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Integer Occupancy Grids: a probabilistic multi-sensor fusion
framework for embedded perception

Abstract: Perception is a primary task for an autonomous car where safety is of
utmost importance. A perception system builds a model of the driving environment
by fusing measurements from multiple perceptual sensors including LIDARs, radars,
vision sensors, etc. The fusion based on occupancy grids builds a probabilistic
environment model by taking into account sensor uncertainties. This thesis aims
to integrate the computation of occupancy grids into embedded low-cost and low-
power platforms. Occupancy Grids perform though intensive probability calculus
that can be hardly processed in real-time on embedded hardware.

As a solution, this thesis introduces the Integer Occupancy Grid framework.
Integer Occupancy Grids rely on a proven mathematical foundation that enables
to process probabilistic fusion through simple addition of integers. The hard-
ware/software integration of integer occupancy grids is safe and reliable. The in-
volved numerical errors are bounded and is parametrized by the user. Integer Oc-
cupancy Grids enable a real-time computation of multi-sensor fusion on embedded
low-cost and low-power processing platforms dedicated for automotive applications.

Keywords: probabilistic fusion, sensor fusion, perception, occupancy grids, em-
bedded integration



Grille d'occupation entière: une méthode probabiliste de fusion
multi-capteurs pour la perception embarquée

Resumé: Pour les voitures autonomes, la perception est une fonction princi-
pale où la sécurité est de la plus haute importance. Un système de perception
construit un modèle de l'environnement de conduite en fusionnant plusieurs cap-
teurs de perception incluant les LIDARs, les radars, les capteurs de vision, etc.
La fusion basée sur les grilles d'occupation construit un modèle probabiliste de
l'environnement en prenant en compte l'incertitude des capteurs. Cette thèse vise
á intégrer le calcul des grilles d'occupation dans des systèmes embarqués à bas-coût
et à basse-consommation. Cependant, les grilles d'occupation e�ectuent des calculs
de probabilité intenses et di�cilement calculables en temps-réel par les plateformes
matérielles embarquées.

Comme solution, cette thèse introduit une nouvelle méthode de fusion proba-
biliste appelée Grille d'Occupation Entière. Les Grilles d'Occupation Entières se
reposent sur des principes mathématiques qui permettent de calculer la fusion de
capteurs grâce á des simple addition de nombre entiers. L'intégration matérielle et
logicielle des Grilles d'Occupation Entière est sûre et �able. Les erreurs numériques
engendrées par les calculs sont connues, majorées et paramétrées par l'utilisateur.
Les Grilles d'Occupation Entière permettent de calculer en temps-réel la fusion de
multiple capteurs sur un système embarqué bas-coût et â faible consommation dédié
pour les applications pour l'automobile.

Mots clés: fusion probabiliste, fusion de capteurs, perception, grille d'occupation,
intégration embarquée
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The utmost challenge that modern road transportation must face is the road
safety. Tra�c injuries cost lives and a�ect the economy of a whole country. Energy
consumption and the respect of environment also become major challenges in the
era of global warming. Cars are at the center of these challenges. Intelligent cars
are proposed as one of the scienti�c and technological step ahead to improve safety,
to save energy and to improve the respect of environmental standards.

Intelligent cars are upgraded with various kind of sensors for developing driving
assistance systems and autonomous navigation. Perception is the task of gathering
information about the driving environment through perceptual sensors. A percep-
tion system builds an environment model by fusing measurements from multiple
sensors.

The fusion of multiple sensors provides several advantages over using a single
sensor. First, sensors are subject to physical limitations and noises which introduce
uncertainty in measurements. Using multiple sensors improves the robustness and
the reliability of the perception system. It provides a level of redundancy of infor-
mation that allows to improve safety and overcome the risk of sensor failure. It also
allows to extend the coverage of the driving environment by range sensors.

Multi-sensor fusion is the main task of a perception system. The fusion must
handle sensor uncertainties. The environment model must be able to represent any
kind of obstacles whatever their nature is (eg. cars, pedestrians, animals, cyclists,
buildings, vegetation, road infrastructures, etc).

This thesis aims to process multi-sensor fusion on a computing platform em-
bedded on-board the car. The computing hardware is subject to a constraint of
low cost and low power budget. The environment model produced by the HW/SW
integration must be numerically reliable in order to ensure safety.

Occupancy Grids are a probabilistic framework that are able to fuse multi-
ple sensors by taking into account uncertainties. They produce a probabilistic
model of the environment that can cope with the diversity of obstacles. Occupancy
grids require though an intensive probability calculation that embedded resource-
constrained computing platforms can hardly process in real-time.
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As a solution, this thesis introduces the Integer Occupancy Grid framework.
This framework processes probabilistic multi-sensor fusion through simple integer
arithmetic. Its HW/SW integration guaranties a bounded numerical error that is
parametrized by the user. Integer Occupancy Grids enable the integration of multi-
sensor fusion on low-cost and low-power processing platforms. The latter becomes
even able to process multi-sensor fusion in real-time.

The following sections will provide introduction and motivation on the topics
treated in this thesis. The addressed problem and the proposed approach will be
presented thereafter.

1.1 Motivation

1.1.1 Societal and environmental challenges

Cars are a widely accepted mean of transportation of people and goods. They
contribute signi�cantly to the economic development of cities, countries and even at
worldwide scale. Transport, industry, trades, services, defense, health, environment
protection, etc always rely on cars at some levels in order to ensure mobility and
to perform tasks on time, e�ciently and safely. Since their mass production at the
beginning of the 20th century, cars have considerably shaped cities. Major part of
the infrastructure in cities � such as streets, parkings, highways, tra�c signs, and
bridges � are dedicated for cars. Moreover, cars have also brought signi�cant social
impacts. They favor the connection between persons, families and friends. They
are at the same time a sign of prestige, social class, image and personality.

Nevertheless, cars are also at the origin of the major challenges that modern so-
cieties have to face: the road safety, the energy consumption and the environmental
challenges. In [WHO 2015], the World Health Organization (WHO) reports that
road accidents cause over 1.2 million of deaths and 50 millions of non-fatal injuries
worldwide each year. If these statistics persist, road accidents would cause 36 mil-
lions of deaths within 30 years, which is equivalent to the population of Canada in
2015 ([Le Quotidient 2015]). The lost of an active family member or the handicap
due to injuries lead households into deep poverty. They also constitute a signif-
icant burden for health, insurance and legal systems and cause globally a loss of
3% of Gross Domestic Product (GDP). Concerning the energy and environmental
challenges, according to a study about energy e�ciency in France ([RAC-F 2014]),
transportation is the second leading sector in term of energy consumption (32 % of
national consumption). Furthermore, this sector is the �rst leading in term of emis-
sion of greenhouse gas (37 % of CO2 emissions). About 95 % of the emissions due to
the sector of transportation are caused by road transportation. Moreover, personal
vehicles are responsible of 58 % of the emissions due to road transportation.

To address these challenges, governments, national and international organi-
zations promote road legislations, road awareness campaigns and environmental
standards for improving road safety, energy e�ciency, and environment protection
([IEA 2010, WHO 2015]). In addition, researchers, engineers and the automotive
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industry also contribute actively by providing technological solutions and innova-
tions. During the 20th century, mechanical, electrical and electronic technologies �
such as automatic transmission, fuel injection and Anti-lock Braking System (ABS)
� have been continuously integrated into cars to enhance safety, reliability, com-
fort and e�ciency. Nevertheless, these solutions are not su�cient to address the
above challenges. The safety and the e�ciency of cars are mainly under the re-
sponsibility of drivers. However, 93 % of tra�c injuries are caused by human errors
([Yeomans 2014]). At the end of the 20st century, thanks to the advancement of
sensors, digital technologies and advanced algorithms, new and more intelligent

functions have begun to be developed for helping drivers in the task of driving.

1.1.2 Towards autonomous cars

At the beginning of the 21st century, in the era of digital technologies, the task of
driving is more and more left out of the hands of human drivers. Driving is rather
assigned to computerized systems composed of sensors, actuators, microprocessors,
communicating devices, algorithms and software. An intelligent vehicle is a vehi-
cle equipped with computer systems capable of handling certain aspects of driving
([Eskandarian 2012]). Systems which purpose is to assist the human driver for per-
forming the task of driving are called Advanced Driver Assistance Systems (ADAS).
These systems help the human driver to achieve a driving performance that is safer,
more e�cient and more respectful of environmental standards. When such systems
can handle totally the task of driving without any human intervention, the vehicle
is called autonomous, self-driving or driverless.

The idea of autonomous cars is not recent. In 1925, the American �rm Houd-
ina Radio Control Co. unveiled a radio-controlled driverless car running in the
streets of New York. In the 1950s until 1970s, driverless cars were experienced on
highways where they were guided by wires and electronics buried in the pavements
([Press-Courier 1960]). In the 1980s, Eureka PROMETHEUS was the �rst Euro-
pean project launched in the �eld of autonomous cars. Various universities and car
manufacturers participated in this project. In the 1990s, research teams have be-
gun to equip prototype cars with di�erent range sensors including cameras, radars,
LIDARs and ultrasonic ([Catling 1991, Ulmer 1994, Thorpe 1997]). Special func-
tions such as automated parking and lane detection have begun to be developed
([Pomerleau 1989, Broggi 1995, Paromtchik 1996]).

In the 2000s, the Defense Advanced Research Projects Agency (DARPA) in
the United States, organized challenges where autonomous cars compete for com-
pleting prede�ned courses without human driver ([Behringer 2005, Thrun 2006,
Urmson 2008]). In parallel, the European Union funded projects such as PREVENT
[Pre ], HAVEit [Hav ] or SARTRE [Sar ] for developing and testing ADAS. These
projects brought together di�erent partners from automotive industry and research.
Collaborative projects have continued in 2010s ([Broggi 2013, Ziegler 2014]). Most
recent trends show various demonstrations of autonomous cars fruit of research and
developments mainly lead by the automotive industry and tech companies. Google is
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the initiator of these trends by creating its well-known autonomous car The Google
Car ([Birdsall 2014]). Then the traditional car companies such as Daimler, BMW,
Renault, Ford, etc followed ([Hohm 2014, Aeberhard 2015]).

1.1.3 Scienti�c and technical challenges

Software become more and more predominant and increasingly complex in cars.
Complex Electric/Electronic systems powered by software are integrated into cars.
Software is present in major systems that vary from powertrain and braking to driver
assistance and infotainment. These systems may a�ect the safety and/or the security
of the car and the passengers. They raise an enormous safety and quality challenges
ahead ([Paliotta 2016]). Any software component must guaranty a level of safety.
This includes the �rmware, the operating system, the device driver, the network,
the user applications, etc. The need for software certi�cation becomes compulsory
in order to guaranty safety. Standards such as the ISO 26262 ([ISO 2011]) are
developed for this purpose.

Despite the scienti�c and technological progress, certi�ed fully autonomous cars
do not still exist nowadays. Autonomous vehicles are still in the phase of research
and development. Recent cars on the market are however already equipped with
some certi�ed ADAS functions. For clarifying the di�erences between autonomous
driving and ADAS, the SAE International � a worldwide association of automotive
engineers � established a system of classi�cation for identifying the level of automa-
tion of a car ([SAE 2014]).

The SAE classi�cation is composed of six levels of driving automation as shown
on �g. 1.1. Starting from level 0 to level 2, the human driver has to monitor the
driving environment. While there is no automation at level 0, systems at level 1
assist the driver in the driving task. At level 2, the system can steer, brake or
accelerate the car in prede�ned situations but the environment monitoring remains
a job of the driver. From level 3 to level 5, the system is capable of monitoring the
driving environment and even replaces the human driver. While at level 3, the driver
should always be ready to intervene if the system reaches its limits, at level 4, such
human intervention is no more required. The car is able to drive itself autonomously
in prede�ned situations at level 4, and in every situations at level 5.

L0
No

Automation

L1
Driver

Assistance

L2
Partial

Automation

L3
Conditional
Automation

L4
High

Automation

L5
Full

Automation

HUMAN DRIVER
MONITORS DRIVING ENVIRONMENT

AUTOMATED DRIVING SYSTEM
MONITORS DRIVING ENVIRONMENT

Market Research & Development

GAP

Figure 1.1 � Levels of driving automation (inspired from [SAE 2014])

Nowadays, no autonomous car can be classi�ed at level 5. However, both
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academy and industry already develop cars with automation level 4. For instance,
the driverless cars from Google have been tested in urban environment in California
but they cannot yet cope with all weather conditions ([Harris 2014]). The project
CityMobil2 tested driverless buses running in the downtown of Trikala (Greece) in
2015 [Cit ]. The buses shared pavements with other cars, pedestrians and cyclists
but run at a maximum speed of 20 km/h.

Concerning the automotive market, ADAS systems like Adaptive Cruise Control
(ACC) and the Lane Departure Warning (LDW) have been integrated since 2000s.
The ACC keeps a vehicle at a desired speed and at a desired distance to the vehicle
ahead set by the driver. The LDW warns the driver in case the car moves to close
to the edge of the lane. Lane Keeping Assist systems (LKA) are able to actively
steer the vehicle to keep it in the lane.

Cars in the automotive market are still limited to automation level 0,1 or 2. The
gap that makes di�cult to get over the level 2 is the miss of a safe electric/electronic
system that would enable cars to monitor safely the driving environment. Environ-
ment monitoring is a safety critical task. If it fails, the damage can cost human life.
Environment monitoring constitutes a scienti�c and technological challenge. More-
over, the requirements of robustness, reliability, certi�cation and costs � familiar to
the domain of automotive � makes this challenge di�cult.

Environment monitoring is a task of a special system called perception system.
The need for a safe, robust and reliable perception system constitutes the starting
point for the present thesis.

1.2 Perception system

An autonomous car is driven by a computer system instead of a human driver.
As a human driver, the driving system needs to continuously monitor the driving
environment in order to make a driving decision like accelerate, brake or steer. The
question arises: how the system can monitor the driving environment? The proposed
approaches �nd their origins in the �eld of robotics. A mobile robot needs to be
aware of its environment in order to operate within it. For instance, to navigate
in a cluttered environment, a mobile robot needs to know the location of obstacles
around and where are the navigable spaces. For this purpose, the robot rely on
multiple sensors that observe the environment. The sensors provide measurements
according to the spatial disposition and the physical properties of the sensed objects.

Range sensors such as laser-based sensors, stereo-camera, radars and ultrasonic
sensors are commonly used in robotics and also for autonomous vehicles. These
sensors are able to provide range measurements without a physical contact with the
sensed objects. Laser sensors are based on Light Detection and Ranging (LIDAR)
technology. They estimate the distance to the sensed object by measuring the time-
of-�ight (ToF) of laser pulses sent toward the object. The principle of ToF is also
used in ultrasonic sensors, ToF cameras and radars. Ultrasonic sensors use acoustic
waves instead of laser pulses while infrared light is used in ToF cameras. Radars
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are able to estimate both distance and velocity of moving objects. Stereo-cameras
also allow to estimate the distance to objects by computing depth information from
pair of images.

Sensors provide raw measurements that do not contain directly the informa-
tion required by the car for making decision. For instance, depth images from a
stereo-camera are not enough for deciding whether the car should brake or steer.
Consequently, measurements are processed by a perception algorithm for build-
ing a kind of a map of the environment called environment model. As shown on
�g. 1.2, the system composed of range sensors and perception algorithm is called
perception system. The role of the perception system consists in constructing a
model of the environment. The model constitutes a dynamic computational repre-
sentation of the environment that the autonomous car can interpret in order to make
decisions and to perform actions. For instance, for performing self-navigation, the
environment model can be used to compute a path or to avoid collision to obstacles.
Once the path is chosen, the car can accelerate, throttle back, brake or steer by
commanding the actuators.

Perception
Algorithm

Dynamic
Environment

Model
Perception System

Sensor 1

Sensor N

.

.

.

Reasoning
&

Decisions

Actuator

Actuator

.

.

.

Figure 1.2 � Perception system

Remark Vision sensors provide additional data such as colors and textures. They
can be used for various functions such as obstacles recognition, lane detection, tra�c
light, tra�c sign recognition, detection and tracking, etc([Stiller 1997, Ernst 1999,
Lorei 1999, Sun 2006, Tao 2013]). Vision-based sensors provide rich information
about the environment. However, this thesis focuses only on range measurements
and do not exploit the other information provided by vision sensors.

1.2.1 Environment model

There are di�erent ways to model computationally the driving environment of a car.
Models di�er on the level of spatial details they provide, on the representation of
free spaces, the way to model objects, and on the compactness of the environment
representation. Figure 1.3 shows the main examples of environment model used for
automotive perception. In the followings, we will refer as obstacle any object or alive
being or infrastructure that may be present on a driving environment. Obstacles
include cars, pedestrian, cyclists, vegetation, buildings, etc.

First, raw sensor models (�g. 1.3a) represent the environment with point clouds.
They are commonly built from sensors providing dense point data such as LIDARs
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(a) ([Himmelsbach 2009]) (b) ([Rakotovao 2016a]) (c) ([Oniga 2010])

(d) ([Triebel 2006]) (e) ([Pfei�er 2011]) (f) ([Beyeler 2014])

Figure 1.3 � Examples of environment representations used for automotive percep-
tion: point cloud (1.3a), occupancy Grid (1.3b), elevation map (1.3c), multi-level
surface map (1.3d), stixel world (1.3e), and geometric feature (1.3f)

and stereo camera ([Christensen 2008]). Point clouds model obstacles sensed by
the sensor. They do not represent neither free spaces nor regions that are not
yet explored by the sensors. The number of points explodes rapidly as long as
sensors provide data points. This penalizes the compactness of the environment
model. Next, two dimensional (2D) occupancy grids (1.3b) model the environment
as a lattice composed of a �nite number of cells ([Elfes 1989b]). Occupancy grids
compute the probability that each cell is occupied by an obstacle by using sensor
measurements. Obstacles are represented by likely occupied cells while likely empty
cells represent free spaces.

Two-and-half dimensional (2.5D) representations propose an extension of 2D
occupancy grids by providing more spatial details. Elevation maps (�g. 1.3c)
store at a cell level the height of the object occupying the cell ([Oniga 2010]).
The cell height is extracted from measurements from LIDAR or stereo-camera
([Christensen 2008, Nguyen 2009, Vatavu 2012]). Therefore, a cell is assimilated
to a solid vertical structure with a given height. This makes elevation maps fail
to represent overhanging structures such as bridges and tunnels. Multi-level sur-
face maps (�g. 1.3d) propose an alternative that stores a list of multiple height
values at a cell level ([Triebel 2006]). This allows the cell to represent more than
one vertical structure. Multi-level maps are able to represent correctly overhanging
structures. After that, full 3D representations can be modeled by 3D occupancy
grids [Schmid 2010, Wurm 2010, Hornung 2013]. The environment is subdivided
into adjacent cubic cells called voxels. The probability that each voxel is occupied
by an obstacle is computed from sensor measurements.

The compactness of grid-based models depends on the number of cells: the higher
is the number of cells, the less compact is the model. Apart from grid models, the
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stixel worlds (�g. 1.3e) model the environment with adjacent rectangular sticks of a
given width and height ([Pfei�er 2011]). The sticks limit the free space in the front
of the car. The stixel worlds are more compact than grid-based representations
but they represent less spatial details. For instance, free spaces are represented
implicitly. Finally, feature-based maps (�g. 1.3f) are the most compact environment
models since obstacles are represented by simple geometric shapes. The environment
is represented by a set of landmarks ([Thrun 2003]), or by geometric patterns such
as points, lines and polygons ([Thrun 2003, Burgard 2008]). Lines are used for
detecting and delimiting lanes ([Beyeler 2014]). Bounding boxes are frequently used
for tracking cars or pedestrians ([Barth 2009, Enzweiler 2009]).

Despite their di�erences, the environment models are rather complementary. For
instance, sensors producing point clouds can be used for building occupancy grids.
Then, the latter can be used in turn to build stixel worlds [Pfei�er 2011]. Choosing
an environment model depends actually on the function that will be implemented
upon the model. For instance, for the fusion of measurements from heterogeneous
sensors, occupancy grids are well-adapted [Thrun 2005]. For a parking assistant sys-
tem, bounding boxes are enough to warn the driver whether the car is approaching
an obstacle too closely.

Another challenge for environment models is the support of dynamics. The
detection and tracking of moving objects require sophisticated techniques that
have to take time into account. The objective is to estimate at each time step
both position and speed of moving objects. For instance, �ltering techniques have
been intensively applied for developing dynamic grid based environment models
([Coué 2006, Gindele 2009, Danescu 2011, Vatavu 2014]). The dynamics allow to
predict the future state of moving objects, to assess risk of collisions and to plan
further actions ([Laugier 2011]).

1.2.2 Occupancy grids

The present thesis focus on occupancy grids for a historical reason. The e-Motion
project-team common to INRIA Rhône-Alpes and the LIG (Laboratory of Infor-
matics of Grenoble) has developed a family of perception algorithms called Bayesian
Occupancy Filter (BOF) ([Coué 2006, Nègre 2014, Rummelhard 2015]). The hard-
ware integration of BOF was included in the long-term plan of the team. However,
BOF takes multi-sensor occupancy grids as input. Then, a hardware integration of
BOF requires �rst a successful hardware integration of occupancy grids.

Occupancy grids have been initially developed by Moravec and Elfes in the
mid-80s ([Moravec 1985, Elfes 1987, Moravec 1988, Elfes 1989b, Elfes 1989a]). They
have been widely used for mapping the environment of indoor and outdoor robots
([Thrun 2003, Stepan 2005, Burgard 2008, Jessup 2014]). They have been also
adopted as a base of automotive perception algorithms ([Coué 2006, Weiss 2007,
Schmid 2010, Laugier 2011, Nuss 2015]). In the automotive context, an occupancy
grid represent the driving environment with a collection of cells paired with their
occupancy probabilities. The location of empty spaces and obstacles is estimated
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from the spatial disposition and the occupancy probabilities of cells.

(a) The driving environment (b) The corresponding occupancy grid

Figure 1.4 � An example of a driving environment in the front of a car and the
corresponding occupancy grid

Figure 1.4 shows an example of a driving environment modeled by occupancy
grids. Sensors mounted on board an intelligent vehicle observe the environment
and provide measurements (�g. 1.4a). The occupancy grid on �g. 1.4b represents
the environment as a 2D �at grid composed of squared cells. The occupancy grid
framework computes the probability that each cell is occupied. Cells with occupancy
probabilities close to zero are likely empty. Those with occupancy probabilities close
to unity are likely occupied. Finally, those non discovered by sensors have unknown
state: neither occupied nor empty. Their occupancy probabilities are equal to 1/2.

The occupancy grid framework is based on probabilistic principles. This pro-
vides the following advantages. Measurements from sensors are noisy due to sensor
imperfections and external conditions like the temperature or the lighting condi-
tion. The probabilistic approaches allow occupancy grids to handle appropriately
the uncertainties of sensor measurements by modeling them with probabilistic dis-
tributions. By this way, measurement uncertainties are taken into account in the
process of multi-sensor fusion. This enables the fusion of heterogeneous sensors with
di�erent characteristics mounted at di�erent locations on the car.

Occupancy grids support the common range sensors used in robotics such as
LIDARs, radars, ultrasonic and stereo-vision. The fusion of multiple and heteroge-
neous sensors yields two advantages. First, the fusion allows to add more sensors
in order to get more information about the environment. Using multiple sensors
increases the sensor coverage of the environment and enables a redundancy of in-
formation that can be useful whenever a sensor fails. Second, the fusion improves
robustness. It allows to overcome the physical limitations of a sensor alone. For in-
stance, in dark luminosity, cameras are less e�cient but can be reinforced or replaced
by LIDARs ([Laugier 2011]).

Finally, the subdivision of the environment into cells allows to represent at the
same time occupied regions, free regions and unknown regions. The notion of cells
present a low level abstraction that is enough for performing basic taks for mobile
robots like free space searching, path planning, obstacle avoidance and navigation.



10 Chapter 1. INTRODUCTION

Objects are modeled by occupied cells, regardless of their nature. This makes occu-
pancy grids suitable for representing unstructured environments like in urban area.

1.3 Objective: multi-sensor fusion module

The present thesis aims to integrate the computation of multi-sensor occupancy
grids on a hardware embedded on-board intelligent cars. This is equivalent to build
the Multi-sensor Fusion (MSF) module depicted on �g. 1.5. The role of the
module is to fuse the measurements periodically produced by range sensors. Within
a period, the module takes as inputs range measurements and fuses them into a
unique occupancy grid.

Occupancy
Grid

Sensor

Sensor

... MSF
SW / HW

Figure 1.5 � The Multi-sensor Fusion (MSF) module composed of sensors and a
software (SW) and hardware (HW) integration of MSF

The occupancy grids produced by the MSF module include only the occupancy
probability of each cell. No information about dynamics is included. The MSF
module is intended to be paired with the INRIA Rhône-Alpes's perception algorithm
BOF ([Coué 2006]). The latter identi�es, through a Bayesian �lter, which cells are
likely dynamics and estimates their velocities.

The timeline of the execution of MSF module coupled with the BOF algorithm
is illustrated on �g. 1.6. At each iteration, a process called Multi-sensor Fusion
(MSF) builds an Occupancy Grid (OG) by fusing all measurements produced by
on-board sensors. After that, the occupancy grid is processed by the BOF in order
to extract the information about the dynamics of cells and their velocities. At an
iteration t, the BOF takes as inputs both the occupancy grid produced by MSF, and
the dynamics and the velocities of cells computed at iteration t− 1. It subsequently
produces estimations about the velocities of cells.

The long-term objective is to embed the MSF module on cars commercialized
on the automotive market. This intends to enable cars to monitor their driving
environment by using multiple sensors mounted on-board. Environment monitoring
is required to move cars from driving automation level 2 toward automation level
3. Targeting the automotive market, and the automotive domain in general, implies
that the MSF module is subjected to the following constraints:

• First, computations have to be performed in real-time. The rate of production
of occupancy grids must be at least equal to the rate of sensor measurements.
By respecting this, the MSF module follows the evolution of the environment
as it is captured by sensors.
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Figure 1.6 � How BOF exploits the occupancy grids built by the MSF module

• Second, a mass production cannot a�ord expensive hardware. Thus, the inte-
gration must be realized on low-cost computing platforms.

• Third, the computing platform must have a low electrical power-consumption
to �t within the limited source of electrical energy on cars. A low energy
consumption is also required to face environmental challenges.

• Finally, the HW/SW integration of occupancy grids must be safe. Safety
includes handling sensor uncertainties, knowing numerical errors during com-
putations, and guarantying determinism.

1.4 Addressed problem

To show the challenges imposed by the above constraints, let us detail the computing
demands required by occupancy grids, the computing performance available on low-
cost and low-power processing platforms, and the safety challenges involved by the
HW/SW integration of occupancy grids.

1.4.1 Computing requirements of occupancy grids

The computing requirements of occupancy grids are in�uenced by the number of
cells, the number of sensor measurements and the real-time requirement. To model
the driving environment of a car, an occupancy grid with thousands to millions of
cells is required. For instance, an occupancy grid of 100 m-by-100 m with a cell size
of 10 cm-by-10 cm contains 1 Million of cells. When extended in three dimensions
with a height of 2 m, the occupancy grid will contain 20 Millions of cells.

Concerning the number of measurements, common range sensors such as LIDARs
or stereo camera provide thousands to million of measurements per second. When
these numbers are multiplied by the number of cells, the real-time calculation of
occupancy grids requires to execute a dozen of Billions of operations per second in
order to guaranty a minimum of latency.
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For implementing occupancy grids, a digital model of real-number operations is
required in order to process probabilities. Thanks to the availability of processors
with hardware �oating-point units and to their wide support by di�erent program-
ming languages, occupancy grids are traditionally implemented and tested with
�oating-points ([Coué 2006, Wurm 2010, Hornung 2013, Nègre 2014]). However, a
real-time processing of occupancy grids require in practice a hardware having a com-
puting performance with a dozen of Giga Floating Points Per Second (GFLOPS).

1.4.2 Hardware constraints

Those Billions of Floating Points Per Second can be found on workstations.
Hence, occupancy grids have been integrated and experienced into worksta-
tions composed of a high-end CPUs and/or a Graphical Processing Unit (GPU)
([Yguel 2006, Homm 2010, Adarve 2012]). These platforms provide �exibility for
testing algorithms and proof of concepts. GPUs allow to apply parallel computing
techniques for calculating simultaneously the occupancy probabilities of several cells
([Nègre 2014]).

These platforms are not however certi�ed for being used for automotive appli-
cations. In addition, they are expensive to purchase and have high power con-
sumption. The power consumed by a high-end CPU is about 50 W ([Dargie 2015,
Abou-Of 2016]). A GPU consumes more than hundreds of watts ([Stroia 2015]). To
asses these numbers, the engine of a mild hybrid-electric vehicle is equipped with
an electric energy storage of up to 150 Wh ([Burke 2007]). If the same quantity of
energy powered a high-end CPU and GPU, the energy storage would drain in less
than two hours.

The AUTOSAR � a joint initiative of industrial players for managing the com-
plexity of automotive electric and electronic architectures � reported that the pro-
cessing platforms considered as safe and reliable for automotive applications are
mainly based on microcontrollers ([Heinecke 2004]). In recent years, due to the
increasing number and the diversity of automotive applications, automotive manu-
facturers and suppliers have gradually increased the computing power by utilizing
dedicated embedded CPUs ([Monot 2010]).

Microcontrollers and embedded CPUs designed for automotive applications re-
spect the constraints of low-cost and low-power. They are also designed upstream
to answer to the requirements of safety and reliability of automotive applications.
However, microcontrollers and embedded CPUs have low computing performance
compared to workstations. They are not able to process the dozen of Billions of oper-
ations per second required for processing occupancy grids in real-time. Furthermore,
microcontrollers and embedded CPUs have limited �oating-point performance. The
advent of embedded parallel processing platforms such as embedded GPUs may be
seen as an alternative ([NVIDIA 2015]).

We have explored the use of embedded parallel architecture for computing oc-
cupancy grids ([Rakotovao 2015b, Rakotovao 2015a]. In a previous work, the oc-
cupancy grid framework has been integrated on an embedded platform based on
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many-cores. The platform is described in [Melpignano 2012]. It is composed of 64
independent computing cores. Programming paradigms based on parallel computing
techniques have been experienced to meet the real-time objective. The integration
achieved real-time performance while consuming less than 1 W of power. However,
such platform is still at an experimental phase. Parallel processing platforms are
not yet ready for critical automotive tasks such as perception where certi�cation is
primordial in order to guaranty safety.

1.4.3 Safety challenges involved by the HW/SW integration

Sensor uncertainties Occupancy grids constitute a computational model of the
driving environment. Information about the environment are derived from sensors
mounted on-board the car. Thus, occupancy grids must re�ect what the sensors have
sensed. Since sensor measurements are uncertain, the process of building occupancy
grids must take into account measurement uncertainties when computing occupancy
probabilities.

Numerical errors Occupancy grids are a well established probabilistic framework
for performing multi-sensor fusion. Probabilities are real-numbers. A computer is
�nite. On a numerical point of view, processing probability calculations on �nite
resource introduces forcibly a numerical error. Calculations cannot be processed
with arbitrary precision. The di�erence between the mathematics and the numerics
must be known in order to ensure safety and robustness.

For instance, assume that a high-level application has to decide whether a cell
is occupied or empty. For this purpose, the occupancy probability of the cell is
compared to a threshold. To make a reliable decision, the comparison must take
into account the numerical error involved by the SW/HW integration of probability
calculations.

Determinism Given a set of sensor measurements, the occupancy probabilities
computed by the SW/HW integration must be known deterministically. Determin-
ism means here that numerical values of occupancy probabilities must be the same
regardless of technical details such as programming language, compilers, compiling
options or processor architecture. In fact, if the values of occupancy probabilities
change if one of the above parameters is modi�ed, then the SW/HW integration
is not robust with respect to technical details. That reduces the safety and the
reliability of the HW/SW integration.

1.5 Research contribution

To deal with the computing requirements, the hardware constraints and the safety
challenges, both theoretical and algorithmic improvements of occupancy grids are
required for a successful HW/SW integration of the MSF module. For this pur-
pose, this thesis introduces the Integer Occupancy Grid framework. Integer
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Occupancy Grids express the occupancy state of a cell through an integer called oc-
cupancy index. Integer Occupancy Grids support probabilistic fusion of multiple
sensor. Their originality consists in the process of multi-sensor fusion as being an
arithmetic addition of occupancy indexes.

The main contributions of this thesis are listed below:

• The formulation of the theoretical foundation of the paradigm of Integer
Occupancy Grids and the multi-sensor fusion through integer arithmetic.

• The exploration of algorithmic data structure for storing Integer Occupancy
Grids.

• The design of algorithms for computing Integer Occupancy Grids. The com-
putation of Integer Occupancy Grids takes into account sensor uncertainties.

• The theoretical and experimental study of the numerical errors involved by
Integer Occupancy Grids in order to verify their accuracy.

• The application of Integer Occupancy Grids for the fusion of four automotive
LIDARs mounted on a prototype car.

• The experimental validation of the HW/SW integration of Integer Occupancy
Grids on an embedded CPU. The integration is able to fuse LIDARs into
an Integer Occupancy Grid whit a real-time performance on a low-cost and
low-power embedded CPU.

1.6 Thesis overview

To conclude this chapter, this manuscript presents the theoretical development of
Integer Occupancy Grids and their experimentation on an intelligent car equipped
with multiple range sensors. The remainder of the manuscript is composed by the
following chapters.

Chapter 2 reviews the paradigm of standard occupancy grids. It presents some
basics of probability calculus followed by the de�nition of occupancy grids with
probabilistic terms. A review of the literature about the computation of occupancy
grids is provided thereafter.

Chapter 3 introduces the Integer Occupancy Grid framework. It explains how
to represent occupancy probabilities with integers and how to perform probabilistic
multi-sensor fusion based on integer arithmetic.

Chapter 4 describes the application of Integer Occupancy Grids for fusing mul-
tiple range sensors mounted on an experimental intelligent car. It presents the
integration of Integer Occupancy Grids on an embedded CPU designed for automo-
tive applications. Experimental results, performance analyses and discussions are
presented in this chapter.

Finally, chapter 5 concludes with an evaluation of the work performed and
presents perspectives for future research.



Chapter 2

STATE-OF-THE-ART ON

OCCUPANCY GRIDS

2.1 Basics of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Occupancy Grid Framework . . . . . . . . . . . . . . . . . . . . 21

2.3 Mono-sensor occupancy grid . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Multi-sensor occupancy grid . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Data structure for occupancy grids . . . . . . . . . . . . . . . . . . . 43

The objective of this thesis is to develop the Multi-sensor fusion (MSF) module.
The role of the module is to fuse periodically the measurements from multiple range
sensors mounted on a car. The module implements the Occupancy Grid framework
on a processing platform. To master both theoretical and algorithmic foundations of
the framework, this chapter reviews occupancy grids: their formal de�nition, their
computation, and the algorithmic data structures for storing them for an HW/SW
integration.

The occupancy grid framework was initially developed by Moravec and Elfes in
the mid-80s ([Moravec 1985, Elfes 1987, Moravec 1988, Elfes 1989a, Elfes 1989b]).
It uses the Theory of Probability for handling sensor uncertainties 1. This chapter
begins with a brief review of the basics of probability in Section 2.1. The concepts
of probability will be used to give a formal de�nition of occupancy grids in the
next section. Section 2.3 reviews the computation of occupancy grids from a single
sensor measurement. The case of multi-sensor measurements is reviewed in Section
2.4. Finally, the algorithmic data structures used for storing occupancy grids are
presented and discussed in Section 2.5.

2.1 Basics of Probability

The mathematical study of probability begun between the 16th and the 17th cen-
turies. Precursor works were realized by mathematicians Girolamo Cardano, Blaise
Pascal and Pierre de Fermat who studied the mathematical treatment games of
chance. In 1718, Abraham Moivre published the �rst textbook on probability the-
ory entitled �The Doctrine of Chances or a Method of Calculating the Probability of

Events in Play� ([Moivre 1718]). In 1763, a �rst version of the theorem of Bayes was

1 The Dempster-Shafer Theory of Evidence, the fuzzy sets, and other formalisms have been also

applied in the literature for handling sensor uncertainties and for building grid-based environment

models ([Ribo 2001, HoseinNezhad 2002, Noykov 2007, Moras 2014, Yu 2015]).
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�rst introduced in a posthumous paper attributed to Thomas Bayes ([Bayes 1763]).
After that, a more precise formulation of the theorem was established by Pierre
Simon de Laplace in the beginning of the 18th century ([Laplace 1812]).

At the beginning of the 20th century, probabilities are applied in various scienti�c
disciplines. However, a mathematical foundation proper to theory of probability and
application-independent was still missing. Kolmogorov �lled this gap by giving an
axiomatic foundation of the theory of probability ([Kolmogorov 1956]). Probabilities
are no more limited to game of chance and di�erent sementical interpretations of
probability have appeared as reported by [Jaynes 2003]. Despites the di�erences of
interpretation, the mathematics rely on the same theory.

The probability theory can be explained through the notion of random variables.
Probabilities are computed over the possible values of such variables. The probabil-
ity of a variable can be conditioned by the value of another variable. This gives the
concept of conditional probabilities. Besides, two random variables can be though
independent. The above concepts constitute the basics of probability required for
understanding the present manuscript. They are part of the mathematical theory
of probability, independent of any application context. In the scope of this thesis,
probabilities can be interpreted in various ways. Such interpretations are anticipated
and discussed at the end this section.

