze the 17 methods (considered as individuals) and the 24 datasets

(considered as categorical variables). Multiple correspondence analysis is a data analysis

technique for nominal categorical data and can be viewed as an extension of correspondence

analysis (CA) which allows one to analyze the pattern of relationships of several categorical

dependent variables. It can also incorporate quantitative variables. MCA is concerned with

relationships within a set of variables, which usually are homogeneous, and allows the direct

representation of individuals as points in geometric space. To do so, each method is described

by a vector ("–", "+","++",...), with as many dimensions as there are datasets, in which the

modalities "++", "+" and "–" indicate whether the Rand index of a method on a dataset

is respectively highly greater, greater or lower than the mean Rand index obtained for that

dataset over all the methods. Distinct groups of methods, corresponding to distinct ways

to perform on the different datasets, can be distinguished. The first group is defined by

the k-means using NLAAF, k-medoids and kernel k-means (with Euclidean) and is opposed

to the other methods as it yields the lowest performances (corresponding to modality "–")

particularly on cc, fish and symboles. The second group is defined by the k-means using

PSA and the three kernel k-means approaches (κGA, κTGA and κGDTWsc) that yield the

lowest performances on beef, bme, medicalimages, oliveoil, trace, swedishleaf and

twopatterns.

To understand this limitation, we have studied the cluster structure induced by the

dissimilarities based on the κDTAK and κGA Gram matrices. Figure 4.6 shows the projection

obtained through MDS on the first plan for the dataset cc, with the dissimilarities8 derived

from κDTAK. As one can see, the red and blue clusters, non linearly separable with DTW

(Figure 4.3 - second row and second column), are now well separated. The situation for κGA

directly parallels the one for κDTAK .

Figure 4.6: CC clusters based on κDTAK dissimilarities

Lastly, the last group includes the Gk-means approaches which yield the best performances

(corresponding to modality "++") almost for all datasets. We can in particular observe

that Gk-means with WDTW outperforms the other methods particularly on lighting2,

lighting7, medicalimages, osuleaf, and yoga.

The blue arrow in Figure 4.7 is known as the Guttman effect [LRR04]; it starts from

7We have used the MCA function available in the R package FactoMineR.
8The dissimilarities are defined as ddtak(i, j) = κDTAK(i, i) + κDTAK(j, j)− 2κDTAK(i, j).
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the upper left corner, that contains mainly datasets of modalities "–", then goes through the

lower left corner, containing mixed modalities ("–" and "+"), through the lower right corner,

again containing mixed modalities ("+" and "++") , and finally ends in the upper right

corner containing datasets of modalities "++". The blue arrow suggests a global ranking of

the methods based on their performance on all the datasets: Gk-means with WDTW is the

best method, followed by Gk-means with WKDTAK, followed by Gk-means with WKGDTW,

k-means using DBA, κDTAK and k-medoids (with DTW), which yield similar results, and

finally followed by the rest (see Figure 4.7).

Figure 4.7: Global comparison of the clustering Rand index

Complexity and time considerations

Table 4.4 shows the time consumptions of the different clustering methods. As a reminder,

results in bold correspond to the fastest methods with lowest time consumption, while the

significantly higher ones are shown with the red up arrows. As one can note, Gk-means

clustering is the fastest approach, with a approximately constant time requirement for all of

the methods on small datasets (e.g. beef, coffee, oliveoil). For large datasets (e.g. cbf,

cc, medicalimages, swedishleaf, symboles, yoga), both k-medoids and kernel k-means

clustering are significantly slower mainly due to the involved pairwise comparisons, whereas

the Gk-means clustering, particularly with WDTW, remains remarkably fast. The standard

k-means based on NLAAF and PSA averaging methods are highly time-consuming, largely

because of the progressive increase of the centroid length during the pairwise combination

process, which makes these approaches unusable for large time series datasets.

Figure 4.8 shows the multiple correspondence analysis of clustering time consumption to

compare globally the clustering time consumption of different methods. The blue arrow starts
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from the lower left corner, that contains mainly the fastest methods, then goes through the

upper left corner and finally ends in the lower right corner containing the lowest clustering

methods. The first group is defined by the k-means using CWRT, the standard Gaussian

kernel k-means and k-medoids (with Euclidean), while all of these methods use Euclidean and

therefore are not comparable with the other methods under time warp. Note that in clustering

time consumption, Table 4.4, we ignored these three methods. The Gk-means approaches yield

the fastest clustering results overall (18 datasets out of 24), followed by k-means with DBA.

The third group is defined by kernel k-means (κDTAK, κGDTW, κGA and κTGA) and k-medoids

(with DTW). Lastly, as mentioned, k-means with NLAAF and PSA with huge difference yield

the lowest performances.

Figure 4.8: Global comparison of the clustering Time consumption

The obtained empirical results are in agreement with the theoretical complexities of each

method. Let N be the number of time series to be clustered in k clusters, with the time

series length T , and p the complexity of the measure between aligned instants (p = 5 for

WDTW, p = 8 for WKDTAK, p = 9 for WKGDTW, and p = 18 for WKGA - see Eqs. 3.14, 3.17,

3.20 and 3.23). Therefore, the complexity of Gk-means clustering is O(pNkT 2), the one of

k-medoids is O(pN(N − k)T 2) and the complexity of kernel k-means clustering is O(pN2T 2),

showing that kernel k-means clustering is slower than k-medoids, which is in turn slower than

the Gk-means clustering. Lastly, the difference between Gk-means clustering with WDTW

and WKDTAK (or WKGDTW) is mainly due to the ascent gradient part, while the difference

between kernel k-means clustering with κDTAK and κGA is explained by the different values

of p for each method.
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Kernel k-means k-medoid k-means Generalized k-means
(Kk-means) (k-med) nlaaf psa cwrt dba (Gk-means)

rbf kgdtw kgdtwsc kdtak kdtaksc kga ktga ed dtw dtwsc dtw dtw dtw dtw wdtw wkdtak wkgdtw

adiac 0.9 714.8↑ 604.3↑ 722.1↑ 676.0↑ 992.2↑ 875.6↑ 1.1 899.6↑ 742.5↑ 1998.4↑ 4003.4↑ 95.4 399.1 348.8 374.4 400.3
beef 1.6 59.1 81.3 53.8 53.7 77.4 69.4 1.4 49.8 50.2 84.9 146.8↑ 12.7 65.4 58.7 76.3 79.4
bme 2.9 79.8↑ 66.8↑ 63.2↑ 60.6↑ 130.5↑ 105.3↑ 2.7 102.5↑ 93.2↑ 131.8↑ 464.2↑ 4.9 21.7 20.5 45.6↑ 59.8↑
car 0.8 285.2↑ 247.8↑ 314.4↑ 270.0↑ 491.5↑ 460.1↑ 1.2 336.3↑ 276.7↑ 591.4↑ 1261.2↑ 84.9 550.3↑ 167.7 202.3 230.8
cbf 4.0 2482.9↑ 2473.4↑ 2912.2↑ 2584.3↑ 2874.8↑ 2765.5↑ 3.7 2414.9↑ 2307.2↑ 2499.4↑ 9197.6↑ 26.9 422.9↑ 361.9 602.4↑ 697.9↑
cc 1.7 112.6↑ 122.8↑ 122.4↑ 119.8↑ 162.8↑ 133.7↑ 0.9 122.9↑ 125.4↑ 177.7↑ 488.7↑ 2.9 64.9↑ 49.2 139.7↑ 152.3↑
coffee 1.1 23.0 23.7 18.8 16.2 17.1 20.2 0.9 16.8 16.9 39.2↑ 75.9↑ 2.6 22.5 15.7 23.3 24.1
consseason 2.3 155.4↑ 140.2↑ 164.9↑ 139.8↑ 297.6↑ 261.3↑ 1.1 173.2↑ 160.3↑ 504.3↑ 1700.3↑ 6.4 46.4↑ 35.8 82.2↑ 99.9↑
ecg200 1.5 15.8↑ 28.6↑ 12.6↑ 13.7↑ 26.4↑ 25.9↑ 1.2 15.3↑ 14.9↑ 33.4 71.2 1.9 8.7 10.2 12.2↑ 14.7↑
facefour 1.9 335.8↑ 329.5↑ 363.8↑ 252.7 343.4↑ 275.9 1.8 206.7 213.8 609.7↑ 2221.6↑ 23.2 347.4↑ 292.6↑ 320.5↑ 341.2↑
fish 3.4 1493.2↑ 1394.4↑ 1103.5↑ 1063.6↑ 2520.8↑ 2125.2↑ 2.3 1525.5↑ 1498.6↑ 2010.8↑ 4385.1↑ 94.2 758.3 663.1 1007.1↑ 1314.5↑
gunpoint 2.2 88.1↑ 142.5↑ 52.1↑ 63.5↑ 150.5↑ 144.5↑ 1.6 85.6↑ 84.7↑ 177.6↑ 468.3↑ 3.7 44.3 39.4 45.5 55.3↑
lighting2 2.4 410.3↑ 401.9↑ 303.8↑ 296.1↑ 613.8↑ 534.4↑ 1.9 397.1↑ 392.2↑ 2977.7↑ 6309.8↑ 29.4 173.4 141.9 158.5 197.8
lighting7 2.1 117.2↑ 120.8↑ 94.6 82.4 191.4↑ 166.0↑ 1.6 112.3 110.9 293.4↑ 825.4↑ 16.7 142.7↑ 98.4 109.5 133.4↑
medicalimages 7.3 968.6↑ 988.4↑ 943.6↑ 706.2↑ 1581.4↑ 1616.3↑ 2.4 940.2↑ 927.7↑ 1304.6↑ 2897.5↑ 21.9 321.3↑ 236.2 1228.7↑ 1538.2↑
oliveoil 1.9 74.7 66.6 54.4 53.9 116.9↑ 115.2↑ 1.5 67.2 65.8 100.9↑ 228.3↑ 12.7 65.9 52.2 73.8 53.3
osuleaf 3.6 2414.6↑ 1717.7↑ 1784.7↑ 1735.2↑ 3979.6↑ 3456.9↑ 2.5 1845.8↑ 1804.7↑ 2521.2↑ 9989.8↑ 94.2 915.6 787.6 921.8 1229.4↑
plane 1.1 37.9↑ 33.3↑ 33.6↑ 30.6↑ 64.6↑ 49.5↑ 0.9 45.5↑ 38.4↑ 21.2 66.6↑ 8.6 32.4↑ 30.0↑ 37.9↑ 40.1↑
swedishleaf 6.2 1139.2↑ 1080.8↑ 753.6↑ 811.5↑ 1741.3↑ 1763.7↑ 2.2 1083.5↑ 1018.4↑ 2003.3↑ 7034.4↑ 33.8 475.3↑ 350.8 659.9↑ 590.4↑
symboles 4.6 36211.2↑ 34666.1↑ 32623.3↑ 28013.1↑ 57909.9↑ 53445.2↑ 4.2 29320.2↑ 28745.1↑ 59874.3↑ 99999.9↑ 487.5 6014.2↑ 4121.1 5711.8↑ 6151.7↑
trace 1.2 258.9↑ 244.8↑ 250.6↑ 232.4↑ 310.9↑ 351.7↑ 1.1 233.8↑ 240.5↑ 397.2↑ 1298.7↑ 9.8 78.9 80.2 180.4↑ 154.7↑
twopatterns 2.5 439.5↑ 513.8↑ 320.9↑ 399.9↑ 617.3↑ 586.7↑ 1.8 452.5↑ 462.3↑ 812.2↑ 2143.4↑ 12.8 167.8↑ 110.2 172.9↑ 288.8↑
umd 2.2 93.3↑ 82.7↑ 91.4↑ 81.4↑ 165.5↑ 137.2↑ 2.1 105.7↑ 99.2↑ 124.4↑ 503.9↑ 5.5 33.5 29.3 55.5↑ 74.3↑
yoga 2.8 3227.4↑ 3031.6↑ 3133.2↑ 3028.5↑ 4988.7↑ 4221.3↑ 3.2 2030.2↑ 2958.6↑ 5536.8↑ 18694.3↑ 89.7 352.3↑ 280.2 328.1 388.8↑

Table 4.4: Clustering time consumption(sec.)
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4.3.2 Results for time series classification

In this section, we evaluate the relevance of the proposed estimated centroids and weights

in a classification context. Among many algorithms to classify temporal data, the k-nearest

neighbor with the DTW is performant. However, it is very time consuming as it needs to

compare time series query with all training samples. While the idea of data reduction to

mitigate this problem has a long history, classification based on nearest centroid could be

one solution. To do so, we propose to use k-nearest weighted centroid classifier based on the

above extended time warp measures (see Algorithm 6). Using generalized k-means-based

clustering within each class, one can obtain a small number of weighted centroids per class.

