Keywords: probabilistic fusion, sensor fusion, perception, occupancy grids, embedded integration occupancy grids .

Perception is a primary task for an autonomous car where safety is of utmost importance. A perception system builds a model of the driving environment by fusing measurements from multiple perceptual sensors including LIDARs, radars, vision sensors, etc. The fusion based on occupancy grids builds a probabilistic environment model by taking into account sensor uncertainties. This thesis aims to integrate the computation of occupancy grids into embedded low-cost and lowpower platforms. Occupancy Grids perform though intensive probability calculus that can be hardly processed in real-time on embedded hardware.

As a solution, this thesis introduces the Integer Occupancy Grid framework.

Integer Occupancy Grids rely on a proven mathematical foundation that enables to process probabilistic fusion through simple addition of integers.

The hardware/software integration of integer occupancy grids is safe and reliable. The involved numerical errors are bounded and is parametrized by the user. Integer Occupancy Grids enable a real-time computation of multi-sensor fusion on embedded low-cost and low-power processing platforms dedicated for automotive applications.

Grille d'occupation entière: une méthode probabiliste de fusion multi-capteurs pour la perception embarquée Resumé: Pour les voitures autonomes, la perception est une fonction principale où la sécurité est de la plus haute importance. Un système de perception construit un modèle de l'environnement de conduite en fusionnant plusieurs capteurs de perception incluant les LIDARs, les radars, les capteurs de vision, etc. Les Grilles d'Occupation Entière permettent de calculer en temps-réel la fusion de multiple capteurs sur un système embarqué bas-coût et â faible consommation dédié pour les applications pour l'automobile.

Mots clés: fusion probabiliste, fusion de capteurs, perception, grille d'occupation, intégration embarquée

iii Acknowledgments First and foremost, I would like to express my acknowledgments to my parents, my sister and my brother for supporting me despite the distance between us. This thesis is a part of my long journey abroad, and my family was always my rst source of inspiration and strength to continue hard working whatever is the situation.

Second, my gratitude to my thesis supervisor Christian Laugier for his precious guidance and support. I also address my very special thanks to Diego Puschini and Julien Mottin who were my rst interlocutors and mentors during this thesis. They always knew how to motivate me and pushed me to surpass myself. Diego, Julien and other colleagues at the LIALP laboratory have done great works for highlighting the results of this thesis by developing demonstrators that have been exhibited in international events and conferences. With Christian Laugier and Suzanne Lesecq, they have also organized a workshop on automated cars the day of the PhD defense.

I appreciate and I am thankful.

I also want to thank the members of jury for accepting to review and to examine the present thesis, and for dedicating time for assisting to the PhD defense. I would like to address my thanks to all my colleagues at LIALP. Special thanks to Vincent Olive, the director of the laboratory. I also thank researchers, engineers, PhD candidates and interns that work at LIALP. Working with you was a great pleasure. Thanks also for the various, interesting and even particular discussions, moments and events that we shared together. Besides, I would like to express my gratitude to my colleagues at INRIA/e-motion and INRIA/Chroma. Your support was very important for me. I particularly remember the way you have supported me at the very rst moment of my thesis.

Last but not the least, I would like to thank all my friends in France, particularly those in Toulouse and Grenoble. I especially mention Patrice and Ony

Randriamampianina. My thanks also to the Malagasy community of Grenoble, particularly to the catholic community. Finally, I want to thank Felana Andriatsitoaina for her absolute support especially in the toughest moments.

This thesis was supported by the Commissariat à l'Énergie Atomique et aux Ènergies Alternatives (CEA). This theis has been carried out mainly in the Laboratoire Intégration et Atelier Logiciel pour Puces (LIALP), a laboratory of the institute CEA LETI, and within CHROMA, a team that is part of the Institut National de Recherche en Informatique et en Automatique (INRIA) of Rhône-Alpes.

In one side, the CEA LETI is one of the world's largest institute for applied research in microelectronics. On the other side, the INRIA Rhône-Ales is globally-known for researches in computer science, namely in the eld of robotics and automated cars.

This thesis consists in designing a mathematical framework that enables to safely and eciently process on an embedded platform the fusion of perceptual sensors mounted on automated cars.

List of Figures The utmost challenge that modern road transportation must face is the road safety. Trac injuries cost lives and aect the economy of a whole country. Energy consumption and the respect of environment also become major challenges in the era of global warming. Cars are at the center of these challenges. Intelligent cars are proposed as one of the scientic and technological step ahead to improve safety, to save energy and to improve the respect of environmental standards.

Intelligent cars are upgraded with various kind of sensors for developing driving assistance systems and autonomous navigation. Perception is the task of gathering information about the driving environment through perceptual sensors. A perception system builds an environment model by fusing measurements from multiple sensors.

The fusion of multiple sensors provides several advantages over using a single sensor. First, sensors are subject to physical limitations and noises which introduce uncertainty in measurements. Using multiple sensors improves the robustness and the reliability of the perception system. It provides a level of redundancy of information that allows to improve safety and overcome the risk of sensor failure. It also allows to extend the coverage of the driving environment by range sensors.

Multi-sensor fusion is the main task of a perception system. The fusion must handle sensor uncertainties. The environment model must be able to represent any kind of obstacles whatever their nature is (eg. cars, pedestrians, animals, cyclists, buildings, vegetation, road infrastructures, etc).

This thesis aims to process multi-sensor fusion on a computing platform embedded on-board the car. The computing hardware is subject to a constraint of low cost and low power budget. The environment model produced by the HW/SW integration must be numerically reliable in order to ensure safety.

Occupancy Grids are a probabilistic framework that are able to fuse multiple sensors by taking into account uncertainties. They produce a probabilistic model of the environment that can cope with the diversity of obstacles. Occupancy grids require though an intensive probability calculation that embedded resourceconstrained computing platforms can hardly process in real-time.

Chapter 1. INTRODUCTION

As a solution, this thesis introduces the Integer Occupancy Grid framework.

This framework processes probabilistic multi-sensor fusion through simple integer arithmetic. Its HW/SW integration guaranties a bounded numerical error that is parametrized by the user. Integer Occupancy Grids enable the integration of multisensor fusion on low-cost and low-power processing platforms. The latter becomes even able to process multi-sensor fusion in real-time.

The following sections will provide introduction and motivation on the topics treated in this thesis. The addressed problem and the proposed approach will be presented thereafter.

1.1 Motivation

Societal and environmental challenges

Cars are a widely accepted mean of transportation of people and goods. They contribute signicantly to the economic development of cities, countries and even at worldwide scale. Transport, industry, trades, services, defense, health, environment protection, etc always rely on cars at some levels in order to ensure mobility and to perform tasks on time, eciently and safely. Since their mass production at the beginning of the 20th century, cars have considerably shaped cities. Major part of the infrastructure in cities such as streets, parkings, highways, trac signs, and bridges are dedicated for cars. Moreover, cars have also brought signicant social impacts. They favor the connection between persons, families and friends. They are at the same time a sign of prestige, social class, image and personality.

Nevertheless, cars are also at the origin of the major challenges that modern societies have to face: the road safety, the energy consumption and the environmental challenges. In [WHO 2015], the World Health Organization (WHO) reports that road accidents cause over 1.2 million of deaths and 50 millions of non-fatal injuries worldwide each year. If these statistics persist, road accidents would cause 36 millions of deaths within 30 years, which is equivalent to the population of Canada in 2015 [START_REF] Quotidient | Estimations de la population du Canada : âge et sexe, 1er juillet[END_REF]). The lost of an active family member or the handicap due to injuries lead households into deep poverty. They also constitute a significant burden for health, insurance and legal systems and cause globally a loss of 3% of Gross Domestic Product (GDP). Concerning the energy and environmental challenges, according to a study about energy eciency in France [START_REF]La transition énergétique du secteur des transports Un plan d'action : comment nancer l'exploitation des gisements d'ecacité énergétique du secteur ? Réseau Action Climat France & Institut NégaWatt[END_REF]), transportation is the second leading sector in term of energy consumption (32 % of national consumption). Furthermore, this sector is the rst leading in term of emission of greenhouse gas (37 % of CO 2 emissions). About 95 % of the emissions due to the sector of transportation are caused by road transportation. Moreover, personal vehicles are responsible of 58 % of the emissions due to road transportation.

To address these challenges, governments, national and international organizations promote road legislations, road awareness campaigns and environmental standards for improving road safety, energy eciency, and environment protection ([IEA 2010, WHO 2015]). In addition, researchers, engineers and the automotive 1.1. Motivation 3 industry also contribute actively by providing technological solutions and innovations. During the 20th century, mechanical, electrical and electronic technologies such as automatic transmission, fuel injection and Anti-lock Braking System (ABS)

have been continuously integrated into cars to enhance safety, reliability, comfort and eciency. Nevertheless, these solutions are not sucient to address the above challenges. The safety and the eciency of cars are mainly under the responsibility of drivers. However, 93 % of trac injuries are caused by human errors ([Yeomans 2014]). At the end of the 20st century, thanks to the advancement of sensors, digital technologies and advanced algorithms, new and more intelligent functions have begun to be developed for helping drivers in the task of driving.

Towards autonomous cars

At the beginning of the 21st century, in the era of digital technologies, the task of driving is more and more left out of the hands of human drivers. Driving is rather assigned to computerized systems composed of sensors, actuators, microprocessors, communicating devices, algorithms and software. An intelligent vehicle is a vehicle equipped with computer systems capable of handling certain aspects of driving [START_REF] Eskandarian | [END_REF]). Systems which purpose is to assist the human driver for performing the task of driving are called Advanced Driver Assistance Systems (ADAS).

These systems help the human driver to achieve a driving performance that is safer, more ecient and more respectful of environmental standards. When such systems can handle totally the task of driving without any human intervention, the vehicle is called autonomous, self-driving or driverless.

The idea of autonomous cars is not recent. In 1925, the American rm Houdina Radio Control Co. unveiled a radio-controlled driverless car running in the streets of New York. In the 1950s until 1970s, driverless cars were experienced on highways where they were guided by wires and electronics buried in the pavements ([Press-Courier 1960]). In the 1980s, Eureka PROMETHEUS was the rst European project launched in the eld of autonomous cars. Various universities and car manufacturers participated in this project. In the 1990s, research teams have begun to equip prototype cars with dierent range sensors including cameras, radars, LIDARs and ultrasonic ([Catling 1991, Ulmer 1994[START_REF] Thorpe | [END_REF]]). Special functions such as automated parking and lane detection have begun to be developed ([Pomerleau 1989, Broggi 1995[START_REF] Paromtchik | [END_REF]).

In the 2000s, the Defense Advanced Research Projects Agency (DARPA) in the United States, organized challenges where autonomous cars compete for completing predened courses without human driver ([Behringer 2005[START_REF] Thrun | [END_REF], [START_REF] Urmson | [END_REF]). In parallel, the European Union funded projects such as PREVENT [Pre], HAVEit [Hav] or SARTRE [Sar] for developing and testing ADAS. These projects brought together dierent partners from automotive industry and research.

Collaborative projects have continued in 2010s ([START_REF] Broggi | [END_REF][START_REF] Ziegler | [END_REF]). Most recent trends show various demonstrations of autonomous cars fruit of research and developments mainly lead by the automotive industry and tech companies. Google is Chapter 1. INTRODUCTION the initiator of these trends by creating its well-known autonomous car The Google Car ([Birdsall 2014]). Then the traditional car companies such as Daimler, BMW, Renault, Ford, etc followed ([START_REF] Hohm | [END_REF][START_REF] Aeberhard | [END_REF]).

Scientic and technical challenges

Software become more and more predominant and increasingly complex in cars.

Complex Electric/Electronic systems powered by software are integrated into cars.

Software is present in major systems that vary from powertrain and braking to driver assistance and infotainment. These systems may aect the safety and/or the security of the car and the passengers. They raise an enormous safety and quality challenges ahead ([Paliotta 2016]). Any software component must guaranty a level of safety.

This includes the rmware, the operating system, the device driver, the network, the user applications, etc. The need for software certication becomes compulsory in order to guaranty safety. Standards such as the ISO 26262 ([ISO 2011]) are developed for this purpose.

Despite the scientic and technological progress, certied fully autonomous cars do not still exist nowadays. Autonomous vehicles are still in the phase of research and development. Recent cars on the market are however already equipped with some certied ADAS functions. For clarifying the dierences between autonomous driving and ADAS, the SAE International a worldwide association of automotive engineers established a system of classication for identifying the level of automation of a car ([SAE 2014]).

The SAE classication is composed of six levels of driving automation as shown on g. 1.1. Starting from level 0 to level 2, the human driver has to monitor the driving environment. While there is no automation at level 0, systems at level 1 assist the driver in the driving task. At level 2, the system can steer, brake or accelerate the car in predened situations but the environment monitoring remains a job of the driver. From level 3 to level 5, the system is capable of monitoring the driving environment and even replaces the human driver. While at level 3, the driver should always be ready to intervene if the system reaches its limits, at level 4, such human intervention is no more required. The car is able to drive itself autonomously in predened situations at level 4, and in every situations at level 5. Nowadays, no autonomous car can be classied at level 5. However, both 1.2. Perception system 5 academy and industry already develop cars with automation level 4. For instance, the driverless cars from Google have been tested in urban environment in California but they cannot yet cope with all weather conditions ([START_REF] Harris | How Google's Autonomous Car Passed the First U.S. State Self-Driving Test[END_REF]). The project CityMobil2 tested driverless buses running in the downtown of Trikala (Greece) in 2015 [Cit]. The buses shared pavements with other cars, pedestrians and cyclists but run at a maximum speed of 20 km/h.

Concerning the automotive market, ADAS systems like Adaptive Cruise Control (ACC) and the Lane Departure Warning (LDW) have been integrated since 2000s.

The ACC keeps a vehicle at a desired speed and at a desired distance to the vehicle ahead set by the driver. The LDW warns the driver in case the car moves to close to the edge of the lane. Lane Keeping Assist systems (LKA) are able to actively steer the vehicle to keep it in the lane.

Cars in the automotive market are still limited to automation level 0,1 or 2. The gap that makes dicult to get over the level 2 is the miss of a safe electric/electronic system that would enable cars to monitor safely the driving environment. Environment monitoring is a safety critical task. If it fails, the damage can cost human life.

Environment monitoring constitutes a scientic and technological challenge. Moreover, the requirements of robustness, reliability, certication and costs familiar to the domain of automotive makes this challenge dicult.

Environment monitoring is a task of a special system called perception system.

The need for a safe, robust and reliable perception system constitutes the starting point for the present thesis.

Perception system

An autonomous car is driven by a computer system instead of a human driver.

As a human driver, the driving system needs to continuously monitor the driving environment in order to make a driving decision like accelerate, brake or steer. The question arises: how the system can monitor the driving environment? The proposed approaches nd their origins in the eld of robotics. A mobile robot needs to be aware of its environment in order to operate within it. For instance, to navigate in a cluttered environment, a mobile robot needs to know the location of obstacles around and where are the navigable spaces. For this purpose, the robot rely on multiple sensors that observe the environment. The sensors provide measurements according to the spatial disposition and the physical properties of the sensed objects.

Range sensors such as laser-based sensors, stereo-camera, radars and ultrasonic sensors are commonly used in robotics and also for autonomous vehicles. These sensors are able to provide range measurements without a physical contact with the sensed objects. Laser sensors are based on Light Detection and Ranging (LIDAR) technology. They estimate the distance to the sensed object by measuring the timeof-ight (ToF) of laser pulses sent toward the object. The principle of ToF is also used in ultrasonic sensors, ToF cameras and radars. Ultrasonic sensors use acoustic waves instead of laser pulses while infrared light is used in ToF cameras. Radars are able to estimate both distance and velocity of moving objects. Stereo-cameras also allow to estimate the distance to objects by computing depth information from pair of images.

Sensors provide raw measurements that do not contain directly the information required by the car for making decision. For instance, depth images from a stereo-camera are not enough for deciding whether the car should brake or steer.

Consequently, measurements are processed by a perception algorithm for building a kind of a map of the environment called environment model. As shown on g. 1.2, the system composed of range sensors and perception algorithm is called perception system. The role of the perception system consists in constructing a model of the environment. The model constitutes a dynamic computational representation of the environment that the autonomous car can interpret in order to make decisions and to perform actions. For instance, for performing self-navigation, the environment model can be used to compute a path or to avoid collision to obstacles.

Once the path is chosen, the car can accelerate, throttle back, brake or steer by commanding the actuators.

Figure 1.2 Perception system

Remark Vision sensors provide additional data such as colors and textures. They can be used for various functions such as obstacles recognition, lane detection, trac light, trac sign recognition, detection and tracking, etc([Stiller 1997, Ernst 1999[START_REF] Lorei | [END_REF][START_REF] Sun | On-road vehicle detection: A review[END_REF], Tao 2013]). Vision-based sensors provide rich information about the environment. However, this thesis focuses only on range measurements and do not exploit the other information provided by vision sensors.

Environment model

There are dierent ways to model computationally the driving environment of a car.

Models dier on the level of spatial details they provide, on the representation of free spaces, the way to model objects, and on the compactness of the environment representation. Figure 1.3 shows the main examples of environment model used for automotive perception. In the followings, we will refer as obstacle any object or alive being or infrastructure that may be present on a driving environment. Obstacles include cars, pedestrian, cyclists, vegetation, buildings, etc.

First, raw sensor models (g. 1.3a) represent the environment with point clouds.

They are commonly built from sensors providing dense point data such as LIDARs The cell height is extracted from measurements from LIDAR or stereo-camera ([Christensen 2008[START_REF] Nguyen | [END_REF], Vatavu 2012]). Therefore, a cell is assimilated to a solid vertical structure with a given height. This makes elevation maps fail to represent overhanging structures such as bridges and tunnels. Multi-level surface maps (g. 1.3d) propose an alternative that stores a list of multiple height values at a cell level ([Triebel 2006]). This allows the cell to represent more than one vertical structure. Multi-level maps are able to represent correctly overhanging structures. After that, full 3D representations can be modeled by 3D occupancy grids [START_REF] Schmid | [END_REF][START_REF] Wurm | [END_REF][START_REF] Hornung | [END_REF]]. The environment is subdivided into adjacent cubic cells called voxels. The probability that each voxel is occupied by an obstacle is computed from sensor measurements.

The compactness of grid-based models depends on the number of cells: the higher is the number of cells, the less compact is the model. Apart from grid models, the [START_REF] Thrun | Exploring Articial Intelligence in the New Millennium[END_REF], Burgard 2008]). Lines are used for detecting and delimiting lanes ([Beyeler 2014]). Bounding boxes are frequently used for tracking cars or pedestrians ([START_REF] Barth | [END_REF][START_REF] Enzweiler | [END_REF]).

Despite their dierences, the environment models are rather complementary. For instance, sensors producing point clouds can be used for building occupancy grids.

Then, the latter can be used in turn to build stixel worlds [START_REF] Pfeier | [END_REF]]. Choosing an environment model depends actually on the function that will be implemented upon the model. For instance, for the fusion of measurements from heterogeneous sensors, occupancy grids are well-adapted [START_REF] Thrun | [END_REF]]. For a parking assistant system, bounding boxes are enough to warn the driver whether the car is approaching an obstacle too closely.

Another challenge for environment models is the support of dynamics. The detection and tracking of moving objects require sophisticated techniques that have to take time into account. The objective is to estimate at each time step both position and speed of moving objects. For instance, ltering techniques have been intensively applied for developing dynamic grid based environment models ([Coué 2006[START_REF] Gindele | [END_REF], Danescu 2011[START_REF] Vatavu | [END_REF]). The dynamics allow to predict the future state of moving objects, to assess risk of collisions and to plan further actions [START_REF] Laugier | [END_REF]).

Occupancy grids

The present thesis focus on occupancy grids for a historical reason. The e-Motion project-team common to INRIA Rhône-Alpes and the LIG (Laboratory of Informatics of Grenoble) has developed a family of perception algorithms called Bayesian Occupancy Filter (BOF) ([Coué 2006, Nègre 2014, Rummelhard 2015]). The hardware integration of BOF was included in the long-term plan of the team. However, BOF takes multi-sensor occupancy grids as input. Then, a hardware integration of BOF requires rst a successful hardware integration of occupancy grids.

Occupancy grids have been initially developed by Moravec and Elfes in the mid-80s ([START_REF] Moravec | [END_REF], Elfes 1987[START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989b, Elfes 1989a]). They have been widely used for mapping the environment of indoor and outdoor robots ([START_REF] Thrun | Exploring Articial Intelligence in the New Millennium[END_REF], Stepan 2005, Burgard 2008[START_REF] Jessup | [END_REF]).

They have been also adopted as a base of automotive perception algorithms ([Coué 2006[START_REF] Weiss | [END_REF][START_REF] Schmid | [END_REF][START_REF] Laugier | [END_REF], Nuss 2015]). In the automotive context, an occupancy grid represent the driving environment with a collection of cells paired with their occupancy probabilities. The location of empty spaces and obstacles is estimated Finally, the subdivision of the environment into cells allows to represent at the same time occupied regions, free regions and unknown regions. The notion of cells present a low level abstraction that is enough for performing basic taks for mobile robots like free space searching, path planning, obstacle avoidance and navigation.

Objects are modeled by occupied cells, regardless of their nature. This makes occupancy grids suitable for representing unstructured environments like in urban area.

Objective: multi-sensor fusion module

The present thesis aims to integrate the computation of multi-sensor occupancy grids on a hardware embedded on-board intelligent cars. This is equivalent to build the Multi-sensor Fusion (MSF) module depicted on g. 1.5. The role of the module is to fuse the measurements periodically produced by range sensors. Within a period, the module takes as inputs range measurements and fuses them into a unique occupancy grid. The timeline of the execution of MSF module coupled with the BOF algorithm is illustrated on g. 1.6. At each iteration, a process called Multi-sensor Fusion (MSF) builds an Occupancy Grid (OG) by fusing all measurements produced by on-board sensors. After that, the occupancy grid is processed by the BOF in order to extract the information about the dynamics of cells and their velocities. At an iteration t, the BOF takes as inputs both the occupancy grid produced by MSF, and the dynamics and the velocities of cells computed at iteration t -1. It subsequently produces estimations about the velocities of cells.

Occupancy

The long-term objective is to embed the MSF module on cars commercialized on the automotive market. This intends to enable cars to monitor their driving environment by using multiple sensors mounted on-board. Environment monitoring is required to move cars from driving automation level 2 toward automation level 3. Targeting the automotive market, and the automotive domain in general, implies that the MSF module is subjected to the following constraints:

• First, computations have to be performed in real-time. The rate of production of occupancy grids must be at least equal to the rate of sensor measurements.

By respecting this, the MSF module follows the evolution of the environment as it is captured by sensors. • Second, a mass production cannot aord expensive hardware. Thus, the integration must be realized on low-cost computing platforms.

• Third, the computing platform must have a low electrical power-consumption to t within the limited source of electrical energy on cars. A low energy consumption is also required to face environmental challenges.

• Finally, the HW/SW integration of occupancy grids must be safe. Safety includes handling sensor uncertainties, knowing numerical errors during computations, and guarantying determinism.

Addressed problem

To show the challenges imposed by the above constraints, let us detail the computing demands required by occupancy grids, the computing performance available on lowcost and low-power processing platforms, and the safety challenges involved by the HW/SW integration of occupancy grids.

Computing requirements of occupancy grids

The computing requirements of occupancy grids are inuenced by the number of cells, the number of sensor measurements and the real-time requirement. To model the driving environment of a car, an occupancy grid with thousands to millions of cells is required. For instance, an occupancy grid of 100 m-by-100 m with a cell size of 10 cm-by-10 cm contains 1 Million of cells. When extended in three dimensions with a height of 2 m, the occupancy grid will contain 20 Millions of cells.

Concerning the number of measurements, common range sensors such as LIDARs or stereo camera provide thousands to million of measurements per second. When these numbers are multiplied by the number of cells, the real-time calculation of occupancy grids requires to execute a dozen of Billions of operations per second in order to guaranty a minimum of latency.

For implementing occupancy grids, a digital model of real-number operations is required in order to process probabilities. Thanks to the availability of processors with hardware oating-point units and to their wide support by dierent programming languages, occupancy grids are traditionally implemented and tested with oating-points ([Coué 2006[START_REF] Wurm | [END_REF][START_REF] Hornung | [END_REF], Nègre 2014]). However, a real-time processing of occupancy grids require in practice a hardware having a computing performance with a dozen of Giga Floating Points Per Second (GFLOPS).

Hardware constraints

Those Billions of Floating Points Per Second can be found on workstations.

Hence, occupancy grids have been integrated and experienced into workstations composed of a high-end CPUs and/or a Graphical Processing Unit (GPU)

([Yguel 2006, Homm 2010[START_REF] Adarve | [END_REF]). These platforms provide exibility for testing algorithms and proof of concepts. GPUs allow to apply parallel computing techniques for calculating simultaneously the occupancy probabilities of several cells ([Nègre 2014]).

These platforms are not however certied for being used for automotive applications. In addition, they are expensive to purchase and have high power con- Numerical errors Occupancy grids are a well established probabilistic framework for performing multi-sensor fusion. Probabilities are real-numbers. A computer is nite. On a numerical point of view, processing probability calculations on nite resource introduces forcibly a numerical error. Calculations cannot be processed with arbitrary precision. The dierence between the mathematics and the numerics must be known in order to ensure safety and robustness.

For instance, assume that a high-level application has to decide whether a cell is occupied or empty. For this purpose, the occupancy probability of the cell is compared to a threshold. To make a reliable decision, the comparison must take into account the numerical error involved by the SW/HW integration of probability calculations.

Determinism Given a set of sensor measurements, the occupancy probabilities computed by the SW/HW integration must be known deterministically. Determinism means here that numerical values of occupancy probabilities must be the same regardless of technical details such as programming language, compilers, compiling options or processor architecture. In fact, if the values of occupancy probabilities change if one of the above parameters is modied, then the SW/HW integration is not robust with respect to technical details. That reduces the safety and the reliability of the HW/SW integration.

Research contribution

To deal with the computing requirements, the hardware constraints and the safety challenges, both theoretical and algorithmic improvements of occupancy grids are required for a successful HW/SW integration of the MSF module. For this purpose, this thesis introduces the Integer Occupancy Grid framework. Integer

Chapter 1. INTRODUCTION Occupancy Grids express the occupancy state of a cell through an integer called occupancy index. Integer Occupancy Grids support probabilistic fusion of multiple sensor. Their originality consists in the process of multi-sensor fusion as being an arithmetic addition of occupancy indexes.

The main contributions of this thesis are listed below:

• The formulation of the theoretical foundation of the paradigm of Integer Occupancy Grids and the multi-sensor fusion through integer arithmetic.

• The exploration of algorithmic data structure for storing Integer Occupancy Grids.

• The design of algorithms for computing Integer Occupancy Grids. The computation of Integer Occupancy Grids takes into account sensor uncertainties.

• The theoretical and experimental study of the numerical errors involved by Integer Occupancy Grids in order to verify their accuracy.

• The application of Integer Occupancy Grids for the fusion of four automotive LIDARs mounted on a prototype car.

• The experimental validation of the HW/SW integration of Integer Occupancy

Grids on an embedded CPU. The integration is able to fuse LIDARs into an Integer Occupancy Grid whit a real-time performance on a low-cost and low-power embedded CPU.

Thesis overview

To conclude this chapter, this manuscript presents the theoretical development of

Integer Occupancy Grids and their experimentation on an intelligent car equipped with multiple range sensors. The remainder of the manuscript is composed by the following chapters.

Chapter 2 reviews the paradigm of standard occupancy grids. It presents some basics of probability calculus followed by the denition of occupancy grids with probabilistic terms. A review of the literature about the computation of occupancy grids is provided thereafter. The objective of this thesis is to develop the Multi-sensor fusion (MSF) module.

The role of the module is to fuse periodically the measurements from multiple range sensors mounted on a car. The module implements the Occupancy Grid framework on a processing platform. To master both theoretical and algorithmic foundations of the framework, this chapter reviews occupancy grids: their formal denition, their computation, and the algorithmic data structures for storing them for an HW/SW integration.

The occupancy grid framework was initially developed by Moravec and Elfes in the mid-80s ([START_REF] Moravec | [END_REF], Elfes 1987[START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989a, Elfes 1989b]).

It uses the Theory of Probability for handling sensor uncertainties1 . This chapter begins with a brief review of the basics of probability in Section 2.1. The concepts of probability will be used to give a formal denition of occupancy grids in the next section. Section 2.3 reviews the computation of occupancy grids from a single sensor measurement. The case of multi-sensor measurements is reviewed in Section 2.4. Finally, the algorithmic data structures used for storing occupancy grids are presented and discussed in Section 2.5.

