à la Hoare est insatisfiable. Dans le cas contraire, un contre-exemple est généré qui peut être affiché sous forme de graphe afin de mieux comprendre quelle partie de la spécification est incorrecte.

Enfin, nous concluons sur notre travail. En plus de résumer les résultats obtenus, cette conclusion ouvre de nouvelles voies en terme de travail future que cela soit en s'intéressant à l'ajout d'opérations sur les données dans les actions et la logique, l'utilisation de logique moins expressive mais plus efficace en restreignant les actions possibles ou de logique plus expressives mais indécidables avec des actions plus complexes ou l'implantation d'algorithme pour les autres logiques et de traduction vers des prouveurs existants pour certaines des logiques considérées.
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Résumé

En informatique comme dans de multiples autres domaines, les graphes peuvent être trouvés partout. Ils sont utilisés pour représenter des données dans des domaines allant de la chimie à l'architecture, en tant que structures abstraites ou que modèles des données et de leurs évolutions. Un graphe est défini comme l'union d'un ensemble de noeuds et d'un ensemble d'arcs les reliants. Ces noeuds comme ces arcs peuvent être étiquetés afin d'ajouter des informations supplémentaires.

Dans tous les domaines, il est prévisible que les graphes évoluent au cours du temps que cela soit à la suite de réactions chimiques, d'une mise à jour des connaissance ou de l'exécution d'un programme. Être capable de traiter ces transformations est une tâche particulièrement importante et difficile. Il y a de multiples manières de représenter les transformations de graphes. Parmi celles-ci, on peut trouver l'utilisation de la théorie des catégories ou l'utilisation d'actions atomiques. C'est cette seconde approche que nous avons choisie.

Dans ce travail, notre objectif est d'étudier la vérification de telles transformations de graphes, c'est à dire comment prouver qu'une transformation de graphes est correcte. La correction d'une transformation est plus précisément définie comme la correction d'une spécification pour cette transformation contenant en plus de la transformation elle-même une précondition et une postcondition. La précondition comme la postcondition sont des formules logiques définissant les états initiaux et finaux de l'exécution de la transformation. Prouver que la spécification est correcte revient à montrer que depuis tout graphe satisfaisant la précondition, il n'est possible d'obtenir en effectuant la transformation que des graphes satisfaisant la postcondition.

Le premier chapitre a pour vocation d'introduire de manière informelle les problèmes que nous souhaitons traiter. Il commence par expliquer pourquoi la vérification de programme est un sujet qui, malgré le fait qu'il est souvent ignoré, est particulièrement important dans le domaine de l'informatique et de ses applications. Il introduit ensuite ce qu'est un graphe et montre que l'utilisation des graphes se fait dans toutes sortes de domaines. De la même manière que les graphes sont présents un peu partout, nombre d'applications reposent sur la modification des graphes et qu'il est donc censé de s'intéresser à la correction des transformations de graphes. Ce chapitre s'achève par un plan de ce travail expliquant le contenu et la succession des chapitres.

Chapitre 2 montre que la vérification des transformations de graphe est un sujet qui intéresse beaucoup de monde. Ce chapitre fait un état des lieux de la recherche dans ce domaine. En particulier, plusieurs outils existent qui utilisent la vérification de modèles pour prouver que des transformations sont correctes. La vérification de modèles est une approche différente de celle que nous avons choisi. Ce chapitre traite aussi de plusieurs logiques ayant été utilisées pour décrire les graphes et qui peuvent donc être considérées comme intéressantes pour notre système de vérification. Ce chapitre observe aussi les résultats obtenus par d'autres auteurs dans leurs recherche de résultats en terme de vérification de transformations de graphes. Enfin, le problème que nous considérons est comparé à d'autres problèmes qui ont été étudiés dans la littérature. Dans un premier temps, dans le Chapitre 3, nous introduisons la définition formelle de ce qu'est un graphe étiqueté en utilisant des formules d'une logique. Ensuite, les transformations atomiques sont introduites. Ces actions permettent d'effectuer ce que nous estimons être les composants les plus élémentaires des transformations. Elles permettent de changer l'étiquetage d'un noeud ou plusieurs noeuds, de changer l'étiquetage d'un ou plusieurs arcs, de créer ou de détruire un noeud ou un arc ou encore de rediriger tous les arcs entrant ou sortant d'un noeud. Par exemple, l'action C := C + i, en supposant que C est un prédicat atomique unaire et que i est un noeud, change l'étiquetage de i pour y rajouter l'étiquette C alors que l'action i in j, en supposant que i et j sont des noeuds, redirige tous les arcs entrants de i vers j. Ce chapitre introduit aussi l'exemple de l'hôpital qui est utilisé comme fil rouge tout au long de ce travail pour illustrer les résultats obtenus et les difficultés rencontrées.

Chapitre 4 introduit la première approche que nous utilisons pour modifier les graphes à savoir un langage de programmation impératif. Ce langage contient plusieurs éléments usuels des langages impératifs comme les boucles "while" et les expressions conditionnelles. Ces deux expressions utilisent à nouveaux la logique pour définir des conditions ce qui prouvent une fois de plus que les trois composants, graphes, transformations et logique, sont étroitement liés. En plus de ces expressions, le langage de programmaton contient des instructions pour les actions atomiques qui permettent de modifier le graphe. Enfin, une expression "select" est introduite qui permet de choisir non-déterministiquement un noeud parmi ceux satisfaisant une certaine condition auquel appliquer les transformations. Ce "select" est particulièrement important car il permet d'instancier les variables qui permettent de modifier les graphes. Afin de pouvoir utiliser ce language, nous avons implémenté un traducteur qui réécrit les programmes vers le language Java qui peut ensuite être utilisé.

Le chapitre suivant, Chapitre 5, est le chapitre central de ce travail. Il est le premier à discuter la logique et son utilisation dans la vérification des transformations de graphes. Le chapitre commence par une discussion sur l'utilisation d'une logique pour décrire un graphe nonobstant le fait qu'il soit modifié pour l'instant. Sa conclusion est que nous nous concentrons seulement sur les logiques dont les modèles sont considérés comme étant des graphes car ce sont celles qui sont adaptées au problème. Le chapitre enchaine avec la définition de l'algorithme permettant de prouver qu'une spécification est correcte. Nous avons choisi d'utiliser un calcul à la Hoare qui est particulièrement adapté à notre ap-proche algorithmique car il repose sur la notion de pas d'exécution. L'idée est de générer la plus faible précondition correspondant à une transformation et une postcondition. Cette plus faible précondition est la formule qu'un graphe doit satisfaire pour être certain que tous graphe généré par la transformation satisfera la postcondition. S'il est possible de prouver que la précondition implique cette plus faible précondition, alors nous pouvons être certain que la spécification est correcte. Le calcul de la plus faible précondition se fait instruction par instruction en remontant depuis la postcondition. Il est donc nécessaire de définir la plus faible précondition des action atomiques. Cette plus faible précondition est définie en utilisant des substitutions. Les substitutions sont des constructeurs ajoutés à la logique dont la signification est exactement que la formule φσ, pour φ une formule et σ la substitution associée à une action atomique a, est satisfaite par un graphe si et seulement si tout graphe obtenu en exécutant a satisfait φ. Un autre résultat de l'utilisation du calcul à la Hoare est que les boucles "while" doivent être étiquetées avec un invariant car il est nécessaire lors de la génération de la preuve. Ceci est usuel dans le cadre des calculs à la Hoare. Enfin, le calcul doit être capable de quantifier sur les éléments qui sont instanciés par les instructions "select". De ces observations, on peut déduire les conditions que la logique doit satisfaire pour être capable d'utiliser de manière complètement automatisée le calcul à la Hoare. La logique doit être fermée par substitution, c'est à dire qu'elle doit être capable d'exprimer les substitutions sans l'ajout de nouveaux constructeurs. Elle doit aussi être capable d'exprimer l'utilisation des variables qui permettent d'effectuer les transformations. Enfin, la logique doit être décidable afin que l'automatisation soit complète. Le chapitre examine certains constructeurs de diverses logiques qui leur permettent de satisfaire ces conditions.

Chapitre 6 introduit la première famille de logiques que nous utilisons pour décrire les graphes, les logiques de description. Ces logiques ont l'avantage d'être décidables et d'être utilisées dans des cas réels. Le chapitre commence par introduire la syntaxe de ces logiques et les divers constructeurs qui permettent de former ces logiques. Une fois que cette syntaxe a été définie, nous examinons ces logiques pour voir lesquelles sont fermées par substitutions. Nous étudions d'abord les logiques les plus expressives, c'est à dire celles qui contiennent à la fois les nominaux qui permettent de parler individuellement de chaque noeud, et un constructeur permettant d'accéder à n'importe quel noeud comme le rôle universel U ou le quantificateur @. Ces logiques sont fermées par substitutions. Cela est prouvé en utilisant un système de réécriture qui retire les substitutions des formules tout en conservant les interprétations. Nous prouvons aussi que ce système termine. Il cause par contre une explosion exponentielle de la taille de formules qui accroit encore la complexité du raisonnement. Nous nous intéressons ensuite aux logiques qui ne contiennent pas les nominaux. Ces logiques ne sont pas fermées par substitutions. Cela est prouvé en utilisant des bisimulations entre modèles. Il est possible de définir une famille de bisimulation pour chaque logique tel que des noeuds appartenant à des modèles différents sont bisimilaires si et seulement si ils sont d'accord sur tous concepts de la logique. Il est possible de trouver deux modèles bisimilaires pour chacune de ces logiques tels que l'un est un modèle d'une formule avec substitution et pas le second. La formule avec substitution ne peut donc pas être exprimée dans la logique. Enfin, nous nous intéressons aux logiques qui ont les nominaux mais qui n'ont pas de moyen d'accéder aux noeuds distants. La méthode utilisée précédemment doit être modifiée car les modèles bisimilaires s'accordent sur les formules avec substitution. Toutefois, en modifiant la définition des bisimulations, il est possible de trouver des modèles bisimilaires qui ne s'accordent pas sur les formules avec substitutions. Il est donc possible de prouver que ces logiques ne sont pas fermées par substitutions.

Le chapitre suivant, Chapitre 8, nous permet d'introduire un autre moyen de modifier les graphes. Nous utilisons des systèmes de règles dont le côté gauche est un graphe et le côté droit est une liste d'actions qui doivent être exécutées. Une règle ne peut être appliquée à un graphe que s'il existe un sous-graphe qui correspond au côté droit de la règle. Dans un tel cas, c'est ce sous-graphe qui est modifié par la règle. Afin de mieux contrôler l'exécution de ces règles, des stratégies sont définies. Elles permettent de dire quelle règle doit être appliquée quand ainsi que d'utiliser la fermeture d'une règle, c'est à dire l'utiliser tant que possible. Une nouvelle fois, un calcul à la Hoare est introduit pour prouver la correction de ce type de transformation. Ce calcul à la Hoare ressemble beaucoup à celui obtenu pour le langage de programmation impératif défini précédemment. Ainsi, il est aussi nécessaire de définir des invariants pour les fermetures. Les substitutions sont une nouvelle fois utilisée et cette condition doit donc toujours être satisfaite par les logiques. Enfin, ce calcul permet de rendre plus explicite la condition sur l'existence de variables auxquelles appliquer la transformation. Il est en fait nécessaire de pouvoir exprimer l'existence ou l'absence d'un sous-graphe correspondant aux côté droit d'une règle.

Chapitre 7 introduit une nouvelle logique C2PDL . C2PDL est une logique qui contient les constructeurs de la logique dynamique propositionnelle avec inverse et de la logique dynamique combinatoire. Elle permet d'exprimer deux choses qu'il était impossible d'exprimer en utilisant les logiques de description: l'existence d'un chemin entre deux noeuds et de réellement créer et détruire des noeuds. L'existence, ou l'absence, d'un chemin est exprimée en utilisant la fermeture reflexive transitive d'un role. Comme le logique permet aussi d'exprimer des roles plus complexes, comme l'inverse d'un rôle ou l'union de deux rôles, il est possible d'exprimer l'existence de chemins complexes. D'un autre côté, les logiques utilisées jusque là utilisaient un concept particulier pour marquer les noeuds existants. Plutôt que de faire cela, une classe de noeuds particuliers est utilisée qui définit les noeuds qui n'existent pas encore ou plus. Comme cela fait partie de la définition de la logique, il n'est pas nécessaire de rajouter dans les préconditions et postconditions que les noeuds qui n'existent pas ne peuvent pas être étiquetés et ne peuvent pas avoir d'arcs entrants ou sortants ce qui donne des formules plus simples. Nous prouvons, une fois de plus en utilisant un système de réécriture, que C2PDL est fermée par substitutions. Nous prouvons aussi que C2PDL est décidable. Cela est fait de deux manières différentes. Un système de déduction est introduit qui permet de générer toutes les formules valides. Dans le même temps, il est prouvé que toute formule satisfiable a un modèle de taille finie. Il est donc possible de tester si une formule est valide ou insatisfiable et donc de conclure. Une autre méthode utilise une traduction vers le mu-calcul hybride qui est connu comme étant décidable. Enfin, ce chapitre s'intéresse à la condition sur l'existence ou l'absence d'un sous-graphe. Il est prouvé qu'il est toujours possible, en utilisant des nominaux, d'exprimer l'existence du sous-graphe. Il est par contre nécessaire de restreindre la classe des graphes utilisés du côté droit des règles si l'on souhaite pouvoir exprimer l'absence d'un tel sous-graphe.