Algorithm 6 Nearest weighted centroid classification (Xtrain,Ytrain,Xtest,k)

1: Input: Xtrain = {x1, ...,xNtrain
}

2: Input: Ytrain = labels

3: Input: Xtest = {x1, ...,xNtest
}

4: Input: k = class number

5: Output: class labels for ∀x ∈ Xtest

6: for i : 1 to k do

7: (ci,wi) = Centroid Estimation(Xtrain|Ytrain == i) using Algo. 3, 4 or 5

8: end for

9: for ∀xj ∈ Xtest do

10: Classify xj by nearest weighted centroid using Eq. 3.10, 3.11 or 3.12

11: end for

12: Return class labels for ∀x ∈ Xtest

For the experiment, we here rely on the classification time consumption, presented in

Table 4.7, while the main contribution is to speed up temporal classification. To verify the

accuracy of the method, we have confidence in the classification error rate (see Table 4.5 and

4.6). The lower the error rate, the better the agreement is. Lastly, we consider a goodness

criteria which is the ratio of ”fastness” to ”accuracy”. For this, we define ”fastness” as the

normalized time consumption (so that all values are in (0,1)), and (1 - error rate) is the

”accuracy”. The lower value is the better classifier. Similar to the previous tables in clustering

section, results in bold correspond to the best values, while the statistically significantly

lower or higher ones (t-test at 5% risk) are represented by the down or up arrows, respectively.

Classification error rate

Based on the classification error rate displayed in Table 4.5, for k = 1, nearest neighbor

classification methods lead to the best results in overall (23 datasets out of 24), followed

by the proposed weighted centroid estimation methods. Using a small number of weighted

centroids per class obtained by generalized k-means based clustering within each class, we

can beat the nearest neighbor classifier. For example, for dataset beef, if we assume k=2

and we consider two weighted centroids per class, by generalized k-means based clustering,

we outperform all the nearest neighbors classifiers by error rate = 0.433. A second example,

for dataset osuleaf, if we assume k=2, generalized k-means based clustering in each class,
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obtains two weighted centroids per class. Thus, the classification error rate using WDTW will

be 0.295, which outperforms all the other classifiers.

The experiments show that the proposed nearest weighted centroid classification methods

significantly outperform the alternative nearest centroid classification approaches. To validate

the claim, Table 4.6 presents all the nearest centroid classification error rate results. As one can

note, classification using WDTW yields the best classification error rate overall (19 datasets

out of 24), followed by WKDTAK.

To compare globally the different nearest centroid classification methods, as before, we

rely on MCA9. To do so, each method is described by a vector ("–", "+","++"), in which the

modalities "++", "+" and "–" indicate whether the classification error rate of a method on a

dataset is respectively highly greater, greater or lower than the mean error rate obtained for

that dataset over all the methods. Lower error rate indicated better classification. According

to the Figure 4.9, nearest centroid classification using PSA and NLAAF (to estimate the

centroid) have the higher error rates almost for all the datasets, as they yield the lowest

classification performances (corresponding to modality "++"). The group includes the the

proposed nearest weighted centroid classification approaches which yield the best performances

(corresponding to modality "-") almost for all datasets (23 datasets out of 24), followed by

nearest neighbor classification using DBA. We can in particular observe that nearest weighted

centroid classifier based on WDTW outperforms the other methods particularly on bme,

consseason, fish, symboles, trace, and yoga.

The blue arrow suggests a global ranking of the methods based on their performance on all

the datasets: it starts from upper left corner, that contains mainly datasets of modalities "-",

then goes through the lower left corner, containing mixed modalities ("-" and "+"), through

the lower right corner, containing mixed modalities ("+" and "++") , and finally ends in the

upper right corner, again containing mixed modalities ("+" and "++"). The projection of

the methods on the blue arrow suggest a global ranking: classification with nearest weighted

centroid using WDTW is the best method, followed by WKDTAK, DBA and WKGDTW and

finally followed by the rest.

9MCA function in the R package FactoMineR.
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k-NN k-NN k-nearest centroid k-nearest
kernel (standard) nlaaf psa cwrt dba weighted centroid

rbf kgdtw kgdtwsc kdtak kdtaksc kga ktga ed dtw dtwsc dtw dtw dtw dtw wdtw wkdtak wkgdtw

adiac 0.494↑ 0.404 0.404 0.425 0.425 0.407 0.396 0.389 0.404 0.404 0.567↑ 0.527↑ 0.519↑ 0.517↑ 0.465↑ 0.471↑ 0.496↑
beef 0.467 0.500 0.500 0.500 0.467 0.500 0.467 0.467 0.500 0.500 0.600 0.533 0.600 0.567 0.533 0.600 0.600
bme 0.173↑ 0.140↑ 0.007 0.127↑ 0.007 0.200↑ 0.027 0.173↑ 0.140↑ 0.007 0.360↑ 0.360↑ 0.360↑ 0.360↑ 0.333↑ 0.353↑ 0.360↑
car 0.317 0.283 0.267 0.267 0.233 0.200 0.267 0.267 0.283 0.233 0.583↑ 0.467↑ 0.400↑ 0.367↑ 0.337 0.383↑ 0.400↑
cbf 0.097↑ 0.011 0.011 0.013 0.012 0.183↑ 0.152↑ 0.148↑ 0.011 0.011 0.106↑ 0.220↑ 0.036↑ 0.036↑ 0.031↑ 0.038↑ 0.033↑
cc 0.120↑ 0.023 0.017 0.023 0.033 0.177↑ 0.083↑ 0.120↑ 0.023 0.017 0.113↑ 0.377↑ 0.037 0.027 0.027 0.087↑ 0.110↑
coffee 0.250 0.179 0.179 0.179 0.179 0.179 0.214 0.250 0.179 0.179 0.464↑ 0.464↑ 0.464↑ 0.464↑ 0.464↑ 0.464↑ 0.464↑
consseason 0.022 0.111↑ 0.072↑ 0.089↑ 0.056 0.022 0.022 0.022 0.111↑ 0.072↑ 0.350↑ 0.389↑ 0.172↑ 0.133↑ 0.022 0.244↑ 0.311↑
ecg200 0.120 0.210↑ 0.190 0.220↑ 0.160 0.110 0.100 0.120 0.210↑ 0.190 0.260↑ 0.260↑ 0.260↑ 0.260↑ 0.260↑ 0.260↑ 0.260↑
facefour 0.080 0.182↑ 0.182↑ 0.148 0.125 0.102 0.080 0.216↑ 0.182↑ 0.182↑ 0.511↑ 0.250↑ 0.114 0.136 0.148 0.261↑ 0.239↑
fish 0.217↑ 0.177↑ 0.171 0.166 0.160 0.103 0.177↑ 0.217↑ 0.177↑ 0.171 0.503↑ 0.457↑ 0.397↑ 0.349↑ 0.343↑ 0.385↑ 0.394↑
gunpoint 0.047 0.093↑ 0.067↑ 0.087↑ 0.067↑ 0.020 0.040 0.087↑ 0.093↑ 0.067↑ 0.397↑ 0.387↑ 0.393↑ 0.286↑ 0.213↑ 0.207↑ 0.273↑
lighting2 0.180 0.115 0.148 0.131 0.131 0.246 0.148 0.246 0.115 0.148 0.377↑ 0.377↑ 0.377↑ 0.377↑ 0.377↑ 0.377↑ 0.377↑
lighting7 0.356 0.315 0.247 0.274 0.233 0.274 0.288 0.425↑ 0.315 0.247 0.399↑ 0.384↑ 0.465↑ 0.410↑ 0.383↑ 0.410↑ 0.384↑
medicalimages 0.316↑ 0.275 0.261 0.275 0.266 0.259 0.284 0.316↑ 0.275 0.261 0.611↑ 0.533↑ 0.575↑ 0.564↑ 0.536↑ 0.563↑ 0.486↑
oliveoil 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.367↑ 0.433↑ 0.167 0.167 0.133 0.167 0.167
osuleaf 0.467↑ 0.430↑ 0.421↑ 0.368 0.343 0.306 0.463↑ 0.483↑ 0.430↑ 0.421↑ 0.794↑ 0.842↑ 0.636↑ 0.521↑ 0.498↑ 0.603↑ 0.507↑
plane 0.029 0.000 0.000 0.000 0.000 0.009 0.009 0.038↑ 0.000 0.000 0.152↑ 0.162↑ 0.009 0.009 0.009 0.029 0.029
swedishleaf 0.206↑ 0.216↑ 0.203↑ 0.222↑ 0.211↑ 0.266↑ 0.126 0.211↑ 0.216↑ 0.203↑ 0.550↑ 0.511↑ 0.317↑ 0.326↑ 0.296↑ 0.309↑ 0.311↑
symboles 0.099↑ 0.055 0.061 0.050 0.059 0.051 0.099↑ 0.100↑ 0.055 0.061 0.109↑ 0.084↑ 0.063 0.054 0.044 0.067 0.072
trace 0.240↑ 0.000 0.000 0.000 0.000 0.010 0.040↑ 0.240↑ 0.000 0.000 0.060↑ 0.028 0.080↑ 0.020 0.000 0.025 0.060↑
twopatterns 0.355↑ 0.000 0.025↑ 0.000 0.078↑ 0.010 0.110↑ 0.532↑ 0.000 0.073↑ 0.093↑ 0.090↑ 0.060↑ 0.070↑ 0.060↑ 0.030↑ 0.060↑
umd 0.194↑ 0.118↑ 0.014 0.118↑ 0.014 0.035 0.042 0.194↑ 0.132↑ 0.014 0.446↑ 0.458↑ 0.451↑ 0.430↑ 0.386↑ 0.347↑ 0.393↑
yoga 0.317 0.367 0.337 0.317 0.343 0.323 0.310 0.317 0.367 0.337 0.430↑ 0.530↑ 0.483↑ 0.467↑ 0.333 0.400↑ 0.433↑