Basics of Probability

The mathematical study of probability begun between the 16th and the 17th cen- At the beginning of the 20th century, probabilities are applied in various scientic disciplines. However, a mathematical foundation proper to theory of probability and application-independent was still missing. Kolmogorov lled this gap by giving an axiomatic foundation of the theory of probability ([Kolmogorov 1956]). Probabilities are no more limited to game of chance and dierent sementical interpretations of probability have appeared as reported by [Jaynes 2003]. Despites the dierences of interpretation, the mathematics rely on the same theory.

The probability theory can be explained through the notion of random variables.

Probabilities are computed over the possible values of such variables. The probability of a variable can be conditioned by the value of another variable. This gives the concept of conditional probabilities. Besides, two random variables can be though independent. The above concepts constitute the basics of probability required for understanding the present manuscript. They are part of the mathematical theory of probability, independent of any application context. In the scope of this thesis, probabilities can be interpreted in various ways. Such interpretations are anticipated and discussed at the end this section.

Random variables

A random variable X is a variable subject to modication and that can take on multiple values. A random variable can designate the result of an experiment, the state of a system, the value of a measurement, etc. For instance, the result of the toss of a coin is a random variable X that can take on two values: head or tail. Let X denotes a random variable and S the set of all possible values of X.

The random variable X is discrete if S is nite or is countably innite. The toss of a coin or the roll of a die are for instance two examples of discrete random variables. The random variable X is called real-valued if S is a subset of R. For

instance, the roll of a die is a real-valued random variable that has six possible values: 1, 2, 3, 4, 5, 6. Finally, the random variable X is continuous if X is realvalued and S is uncountably innite. For instance, the temperature measured by a thermometer is a continuous random variable since the measurement can be any real number between a minimal temperature and a maximal temperature.

Probability

Denition 2.1.1. Let X be a discrete random variable, S the set of all possible values of X, and x an element of S. The probability distribution of X is a function P that assigns a non-negative real number to each value x of X such that:

P (x) ≥ 0 and x∈S P (x) = 1 (2.1)
The quantity P (x) denotes the probability that X takes a value x. From eq.

(2.1) follows that P (x) is a real-number between 0 and 1.

Denition 2.1.2. Let X be a discrete random variable having N possible values x 1 , . . . , x N . The values x i , i ∈ {1, . . . , N } are equiprobable if:

P (x 1) = . . . = P (x N) = 1 /N (2.2)
If X is continuous, it has innite number of possible values, then intuitively the probability P (x) is null. A function that allows to capture the probability distribution a continuous variable is the cumulative distribution function.

Denition 2.1.3. Let X be a continuous random variable. The cumulative distribution function F X denotes the function that assigns to a real number a the probability that the value of X is less than or equal to a: F X (a) = P (X ≤ a).

The cumulative distribution function is a monotonically increasing function. Notice that the denition of cumulative distribution function is also valid for real-valued discrete random variable. Denition 2.1.4. Let X be a continuous random variable and F X its cumulative distribution function. If the cumulative distribution function of X is dierentiable, its derivative p X is called the Probability Density Function (PDF):

p X (a) = dF X (a) da (2.3)
In order to simplify the notations, we will denote p X (x) by p(x). The PDF p(x) of a continuous random variable X respects the following properties. First, since F X (x) is a monotonically increasing function, then p(x) is a positive or null function.

Second, unlike probabilities, the values of the PDF of X are in R and is not always limited to the interval [0, 1]. Third, like probabilities, the integral of a PDF is equal to 1:

+∞ -∞ p(x)dx = 1 (2.4)
A common example of PDF is the Gaussian function with parameters σ and µ:

p(x) = 1 √ 2πσ 2 exp - (x -µ) 2 σ 2
(2.5)

The parameters σ and µ denote respectively the standard deviation and the mean of the distribution.

P (x|y) = P (x) (discrete) (2.17) p(x|y) = p(x) (continuous) (2.18)
Let Z be a random variable. The variables X and Y are conditionally independent if:

P (x|y ∧ z) = P (x|z) (discrete) (2.19) p(x|y ∧ z) = p(x|z) (continuous) (2.20)
The independence of X and Y is conditioned by the knowledge that the value of Z is z. Notice that X and Y are conditionally independent does not mean that they are mutually independent.

Interpretation of probability

The subsections 2.1.1 to 2.1.4 gave the mathematical basics of probabilities, regardless of their semantical interpretation. In the present thesis, the meaning of a probability can be interpreted in two ways: in the frequentist view or in the bayesian view.

The frequentist interpretation of a probability is associated to random variables that represent a physical observation. The process (or the experiment) leading to the observation can be repeated for a large number of time in order to aect a probability to a random variable. For instance, consider a human operator that rolls a die. Let X be the discrete random variable that represents the result of a Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS roll. For computing the probability that a roll gives X = 3, the human operator rolls the die m number of times, checks the result, and counts the number n of times where the result is 3. When m is a large number, [Kolmogorov 1956] states that the ratio n m becomes very closed to the real value of P (X = 3). Therefore, P (X = x) is interpreted as the probability or the chance of the event X takes the value x to occur after a long run of trials.

Besides, on a bayesian point of view, a probability represents the degree of certainty associated to a statement. The probability P (x) measures how certain is the statement X takes the value x [Jaynes 2003]. For instance, in the example of the roll of a die, assume that the human operator is blindfolded. He rolls the die and one asks to him to guess the result. Let X denotes the result guessed by the human operator. It is a discrete random variable with values in {1, 2, 3, 4, 5, 6}. Then since the human operator is blindfolded, he cannot state absolutely that the result of the roll is x. However, he can answer with a degree of condence P (x) that the result of the roll is X = x.

Unlike the frequentist interpretation, the bayesian interpretation does not require a repetition. Moreover, it allows to apply probabilities for reasoning under uncertainties, where information about a random variable are only partial and incomplete. The Theorem of Bayes is essential for reasoning under uncertainty. For understanding its importance, let us consider the following example. Peter is on the way back to his home. By far, he sees through a window that the light is on.

Therefore, he thinks that someone is inside his house.

Let us now analyze this example with random variables. Let X be the random variable that represents the presence of a person within Peter's home. Two values are possible: yes or no. The statement X = yes means that someone is within the room while X = no means no one is within the room. Additionally, let D represent the status of the light in Peter's home. The light can be on or of f . By observing that the light is on (D = on), Peter thinks that someone is inside (X = yes). However, since Peter is still far from his house, he cannot be certain that there is actually a person inside.

The Theorem of Bayes allows to computes the degree of certainty of Peter about the presence of a person in his house: In the following sub-sections, let us give successively an overview of the problem of environment modeling, followed by denitions of the concepts of sensor model, grids, and cells. A formal denition of occupancy grids is given thereafter.

P (x|d) = P (

Problem overview

An occupancy grid serves as an environment model of the world in which a mobile robot operates. The world is composed of various physical obstacles of dierent natures, with dierent sizes and physical properties. In the context of an autonomous car, the term obstacle designates any living beings or objects that can be found in a trac scene. Example of obstacles are human beings, animals, vegetation, cars, bicycle, buildings, road infrastructure, trac signs, etc.

Modeling the physical world means estimating where obstacles are located and where are the empty regions. As illustrated on g. 2.1a, such information should be captured by the environment model which is an occupancy grid in the this thesis.

As shown on g. 2.1b, modeling the surrounding world with an occupancy grid requires two major steps. First, sensors sense the physical world and provide outputs called measurements. Second, sensor measurements are processed for building an occupancy grid. Hence, the resulting occupancy grid models the physical world as seen by the sensors.

Sensor model

For retrieving information about the world surrounding an autonomous vehicle or a mobile robot in general, range sensors are commonly used [Elfes 1989b[START_REF] Thrun | [END_REF][START_REF] Siciliano | [END_REF][START_REF] Eskandarian | [END_REF]. A range sensor is a device that senses the world by exploiting the properties of a physical support such as light, radio waves, or acoustic waves. The process of sensing outputs a measurement that reects the world as sensed by the sensor.

Range sensors commonly used in robotics include laser scanners, time-of-ight (ToF) sensors, vision sensors, radars, etc. Let us now look for a mathematical model that describes the process of sensing.

Such model consists to a mathematical relation between the measurement and the cause of the measurement. For this purpose, let us consider the example of a sensor which measurement depends on the distance to the nearest obstacle.

Let z denote a measurement and d the distance to the nearest obstacle. Thus, the mathematical model of the process of sensing must be a mathematical relation between z and d. Assume that the sensor is perfect. Since, the measurement z depends on the distance d, when the value of d is known, it should be possible to determine the value of z in a deterministic manner. Consequently, for a perfect sensor, there would exist a function f such that z = f (d).

However, in reality, if a sensor observes twice the same obstacle located at the same distance, it may output two dierent values of measurement. That means, sensors are actually imperfect and measurements are uncertain. In practice, measurements do not depend only on the distance to the sensed obstacle. External conditions such as the temperature of the environment, the lighting condition, or the materials of the sensed obstacle may inuence on the measurement. Uncertainties may be also due to imperfections of the sensor device, its mechanical parts, or its electric/electronic components. Herein, d is considered as the cause of z by abstracting the other parameters that may inuence the value of z. For a perfect sensor, by knowing the distance d to the nearest obstacle, the corresponding measurement cannot be dierent to f (d).

Hence, the sensor model is derived from the Kronecker's delta distribution:

p(z|d) = 1 if z = f (d) 0 otherwise (2.22)
For building the sensor model of a non-perfect sensor, we can employ the frequentist technique that consists in repeating the measurement process several times in order to derive a probability distribution. A measurement is caused by the presence of obstacles within the sensor's FOV. In order to model the sensor's behavior, multiple observation scenarios can be set up. A scenario consists to put obstacles at a known location within the sensor's FOV. The sensor will react by giving measurements. After repeating several scenarios, the sensor model can be built by using the data about the obstacles, their locations relative to the sensor and the corresponding measurements. Advanced statistical methods like those proposed in [Bishop 1995] can be used for getting the PDF of the sensor model.

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

Finally, the sensor model describes the process of sensing with a PDF. It keeps track of the relation between a measurement and the physical world that has caused the measurement. Let us see in the followings how to utilize the measurement for building a computational model the physical world.

Grid and cells

The present thesis uses occupancy grids for modeling the driving environment of autonomous cars. As indicated in their name, occupancy grids model a physical world with a grid subdivided into cells. For understanding the principle of occupancy grids, let us give a formal denition of the concept of grids and cells. Denition 2.2.2. Consider a bounded region-of-interest within a spatial world. A grid is a subdivision of the region-of-interest into a nite number of adjacent-butdisjoint subregions. The subregions are called cells.

Let R denote the region-of-interest, G the grid, N the number of cells, and c i the i-th cell. Therefore,

G = {c i }, i = 1, . . . N ∀i = j : c i ∩ c j = ∅ R = N i=1 c i
Depending on the application, a grid can be one-dimensional (1D), twodimensional (2D) or three-dimensional (3D). On the example on g. 2.3a, the region-of-interest is a rectangular region in the front of an ego vehicle. A 2D grid subdivides the region into multiple cells on g. 2.3b. Cells cover squared subregions having the same size.

(a) (b)

Figure 2.

Subdivision of a region-of-interest into a grid

There exists dierent forms of grid: cartesian, polar, spherical, etc. The grid is called uniform if cells have uniform size. This thesis focus on uniform cartesian grids. A grid has two parameters: a size and a resolution. The size measures the length of a 1D grid, the surface of a 2D grid or the volume of a 3D grid. The resolution designates the density of cells within a grid. For instance, for a 3D grid, the resolution designates the number of cells per 1 m 3 of volume. For the same grid size, a high resolution grid has then more number of cells than a lower one.

Occupancy state of cells

Once the concept of grid is formalized, let us see how it can be used for building a computational model of a physical environment. The idea behind occupancy grids is to capture the spatial structure of a physical environment through a grid. This can be achieved by identifying which cells are occupied by obstacles, and which ones are empty.

A cell is considered as occupied if an obstacle is located within the region covered by the cell. The nature of the obstacle is irrelevant. In the context of an autonomous car, an obstacle can be an object, a human, a vegetation, a building and so forth. On a mathematical point of view, an obstacle is a bounded region within the physical environment.

Hence, an obstacle A occupies a cell c i if it intersects partially or totally the region covered by the cell: A ∩ c i = ∅. Consequently, a cell c i is considered as occupied if there exists at least one obstacle A that intersects with it:

∃obstacle(A) : A ∩ c i = ∅ (2.23)
At the opposite, a cell is empty if no obstacle intersects with it:

∀obstacle(A) : A ∩ c i = ∅ (2.24)
Equations (2.23) and (2.24) guaranty that a cell is either occupied or empty.

Then, occupiedness and emptiness are actually mutually exclusive and exhaustive.

Thus, the occupancy state of a cell can be dened as a random variable as follows.

Denition 2.2.3. Let G be a grid and c i a cell of G. The occupancy state of cell c i is a binary random variable s i which value is o i if c i is occupied and e i otherwise.

Since the occupancy state s i is a discrete random variable, the sum of the probability of its values is equal to 1:

P (o i) + P (e i) = 1 (2.25)

Occupancy Grids

The objective of the occupancy grid framework is to estimate the occupancy state of all cells of a grid. Assume that at a given instant, sensors observe the surrounding obstacles and return measurements. The framework utilizes these measurement to estimate whether a cell is occupied or empty. We suppose that the position of sensors relative to the grid is known. In the literature, this problem is commonly called occupancy grid mapping at known position [START_REF] Thrun | [END_REF]].

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS Denition 2.2.4. Let z 1 , . . . , z K denote measurements from K number of sensors and G a grid. An Occupancy Probability is a function P z 1 ,...,z K that maps a cell to the probability that the latter is occupied given sensor measurements:

P z 1 ,...,z K : G →]0, 1[c i → P (o i |z 1 ∧ . . . ∧ z K) (2.26)
The term inverse sensor model (ISM) designates a particular case of occupancy probability computed from a single measurement z:

P z : G →]0, 1[c i → P (o i |z) (2.27)
The probability P (o i |z) is called ISM to dier it from the sensor model p(z|d). In one hand, an ISM P (o i |z) estimates the eect of a sensor measurement on the occupancy state a cell. On the other hand, the sensor model p(z|d) estimates the eect of physical location of obstacles on the sensor measurement.

Besides, an occupancy probability is interpreted in the bayesian signication of probabilities. It measures how certain is the statement s i = o i regarding sensor measurements. That means, if the statements s i = o i and s i = e i are equiprobable, a cell c i can be occupied, but it can be also empty. Then, the occupancy state of c i is actually unknown. Since s i is a binary random variable, the equiprobability occurs if and only if the occupancy probability is equal to 1 /2. Consequently, if the occupancy probability is less than 1 /2, the cell is likely empty. If it is more than 1 /2, the cell is likely occupied. Denition 2.2.5. Let G be a grid and z 1 , . . . , z K be the measurements from K number of sensors. An Occupancy Grid (OG) is a function that maps a collection of measurements z 1 , . . . , z K to the set of the occupancy probabilities of all cells of G:

OG(z 1 , . . . , z K) = {P (o i |z 1 ∧ . . . ∧ z K), ∀c i ∈ G} (2.28)
Particularly, an occupancy grid OG(z) built from a single measurement z is called mono-sensor occupancy grid. When both sensors are taken into account, they are fused into a unique occupancy grid OG(z 1 , z 2) depicted on the bottom-right of the gure. Both the pedestrian and the car in the front are represented on OG(z 1 , z 2). Notice that on OG(z 1), OG(z 2) and OG(z 1 , z 2) represent the environment as seen by the sensors. Cells corresponding to obstacles sensed by sensors have occupancy probabilities greater than 1 /2. Cells that sensors see as empty have occupancy probabilities less than 1 /2. Finally, the occupancy probability of the cells outside the eld-of-view of sensors are equal to 1 /2.

According to Denition 2.2.5 (page 26), building an occupancy grid is equivalent to computing the occupancy probabilities of all cells of a grid [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989b]). In the followings, let us see the approaches proposed in the literature for building occupancy grids.

Mono-sensor occupancy grid

The problem of building a mono-sensor occupancy grid is described as follows. A sensor observes a physical world and provides a measurement z. The process of sensing is described by the PDF of the sensor model p(z|d). By knowing z and p(z|d), how to build the occupancy grid OG(z)?

This section reviews the dierent approaches proposed in the literature for tackling the above problem. Approaches dier from 1D occupancy grids to high-Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS dimensional ones (in 2D or 3D). This section focuses on 1D linear grids and 2D cartesian grids. It also considers only kind of sensors called single-target sensor and dened as follows.

Denition 2.3.1. A single-target sensor is a range sensor which eld-of-view is composed of a unique line-of-sight. A line-of-sight is modeled by a ray starting from the sensor, emitted towards a given direction and having a maximal range. The sensor outputs a scalar measurement z given the distance d to the nearest obstacle along the line-of-sight. The sensor model is in the form of p(z|d).

Range sensors that output point clouds can be modeled as a collection of multiple single-target sensors. For instance, each single point provided by LIDARs or RGB-D cameras can be modeled as the output of a unique single-target sensor. For a LIDAR, a single-target sensor is constituted by a single beam. For a depth image from vision-sensors, a pixel is modeled as a single-target sensor.

The output of a sensor device can contain then multiple measurements. For instance, an individual point among the point clouds returned by a LIDAR is considered as an individual measurement. The depth of a pixel within an image from a stereo camera is also an individual measurement.

In the following, let us see how to build a 1D occupancy grid from an individual measurement. After that, let us review the approaches for building 2D mono-sensor occupancy grids based on cartesian grids.

One-dimensional mono-sensor occupancy grid

This section reviews the main approaches proposed in the literature for building a 1D mono-sensor occupancy grid. Such occupancy grid model the physical world along an individual ray of a single-target sensor.

Figure 2.5 illustrates the scenario of the measurement. The sensor observes the world along a ray and returns a measurement z. The value of the later depends on the distance d to the nearest obstacle. The sensor model p(z|d) is assumed to be available. For modeling the world as it is viewed by the sensor along the ray, the latter is subdivided into multiple cells forming a 1D grid. Let N denote the number of cells, c 1 the cell nearest to the sensor and c N the farthest cell. The symbol d i designates the distance of cell c i from the sensor.

According to the denition of occupancy grids (Denition 2.2.5 (page 26)), building a 1D mono-sensor occupancy grid regarding a measurement z is equivalent to computing the ISM P (o i |z) of all cells c i , i = 1, . . . , N . The state s i of cell c i is a binary random variable. The value of s i is either empty (e i) or occupied (o i). To compute the ISM, applying the Theorem of Bayes described in eq. (2.13) gives:

P (o i |z) = p(z|o i)P (o i) p(z|o i)P (o i) + p(z|e i)P (e i) (2.29)
Hypothesis 2.3.1. Hypothesis of non-informative prior: Based on eq. (2.29), the probabilities P (o i) and P (e i), along with the PDFs p(z|o i) and p(z|e i) are required for computing the ISM of a cell. In the absence of any a priori information, the hypothesis of non-informative priors (Hypothesis 2.3.1 (page 28)) can be adopted to set the values of both P (o i) and P (e i).

P (o i) = P (e i) = 1 /2.
The literature propose dierent techniques for computing the PDFs p(z|s i), s i ∈ {o i , e i }. They can be classied into three groups: the bayesian approach, the analytics approach and the methods based on neural networks. Let us review these approaches one-by-one.

Bayesian approach

The Bayesian approach computes the ISM by utilizing the sensor model. It was proposed by Elfes in [Elfes 1989b]. This approach introduces the notion of grid congurations for computing p(z|s i), s i ∈ {o i , e i }.

Denition 2.3.2. Let G be a grid with N number of cells. A grid conguration g designates a conjunction of the states of all cells of G:

g x 1 ∧ . . . ∧ x N
where x j ∈ {o j , e j }

(2.30)

By applying the Theorem of Total Probability over all possible grid congurations, p(z|s i) becomes:

p(z|s i) = g p(z|g ∧ s i)P (g|s i) (2.31)
Let us separate the set {g} of all possible grid congurations into two disjoint subsets {g s i } and {g s i }. The state of cell c i is set to s i within a grid conguration g s i and s i within a grid conguration g s i . Equation (2.31) gives:

p(z|s i) = g s i p(z|g s i ∧ s i)P (g s i |s i) + g s i p(z|g s i ∧ s i)P (g s i |s i) (2.32)
Since for a grid conguration g s i , the state of cell c i is s i , then p(z|g s i ∧ s i) = p(z|g s i) and P (g s i |s i) = P (g s i). For a grid conguration g s i , the state of cell c i is Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS s i , therefore P (g s i |s i) = 0. Equation (2.32) gives:

p(z|s i) = g s i p(z|g s i)P (g s i) (2.33)
For computing p(z|g s i), [Elfes 1989b] proposes to utilize the sensor model p(z|d) where the distance d is replaced by the distance d h of the rst occupied cell within the conguration g s i :

p(z|g s i) = p(z|d h) where (s j = e j ∀j < h) and (s h = o h) (2.34)
Figure 2.6 presents the typical prole of a 1D occupancy grid. The ISMs are plotted as a function of the cell indexes. The sensor measurement z lays in cell c k . Before c k , the occupancy probabilities are almost null. Cells before c k are likely empty according to the sensor. In the vicinity of c k , occupancy probabilities increase until reaching a value greater than 1 /2 on c k . Cell c k is likely occupied according to the sensor. After that, occupancy probabilities drop progressively to 1 /2. The occupancy states of cells beyond c k are unknown to the sensor. Benets The approach of [Elfes 1989b] has the following properties. First, the ISM is computed from the sensor model. The sensor model expresses measurement uncertainties given the physical location of the sensed obstacle. By considering all possible grid congurations, the Bayesian approach evaluates all possible location of the obstacle by taking into account the measurement and its uncertainty.

Second, the value of ISMs take into account the way in which the physical world along the ray is subdivided into a linear grid. The grid subdivision is characterized by the distances d i , i ∈ {1, . . . , N }, of cells. These distances are taken into account in eq. (2.34). Hence, the Bayesian approach establishes a relation between the physical world, the sensor uncertainties, the grid subdivision and the value of the ISMs. Third, the Bayesian approach can be applied for any single-target sensor as long as the sensor model p(z|d) is available.

Limitations The main drawback of the Bayesian approach is its exponential complexity. In fact, the number of grid congurations where the state of a single cell is known is equal to 2 N -1 . Thus, the number of elements in the sum of eq. (2.33) grows exponentially with the number of cells. This hinders practical implementation of this approach, especially when real-time performance is required. [START_REF] Pathak | [END_REF]] proposed an extension of the Bayesian approach where an ISM is computed in a linear complexity. To improve complexity, cell states are assumed to be conditionally independent given sensor measurements. Such assumption is however incorrect along a ray. For instance, on g. 2.6, the occupancy states of cells behind c k tend to be unknown since the obstacle within c k hides them from the sensor. Then, the occupancy states of these cells are inuenced by the occupancy state of c k .

Analytic approach

The analytic approaches for computing P (o i |z) have been motivated by the exponential complexity of the Bayesian method in [Elfes 1989b]. The analytic approaches propose to approximate p(z|s i), s i ∈ {o i , e i }, or P (o i |z) by a continuous function.

Analytic model of P (z|s i).

In order to avoid the enumeration of all possible grid congurations as in the Bayesian approach, [Konolige 1997] and [Yguel 2006] propose to approximate p(z|s i) with an analytic form:

p(z|s i) ≈ p dist z (d i) (2.35)
where p dist z (x) is a continuous function dened over the distance x from the sensor.

This function is based on a Gaussian distribution in [Konolige 1997] and on power function in [Yguel 2006].

Analytic model of

P (o i |z) ≈ P dist z (d i) (2.36)
The function P dist the ISM is depicted on g. 2.7b. Similar technique is applied for a 3D-point of a stereo camera in [START_REF] Payeur | [END_REF][START_REF] Gartshore | [END_REF][START_REF] Nguyen | [END_REF]]. Besides, [START_REF] Weiss | [END_REF] proposes the linear approximative ISM depicted on g.2.7c. Furthermore, an ISM having only three possible values is adopted in [START_REF] Wurm | [END_REF][START_REF] Hornung | [END_REF]]. The prole of such ISM is plotted on g. 2.7d.

Benets Analytic models enable a fast computation of ISMs. The value the ISM P (o i |z) is obtained by evaluating continuous functions at distance d i . The complexity of ISM does not depend anymore on the number of cells. It becomes O(1).

Limitations Analytic approaches have drawbacks. First, occupancy probabilities become continuous functions dened over distances with analytic approaches. They are no more a function dened over a grid as specied in Denition 2.2.4 (page 26). Consequently, analytic approaches ignore the subdivision of the physical world into a grid. The sizes of cells are not taken into account by the ISM. Second, by approximating directly the ISM or the PDF p(z|s i), the analytic approaches bypass the sensor model p(z|d). By doing so, they lose the relation between the measurement uncertainty, the size of cells and the value of ISMs.

Neural networks-based approach

Neural networks can be applied for computing ISMs ([Thrun 1993, Burgard 1999, Thrun 1998, Kortenkamp 1998, Thrun 2001b]). The idea is to train a neural network Benets The advantage of this approach is that once the neural network is trained, it produces an approximate of the ISM within a computational complexity independent to the number of cells. Once the network is trained, the complexity of computing an ISM becomes O(1).

Limitations As an approximation, the accuracy of the neural network depends on the training process and on the training data sets. A huge volume of training data is required to ensure safety. The training data must include huge number of trac scenarios to be sure that the neural network can react safely in any trac situation. However, collecting and processing such a data is a challenging task, even for big tech companies. As a solution, [Thrun 1993] trained a neural network within a simulated environment. Training on real trac scenarios is though mandatory to ensure safety. Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS tainty of measurement, the size of cells, and the value of the ISM. The above relation makes the Bayesian approach safe. On the opposite, both analytic approach and neural networks lose the above relation. The Bayesian approach suers however from a computational complexity which explodes exponentially with the number of cells. This motivates the development of another approach based on the Bayesian one but having a lower complexity.

Summary

Two-dimensional cartesian mono-sensor occupancy grid

The previous section presented various techniques for building a 1D occupancy grid for a single-target sensor. The occupancy grid covers a linear FOV along a ray.

However, two dimensional or three dimensional grids are required for capturing the spatial structure of the physical world surrounding an autonomous car. The present section focuses on 2D cartesian grids.

As in the previous section, let us consider a ray of a single-target sensor. How to build a 2D cartesian occupancy grid given a measurement from that ray? The 2D grid is illustrated on g. 2.8b. The physical world is subdivided into squared cells forming a 2D cartesian grid denoted by G. A single-target sensor observes the environment along the ray and returns a measurement. Building an occupancy grid dened over the grid G is equivalent to computing the occupancy probabilities of all squared cells given the measurement from the ray. The cells of the grid G can be classied into two groups: those which intersect with the ray, and those which do not. In the rst group, cells that do not intersect with the ray are not aected by the measurement. That means, the measurement does not provide any information about the occupancy state of these cells [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF]). Consequently, their occupancy states regarding the measurement are unknown. Their occupancy probabilities given the measurement are set to 1 /2.

In the second group, the occupancy probabilities of cells that intersect with the ray are computed in two steps:

• First, the ray is subdivided into a local 1D grid L. The occupancy grid based on the grid L is computed with respect to the measurement (see g. 2.8a).

• Second, the 1D occupancy grid is sampled by the global 2D cartesian grid G in order to get a 2D cartesian occupancy grid (see g. 2.8b). A 2D cell takes the occupancy probability of the 1D cell that hits it.

The 2D grid is called global since it is not attached to a specic sensor device. This approach composed two steps is widely used in the literature ([Elfes 1989b[START_REF] Payeur | [END_REF][START_REF] Faireld | [END_REF], Homm 2010[START_REF] Nguyen | [END_REF]). The rst step can be achieved by applying one of the previous methods for computing an ISM over 1D grid (see Section 2.3 (page 27)). The second step requires an algorithm called range mapping algorithm that perform the following task. Denition 2.3.3. The task of range mapping consists in nding out all cells of an occupancy grid that intersect with the FOV of a sensor.

For single-target sensors, the FOV is modeled by rays. Hence the range mapping consists in nding out all 2D cells that are intersected by rays. Fig. 2.8b shows range-mapping along a ray. The cells intersected by the ray are colored in gray.

In the literature, two families of algorithms are mainly used for performing range mapping for a single-target sensor: line rasterization algorithms and traversal algorithms. Let us make a brief comparison between both algorithms.

Line rasterization algorithms

Line rasterization consists in rendering a visually acceptable line on a 2D image.

The line can be dened by two end points or by a couple of an origin and a direction vector. The most well known algorithm for line rasterization is the Bresenham's algorithm [Bresenham 1965] and its variants [Pitteway 1967, Van Aken 1984, Foley 1990]. These algorithms draw a straight line between two end points localized at two pixels.