Chapitre 9 étend l'étude des logique qui peuvent être utilisées pour exprimer les conditions sur les graphes. Nous nous intéressons d'abord à la logique du premier ordre elle-même malgré le fait qu'il soit bien connu que le problème de décision pour la logique du premier ordre est indécidable. En utilisant une fois de plus un système de réécriture, il est possible de prouver que la logique du premier ordre est fermée par substitutions. Il est aussi facile de prouver que, comme la logique du premier ordre permet d'utiliser des variables librement, elle permet d'exprimer l'existence et l'absence d'un sous-graphe correspondant aux côté droit d'une règle. Comme cette logique est indécidable, nous nous intéressons par la suite à des fragments de la logique du premier ordre. Le premier qui est utilisé est le fragment à deux variables avec quantificateur numériques. Cette logique étend les logiques de description que nous utilisons. En utilisant le même système de réécriture que celui utilisé pour la logique du premier ordre, il est possible de prouver que cette logique est fermée par substitutions. Il existe par contre des sous-graphes dont l'absence est impossible à exprimer comme les graphes comprenant des cycles de longueur plus grande que trois. Nous étudions ensuite le fragment de la logique du premier ordre tel que les formules écrites en forme normale prenex contiennent tous les quantificateurs existentiels suivis de tous les quantificateurs universaux. Une fois de plus cette logique est fermée par substitution en utilisant le même système de réécriture. Toutefois, il existe aussi des sous-graphes dont l'absence ne peut pas être exprimée dans ce fragment. Par exemple, dire qu'il n'existe pas de noeuds n'ayant pas de voisin revient à dire que tous les noeuds ont un voisin ce qui ne peux pas être exprimé sans avoir le mauvais ordre parmi les quantificateurs.

Chapitre 10 introduit l'implantation que nous avons réalisé. Bien qu'elle ne soit pas fermée par substitutions, la logique ALCQ a été choisie comme logique pour cette implantation. En utilisant le prouveur de théorème Isabelle, nous avons défini la syntaxe et la sémantique de cette logique, ce qui nous a permis de prouver l'équivalence entre formules qui sont censées être logiquement équivalentes. Nous avons aussi défini la sémantique des substitutions afin de prouver que le système utilisé pour les logiques de description les plus expressive était correct quand il était utilisé sur ALCQ. Ensuite, le calcul à la Hoare a été défini. Il a été prouvé qu'il est correct, c'est à dire que les spécifications qui sont considérées comme correctes le sont effectivement. Tout cela permet de prouver que la théorie que nous avons mise au point est cohérente. Nous avons aussi développé une méthode de tableaux pour ALCQ avec substitutions qui permet de prouver qu'une formule est satisfiable. Cet algorithme est utilisé pour prouver que la négation de la formule de correction générée par le calcul Chapter 1

Introduction 1.1 Program verification

Program verification is the field of study of the correctness of programs. To be more precise, it is the research of methods to prove that a program behaves the way it is expected to: it outputs what it should, it halts when it is done executing and no error occurs that forces it to abort some operations. Program verification is far from being a new field of study.

During World War II, Von Neumann was asked by Goldstine to collaborate to and improve ENIAC. It was the first computer using electrical signals instead of the mechanical motion of Babbage's computer. It was used to compute firing tables telling how to direct guns to hit distant targets. During that time and after when they had both joined the Institute for Advanced Study in Princeton, they wrote several reports that where the foundation of modern computer science. Among their conclusions was that "Since coding is not a static process of translation, but rather the technique of providing a dynamic background to control the automatic evolution of a meaning, it has to be viewed as a logical problem and one that represents a new branch of formal logics." [START_REF] Heine | Planning and coding of problems for an electronic computing instrument[END_REF] Alas this vision did not receive much attention at the time and was slowly forgotten. As Donald Knuth said "People would write code and make test runs, then find bugs and make patches, then find more bugs and make more patches, and so on until not being able to discover any further errors, yet always living in dread for fear that a new case would turn up on the next day and lead to a new type of failure." [START_REF] Donald | [END_REF] An incentive for the development of formal methods to prove the correctness of programs was the growing number of such programs that failed in an untimely, and often very disastrous, manner. Most such errors are completely human-made, in that the programs behaved exactly as it should have, given the parameters. For instance, in 1998, the Mars Climate Orbiter built by NASA's Jet Propulsion Laboratory, having cost approximately $327.6 million, was destroyed when it collided with Mars instead of starting to orbit it because different 1 engineering teams where using different measuring units, namely the metric and imperial systems. Each sub-program was correct but they were not able to work together. This kind of program is difficult to be solved by formal methods and requires a clearly stated project road-map and clear typing and definitions, but there are multiple errors that are caused by a lack of ability to foresee the future use of a program. For instance, let's assume that we want to write a program that computes the mean value of a vector of integers. The most natural way would look like that in pseudo-code: algorithm mean is input: A vector V of integers output: The mean value of the elements of V sum ← 0 count ← 0 while V is not empty do count

← count + 1 sum ← sum + head(V) V ← tail(V) return sum/count
This program is plagued with problems the most obvious being that if V is an empty vector the program will just crash. Going beyond that, in programming languages with weak typing as C, a character can be considered as an integer in which case performing the mean value does not even make sense, the mean is unlikely to give the expected result on most inputs as the division operation between integers in many programming languages is considered to be the euclidean division, depending on the input, the values sum and even count may create integer overflows, ... All these sources of problems are to be taken into account in order to make sure that a program is correct.

In the following, we drop most of the sources of problems that are found in this example. We focus on proving that a program does what it is expected to do. To be more precise, we prove that specifications are correct. A specification contains three elements. One is the program itself. The other two are logic formulae called respectively pre-and post-conditions. The precondition describes the state of the input before the program is started while the postcondition describes the output. Both are used to add more constraints on the data that have to be checked. There are two different notions of correctness: partial and total correctness. A specification is said to be partially correct if on all inputs satisfying the precondition, that is all inputs such that the precondition is true, applying the program will only yield states which satisfy the postcondition, that is outputs such that the postcondition is true. One could see the first caveat: if the program does not halt on the input, there is no output and thus the spec-ification is correct. To go one step farther, a specification is said to be totally correct if, in addition to the specification being partially correct, the program always halts.

The notion of total correctness is much more satisfying but it is, alas, very complex to prove and a subject of profound research on its own. It is a widely known fact that the halting problem is undecidable [START_REF] Turing | On computable numbers, with an application to the entscheidungsproblem[END_REF], that is there is no algorithm that always decides whether a program will halt. As we are interested in automatic proofs that a specification is correct, we have thus to either additionally provide an external proof that the program stops or only focus on partial correctness. This is the choice that is commonly made and that we will make in this work.

There are several main ways to prove a specification correct among them model-checking [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF] and Hoare logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF]. Models are representations of the data, both as input and output and as it is modified during the execution of the program. Model-checking works by defining a transition system corresponding to the transformation and finding a characterization of the models that generate unwanted states or the models that can be generated from the initial state.

On the other hand, Hoare logic works with transformation steps. It starts from a condition and generates the weakest precondition of the statements of the program. The set of preconditions of a statement s and a postcondition Q, written P re(s, Q), is the set of the formulae such that if it is satisfied before applying s, then it has to be that Q is satisfied after applying S. The weakest precondition wp(s, Q) is the smallest element of P re(s, Q) in the sense of the implication, that is wp(s, Q) ∈ P re(s, Q) and if P ∈ P re(s, Q), P ⇒ wp(s, Q). That is every model that satisfies P also satisfies wp(s, Q). This is applied until the first statement of the program is reached and one then has to check that the precondition implies the weakest precondition of the whole program. It is possible to use strongest postconditions instead of weakest preconditions and work from top to bottom. In the following, we will be exclusively working with Hoare-like logics to prove the correctness of specifications. We may nonetheless refer to other works that would use model-checking as part of alternatives.

Graphs

Up to now, we have introduced the notion of program verification. We are not actually interested in program verification in all generality but in the more specific verification of graph transformations. Yet, before being able to study the correctness of a program modifying graphs, it is mandatory to define what a graph is.

The term "graph" was first coined by J.J. Sylvester [START_REF] Joseph | On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, -with three appendices[END_REF]. To put it simply, a graph is a set of elements, called nodes, that are linked by edges. They can take many different forms depending on what meaning one associates with each components. Figure 1.1 represents a social network where each node is a person and edges represent connections between these persons. Edges and nodes can be labeled, that is they can contain information. In the example of the social network, each node being a person, it makes sense that they are labeled with the name of that person. Edges can be labeled with the kind of connection that corresponds to the link (friend on Facebook, follower on Twitter, ...).

One of the main interests of graphs is that they are ubiquitous. They are one of the most standard ways to represent data. In addition to social networks, graphs are key modeling tools in domains as diverse as communication, where nodes can be servers and computers and edges the physical connections between them (one such example is shown in Figure 1.2), public transportation networks, where nodes are stations and edges are routes (for instance, Figure 1.3), chemistry, where nodes are atoms and edges are covalent bonds (as examplified in Figure 1.4), in genealogy to build family trees, in relational databases, ... They can also be used to represent more abstract structures. In addition to graphs themselves, trees and pointers, and thus also arrays and such, are also data structures that can be represented as graphs. As they are, by nature, used in programs, this proves that the underlying problem that we are studying is of great interest.

Although they can represent all sorts of different data, as far as computer science is concerned, this is far from being the only use of graphs. They are also among the most widespread ways to do meta-modelling, that is modeling of the models of the graphs. Most current standards for metamodeling, like ORM [START_REF]SPARQL query language[END_REF], ER [START_REF] Peter | The entity-relationship model -toward a unified view of data[END_REF] or UML [START_REF] Iso | UML, the unified modeling language[END_REF] for instance, use graphs to represent the different classes of objects and the relation between them. The informal definition of a graph is quite simple yet it still can represent all sorts of data. That is why it is key to be able to reason about it, to modify it and to prove that the modifications that are performed are correct. In the following, we use a slightly more elaborate notion of graph. Up to now the labels were purely descriptive: if a node is labeled with "Alice", we know that it is the name of the person associated with this node. Yet, we want to be able to express more interesting properties. To do so, instead of using lists of possible labels, we use logics. The definition of logics covers a wide array of topics and is an important field in philosophy, mathematics, computer science, linguistics and psychology among others. The main focus of logic is the systematic study of arguments. It includes, for instance, how to correctly infer a conclusion from a set of assumptions. Nonetheless, for us, a logic can be understood as a language that allows to build complex labels from the previous set of atomic labels. It also come with a semantic, that is a model theory, that allows to state whether a property is true or not.

Labeling a graph with logical formulae is quite usual in Kripke structures where each node is thought to represent a possible world that contains all information that is true in this world. In this work, labeling formulae will play a role both in the transformation process and in the generation of proof obligations. Indeed, transformations will be performed depending on conditions that will be expressed in the logic while the properties intended to be proven and the weakest preconditions that computed are also formulae.

Graph transformation

Our goal is to do graph transformation verification and it is thus natural to now introduce the notion of graph transformation. This is quite a straightforward idea: one is given a graph and wants to modify it for whatever reason. Figure 1.7 shows one such dummy transformation where one wants to invert the direction of all edges.

There are several ways to describe graph transformations. One of the easiest to understand is the one used in Figure 1.7 where a graph is given as input and the resulting graph is given as output. This is a most graphic representation of graph transformations. Obviously, the graph that one wants to modify is not always the one that appears in such a transformation. The usual way to deal with this is to match the pattern represented by the left-hand side, say L, in the actual graph, say G. To be more precise, one looks for a sub-graph, that is a graph whose set of nodes is a subset of the set of nodes of G and accordingly for the edges, that would coincide with L. This instance of L is then replaced with the right-hand side R in G to create a new graph G . Figure 1.8 shows such an example where the subgraph containing only the nodes a, c, f and d and the edges (a, c), (c, f ), (f, d) and (d, a) can be equated to the left-hand side of Figure 1.7. In the resulting graph, these 4 edges are inverted but all other edges are kept the same. Such an understanding of graph transformations is best exemplified by the category theory approach. This approach is the most common way to deal with graph transformations. Transformations are performed by sets of rules that are a little more involved than the one shown in Figure 1.7. In addition to the pattern graph and the resulting graph, a core graph is used. These rules are classified depending on the conditions that they impose upon the transformations in term of suppression of elements.