Table 4.5: Classification error rate (k=1)
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k-nearest centroid k-nearest
nlaaf psa cwrt dba weighted centroid

dtw dtw dtw dtw wdtw wkdtak wkgdtw

adiac 0.567↑ 0.527 0.519 0.517 0.465 0.471 0.496
beef 0.600 0.533 0.600 0.567 0.533 0.600 0.600
bme 0.360 0.360 0.360 0.360 0.333 0.353 0.360
car 0.583↑ 0.467 0.400 0.367 0.337 0.383 0.400
cbf 0.106↑ 0.220↑ 0.036 0.036 0.031 0.038 0.033
cc 0.113 0.377 0.037 0.027 0.027 0.087 0.110
coffee 0.464 0.464 0.464 0.464 0.464 0.464 0.464
consseason 0.350↑ 0.389↑ 0.172↑ 0.133↑ 0.022 0.244↑ 0.311↑
ecg200 0.260 0.260 0.260 0.260 0.260 0.260 0.260
facefour 0.511↑ 0.250↑ 0.114 0.136 0.148 0.261↑ 0.239↑
fish 0.503↑ 0.457↑ 0.397 0.349 0.343 0.385 0.394
gunpoint 0.397↑ 0.387↑ 0.393↑ 0.286 0.213 0.207 0.273
lighting2 0.377 0.377 0.377 0.377 0.377 0.377 0.377
lighting7 0.399 0.384 0.465 0.410 0.383 0.410 0.384
medicalimages 0.611↑ 0.533 0.575↑ 0.564↑ 0.536 0.563↑ 0.486
oliveoil 0.367↑ 0.433↑ 0.167 0.167 0.133 0.167 0.167
osuleaf 0.794↑ 0.842↑ 0.636↑ 0.521 0.498 0.603↑ 0.507
plane 0.152↑ 0.162↑ 0.009 0.009 0.009 0.029 0.029
swedishleaf 0.550 0.511 0.317 0.326 0.296 0.309 0.311
symboles 0.109↑ 0.084↑ 0.063 0.054 0.044 0.067 0.072↑
trace 0.060 0.028 0.080↑ 0.020 0.000 0.025 0.060↑
twopatterns 0.093↑ 0.090↑ 0.060↑ 0.070↑ 0.060↑ 0.030 0.060↑
umd 0.446 0.458 0.451 0.430 0.386 0.347 0.393
yoga 0.430↑ 0.530↑ 0.483↑ 0.467↑ 0.333 0.400 0.433↑

Table 4.6: Nearest centroid classification error rate (k=1)

Figure 4.9: Global comparison of the nearest centroid classification error rate (k=1)
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Complexity and time considerations

Table 4.7 shows the time consumption for different classification methods. In time comparison,

we ignore the classification methods using k-NN with standard Gaussian kernel (RBF) and the

k-NN (with Euclidean). While these methods use Euclidean, they are not comparable with

the other methods under time warp. As one can note, the nearest centroid classifier using

CWRT and DBA are the fastes classification methods, similar to the proposed nearest weighted

centroid classification methods. The slight difference is related to the weight computation for

each centroid. Whereas we significantly improve the accuracy in the proposed nearest weighted

centroid classifiers, one can ignore this non-significant difference in run time. As we mentioned

before, the main drawback of NLAAF and PSA averaging methods lie in the growth of their

resulting lengths. While nearest centroid classification methods normally should be faster

than the nearest neighbor ones, the nearest centroid classifiers using NLAAF or PSA are

highly time-consuming (particulary for large datasets), because of the progressive increase of

the centroid length during the pairwise combination process.

Figure 4.10 shows the multiple correspondence analysis of classification time consumption

to compare globally the classification time consumption of different methods. The first group

is defined by the k-NN standard Gaussian kernel (RBF) and k-NN (with Euclidean), followed

by the nearest neighbor classifiers using CWRT, DBA, WDTW, WKDTAK and WKGDTW. As

you can see in the figure 4.10, k-NN using kernel κDTAKsc is next in ranking based on the

time consumption, followed by κTGA, k-NN using DTWsc and kernel κGDTWsc . The third

group is contains the k-nearest neighbor classifiers using DTW and kernels. The last group,

the classification approaches which use centroid estimation with NLAAF and PSA yield the

lowest performances.

Figure 4.10: Global comparison of the classification Time consumption (k=1)
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k-NN k-NN k-nearest centroid k-nearest
kernel (standard) nlaaf psa cwrt dba weighted centroid

rbf kgdtw kgdtwsc kdtak kdtaksc kga ktga ed dtw dtwsc dtw dtw dtw dtw wdtw wkdtak wkgdtw

adiac 1.43 554.8↑ 449.8↑ 358.6↑ 303.3↑ 547.6↑ 354.8↑ 0.23 581.4↑ 425.1↑ 231.2↑ 246.5↑ 133.1 131.2 142.8 144.7 147.9
beef 0.05 28.3↑ 21.9 23.7↑ 13.4 29.5↑ 22.9 0.09 26.8↑ 21.4 79.2↑ 88.2↑ 13.8 13.9 15.0 15.4 16.1
bme 0.09 9.2↑ 7.0↑ 6.2↑ 4.5↑ 8.1↑ 6.0↑ 0.09 8.9↑ 6.9↑ 10.8↑ 12.7↑ 3.3 3.3 3.4 3.5 3.5
car 0.12 156.6↑ 136.4↑ 134.9↑ 77.2↑ 188.2↑ 135.7↑ 0.03 161.1↑ 129.4↑ 912.3↑ 1049.8↑ 44.9 44.7 45.9 46.0 47.2
cbf 0.54 64.1↑ 46.7↑ 43.6↑ 31.8↑ 49.8↑ 39.7↑ 0.31 55.7↑ 45.5↑ 50.4↑ 55.3↑ 14.8 14.9 15.0 15.2 15.3
cc 0.24 51.1↑ 37.5↑ 41.1↑ 29.2↑ 46.8↑ 33.2↑ 0.11 45.8↑ 38.8↑ 9.7↑ 11.6↑ 2.4 2.4 2.6 2.7 2.7
coffee 0.02 8.4↑ 6.0↑ 5.2↑ 3.1↑ 7.2↑ 6.9↑ 0.01 8.1↑ 6.9↑ 8.2↑ 7.9↑ 0.7 0.7 0.7 0.8 0.9
consseason 0.17 82.3↑ 78.9↑ 58.6↑ 36.5↑ 79.9↑ 54.3↑ 0.06 81.4↑ 61.5↑ 358.7↑ 378.9↑ 2.2 2.2 2.4 2.5 2.5
ecg200 0.07 12.5↑ 8.9↑ 9.7↑ 5.9↑ 11.8↑ 7.9↑ 0.03 11.5↑ 8.8↑ 9.4↑ 10.4↑ 0.2 0.2 0.2 0.2 0.2
facefour 0.06 35.8↑ 25.3↑ 22.4↑ 13.2 40.9↑ 23.9↑ 0.02 33.0↑ 24.7↑ 49.8↑ 54.0↑ 15.6 15.7 16.9 17.1 17.2
fish 0.72 898.4↑ 786.2↑ 584.9↑ 362.7↑ 955.1↑ 710.7↑ 0.09 865.1↑ 664.1↑ 1022.2↑ 1107.8↑ 106.7 106.8 107.4 107.9 108.0
gunpoint 0.10 20.9↑ 16.3↑ 15.3↑ 11.6↑ 27.3↑ 16.7↑ 0.04 20.4↑ 15.8↑ 39.3↑ 41.2↑ 2.2 2.1 2.2 2.3 2.3
lighting2 0.14 228.4↑ 187.6↑ 191.8↑ 108.8↑ 297.2↑ 161.6↑ 0.03 225.1↑ 174.2↑ 7682.4↑ 9666.5↑ 11.2 11.3 12.6 12.7 12.8
lighting7 0.11 68.1↑ 50.2↑ 50.9↑ 38.8↑ 76.8↑ 42.7↑ 0.03 70.4↑ 49.8↑ 132.2↑ 155.6↑ 16.9 16.9 17.2 17.8 17.7
medicalimages 1.49 380.8↑ 277.6↑ 282.5↑ 197.9↑ 448.9↑ 250.2↑ 0.31 375.1↑ 271.4↑ 853.2↑ 959.8↑ 20.8 20.7 21.6 22.0 22.2
oliveoil 0.04 47.3↑ 37.9↑ 32.2↑ 20.2 45.8↑ 32.7↑ 0.01 45.2↑ 32.0↑ 26.2 29.3↑ 16.2 16.2 16.4 16.5 16.5
osuleaf 1.03 1318.3↑ 894.7↑ 775.8↑ 563.3↑ 1244.9↑ 845.2↑ 0.14 1238.8↑ 877.6↑ 10877.3↑ 20858.4↑ 106.2 107.7 110.1 111.5 111.8
plane 0.12 37.5↑ 21.9↑ 29.2↑ 22.1↑ 37.0↑ 27.4↑ 0.03 27.6↑ 19.2↑ 8.6↑ 8.5↑ 4.7 4.7 4.8 4.9 5.0
swedishleaf 1.93 687.9↑ 496.7↑ 470.7↑ 293.2↑ 737.6↑ 487.4↑ 0.28 640.2↑ 503.4↑ 255.7↑ 272.2↑ 40.9 40.8 41.6 41.7 41.8
symboles 0.76 581.4↑ 411.9↑ 328.8↑ 292.3↑ 590.6↑ 420.3↑ 0.25 555.0↑ 410.2↑ 714.0↑ 880.6↑ 256.1 256.3 258.4 262.1 264.7
trace 0.13 94.4↑ 72.2↑ 74.4↑ 50.2↑ 95.4↑ 61.8↑ 0.04 101.2↑ 77.8↑ 202.3↑ 283.9↑ 10.3 10.3 10.4 10.5 10.5
twopatterns 0.38 89.2↑ 63.4↑ 67.8↑ 43.6↑ 106.1↑ 57.9↑ 0.13 84.2↑ 61.4↑ 48.1↑ 41.2↑ 7.6 7.7 7.9 8.0 8.1
umd 0.12 15.1↑ 10.8↑ 9.8↑ 6.2↑ 12.6↑ 9.2↑ 0.04 14.3↑ 10.8↑ 12.3↑ 13.9↑ 2.8 2.8 3.0 3.0 3.0
yoga 0.27 196.6↑ 161.5↑ 137.4↑ 95.9↑ 224.6↑ 158.2↑ 0.08 230.9↑ 168.2↑ 285.9↑ 377.7↑ 33.6 33.4 35.9 36.9 36.5

Table 4.7: Classification time consumption (k=1)
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Classification goodness criteria

Lastly, for a global comparison considering both classification error rate and run time index,

we define here a goodness criteria as a ratio of ”fastness” to ”accuracy”. The ”fastness”

(normalized time consumption), should be lower and the ”accuracy” (1 - error rate), should

be higher.

classification goodness =
fastness

accuracy

=
normalized run time

1− error rate

Table 4.8 presents the classification average ranking on different methods, according to

the defined goodness criteria. Note that, we ignore the k-NN classification based on Euclidean

and kernel RBF, whereas they are not comparable with the classification methods which

use time warp measures. The best performance belongs to the proposed nearest weighted

centroid classifier with WDTW with the average rank of 1.81, followed by the nearest centroid

classifier using using DBA, with the average rank of 2.48, followed by the nearest weighted

centroid classifier using WKDTAK. The classifiers which use nearest centroid with NLAAF

or PSA, and nearest neighbor using kernels κGDTW or κGA yield the lowest performances

according to the global average ranking.

k-nearest neighbor k-NN k-nearest centroid k-nearest
kernel standard nlaaf psa cwrt dba weighted centroid

kgdtw kgdtwsc kdtak kdtaksc kga ktga dtw dtwsc dtw dtw dtw dtw wdtw wkdtak wkgdtw

12.83 9.48 8.58 5.70 12.70 8.67 11.99 8.69 12.46 12.92 3.43 2.48 1.81 3.35 4.18

Table 4.8: Classification average ranking (k=1)

4.3.3 A closer look at the centroids

We finally visualize here some of the centroids obtained by the different methods and compare

their shape to the one of the time series they represent. Figures 4.14 to 4.19 display the

centroids obtained by the different methods. The first line shows some randomly selected

time series of the averaged sets, the second line the centroids provided by the alternative

methods and the last line the centroids obtained by WDTW, WKDTAK and WKGDTW. Finally,

the estimated weights are shown below the corresponding centroids. To assess the weights

obtained, we rely on the following observation: a uniform weight distribution is expected for

time series that behave similarly within classes, as the centroid’s elements are equivalently

shared within the class, whereas a non-uniform distribution is awaited for time series that

behave differently within classes, as higher weights are assigned to shared centroid’s elements.