Line rasterization algorithms are designed to be executed fast on a computing hardware for optimizing the rendering time of a line on a image. Time constraints are preponderant for intensive graphics applications such a video games and Computer-Aided Design (CAD) software. To reduce the execution time, line rasterization algorithms manipulate mainly integer arithmetic. They work within a discrete 2D frame that allows to identify a pixel by a couple of integers.

An analogous is be made between an image and a 2D occupancy grid where a pixel would correspond to a cell. With this analogous, the range-mapping can be performed by applying line rasterization algorithms. This takes prot of the eciency of rasterization algorithms for nding out cells traversed by rays of a single-target sensor ([START_REF] Miller | [END_REF][START_REF] Faireld | [END_REF][START_REF] Nguyen | [END_REF][START_REF] Souza | [END_REF]). The algorithm may however miss cells that are actually traversed by a ray. In fact, the objective of the rasterization is only to produce an acceptable visual aspect of a line on an image, instead of nding out all pixels traversed by a line.

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

Traversal algorithm

If line rasterization algorithms are specically designed for working within an image, traversal algorithms are not restricted to images, they can be applied to any 2D grid. The objective of a traversal algorithm is to nd out exactly all cells of a grid traversed by a line. Unlike line rasterization algorithms, no traversed cell is missed by a traversal algorithm.

The algorithm widely used for occupancy grid traversal is the Amanatides'algorithm ([Amanatides 1987[START_REF] Cleary | [END_REF]). This algorithm was applied in [START_REF] Fournier | [END_REF][START_REF] Einhorn | [END_REF][START_REF] Wurm | [END_REF][START_REF] Shade | [END_REF][START_REF] Hornung | [END_REF]] for performing range mapping on occupancy grids. This algorithm works within a continuous frame of reference. It consequently manipulates real-numbers. Operations on real-numbers are implemented in oating-point in practice ([Amanatides 1987]).

This hinders the utilization of the algorithm on computing platforms that do not have oating-point units such as some microcontrollers. On embedded CPUs that support oating-points, integer arithmetic are faster than oating-point operations.

Since a line rasterization algorithm requires only integer arithmetic, its execution time is faster that that of a traversal algorithm.

Summary

To summarize, the algorithms used for performing range-mapping for occupancy grids are based on either line rasterization algorithms or traversal algorithms. Table 2.2 (page 36) compares both algorithms. Traversal algorithms nd out exactly all cells traversed by a ray. They cannot miss traversed cells. However, they process real-numbers. In opposite, line rasterization algorithms process only integers.

Nevertheless, they may miss nding out some cells even if the latter are actually traversed by the ray. With high number of cells, executing a range mapping algorithm along an individual ray is time consuming. In fact, a ray hits a large number of cells. When 2.4. Multi-sensor occupancy grid 37 processing range mapping on multiple rays, the number of hit cells increases exponentially. Hence, when both real-time and low-power constraints have to be considered, a little improvement on the execution time of range mapping along an individual ray becomes a considerable energy saving and time saving when processing range mapping for multiple rays.

For embedded hardware, operations on integers are faster and more power ecient than the simulation of operations on real-numbers (like oating-points). Therefore, a traversal algorithm that works with integers can be a solution to improve both execution time and the power eciency of the HW/SW integration of occupancy grids into embedded platforms.

Multi-sensor occupancy grid

In this section, let us review the dierent methods used in the literature for building multi-sensor occupancy grid. The problem statement is the following. Given measurements z 1 , . . . , z K from K number of sensors (K > 1), how to build the occupancy grid OG(z 1 , . . . , z K)? Various approaches are proposed in the literature. They that can be classied into two groups. The rst group assumes that sensor measurements are conditionally independent while the second one refutes this hypothesis. Unlike the previous section, these approaches are no more limited to single-target sensors.

Unless noticed, they can be applied to any kind of range sensors.

In the rst group, the hypothesis about the independence of sensors may be conditional or not. This hypothesis allows to build multi-sensor occupancy grids incrementally as shown on g. 2.9a. First, mono-sensor occupancy grids OG(z k) are built independently from each measurement z k . After that, a process called Multi-Sensor Fusion (MSF) combines them into a unique multi-sensor occupancy grid OG(z 1 , . . . , z K). Hence, the MSF is central for the fusion of multiple independent sensors.

(a) Independent sensor measurements (b) Forward sensor model Figure 2.9 Approaches for building multi-sensor occupancy grids Besides, the second group is composed by a unique paradigm called the forward sensor model ([Thrun 2001a]). Unlike the previous group, this paradigm refutes the independence hypothesis of sensor measurements. As depicted on g. 2.9b, sensor measurements z 1 , . . . , z K are taken into account simultaneously (instead of independently) for computing the multi-sensor occupancy grid OG(z 1 , . . . , z K).

Forward sensor model does not compute intermediary mono-sensor occupancy grids.

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

In the remainder of this section, let us review the main techniques that adopt the independence hypothesis. These techniques include the Bayesian fusion, the Independent Opinion Pool, the Linear Opinion Pool, and the maximum policy. After that, let us see the paradigm of forward sensor model.

Bayesian fusion

The Bayesian fusion is initially introduced by Moravec in [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF]]. It establishes a probabilistic formulation of the MSF by using the Theorem of Bayes and the hypothesis on sensors independence.

Suppose that our objective is to build an occupancy grid from two sensor measurements z 1 and z 2 . According to Denition 2.2.5 (page 26), building the occupancy grid OG(z 1 , z 2) is equivalent to the calculate the occupancy probability P (o i |z 1 ∧z 2) for any cell c i . But instead of estimating P (o i |z 1 ∧z 2), Moravec proposed to compute the so-called odds ratio:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1 ∧ z 2) P (e i |z 1 ∧ z 2) (2.37)
By applying the Theorem of Bayes on P (s i |z 1 ∧ z 2), s i ∈ {o i , e i }, we obtain:

P (s i |z 1 ∧ z 2) = p(z 2 |s i ∧ z 1)P (s i |z 1) p(z 2 |z 1) (2.38)
Consequently, eq. (2.37) becomes:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) P (e i |z 1) p(z 2 |o i ∧ z 1) p(z 2 |e i ∧ z 1) (2.39)
Hereafter, the following hypothesis is introduced.

Hypothesis 2.4.1. Sensor measurements are conditionally independent given the occupancy state of cells.

This hypothesis means that p(z 2 |s i ∧z 1) = p(z 2 |s i), s i ∈ {o i , e i }. This hypothesis is too strong for some sensors where measurements may be correlated in some way [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF]). However, the hypothesis is valid for measurements from recent sensor devices like LIDARs. By considering the above hypothesis (2.39) gives:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) P (e i |z 1) p(z 2 |o i) p(z 2 |e i) (2.40)
The terms p(z 2 |s i), s i ∈ {o i , e i } can be derived from the Theorem of Bayes:

p(z 2 |s i) = P (s i |z 2)p(z 2) P (s i) (2.41)
Hence, by inserting eq. (2.41) into eq. (2.40), and by considering that P (e i |z 1) = 1 -P (o i |z 1) and P (e i) = 1 -P (o i), we obtain:

P (o i |z 1 ∧ z 2) 1 -P (o i |z 1 ∧ z 2) = P (o i |z 1) 1 -P (o i |z 1) • P (o i |z 2) 1 -P (o i |z 2) • 1 -P (o i) P (o i) (2.42)
2.4. Multi-sensor occupancy grid 39 Finally, we have:

P (o i |z 1 ∧ z 2) = P (o i |z 1) • P (o i |z 2) • [P (o i) -1)] P (o i) • [P (o i |z 1) + P (o i |z 2) -1] -P (o i |z 1) • P (o i |z 2) (2.43)
Equation (2.43) is the central equation of the Bayesian fusion. It allows to compute P (o i |z 1 ∧ z 2) from the ISMs P (o i |z 1) and P (o i |z 2) generated independently from two dierent measurements. Thus, the Bayesian fusion allows to build multisensor occupancy grids in an incremental way.

Independent Opinion Pool

The formula of Independent Opinion Pool combines evidences x and y from two independent sources ([Berger 1985]):

F (x, y) = xy xy + (1 -x)(1 -y) (2.44)
In the above equation, the quantities x and y do not designate occupancy probabilities. However, under the assumption of non-informative priors, P (o i |z 1 ∧ z 2) is mathematically equivalent to F (P (o i |z 1), P (o i |z 2)):

P (o i |z 1 ∧ z 2) = F (P (o i |z 1), P (o i |z 2)) if P (o i) = P (e i) = 1 /2 (2.45)
Proof Assume that P (o i) = 1 /2 and insert that into eq. (2.43).

In other words, the Independent Opinion Pool is equivalent to the Bayesian fusion under the non-informative priors hypothesis. It also allows to compute multisensor occupancy grids in an incremental way.

Benets Two important characteristics of the Independent Opinion Pool formula are noticed in [Elfes 1989b]: the property of mitigation and the property of reinforcement. When measurements are conicting, they result into two contradictory opinions about the occupancy state of a cell. The property of mitigation increases the uncertainty about the state of a cell. For instance, if a sensor estimates that a cell is likely occupied while another one says that the same cell is likely empty, their fusion will conclude that the occupancy state of the cell is actually unknown. The property of mitigation makes the occupancy probability tends to 1 /2.

On the opposite, the property of reinforcement means that the fusion of similar opinions result into a more certain opinion. This occurs when measurements are nonconicting. For instance, if two sensors estimate that a cell seems to be occupied, the fusion will say, with a higher certainty, that the cell is actually occupied. Similarly, if both sensors estimate that a cell seems to be empty, the fusion will state, with a higher certainty, that the cell is actually empty.

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS Limitations In most of the cases, measurements are not conicting (if it was not the case, the used sensors would not be reliable at all). The property of reinforcement makes occupancy probabilities tend to 0 or to 1 after fusing only few number of measurements. However, in practice, the number of measurements can reach thousands to million. Then, occupancy probabilities reaches practically 0 or 1 when implemented on a hardware.

This leads though to a problem of numerical instability on the implementation viewpoint. When the occupancy probability of a cell reaches 0 or 1, the fusion becomes non-reactive to new measurement. The fusion of a probability x with 1 returns 1. The fusion of x with 0 returns 0. New measurements cannot modify the values of occupancy probabilities anymore once 0 or 1 is reached.

As a solution, the log-odds form of (2.45) are proposed in [Elfes 1989b]:

l(o i |z 1 ∧ z 2) = l(o i |z 1) + l(o i |z 2) where l(x) = log P (x) 1 -P (x) (2.46)
The advantage of the above equation is that, unlike probabilities, log-odds are not restricted between 0 and 1. The addition of log-odds is more numerically stable than the addition, multiplication and division in eq. (2.45). The drawback is that recovering occupancy probabilities from log-odds requires additional operations:

P (o i |z 1 ∧ z 2) = 1 - 1 1 + exp(l(o i |z 1 ∧ z 2)) (2.47)

Linear Opinion Pool

The Linear Opinion Pool is an aggregation method for combining multiple opinions from dierent sources ([Berger 1985]). Each opinion has a relative weight ω that quanties the condence in the corresponding information source. When applied to occupancy probabilities, the Linear Opinion Pool gives ([Elfes 1989b]):

P (o i |z 1 ∧ . . . ∧ z K) K k=1 ω k P (o i |z k) where K k=1 ω k = 1 (2.48)
In eq. (2.48), the fusion of ISMs is equivalent to a weighted average. The weights allow to favor some sensors that may be more precise and more accurate than others. This approach is not based on probabilistic principle. Dierent methods have been proposed for determining the weights. In [Thrun 1993], the weights are computed by a neural network. In [START_REF] Adarve | [END_REF]], weights are computed as a function of the height of the points where laser beams of a LIDAR hit obstacles.

Benets and limitations

The weighted average enables mitigation in the case of conicting measurements. It does not reinforce however non-conicting ones.

Hence, Linear Opinion Pool does not feature the property of reinforcement.

Maximum policy

The maximum policy [START_REF] Payeur | [END_REF][START_REF] Thrun | [END_REF]] fuses occupancy probabilities with the following formula:

P (o i |z 1 ∧ z 2) max(P (o i |z 1), P (o i |z 2)) (2.49)
Benets Eq. (2.49) has the advantage of being conservative [START_REF] Yguel | [END_REF]] and simple to calculate. Moreover, it have no problem of numerical instability since it does not perform any computations apart from a single comparison.

Limitations The maximum policy favors false positive. Assume that a sensor has estimated that a cell is occupied. The occupancy probability is then greater than 1 /2. Assume now that all the other sensors estimate that the cell is likely empty. These sensors lead to occupancy probabilities less than 1 /2. However, since the multi-sensor fusion returns the highest occupancy probability, the cell will remain likely occupied despite th measurements of the other sensors.

Forward sensor model

In the previous approaches, multi-sensor occupancy grids are built by combining multiple mono-sensor occupancy grids computed independently. This requires the hypothesis that sensor measurements are independent. On the opposite, the paradigm of forward sensor model rejects the hypothesis of sensor independence.

This paradigm was introduced in [Thrun 2001a].

A forward sensor model allows to nd out the grid conguration that explains at the best the causes of a set of measurements. All measurements are considered simultaneously (instead of independently) for estimating the grid conguration. The occupancy probabilities of cells are computed subsequently.

Given a set of measurements Z, the following function presents the intuitive form of a forward sensor model:

h(g) = p(Z|g) (2.50)
The symbol g denotes a grid conguration (see Denition 2.3.2 (page 29)). The higher is h(g), the more likely is the conguration g. Hence, the most likely grid conguration is the one that maximizes h(g). Consequently, nding the most likely grid conguration becomes a problem of optimization that is resolved in [Thrun 2001a] by applying the Expectation Maximization (EM) algorithm ([START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]).

Benets This approach has the following advantage. For sensors with low angular resolution like sonars, the paradigm of forward sensor model produces occupancy grids that are more consistent than those computed by the previous techniques. The consistency means here that the occupancy grid reects better the spatial structure and the spatial disposition of obstacles in the modeled physical world.

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

Limitations The paradigm of forward sensor model is adapted for sensors with low angular resolution. It is less applicable for single-target sensors like LIDARs or stereo camera ([Thrun 2001a]). Besides, unlike the previous techniques, this approach is not incremental. Sensor measurements cannot be integrated separately.

All measurements should be available before computing occupancy grid. Moreover, the convergence of the EM algorithm can take a long computation time which makes this approach inappropriate for real-time constraints.

Summary

To summarize, Table 2.3 (page 42) resumes the main properties of the approaches for computing multi-sensor occupancy grids. The properties are the followings. Is the fusion incremental? Does it support the property of reinforcement and the property of mitigation? Is the implementation numerically stable? Does it process operations on real-numbers? What are the arithmetic operators required by the fusion approach? These properties inuence on the quality of an approach, on its eciency and on its computing requirements on an implementation viewpoint.

Finally, is the fusion safe? The occupancy grid storage can be viewed as a database that stores the occupancy probabilities of all cells of the grid. Any application component that performs computations on occupancy probabilities has to interact with the database. Occupancy grid building is performed by a software implementation of the occupancy grid framework. The later takes measurements from range sensors and updates the values of occupancy probabilities stored within the database. To update the occupancy probability of a cell, the old value of the probability is rst fetched from the database. Then, it is combined with the ISM computed from new sensor measurements. Finally, the newly computed probability is stored back into the database.

Occupancy grids are exploited by various applications for reasoning based on the environment model and for making driving decisions. Applications can be an advanced perception, an obstacle tracking, a free path searching, a path planning, a collision avoidance, etc. Some applications may need additional sensors such as odometers, Inertial Measurement Units (IMUs), Global Positioning System (GPS)

or others. For instance, the perception algorithm BOF and its variants ([Coué 2006, Nègre 2014, Rummelhard 2015]) requires IMUs to track the ego motion of a car.

Other applications make decisions and send commands to actuators. For instance, the navigation application needs to steer or brake the car according to a planned path and the evolution of the driving situation.

Regardless of the objective of the application, the latter need to request oc-Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS cupancy probabilities from the database. The simplest request consists in getting the occupancy probability of a single cell. Applications may though perform more complex requests. For instance, navigation requires to nd out the rst occupied cells within determined directions ([START_REF] Faireld | [END_REF]). The database will be requested several times for this purpose. Both occupancy grid building and occupancy grid exploitation have to be executed in real-time to ensure safety. Both tasks require interactions with the database.

The performance of both tasks depends directly on the eciency of the database for supporting these interactions. For instance, if the update of the occupancy probability of a single cell takes too long time, a multi-sensor occupancy grid will be hardly built in real-time. If the database is able to answer fast to a request about blocks of cells, this will accelerate considerably the access to occupancy probabilities ([START_REF] Soucy | [END_REF]).

The eciency of the database depends on the data structure that actually stores occupancy probabilities. In the literature, two types of data structures are mainly used: arrays and trees. Let us review them in the following paragraphs.

Array-based data structure

An array is an algorithmic data structure for storing a collection of a xed number of elements in an ordered manner. The location of an element is identied by an integer index as shown on g. 2.11. Arrays can be considered as the basic data structure for storing occupancy grids ([Elfes 1987[START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF][START_REF] Borenstein | [END_REF], Moravec 1996, Coué 2006, Rakotovao 2015a]). They can store 1D, 2D or 3D occupancy grids. The occupancy probability of cell c i is stored at the element of index i of the array. Limitations Arrays store a xed number of occupancy probabilities as many as cells. For a large and high resolution grid, the number of cells explodes. This has two consequences. First, working on arrays is time consuming for navigation tasks ([START_REF] Kambhampati | [END_REF][START_REF] Soucy | [END_REF]). The latter need to nd the location of obstacles and free spaces. Obstacles (resp. free spaces) are modeled by blocks of adjacent occupied (resp. empty) cells. Searching blocks of adjacent empty cells or blocks of adjacent occupied cells within an array is however time consuming. Second, arrays are memory consuming for grids with high number of cells. Memory consumption is limiting especially for 3D grids ([Hornung 2013]).

1 N i

Tree-based data structure

The tree-based data structures mainly used for storing occupancy grids are the The node at the top of the tree is called root. Every node except the root has a unique parent. A node has exactly either zero or 2 d number of children nodes. A node that has no child is called leaf. Leaves are situated at the extremities of the tree. The application of octrees for storing 3D occupancy grids was proposed by [START_REF] Payeur | [END_REF]]. Besides, quadtrees can be applied for the storage of 2D occupancy grids ([START_REF] Kraetzschmar | [END_REF]).

2 d -trees. A 2 d -
2 The 2 d -trees are originated from the domain of computer graphics for storing spatial data ([START_REF] Finkel | [END_REF], Samet 1984, Samet 1988]). The symbol d actually means the dimension of the data to be stored. Quadtrees were initially designed for storing 2D points scattered on a plan ([START_REF] Finkel | [END_REF]). They can be other 2D geometric patterns such as lines, polygons, circles, etc ([Samet 1990]). In the beginning of 80s, octrees have been used for modeling 3D objects ([Meagher 1982]).

Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

Split

A grid covers a bounded physical region. When 2 d -trees are applied to occupancy grids, a correspondence exists between a node and a subregion. The root corresponds to the whole region covered by the grid. To determine the region that corresponds to an arbitrary node, the tree is traversed from the top to bottom in order to search for the node.

The tree traversal starts from the root and goes down to the lower levels towards the searched node. At each level, the region corresponding to the visited node is split into 2 d number of sub-regions if the visited node has children. The region is split into four quadrants for a node of a quadtree and into eight octants for an octree. Each sub-region corresponds to a children of the visited node. The split is applied recursively until the search node is visited. Its objective is to determine the region that corresponds to the black node of the quadtree on the left of the gure. The corresponding region is colored in black on the right of the gure. The application of the recursive subdivision on an octree is illustrated on g. 2.13b.

Condition of merge

For 2 d -trees, occupancy probabilities of cells are stored on leaves. Since a leaf corresponds to a region, a single leaf can represents all cells included within its region. Nevertheless, the cells must satisfy a precise condition, to be represented by a single leaf. We will refer to the condition as condition of merge. Several conditions of merge are proposed in the literature. They will be reviewed later.

When the cells included within the region of a leaf respect the condition of merge, the leaf stores a unique value representative of the occupancy probabilities of the cells. The value becomes then the occupancy probability of the cells.

If the cells do not respect the condition of merge, the leaf is extended downward.

It gets new children. The extension is applied recursively to each new children or grand children until the condition of merge is satised.

Merge

Consider 2 d sibling leaves (that are, leaves sharing the same parent). If the values stored on sibling leaves are equal, the operation of merge is applied. The sibling leaves are pruned out of the tree. The value is then transfered to their common parent.

The operation of merge shrinks the tree upward. It is applied recursively as long as there exist sibling leaves that stores equal value representative of occupancy probabilities. The operation reduces the number of nodes within the tree whenever some sibling nodes are pruned out.

Discussion

Benets A leaf can represent all the cells included within its corresponding region. This approach makes 2 d -trees more compact than arrays. Since a leaf can represent several cell at once, the number of leaves becomes less than the number of cells. In practice, the number of nodes is even an order less than the number of cells ([START_REF] Kraetzschmar | [END_REF][START_REF] Hornung | [END_REF]). Besides, thanks to their compactness, 2 d -trees consumes up to 2.5× less memory than arrays when mapping large environments such as a university campus or malls ([START_REF] Kraetzschmar | [END_REF][START_REF] Hornung | [END_REF]).

Thanks to the condition of merge, cells represented by a leaf share about the same occupancy state. For instance, they all are likely occupied or likely empty. This accelerates the exploitation of occupancy grids for applications that make decisions based on the occupancy probabilities of groups of cells. Example of such applications are free space search, path planning, navigation, etc([START_REF] Soucy | [END_REF][START_REF] Fournier | [END_REF][START_REF] Faireld | [END_REF][START_REF] Wurm | [END_REF][START_REF] Hornung | [END_REF]).

Limitations The compactness of 2 d -trees is lossy. The lossy compaction means, given the same set of measurements, it is possible that the occupancy probability of a cell is equal to a rst value if the data storage was an array; and the occupancy probability is equal to another value dierent from the rst if the data storage was a 2 d -tree.

The lossy compaction is due to the condition of merge. Several conditions of merge have been proposed in the literature. They can be grouped in three: condition based on intervals, condition based on one threshold and condition based on two thresholds.

• The condition based on intervals subdivides the interval [0, 1] into multiple equally-sized sub-intervals ([START_REF] Kraetzschmar | [END_REF]). Adjacent cells covered by the region of a leaf satisfy the condition if their occupancy probabilities belong to the same sub-interval. If it is the case, the leaf stores a value representative of the sub-interval.

• The condition based on one threshold uses one threshold between 0 and 1.

A cell is labelled as Occupied if its occupancy probability is greater than the threshold. Otherwise, the cell is labelled as Empty. Cells covered by the region of a leaf satisfy the condition is they all have the same label ([START_REF] Faireld | [END_REF]).

If it is the case, the leaf stores a value representative of the label.

• For the condition based on two thresholds, a cell is labelled as Occupied if its occupancy probability is greater than a threshold near 1. On the opposite, a cell is labelled as Empty if its occupancy probability is less than a threshold near 0. As in the above condition, cells covered by the region of a leaf satisfy the condition is they all have the same label ([START_REF] Yguel | [END_REF][START_REF] Wurm | [END_REF][START_REF] Einhorn | [END_REF][START_REF] Hornung | [END_REF][START_REF] Li | [END_REF]). If it is the case, the leaf stores a value representative of the label.

Thus, a leaf does not store the occupancy probabilities of individual cells even when it represents several adjacent cells at once. The value stored by a leaf replaces the real values of the occupancy probabilities of cells included within the region of the leaf. When this is not equal to the occupancy probabilities of individual cells, the leaf alters the occupancy probabilities. This makes the compaction lossy and impacts negatively on the safety and on the numerical condence about the computation of occupancy probabilities. In this chapter, we have seen the basics of probability and the formal denition of occupancy grids and occupancy probability. We have also reviewed the approaches and algorithms for building both mono-sensor and multi-sensor occupancy grids.

Summary

The data structures for storing occupancy grids have been also reviewed. Let us proceed now over Chapter 3 to introduce the Integer Occupancy Framework and present its impact over the issues discussed previously. The emphasis of the research in this thesis is the HW/SW integration of multisensor occupancy grids on low-cost and low-power embedded platform. The integration is subject to real-time constraint and must take into account numerical errors, sensor uncertainties and determinism of computations. The above requirements ensure the safety of the HW/SW integration. The previous chapter reviewed occupancy grids and presented their limitations.

The limitations concern the computation of mono-sensor occupancy grids, the computation of multi-sensor ones, and their compaction into 2 d -trees. These limitations constitute challenges for getting a safe HW/SW integration. This chapter tackles the limitations concerning the computation of multi-sensor occupancy grids by using Bayesian fusion, and the compaction occupancy grids. The Bayesian fusion enables incremental computation of multi-sensor occupancy grids.

It also supports reinforcement and mitigation of sensor measurements. It suers though from a numerical instability and also requires to process Billions of operations on real-numbers to meet the real-time constraint. Besides, the compaction of occupancy grids with 2 d -trees is benecial for high-level applications that exploit occupancy grids. The compaction proposed in the literature is however lossy.

To tackle these limitations, this chapter introduces a new paradigm called Integer Occupancy Grids. This paradigm pairs the values of occupancy probabilities with integers. This property enables to process the Bayesian fusion through simple arithmetic addition of integers. Integer arithmetic have signicant advantages in term of SW/HW integration: their execution on processors is fast, they consume less power, they are not erroneous and they are supported by most of the modern computing platforms. Besides, the paradigm of Integer Occupancy Grids enables a lossless compaction of occupancy grids. This chapter begins by presenting formally the properties of the Bayesian fusion.

After that, sections 3.2 to 3.4 will introduce the mathematical foundation of the 50 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK Integer Occupancy Grid paradigm. The denition of Integer Occupancy Grids and the fusion based on the paradigm will be presented in Section 3.4. Then, Section 3.5 will study the compaction of Integer Occupancy Grids.

Properties of the Bayesian Fusion

The Bayesian fusion performs multi-sensor fusion by combining occupancy probabilities computed from dierent measurements into a unique probability. It assumes that sensor measurements are independent (see Section 2.4.1 (page 38)) Under the non-informative prior, the Bayesian fusion becomes equivalent to the formula of Independent Opinion Pool (see Section 2.4.2 (page 39)) When no measurement is available, the non-informative prior is safe since it stipulates that the occupancy state of a cell is unknown, neither occupied nor empty. The Bayesian fusion is then expressed by the following proposition.

Proposition 3.1.1. Let z 1 , z 2 be two sensor measurements. The occupancy probability of a cell c i given measurements z 1 and z 2 is:

P (o i |z 1 ∧ z 2) = F (P (o i |z 1), P (o i |z 2)) (3.1)
where F designates the fusion function dened as follows:

F (p, q) = pq (1 -p)(1 -q) + pq (3.2)
To simplify the notation, the fusion operator is introduced in the subsequent denition.

Denition 3.1.1. The fusion operator designates the operator that combines two occupancy probabilities p and q as follows:

:]0, 1[×]0, 1[→]0, 1[(p, q) → p q = F (p, q) (3.3)
The Bayesian fusion enables an incremental approach for computing multi-sensor occupancy grids. It also features reinforcement and mitigation. The next paragraphs will present these properties in a formal way.

Incremental fusion

The Bayesian fusion is incremental. Put mathematically, the incremental property allows to compute a multi-sensor occupancy probability through multiple combinations of mono-sensor occupancy probabilities. Proposition 3.1.1 (page 50) shows that the occupancy probability given two sensor measurements is computed through a combination of the occupancy probabilities computed independently from both 3.1. Properties of the Bayesian Fusion 51 measurements. This equation can be generalized to any number of measurements as follows.

Property 3.1.1. Let z 1 , . . . , z k denote sensor measurements. Then

P (c i |z 1 ∧ . . . ∧ z k) = P (c i |z 1 ∧ . . . ∧ z k-1) P (c i |z k) (3.4)
Proof The above property can be proved by replacing z 1 with z 1 ∧ . . . ∧ z k-1 and z 2 by z k in eq. (3.1).

The Inverse Sensor Model (ISM) P (c i |z k) appears in the above property. The recursive application of the incremental property from z 1 to z k gives:

P (c i |z 1 ∧ . . . ∧ z k) = P (c i |z 1) . . . P (c i |z k) (3.5)
The incremental property shows how a multi-sensor occupancy probability is derived from the fusion of dierent ISMs given multiple measurements.