Another approach, that is the one that we have chosen, is different. It provides a more algorithmic touch to the problem making it closer to classical programming languages. Instead of using a resulting graph, it introduces a list of actions that are performed on the matched graph. These transformations can then take the form of either rule sets [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF] or imperative programs [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF] depending on the needs of the user.

Statement of contribution

Now that we have made clearer what we mean by verification of graph transformations, it is key to define what is our goal and how we plan to reach it. Our goal is not, as has been done in previous works, to present a combination of a graph transformation system and a logic but to provide a way to pick one or several logics that can be used to prove graph transformations correct. To be more precise, we want to avoid putting the burden of devising the verification process to the user. To reach that goal, we want the logic that is chosen to express the pre-and post-conditions to be able to express everything that we need for the verification procedure so that existing decision procedures for that logic can be used to prove the transformations correct.

In order to reach this goal, we start by giving an imperative language that contains statements specifically tailored for graph transformations. This language is the one presented in [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF]. To be more precise, the language introduced in Chapter 4 contains the atomic actions defined in Section 3.1 plus the usual statements of imperative languages as if-then-else statements and while loops. It also contains a non-deterministic select statement that allows to bind variables that are used in the transformations. A translation from this language to Java has been implemented to increase its usefulness and a proof system, that outputs a counter-model if the program is incorrect has also been written for one of the logics treated in Chapter 6. Such a program is given as example in Figure 1.9. This programs checks whether there exists an R-predecessor of b labeled with C in which case b is no longer labeled with C. Then, as long as b has an outgoing edge labeled R, all incoming edges of B are redirected toward the target of that edge and it is labeled with Q. However, the proof system actually does not completely meet our requirements as it uses a tableau-procedure specifically devised to be able to work with the logic that we use in that logic.

The following chapter, Chapter 5, is the centerpoint of the theory. In this chapter, the relation between the graph transformation systems and the logics is investigated more thoroughly. The previous definition of the imperative language allows us to have a concrete example of how transformations are defined and performed and is used as the basis for the reflexion. Nonetheless, we try to make as few assumptions as possible on the logic that is used, as we want to actually find out what is required from the logic, and on the transformations themselves so that the reasoning that we do can be applied even to other graph transformations. This chapter is mostly an extended version of [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF].

First, the Hoare-like calculus that actually performs the verification of the graph transformations is introduced. Let's assume we are interested in proving that for all graphs G such that a precondition P is true, any graph G obtained by performing transformation t is such that the postcondition Q is true. The Hoare-like calculus defines the weakest precondition of t and Q, written wp(t, Q). This weakest-precondition is defined by induction on the structure of the transformation. Its most atomic step takes an atomic action a and returns as its weakest precondition wp(a, Q) = Q[a]. This [a] is called a substitution and is defined such that Q[a] is the formula that is true if and only if Q is true after performing a. The Hoare-like calculus we present is proven to be sound, that is only programs that are actually correct can be proven to be so.

The Hoare-like calculus is the starting point of the study of the properties the logic should have. Several such properties are pointed out. Some are mostly relative to the fact that the logic is actually suited to speak about graphs in the first place, that is that it is able to speak about the labeling of nodes and edges and be such that its models are graphs. The other properties deal more with the transformation themselves. Each atomic transformation, as is usual in Hoare-like calculi, generates a substitution that becomes part of the formula. They are forwarded through the formulae during the computation of the weakest preconditions and the verification conditions. These substitutions need to be handled during the decision procedure for the logic. Hence, the first requirement for the logic is that it is closed under substitutions, that is that substitutions can be removed inside the logic thus allowing one to use conventional tools to test whether the correctness condition is verified or not. Secondly, transformation systems need to deal with the selection of the nodes where the transformation is performed. Being able to treat these selections also has to be something that the logic can handle so that the verification calculus can work. Satisfy these conditions is a strong requirement on the expressivity of the chosen logic and there is not one logical constructor that fits the needs of all logics. It is thus key to study what to look for in a logic so that it can meet these requirements. For each of these conditions, intuitive components of logics that allow them to be verified are provided.

The conditions introduced in Chapter 5 can appear particularly vague as they depend enormously on the chosen actions and the way they are used. In order to clarify things and give examples, Chapter 6 instantiates this framework. To be more precise, this chapter essentially focuses on the condition of closure under substitutions [START_REF] Haël Brenas | On the closure of description logics under substitutions[END_REF]. After introducing quickly some usual Description Logics [START_REF]The Description Logic Handbook: Theory, Implementation, and Applications[END_REF], namely extensions of ALC without role inclusion axioms, we study which of those are closed under substitutions and why. In order to also better illustrate the way the transformations and the verification procedure work, this chapter contains an instance of the running example introduced in Section 3. The conclusion is that the logic needs to provide some way to speak about the actual nodes that are modified individually, that is in the case of Description Logic they need to allow for nominals, and a way to access remote nodes, which can be done with a universal role or the @ constructor of hybrid logics.

In order to better illustrate the problem of proving that a logic can express that a rule can be applied to a graph, we introduce a modal logic C2PDL that i j k Figure 1.10: An example graph for which the existence of a match cannot be expressed in C 2 as it requires to take into account 3 different node variables. extends multi-modal logics with nominals, that allow us to speak about specific nodes, and a universal role on sets of nodes that allows us to handle the creation of new nodes and their deletion. In Chapter 7, this logic is formally defined. This logic benefits us in several different ways. First, its expressivity is quite different from the one of the Description Logics studied up to that point. In particular, it allows to use a closure operator on roles that can express reachability conditions that are particularly interesting in the conditions of rules. Second, it is easy to prove that it is closed under substitutions and it can be done with much less effort than in the case of Description Logics. Finally, it presents an interesting handling of the problem of expressing the existence of a match. It cannot express the existence of a match in all generality. Yet it is possible to express the existence of a match. This is not enough to be able to prove all specifications written in C2PDL . This is enough to prove that a problem is correct as long as loops are not used. Indeed, in the case of loops, one has to express that it is no longer possible to apply the rule, and thus that no match exists. We identify conditions on the rules appearing in loops so that it is possible to express that no match exists and thus restrict the set of programs for which we can effectively prove that it is correct. We also prove that C2PDL is decidable.

The next chapter focuses on the second key condition that is that the logic should allow to express the selection of the nodes that are modified. As we felt that the exact cause for this condition was not made extremely clear by the imperative program and as we also wanted to be able to use a transformation framework closer to the rewriting systems that are used in many different incarnations of graph transformations systems, we introduced in Chapter 8 such a rewriting system [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF]. As usual, the transformations in that system are handled i : ∀j.¬R(i, j) Figure 1.11: An example graph for which the absence of a match cannot be expressed in ∃ * ∀ * as it would require the formula to be ∀i.∃j.R(i, j).

via rules whose left-hand side are graphs. We departed from the usual definition though by allowing the nodes and edges of those graphs to be labeled with arbitrary formulae which increases the expressivity of the rules themselves. In order to more efficiently direct the execution of the transformations, strategies are also introduced. This allows us to be as expressive as the imperative programming language defined in Chapter 5. With this system formally defined, the condition on the select can be made much clearer. So that a rule can be applied, a match between its left hand-side and the graph that is to be modified has to be found. The condition becomes that the existence of such a match can be expressed as a formula of the logic.

In Chapter 9, we look at other, more mainstream, logics that someone could propose that would fit our requirements. The first proposal is first-order logic. It is closed under substitutions and allows to express the existence of a match. Yet it is well-established that first-order logic is undecidable and this is thus a very small step in the right direction. We thus study fragments of first-order logic that are known to be decidable. Namely we focus on C 2 [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF], the 2-variable fragment of first-order logic with counting. It is a fragment that has been proven to be decidable, both in the case of finite and unrestricted models. It is also known to extend Description Logics without role assertions or inclusions. It is, unsurprisingly, proven to be closed under substitution. It also allows to express the existence of a match but, once more, one has to restrict the set of rules that are allowed. Indeed, if the graph in Figure 1.10 was the left-hand side of a rule, finding a match would require to keep track of three different variables, i, j and k which is not possible in C 2 . Also, this logic does not allow to express the reachability properties. Another logic that we study after is ∃ * ∀ * [START_REF] Börger | The classical decision problem[END_REF]. Once again, validity of a formula of this logic is known to be decidable and it is easy to show that it is closed under substitutions. Yet there are rules where the impossibility of finding a match cannot be expressed in the logic. A rule whose left-hand side would be the graph of Figure 1.11 being an example of such case. This chapter presents results from [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF].

Finally, in Chapter 11, we conclude on this work, discuss the points that are left open and introduce extensions that we are interested in.

Dealing with graph transformations is not simple and we want to make things as clear as possible. Toward that goal, we will start by giving a quick overview of the current state of the art in the field of verification of graph transformations in Chapter 2. Furthermore, in order for everything to be easier to understand, in the next chapter, Chapter 3, we introduce the running example of a hospital. It will be the basis of most of the examples that will be used in the course of this work. It does not aim at being the perfect representation of what should be the model of a hospital but at giving an example that any reader has at least a basic understanding of while remaining sufficiently complex to be able to tackle the various problems that we unravel in this work. Before doing that, we introduce the formal definitions of a graph, of which actions we consider and of the problem we are aiming to solve.

Chapter 2

State of the art

The correctness of model transformations has attracted some attention in the last few years. One prominent approach is model checking, such as implemented by the Groove tool [START_REF] Amir Hossein Ghamarian | Modelling and analysis using GROOVE[END_REF]. The idea is to carry out a symbolic exploration of the state space, starting from a given model, in order to find out whether certain invariants are maintained or certain states (i.e. , model configurations) are reachable. Transformations are represented as color-coded graphs and allow creation and deletion of nodes and edges. The rules created that way are then combined using control programs that contain random choice between rules and loops. As the Groove tool generates the state space, it is important to determine how this state space is explored as it can greatly influence the efficiency of the computation. The example of the Transformation 1 of Section 3.3 is given in Figure 2.1.

The Viatra tool has similar model checking capabilities [START_REF] Varró | Automated formal verification of visual modeling languages by model checking[END_REF] and in addition allows the verification of elaborate well-formedness constraints imposed on models [START_REF] Semeráth | Formal validation of domain-specific languages with derived features and well-formedness constraints[END_REF]. Well-formedness is within the realm of our approach as it amounts to checking the consistency of a formula, but it is not our primary goal in this work. Indeed, all we require is a specification and we do not care whether the pre-and postconditions are well-formedness conditions, structural invariants, strong restrictions on the input, ... The Alloy analyser [START_REF] Jackson | Software Abstractions[END_REF] uses bounded model checking for exploring relational designs and transformations (see for example [9] for an application in graph transformations). Counter-examples are presented in graphical form. All the aforementioned techniques use powerful SAT-or SMT-solvers, but do not carry out a complete deductive verification. On the other hand, our main interest lies in this automatic verification and its study. Our approach is thus, though using a different kind of computation, more decisive in its conclusion as it can not yield an inconclusive result. Nonetheless, contrary to our approach up to now, it is actually working, efficient and widely used. When we happen to have developed tools with comparable support, it will be interesting to compare the efficiency of the various approaches.

ph 1 d 1 works in
Speaking of existing tools and automated provers, general-purpose program verification with systems such as AutoProof [START_REF] Tschannen | Procs. of TACAS 2015, chapter AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] and Dafny [START_REF] Rustan | Dafny: An automatic program verifier for functional correctness[END_REF] becomes increasingly automated and thus interesting as push-button technology for model transformations. In this context, fragments of first-order logic have been proposed that are decidable and are useful for dealing with pointer structures [START_REF] Itzhaky | Effectively-propositional reasoning about reachability in linked data structures[END_REF]. They focus on linked-lists though while we are interested in graphs in general. Our goal is thus more general and it could be interesting, once we are able to produce a working tool, to compare results. One of the biggest problems though is that expressing that a graph is a finite linked-list is outside of the expressibility of the decidable logics we introduced as it requires to state that there is a head and a tail such that the head has no predecessor, the tail has no sucessor, every other element has exactly one predecessor and one sucessor and that there exists a path from head to tail. It would thus require to find a logic that would be compatible with the problem under scrutiny.

In this work, we aim at using a Hoare-like approach to program verification. We are interested in the devising of a Hoare-like calculus for the verification of graph transformations. The usual approach is to pick one logic that is able to express the graph properties and that can be used in the verification. We are thus really interested in the various logics that could be used to express graph properties.