Thus, it is possible to assess the relevance of the estimated weights by examining in which

cases their distribution is uniform, and in which cases it is not. To do so, we perform for each
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times series collection a X 2-test (at 5% risk) measuring the distance between the estimated

weights and a uniform model. A uniform weights distribution is accepted for a p-value greater

than 0.05 (e.g. cc-"Cyclic"), otherwise rejected (e.g. umd-"Down").

As one can note, for standard datasets, almost all the approaches succeed in obtaining

centroids more or less similar to the initial time series (given at the first line). For instance,

in Figures 4.15 for the classes "Cyclic" of the cc dataset. However, we observe generally

less representative centroids for NLAAF and PSA with a drastically large centroid’s length of

about 103 elements vs. 102 for the other methods. For umd data, Figure 4.16 shows that the

WDTW, WKDTAK and WKGDTW provide the most representative centroid with the highest

weights successfully assigned to the begin and end regions that characterize the umd dataset.

To have a closer look at the ability of the proposed method in centroid estimation, here we

justify our claim on two complex and completely noisy datasets. The spiral data, proposed in

[ZT09], consists of 3-D spatio-temporal time series (2-D spatial and 1-D temporal) generated

from latent time series:

xi =

[
UT

i (z + bi1
T
l )Mi

eTi

]

∈ R3∗ni

where the canonical time series z ∈ R2∗l is a curve in two dimensions (x, y). Ui ∈ R2∗2 and

bi ∈ R2 are randomly generated projection matrix and translation vector respectively. The

binary matrix Mi ∈ {0, 1}
l∗ni is generated by randomly choosing ni ≤ l columns from Il for

temporal distortion. The spatial dimension ei ∈ Rni is generated with zero-mean Gaussian

noise. The latent time series z and three sample generated time series are visualized in Figure

4.11.

Figure 4.11: Latent curve z and three induced instances x1,x2,x3 without noise (left), and with noise

ei (right) - spiral dataset

spiral2 extends spiral data to more challenging time series that are highly noisy and

globally behave differently while sharing a 3 dimensional latent time series that may appear

randomly at different time stamps. The latent time series z and three generated time series

are visualized in Figure 4.12. Figure 4.13 shows the progression of their x, y and e dimensions

over time.
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z x3x2x1

Figure 4.12: Latent curve z and three induced instances x1,x2,x3 sharing local characteristics for

the spiral2 dataset

Figure 4.13: spiral2: Progression of the 2-D spatial coordinates (x, y) and the noise dimension e

over time for the spiral2 dataset

According to Figure 4.17, on spiral data, only WDTW, WKDTAK and WKGDTW succeed

in estimating centroids with an exact spiral shape, as well as providing an effective uniform

weighting, as spiral relies on time series of a similar global behavior. For the more complex

spiral2 collection, Figure 4.18 shows the ability of the proposed methods (WDTW, WKDTAK

and WKGDTW), to circumvent the noise problem and to reveal the locally shared signature.

For example, in Figure 4.19, we can see clearly for the dimension x of spiral2 that (a) the

initial hidden signature is well revealed by the estimated centroids, (b) the noise is removed,

and (c) the corresponding region is highly weighted as expected.
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Figure 4.14: cbf-"Funnel" centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e)

DBA, (f) WDTW, (g) WKDTAK, (h) WKGDTW

Figure 4.15: cc-"Cyclic" centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e)

DBA, (f) WDTW, (g) WKDTAK, (h) WKGDTW
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Figure 4.16: umd-"Down" centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e)

DBA, (f) WDTW, (g) WKDTAK, (h) WKGDTW

Figure 4.17: spiral centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e) DBA,

(f) WDTW, (g) WKDTAK, (h) WKGDTW
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Figure 4.18: spiral2 centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e) DBA,

(f) WDTW, (g) WKDTAK, (h) WKGDTW

Figure 4.19: spiral2-x centroids: (a) Initial time series, (b) NLAAF, (c) PSA, (d) CWRT, (e) DBA,

(f) WDTW, (g) WKDTAK, (h) WKGDTW
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Figures 4.20 and 4.21 complete these results and show the progressive estimation of the

centroid and weights through the first iterations of WDTW and WKDTAK, respectively. These

figures show the ability of the proposed methods to remove the noise and to capture the shared

signature fastly during the first few iterations of the estimation process. The first row shows

the initial centroid (left) and the initial weights (right), which are from uniform distribution.

Each row shows one iteration, and finally, the last row, represents the estimated centroid and

its weight vector.

Figure 4.20: spiral2-x centroids: centroid (left) and weight (right) estimation through the first

iterations of WDTW
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Figure 4.21: spiral2-x centroids: centroid (left) and weight (right) estimation through the first

iterations of WKDTAK

4.4 Discussion

From Table 4.3, we can see that the generalized k-means clustering leads to the highest Rand

indexes, where the best scores (indicated in bold) are reached by WDTW for almost all



90 Chapter 4. Experimental study

datasets. To have a global view of clustering results, Figure 4.22 shows the average Rand

index values of all datasets, for each clustering method. The black color illustrates the best

and white color presents the worst one. From Table 4.4, the results reveal WDTW the fastest

methods under time warp and k-means using PSA the slowest one. The Generalized k-means

using WKDTAK and WKGDTW appears slightly slower that WDTW; this is due to the gradient

ascent research part used in the former.
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Figure 4.22: Comparison of average Rand index values

To evaluate the relevance of the estimated weights, we performed a X 2-test10 (at 5% risk,

the significance level of the hypothesis test) measuring the distance between the estimated

weights and a uniform model. The p-value is the probability of observing a test statistic

more extreme than the observed value under the null hypothesis. Table 4.9 allows one to

corroborate the characteristics of some sample datasets for WDTW, WKDTAK and WKGDTW:

the uniform hypothesis is accepted for all standard datasets as well as for spiral dataset

(i.e. on all the datasets in which time series behave similarly within the classes) as p-values

are greater than 0.05, and strongly rejected for the complex datasets like bme, umd and

spiral2, in which time series behave differently with in the classes, as p-values are lower

than 0.05.

Regarding the classification results (Table 4.8), for all datasets, the highest classification

goodness scores are obtained by a nearest centroid classifier using WDTW, followed by DBA

and WKDTAK.

10chi2gof function in Matlab 2015b, which returns the p-value of the hypothesis test
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p-values

wdtw wkDTAK wkGDTW

bme ≃ 0.00 ≃ 0.00 ≃ 0.00
cbf 1 1 1
cc 1 1 1
umd ≃ 0.00 ≃ 0.00 ≃ 0.00
spiral 1 1 1
spiral2 ≃ 0.00 ≃ 0.00 ≃ 0.00

Table 4.9: p-value (X 2-test: uniformity distribution test)

Lastly, the qualitative evaluations (Figures 4.14 to 4.19, consisting in the visualization

and comparison of the centroids obtained by different methods) show the effectiveness of

the proposed approaches to provide accurate time series averaging for standard and complex

datasets.





Conclusion and perspectives

The DTW and kernel-DTW are among the most frequently used metrics for time series in

several domains as signal processing, data mining or machine learning. However, for clustering

time series, approaches are generally limited to the k-medoids or kernel k-means to circumvent

centroid estimation under DTW and the tricky multiple temporal alignment problem. This

work introduces a generalized k-means-based clustering algorithm for temporal data under

extended time warp measures. For this, we propose i) an extension of the common time

warp measures and ii) an accurate, fast and efficient solution to the problem of time series

averaging, under the extended time warp measures, that captures local temporal features.

Additionally, we introduce an extension of time series averaging to kernel-DTW metric as it

constitutes a crucial metric for many kernel approaches; Yields a fast method to compute

the centroid of time series. Accordingly, we generalize the averaging problem to time series

of distinct behaviors that share local characteristics by estimating a weight vector, through

several warping function. The integration of a weight vector permits us to weigh time stamps

differently and indicate the importance of each time stamp. Lastly, we use the proposed

centroid estimation and generalized k-means clustering approach in the classification context.

In this way, to speed up the nearest neighbor classification, we suggest a fast accurate nearest

weighted centroid classifier.

The efficiency of the proposed centroid estimation solution for classification and clustering

algorithms is analyzed on a wide range of public standard and challenging datasets, which are

non-spherical, non-well-isolated and (/or) linearly non-separable. The experimental validation

is based on standard datasets in which time series share similar behaviors within classes, as

well as on more complex datasets exhibiting time series that share only local characteristics,

that are multidimensional and noisy.

The approaches are compared through several criteria. For quantitative evaluation, we

consider a Rand index, a goodness clustering criterion, and the space and time requirements,

as well as the classification error rate as a classification goodness. On the other hand, the

qualitative one consists in the visualization and comparison of the centroids obtained by

different methods, and the relevance of the weights estimated. In addition, we propose here

to investigate the performance of the different methods on the different datasets through

a multiple correspondence analysis that highlights the relationships between the methods

and the datasets, indicates which method performs well or badly on which datasets, and

suggests a global ranking of the different methods. Both the quantitative evaluation and the

qualitative one demonstrate the effectiveness of the proposed approaches to being faster and

more accurate, which outperform the other methods, in the context of averaging, classification

and clustering.
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In particular, the approaches introduced in this study have the following characteristics:

• The centroids obtained are more representative of the set, than the centroids obtained

by other methods;

• The weights associated to the centroids reflect the elements that are shared locally in a

set of time series;

• The estimated centroids yield better clusters in the k-means-based clustering than the

centroids obtained by other methods;

• The time and space requirements are lower in comparison with the time and space

requirements of other methods.

Perspectives

Explore new temporal metrics and warping functions In this thesis, we focus on four

temporal metrics: the dynamic time warping, the dynamic temporal alignment kernel, the

Gaussian dynamic time warping and the global alignment kernel. It could be interesting

to integrate other temporal metrics as well as different warping functions in our proposed

framework to improve the results, specially for very challenging datasets. In this work, we

consider only two different warping functions for each temporal metric. Even we are globally

best method than the rest, one can explore more warping function, specially for challenging

and noisy datasets with low values of Rand index.