2.1.1 Random variables

A random variable X is a variable subject to modi�cation and that can take on
multiple values. A random variable can designate the result of an experiment, the
state of a system, the value of a measurement, etc. For instance, the result of the
toss of a coin is a random variable X that can take on two values: head or tail.

Let X denotes a random variable and S the set of all possible values of X.
The random variable X is discrete if S is �nite or is countably in�nite. The toss
of a coin or the roll of a die are for instance two examples of discrete random
variables. The random variable X is called real-valued if S is a subset of R. For
instance, the roll of a die is a real-valued random variable that has six possible
values: 1, 2, 3, 4, 5, 6. Finally, the random variable X is continuous if X is real-
valued and S is uncountably in�nite. For instance, the temperature measured by
a thermometer is a continuous random variable since the measurement can be any
real number between a minimal temperature and a maximal temperature.

2.1.2 Probability

De�nition 2.1.1. Let X be a discrete random variable, S the set of all possible

values of X, and x an element of S. The probability distribution of X is a

function P that assigns a non-negative real number to each value x of X such that:

P (x) ≥ 0 and
∑
x∈S

P (x) = 1 (2.1)
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The quantity P (x) denotes the probability that X takes a value x. From eq.
(2.1) follows that P (x) is a real-number between 0 and 1.

De�nition 2.1.2. Let X be a discrete random variable having N possible values

x1, . . . , xN . The values xi, i ∈ {1, . . . , N} are equiprobable if:

P (x1) = . . . = P (xN ) = 1/N (2.2)

If X is continuous, it has in�nite number of possible values, then intuitively
the probability P (x) is null. A function that allows to capture the probability
distribution a continuous variable is the cumulative distribution function.

De�nition 2.1.3. Let X be a continuous random variable. The cumulative dis-

tribution function FX denotes the function that assigns to a real number a the

probability that the value of X is less than or equal to a: FX(a) = P (X ≤ a).

The cumulative distribution function is a monotonically increasing function. No-
tice that the de�nition of cumulative distribution function is also valid for real-valued
discrete random variable.

De�nition 2.1.4. Let X be a continuous random variable and FX its cumulative

distribution function. If the cumulative distribution function of X is di�erentiable,

its derivative pX is called the Probability Density Function (PDF):

pX(a) =
dFX(a)

da
(2.3)

In order to simplify the notations, we will denote pX(x) by p(x). The PDF p(x)

of a continuous random variable X respects the following properties. First, since
FX(x) is a monotonically increasing function, then p(x) is a positive or null function.
Second, unlike probabilities, the values of the PDF of X are in R and is not always
limited to the interval [0, 1]. Third, like probabilities, the integral of a PDF is equal
to 1:

+∞∫
−∞

p(x)dx = 1 (2.4)

A common example of PDF is the Gaussian function with parameters σ and µ:

p(x) =
1√

2πσ2
exp

{
−(x− µ)2

σ2

}
(2.5)

The parameters σ and µ denote respectively the standard deviation and the mean
of the distribution.

2.1.3 Conditional probability and the Theorem of Bayes

Let X and Y be two random variables, and SX and SY the sets of all possible values
of X and Y . Consider the variable Z that takes as a value the pair (x, y) where
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x ∈ SX and y ∈ Sy. The variable Z forms a random variable. If X and Y are
discrete, the probability distribution of Z is called joint distribution of X and
Y , and is noted by P (x∧y). It denotes the probability that X takes value x and Y
takes value y. If X and Y are continuous, the PDF of Z is a multivariate function
denoted by p(x ∧ y) and is called joint probability density function of X and
Y .

De�nition 2.1.5. Let X and Y be two random variables. Let y be the value of Y .

If X and Y are discrete and P (y) > 0, then the conditional probability of X

given Y denotes the quotient:

P (x|y) =
P (x ∧ y)

P (y)
(2.6)

If X and Y are continuous and if p(y) > 0, the conditional probability density

function of X given Y is de�ned by the quotient:

p(x|y) =
p(x ∧ y)

p(y)
(2.7)

The conditional probability P (x|y) and the conditional PDF p(x|y) satisfy:∑
x∈SX

P (x|y) = 1 and
∫
x∈R

p(x|y)dx = 1 (2.8)

Two main theorems follow from the de�nition of conditional probabilities: the
Theorem of Total Probability and the Theorem of Bayes.

Theorem 1. Theorem of Total Probability

. Let X and Y be two random variables, then

P (x) =
∑
y

P (x|y)P (y) if X and Y are discrete (2.9)

p(x) =

∫
y∈R

p(x|y)p(y)dx if X and Y are continuous (2.10)

The strength of the above theorem is that it allows to compute the probability of x
as a function of the conditional probability of x given all possible values of Y .

Theorem 2. Theorem of Bayes

. Let X and Y be two random variables, then

P (x|y) =
P (y|x)P (x)

P (y)
=

P (y|x)P (x)∑
x′
P (y|x′)P (x′)

(discrete) (2.11)

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
x′
p(y|x′)p(x′)dx′ (continuous) (2.12)
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The Theorem of Bayes can be extended in the case where X is discrete and Y
is continuous:

P (x|y) =
p(y|x)P (x)

p(y)
(2.13)

Similarly, if X is continuous and Y is discrete, the extension of the Theorem of
Bayes gives:

p(x|y) =
P (y|x)p(x)

P (y)
(2.14)

2.1.4 Independence

This section gives a mathematical de�nition of independence. No semantical inter-
pretation of the concept of independence is emitted.

De�nition 2.1.6. Two random variables X and Y are mutually independent if

P (x ∧ y) = P (x)P (y) (discrete) (2.15)

p(x ∧ y) = p(x)p(y) (continuous) (2.16)

A necessary and su�cient condition of the mutual independence of two random
variables X and Y is:

P (x|y) = P (x) (discrete) (2.17)

p(x|y) = p(x) (continuous) (2.18)

Let Z be a random variable. The variables X and Y are conditionally inde-
pendent if:

P (x|y ∧ z) = P (x|z) (discrete) (2.19)

p(x|y ∧ z) = p(x|z) (continuous) (2.20)

The independence of X and Y is conditioned by the knowledge that the value of Z
is z. Notice that X and Y are conditionally independent does not mean that they
are mutually independent.

2.1.5 Interpretation of probability

The subsections 2.1.1 to 2.1.4 gave the mathematical basics of probabilities, re-
gardless of their semantical interpretation. In the present thesis, the meaning of a
probability can be interpreted in two ways: in the frequentist view or in the bayesian
view.

The frequentist interpretation of a probability is associated to random variables
that represent a physical observation. The process (or the experiment) leading to
the observation can be repeated for a large number of time in order to a�ect a
probability to a random variable. For instance, consider a human operator that
rolls a die. Let X be the discrete random variable that represents the result of a
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roll. For computing the probability that a roll gives X = 3, the human operator
rolls the die m number of times, checks the result, and counts the number n of times
where the result is 3. When m is a large number, [Kolmogorov 1956] states that the
ratio n

m becomes very closed to the real value of P (X = 3). Therefore, P (X = x)

is interpreted as the probability or the chance of the event �X takes the value x� to
occur after a long run of trials.

Besides, on a bayesian point of view, a probability represents the degree of
certainty associated to a statement. The probability P (x) measures how certain is
the statement �X takes the value x� [Jaynes 2003]. For instance, in the example of
the roll of a die, assume that the human operator is blindfolded. He rolls the die and
one asks to him to guess the result. Let X denotes the result guessed by the human
operator. It is a discrete random variable with values in {1, 2, 3, 4, 5, 6}. Then since
the human operator is blindfolded, he cannot state absolutely that the result of the
roll is x. However, he can answer with a degree of con�dence P (x) that the result
of the roll is X = x.

Unlike the frequentist interpretation, the bayesian interpretation does not re-
quire a repetition. Moreover, it allows to apply probabilities for reasoning under
uncertainties, where information about a random variable are only partial and in-

complete. The Theorem of Bayes is essential for reasoning under uncertainty. For
understanding its importance, let us consider the following example. Peter is on
the way back to his home. By far, he sees through a window that the light is on.
Therefore, he thinks that someone is inside his house.

Let us now analyze this example with random variables. Let X be the random
variable that represents the presence of a person within Peter's home. Two values
are possible: yes or no. The statement X = yes means that �someone is within
the room� while X = no means �no one is within the room�. Additionally, let
D represent the status of the light in Peter's home. The light can be on or off .
By observing that the light is on (D = on), Peter thinks that someone is inside
(X = yes). However, since Peter is still far from his house, he cannot be certain
that there is actually a person inside.

The Theorem of Bayes allows to computes the degree of certainty of Peter about
the presence of a person in his house:

P (x|d) =
P (d|x)P (x)

P (d)
(2.21)

where, x ∈ {yes, no} and d ∈ {on, off}. The probability P (x|d) is called the
posterior distribution of X while P (x) is called prior distribution of X. The
probability P (d|x) is called the generative model. It describes probabilistically a
causal relation about how the variable X in�uences the value of the variable D. For
instance, knowing that there is someone inside the house, the probability that the
light is on is 70%. Therefore, when no observation is not available, the degree of
certainty about the value of a variable is described by the prior distribution. Once
an observation is available, the Theorem of Bayes of Bayes allows to update the
degree of certainty by using the generative model.
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2.2 The Occupancy Grid Framework

The occupancy grid framework aims to model the environment of a mobile robot by
using measurement from range sensors ([Elfes 1989a]). The framework follows the
following principles. An occupancy grid is a grid-based representation of the envi-
ronment. It subdivides the environment into a collection cells. A cell is a portion of
the environment that can be occupied by an obstacle or not. The occupancy grid
framework infers the state of a cell from sensor measurements. Measurement uncer-
tainties are modeled by probability distributions called sensor models. The latter
serve for computing the occupancy probability of each cell, that is the probability
that a cell is occupied. The occupancy probabilities can be derived from a single
sensor measurement or from multiple measurements.

In the following sub-sections, let us give successively an overview of the problem
of environment modeling, followed by de�nitions of the concepts of sensor model,
grids, and cells. A formal de�nition of occupancy grids is given thereafter.

2.2.1 Problem overview

An occupancy grid serves as an environment model of the world in which a mobile
robot operates. The world is composed of various physical obstacles of di�erent na-
tures, with di�erent sizes and physical properties. In the context of an autonomous
car, the term �obstacle� designates any living beings or objects that can be found in
a tra�c scene. Example of obstacles are human beings, animals, vegetation, cars,
bicycle, buildings, road infrastructure, tra�c signs, etc.

Modeling the physical world means estimating where obstacles are located and
where are the empty regions. As illustrated on �g. 2.1a, such information should be
captured by the environment model which is an occupancy grid in the this thesis.
As shown on �g. 2.1b, modeling the surrounding world with an occupancy grid
requires two major steps. First, sensors sense the physical world and provide outputs
called measurements. Second, sensor measurements are processed for building an
occupancy grid. Hence, the resulting occupancy grid models the physical world as
�seen� by the sensors.

2.2.2 Sensor model

For retrieving information about the world surrounding an autonomous vehicle or a
mobile robot in general, range sensors are commonly used [Elfes 1989b, Thrun 2005,
Siciliano 2008, Eskandarian 2012]. A range sensor is a device that senses the world
by exploiting the properties of a physical support such as light, radio waves, or
acoustic waves. The process of sensing outputs a measurement that re�ects the
world as sensed by the sensor.

Range sensors commonly used in robotics include laser scanners, time-of-�ight
(ToF) sensors, vision sensors, radars, etc. Thus, the measurement can be a single
point in the space, a collection of points, a distance, a full image with depth infor-
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Figure 2.1 � Modeling the world into an occupancy grid

mation, etc. The mathematical nature of the measurement depends on the type of
the sensor. It can be a scalar, a vector, a set of vectors, a matrix, and so forth.

A range sensor has a limited �eld-of-view (FOV). The FOV is the extent of the
world observable by the sensor. Only obstacles located within the FOV can in�uence
the value of the measurement of a sensor. For instance, �g 2.2 shows an example
of a range sensor having a FOV represented by a gray sector. The environment
is composed of two obstacles: one within the sensor's FOV and another outside.
The sensor senses the obstacle located inside it's FOV and returns a measurement
z accordingly.

Sensor
device FOV

Obstacles

z

Measurement

Sensing
process

Figure 2.2 � A range sensor senses the world within its FOV and returns a measure-
ment z

Let us now look for a mathematical model that describes the process of sensing.
Such model consists to a mathematical relation between the measurement and the
cause of the measurement. For this purpose, let us consider the example of a sensor
which measurement depends on the distance to the nearest obstacle.

Let z denote a measurement and d the distance to the nearest obstacle. Thus,
the mathematical model of the process of sensing must be a mathematical relation
between z and d. Assume that the sensor is perfect. Since, the measurement z
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depends on the distance d, when the value of d is known, it should be possible to
determine the value of z in a deterministic manner. Consequently, for a perfect
sensor, there would exist a function f such that z = f(d).

However, in reality, if a sensor observes twice the same obstacle located at the
same distance, it may output two di�erent values of measurement. That means,
sensors are actually imperfect and measurements are uncertain. In practice, mea-
surements do not depend only on the distance to the sensed obstacle. External
conditions such as the temperature of the environment, the lighting condition, or
the materials of the sensed obstacle may in�uence on the measurement. Uncertain-
ties may be also due to imperfections of the sensor device, its mechanical parts, or
its electric/electronic components.

Thus, the mathematical relation between z and d has to take into account the
uncertainties of measurements. In order to capture sensor uncertainties, let us model
the relation between the measurement z and the distance d not with a deterministic
function, but with a PDF. A distance is a continuous value. Let us assume that the
measurement is also continuous. Then, the relation between z and d is modeled as
follows.

De�nition 2.2.1. A sensor model designates a conditional density func-

tion that describes the relation between a sensor measurement and the cause

of that measurement. It models the measurement uncertainties.

When a measurement z depends on the distance d to the nearest obstacle,

the sensor model is represented by the PDF p(z|d).

Herein, d is considered as the cause of z by abstracting the other parameters that
may in�uence the value of z. For a perfect sensor, by knowing the distance d to
the nearest obstacle, the corresponding measurement cannot be di�erent to f(d).
Hence, the sensor model is derived from the Kronecker's delta distribution:

p(z|d) =

{
1 if z = f(d)

0 otherwise
(2.22)

For building the sensor model of a non-perfect sensor, we can employ the fre-
quentist technique that consists in repeating the measurement process several times
in order to derive a probability distribution. A measurement is caused by the pres-
ence of obstacles within the sensor's FOV. In order to model the sensor's behavior,
multiple observation scenarios can be set up. A scenario consists to put obstacles at
a known location within the sensor's FOV. The sensor will react by giving measure-
ments. After repeating several scenarios, the sensor model can be built by using the
data about the obstacles, their locations relative to the sensor and the corresponding
measurements. Advanced statistical methods like those proposed in [Bishop 1995]
can be used for getting the PDF of the sensor model.
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Finally, the sensor model describes the process of sensing with a PDF. It keeps
track of the relation between a measurement and the physical world that has caused
the measurement. Let us see in the followings how to utilize the measurement for
building a computational model the physical world.

2.2.3 Grid and cells

The present thesis uses occupancy grids for modeling the driving environment of
autonomous cars. As indicated in their name, occupancy grids model a physical
world with a grid subdivided into cells. For understanding the principle of occupancy
grids, let us give a formal de�nition of the concept of grids and cells.

De�nition 2.2.2. Consider a bounded region-of-interest within a spatial world. A

grid is a subdivision of the region-of-interest into a �nite number of adjacent-but-

disjoint subregions. The subregions are called cells.

Let R denote the region-of-interest, G the grid, N the number of cells, and ci the

i-th cell. Therefore,
G = {ci}, i = 1, . . . N

∀i 6= j : ci ∩ cj = ∅

R =

N⋃
i=1

ci

Depending on the application, a grid can be one-dimensional (1D), two-
dimensional (2D) or three-dimensional (3D). On the example on �g. 2.3a, the
region-of-interest is a rectangular region in the front of an ego vehicle. A 2D grid
subdivides the region into multiple cells on �g. 2.3b. Cells cover squared subregions
having the same size.

(a) (b)

Figure 2.3 � Subdivision of a region-of-interest into a grid

There exists di�erent forms of grid: cartesian, polar, spherical, etc. The grid is
called uniform if cells have uniform size. This thesis focus on uniform cartesian
grids. A grid has two parameters: a size and a resolution. The size measures
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the length of a 1D grid, the surface of a 2D grid or the volume of a 3D grid. The
resolution designates the density of cells within a grid. For instance, for a 3D grid,
the resolution designates the number of cells per 1 m3 of volume. For the same grid
size, a high resolution grid has then more number of cells than a lower one.

2.2.4 Occupancy state of cells

Once the concept of grid is formalized, let us see how it can be used for building a
computational model of a physical environment. The idea behind occupancy grids
is to capture the spatial structure of a physical environment through a grid. This
can be achieved by identifying which cells are occupied by obstacles, and which ones
are empty.

A cell is considered as �occupied� if an obstacle is located within the region
covered by the cell. The nature of the obstacle is irrelevant. In the context of an
autonomous car, an obstacle can be an object, a human, a vegetation, a building
and so forth. On a mathematical point of view, an obstacle is a bounded region
within the physical environment.

Hence, an obstacle A �occupies� a cell ci if it intersects partially or totally the
region covered by the cell: A ∩ ci 6= ∅. Consequently, a cell ci is considered as
occupied if there exists at least one obstacle A that intersects with it:

∃obstacle(A) : A ∩ ci 6= ∅ (2.23)

At the opposite, a cell is empty if no obstacle intersects with it:

∀obstacle(A) : A ∩ ci = ∅ (2.24)

Equations (2.23) and (2.24) guaranty that a cell is either occupied or empty.
Then, occupiedness and emptiness are actually mutually exclusive and exhaustive.
Thus, the occupancy state of a cell can be de�ned as a random variable as follows.

De�nition 2.2.3. Let G be a grid and ci a cell of G. The occupancy state of cell

ci is a binary random variable si which value is oi if ci is occupied and ei otherwise.

Since the occupancy state si is a discrete random variable, the sum of the prob-
ability of its values is equal to 1:

P (oi) + P (ei) = 1 (2.25)

2.2.5 Occupancy Grids

The objective of the occupancy grid framework is to estimate the occupancy state of
all cells of a grid. Assume that at a given instant, sensors observe the surrounding
obstacles and return measurements. The framework utilizes these measurement to
estimate whether a cell is occupied or empty. We suppose that the position of
sensors relative to the grid is known. In the literature, this problem is commonly
called occupancy grid mapping at known position [Thrun 2005].
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De�nition 2.2.4. Let z1, . . . , zK denote measurements from K number of

sensors and G a grid. An Occupancy Probability is a function Pz1,...,zK
that maps a cell to the probability that the latter is occupied given sensor

measurements:

Pz1,...,zK : G 7→ ]0, 1[

ci 7→ P (oi|z1 ∧ . . . ∧ zK)
(2.26)

The term inverse sensor model (ISM) designates a particular case of

occupancy probability computed from a single measurement z:

Pz : G 7→ ]0, 1[

ci 7→ P (oi|z)
(2.27)

The probability P (oi|z) is called ISM to di�er it from the sensor model p(z|d).
In one hand, an ISM P (oi|z) estimates the e�ect of a sensor measurement on the
occupancy state a cell. On the other hand, the sensor model p(z|d) estimates the
e�ect of physical location of obstacles on the sensor measurement.

Besides, an occupancy probability is interpreted in the bayesian signi�cation of
probabilities. It measures how certain is the statement �si = oi� regarding sensor
measurements. That means, if the statements �si = oi� and �si = ei� are equiprob-
able, a cell ci can be occupied, but it can be also empty. Then, the occupancy state
of ci is actually unknown. Since si is a binary random variable, the equiprobability
occurs if and only if the occupancy probability is equal to 1/2. Consequently, if the
occupancy probability is less than 1/2, the cell is likely empty. If it is more than 1/2,
the cell is likely occupied.

De�nition 2.2.5. Let G be a grid and z1, . . . , zK be the measurements

from K number of sensors. An Occupancy Grid (OG) is a function that

maps a collection of measurements z1, . . . , zK to the set of the occupancy

probabilities of all cells of G:

OG(z1, . . . , zK) = {P (oi|z1 ∧ . . . ∧ zK),∀ci ∈ G} (2.28)

Particularly, an occupancy grid OG(z) built from a single measurement z

is called mono-sensor occupancy grid.

Figure 2.4 shows an example of a scenario with the corresponding occupancy
grids. The scenario is on the top-left of the �gure. It shows two sensors observing
the environment in the front of a car. The �rst sensor has sensed an obstacle which
corresponds to a pedestrian. It returned a measurement z1. The latter is used for
computing the occupancy grid OG(z1) on the top-right of the �gure. The second
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Figure 2.4 � Example of a scenario with the corresponding occupancy grids

sensor has also sensed another obstacle which corresponds to a car in the front. It
returned a measurement z2 that is subsequently used for generating the occupancy
grid OG(z2) on the bottom-left of the �gure.

When both sensors are taken into account, they are fused into a unique oc-
cupancy grid OG(z1, z2) depicted on the bottom-right of the �gure. Both the
pedestrian and the car in the front are represented on OG(z1, z2). Notice that
on OG(z1), OG(z2) and OG(z1, z2) represent the environment as seen by the sen-
sors. Cells corresponding to obstacles sensed by sensors have occupancy probabilities
greater than 1/2. Cells that sensors see as empty have occupancy probabilities less
than 1/2. Finally, the occupancy probability of the cells outside the �eld-of-view of
sensors are equal to 1/2.

According to De�nition 2.2.5 (page 26), �building an occupancy grid� is equiva-
lent to computing the occupancy probabilities of all cells of a grid ([Moravec 1988,
Elfes 1989b]). In the followings, let us see the approaches proposed in the literature
for building occupancy grids.

2.3 Mono-sensor occupancy grid

The problem of building a mono-sensor occupancy grid is described as follows. A
sensor observes a physical world and provides a measurement z. The process of
sensing is described by the PDF of the sensor model p(z|d). By knowing z and
p(z|d), how to build the occupancy grid OG(z)?

This section reviews the di�erent approaches proposed in the literature for
tackling the above problem. Approaches di�er from 1D occupancy grids to high-
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dimensional ones (in 2D or 3D). This section focuses on 1D linear grids and 2D
cartesian grids. It also considers only kind of sensors called single-target sensor
and de�ned as follows.

De�nition 2.3.1. A single-target sensor is a range sensor which �eld-of-view

is composed of a unique line-of-sight. A line-of-sight is modeled by a ray starting

from the sensor, emitted towards a given direction and having a maximal range. The

sensor outputs a scalar measurement z given the distance d to the nearest obstacle

along the line-of-sight. The sensor model is in the form of p(z|d).

Range sensors that output point clouds can be modeled as a collection of multiple
single-target sensors. For instance, each single point provided by LIDARs or RGB-
D cameras can be modeled as the output of a unique single-target sensor. For a
LIDAR, a single-target sensor is constituted by a single beam. For a depth image
from vision-sensors, a pixel is modeled as a single-target sensor.

The output of a sensor device can contain then multiple measurements. For
instance, an individual point among the point clouds returned by a LIDAR is con-
sidered as an individual measurement. The depth of a pixel within an image from
a stereo camera is also an individual measurement.

In the following, let us see how to build a 1D occupancy grid from an individual
measurement. After that, let us review the approaches for building 2D mono-sensor
occupancy grids based on cartesian grids.

2.3.1 One-dimensional mono-sensor occupancy grid

This section reviews the main approaches proposed in the literature for building
a 1D mono-sensor occupancy grid. Such occupancy grid model the physical world
along an individual ray of a single-target sensor.

Figure 2.5 illustrates the scenario of the measurement. The sensor observes the
world along a ray and returns a measurement z. The value of the later depends on
the distance d to the nearest obstacle. The sensor model p(z|d) is assumed to be
available. For modeling the world as it is viewed by the sensor along the ray, the
latter is subdivided into multiple cells forming a 1D grid. Let N denote the number
of cells, c1 the cell nearest to the sensor and cN the farthest cell. The symbol di
designates the distance of cell ci from the sensor.

According to the de�nition of occupancy grids (De�nition 2.2.5 (page 26)), build-
ing a 1D mono-sensor occupancy grid regarding a measurement z is equivalent to
computing the ISM P (oi|z) of all cells ci, i = 1, . . . , N . The state si of cell ci is a
binary random variable. The value of si is either empty (ei) or occupied (oi). To
compute the ISM, applying the Theorem of Bayes described in eq. (2.13) gives:

P (oi|z) =
p(z|oi)P (oi)

p(z|oi)P (oi) + p(z|ei)P (ei)
(2.29)

Hypothesis 2.3.1. Hypothesis of non-informative prior: P (oi) = P (ei) = 1/2.
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Figure 2.5 � Modeling the world from the sensor's viewpoint along a ray

Based on eq. (2.29), the probabilities P (oi) and P (ei), along with the PDFs
p(z|oi) and p(z|ei) are required for computing the ISM of a cell. In the absence of
any a priori information, the hypothesis of non-informative priors (Hypothesis 2.3.1
(page 28)) can be adopted to set the values of both P (oi) and P (ei).

The literature propose di�erent techniques for computing the PDFs p(z|si), si ∈
{oi, ei}. They can be classi�ed into three groups: the bayesian approach, the an-
alytics approach and the methods based on neural networks. Let us review these
approaches one-by-one.

2.3.1.1 Bayesian approach

The Bayesian approach computes the ISM by utilizing the sensor model. It was
proposed by Elfes in [Elfes 1989b]. This approach introduces the notion of grid
con�gurations for computing p(z|si), si ∈ {oi, ei}.

De�nition 2.3.2. Let G be a grid with N number of cells. A grid con�guration

g designates a conjunction of the states of all cells of G:

g , x1 ∧ . . . ∧ xN where xj ∈ {oj , ej} (2.30)

By applying the Theorem of Total Probability over all possible grid con�gura-
tions, p(z|si) becomes:

p(z|si) =
∑
g

p(z|g ∧ si)P (g|si) (2.31)

Let us separate the set {g} of all possible grid con�gurations into two disjoint subsets
{gsi} and {gsi}. The state of cell ci is set to si within a grid con�guration gsi and
si within a grid con�guration gsi . Equation (2.31) gives:

p(z|si) =
∑
gsi

p(z|gsi ∧ si)P (gsi |si) +
∑
gsi

p(z|gsi ∧ si)P (gsi |si) (2.32)

Since for a grid con�guration gsi , the state of cell ci is si, then p(z|gsi ∧ si) =

p(z|gsi) and P (gsi |si) = P (gsi). For a grid con�guration gsi , the state of cell ci is
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si, therefore P (gsi |si) = 0. Equation (2.32) gives:

p(z|si) =
∑
gsi

p(z|gsi)P (gsi) (2.33)

For computing p(z|gsi), [Elfes 1989b] proposes to utilize the sensor model p(z|d)

where the distance d is replaced by the distance dh of the �rst occupied cell within
the con�guration gsi :

p(z|gsi) = p(z|dh) where (sj = ej∀j < h) and (sh = oh) (2.34)

Figure 2.6 presents the typical pro�le of a 1D occupancy grid. The ISMs are
plotted as a function of the cell indexes. The sensor measurement z lays in cell
ck. Before ck, the occupancy probabilities are almost null. Cells before ck are likely
empty according to the sensor. In the vicinity of ck, occupancy probabilities increase
until reaching a value greater than 1/2 on ck. Cell ck is likely occupied according
to the sensor. After that, occupancy probabilities drop progressively to 1/2. The
occupancy states of cells beyond ck are unknown to the sensor.
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Figure 2.6 � Typical pro�le of a Bayesian ISM of a single-target sensor

Bene�ts The approach of [Elfes 1989b] has the following properties. First, the
ISM is computed from the sensor model. The sensor model expresses measurement
uncertainties given the physical location of the sensed obstacle. By considering all
possible grid con�gurations, the Bayesian approach evaluates all possible location
of the obstacle by taking into account the measurement and its uncertainty.

Second, the value of ISMs take into account the way in which the physical world
along the ray is subdivided into a linear grid. The grid subdivision is characterized
by the distances di, i ∈ {1, . . . , N}, of cells. These distances are taken into account
in eq. (2.34). Hence, the Bayesian approach establishes a relation between the
physical world, the sensor uncertainties, the grid subdivision and the value of the
ISMs. Third, the Bayesian approach can be applied for any single-target sensor as
long as the sensor model p(z|d) is available.
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Limitations The main drawback of the Bayesian approach is its exponential com-
plexity. In fact, the number of grid con�gurations where the state of a single cell
is known is equal to 2N−1. Thus, the number of elements in the sum of eq. (2.33)
grows exponentially with the number of cells. This hinders practical implementation
of this approach, especially when real-time performance is required.

[Pathak 2007] proposed an extension of the Bayesian approach where an ISM is
computed in a linear complexity. To improve complexity, cell states are assumed
to be conditionally independent given sensor measurements. Such assumption is
however incorrect along a ray. For instance, on �g. 2.6, the occupancy states of
cells behind ck tend to be unknown since the obstacle within ck hides them from the
sensor. Then, the occupancy states of these cells are in�uenced by the occupancy
state of ck.

2.3.1.2 Analytic approach

The analytic approaches for computing P (oi|z) have been motivated by the expo-
nential complexity of the Bayesian method in [Elfes 1989b]. The analytic approaches
propose to approximate p(z|si), si ∈ {oi, ei}, or P (oi|z) by a continuous function.

Analytic model of P (z|si). In order to avoid the enumeration of all possible
grid con�gurations as in the Bayesian approach, [Konolige 1997] and [Yguel 2006]
propose to approximate p(z|si) with an analytic form:

p(z|si) ≈ pdistz (di) (2.35)

where pdistz (x) is a continuous function de�ned over the distance x from the sensor.
This function is based on a Gaussian distribution in [Konolige 1997] and on power
function in [Yguel 2006].

Analytic model of P (oi|z). Instead of an analytic form of p(z|si), other authors
in the literature, especially in recent works, propose to model directly the ISM
P (oi|z) by a continuous function as follows:

P (oi|z) ≈ P distz (di) (2.36)

The function P distz (x) is a continuous function de�ned over the distance x from the
sensor. Various forms of this function are proposed in the literature, especially for
LIDARs and stereo-cameras.

Figure 2.7 shows some examples of the approximation of ISMs by a continuous
function. The symbol k denotes the index of the cell ck where the obstacle is
located regarding the sensor measurement. Such cell is located at distance dk from
the sensor. For the purpose of comparison, the original non-approximated ISM
computed by the bayesian approach is plotted on �g. 2.7a.

When the sensor model is Gaussian, the ISM is approximated by a continuous
function based on a Gaussian distribution. This technique is applied for LIDARs in
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(a) Bayesian ISM [Elfes 1989b]
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Figure 2.7 � Examples of approximations of the ISM by continuous functions

[Homm 2010, Einhorn 2011, Adarve 2012, Rakotovao 2015a]. The approximation of
the ISM is depicted on �g. 2.7b. Similar technique is applied for a 3D-point of a
stereo camera in [Payeur 1998, Gartshore 2002, Nguyen 2012]. Besides, [Weiss 2007]
proposes the linear approximative ISM depicted on �g.2.7c. Furthermore, an ISM
having only three possible values is adopted in [Wurm 2010, Hornung 2013]. The
pro�le of such ISM is plotted on �g. 2.7d.

Bene�ts Analytic models enable a fast computation of ISMs. The value the ISM
P (oi|z) is obtained by evaluating continuous functions at distance di. The complex-
ity of ISM does not depend anymore on the number of cells. It becomes O(1).

Limitations Analytic approaches have drawbacks. First, occupancy probabilities
become continuous functions de�ned over distances with analytic approaches. They
are no more a function de�ned over a grid as speci�ed in De�nition 2.2.4 (page
26). Consequently, analytic approaches ignore the subdivision of the physical world
into a grid. The sizes of cells are not taken into account by the ISM. Second,
by approximating directly the ISM or the PDF p(z|si), the analytic approaches
bypass the sensor model p(z|d). By doing so, they lose the relation between the
measurement uncertainty, the size of cells and the value of ISMs.
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2.3.1.3 Neural networks-based approach

Neural networks can be applied for computing ISMs ([Thrun 1993, Burgard 1999,
Thrun 1998, Kortenkamp 1998, Thrun 2001b]). The idea is to train a neural network
in a controlled environment where the occupancy state of cells and the measurements
are known. Based on these training data sets, the neural network learns to estimate
the occupancy state of cells regarding measurements. After the training, the neural
network acts as a function approximator of the ISM: it takes as input a measurement
and provides an estimation of the occupancy probability. The sensor model can be
taken into account during the training.

Bene�ts The advantage of this approach is that once the neural network is
trained, it produces an approximate of the ISM within a computational complexity
independent to the number of cells. Once the network is trained, the complexity of
computing an ISM becomes O(1).

Limitations As an approximation, the accuracy of the neural network depends
on the training process and on the training data sets. A huge volume of training
data is required to ensure safety. The training data must include huge number of
tra�c scenarios to be sure that the neural network can react safely in any tra�c
situation. However, collecting and processing such a data is a challenging task, even
for big tech companies. As a solution, [Thrun 1993] trained a neural network within
a simulated environment. Training on real tra�c scenarios is though mandatory to
ensure safety.

2.3.1.4 Summary

Table 2.1 summarizes the properties of the discussed approaches for computing
ISMs. The following properties are highlighted. Is the approach based on sensor
model? Does it takes into account the grid subdivision? What is the complexity of
the computation of the ISM of a single cell? The symbol N indicates the number
of cells in the grid. Finally, is the approach safe to be applied in the domain of
automotive?

Bayesian Analytic approach Neural networks
Sensor model Yes No Yes
Grid subdivision Yes No No
Safe Yes No No
Complexity O(2N−1) O(1) O(1)

Table 2.1 � Comparison of the approaches for computing the ISM

The Bayesian approach computes ISM from sensor model and takes into account
the grid subdivision. By doing so, it keeps a mathematical relation between uncer-
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tainty of measurement, the size of cells, and the value of the ISM. The above relation
makes the Bayesian approach safe. On the opposite, both analytic approach and
neural networks lose the above relation. The Bayesian approach su�ers however
from a computational complexity which explodes exponentially with the number of
cells. This motivates the development of another approach based on the Bayesian
one but having a lower complexity.

2.3.2 Two-dimensional cartesian mono-sensor occupancy grid

The previous section presented various techniques for building a 1D occupancy grid
for a single-target sensor. The occupancy grid covers a linear FOV along a ray.
However, two dimensional or three dimensional grids are required for capturing the
spatial structure of the physical world surrounding an autonomous car. The present
section focuses on 2D cartesian grids.

As in the previous section, let us consider a ray of a single-target sensor. How
to build a 2D cartesian occupancy grid given a measurement from that ray? The
2D grid is illustrated on �g. 2.8b. The physical world is subdivided into squared
cells forming a 2D cartesian grid denoted by G. A single-target sensor observes the
environment along the ray and returns a measurement. Building an occupancy grid
de�ned over the grid G is equivalent to computing the occupancy probabilities of all
squared cells given the measurement from the ray.

Sensor device

Obstacle

Ray
(local grid      )

(a) First step: local 1D grid L
Sensor device

Obstacle

(b) Second step: global 2D grid G

Figure 2.8 � Two steps for building a mono-sensor 2D cartesian occupancy grid

The cells of the grid G can be classi�ed into two groups: those which inter-
sect with the ray, and those which do not. In the �rst group, cells that do not
intersect with the ray are not a�ected by the measurement. That means, the mea-
surement does not provide any information about the occupancy state of these cells
([Moravec 1988]). Consequently, their occupancy states regarding the measurement
are unknown. Their occupancy probabilities given the measurement are set to 1/2.

In the second group, the occupancy probabilities of cells that intersect with the
ray are computed in two steps:
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• First, the ray is subdivided into a local 1D grid L. The occupancy grid based
on the grid L is computed with respect to the measurement (see �g. 2.8a).

• Second, the 1D occupancy grid is sampled by the global 2D cartesian grid G
in order to get a 2D cartesian occupancy grid (see �g. 2.8b). A 2D cell takes
the occupancy probability of the 1D cell that hits it.

The 2D grid is called global since it is not attached to a speci�c sensor
device. This approach composed two steps is widely used in the literature
([Elfes 1989b, Payeur 1997, Fair�eld 2007, Homm 2010, Nguyen 2012]). The �rst
step can be achieved by applying one of the previous methods for computing an
ISM over 1D grid (see Section 2.3 (page 27)). The second step requires an algo-
rithm called range mapping algorithm that perform the following task.

De�nition 2.3.3. The task of range mapping consists in �nding out all cells of

an occupancy grid that intersect with the FOV of a sensor.

For single-target sensors, the FOV is modeled by rays. Hence the range mapping
consists in �nding out all 2D cells that are intersected by rays. Fig. 2.8b shows
range-mapping along a ray. The cells intersected by the ray are colored in gray.

In the literature, two families of algorithms are mainly used for performing range
mapping for a single-target sensor: line rasterization algorithms and traversal algo-
rithms. Let us make a brief comparison between both algorithms.

2.3.2.1 Line rasterization algorithms

Line rasterization consists in rendering a visually acceptable line on a 2D image.
The line can be de�ned by two end points or by a couple of an origin and a di-
rection vector. The most well known algorithm for line rasterization is the Bresen-
ham's algorithm [Bresenham 1965] and its variants [Pitteway 1967, Van Aken 1984,
Foley 1990]. These algorithms draw a straight line between two end points localized
at two pixels.