Several different logics have been proposed over the years to describe graphs and they are natural choices when one has to tackle the problem of graph transformation verification. One of the most natural choices is first-order logic. Another widely used logic in graph transformation verification is monadic secondorder logic [START_REF] Courcelle | The monadic second-order logic of graphs. i. recognizable sets of finite graphs[END_REF][START_REF] Poskitt | Verifying monadic second-order properties of graph programs[END_REF][START_REF] Inaba | Graph-transformation verification using monadic secondorder logic[END_REF] that allows to go beyond first-order definable properties. Nonetheless, these approaches are not flawless. They are both undecidable in general and thus either cannot be used to prove properties of graphs in an automated way or only work on limited classes of graphs. We will nonetheless consider first-order logic as it is an interesting logic that is widely used and whose undecidability is often dealt with by accepting that the prover returns an inconclusive result.

Starting from the other side of the logical spectrum, one could consider using Description Logics to describe graph properties [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF][START_REF] Haël Brenas | On the closure of description logics under substitutions[END_REF] that are decidable. Description Logics cover a very wide array of complexities. For instance, satisfiability of DL -Lite is polynomial which is really important when dealing with graphs of huge size that are common in a lot of applications. On the other hand, the same problem is NExpTime-hard for SROIQ. Another choice could be to use a modal logic as those logics are made to reason about programs [10]. Actually, ALC is equivalent to modal logic. The main difference is that modal logic traditionally uses a possible-world semantic. Temporal logics [START_REF] Pnueli | The temporal logic of programs[END_REF] and Hybrid Logics [START_REF] Areces | Hybrid logics[END_REF] and other extensions of modal logics can also be used.

Another natural choice is to focus on decidable fragments of first-order logic. The fragment of effectively propositional logic [START_REF] Piskac | Deciding effectively propositional logic using DPLL and substitution sets[END_REF], has been known for a long time to be decidable [START_REF] Börger | The classical decision problem[END_REF]. Despite the fact that it contains all Description Logics without complex role inclusions, the use of the two-variable logic [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF] for the verification of model transformation is, to the best of our knowledge, introduced in this work.

Separation logic [START_REF] Reynolds | An overview of separation logic[END_REF] is another logic that is worth considering when dealing with transformations of graphs. It has been developed especially to be able to talk about pointers in conventional programming languages. It has been applied to program verification [START_REF] O'hearn | A primer on separation logic (and automatic program verification and analysis)[END_REF][START_REF] Appel | Verismall: Verified smallfoot shape analysis[END_REF] in the case of such programing languages as C minor [START_REF] Leroy | Formal certification of a compiler back-end or: programming a compiler with a proof assistant[END_REF] that is a mid-level imperative programming language.

Obviously, the decidability of all these logics comes at a cost in terms of expressiveness compared to undecidable logics like the full first-order logic. The question is thus to determine what expressivity is required by any given problem and the answer to this question is thus the main indicator of which logic should be used. Even though not all of the logics that have been considered here are actually treated in the following, many are and it should be possible to work on any specific logic in order to check whether the conditions that we pinpoint for a logic to work with our proof computation are satisfied.

In this work, we proceed in an orthogonal direction. Instead of introducing a logic and advising users to tailor their problem so that it is expressible in our logic and that its models comply with the restrictions so that the verification is actually possible, we aim at providing a means for the users to decide whether the logic they have used to represent their problem will actually allow them to prove their transformations correct or whether they have to use several different systems in parallel.

Naturally, introducing a logic to express graph properties is not enough to be able to verify graph transformations. Numerous different approaches have been proposed to deal with this verification. A lot of these approaches are based on the most usual definition of graph transformations that is rooted in category theory. These approaches often introduce logics that are specially tailored for the problem under study. Among the most prominent figure GP [START_REF] Poskitt | Hoare-style verification of graph programs[END_REF][START_REF] Manning | The GP programming system[END_REF], that stands for Graph Programs. It uses nested conditions [START_REF] Habel | Correctness of high-level transformation systems relative to nested conditions[END_REF][START_REF] Poskitt | A hoare calculus for graph programs[END_REF] that are explicitly created to describe graph properties. Graph Programs are strategies applied to a set of rewriting rules whose right-hand sides and left-hand sides are graphs. A Hoare-like calculus is provided that allows to generate correct specifications for the graph program. It uses transformations on the rules to generate conditions for the applicability of a rule and the precondition for a rule and a postcondition. The main shortcoming of this approach is that the Hoarelike calculus is undecidable which means that the verification cannot be fully automated. On the other hand, Graph Programs allow for the use of data labels and of operations on them. This is something that we can not do as of today but that it would very interesting to further study as many actual algorithm, as for instance the computation of the shortest path between two nodes, that modify graphs do so depending on the arithmetical properties of the labels. An extension of nested conditions using paths [START_REF] Orejas | A logic of graph conditions extended with paths[END_REF] has been proposed to give more expressive descriptions. The satisfiability of a formula has been proven sound and complete. It has not been devised in the context of verification yet to the best of our knowledge.

If one wants to compare our results to theirs, two possibilities arise. The first idea could be to look at whether it would be possible to use nested conditions as one of the logics that we consider. Nested conditions do not allow for nominals but they can be simulated as it is possible to say that there is a node with a given label and that it is the only one. Nested conditions also contain existential quantifiers that can be used for the selection of the nodes where the atomic actions are performed. It would thus seem that nested conditions satisfy the requirements we put forth. However, nested conditions are actually not closed under substitutions as they do not allow for disjunctions of graph morphisms in the first part of the conditions.

Another interesting subject of comparison is on the expressive power of the transformation. The fact is that allowing for arithmetical conditions greatly increases the transformation power and that it is not possible to express any of these transformations using our kinds of transformations. On the other hand, if one allows for arithmetical conditions on labels in one of our systems, the two transformation frameworks become comparable once more. Comparing the algorithmic and categorial approaches is not so easy yet if there were transformations that were possible only in the categorial approach, it would be possible to define an algorithmic atomic action with the same effect and one would then has to check that the logics are still closed under this added substitution. The set of atomic actions is not closed for that reason. Some of these actions have actually be studied but have not yielded enough results yet to be included in this work. For instance, cloning of nodes is interesting and can be performed in some categorial approaches. An atomic action with the same effect can be introduced and it is then possible to check which logics are closed under substitutions.

On the other hand, [START_REF] Balbiani | A dynamic logic for termgraph rewriting[END_REF] introduces a logic closer to modal logic extended with an universal program and global and local assignments. This logic allows to express both the graph properties and the graph transformations at the same time. As the transformations are expressible in the logic as programs, it is possible to verify the transformation simply by proving that a formula of the logic is valid. This is thus not more complex than proving that a graph property is valid. Nonetheless, the logic is undecidable and it thus impossible to completely automate the verification. Trying to use this logic in any of our transformation systems does not make much sense as the logic is expressive enough to contain all transformation.

In [START_REF] König | Verification of graph transformation systems with context-free specifications[END_REF], a slightly different problem is tackled. Instead of proving that a specification is correct, they aim at proving that, from a start graph, it is not possible to reach an element of a set of forbidden graphs. They thus use methods that are closer to model-checking. These forbidden graphs are defined using context-free graph grammars. Rewriting systems are then modeled as Petri graphs and the algorithm checks that there is no reachable marking of this graph that would mean that a forbidden graph can be reached. Checking whether no marking in a set is reachable is decidable albeit complex. This can be improved using restrictions on the starting graph and the structures of the rules. This differs from our case as, in addition to using rules that are structured differently with a graph as right-hand side, it forces the user to provide a starting graph while we would like to just describe it using a precondition. It also lacks a strategy for using the rules that we are interested in both as actual strategies and as an imperative program.

The way one tackles verification of graph transformation is, obviously, quite dependent on what are the properties that one wants to express and how the transformations are performed. In [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF], the possible transformations that can be performed are different from the ones we use. The transformations focus on global transformations in that they only allow to modify labels of sets of nodes instead of individuals. The logic used is ALCHOIQbr, a Description Logic that contains, among others, nominals which means that it is possible to modify single node labeling. The transformations are performed as imperative programs without loops. A lot of loops can actually be replaced with class relabeling but loops can still increase the expressiveness of the transformation language. As ALCHOIQbr is included in C 2 , it can be used in combination of one of the systems we introduced yet with the same limitations that apply to the more expressive logic.

Another problem that seems to be really similar is knowledge base update [2,[START_REF] Flouris | On applying the AGM theory to dls and OWL[END_REF]23] in which one tries to know whether some knowledge base will be satisfied from a given knowledge base after performing some actions that update the knowledge. An update adds or removes (in which case, it is usually qualified as erasure) pieces of knowledge. The main difference with what we consider as actions is how much change we consider occurs. In update, if one knows that every Bird is able to Fly and learns that Chilly Willy does not Fly it concludes that Chilly Willy is not a Bird, that is it aims at changing as little as possible the knowledge base. On the other hand, if the same is considered as an action, no possible outcome can be excluded and thus one would consider that every Bird, except maybe Chilly Willy, can Fly. As the way changes are handled is different, these two problems are quite different. It could be interesting to move farther in that direction by combining the approach we have been using of generating the weakest precondition with a set of unalterable axioms that can be used to remove alternatives and thus making the precondition stronger while still being the weakest.

Among modal logics, one can single out epistemic logics [START_REF] Hintikka | Reasoning about knowledge in philosophy: The paradigm of epistemic logic[END_REF]. Their objective is to represent knowledge. Models are graphs whose nodes represent the various states that are considered as possible and edges are equivalence relation between indistinguishable states. For instance, let us consider a two player game where Alice and Bob each draw a ball. Each one of them knows the ball she has picked and they both know that there are only three balls two of which are Red, the last one being W hite. They don't know which ball the other player has picked though. Alice has picked the white ball and Bob has picked a red ball. The graph presented in is pair whose first element is the color of Alice's ball and whose second element is the color of Bob's. There are three possible states (R, W ), (R, R) and (W, R) and the actual state is (W, R). Alice knows that it is so as Bob can only have one of the two remaining balls both of which are Red. On the other hand, Bob cannot distinguish between the states (W, R) and (R, R) as he doesn't know the color of Alice's ball. Were Alice holding a Red ball, she would not be able to discriminate between the states (R, R) and (R, W ) either.

Epistemic logics are particularly interesting in our case because it embedded in the conception of the logic that actions will be performed. To be more precise, it is possible to alter models by using public announcements [START_REF] Gerbrandy | Reasoning about information change[END_REF]. Only something true in the actual state can be publicly announced and its effect is to remove from the graph all states which are inconsistent with the announcement. For instance, if Alice were to announce that she has the W hite ball, only (W, R) would be a possible state. If, instead of announcing that she had the W hite ball, Alice had announced that she knew the color of Bob's ball, the result would have been the same as if the actual state had been any of (R, R) or (R, W ), she would not have been able to announce this.

Public announcements are complex actions that are more complex to emulate that one could think. Indeed, one could state that one just has to use a rule that would erase all nodes that do not satisfy the announcement. The problem is that it has to be simultaneous. Indeed, in the second case, if one were to remove the state (R, R) because it is not a case where Alice is unable to know the color of Bob's ball, she would be left with two states (W, R) and (R, W ) both of which are states in which Alice knows the color of Bob's ball and thus (R, W ) would not be erased. The solution is thus to mark all states that are to be erased in a first go and then erase all nodes that are marked and repeat until no node is marked.

It is possible to have more involved models too by giving various degrees of confidence in the various states and to have different actions as for instance forgetting information that ends up creating new possible states. It is also evident, as can be seen with the muddy children conundrum, that having a perfectly logical understanding of knowledge yields situations that are difficult to intuit and may not be perfectly realistic.

Another key problem that can be linked to program verification is Ontology-Based Data Access [START_REF] Feier | Fo-rewritability of expressive ontology-mediated queries[END_REF][START_REF] Botoeva | Virtual OBDA over expressive ontologies: Rewritings and approximations[END_REF], or OBDA. Given a knowledge base or database containing some data, one wants to know the results of a query. This is the most usual task in databases. The problem is that, when data becomes bigger, it is no longer efficient to store all the data inside the database. An ontology is thus used to reduce the size of the database without loosing actual knowledge.

For instance, the IMDB Movie Ontology1 contains the database for the IMDB website that deals with movies. There are thousands of movies that are stored and belong to various categories. It is much more efficient to store in the database that AM (M 0 ), ..., AM (M n ), meaning that M ovies M 0 to M n are Action M ovies and in the ontology that all Action M ovies are M ovies than to store in the database M (M 0 ), ...M (M n ), AM (M 0 ), ..., AM (M n ).