Furthermore, in the context of time complexity, although we obtain the best run time in

comparison with the alternatives, but still one can investigate for new warping functions, which

leads to a suitable and closed-form solution, to circumvent the gradient-based optimization

process in weight estimation steps and in result decrease the time consumption.

Lastly, the generalized k-means-based clustering on the WKDTAK and WKGDTW suggests

a new promising alternative approach to kernel k-means, that encourages to deepen this issue

for further temporal kernels and pre-image problem in future works.

Faster clustering/classification process by temporal segmentation For several large

and challenging datasets as character trajectories11, using the proposed weight and

centroid estimation approach, one can simply distinguish the patterns of interest. Figure 4.23

shows the obtained segments of interest for some sample classes of character trajectories

data. Pink color shows the segment of interest (instances with higher weights) for each sample

character.

In this case, a second development is to decrease time and space complexities using a

temporal segmentation of time series. The idea is to localize segments of interest, according

11UCI Machine Learning Repository
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Figure 4.23: Three samples classes of character trajectories-"e", "o" and "p": the ground truth

(top), the segments of interest (down)

to the estimated weight vector. By considering these segments, instead of whole time series,

one can improve the time and space complexity in the context of comparison.

Study the potential of this thesis in other machine learning algorithms The next

advancement will be evaluating the extended temporal measures in other algorithms. In

this work, we studied time series averaging under time warp for clustering and classification.

The next step is to evaluate them in an other classifier such as a decision tree or a support

vector machine or extension of the proposed weighted temporal measures in the fuzzy c-means

clustering (i.e. soft clustering) context, while in some application (e.g. bio-informatics, image

analysis or marketing) each data point can belong to more than one cluster.

Other propositions to define the combined metric In this thesis, for each proposition, we

considered only one single metric (e.g. WDTW) to compare time series. The idea of combined

metrics can also be the other proposition to gain better results for some multidimensional

challenging data sets. Investigate the combination of some behavior-based with value-based

metrics, to deal with different dimension of data can be an interesting suggestion for future

works.





Appendix A

Proof of Theorems 3.1 and 3.2

Let us first recall Theorem 3.1.

Theorem 3.1 Let f : [0, 1]→ R+ be the non-increasing function used in g, and let ϕ : R×R→
R+ be the positive, real-valued function used in g. Let us furthermore define:

Condition 1: ∀a ∈ [−1, 1], ∀x ∈ [0, 1],
∑∞

k=2
ak

k! f
(k)(x) ≥ 0

Condition 2: ∀(c, c′) ∈ R2, ∀x ∈ R,
∑∞

k=2
(c′−c)k

k!
∂kϕ(x,c)

∂ck
≥ 0

Then:

If Condition 1 holds, then g(w/c,Π∗) is pseudo-convex;

If Condition 2 holds, then g(c/w,Π∗) is pseudo-convex.

Proof: g(w/c,Π∗) is pseudo-convex iff:

∀w,w′ ∇g(w/c,Π∗) (w′ −w) ≥ 0 =⇒ g(w′/c,Π∗) ≥ g(w/c,Π∗)

Let

A(X, c,Π∗, t) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

ϕ(xt′ , ct)

where Π
∗ is the set of all known (and fixed) alignments for the time series x in X. As only

positive quantities are involved, A(X, c,Π∗, t) ≥ 0. We have:

(i) g(w/c,Π∗) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt)ϕ(xt′ , ct),

(ii)
∂g(wt/c,Π

∗)

∂wt

= f ′(wt)A(X, c,Π∗, t),

(iii) ∇g(w/c,Π∗)(w′ −w) =

T∑

t=1

f ′(wt)(w
′
t − wt)A(X, c,Π∗, t),

(iv) g(w′/c,Π∗)− g(w/c,Π∗) =
T∑

t=1

(f(w′
t)− f(wt))A(X, c,Π∗, t)
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A Taylor expansion yields:

f(w′
t) = f(wt) + (w′

t − wt)f
′(wt) +

∞∑

k=2

(w′
t − wt)

k

k!
f (k)(wt)

Thus, if

∞∑

k=2

(w′
t − wt)

k

k!
f (k)(wt) ≥ 0

then

f(w′
t)− f(wt) ≥ (w′

t − wt)f
′(wt)

and:
T∑

t=1

(f(w′
t)− f(wt))A(X, c,Π∗, t) ≥

T∑

t=1

f ′(wt)(w
′
t − wt)A(X, c,Π∗, t)

that is:

g(w′/c,Π∗)− g(w/c,Π∗) ≥ ∇g(w/c,Π∗)(w′ −w)

Thus, if ∇g(w/c,Π∗)(w′ − w) ≥ 0, then g(w′/c,Π∗) ≥ g(w/c,Π∗), which proves the

implication from Condition 1.�

Proof: g(c/w,Π∗) is pseudo-convex iff:

∀ c, c′ ∇g(c/w,Π∗) (c′ − c) ≥ 0 =⇒ g(c′/w,Π∗) ≥ g(c/w,Π∗)

Let

B(X,w,Π∗, t) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt)

where Π
∗ is the set of all known (and fixed) alignments for the time series x in X. As only

positive quantities are involved, B(X,w,Π∗, t) ≥ 0. We have:

(i) g(c/w,Π∗) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt)ϕ(xt′ , ct),

(ii)
∂g(ct/w,Π∗)

∂ct
=

∂ϕ(xt′ , ct)

∂ct
B(X,w,Π∗, t),

(iii) ∇g(c/w,Π∗)(c′ − c) =

T∑

t=1

∂ϕ(xt′ , ct)

∂ct
(c′t − ct)B(X,w,Π∗, t),

(iv) g(c′/w,Π∗)− g(c/w,Π∗) =
T∑

t=1

(ϕ(xt′ , c
′
t)− ϕ(xt′ , ct))B(X,w,Π∗, t)
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A Taylor expansion yields:

ϕ(xt′ , c
′
t) = ϕ(xt′ , ct) + (c′t − ct)

∂ϕ(xt′ , ct)

∂ct
+

∞∑

k=2

(c′t − ct)
k

k!

∂kϕ(xt′ , ct)

∂kct

Thus, if

∞∑

k=2

(c′t − ct)
k

k!

∂kϕ(xt′ , ct)

∂kct
≥ 0

then

ϕ(xt′ , c
′
t)− ϕ(xt′ , ct) ≥ (c′t − ct)

∂ϕ(xt′ , ct)

∂ct

and:

T∑

t=1

(ϕ(xt′ , c
′
t)− ϕ(xt′ , ct))B(X,w,Π∗, t) ≥

T∑

t=1

(c′t − ct)
∂ϕ(xt′ , ct)

∂ct
B(X,w,Π∗, t)

that is:

g(c′/w,Π∗)− g(c/w,Π∗) ≥ ∇g(c/w,Π∗)(c′ − c)

Thus, if ∇g(c/w,Π∗)(c′ − c) ≥ 0, then g(c′/w,Π∗) ≥ g(c/w,Π∗), which proves the

implication from Condition 2.�

The proof for Theorem 3.2 directly parallels the ones above, the only difference being in

the sign of the inequalities manipulated.





Appendix B

Proof of Solutions 3.15 and 3.16

We present here the proofs for proposed WDTW solutions 3.15 and 3.16. Let us first recall

that:

g(c,w) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt)ϕ(xt′ , ct)

with:

f(x) =

{
x−α α > 0

e−αx α > 0

and ϕ the Euclidean distance.

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, the function defined in Eq. 3.14 is convex

in c and the centroid c that minimizes the sum of cluster dissimilarities is obtained by solving

the partial derivative equation, ∀t, 1 ≤ t ≤ T :

ct =

∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

xt′

∑

x∈X

|N(t,x)|

|π∗
x|

(B.1)

where π
∗
x denotes the optimal alignment for x ∈ X and |N(t,x)| = {t′ / (t′, t) ∈ π

∗
x} denotes

the number of time instants of x aligned to time t of c.

Proof: As ϕ satisfies Condition 2 of Theorem 3.1, the Karush-Kuhn-Tucker conditions are

satisfied and the solution to the minimization problem above is obtained by solving:

∂g(c/w,Π∗)

∂c
= 0

Thus
∂g(c/w,Π∗)

∂c
=
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

2 f(wt) (ct − xt′) = 0

then
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

(ct − xt′) = 0
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which leads to:
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

ct =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

xt′

and to Eq.B.1. �

The solution for weight estimation of WDTW is obtained by equating the partial derivative

of the Lagrangian of g(w/c,Π∗), subject to
∑T

t=1wt = 1 and wt > 0, ∀t, with respect to w

to 0 and solving for w, ∀t, 1 ≤ t ≤ T :

for f(x) = x−α;

wt =
A

1
1+α

t
T∑

t=1

A
1

1+α

t

(B.2)

for f(x) = e−αx;

wt =
1

α
log










At

(
T∏

t=1

At)
1/T










+
1

T
(B.3)

with

At =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

(xt′ − ct)
2

Proof: As f satisfies Condition 1 of Theorem 3.1 and the constraints are pseudo-convex, the

Karush-Kuhn-Tucker conditions are satisfied. The Lagrangian of the above problem is defined

as:

L =
∑

x∈X

1

|π∗
x|

∑

(t,t′)∈π∗
x

f(wt) ϕ(xt′ , ct) + λ(1−
T∑

t=1

wt)

and the solution to the above problem is obtained by solving:

∂L

∂wt
= 0

For f(x) = x−α with α > 0, one gets:

∂L

∂wt
=
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

−αw
(−α−1)
t ϕ(xt′ , ct)− λ = 0
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then
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

−αw−α−1
t ϕ(xt′ , ct) = λ

which leads to:

wt =
α1/(α+1)

(−λ)1/α+1
(At)

1/(α+1)

Summing over t and equating to 1 (the constraint) yields:

T∑

t=1

wt =

T∑

t=1

α1/(α+1)

(−λ)1/α+1
(At)

1/(α+1) = 1

so,

T∑

t=1

(At)
1/(α+1) .

α1/(α+1)

(−λ)1/α+1
= 1

thus

λ = −α (

T∑

t=1

(At)
1/(α+1))α+1

and finally:

wt =
A

1
1+α

t
T∑

t=1

A
1

1+α

t

.�

For the case f(x) = e−αx;

∂L

∂wt
=
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

−α e(−αwt) ϕ(xt′ , ct)− λ = 0

then

e(−αwt) =
−λ

αAt

which leads to:

wt =
1

−α
log (

−λ

αAt
) (B.4)

subject to
∑T

t=1wt = 1:
T∑

t=1

1

−α
log (

λ

−αAt
) = 1
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⇒
1

−α

T∑

t=1

log (
λ

−αAt
) = 1

⇒
1

−α

[
T∑

t=1

log λ− log (−αAt)

]

= 1

⇒ T. log λ−
T∑

t=1

log (−αAt) = −α

⇒ T. log λ =

T∑

t=1

log (−αAt)− α

⇒ T. log λ = T. log (−α) +
T∑

t=1

logAt − α

thus

log λ = log (−α) +

T∑

t=1

logAt

T
−

α

T
(B.5)

From Eq. B.4, we have:

wt =
1

−α
[log λ− log (−αAt)]

and considering Eq. B.5:

wt =
1

−α

[(

log (−α) +
1

T

T∑

t=1

logAt −
α

T

)

− (log (−α) + logAt)

]

⇒ wt =
1

−α

[

1

T

T∑

t=1

logAt −
α

T
− logAt

]

=
1

α

[

logAt −
1

T

T∑

t=1

logAt

]

+
1

T

and finally

wt =
1

α
log










At

(
T∏

t=1

At)
1/T










+
1

T
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Note that, the weight wt > 0 of the element t of c that ensures the inertia minimization

is defined as the proportion of the divergence induced by the elements t′ of the series x ∈ X

aligned to t. �





Appendix C

Proof of Solutions 3.18 and 3.19

We present here the proof for proposed solutions 3.18 and 3.19. Let us first recall that:

gκ(c,w) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt)κ(xit′ , ct)

with:

f(x) =

{
xα α < 1

log(αx) α > 0

and κ the Gaussian kernel:

κ(x, c) = e(−
‖x−c‖2

2σ2 )

(x and c are two real numbers).