Line rasterization algorithms are designed to be executed fast on a computing
hardware for optimizing the rendering time of a line on a image. Time constraints are
preponderant for intensive graphics applications such a video games and Computer-
Aided Design (CAD) software. To reduce the execution time, line rasterization
algorithms manipulate mainly integer arithmetic. They work within a discrete 2D
frame that allows to identify a pixel by a couple of integers.

An analogous is be made between an image and a 2D occupancy grid where
a pixel would correspond to a cell. With this analogous, the range-mapping can
be performed by applying line rasterization algorithms. This takes pro�t of the
e�ciency of rasterization algorithms for �nding out cells traversed by rays of a
single-target sensor ([Miller 2005, Fair�eld 2007, Nguyen 2012, Souza 2015]). The
algorithm may however miss cells that are actually traversed by a ray. In fact, the
objective of the rasterization is only to produce an acceptable visual aspect of a line
on an image, instead of �nding out all pixels traversed by a line.
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2.3.2.2 Traversal algorithm

If line rasterization algorithms are speci�cally designed for working within an image,
traversal algorithms are not restricted to images, they can be applied to any 2D
grid. The objective of a traversal algorithm is to �nd out exactly all cells of a grid
traversed by a line. Unlike line rasterization algorithms, no traversed cell is missed
by a traversal algorithm.

The algorithm widely used for occupancy grid traversal is the Ama-
natides'algorithm ([Amanatides 1987, Cleary 1988]). This algorithm was applied
in [Fournier 2007, Einhorn 2010, Wurm 2010, Shade 2011, Hornung 2013] for per-
forming range mapping on occupancy grids. This algorithm works within a con-
tinuous frame of reference. It consequently manipulates real-numbers. Operations
on real-numbers are implemented in �oating-point in practice ([Amanatides 1987]).
This hinders the utilization of the algorithm on computing platforms that do not
have �oating-point units such as some microcontrollers. On embedded CPUs that
support �oating-points, integer arithmetic are faster than �oating-point operations.
Since a line rasterization algorithm requires only integer arithmetic, its execution
time is faster that that of a traversal algorithm.

2.3.2.3 Summary

To summarize, the algorithms used for performing range-mapping for occupancy
grids are based on either line rasterization algorithms or traversal algorithms. Ta-
ble 2.2 (page 36) compares both algorithms. Traversal algorithms �nd out exactly
all cells traversed by a ray. They cannot miss traversed cells. However, they pro-
cess real-numbers. In opposite, line rasterization algorithms process only integers.
Nevertheless, they may miss �nding out some cells even if the latter are actually
traversed by the ray.

Line rasterization algo. Traversal algo.
Pros Process only integers No missed cell
Cons Can miss cells Process real-numbers

Table 2.2 � Comparison of the application of the Bresenham's algorithm and the
Amanatides' algorithm for range mapping

Which of line rasterization algorithms and traversal algorithms are suited for
occupancy grids? Both algorithms have been used in the literature. The absence
of miss guaranties that the occupancy probability of every cell traversed by a ray
is updated with respect to the measurement corresponding to the ray. Hence, we
consider in this thesis traversal algorithms for performing range-mapping. Traversal
algorithms do not have misses. They process however real-numbers.

With high number of cells, executing a range mapping algorithm along an in-
dividual ray is time consuming. In fact, a ray hits a large number of cells. When
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processing range mapping on multiple rays, the number of hit cells increases ex-
ponentially. Hence, when both real-time and low-power constraints have to be
considered, a little improvement on the execution time of range mapping along an
individual ray becomes a considerable energy saving and time saving when process-
ing range mapping for multiple rays.

For embedded hardware, operations on integers are faster and more power e�-
cient than the simulation of operations on real-numbers (like �oating-points). There-
fore, a traversal algorithm that works with integers can be a solution to improve both
execution time and the power e�ciency of the HW/SW integration of occupancy
grids into embedded platforms.

2.4 Multi-sensor occupancy grid

In this section, let us review the di�erent methods used in the literature for building
multi-sensor occupancy grid. The problem statement is the following. Given mea-
surements z1, . . . , zK fromK number of sensors (K > 1), how to build the occupancy
grid OG(z1, . . . , zK)? Various approaches are proposed in the literature. They that
can be classi�ed into two groups. The �rst group assumes that sensor measurements
are conditionally independent while the second one refutes this hypothesis. Unlike
the previous section, these approaches are no more limited to single-target sensors.
Unless noticed, they can be applied to any kind of range sensors.

In the �rst group, the hypothesis about the independence of sensors may be
conditional or not. This hypothesis allows to build multi-sensor occupancy grids
incrementally as shown on �g. 2.9a. First, mono-sensor occupancy grids OG(zk) are
built independently from each measurement zk. After that, a process called Multi-
Sensor Fusion (MSF) combines them into a unique multi-sensor occupancy grid
OG(z1, . . . , zK). Hence, the MSF is central for the fusion of multiple independent
sensors.

(a) Independent sensor measurements (b) Forward sensor model

Figure 2.9 � Approaches for building multi-sensor occupancy grids

Besides, the second group is composed by a unique paradigm called the for-
ward sensor model ([Thrun 2001a]). Unlike the previous group, this paradigm
refutes the independence hypothesis of sensor measurements. As depicted on �g.
2.9b, sensor measurements z1, . . . , zK are taken into account simultaneously (instead
of independently) for computing the multi-sensor occupancy grid OG(z1, . . . , zK).
Forward sensor model does not compute intermediary mono-sensor occupancy grids.
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In the remainder of this section, let us review the main techniques that adopt
the independence hypothesis. These techniques include the Bayesian fusion, the
Independent Opinion Pool, the Linear Opinion Pool, and the maximum policy. After
that, let us see the paradigm of forward sensor model.

2.4.1 Bayesian fusion

The Bayesian fusion is initially introduced by Moravec in [Moravec 1988]. It estab-
lishes a probabilistic formulation of the MSF by using the Theorem of Bayes and
the hypothesis on sensors independence.

Suppose that our objective is to build an occupancy grid from two sensor mea-
surements z1 and z2. According to De�nition 2.2.5 (page 26), building the occupancy
grid OG(z1, z2) is equivalent to the calculate the occupancy probability P (oi|z1∧z2)
for any cell ci. But instead of estimating P (oi|z1∧z2), Moravec proposed to compute
the so-called odds ratio:

P (oi|z1 ∧ z2)
1− P (oi|z1 ∧ z2)

=
P (oi|z1 ∧ z2)
P (ei|z1 ∧ z2)

(2.37)

By applying the Theorem of Bayes on P (si|z1 ∧ z2), si ∈ {oi, ei}, we obtain:

P (si|z1 ∧ z2) =
p(z2|si ∧ z1)P (si|z1)

p(z2|z1)
(2.38)

Consequently, eq. (2.37) becomes:

P (oi|z1 ∧ z2)
1− P (oi|z1 ∧ z2)

=
P (oi|z1)
P (ei|z1)

p(z2|oi ∧ z1)
p(z2|ei ∧ z1)

(2.39)

Hereafter, the following hypothesis is introduced.

Hypothesis 2.4.1. Sensor measurements are conditionally independent given the

occupancy state of cells.

This hypothesis means that p(z2|si∧z1) = p(z2|si), si ∈ {oi, ei}. This hypothesis
is too strong for some sensors where measurements may be correlated in some way
([Moravec 1988]). However, the hypothesis is valid for measurements from recent
sensor devices like LIDARs. By considering the above hypothesis (2.39) gives:

P (oi|z1 ∧ z2)
1− P (oi|z1 ∧ z2)

=
P (oi|z1)
P (ei|z1)

p(z2|oi)
p(z2|ei)

(2.40)

The terms p(z2|si), si ∈ {oi, ei} can be derived from the Theorem of Bayes:

p(z2|si) =
P (si|z2)p(z2)

P (si)
(2.41)

Hence, by inserting eq. (2.41) into eq. (2.40), and by considering that P (ei|z1) =

1− P (oi|z1) and P (ei) = 1− P (oi), we obtain:

P (oi|z1 ∧ z2)
1− P (oi|z1 ∧ z2)

=
P (oi|z1)

1− P (oi|z1)
· P (oi|z2)

1− P (oi|z2)
· 1− P (oi)

P (oi)
(2.42)
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Finally, we have:

P (oi|z1 ∧ z2) =
P (oi|z1) · P (oi|z2) · [P (oi)− 1)]

P (oi) · [P (oi|z1) + P (oi|z2)− 1]− P (oi|z1) · P (oi|z2)
(2.43)

Equation (2.43) is the central equation of the Bayesian fusion. It allows to
compute P (oi|z1∧z2) from the ISMs P (oi|z1) and P (oi|z2) generated independently
from two di�erent measurements. Thus, the Bayesian fusion allows to build multi-
sensor occupancy grids in an incremental way.

2.4.2 Independent Opinion Pool

The formula of Independent Opinion Pool combines evidences x and y from two
independent sources ([Berger 1985]):

F (x, y) =
xy

xy + (1− x)(1− y)
(2.44)

In the above equation, the quantities x and y do not designate occupancy proba-
bilities. However, under the assumption of non-informative priors, P (oi|z1 ∧ z2) is
mathematically equivalent to F (P (oi|z1), P (oi|z2)):

P (oi|z1 ∧ z2) = F (P (oi|z1), P (oi|z2)) if P (oi) = P (ei) = 1/2 (2.45)

Proof Assume that P (oi) = 1/2 and insert that into eq. (2.43).

In other words, the Independent Opinion Pool is equivalent to the Bayesian
fusion under the non-informative priors hypothesis. It also allows to compute multi-
sensor occupancy grids in an incremental way.

Bene�ts Two important characteristics of the Independent Opinion Pool formula
are noticed in [Elfes 1989b]: the property of mitigation and the property of rein-
forcement. When measurements are con�icting, they result into two contradictory
opinions about the occupancy state of a cell. The property of mitigation increases
the uncertainty about the state of a cell. For instance, if a sensor estimates that a
cell is likely occupied while another one says that the same cell is likely empty, their
fusion will conclude that the occupancy state of the cell is actually unknown. The
property of mitigation makes the occupancy probability tends to 1/2.

On the opposite, the property of reinforcement means that the fusion of similar
opinions result into a more certain opinion. This occurs when measurements are non-
con�icting. For instance, if two sensors estimate that a cell seems to be occupied, the
fusion will say, with a higher certainty, that the cell is actually occupied. Similarly,
if both sensors estimate that a cell seems to be empty, the fusion will state, with a
higher certainty, that the cell is actually empty.
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Limitations In most of the cases, measurements are not con�icting (if it was not
the case, the used sensors would not be reliable at all). The property of reinforce-
ment makes occupancy probabilities tend to 0 or to 1 after fusing only few number
of measurements. However, in practice, the number of measurements can reach
thousands to million. Then, occupancy probabilities reaches practically 0 or 1 when
implemented on a hardware.

This leads though to a problem of numerical instability on the implementation
viewpoint. When the occupancy probability of a cell reaches 0 or 1, the fusion
becomes non-reactive to new measurement. The fusion of a probability x with 1
returns 1. The fusion of x with 0 returns 0. New measurements cannot modify the
values of occupancy probabilities anymore once 0 or 1 is reached.

As a solution, the log-odds form of (2.45) are proposed in [Elfes 1989b]:

l(oi|z1 ∧ z2) = l(oi|z1) + l(oi|z2) where l(x) = log
P (x)

1− P (x)
(2.46)

The advantage of the above equation is that, unlike probabilities, log-odds are not
restricted between 0 and 1. The addition of log-odds is more numerically stable
than the addition, multiplication and division in eq. (2.45). The drawback is that
recovering occupancy probabilities from log-odds requires additional operations:

P (oi|z1 ∧ z2) = 1− 1

1 + exp(l(oi|z1 ∧ z2))
(2.47)

2.4.3 Linear Opinion Pool

The Linear Opinion Pool is an aggregation method for combining multiple opinions
from di�erent sources ([Berger 1985]). Each opinion has a relative weight ω that
quanti�es the con�dence in the corresponding information source. When applied to
occupancy probabilities, the Linear Opinion Pool gives ([Elfes 1989b]):

P (oi|z1 ∧ . . . ∧ zK) ,
K∑
k=1

ωkP (oi|zk) where
K∑
k=1

ωk = 1 (2.48)

In eq. (2.48), the fusion of ISMs is equivalent to a weighted average. The weights
allow to favor some sensors that may be more precise and more accurate than others.
This approach is not based on probabilistic principle. Di�erent methods have been
proposed for determining the weights. In [Thrun 1993], the weights are computed
by a neural network. In [Adarve 2012], weights are computed as a function of the
height of the points where laser beams of a LIDAR hit obstacles.

Bene�ts and limitations The weighted average enables mitigation in the case
of con�icting measurements. It does not reinforce however non-con�icting ones.
Hence, Linear Opinion Pool does not feature the property of reinforcement.
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2.4.4 Maximum policy

The maximum policy [Payeur 1997, Thrun 2005] fuses occupancy probabilities with
the following formula:

P (oi|z1 ∧ z2) , max(P (oi|z1), P (oi|z2)) (2.49)

Bene�ts Eq. (2.49) has the advantage of being conservative [Yguel 2008] and
simple to calculate. Moreover, it have no problem of numerical instability since it
does not perform any computations apart from a single comparison.

Limitations The maximum policy favors false positive. Assume that a sensor has
estimated that a cell is occupied. The occupancy probability is then greater than
1/2. Assume now that all the other sensors estimate that the cell is likely empty.
These sensors lead to occupancy probabilities less than 1/2. However, since the
multi-sensor fusion returns the highest occupancy probability, the cell will remain
likely occupied despite th measurements of the other sensors.

2.4.5 Forward sensor model

In the previous approaches, multi-sensor occupancy grids are built by combin-
ing multiple mono-sensor occupancy grids computed independently. This requires
the hypothesis that sensor measurements are independent. On the opposite, the
paradigm of forward sensor model rejects the hypothesis of sensor independence.
This paradigm was introduced in [Thrun 2001a].

A forward sensor model allows to �nd out the grid con�guration that explains
at the best the causes of a set of measurements. All measurements are considered
simultaneously (instead of independently) for estimating the grid con�guration. The
occupancy probabilities of cells are computed subsequently.

Given a set of measurements Z, the following function presents the intuitive
form of a forward sensor model:

h(g) = p(Z|g) (2.50)

The symbol g denotes a grid con�guration (see De�nition 2.3.2 (page 29)). The
higher is h(g), the more likely is the con�guration g. Hence, the most likely grid con-
�guration is the one that maximizes h(g). Consequently, �nding the most likely grid
con�guration becomes a problem of optimization that is resolved in [Thrun 2001a]
by applying the Expectation Maximization (EM) algorithm ([Dempster 1977]).

Bene�ts This approach has the following advantage. For sensors with low angular
resolution like sonars, the paradigm of forward sensor model produces occupancy
grids that are more consistent than those computed by the previous techniques. The
consistency means here that the occupancy grid re�ects better the spatial structure
and the spatial disposition of obstacles in the modeled physical world.



42 Chapter 2. STATE-OF-THE-ART ON OCCUPANCY GRIDS

Limitations The paradigm of forward sensor model is adapted for sensors with
low angular resolution. It is less applicable for single-target sensors like LIDARs
or stereo camera ([Thrun 2001a]). Besides, unlike the previous techniques, this
approach is not incremental. Sensor measurements cannot be integrated separately.
All measurements should be available before computing occupancy grid. Moreover,
the convergence of the EM algorithm can take a long computation time which makes
this approach inappropriate for real-time constraints.

2.4.6 Summary

To summarize, Table 2.3 (page 42) resumes the main properties of the approaches
for computing multi-sensor occupancy grids. The properties are the followings. Is
the fusion incremental? Does it support the property of reinforcement and the
property of mitigation? Is the implementation numerically stable? Does it process
operations on real-numbers? What are the arithmetic operators required by the
fusion approach? These properties in�uence on the quality of an approach, on
its e�ciency and on its computing requirements on an implementation viewpoint.
Finally, is the fusion safe?

Bayes./IOP LOP Max Policy Forward SM
Incremental Yes Yes Yes No
Reinforcement Yes No No Yes
Mitigation Yes Yes No Yes
Real-numbers Yes Yes Yes Yes
Arithmetic operator ×,÷,+,− ×,÷,+,− <,> ×,÷,+,−
Numerically stable No Yes Yes Yes
Safe Yes No No No

Table 2.3 � Comparison of approaches for computing multi-sensor occupancy grids

The forward sensor model is not incremental. It requires a long execution time
which makes it not adapted for safety applications where real-time constraints are
primary. The Bayesian fusion performs sensor fusion based on Bayesian principles.
Unlike the other approaches, the Bayesian fusion is incremental. It reinforces non-
con�icting measurements and mitigates the con�icting ones. The reinforcement and
the mitigation make the Bayesian fusion robust to the convergence or divergence of
sensor measurements.

However, the Bayesian fusion su�ers from a problem of numerical instability.
This makes the Bayesian fusion unsafe. The log-odds form of the Bayesian fusion
may be a solution. It requires though a HW/SW integration that is able to simulate
operations on real-numbers to perform the fusion. When the fusion is implemented
in �oating-points, dozens of GFLOPs is required in practice for computing multi-
sensor occupancy grids in real-time.
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2.5 Data structure for occupancy grids

In the context of autonomous vehicle, the purpose of occupancy grids is to model the
physical driving environment by using range sensors. The occupancy grid framework
is implemented as a software components of the autonomous driving system. Its role
is to build occupancy grids by fusing sensor measurements. Figure 2.10 presents a
software overview of an autonomous driving system based on occupancy grids. The
system is divided into three parts: occupancy grid building, occupancy grid storage,
and occupancy grid exploitation.
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Sensor
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.

Application

Application
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OG
(Spatial Database)

Actuator

Actuator
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Build OG Store OG Exploit OG

update

request

request

Figure 2.10 � Software overview of an autonomous driving system based on occu-
pancy grids

The occupancy grid storage can be viewed as a database that stores the occu-
pancy probabilities of all cells of the grid. Any application component that performs
computations on occupancy probabilities has to interact with the database. Occu-
pancy grid building is performed by a software implementation of the occupancy
grid framework. The later takes measurements from range sensors and updates the
values of occupancy probabilities stored within the database. To update the occu-
pancy probability of a cell, the old value of the probability is �rst fetched from the
database. Then, it is combined with the ISM computed from new sensor measure-
ments. Finally, the newly computed probability is stored back into the database.

Occupancy grids are exploited by various applications for reasoning based on
the environment model and for making driving decisions. Applications can be an
advanced perception, an obstacle tracking, a free path searching, a path planning,
a collision avoidance, etc. Some applications may need additional sensors such as
odometers, Inertial Measurement Units (IMUs), Global Positioning System (GPS)
or others. For instance, the perception algorithm BOF and its variants ([Coué 2006,
Nègre 2014, Rummelhard 2015]) requires IMUs to track the ego motion of a car.
Other applications make decisions and send commands to actuators. For instance,
the navigation application needs to steer or brake the car according to a planned
path and the evolution of the driving situation.

Regardless of the objective of the application, the latter need to request oc-
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cupancy probabilities from the database. The simplest request consists in getting
the occupancy probability of a single cell. Applications may though perform more
complex requests. For instance, navigation requires to �nd out the �rst occupied
cells within determined directions ([Fair�eld 2007]). The database will be requested
several times for this purpose. Another complex request consists to fetch the occu-
pancy probabilities of a block of adjacent cells having similar occupancy states. Due
to the spatial disposition of obstacles within a driving environment, adjacent cells
potentially have similar occupancy states. Free spaces are represented by blocks
of likely empty cells while an obstacle can occupy a block of more than one cell
([Mekhnacha 2008]).

Both occupancy grid building and occupancy grid exploitation have to be exe-
cuted in real-time to ensure safety. Both tasks require interactions with the database.
The performance of both tasks depends directly on the e�ciency of the database for
supporting these interactions. For instance, if the update of the occupancy prob-
ability of a single cell takes too long time, a multi-sensor occupancy grid will be
hardly built in real-time. If the database is able to answer fast to a request about
blocks of cells, this will accelerate considerably the access to occupancy probabilities
([Soucy 2004]).

The e�ciency of the database depends on the data structure that actually stores
occupancy probabilities. In the literature, two types of data structures are mainly
used: arrays and trees. Let us review them in the following paragraphs.

2.5.1 Array-based data structure

An array is an algorithmic data structure for storing a collection of a �xed number of
elements in an ordered manner. The location of an element is identi�ed by an integer
index as shown on �g. 2.11. Arrays can be considered as the basic data structure for
storing occupancy grids ([Elfes 1987, Moravec 1988, Borenstein 1991, Moravec 1996,
Coué 2006, Rakotovao 2015a]). They can store 1D, 2D or 3D occupancy grids. The
occupancy probability of cell ci is stored at the element of index i of the array.

1 Ni

... ...

Figure 2.11 � An array with a capacity of N elements

Bene�ts Arrays enable fast build-time of occupancy grids. The algorithms of
range-mapping reviewed in Section 2.3.2 (page 34) are designed and optimized for
arrays. Updating the occupancy probability of a cell is straight forward once the
index of cell is known.
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Limitations Arrays store a �xed number of occupancy probabilities as many as
cells. For a large and high resolution grid, the number of cells explodes. This has
two consequences. First, working on arrays is time consuming for navigation tasks
([Kambhampati 1986, Soucy 2004]). The latter need to �nd the location of obstacles
and free spaces. Obstacles (resp. free spaces) are modeled by blocks of adjacent
occupied (resp. empty) cells. Searching blocks of adjacent empty cells � or blocks of
adjacent occupied cells � within an array is however time consuming. Second, arrays
are memory consuming for grids with high number of cells. Memory consumption
is limiting especially for 3D grids ([Hornung 2013]).

2.5.2 Tree-based data structure

The tree-based data structures mainly used for storing occupancy grids are the
2d-trees. A 2d-tree 2 is a data structure composed of nodes organized into parent-
children relations. Fgure 2.12 shows two examples of 2d-trees. The tree is called
quadtree if d is equal to 2. It is called octree when d is equal to 3.

(a) Quadtree (b) Octree

Figure 2.12 � The tree structure of 2d-trees

The node at the top of the tree is called root. Every node except the root has
a unique parent. A node has exactly either zero or 2d number of children nodes. A
node that has no child is called leaf. Leaves are situated at the extremities of the
tree. The application of octrees for storing 3D occupancy grids was proposed by
[Payeur 1997]. Besides, quadtrees can be applied for the storage of 2D occupancy
grids ([Kraetzschmar 2004]).

2 The 2d-trees are originated from the domain of computer graphics for storing spatial data

([Finkel 1974, Samet 1984, Samet 1988]). The symbol d actually means the dimension of the

data to be stored. Quadtrees were initially designed for storing 2D points scattered on a

plan ([Finkel 1974]). They can be other 2D geometric patterns such as lines, polygons, circles,

etc ([Samet 1990]). In the beginning of 80s, octrees have been used for modeling 3D objects

([Meagher 1982]).
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2.5.2.1 Split

A grid covers a bounded physical region. When 2d-trees are applied to occupancy
grids, a correspondence exists between a node and a subregion. The root corresponds
to the whole region covered by the grid. To determine the region that corresponds
to an arbitrary node, the tree is traversed from the top to bottom in order to search
for the node.

The tree traversal starts from the root and goes down to the lower levels towards
the searched node. At each level, the region corresponding to the visited node is
split into 2d number of sub-regions if the visited node has children. The region
is split into four quadrants for a node of a quadtree and into eight octants for an
octree. Each sub-region corresponds to a children of the visited node. The split is
applied recursively until the search node is visited.

O x

y

(a) Quadtree

O x

z

(b) Octree

Figure 2.13 � The tree structure of 2d-trees with the corresponding spatial subdivi-
sion

Figure 2.13a shows an example of the application of the recursive subdivision.
Its objective is to determine the region that corresponds to the black node of the
quadtree on the left of the �gure. The corresponding region is colored in black on
the right of the �gure. The application of the recursive subdivision on an octree is
illustrated on �g. 2.13b.

2.5.2.2 Condition of merge

For 2d-trees, occupancy probabilities of cells are stored on leaves. Since a leaf
corresponds to a region, a single leaf can represents all cells included within its
region. Nevertheless, the cells must satisfy a precise condition, to be represented
by a single leaf. We will refer to the condition as condition of merge. Several
conditions of merge are proposed in the literature. They will be reviewed later.

When the cells included within the region of a leaf respect the condition of merge,
the leaf stores a unique value representative of the occupancy probabilities of the
cells. The value becomes then the occupancy probability of the cells.

If the cells do not respect the condition of merge, the leaf is extended downward.
It gets new children. The extension is applied recursively to each new children or
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grand children until the condition of merge is satis�ed.

2.5.2.3 Merge

Consider 2d sibling leaves (that are, leaves sharing the same parent). If the values
stored on sibling leaves are equal, the operation of merge is applied. The sibling
leaves are pruned out of the tree. The value is then transfered to their common
parent.

The operation of merge shrinks the tree upward. It is applied recursively as
long as there exist sibling leaves that stores equal value representative of occupancy
probabilities. The operation reduces the number of nodes within the tree whenever
some sibling nodes are pruned out.

2.5.2.4 Discussion

Bene�ts A leaf can represent all the cells included within its corresponding re-
gion. This approach makes 2d-trees more compact than arrays. Since a leaf can
represent several cell at once, the number of leaves becomes less than the number
of cells. In practice, the number of nodes is even an order less than the number of
cells ([Kraetzschmar 2004, Hornung 2013]). Besides, thanks to their compactness,
2d-trees consumes up to 2.5× less memory than arrays when mapping large environ-
ments such as a university campus or malls ([Kraetzschmar 2004, Hornung 2013]).

Thanks to the condition of merge, cells represented by a leaf share about the
same occupancy state. For instance, they all are likely occupied or likely empty. This
accelerates the exploitation of occupancy grids for applications that make decisions
based on the occupancy probabilities of groups of cells. Example of such applications
are free space search, path planning, navigation, etc([Soucy 2004, Fournier 2007,
Fair�eld 2007, Wurm 2010, Hornung 2013]).

Limitations The compactness of 2d-trees is lossy. The lossy compaction means,
given the same set of measurements, it is possible that the occupancy probability of
a cell is equal to a �rst value if the data storage was an array; and the occupancy
probability is equal to another value di�erent from the �rst if the data storage was
a 2d-tree.

The lossy compaction is due to the condition of merge. Several conditions of
merge have been proposed in the literature. They can be grouped in three: condition
based on intervals, condition based on one threshold and condition based on two
thresholds.

• The condition based on intervals subdivides the interval [0, 1] into multiple
equally-sized sub-intervals ([Kraetzschmar 2004]). Adjacent cells covered by
the region of a leaf satisfy the condition if their occupancy probabilities belong
to the same sub-interval. If it is the case, the leaf stores a value representative
of the sub-interval.
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• The condition based on one threshold uses one threshold between 0 and 1.
A cell is labelled as Occupied if its occupancy probability is greater than the
threshold. Otherwise, the cell is labelled as Empty. Cells covered by the region
of a leaf satisfy the condition is they all have the same label ([Fair�eld 2007]).
If it is the case, the leaf stores a value representative of the label.

• For the condition based on two thresholds, a cell is labelled as Occupied

if its occupancy probability is greater than a threshold near 1. On the
opposite, a cell is labelled as Empty if its occupancy probability is less
than a threshold near 0. As in the above condition, cells covered by
the region of a leaf satisfy the condition is they all have the same label
([Yguel 2008, Wurm 2010, Einhorn 2011, Hornung 2013, Li 2013]). If it is the
case, the leaf stores a value representative of the label.

Thus, a leaf does not store the occupancy probabilities of individual cells even
when it represents several adjacent cells at once. The value stored by a leaf replaces
the real values of the occupancy probabilities of cells included within the region
of the leaf. When this is not equal to the occupancy probabilities of individual
cells, the leaf alters the occupancy probabilities. This makes the compaction lossy
and impacts negatively on the safety and on the numerical con�dence about the
computation of occupancy probabilities.

2.5.3 Summary

2d-trees are more compact than arrays. The compaction accelerates the process of
decision making based on occupancy grids. It also reduces the memory consump-
tion especially when dealing with large and high-resolution grids. The compaction
is however lossy due to the conditions of merge proposed in the literature. This
leaves room for establishing new condition of merge that actually enables a lossless
compaction of occupancy grids.

In this chapter, we have seen the basics of probability and the formal de�nition of
occupancy grids and occupancy probability. We have also reviewed the approaches
and algorithms for building both mono-sensor and multi-sensor occupancy grids.
The data structures for storing occupancy grids have been also reviewed. Let us
proceed now over Chapter 3 to introduce the Integer Occupancy Framework and
present its impact over the issues discussed previously.
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The emphasis of the research in this thesis is the HW/SW integration of multi-
sensor occupancy grids on low-cost and low-power embedded platform. The integra-
tion is subject to real-time constraint and must take into account numerical errors,
sensor uncertainties and determinism of computations. The above requirements
ensure the safety of the HW/SW integration.

The previous chapter reviewed occupancy grids and presented their limitations.
The limitations concern the computation of mono-sensor occupancy grids, the com-
putation of multi-sensor ones, and their compaction into 2d-trees. These limitations
constitute challenges for getting a safe HW/SW integration.

This chapter tackles the limitations concerning the computation of multi-sensor
occupancy grids by using Bayesian fusion, and the compaction occupancy grids. The
Bayesian fusion enables incremental computation of multi-sensor occupancy grids.
It also supports reinforcement and mitigation of sensor measurements. It su�ers
though from a numerical instability and also requires to process Billions of opera-
tions on real-numbers to meet the real-time constraint. Besides, the compaction of
occupancy grids with 2d-trees is bene�cial for high-level applications that exploit
occupancy grids. The compaction proposed in the literature is however lossy.

To tackle these limitations, this chapter introduces a new paradigm called Inte-
ger Occupancy Grids. This paradigm pairs the values of occupancy probabilities
with integers. This property enables to process the Bayesian fusion through simple
arithmetic addition of integers. Integer arithmetic have signi�cant advantages in
term of SW/HW integration: their execution on processors is fast, they consume
less power, they are not erroneous and they are supported by most of the modern
computing platforms. Besides, the paradigm of Integer Occupancy Grids enables a
lossless compaction of occupancy grids.

This chapter begins by presenting formally the properties of the Bayesian fusion.
After that, sections 3.2 to 3.4 will introduce the mathematical foundation of the



50 Chapter 3. THE INTEGER OCCUPANCY GRID FRAMEWORK

Integer Occupancy Grid paradigm. The de�nition of Integer Occupancy Grids and
the fusion based on the paradigm will be presented in Section 3.4. Then, Section
3.5 will study the compaction of Integer Occupancy Grids.

3.1 Properties of the Bayesian Fusion

The Bayesian fusion performs multi-sensor fusion by combining occupancy proba-
bilities computed from di�erent measurements into a unique probability. It assumes
that sensor measurements are independent (see Section 2.4.1 (page 38)) Under the
non-informative prior, the Bayesian fusion becomes equivalent to the formula of
Independent Opinion Pool (see Section 2.4.2 (page 39)) When no measurement is
available, the non-informative prior is safe since it stipulates that the occupancy
state of a cell is unknown, neither occupied nor empty. The Bayesian fusion is then
expressed by the following proposition.

Proposition 3.1.1. Let z1, z2 be two sensor measurements. The occupancy proba-

bility of a cell ci given measurements z1 and z2 is:

P (oi|z1 ∧ z2) = F (P (oi|z1), P (oi|z2)) (3.1)

where F designates the fusion function de�ned as follows:

F (p, q) =
pq

(1− p)(1− q) + pq
(3.2)

To simplify the notation, the fusion operator is introduced in the subsequent
de�nition.

De�nition 3.1.1. The fusion operator designates the operator � that

combines two occupancy probabilities p and q as follows:

� : ]0, 1[×]0, 1[ 7→ ]0, 1[

(p, q) 7→ p� q = F (p, q)
(3.3)

The Bayesian fusion enables an incremental approach for computing multi-sensor
occupancy grids. It also features reinforcement and mitigation. The next paragraphs
will present these properties in a formal way.

3.1.1 Incremental fusion

The Bayesian fusion is incremental. Put mathematically, the incremental property
allows to compute a multi-sensor occupancy probability through multiple combi-
nations of mono-sensor occupancy probabilities. Proposition 3.1.1 (page 50) shows
that the occupancy probability given two sensor measurements is computed through
a combination of the occupancy probabilities computed independently from both
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measurements. This equation can be generalized to any number of measurements
as follows.

Property 3.1.1. Let z1, . . . , zk denote sensor measurements. Then

P (ci|z1 ∧ . . . ∧ zk) = P (ci|z1 ∧ . . . ∧ zk−1)� P (ci|zk) (3.4)

Proof The above property can be proved by replacing z1 with z1 ∧ . . . ∧ zk−1 and
z2 by zk in eq. (3.1).

The Inverse Sensor Model (ISM) P (ci|zk) appears in the above property. The
recursive application of the incremental property from z1 to zk gives:

P (ci|z1 ∧ . . . ∧ zk) = P (ci|z1)� . . .� P (ci|zk) (3.5)

The incremental property shows how a multi-sensor occupancy probability is derived
from the fusion of di�erent ISMs given multiple measurements.

Applied at the level of a grid, the incremental property enables the fusion of two
occupancy grids de�ned over the same grid as follows:

OG(z1, . . . , zk) = OG(z1)�∗ . . .�∗ OG(zk) (3.6)

The operator �∗ applies eq. (3.4) at each cell of the grid. Both eq. (3.4) and
eq. (3.6) express the Bayesian method for performing multi-sensor fusion based
on occupancy grids. Both equations require the independence hypothesis between
measurements and the non-informative prior hypothesis.

3.1.2 Reinforcement

Consider two measurements z1 and z2 and a cell ci. Assume that both measurements
re�ects the same opinion about the occupancy state of the cell. Assume for instance
that the cell considered to be occupied for both measurements. In term of occupancy
probability, the above assumption means that both P (oi|z1) and P (oi|z2) are greater
than 1/2. How about the result of their fusion P (oi|z1)� P (oi|z2)?

Assume that the fusion results into an occupancy probability less than 1/2. Then,
the fusion would estimate that the cell is likely empty. That conclusion is contra-
dictory to the measurements. Then, the fusion has to result into an occupancy
probability greater than 1/2. Even better, the fusion produces an occupancy prob-
ability that is greater than both P (oi|z1) and P (oi|z2). This is the property of
reinforcement.

The property of reinforcement occurs when both measurements estimate that the
same cell is empty. In general, the fusion reinforces the estimation of the occupancy
state of a cell given non-con�icting measurements. The property of reinforcement
is summarized in the following property.

Property 3.1.2. Let p and q be two occupancy probabilities of the same cell. Then

if p, q > 1
2 , then p� q > Max(p, q) (3.7)

if p, q < 1
2 , then p� q < Min(p, q) (3.8)
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The functions Min and Max returns respectively the minimum and the maxi-
mum between the input arguments. Equation (3.7) is illustrated by �g. 3.1a. When
both probabilities p and q estimate that a cell is occupied, the fusion increases p� q
towards 1. Figure 3.1b depicts eq. (3.8). When both probabilities p and q esti-
mate that a cell is now likely empty, the fusion reinforces the both estimations and
decreases p� q towards 0.

(a) (b)

Figure 3.1 � The property of reinforcement

3.1.3 Mitigation

Consider two measurements z1 and z2 and a cell ci. Assume now that the �rst mea-
surements estimates that an obstacle may occupy the cell. In opposite, the second
estimates that the cell is likely empty. Hence, both measurements are con�icting.
In term of occupancy probabilities, the above assumptions mean P (oi|z1) is greater
than 1/2 while P (oi|z2) is lesser. Both probabilities are either side of 1/2. How about
the result of their fusion P (oi|z1)� P (oi|z2)?

If the result of the fusion was greater than P (oi|z1), that would mean the fu-
sion has reinforced the opinion of the �rst sensor and has not taken into account
the opinion of the second sensor. Similarly, if the fused probability was less than
P (oi|z2), the opinion of the �rst sensor would not be taken into account. In conclu-
sion, P (oi|z1)�P (oi|z2) should reside between P (oi|z1) and P (oi|z2). That means,
the result of the fusion becomes closer to 1/2.

When measurements are con�icting, the fusion makes the occupancy state of
the cell more uncertain: neither likely occupied nor likely empty. The occupancy
probability tends to 1/2. This is the property of mitigation, summarized by the
following property.

Property 3.1.3. Let p and q be two occupancy probabilities of the same cell. Then

if p < 1
2 , q >

1
2 , |q − 1

2 | < |p− 1
2 |, then p < p� q < 1

2 (3.9)

if p < 1
2 , q >

1
2 , |q − 1

2 | > |p− 1
2 |, then q > p� q > 1

2 (3.10)

Figure 3.2 illustrates the above property. Consider a cell and two measurements.
The �rst measurement estimates that the cell is likely empty and produces the oc-
cupancy probability p < 1/2. For the second measurement, the cell is likely occupied
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with an occupancy probability q > 1/2. Both measurements are con�icting. Figure
3.2a shows that if q is closer to 1/2 than p, then p� q will be between p and 1/2. In
opposite, if it is now p which is closer to 1/2 than q, then p � q will be between 1/2

and q. In both cases, p� q approaches 1/2. The occupancy state of the cell becomes
more and more unknown after the fusion of con�icting measurements.

(a) (b)

Figure 3.2 � The property of mitigation

3.1.4 Group of probability under the fusion operator

In addition to the incremental fusion, the property of reinforcement and the support
of mitigation, the fusion operator also features the following properties.