OBDA may seem to have very little to do with program verification yet the two problems are closely linked. Indeed, the database can be considered as a special case of precondition, the query can be considered as a postcondition and the ontology can be treated as a program. Most ontologies are built such that every axiom as to be applied as much as possible. In our context, that means that strategies are usually unused. Yet, one could imagine ontologies that would require strategies. For instance, still in the context of the movie database, one could want to know before the Oscar Award Ceremony whether there may be, depending on who is awarded the Best Actress Oscar, a movie by a given director with 2 or more Best Actress Oscar winners. Adding to the ontology a set of rules that awards the Best Actress Oscar to one of the nominees and requiring that one and only one of the rules is applied could yield a strategized ontology that would lead to the correct answer.

Chapter 3

Preliminaries and Running Example

In this chapter, our goal is to introduce several examples and definitions that we are going to use all around this work to illustrate our purpose.

First, we are going to give a few formal definitions that will form the underlying structures that will be used in all following chapters of this work. We define what is a graph as far as we are concerned, that is a pair composed of a set of nodes and a set of edges, with functions on the latter giving for each edge its source and its target and functions, for both nodes and edges, that give their labels. According to our definition, node and edge labels are formulae of a logic. We are not, for now, interested in what those formulae mean or how they are interpreted, we just use them to label things.

We then define a set of actions. They allow one to modify a graph by changing the labeling of a node (C := C + i, C := C -i) (respectively of an edge (R := R + e, R := R -e)), or a set of nodes (C := ψ, C := i) (respectively a set of edges, (R := Q, R := e)), to redirect incoming (respectively outgoing) edges from a node to another one (i in j) (respectively i out j), to create or suppress nodes and edges (new node(i), del node(i), new edge(e, i, j), del edge(e)). These atomic actions can then be combined into a sequence of actions.

The second part of this chapter introduces the example of a hospital. Our goal is to verify graph transformations and thus, for it to make sense, we need to be able to have an idea of what actual transformations and properties of the graphs can be used. It is a voluntarily simplistic example that is used only with the hope to be able to illustrate what is done in the various following chapters. It should deal with a subject any reader is familiar enough with to have an idea of what should be while being simple enough to be used in human-readable examples.

To go with the description of the hospital, the final part of this chapter introduces transformations of the hospital. Once more, they do not aim at being all-encompassing but at being fairly easy to grasp and to use. Together with these transformations, several properties that make sense are introduced as part of an invariant for the transformations, that is as formulae that should always be satisfied after a transformation is performed granted that they were satisfied before.

Formal definitions

When one aims at dealing with graph transformations, it makes sense to first define formally what is considered a graph. We diverge slightly from the simplest definition in that our graphs contain nodes and edges that are labeled with formulae from a given logic. Apart from that, the definition is classical. Definition 3.1.1 (Graph). Let L be a logic. A graph alphabet is a pair (C, R) of sets of elements of L, that is C ⊆ L and R ⊆ L. C is the set of node formulae (of L) or concepts and R is the set of edge formulae (of L) or roles. Subsets of C and R, respectively named C 0 and R 0 , contain basic concepts and roles respectively. A graph G over a graph alphabet (C, R) is a tuple (N , E, φ N , φ E , s, t) where N is a set of nodes, E is a set of edges, φ N is the node labeling function, φ N : N → P(C 0 ), φ E is the edge labeling function, φ E : E → P(R 0 ), s is the source function s : E → N and t is the target function t : E → N .

It is worth noting that the codomain of the labelings are defined as containing only basic concepts and roles. These definitions are extended so that the labeling is coherent with the semantics of the logic used. One can thus assume that elements are labeled with complex formulae. We call Φ N (resp. Φ E ) this extended node labeling function (resp edge labeling function). Definition 3.1.2. Let L be a logic, G be a graph over

{C, R}, C ∪ R ⊆ L, n a node of G, ψ ∈ C (resp. Q ∈ R), we say that G, n |= L ψ if ψ ∈ Φ G N (n) (resp. Q ∈ Φ G E (e)
). Once it is clear what a graph is, it is mandatory to define how to transform it. Our decision was to eschew category theory and head towards a more algorithmic approach to graph transformations. The following definition introduces several atomic actions that allow one to modify graphs. We first only give an idea of what each action does before giving the formal definition of its effects on a graph. Definition 3.1.3 (Atomic action, action). An atomic action, say a, has one of the following forms:

• a concept assignment C := ψ where C is a basic concept in C 0 and ψ is a concept in C. After performing C := ψ, a node n is labelled with C if and only if it is labeled with ψ.

• a role assignment r := Q where r is a basic role in R 0 and Q is a role in R. After performing r := Q, an edge e is labelled with r if and only if it is labeled with Q.

• a concept definition C := i where C is a basic concept in C 0 and i is a node. After performing C := i, i is labelled with C and it is the only one.

• a role definition r := e where r is a basic role in R 0 and e is an edge. After performing r := e, e is labelled with r and it is the only one.

• a concept addition C := C + i where i is a node and C is a basic concept in C 0 . It adds the node i to the valuation of the concept C.

• a concept deletion C := C -i where i is a node and C is a basic concept in C 0 . It removes the node i from the valuation of the concept C.

• a role addition r := r + e where e is an edge and r is a basic role (edge label) in R 0 . It adds the edge e to the valuation of the role r.

• a role deletion r := r -e where e is an edge and r is a basic role (edge label) in R 0 . It removes the edge e from the valuation of the role r.

• a node creation new node(i) where i is a new node. It creates the node i. i has no incoming nor outgoing edge and there is no basic concept (in Φ 0 ) such that i belongs to its valuation (resp. it deletes i and all its incoming and outgoing edges).

• a node deletion del node(i) where i is an existing node. It deletes i and all its incoming and outgoing edges.

• an edge creation new edge(e, i, j) where e is a new edge and i and j are existing nodes. It creates the edge e such that s(e) = i and t(e) = j. e is not labeled with any basic role.

• an edge deletion del edge(e) where e is an existing edge. It deletes e.

• a global incoming edge redirection i in j where i and j are nodes. It redirects all incoming edges of i toward j.

• a global outgoing edge redirection i out j where i and j are nodes. All outgoing edges of i becomes outgoing edges of j.

The result of performing the atomic action α on a graph

G = (N G , E G , φ G N , φ G E , s G , t G ), written G[α], produces the graph G = (N G , E G , φ G N , φ G E , s G , t G
). An action, say α, is a sequence of atomic actions of the form α = a 1 ; a 2 ; . . . ; a n . The result of performing α on a graph G is written G

[α]. G[a; α] = (G[a])[α] and G[ ] = G, being the empty sequence.
Let us illustrate the actual transformation associated to each atomic action α by giving the graph G such that G ⇒ α G .

• If α = C := ψ then: -N G = N G -E G = E G -φ G N (n) = φ G N (n) ∪ {C} if n |= ψ φ G N (n)\{C} otherwise -φ G E = φ G E -s G = s G -t G = t G • If α = r := Q then:
-

N G = N G -E G = E G -φ G N = φ G N -φ G E (e) = φ G E (e) ∪ {r} if e |= Q φ G N (e)\{r} otherwise -s G = s G -t G = t G • If α = C := i then: -N G = N G -E G = E G -φ G N (n) = φ G N (n) ∪ {C} if n = i φ G N (n)\{C} otherwise -φ G E = φ G E -s G = s G -t G = t G • If α = r := e then:
-

N G = N G -E G = E G -φ G N = φ G N -φ G E (e ) = φ G E (e ) ∪ {r} if e = e φ G N (e )\{r} otherwise -s G = s G -t G = t G • If α = C := C + i then: -N G = N G -E G = E G -φ G N (n) = φ G N (n) ∪ {C} if n = i φ G N (n) if n = i -φ G E = φ G E -s G = s G -t G = t G • If α = C := C -i then:
-

N G = N G -E G = E G -φ G N (n) = φ G N (n)\{C} if n = i φ G N (n) if n = i -φ G E = φ G E -s G = s G -t G = t G • If α = r := r + e then:
-

N G = N G -E G = E G -φ G N = φ G N -φ G E (e ) = φ G E (e ) ∪ {r} if e = e φ G E (e ) otherwise -s G = s G -t G = t G • If α = r := r -e then:
-

N G = N G -E G = E G -φ G N = φ G N -φ G E (e ) = φ G E (e )\{r} if e = e φ G E (e ) otherwise -s G = s G -t G = t G • If α = new node(i) then:
-

N G = N G ∪ {i} where i is a new node -E G = E G -φ G N (n ) = ∅ if n = n φ G N (n ) if n = n -φ G E = φ G E -s G = s G -t G = t G • If α = del node(i) then:
-

N G = N G \{i} -E G = E G \{e|s G (e) = i ∨ t G (e) = i} -φ G N is the restriction of φ G N to N G -φ G E is the restriction of φ G E to E G -s G is the restriction of s G to E G -t G is the restriction of t G to E G • If α = new edge(e, i, j) then: -N G = N G -E G = E G ∪ {e} where e is a new edge -φ G N = φ G N -φ G E (e ) = ∅ if e = e φ G N (e ) if e = e -s G (e ) = i if e = e s G (e ) if e = e -t G = j if e = e t G (e ) if e = e
• If α = del edge(e) then:

-

N G = N G -E G = E G \{e} -φ G N = φ G N -φ G E is the restriction of φ G E to E G -s G is the restriction of s G to E G -t G is the restriction of t G to E G • If α = i in j then : -N G = N G -E G = E G -φ G N = φ G N -φ G E = φ G E -s G = s G -t G (e) = j if t G (e) = i t G (e) if t G (e) = i • If α = i out j then : -N G = N G -E G = E G -φ G N = φ G N -φ G E = φ G E -s G (e) = j if s G (e) = i s G (e) if s G (e) = i -t G = t G
Just defining what are atomic graph transformations is quite clearly not enough to be able to construct actual graph transformations. How to build these transformations is already an interesting subject per se and, though it is not the sole focus of this work, it is still the main subject of Chapter 4 and Chapter 8.

Once graphs and their transformations have been defined, one can go back to the overall objective of graph transformation verification, that is to prove that a graph transformation is correct.

Let s be the graph transformation that one wants to perform and which one actually wants to be able to prove correct. As in the case of programs, one could think of several definitions of what is a correct transformation. One could say that it is a transformation that does something, or that it can not fail, or that it must always stop, etc. As proving that a program halts is a difficult and worthwhile subject on its own, we concentrated on proving that programs do what they have to provided they halt. Nonetheless, one wants to be more specific than saying that the program does someting. To be able to describe what one expects the program to do, we use conditions that describe wanted properties before and after the computation. We call the union of these conditions and the transformation a specification and we prove that these specifications are correct. It is thus worth noting that the proof of the correctness is at most as good as the specification. Definition 3.1.4 (Specification). A specification S is a triple (P re, s, P ost) where P re and P ost are formulae and s is a graph transformation.

A specification is composed of three elements. In addition to the transformation s, the specification contains P re, the so-called precondition, and P ost, the postcondition. P re is a formula that describes the conditions that one wants to be satisfied before s is performed and P ost describes the conditions that have to be satisfied after s is performed. Definition 3.1.5 (Correctness). A specification S is said to be correct if for all graphs G satisfying P re, any graph G that can be obtained from G by performing s is such that G satisfies P ost.

The notions of specification and correctness thereof forces us to deal with conditions that have to be expressed in a language. Those languages are logics. Determining what are the characteristics we are looking for in logics is the main focus of this work that will be dealt with in Chapter 5. We then consider what these properties mean for the logics themselves and this leads to the study of several logics, namely Description Logics in Chapter 6, an extension of Dynamic Logic in Chapter 7 and several expressive fragments of First-Order Logic in Chapter 9.

Hospital example

In order to better illustrate our purpose, an example modelling a sample of the information system of a hospital is introduced. It is the same one that we used in [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF]. Figure 3.1 is the UML model of this sample.

We consider persons (shortened to P E). Some of them work in the hospital and form the medical staff (M S) and others are patients (P A). The medical staff is partitioned into physicians (P H) and nurses (N U ). In addition, the hospital is split into several departments (DE) or services. Files (F I) are used to store information. Those pertaining to patients are stored in folders (F O).

Each member of the medical staff is assigned (denoted by works in) to a department. The same way, each patient is hospitalized (hospital in) in one of the departments. There may be several members of the medical staff that may collaborate to treat (treats) a patient at a given time but one of them is considered as the referent physician (ref phys), that is to say she is in charge of the patient. Part of the medical staff can access the folder containing the documents about (is about) a patient either to read (read access) or to write (write access) of information. Files belong (belongs to) to a folder and can reference (reference) other files. One of the files is HP, the hospital policy.

Transformations and properties

The fact is the hospital is bound to evolve: new patients arrive to be cured and others leave, new medical staffers are hired and others move out. To illustrate our purpose, four possible transformations are defined below.

Transformation 1. The first transformation is New Ph(ph 1 , d 1 ). It creates a new physician to which is associated an identifier ph 1 . This physician will be working in the department identified with d 1 .