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, for the centroid c:

c
(p+1)
t = c

(p)
t + η(p)

∂L

∂c
(p)
t

and η(p+1) =
η(p)

p
(η(0) = 1)

with

∂L

∂ct
=
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π
∗

x

f(wt)
(xt′ − ct)

σ2
e(−

(x
t′

−ct)
2

2σ2 ) (C.1)

Proof:

gk(c/w,Π∗) =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt) e
(−

(xt′−ct)
2

2σ2 )

⇒
∂gk(c/w,Π∗)

∂ct
=
∑

x∈X

1

|π∗
x
|

∑

(t′,t)∈π∗
x

f(wt)
2(xt′ − ct)

2σ2
e(−

(xt′−ct)
2

2σ2 )

So,
∂gk(c/w,Π∗)

∂ct
=
∑

x∈X

1

|π∗
x
|

∑

(t′,t)∈π∗
x

f(wt)
(xt′ − ct)

σ2
e(−

(xt′−ct)
2

2σ2 ).�
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Given c = (c1, ..., cT ) and Π∗ = {π∗
x /x ∈ X}, the weight vector w that maximizes the sum of

intra-cluster similarities gκ(c,w,Π∗), subject to
∑T

t=1wt = 1 and wt > 0, ∀t, is defined by:

for f(x) = xα;

wt =
A

1
1−α

t
T∑

t=1

A
1

1−α

t

(C.2)

for f(x) = log (αx);

wt =
At

T∑

t=1

At

(C.3)

with

At =
∑

x∈X

1

|π∗
x|

∑

(t′,t)∈π∗
x

e(−
(x

t′−ct)
2

2σ2 )

Proof: As f satisfies Condition 3 of Theorem 3.2 and the constraints are pseudo-concave, the

Karush-Kuhn-Tucker conditions are satisfied. The Lagrangian of the above problem is defined

as:

L =
∑

x∈X

1

|π∗
x|

∑

(t,t′)∈π∗
x

f(wt) κ(xit′ , ct) + λ(1−
T∑

t=1

wt)

and the solution to the above problem is obtained by solving ∂L
∂w = 0.

For f(x) = xα (0 ≤ α ≤ 1):
∂L

∂wt
= αw

(α−1)
t At − λ = 0

⇒ w
(α−1)
t =

λ

αAt

and

wt =
α

1
1−α A

1
1−α

t

λ
1

1−α

(C.4)

Summing over t and equating to 1 (the constraint) leads to:

T∑

t=1

α
1

1−α A
1

1−α

t

λ
1

1−α

= 1
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⇒
α

1
1−α

λ
1

1−α

T∑

t=1

A
1

1−α

t = 1

and

λ( 1
1−α

) = α( 1
1−α

)
T∑

t=1

A
( 1
1−α

)

t (C.5)

From Eq. C.4 and replacing the value for λ in the previous Eq. C.5, we have:

wt =
α

1
1−α A

1
1−α

t

α( 1
1−α

)
T∑

t=1

A
( 1
1−α

)

t

and finally yields Eq. C.2:

wt =
A

1
1−α

t
T∑

t=1

A
1

1−α

t

.�

For f(x) = log (αx) (α > 0):
∂L

∂wt
=

1

wt
At − λ = 0

so,

wt =
At

λ
(C.6)

subject to
∑T

t=1wt = 1:
T∑

t=1

At

λ
= 1

and

λ =
T∑

t=1

At (C.7)

From Eq. C.6 and C.7, one can easily obtain Eq. C.3:

wt =
At

T∑

t=1

At

.�
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Proof of Solutions 3.21 and 3.22

Let us first recall that:

gκ(c,w) =

N∑

i=1

wkgdtw(xi, (c,w))

=
∑

x∈X

exp




−1

λ

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt) (xt′ − ct)
2





︸ ︷︷ ︸

A(w,c)

with:

f(x) =

{
x−α α > 0

e−αx α > 0

Given w = (w1, ..., wT ) and Π
∗ = {π∗

x /x ∈ X}, for the centroid c:

c
(p+1)
t = c

(p)
t + η(p)

∂L

∂c
(p)
t

and η(p+1) =
η(p)

p
(η(0) = 1)

with

∂L

∂ct
=
−2

λ




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

f(wt)(ct − xt′′)



 . A(w, c)



 (D.1)

Proof:

gk(c/w,Π∗) =
∑

x∈X

exp










−1

λ

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt) (xt′ − ct)
2

︸ ︷︷ ︸

F (c)










=
∑

x∈X

exp

(
−1

λ
F (c)

)

⇒
∂gk(c/w,Π∗)

∂ct
=
∑

x∈X

−1

λ

∂F (c)

∂ct
. exp

(
−1

λ
F (c)

)
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=
∑

x∈X

−1

λ |π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

f(wt) 2 (ct − xt′′)



 .exp

(
−1

λ
F (c)

)

So,:

∂gk(c/w,Π∗)

∂ct
=
−2

λ




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

f(wt) (ct − xt′′)



 . A(w, c)





.�

The solution for the weights vector w, is obtained by equating the partial derivative of

the Lagrangian of gκ(c/w,Π∗) with respect to w to 0 and solving for w:

w
(p+1)
t = w

(p)
t + η(p)

∂Lw

∂c
(p)
t

and η(p+1) =
η(p)

p
(η(0) = 1)

with

∂Lw

∂wt
=

α

λ
w

−(α+1)
t




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)



 (D.2)

for f(x) = x−α, and

∂Lw

∂wt
=

α

λ
e(−αwt)




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)



 (D.3)

for f(x) = e−αx.

Proof:

gk(w/c,Π∗) =
∑

x∈X

exp




−1

λ

1

|π∗
x|

∑

(t′,t)∈π∗
x

f(wt) (xt′ − ct)
2





︸ ︷︷ ︸

A(w,c)

for f(x) = x−α:

∂gk(w/c,Π∗)

∂wt
=

α

λ
w

−(α+1)
t




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)




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and for f(x) = e−αx:

∂gk(w/c,Π∗)

∂wt
=

α

λ
e(−αwt)




∑

x∈X

1

|π∗
x|




∑

t′′∈T,(t′′,t)∈π∗
x

(xt′′ − ct)
2



 . A(w, c)





.�





Appendix E

Proofs for the Case of WKGA

Let us first recall Theorem 3.2.

Theorem 3.2 Let f : [0, 1] → R+ be the non-decreasing function used in gκ, let κ be the

positive definite symmetric kernel used in gκ and let Conditions 3 and 4 be defined as:

Condition 3: ∀a ∈ [−1, 1], ∀x ∈ [0, 1],
∑∞

k=2
ak

k! f
(k)(x) ≤ 0

Condition 4: ∀(c, c′) ∈ R2, ∀x ∈ R,
∑∞

k=2
(c′−c)k

k!
∂kκ(x,c)

∂ck
≤ 0

Then:

If Condition 3 holds, then gκ(w/c,Π∗) is pseudo-concave;

If Condition 4 holds, then gκ(c/w,Π∗) is pseudo-concave.

Proof: g(w/c,Π∗) is pseudo-concave iff:

∀w,w′ ∇g(w/c,Π∗) (w′ −w) ≤ 0 =⇒ g(w′/c,Π∗) ≤ g(w/c,Π∗)

Let

gκ(c,w) =
∑

x∈X

wkga(x, (c,w))

=
∑

x∈X




∑

π∈A

∏

(t′,t)∈π

f(wt) k(xt′ , ct)





We have:

(i) gk(w, c) =
∑

x∈X




∑

π∈A

∏

(t′,t)∈π

f(wt) k(xt′ , ct)





(ii)
∂gk(wt, c)

∂wt
=
∑

x∈X

∑

π∈A

gk(c,w,X,π) . n(π, t)
f ′(wt)

f(wt)
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=
f ′(wt)

f(wt)

∑

x∈X

∑

π∈A

gk(c,w,X,π) . n(π, t)

(iii) ∇gk(w).(w′ − w) =
T∑

t=1

f ′(wt)

f(wt)
(w′

t − wt)
∑

x∈X

∑

π∈A

gk(c,w,X,π) . n(π, t)

(iv) gk(w
′|c)− gk(w|c)

=
∑

x∈X




∑

π∈A

∏

(t′,t)∈π

f(w′
t) k(xt′ , ct)



−
∑

x∈X




∑

π∈A

∏

(t′,t)∈π

f(wt) k(xt′ , ct)





=
∑

x∈X

∑

π∈A




∏

(t′,t)∈π

f(w′
t) k(xt′ , ct)−

∏

(t′,t)∈π

f(wt) k(xt′ , ct)





︸ ︷︷ ︸

ξ

where,

∏

(t′,t)∈π

f(wt) k(xt′ , ct) =

T∏

t=1

∏

t′∈π(t)

f(wt) k(xt′ , ct) =

T∏

t=1

f(wt)
n(π,t)

∏

t′∈π(t)

k(xt′ , ct)

Thus,

ξ =
∑

x∈X

∑

π∈A





T∏

t=1

f(w′
t)
n(π,t)

∏

t′∈π(t)

k(xt′ , ct) −
T∏

t=1

f(wt)
n(π,t)

∏

t′∈π(t)

k(xt′ , ct)





=
∑

x∈X

∑

π∈A





T∏

t=1

∏

t′∈π(t)

k(xt′ , ct)



 .

[
T∏

t=1

f(w′
t)
n(π,t) −

T∏

t=1

f(wt)
n(π,t)

]

Suppose;

A1 =

T∑

t=1

f ′(wt)

f(wt)
. (w′

t − wt)
∑

x∈X

∑

π∈A

∏

(t1,t2)∈π

f(wt2) . n(π, t) . k(xt1 , ct2)

and
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A2 =
∑

x∈X

∑

π∈A

∏

(t1,t2)∈π

k(xt1 , ct2) .

[
T∏

t=1

f(w′
t)
n(π,t) −

T∏

t=1

f(wt)
n(π,t)

]

We can not conclude if A1 ≤ 0 ⇒ A2 ≤ 0. Therefore, there is no proof for the

pseudo-concavity of gk(w, c) and we can not benefit from the recurrence formulas of WKGA.�





Bibliography

[AC01] J. Aach and G. M. Church. “Aligning gene expression time series with time

warping algorithms.” In: Bioinformatics. Vol. 17. 6. 2001, 495––508 (cit. on

p. 32).