Property 3.1.4. For all p, q, r ∈]0, 1[, the fusion operator features the following

properties:

(Closure) p� q ∈]0, 1[ (3.11a)

(Associativity) p� (q � r) = (p� q)� r (3.11b)

(Identity element) p� 1
2 = 1

2 � p = p (3.11c)

(Inverse element) p� (1− p) = (1− p)� p = 1
2 (3.11d)

(Commutativity) p� q = p� q (3.11e)

Proof Consider p, q, r ∈]0, 1[. According to the de�nition of the operator � (De�-
nition 3.1.1 (page 50)):

(Closure) p� q = F (p, q) ∈]0, 1[

(Commutativity) p� q = F (p, q) = F (q, p) = q � p
(Associativity) p� (q � r) = F (p, F (q, r)) = F (F (p, q), r)) = (p� q)� r

(Identity element) p� 1/2 = 1/2� p = F (p, 1/2) = p

(Inverse element) p� (1− p) = (1− p)� p = F (p, 1− p) = 1/2

Equation (3.11a) to (3.11d) satisfy the four axioms that allow to qualify the
interval ]0, 1[, together with the fusion operator �, as a group. The closure ensures
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that the fusion of two occupancy probabilities remains between 0 and 1. The fu-
sion operator is associative. Its identity element is 1/2. The inverse element of an
occupancy probability p is 1− p.

Equation (3.11e) shows that the fusion operator is commutative. Hence, the
algebraic structure (]0, 1[,�) is an abelian group. The commutativity ensures
that the order in which occupancy probabilities are fused does not matter. When
multiple measurements are available, the order of the integration of measurements
into an occupancy grid does not change the value of the �nal occupancy probabilities.

Remark. The fusion function combines probabilities within ]0, 1[. Zero and one
are deliberately excluded since an occupancy probability equal to 0 would mean that
the cell is certainly empty while 1 means certainly occupied. However, occupancy
probabilities never reach 0 or 1 since sensors are not perfect and measurements are
uncertain. Moreover, an occupancy probability equal to 0 or 1 introduces a problem
of numerical stability. In fact, we have:

∀p ∈]0, 1[: 1� p = 1 and 0� p = 0 (3.12)

The above equation means, once it is certain that a cell is occupied, its occupancy
probability remains at 1 even if incoming measurements estimates that the cell is
likely empty. Similarly, once a cell is certainly empty, it occupancy probability
cannot be updated anymore and stays at 0.

Equation (3.12) leads into a problem of numerical instability for a HW/SW
integration. After fusing few number of measurements that estimate that a cell
is empty, the occupancy probability becomes rapidly equal to 0 on the computing
platform, even if obtaining 0 is theoretically impossible (eq. (3.11a)). The same
problem occurs during the fusion of few number of measurements that estimate
that the cell is occupied. The occupancy probability reaches 1 and the estimation
of the occupancy state of the cell cannot be updated anymore despite incoming
measurements.

3.2 Set of probabilities

This section introduces the concept of set of probabilities. To gain an intuitive un-
derstanding of this concept and its usage, let us begin with an introductory example.

3.2.1 Introductory example

Consider a grid having four number of cells. The spatial dimension of the grid is
irrelevant. Figure 3.3a shows the occupancy probabilities of cells of a grid given two
measurements z and z′. On the �gure, both P (o1|z) and P (o3|z) are equal to a
number p−3. Both P (o2|z) and P (o4|z) are equal to p1.

Let us denote by S(z) the set of the values taken by the occupancy probabilities
of all cells of the grid. The set S(z) has only two elements denoted by p−3 and p1
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on �g. 3.3a. Consider another measurement z′. The �gure shows that S(z′) has
four elements p−2, p−1, 1/2 and p2. The values of the occupancy probabilities of all
cells given measurement z′ are di�erent to one another.

1/2

1

0

1 2 3 4
Cell index i

(a)

1

0

1 2 3 4
Cell index i

1/2

(b)

Figure 3.3 � Discrete nature of occupancy probabilities given sensor measurements

By proceeding to the cell-by-cell fusion of the measurements z and z′, the fusion
returns new values of probability that lie between 0 and 1. Let us denote by S(z, z′)

the set of the values of the occupancy probabilities given both z and z′. The result
of the fusion is depicted on �g. 3.3b. The set S(z, z′) has four elements p−4, p−2, p−1
and p3.

Hence, when measurements z and z′ are taken into account independently
or jointly, the value of the occupancy probability of any cell of the grid is in-
cluded within S(z) ∪ S(z′) ∪ S(z, z′). Let us denote by S the reunion of the
three sets and let us call it set of probabilities. The elements of S are
{p−4, p−3, p−2, p−1, 1/2, p1, p2, p3}. Notice that the elements of S(z, z′) were obtained
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by fusing the elements of S(z) with the elements of S(z′) through the fusion operator
�. That means the result of the fusion of two elements of the set of probabilities S
is also included within S.

To understand deeper the relation between the fusion operator and the set of
probabilities, let us consider again �g. 3.3b. Fusing p−1 with p−3 gives p−4 on cell c1.
On cell c3, the fusion of p−3 with 1/2 returns p−3 (in fact, 1/2 is the identity element
of the fusion operator). By assuming that p0 is equal to 1/2, the fusion of p0 and p−3
gives p−3. By considering these results, one can notice that p−1� p−3 = p−1−3 and
p0�p−3 = p−3. In other words, fusion of two elements of S can be computed by the
addition of the indexes of the elements. That means, the fusion is now computed
through an addition of integers.

3.2.2 De�nition of set of probabilities

After the above introductory example, let us now give a formal de�nition of set of
probabilities 1.

De�nition 3.2.1. A set of probabilities S is a set of real-numbers such

that:

(Inclusion into ]0, 1[) S = {pn ∈]0, 1[,∀n ∈ Z} (3.13a)

(Countability) ∀m,n ∈ Z : pm 6= pn ⇔ m 6= n (3.13b)

(Closure) ∀pm, pn ∈ S : pm � pn ∈ S (3.13c)

A set of probability is then a set of real-numbers between 0 and 1 such that the set
is countable and is closed with respect to the fusion operator. Since an element of
the set is between 0 and 1, it can be considered as a possible value of a probability.
The formal de�nition of a probability was given in Section 2.1.2 (page 16).

De�nition 3.2.2. Let S be a set of probabilities, and pn an element of S. The

integer n is called index of the probability pn.

The countability of a set of probabilities maintains a bijection between S and
Z. Each element of S has a unique integer index. The closure stipulates that the
fusion of two elements of S returns a probability that also belongs to S.

3.2.3 Index fusion operator

To formalize the computation of the fusion through integer arithmetic, the concept
of index fusion operator is introduced as follows.

1The concept of set of probabilities has been published in [Rakotovao 2016a].
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De�nition 3.2.3. Let S be a set of probabilities and pm and pn two elements

of S. An index fusion operator designates the operator ⊕ that combines

two integer indexes m,n such that:

∀m,n ∈ Z : (m⊕ n) ∈ Z (3.14)

∀m,n ∈ Z : pm � pn = pm⊕n (3.15)

In the previous introductory example, the index fusion operator is equivalent to
an addition of indexes. Since m⊕n is an integer, pm⊕n designates a unique element
of the set S. The operator � is then mirrored by the operator ⊕:

pm � pn = pr ⇔ m⊕ n = r (3.16)

While the operator � combines probabilities, the operator ⊕ combines integer in-
dexes. Let us call probabilistic fusion the fusion of probabilities with the operator
� and index fusion the fusion of indexes with the operator ⊕. When the elements
of the set of probabilities are known, both fusions are equivalent. Performing the
one is equivalent to calculating the other.

In addition, the operator ⊕ is associative and commutative like the operator �.

Property 3.2.1. Let S be a set of probability with an index fusion operator ⊕. Then
the index fusion operator is associative and commutative. ∀m,n, r ∈ Z:

(Associativity) m⊕ n⊕ r = m⊕ (n⊕ r) = (m⊕ n)⊕ r (3.17)

(Commutativity) m⊕ n = n⊕m (3.18)

Proof The associativity of � gives:

m⊕ n⊕ r ⇔pm � pn � pr
= pm � (pn � pr)
= pm � (pn⊕r)

⇔ m⊕ (n⊕ r)

Then m ⊕ n ⊕ r = m ⊕ (n ⊕ r). The same principle can prove that m ⊕ n ⊕ r =

(m⊕ n)⊕ r.
The commutativity of � gives:

m⊕ n⇔pm � pn
= pn � pm
⇔ n⊕m

Then m⊕ n = n⊕m.
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3.2.4 Existence of set of probabilities

Following the above de�nitions, the question arises: do sets of probabilities exist?
If yes, is there a set of probability that has an index fusion operator? To answer to
both questions, this section introduces three examples of sets of probabilities.

Proposition 3.2.1. Set of probabilities exist.

Proof To prove the above proposition, let us present a trivial set of probabilities.
Consider the singleton S = {p0 = 1/2}. This sets is countable and its element is
between 0 and 1. Besides, p0 � p0 is equal to 1/2. The singleton is closed with
respect to �. The set S satis�es the three assertions in De�nition 3.2.1 (page 56).
Therefore, S constitutes a set of probabilities.

Proposition 3.2.2. There exist non-trivial set of probabilities.

Proof Let us give two examples of non-trivial set of probabilities.

Example 1: Since a set of probabilities is countable, a way to de�ne the set is to
use sequences. Let a ≥ 1 be a positive and non-null integer. Consider the sequence
(pn)n∈N such that:

pn =
a · n+ 1

a · n+ 2
, n ∈ N (3.19)

Let us verify whether the set S = {pn} constitutes a set of probability.

• Inclusion into ]0, 1[: since a ≥ 1, then a · n + 1 < a · n + 2. Therefore,
pn < 1∀n ∈ N. Besides, ∀n ∈ N, pn ≥ 1/2 (see Property A.1.1 (page 119)). We
subsequently get ∀n ∈ N, 1/2 ≤ pn < 1.

• Countability: eq. (3.19) guaranties that ∀m 6= n, we get pn 6= pm.

• Closure: consider m,n ∈ N. The application of the operator � gives:

pn � pm =
pmpn

pmpn + (1− pm)(1− pn)
(3.20)

=
a · (m+ n+ a ·m · n) + 1

a · (m+ n+ a ·m · n) + 2
(3.21)

= pm+n+a·m·n (3.22)

The three conditions are veri�ed, therefore S is actually a set of probabilities 2. The
set S has an index fusion operator ⊕ where:

m⊕ n = m+ n+ a ·m · n (3.23)

2This set of probabilities has been published in [Rakotovao 2016a].
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Example 2: Let a ≥ 1 be a positive and non-null integer and let Z− designate
the set of negative or null integers. Consider the sequence (pn)n∈Z− such that:

pn =
1

2− a · n, n ∈ Z− (3.24)

Let us prove that the set S = {pn} is a set of probabilities.

• Inclusion into ]0, 1[: since a ≥ 1 and n ≤ 0, then 2 − a · n ≥ 2. Therefore,
0 < pn ≤ 1/2.

• Countability: eq. (3.24) guaranties that ∀m 6= n, we get pn 6= pm.

• Closure: consider m,n ∈ N. Applying the operator � gives:

pn � pm =
pmpn

pmpn + (1− pm)(1− pn)
(3.25)

=
1

2− a · (m+ n− a ·m · n)
(3.26)

= pm+n−a·m·n (3.27)

The set S veri�es the three assertions, therefore it constitutes a set of probabil-
ities3. In addition, it has an index fusion operator where:

m� n = m+ n− a ·m · n (3.28)

3.3 The recursive set of probabilities

The previous subsection gave three examples of set of probabilities. The �rst set of
probabilities is a singleton. The second set of probabilities is de�ned by a sequence
of real-numbers that lie between 1/2 and 1. The third set is also de�ned by a sequence
of real-numbers, but its elements lie between 0 and 1/2.

The set of probabilities that is able to capture the values of the occupancy
probabilities within an occupancy grids must have elements both within ]0, 1/2] and
within [1/2, 1[. In fact, the value of the occupancy probability of a likely empty cell
lies within ]0, 1/2]. For a likely occupied cell, the occupancy probability lies within
[1/2, 1[.

In this section, let us design a set of probabilities that have elements within both
]0, 1/2] and [1/2, 1[. To ensure that such a set is countable and is included within
]0, 1[, the set can also be de�ned through sequences as the previous examples. The
di�culty resides in guarantying that the set is closed with respect to the fusion
operator �.

3This set of probabilities has been published in [Rakotovao 2016a].
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3.3.1 De�nition of the recursive set of probabilities

To ensure the closure with respect to �, the following theorem presents a new set
of probabilities where the fusion operator expressly intervenes in the formulation of
the elements of the set.

Theorem 3. Recursive set.

Let ε be a real-number such that ε ∈]0, 1/2[. Let (an)n∈N and (bn)n∈N be
in�nite sequences of numbers de�ned as follows:

an =


1/2 if n = 0
1/2 + ε if n = 1

an−1 � a1 otherwise

bn =


1/2 if n = 0
1/2− ε if n = 1

bn−1 � b1 otherwise
Consider the set Sε = {pn, n ∈ Z} such that:

pn =

{
an if n ≥ 0

b−n otherwise,

The set Sε � called recursive set � constitutes a set of probabilities
equipped such that:

∀m,n ∈ Z : pm � pn = pm+n (3.29)

Proof For the sake of clarity, the proof is detailed in Section A.3 (page 120).

The set of probabilities Sε is called recursive set since its elements are de�ned by
recursion. The recursion is involved in the de�nition of the element pn. It involves
explicitly the fusion operator �. Notice that the set Sε is parametrized by an ε

which can be any positive real-number less than 1/2.

3.3.2 Index fusion operator

The recursive set of probabilities features a lightweight integer fusion operator.
Equation (C.7) in the above theorem shows that the fusion of two elements pn
and pm gives pn+m. Therefore, the recursive set is equipped by the following the
index fusion operator.

Corollary 3.3.1. The recursive set of probabilities has an index fusion

operator ⊕ such that:

∀m,n ∈ Z : m⊕ n = m+ n



3.3. The recursive set of probabilities 61

Proof Theorem 3 (page 60) gives:

pm � pn = pm+n

However, De�nition 3.2.3 (page 57) de�nes the index fusion operator as follows:

pm � pn = pm⊕n

Therefore:
m⊕ n = m+ n

The Fusion operator � is computed through the Bayesian fusion function F .
The later have to perform at the same time addition, subtraction, multiplication
and division of real-numbers in order to fuse two probabilities (Proposition 3.1.1
(page 50)). The recursive set of probabilities enables to compute the fusion through
an addition of integers.

3.3.3 Properties of the recursive set of probabilities

The recursive set of probabilities features the following properties.

3.3.3.1 Repartition of elements over the interval ]0, 1[

The location of an element with respect to 1/2 depends on the sign of its index. As
illustrated on �g. 3.4, the elements of the recursive set that have negative index are
less than 1/2. Those with positive index are greater than 1/2. The relation between
the sign of the index and the value of an element is summarized by the property
below.

Property 3.3.1. ∀n ∈ N : 0 < p−n < 1/2 and 1/2 ≤ pn < 1

Proof See Property A.4.11 (page 126).

0 11/2

Negative indexes Positive indexes

Figure 3.4 � Repartition of the elements of the recursive set over the interval ]0, 1[

(∀n ∈ N)

Moreover, elements greater than 1/2 increase when their indexes also increase.
Similarly, elements less than 1/2 decrease with their index. These properties are
illustrated on �g. 3.4 and presented formally on the following property.

Property 3.3.2. ∀n ∈ N : pn < pn+1 and p−n > p−n−1
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Proof Let n be a positive or null integer. (see Property A.4.3 (page 125)) shows
that an < an+1. Since we have pn = an, then we obtain pn < pn+1.

Besides, Property A.4.7 (page 125) shows that bn > bn+1. Since by de�nition
p−n = b−(−n), then p−n = bn. Subsequently, we obtain, p−n > p−n−1.

3.3.3.2 Inverse element

As expressed in the property below, the inverse of the element pn with respect to
the operator � is p−n.

Property 3.3.3. ∀n ∈ Z : pn � p−n = 1/2

Proof See Property A.4.12 (page 126).

3.3.3.3 Distance between successive elements

Let n be positive. If pn, pn+1 and pn+2 are three successive elements of the recursive
set, then the distance between pn and pn+1 is greater than the distance between
pn+1 and pn+2. That means, the closer to 1 are two elements, the smaller is the
distance between them.

Similarly, p−n, p−n−1 and p−n−2 are successive elements less than 1/2. The dis-
tance between p−n and p−n−1 is greater than the distance between p−n−1 and p−n−2.
The closer to 0 are two elements, the smaller is the distance between them. Both
properties are summarized as follows.

Property 3.3.4. ∀n ∈ N :

|pn+2 − pn+1| < |pn+1 − pn| and |p−n−2 − p−n−1| < |p−n−1 − p−n|

Proof See Property A.4.13 (page 127).

3.3.3.4 Maximal distance between successive elements

The maximal distance between successive elements of the recursive set is equal to the
parameter ε. That means, the distance maximal is user-adjustable. The distance
maximal is equivalent to the distance between 1/2 and p1 and to the distance between
1/2 and p−1.

Property 3.3.5. ∀n ∈ Z : |pn+1 − pn| ≤ ε

Proof See Property A.4.14 (page 127).
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3.3.3.5 In�uence of the parameter ε

The parameter ε expresses the distance between p0 and p1 , as well as the distance
between p0 and p−1 (Theorem 3 (page 60)). As presented above, ε is also the
upper bound of the distance between two successive elements of the recursive set
of probabilities. The in�uence of ε on the distance between successive elements is
illustrated on �g. 3.5.

0 11/2

< <

Figure 3.5 � In�uence of ε on the distance between successive elements

Besides, �g. 3.6 shows three examples of recursive sets with three values of the
parameter ε, namely 0.05, 0.01 and 0.005. Due to Property 3.3.4 (page 62), only few
elements of the recursive set lie around 1/2 for an ε equal to 0.05. Elements close
to 0 and 1 are though numerous. Elements with indexes greater than 20 (resp. less
than −20) are very close to 1 (resp. very close to 0).

To increase the number of values around 1/2, ε can be lowered. For instance,
when ε is lowered to 0.01, the density of elements around 1/2 increases. Lowering
ε decreases also the maximum bound of the distances between successive elements
(Property 3.3.5 (page 62)). Reaching values near 1 and 0 requires though a wide
range of indexes with. For instance, indexes lie between−25 and 25 on �g. 3.6. With
an ε equal to 0.05, the recursive set have elements that spread over ]0, 1[. However
with the same range of indexes, the elements of the recursive set are shrunk within
]0.2, 0.8[ when ε is equal to 0.01 or 0.005.

3.4 Integer Occupancy Grids

After presenting the de�nition of the recursive set of probabilities, let us now intro-
duce the Integer Occupancy Grid paradigm. To give an intuition about the principle
of Integer Occupancy Grids, let us begin by an introductory example.

3.4.1 Introductory example

Consider a grid composed of four cells and two sensor measurements z and z′.
The set of the occupancy probabilities given measurement z constitutes the mono-
sensor occupancy grid denoted by OG(z). Similarly, OG(z′) denotes the mono-
sensor occupancy probability given measurement z′. Both OG(z) and OG(z′) are
depicted on �g. 3.7a.

For a cell ci, the fusion of the ISM P (oi|z) with the ISM P (oi|z′) gives the
multi-sensor occupancy probability P (oi|z ∧ z′). The fusion is performed by the
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Figure 3.6 � Example of recursive set of probabilities with three values of the pa-
rameter ε

operator �. Let us assume that the values of the ISMs are equal to some elements
of the recursive set. If P (oi|z) is equal to pn while P (oi|z′) is equal to pm, therefore
the value of P (oi|z ∧ z′) becomes pm+n. The occupancy probabilities P (oi|z ∧ z′),
i ∈ {1, . . . , 4} for the 4 cells, constitutes the multi-sensor occupancy grid OG(z, z′).

Consider a cell ci. Assume that its occupancy probability P (oi|z∧z′) is equal to
pn. In this case the index n is called occupancy index of cell ci given measurements
z and z′. It is denoted by I(oi|z ∧ z′). The knowledge of the occupancy index of a
cell is enough to determine the value of its occupancy probability. In fact, inversely,
if I(oi|z ∧ z′) is equal to n, therefore the occupancy probability P (oi|z ∧ z′) is equal
to pn.

The set of the occupancy indexes of all cells of the grid constitutes the Integer
Occupancy Grid given both measurements z and z′. The integer occupancy grid
is denoted by IOG(z, z′). It is depicted on �g. 3.7b. Notice that integer occupancy
grids can also be computed from a unique sensor. The integer occupancy grid given
measurement z is denoted by IOG(z). Similarly, I(oi|z) designates the occupancy
index of a cell ci given measurement z.

Like occupancy grids, integer occupancy grids can also be fused cell-by-cell in
order to perform fusion. For a given cell, the fusion of two occupancy indexes
given di�erent measurements is computed by the index fusion operator ⊕. For the
recursive set of probabilities, ⊕ is equivalent to a sum of indexes. Therefore, the
occupancy index I(oi|z ∧ z′) is equivalent to the sum of both I(oi|z) and I(oi|z′).

For instance, let c1 denote the gray cell on �g. 3.7. The occupancy probability of
c1 given z is equal to p1 (�g. 3.7a). Therefore, its occupancy index I(c1|z) is equal
to 1 (�g. 3.7b). Furthermore, the occupancy probability of c1 given z′ is equal to
p−2. Its occupancy index I(c1|z′) is then equal to −2. By using occupancy indexes
instead of occupancy probabilities, performing the fusion of both z and z′ at the
level of cell c1 is equivalent to computing the sum of 1 and −2. The fusion returns
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Figure 3.7 � Occupancy Grid vs. Integer Occupancy Grid

I(c1|z ∧ z′) which is equal to −1.

3.4.2 De�nition of occupancy indexes and Integer Occupancy
Grids

Notation Let z be a measurement and pn (n ∈ Z) an element of a set of proba-
bilities. To indicate that the value of the occupancy probability P (oi|z) is equal to
pn, two equivalent notations are adopted:

P (oi|z) .
= pn or pn

.
= P (oi|z) (3.30)

Let S be a set of probabilities equipped with an index fusion operator ⊕. The set
S can be the recursive set of probabilities or any other set of probabilities. Let G
be a grid and z1, . . . , zK a collection of sensor measurements. The grid can be 1D,
2D or 3D.
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De�nition 3.4.1. The Occupancy Index given measurements z1, . . . , zk
designates the function Iz1,...,zk that maps a cell ci to an integer n:

Iz1,...,zK : G 7→ Z
ci 7→ n

(3.31)

such that P (oi|z1 ∧ . . . ∧ zk) .
= pn ∈ S.

Notation To adopt a notation similar to occupancy probabilities, let I(oi|z1 ∧
. . . ∧ zk) designate the occupancy index of cell ci given measurements z1, . . . , zk.
Therefore, the above de�nition gives:

∀ci ∈ G :
[
I(oi|z1 ∧ . . . ∧ zk) ∈ Z ∧ P (oi|z1 ∧ . . . ∧ zk) .

= pI(oi|z1∧...∧zk)
]

(3.32)

The term pI(oi|z1∧...∧zk) designates the element of the set of probabilities S which
index is equal to I(oi|z1 ∧ . . . ∧ zk).

Equation (3.32) means that the knowledge of the occupancy index I(oi|z1∧. . .∧zk)
of a cell is enough to determine its occupancy probability P (oi|z1 ∧ . . . ∧ zk). In
the previous chapter, an occupancy grid was de�ned as a set of the occupancy
probabilities of all cells of a grid. Similarly, we introduce the de�nition of Integer
Occupancy Grids as the set of the occupancy indexes of all cells of the same grid.

De�nition 3.4.2. Let G be a grid. The Integer Occupancy Grid (IOG)

given measurements z1, . . . , zk designates the function that maps the collec-

tion of the same measurements, to the set of the occupancy indexes of all

cells:

IOG(z1, . . . , zk) = {I(oi|z1 ∧ . . . ∧ zk),∀ci ∈ G} (3.33)

In particular, an integer occupancy grid IOG(z) built from a single mea-

surement z is called mono-sensor integer occupancy grid.

Example Figure 3.8 shows an example of an integer occupancy grid with the
corresponding occupancy grid given two measurements z and z′. Let c1 designates
the gray cell. The occupancy index I(o1|z ∧ z′) is equal to −1. Therefore, the value
of the occupancy probability of c1 given measurements z and z′ is:

P (o1|z ∧ z′) .
= p−1 (3.34)
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If the set of probabilities S is equivalent to the recursive set with the parameter ε,
Theorem 3 (page 60) gives:

p−1 = 1/2− ε (3.35)

For an ε equal to 0.05, the numerical value of P (o1|z ∧ z′) is equal to 0.45.

-1 3

-3-4

(a) Integer Occupancy Grid (b) Occupancy grid

Figure 3.8 � Example of integer occupancy grid with the corresponding standard
occupancy grid

3.4.3 Multi-sensor integer occupancy grids

This section presents how to compute an integer occupancy grids given multiple
sensor measurements. The Bayesian fusion allows to compute multi-sensor occu-
pancy probabilities incrementally by combining occupancy probabilities cell-by-cell
through the fusion operator �. The later enables to compute occupancy probabili-
ties in an incremental way (Property 3.1.1 (page 51)).

Besides, consider a set of probabilities that has an index fusion operator ⊕. The
Bayesian fusion of two elements of a set of probabilities is equivalent to combining
the indexes of the elements by the index fusion operator (De�nition 3.2.3 (page
57)). The following property shows that, the index fusion operator also enables
incremental fusion of occupancy indexes.

Property 3.4.1. Let G be a grid and S a set of probability that has an index fusion

operator. Let ci be a cell and z1, . . . , zk a collection of sensor measurements. Then

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1 ∧ . . . ∧ zk−1)⊕ I(oi|zk) (3.36)

Proof By applying the equivalence between � and ⊕ on eq. (3.14) (De�nition
3.2.3 (page 57)), we obtain:

I(oi|z1 ∧ . . . ∧ zk−1)⊕ I(oi|zk)⇔ pI(oi|z1∧...∧zk−1) � pI(oi|zk)
The de�nition of the occupancy index (De�nition 3.4.1 (page 66)) gives

pI(oi|z1∧...∧zk−1)
.
= P (oi|z1 ∧ . . . ∧ zk−1) and pI(oi|zk) = P (oi|zk)

Then

I(oi|z1 ∧ . . . ∧ zk−1)⊕ I(oi|zk)⇔P (oi|z1 ∧ . . . ∧ zk−1)� P (oi|zk)
= P (oi|z1 ∧ . . . ∧ zk)
.
= pI(oi|z1∧...∧zk)

⇔ I(oi|z1 ∧ . . . ∧ zk−1)
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Finally, I(oi|z1 ∧ . . . ∧ zk−1)⊕ I(oi|zk) = I(oi|z1 ∧ . . . ∧ zk−1)
Property 3.4.1 (page 67) brings up the term I(oi|zk) which is the occupancy

index of a cell computed from a unique measurement. The recursive application of
this property from z1 to zk gives the following theorem.

Theorem 4. Incremental index fusion

Let G be a grid and S a set of probability that has an index fusion
operator. Let z1, . . . , zk denote sensor measurements. Then the
multi-sensor occupancy index of ci given the above collection of

measurements is computed as follows:

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1)⊕ . . .⊕ I(oi|zk) (3.37)

Proof Proof by induction.

• Base case: Property 3.4.1 (page 67) gives I(oi|z1 ∧ z2) = I(oi|z1)⊕ I(oi|z2).

• Inductive step: assume that I(oi|z1 ∧ . . . ∧ zk−1) = I(oi|z1)⊕ . . .⊕ I(oi|zk−1).
Let us prove that I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1)⊕ . . .⊕ I(oi|zk).
Property 3.4.1 (page 67) gives:

I(oi|z1 ∧ . . . ∧ zk) =I(oi|z1 ∧ . . . ∧ zk−1)⊕ I(oi|zk)
= [I(oi|z1)⊕ . . .⊕ I(oi|zk−1)]⊕ I(oi|zk)

Therefore, we obtain I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1)⊕ . . .⊕ I(oi|zk).

Theorem 4 (page 68) combines occupancy indexes given di�erent sensor measure-
ments through the operator ⊕. It expresses how integer occupancy grids supports
fusion. Theorem 4 (page 68) can be applied with the support of any set of proba-
bilities provided that the set has an index fusion operator. In particular, the index
fusion operator of the recursive set of probabilities is equivalent to a simple addi-
tion. Therefore, the multi-sensor fusion under the recursive set of probabilities is
summarized by the following theorem.

Theorem 5. Multi-sensor fusion with the recursive set of probabilities

Let G be a grid and Sε the recursive set of probability with a parameter ε.
Let z1, . . . , zk denote sensor measurements. Then the multi-sensor

occupancy index of cell ci given the above collection of measurements is
computed as follows:

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1) + . . .+ I(oi|zk) (3.38)
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Proof Theorem 4 (page 68) shows that:

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1)⊕ . . .⊕ I(oi|zk)

Besides, Corollary 3.3.1 (page 60) states that for the recursive set of probabilities:

∀m,n ∈ Z : m� n = m+ n

Therefore, the fusion under the recursive set of probabilities becomes:

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1) + . . .+ I(oi|zk) (3.39)

3.4.4 Mono-sensor integer occupancy grids

Theorem 5 (page 68) allows integer occupancy grids to support multi-sensor fusion.
Based on the recursive set of probabilities, Theorem 5 (page 68) enables to compute
multi-sensor occupancy index by summing multiple occupancy indexes computed
from individual independent measurements. But how to compute the occupancy
index of a cell given a unique measurement?

Consider a measurement z, a grid G and a cell ci. If there exists an element pn
of the recursive set Sε such that:

P (oi|z) .
= pn (3.40)

then, the occupancy index of ci given the measurement z is equal to n:

I(oi|z) = n (3.41)

There is however no a priori reason that the numerical value of P (oi|z) would
be exactly equal to an element of Sε. In other words, there is no a priori reason
that an element pn exists such that eq. (3.40) holds. As a solution, we propose to
quantize the ISM P (oi|z) by an element of Sε.

3.4.4.1 Quantization of the inverse sensor model

Assume that the ISM P (oi|z) of cell ci is available 4. Quantizing P (oi|z) by an
element of Sε is equivalent to looking for an element pn that can approximate the
numerical value of P (oi|z). The elements of Sε are spread over ]0, 1[ in a symmetric
way with respect to 1/2. Moreover, the sequence {pn}n∈Z is monotonically increasing
(see Property A.4.8 (page 125)). Consequently, whatever is the value of the ISM
P (oi|z), there exist an element pn of Sε such that:

pn ≤ P (oi|zk) < pn+1 (3.42)

The ISM can be then approximated by either pn or pn+1. To choose among these
two possibilities, the following quanti�cation policy is proposed.

4A new theorem for computing the ISM of single-target sensors is presented in Section 4.2 (page

89)
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The nearest quantization policy

De�nition 3.4.3. Let z be a measurement, ci a cell and ε a number between
0 and 1/2. Let pn be an element of the recursive set Sε such that pn ≤
P (oi|z) < pn+1. The nearest quantization policy approximates the ISM

by the nearest element of Sε:

P (oi|z) ≈
{
pn if |P (oi|zk)− pn| ≤ |P (oi|zk)− pn+1|
pn+1 otherwise

Therefore,

I(oi|z) =

{
n if |P (oi|zk)− pn| ≤ |P (oi|zk)− pn+1|
n+ 1 otherwise

The nearest quantization policy is an intuitive method for quantizing the ISM.
Depending on its numerical the value, the ISM is approximated either by pn or
by pn+1. That means, the approximation may result into an approximated value
greater or lower than the real value of P (oi|z). Let us note P̂ (oi|z) the approximate
of P (oi|z) and let us analyze the e�ect of the nearest quantization. Four cases are
possible:

• If P (oi|z) > 1/2 and P̂ (oi|z) > P (oi|z): the sensor estimates that the cell is
likely occupied. The approximate of the ISM tends towards 1 as shown on
�g. 3.9a. Therefore, the quantization introduces an overestimation of the
occupancy state of the cell estimated by the sensor.

• If P (oi|z) > 1/2 and P̂ (oi|z) ≤ P (oi|z): the sensor estimates that the cell
is likely occupied. However, the approximate of the ISM tends now towards
1/2 as shown on �g. 3.9b. The occupancy state of the cell to tend to un-
known (neither occupied, nor empty). No overestimation is introduced by the
quantization. The latter blurs the estimation of the occupancy state of the
cell.

• If P (oi|z) < 1/2 and P̂ (oi|z) < P (oi|z): the sensor estimates that the cell
is likely empty. The approximate of the ISM tends towards 0 (see �g. 3.9c).
That means, the quantization overestimates the con�dence of the sensor about
the emptiness of the cell.

• Finally, if P (oi|z) < 1/2 and P̂ (oi|z) ≥ P (oi|z): the sensor estimates that the
cell is likely empty. The approximate of the ISM tends however towards 1/2

(see �g. 3.9d). Thus, the quantization blurs occupancy state of the cell. It
does not overestimate the con�dence of the sensor.
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Figure 3.9 � Quantization of ISM

By considering the above discussions, a second quantization policy is proposed.
This policy avoids to overestimate the con�dence of sensor measurement about the
occupancy state of the cell.

The blurring quantization policy

De�nition 3.4.4. Let z be a measurement, ci a cell and ε a number between
0 and 1/2. Let pn be an element of the recursive set Sε such that pn ≤
P (oi|z) < pn+1. The blurring quantization policy approximates the

ISM by the element of Sε nearest to P (oi|z) and closest to 1/2 :

P (oi|z) ≈
{
pn if P (oi|zk) ≥ 1/2

pn+1 otherwise

Consequently,

I(oi|z) =

{
n if P (oi|zk) ≥ 1/2

n+ 1 otherwise

The result of the blurring policy is illustrated on �g. 3.9b for the case where
P (oi|z) is greater than 1/2. Otherwise, the result of the blurring policy is depicted
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on �g. 3.9d. In both cases, the approximate of the ISM tends towards 1/2. The
quantization makes the occupancy state of cells to tends towards unknown.

3.4.5 Overview of multi-sensor fusion based on integer occupancy
grids

Section 3.4.3 (page 67) has detailed the computation of multi-sensor integer oc-
cupancy grids by fusing mono-sensor ones. Section 3.4.4 (page 69) showed that
mono-sensor integer occupancy grids are computed by quantizing ISMs. Finally,
performing multi-sensor fusion based on integer occupancy grids require three steps.
These steps are summarized on �g. 3.10 in the case of the fusion of two sensor mea-
surements. They can be though generalized for any number of measurements.

The three steps for fusing two sensor measurements z and z′ are described as
follows.

1. ISMs are computed5 from sensor measurements. This steps produces the
mono-sensor occupancy grids OG(z) and OG(z′).

2. The step of quantization quantizes the mono-sensor occupancy probabilities
P (oi|z) and P (oi|z′) for obtaining the mono-sensor occupancy indexes I(oi|z)
and I(oi|z′) for all cell of the grid. This steps outputs mono-sensor integer
occupancy grids IOG(z) and IOG(z′)

3. Mono-sensor integer occupancy grids are fused cell-by-cell. The fusion consists
in an addition of the mono-sensor occupancy indexes of each cell. The fusion
produces the multi-sensor integer occupancy grid IOG(z, z′) that is the result
of the fusion of both measurements z and z′.

3.4.6 Discussion

3.4.6.1 Bayesian properties of the index fusion

With the recursive set of probabilities, the index fusion is equivalent to a sum of
occupancy indexes. Like the probabilistic fusion, the index fusion is also incremental,
and supports both mitigation and reinforcement.

Incremental The incremental property of the index fusion was already demon-
strated by Theorem 5 (page 68).

Reinforcement The index fusion reinforces the estimation of non-con�icting mea-
surements. If two measurements are non-con�icting, both estimate either a cell is
occupied or the cell is empty. The corresponding occupancy probabilities are then

5The methods for computing mono-sensor occupancy grids reviewed in Section 2.3 (page 27)

can be applied. A new theorem for computing ISMs of single-target sensors will be also presented

in Section 4.2 (page 89).
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Figure 3.10 � Overview of the multi-sensor fusion based on integer occupancy grids

either greater than 1/2 or less than 1/2. The corresponding occupancy indexes have
the same sign. The property of reinforcement is expressed as follows.

Property 3.4.2. Let ci be a cell and z and z′ be two sensor measurements. Then,

with the recursive set of probabilities, the index fusion gives:

If I(oi|z), I(oi|z′) > 0, then I(oi|z ∧ z′) > Max(I(oi|z), I(oi|z′))
If I(oi|z), I(oi|z′) < 0, then I(oi|z ∧ z′) < Min(I(oi|z), I(oi|z′))

(3.43)

Proof With the recursive set of probabilities, we have I(oi|z∧z′) = I(oi|z)+I(oi|z′).
Therefore, eq. (3.43) becomes trivial.

Mitigation The index fusion mitigates the estimation of con�icting measure-
ments. If two measurements are con�icting, one estimates that a cell is occupied
while the other estimates that the cell is occupied. The occupancy probability given
the �rst measurement is less than 1/2 while the occupancy probability given the
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second measurement is greater than 1/2. Therefore, with the recursive set of prob-
abilities, one occupancy index is negative while the other is positive. Subsequently,
the sum of both occupancy indexes tends towards 0. The occupancy state of the
cell tends to unknown. The property of mitigation is summarized as follows.

Property 3.4.3. Let ci be a cell and z and z′ be two sensor measurements. Then,

with the recursive set of probabilities, the index fusion gives:

If sign(I(oi|z)) 6= sign(I(oi|z′)), then |I(oi|z ∧ z′)| < Min(|I(oi|z), |I(oi|z′)|)

Proof With the recursive set of probabilities, we have I(oi|z∧z′) = I(oi|z)+I(oi|z′).
Therefore, the above equation becomes trivial.