Applied at the level of a grid, the incremental property enables the fusion of two occupancy grids dened over the same grid as follows:

OG(z 1 , . . . , z k) = OG(z 1) * . . . * OG(z k) (3.6)
The operator * applies eq. (3.4) at each cell of the grid. Both eq. (3.4) and eq. (3.6) express the Bayesian method for performing multi-sensor fusion based on occupancy grids. Both equations require the independence hypothesis between measurements and the non-informative prior hypothesis.

Reinforcement

Consider two measurements z 1 and z 2 and a cell c i . Assume that both measurements reects the same opinion about the occupancy state of the cell. Assume for instance that the cell considered to be occupied for both measurements. In term of occupancy probability, the above assumption means that both P (o i |z 1) and P (o i |z 2) are greater than 1 /2. How about the result of their fusion P (o i |z 1) P (o i |z 2)?

Assume that the fusion results into an occupancy probability less than 1 /2. Then, the fusion would estimate that the cell is likely empty. That conclusion is contradictory to the measurements. Then, the fusion has to result into an occupancy probability greater than 1 /2. Even better, the fusion produces an occupancy probability that is greater than both P (o i |z 1) and P (o i |z 2). This is the property of reinforcement.

The property of reinforcement occurs when both measurements estimate that the same cell is empty. In general, the fusion reinforces the estimation of the occupancy state of a cell given non-conicting measurements. The property of reinforcement is summarized in the following property.

Property 3.1.2. Let p and q be two occupancy probabilities of the same cell. Then if p, q > 1 2 , then p q > M ax(p, q)

(3.7) if p, q < 1 2 , then p q < M in(p, q)

(3.8)

Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

The functions M in and M ax returns respectively the minimum and the maximum between the input arguments. Equation (3.7) is illustrated by g. 3.1a. When both probabilities p and q estimate that a cell is occupied, the fusion increases p q towards 1. Figure 3.1b depicts eq. (3.8). When both probabilities p and q estimate that a cell is now likely empty, the fusion reinforces the both estimations and decreases p q towards 0.

(a) (b)

Figure 3.1 The property of reinforcement

Mitigation

Consider two measurements z 1 and z 2 and a cell c i . Assume now that the rst measurements estimates that an obstacle may occupy the cell. In opposite, the second estimates that the cell is likely empty. Hence, both measurements are conicting.

In term of occupancy probabilities, the above assumptions mean Property 3.1.3. Let p and q be two occupancy probabilities of the same cell. Then

if p < 1 2 , q > 1 2 , |q -1 2 | < |p -1 2 |, then p < p q < 1 2 (3.9) if p < 1 2 , q > 1 2 , |q -1 2 | > |p -1 2 |, then q > p q > 1 2 (3.10)
Figure 3.2 illustrates the above property. Consider a cell and two measurements.

The rst measurement estimates that the cell is likely empty and produces the occupancy probability p < 1 /2. For the second measurement, the cell is likely occupied 3.1. Properties of the Bayesian Fusion 53 with an occupancy probability q > 1 /2. Both measurements are conicting. Figure 3.2a shows that if q is closer to 1 /2 than p, then p q will be between p and 1 /2. In opposite, if it is now p which is closer to 1 /2 than q, then p q will be between 1 /2 and q. In both cases, p q approaches 1 /2. The occupancy state of the cell becomes more and more unknown after the fusion of conicting measurements.

(a) (b)

Figure 3.2 The property of mitigation

Group of probability under the fusion operator

In addition to the incremental fusion, the property of reinforcement and the support of mitigation, the fusion operator also features the following properties.

Property 3.1.4. For all p, q, r ∈]0, 1[, the fusion operator features the following properties:

(Closure) p q ∈]0, 1[

(3.11a) (Associativity) p (q r) = (p q) r (3.11b) (Identity element) p 1 2 = 1 2 p = p (3.11c) (Inverse element) p (1 -p) = (1 -p) p = 1 2 (3.11d) (Commutativity) p q = p q (3.11e)
Proof Consider p, q, r ∈]0, 1[. According to the denition of the operator (Denition 3.1.1 (page 50)):

(Closure)

p q = F (p, q) ∈]0, 1[(Commutativity) p q = F (p, q) = F (q, p) = q p (Associativity) p (q r) = F (p, F (q, r)) = F (F (p, q), r)) = (p q) r (Identity element) p 1 /2 = 1 /2 p = F (p, 1 /2) = p (Inverse element) p (1 -p) = (1 -p) p = F (p, 1 -p) = 1 /2
Equation (3.11a) to (3.11d) satisfy the four axioms that allow to qualify the interval]0, 1[, together with the fusion operator , as a group. The closure ensures 54 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK that the fusion of two occupancy probabilities remains between 0 and 1. The fusion operator is associative. Its identity element is 1 /2. The inverse element of an occupancy probability p is 1p.

Equation (3.11e) shows that the fusion operator is commutative. Hence, the algebraic structure (]0, 1[,) is an abelian group. The commutativity ensures that the order in which occupancy probabilities are fused does not matter. When multiple measurements are available, the order of the integration of measurements into an occupancy grid does not change the value of the nal occupancy probabilities.

Remark. The fusion function combines probabilities within]0, 1[. Zero and one are deliberately excluded since an occupancy probability equal to 0 would mean that the cell is certainly empty while 1 means certainly occupied. However, occupancy probabilities never reach 0 or 1 since sensors are not perfect and measurements are uncertain. Moreover, an occupancy probability equal to 0 or 1 introduces a problem of numerical stability. In fact, we have:

∀p ∈]0, 1[: 1 p = 1 and 0 p = 0

(3.12)

The above equation means, once it is certain that a cell is occupied, its occupancy probability remains at 1 even if incoming measurements estimates that the cell is likely empty. Similarly, once a cell is certainly empty, it occupancy probability cannot be updated anymore and stays at 0.

Equation (3.12) leads into a problem of numerical instability for a HW/SW integration. After fusing few number of measurements that estimate that a cell is empty, the occupancy probability becomes rapidly equal to 0 on the computing platform, even if obtaining 0 is theoretically impossible (eq. (3.11a)). The same problem occurs during the fusion of few number of measurements that estimate that the cell is occupied. The occupancy probability reaches 1 and the estimation of the occupancy state of the cell cannot be updated anymore despite incoming measurements.

Set of probabilities

This section introduces the concept of set of probabilities. To gain an intuitive understanding of this concept and its usage, let us begin with an introductory example.

Introductory example

Consider a grid having four number of cells. The spatial dimension of the grid is irrelevant. Figure 3.3a shows the occupancy probabilities of cells of a grid given two measurements z and z . On the gure, both P (o 1 |z) and P (o 3 |z) are equal to a number p -3 . Both P (o 2 |z) and P (o 4 |z) are equal to p 1 . Let us denote by S(z) the set of the values taken by the occupancy probabilities of all cells of the grid. The set S(z) has only two elements denoted by p -3 and p 1 on g. 3.3a. Consider another measurement z . The gure shows that S(z) has four elements p -2 , p -1 , 1 /2 and p 2 . The values of the occupancy probabilities of all cells given measurement z are dierent to one another. By proceeding to the cell-by-cell fusion of the measurements z and z , the fusion returns new values of probability that lie between 0 and 1. Let us denote by S(z, z) the set of the values of the occupancy probabilities given both z and z . The result of the fusion is depicted on g. 3.3b. The set S(z, z) has four elements p -4 , p -2 , p -1 and p 3 .

Hence, when measurements z and z are taken into account independently or jointly, the value of the occupancy probability of any cell of the grid is included within S(z) ∪ S(z) ∪ S(z, z). Let us denote by S the reunion of the three sets and let us call it set of probabilities. The elements of S are {p -4 , p -3 , p -2 , p -1 , 1 /2, p 1 , p 2 , p 3 }. Notice that the elements of S(z, z) were obtained 56 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK by fusing the elements of S(z) with the elements of S(z) through the fusion operator . That means the result of the fusion of two elements of the set of probabilities S is also included within S.

To understand deeper the relation between the fusion operator and the set of probabilities, let us consider again g. 3.3b. Fusing p -1 with p -3 gives p -4 on cell c 1 . On cell c 3 , the fusion of p -3 with 1 /2 returns p -3 (in fact, 1 /2 is the identity element of the fusion operator). By assuming that p 0 is equal to 1 /2, the fusion of p 0 and p -3 gives p -3 . By considering these results, one can notice that p -1 p-3 = p -1-3 and p 0 p -3 = p -3 . In other words, fusion of two elements of S can be computed by the addition of the indexes of the elements. That means, the fusion is now computed through an addition of integers.

Denition of set of probabilities

After the above introductory example, let us now give a formal denition of set of probabilities 1 .

Denition 3.2.1. A set of probabilities S is a set of real-numbers such that:

(Inclusion into]0, 1[) S = {p n ∈]0, 1[, ∀n ∈ Z} (3.13a) (Countability) ∀m, n ∈ Z : p m = p n ⇔ m = n (3.13b) (Closure) ∀p m , p n ∈ S : p m p n ∈ S (3.13c)
A set of probability is then a set of real-numbers between 0 and 1 such that the set is countable and is closed with respect to the fusion operator. Since an element of the set is between 0 and 1, it can be considered as a possible value of a probability.

The formal denition of a probability was given in Section 2.1.2 (page 16).

Denition 3.2.2. Let S be a set of probabilities, and p n an element of S. The integer n is called index of the probability p n .

The countability of a set of probabilities maintains a bijection between S and Z. Each element of S has a unique integer index. The closure stipulates that the fusion of two elements of S returns a probability that also belongs to S.

Index fusion operator

To formalize the computation of the fusion through integer arithmetic, the concept of index fusion operator is introduced as follows. 1 The concept of set of probabilities has been published in [Rakotovao 2016a].

Set of probabilities 57

Denition 3.2.3. Let S be a set of probabilities and p m and p n two elements of S. An index fusion operator designates the operator ⊕ that combines two integer indexes m, n such that:

∀m, n ∈ Z : (m ⊕ n) ∈ Z (3.14) ∀m, n ∈ Z : p m p n = p m⊕n (3.15)
In the previous introductory example, the index fusion operator is equivalent to an addition of indexes. Since m ⊕ n is an integer, p m⊕n designates a unique element of the set S. The operator is then mirrored by the operator ⊕:

p m p n = p r ⇔ m ⊕ n = r (3.16)
While the operator combines probabilities, the operator ⊕ combines integer indexes. Let us call probabilistic fusion the fusion of probabilities with the operator and index fusion the fusion of indexes with the operator ⊕. When the elements of the set of probabilities are known, both fusions are equivalent. Performing the one is equivalent to calculating the other.

In addition, the operator ⊕ is associative and commutative like the operator .

Property 3.2.1. Let S be a set of probability with an index fusion operator ⊕. Then the index fusion operator is associative and commutative. ∀m, n, r ∈ Z:

(Associativity) m ⊕ n ⊕ r = m ⊕ (n ⊕ r) = (m ⊕ n) ⊕ r (3.17) (Commutativity) m ⊕ n = n ⊕ m (3.18)
Proof The associativity of gives:

m ⊕ n ⊕ r ⇔p m p n p r = p m (p n p r) = p m (p n⊕r) ⇔ m ⊕ (n ⊕ r) Then m ⊕ n ⊕ r = m ⊕ (n ⊕ r). The same principle can prove that m ⊕ n ⊕ r = (m ⊕ n) ⊕ r.
The commutativity of gives:

m ⊕ n ⇔p m p n = p n p m ⇔ n ⊕ m Then m ⊕ n = n ⊕ m.
58 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

Existence of set of probabilities

Following the above denitions, the question arises: do sets of probabilities exist?

If yes, is there a set of probability that has an index fusion operator? To answer to both questions, this section introduces three examples of sets of probabilities.

Proposition 3.2.1. Set of probabilities exist.

Proof To prove the above proposition, let us present a trivial set of probabilities.

Consider the singleton S = {p 0 = 1 /2}. This sets is countable and its element is between 0 and 1. Besides, p 0 p 0 is equal to 1 /2. The singleton is closed with respect to

. The set S satises the three assertions in Denition 3.2.1 (page 56). Therefore, S constitutes a set of probabilities. Proposition 3.2.2. There exist non-trivial set of probabilities.

Proof Let us give two examples of non-trivial set of probabilities.

Example 1: Since a set of probabilities is countable, a way to dene the set is to use sequences. Let a ≥ 1 be a positive and non-null integer. Consider the sequence (p n) n∈N such that:

p n = a • n + 1 a • n + 2 , n ∈ N (3.19)
Let us verify whether the set S = {p n } constitutes a set of probability.

• Inclusion into]0, 1[: since a ≥ 1, then a • n + 1 < a • n + 2. Therefore, p n < 1∀n ∈ N. Besides, ∀n ∈ N, p n ≥ 1 /2 (see Property A.1.1 (page 119)). We subsequently get ∀n ∈ N, 1 /2 ≤ p n < 1.

• Countability: eq. (3.19) guaranties that ∀m = n, we get p n = p m .

• Closure: consider m, n ∈ N. The application of the operator gives:

p n p m = p m p n p m p n + (1 -p m)(1 -p n) (3.20) = a • (m + n + a • m • n) + 1 a • (m + n + a • m • n) + 2 (3.21) = p m+n+a•m•n (3.22)
The three conditions are veried, therefore S is actually a set of probabilities 2 . The set S has an index fusion operator ⊕ where:

m ⊕ n = m + n + a • m • n (3.23)
2 This set of probabilities has been published in [Rakotovao 2016a].

The recursive set of probabilities 59

Example 2: Let a ≥ 1 be a positive and non-null integer and let Z -designate the set of negative or null integers. Consider the sequence (p n) n∈Z -such that:

p n = 1 2 -a • n , n ∈ Z - (3.24)
Let us prove that the set S = {p n } is a set of probabilities.

• Inclusion into]0, 1[: since a ≥ 1 and n ≤ 0, then 2a • n ≥ 2. Therefore, 0 < p n ≤ 1 /2.

• Countability: eq. (3.24) guaranties that ∀m = n, we get p n = p m .

• Closure: consider m, n ∈ N. Applying the operator gives:

p n p m = p m p n p m p n + (1 -p m)(1 -p n) (3.25) = 1 2 -a • (m + n -a • m • n) (3.26) = p m+n-a•m•n (3.27)
The set S veries the three assertions, therefore it constitutes a set of probabilities 3 . In addition, it has an index fusion operator where:

m n = m + n -a • m • n (3.28)

The recursive set of probabilities

The previous subsection gave three examples of set of probabilities. The rst set of probabilities is a singleton. The second set of probabilities is dened by a sequence of real-numbers that lie between 1 /2 and 1. The third set is also dened by a sequence of real-numbers, but its elements lie between 0 and 1 /2.

The set of probabilities that is able to capture the values of the occupancy probabilities within an occupancy grids must have elements both within]0, 1 /2] and within [1 /2, 1[. In fact, the value of the occupancy probability of a likely empty cell lies within]0, 1 /2]. For a likely occupied cell, the occupancy probability lies within [1 /2, 1[.

In this section, let us design a set of probabilities that have elements within both]0, 1 /2] and [1 /2, 1[. To ensure that such a set is countable and is included within]0, 1[, the set can also be dened through sequences as the previous examples. The diculty resides in guarantying that the set is closed with respect to the fusion operator .

60 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

Denition of the recursive set of probabilities

To ensure the closure with respect to , the following theorem presents a new set of probabilities where the fusion operator expressly intervenes in the formulation of the elements of the set.

Theorem 3. Recursive set.

Let ε be a real-number such that ε ∈]0, 1 /2[. Let (a n) n∈N and (b n) n∈N be innite sequences of numbers dened as follows:

a n =    1 /2 if n = 0 1 /2 + ε if n = 1 a n-1 a 1 otherwise b n =    1 /2 if n = 0 1 /2 -ε if n = 1 b n-1 b 1 otherwise Consider the set S ε = {p n , n ∈ Z} such that: p n = a n if n ≥ 0 b -n otherwise,
The set S ε called recursive set constitutes a set of probabilities equipped such that: ∀m, n ∈ Z : p m p n = p m+n (3.29) Proof For the sake of clarity, the proof is detailed in Section A.3 (page 120).

The set of probabilities S ε is called recursive set since its elements are dened by recursion. The recursion is involved in the denition of the element p n . It involves explicitly the fusion operator . Notice that the set S ε is parametrized by an ε which can be any positive real-number less than 1 /2.

Index fusion operator

The recursive set of probabilities features a lightweight integer fusion operator. Equation (C.7) in the above theorem shows that the fusion of two elements p n and p m gives p n+m . Therefore, the recursive set is equipped by the following the index fusion operator.

m ⊕ n = m + n
The Fusion operator is computed through the Bayesian fusion function F .

The later have to perform at the same time addition, subtraction, multiplication and division of real-numbers in order to fuse two probabilities (Proposition 3.1.1 (page 50)). The recursive set of probabilities enables to compute the fusion through an addition of integers.

Properties of the recursive set of probabilities

The recursive set of probabilities features the following properties.

Repartition of elements over the interval]0, 1[

The location of an element with respect to 1 /2 depends on the sign of its index. As illustrated on g. 3.4, the elements of the recursive set that have negative index are less than 1 /2. Those with positive index are greater than 1 /2. The relation between the sign of the index and the value of an element is summarized by the property below.

Property 3.3.1. ∀n ∈ N : 0 < p -n < 1 /2 and 1 /2 ≤ p n < 1 Proof See Property A.4.11 (page 126). Moreover, elements greater than 1 /2 increase when their indexes also increase. Similarly, elements less than 1 /2 decrease with their index. These properties are illustrated on g. 3.4 and presented formally on the following property.

Inverse element

As expressed in the property below, the inverse of the element p n with respect to the operator is p -n .

Property 3.3.3. ∀n ∈ Z : p n p -n = 1 /2 Proof See Property A.4.12 (page 126).

Distance between successive elements

Let n be positive. If p n , p n+1 and p n+2 are three successive elements of the recursive set, then the distance between p n and p n+1 is greater than the distance between p n+1 and p n+2 . That means, the closer to 1 are two elements, the smaller is the distance between them.

Similarly, p -n , p -n-1 and p -n-2 are successive elements less than 1 /2. The distance between p -n and p -n-1 is greater than the distance between p -n-1 and p -n-2 . The closer to 0 are two elements, the smaller is the distance between them. Both properties are summarized as follows.

Property 3.3.4. ∀n ∈ N :

|p n+2 -p n+1 | < |p n+1 -p n | and |p -n-2 -p -n-1 | < |p -n-1 -p -n |
Proof See Property A.4.13 (page 127).

Maximal distance between successive elements

The maximal distance between successive elements of the recursive set is equal to the parameter ε. That means, the distance maximal is user-adjustable. The distance maximal is equivalent to the distance between 1 /2 and p 1 and to the distance between 1 /2 and p -1 .

Integer Occupancy Grids 63

Inuence of the parameter ε

The parameter ε expresses the distance between p 0 and p 1 , as well as the distance between p 0 and p -1 (Theorem 3 (page 60)). As presented above, ε is also the upper bound of the distance between two successive elements of the recursive set of probabilities. The inuence of ε on the distance between successive elements is illustrated on g. 3.5. To increase the number of values around 1 /2, ε can be lowered. For instance, when ε is lowered to 0.01, the density of elements around 1 /2 increases. Lowering ε decreases also the maximum bound of the distances between successive elements (Property 3.3.5 (page 62)). Reaching values near 1 and 0 requires though a wide range of indexes with. For instance, indexes lie between -25 and 25 on g. 3.6. With an ε equal to 0.05, the recursive set have elements that spread over]0, 1[. However with the same range of indexes, the elements of the recursive set are shrunk within]0.2, 0.8[when ε is equal to 0.01 or 0.005.

Integer Occupancy Grids

After presenting the denition of the recursive set of probabilities, let us now introduce the Integer Occupancy Grid paradigm. To give an intuition about the principle of Integer Occupancy Grids, let us begin by an introductory example.

Introductory example

Consider a grid composed of four cells and two sensor measurements z and z . The set of the occupancy probabilities given measurement z constitutes the monosensor occupancy grid denoted by OG(z). Similarly, OG(z) denotes the monosensor occupancy probability given measurement z . Both OG(z) and OG(z) are depicted on g. 3.7a. The set of the occupancy indexes of all cells of the grid constitutes the Integer Occupancy Grid given both measurements z and z . The integer occupancy grid is denoted by IOG(z, z). It is depicted on g. 3.7b. Notice that integer occupancy grids can also be computed from a unique sensor. The integer occupancy grid given measurement z is denoted by IOG(z). Similarly, I(o i |z) designates the occupancy index of a cell c i given measurement z.

Like occupancy grids, integer occupancy grids can also be fused cell-by-cell in order to perform fusion. For a given cell, the fusion of two occupancy indexes given dierent measurements is computed by the index fusion operator ⊕. For the recursive set of probabilities, ⊕ is equivalent to a sum of indexes. Therefore, the occupancy index I(o i |z ∧ z) is equivalent to the sum of both I(o i |z) and I(o i |z).

For instance, let c 1 denote the gray cell on g. 3.7. The occupancy probability of c 1 given z is equal to p 1 (g. 3.7a). Therefore, its occupancy index I(c 1 |z) is equal to 1 (g. 3.7b). Furthermore, the occupancy probability of c 1 given z is equal to p -2 . Its occupancy index I(c 1 |z) is then equal to -2. By using occupancy indexes instead of occupancy probabilities, performing the fusion of both z and z at the level of cell c 1 is equivalent to computing the sum of 1 and -2.

Denition of occupancy indexes and Integer Occupancy Grids

Notation Let z be a measurement and p n (n ∈ Z) an element of a set of probabilities. To indicate that the value of the occupancy probability P (o i |z) is equal to p n , two equivalent notations are adopted:

P (o i |z) . = p n or p n . = P (o i |z) (3.30)
Let S be a set of probabilities equipped with an index fusion operator ⊕. The set S can be the recursive set of probabilities or any other set of probabilities. Let G be a grid and z 1 , . . . , z K a collection of sensor measurements. The grid can be 1D, 2D or 3D. 66 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK Denition 3.4.1. The Occupancy Index given measurements z 1 , . . . , z k designates the function I z 1 ,...,z k that maps a cell c i to an integer n:

I z 1 ,...,z K : G → Z c i → n (3.31) such that P (o i |z 1 ∧ . . . ∧ z k) . = p n ∈ S.
Notation To adopt a notation similar to occupancy probabilities, let I(o i |z 1 ∧ . . . ∧ z k) designate the occupancy index of cell c i given measurements z 1 , . . . , z k .

Therefore, the above denition gives:

∀c i ∈ G : I(o i |z 1 ∧ . . . ∧ z k) ∈ Z ∧ P (o i |z 1 ∧ . . . ∧ z k) . = p I(o i |z 1 ∧...∧z k) (3.32)
The term p I(o i |z 1 ∧...∧z k) designates the element of the set of probabilities S which index is equal to

I(o i |z 1 ∧ . . . ∧ z k).
Equation (3.32) means that the knowledge of the occupancy index I(o i |z 1 ∧. . .∧z k) of a cell is enough to determine its occupancy probability P (o i |z 1 ∧ . . . ∧ z k). In the previous chapter, an occupancy grid was dened as a set of the occupancy probabilities of all cells of a grid. Similarly, we introduce the denition of Integer Occupancy Grids as the set of the occupancy indexes of all cells of the same grid. Denition 3.4.2. Let G be a grid. The Integer Occupancy Grid (IOG) given measurements z 1 , . . . , z k designates the function that maps the collection of the same measurements, to the set of the occupancy indexes of all cells:

IOG(z 1 , . . . , z k) = {I(o i |z 1 ∧ . . . ∧ z k), ∀c i ∈ G} (3.33)
In particular, an integer occupancy grid IOG(z) built from a single measurement z is called mono-sensor integer occupancy grid.

Example Figure 3.8 shows an example of an integer occupancy grid with the corresponding occupancy grid given two measurements z and z . Let c 1 designates the gray cell. The occupancy index I(o 1 |z ∧ z) is equal to -1. Therefore, the value of the occupancy probability of c 1 given measurements z and z is:

P (o 1 |z ∧ z) . = p -1 (3.34)

Integer Occupancy Grids 67

If the set of probabilities S is equivalent to the recursive set with the parameter ε, Theorem 3 (page 60) gives:

p -1 = 1 /2 -ε (3.35)
For an ε equal to 0.05, the numerical value of P (o 1 |z ∧ z) is equal to 0.45.

-1 3 Besides, consider a set of probabilities that has an index fusion operator ⊕. The Bayesian fusion of two elements of a set of probabilities is equivalent to combining the indexes of the elements by the index fusion operator (Denition 3.2.3 (page 57)). The following property shows that, the index fusion operator also enables incremental fusion of occupancy indexes.

Property 3.4.1. Let G be a grid and S a set of probability that has an index fusion operator. Let c i be a cell and z 1 , . . . , z k a collection of sensor measurements. Then

I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1 ∧ . . . ∧ z k-1) ⊕ I(o i |z k) (3.36)
Proof By applying the equivalence between and ⊕ on eq. (3.14) (Denition 3.2.3 (page 57)), we obtain:

I(o i |z 1 ∧ . . . ∧ z k-1) ⊕ I(o i |z k) ⇔ p I(o i |z 1 ∧...∧z k-1) p I(o i |z k)
The denition of the occupancy index (Denition 3.4.1 (page 66)) gives

p I(o i |z 1 ∧...∧z k-1) . = P (o i |z 1 ∧ . . . ∧ z k-1) and p I(o i |z k) = P (o i |z k) Then I(o i |z 1 ∧ . . . ∧ z k-1) ⊕ I(o i |z k) ⇔P (o i |z 1 ∧ . . . ∧ z k-1) P (o i |z k) = P (o i |z 1 ∧ . . . ∧ z k) . = p I(o i |z 1 ∧...∧z k) ⇔ I(o i |z 1 ∧ . . . ∧ z k-1) 68 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK Finally, I(o i |z 1 ∧ . . . ∧ z k-1) ⊕ I(o i |z k) = I(o i |z 1 ∧ . . . ∧ z k-1)
Property 3.4.1 (page 67) brings up the term I(o i |z k) which is the occupancy index of a cell computed from a unique measurement. The recursive application of this property from z 1 to z k gives the following theorem.

Theorem 4. Incremental index fusion

Let G be a grid and S a set of probability that has an index fusion operator. Let z 1 , . . . , z k denote sensor measurements. Then the multi-sensor occupancy index of c i given the above collection of measurements is computed as follows:

I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k) (3.37)
Proof Proof by induction.

• Base case: Property 3.4.1 (page 67) gives

I(o i |z 1 ∧ z 2) = I(o i |z 1) ⊕ I(o i |z 2). • Inductive step: assume that I(o i |z 1 ∧ . . . ∧ z k-1) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k-1). Let us prove that I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k).
Property 3.4.1 (page 67) gives:

I(o i |z 1 ∧ . . . ∧ z k) =I(o i |z 1 ∧ . . . ∧ z k-1) ⊕ I(o i |z k) = [I(o i |z 1) ⊕ . . . ⊕ I(o i |z k-1)] ⊕ I(o i |z k) Therefore, we obtain I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k).
Theorem 4 (page 68) combines occupancy indexes given dierent sensor measurements through the operator ⊕. It expresses how integer occupancy grids supports fusion. Theorem 4 (page 68) can be applied with the support of any set of probabilities provided that the set has an index fusion operator. In particular, the index fusion operator of the recursive set of probabilities is equivalent to a simple addition. Therefore, the multi-sensor fusion under the recursive set of probabilities is summarized by the following theorem.

Theorem 5. Multi-sensor fusion with the recursive set of probabilities

Let G be a grid and S ε the recursive set of probability with a parameter ε.

Let z 1 , . . . , z k denote sensor measurements. Then the multi-sensor occupancy index of cell c i given the above collection of measurements is computed as follows:

I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) + . . . + I(o i |z k) (3.38)
Proof Theorem 4 (page 68) shows that:

I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k)
Besides, Corollary 3.3.1 (page 60) states that for the recursive set of probabilities: ∀m, n ∈ Z : m n = m + n Therefore, the fusion under the recursive set of probabilities becomes:

I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) + . . . + I(o i |z k) (3.39)

Mono-sensor integer occupancy grids

Theorem 5 (page 68) allows integer occupancy grids to support multi-sensor fusion.

Based on the recursive set of probabilities, Theorem 5 (page 68) enables to compute multi-sensor occupancy index by summing multiple occupancy indexes computed from individual independent measurements. But how to compute the occupancy index of a cell given a unique measurement? Consider a measurement z, a grid G and a cell c i . If there exists an element p n of the recursive set S ε such that:

P (o i |z) . = p n (3.40)
then, the occupancy index of c i given the measurement z is equal to n:

I(o i |z) = n (3.41)
There is however no a priori reason that the numerical value of P (o i |z) would be exactly equal to an element of S ε . In other words, there is no a priori reason that an element p n exists such that eq. (3.40) holds. As a solution, we propose to quantize the ISM P (o i |z) by an element of S ε .