[ACS03] W.H. Abdulla, D. Chow, and G. Sin. “Cross-words reference template for

DTW-based speech recognition sys- tems.” In: Proc. TENCON. Vol. 2. 2003,

pp. 1576–1579 (cit. on pp. 35, 47).

[AT10] Z. Abraham and P. Tan. “An integrated framework for simultaneous classifi-

cation and regression of time-series Data.” In: SIAM International Conference

on Data Mining. 2010, pp. 653–664 (cit. on p. 18).

[AV07] David Arthur and Sergei Vassilvitskii. “K-means++: The Advantages of Care-

ful Seeding.” In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms (2007), pp. 1027–1035 (cit. on pp. 2, 41, 47, 49).

[Bai12] Werner Bailer. Sequence kernels for clustering and visualizing near duplicate

video segments. Springer, 2012 (cit. on p. 50).

[BF98] Paul S. Bradley and Usama M. Fayyad. “Refining Initial Points for K-Means

Clustering.” In: Proceedings of the Fifteenth International Conference on Ma-

chine Learning. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 1998, pp. 91–99 (cit. on pp. 1, 47).

[BH65] G. Ball and D. Hall. “ISODATA: A novel method of data analysis and pattern

classification.” In: Stanford Research Institute (1965) (cit. on p. 41).

[BHB02] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. “Online handwrit-

ing recognition with support vector machines-a kernel approach.” In: Frontiers

in Handwriting Recognition, 2002. Proceedings. Eighth International Workshop

on. IEEE. 2002, pp. 49–54 (cit. on pp. 2, 24, 47, 48, 50, 52).

[BW95] A. Bruderlin and L. Williams. “Motion signal processing.” In: ACM SIG-

GRAPH. 1995, 97––104 (cit. on p. 32).

[Cab+07] F. Cabestaing et al. “Classification of evoked potentials by Pearsonís correla-

tion in a Brain-Computer Interface.” In: Modelling C Automatic Control (the-

ory and applications) 67 (2007), pp. 156–166 (cit. on p. 18).

[CC01] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and Hall., 2001

(cit. on p. 66).

[CI02] Y. Caspi and M. Irani. “Aligning non-overlapping sequences.” In: Int’l J. Com-

puter Vision. Vol. 48. 1. 2002, 39––51 (cit. on p. 32).

[CL71] William W Cooley and Paul R Lohnes. Multivariate data analysis. J. Wiley,

1971 (cit. on p. 66).

119



120 Bibliography

[CL88] Humberto Carrillo and David Lipman. “The multiple sequence alignment

problem in biology.” In: SIAM Journal on Applied Mathematics 48.5 (1988),

pp. 1073–1082 (cit. on pp. 30, 33).

[CNH00] D.J. Higgins Cédric Notredame and Jaap Heringa. “T-Coffee: A novel method

for fast and accurate multiple sequence alignment.” In: Journal of molecular

biology 302.1 (2000), pp. 205–217 (cit. on pp. 2, 30, 33, 47).

[Cut+07] M. Cuturi et al. “A kernel for time series based on global alignments.” In: the

International Conference on Acoustics, Speech and Signal Processing. Vol. 11.

2007, pp. 413–416 (cit. on pp. 2, 25, 47, 48, 50, 53, 58, 62, 68).

[Cut11] Marco Cuturi. “Fast global alignment kernels.” In: Proceedings of the 28th

International Conference on Machine Learning (ICML-11). 2011, pp. 929–936

(cit. on pp. 2, 25, 47, 48, 50, 58, 62, 68).

[DCA12] A. Douzal-Chouakria and C. Amblard. “Classification trees for time series.”

In: Pattern Recognition 45.3 (2012), pp. 1076–1091 (cit. on pp. 19, 21).

[DCN07] Ahlame Douzal-Chouakria and Panduranga Naidu Nagabhushan. “Adaptive

dissimilarity index for measuring time series proximity.” In: Advances in Data

Analysis and Classification 1.1 (2007), pp. 5–21 (cit. on p. 21).

[DE93] Banfield J. D. and Raftery A. E. “Model-based Gaussian and non-Gaussian

clustering.” In: Biometrics. Vol. 49. 1993, pp. 803–821 (cit. on p. 40).

[DGK04] Inderjit.S. Dhillon, Yuqiang Guan, and Brian Kulis. “Kernel k-means: spectral

clustering and normalized cuts.” In: Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM. 2004,

pp. 551–556 (cit. on pp. 2, 47).

[DS02] D. Deoste and B. Scholkopf. “Trainging invariant support vector machines.”

In: Machine learning, 46 (2002) (cit. on p. 24).

[DWK05] Doheon Lee Ki-Youngand Hyung Lee Kwang Dae-Won Kim. “Evaluation of

the performance of clustering algorithm in kernel-induced feature space.” In:

Pattern Recognition 34.4 (2005), pp. 607–611 (cit. on p. 45).

[ENBJ05] J. Ernst, GJ Nau, and Z. Bar-Joseph. “Clustering short time series gene ex-

pression data.” In: Bioinformatics 21 (2005), pp. 159–168 (cit. on p. 18).

[F.88] Corpet F. “Multiple sequence alignment with hierarchical clustering.” In: Nu-

cleic Acids Research 16 (1988) (cit. on p. 1).

[FDCG13] C. Frambourg, A. Douzal-Chouakria, and E. Gaussier. “Learning Multiple

Temporal Matching for Time Series Classification.” In: Intelligent Data Anal-

ysis. Ed. by A. Tucker et al. London, 2013, pp. 198–209 (cit. on pp. 2, 47,

69).

[FR98] C. Fraley and A.E. Raftery. “How many clusters? Which clustering methods?

Answers via model-based cluster analysis.” In: Computer Journal 41 (1998),

pp. 578–588 (cit. on p. 40).

[Fu11] Tak-chung Fu. “A Review on Time Series Data Mining.” In: Eng. Appl. Artif.

Intell. 24.1 (Feb. 2011), pp. 164–181 (cit. on p. 8).



Bibliography 121

[GDMS96] Lalit Gupta, Ravi Tammana Dennis Molfese, and P.G. Simos. “Nonlinear align-

ment and averaging for estimating the evoked potential.” In: Biomedical En-

gineering, IEEE Transactions on 43.4 (1996), pp. 348–356 (cit. on p. 33).

[GHS11] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. “A time series kernel

for action recognition.” In: British Machine Vision Conference. 2011 (cit. on

pp. 20, 23).

[Gir02] Mark Girolami. “Mercer kernel-based clustering in feature space.” In: Neural

Networks, IEEE Transactions on 13.3 (2002), pp. 780–784 (cit. on pp. 2, 47,

66).

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. “CURE: An Efficient Clus-

tering Algorithm for Large Databases.” In: SIGMOD Rec. 27.2 (June 1998),

pp. 73–84 (cit. on p. 1).

[Has+05] Trevor Hastie et al. “The elements of statistical learning: data mining, inference

and prediction.” In: The Mathematical Intelligencer 27.2 (2005), pp. 83–85 (cit.

on pp. 48, 49).

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “On Cluster-

ing Validation Techniques.” In: Journal of Intelligent Information Systems 17

(2001), pp. 107–145 (cit. on p. 1).

[HH08] BOCK Hans-Hermann. “Origins and extensions of the k-means algorithm in

cluster analysis.” In: Journal Electronique d’Histoire des Probabilités et de la

Statistique Electronic Journal for History of Probability and Statistics 4 (2008)

(cit. on pp. 48, 49).

[HK01] J. Han and M. Kamber. “Data Mining: Concepts and Techniques.” In: Morgan

Kaufmann Publishers, USA (2001) (cit. on p. 40).

[HK02] B. Haasdonk and D. Keysers. “Tangent distance kernels for support vector

machines.” In: 16th ICPR (2002) (cit. on p. 24).

[HNF08] V. Hautamaki, P. Nykanen, and P. Franti. “Time-series clustering by approx-

imate prototypes.” In: 19th International Conference on Pattern Recognition.

2008 (cit. on p. 36).

[HR11] Paul Honeine and Cedric Richard. “Preimage problem in kernel-based machine

learning.” In: IEEE Signal Processing Magazine 28.2 (2011), pp. 77–88 (cit. on

p. 58).

[HSS08] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. “Kernel

methods in machine learning.” In: Annals of Statistics 36.3 (2008), pp. 1171–

1220 (cit. on p. 21).

[Ita75] F. Itakura. “Minimum prediction residual principle applied to speech recogni-

tion.” In: Acoustics, Speech and Signal Processing, IEEE Transactions on 23.1

(1975), pp. 67–72 (cit. on pp. 11, 14, 29, 51).

[Jac93] Donald A Jackson. “Stopping rules in principal components analysis: a com-

parison of heuristical and statistical approaches.” In: Ecology, JSTOR (1993),

pp. 2204–2214 (cit. on p. 66).



122 Bibliography

[JER09] C. Joder, S. Essid, and G. Richard. “Temporal integration for audio classifi-

cation with application to musical instrument classification.” In: IEEE Trans-

actions on Audio, Speech and Language Processing. 2009, pp. 174–186 (cit. on

p. 25).

[JHT01] M. Kamber J. Han and A. Tung. “Spatial clustering methods in data mining:

A survey.” In: Geographic Data Mining and Knowledge Discovery, Taylor and

Francis (2001) (cit. on p. 45).

[Jus01] Winfried Just. “Computational complexity of multiple sequence alignment with

SP-score.” In: Journal of computational biology 8.6 (2001), pp. 615–623 (cit. on

pp. 30, 33).

[KGP01] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. “Distance

Measures for Effective Clustering of ARIMA Time-Series.” In: Proceedings of

the 2001 IEEE International Conference on Data Mining. ICDM ’01. Wash-

ington, DC, USA: IEEE Computer Society, 2001, pp. 273–280 (cit. on pp. 1,

47).

[KK02] E. Keogh and S. Kasetty. “On the need for time series data mining bench-

marks: A survey and empirical.” In: Knowl. Data Discov. (2002), 102–111 (cit.

on p. 2).

[KL83] J.B Kruskall and M. Liberman. The symmetric time warping algorithm: From

continuous to discrete. In Time Warps, String Edits and Macromolecules.

Addison-Wesley., 1983 (cit. on pp. 2, 11, 29, 47, 48, 50, 51).

[KLT03] Eamonn Keogh, Jessica Lin, and Wagner Truppel. “Clustering of Time Series

Subsequences is Meaningless: Implications for Previous and Future Research.”

In: Proceedings of the Third IEEE International Conference on Data Mining,

ICDM ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 115–

(cit. on pp. 1, 47).

[KP00] E.J. Keogh and M.J. Pazzani. “Scaling Up Dynamic Time Warping for Data

Mining Applications.” In: ACM SIGKDD. 2000, pp. 285–289 (cit. on pp. 15,

16).

[KR87] L. Kaufman and P.J. Rousseeuw. “Clustering by means of Medoids, in Statis-

tical Data Analysis Based on the L1–Norm and Related Methods.” In: North-

Holland (1987), 405–416 (cit. on pp. 2, 43).

[KR90] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data. An Introduction to

Cluster Analysis. John Wiley & Sons, New York., 1990 (cit. on pp. 44, 45).

[Lia05] W.T. Liao. “Clustering of time series data - A survey.” In: Pattern Recognition

38 (2005), pp. 1857–1874 (cit. on pp. 2, 47).