3.4.6.2 Numerical error

The multi-sensor fusion based on integer occupancy grids relies on the step of quan-
tization for computing mono-sensor occupancy indexes from ISMs. The quantiza-
tion approximates a mono-sensor occupancy probability P (oi|z) by an element of
the recursive set of probabilities. As seen in Section 3.4.4.1 (page 69), P (oi|z) is
approximated either by pn or pn+1 such that:

pn ≤ P (oi|z) < pn+1 (3.44)

Therefore, the quantization introduces a numerical error. The error is however
bounded by the distance between successive elements pn and pn+1 regardless of the
quantization policy. According to Property 3.3.5 (page 62), the maximal distance
between successive elements of the recursive set is bounded by ε. The latter can be
any real-number between 0 and 1/2 that is de�ned by the user (Theorem 3 (page
60)). Therefore, the numerical error introduced by the quantization is bounded by
ε, moreover, the bound is de�ned by the user.

Remark. Notice that due to Property 3.3.4 (page 62), the error is maximal only
around 1/2. The closer to 0 or to 1 is an occupancy probability, the smaller is the
quantization error.

3.4.6.3 Choosing the parameter ε

Once mono-sensor integer occupancy grids are computed, the fusion is performed
through sums of occupancy indexes. In other words, the fusion requires only sums
of integers. Such a sum is exact on an implementation viewpoint provided that no
integer over�ow 6 occurs.

Unlike the step of quantization, the fusion of multiple integer occupancy grids
does not introduce additional numerical errors. Consequently, the overall error is

6For instance, on a 32-bit machine, an integer has to be between −231 +1 and 231 − 1. Beyond

these limits, an integer cannot be encoded in 32-bit anymore.
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parametrized by ε, the maximal error of the quantization step. The smaller is
epsilon, the smaller is the numerical error. At the same time, Section 3.3.3.5 (page
63) has showed that for a small value of ε, a large range of index of probability is
required to get elements of the recursive set close to 1 or 0.

Furthermore, the recursive set of probabilities maintain a one-to-one mapping
between integers and real-numbers between 0 and 1. The elements of the recursive
set are computed recursively. Computing the value of an element given its index
is then expensive in term of complexity. As a solution, a lookup table can be used
for storing the elements with indexes between −M and M . For instance, if M is
equal to 127, the lookup table stores the elements of the recursive set with indexes
between −127 and 127.

Such a lookup table allows to retrieve fast the value of the element that corre-
sponds to an index. It allows to convert an occupancy index into the corresponding
occupancy probability. It can be computed once at the beginning of the program
and then reused latter when fusing multiple sensors. This method has however a
disadvantages. For a small value of ε, the lookup table has to be very large in order
to contain elements close to 1 or 0.

To sum up, the value of ε should be chosen as a function of the maximum
acceptable quantization error, the maximum value of occupancy probabilities (near
1), the minimum value of occupancy probability and the size of the lookup table.
In practice, a consensus between these parameters can be found.

For instance, if ε is equal to 0.05, the maximum quantization error is 0.05. For
the same value of ε, p−127 is less than 10−11 while p127 is greater than 1 − 10−11.
Therefore, an index range between −127 and 127 is enough to have elements of
the recursive set that are close to 0 and close to 1. Thus, a lookup table with 256

number of elements is enough.

3.4.6.4 Implementation of the index fusion

Integer fusion The index fusion performs only sums of occupancy indexes. It does
not require a digital representation of real-numbers. Processing integer arithmetic
on a computing hardware is exact. The implementation of the fusion does not
involve additional numerical errors.

Notice however that the step computation of ISMs may still need operation on
real-numbers. For instance, the approaches for computing ISMs reviewed in Section
2.3.1.2 (page 31) process probabilities as real-numbers. A practical solution for
minimizing these operations will be proposed in Section 4.3 (page 100).

Number of operation For fusing two sensor measurements at the level of a cell,
the Bayesian fusion function performs seven operations on real-numbers (Proposition
3.1.1 (page 50)). On the opposite, the integer fusion performs only a single addition
of integers (Theorem 5 (page 68)). Consequently, the integer fusion has divided 7

the number of operations required by the fusion.
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The log-odds form of the Bayesian fusion also performs only a single addition (see
eq. (2.46) in page 40). However, it adds two real-numbers while the index fusion
adds two integers. If the fusion based on log-odds is implemented with �oating-
points, the error introduced by �oating-points is not user-bounded. The error is
imposed by the �oating-point standard. Second, the transformation of log-odds to
probability requires a call to the exponential function. This becomes expensive with
high-number of cells, especially on a resource-constrained embedded hardware.

Numerical stability The Bayesian fusion function su�ers from numerical insta-
bility when computing probabilities near 0 and 1 (see Section 2.4.2 (page 39)). In
opposite, the index fusion is stable since it is based on addition of integers. The im-
plementation should only pay attention to integer over�ow. In the example above
where ε is equal to 0.05 and the range of indexes is limited between −127 and
127, occupancy indexes can be encoded in 8-bits. Therefore, the sum of occupancy
indexes must be saturated so that the result �ts within 8-bit to avoid over�ow.

Deterministic fusion The implementation of the index fusion is deterministic. It
gives the same result regardless of the hardware architecture, the code writing, the
compiler, the compiling options or other technical details. In fact, integer addition
behave the same on every processors that can handle integers with the same number
of bits. For instance, on all 32-bit machines, the result of the addition of two integer
is the same.

3.4.6.5 Summary of the discussion

Let us summarize the above discussion.

Bene�ts The advantages of the integer occupancy grid paradigm are:

• The index fusion is mathematically equivalent to the Bayesian fusion.

• The index fusion is incremental and supports both reinforcement and mitiga-
tion like the original Bayesian fusion.

• The index fusion is based on addition of integers and has 7× less operation
than the original Bayesian fusion.

• The fusion is numerically stable and its implementation its SW/HW integra-
tion is deterministic.

By taking into account the above properties, the index fusion enables a safe SW/HW
integration of probabilistic multi-sensor fusion.
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Limitations Integer occupancy grids introduce explicitly an error in the step of
quantization. The error is however bounded and is parametrized by the user.
The error ε can be any real-number between 0 and 1/2. A too small value of ε would
however require a too large lookup table necessary for converting an occupancy
index into an occupancy probability.

3.5 Compaction of Integer Occupancy Grids

The previous section has introduced the formal de�nition of integer occupancy grids
and the steps required for computing them. Let us now consider the implementation
viewpoint. An integer occupancy grid is by de�nition constituted by the set of the
occupancy indexes of all cells within a grid. On an implementation viewpoint, the
occupancy indexes are stored within a data structure. This data structure will be
requested when the occupancy indexes are updated by new sensor measurements,
or when decision-making applications need to exploit integer occupancy grids.

Section 2.5 (page 43) reviewed the two main data structures � namely the arrays
and the 2d-trees � for storing occupancy grids. An array stores in its elements the
occupancy probability of each cell. For a high-number of cell, constituting blocks of
cells that have similar occupancy state is time-consuming with arrays. Such task is
though required for navigation applications that have to search for free spaces and
obstacles. Arrays can be also memory consuming, especially for high-resolution and
high-dimensional grid. As a solution, the 2d-trees have been proposed for compacting
occupancy grids. The compaction is though lossy.

Both arrays and 2d-trees can be also used for storing integer occupancy grids.
Arrays can be used to store the occupancy indexes of all cells. This approach would
su�er from the same limitations of arrays as explained above. This chapter presents
the use of 2d-trees for compacting integer occupancy grids. The di�erences with the
state-of-the-art is that the compaction of integer occupancy grids with 2d-trees is
lossless. A lossless compaction is required for safety.

To explain the lossless compaction, this chapter will begin by the traditional
de�nition of 2d-trees and presents their extension enabling the storage of integer oc-
cupancy grids. The update of elements stored by 2d-trees requires two fundamental
operations: the split and the merge. Both operations will be also detailed, followed
by a discussion about the application of 2d-trees on integer occupancy grids.

3.5.1 De�nition of 2d-trees

A 2d-tree is composed of a set of nodes having a parent-children relation. Any node,
except the root node, must have a parent. A node has either zero or 2d number of
children, d corresponds to the dimension of the grid. A node that has no child is
called a leaf. A node has a depth. The latter is a positive integer that measures
how height from the root is located the node. A 2d-tree has a maximum depth. The
depth of a node cannot be greater than the maximum depth of the tree. The above
characteristics are formally summarized into the following de�nition.
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De�nition 3.5.1. A 2d-tree is a set N of node that holds the following assertions:

1. ∃!η ∈ N : [Root(η)⇔ Parent(η) = null]

2. ∀η ∈ N : [Leaf(η)⇔ Children(η) = ∅]

3. ∀η ∈ N : [¬Leaf(η)⇔ Children(η) = {ηj , j = 1, . . . , 2d}]

4. ∀η ∈ N : [¬Root(η)⇒ (∃!η′ ∈ N : Parent(η) = η′) ∧ η ∈ Children(η′)]

5. ∀η ∈ N : Depth(η) =

{
0 if Root(η)

1 +Depth(Parent(η)) otherwise

6. ∀η ∈ N : Depth(η) ≤MaxDepth(N )

The predicate Root(η) holds if and only if the node η is the root. The function
Parent(η) returns the node parent of η. The function Children(η) returns the set
of the children of η. Assertion 1 means that a 2d-tree has a unique root node. The
latter has no parent. Assertion 2 imposes that a leaf node does not have any child.
In opposite, if a node is not a leaf, it has exactly 2d number of children according
to Assertion 3. Assertion 4 states that any node di�erent of the root must have a
unique parent. Finally, the function Depth(η) returns the depth of a given node.
The root has a depth equal to 0. The depth of the other nodes is determined
recursively by the Assertion 6. The depth has a maximum value returned by the
function MaxDepth(N ).

3.5.2 Extension of 2d-trees for storing integer occupancy grids

De�nition 3.5.1 (page 78) presents a general de�nition of an 2d-tree. For storing
an integer occupancy grid into a 2d-tree, De�nition 3.5.1 (page 78) needs to be
extended. Storing an integer occupancy grid means storing the occupancy indexes
of cells. For this purpose, we introduce the following de�nition.

De�nition 3.5.2. Let N be a 2d-tree, and η a node of N . Let G be a grid of d

dimension. The function Region(η) returns a set of cells such that the following

assertion holds:

1. ∀η ∈ N : Region(η) 6= ∅

2. ∀η ∈ N : [Root(η)⇔ Region(η) = G]

3. ∀η ∈ N : [¬(Leaf(η))⇒ Region(η) =
⋃

η′∈Children(η)
Region(η′)]

4. ∀ci ∈ G, ∃η ∈ N : ci ∈ Region(η)

5. ∀ci ∈ G, ∃!η ∈ N : [Leaf(η) ∧ ci ∈ Region(η)]

6. ∀η ∈ N : [cardinal(Region(η)) > 1⇒ ∀ci, cj ∈ Block(η), adjacent(ci, cj)]
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The function Region(η) maintains a correspondence between a tree structure
and a grid. A region is a set of cells. A region cannot be empty according to the
�rst assertion. The second assertion states that the region of the root is equal to
the whole grid. Assertion 3 stipulates that the region of a non-leaf node is equal to
the reunion of the regions of its children. In Assertion 4, a cell must belong to the
region of a node. Assertion 5 imposes though that a cell belongs to a unique leaf
node. A consequence of this assertion is that the regions of leaf nodes are disjoints:

∀η, η′ ∈ N : Region(η) ∩Region(η′) = ∅ (3.45)

Finally, Assertion 6 requires that all cells belonging to the region of the same node
must be adjacent.

To identify the cells that belong to the region of a node, the principle of recursive
split is applied. Consider a grid of d dimensions and a 2d-tree. If l denotes the
maximum depth of the tree, the grid contains 2l × 2l for 2D and 2l × 2l × 2l for 3D.
The region of the root contains all cells of the grid. To determine the region of the
children of the root, the grid is split by 2 on each dimension. The subdivision results
into 2d adjacent but disjoint regions. These regions are a�ected to each child of the
root. The same split operation can be applied recursively to each child of the root
until reaching the maximum depth. The recursive split guaranties that eq. (3.45)
holds. It is also conform to the assertions presented on De�nition 3.5.2 (page 78).

For allowing a 2d-tree to store the occupancy indexes of cells, the following
function is used.

De�nition 3.5.3. Let N be a 2d-tree, and η a node of N . Let G be a grid of

d-dimension. Consider the recursive set Sε and a collection of measurements

z1, . . . , zN . The function Index(η) returns an integer such that:

1. ∀η ∈ N : [¬Leaf(η)⇒ Index(η) = 0]

2. ∀η ∈ N : [Leaf(η) ⇒ (∀ci ∈ Region(η), Index(η) = I(oi|z1 ∧ . . . ∧
zN ))]

The �rst assertion means that the index of a non-leaf node is null. With respect
of the recursive set Sε, this index correspond to the occupancy probability 1/2. The
second assertion requires that the index of a leaf is equal to the occupancy indexes of
the cells that belong to the region of the leaf. If the region of a leaf contains a single
cell, the index of the leaf is equal to the occupancy index of that cell. Otherwise, if
the region of a leaf contains multiple cells, these cells must have the same value of
occupancy indexes.

Figure 3.11a shows an example of a quadtree that stores an integer occupancy
grid. Leaves are at the extremity of the tree. Non-leaf nodes have an index equal
to 0. The indexes of leaves are represented by letters where a letter is an integer
value. The regions of leaves are shown on �g. 3.11b. The �gure shows that cells
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Figure 3.11 � Example of an integer occupancy grid stored within a quadtree

belonging to the region of the same node have exactly the same occupancy indexes.
The root is the node at the top of the quadtree. Its region corresponds to the whole
grid, regrouping all the cells.

On �g. 3.11, the quadtree has in total 13 nodes while the grid has 64 cells. If the
same integer occupancy grid was stored within an array, the latter would require 64
elements. This shows, through an example, how a 2d-tree can compact the storage
of an integer occupancy grid. The compaction is due to the requirement of Assertion
2 in De�nition 3.5.3 (page 79). This assertion enables to store within a unique leaf
the occupancy indexes of adjacent cells, provided that the occupancy indexes are
mathematically equal.

3.5.3 Split

The index of a leaf stores the occupancy indexes of all cells contained within the
region of the leaf. This technique of storage requires that the occupancy indexes of
the cells within the region of the leaf must be equal. When a new sensor measure-
ment is available, it updates the occupancy index of at least one cell. Consequently,
the above equality does not holds anymore for the leaf which region contains the
updated cell.

To take into account the new occupancy index of the updated cell, the operation
of split is applied. The operation of split must be realized if the following condition
is satis�ed:

∀η ∈ N : {Leaf(η)

∧ [∃ci ∈ Region(η) : I(oi|z1 ∧ . . . ∧ zK) 6= Index(η)]

⇒ Split(η, ci,N )}
(3.46)

The above equation means that the operation of split must be realized on a leaf
which region contains at least a cell ci, such that the occupancy index of ci is
di�erent to the index of the leaf.

The function Split is described on Algorithm 1 (page 81). It works as follows.
Assume that a node η satis�es the condition on eq. (3.46). Let ci denote the cell
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Algorithm 1 The function of split
1: function Split(Node η, Tree N , Cell ci)
2: if Depth(η) < MaxDepth(N ) then
3: N ← N ∪ {ηj , j = 1, . . . , 2d} . Create 2d new nodes.
4: Children(η)← {ηj , j = 1, . . . , 2d} . The new nodes are children of η.
5: for all ηj ∈ Children(η) do
6: Parent(ηj)← η

7: Depth(ηj)← Depth(η) + 1

8: Index(ηj)← Index(η) . A child receives the index of its parent.
9: end for
10: Index(η)← 0 . η is not a leaf anymore.
11: else . η reaches the depth max.
12: Index(η)← I(oi|z1 ∧ . . . ∧ zK) . η stores the occupancy index of ci.
13: end if
14: end function

which occupancy index is di�erent to the index of η. If the depth of η is less than the
maximum depth, then the tree is extended by creating 2d new nodes that become
children of η. Otherwise, the index of η is set to the occupancy index of ci.
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Figure 3.12 � Application of split

Figure 3.12 illustrates the application of the split function on a 2d-tree. The tree
is initially the one depicted at the left of �g. 3.12a. Consider the leaf colored in gray.
Its region is also colored in gray on the grid at the right of the �gure. According to the
tree, the occupancy indexes of all gray cell are equal to a. However, according to the
grid, there exists a gray cell that has an occupancy index equal to f . Consequently,
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Algorithm 2 The function of merge
1: function Merge(Node η,Tree N )
2: Index(η)← Index(getAchildOf(η)) . η receives the index of its children.
3: N ← N � Children(η) . The children of η are removed from the tree N .
4: Children(η)← ∅ . η becomes a leaf.
5: end function

the gray leaf satis�es the split condition on eq. (3.46). The operation of split is
applied on this leaf.

When the gray leaf is split, its children are created. Each child receives the index
of its parent. This gives the tree depicted on �g. 3.12b. On this �gure, another
gray leaf satis�es the split condition. New children are also added at the level of
this leaf. The resulting tree is illustrated on �g. 3.12c. Herein, the maximum depth
is reached. However, there still exist a gray leaf that satis�es the split condition.
The index of this leaf is �nally set to the occupancy index of the cell included in
the region of the leaf. The resulting tree is depicted on �g. 3.12d.

In practice, the operation of split is applied to any leaf which region is a�ected by
a new sensor measurement. Figure 3.12 shows that the split operation extends the
tree downwards until leaves a�ected by measurements reach the maximum depth.
When several cells see their occupancy indexes updated by measurements, the num-
ber of newly created leaves increases considerably. This impacts negatively on the
compactness of the tree structure. As a solution, the operation of merge is per-
formed.

3.5.4 Merge

The operation of merge improves the compactness of a tree by removing some nodes
from the tree. This enables to decrease the number of nodes within the tree. The
operation of merge is applied only if the following equation holds.

∀η ∈ N :{¬Leaf(η)

∧ [∀ηj ∈ Children(η) : Leaf(ηj)]

∧ [∀ηi, ηj ∈ Children(η) : Index(ηi) = Index(ηj)]

⇒Merge(η,N )}

(3.47)

A node can be merged only if three conditions are satis�ed. First, the node is not a
leaf. Second, its children are all leaves. Third, the indexes of its children are equal.

The function Merge is presented on Algorithm 2 (page 82). It takes two argu-
ments: the node η to be merged and the 2d-tree. First, the function a�ects to η the
indexes of its children. Its children are then removed from the tree. This makes η
to become a leaf.

Figure 3.13 shows an example of application of the operation of merge. The
initial 2d-tree is depicted on �g. 3.13a. The gray node satis�es the condition on
eq. (3.47). It is merged and the result is shown on �g. 3.13b. There exists again
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Figure 3.13 � Application of merge

another gray node that satis�es the merge condition on eq. (3.47). The merge is
applied and gives the tree on �g. 3.13c. On this �gure, no node satis�es eq. (3.47),
no merge is then performed. Figure 3.13 shows that the operation of merge shortens
the tree upwards by pruning nodes that satis�es eq. (3.47). This makes the tree
more compact by decreasing the number of nodes.

3.5.5 Discussion

Bene�ts Integer occupancy grids can be stored within an array or a 2d-tree. For
a tree, occupancy indexes of adjacent cells are stored within a leaf if and only if they
are equal. This condition has two advantages.

First, it makes 2d-trees more compact than arrays for storing integer occupancy
grids. While an array has to have the same number of array elements as cells, the
number of nodes within a 2d-tree is potentially less than the number of cells. In
fact, due to the spatial disposition of obstacles on a physical world, likely occupied
cells tends to be adjacent. The same for likely empty ones and also for the unknown
cells. Consequently, adjacent cells potentially have similar, even equal, occupancy
indexes. An experimental study about the compactness of 2d-trees will be presented
in the next chapter.

Second, the compaction o�ered by 2d-trees is lossless. Lossless means that the
data structure for storing integer occupancy grids does not alter the occupancy
indexes per cells. The occupancy index of a cell is the same whether the integer
occupancy grid is stored within a 2d-tree or within an array. Such a result cannot
be obtained by the condition of merge proposed in the literature (see Section 2.5.2
(page 45)).
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Limitations While 2d-trees are compact, maintaining the data structure is ex-
pensive in term of execution time. On an array, updating the occupancy index of
a cell is straight forward after incoming measurements. On a 2d-tree, the update
must perform at least the operation of split. The later subdivides the leaves that
cover the updated cell until the maximum depth is reach. Such operation is time
consuming when it is repeated for a high number of cells. After the split, the merge
becomes also too expensive in term of execution time when it is applied frequently.
However, the operation of merge improves the compactness of the tree by pruning
some nodes out of the tree.

After that, the tree structure also requires additional memory load. For in-
stance, the pointer based implementation of 2d-trees need at least two point-
ers: a pointer that points to the children and another one that points to the
parent ([Samet 1990]). On the opposite, array structure does not require ad-
ditional memory load. Consequently, depending on the size of the grid and
on the environment, an array may consume less memory than a 2d-tree. Nev-
ertheless, the literature reports that 2d-trees are less memory consuming when
mapping a large environment with a high-resolution and high-dimensional grid
([Payeur 1997, Kraetzschmar 2004, Hornung 2013]).

3.6 Summary

This chapter presented the integer occupancy grid paradigm.

• The formal de�nition and properties of set of probabilities were introduced.
Examples of sets of probabilities have been proposed and demonstrated.

• The recursive set of probabilities was highlighted since it has important prop-
erties that have enable to fuse multiple sensors through simple addition of
integers.

• The de�nition and properties of Occupancy Indexes and Integer Occupancy
Grids were formalized. The fusion of Occupancy Indexes is equivalent to a
sum of integers.

• The numerical error involved by the computation of Integer Occupancy Grids
was speci�ed. The step of quantization introduces explicitly a known, bounded
and user-adjustable numerical error. The latter can be any real-number be-
tween 0 and 1/2.

• The lossless compaction of Integer Occupancy Grids by using 2d-trees was
studied.
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The previous chapter established the theoretical foundation of integer occupancy
grids. The computation of integer occupancy grids is composed of three steps: the
computation of ISMs, the quantization and the fusion. While the two last steps
were presented in the previous chapter, the computation of ISMs was not tackled.
Section 2.3.1 (page 28) presented the Bayesian approach for computing the ISM of
a cell. This approach establishes a relation between measurement uncertainties, the
size of cells and the value of ISM. It su�ers however form an exponential complexity.

This chapter proposes new approaches for computing ISMs. Experimental anal-
ysis and discussion about these approaches will be presented. After that, this chap-
ter will describe the SW/HW integration of the integer occupancy grid framework.
The SW/HW integration constitutes a multi-sensor fusion (MSF) module that fuses
measurements from range sensors mounted on a car and produces an environment
model of the driving environment.

Sensor measurements are produced periodically. According to the initial con-
straints evoked in Section 1.3 (page 10), the fusion must be processed in real-time
with respect to sensor period. Second, its HW/SW integration must be realized on
a low-cost and low-power processing platform. Third, the HW/SW integration must
be safe. It must consider sensor uncertainties, numerical errors and determinism of
computation.

To develop such a module, the SW/HW integration of the integer occupancy grid
framework is realized on a low-cost and low-power processing platform. The module
fuses periodical measurements produced by four state-of-the-art LIDARs mounted
on a prototype car. At each period of measurement, a 2D integer occupancy grid
combines the measurement from the four LIDARs. The integer occupancy grid
models the driving environment surrounding the car.
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This chapter is organized as follows. Section 4.1 presents the experimental setup
including the prototype vehicle, the LIDARs and the processing platform. After
that, Section 4.2 proposes and discusses the new approaches for computing ISMs.
Next, the HW/SW integration of the integer occupancy grid framework will be
described in Section 4.3, where discussions about the experimental results will be
reported.

4.1 Experimental setup

Experiments realized in this thesis were conducted on a prototype car: a ZOE from
Renault (see �g. 4.1). The car belong to the Institut de Recherche Technologique
(IRT) NanoElec ([IRT NanoElec ]). The IRT NanoElec is a French technological
institute. Its role is to di�use innovations in Information and Communication tech-
nologies towards companies and enterprises. The prototype car is upgraded by
sensors and additional computing hardware. It serves as a platform for develop-
ment and test of ADAS and self-driving functions. The platform aims to accelerate
technological transfer from research to industry.

(a) Three front LIDARs ibeo LUX (b) One rear LIDAR ibeo LUX

Figure 4.1 � The prototype vehicle with its four LIDARs on the bumpers

4.1.1 The prototype car

As shown on �g. 4.1, the prototype car is equipped by four ibeo LUX LIDARs:
three on the front bumper (�g. 4.1a) and a forth on the rear bumper (�g. 4.1b).
Other sensors such as cameras, a rotating Velodyne LIDAR, a GPS and an inertial
measurement unit are also installed on the car. However, the experiments in the
scope of this thesis focus only on the four ibeo LIDARs.

Additional computing facilities are installed in the trunk as shown in �g. 4.2. A
workstation with an Intel CPU and GeForce GPU from NVIDIA processes sensor
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measurements and execute applications for intelligent vehicle functions. Figure 4.2
shows that the workstation is powered by a dedicated battery. The trunk also
contains networking boxes and weiring for transferring data between sensors and the
workstation. A linux-based operating system runs on the workstation. It executes
the middleware Robot Operating System (ROS). The latter provides a set of libraries
and tools for supporting and accelerating the development of robotics applications.

Figure 4.2 � Computing facilities on the ZOE

Even if these computing facilities are ready to use, they do not correspond to
the criteria of cost, power budget and reliability found in the world of automotive.
The CPU and the GPU in the trunk are not designed for automotive use cases.
Despite their computing performance, these hardware consume hundreds of watts
of power and do not support extreme conditions in a car (e.g. high temperature,
humidity, physical shocks, etc). Hence, experiments in this thesis are implemented
on an embedded hardware that is designed for automotive applications.

4.1.2 The embedded computing hardware

Experiments presented in this chapter are implemented on a SABRE Lite devel-
opment board [element14 ]. This hardware platform is based on the i.MX6, an
application processor from Freescale based on a quad-core ARM Cortex-A9. The
processor runs at 1 GHz. The platform has a RAM DDR3 of 1 GByte, having 64-bit
wide and running at 532 MHz. It has an SD card interface and runs an operating
system based on an Ubuntu distribution.

The i.MX6Q processor is speci�cally designed for industrial and automotive ap-
plications [Freescale 2015]. It combines signi�cant computing performance and low-
power constraints, which makes it a good candidate for implementing the integer oc-
cupancy grid framework. A single-core of the i.MX6Q processor consumes less than
1 W of power [Freescale 2015]. For a comparative purpose, the Intel CPU within
the trunk of the prototype car consumes up to 40 W [Dargie 2015, Abou-Of 2016]
and the NVIDIA GPU consumes more than 200 W [Stroia 2015].
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Remark The SABRE Lite platform is designed to enable rapid development of
automotive multimedia applications. It is not yet a hardware certi�ed for safety crit-
ical applications. It allows though to test integer occupancy grids on an embedded
CPU dedicated for automotive.

4.1.3 Experimental data

During this thesis, the SABRE Lite board was not yet installed in the prototype car.
For processing data from the ibeo LIDARs, experiments were realized as follows.

The prototype car was driven in real tra�c in down town of Grenoble, in France,
and also on highways. In the meantime, measurements from the four ibeo LIDARs
were saved into �les by the ROS middleware. After that, the �les are copied on a
SD card. The latter is inserted on the SABRE Lite in order to computed integer
occupancy grids from the saved LIDAR measurements.

4.1.4 The ibeo LUX LIDAR

The ibeo LUX LIDAR is a laser scanner that serves for scanning a physical environ-
ment within a �eld-of-view [Ibeo 2010, Ibeo 2013]. It targets the automotive domain
and is designed to meet the constraints of safety, robustness and power budget found
in the domain. An ibeo LUX LIDAR measures ranges to obstacles, within several
directions relative to the sensor. The measuring process works as follows.

The sensor emits laser beams towards several directions, receives echoes on a
receiver, and then computes ranges based on the time-of-�ight of the beams. A
laser beam can measure a range up to 200 m. Under 50 m, at least 10% of the
emitted energy is received back to the sensor. Under this range, a measurement has
an accuracy of 10 cm, regardless of the distance of the observed obstacle [Ibeo 2013].

Direction of beams The direction of a laser beam is de�ned by two angles: the
elevation and the azimuth. Laser beams are emitted within four degrees of elevation
angles as shown on �g. 4.3a. The group of laser beams having the same elevation
angle is called scan layer. An ibeo LUX device produces in total four scan layers,
one per elevation angle. Within a scan layer, each laser beam is emitted within a
known azimuth angle. The azimuths of two successive laser beams are separated by
an angular step of α = 0.5◦ (�g. 4.3b).

Scan points The range measurement, the elevation of the scan layer and the
azimuth angle of a laser beam form the spherical coordinates of a point within a
local frame of reference attached to the LIDAR device. Such a point is called a scan
point. It spatially estimates the location where the laser beam has hit an obstacle.
A complete scan of the surrounding by an ibeo LUX provides up to 800 scan points.
Complete scans are produced at a rate of 25 Hz.

Figure 4.4 presents an example of scan points the LIDAR on the center of
the front bumper of the prototype car. The scan points are projected on a two-
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(a) Vertical angle of the four scan layers (b) Top view of the directions of beams

within a scan layer

Figure 4.3 � The scanning layers of an ibeo LUX device

Figure 4.4 � Scan points of an ibeo LUX LIDAR mounted on the front bumper of
the prototype car (image courtesy of INRIA Rône-Alpes)

dimensional plan parallel to the prototype car (see the image on the left). The
physical scenario is shown on the right of the �gure. The two encircled cars are sit-
uated in the front-right of the prototype vehicle. Both cars are hit by laser beams.
The corresponding scan points are also encircled on the image on the left.

4.2 Computation of Inverse Sensor Model

A scan point of a LIDAR is considered as an independent measurement. It is gener-
ated by a beam directed within known azimuth and elevation. Two scan points are
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considered as independent one another. Such assumption is generally admitted for
LIDARs in the literature ([Thrun 2005, Homm 2010, Einhorn 2011, Adarve 2012]).

The objective of this chapter is to fuse the scan points produced by the four
LIDARs into a 2D integer occupancy grid. As presented in the previous chapter, the
computation of integer occupancy grids require a step of computation of ISMs from
individual sensor measurements. Hence, this section will describe the computation
of ISMs from a unique scan point.

For a 2D grid, the ISM of a cell given an individual measurement is computed
in two steps (Section 2.3 (page 27)). First, a 1D occupancy grid local to the mea-
surement is built. Second, a range-mapping algorithm is applied for retrieving the
ISMs of 2D cells from the local occupancy grid.

Section 2.3.1 (page 28) highlighted the advantages of the Bayesian approach for
building the local grid. This approach su�ers though from an exponential complexity
with respect to the number of cells. This section will present a new theorem that
extends the Bayesian approach and that allows to build the local grid within a linear
complexity.

Besides, Section 2.3.2 (page 34) explained the advantages of traversal algorithms
for performing range-mapping. It showed the need for designing a traversal algo-
rithm that works exclusively on integers. Such algorithm will be also presented and
discussed in the present section.

4.2.1 Building the local occupancy grid

Like the approaches reviewed in Section 2.3 (page 27), the approach proposed here
is applicable only for single-target sensor.

4.2.1.1 Inverse sensor model of a single-target

Consider the situation on �g. 4.5 where a single-target sensor observes a physical en-
vironment through a line-of-sight. The latter is subdivided into a 1D grid composed
of cells ci, i = 1, . . . , N . A cell ci is located at a distance di from the sensor.

The sensor provides a scalar measurement z. The value of the measurement
depends on the distance d between the sensor and the sensed obstacle. The process
of measurement is modeled by the sensor model p(z|d). We propose the following
theorem for computing the ISM P (oi|z) of a cell ci of the local grid.
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Theorem 6. Inverse Sensor Model of a single-target sensor

Under the non-informative prior, the ISM of the cell ci given a
measurement z from a single-target sensor is:

P (oi|z) =


α−1 · p(z|d1) if i = 1

α−1 ·
(
i−1∑
h=1

[
p(z|dh)

2h

]
+
p(z|di)
2i−1

)
otherwise

where α =
N∑
h=1

[
p(z|dh)

2h−1

]

Proof This theorem is derived from the Bayesian approach (Section 2.3.1.1 (page
29)). The mathematical derivation is detailed in Section B.1 (page 129).

Sensor
device

Line-of-sight
(1D grid)

Obstacles

Scan
point

Figure 4.5 � The 1D grid along a line-of-sight of a single-target sensor

Computing P (oi|z) requires now a sum of at most N number of terms. Conse-
quently, Theorem 6 (page 91) enables to calculate an ISM with a linear complexity
O(N) with respect to the number of cells N . Theorem 6 (page 91) is derived from
the Bayesian computation of ISMs. In the followings, let us apply this theorem on
a scan point from a LIDAR.

4.2.1.2 Application to a LIDAR scan point

For a LIDAR scan point, the direction of a beam is determined by both elevation
and an azimuth. Only the range measured by the beam varies as a function of the
distance between the sensor and the obstacle along the beam's direction. Hence,
for a scan point, z denotes the range measurement. The range measurement has
a precision of 10 cm under a maximal distance of 50 m (Section 4.1.4 (page 88)).
The process of measurement is therefore modeled by a Gaussian distribution with
a standard deviation σ = 10cm.

Let d denote the ground truth distance to the nearest obstacle. The sensor model
becomes:

p(z|d) =
1√

2πσ2
exp

{
−(z − d)2

σ2

}
(4.1)

Figure 4.6a plots the sensor model when the nearest obstacle is situated at d = 25m

from the sensor. The sensor model is quasi null everywhere except in the vicinity of
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d. That means, there are a great chance that the measurement z returned by the
sensor is situated in the vicinity of d.

Let us now build the local occupancy grid given a scan point. To be able to apply
Theorem 6 (page 91), the distance of each cell from the sensor must be known. This
distance is derived from the size of cells along the grid. Therefore, a question arises:
how to chose the size of a cell of the local grid?

To answer to this question, several cell sizes have been tested. The pro�le of the
ISMs for three di�erent cell sizes are plotted on �gures 4.6b to 4.6d.
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Figure 4.6 � The sensor model and the pro�les of ISM given a measurement z = 25m

Pro�le of ISMs Figures 4.6b to 4.6d shows a common pro�le among the three
di�erent cell sizes. ISMs are close to zero between the sensor and the measurement z.
Cells in this region are likely empty. Around the measurement, ISMs increase until
reaching a maximum value. An ISM greater than 1/2 signi�es that the corresponding
cells are likely occupied. ISMs decrease beyond the measurement and get stable at
1/2. The occupancy state of cells beyond the measurement are unknown.



4.2. Computation of Inverse Sensor Model 93

Cell size vs. numerical value of ISMs Figure 4.6 shows that ISMs vary as a
function of cell size. In fact, the sensor model and the distance of each cell from the
sensor intervene within the formula of ISM in Theorem 6 (page 91). Consequently,
this theorem maintains a relation between the measurement, the sensor model, the
cell size and the numerical value of ISMs. This relation is actually a property of the
Bayesian approach as explained in Section 2.3.1 (page 28).

Choosing the cell size On �g. 4.6b, the maximum of ISM is closed to 1. The
cell size is 5× larger than the precision of the sensor. When the cell size is decreased,
the maximum of ISM also decreases. On �g. 4.6d where the cell size is a quarter of
the precision of the sensor, the maximum of ISM does not even overtake 1/2. That
means, the cell size is too small for the sensor's precision. Beyond its precision, the
sensor cannot estimate with a high con�dence that a cell is occupied. Thus, to be
able to estimate likely occupied cells, the cell size is chosen such that it does not
overtake the sensor's precision.

Comparison with the Bayesian approach Table 4.1 (page 93) compares The-
orem 6 (page 91) with the Bayesian approach. Since Theorem 6 (page 91) is derived
from the Bayesian approach, both methods are mathematically equivalent. The
di�erence resides in their respective complexities. Notice that being based on the
Bayesian approach, Theorem 6 (page 91) can also be generalized to any single-target
sensor, but not only for LIDARs. Both methods compute the ISM from the sensor
model.

Bayesian approach
(state-of-the-art)

Proposed approach
(Theorem 6 (page 91))

Sensor model Yes Yes
Grid subdivision Yes Yes
Safe Yes Yes
Complexity O(2N−1) O(N)

Table 4.1 � Comparison of the Bayesian approach and the proposed approach for
computing the ISM

4.2.2 Traversal algorithm based on integer arithmetic

After building a local occupancy grid given a LIDAR scan point, the 1D grid is
mapped on the 2D grid in order to compute the ISMs of 2D cells. Cells that are
not traversed by the local grid are outside of the line-of-sight of the laser beam that
has generated the scan point. Their occupancy state is then unknown for the laser
beam. Their ISM is set to 1/2. The ISM of the traversed cells are however derived
from the local occupancy grid. For �nding out the cells traversed by the local grid,
the following algorithm is proposed.
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4.2.2.1 The continuous traversal algorithm

Consider the local occupancy grid on �g. 4.7. The grid has two endpoints: a start
point S where the sensor is located, and an end point T located at the extremity
of the grid. The line segment ST traverses multiple cells of the 2D grid. The latter
is called global grid since it is not attached to a speci�c sensor. The objective
consists to design a traversal algorithm that �nds out all 2D cells traversed by the
line segment ST .