Quantization of the inverse sensor model

Assume that the ISM P (o i |z) of cell c i is available 4 . Quantizing P (o i |z) by an element of S ε is equivalent to looking for an element p n that can approximate the numerical value of P (o i |z). The elements of S ε are spread over]0, 1[in a symmetric way with respect to 1 /2. Moreover, the sequence {p n } n∈Z is monotonically increasing (see Property A.4.8 (page 125)). Consequently, whatever is the value of the ISM P (o i |z), there exist an element p n of S ε such that:

p n ≤ P (o i |z k) < p n+1 (3.42)
The ISM can be then approximated by either p n or p n+1 . To choose among these two possibilities, the following quantication policy is proposed. 4 A new theorem for computing the ISM of single-target sensors is presented in Section 4.2 (page 89)

Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

The nearest quantization policy Denition 3.4.3. Let z be a measurement, c i a cell and ε a number between 0 and 1 /2. Let p n be an element of the recursive set S ε such that p n ≤ P (o i |z) < p n+1 . The nearest quantization policy approximates the ISM by the nearest element of S ε :

P (o i |z) ≈ p n if |P (o i |z k) -p n | ≤ |P (o i |z k) -p n+1 | p n+1 otherwise Therefore, I(o i |z) = n if |P (o i |z k) -p n | ≤ |P (o i |z k) -p n+1 | n + 1 otherwise
The nearest quantization policy is an intuitive method for quantizing the ISM.

Depending on its numerical the value, the ISM is approximated either by p n or by p n+1 . That means, the approximation may result into an approximated value greater or lower than the real value of P (o i |z). (a)

1/2 (b) 1/2 (c) 1/2 (d)
Figure 3.9 Quantization of ISM By considering the above discussions, a second quantization policy is proposed.

This policy avoids to overestimate the condence of sensor measurement about the occupancy state of the cell.

The blurring quantization policy Denition 3.4.4. Let z be a measurement, c i a cell and ε a number between 0 and 1 /2. Let p n be an element of the recursive set S ε such that p n ≤ P (o i |z) < p n+1 . The blurring quantization policy approximates the ISM by the element of S ε nearest to P (o i |z) and closest to 1 /2 :

P (o i |z) ≈ p n if P (o i |z k) ≥ 1 /2 p n+1 otherwise Consequently, I(o i |z) = n if P (o i |z k) ≥ 1 /2 n + 1 otherwise
The result of the blurring policy is illustrated on g. 3.9b for the case where These steps are summarized on g. 3.10 in the case of the fusion of two sensor measurements. They can be though generalized for any number of measurements.

P (o i |z) is greater than 1 /2.
The three steps for fusing two sensor measurements z and z are described as follows.

1. ISMs are computed5 from sensor measurements. This steps produces the mono-sensor occupancy grids OG(z) and OG(z). Property 3.4.2. Let c i be a cell and z and z be two sensor measurements. Then, with the recursive set of probabilities, the index fusion gives:

If I(o i |z), I(o i |z) > 0, then I(o i |z ∧ z) > M ax(I(o i |z), I(o i |z)) If I(o i |z), I(o i |z) < 0, then I(o i |z ∧ z) < M in(I(o i |z), I(o i |z)) (3.43)
Proof With the recursive set of probabilities, we have

I(o i |z∧z) = I(o i |z)+I(o i |z).
Therefore, eq. (3.43) becomes trivial.

Mitigation The index fusion mitigates the estimation of conicting measurements. If two measurements are conicting, one estimates that a cell is occupied while the other estimates that the cell is occupied. The occupancy probability given the rst measurement is less than 1 /2 while the occupancy probability given the second measurement is greater than 1 /2. Therefore, with the recursive set of probabilities, one occupancy index is negative while the other is positive. Subsequently, the sum of both occupancy indexes tends towards 0. The occupancy state of the cell tends to unknown. The property of mitigation is summarized as follows.

Property 3.4.3. Let c i be a cell and z and z be two sensor measurements. Then, with the recursive set of probabilities, the index fusion gives:

If sign(I(o i |z)) = sign(I(o i |z)), then |I(o i |z ∧ z)| < M in(|I(o i |z), |I(o i |z)|)
Proof With the recursive set of probabilities, we have

I(o i |z∧z) = I(o i |z)+I(o i |z).
Therefore, the above equation becomes trivial.

Numerical error

The multi-sensor fusion based on integer occupancy grids relies on the step of quantization for computing mono-sensor occupancy indexes from ISMs. The quantization approximates a mono-sensor occupancy probability P (o i |z) by an element of the recursive set of probabilities. As seen in Section 3.4.4.1 (page 69), P (o i |z) is approximated either by p n or p n+1 such that:

p n ≤ P (o i |z) < p n+1 (3.44)
Therefore, the quantization introduces a numerical error. The error is however bounded by the distance between successive elements p n and p n+1 regardless of the quantization policy. According to Property 3.3.5 (page 62), the maximal distance between successive elements of the recursive set is bounded by ε. The latter can be any real-number between 0 and 1 /2 that is dened by the user (Theorem 3 (page 60)). Therefore, the numerical error introduced by the quantization is bounded by ε, moreover, the bound is dened by the user.

Remark. Notice that due to Property 3.3.4 (page 62), the error is maximal only around 1 /2. The closer to 0 or to 1 is an occupancy probability, the smaller is the quantization error.

Choosing the parameter ε

Once mono-sensor integer occupancy grids are computed, the fusion is performed through sums of occupancy indexes. In other words, the fusion requires only sums of integers. Such a sum is exact on an implementation viewpoint provided that no integer overow6 occurs.

Unlike the step of quantization, the fusion of multiple integer occupancy grids does not introduce additional numerical errors. Consequently, the overall error is parametrized by ε, the maximal error of the quantization step. The smaller is epsilon, the smaller is the numerical error. At the same time, Section 3.3.3.5 (page 63) has showed that for a small value of ε, a large range of index of probability is required to get elements of the recursive set close to 1 or 0.

Furthermore, the recursive set of probabilities maintain a one-to-one mapping between integers and real-numbers between 0 and 1. and then reused latter when fusing multiple sensors. This method has however a disadvantages. For a small value of ε, the lookup table has to be very large in order to contain elements close to 1 or 0.

To sum up, the value of ε should be chosen as a function of the maximum acceptable quantization error, the maximum value of occupancy probabilities (near 1), the minimum value of occupancy probability and the size of the lookup table.

In practice, a consensus between these parameters can be found.

For instance, if ε is equal to 0.05, the maximum quantization error is 0.05. For the same value of ε, p -127 is less than 10 -11 while p 127 is greater than 1 -10 -11 . Therefore, an index range between -127 and 127 is enough to have elements of the recursive set that are close to 0 and close to 1. Thus, a lookup table with 256 number of elements is enough.

Implementation of the index fusion

Integer fusion The index fusion performs only sums of occupancy indexes. It does not require a digital representation of real-numbers. Processing integer arithmetic on a computing hardware is exact. The implementation of the fusion does not involve additional numerical errors.

Notice however that the step computation of ISMs may still need operation on real-numbers. For instance, the approaches for computing ISMs reviewed in Section 2.3.1.2 (page 31) process probabilities as real-numbers. A practical solution for minimizing these operations will be proposed in Section 4.3 (page 100).

Number of operation For fusing two sensor measurements at the level of a cell, the Bayesian fusion function performs seven operations on real-numbers (Proposition 3.1.1 (page 50)). On the opposite, the integer fusion performs only a single addition of integers (Theorem 5 (page 68)). Consequently, the integer fusion has divided 7 the number of operations required by the fusion.

Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

The log-odds form of the Bayesian fusion also performs only a single addition (see eq. (2.46) in page 40). However, it adds two real-numbers while the index fusion adds two integers. If the fusion based on log-odds is implemented with oatingpoints, the error introduced by oating-points is not user-bounded. The error is imposed by the oating-point standard. Second, the transformation of log-odds to probability requires a call to the exponential function. This becomes expensive with high-number of cells, especially on a resource-constrained embedded hardware.

Numerical stability The Bayesian fusion function suers from numerical instability when computing probabilities near 0 and 1 (see Section 2.4.2 (page 39)). In opposite, the index fusion is stable since it is based on addition of integers. The implementation should only pay attention to integer overow. In the example above where ε is equal to 0.05 and the range of indexes is limited between -127 and 127, occupancy indexes can be encoded in 8-bits. Therefore, the sum of occupancy indexes must be saturated so that the result ts within 8-bit to avoid overow.

Deterministic fusion The implementation of the index fusion is deterministic. It

gives the same result regardless of the hardware architecture, the code writing, the compiler, the compiling options or other technical details. In fact, integer addition behave the same on every processors that can handle integers with the same number of bits. For instance, on all 32-bit machines, the result of the addition of two integer is the same.

Summary of the discussion

Let us summarize the above discussion.

Benets The advantages of the integer occupancy grid paradigm are:

• The index fusion is mathematically equivalent to the Bayesian fusion.

• The index fusion is incremental and supports both reinforcement and mitigation like the original Bayesian fusion.

• The index fusion is based on addition of integers and has 7× less operation than the original Bayesian fusion.

• The fusion is numerically stable and its implementation its SW/HW integration is deterministic.

By taking into account the above properties, the index fusion enables a safe SW/HW integration of probabilistic multi-sensor fusion.

Limitations Integer occupancy grids introduce explicitly an error in the step of quantization. The error is however bounded and is parametrized by the user.

The error ε can be any real-number between 0 and 1 /2. A too small value of ε would however require a too large lookup table necessary for converting an occupancy index into an occupancy probability.

Compaction of Integer Occupancy Grids

The previous section has introduced the formal denition of integer occupancy grids and the steps required for computing them. Let us now consider the implementation viewpoint. An integer occupancy grid is by denition constituted by the set of the occupancy indexes of all cells within a grid. On an implementation viewpoint, the occupancy indexes are stored within a data structure. This data structure will be requested when the occupancy indexes are updated by new sensor measurements, or when decision-making applications need to exploit integer occupancy grids. Section 2.5 (page 43) reviewed the two main data structures namely the arrays and the 2 d -trees for storing occupancy grids. An array stores in its elements the occupancy probability of each cell. For a high-number of cell, constituting blocks of cells that have similar occupancy state is time-consuming with arrays. Such task is though required for navigation applications that have to search for free spaces and obstacles. Arrays can be also memory consuming, especially for high-resolution and high-dimensional grid. As a solution, the 2 d -trees have been proposed for compacting occupancy grids. The compaction is though lossy.

Both arrays and 2 d -trees can be also used for storing integer occupancy grids.

Arrays can be used to store the occupancy indexes of all cells. This approach would suer from the same limitations of arrays as explained above. This chapter presents the use of 2 d -trees for compacting integer occupancy grids. The dierences with the state-of-the-art is that the compaction of integer occupancy grids with 2 d -trees is lossless. A lossless compaction is required for safety.

To explain the lossless compaction, this chapter will begin by the traditional denition of 2 d -trees and presents their extension enabling the storage of integer occupancy grids. The update of elements stored by 2 d -trees requires two fundamental operations: the split and the merge. Both operations will be also detailed, followed by a discussion about the application of 2 d -trees on integer occupancy grids.

Denition of 2 d -trees

A 2 d -tree is composed of a set of nodes having a parent-children relation. Any node, except the root node, must have a parent. A node has either zero or 2 d number of children, d corresponds to the dimension of the grid. A node that has no child is called a leaf. A node has a depth. The latter is a positive integer that measures how height from the root is located the node. A 2 d -tree has a maximum depth. The depth of a node cannot be greater than the maximum depth of the tree. The above characteristics are formally summarized into the following denition. Denition 3.5.1. A 2 d -tree is a set N of node that holds the following assertions:

1. ∃!η ∈ N : [Root(η) ⇔ P arent(η) = null] 2. ∀η ∈ N : [Leaf (η) ⇔ Children(η) = ∅] 3. ∀η ∈ N : [¬Leaf (η) ⇔ Children(η) = {η j , j = 1, . . . , 2 d }] 4. ∀η ∈ N : [¬Root(η) ⇒ (∃!η ∈ N : P arent(η) = η) ∧ η ∈ Children(η)] 5. ∀η ∈ N : Depth(η) = 0 if Root(η) 1 + Depth(P arent(η)) otherwise 6. ∀η ∈ N : Depth(η) ≤ M axDepth(N)
The predicate Root(η) holds if and only if the node η is the root. The function P arent(η) returns the node parent of η. The function Children(η) returns the set of the children of η. Assertion 1 means that a 2 d -tree has a unique root node. The latter has no parent. Assertion 2 imposes that a leaf node does not have any child.

In opposite, if a node is not a leaf, it has exactly 2 d number of children according to Assertion 3. Assertion 4 states that any node dierent of the root must have a unique parent. Finally, the function Depth(η) returns the depth of a given node.

The root has a depth equal to 0. The depth of the other nodes is determined recursively by the Assertion 6. The depth has a maximum value returned by the function M axDepth(N).

Extension of 2 d -trees for storing integer occupancy grids

Denition 3.5.1 (page 78) presents a general denition of an 2 d -tree. For storing an integer occupancy grid into a 2 d -tree, Denition 3.5.1 (page 78) needs to be extended. Storing an integer occupancy grid means storing the occupancy indexes of cells. For this purpose, we introduce the following denition. Denition 3.5.2. Let N be a 2 d -tree, and η a node of N . Let G be a grid of d dimension. The function Region(η) returns a set of cells such that the following assertion holds:

1. ∀η ∈ N : Region(η) = ∅ 2. ∀η ∈ N : [Root(η) ⇔ Region(η) = G] 3. ∀η ∈ N : [¬(Leaf (η)) ⇒ Region(η) = η ∈Children(η) Region(η)] 4. ∀c i ∈ G, ∃η ∈ N : c i ∈ Region(η) 5. ∀c i ∈ G, ∃!η ∈ N : [Leaf (η) ∧ c i ∈ Region(η)] 6. ∀η ∈ N : [cardinal(Region(η)) > 1 ⇒ ∀c i , c j ∈ Block(η), adjacent(c i , c j)]

Compaction of Integer Occupancy Grids 79

The function Region(η) maintains a correspondence between a tree structure and a grid. A region is a set of cells. A region cannot be empty according to the rst assertion. The second assertion states that the region of the root is equal to the whole grid. Assertion 3 stipulates that the region of a non-leaf node is equal to the reunion of the regions of its children. In Assertion 4, a cell must belong to the region of a node. Assertion 5 imposes though that a cell belongs to a unique leaf node. A consequence of this assertion is that the regions of leaf nodes are disjoints:

∀η, η ∈ N : Region(η) ∩ Region(η) = ∅ (3.45)
Finally, Assertion 6 requires that all cells belonging to the region of the same node must be adjacent.

To identify the cells that belong to the region of a node, the principle of recursive split is applied. Consider a grid of d dimensions and a 2 d -tree. If l denotes the maximum depth of the tree, the grid contains 2 l × 2 l for 2D and 2 l × 2 l × 2 l for 3D.

The region of the root contains all cells of the grid. To determine the region of the children of the root, the grid is split by 2 on each dimension. The subdivision results into 2 d adjacent but disjoint regions. These regions are aected to each child of the root. The same split operation can be applied recursively to each child of the root until reaching the maximum depth. The recursive split guaranties that eq. (3.45) holds. It is also conform to the assertions presented on Denition 3.5.2 (page 78).

For allowing a 2 d -tree to store the occupancy indexes of cells, the following function is used. Denition 3.5.3. Let N be a 2 d -tree, and η a node of N . Let G be a grid of d-dimension. Consider the recursive set S ε and a collection of measurements z 1 , . . . , z N . The function Index(η) returns an integer such that:

1. ∀η ∈ N : [¬Leaf (η) ⇒ Index(η) = 0] 2. ∀η ∈ N : [Leaf (η) ⇒ (∀c i ∈ Region(η), Index(η) = I(o i |z 1 ∧ . . . ∧ z N))]
The rst assertion means that the index of a non-leaf node is null. With respect of the recursive set S ε , this index correspond to the occupancy probability 1 /2. The second assertion requires that the index of a leaf is equal to the occupancy indexes of the cells that belong to the region of the leaf. If the region of a leaf contains a single cell, the index of the leaf is equal to the occupancy index of that cell. Otherwise, if the region of a leaf contains multiple cells, these cells must have the same value of occupancy indexes. The root is the node at the top of the quadtree. Its region corresponds to the whole grid, regrouping all the cells. On g. 3.11, the quadtree has in total 13 nodes while the grid has 64 cells. If the same integer occupancy grid was stored within an array, the latter would require 64 elements. This shows, through an example, how a 2 d -tree can compact the storage of an integer occupancy grid. The compaction is due to the requirement of Assertion 2 in Denition 3.5.3 (page 79). This assertion enables to store within a unique leaf the occupancy indexes of adjacent cells, provided that the occupancy indexes are mathematically equal.

b b b h (b) Regions of the leaf nodes

Split

The index of a leaf stores the occupancy indexes of all cells contained within the region of the leaf. This technique of storage requires that the occupancy indexes of the cells within the region of the leaf must be equal. When a new sensor measurement is available, it updates the occupancy index of at least one cell. Consequently, the above equality does not holds anymore for the leaf which region contains the updated cell.

To take into account the new occupancy index of the updated cell, the operation of split is applied. The operation of split must be realized if the following condition is satised:

∀η ∈ N : {Leaf (η) ∧ [∃c i ∈ Region(η) : I(o i |z 1 ∧ . . . ∧ z K) = Index(η)] ⇒ Split(η, c i , N)} (3.46)
The above equation means that the operation of split must be realized on a leaf which region contains at least a cell c i , such that the occupancy index of c i is dierent to the index of the leaf.

The function Split is described on Algorithm 1 (page 81). It works as follows. Assume that a node η satises the condition on eq. (3.46). Let c i denote the cell for all η j ∈ Children(η) do 6:

P arent(η j) ← η 7:

Depth(η j) ← Depth(η) + 1 8:

Index(η j) ← Index(η)

A child receives the index of its parent. 9:

end for 10: Index(η) ← 0 η is not a leaf anymore. 11: else η reaches the depth max. 12:

Index(η) ← I(o i |z 1 ∧ . . . ∧ z K)
η stores the occupancy index of c i . 13: end if 14: end function which occupancy index is dierent to the index of η. If the depth of η is less than the maximum depth, then the tree is extended by creating 2 d new nodes that become children of η. Otherwise, the index of η is set to the occupancy index of c i . Its region is also colored in gray on the grid at the right of the gure. According to the tree, the occupancy indexes of all gray cell are equal to a. However, according to the grid, there exists a gray cell that has an occupancy index equal to f . Consequently, Index(η) ← Index(getAchildOf (η)) η receives the index of its children.

b b b h

b b b h

b b b h

b b b h

3:

N ← N

Children(η)

The children of η are removed from the tree N . 4:

Children(η) ← ∅ η becomes a leaf.

5: end function the gray leaf satises the split condition on eq. (3.46). The operation of split is applied on this leaf.

When the gray leaf is split, its children are created. Each child receives the index of its parent. This gives the tree depicted on g. 3.12b. On this gure, another gray leaf satises the split condition. New children are also added at the level of this leaf. The resulting tree is illustrated on g. 3.12c. Herein, the maximum depth is reached. However, there still exist a gray leaf that satises the split condition.

The index of this leaf is nally set to the occupancy index of the cell included in the region of the leaf. The resulting tree is depicted on g. 3.12d.

In practice, the operation of split is applied to any leaf which region is aected by a new sensor measurement. Figure 3.12 shows that the split operation extends the tree downwards until leaves aected by measurements reach the maximum depth.

When several cells see their occupancy indexes updated by measurements, the number of newly created leaves increases considerably. This impacts negatively on the compactness of the tree structure. As a solution, the operation of merge is performed.

Merge

The operation of merge improves the compactness of a tree by removing some nodes from the tree. This enables to decrease the number of nodes within the tree. The operation of merge is applied only if the following equation holds.

∀η ∈ N :{¬Leaf (η)

∧ [∀η j ∈ Children(η) : Leaf (η j)] ∧ [∀η i , η j ∈ Children(η) : Index(η i) = Index(η j)] ⇒ M erge(η, N)} (3.47)
A node can be merged only if three conditions are satised. First, the node is not a leaf. Second, its children are all leaves. Third, the indexes of its children are equal.

The function M erge is presented on Algorithm 2 (page 82). It takes two arguments: the node η to be merged and the 2 d -tree. First, the function aects to η the indexes of its children. Its children are then removed from the tree. This makes η to become a leaf. another gray node that satises the merge condition on eq. (3.47). The merge is applied and gives the tree on g. 3.13c. On this gure, no node satises eq. (3.47), no merge is then performed. Figure 3.13 shows that the operation of merge shortens the tree upwards by pruning nodes that satises eq. (3.47). This makes the tree more compact by decreasing the number of nodes.

e e e h h h h h h h h h h h h h h h h

e e e h h h h h h h h h h h h h h h h

e e e h h h h h h h h h h h h h h h h

Discussion

Benets Integer occupancy grids can be stored within an array or a 2 d -tree. For a tree, occupancy indexes of adjacent cells are stored within a leaf if and only if they are equal. This condition has two advantages.

First, it makes 2 d -trees more compact than arrays for storing integer occupancy grids. While an array has to have the same number of array elements as cells, the number of nodes within a 2 d -tree is potentially less than the number of cells. In fact, due to the spatial disposition of obstacles on a physical world, likely occupied cells tends to be adjacent. The same for likely empty ones and also for the unknown cells. Consequently, adjacent cells potentially have similar, even equal, occupancy

indexes. An experimental study about the compactness of 2 d -trees will be presented in the next chapter.

Second, the compaction oered by 2 d -trees is lossless. Lossless means that the data structure for storing integer occupancy grids does not alter the occupancy indexes per cells. The occupancy index of a cell is the same whether the integer occupancy grid is stored within a 2 d -tree or within an array. Such a result cannot be obtained by the condition of merge proposed in the literature (see Section 2.5.2 (page 45)).

Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

Limitations While 2 d -trees are compact, maintaining the data structure is expensive in term of execution time. On an array, updating the occupancy index of a cell is straight forward after incoming measurements. On a 2 d -tree, the update must perform at least the operation of split. The later subdivides the leaves that cover the updated cell until the maximum depth is reach. Such operation is time consuming when it is repeated for a high number of cells. After the split, the merge becomes also too expensive in term of execution time when it is applied frequently.

However, the operation of merge improves the compactness of the tree by pruning some nodes out of the tree.

After that, the tree structure also requires additional memory load. For instance, the pointer based implementation of 2 d -trees need at least two pointers: a pointer that points to the children and another one that points to the parent ([Samet 1990]).

On the opposite, array structure does not require additional memory load. Consequently, depending on the size of the grid and on the environment, an array may consume less memory than a 2 d -tree. Nevertheless, the literature reports that 2 d -trees are less memory consuming when mapping a large environment with a high-resolution and high-dimensional grid ([START_REF] Payeur | [END_REF][START_REF] Kraetzschmar | [END_REF][START_REF] Hornung | [END_REF]).

Summary

This chapter presented the integer occupancy grid paradigm.

• The formal denition and properties of set of probabilities were introduced.

Examples of sets of probabilities have been proposed and demonstrated.

• The recursive set of probabilities was highlighted since it has important properties that have enable to fuse multiple sensors through simple addition of integers.

• The denition and properties of Occupancy Indexes and Integer Occupancy Grids were formalized. The fusion of Occupancy Indexes is equivalent to a sum of integers.

• The numerical error involved by the computation of Integer Occupancy Grids was specied. The step of quantization introduces explicitly a known, bounded and user-adjustable numerical error. The latter can be any real-number between 0 and 1 /2. The previous chapter established the theoretical foundation of integer occupancy grids. The computation of integer occupancy grids is composed of three steps: the computation of ISMs, the quantization and the fusion. While the two last steps were presented in the previous chapter, the computation of ISMs was not tackled.

Section 2.3.1 (page 28) presented the Bayesian approach for computing the ISM of a cell. This approach establishes a relation between measurement uncertainties, the size of cells and the value of ISM. It suers however form an exponential complexity.

This chapter proposes new approaches for computing ISMs. Experimental analysis and discussion about these approaches will be presented. After that, this chapter will describe the SW/HW integration of the integer occupancy grid framework.

The SW/HW integration constitutes a multi-sensor fusion (MSF) module that fuses measurements from range sensors mounted on a car and produces an environment model of the driving environment.

Sensor measurements are produced periodically. According to the initial constraints evoked in Section 1.3 (page 10), the fusion must be processed in real-time with respect to sensor period. Second, its HW/SW integration must be realized on a low-cost and low-power processing platform. Third, the HW/SW integration must be safe. It must consider sensor uncertainties, numerical errors and determinism of computation.

To develop such a module, the SW/HW integration of the integer occupancy grid framework is realized on a low-cost and low-power processing platform. The module fuses periodical measurements produced by four state-of-the-art LIDARs mounted on a prototype car. At each period of measurement, a 2D integer occupancy grid combines the measurement from the four LIDARs. The integer occupancy grid models the driving environment surrounding the car.

Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS FOR AUTOMOTIVE MULTI-SENSOR FUSION

This chapter is organized as follows. Section 4.1 presents the experimental setup including the prototype vehicle, the LIDARs and the processing platform. After that, Section 4.2 proposes and discusses the new approaches for computing ISMs.

Next, the HW/SW integration of the integer occupancy grid framework will be described in Section 4.3, where discussions about the experimental results will be reported.

Experimental setup

Experiments realized in this thesis were conducted on a prototype car: a ZOE from Renault (see g. The CPU and the GPU in the trunk are not designed for automotive use cases.

Despite their computing performance, these hardware consume hundreds of watts of power and do not support extreme conditions in a car (e.g. high temperature, humidity, physical shocks, etc). Hence, experiments in this thesis are implemented on an embedded hardware that is designed for automotive applications.

The embedded computing hardware

Experiments presented in this chapter are implemented on a SABRE Lite development board [element14]. This hardware platform is based on the i.M X6, an application processor from Freescale based on a quad-core ARM Cortex-A9. The processor runs at 1 GHz. The platform has a RAM DDR3 of 1 GByte, having 64-bit wide and running at 532 MHz. It has an SD card interface and runs an operating system based on an Ubuntu distribution.

The i.M X6Q processor is specically designed for industrial and automotive applications [Freescale 2015]. It combines signicant computing performance and lowpower constraints, which makes it a good candidate for implementing the integer occupancy grid framework. A single-core of the i.M X6Q processor consumes less than 1 W of power [Freescale 2015]. For a comparative purpose, the Intel CPU within the trunk of the prototype car consumes up to 40 W

Experimental data

During this thesis, the SABRE Lite board was not yet installed in the prototype car.

For processing data from the ibeo LIDARs, experiments were realized as follows.

The prototype car was driven in real trac in down town of Grenoble, in France, and also on highways. In the meantime, measurements from the four ibeo LIDARs were saved into les by the ROS middleware. After that, the les are copied on a SD card. The latter is inserted on the SABRE Lite in order to computed integer occupancy grids from the saved LIDAR measurements.

The ibeo LUX LIDAR

The ibeo LUX LIDAR is a laser scanner that serves for scanning a physical environment within a eld-of-view [START_REF] Ibeo | [END_REF], Ibeo 2013]. It targets the automotive domain and is designed to meet the constraints of safety, robustness and power budget found in the domain. An ibeo LUX LIDAR measures ranges to obstacles, within several directions relative to the sensor. The measuring process works as follows.

The sensor emits laser beams towards several directions, receives echoes on a receiver, and then computes ranges based on the time-of-ight of the beams. A laser beam can measure a range up to 200 m. Under 50 m, at least 10% of the emitted energy is received back to the sensor. Under this range, a measurement has an accuracy of 10 cm, regardless of the distance of the observed obstacle [Ibeo 2013]. A complete scan of the surrounding by an ibeo LUX provides up to 800 scan points.

Direction of beams

Complete scans are produced at a rate of 25 Hz. The corresponding scan points are also encircled on the image on the left.

Computation of Inverse Sensor Model

A scan point of a LIDAR is considered as an independent measurement. It is generated by a beam directed within known azimuth and elevation. Two scan points are FOR AUTOMOTIVE MULTI-SENSOR FUSION considered as independent one another. Such assumption is generally admitted for LIDARs in the literature ([START_REF] Thrun | [END_REF], Homm 2010[START_REF] Einhorn | [END_REF][START_REF] Adarve | [END_REF]).

The objective of this chapter is to fuse the scan points produced by the four LIDARs into a 2D integer occupancy grid. As presented in the previous chapter, the computation of integer occupancy grids require a step of computation of ISMs from individual sensor measurements. Hence, this section will describe the computation of ISMs from a unique scan point.