[Lis+05] J. Listgarten et al. “Multiple alignment of continuous time series.” In: In Pro-

ceeding’s of the Neural Information Processing Systems. 2005 (cit. on p. 32).

[LOW02] Weiqiang Lin, Mehmet A. Orgun, and Graham J. Williams. “An Overview of

Temporal Data Mining.” In: Proceedings of the 1st Australian Data Mining

Workshop. 2002 (cit. on p. 1).



Bibliography 123

[LRR04] Brigitte Le Roux and Henry Rouanet. Geometric data analysis: from corre-

spondence analysis to structured data analysis. Springer Science & Business

Media, 2004 (cit. on p. 72).

[Mac+10] B.D. MacArthur et al. “GATE: Software for the analysis and visualization of

high-dimensional time series expression data,” in: Bioinformatics 26.1 (2010),

pp. 143–144 (cit. on p. 18).

[Mac67] J. MacQueen. “Some methods for classification and analysis of multivariate

observations.” In: Proceedings of the Fifth Berkeley Symposium on Mathemati-

cal Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University

of California Press, 1967, pp. 281–297 (cit. on pp. 2, 41).

[MG14] Pierre-François Marteau and Sylvie Gibet. “On Recursive Edit Distance Ker-

nels with Application to Time Series Classification.” In: IEEE Transactions on

Neural Networks and Learning Systems 26.6 (2014). 14 pages, pp. 1121–1133

(cit. on p. 47).

[Mil+99] R. T. Miller et al. “A Comprehensive Approach to Clustering of Expressed Hu-

man Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge

Base.” In: Genome Research 9 (1999), 1143––1155 (cit. on p. 1).

[MR05] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Hand-

book. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005 (cit. on p. 8).

[NH94] R. Ng and J. Han. “Effecient and Effictive Clustering Methods for Spatial Data

Mining.” In: In Proceeding’s of the 20th VLDB Conference, Santiago, Chile.

1994 (cit. on p. 45).

[Nom02] Hiroshi Shimodaira Ken-ichi Noma. “Dynamic time-alignment kernel in sup-

port vector machine.” In: Advances in neural information processing systems

14 (2002), p. 921 (cit. on p. 50).

[NR07] Vit Niennattrakul and C.Ann Ratanamahatana. “On clustering multimedia

time series data using k-means and dynamic time warping.” In: Multimedia and

Ubiquitous Engineering, 2007. MUE’07. International Conference on. IEEE.

2007, pp. 733–738 (cit. on p. 34).

[NR09] Vit Niennattrakul and C.Ann Ratanamahatana. “Shape averaging under time

warping.” In: Electrical Engineering/Electronics, Computer, Telecommunica-

tions and Information Technology, 2009. ECTI-CON 2009. 6th International

Conference on. Vol. 2. IEEE. 2009, pp. 626–629 (cit. on p. 34).

[Osa+02] Naoki Osato et al. “A computer-based method of selecting clones for a full-

length cDNA project: Simulataneous collection of negligibly redundant and

variant cDNAs.” In: Genome Research 12 (2002), 1127–1134 (cit. on p. 1).

[Pea96] K. Pearson. “Contributions to the mathematical theory of evolution.” In:

Trans. R. Soc. Lond. Ser. (1896), 253–318 (cit. on p. 18).

[Pir09] Chris Piro. “Chat reaches 1 billion messages sent per day.” In: 2009 (cit. on

p. 8).



124 Bibliography

[PKG11] F. Petitjean, A. Ketterlin, and P. GanÇarski. “A global averaging method for

dynamic time warping, with applications to clustering.” In: Pattern Recognition

44.3 (2011), pp. 678–693 (cit. on pp. 36, 37, 47).

[Rab89] L.R. Rabiner. “A Tutorial on Hidden Markov Models and selected applications

in speech recognition.” In: Proceedings of the IEEE 77.2 (1989), pp. 257–286

(cit. on p. 29).

[Ran71] William M Rand. “Objective criteria for the evaluation of clustering methods.”

In: Journal of the American Statistical association 66.336 (1971), pp. 846–850

(cit. on p. 68).

[RBK08] J. Rydell, M. Borga, and H. Knutsson. “Robust Correlation Analysis with

an Application to Functional MRI.” In: IEEE International Conference on

Acoustics, Speech and Signal Processing. 453-456. 2008 (cit. on p. 18).

[RD62] R.Bellman and S. Dreyfus. “Applied Dynamic Programming.” In: New Jersey:

Princeton Univ. Press (1962) (cit. on p. 11).

[RJ93] L. Rabiner and B. Juang. “Fundamentals of speech recognition.” In: Prentice

Hall. 1993 (cit. on p. 32).

[RTZ10] Elisa Ricci, Francesco Tobia, and Gloria Zen. “Learning Pedestrian Trajectories

with Kernels.” In: ICPR, IEEE Computer Society. IEEE Computer Society,

2010, pp. 149–152 (cit. on p. 25).

[SC04] Stan Salvador and Philip Chand. “FastDTW: Toward Accurate Dynamic Time

Warping in Linear Time and Space.” In: KDD Workshop on Mining Temporal

and Sequential Data. 2004, pp. 70–80 (cit. on p. 16).

[SC71] H. Sakoe and S. Chiba. “A dymanic programming approach to continuous

speech recognition.” In: Proceedings of the seventh International Congress on

Acoustics 3 (1971), pp. 65–69 (cit. on pp. 14, 51).

[SC78] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for

spoken word recognition.” In: IEEE Transactions on Acoustics, Speech, and

Signal Processing 26.1 (1978), pp. 43–49 (cit. on pp. 2, 14, 25, 29, 51).

[Shi+02] Hiroshi Shimodaira et al. “Dynamic time-alignment kernel in support vector

machine.” In: NIPS. Vol. 14. 2002, pp. 921–928 (cit. on pp. 2, 24, 47, 48, 50–52,

58).

[SI84] Shokri Z. Selim and M. A. Ismail. “K-Means-Type Algorithms: A Generalized

Convergence Theorem and Characterization of Local Optimality.” In: Pattern

Analysis and Machine Intelligence, IEEE Transactions on 6.1 (Jan. 1984),

pp. 81–87 (cit. on pp. 42, 48, 49).

[SK83] D. Sankoff and J.B. Kruskal. Time warps, string edits, and macromolecules:

the theory and practice of sequence comparison. Addison-Wesley, 1983 (cit. on

pp. 29, 51).

[SKDCG15] Saeid Soheily-Khah, Ahlame Douzal-Chouakria, and Eric Gaussier. “Progres-

sive and Iterative Approaches for Time Series Averaging.” In: ECML-PKDD,

Proceedings of AALTD, Porto, Portugal. 2015 (cit. on p. 37).



Bibliography 125

[SKDCG16a] Saeid Soheily-Khah, Ahlame Douzal-Chouakria, and Eric Gaussier. “A Com-

parison of Progressive and Iterative Centroid Estimation Approaches Under

Time Warp.” In: Lecture Notes in Computer Science, Advanced Analysis and

Learning on Temporal Data 9785 (2016), pp. 144–156 (cit. on pp. 30, 37).

[SKDCG16b] Saeid Soheily-Khah, Ahlame Douzal-Chouakria, and Eric Gaussier. “General-

ized k-means-based clustering for temporal data under weighted and kernel

time warp.” In: Journal of Pattern Recognition Letters (2016) (cit. on pp. 37,

50).

[SLY06] Sing-Hoi Sze, Yue Lu, and Qingwu Yang. “A polynomial time solvable formu-

lation of multiple sequence alignment.” In: Journal of Computational Biology

13.2 (2006), pp. 309–319 (cit. on pp. 30, 33).

[THG94] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. “CLUSTAL W:

improving the sensitivity of progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties and weight matrix choice.”

In: Nucleic acids research 22.22 (1994), pp. 4673–4680 (cit. on pp. 2, 30, 33,

34, 47).

[TK99] S. Theodoridis and K. Koutroubas. In: Pattern Recognition, Academic Press

(1999) (cit. on p. 1).

[VS10] Gerben de Vries and Maarten van Someren. “Clustering Vessel Trajectories

with Alignment Kernels under Trajectory Compression.” In: ECML/PKDD,

Lecture Notes in Computer Science. Vol. 6321. Lecture Notes in Computer

Science. Springer, 2010, pp. 296–311 (cit. on p. 25).

[WJ94] Lusheng Wang and Tao Jiang. “On the complexity of multiple sequence align-

ment.” In: Journal of computational biology 1.4 (1994), pp. 337–348 (cit. on

p. 2).

[WW00] Changzhou Wang and Xiaoyang Sean Wang. “Supporting Content-Based

Searches on Time Series via Approximation.” In: Proceedings of the 12th In-

ternational Conference on Scientific and Statistical Database Management. SS-

DBM ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 69– (cit.

on p. 47).

[Zho+05] Wei Zhong et al. “Improved K-Means Clustering Algorithm for Exploring Lo-

cal Protein Sequence Motifs Representing Common Structural Property.” In:

IEEE Transactions on Nanobioscience. Vol. 4. 3. 2005, pp. 255–265 (cit. on

p. 43).

[ZM06] Arno Zinke and D. Mayer. “Applied Dynamic Programming.” In: Universitat

Bonn (2006) (cit. on p. 17).

[ZT09] Feng Zhou and Fernando Torre. “Canonical time warping for alignment of

human behavior.” In: Advances in neural information processing systems. 2009,

pp. 2286–2294 (cit. on p. 83).



126 Bibliographie

[ZT12] Feng Zhou and Fernando De la Torre. “Generalized time warping for multi-

modal alignment of human motion.” In: Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 1282–1289 (cit. on

p. 58).

[ZTH08] Feng Zhou, F Torre, and Jessica K Hodgins. “Aligned cluster analysis for tem-

poral segmentation of human motion.” In: Automatic Face & Gesture Recogni-

tion, 2008. FG’08. 8th IEEE International Conference on. IEEE. 2008, pp. 1–7

(cit. on p. 58).

[ZTH13] Feng Zhou, Fernando De la Torre, and Jessica K Hodgins. “Hierarchical aligned

cluster analysis for temporal clustering of human motion.” In: Pattern Analysis

and Machine Intelligence, IEEE Transactions on 35.3 (2013), pp. 582–596 (cit.

on p. 50).



Abstract — Temporal data naturally arise in various emerging applications, such as

sensor networks, human mobility or internet of things. Clustering is an important task,

usually applied a priori to pattern analysis tasks, for summarization, group and prototype

extraction; it is all the more crucial for dimensionality reduction in a big data context.

Clustering temporal data under time warp measures is challenging because it requires aligning

multiple temporal data simultaneously. To circumvent this problem, costly k-medoids and

kernel k-means algorithms are generally used. This work investigates a different approach to

temporal data clustering through weighted and kernel time warp measures and a tractable

and fast estimation of the representative of the clusters that captures both global and local

temporal features. A wide range of public and challenging datasets, encompassing images,

traces and ecg data that are non-isotropic (i.e., non-spherical), not well-isolated and linearly

non-separable, is used to evaluate the efficiency of the proposed temporal data clustering. The

results of this comparison illustrate the benefits of the method proposed, which outperforms

the baselines on all datasets. A deep analysis is conducted to study the impact of the data

specifications on the effectiveness of the studied clustering methods.

Keywords: Temporal data, clustering, time warp, temporal alignment kernel, k-means,

kernel k-means
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