Sensor device

T

S

O

Obstacle

Local 1D grid 

Global 2D grid    

Scan point

Figure 4.7 � The traversal algorithm

The continuous traversal algorithm presented on Algorithm 3 (page 95) is able
to �nd out the traversed cells. This traversal algorithm has the advantage of being
exact: no cells traversed by the line segment ST is missed by the algorithm. The
algorithm works within a spatial frame of reference (O, x, y), as depicted on �g.
4.7. The algorithm takes as inputs the coordinates of point S and point T , the
coordinates of the cells that contain both points, and the length of the sides of 2D
cells. A cell is located by the coordinates of a point that belongs to the cell. For
instance, the coordinates of the south-west corner can be chosen as the coordinates
of a cell.

The algorithm �nds out iteratively the traversed cells starting from point S and
going toward point T . Figure 4.7 actually shows an iteration of the algorithm where
the gray cells are known to be traversed. Cell c is the last cell found as traversed by
the segment ST . Let c′ denote the next traversed cell after c. Cell c′ can be either
cx or cy or cxy. To identify the right one, the sign of an error variable e is checked:

c′ =


cxy if e = 0

cx if e > 0

cy otherwise

(4.2)

The mathematical derivation of Algorithm 3 (page 95) is detailed in Section
B.2 (page 132). The demonstrations explain the mathematical principle behind the
error variable and detail how the algorithm was designed.
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Algorithm 3 Continuous Traversal Algorithm

1: function Traverse(Point (xS , yS), Point (xT , yT ), Point (x0, y0), Point
(x1, y1), Real β)

2: . (xS , yS): coordinates of point S
3: . (xT , yT ): coordinates of point T
4: . (x0, y0): location of the cell containing the point S
5: . (x1, y1): location of the cell containing the point T
6: . β: length of a side of a squared cell
7: Point (x, y) . Location of the currently traversed cell c
8: Real e . Error variable
9: Real ∆x← xT − xS
10: Real ∆y ← yT − yS
11: (x, y)← (x0, y0)

12: e← (y + β − yS)×∆x− (x+ β − xS)×∆y

13: while (x, y) 6= (x1, y1) do
14: if e = 0 then
15: (x, y)← (x+ β, y + β) . cxy is traversed
16: e← e+ β × (∆x−∆y)

17: else if e > 0 then
18: x← x+ β

19: e← e− β ×∆y . cx is traversed
20: else
21: y ← y + β . cy is traversed
22: e← e+ β ×∆x

23: end if
24: . The cell traversed at the current iteration is located at (x, y)

25: SampleISM(x, y)

26: end while
27: end function

Algorithm 3 (page 95) works as follows. The variables x and y at line 7 store
the coordinates of the last cell discovered by the algorithm. Both variables are
initialized by the coordinates of the cell containing the point S at line 11. After
that, the error variable is initialized at line 12. In the main loop, the sign of e is
analyzed to determine the next traversed cell. The coordinate of the traversed cell
is then stored within the variables x and y and the value of the error variable is also
updated. Once the new traversed cell is discovered, the function SampleISM() is
called (line 25). The loop iterates until the algorithm reaches the cell that contains
the point T .

The function SampleISM() computes the ISM of the traversed cell. This func-
tion samples the local occupancy gird at the level of the traversed cell. The process
of sampling is depicted on �g. 4.8. The �gure assumes that cell c is the newly dis-
covered cell. Let c∗ denotes the 1D cell of the local grid that hits the cell c. Then,
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the ISM of c∗ is a�ected to cell c.

Figure 4.8 � Sampling the ISM of a 1D cell c∗

4.2.2.2 Discrete traversal algorithm

By working within the continuous frame of reference (O, x, y), the continuous traver-
sal algorithm has to deal with real number operations. This requires then a HW/SW
support of real numbers. The good news is that all operations involve only additions
and multiplication of coordinates of points and cells.

Sensor device
O

T

S

Figure 4.9 � The discrete frame of reference (O, l,m) and the resolution r

Let us replace the continuous frame (O, x, y) by a discrete frame 1 (O, l,m). The
latter is shown on �g. 4.9. Coordinates in (O, x, y) belongs to R2 while those in
(O, l,m) lays within Z2. Consider a point within the plane. Let (x, y) denotes its
coordinates within the continuous frame, and (l,m) within the discrete frame. The
relation between (x, y) and (l,m) is:

∀(x, y) ∈ R2, x = l · δ and y = m · δ (4.3)

The symbol δ denotes a discretization-step which measures the spatial precision of
the discrete frame.

The value of δ is measured in meter (m). It is chosen such that the length β

of sides of 2D cells becomes a multiple of δ. The value of δ is determined by the
traversal resolution de�ned as follows.

1 The application of discrete frame for performing range mapping was published in

[Rakotovao 2016b].
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De�nition 4.2.1. Let β denotes the length of sides of 2D cells. The traver-

sal resolution denotes a positive integer r. It allows to determine the

spatial precision δ of the discrete frame as follows:

δ =
β

r

Hence, given the size of cells, the value of the traversal resolution is �rst deter-
mined in order to know the value of δ. The traversal resolution determines how
precise is the discrete frame of reference while the value of δ determine exactly how
long is the precision. For instance, if cells measure 10 cm-by-10 cm, a traversal res-
olution of 10 means that the discrete frame of reference is precise at 1 cm. A higher
traversal resolution of 100 makes increases the precision at 1 mm.

The above de�nition implies that the length of the side of cell within the discrete
frame is equal to r. By replacing x with m, y with l and β with r, the continuous
traversal algorithm becomes discrete. It engenders the discrete traversal algorithm
presented on Algorithm 4 (page 98). The latter follows exactly the same princi-
ples as the continuous traversal algorithm, except that it manipulates exclusively
coordinates in integers.

Remark Algorithm 4 (page 98) works only for a grid traversal oriented towards the
North-East. The general discrete algorithm that works in all direction is described
in Section B.3 (page 135).

4.2.2.3 Analysis of the discrete traversal algorithm on a LIDAR

Sensor
device

Laser beam
s

Figure 4.10 � A LIDAR emitting laser beams towards cells of a 2D grid

Using a discrete frame allowed to design a traversal algorithm that process only
integer arithmetic. However with the discrete frame, does the discrete algorithm



98
Chapter 4. APPLICATION OF INTEGER OCCUPANCY GRIDS

FOR AUTOMOTIVE MULTI-SENSOR FUSION

Algorithm 4 Discrete Traversal Algorithm

1: function Traverse(Point (lS ,mS), Point (lT ,mT ), Point (l0,m0), Point
(l1,m1), Integer r)

2: . (lS ,mS): coordinates of point S
3: . (lT ,mT ): coordinates of point T
4: . (l0,m0): location of the cell containing the point S
5: . (l1,m1): location of the cell containing the point T
6: . r: resolution of the discrete frame of reference
7: ∆l← lT − lS
8: ∆m← mT −mS

9: Point (l,m) . Location of the currently traversed cell c
10: Integer e . Error variable
11: (l,m)← (l0,m0)

12: e← (l + β − lS)×∆m− (m+ β −mS)×∆l

13: while (l,m) 6= (l1,m1) do
14: if e = 0 then
15: (l,m)← (l + r,m+ r) . cxy is traversed
16: e← e+ r × (∆l −∆m)

17: else if e > 0 then
18: l← l + r

19: e← e− r ×∆m . cx is traversed
20: else
21: m← m+ r . cy is traversed
22: e← e+ r ×∆l

23: end if
24: . The cell traversed at the current iteration is located at (l,m)

25: SampleISM(l,m)

26: end while
27: end function

�nd out exactly all cells that are discovered by the continuous one? And what is
the impact of the introduction of the discrete frame on the execution time?

An experiment on a �ctive LIDAR is conducted to answer to the above ques-
tions. Both continuous and discrete traversal algorithms are applied for �nding out
cells traversed by the laser beams of the �ctive LIDAR. Both algorithms are im-
plemented on the SABRE Lite platform. The continuous algorithm is implemented
with �oating-points.

The LIDAR is placed at the Sout-West corner of a 2D grid as illustrated on �g.
4.10. Laser beams return a range of 50 m. They are separated with an angular step
of 0.5◦. These parameters are chosen to match with the characteristics of Ibeo LUX
LIDARs. The grid measures 50 m-by-50 m with cells of 10 cm-by-10 cm.
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Figure 4.11 � Comparison of the accuracy of the discrete algorithm to that of the
continuous algorithm

Accuracy To measure the accuracy of the discrete traversal algorithm, we count
how many percent of the cells traversed by the continuous algorithm are also tra-
versed by the discrete one. An accuracy of 100% would mean that the discrete
algorithm has discovered all cells traversed by the continuous one. To evaluate the
impact of the discrete frame on the accuracy, several values of the traversal resolu-
tion have been tested. The evolution of the accuracy as a function of the traversal
resolution is shown on �g. 4.11a.

The traversal algorithm is accurate at 85% when the traversal resolution is equal
to 1. A resolution of 1 means that the precision of discrete frame is equal to the
length of a cell side (δ = β). With a traversal resolution greater than 100, the
discrete algorithm is accurate at more than 99.9%. The higher is the traversal reso-
lution, the more accurate is the discrete traversal algorithm. For a deeper analysis,
consider now the percentage of misses, that means 100% minus the accuracy. The
logarithm of the percentage of misses is plotted on �g. 4.11b. The �gure shows that
when the resolution increases, the log scale of the percentage of misses continues to
decrease. The percentage of misses tends then towards 0.

Execution time & speedup Let us now study the execution time of the discrete
algorithm compared to the continuous one. The evolution of the execution time as
a function of the traversal resolution is shown on Table 4.2 (page 100). The discrete
traversal algorithm is 2.8× faster than the continuous traversal algorithm. This
shows that the SABRE Lite platforms have a better support of integers compared to
�oating-points. Moreover, the traversal resolution does not in�uence the execution
time. That means, the traversal resolution can be chosen as higher as possible.

Choosing the traversal resolution In practice, range sensors have a limited
spatial precision of the order of centimeters. The traversal resolution is chosen as a
function of the precision of range sensors. The discrete algorithm can work with a
precision that is better than the precision of sensors. Having a �too high� traversal
resolution is however not required. For instance, if 2D cells measure 10 cm-by-10 cm,
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Algorithm Cont. Disc. (r = 20) Disc. (r = 100) Disc. (r = 200)
Exec. time 20 ms 7 ms 7 ms 7 ms
Speedup 1 2.8 2.8 2.8
Correctness 100% 99.50% 99.90% 99.95%

Table 4.2 � Performance of the discrete traversal algorithm compared to the contin-
uous one

a traversal resolution of 100 means that the discrete frame has a spatial precision of
1 mm. Such a resolution is enough for range sensors which measurements are precise
at an order of centimeters.

Once the methods for computing ISMs are now available, let us move towards the
SW/HW integration of the integer occupancy grid framework in the next section.

4.3 HW/SW integration of multi-sensor Integer Occu-
pancy Grids

The LIDARs mounted on the prototype car produce scan points within a period of
25 Hz. The objective consist in fusing these points into a 2D integer occupancy grid
at each period. The grid measures 102.4 m-by-102.4 m, with cells of 10 cm-by-10 cm.
The number of cells is 1024× 1024, which is more than 1 Million. As shown on �g.
4.12, the prototype car is located at the center of the grid.

When the car moves, the grid is attached to the vehicle and follows its motion.
The grid is placed at 20 cm from the ground. It is parallel to the chassis of prototype
car. This section presents the implementation of the integer occupancy grid frame-
work on the SABRE Lite platform. Experimental results will be also presented and
analyzed. The SW/HW integration is tested on the experimental data described in
Section 4.1.3 (page 88).

4.3.1 Implementation of integer occupancy grids

For fusing measurements from the four LIDARs, the integer occupancy grid frame-
work is implemented as follows. Regardless of the data structure used for storing
the grid, occupancy indexes of 2D cells are set to 0 at the beginning of a scan period.
Occupancy index of 0 is equivalent to an occupancy probability of 1/2. That means,
the occupancy states of cells are initialized to unknown. After that, the scan points
produced within a period are sequentially integrated into the 2D integer occupancy
grid for performing the fusion. Let us explain the integration of a single scan point.

Consider the scan point on �g. 4.13. It is generated by a laser beam which
line-of-sight is subdivided into the local grid. The latter measures 50 m. This length
corresponds to the maximal range of a laser beam of the LIDAR. By taking into
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Prototype
car

Laser beams

Figure 4.12 � Top view of the prototype car with the 2D grid and the laser beams
from the four LIDARs (three on the front bumper and one on the back bumper)

Local grid
(1D)Scan

point

Ground

Plane of
the 2D grid

Figure 4.13 � A scan point with its corresponding local grid

account the discussions in Section 4.2.1.2 (page 91), the cell size of the local grid is
set to be equal to the precision of the sensors. Therefore, 1D cells of the local grid
have 10 cm of length.

To integrate a scan point into the 2D integer occupancy grid, two steps are
required. First, the local integer occupancy grid is computed. Second, the local
integer occupancy grid is projected onto the 2D grid.

4.3.1.1 Computation of the local integer occupancy grid

The local integer occupancy grid is de�ned over the local grid that corresponds to
the scan point. It is built by �nding out �rst the index k of the cell where the scan
point is located. After that, the occupancy indexes of cells over the local grid are
directly given by the lookup table on Table 4.3 (page 102).

The look up table is �lled once before the integration of any sensor measurement
and cached in the memory for further utilisation. The occupancy indexes within the
table are computed by quantizing ISMs. Both blurring policy and nearest policy
are experienced during the quantization. In practice, only a single quantization
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Cell index ≤ k − 3 k − 2 k − 1 k k + 1 ≥ k + 2

ISM 0.05 0.18 0.48 0.6 0.54 0.5

Occupancy index
(Blurring policy)

−14 −7 0 2 0 0

Occupancy index
(Nearest policy)

−15 −7 0 2 1 0

Table 4.3 � Lookup table for accelerating the computation of local 1D integer occu-
pancy grids

policy is applied but we have implemented both for experimental purposes. ISMs
are computed thanks to Theorem 6 (page 91).
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Figure 4.14 � The ISMs over the local 1D grid and its quantization by both blurring
policy and nearest policy

The pro�les of the ISMs and their quantization are plotted on �g. 4.14. The
blurring policy approximates ISMs towards 1/2. The nearest policy approximates
an ISM with the element of the recursive set that is nearest to the numerical value
of the ISM. The �gure also shows that ISMs have a minimum non-null value. It
avoids, in practice, an overestimation of the emptiness of a cell given a single scan
point.

4.3.1.2 Projection of the local integer occupancy grid

Once the local integer occupancy grid is computed, it is projected vertically on the
2D grid as depicted on �g. 4.15a. The scan point only updates the occupancy
indexes of 2D cells that are traversed by the projected local grid. The discrete
traversal algorithm is used for �nding out the traversed cells.
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Local grid
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Plane of
the 2D grid

(a) Project the local grid on the 2D grid

Projected local
IOG

Prototype
car

(b) Update the occupancy index of 2D

traversed cells

Figure 4.15 � Projection of the local integer occupancy grid and update of the
occupancy index of a 2D cell traversed by the projection

Figure 4.15b illustrates the update of a 2D cell traversed by the projected local
grid. Consider a 2D cell ci that is traversed by the projection. Let us note by c′j the
cell of the local grid that is projected on cell ci. Both cells ci and c′j are presented
on the �gure. The occupancy index of ci is updated by the occupancy index of c′j
as follows:

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1 ∧ . . . ∧ zk−1) + I(o′j |zk) (4.4)

4.3.2 Experimental results and analysis

Three implementations were experienced. The �rst one implements integer occu-
pancy grids stored within an array. It serves for evaluating both execution time
and power e�ciency of the SW/HW integration. The second implementation stores
integer occupancy grids within a quadtree. It allows to assess quantitatively the
compaction of integer occupancy grid o�ered by 2d-trees compared to arrays. The
third implementation computes directly occupancy grids rather than integer occu-
pancy grids. The Bayesian fusion is implemented with �oating-points. This im-
plementation allows to compare integer occupancy grids with respect to occupancy
grids computed with �oating-points. It also enables to validate experimentally the
numerical quality of the integer occupancy grid framework.

4.3.2.1 Analysis of the array-based implementation

Figure 4.16 shows an example of a 2D integer occupancy grid fusing the scan points
of the four LIDARs at a given period. The scenario of the tra�c is at the top
of the �gure. On the bottom left is the integer occupancy grid. The equivalent
occupancy grid is depicted on the bottom right of the �gure. On both grids, dark
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color corresponds to cells likely occupied by obstacles while bright color to likely
empty cells. Gray color corresponds to cells with unknown occupancy states. These
are cells that are in majority hidden or outside the �eld-of-view of the LIDARs.

Figure 4.16 � Example of an urban scenario on top. The corresponding integer
occupancy grid is on the bottom left. The parameter ε is set to 0.05. The occupancy
grid corresponding to the scenario is on the bottom right.

The integer occupancy grid shows the presence of obstacles by cells of dark
colors. For instance, according to the integer occupancy grid, an obstacle is likely
situated in the front right of the prototype car. The image of the scenario shows
that this obstacle actually corresponds to a car. Besides, another obstacle is also
present in the front left of the prototype car even if its nature is hardly recognizable
on the image of the scenario. Actually, this obstacle is a garbage bin placed on the
sidewalk. Notice that the LIDARs do not provide information about the nature of
objects hit by laser beams. Obstacles are just modeled by likely occupied cells.

Integer occupancy grids estimate the occupancy states of cells with occupancy
indexes. For occupancy grids, occupancy states are estimated with occupancy prob-
abilities. A comparison between the images on the bottom left and the bottom right
of �g. 4.16 shows that integer occupancy grids provide more di�erentiated estima-
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tion than standard occupancy grids. On the integer occupancy grid, empty cells do
not have the same level of brightness. Some empty cells are brighter than others.
Such di�erence of brightness is not however remarkable on the occupancy grid.

This di�erence highlights that there are regions that are seen as empty by only
one LIDAR devices. It is for instance the case of the region at the left of the ego
vehicle. This region has a lower brightness. At the same time, there are other
regions that are seen as empty by two or three LIDAR devices. The region just in
the front of the ego vehicle has a higher brightness since it is covered partially by
the left and right LIDARs, and totally by the LIDAR on the center of the bumper.

Number of bits for occupancy indexes By shrinking occupancy indexes be-
tween -127 and 127, occupancy probabilities are saturated between p−127 and p127.
As explained in Section 3.4.6.3 (page 74), p−127 is less than 10−11 while p127 is
greater than 1− 10−11 with an ε equal to 0.05. This value ε enables to encode oc-
cupancy indexes in 8-bits. The indexes correspond to probabilities that are spread
over ]0, 1[, with values close to 0 and 1.

For smaller value of ε, occupancy probabilities are encoded in 32-bits. This
allows to have a wide range of occupancy indexes (larger than [−127, 127]). In fact,
if the occupancy indexes are still shrunk between −127 and 127 while ε is less than
0.05, the probabilities that correspond to the indexes would not reach value close to
0 or 1 (see Section 3.3.3.5 (page 63)).

Performance analysis 2 Three metrics are used for measuring the performance
of the array-based implementation. The �rst one is the average output rate at which
integer occupancy grids are produced by the SABRE Lite. The output rates versus
the number of LIDAR devices are shown on Table 4.4 (page 105). Since the Ibeo
LUX LIDARs produce complete scan at 25 Hz, Table 4.4 (page 105) shows that the
implementation fuses the scan points into an occupancy grid in real-time.

Nb of LIDARs 4 3 2
OG Rate(Hz) 28 47 66

Table 4.4 � OG output rate on embedded CPU.

To compare the computation time with those of the state-of-the-art, the second
metric is constituted by the product of the number of scan points with the number
of cells and the output rate (points · cell ·Hz). This metric shows how many points
an implementation can process in one second. Table 4.5 (page 106) compares the
performance of the array-based implementation to the performance of implementa-
tions of occupancy grids on a GPU in [Homm 2010] and on a desktop in [Nuss 2015].
The implementation of a GPU serves as a reference of comparison. The 6-th row of

2Experimental results published in [Rakotovao 2016b].
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Table 4.5 (page 106) shows that the array-based implementation is 5× faster than
the implementation on a GPU, and up to 10× faster than that on a desktop.

If the power consumption is also taken into account, the third metric measures
the e�ciency of the array-based implementation. This metric is measured in points ·
cell ·Hz/W . It expresses the energy required for processing a given number of scan
points within one second. With this metric, the array-based implementation is
1000× more e�cient than the implementation of standard occupancy grids on GPU
and desktop.

Criteria [Homm 2010] [Nuss 2015] Present Work
HW Nvidia GeForce 268GTX Desktop Single ARM A9
Power cons. 204W ∼80W 1W
Nb layers 2 4 16
Grid cells 512x512 533x533 1000x1000
Normalized
point · cell ·Hz

1 0.4 5

Normalized
point·cell·Hz/W

1 ∼1 1030

Table 4.5 � Performance of the array-based implementation of Integer Occupancy
Grids compared with the state-of-the-art

Numerical quality Section 3.4.6.2 (page 74) showed that within the integer oc-
cupancy grid framework, only the step of quantization introduces a numerical error
that is bounded by ε. The step of fusion does not introduces additional errors. Inte-
ger occupancy grids can be transformed into standard occupancy grids by replacing
an occupancy index by its corresponding probability within the recursive set.

Let us evaluate the cell-by-cell absolute di�erence between occupancy grids com-
puted by the array-based implementation of integer occupancy grids and the occu-
pancy grids computed by the �oating-point implementation of Bayesian fusion. Both
implementations use exactly the same grid parameters and process the same set of
data.

To evaluate the impact of ε on the values of occupancy probabilities computed
from the integer occupancy grid framework, several values of ε were tested. Table
4.6 (page 107) shows statistics on the di�erence of probabilities between the two
approaches for di�erent values of ε. Both blurring quantization policy and nearest
quantization policy are represented. Regardless of the quantization policy, the mean
of the di�erences and the standard deviation are at least in order of 102× lower than
the value of ε. Table 4.6 (page 107) also shows that the di�erences decrease with ε.
In fact, the lower is ε, the more accurate are the occupancy probabilities computed
from the integer occupancy grid framework (Section 3.4.6.3 (page 74)).
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Mean of di�erences Standard deviation
ε Blurring pol. Nearest pol. Blurring pol. Nearest pol.
10−1 4.65× 10−4 4.65× 10−4 1.58× 10−3 1.58× 10−3

10−2 1.12× 10−4 7.19× 10−5 5.48× 10−4 3.61× 10−4

10−3 2.81× 10−6 2.56× 10−6 2.65× 10−5 2.12× 10−5

10−4 3.28× 10−7 2.56× 10−7 4.33× 10−6 2.96× 10−6

10−5 1.65× 10−7 1.69× 10−8 5.89× 10−7 3.21× 10−7

10−6 1.38× 10−8 5.31× 10−9 7.16× 10−8 3.46× 10−8

Table 4.6 � Statistics on di�erences between �oating-point implementation of fusion
and the proposed index fusion

4.3.2.2 Analysis of the tree-based implementation

This subsection discusses the implementation of integer occupancy grids based on
2d-trees. A quadtree is experienced since the integer occupancy grid is based on a
2D grid. The compactness of quadtrees compared to the array-based implantation
will be analyzed.

An example of a real tra�c scenario with its corresponding integer occupancy
grid is presented on �g. 4.17. To highlight how the occupancy indexes of cells are
stored within a quadtree, the part of the integer occupancy grid encircled in red is
zoomed. The zoom shows out the regions of the leaves that store the occupancy
indexes of cells. The regions of the leaves are of di�erent sizes. Some regions cover
a unique cell while others cover 4, 8, 16 or more number of cells. This makes the
quadtree more compact than arrays.

Lossless compaction To validate that the compaction o�ered by quadtrees are
lossless, the occupancy indexes of cells stored within the quadtree are compared to
the occupancy indexes of cells computed by the array-based implementation. The
comparison has showed that the occupancy indexes stored within both quadtrees
and arrays are cell-by-cell equal. Hence, regardless of the data storage, the produced
integer occupancy grids are equal. Then, the compaction o�ered by the quadtrees
is lossless.

Compactness To measure the compactness of quadtrees, the number of nodes
within quadtrees is compared to the number of cells. Both blurring quantization
policy and nearest quantization policy were experienced. In order to study the
in�uence of ε on the compactness, several values of ε were tested. The compactness
is expressed by the number of cells divided by the number of nodes, and by the
number of cells divided by the number of leaves.

The compactness of quadtrees with respect to the quantization policy and the
value of ε are shown on Table 4.17 (page 108). The number of cells is 1024× 1024

cells. The table shows that the number of nodes is at least 2.8× less than the number
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Figure 4.17 � Tra�c scenario and the corresponding integer occupancy grid stored
within a quadtree

of cells. Moreover, the number of leaves is at least 3.7× less than the number of
cells. These proportion proves experimentally that the quadtree is more compact
than the arrays. In fact, the number of array elements must be equal to the number
of cells. Furthermore, Table 4.17 (page 108) shows that neither the quantization
policy nor ε in�uence considerably the compactness of quadtrees.

Memory consumption. A quadtree is more compact than an array in term of
number of nodes versus number of array elements, but how about the memory
consumption? Let us analyze the memory consumed by quadtrees compared to
memory consumed by arrays for storing the same integer occupancy grids.

A pointer-based implementation of quadtrees have been realized. A node is
implemented as a data structure composed of two pointers and an integer. The �rst
pointer points to the address of the children of the nodes, the second pointer points
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Blurring policy Nearest Policy
ε #cells/#nodes #cells/#leaves #cells/#nodes #cells/#leaves

10−1 2.81 3.75 2.82 3.75
10−2 2.81 3.74 2.81 3.74
10−3 2.81 3.74 2.81 3.74
10−4 2.84 3.78 2.81 3.74
10−5 2.83 3.77 2.80 3.73
10−6 2.83 3.77 2.83 3.77

Table 4.7 � Compactness of quadtrees compared to arrays

to the parent node. The integer stores the index of the node. On the SABRE Lite
platform, a pointer occupies 4 Bytes. The index of node is either 1 byte if occupancy
indexes are shrunken in [−127, 127], or 4 Bytes otherwise. Hence, a node occupies
9 Bytes or 12 Bytes of data.

On the array-based implementation, an array elements store the occupancy in-
dexes of all cells. An array element occupies either 1 byte or 4 Bytes, depending on
the size of an occupancy index in memory. When storing an integer occupancy grid
of 1024× 1024, an array consumes 1 MByte or 4 MBytes. For the same grid size, a
quadtree consumes in turn 3.15 MByte or 4.2 MByte. Hence, if an occupancy index
is encoded in 8-bit, quadtrees are 3× more memory consuming than arrays. The
di�erence of memory consumption is reduced when occupancy indexes are encoded
in 32-bit.

The memory consumption can be improved by adopting other implementations
of quadtrees such as the linear quadtrees ([Samet 1988, Holroyd 1990]), or even
by using other data structure like R-trees ([Guttman 1984]) or adaptive rectangular
cuboids ([Khan 2015]). Furthermore, a 2D integer occupancy grid can be considered
as an image by making an analogy between cells and pixels. Hence, any technique
used for a lossless compression of images can be explored.

On an application viewpoint, the access and e�ciency of the exploitation of
integer occupancy grids depends �rst on the compactness of the data structure
([Soucy 2004]). The memory amount introduces though a challenge on embedded
systems where memory resource is limited. A high memory consumption can also
hinder the exchange of integer occupancy grids through the network. Assume that
integer occupancy grids are computed by the MSF module. After that, they are
transfered to an autonomous navigation module for making decision. The size of
the data structure that stores integer occupancy grids plays a role in the speed of
this transfer through a network.

Computation time The average output rate of integer occupancy grids stored
within quadtrees is only 5 Hz in our implementation. This is 5× slower than the
frequency of complete scans produced by the Ibeo LIDARs. Hence, the quadtree-
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based implementation does not reach a real-time performance.
Two points cause this low performance. First, the traversal algorithm is op-

timized for the array-based implementation. Designing a traversal algorithm op-
timized for quadtree is essential. Such algorithm can exploit the di�erent size of
the regions of leaves to accelerate the traversal. For instance, a traversal algorithm
speci�cally designed for octree is presented in [Revelles 2000].

The second cause of the low performance is that, during a cell update, the
operation of split and merge are always executed. These operations are though
recursive and takes long execution time even if they are implemented as a loop.
As a solution, the operation of merge can be deferred as in [Fair�eld 2007]. That
means, during a cell update, only the operation of split is performed. The operation
of merge is executed less frequently, for instance after the insertion of the complete
scan points from a single LIDAR device.

Both operations can be also accelerated by optimizing the data structure for
storing a node. When nodes are pruned out of the tree during the operation of
merge, they are deallocated in the memory. When children of a node are created
during the operation of split, they are allocated in the memory. Hence, the memory
allocation plays an important role in the speed of split and merge. Integer occupancy
grids stored in quadtree or octree need an advanced memory allocation technique
to accelerate the operations of split and merge.

4.4 Summary

To summarize, this chapter presented the application of the integer occupancy grid
framework for performing automotive multi-sensor fusion.

• A formula for computing ISMs over a 1D grid given a measurement from a
single-target sensor was proposed.

• A discrete traversal algorithm that works exclusively with integers was de-
signed and studied experimentally.

• Integer occupancy grids were applied for fusing four LIDARs mounted on a
prototype car.

• Integer occupancy grids were integrated on a low-cost and low-power hardware
dedicated for automotive application.

• The numerical accuracy of integer occupancy grids have been studied experi-
mentally.

• Both arrays and 2d-trees have been experienced for storing integer occupancy
grids.

• The lossless compaction of integer occupancy grids with 2d-trees have been
validated.
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• The array-stored integer occupancy grids were computed in real-time. Real-
time performance is however still missing for 2d-trees.
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This chapter concludes the present manuscript. It presents a summary of the
Integer Occupancy Grid framework followed by a conclusion. Insights about per-
spectives and future works are listed thereafter.

5.1 Summary of Integer Occupancy Grids

In this manuscript, we introduced the Integer Occupancy Grid framework. The later
enables to process fusion of range sensors and to build an environment model based
on occupancy grids in an e�cient way.

Like traditional occupancy grids, Integer Occupancy Grids are a tessellated prob-
abilistic model of a physical environment. The latter is subdivided into multiple
cells. A cell is either occupied by an obstacle or empty. The occupancy state of a
cell is estimated by an occupancy probability for traditional occupancy grids, and
by an occupancy index for Integer Occupancy Grids.

The occupancy index of a cell is paired with the value of its occupancy probability
thanks to a set of probabilities. Occupancy indexes are integers while occupancy
probabilities are real-numbers. The fusion based on occupancy indexes requires
only integer arithmetic. Integer arithmetic are advantageous in term of HW/SW
integration. They are exact, fast, power e�cient and supported by the majority of
modern computing platforms, even the embedded ones.

For fusing multiple measurements, Integer Occupancy Grids computed indepen-
dently from individual measurements are combined cell-by-cell. The combination
of occupancy indexes is equivalent to computing their sum. The computation of
integer occupancy grids involves though a numerical error. Nevertheless, this error
is known, bounded and chosen by the application designer.

Integer Occupancy Grids can be stored within arrays or within 2d-trees. The
occupancy index of a cell is the same whatever is the used data structure. Tree
structures enable a lossless compaction of integer occupancy grids. The maintenance
of the tree structure introduces though an overhead that makes trees slower when
updating occupancy indexes.
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5.2 Conclusion

To conclude, this thesis proposes the Integer Occupancy Grids as a new framework
for processing the fusion of range sensors mounted on a car. The framework was
developed by taking into account upstream both safety requirements and embedded
hardware constraints. It enables the HW/SW integration of multi-sensor fusion on
an embedded low-cost and low-power platform.

Integer Occupancy Grids enable to process Bayesian fusion with simple integer
arithmetic. The numerical error involved by the framework is known, bounded and
parametrized by the user. This allows to guaranty the quality, the safety and the
robustness of the HW/SW integration of the fusion, especially when the later is
used for safety critical tasks such as automotive perception.

5.3 Perspectives

The envisioned perspectives based on this thesis can be grouped as follows.

Short-term perspective

• In this thesis, Integer Occupancy Grids were experienced over 2D grids. An
extension to 3D grids is required for being able to model overhanging road
structures such as bridges and underground parking.

• A large 3D grid cannot be stored within arrays anymore. Tree-based structures
enable to save memory but involve longer update time. Adequate algorithms of
split and merge, advanced memory allocator for nodes, and traversal algorithm
adapted to the tree structure are required to reach real-time performance with
2d-trees.

Mid-term perspective

• While the multi-sensor fusion based on integer arithmetic is exact, it requires
�rst a computation of mono-sensor occupancy grids. In this thesis, only mono-
sensor occupancy grids based on a single-target sensor were considered. Single-
target sensors return spatial points. This is not the case for other sensors like
radars and ultrasonic sensors. Future work may focus on these sensors.

• In the present work, no notion of time is considered. Integer Occupancy Grids
have to be converted into traditional occupancy grids before being injected
into the Bayesian Occupancy Filter (BOF). The BOF also perform intensive
probabilistic calculus and require e�cient HW/SW support of real-number
operations. An integer-based approach like the Integer Occupancy Grids can
be studied to perform the �ltering.



5.3. Perspectives 115

Long-term perspective

• When Integer Occupancy Grids will be able to handle the main sensors used
for automotive or in robotics in general, when they will be able to map 3D
environment with a compact data structure, a kind of operating system ded-
icated for multi-sensor fusion can be designed. Such operating system can
be integrated on di�erent kinds of processing platforms. It can be applied in
di�erent domains such as autonomous cars, underwater robots, mining robots,
agriculture robots or aerial vehicles.

• Like traditional occupancy grids, Integer Occupancy Grids are still too dense
and contain too much details for performing e�ciently navigation tasks. A
more abstract environment model is still required. The introduction chapter
presented some of them. The conversion of an Integer Occupancy Grid into
one of these models needs to be explored. The conversion may take advantage
of the compactness of Integer Occupancy Grids.

• The technique based on integer arithmetic for combining occupancy proba-
bilities can be applied to other problems di�erent to environment modeling.
This requires that the studied problem is based on the estimation of a binary
state variable. The latter should be estimated from independent source of
information. For instance, in an industrial production chain, this technique
can be applied for verifying whether a product is defective or not. This can
be done through a successive sensor observations. After the observations, a
conclusion about the state of the product must be known. This problem can
e�ectively treated with the Bayesian fusion based on integer arithmetic.



116 Chapter 5. CONCLUSION AND PERSPECTIVES



Publications

The present thesis has lead to the following publications.

Published papers

• R. Dia, J. Mottin, T. Rakotovao, D. Puschini and S. Lesecq. Evaluation

of Occupancy-Grid Resolution through a Novel Approach for Inverse Sensor

Modeling. 20th IFAC World Congress. 2017. ([Dia 2017]).

• T. Rakotovao, J. Mottin, D. Puschini and C. Laugier. Integration of multi-

sensor occupancy grids into automotive ECUs. 2016 ACM/EDAC/IEEE De-
sign Automation Conference (DAC) ([Rakotovao 2016b]).

• T. Rakotovao, J. Mottin, D. Puschini and C. Laugier. Multi-sensor fusion of

occupancy grids based on integer arithmetic. 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA) ([Rakotovao 2016a]).

• T. Rakotovao, J. Mottin, D. Puschini and C. Laugier. Real-time

power-e�cient integration of multi-sensor occupancy grid on many-core.
2015 IEEE International Workshop on Advanced Robotics and its Social
Impacts([Rakotovao 2015a]).

• T. Rakotovao, D. Puschini, J. Mottin, L. Rummelhard, A. Negre and C.
Laugier. Intelligent Vehicle Perception: Toward the Integration on Embedded

Many-core. 2015 ACM Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures ([Rakotovao 2015b]).

• M. Louvel, A. Molnos, J. Mottin, F. Pacull and T. Rakotovao. Poster ab-

stract: Distributed coordination of sub-sys-tems power-modes and software-

modes. 2014 ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS) ([Louvel 2014]).

Patents

• Julien Mottin, Diego Puschini Pascual, Tiana Rakotovao Andriamahefa and
Olivier Debicki. Procédé et système de détermination de cellules traversées par

un axe de mesure ou de visualisation. 2016. Dépôt France Ref 16 55104.

• Julien Mottin, Diego Puschini Pascual and Tiana Rakotovao Andriamahefa.
Procédé et système de perception de corps matériels. 2015. Dépôt France Ref
15 58919.



118 Chapter 5. CONCLUSION AND PERSPECTIVES



Appendix A

Integer Occupancy Grids

A.1 Examples of set of probability . . . . . . . . . . . . . . . . . . . . . . 119

A.2 De�nition of the recursive set . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Mathematical derivation of the recursive set of probabilities . . . 120

A.4 Properties of the recursive set . . . . . . . . . . . . . . . . . . . . . . 124

This appendix presents the demonstration of some properties used in Chapter
3.

A.1 Examples of set of probability

Property A.1.1. Let a ≥ 1 be a positive and non-null integer. Consider the se-

quence (pn)n∈N such that:

pn =
a · n+ 1

a · n+ 2
, n ∈ N (A.1)

The sequence (pn)n∈N is monotonically increasing and ∀n ∈ N, 1/2 ≥ pn.
By applying eq. (A.1), we get:

Proof

pn+1 − pn =
a

(a · n+ 1) · (a · n+ a+ 2)

Since a ≥ 1, then pn+1− pn > 0. That means pn+1 > pn, thus the sequence (pn)n∈N
is monotonically increasing. Consequently, ∀n ∈ N, pn ≥ p0, then pn ≥ 1/2.