For a 2D grid, the ISM of a cell given an individual measurement is computed in two steps (Section 2.3 (page 27)). First, a 1D occupancy grid local to the measurement is built. Second, a range-mapping algorithm is applied for retrieving the ISMs of 2D cells from the local occupancy grid.

Section 2.3.1 (page 28) highlighted the advantages of the Bayesian approach for building the local grid. This approach suers though from an exponential complexity with respect to the number of cells. This section will present a new theorem that extends the Bayesian approach and that allows to build the local grid within a linear complexity.

Besides, Section 2.3.2 (page 34) explained the advantages of traversal algorithms for performing range-mapping. It showed the need for designing a traversal algorithm that works exclusively on integers. Such algorithm will be also presented and discussed in the present section.

Building the local occupancy grid

Like the approaches reviewed in Section 2.3 (page 27), the approach proposed here is applicable only for single-target sensor.

Inverse sensor model of a single-target

Consider the situation on g. 4.5 where a single-target sensor observes a physical environment through a line-of-sight. The latter is subdivided into a 1D grid composed of cells c i , i = 1, . . . , N . A cell c i is located at a distance d i from the sensor.

The sensor provides a scalar measurement z. The value of the measurement depends on the distance d between the sensor and the sensed obstacle. The process of measurement is modeled by the sensor model p(z|d). We propose the following theorem for computing the ISM P (o i |z) of a cell c i of the local grid. Theorem 6. Inverse Sensor Model of a single-target sensor Under the non-informative prior, the ISM of the cell c i given a measurement z from a single-target sensor is:

P (o i |z) =      α -1 • p(z|d 1) if i = 1 α -1 • i-1 h=1 p(z|d h) 2 h + p(z|d i) 2 i-1 otherwise where α = N h=1 p(z|d h) 2 h-1
Proof This theorem is derived from the Bayesian approach (Section 2.3.1.1 (page 29)). The mathematical derivation is detailed in Section B.1 (page 129).

Sensor device

Line-of-sight (1D grid)

Obstacles

Scan point Let us now build the local occupancy grid given a scan point. To be able to apply Theorem 6 (page 91), the distance of each cell from the sensor must be known. This distance is derived from the size of cells along the grid. Therefore, a question arises:

how to chose the size of a cell of the local grid?

To answer to this question, several cell sizes have been tested. The prole of the ISMs for three dierent cell sizes are plotted on gures 4.6b to 4.6d. Choosing the cell size On g. 4.6b, the maximum of ISM is closed to 1. The cell size is 5× larger than the precision of the sensor. When the cell size is decreased, the maximum of ISM also decreases. On g. 4.6d where the cell size is a quarter of the precision of the sensor, the maximum of ISM does not even overtake 1 /2. That means, the cell size is too small for the sensor's precision. Beyond its precision, the sensor cannot estimate with a high condence that a cell is occupied. Thus, to be able to estimate likely occupied cells, the cell size is chosen such that it does not overtake the sensor's precision.

Comparison with the Bayesian approach (x S , y S): coordinates of point S 3:

(x T , y T): coordinates of point T 4:

(x 0 , y 0): location of the cell containing the point S 5:

(x 1 , y 1): location of the cell containing the point T 6:

β: length of a side of a squared cell 7:

Point (x, y) else if e > 0 then 18:

x ← x + β 19:

e ← eβ × ∆y c x is traversed 20: else 21:

y ← y + β c y is traversed 22:

e ← e + β × ∆x 23: end if

24:

The cell traversed at the current iteration is located at (x, y) 25:

SampleISM (x, y) 26: end while 27: end function Algorithm 3 (page 95) works as follows. The variables x and y at line 7 store the coordinates of the last cell discovered by the algorithm. Both variables are initialized by the coordinates of the cell containing the point S at line 11. After that, the error variable is initialized at line 12. In the main loop, the sign of e is analyzed to determine the next traversed cell. The coordinate of the traversed cell is then stored within the variables x and y and the value of the error variable is also updated. Once the new traversed cell is discovered, the function SampleISM Let us replace the continuous frame (O, x, y) by a discrete frame 1 (O, l, m). The latter is shown on g. 4.9. Coordinates in (O, x, y) belongs to R 2 while those in (O, l, m) lays within Z 2 . Consider a point within the plane. Let (x, y) denotes its coordinates within the continuous frame, and (l, m) within the discrete frame. The relation between (x, y) and (l, m) is:

∀(x, y) ∈ R 2 , x = l • δ and y = m • δ (4.3)
The symbol δ denotes a discretization-step which measures the spatial precision of the discrete frame.

The value of δ is measured in meter (m). It is chosen such that the length β of sides of 2D cells becomes a multiple of δ. The value of δ is determined by the traversal resolution dened as follows.

1 The application of discrete frame for performing range mapping was published in [Rakotovao 2016b].

δ = β r
Hence, given the size of cells, the value of the traversal resolution is rst determined in order to know the value of δ. The traversal resolution determines how precise is the discrete frame of reference while the value of δ determine exactly how long is the precision. For instance, if cells measure 10 cm-by-10 cm, a traversal resolution of 10 means that the discrete frame of reference is precise at 1 cm. A higher traversal resolution of 100 makes increases the precision at 1 mm.

The above denition implies that the length of the side of cell within the discrete frame is equal to r. The traversal algorithm is accurate at 85% when the traversal resolution is equal to 1. A resolution of 1 means that the precision of discrete frame is equal to the length of a cell side (δ = β). With a traversal resolution greater than 100, the discrete algorithm is accurate at more than 99.9%. The higher is the traversal resolution, the more accurate is the discrete traversal algorithm. For a deeper analysis, consider now the percentage of misses, that means 100% minus the accuracy. The logarithm of the percentage of misses is plotted on g. 4.11b. The gure shows that when the resolution increases, the log scale of the percentage of misses continues to decrease. The percentage of misses tends then towards 0.

Execution time & speedup

Let us now study the execution time of the discrete algorithm compared to the continuous one. The evolution of the execution time as a function of the traversal resolution is shown on Table 4.2 (page 100). The discrete traversal algorithm is 2.8× faster than the continuous traversal algorithm. This shows that the SABRE Lite platforms have a better support of integers compared to oating-points. Moreover, the traversal resolution does not inuence the execution time. That means, the traversal resolution can be chosen as higher as possible.

Choosing the traversal resolution In practice, range sensors have a limited spatial precision of the order of centimeters. The traversal resolution is chosen as a function of the precision of range sensors. The discrete algorithm can work with a precision that is better than the precision of sensors. Having a too high traversal resolution is however not required. For instance, if 2D cells measure 10 cm-by-10 cm, Once the methods for computing ISMs are now available, let us move towards the SW/HW integration of the integer occupancy grid framework in the next section.

HW/SW integration of multi-sensor Integer Occupancy Grids

The LIDARs mounted on the prototype car produce scan points within a period of 25 Hz. The objective consist in fusing these points into a 2D integer occupancy grid at each period. The grid measures 102.4 m-by-102.4 m, with cells of 10 cm-by-10 cm.

The number of cells is 1024 × 1024, which is more than 1 Million. As shown on g.

4.12, the prototype car is located at the center of the grid.

When the car moves, the grid is attached to the vehicle and follows its motion.

The grid is placed at 20 cm from the ground. It is parallel to the chassis of prototype car. This section presents the implementation of the integer occupancy grid framework on the SABRE Lite platform. Experimental results will be also presented and analyzed. The SW/HW integration is tested on the experimental data described in Section 4.1.3 (page 88).

Implementation of integer occupancy grids

For fusing measurements from the four LIDARs, the integer occupancy grid framework is implemented as follows. Regardless of the data structure used for storing the grid, occupancy indexes of 2D cells are set to 0 at the beginning of a scan period. Occupancy index of 0 is equivalent to an occupancy probability of 1 /2. That means, the occupancy states of cells are initialized to unknown. After that, the scan points produced within a period are sequentially integrated into the 2D integer occupancy grid for performing the fusion. Let us explain the integration of a single scan point.

Consider the scan point on g. To integrate a scan point into the 2D integer occupancy grid, two steps are required. First, the local integer occupancy grid is computed. Second, the local integer occupancy grid is projected onto the 2D grid.

Computation of the local integer occupancy grid

The local integer occupancy grid is dened over the local grid that corresponds to the scan point. It is built by nding out rst the index k of the cell where the scan point is located. After that, the occupancy indexes of cells over the local grid are directly given by the lookup For smaller value of ε, occupancy probabilities are encoded in 32-bits. This allows to have a wide range of occupancy indexes (larger than [-127, 127]). In fact, if the occupancy indexes are still shrunk between -127 and 127 while ε is less than 0.05, the probabilities that correspond to the indexes would not reach value close to 0 or 1 (see Section 3.3.3.5 (page 63)).

Performance analysis 2 Three metrics are used for measuring the performance of the array-based implementation. The rst one is the average output rate at which integer occupancy grids are produced by the SABRE Lite. The output rates versus the number of LIDAR devices are shown on Table 4.4 (page 105). Since the Ibeo LUX LIDARs produce complete scan at 25 Hz, Table 4.4 (page 105) shows that the implementation fuses the scan points into an occupancy grid in real-time.

Nb of LIDARs 4 3 2 OG Rate(Hz) 28 47 66 Table 4.4 OG output rate on embedded CPU.

To compare the computation time with those of the state-of-the-art, the second metric is constituted by the product of the number of scan points with the number of cells and the output rate (points • cell • Hz). This metric shows how many points an implementation can process in one second. Table 4.5 (page 106) compares the performance of the array-based implementation to the performance of implementations of occupancy grids on a GPU in [Homm 2010] and on a desktop in [Nuss 2015].

The implementation of a GPU serves as a reference of comparison. The 6-th row of 2 Experimental results published in [Rakotovao 2016b].

106

Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS FOR AUTOMOTIVE MULTI-SENSOR FUSION To evaluate the impact of ε on the values of occupancy probabilities computed from the integer occupancy grid framework, several values of ε were tested. Table 4.6 (page 107) shows statistics on the dierence of probabilities between the two approaches for dierent values of ε. Both blurring quantization policy and nearest quantization policy are represented. Regardless of the quantization policy, the mean of the dierences and the standard deviation are at least in order of 10 2 × lower than the value of ε. Table 4.6 (page 107) also shows that the dierences decrease with ε. In fact, the lower is ε, the more accurate are the occupancy probabilities computed from the integer occupancy grid framework (Section 3.4.6.3 (page 74)). An example of a real trac scenario with its corresponding integer occupancy grid is presented on g. 4.17. To highlight how the occupancy indexes of cells are stored within a quadtree, the part of the integer occupancy grid encircled in red is zoomed. The zoom shows out the regions of the leaves that store the occupancy indexes of cells. The regions of the leaves are of dierent sizes. Some regions cover a unique cell while others cover 4, 8, 16 or more number of cells. This makes the quadtree more compact than arrays. The memory consumption can be improved by adopting other implementations of quadtrees such as the linear quadtrees ([Samet 1988[START_REF] Holroyd | [END_REF]), or even by using other data structure like R-trees ([Guttman 1984]) or adaptive rectangular cuboids ([Khan 2015]). Furthermore, a 2D integer occupancy grid can be considered as an image by making an analogy between cells and pixels. Hence, any technique used for a lossless compression of images can be explored.

Lossless compaction

On an application viewpoint, the access and eciency of the exploitation of integer occupancy grids depends rst on the compactness of the data structure ([START_REF] Soucy | [END_REF]). The memory amount introduces though a challenge on embedded systems where memory resource is limited. A high memory consumption can also hinder the exchange of integer occupancy grids through the network. Assume that integer occupancy grids are computed by the MSF module. After that, they are transfered to an autonomous navigation module for making decision. The size of the data structure that stores integer occupancy grids plays a role in the speed of this transfer through a network.

Computation time The average output rate of integer occupancy grids stored within quadtrees is only 5 Hz in our implementation. This is 5× slower than the frequency of complete scans produced by the Ibeo LIDARs. Hence, the quadtree-FOR AUTOMOTIVE MULTI-SENSOR FUSION based implementation does not reach a real-time performance.

Two points cause this low performance. First, the traversal algorithm is optimized for the array-based implementation. Designing a traversal algorithm optimized for quadtree is essential. Such algorithm can exploit the dierent size of the regions of leaves to accelerate the traversal. For instance, a traversal algorithm specically designed for octree is presented in [START_REF] Revelles | [END_REF]].

The second cause of the low performance is that, during a cell update, the operation of split and merge are always executed. These operations are though recursive and takes long execution time even if they are implemented as a loop.

As a solution, the operation of merge can be deferred as in [START_REF] Faireld | [END_REF]]. That means, during a cell update, only the operation of split is performed. The operation of merge is executed less frequently, for instance after the insertion of the complete scan points from a single LIDAR device.

Both operations can be also accelerated by optimizing the data structure for storing a node. When nodes are pruned out of the tree during the operation of merge, they are deallocated in the memory. When children of a node are created during the operation of split, they are allocated in the memory. Hence, the memory allocation plays an important role in the speed of split and merge. Integer occupancy grids stored in quadtree or octree need an advanced memory allocation technique to accelerate the operations of split and merge.

Summary

To summarize, this chapter presented the application of the integer occupancy grid framework for performing automotive multi-sensor fusion.

• A formula for computing ISMs over a 1D grid given a measurement from a single-target sensor was proposed.

• A discrete traversal algorithm that works exclusively with integers was designed and studied experimentally.

• Integer occupancy grids were applied for fusing four LIDARs mounted on a prototype car.

• Integer occupancy grids were integrated on a low-cost and low-power hardware dedicated for automotive application.

• The numerical accuracy of integer occupancy grids have been studied experimentally.

• Both arrays and 2 d -trees have been experienced for storing integer occupancy grids.

• The lossless compaction of integer occupancy grids with 2 d -trees have been validated.

Summary of Integer Occupancy Grids

In this manuscript, we introduced the Integer Occupancy Grid framework. The later enables to process fusion of range sensors and to build an environment model based on occupancy grids in an ecient way.

Like traditional occupancy grids, Integer Occupancy Grids are a tessellated probabilistic model of a physical environment. The latter is subdivided into multiple cells. A cell is either occupied by an obstacle or empty. The occupancy state of a cell is estimated by an occupancy probability for traditional occupancy grids, and by an occupancy index for Integer Occupancy Grids.

The occupancy index of a cell is paired with the value of its occupancy probability thanks to a set of probabilities. Occupancy indexes are integers while occupancy probabilities are real-numbers. The fusion based on occupancy indexes requires only integer arithmetic. Integer arithmetic are advantageous in term of HW/SW integration. They are exact, fast, power ecient and supported by the majority of modern computing platforms, even the embedded ones.

For fusing multiple measurements, Integer Occupancy Grids computed independently from individual measurements are combined cell-by-cell. The combination of occupancy indexes is equivalent to computing their sum. The computation of integer occupancy grids involves though a numerical error. Nevertheless, this error is known, bounded and chosen by the application designer.

Integer Occupancy Grids can be stored within arrays or within 2 d -trees. The occupancy index of a cell is the same whatever is the used data structure. Tree structures enable a lossless compaction of integer occupancy grids. The maintenance of the tree structure introduces though an overhead that makes trees slower when updating occupancy indexes.

Conclusion

To conclude, this thesis proposes the Integer Occupancy Grids as a new framework for processing the fusion of range sensors mounted on a car. The framework was developed by taking into account upstream both safety requirements and embedded hardware constraints. It enables the HW/SW integration of multi-sensor fusion on an embedded low-cost and low-power platform.

Integer Occupancy Grids enable to process Bayesian fusion with simple integer arithmetic. The numerical error involved by the framework is known, bounded and parametrized by the user. This allows to guaranty the quality, the safety and the robustness of the HW/SW integration of the fusion, especially when the later is used for safety critical tasks such as automotive perception.

Perspectives

The envisioned perspectives based on this thesis can be grouped as follows.

Short-term perspective

• In this thesis, Integer Occupancy Grids were experienced over 2D grids. An extension to 3D grids is required for being able to model overhanging road structures such as bridges and underground parking.

• A large 3D grid cannot be stored within arrays anymore. Tree-based structures enable to save memory but involve longer update time. Adequate algorithms of split and merge, advanced memory allocator for nodes, and traversal algorithm adapted to the tree structure are required to reach real-time performance with 2 d -trees.

Mid-term perspective

• While the multi-sensor fusion based on integer arithmetic is exact, it requires rst a computation of mono-sensor occupancy grids. In this thesis, only monosensor occupancy grids based on a single-target sensor were considered. Singletarget sensors return spatial points. This is not the case for other sensors like radars and ultrasonic sensors. Future work may focus on these sensors.

• In the present work, no notion of time is considered. Integer Occupancy Grids have to be converted into traditional occupancy grids before being injected into the Bayesian Occupancy Filter (BOF). The BOF also perform intensive probabilistic calculus and require ecient HW/SW support of real-number

operations. An integer-based approach like the Integer Occupancy Grids can be studied to perform the ltering.

Perspectives 115

Long-term perspective

• When Integer Occupancy Grids will be able to handle the main sensors used for automotive or in robotics in general, when they will be able to map 3D environment with a compact data structure, a kind of operating system dedicated for multi-sensor fusion can be designed. Such operating system can be integrated on dierent kinds of processing platforms. It can be applied in dierent domains such as autonomous cars, underwater robots, mining robots, agriculture robots or aerial vehicles.

• Like traditional occupancy grids, Integer Occupancy Grids are still too dense and contain too much details for performing eciently navigation tasks. A more abstract environment model is still required. The introduction chapter presented some of them. The conversion of an Integer Occupancy Grid into one of these models needs to be explored. The conversion may take advantage of the compactness of Integer Occupancy Grids.

• The technique based on integer arithmetic for combining occupancy probabilities can be applied to other problems dierent to environment modeling.

This requires that the studied problem is based on the estimation of a binary state variable. The latter should be estimated from independent source of information. For instance, in an industrial production chain, this technique can be applied for verifying whether a product is defective or not. This can be done through a successive sensor observations. After the observations, a conclusion about the state of the product must be known. This problem can eectively treated with the Bayesian fusion based on integer arithmetic. Since a 1 b 1 = 1 /2, then we nally obtain p m p n = 1 /2. Proof Proof by induction. In the base case, ≤ a 0 < 1 is true due to (A.3). In the inductive step, assume that a n-1 < 1. Since a 1 is also less than 1, the denition of the fusion operator (Denition 3.1.1 (page 50)) ensures that a n-1 a 1 < 1. Then a n < 1. Trois formules de fusion sont les plus communes dans l'état de l'art : la fusion bayésienne [START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989a]), la moyenne pondérée ([Thrun 1993[START_REF] Adarve | [END_REF]), et la politique du maximum ([START_REF] Payeur | [END_REF][START_REF] Thrun | [END_REF]). Soient Si la cellule est plutôt vide selon les deux mesures, alors la fusion résulte à une probabilité inférieur aux modèles inverses. Par contre, si la cellule est plutôt occupée pour une des mesures et plutôt vide pour l'autre, alors, la fusion résultera à une probabilité qui tend vers 1 /2. C'est-à-dire, l'état d'occupation de la cellule tend à être incertain vue que les mesures sont en conit.

Le renforcement et l'atténuation sont deux propriétés qui permettent à un système de perception multi-capteur d'être sûre. Ces propriétés signie que pour avoir une estimation correcte de l'environnement, il faut ajouter plus de nombre capteur ([Elfes 1989a]). Si les capteurs ne sont pas conictuels (ce qui est supposé le cas en pratique sinon le système n'est pas able), la certitude sur l'état estimé de l'environnement est renforcée. En cas de capteurs conictuels, la certitude diminue. La fusion par moyenne pondérée des modèles inverses de capteurs n'a pas la propriété de renforcement. La politique de fusion qui consiste à prendre la valeur maximale des modèles inverses ne supporte pas l'atténuation.

En terme d'ecacité, la version logit de la fusion bayésienne requière moins de calcul de la version manipulant directement les probabilités. Toutefois, quand il est nécessaire de récupérer la valeur de la probabilité qui correspond à un logit, il est nécessaire d'appliquer l'équation suivante : L'ensemble récursif possède les propriétés suivantes. Premièrement, la valeur de p 0 vaut 1 /2. Les éléments avec un indexe négatif ont des valeurs inférieur à 1 /2. Ceux avec des indexes positifs sont supérieur à 1 /2. Deuxièmement, la fusion de p n avec p -n retourne 1 /2. C'est à dire que p n est l'inverse de p -n par rapport à l'opérateur de fusion . Troisièmement, en partant de 1 /2 et en se déplaçant vers 0 ou 1, la distance entre deux éléments consécutifs décroit. Plus généralement, la distance entre deux éléments consécutifs est majorée par ε.

P (o i |z 1 ∧ z 2) = 1 - 1 1 + exp(l(o i |z 1 ∧ z 2)) (C.
a n =    1 /2 si n = 0 1 /2 + ε si n = 1 a n-1 a 1 sinon b n =    1 /2 if n = 0 1 /2 -ε if n = 1 b n-

C.3.3 Dénition des grilles d'occupation entière

b b b h

 La fusion basée sur les grilles d'occupation construit un modèle probabiliste de l'environnement en prenant en compte l'incertitude des capteurs. Cette thèse vise á intégrer le calcul des grilles d'occupation dans des systèmes embarqués à bas-coût et à basse-consommation. Cependant, les grilles d'occupation eectuent des calculs de probabilité intenses et dicilement calculables en temps-réel par les plateformes matérielles embarquées. Comme solution, cette thèse introduit une nouvelle méthode de fusion probabiliste appelée Grille d'Occupation Entière. Les Grilles d'Occupation Entières se reposent sur des principes mathématiques qui permettent de calculer la fusion de capteurs grâce á des simple addition de nombre entiers. L'intégration matérielle et logicielle des Grilles d'Occupation Entière est sûre et able. Les erreurs numériques engendrées par les calculs sont connues, majorées et paramétrées par l'utilisateur.

Figure 1 . 1

 11 Figure 1.1 Levels of driving automation (inspired from [SAE 2014])

 Figure 1.3 Examples of environment representations used for automotive perception: point cloud (1.3a), occupancy Grid (1.3b), elevation map (1.3c), multi-level surface map (1.3d), stixel world (1.3e), and geometric feature (1.3f)

 g. 1.3e) model the environment with adjacent rectangular sticks of a given width and height ([Pfeier 2011]). The sticks limit the free space in the front of the car. The stixel worlds are more compact than grid-based representations but they represent less spatial details. For instance, free spaces are represented implicitly. Finally, feature-based maps (g. 1.3f) are the most compact environment models since obstacles are represented by simple geometric shapes. The environment is represented by a set of landmarks ([Thrun 2003]), or by geometric patterns such as points, lines and polygons ([

 Figure 1.4 An example of a driving environment in the front of a car and the corresponding occupancy grid

Figure 1 . 5

 15 Figure 1.5 The Multi-sensor Fusion (MSF) module composed of sensors and a software (SW) and hardware (HW) integration of MSF

 sumption. The power consumed by a high-end CPU is about 50 W ([Dargie 2015, Abou-Of 2016]). A GPU consumes more than hundreds of watts ([START_REF] Stroia | [END_REF]). To asses these numbers, the engine of a mild hybrid-electric vehicle is equipped with an electric energy storage of up to 150 Wh([Burke 2007]). If the same quantity of energy powered a high-end CPU and GPU, the energy storage would drain in less than two hours.The AUTOSAR a joint initiative of industrial players for managing the complexity of automotive electric and electronic architectures reported that the processing platforms considered as safe and reliable for automotive applications are mainly based on microcontrollers ([START_REF] Heinecke | [END_REF]). In recent years, due to the increasing number and the diversity of automotive applications, automotive manufacturers and suppliers have gradually increased the computing power by utilizing dedicated embedded CPUs ([START_REF] Monot | [END_REF]).Microcontrollers and embedded CPUs designed for automotive applications respect the constraints of low-cost and low-power. They are also designed upstream to answer to the requirements of safety and reliability of automotive applications.However, microcontrollers and embedded CPUs have low computing performance compared to workstations. They are not able to process the dozen of Billions of operations per second required for processing occupancy grids in real-time. Furthermore, microcontrollers and embedded CPUs have limited oating-point performance. The advent of embedded parallel processing platforms such as embedded GPUs may be seen as an alternative ([NVIDIA 2015]).We have explored the use of embedded parallel architecture for computing occupancy grids ([Rakotovao 2015b, Rakotovao 2015a]. In a previous work, the occupancy grid framework has been integrated on an embedded platform based on 1.5. Research contribution 13 many-cores. The platform is described in[START_REF] Melpignano | [END_REF]]. It is composed of 64 independent computing cores. Programming paradigms based on parallel computing techniques have been experienced to meet the real-time objective. The integration achieved real-time performance while consuming less than 1 W of power. However, such platform is still at an experimental phase. Parallel processing platforms are not yet ready for critical automotive tasks such as perception where certication is primordial in order to guaranty safety.1.4.3 Safety challenges involved by the HW/SW integrationSensor uncertainties Occupancy grids constitute a computational model of the driving environment. Information about the environment are derived from sensors mounted on-board the car. Thus, occupancy grids must reect what the sensors have sensed. Since sensor measurements are uncertain, the process of building occupancy grids must take into account measurement uncertainties when computing occupancy probabilities.

Figure 2

 2 Figure 2.1 Modeling the world into an occupancy grid

Figure 2 .

 2 Figure 2.4 shows an example of a scenario with the corresponding occupancy grids. The scenario is on the top-left of the gure. It shows two sensors observing the environment in the front of a car. The rst sensor has sensed an obstacle which corresponds to a pedestrian. It returned a measurement z 1 . The latter is used for computing the occupancy grid OG(z 1) on the top-right of the gure. The second

Figure 2 . 5

 25 Figure 2.5 Modeling the world from the sensor's viewpoint along a ray

Figure 2 . 6

 26 Figure 2.6 Typical prole of a Bayesian ISM of a single-target sensor

z

 (x) is a continuous function dened over the distance x from the sensor. Various forms of this function are proposed in the literature, especially for LIDARs and stereo-cameras.

Figure 2 .Figure 2 . 7

 227 Figure 2.7 shows some examples of the approximation of ISMs by a continuous function. The symbol k denotes the index of the cell c k where the obstacle is located regarding the sensor measurement. Such cell is located at distance d k from the sensor. For the purpose of comparison, the original non-approximated ISM computed by the bayesian approach is plotted on g. 2.7a.When the sensor model is Gaussian, the ISM is approximated by a continuous function based on a Gaussian distribution. This technique is applied for LIDARs in

 in a controlled environment where the occupancy state of cells and the measurements are known. Based on these training data sets, the neural network learns to estimate the occupancy state of cells regarding measurements. After the training, the neural network acts as a function approximator of the ISM: it takes as input a measurement and provides an estimation of the occupancy probability. The sensor model can be taken into account during the training.

 Figure 2.8 Two steps for building a mono-sensor 2D cartesian occupancy grid

 Another complex request consists to fetch the occupancy probabilities of a block of adjacent cells having similar occupancy states. Due to the spatial disposition of obstacles within a driving environment, adjacent cells potentially have similar occupancy states. Free spaces are represented by blocks of likely empty cells while an obstacle can occupy a block of more than one cell ([Mekhnacha 2008]).

Figure 2 .

 2 Figure 2.11 An array with a capacity of N elements

 Figure 2.12 The tree structure of 2 d -trees

Figure 2 .

 2 Figure 2.13 The tree structure of 2 d -trees with the corresponding spatial subdivision

2

 d -trees are more compact than arrays. The compaction accelerates the process of decision making based on occupancy grids. It also reduces the memory consumption especially when dealing with large and high-resolution grids. The compaction is however lossy due to the conditions of merge proposed in the literature. This leaves room for establishing new condition of merge that actually enables a lossless compaction of occupancy grids.

 of the Bayesian Fusion 50 3.2 Set of probabilities . 54 3.3 The recursive set of probabilities . 59 3.4 Integer Occupancy Grids . 63 3.5 Compaction of Integer Occupancy Grids 77 3.6 Summary . 84

 Figure 3.3 Discrete nature of occupancy probabilities given sensor measurements

 Corollary 3.3.1. The recursive set of probabilities has an index fusion operator ⊕ such that: ∀m, n ∈ Z : m ⊕ n = m + n 3.3. The recursive set of probabilities 61 Proof Theorem 3 (page 60) gives: p m p n = p m+n However, Denition 3.2.3 (page 57) denes the index fusion operator as follows: p m p n = p m⊕n Therefore:

Figure 3 . 4

 34 Figure 3.4 Repartition of the elements of the recursive set over the interval]0, 1[(∀n ∈ N)

 Property 3.3.2. ∀n ∈ N : p n < p n+1 and p -n > p -n-1 62 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK Proof Let n be a positive or null integer. (see Property A.4.3 (page 125)) shows that a n < a n+1 . Since we have p n = a n , then we obtain p n < p n+1 . Besides, Property A.4.7 (page 125) shows that b n > b n+1 . Since by denition p -n = b -(-n) , then p -n = b n . Subsequently, we obtain, p -n > p -n-1 .