Transformation 2. The second transformation is New Pa(pa 1 , ph 1 , fo 1 ). It adds a new patient. The patient pa 1 is created alongside his folder fo 1 . He is then assigned ph 1 as referent physician. Despite the transformations, there are some properties of the hospital that should not be altered. We give a list of six such expected properties in the following.

Expected property 1. Each member of the medical staff is either a nurse or a physician but not both.

Expected property 2. All patients and all medical staffers are persons.

Expected property 3. Each person that can write in a folder can also read it.

Expected property 4. Each person that can read a folder about a patient treats that patient.

Expected property 5. Only medical staffers can treat persons and only patients can be treated.

Expected property 6. Every patient has exactly one referent physician. Expected property 7. Every file references, albeit maybe indirectly, the Hospital Policy file.

Conclusion

In this chapter, we gave our formal definition of graphs and we introduced atomic transformations. These definitions are not completely usual. For instance, we decided to label edges and nodes in graphs with formulae in order to improve the expressive power of the transformations. Also we wanted a more algorithmic approach to transformation which lead us to less usual definitions of transformation. In addition, using sequences of atomic actions naturally induce the definition of execution steps that can be used as the basic block on which the Hoare-like calculus is going to work.

We also introduced a running example that we plan to use to illustrate the various results of this work. We chose the example of a hospital as it is fairly easy to understand. Additionally, it is a simplified and partial description so that, when it is used as an example, it is possible to produce both readable and yet sufficiently complex properties and transformations. We hope in this way to make clearer the most elaborate problems that we faced.

Chapter 4

An imperative language

As explained in Section 1.3, there are several ways to think about graph transformations. Using an imperative language may not be the most widespread way to deal with graph transformations but it is rather intuitive and a good way to introduce progressively the difficulties that arise when trying to prove the correctness of a program modifying graphs.

In this chapter, we introduce such an imperative language. It is the same as the one we showed in [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF]. Its most simple element is an atomic action. The set of atomic actions is composed of those that have been defined in Section 1.3. They allow to modify graphs by modifying the labeling of nodes and edges. It is possible to change the label of one local element, be it a node or an edge, by adding or removing that element from those labeled by a given atomic label (by performing the action c := c + i, c := c -i, r := r -e or r := r + e). It is also possible to modify globally the way nodes and edges are labelled by assigning a new set of elements to a label (by performing the action c := D, r := Q, c := i or r := e). It is also possible to modify the graph without affecting the labeling by redirecting all incoming or outgoing edges of a node (by performing the action i in j or i out j) or by adding or removing nodes and edges (by performing the action new node(i), del node(i), new edge(e, i, j) or del edge(e)). These atomic actions are then composed together using usual constructs of imperative languages as if-then structures, while loops and sequencing of actions. A more original structure is the "select" statement that non-deterministically assigns an element satisfying a condition to a variable. These are used to handle the selection of specific nodes of the graphs where the transformations are requested to occur.

As the programming language contains conditional structures, namely the ifthen structure, the while-loop and the "select" statement, a logic is needed. For this chapter, we do not worry about the logic. While next chapter, Chapter 5, is concerned with the topic of the logic and all the consequences on it that are implied by the needs of the transformation languages, this chapter only aims to introduce the imperative language and give details and examples of its workings.

Once the programming language is introduced in Section 4.1, this chapter presents some results that have been obtained by implementing a system using this programming language. To be more precise, an Eclipse plug-in has been developed to translate programs written in our imperative programming language into Java. Another program has been implemented that checks the correctness of the program and returns a counter-example when the program is incorrect. More details can be found in Section 4.2 on the implementations and in the following chapters for the proof of correctness of a program.

Example of imperative programing language for graph transformation

The programming language introduced in this chapter is an imperative language manipulating relational structures. Its distinctive features are conditions (in conditional statements and loops) that are formulae. It has a non-deterministic assignment statement select ... with allowing to select an element according to a formula. Traditional types (numbers, arrays, inductive types) and accompanying operations are not provided; the language thus really focuses on transformations of graphs. Due to the "select" statement, variables are used in the transformation language. In order to deal with them, states are used instead of graphs as the structures that are modified.

Definition 4.1.1 (State). A state σ is a tuple (G, {v 1 , . . . }, A)
where G is a graph, {v 1 , . . . } is a list of node variables and A : {v 1 , . . . } → N is the assignment function that assigns a node to a variable.

It is important to realize that during the program execution, nodes are accessed through these variables and the nodes that are modified are those pointed by the variables. That is when C := C + i is performed, i is not a node and it is the node A(i) that is modified.

Another key point is that edges are considered as pairs of nodes instead of separate entities. All possible pairs are considered as edges and those that are actually part of the graph are those that are labeled. This different view of edges, obviously, impacts the atomic actions that are used. Definition 4.1.2. Let C be a node label, R be an edge label, i, j be node variables, an atomic action is one of the following graph transformations:

C := C + i (node labeling) C := C -i (node unlabeling) R := R + (i, j) (edge labeling) R := R -(i, j) (edge unlabeling)
One can observe that not all atomic actions defined in Section 1.3 are reported in Definition 4.1.2. The creation and deletion of nodes is done in a different fashion. It is assumed that there exists a concept Active, unused in the properties, that denotes nodes that exist. If this is the case, creating a new node amounts to labeling it with Active and deleting a node amounts to removing the Active label. Thus, these actions can be simulated using atomic actions as defined in Definition 4.1.2. An additional condition on node not labeled with Active is added that they cannot have any label and that they can not have any incoming or outgoing labeled edge. This implies that the sets of atomic node and edge labels are finite. This is obviously not an optimal translation as the formulae may become very cumbersome. The other actions are removed for the sake of simplicity for now.

Atomic actions are used as the building block of statements, that is of graph transformations.

Definition 4.1.3. Statements of the language are then defined by the following grammar:

stmt ::= a (atomic action)

| select i with f orm (assignment) | stmt ; stmt (sequence) | if f orm then stmt else stmt (if-then statement) | while f orm do stmt (while loop)
The semantics is a big-step semantics with rules of the form σ ⇒ stmt σ expressing that executing statement stmt in state σ produces a new state σ .

The rules of the semantics are given in the Figure 4.1. Beware that we overload logical symbols such as ∃, ∧ and ¬ for use in the meta-syntax and as constructors of f orm.

Intuitively, the states σ manipulated by the operational semantics describe the current structure of a graph: which concepts label each node; which roles label each edge; and which variables are bound to which nodes. We write σ(φ) to evaluate the condition φ (a formula) in state σ.

The statement select i with φ selects an element vi that satisfies condition φ, and assigns it to i. i is a node variable. For instance, let us assume that stmt is the statement select i with i : C, that is select a node labeled C. i is not a node but, if there exists a node labeled C, one of them will be used as the value of i.

select is a generalization of a traditional assignment statement. There may be several instances that satisfy φ, and the expressiveness of the logic might not suffice to distinguish them. In this case, any such element is selected, non-deterministically. Let us spell out the precondition of (SelAssT): here, σ [v:=vi] is an interpretation update. What it does is modify the assignment function A such that A(i) = vi. It checks whether the formula φ would be satisfied under this choice, and if it is the case, keeps this assignment. In case no satisfying instance exists, the semantics blocks, i.e. the given state does not have a successor state, which can be considered as an error situation. Now that loops have been introduced it is possible to simulate actions like i in l0 j that redirects the incoming edges of i labeled l 0 toward j as shown in Figure 4.2. Provided that there is a finite number of atomic edge labels, it Let us go back to the example of the hospital. One can try to express the fourth transformation in this imperative language. Obviously, that depends on the choice made for the logic. As we did not concern ourselves with logics yet, we will assume we use a first-order like logic with quantification on nodes. That is ∃n.n : P means that there exist a node that is labeled with P and ∃n 0 , n 1 .(n 0 , n 1 ) : R means that there is an edge whose source is n 0 and whose target is n 1 labeled with R. The transformation does three main things: it checks that ph 1 and ph 2 work in the same department (this corresponds to an "if-then" statement), it removes the label P H from ph 1 (this corresponds to the atomic action) and it forwards all patient of ph 1 to ph 2 (this corresponds to a "while"-loop). It is illustrated in Figure 4.3.

(Seq) σ ⇒ c1 σ σ ⇒ c2 σ σ ⇒ c1;c2 σ (SelAssT) ∃vi.(σ = σ [i:=vi] ∧ σ (φ)) σ ⇒ select i with φ σ (IfT) σ(φ) σ ⇒ c1 σ σ ⇒ if φ then c1 else c2 σ (IfF) ¬σ(φ) σ ⇒ c2 σ σ ⇒ if φ then c1 else c2 σ (WT) σ(φ) σ ⇒ c2 σ σ ⇒ while φ do c σ σ ⇒ while φ do c σ (WF) ¬σ(φ) σ ⇒ while φ do c σ

Translation to Java Code

Being able to use the programming language to define programs is interesting yet their is a huge gap between being able to write programs and being able to execute them. In order to cross this chasm, we translated our programs into another language, in this case Java, that can then be compile to executable code. This work was presented in [START_REF] Baklanova | Provably correct graph transformations with small-talc[END_REF]. In order to generate Java code for programs, we parse them and then traverse the syntax tree with Xtext/Xtend, issuing calls to appropriate Java functions that manipulate a graph (which is initially the input graph provided in the program's main rule). Here is a glimpse at the Xtend code snippet that translates statements, in particular the add statement for roles: Assuming that the correct definition have been made, that is that g is defined as a graph, that all atomic concepts, atomic roles and individual names < rdf : RDF > < rdf : Descriptionabout = "http : //www.w3.org/Home/Lassila" > < s : Creatorrdf : resource = "http : //www.w3.org/staf f Id/85740"/ > < /rdf : Description > < rdf : Descriptionabout = "http : //www.w3.org/staf f Id/85740" > < v : N ame > OraLassila < /v : N ame > < v : Email > lassila@w3.org < /v : Email > < /rdf : Description > < /rdf : RDF > It is worth noting that, as was true in our imperative programming language, this program is not executable as is because one also needs to instantiate the logic so that it is possible to evaluate the formulae that are used as conditions in the if and while statements. Some of the internal procedures have yet to be fully implemented. For instance, select currently only works on atomic concepts but it should not be a difficult task to extend it to more expressive conditions. As this is highly dependent on the chosen logic though, it is something that has to be defined in conjonction with the logic.

Generating
Transforming Graphs: Once a Java program has been generated for a given program, it can be compiled and linked with a library that provides graph manipulating functions such as the above-mentioned insertEdge. When executing this program, it remains to read an input file containing a graph description, to perform the transformation and to output the new graph. We represent graphs in the RDF [START_REF] Cyganiak | RDF 1.1 Concepts and Abstract Syntax[END_REF] format or Resource Description Framework. The RDF format is the W3C recommendation for metamodelling of data since 1999. It uses URIs to identify objects. An example is given in Figure 4.5. Parsing and printing of RDF files is based on the Apache Jena framework2 .

Conclusion

In this chapter, we introduced a programming language to modify graphs. This programming language is imperative and uses classical statements of imperative programming languages, as "if-then-else" statements and "while" loops, in addition to more graph transformation-oriented statements that are the atomic actions that are performed. The most interesting statement in the syntax is the non-deterministic "select" that acts as a binder for node variables used in the actions.

Although we have yet to discuss logics, which is the subject of the next chapter, this imperative programming language uses heavily logic formulae in its syntax. Both the "if-then-else" statement and the "while" loop use, as is usual, conditions that have to be Booleans and the "select" binds variables according to a formula so that only elements that make the formula true are possible values for the variable. The choice of the logic is thus of outmost importance already as it underlies the syntax of the graph transformations.

In order to be fully able to use the definition of our programming language, we had to implement ways to actually modify graphs. We give such an implementation that translates a program written in this language into a Java program. This Java program can then be executed and used to actually modify graphs.

Chapter 5

Toward a general logical framework

One way to modify graphs has been introduced and another will be shown in Chapter 8. They use logic both as part of the statements, viz. if-then statements or while loops, and as the language in which the properties are expressed. It is obvious that in these conditions, the choice of the logic, or possibly logics, that are used is key. This discussion is an extension of the one in [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF].

In most cases, in order to prove the correctness of graph transformations, a logic is produced that can fit the needs of the transformations and of the properties that are under study. While finding a solution designed with a problem in mind is intuitively the best way to solve that problem, that also means that it is seldom applicable to other problems and that no clue is given on how to tailor the solution of a problem to another one.