A.2 De�nition of the recursive set

The recursive set Sε was de�ned in Theorem 3 (page 60). The set was de�ned as
follows.

Theorem. (Theorem 3 (page 60)) Let ε be a real-number such that ε ∈]0, 1/2[. Let

(an)n∈N and (bn)n∈N be in�nite sequences of numbers de�ned as follows:

an =


1/2 if n = 0
1/2 + ε if n = 1

an−1 � a1 otherwise

bn =


1/2 if n = 0
1/2− ε if n = 1

bn−1 � b1 otherwise

Consider the set Sε = {pn, n ∈ Z} such that:

pn =

{
an if n ≥ 0

b−n otherwise,
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The set Sε � called recursive set � constitutes a set of probabilities equipped by the

following index fusion operator:

∀m,n ∈ Z : m⊕ n = m+ n

A.3 Mathematical derivation of the recursive set of
probabilities

This section 1 presents the mathematical derivation of the recursive set. It presents
the mathematical intuition that has lead to the development of the sequences
(an)n∈N and (bn)n∈K . After that, this section proves that the set Sε de�ned over
both sequences (see Theorem 3 (page 60)) actually constitutes a set of probabilities.

The set of probabilities that is intended to capture the values of occupancy
probabilities of cells must contain both elements less than 1/2 and elements greater
than 1/2. This is required for capturing the occupancy probabilities of both likely
empty and likely occupied cells. Let us now present the intuitive idea that allowed
to get the elements greater than 1/2.

A.3.1 Elements greater than one-half

To de�ne a set of probabilities to be used for occupancy grids, let us assume that
the elements of the set are de�ned by a numerical sequence (an)n∈N. To design the
sequence, let us start from the singleton {1/2}. Assume that

a0 = 1/2 (A.2)

To ensure that the terms of the sequence are di�erent to each others, let us de�ne
the other terms an, n > 0 such that the sequence is monotonically increasing. The
order of terms are depicted on �g. A.1.

... ...

Figure A.1 � Ordering the terms of the sequence (an)n∈N

Let us now de�ne the value of a1. Assume that a1 is the next member of the set
that is closest to 1/2. That means:

a1 = 1/2 + ε (A.3)

1This section can be skipped by the reader who does not need deeper mathematical details

about the demonstration of the recursive set. The reader can move directly towards Section 3.4

(page 63).
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where ε is a positive number. In addition, ε has to be less than 1/2 to ensure that
a1 < 1:

0 < ε < 1/2 (A.4)

Now, how about a2? The above principle can be reused: after a1, a2 is the next
member closest to 1/2. Since a1 > 1/2, the property of reinforcement of the fusion
gives a1 � a1 > a1 (see Property 3.1.2 (page 51)). Thus, let us consider:

a2 = a1 � a1 (A.5)

How about a3? As above, let us assume that a3 is the next member closest to 1/2

after a1 and a2. The term a3 can be de�ned by two ways: either a1� a2 or a2� a2.
However, a1 � a2 < a2 � a2 (see Property A.4.4 (page 125)). Then, let us consider:

a3 = a1 � a2 (A.6)

The same reasoning can be continued by induction. By taking into account
equations (A.2),(A.3),(A.5),(A.6), we obtain the general term by induction:

an =


1/2 if n = 0
1/2 + ε if n = 1

an−1 � a1 otherwise
(A.7)

A.3.2 Elements less than one-half

Suppose that the elements of the set of probability that are less than 1/2 form a
sequence (bn)n∈N. As for an, let us assign 1/2 to the �rst term:

b0 = 1/2 (A.8)

Let b1 be the next term that is closest to 1/2:

b1 = 1/2− ε (A.9)

The terms of (bn)n∈N are designed to be less than 1/2. The sequence has to be
monotonically decreasing. The order of the terms are shown on �g. A.2

...

Figure A.2 � Ordering the terms of the sequence (bn)n∈N

By applying similar induction as for the sequence (an)n∈N, the general term bn
becomes:

bn =


1/2 if n = 0
1/2− ε if n = 1

bn−1 � b1 otherwise
(A.10)
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A.3.3 Proof of the recursive set of probabilities

After determining the formula of the sequences (an)n∈N and (bn)n∈N, let us now
prove that the set Sε = {pn}, such that:

pn =

{
an if n ≥ 0

b−n otherwise,
(A.11)

, constitutes a set of probabilities. The proof is subdivided into three parts. First,
we will prove that the set {an, n ∈ N} constitutes a set of probabilities called the
recursive set of occupancy. Second, we will prove that the set set {bn, n ∈ N} also
form a set of probabilities called the recursive set of emptiness. Finally, we will
demonstrate that the reunion of both sets constitutes the recursive sets and also
forms a set of probabilities.

A.3.3.1 Recursive set of occupancy

Let be ε a positive number in ]0, 1/2[. Let Soε denote the set {an, n ∈ N}. Let us
verify if Soε is a set of probability.

• Inclusion into ]0, 1[. Property A.4.1 (page 124) shows that an < 1. Property
A.4.2 (page 125) stipulates that an ≥ 1/2. Then 0 < an < 1,∀n ∈ N.

• Countability. Property A.4.3 (page 125) shows that an−1 < an. That means
∀m,n ∈ N, we get: m 6= n⇔ am 6= an. Then the set Soε is countable.

• Closure. To verify the closure of Soε , let us compute the fusion of an and
am, where m,n ∈ N. Equation (A.7) de�nes an by the following recursion:
an = an−1 � a1. This property can be developed as follows:

an = an−1 � a1
= (an−2 � a1)� a1
= ((an−3 � a1)� a1)� a1
. . .

= a1 � . . .� a1︸ ︷︷ ︸
n times

(A.12)

Consequently, the fusion of am with an leads to:

am � an = a1 � . . .� a1︸ ︷︷ ︸
m times

� a1 � . . .� a1︸ ︷︷ ︸
n times

= a1 � . . .� a1︸ ︷︷ ︸
(n+m) times

(A.13)

Finally, we obtain:
am � an = am+n (A.14)
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The above equation means:

∀m,n ∈ N : am � an = am⊕n = am+n (A.15)

Then Soε is a closed set with respect to the operator �. In addition, it has an index
fusion operator ⊕ where m⊕ n = m+ n.

A.3.3.2 The recursive set of emptiness

Let be ε a positive number in ]0, 1/2[. Let Seε denotes the set {bn, n ∈ N}. The proves
that Seε constitutes a set of probability is similar to those of Soε . Both Property
A.4.5 (page 125) and Property A.4.6 (page 125) shows that 0 < bn ≤ 1/2. Then
Seε is included within ]0, 1[. Next, the countability of Seε can be proved by using
Property A.4.7 (page 125).

Let us now focus on the closure of Seε with respect to the operator �. Like an
element an of the set Soε , an element bn of Seε veri�es:

bn = b1 � . . .� b1︸ ︷︷ ︸
n times

(A.16)

By applying the same reasoning as for am � an, we obtain:

bm � bn = bm+n (A.17)

Therefore, the set Seε is also closed under the fusion operation. The set has an
index fusion operator ⊕ where m⊕ n = m+ n.

A.3.3.3 The �nal recursive set

The recursive set Sε is formed by the reunion of the set Soε and the set Seε . Like S
o
ε

and Seε , Sε is included within ]0, 1[ and is countable. It remains to verify if Sε is
closed with respect to the fusion operator �.

Theorem 3 (page 60) de�nes Sε as a set of {pn, n ∈ Z}. An element of Sε is
de�ned from the sequences (an)n∈N and (bn)n∈N such that:

pn =

{
an if n ≥ 0

b−n otherwise

Let us now study the fusion of pm and pn, where m,n ∈ Z. Two cases are possible:
m and n have the same signs or not. In the �rst case, if m ≥ 0 and n ≥ 0, then
pm = am and pn = an. Therefore, pm � pn = pm+n. Similarly, if m < 0 and n < 0,
then pm � pn = pm+n.

In the second case, assume that m ≥ 0 and n ≤ 0. We get pm = am and
pn = b−n Consequently, the fusion of pm and pn gives:

pm � pn = a1 � . . .� a1︸ ︷︷ ︸
|m| times

� b1 � . . .� b1︸ ︷︷ ︸
|n| times

(A.18)

where |x| designates the absolute value of x. From here, three cases are possible:
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1. if |m| = |n|, eq. (A.18) gives:

pm � pn = a1 � . . .� a1︸ ︷︷ ︸
|m| times

� b1 � . . .� b1︸ ︷︷ ︸
|m| times

= (a1 � b1) . . .� (a1 � b1)︸ ︷︷ ︸
|m| times

(� is associative)
(A.19)

Since a1 � b1 = 1/2, then we �nally obtain pm � pn = 1/2.

2. If |m| > |n|, rearranging eq. (A.18) leads to:

pm � pn = (a1 � b1) . . .� (a1 � b1)︸ ︷︷ ︸
|n| times

� a1 � . . .� a1︸ ︷︷ ︸
(|m|−|n|) times

= 1/2 � a1 � . . .� a1︸ ︷︷ ︸
(|m|−|n|) times

= a|m|−|n|

= p|m|−|n|

(A.20)

Since |m| > |n|, then |m|−|n| = m+n. Consequently, we get pm�pn = pm+n.

3. Finally, if |m| < |n|, we can write:

pm � pn = (a1 � b1) . . .� (a1 � b1)︸ ︷︷ ︸
|m| times

� b1 � . . .� b1︸ ︷︷ ︸
(|n|−|m|) times

= 1/2 � b1 � . . .� b1︸ ︷︷ ︸
(|n|−|m|) times

= b|n|−|m|

= p−(|n|−|m|)

(A.21)

Since |m| < |n|, then −(|n| − |m|) = m+ n. Therefore, pm � pn = pm+n.

In conclusion, the fusion of two elements of Sε gives pm � pn = pm+n. The
recursive set Sε is closed with respect to �. It has an index fusion operator ⊕ such
that m⊕n = m+n. The recursive set forms a set of probability which elements are
symmetrically spread between 0 and 1. The inverse of an element pn with respect
to � is p−n.

A.4 Properties of the recursive set

Property A.4.1. ∀n ∈ N : an < 1

Proof Proof by induction. In the base case, ≤ a0 < 1 is true due to (A.3). In the
inductive step, assume that an−1 < 1. Since a1 is also less than 1, the de�nition of
the fusion operator � (De�nition 3.1.1 (page 50)) ensures that an−1�a1 < 1. Then
an < 1.
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Property A.4.2. ∀n ∈ N : an ≥ 1/2

Proof Proof by induction. In the base case, 1/2 ≤ a0 < a1 is true due to (A.3). In
the inductive step, assume that an−1 ≥ 1/2. Equation (A.7) gives an = an−1 � a1.
Since both an−1 and a1 are greater than 1/2, the property of reinforcement gives
an−1 � a1 > an−1. Then an ≥ 1/2.

Property A.4.3. ∀n ∈ N : an−1 < an

Proof Proof by induction. In the base case, a0 < a1 is true due to (A.3). In
the inductive step, assume that an−1 < an. Equation (A.7) gives an+1 = an � a1.
Since an > 1/2 and a1 > 1/2, the reinforcement property gives an � a1 > an. Then
an+1 > an.

Property A.4.4. a1 � a2 < a2 � a2

Proof By utilizing the Bayesian fusion function F , we get:

a1 � a2 = F (a1, a2) =
(2 · ε+ 1)3

2 · (12 · ε2 + 1)

a2 � a2 = F (a2, a2) =
(2 · ε+ 1)4

2 · (16 · ε4 + 24 · ε2 + 1)

Then

(a1 � a2)− (a2 � a2) =
ε · (2 · ε− 1)3 · (2 · ε+ 1)3

(12 · ε2 + 1)(16 · ε4 + 24 · ε2 + 1)

Since ε < 1/2, then (2 · ε − 1) < 0. Finally, (a1 � a2) − (a2 � a2) < 0, thus
(a1 � a2) < (a2 � a2).

Property A.4.5. ∀n ∈ N : bn > 0

Proof Proof by induction. In the base case, ≤ b0 > 0 is true due to (A.8). In the
inductive step, assume that bn−1 > 0. Since b1 is also strictly positive, the de�nition
of the fusion operator � (De�nition 3.1.1 (page 50)) ensures that bn−1 � b1 > 0.
Then bn > 0.

Property A.4.6. ∀n ∈ N : bn ≤ 1/2

Proof Similar to the proof of Property A.4.2 (page 125).

Property A.4.7. ∀n ∈ N : bn−1 > bn

Proof Similar to the proof of Property A.4.3 (page 125).

Property A.4.8. The sequence {pn}n∈Z is monotonically increasing:

∀n ∈ Z : pn < pn+1
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Proof If n ≥ 0, then pn = an. Thus, pn+1 = an+1 = an�a1. Since both a1 and an
are greater than 1/2, the property of reinforcement of � gives an < an � a1. Then
an < an+1, and subsequently pn < pn+1.

If n < 0, then pn = b−n. Therefore, pn+1 = b−n+1 = b−n � b1. Since both b1
and b−n are less than 1/2, the property of reinforcement of � gives b−n � b1 < b−n.
Thus b−n < b−n+1, and then pn < pn+1.

Property A.4.9. ∀n ∈ N : |an+1 − an| > |an+2 − an+1|

Proof Since (an) is monotonically increasing, then |an+1 − an| = an+1 − an.
Therefore:

|an+1 − an| − |an+2 − an+1| = an+1 − an − an+2 − an+1

= (an � a1)− an − (an � a1 � a1)− (an � a1)

= − 16ε2 · an · (an − 1) · (2 · an + 2ε− 1)

(4 · an · ε− 2ε+ 1) · (8 · an · ε+ 4ε2 − 4ε+ 1)

By taking into account that an < 1 and 0 < ε < 1/2, we obtain |an+1−an|− |an+2−
an+1| > 0. Therefore, we �nally have |an+1 − an| > |an+2 − an+1|.

Property A.4.10. ∀n ∈ N : |bn+1 − bn| > |bn+2 − bn+1|

Proof Similar to the proof of Property A.4.9 (page 126).

Property A.4.11. (Proof of Property 3.3.1 (page 61)) ∀n ∈ N : 0 < p−n <
1/2 and 1/2 ≤ pn < 1

Proof Let n ∈ N. Property A.4.5 (page 125) ensures that bn > 0 while Property
A.4.6 (page 125) gives bn ≤ 1/2. Since p−n = bn (see Theorem 3 (page 60)), then
0 < p−n < 1/2.

Besides, Property A.4.1 (page 124) states that an < 1. In addition, an ≥ 1/2

according to Property A.4.2 (page 125). Since pn = an, then we have 1/2 ≤ pn < 1.

Property A.4.12. (Proof of Property 3.3.3 (page 62)) The inverse of the element

pn with respect to the operator � is p−n:

∀n ∈ Z, pn � p−n = 1/2

Proof Theorem 3 (page 60) gives pn�pm = pn+m. By replacing m by −n, we get:

pn � p−n = pn�−n = p0 = 1/2

Since 1/2 is the identity element of the operator �, p−n becomes then the inverse of
pn.
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Property A.4.13. (Proof of Property 3.3.4 (page 62)) ∀n ∈ N:

|pn+2 − pn+1| < |pn+1 − pn| |p−n−2 − p−n−1| < |p−n−1 − p−n|

Proof Let n be a positive or null integer. We have pn = an and |an+1−an| > |an+2−
an+1| (see Property A.4.9 (page 126)). Then, we get |pn+2 − pn+1| < |pn+1 − pn|.

Besides, Property A.4.9 (page 126) states that |bn+1 − bn| > |bn+2 − bn+1|.
Since pn = b−n, then p−n = bn. Consequently, we also have p−n−2 = bn+2 and
p−n−1 = bn+1. Finally, we obtain |p−n−2 − p−n−1| < |p−n−1 − p−n|.

Property A.4.14. (Proof of Property 3.3.5 (page 62)) ∀n ∈ Z : |pn+1 − pn| ≤ ε

Proof

an+1 − an − ε = F (an, p1)− an − ε

=
(−2 · an + 1) · ε · (2 · ε+ 2 · an − 1)

4 · ε · an − 2 · ε+ 1

Since, 1/2 ≤ an < 1 and 0 < ε < 1/2, then

(−2 · an + 1) ≥ 0

(2 · ε+ 2 · an − 1) ≤ 0

4 · ε · an − 2 · ε+ 1 > 0

Consequently, an+1 − an − ε ≤ 0, then an+1 − an ≤ ε.
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This appendix presents the demonstration of theorem and algorithms presented
in Section 4.2 (page 89) These theorems and algorithms serve for computing the
ISM of a 1D cell or that of 2D cell.

B.1 Mathematical derivation of the ISM of 1D cell

This section demonstrates Theorem 6 (page 91) for calculating the ISM of a linear
cell given a measurement from a single-target sensor. Consider a single-target sensor
that observes a physical environment through a line-of-sight. The sensor returns a
measurement z. The sensing process is modeled by the sensor model p(z|d) where
d denotes the distance to the nearest obstacle. The line-of-sight of the sensor is
subdivided into a 1D grid G composed of N number of cells. The cell c1 is the cell
closest to the sensor and cell cN is the furthest. Let di denote the distance of cell ci
from the sensor. Let us compute the ISM P (oi|z) of a cell ci.

By applying the Theorem of Bayes (eq. (2.13)), we get:

P (oi|z) =
p(z|oi)P (oi)

p(z|oi)P (oi) + p(z|ei)P (ei)
(B.1)

Under the non-informative prior, P (oi) = P (ei) = 1/2 (Hypothesis 2.3.1 (page 28)).
Then, the ISM becomes:

P (oi|z) =
p(z|oi)

p(z|oi) + p(z|ei)
(B.2)

The Bayesian approach (Section 2.3.1.1 (page 29)) introduced the notion of grid
con�gurations for computing p(z|si), si ∈ {oi, ei}. Let us utilize the same approach.
Equation (2.33) (Section 2.3.1.1 (page 29)) gave:

p(z|si) =
∑
gsi

p(z|gsi)P (gsi) (B.3)
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The symbol gsi denotes a grid con�guration in the form of:

gsi , x1 ∧ . . . , xi−1, si, xi+1 ∧ . . . ∧ xN where xj ∈ {oj , ej} (B.4)

Since a cell state xj can be either oj or ej , then there exist 2N−1 number of grid
con�gurations gsi . The Bayesian approach assumes that these con�gurations are
equiprobable. That means P (gsi) is equal to 1/2N−1. Equation (B.3) becomes:

p(z|si) =
∑
gsi

p(z|gsi)
2N−1

(B.5)

Equation (2.34) in Section 2.3.1.1 (page 29) proposed to compute p(z|gsi) by
using the sensor model as follows. For any con�guration gsi , there exists a cell
index h such that:

p(z|gsi) = p(z|dh) (B.6)

If the con�guration of the grid was known, a single-target sensor would sense the
�rst occupied cell towards the ray. That means, h is the index of the �rst occupied
cell of the grid con�guration seen by the sensor.

Sensor
device

e e o

1 N

Figure B.1 � Con�gurations that share the same value of hj

Several grid con�gurations may share the same value of h. Figure B.1 illustrates
such con�gurations. The label e indicates empty cells while o denotes occupied cells.
The state of cell ci is set to si. A cell with a symbol x can be either occupied or empty.
The number of such cell is N − h − 1. Consequently, this �gure illustrate 2N−h−1

number of grid con�gurations. For all these con�gurations, p(z|gsi) = p(z|dh). Let
us exploit this property to factorize the sum on eq. (B.5) for computing p(z|si), si ∈
{oi, ei}.

Let us consider si = oi and let us compute p(z|oi). That means the cell ci is
occupied, then h cannot be greater than i. Two cases are possible with respect to
the value of h:

• If h < i, then there exist N − h − 1 cells labeled with x. Thus, 2N−h−1 grid
con�gurations have p(z|gsi) = p(z|dh).

• If h = i, then there are N − h cells labeled with x. Hence, 2N−i grid con�gu-
rations have p(z|gsi) = p(z|di).

By taking into account both cases, we obtain:

p(z|oi) =
i−1∑
h=1

[
2N−h−1 × p(z|dh)

2N−1

]
+ 2N−i × p(z|di)

2N−1
(B.7)

=
i−1∑
h=1

[
p(z|dh)

2h

]
+
p(z|di)
2i−1

(B.8)
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Consider now that si = ei and let us compute p(z|ei). That means the cell ci
is empty, then h cannot be equal to i. Thus, three cases are possible regarding the
value of h:

1. If h < i, then the number of cells labeled with x is N − h− 1. Thus, 2N−h−1

grid con�gurations have p(z|gsi) = p(z|dh).

2. If h > i, then the number of cells labeled with x is N − h. Hence, 2N−h grid
con�gurations have p(z|gsi) = p(z|dh).

By taking into account both cases, we get:

p(z|ei) =
i−1∑
h=1

[
2N−h−1 × p(z|dh)

2N−1

]
+

N∑
h=i+1

[
2N−h × p(z|dh)

2N−1

]
(B.9)

=
i−1∑
h=1

[
p(z|dh)

2h

]
+

N∑
h=i+1

[
p(z|dh)

2h−1

]
(B.10)

The sum of (B.8) and eq. (B.10), we obtain:

p(z|oi) + p(z|ei) =

N∑
h=1

[
p(z|dh)

2h−1

]
(B.11)

Finally, by inserting eq. (B.8), eq. (B.10) and eq. (B.11) into eq. (B.2), we
obtain:

P (oi|z) =

i−1∑
h=1

[
p(z|dh)

2h

]
+ p(z|di)

2i−1

N∑
h=1

[
p(z|dh)
2h−1

] (B.12)

Notice that the above formula is not valid if i = 1 since the sum on the numerator
would be inversed. Let us compute p(z|s1) where s1 ∈ {o1, e1}. If s1 = o1, the same
principle as in the computation of p(z|oi) is applied, except that h cannot be less
than i. This principle gives:

p(z|o1) =
p(z|d1)
21−1

= p(z|d1) (B.13)

If s1 = e1, the same principle as for p(z|ei) is also applied, except that h still cannot
be less than i. This gives:

p(z|e1) =

N∑
h=2

[
p(z|dh
2h−1

]
(B.14)

Finally, we get:

P (o1|z) =
p(z|d1)

N∑
h=1

[
p(z|dh)
2h−1

] (B.15)

Both eq. (B.12) and eq. (B.15) constitute the Theorem 6 (page 91) for comput-
ing the ISM P (oi|z).
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B.2 Mathematical derivation of the continuous range-
mapping algorithm

This section provides the demonstration of Algorithm 3 (page 95). The algorithm
works within the situation illustrated on �g. B.2 where a single-target sensor ob-
serves a physical environment. The environment is subdivided into a 2D grid denoted
by G. The sensor observes the environment along a line-of-sigh modeled by a line
segment ST . The sensor is localized at point S. The objective of Algorithm 3 (page
95) is to �nd out all squared cells traversed by the line segment ST .

Sensor device

T

S

O

Obstacle

Local 1D grid 

Global 2D grid    

Scan point

Figure B.2 � The traversal algorithm

The line segment ST traverses multiple cells of the global grid. Let us design an
algorithm that �nds out the traversed cells, starting from point S towards point T .
On �g. B.2, some cells of the global grid are colored in gray, others are not. Assume
that the gray color designates cells that are already known to be traversed by ST .
Knowing that the cell c is traversed, what will be the next traversed cell?

According to �g. B.2, if the traversal direction starts from S towards T , the next
cell to be traversed will be one among cell cx, cell cy, and cell cx,y. To determine
mathematically which of them is the next cell, let us consider a cartesian frame
of reference (O, x, y) attached to the global grid. Assume that the point S has
coordinates (xS , yS) and (xT , yT ) for the point T . Any point with coordinates (x, y)

belongs to the straight line
←→
ST if and only if:

(y − yS) · (xT − xS)− (x− xS) · (yT − yS) = 0 i� (x, y) ∈ ←→ST (B.16)

The above equation constitutes the equation of the line
←→
ST .

De�nition B.2.1. Let
←→
ST be a straight line. The error function designates the

following function evaluated on any point (x, y) of the plan:

ErrST (x, y) = (y − yS) ·∆x− (x− xS) ·∆y

where ∆x = (xT − xS) and ∆y = (yT − yS).
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A plane P is de�ned as a set of spatial points (x, y). The de�nition of the error
function leads to the following property.

Property B.2.1. A straight line
←→
ST divides a plane P = {(x, y) ∈ R2} into two

three disjoint regions composed of:

• the straight line itself:
←→
ST = {(x, y) ∈ R2 such that ErrST (x, y) = 0}

• the upper half-plane: P+ = {(x, y) ∈ R2 such that ErrST (x, y) > 0}

• the lower half-plane: P− = {(x, y) ∈ R2 such that ErrST (x, y) < 0}

T

S

O

Upper h
alf-p

lane

Lower h
alf-p

lane

Figure B.3 � The upper and lower half-planes

The upper and lower half-planes are depicted on �g. B.3. Knowing that a cell c
is traversed by ST , the next traversed cell is among cx, cy and cxy. The three cases
are illustrated on �g. B.4. The symbol NE(c) designate the North-East corner of
cell c. The �gure shows that:

• the next cell is cxy if NE(c) belongs to ST ,

• the next cell is cx if NE(c) belongs to the upper half-plane,

• the next cell is cy if NE(c) belongs to the lower half-plane.

(a) Next cell is cxy (b) Next cell is cx (c) Next cell is cy

Figure B.4 � Next cell to be traversed knowing that cell c is already traversed
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Algorithm 5 Continuous Traversal Algorithm

1: function Traverse(Point (xS , yS), Point (xT , yT ), Point (x0, y0), Point
(x1, y1), Real β)

2: . (xS , yS): coordinates of point S
3: . (xT , yT ): coordinates of point T
4: . (x0, y0): location of the cell containing the point S
5: . (x1, y1): location of the cell containing the point T
6: . β: length of a side of a squared cell
7: Point (x, y) . Location of the currently traversed cell c
8: Real ∆x = xT − xS
9: Real ∆y = yT − yS
10: Real e . Error function ErrST (NE(c))

11: (x, y)← (x0, y0)

12: e← ErrST (NE(x, y))

13: while (x, y) 6= (x1, y1) do
14: if e = 0 then
15: (x, y)← (x+ β, y + β) . cxy is traversed
16: e← e+ β × (∆x−∆y)

17: else if e > 0 then
18: x← x+ β

19: e← e− β ×∆y . cx is traversed
20: else
21: y ← y + β . cy is traversed
22: e← e+ β ×∆x

23: end if
24: . The cell traversed at the current iteration is located at (x, y)

25: SampleISM(x, y)

26: end while
27: end function

Let us denote the next cell by c′. By applying Property B.2.1 (page 133), we
get:

c′ =


cxy if ErrST (NE(c)) = 0

cx if ErrST (NE(c)) > 0

cy otherwise

(B.17)

The above equation determines c′ by evaluating the sign of ErrST (NE(c)). It can
be applied iteratively. To identify c′, the sign of ErrST (NE(c)) is evaluated. After
that, the sign of ErrST (NE(c′)) is evaluated to determine the next traversed cell
after c′, and so on.



B.3. Generalization of the discrete range-mapping algorithm 135

Equation (B.17) implies:

NE(c′) =


NE(cxy) if ErrST (NE(c)) = 0

NE(cx) if ErrST (NE(c)) > 0

NE(cy) otherwise

(B.18)

and then:

ErrST (NE(c′)) =


ErrST (NE(cxy)) if ErrST (NE(c)) = 0

ErrST (NE(cx)) if ErrST (NE(c)) > 0

ErrST (NE(cy)) otherwise

(B.19)

Let β be the length of a side of cell. By applying the initial de�nition of the error
function on De�nition B.2.1 (page 132), the error of the North-East corner of cx, cy
and cxy can be computed as a function of the error of the North-East corner of c.
This techniques gives:

ErrST (NE(c′)) =


ErrSTNE(c) + β ·∆x− β ·∆y if ErrST (NE(c)) = 0

ErrSTNE(c)− β ·∆y if ErrST (NE(c)) > 0

ErrSTNE(c) + β ·∆x otherwise
(B.20)

Finally, both eq. (B.17) and eq. (B.20) can be computed in an iterative manner.
Both equations can constitute a traversal algorithm that �nds out exactly the cells
traversed by the line segment ST .

The �nal continuous traversal algorithm is presented on Algorithm 5 (page 134).
The algorithm takes as input the coordinates of both point S and point T , the
locations of the cells containing both points, and the resolution of the discrete frame.
At line 11, the �rst cell known to be traversed is the cell that contains the point S.
The error variable is then initialized by the error of the North-East corner of that
cell. Assume that a cell is located by its South-West corner. The North-East corner
of the cell located at (x, y) is at coordinates (x+ β, y + β). Then, we have:

ErrST (NE(x, y)) = ErrST (x+ β, y + β) (B.21)

The continuous traversal algorithm has a unique main loop. Regarding the value
of the error, lines 14 to 23 determine the location of the next traverse cell. The
location of the cell is computed by applying eq. (B.17). The error is updated with
respect to eq. (B.20). Line 25 calls a function SampleISM() on the cell traversed
at a given iteration of the algorithm. The loop iterates until the algorithm reaches
the cell that contains the point T .

B.3 Generalization of the discrete range-mapping algo-
rithm

The discrete traversal algorithm presented on Algorithm 4 (page 98) in Section
4.2.2.2 (page 96) �nds out all cells traversed by a line segment ST provided that
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∆l ≥ 0 and ∆m ≥ 0. The following algorithm presents the general case, regardless
of the sign of both ∆l and ∆m.

1: function Traverse(Point (lS ,mS), Point (lT ,mT ), Point (l0,m0), Point
(l1,m1), Integer r)

2: . (lS ,mS): coordinates of point S
3: . (lT ,mT ): coordinates of point T
4: . (l0,m0): location of the cell containing the point S
5: . (l1,m1): location of the cell containing the point T
6: . r: resolution of the discrete frame of reference
7: Integer δl, δm,∆l,∆m
8: Point (l,m) . Location of the currently traversed cell c
9: Integer e . Error function ErrST (NE(c))

10: ∆l← lT − lS
11: ∆m← mT −mS

12: if ∆l > 0 then
13: δl← r . Traverse towards East.
14: else
15: δl← −r . Traverse towards West.
16: end if
17: if ∆m > 0 then
18: δm← r . Traverse towards North.
19: else
20: δm← −r . Traverse towards South.
21: end if
22: (l,m)← (l0,m0)

23: if sign(∆l) = sign(∆m) then
24: if ∆l ≥ 0 then
25: e← ErrST (NE(x, y))

26: else
27: e← ErrST (SW (x, y))

28: end if
29: while (l,m) 6= (l1,m1) do
30: if e = 0 then
31: (l,m)← (l + δl,m+ δm) . cxy is traversed
32: e← e+ δm×∆l − δl ×∆m)

33: else if e > 0 then
34: l← l + δl

35: e← e− δl ×∆m . cx is traversed
36: else
37: m← m+ δm . cy is traversed
38: e← e+ δm×∆l

39: end if
40: . The cell traversed at the current iteration is located at (l,m)
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41: SampleISM(l,m)

42: end while
43: else
44: if ∆l ≥ 0 then
45: e← ErrST (SE(x, y))

46: else
47: e← ErrST (NW (x, y))

48: end if
49: while (l,m) 6= (l1,m1) do
50: if e = 0 then
51: (l,m)← (l + δl,m+ δm) . cxy is traversed
52: e← e+ δm×∆l − δl ×∆m)

53: else if e > 0 then
54: m← m+ δm . cy is traversed
55: e← e+ δm×∆l

56: else
57: l← l + δl

58: e← e− δl ×∆m . cx is traversed
59: end if
60: . The cell traversed at the current iteration is located at (l,m)

61: SampleISM(l,m)

62: end while
63: end if
64: end function
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C.1 Introduction

Dans le domaine du transport moderne, un des dé�s primordiaux est la sécurité
routière. Les accidents routiers coûtent des vies et ont des impacts signi�catifs sur
la vie économique et sociale d'un pays. La consommation d'énergie et le respect de
l'environnement deviennent aussi des dé�s majeurs dans l'ère du réchau�ement cli-
matique. Les voitures sont au centre de ces dé�s majeurs. Les voitures automatisées
sont proposées comme étant une solution technologique pour améliorer la sécurité
routière, pour réduire la consommation d'énergie et pour améliorer le respect de
l'environnement.

Une voiture automatisée est une voiture équipée de plusieurs types de capteurs
pour mettre en place des systèmes d'aide à la conduite ou pour la navigation auto-
nome. Pour réaliser de tels systèmes, la voiture a besoin de d'observer et de surveiller
en permanence l'environnement de conduite a�n de le comprendre et de prendre des
décisions de conduite par la suite. Par exemple, avant d'e�ectuer un virage, la voiture
doit véri�er d'abord toutes les conditions requises (voie libre, feu vert, absence de
risque de collision, etc) pour faire une telle action. Si les conditions sont satisfaites,
le virage peut être e�ectué avec sécurité.

C.1.1 Perception multi-capteur

Les informations sur l'environnement de conduite sont obtenues à partir des lectures
de capteurs perceptifs. Un système de perception interprète les données des
capteurs a�n de créer un modèle de l'environnement. Lemodèle d'environnement
est une représentation mathématique de l'environnement physique de conduite. Il
localise l'emplacement des di�érents obstacles autour du véhicule et peut contenir



140 Appendix C. Résumé en français: Grille d'occupation entière

d'autres informations (localisation des espaces vides, identi�cation des obstacles,
couleurs, etc). Le modèle d'environnement sera par la suite utilisé pour prendre les
décisions de conduite.

Plusieurs capteurs types de capteurs peuvent être utilisés pour réaliser la per-
ception. Les capteurs les plus communs sont les radars, les LIDARs (Light Detection
and Ranging), les capteurs de vision et les capteurs ultrasoniques. Ces capteurs sont
capables d'estimer avec une précision limitée la position d'un obstacle par rapport
à eux même.

Dans une voiture automatisées, plusieurs nombre de capteurs sont utilisés en
même temps pour la tâche de perception. Chaque capteur délivre continuellement
des mesures (distances, images, vitesses, etc) sur l'environnement de conduite. Les
mesures des capteurs sont fusionnées continuellement et en temps-réel.

La fusion de multiple capteurs représente des avantages majeurs par rapport à
l'utilisation d'un seul capteur. Premièrement, les capteurs ont leur limites physiques.
Les mesures ont des incertitudes. La fusion permet de s'a�ranchir des incertitudes
d'un seul capteur a�n d'améliorer la robustesse et la �abilité du système de percep-
tion. Deuxièmement, la fusion favorise une redondance d'information qui permet de
s'a�ranchir au risque de défaillance d'un des capteurs. En�n, l'utilisation de plu-
sieurs capteurs permet de maximiser la couverture de l'environnement de conduite
par les champs de vision des capteurs.

C.1.2 Grille d'occupation

Cette thèse se focalise sur la construction d'un modèle d'environnement appelé
grille d'occupation à partir de la fusion de multiple capteurs. Les grilles d'oc-
cupation ont été introduites par Moravec et Elfes dans le milieu des années
80s ([Moravec 1985, Elfes 1987, Moravec 1988, Elfes 1989b, Elfes 1989a]). Dans le
contexte de l'automobile, une grille d'occupation est une représentation de l'envi-
ronnement de conduite sous forme de collection de cellules. Pour chaque cellule est
estimée une probabilité d'occupation à partir des mesures de capteur. Plus sim-
plement, la probabilité d'occupation d'une cellule vaut 1 si la cellule est occupée par
un obstacle, 0 si elle est vide, 0.5 si l'état d'occupation de la cellule est inconnue.
Les valeurs intermédiaires exprime l'incertitude sur l'état d'occupation de la cellule
(plutôt vide ou plutôt occupée).

La Figure C.1 montre un exemple de grille d'occupation. La voiture automa-
tisées se trouve à gauche de l'image. Les capteurs de perception montées sur la
voiture observe l'environnent de devant et retourne des mesures (�g. C.1a). La grille
d'occupation sur la �g. C.1b modélise l'environnement physique en une grille plate
subdivisées en cellules carrées. La plateforme de grille d'occupation calcule la pro-
babilité que chacune des cellules soit occupée par un obstacle en se basant sur les
mesures des capteurs.

L'utilisation des grilles d'occupation comme modèle d'environnement confère
plusieurs avantages. D'abord, la plateforme de grille d'occupation tient en compte
en amont l'incertitude des capteurs. L'incertitude est re�étée par la suite au niveau
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(a) L'environnement de conduite (b) La grille d'occupation correspondante

Figure C.1 � Un exemple d'environnement de conduite avec la grille d'occupation
correspondante

des probabilités d'occupation des cellules. Ensuite, les grille d'occupation peuvent
être calculées à partir des capteurs communément utilisés en robotique. Elles sont
capables de fusionner des capteurs basés sur des technologies hétérogènes. En�n, une
grille d'occupation représente à la fois les obstacles, les régions vides et les régions
inconnues des capteurs. La notion de cellule o�re une bonne abstraction de tout
type d'obstacles pouvant être rencontrés sur la route.