 Property 3.3.5. ∀n ∈ Z : |p n+1p n | ≤ ε Proof See Property A.4.14 (page 127).

Figure 3 . 5

 35 Figure 3.5 Inuence of ε on the distance between successive elements

Figure 3

 3 Figure 3.6 Example of recursive set of probabilities with three values of the parameter ε

 Figure 3.7 Occupancy Grid vs. Integer Occupancy Grid

 Figure 3.8 Example of integer occupancy grid with the corresponding standard occupancy grid

3. 4 . 5

 45 Overview of multi-sensor fusion based on integer occupancy grids Section 3.4.3 (page 67) has detailed the computation of multi-sensor integer occupancy grids by fusing mono-sensor ones. Section 3.4.4 (page 69) showed that mono-sensor integer occupancy grids are computed by quantizing ISMs. Finally, performing multi-sensor fusion based on integer occupancy grids require three steps.

2.Figure 3 .

 3 Figure 3.10 Overview of the multi-sensor fusion based on integer occupancy grids

Figure 3 .

 3 Figure 3.11a shows an example of a quadtree that stores an integer occupancy grid. Leaves are at the extremity of the tree. Non-leaf nodes have an index equal to 0. The indexes of leaves are represented by letters where a letter is an integer value. The regions of leaves are shown on g. 3.11b. The gure shows that cells

Figure 3 .

 3 Figure 3.11 Example of an integer occupancy grid stored within a quadtree

 Split(Node η, Tree N , Cell c i) 2: if Depth(η) < M axDepth(N) then 3: N ← N ∪ {η j , j = 1, . . . , 2 d } Create 2 d new nodes. 4:Children(η) ← {η j , j = 1, . . . , 2 d } The new nodes are children of η. 5:

 Figure 3.12 Application of split

82

 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK Algorithm 2 The function of merge 1: function Merge(Node η,Tree N) 2:

Figure 3 .

 3 Figure 3.13 shows an example of application of the operation of merge. The initial 2 d -tree is depicted on g. 3.13a. The gray node satises the condition on eq. (3.47). It is merged and the result is shown on g. 3.13b. There exists again

 Figure 3.13 Application of merge

 Figure 4.1 The prototype vehicle with its four LIDARs on the bumpers

Figure 4 . 2

 42 Figure 4.2 Computing facilities on the ZOE

 The direction of a laser beam is dened by two angles: the elevation and the azimuth. Laser beams are emitted within four degrees of elevation angles as shown on g. 4.3a. The group of laser beams having the same elevation angle is called scan layer. An ibeo LUX device produces in total four scan layers, one per elevation angle. Within a scan layer, each laser beam is emitted within a known azimuth angle. The azimuths of two successive laser beams are separated by an angular step of α = 0.5• (g. 4.3b).Scan points The range measurement, the elevation of the scan layer and the azimuth angle of a laser beam form the spherical coordinates of a point within a local frame of reference attached to the LIDAR device. Such a point is called a scan point. It spatially estimates the location where the laser beam has hit an obstacle.

Figure 4 .

 4 Figure 4.4 presents an example of scan points the LIDAR on the center of the front bumper of the prototype car. The scan points are projected on a two-

Figure 4 . 3

 43 Figure 4.3 The scanning layers of an ibeo LUX device

Figure 4 . 5 Figure 4 .

 454 Figure 4.5 The 1D grid along a line-of-sight of a single-target sensor

 Distance of cell from sensor (m) σ = 0.10m, |c| = 0.100m (c) ISM for z = 25m with cells of 0Distance of cell from sensor (m) σ = 0.10m, |c| = 0.025m (d) ISM for z = 25m with cells of 0.025m

Figure 4 . 6

 46 Figure 4.6 The sensor model and the proles of ISM given a measurement z = 25m

Figure 4 . 7

 47 Figure 4.7 The traversal algorithm

 () is called (line 25). The loop iterates until the algorithm reaches the cell that contains the point T . The function SampleISM () computes the ISM of the traversed cell. This function samples the local occupancy gird at the level of the traversed cell. The process of sampling is depicted on g. 4.8. The gure assumes that cell c is the newly discovered cell. Let c * denotes the 1D cell of the local grid that hits the cell c. Then, Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS FOR AUTOMOTIVE MULTI-SENSOR FUSION the ISM of c * is aected to cell c.

Figure 4 . 8 Figure 4 . 9

 4849 Figure 4.8 Sampling the ISM of a 1D cell c *

 2.1. Let β denotes the length of sides of 2D cells. The traversal resolution denotes a positive integer r. It allows to determine the spatial precision δ of the discrete frame as follows:

Figure 4 .

 4 Figure 4.10 A LIDAR emitting laser beams towards cells of a 2D grid

 Figure 4.11 Comparison of the accuracy of the discrete algorithm to that of the continuous algorithm

 Figure 4.12 Top view of the prototype car with the 2D grid and the laser beams from the four LIDARs (three on the front bumper and one on the back bumper)

Figure 4 .

 4 Figure 4.13 A scan point with its corresponding local grid

 Figure 4.15 Projection of the local integer occupancy grid and update of the occupancy index of a 2D cell traversed by the projection

Figure 4 .

 4 Figure 4.16 shows an example of a 2D integer occupancy grid fusing the scan points of the four LIDARs at a given period. The scenario of the trac is at the top of the gure. On the bottom left is the integer occupancy grid. The equivalent occupancy grid is depicted on the bottom right of the gure. On both grids, dark

Figure 4 .

 4 Figure 4.16 Example of an urban scenario on top. The corresponding integer occupancy grid is on the bottom left. The parameter ε is set to 0.05. The occupancy grid corresponding to the scenario is on the bottom right.

 of the array-based implementation of Integer Occupancy Grids compared with the state-of-the-art Numerical quality Section 3.4.6.2 (page 74) showed that within the integer occupancy grid framework, only the step of quantization introduces a numerical error that is bounded by ε. The step of fusion does not introduces additional errors. Integer occupancy grids can be transformed into standard occupancy grids by replacing an occupancy index by its corresponding probability within the recursive set.Let us evaluate the cell-by-cell absolute dierence between occupancy grids computed by the array-based implementation of integer occupancy grids and the occupancy grids computed by the oating-point implementation of Bayesian fusion. Both implementations use exactly the same grid parameters and process the same set of data.

 To validate that the compaction oered by quadtrees are lossless, the occupancy indexes of cells stored within the quadtree are compared to the occupancy indexes of cells computed by the array-based implementation. The comparison has showed that the occupancy indexes stored within both quadtrees and arrays are cell-by-cell equal. Hence, regardless of the data storage, the produced integer occupancy grids are equal. Then, the compaction oered by the quadtrees is lossless.Compactness To measure the compactness of quadtrees, the number of nodes within quadtrees is compared to the number of cells. Both blurring quantization policy and nearest quantization policy were experienced. In order to study the inuence of ε on the compactness, several values of ε were tested. The compactness is expressed by the number of cells divided by the number of nodes, and by the number of cells divided by the number of leaves.The compactness of quadtrees with respect to the quantization policy and the value of ε are shown on

1

 . if |m| = |n|, eq. (A.18) gives: p m p n = a 1 . . . a 1 |m| times b 1 . . . b 1 |m| times = (a 1 b 1) . . . (a 1 b 1)

2.

 If |m| > |n|, rearranging eq. (A.18) leads to: p m p n = (a 1 b 1) . . . (a 1 b 1) |n| times a 1 . . . a 1 (|m|-|n|) times = 1 /2 a 1 . . . a 1 (|m|-|n|) times = a |m|-|n| = p |m|-|n| (A.20) Since |m| > |n|, then |m|-|n| = m+n. Consequently, we get p m p n = p m+n . 3. Finally, if |m| < |n|, we can write:p m p n = (a 1 b 1) . . . (a 1 b 1) |m| < |n|, then -(|n| -|m|) = m + n. Therefore, p m p n = p m+n .In conclusion, the fusion of two elements of S ε gives p m p n = p m+n . The recursive set S ε is closed with respect to . It has an index fusion operator ⊕ such that m ⊕ n = m + n. The recursive set forms a set of probability which elements are symmetrically spread between 0 and 1. The inverse of an element p n with respect to is p -n .A.4 Properties of the recursive setProperty A.4.1. ∀n ∈ N : a n < 1

 Figure C.1 Un exemple d'environnement de conduite avec la grille d'occupation correspondante

z 1

 1 et z 2 deux mesures. La fusion bayésienne sous l'hypothèse de non information(P (o i) = 1 -P (o i) = 1 /2)) donne : P (o i |z 1 ∧ z 2) = F (P (o i |z 1), P (o i |z 2)) où F (x, y) = xy xy + (1x)(1y) (C.1)La fusion bayésienne peut être aussi exprimé sous forme de logit :l(o i |z 1 ∧ z 2) = l(o i |z 1) + l(o i |z 2)) où l(x) = log P (x) 1 -P (x) (C.2)La fusion bayésienne dispose des propriétés suivantes : le renforcement des mesures non conictuelles et l'atténuation des mesures conictuelles. Si deux mesures estiment qu'une cellule est occupée. Alors, la fusion résulte à une probabilité d'occupation supérieur aux modèles inverses calculées à partir de mesures individuelles.

 3) Cette équation appelle à la fonction exponentielle. Du point de vue informatique, l'exactitude de telle fonction dépend de son implémentation et de la précision du matériel à simuler les opérations sur les nombres réels. Ces aspects ne sont pas toujours à la portée du programmeur. Donc, la précision du calcul des probabilités d'occupation n'est pas ajustable en amont. C.3. Les grille d'occupation entière 147 Finalement, une méthode de fusion de multiple mesure appelée forward sensor model refute l'hypothèse que l'état d'occupation d'une cellule ne dépende pas de celui de ses voisins ([Thrun 2001a]). Cependant, la dépendance entre cellules au voisinage entraine une explosion combinatoire de la complexité de calcul des probabilités d'occupation. Cette approche n'est pas adapté pour les systèmes où une capacité à calculer les grilles d'occupation en temps-réel grâce à la fusion d'un grand nombre de mesures de capteurs est requise. C.2.2.2 Structure de données pour les grilles d'occupation Une fois calculées, les probabilités d'occupation doivent être stockées dans des structures données pour être utilisées par la suite par des applications de localisation, de suivi de cible, de navigation, etc. L'ecacité de ces applications dépendent donc de celle de la structure de données qui stocke les probabilités d'occupation. D'un point de vue informatique, ces applications émettent des requêtes à la structure de données pour récupérer la probabilité d'occupation d'une cellule, ou celles de cellules avoisinantes. Si la réponse à de telle requête est lente, cela ralentira aussi par conséquent les applications qui exploitent la grille. Deux types de structure de données sont communément utilisées pour les grilles d'occupation : les tableaux, et les 2 d -arbres. Dans un tableaux, la probabilité d'une cellule est stockée dans un élément du tableaux. Cela permet un calcul rapide de la grille d'occupation. Cependant, les tableaux sont moins ecaces quand il s'agit de répondre à des requêtes avancées. Par exemple, récupérer les probabilités d'occupation le long d'une direction dans un tableaux requière d'eectuer plus de calcul ([Kambhampati 1986, Soucy 2004]). Les 2 d -arbres s'avèrent plus ecaces pour ces genres de requêtes. Les 2 d -arbres utilisées pour les grilles d'occupation sont les quadtrees et les octrees ([Samet 1990]). Si la grille est de deux dimensions, un quadtree est utilisé. En trois dimensions, un octree est utilisé ([Wurm 2010, Hornung 2013]). Une feuille de ces arbres stocke au maximum une seule probabilité. Cette dernière peut cependant représenter les probabilités d'occupation de plusieurs cellules avoisinantes. Cette technique permet donc un stockage plus compacte des grilles d'occupation. Cependant, cette compacité se fait avec perte puisque la probabilité stockée dans une feuille est en réalité une approximation qui représente les vraies probabilités d'occupation de plusieurs cellules avoisinantes. Autrement dit, une fois approximées, il devient impossible de récupérer les vraie valeurs des probabilités d'occupations à partir d'un arbre. Cette perte diminue la sureté d'un système de perception qui stockerai les probabilités d'occupation dans un 2 d -arbre. C.3 Les grille d'occupation entière La section précédente montre le manque de sureté et d'ecacité des méthodes pour calculer les grilles d'occupation. La présente section propose les grilles d'occupation entières pour rendre sûre et ecace le calcul des grilles d'occupation. Cette Theorem 7. Ensemble de probabilités récursif Soit ε ∈]0, 1 /2[. Soient (a n) n∈N et (b n) n∈N des suites dénies comme suit :

1 b 1 sinon

 1 Soit l'ensemble S ε = {p n , n ∈ Z} tel que :p n = a n si n ≥ 0 b -n sinon L'ensemble S εappelé ensemble récursif constitue un ensemble de probabilités tel que : ∀m, n ∈ Z : p m p n = p m+n (C.7) L'ensemble récursif possède un opérateur de fusion entière ⊕ tel que : ∀m, n ∈ Z : m ⊕ n = m + n (C.8) Cela signie qu'au lieu de calculer la fusion de p m et p n à partir de l'opérateur de fusion , il sut d'additionner les indexes m et n pour obtenir le résultat de la fusion.

 Pour dénir les grilles d'occupation entière, supposons que l'hypothèse suivante est vraie : les valeurs numériques des probabilités d'occupation appartiennent à un ensemble de probabilité.Soit S un ensemble de probabilités. Soient z 1 ∧ . . . ∧ z K des mesures de capteur, et P (o i |z 1 ∧ . . . ∧ z K) la probabilité d'occupation de la cellule c i sachant les mesures des capteurs. Supposons que la valeur de P (o i |z 1 ∧. . .∧z K) est égal à p n , un élément de S. Alors, nous dénissons par indice d'occupation de la cellule c i sachant les mesures z 1 ∧ . . . ∧ z K le nombre entier relatif I(o i |z 1 ∧ . . . ∧ z K) tel que :I(o i |z 1 ∧ . . . ∧ z K) = n ⇔ P (o i |z 1 ∧ . . . ∧ z K) = p n (C.9) Par exemple, si la probabilité d'occupation d'une cellule vaut p 1 , alors son indice d'occupation est égal à 1. Une grille d'occupation entière désigne l'ensemble des indices d'occupation de toutes les cellules dans une grille. La diérence entre les grilles d'occupation et les grilles d'occupation entière est donc trivial. Une grille d'occupation contient toutes les probabilités d'occupation des cellules d'une grille, tandis qu'une grille d'occupation entière contient touts les indices d'occupation de toutes les cellules. L'avantage des grilles d'occupation entière est de permettre de calculer la fusion à partir d'un opérateur de fusion entier :I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) ⊕ . . . ⊕ I(o i |z k) (C.10) Cette équation signie que pour calculer l'indice d'occupation d'une cellule sachant multiples mesures, il sut de combiner les indices d'occupation sachant chaque mesure individuelle. Dans le cas de l'ensemble récursif, l'opérateur de fusion entier est équivalent à une addition. Par conséquent le calcul de l'indice d'occupation sachant multiples mesures devient :I(o i |z 1 ∧ . . . ∧ z k) = I(o i |z 1) + . . . + I(o i |z k) (C.11) L'équation (C.11) montre que, pour pouvoir utiliser les grilles d'occupation entière pour faire de la fusion, il faut une méthode pour calculer les indices d'occupation sachant les mesures mesures prises individuellement. Le calcul des indices d'occupation sachant une mesure nécessite de trouver un indice n tel que la valeur du modèle inverse de capteur P (o i |z) soit égal à p n . Pour n'importe quelle valeur de la mesure z, il n'y a pas de raison qu'un tel n existe toujours. La valeur de P (o i |z) pourrait tomber entre deux éléments p n et p n+1 de l'ensemble : p n ≤ P (o i |z) ≤ p n+1 (C.12) Par conséquent, nous proposons de quantier P (o i |z) par l'une des valeurs p n ou p n+1 . Plusieurs politiques de quantication peut être adoptées : une quantication au plus proche, au plus grand ou une quantication qui tends vers 1 /2. Après la quantication, la valeur de l'indice d'occupation I(o i |z) devient n ou n + 1 selon le résultat de la quantication. Finalement, le calcul des grilles d'occupation entière suit les étapes suivantes. D'abord, le modèle inverse est calculé puis quantié. Cet étape est répété pour toutes les cellules, pour chaque mesure individuelle. Puis la fusion est calculée par l'équation (C.11). La quantication introduit une erreur. Mais cette erreur est majorée par la distance maximale entre deux éléments consécutifs de l'ensemble récursif. Cette distance est inférieur au paramètre ε. Autrement dit, plus ε est petit, plus l'erreur de C.3. Les grille d'occupation entière 151 quantication est minimisée. Remarquons cependant que le calcul de la fusion sur une architecture matérielle n'introduit pas d'erreur. En eet, dès que le matériel supporte le calcul des entiers relatifs, un tel calcul est exacte. La somme d'entier n'introduit pas d'erreurs numériques comme lors de la simulation des calculs sur les nombres réels sur les matériels informatiques. C.3.4 Structure de donnée compacte pour les grilles d'occupation entière Une grille d'occupation entière est donc un ensemble de nombre entiers relatifs qui sont les valeurs des indices d'occupation de chaque cellule. Pour stocker les grilles d'occupation entière, un tableau peut être utilisé. Chaque élément du tableau stockera un indice d'occupation d'une cellule.

 Figure C.4 Exemple de grille d'occupation entière stockée dans un quadtree

 Repartition of the elements of the recursive set over the interval]0, 1[(∀n ∈ N) . 61 Motivation . 2 1.2 Perception system . 5 1.3 Objective: multi-sensor fusion module 10 1.4 Addressed problem . 11 1.5 Research contribution . 13 1.6 Thesis overview . 14

		Chapter 1
		INTRODUCTION
	1.1	Levels of driving automation (inspired from [SAE 2014])	4
	1.2 1.1	Perception system .	6
	1.3	Examples of environment representations used for automotive per-	
		ception: point cloud (1.3a), occupancy Grid (1.3b), elevation map	
		(1.3c), multi-level surface map (1.3d), stixel world (1.3e), and geo-	
		metric feature (1.3f) .	7
	1.4	An example of a driving environment in the front of a car and the	
		corresponding occupancy grid .	9
	1.5	The Multi-sensor Fusion (MSF) module composed of sensors and a	
		software (SW) and hardware (HW) integration of MSF	10
	1.6	How BOF exploits the occupancy grids built by the MSF module . .	11
	2.1	Modeling the world into an occupancy grid	22
	2.2		
		.	24
	2.4	Example of a scenario with the corresponding occupancy grids	27
	2.5	Modeling the world from the sensor's viewpoint along a ray	29
	2.6	Typical prole of a Bayesian ISM of a single-target sensor	30
	2.7	Examples of approximations of the ISM by continuous functions . . .	32
	2.8	Two steps for building a mono-sensor 2D cartesian occupancy grid .	34
	2.9	Approaches for building multi-sensor occupancy grids	37
	2.10 Software overview of an autonomous driving system based on occu-	
		.	53
	3.3	Discrete nature of occupancy probabilities given sensor measurements 55
	3.4		
	3.5	Inuence of ε on the distance between successive elements 63
	3.6	Example of recursive set of probabilities with three values of the pa-	
		rameter ε . 64
	3.7	Occupancy Grid vs. Integer Occupancy Grid	65
	3.8	Example of integer occupancy grid with the corresponding standard	

A range sensor senses the world within its FOV and returns a measurement z . 22 2.3 Subdivision of a region-of-interest into a grid pancy grids . 43 2.11 An array with a capacity of N elements 44 2.12 The tree structure of 2 d -trees . 45 2.13 The tree structure of 2 d -trees with the corresponding spatial subdivision 46 3.1 The property of reinforcement . 52 3.2 The property of mitigation . occupancy grid . 67 3.9 Quantization of ISM .

 Basics of Probability . 15 2.2 The Occupancy Grid Framework . 21 2.3 Mono-sensor occupancy grid . 27 2.4 Multi-sensor occupancy grid . 37 2.5 Data structure for occupancy grids 43

	Chapter 2
	STATE-OF-THE-ART ON
	OCCUPANCY GRIDS
	2.1

 X and Y be two random variables, and S X and S Y the sets of all possible values of X and Y . Consider the variable Z that takes as a value the pair (x, y) where Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDSx ∈ S X and y ∈ S y . The variable Z forms a random variable. If X and Y are discrete, the probability distribution of Z is called joint distribution of X and Y , and is noted by P (x ∧ y). It denotes the probability that X takes value x and Y takes value y. If X and Y are continuous, the PDF of Z is a multivariate function denoted by p(x ∧ y) and is called joint probability density function of X and Let X and Y be two random variables. Let y be the value of Y . If X and Y are discrete and P (y) > 0, then the conditional probability of X given Y denotes the quotient:The Theorem of Bayes can be extended in the case where X is discrete and Y

		is continuous:			P (x|y) =	p(y|x)P (x) p(y)	(2.13)
		Similarly, if X is continuous and Y is discrete, the extension of the Theorem of
	Y .	Bayes gives:				
	p(x|y) = Denition 2.1.5. P (x|y) = 2.1.4 Independence P (x ∧ y) P (y|x)p(x) P (y) P (y) This section gives a mathematical denition of independence. No semantical inter-(2.14) (2.6)
	pretation of the concept of independence is emitted. If X and Y are continuous and if p(y) > 0, the conditional probability density function of X given Y is dened by the quotient: Denition 2.1.6. Two random variables X and Y are mutually independent if
	p(x|y) = The conditional probability P (x|y) and the conditional PDF p(x|y) satisfy: p(x ∧ y) p(y) (discrete) P (x ∧ y) = P (x)P (y) p(x ∧ y) = p(x)p(y) (continuous)	(2.7) (2.15) (2.16)
		P (x|y) = 1 A necessary and sucient condition of the mutual independence of two random and p(x|y)dx = 1 (2.8)
		x∈S X variables X and Y is:			x∈R
		Two main theorems follow from the denition of conditional probabilities: the
	Theorem of Total Probability and the Theorem of Bayes.
			Theorem 1. Theorem of Total Probability
			. Let X and Y be two random variables, then
		P (x) =	P (x|y)P (y)	if X and Y are discrete	(2.9)
			y			
		p(x) =	p(x|y)p(y)dx	if X and Y are continuous	(2.10)
			y∈R			
	The strength of the above theorem is that it allows to compute the probability of x
	as a function of the conditional probability of x given all possible values of Y .
				Theorem 2. Theorem of Bayes
			. Let X and Y be two random variables, then
		P (x|y) =	P (y|x)P (x) P (y)	=	P (y|x)P (x) P (y|x)P (x)	(discrete)	(2.11)
						x
		2.1.3 Conditional probability and the Theorem of Bayes p(x|y) = p(y|x)p(x) p(y) = p(y|x)p(x) p(y|x)p(x)dx (continuous) (2.12)
					x	

Let

Table 2

 2

	Sensor model	Yes	No	Yes
	Grid subdivision	Yes	No	No
	Safe	Yes	No	No
	Complexity	O(2 N -1)	O(1)	O(1)

.1 summarizes the properties of the discussed approaches for computing ISMs. The following properties are highlighted. Is the approach based on sensor model? Does it takes into account the grid subdivision? What is the complexity of the computation of the ISM of a single cell? The symbol N indicates the number of cells in the grid. Finally, is the approach safe to be applied in the domain of automotive?

Bayesian Analytic approach Neural networks

Table 2

 2

.1 Comparison of the approaches for computing the ISM The Bayesian approach computes ISM from sensor model and takes into account the grid subdivision. By doing so, it keeps a mathematical relation between uncer-

Table 2

 2

		Bayes./IOP	LOP	Max Policy Forward SM
	Incremental	Yes	Yes	Yes	No
	Reinforcement	Yes	No	No	Yes
	Mitigation	Yes	Yes	No	Yes
	Real-numbers	Yes	Yes	Yes	Yes
	Arithmetic operator Numerically stable	×, ÷, +, -No	×, ÷, +, -Yes	<, > Yes	×, ÷, +, -Yes
	Safe	Yes	No	No	No
	Unlike the other approaches, the Bayesian fusion is incremental. It reinforces non-
	conicting measurements and mitigates the conicting ones. The reinforcement and
	the mitigation make the Bayesian fusion robust to the convergence or divergence of
	sensor measurements.				
	However, the Bayesian fusion suers from a problem of numerical instability.
	This makes the Bayesian fusion unsafe. The log-odds form of the Bayesian fusion
	may be a solution. It requires though a HW/SW integration that is able to simulate
	operations on real-numbers to perform the fusion. When the fusion is implemented
	in oating-points, dozens of GFLOPs is required in practice for computing multi-
	sensor occupancy grids in real-time.			

.3 Comparison of approaches for computing multi-sensor occupancy grids

The forward sensor model is not incremental. It requires a long execution time which makes it not adapted for safety applications where real-time constraints are primary. The Bayesian fusion performs sensor fusion based on Bayesian principles. Figure 2.10 Software overview of an autonomous driving system based on occupancy grids

 tree 2 is a data structure composed of nodes organized into parentchildren relations. Fgure 2.12 shows two examples of 2 d -trees. The tree is called quadtree if d is equal to 2. It is called octree when d is equal to 3.

 That means, the result of the fusion becomes closer to 1 /2. measurements are conicting, the fusion makes the occupancy state of the cell more uncertain: neither likely occupied nor likely empty. The occupancy probability tends to 1 /2. This is the property of mitigation, summarized by the following property.

	When

P (o i |z 1) is greater than 1 /2 while P (o i |z 2) is lesser. Both probabilities are either side of 1 /2. How about the result of their fusion P (o i |z 1) P (o i |z 2)? If the result of the fusion was greater than P (o i |z 1), that would mean the fusion has reinforced the opinion of the rst sensor and has not taken into account the opinion of the second sensor. Similarly, if the fused probability was less than P (o i |z 2), the opinion of the rst sensor would not be taken into account. In conclusion, P (o i |z 1) P (o i |z 2) should reside between P (o i |z 1) and P (o i |z 2).

 If P (o i |z) < 1 /2 and P (o i |z) < P (o i |z): the sensor estimates that the cell is likely empty. The approximate of the ISM tends towards 0 (see g. 3.9c). Finally, if P (o i |z) < 1 /2 and P (o i |z) ≥ P (o i |z): the sensor estimates that the cell is likely empty. The approximate of the ISM tends however towards 1 /2

	3.4. Integer Occupancy Grids	71
	1/2	
	That means, the quantization overestimates the condence of the sensor about	
	the emptiness of the cell.	

Let us note P (o i |z) the approximate of P (o i |z) and let us analyze the eect of the nearest quantization. Four cases are possible: • If P (o i |z) > 1 /2 and P (o i |z) > P (o i |z): the sensor estimates that the cell is likely occupied. The approximate of the ISM tends towards 1 as shown on g. 3.9a. Therefore, the quantization introduces an overestimation of the occupancy state of the cell estimated by the sensor. • If P (o i |z) > 1 /2 and P (o i |z) ≤ P (o i |z): the sensor estimates that the cell is likely occupied. However, the approximate of the ISM tends now towards 1 /2 as shown on g. 3.9b. The occupancy state of the cell to tend to unknown (neither occupied, nor empty). No overestimation is introduced by the quantization. The latter blurs the estimation of the occupancy state of the cell. • • (see g. 3.9d). Thus, the quantization blurs occupancy state of the cell. It does not overestimate the condence of the sensor.

 Otherwise, the result of the blurring policy is depicted 72 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK on g. 3.9d. In both cases, the approximate of the ISM tends towards 1 /2. The quantization makes the occupancy state of cells to tends towards unknown.

 The elements of the recursive set are computed recursively. Computing the value of an element given its index is then expensive in term of complexity. As a solution, a lookup table can be used for storing the elements with indexes between -M and M . For instance, if M is equal to 127, the lookup table stores the elements of the recursive set with indexes between -127 and 127.Such a lookup table allows to retrieve fast the value of the element that corresponds to an index. It allows to convert an occupancy index into the corresponding occupancy probability. It can be computed once at the beginning of the program

 Experimental setup . 86 4.2 Computation of Inverse Sensor Model 89 4.3 HW/SW integration of multi-sensor Integer Occupancy Grids . . 100 4.4 Summary . 110

	Chapter 4
	APPLICATION OF INTEGER
	OCCUPANCY GRIDS FOR
	AUTOMOTIVE MULTI-SENSOR
	FUSION
	4.1
	• The lossless compaction of Integer Occupancy Grids by using 2 d -trees was studied.