A huge array of logics have been considered as possible solutions as the underlying structure with which transformations are built. In [START_REF] Balbiani | A dynamic logic for termgraph rewriting[END_REF], for instance, a logic highly reminiscent of dynamic logics is introduced. Its main advantage is its expressiveness. Both complex properties of the graphs, like euclidian edge labels or the absence of cycles, and transformations can be efficiently expressed. On the other hand, its main shortcoming is that it is not decidable and thus proofs cannot be automated. Another possible choice is to use the monadic second-order logic. It is, in all generality, undecidable but, given restrictions on the structures, it becomes decidable. Furthermore, it allows to describe properties of graphs that cannot be expressed in first-order logic, say that a graph is bi-partite. In [START_REF] Poskitt | Hoare-style verification of graph programs[END_REF], GP, that stands for Graph Program, a framework to define graph transformations that is strongly linked to the categorial conception of graph transformations, is introduced. It comes with a Hoare-like system allowing to prove the correctness of a program. Still, once more, one may wish to prove programs correct without having to restrict oneself to a few given structures.

On the other side of the spectrum, in [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF], SROIQ, a decidable Description Logic is used to reason about graph transformations. It is much less expressive but it is decidable. Its use is then restricted by conditions so that the Hoarelike calculus generates only formulae that stay in the logic. The shortcoming of having to design programs with the limitations of the logic is efficiently removed in [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF] by using a more expressive logic that can take care of all transformations defined inside the logic itself. Furthermore, the article focuses on finite models which correspond, in general, better to what graphs are actually considered. The problem though is still that all those logics have pros and cons and that, to someone who does not want to spend time looking at which logic corresponds the most closely to his needs, there is no way to take a decision on which one is to be used. On the other hand, someone could have been using a logic that is perfectly suitable to define graph properties but there is no guideline to tell whether or not this logic could actually be used to prove that the programs are correct or not. In this chapter, the goal is to take a look at and point out the requirements that the logics have to fulfill in order to be used in the verification of a program.

Logics and graphs

Our aim in this section is to discuss general requirements for a logic, say L, that one may consider either to specify pre-and post-conditions of specifications, to label graphs and to be used as conditions in statements.

Let us first focus on the first use of L.

Let SP = (P re, s, P ost) be a specification. If SP is correct, then if a graph G |= P re and G rewrites to model G via program P, then G |= P ost. The first obvious condition is that G |= P re is actually defined. That is to say, graphs must be able to satisfy formulae. This is a condition that focuses on what the logic means, that is how a formula is interpreted. For instance, the formula ∀x, y, z.gcd(x, y) = z ⇒ ∃a, b.a × x + b × y = z has a meaning if one tries to interpret it on Z, the smallest ring of integers, but the meaning is much less clear if one wants to interpret it on graphs.

The delimitation between what can be interpreted on graphs and what cannot is not always that clear though. ∀x.odd(x) ⇒ ∃y.square(x) = y ∧ odd(y) may also seem unadapted to be interpreted on graphs but, rewritten as ∀x.x : odd ⇒ ∃y.(x, y) : square ∧ y : odd, it does not seem so unnatural. Furthermore, by just changing the name of the propositions, one can get ∀x.x : human ⇒ ∃y.(x, y) : childOf ∧ y : human which states that humans all have a human they are the child of which would be a perfectly fine formula on graphs representing human society.

Requirement 1. Interpretations of P re and P ost assertions should be graphs. Thus, given a graph G and a formula φ, G |= φ must be defined.

Even provided that this first requirement is respected, one has to be able to define properly graphs. This means that L needs to have ways to label both nodes and edges.

Requirement 2. Interpretations of node formulae (concepts) should be nodes.

Requirement 3. Interpretations of edge formulae (roles) should be edges.

Once more, this mostly means that the logic has to be tailored to deal with graphs. Essentially, what these requirements mean is that there should be unary and binary predicates (provided edges are considered as pairs of nodes) in the logic. Predicates of higher arity could be defined, say clique(x, y, z) but they have to be interpreted on edges and nodes as there are no ternary structures in graphs. clique(x, y, z) could be defined as friend(x, y) ∧ friend(y, z) ∧ friend(z, x).

Going back to the arithmetic oriented formulae given previously, one of the main problems is what the connectors are. In these formulae, gcd, . and + are not predicates (unlike odd, for instance) but functions that have a result (here an integer). Obviously, functions are not always a problem. Even in these cases, = is an function that can be used as it produces a truth value. In more graph-oriented frameworks, the function next of lists for instance works well for edges. The issue is that functions actually need an increased arity (one for each elements and one for the result) to be expressed as predicates which means that functions of arity greater than 1 make little sense when dealing with graphs. Indeed, graphs are only composed of nodes and edges and all relations, and thus all properties, can only speak about such nodes and edges. It is obviously possible to define functions of higher arity than two but they could always be translated into formulae dealing only with edges and nodes that is only with arity 2 or less functions.

These requirements primarily check that there is a reason behind the choice of the logic. Three different arities make sense in the context of graphs: binary predicates for edges considered as pairs of nodes, unary predicates for nodes and nullary predicates for graphs.

The requirement that the labels have the good arity does not preclude the absence of such labels. For instance, one may want to use modal logic [10]. It provides no actual label for edges even though modal logic models are graphs. It is a perfectly acceptable choice of logic in which one does not discriminate between edge labels. Multi-modal logic [START_REF] Gabbay | Many-dimensional modal logics: theory and applications[END_REF], on the other hand, provides multiple labels for edges and allow to take into accounts the labeling of edges in the formulae.

Hoare-like calculus and weakest preconditions

Being able to find a logic able to express properties of the graph is, obviously, only part of the problem of finding a logic that is able to express the correctness of graph transformations. The logic must also be able to work with the verification calculus. This section focuses on the actions described in Section 4.1.

When what is said can be more general, it is indicated.

As usual in Hoare logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF], the verification calculus is reasoning upward. Let P 1 be a postcondition and s be a statement. One computes a precondition P 0 such that it is a certitude that if P 0 is true in a graph G, P 1 is true in any graph obtained from G by performing s. There may be several such P 0 's so the weakest one, that is the one that implies all the others, is computed.

When applied to a specification (P re, s, P ost), a precondition P 0 is generated for P ost to be true after having performed s. One then has to decide whether P re ⇒ P 0 .

The basic cases of the computations of weakest precondition deal with atomic actions (see Fig 5.1). To be more precise, to every atomic action is associated a so called substitution [START_REF] Hoare | An axiomatic basis for computer programming[END_REF]. Such substitutions are the elementary building blocks allowing the verification of a program. Definition 5.2.1. Let a be an atomic action, as defined in Section 3.1. The substitution [a] associated to a is the formula constructor that to each formula φ of L associates the formula φ

[α]. Given a model M, φ[a] is defined such that M |= φ[a] ⇔ for all models M , M ⇒ a M implies M |= φ.
A logic L is said to be closed under substitutions if for each action a, for each formula φ of L , φ[a] is also a formula of L . In Figure 5.1, the substitutions corresponding to the atomic actions defined in Section 3.1 are used. The computation of weakest preconditions is then extended to the statements presented in Chapter 4.1.

wp(C := φ , φ) = φ[C := φ ] wp(r := Q, φ) = φ[r := Q] wp(C := i, φ) = φ[C := i] wp(r := e, φ) = φ[r := e] wp(C := C + i, φ) = φ[C := C + i] wp(C := C -i, φ) = φ[C := C -i] wp(r := r + e, φ) = φ[r := r + e] wp(r := r -e, φ) = φ[r := r -e] wp(new node(i), φ) = φ[new node(i)] wp(del node(i), φ) = φ[del node(i)] wp(new edge(e), φ) = φ[new edge(e)] wp(del edge(e), φ) = φ[del edge(e)] wp(i in j, φ) = φ[i in j] wp(i out j, φ) = φ[i out j]
The weakest preconditions defined in Figure 5.2 follow usual Hoare Logic calculi [START_REF] Hoare | An axiomatic basis for computer programming[END_REF]. The rules for statement sequence and the if-then-else statement are quite straightforward. ψ is the weakest precondition for φ after performing s 0 ; s 1 if it is the weakest precondition for ψ after performing s 0 with ψ the weakest precondition for φ after performing s 1 . In a similar way, ψ is the weakest precondition for φ after performing if φ then s 0 else s 1 if it is the weakest precondition for φ after performing s 0 knowing that φ is satisfied and it is the weakest precondition for φ after performing s 1 knowing that φ is not satisfied.

wp(select i with φ , φ) = ∀i.(φ ⇒ φ) wp(s 0 ; s 1 , φ) = wp(s 0 , wp(s 1 , φ)) wp(if φ then s 0 else s 1 , φ) = (φ ⇒ wp(s 0 , φ)) ∧ (¬φ ⇒ wp(s 1 , φ)) wp(while φ do {inv}s, φ) = inv
The rule for the non-deterministic select is more involved. It states that no matter which node is assigned to the variable i, whenever the condition φ is satisfied so must be the post-condition as the only effect of the statement is changing the assignment of i. Finally, one may have realized that the rule for the while loop contained an additional part of the statement. This {inv} is the invariant if the loop and it has to be provided by the user. The weakest precondition for the while loop is stated to be inv. Once more, it is the usual weakest precondition in Hoare logic. The weakest precondition simply checks that this invariant is satisfied before entering in the loop. Obviously, this is not sufficient to prove that the postcondition, that does not even appear in the calculus, is satisfied after the execution of the loop. Another set of conditions, namely verification condition, is introduced in Figure 5.3 to complement the weakest preconditions. Once more the definition of the verification conditions is usual. The goal of the verification conditions is to prove that the statements that form the core of while-loops behave as correct programs. To be more precise, let while φ do s be a statement whose invariant is chosen as inv. The verification condition checks that the specification (φ∧inv, s, inv) is correct and that if φ is not satisfied, that is the execution exits the loop, the postcondition must be satisfied. The other rules are simpler: the one for the if-then-else statement checks that whichever of the statements is executed, its loops behave correctly, and the one for sequence checks that each of the two statements contains only correct loops. As neither the select statement nor any of the atomic actions may contain loops, there verification condition is always true.

vc(a, φ) = vc(select i with φ , φ) = vc(s 0 ; s 1 , φ) = vc(s 0 , wp(s 1 , φ)) ∧ vc(s 1 , φ) vc(if φ then s 0 else s 1 , φ) = vc(s 0 , φ) ∧ vc(s 1 , φ) vc(while φ do {inv}s, φ) = (φ ∧ inv ⇒ wp(s, inv)) ∧ (¬φ ∧ inv ⇒ φ) ∧ vc(s, inv)
These definitions may be usual and intuitively correct, one still has to prove formally that the calculus is sound. Definition 5.2.2 (Correctness formula). We call correctness formula the formula correct(S) = (P re ⇒ wp(s, P ost)) ∧ vc(s, P ost).

Theorem 5.2.1 (Soundness). Let S = (P re, s, P ost) be a specification. If

correct(S) is valid, then for all graphs G, G such that G ⇒ s G , G |= P re implies G |= P ost.
This proof is done by induction on the semantic of the programming language. It is quite technical but not difficult. If not interested in this proof, one can skip to Section 5.3. We only consider here the atomic actions used in Section 4.1 in order to be coherent with the statements used.

Proof.

• Let us assume s

= C := C + i. Then correct(S) = vc(C := C + i, P ost) ∧ (P re ⇒ wp(C := C + i, P ost). As vc(C := C + i, P ost) = and wp(C := C + i, P ost) = P ost[C := C + i], correct(SP ) = P re ⇒ P ost[C := C + i]. Let σ be a state such that σ(P re). As correct(S) is valid, σ(correct(S)), that is σ(P re ⇒ P ost[C := C + i]). As σ(P re), σ(P ost[C := C+i])
. By definition of the substitutions, σ(P ost[C := C+i]) implies that for any state σ such that σ ⇒ C:=C+i σ , σ (P ost). Thus σ(P re) ⇒ σ (P ost). Let σ be a state such that σ(P re). As correct(S) is valid, σ(correct(SP )), that is σ(P re

⇒ P ost[C := C -i]) is. As σ(P re), σ(P ost[C := C -i]).
By definition of the substitutions, σ(P ost[C := C -i]) implies that for any state σ such that σ ⇒ C:=C-i σ , σ (P ost). Thus σ(P re) ⇒ σ (P ost).

• Let us assume s = R := R + (i, j). Then correct(S) = vc(R := R + (i, j), P ost) ∧ (P re ⇒ wp(R := R + (i, j), P ost). As vc(R := R + (i, j), P ost) = and wp(R

:= R + (i, j), P ost) = P ost[R := R + (i, j)], correct(S) = P re ⇒ P ost[R := R + (i, j)].
Let σ be a state such that σ(P re). As correct(S) is valid, σ(correct(S)), that is σ(P re

⇒ P ost[R := R + (i, j)]). As σ(P re), σ(P ost[R := R + (i, j)])
. By definition of the substitutions, σ(P ost[R := R + (i, j)]) implies that for any state σ such that σ ⇒ R:=R+(i,j) σ , σ (P ost). Thus σ(P re) ⇒ σ (P ost).