C.1.3 Objectif de la thèse

La grille d'occupation initialement développée par Moravec ([Moravec 1985]) est
statique. Elle ne gère pas l'évolution de l'environnement au cours du temps et ne
renferme donc pas d'information sur la dynamique des obstacles. D'autres algo-
rithmes plus récents sur les grilles d'occupation permettent d'estimer la dynamique
des obstacles au niveau des cellules. Un exemple de tel algorithme est la famille
du BOF (Bayesian Occupancy Filter) développée au sein de l'INRIA Rhône-Alpes
([Coué 2006, Nègre 2014]). Le BOF fonctionne en deux étapes. D'abord, à chaque
instant, une première étape de fusion multi-capteur ou �Muti-sensor Fusion
(MSF)� fusionne tous les mesures provenant de tous les capteurs en une grille
d'occupation instantanée statique. Par la suite, les grilles d'occupation instantanées
passent à travers un �ltre bayésien a�n d'estimer la vitesse des obstacles au ni-
veau des cellules. Avant cette thèse, l'objectif initial de l'INRIA Rhône-Alpes était
de mettre en ÷uvre un système embarqué de perception basé sur la famille d'al-
gorithme BOF. L'intégration de tels algorithmes passe par l'intégration des deux
étapes, le MSF et le �ltrage, dans un calculateur embarqué.

La présente thèse a pour objectif de réaliser l'intégration du MSF dans un calcu-
lateur embarqué. Le MSF est calculé par le module logiciel (SW) et matériel (HW)
présenté sur la �g. C.2. Le module prend comme entrées les mesures instantanées
provenant de multiple capteurs. Ces mesures sont par la suite instantanément fu-
sionnées en une grille d'occupation.

L'intégration doit respecter les contraintes suivantes. Les grilles d'occupations
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Figure C.2 � Le module de fusion multi-capteur

doivent être calculées en temps-réel. La référence temps-réel ici est la fréquence de
lecture des capteurs. L'intégration doit être réalisée sur des matériels informatiques
embarqués à bas coût. Un faible coût permet le déploiement de la fusion dans le
marché de masse de l'automobile. L'intégration doit être réalisée sur des plateformes
de calcul à basse consommation énergétique. L'intégration doit être sûre, robuste et
maitrisée. L'incertitude des capteurs doit être prise en compte explicitement. Tout
erreur numérique lors du calcul doit être connu et borné a�n de valider l'exactitude
de l'algorithme de fusion et de son implémentation sur du matériel embarqué.

C.1.4 Problèmes adressés

Respecter les contraintes posées ci-dessus constitue cependant un dé�s majeur. Com-
ment calculer les grilles d'occupation en temps-réel sur du matériel embarqué à faible
coût et à faible consommation d'énergie ? D'autant plus que des contraintes de qua-
lité numérique, de robustesse et de sureté sont exigées.

En e�et, la charge de calcul demandée par les grilles d'occupation dépend de
la taille de la grille (mesurée en nombre de cellules), du nombre de mesures de
capteurs et de la fréquence à laquelle ces mesures sont délivrées. Par exemple, une
grille de 100 m-by-100 m avec des cellules de 10 cm de côtés contienne 1 Million de
cellules. Une grille d'occupation basée sur une telle grille, calculée à partir de 2000
nombres de mesures de capteurs produites à 25 Hz, requiert d'e�ectuer 100 Milliards
d'opérations par seconde. Ces paramètres sont typiques d'un cas d'utilisation réaliste
pour des grilles d'occupation.

Pour e�ectuer de telle quantité d'opérations, les grilles d'occupation ont étés
implémentées sur des stations de travail avec des CPUs et des GPUs (Graphi-
cal Processing Unit) avancés ([Yguel 2006, Homm 2010, Adarve 2012]). Ces ma-
tériels informatiques ne respectent cependant pas les contraintes de coût et de
consommation énergétique. D'autres travaux ont essayé d'intégrer les grilles d'oc-
cupation sur des GPUs embarqués ([Nègre 2014]) et des many-cores embarquées
([Rakotovao 2015b, Rakotovao 2015a]). Toutefois, ces matériels ne sont pas encore
certi�és pour être utilisés pour des applications critiques où les erreurs peuvent
coûter des vies.

Les plateformes de calcul certi�ées pour être sûres pour les applications
automobiles sont basées sur des microcontrôleurs et des CPUs multi-coeurs
embarqués([Heinecke 2004, Monot 2010]). Cependant, ces calculateurs ne disposent
pas de puissance de calcul requise pour calculer les grilles d'occupation en temps-
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réel. De plus, les grilles d'occupation sont basées sur des calculs de probabilités. Ces
derniers requièrent une simulation de calculs de nombre réels sur le matériel informa-
tique. La simulation introduit forcément des erreurs numériques qui ne dépendent
pas de l'algorithme mais qui dépend plutôt du matériel sous-jacent. Ces erreurs
peuvent être considérées comme petits, mais elles demeurent inconnues. L'objectif
étant de maitriser les erreurs numériques, de nouveaux algorithmes de calcul des
grilles d'occupation avec des erreurs numériques connues et maitrisées sont néces-
saires.

C.1.5 Contributions de la thèse

Pour s'a�ranchir des problèmes ci-dessous, cette thèse présente la plateforme grille
d'occupation entière. Cette plateforme sert à fusionner plusieurs capteurs en se
basant sur les même principes probabilistes des grille d'occupation. L'originalité des
grilles d'occupation entière est qu'elles permettent de calculer la fusion de manière
beaucoup plus précise, sûre et robuste au niveau de l'intégration matérielle. Les
contributions de la thèse sont les suivantes :

• la formulation du fondement mathématique des grilles d'occupation entière

• l'exploration des structures de données informatiques pour manipuler e�ca-
cement les grilles d'occupation entière

• le développement des algorithmes pour calculer les grilles d'occupation entière

• l'étude théorique et expérimentale des erreurs numériques introduites par les
grilles d'occupation entière

• l'application des grille d'occupation entière pour fusionner des LIDARs montés
sur un véhicule de test. La fusion est intégrée dans un calculateur embarqué à
bas coût et faible consommation. Elle atteint une performance temps-réel sur
des données d'expérience collectées dans des vrais tra�cs routiers en ville et
sur autoroute.

A�n de présenter avec plus de détails les grilles d'occupation entière, la section
suivante revisitera d'abord l'état de l'art sur les grilles d'occupation statique. Par la
suite, les fondements mathématiques des grilles d'occupation entière seront détaillés,
suivi de leur application pour la fusion multi-capteur pour l'automobile.

C.2 État de l'art sur les grilles d'occupation

Cette séction présente rapidement les méthodes dans l'état de l'art pour calculer
les grilles d'occupation. Elle commence par une dé�nition des grilles d'occupation,
puis le calcul des grilles d'occupation grâce à un seul capteur. Ensuite, le calcul des
grilles d'occupation multi-capteurs sera présenté, suivi des structures de données
pour stocker les grilles d'occupations.
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Les méthodes citées seront analysés sous deux axes : l'e�cacité et la sureté. L'ef-
�cacité désigne la complexité de calcul ainsi que d'autres propriétés liés à l'implé-
mentation des approches sur du matériel informatique embarqué. La sureté analyse
les propriétés qui font qu'une méthode est sûre pour être utilisée pour les voitures
automatisées.

C.2.1 Dé�nition des grilles d'occupation

Considérons une région �nie dans l'espace. Une grille est une subdivision de cette
région en un nombre �nie de sous-régions adjacentes. Une sous-région est appelée
cellule. Dans ce qui suit, G désignera une grille et ci une cellule dans la grille.

Une cellule a un état binaire. Elle est soit occupée soit vide. Une cellule est dite
occupée si elle intersecte avec un obstacle, c'est-à-dire, si un ou plusieurs obstacles
occupent partiellement ou totalement la sous-région correspondant à la cellule.

Quand une grille d'occupation modélise l'environnement de conduite d'une voi-
ture, l'objectif est de déterminer l'état de chaque cellule. Pour ce faire, des capteurs
de perception (LIDAR, radar, caméra, etc) sont montées sur le véhicule. Un capteur
délivre des mesures sur l'environnent et les obstacles dans son champ de vision.

Soi z désigne une mesure d'un capteur. Le terme modèle inverse de capteur
désigne par dé�nition la probabilité P (oi|z). Il s'agit de la probabilité que la cellule
ci soit occupée sachant la mesure z du capteur. Quand plusieurs mesures provenant
d'un ou de plusieurs capteurs sont disponibles, la probabilité P (oi|z1 ∧ . . . ∧ zK)

désigne la probabilité d'occupation de la cellule ci sachant les K nombre de
mesures.

Une grille d'occupation dé�nit l'ensemble de tous les probabilités d'occupa-
tion des cellules, étant donné une ou plusieurs mesures de capteurs. Le nombre de
probabilités dans une grille d'occupation est donc égal au nombre de cellule dans
la grille. Notons qu'à partir d'une seule mesure, une grille d'occupation peut être
construite. Une telle grille contient les valeurs des modèles inverses de capteur sur
chaque cellule.

C.2.2 Modèle inverse de capteur

Considérons un cas simple de grille d'occupation à une dimension (1D). La �gure
C.3 montre l'exemple d'un capteur (sensor device) qui observe un obstacle le long
d'un axe de vision (ray). Un obstacle est situé à une distance d du capteur. Après
avoir observé l'obstacle, le capteur retourne une mesure sous forme d'un scalaire z.
Le symbole di désigne la distance de la cellule ci par rapport au capteur.

L'objectif consiste à calculer la probabilité P (oi|z). Plusieurs approches sont uti-
lisées dans l'état de l'art. Elles peuvent être groupées en trois : l'approche bayésienne,
l'approche analytique et l'approche basée sur les réseaux de neurones.

L'approche bayésienne calcule le modèle inverse de capteur en se basant sur
des principes probabilistes, notamment la formule de Bayes ([Elfes 1989a]). Avec
cette approche, le modèle inverse de capteur est calculé via le modèle directe de
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Figure C.3 � Modélisation d'un environnement le long d'un axe de vision

capteur. Le modèle directe désigne la densité de probabilité p(z|d). Si le modèle
directe modélise la réponse du capteur sachant l'état physique de l'environnement
(qui est la distance d), le modèle inverse modélise l'état de l'environnement (qui est
l'occupation d'une cellule) sachant la réponse du capteur.

Le modèle directe de capteur modélise les incertitudes des mesures. Ce densité
de probabilité peut être calculé expérimentalement. Ainsi, l'approche bayésienne
a l'avantage de tenir en compte explicitement les incertitudes des capteurs. Cette
propriété permet aux grilles d'occupation d'être �dèle aux mesures de capteur, ce
qui renforce la sureté du module de perception.

L'inconvénient de l'approche bayésienne est la complexité de temps qui est ex-
ponentiel en fonction du nombre de cellules. En pratique, une grille d'occupation
même 1D contienne des centaines de cellules. Donc la complexité est di�cilement
intraitable en temps-réel.

Deux solutions sont généralement proposées dans l'état de l'art. La première
consiste à modéliser directement le modèle inverse de capteur par des fonctions
continues ([Payeur 1998, Gartshore 2002, Homm 2010, Einhorn 2011, Adarve 2012,
Hornung 2013]). La seconde consiste modéliser le modèle inverse de capteur par des
réseaux de neurones([Thrun 1993, Kortenkamp 1998, Thrun 2001b]). Dans les deux
cas, la complexité devient constante, mais le modèle inverse n'est plus calculé à
partir du modèle directe de capteur. Autrement dit, les incertitudes des capteurs ne
sont plus tenues en compte de manière explicite, ce qui diminue la con�ance sur la
sureté du module de perception.

C.2.2.1 Probabilité d'occupation à partir de multiples mesures

Les méthodes pour calculer la probabilité d'occupation d'une cellule à partir de mul-
tiples mesures peuvent être classi�ées en deux groupes. Le premier groupe assume
que l'état d'une cellule est indépendant de celui de son voisin. Cette hypothèse est
réfuté dans le deuxième groupe.

Avec l'hypothèse d'indépendance, le calcul de la probabilité d'occupation d'une
cellule à partir de multiples mesures s'e�ectue en deux étapes. D'abord, un modèle
inverse est calculé individuellement pour chacune des mesures. Ensuite une formule
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de fusion est appliquée pour combiner les modèles inverses a�n d'obtenir un unique
probabilité d'occupation.

Trois formules de fusion sont les plus communes dans l'état de l'art : la fu-
sion bayésienne ([Moravec 1988, Elfes 1989a]), la moyenne pondérée ([Thrun 1993,
Adarve 2012]), et la politique du maximum ([Payeur 1997, Thrun 2005]). Soient
z1 et z2 deux mesures. La fusion bayésienne sous l'hypothèse de non information
(P (oi) = 1− P (oi) = 1/2)) donne :

P (oi|z1 ∧ z2) = F (P (oi|z1), P (oi|z2)) où F (x, y) =
xy

xy + (1− x)(1− y)
(C.1)

La fusion bayésienne peut être aussi exprimé sous forme de logit :

l(oi|z1 ∧ z2) = l(oi|z1) + l(oi|z2)) où l(x) = log
P (x)

1− P (x)
(C.2)

La fusion bayésienne dispose des propriétés suivantes : le renforcement des me-
sures non con�ictuelles et l'atténuation des mesures con�ictuelles. Si deux mesures
estiment qu'une cellule est occupée. Alors, la fusion résulte à une probabilité d'oc-
cupation supérieur aux modèles inverses calculées à partir de mesures individuelles.
Si la cellule est plutôt vide selon les deux mesures, alors la fusion résulte à une pro-
babilité inférieur aux modèles inverses. Par contre, si la cellule est plutôt occupée
pour une des mesures et plutôt vide pour l'autre, alors, la fusion résultera à une
probabilité qui tend vers 1/2. C'est-à-dire, l'état d'occupation de la cellule tend à
être incertain vue que les mesures sont en con�it.

Le renforcement et l'atténuation sont deux propriétés qui permettent à un sys-
tème de perception multi-capteur d'être sûre. Ces propriétés signi�e que pour avoir
une estimation correcte de l'environnement, il faut ajouter plus de nombre capteur
([Elfes 1989a]). Si les capteurs ne sont pas con�ictuels (ce qui est supposé le cas en
pratique sinon le système n'est pas �able), la certitude sur l'état estimé de l'envi-
ronnement est renforcée. En cas de capteurs con�ictuels, la certitude diminue. La
fusion par moyenne pondérée des modèles inverses de capteurs n'a pas la propriété
de renforcement. La politique de fusion qui consiste à prendre la valeur maximale
des modèles inverses ne supporte pas l'atténuation.

En terme d'e�cacité, la version logit de la fusion bayésienne requière moins de
calcul de la version manipulant directement les probabilités. Toutefois, quand il est
nécessaire de récupérer la valeur de la probabilité qui correspond à un logit, il est
nécessaire d'appliquer l'équation suivante :

P (oi|z1 ∧ z2) = 1− 1

1 + exp(l(oi|z1 ∧ z2))
(C.3)

Cette équation appelle à la fonction exponentielle. Du point de vue informatique,
l'exactitude de telle fonction dépend de son implémentation et de la précision du
matériel à simuler les opérations sur les nombres réels. Ces aspects ne sont pas
toujours à la portée du programmeur. Donc, la précision du calcul des probabilités
d'occupation n'est pas ajustable en amont.
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Finalement, une méthode de fusion de multiple mesure appelée �forward sen-

sor model � refute l'hypothèse que l'état d'occupation d'une cellule ne dépende pas
de celui de ses voisins ([Thrun 2001a]). Cependant, la dépendance entre cellules au
voisinage entraine une explosion combinatoire de la complexité de calcul des pro-
babilités d'occupation. Cette approche n'est pas adapté pour les systèmes où une
capacité à calculer les grilles d'occupation en temps-réel grâce à la fusion d'un grand
nombre de mesures de capteurs est requise.

C.2.2.2 Structure de données pour les grilles d'occupation

Une fois calculées, les probabilités d'occupation doivent être stockées dans des struc-
tures données pour être utilisées par la suite par des applications de localisation,
de suivi de cible, de navigation, etc. L'e�cacité de ces applications dépendent donc
de celle de la structure de données qui stocke les probabilités d'occupation. D'un
point de vue informatique, ces applications émettent des requêtes à la structure de
données pour récupérer la probabilité d'occupation d'une cellule, ou celles de cel-
lules avoisinantes. Si la réponse à de telle requête est lente, cela ralentira aussi par
conséquent les applications qui exploitent la grille.

Deux types de structure de données sont communément utilisées pour les grilles
d'occupation : les tableaux, et les 2d-arbres. Dans un tableaux, la probabilité d'une
cellule est stockée dans un élément du tableaux. Cela permet un calcul rapide de
la grille d'occupation. Cependant, les tableaux sont moins e�caces quand il s'agit
de répondre à des requêtes avancées. Par exemple, récupérer les probabilités d'oc-
cupation le long d'une direction dans un tableaux requière d'e�ectuer plus de calcul
([Kambhampati 1986, Soucy 2004]).

Les 2d-arbres s'avèrent plus e�caces pour ces genres de requêtes. Les 2d-arbres
utilisées pour les grilles d'occupation sont les quadtrees et les octrees ([Samet 1990]).
Si la grille est de deux dimensions, un quadtree est utilisé. En trois dimensions, un
octree est utilisé ([Wurm 2010, Hornung 2013]). Une feuille de ces arbres stocke
au maximum une seule probabilité. Cette dernière peut cependant représenter les
probabilités d'occupation de plusieurs cellules avoisinantes.

Cette technique permet donc un stockage plus compacte des grilles d'occupation.
Cependant, cette compacité se fait avec perte puisque la probabilité stockée dans
une feuille est en réalité une approximation qui représente les vraies probabilités
d'occupation de plusieurs cellules avoisinantes. Autrement dit, une fois approximées,
il devient impossible de récupérer les vraie valeurs des probabilités d'occupations
à partir d'un arbre. Cette perte diminue la sureté d'un système de perception qui
stockerai les probabilités d'occupation dans un 2d-arbre.

C.3 Les grille d'occupation entière

La section précédente montre le manque de sureté et d'e�cacité des méthodes pour
calculer les grilles d'occupation. La présente section propose les grilles d'occupa-
tion entières pour rendre sûre et e�cace le calcul des grilles d'occupation. Cette
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section montre les fondements mathématiques des grilles d'occupation entières. Ces
dernières permettent de calculer la fusion de capteurs grâce à de simple addition de
nombre entier. Elles permettent de même une vraie compacité sans perte.

Les grilles d'occupation entières reposent sur la notion d'ensemble de probabilités
dans le paragraphe suivante.

C.3.1 Ensemble de probabilités

Soit l'opérateur de fusion � dé�ni comme suit :

� : ]0, 1[×]0, 1[ 7→ ]0, 1[

(p, q) 7→ p� q = F (p, q)
(C.4)

où la fonction F est celle introduite dans l'équation (C.1).
Un ensemble de probabilités S est un ensemble de nombre réels tel que :

(Inclusion dans ]0, 1[) S = {pn ∈]0, 1[, ∀n ∈ Z} (C.5a)

(Dénombrabilité) ∀m,n ∈ Z : pm 6= pn ⇔ m 6= n (C.5b)

(Stabilité) ∀pm, pn ∈ S : pm � pn ∈ S (C.5c)

La première équation signi�e que les éléments de S appartiennent à l'intervalle
]0, 1[. La deuxième stipule qu'un ensemble de probabilités est dénombrable. En�n,
la troisième équation indique qu'un ensemble de probabilités est stable par rapport
à l'opérateur de fusion. Cette propriété signi�e que la fusion d'un élément de S avec
un deuxième élément produit un troisième élément de S.

Soient pm et pn deux éléments d'un ensemble de probabilité. L'équation (C.5c)
stipule que la fusion des deux éléments retourne un troisième élément noté par pm⊕n :

pm � pn = pm⊕n (C.6)

L'opérateur ⊕ est appelé opérateur de fusion entière. Il combine les indexes des
éléments à fusionner. Cet opérateur est associative et commutative.

Les ensembles de probabilités existent. Un exemple trivial est le singleton S =
1/2. La fusion de 1/2 avec lui même étant 1/2. Ce singleton n'est pas évidemment
su�sant pour exprimer l'état occupé ou l'état vide d'une cellule. C'est pourquoi
cette thèse introduit un ensemble de probabilités particulier appelé ensemble de
probabilités récursif

C.3.2 Ensemble de probabilités récursif

L'ensemble de probabilités récursif est dé�ni de manière récursive par le théorème
7.
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Theorem 7. Ensemble de probabilités récursif

Soit ε ∈]0, 1/2[. Soient (an)n∈N et (bn)n∈N des suites dé�nies comme suit :

an =


1/2 si n = 0
1/2 + ε si n = 1

an−1 � a1 sinon

bn =


1/2 if n = 0
1/2− ε if n = 1

bn−1 � b1 sinon
Soit l'ensemble Sε = {pn, n ∈ Z} tel que :

pn =

{
an si n ≥ 0

b−n sinon

L'ensemble Sε � appelé ensemble récursif � constitue un ensemble de
probabilités tel que :

∀m,n ∈ Z : pm � pn = pm+n (C.7)

L'ensemble récursif possède un opérateur de fusion entière ⊕ tel que :

∀m,n ∈ Z : m⊕ n = m+ n (C.8)

Cela signi�e qu'au lieu de calculer la fusion de pm et pn à partir de l'opérateur de
fusion �, il su�t d'additionner les indexes m et n pour obtenir le résultat de la
fusion.

L'ensemble récursif possède les propriétés suivantes. Premièrement, la valeur de
p0 vaut 1/2. Les éléments avec un indexe négatif ont des valeurs inférieur à 1/2. Ceux
avec des indexes positifs sont supérieur à 1/2. Deuxièmement, la fusion de pn avec
p−n retourne 1/2. C'est à dire que pn est l'inverse de p−n par rapport à l'opérateur de
fusion �. Troisièmement, en partant de 1/2 et en se déplaçant vers 0 ou 1, la distance
entre deux éléments consécutifs décroit. Plus généralement, la distance entre deux
éléments consécutifs est majorée par ε.

C.3.3 Dé�nition des grilles d'occupation entière

Pour dé�nir les grilles d'occupation entière, supposons que l'hypothèse suivante est
vraie : les valeurs numériques des probabilités d'occupation appartiennent à un
ensemble de probabilité.

Soit S un ensemble de probabilités. Soient z1 ∧ . . .∧ zK des mesures de capteur,
et P (oi|z1 ∧ . . .∧ zK) la probabilité d'occupation de la cellule ci sachant les mesures
des capteurs. Supposons que la valeur de P (oi|z1∧ . . .∧zK) est égal à pn, un élément
de S. Alors, nous dé�nissons par indice d'occupation de la cellule ci sachant les
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mesures z1 ∧ . . . ∧ zK le nombre entier relatif I(oi|z1 ∧ . . . ∧ zK) tel que :

I(oi|z1 ∧ . . . ∧ zK) = n⇔ P (oi|z1 ∧ . . . ∧ zK) = pn (C.9)

Par exemple, si la probabilité d'occupation d'une cellule vaut p1, alors son indice
d'occupation est égal à 1.

Une grille d'occupation entière désigne l'ensemble des indices d'occupation
de toutes les cellules dans une grille. La di�érence entre les grilles d'occupation
et les grilles d'occupation entière est donc trivial. Une grille d'occupation contient
toutes les probabilités d'occupation des cellules d'une grille, tandis qu'une grille
d'occupation entière contient touts les indices d'occupation de toutes les cellules.

L'avantage des grilles d'occupation entière est de permettre de calculer la fusion
à partir d'un opérateur de fusion entier :

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1)⊕ . . .⊕ I(oi|zk) (C.10)

Cette équation signi�e que pour calculer l'indice d'occupation d'une cellule sachant
multiples mesures, il su�t de combiner les indices d'occupation sachant chaque
mesure individuelle. Dans le cas de l'ensemble récursif, l'opérateur de fusion entier
est équivalent à une addition. Par conséquent le calcul de l'indice d'occupation
sachant multiples mesures devient :

I(oi|z1 ∧ . . . ∧ zk) = I(oi|z1) + . . .+ I(oi|zk) (C.11)

L'équation (C.11) montre que, pour pouvoir utiliser les grilles d'occupation en-
tière pour faire de la fusion, il faut une méthode pour calculer les indices d'occu-
pation sachant les mesures mesures prises individuellement. Le calcul des indices
d'occupation sachant une mesure nécessite de trouver un indice n tel que la valeur
du modèle inverse de capteur P (oi|z) soit égal à pn. Pour n'importe quelle valeur de
la mesure z, il n'y a pas de raison qu'un tel n existe toujours. La valeur de P (oi|z)
pourrait tomber entre deux éléments pn et pn+1 de l'ensemble :

pn ≤ P (oi|z) ≤ pn+1 (C.12)

Par conséquent, nous proposons de quanti�er P (oi|z) par l'une des valeurs pn ou
pn+1. Plusieurs politiques de quanti�cation peut être adoptées : une quanti�cation
au plus proche, au plus grand ou une quanti�cation qui tends vers 1/2. Après la
quanti�cation, la valeur de l'indice d'occupation I(oi|z) devient n ou n+ 1 selon le
résultat de la quanti�cation.

Finalement, le calcul des grilles d'occupation entière suit les étapes suivantes.
D'abord, le modèle inverse est calculé puis quanti�é. Cet étape est répété pour
toutes les cellules, pour chaque mesure individuelle. Puis la fusion est calculée par
l'équation (C.11).

La quanti�cation introduit une erreur. Mais cette erreur est majorée par la dis-
tance maximale entre deux éléments consécutifs de l'ensemble récursif. Cette dis-
tance est inférieur au paramètre ε. Autrement dit, plus ε est petit, plus l'erreur de
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quanti�cation est minimisée. Remarquons cependant que le calcul de la fusion sur
une architecture matérielle n'introduit pas d'erreur. En e�et, dès que le matériel
supporte le calcul des entiers relatifs, un tel calcul est exacte. La somme d'entier
n'introduit pas d'erreurs numériques comme lors de la simulation des calculs sur les
nombres réels sur les matériels informatiques.

C.3.4 Structure de donnée compacte pour les grilles d'occupation
entière

Une grille d'occupation entière est donc un ensemble de nombre entiers relatifs
qui sont les valeurs des indices d'occupation de chaque cellule. Pour stocker les
grilles d'occupation entière, un tableau peut être utilisé. Chaque élément du tableau
stockera un indice d'occupation d'une cellule.
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Figure C.4 � Exemple de grille d'occupation entière stockée dans un quadtree

La �gure C.4a montre l'exemple d'une grille d'occupation entière dé�nie sur une
grille à deux dimensions. Les cellules sont limitées par les lignes pointillées et les
lignes épaisses. Cette �gure montre que dans une grille d'occupation entière, les
cellules adjacentes peuvent avoir exactement les même indices d'occupation. Ainsi
d'autres structures de données avancées peuvent être utilisées pour stocker de ma-
nière compacte les grilles d'occupation entière.

Cette thèse propose d'utiliser les quadtree pour les grilles 2D et les octree pour
les grilles 3D. La �gure C.4b montre l'exemple d'un quatree qui stocke la grille
d'occupation entière de la �gure C.4a. Les valeurs des indices d'occupation sont
stockées uniquement au niveau des feuilles du quadtree. Les indices d'occupation
des cellules adjacentes sont stockées sur la même feuille si et seulement si leurs
valeurs sont égales.

Cette condition permet de garantir que la structure d'arbre ne modi�e pas la
valeur des indices d'occupation. En même temps, cette condition implique que le
nombre de feuille dans l'arbre est inférieur ou égale au nombre de cellules. Ainsi,
les quadtrees permettent une compacité sans perte des grilles d'occupation entières.
Dans l'état de l'art, une compacité sans perte des grilles d'occupation n'existe pas
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encore.

C.4 Application des grilles d'occupation entières pour la
fusion de capteurs dans l'automobile

Une intégration logicielle des grilles d'occupation entières a été réalisée au cours de
cette thèse. Le but est d'étudier expérimentalement les grilles d'occupation entières.
Ces dernières servent à fusionner des LIDARs montés sur les pare-chocs avant et
arrière d'un véhicule d'expérimentation. L'implémentation a été réalisée sur une
plateforme matérielle embarquée et traite des données de tra�cs routiers réelles en
ville et sur autoroute. L'environnement de conduite du véhicule d'expérimentation
est modélisé sur une grille d'occupation entière à deux dimensions. L'e�cacité et la
sureté ont été étudiés.

C.4.1 Plateformes d'expérimentation

Les grilles d'occupation entières ont été testées sur une véhicule de l'Institut de
Recherche Technologique (IRT) NanoElec ([IRT NanoElec ]). Comme montré sur la
�gure C.5, la voiture est équipée de quatre LIDARs ibeo LUX, trois devant et un
derrière. Un LIDAR renvoie des faisceau laser dans des directions �xées connue dans
l'environnement. Les points d'impacts des lasers sur des obstacles de l'environnement
sont alors retournés. Chaque LIDAR délivre plus de 800 points d'impacts à une
fréquence de 25 Hz.

(a) Trois LIDARs ibeo LUX devant (b) Un LIDAR ibeo LUX derrière

Figure C.5 � Les quatres LIDARs ibeo LUX sur la voiture d'expérimentation

L'intégration logicielle des grilles d'occupation entière a été réalisée sur la carte
de développement i.MX6. Il s'agit d'une carte développée par Freescale, basée sur
un quad-coeur ARM cortex A9. Le processeur tourne à 1 GHz. Sur la carte est
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installée un système d'exploitation à base de la distribution linux Ubuntu. La carte
est conçue pour mettre au point rapidement des applications industrielles et dans
le domaine de l'automobile.

C.4.2 Intégration logicielle des grilles d'occupations entières

L'objectif est de fusionner les mesures des LIDARs produites au cours d'une période
sur une grille d'occupation entière à deux dimensions. Le véhicule est placée au milieu
de la grille comme indiquée sur la �gure C.6. Les faisceaux lasers produits par les
quatres LIDARs sont représentés par les faisceaux rouges.

Prototype
car

Laser beams

Figure C.6 � Vue d'en haut du véhicule d'expérimentation et les faisceau laser des
quatre LIDARs

En absence de toute mesure de capteurs, les indices d'occupation des cellules sont
égales à 0, correspondant à une probabilité d'occupation 0.5, soit une occupation
inconnue. Le calcul des grilles d'occupation entières se fait en trois étapes.

• D'abord, pour un faisceau de laser, une grille d'occupation entière 1D le long
du faisceau est calculé sachant le point d'impact correspondant au faisceau.

• Ensuite, la grille 1D est projeté sur la grille 2D. Seule les cellules 2D traversée
par la grille 1D sont mis à jour.

• En�n, la fusion est réalisées au niveau des cellules traversées. L'indice d'occu-
pation d'une cellule 2D traversée est additionnée par l'indice d'occupation de
la cellule 1D qui la traverse.

La première étape nécessite d'abord de calculer le modèle inverse de capteur le
long de la grille 1D, puis d'appliquer la quanti�cation. Une formule pour calculer
le modèle inverse a été développée. Elle est basée sur l'approche bayésienne. Cette
formule a permis de mettre en évidence la relation entre la taille des cellules, l'in-
certitude des capteurs et la valeur numérique des probabilités d'occupation. Cette
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propriété rend sûr le calcul de la fusion des LIDARs du véhicule d'expérimentation.
La méthode de calcul du modèle inverse est publiée dans [Dia 2017].

Le calcul de la projection des grilles 1D sur la grille 2D est coûteuse vue le
nombre élevé des mesures à fusionner. Ce calcul doit se faire de manière la plus
e�cace possible sur une matérielle embarqué. Pour cela, un algorithme de traversée
de grille 2D a été développé ([Rakotovao 2016b]. Cet algorithme de traversée utilise
uniquement des calculs sur des nombres entiers. Cela implique un temps d'exécution
rapide. En même temps, l'algorithme a été conçu de telle façon à ce que les erreurs de
calculs soient maitrisée en amont et ajustables selon la précision spatiale voulue pour
la traversée. Une telle propriété rend la traversée paramétrable avec une précision
spatiale connue.

C.4.3 Résultats d'expérimentation et analyse

Pour analyser la performance de l'implémentation des grilles d'occupation entières,
trois implémentations ont été réalisées. La première est une implémentation des
grilles d'occupation entière où les indices d'occupation sont stockée dans un ta-
bleau. Dans la deuxième implémentation, les indices d'occupation sont stockée dans
un quadtree. La troisième implémentation est une implémentation des grilles d'oc-
cupation standard où les probabilités d'occupation sont implémentées avec du calcul
�ottant. Il s'agit de l'implémentation classique des grilles d'occupation dans l'état
de l'art. Une telle implémentation permet d'analyser la performance des grilles d'oc-
cupation entières.

La �gure C.7 montre une scène de tra�c urbain avec la grille d'occupation en-
tière et la grille d'occupation standard correspondante. Les obstacles sur la scène
correspondent aux cellules de couleur noire sur les grilles. Les cellules blanches sont
plutôt vides. Celles en gris ont une occupation inconnues. Elles sont, soit cachées des
capteurs par un obstacle, soit hors du champ de vision des capteurs. La di�érence
de couleur entre les deux grilles montre que la grille d'occupation entière met en
valeur de manière claire la di�érence entre une région couverte par un seul LIDAR
(comme celle d'à gauche) et une région couverte par trois LIDARs (comme celle du
centre). Sur la grille d'occupation standard, ces régions ont les même intensités de
couleurs puisque leurs probabilités d'occupation sont toutes proches de 1.

L'exécution de l'implémentation des grille d'occupation entière à base de tableau
atteint une performance temps-réel sur le matériel embarqué. En e�et, le matériel est
capable de fusionner les quatre LIDARs avec une fréquence de 28 Hz, tandis que les
mesures des LIDARs sont produites à 25 Hz. Si la puissance électrique consommée
par le processeur pendant le calcul de la fusion est prise en compte, l'implémen-
tation des grilles d'occupation entières sur la plateforme embarquée est 1000 fois
énergétique ment e�cace par rapport aux implémentations des grilles d'occupation
faites dans la littérature. Pour véri�er la qualité numérique des grilles d'occupa-
tion entières, une comparaison avec l'implémentation en calcul �ottante des grilles
d'occupation a été réalisée. La comparaison a montré une di�érence moyenne dans
l'ordre du centième de la valeur choisie du paramètre ε. Ce résultat coïncide avec
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Figure C.7 � Exemple d'un scène de tra�c en haut. La grille d'occupation entière
correspondante est en bas à gauche. La grille d'occupation standard correspondante
est en bas à droite.

le fait que plus ε est petit, plus l'erreur introduite au cours de la quanti�cation est
minimisée. Cela montre la précision numérique des grilles d'occupation entières, qui
de plus est paramétrable.

Finalement, une implémentation des grilles d'occupation à base des quadtrees
a été aussi réalisée. Cette implémentation a montré expérimentalement que l'arbre
est e�ectivement plus compacte que le tableau pour stocker les grilles d'occupa-
tion entières. En e�et, le nombre de noeuds dans l'arbre quadtree est jusqu'à trois
fois moins que le nombre de cellules. Cependant, la construction et la maintenance
de la structure d'arbre du quadtree est couteuse. Ces opérations internes au quad-
tree, nécessaires à sa maintenance, empêchent la fusion d'atteindre une performance
temps-réel.
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C.5 Conclusion

Cette thèse a introduit les grilles d'occupation entières. Ces dernières permettent de
fusionner des mesures de capteurs télémétriques. Elles permettent ainsi de calculer
de manière e�cace un modèle d'environnement basé sur les grilles d'occupation.

Comme les grilles d'occupation traditionnelles, les grilles d'occupation entières
sont un modèle d'environnement basé sur une grille. Chaque cellule de la grille
peut être occupée ou vide. L'état d'occupation d'une cellule est estimée par une
probabilité d'occupation dans une grille d'occupation, et par une indice d'occupation
pour une grille d'occupation entière.

Une indice d'occupation correspond précisément à une unique valeur entre 0
et 1. La correspondance entre l'indice d'occupation et sa valeur est maintenue à
travers la dé�nition des ensembles de probabilités. Une indice d'occupation est un
entier tandis qu'une probabilité d'occupation est un réel. La fusion basée sur les in-
dices d'occupation nécessite donc uniquement des opération sur les nombres entiers.
L'intégration des grilles d'occupation entières sur du matériel de calcul ont ainsi
un temps d'exécution rapide et est e�cace en terme de rapport de consommation
d'énergie et vitesse de calcul.

Pour fusionner plusieurs mesures de capteur, les grilles d'occupation entières
sont d'abord calculées à partir de chaque mesure prise individuellement. Après, les
indices d'occupation sont fusionner cellule par cellule. Avec l'ensemble de probabilité
récursif, la fusion est calculée via de simple addition d'entiers. Le calcul introduit
une erreur qui est cependant connue, majorée et paramétrable.

Les grilles d'occupation peuvent être stockées dans des tableaux ou dans des
structures d'arbres quadtree ou octree. L'indice d'occupation des cellules reste in-
changé quelque soit la structure de donnée utilisée. Les structures d'arbre permet
une compacité sans perte des grilles d'occupation entières. La maintenance de la
structure d'arbre introduit cependant un coût de calcul additionnel qui augmente le
temps de calcul des la fusion.

Pour conclure, cette thèse a proposé les grilles d'occupation entière en tant
que nouvelle plateforme de calcul de la fusion des capteurs télémétriques de per-
ception pour les voitures. La plateforme a été conçue en prenant en compte en
amont les contraintes de sûreté et les contraintes embarquées de l'intégration maté-
rielle/logicielle de la fusion. Elle permet l'intégration de la fusion dans du matériel
embarqué, à bas-coût et à faible consommation d'énergie, tout en atteignant une
performance en temps-réel.

Les grilles d'occupation entières permet de calculer la fusion bayésienne avec de
simples additions d'entiers. Les erreurs numériques introduites sont connues, bornées
et paramétrables. Cela permet de garantir la qualité, la sûreté et la robustesse de
l'implémentation de la fusion, surtout quand cette dernière est réalisée pour des
tâches critiques comme la perception dans l'automobile.
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