 [Dargie 2015, Abou-Of 2016] and the NVIDIA GPU consumes more than 200 W[START_REF] Stroia | [END_REF]]. FOR AUTOMOTIVE MULTI-SENSOR FUSION Remark The SABRE Lite platform is designed to enable rapid development of automotive multimedia applications. It is not yet a hardware certied for safety critical applications. It allows though to test integer occupancy grids on an embedded CPU dedicated for automotive.

 Table4.1 (page 93) compares Theorem 6 (page 91) with the Bayesian approach. Since Theorem 6 (page 91) is derived from the Bayesian approach, both methods are mathematically equivalent. The dierence resides in their respective complexities. Notice that being based on the Bayesian approach, Theorem 6 (page 91) can also be generalized to any single-target sensor, but not only for LIDARs. Both methods compute the ISM from the sensor model.

		Bayesian approach	Proposed approach
		(state-of-the-art)	(Theorem 6 (page 91))
	Sensor model	Yes	Yes
	Grid subdivision	Yes	Yes
	Safe	Yes	Yes
	Complexity	O(2 N -1)	O(N)

Table 4

 4 The ISM of the traversed cells are however derived from the local occupancy grid. For nding out the cells traversed by the local grid, the following algorithm is proposed. FOR AUTOMOTIVE MULTI-SENSOR FUSION4.2.2.1 The continuous traversal algorithmConsider the local occupancy grid on g. 4.7. The grid has two endpoints: a start point S where the sensor is located, and an end point T located at the extremity of the grid. The line segment ST traverses multiple cells of the 2D grid. The latter is called global grid since it is not attached to a specic sensor. The objective consists to design a traversal algorithm that nds out all 2D cells traversed by the line segment ST .

	.1 Comparison of the Bayesian approach and the proposed approach for
	computing the ISM
	4.2.2 Traversal algorithm based on integer arithmetic
	After building a local occupancy grid given a LIDAR scan point, the 1D grid is
	mapped on the 2D grid in order to compute the ISMs of 2D cells. Cells that are
	not traversed by the local grid are outside of the line-of-sight of the laser beam that
	has generated the scan point. Their occupancy state is then unknown for the laser
	beam. Their ISM is set to 1 /2.

 By replacing x with m, y with l and β with r, the continuous traversal algorithm becomes discrete. It engenders the discrete traversal algorithm presented on Algorithm 4 (page 98). The latter follows exactly the same principles as the continuous traversal algorithm, except that it manipulates exclusively coordinates in integers.

	Remark Algorithm 4 (page 98) works only for a grid traversal oriented towards the
	North-East. The general discrete algorithm that works in all direction is described
	in Section B.3 (page 135).
	4.2.2.3 Analysis of the discrete traversal algorithm on a LIDAR
	L a s
	e
	r
	b
	e
	a m
	s
	Sensor
	device

 Disc. (r = 100) Disc. (r = 200)

	100	Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS FOR AUTOMOTIVE MULTI-SENSOR FUSION
		Algorithm Cont. Disc. (r = 20) Exec. time 20 ms 7 ms	7 ms	7 ms
		Speedup	1	2.8	2.8	2.8
		Correctness	100%	99.50%	99.90%	99.95%

Table 4 .

 4 2 Performance of the discrete traversal algorithm compared to the continuous one a traversal resolution of 100 means that the discrete frame has a spatial precision of 1 mm. Such a resolution is enough for range sensors which measurements are precise at an order of centimeters.

 table on Table 4.3 (page 102). The look up table is lled once before the integration of any sensor measurement and cached in the memory for further utilisation. The occupancy indexes within the table are computed by quantizing ISMs. Both blurring policy and nearest policy are experienced during the quantization. In practice, only a single quantization

	102 4.3. HW/SW integration of multi-sensor Integer Occupancy Grids 103 Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS FOR AUTOMOTIVE MULTI-SENSOR FUSION
	Cell index ISM	≤ k -3 k -2 k -1 0.05 0.18 0.48	k 0.6	k + 1 ≥ k + 2 0.54 0.5
	Occupancy index (Blurring policy)	-14	-7	0	2	0	0
	Occupancy index (Nearest policy)	-15	-7	0	2	1	0
	Table 4.3 Lookup table for accelerating the computation of local 1D integer occu-
	pancy grids			Local grid	
					Plane of the 2D grid	
	policy is applied but we have implemented both for experimental purposes. ISMs Ground
	are computed thanks to Theorem 6 (page 91).	
		1					
	Occupancy Probability	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 0.8					ISM Blurring Policy Nearest Policy	2 0 -7 -10	Occupancy Index
		0	0		k	k+1		N
					Cell Index	
	Figure 4.14 The ISMs over the local 1D grid and its quantization by both blurring
	policy and nearest policy				
	The proles of the ISMs and their quantization are plotted on g. 4.14. The
	blurring policy approximates ISMs towards 1 /2. The nearest policy approximates
	an ISM with the element of the recursive set that is nearest to the numerical value
	of the ISM. The gure also shows that ISMs have a minimum non-null value. It
	avoids, in practice, an overestimation of the emptiness of a cell given a single scan
	point.						
	4.3.1.2 Projection of the local integer occupancy grid
	Once the local integer occupancy grid is computed, it is projected vertically on the
	2D grid as depicted on g. 4.15a. The scan point only updates the occupancy
	indexes of 2D cells that are traversed by the projected local grid. The discrete
	traversal algorithm is used for nding out the traversed cells.

 The image of the scenario shows that this obstacle actually corresponds to a car. Besides, another obstacle is also present in the front left of the prototype car even if its nature is hardly recognizable on the image of the scenario. Actually, this obstacle is a garbage bin placed on the sidewalk. Notice that the LIDARs do not provide information about the nature of objects hit by laser beams. Obstacles are just modeled by likely occupied cells. .3. HW/SW integration of multi-sensor Integer Occupancy Grids 105 tion than standard occupancy grids. On the integer occupancy grid, empty cells do not have the same level of brightness. Some empty cells are brighter than others.Such dierence of brightness is not however remarkable on the occupancy grid. This dierence highlights that there are regions that are seen as empty by only one LIDAR devices. It is for instance the case of the region at the left of the ego vehicle. This region has a lower brightness. At the same time, there are other regions that are seen as empty by two or three LIDAR devices. The region just in the front of the ego vehicle has a higher brightness since it is covered partially by the left and right LIDARs, and totally by the LIDAR on the center of the bumper.Number of bits for occupancy indexes By shrinking occupancy indexes between -127 and 127, occupancy probabilities are saturated between p -127 and p 127 . As explained in Section 3.4.6.3 (page 74), p -127 is less than 10 -11 while p 127 is greater than 1 -10 -11 with an ε equal to 0.05. This value ε enables to encode occupancy indexes in 8-bits. The indexes correspond to probabilities that are spread over]0, 1[, with values close to 0 and 1.

	Integer occupancy grids estimate the occupancy states of cells with occupancy
	indexes. For occupancy grids, occupancy states are estimated with occupancy prob-

abilities. A comparison between the images on the bottom left and the bottom right of g. 4.16 shows that integer occupancy grids provide more dierentiated estima-4

Table 4 .

 4 5 (page 106) shows that the array-based implementation is 5× faster than the implementation on a GPU, and up to 10× faster than that on a desktop.If the power consumption is also taken into account, the third metric measures the eciency of the array-based implementation. This metric is measured in points• cell • Hz/W . It expresses the energy required for processing a given number of scan points within one second. With this metric, the array-based implementation is

	1000× more ecient than the implementation of standard occupancy grids on GPU
	and desktop.			
	Criteria	[Homm 2010]	[Nuss 2015] Present Work
	HW	Nvidia GeForce 268GTX	Desktop	Single ARM A9
	Power cons. Nb layers	204W 2	∼80W 4	1W 16
	Grid cells			

 4.3. HW/SW integration of multi-sensor Integer Occupancy Grids 107Blurring pol. Nearest pol. Blurring pol. Nearest pol.

		Mean of dierences	Standard deviation
	ε				
	10 -1 10 -2 10 -3 10 -4 10 -5 10 -6	4.65 × 10 -4 1.12 × 10 -4 2.81 × 10 -6 3.28 × 10 -7 1.65 × 10 -7 1.38 × 10 -8	4.65 × 10 -4 7.19 × 10 -5 2.56 × 10 -6 2.56 × 10 -7 1.69 × 10 -8 5.31 × 10 -9	1.58 × 10 -3 5.48 × 10 -4 2.65 × 10 -5 4.33 × 10 -6 5.89 × 10 -7 7.16 × 10 -8	1.58 × 10 -3 3.61 × 10 -4 2.12 × 10 -5 2.96 × 10 -6 3.21 × 10 -7 3.46 × 10 -8
	Table 4.6 Statistics on dierences between oating-point implementation of fusion
	and the proposed index fusion		
	4.3.2.2 Analysis of the tree-based implementation	

This subsection discusses the implementation of integer occupancy grids based on 2 d -trees. A quadtree is experienced since the integer occupancy grid is based on a 2D grid. The compactness of quadtrees compared to the array-based implantation will be analyzed.

Table 4

 4 These proportion proves experimentally that the quadtree is more compact than the arrays. In fact, the number of array elements must be equal to the number of cells. Furthermore, Table4.17 (page 108) shows that neither the quantization policy nor ε inuence considerably the compactness of quadtrees. Compactness of quadtrees compared to arrays to the parent node. The integer stores the index of the node. On the SABRE Lite platform, a pointer occupies 4 Bytes. The index of node is either 1 byte if occupancy indexes are shrunken in[-127, 127], or 4 Bytes otherwise. Hence, a node occupies 9 Bytes or 12 Bytes of data.On the array-based implementation, an array elements store the occupancy indexes of all cells. An array element occupies either 1 byte or 4 Bytes, depending on the size of an occupancy index in memory. When storing an integer occupancy grid of 1024 × 1024, an array consumes 1 MByte or 4 MBytes. For the same grid size, a quadtree consumes in turn 3.15 MByte or 4.2 MByte. Hence, if an occupancy index is encoded in 8-bit, quadtrees are 3× more memory consuming than arrays. The

	Memory consumption. A quadtree is more compact than an array in term of
	number of nodes versus number of array elements, but how about the memory
	consumption? Let us analyze the memory consumed by quadtrees compared to
	memory consumed by arrays for storing the same integer occupancy grids.
	A pointer-based implementation of quadtrees have been realized. A node is
	implemented as a data structure composed of two pointers and an integer. The rst
	pointer points to the address of the children of the nodes, the second pointer points

.17 (page 108). The number of cells is 1024 × 1024 cells. The table shows that the number of nodes is at least 2.8× less than the number FOR AUTOMOTIVE MULTI-SENSOR FUSION Figure

4

.17 Trac scenario and the corresponding integer occupancy grid stored within a quadtree of cells. Moreover, the number of leaves is at least 3.7× less than the number of cells.

•

 The array-stored integer occupancy grids were computed in real-time. Realtime performance is however still missing for 2 d -trees. Summary of Integer Occupancy Grids 113 5.2 Conclusion . 114 5.3 Perspectives . 114 This chapter concludes the present manuscript. It presents a summary of the Integer Occupancy Grid framework followed by a conclusion. Insights about perspectives and future works are listed thereafter.

	Chapter 5
	CONCLUSION AND
	PERSPECTIVES
	5.1

The Dempster-Shafer Theory of Evidence, the fuzzy sets, and other formalisms have been also applied in the literature for handling sensor uncertainties and for building grid-based environment models ([Ribo

2001, HoseinNezhad 2002, Noykov 2007[START_REF] Moras | [END_REF][START_REF] Yu | [END_REF]).

This set of probabilities has been published in[Rakotovao 2016a].

The methods for computing mono-sensor occupancy grids reviewed in Section 2.3 (page 27) can be applied. A new theorem for computing ISMs of single-target sensors will be also presented in Section 4.2 (page 89).

For instance, on a 32-bit machine, an integer has to be between -2 31 + 1 and 2 31 -1. Beyond these limits, an integer cannot be encoded in 32-bit anymore.

58919.

capteurs par un obstacle, soit hors du champ de vision des capteurs. La diérence de couleur entre les deux grilles montre que la grille d'occupation entière met en valeur de manière claire la diérence entre une région couverte par un seul LIDAR (comme celle d'à gauche) et une région couverte par trois LIDARs (comme celle du centre). Sur la grille d'occupation standard, ces régions ont les même intensités de couleurs puisque leurs probabilités d'occupation sont toutes proches de 1. L'exécution de l'implémentation des grille d'occupation entière à base de tableau atteint une performance temps-réel sur le matériel embarqué. En eet, le matériel est capable de fusionner les quatre LIDARs avec une fréquence de 28 Hz, tandis que les mesures des LIDARs sont produites à 25 Hz. Si la puissance électrique consommée par le processeur pendant le calcul de la fusion est prise en compte, l'implémentation des grilles d'occupation entières sur la plateforme embarquée est 1000 fois énergétique ment ecace par rapport aux implémentations des grilles d'occupation faites dans la littérature. Pour vérier la qualité numérique des grilles d'occupation entières, une comparaison avec l'implémentation en calcul ottante des grilles d'occupation a été réalisée. La comparaison a montré une diérence moyenne dans l'ordre du centième de la valeur choisie du paramètre ε. Ce résultat coïncide avec

Publications

The present thesis has lead to the following publications.

Published papers • T. Rakotovao, J. Mottin, D. Puschini and C. Laugier.

Real-time power-ecient integration of multi-sensor occupancy grid on many-core.

IEEE International Workshop on Advanced Robotics and its Social

Impacts ([Rakotovao 2015a]). This appendix presents the demonstration of some properties used in Chapter 3.

A.1 Examples of set of probability

Property A.1.1. Let a ≥ 1 be a positive and non-null integer. Consider the sequence (p n) n∈N such that:

The sequence (p n) n∈N is monotonically increasing and ∀n ∈ N, 1 /2 ≥ p n .

By applying eq. (A.1), we get:

Since a ≥ 1, then p n+1p n > 0. That means p n+1 > p n , thus the sequence (p n) n∈N is monotonically increasing. Consequently, ∀n ∈ N, p n ≥ p 0 , then p n ≥ 1 /2.

A.2 Denition of the recursive set

The recursive set S ε was dened in Theorem 3 (page 60). The set was dened as follows.

Theorem. (Theorem 3 (page 60)) Let ε be a real-number such that ε ∈]0, 1 /2[. Let (a n) n∈N and (b n) n∈N be innite sequences of numbers dened as follows:

Consider the set S ε = {p n , n ∈ Z} such that:

The set S ε called recursive set constitutes a set of probabilities equipped by the following index fusion operator:

Mathematical derivation of the recursive set of probabilities

This section 1 presents the mathematical derivation of the recursive set. It presents the mathematical intuition that has lead to the development of the sequences (a n) n∈N and (b n) n∈K . After that, this section proves that the set S ε dened over both sequences (see Theorem 3 (page 60)) actually constitutes a set of probabilities.

The set of probabilities that is intended to capture the values of occupancy probabilities of cells must contain both elements less than 1 /2 and elements greater than 1 /2. This is required for capturing the occupancy probabilities of both likely empty and likely occupied cells. Let us now present the intuitive idea that allowed to get the elements greater than 1 /2.

A.3.1 Elements greater than one-half

To dene a set of probabilities to be used for occupancy grids, let us assume that the elements of the set are dened by a numerical sequence (a n) n∈N . To design the sequence, let us start from the singleton { 1 /2}. Assume that a 0 = 1 /2

To ensure that the terms of the sequence are dierent to each others, let us dene the other terms a n , n > 0 such that the sequence is monotonically increasing. The order of terms are depicted on g. A.1.

... ... Let us now dene the value of a 1 . Assume that a 1 is the next member of the set that is closest to 1 /2. That means:

1 This section can be skipped by the reader who does not need deeper mathematical details about the demonstration of the recursive set. The reader can move directly towards Section 3.4 (page 63).

A.3. Mathematical derivation of the recursive set of probabilities 121

where ε is a positive number. In addition, ε has to be less than 1 /2 to ensure that a 1 < 1:

Now, how about a 2 ? The above principle can be reused: after a 1 , a 2 is the next member closest to 1 /2. Since a 1 > 1 /2, the property of reinforcement of the fusion gives a 1 a 1 > a 1 (see Property 3.1.2 (page 51)). Thus, let us consider:

How about a 3 ? As above, let us assume that a 3 is the next member closest to 1 /2 after a 1 and a 2 . The term a 3 can be dened by two ways: either a 1 a 2 or a 2 a 2 . However, a 1 a 2 < a 2 a 2 (see Property A.4.4 (page 125)). Then, let us consider:

The same reasoning can be continued by induction. By taking into account equations (A.2),(A.3),(A.5),(A.6), we obtain the general term by induction:

A.3.2 Elements less than one-half

Suppose that the elements of the set of probability that are less than 1 /2 form a sequence (b n) n∈N . As for a n , let us assign 1 /2 to the rst term:

The terms of (b n) n∈N are designed to be less than 1 /2. The sequence has to be monotonically decreasing. The order of the terms are shown on g. A.2 ...

A.3.3 Proof of the recursive set of probabilities

After determining the formula of the sequences (a n) n∈N and (b n) n∈N , let us now prove that the set S ε = {p n }, such that:

, constitutes a set of probabilities. The proof is subdivided into three parts. First, we will prove that the set {a n , n ∈ N} constitutes a set of probabilities called the recursive set of occupancy. Second, we will prove that the set set {b n , n ∈ N} also form a set of probabilities called the recursive set of emptiness. Finally, we will demonstrate that the reunion of both sets constitutes the recursive sets and also forms a set of probabilities.

A.3.3.1 Recursive set of occupancy

Let be ε a positive number in]0, .4.1 (page 124) shows that a n < 1. Property A.4.2 (page 125) stipulates that a n ≥ 1 /2. Then 0 < a n < 1, ∀n ∈ N.

• Countability. Property A.4.3 (page 125) shows that a n-1 < a n . That means ∀m, n ∈ N, we get: m = n ⇔ a m = a n . Then the set S o ε is countable.

• Closure. To verify the closure of S o ε , let us compute the fusion of a n and a m , where m, n ∈ N. Equation (A.7) denes a n by the following recursion: a n = a n-1 a 1 . This property can be developed as follows:

Consequently, the fusion of a m with a n leads to:

Let us now study the fusion of p m and p n , where m, n ∈ Z. Two cases are possible: m and n have the same signs or not. In the rst case, if m ≥ 0 and n ≥ 0, then p m = a m and p n = a n . Therefore, p m p n = p m+n . Similarly, if m < 0 and n < 0, then p m p n = p m+n .

In the second case, assume that m ≥ 0 and n ≤ 0. We get p m = a m and p n = b -n Consequently, the fusion of p m and p n gives: .18) where |x| designates the absolute value of x. From here, three cases are possible: Property A.4.2. ∀n ∈ N : a n ≥ 1 /2 Proof Proof by induction. In the base case, 1 /2 ≤ a 0 < a 1 is true due to (A.3). In the inductive step, assume that a n-1 ≥ 1 /2. Equation (A.7) gives a n = a n-1 a 1 . Since both a n-1 and a 1 are greater than 1 /2, the property of reinforcement gives a n-1 a 1 > a n-1 . Then a n ≥ 1 /2. Property A.4.3. ∀n ∈ N : a n-1 < a n Proof Proof by induction. In the base case, a 0 < a 1 is true due to (A.3). In the inductive step, assume that a n-1 < a n . Equation (A.7) gives a n+1 = a n a 1 . Since a n > 1 /2 and a 1 > 1 /2, the reinforcement property gives a n a 1 > a n . Then a n+1 > a n . Property A.4.4. a 1 a 2 < a 2 a 2 Proof By utilizing the Bayesian fusion function F , we get: Property A.4.8. The sequence {p n } n∈Z is monotonically increasing:

Proof If n ≥ 0, then p n = a n . Thus, p n+1 = a n+1 = a n a 1 . Since both a 1 and a n are greater than 1 /2, the property of reinforcement of gives a n < a n a 1 . Then a n < a n+1 , and subsequently p n < p n+1 . Property A.4.9. ∀n ∈ N :

Therefore:

Proof Similar to the proof of Property A.4.9 (page 126). Besides, Property A.4.1 (page 124) states that a n < 1. In addition, a n ≥ 1 /2 according to Property A.4.2 (page 125). Since p n = a n , then we have 1 /2 ≤ p n < 1.

Property A.4.12. (Proof of Property 3.3.3 (page 62)) The inverse of the element p n with respect to the operator is p -n :

Proof Theorem 3 (page 60) gives p n p m = p n+m . By replacing m by -n, we get:

Since 1 /2 is the identity element of the operator , p -n becomes then the inverse of p n .

Proof Let n be a positive or null integer. We have p n = a n and |a n+1 -a n | > |a n+2 - a n+1 | (see Property A.4.9 (page 126)). Then, we get |p n+2 -

Besides, Property A.4.9 (page 126 By applying the Theorem of Bayes (eq. (2.13)), we get:

Then, the ISM becomes:

The Bayesian approach (Section 2.3.1.1 (page 29)) introduced the notion of grid congurations for computing p(z|s i), s i ∈ {o i , e i }. Let us utilize the same approach. Equation (2.33) (Section 2.3.1.1 (page 29)) gave:

Inverse sensor model for single-target sensors

The symbol g s i denotes a grid conguration in the form of:

Since a cell state x j can be either o j or e j , then there exist 2 N -1 number of grid congurations g s i . The Bayesian approach assumes that these congurations are equiprobable. That means P (g

Equation (2.34) in Section 2.3.1.1 (page 29) proposed to compute p(z|g s i) by using the sensor model as follows. For any conguration g s i , there exists a cell index h such that: p(z|g

If the conguration of the grid was known, a single-target sensor would sense the rst occupied cell towards the ray. That means, h is the index of the rst occupied cell of the grid conguration seen by the sensor.

Sensor device e e o 1 N The number of such cell is Nh -1. Consequently, this gure illustrate 2 N -h-1 number of grid congurations. For all these congurations, p(z|g s i) = p(z|d h). Let us exploit this property to factorize the sum on eq. (B.5) for computing p(z|s i), s i ∈ {o i , e i }.

Let us consider s i = o i and let us compute p(z|o i). That means the cell c i is occupied, then h cannot be greater than i. Two cases are possible with respect to the value of h:

• If h = i, then there are Nh cells labeled with x. Hence, 2 N -i grid congurations have p(z|g s i) = p(z|d i).

By taking into account both cases, we obtain:

B.1. Mathematical derivation of the ISM of 1D cell 131 Consider now that s i = e i and let us compute p(z|e i). That means the cell c i is empty, then h cannot be equal to i. Thus, three cases are possible regarding the value of h:

grid congurations have p(z|g s i) = p(z|d h).

2. If h > i, then the number of cells labeled with x is Nh. Hence, 2 N -h grid congurations have p(z|g s i) = p(z|d h).

By taking into account both cases, we get:

The sum of (B.8) and eq. (B.10), we obtain:

Notice that the above formula is not valid if i = 1 since the sum on the numerator would be inversed. Let us compute p(z|s 1) where s 1 ∈ {o 1 , e 1 }. If s 1 = o 1 , the same principle as in the computation of p(z|o i) is applied, except that h cannot be less than i. This principle gives:

If s 1 = e 1 , the same principle as for p(z|e i) is also applied, except that h still cannot be less than i. This gives:

Finally, we get:

The above equation constitutes the equation of the line

ST be a straight line. The error function designates the following function evaluated on any point (x, y) of the plan:

where ∆x = (x Tx S) and ∆y = (y Ty S).

B.2. Mathematical derivation of the continuous range-mapping algorithm 133

A plane P is dened as a set of spatial points (x, y). The denition of the error function leads to the following property.

Property B.2.1. A straight line ← → ST divides a plane P = {(x, y) ∈ R 2 } into two three disjoint regions composed of:

• the upper half-plane:

• the lower half-plane:

• the next cell is c y if N E(c) belongs to the lower half-plane. (x S , y S): coordinates of point S 3:

(x T , y T): coordinates of point T 4:

(x 0 , y 0): location of the cell containing the point S 5:

(x 1 , y 1): location of the cell containing the point T 6:

β: length of a side of a squared cell 7:

Point (x, y) Location of the currently traversed cell c 8:

Real ∆x = x Tx S 9:

Real ∆y = y Ty S 10:

Real e Error function Err ST (N E(c)) 11:

(x, y) ← (x 0 , y 0) 12:

e ← Err ST (N E(x, y)) 13: while (x, y) = (x 1 , y 1) do 14:

if e = 0 then 15:

(x, y) ← (x + β, y + β) c xy is traversed 16:

e ← e + β × (∆x -∆y) 17:

else if e > 0 then 18:

x ← x + β 19:

e ← eβ × ∆y c x is traversed 20: else 21:

y ← y + β c y is traversed 22:

e ← e + β × ∆x 23: end if

24:

The cell traversed at the current iteration is located at (x, y) 25:

SampleISM

The above equation determines c by evaluating the sign of Err ST (N E(c)). It can be applied iteratively. To identify c , the sign of Err ST (N E(c)) is evaluated. After that, the sign of Err ST (N E(c)) is evaluated to determine the next traversed cell after c , and so on.

B.3. Generalization of the discrete range-mapping algorithm 135

Equation (B.17) implies:

and then:

Let β be the length of a side of cell. By applying the initial denition of the error function on Denition B.2.1 (page 132), the error of the North-East corner of c x , c y and c xy can be computed as a function of the error of the North-East corner of c.

This techniques gives:

Finally, both eq. (B.17) and eq. (B.20) can be computed in an iterative manner.

Both equations can constitute a traversal algorithm that nds out exactly the cells traversed by the line segment ST .

The nal continuous traversal algorithm is presented on Algorithm 5 (page 134).

The algorithm takes as input the coordinates of both point S and point T , the locations of the cells containing both points, and the resolution of the discrete frame.

At line 11, the rst cell known to be traversed is the cell that contains the point S.

The error variable is then initialized by the error of the North-East corner of that cell. Assume that a cell is located by its South-West corner. The North-East corner of the cell located at (x, y) is at coordinates (x + β, y + β). Then, we have:

The continuous traversal algorithm has a unique main loop. Regarding the value of the error, lines 14 to 23 determine the location of the next traverse cell. The location of the cell is computed by applying eq. (B.17). The error is updated with respect to eq. (B.20). Line 25 calls a function SampleISM () on the cell traversed at a given iteration of the algorithm. The loop iterates until the algorithm reaches the cell that contains the point T .

B.3 Generalization of the discrete range-mapping algorithm

The discrete traversal algorithm presented on Algorithm 4 (page 98) in Section 4.2.2.2 (page 96) nds out all cells traversed by a line segment ST provided that ∆l ≥ 0 and ∆m ≥ 0. The following algorithm presents the general case, regardless of the sign of both ∆l and ∆m.

(l S , m S): coordinates of point S 3:

(l T , m T): coordinates of point T 4:

(l 0 , m 0): location of the cell containing the point S 5:

(l 1 , m 1): location of the cell containing the point T 6:

r: resolution of the discrete frame of reference 7:

Integer δl, δm, ∆l, ∆m 8:

Point (l, m) The cell traversed at the current iteration is located at (l, m) 61:

SampleISM (l, m) 62: [START_REF] Moravec | [END_REF], Elfes 1987[START_REF] Moravec | Sensor Fusion in Certainty Grids for Mobile Robots[END_REF], Elfes 1989b, Elfes 1989a]). Dans le contexte de l'automobile, une grille d'occupation est une représentation de l'environnement de conduite sous forme de collection de cellules. Pour chaque cellule est estimée une probabilité d'occupation à partir des mesures de capteur. Plus simplement, la probabilité d'occupation d'une cellule vaut 1 si la cellule est occupée par un obstacle, 0 si elle est vide, 0.5 si l'état d'occupation de la cellule est inconnue. Deux solutions sont généralement proposées dans l'état de l'art. La première consiste à modéliser directement le modèle inverse de capteur par des fonctions continues ([START_REF] Payeur | [END_REF][START_REF] Gartshore | [END_REF], Homm 2010[START_REF] Einhorn | [END_REF][START_REF] Adarve | [END_REF][START_REF] Hornung | [END_REF]). La seconde consiste modéliser le modèle inverse de capteur par des réseaux de neurones([Thrun 1993, Kortenkamp 1998, Thrun 2001b]

où la fonction F est celle introduite dans l'équation (C.1).

Un ensemble de probabilités S est un ensemble de nombre réels tel que :

La première équation signie que les éléments de S appartiennent à l'intervalle]0, 1[. C.5. Conclusion