• Let us assume s = R := R -(i, j). Then correct(S) = vc(R := R - (i, j), P ost) ∧ (P re ⇒ wp(R := R -(i, j), P ost). As vc(R := R - (i, j), P ost) = and wp(R := R -(i, j), P ost) = P ost[R := R -(i, j)], correct(S) = P re ⇒ P ost[R := R -(i, j)]. Let σ be a state such that σ(P re). As correct(S) is valid, σ(correct(S)), that is σ(P re ⇒ P ost[R := R -(i, j)]). As σ(P re), σ(P ost[R := R -(i, j)])
. By definition of the substitutions, σ(P ost[R := R -(i, j)) implies that for any state σ such that σ ⇒ R:=R-(i,j) σ , σ (P ost). Thus σ(P re) ⇒ σ (P ost).

• Let us assume s = select i with φ. Then correct(S) = vc(select i with φ, P ost) ∧ (P re ⇒ wp(select i with φ, P ost). As vc(select i with φ, P ost) = and wp(select i with φ, P ost) = ∀i.(φ ⇒ P ost), correct(SP ) = P re ⇒ ∀i.(φ ⇒ P ost). Let σ be a state such that σ(P re). Then σ(∀i.(φ ⇒ P ost)). Let σ be such that σ ⇒ select i with φ σ . By definition, σ is such that ∃vi.σ = σ [i:=vi] and σ (φ). As σ (φ ⇒ P ost); σ (P ost). Hence σ(P re) ⇒ σ (P ost).

• Let us assume s = s 0 ; s 1 . Then correct(S) = vc(s 0 ; s 1 , P ost) ∧ (P re ⇒ wp(s 0 ; s 1 , P ost). As vc(s 0 ; s 1 , P ost) = vc(s 0 , wp(s 1 , P ost)) ∧ vc(s 1 , P ost) and wp(s 0 ; s 1 , P ost) = wp(s 0 , wp(s 1 , P ost)), correct(SP ) = vc(s 0 , wp(s 1 , P ost)) ∧ vc(s 1 , P ost) ∧ (P re ⇒ wp(s 0 , wp(s 1 , P ost)). Let σ be a state such that σ(P re). As correct(S) is valid, σ(correct(S)).

Let σ be a state such that σ ⇒ s0;s1 σ . Then there exists σ with σ ⇒ s0 σ and σ ⇒ s1 σ . As σ(P re) and σ(vc(s 0 , wp(s 1 , P ost)) ∧ (P re ⇒ wp(s 0 , wp(s 1 , P ost)))), by induction with S 0 = (P re, s 0 , wp(s 1 , P ost)), σ (wp(s 1 , P ost)). As correct(S), vc(s 1 , P ost) ∧ (wp(s 1 , P ost) ⇒ wp(s 1 , P ost)) is valid. Thus σ (vc(s 1 , P ost) ∧ (wp(s 1 , P ost) ⇒ wp(s 1 , P ost))).

Once more, by induction with S 1 = (wp(s 1 , P ost), s 1 , P ost), σ (P ost). Thus σ(P re) ⇒ σ (P ost).

• Let's assume s = if φ then s 0 else s 1 . Then correct(S) = vc(if φ then s 0 else s 1 , P ost) ∧ (P re ⇒ wp(if φ then s 0 else s 1 , P ost). As vc(if φ then s 0 else s 1 , P ost) = vc(s 0 , P ost)) ∧ vc(s 1 , P ost) and wp(if φ then s 0 else s 1 , P ost) = (φ ⇒ wp(s 0 , P ost)) ∧ (¬φ ⇒ wp(s 1 , P ost), correct(SP ) = vc(s 0 , P ost)) ∧ vc(s 1 , P ost) ∧ (P re ⇒ (φ ⇒ wp(s 0 , P ost)) ∧ (¬φ ⇒ wp(s 1 , P ost)). Let σ be a state such that σ(P re) and σ be a state such that σ ⇒ if φ then s0 else s1 σ , that is either σ(φ) and σ ⇒ s0 σ or σ(¬φ) and σ ⇒ s1 σ .

-If σ(φ) then, as correct(S) is valid, so is vc(s 0 , P ost) ∧ (P re ∧ φ ⇒ wp(s 0 , P ost)). As σ ⇒ s0 σ , by induction with S 0 = (P re∧φ, s 0 , P ost), σ (P ost)).

else, as correct(S) is valid, so is vc(s 1 , P ost) ∧ (P re ∧ ¬b ⇒ wp(s 1 , P ost)). As σ ⇒ s1 σ , by induction with S 1 = (P re ∧ ¬φ, s 1 , P ost), σ (P ost)).

Thus σ(P re) ⇒ σ (P ost).

• Let us assume s = while φ do s . Then correct(S) = vc(while φ do s , P ost) ∧ (P re ⇒ wp(while φ do s , P ost). As vc(while φ do s, P ost) = (φ ∧ inv ⇒ wp(s , inv)) ∧ (¬φ ∧ inv ⇒ P ost) ∧ vc(s , inv) and wp(while φ do s , P ost) = inv, correct(S) = (φ ∧ inv ⇒ wp(s , inv)) ∧ (¬φ ∧ inv ⇒ P ost) ∧ vc(s , inv) ∧ (P re ⇒ inv). Let σ be a state such that σ(P re) and σ be a state such that σ ⇒ while φ do s σ . Then either σ(φ) and there exists σ such that σ ⇒ s σ and σ ⇒ while φ do s σ or σ(¬φ and σ = σ .

-If σ(φ), then there exist σ such that σ ⇒ s σ and σ ⇒ while φ do s σ . As correct(S) is valid, so is vc(s , inv) ∧ (P re ⇒ (φ ∧ inv ⇒ wp(s, inv))). Thus vc(s , inv) ∧ (P re ∧ φ ∧ inv ⇒ wp(s , inv)) is also valid. By induction with SP = (P re ∧ φ ∧ inv, s , inv), σ(P re ∧ φ ∧ inv) ⇒ σ (inv). Also, as correct(SP ) is valid, so is vc(s , inv) ∧ (inv ∧ φ ⇒ wp(s , inv) ∧ (inv ∧ ¬φ ⇒ P ost) ∧ (inv ⇒ inv). Thus, by induction with SP = (inv, while φ do s , P ost), σ (inv) ⇒ σ (P ost). Thus σ(P re) ⇒ σ (P ost)

else, as correct(S) is valid so is (P re ⇒ inv) ∧ (inv ∧ ¬ φ ⇒ P ost).

As σ(P re), σ(inv). Furthermore, as σ(¬φ), σ(P ost). But, as σ = σ, σ(P re) ⇒ σ (P ost)

Thus σ(P re) ⇒ σ (P ost).

Now that we have defined the correctness formula, we know that the verification problem can be translated to the validity problem for a given formula. The next two requirements are made to allow us to be able to deal with this problem. We chose to require that the logic be able to express the correctness formula and thus add requirements to the logic. Other solutions could be to allow for weaker logics and devise a reasoning system for the logic extended with the missing elements or to actually devise a reasoning system tailored for the specific problem of deciding the validity of the correctness formula.

In all generality, the requirements may be strongly tied to how transformations are made. For instance, the computation of the weakest precondition for the "if-then-else" statement is wp(if φ then s 0 else s 1 , Q) = (φ ⇒ wp(s 0 , Q)) ∧ (¬φ ⇒ wp(s 1 , Q)). This means that whenever "if-then-else" statements are part of the transformation language, the logic must provide the conjunction, the negation and the implication of formulae. On the other hand, let us consider a transformation language that contains only sequences of atomic actions. In this case, the computation of the verification conditions would be moot and the computation of the weakest preconditions could not require any additional conditions on L.

The first obvious realization is that substitutions are used and that it is thus mandatory to be able to deal with them. This is the requirement that is tackled in Section 5.3.

Another condition implied by the transformation language chosen is the weakest-precondition for the "select" statement. It introduces an universal quantifier. The presence of universal quantifiers, as there is a priori no restriction on the number of "select" statements used, in L is an important restriction as not all logics handle it. For instance, it is not part of modal logics. This requirement is studied in more details in Section 5.4.

Closure under substitution

The stated goal of this work is to provide general conditions on L and the conditions heretofore examined are highly dependent on a possibly misguided choice of transformation language. On the other hand, one clear requirement is that it is needed to be able to deal with atomic actions, that is it is needed to handle substitutions. Requirement 4. L must be closed under substitutions.

It is obvious that if the requirement above is not satisfied, the calculus of weakest preconditions may generate a formula which is not in L. As general as this requirement may seem to be, it is still highly dependent on what transformations are actually performed. By adding or removing atomic actions, remember that for instance the set of atomic actions used in Definition 4.1.2 is different from the one introduced in Section 3.1, the requirement that L be closed under substitutions changes.

Nevertheless, this may seem to be a really abstract condition and, as very few existing logics have been created with substitutions in mind, there is no straightforward way to detect logics that are closed under substitutions. One could thus be interested in what can be a clue that a logic is closed under substitutions.

The first thing one may have noticed when the atomic actions were introduced in Section 3.1 is that atomic actions deal with nodes and edges. That may seem to be insignificant but that actually means that in order to be closed under substitutions, the logic has to be able to speak about individual nodes and edges. In most cases, being able to speak about nodes is enough though as an edge e can be considered as the pair (s(e), t(e)). Being able to deal with individuals is not straightforward though.

Several mechanisms exist to deal with individuals. Basically, an individual is something that has one and only one instance. In first-order logic if one wants to speak about the individual i, it is possible to introduce a new unary predicate i and add to the formula that there is a node that is the individual i (∃x.i(x)) and that all nodes that are labeled with i are actually the same (∀x, y.i(x) ∧ i(y) ⇒ x = y). In other logics that lack equality or quantifiers, other mechanisms can be used. Nominals are part of some description and hybrid logics and the model checks that there exists one and only one element that is labeled with the individual.

Once again, this requirement depends enormously on the choice of atomic actions that has been made. If the atomic actions do not use individuals, say the only atomic action is C := φ, this requirement becomes much less severe.

Another thing that appears quite obvious is that one needs to be able to speak about disconnected nodes. To be more precise, when one looks at the result of creating a new edge between two nodes, one has to be able to deal with both nodes even though they are not yet a priori connected. Thus the logic needs to provide a way to speak about nodes that are different from the one under current study. Node formulae are, as we have seen, essentially unary predicates that are evaluated over one node at a time. When one is dealing with edges, in particular when creating new edges, one has to be able to deal with both the source and the target of the edge. In first order logic, the quantifiers allow to quantify over nodes and thus to consider multiple nodes at a time. In logics lacking such powerful quantifiers, it is possible to try to replace them with less potent tools like an universal role or the @ constructor of hybrid logic.

More details will be given when actual logics are studied in Chapter 6, Chapter 7 and Chapter 9.

Handling the select

In the previous section, the impact of substitutions has been looked at. Those are not the only problems that arise when trying to find a logic expressive enough to be used in the verification of graph transformations.

The weakest precondition for the select statement is wp(select i with φ, Q) = ∀i.(φ ⇒ Q). It introduces a universal quantifier on variables which means that the logic has to be able to handle them. A lot of logics, say modal logic, do not allow for variables thus this may seem to restrict drastically the number of logics that can be used.

It is possible to limit the impact of this restriction though. Let us first observe that the correctness formula, provided restrictions on P re, P ost, the invariants and the conditions used in s, can be considered essentially universally quantified. This is a good thing for a reason that will become clear in a short while.

Definition 5.4.1. A formula is essentially universally quantified if its prenex normal form contains only universal quantifiers. A formula is essentially existentially quantified if its prenex normal form contains only existential quantifiers.

One can easily see that the only rule in the computation of the weakest preconditions and the verification conditions that introduces quantifiers is the weakest precondition for the select statement. As weakest preconditions are never negated, Corr is thus essentially universally quantified if no other quantifier is used.

One could, in this condition, try to extend the logic to one using quantifiers with the hope of keeping an essentially universally quantified formula. If one looks at the generation of weakest preconditions and verification conditions, it appears that conditions in if-statements and while-loops have both positive and negative occurrences. This means that, if one wants to keep an essentially universally quantified formula, one must ban quantifiers in these conditions. The same goes for the loop invariants that appear both on the left-and right-hand side of the implications in (φ ∧ inv ⇒ wp(s, inv)).

However, if the conditions in the select statements are essentially existentially quantified, Corr will be essentially universally quantified. Let us for instance look at the statement s =select p with ∃q.(p, q) : R. Its weakest precondition is wp(s, P ost) = ∀p.((∃q.(p, q) : R) ⇒ P ost) whose prenex normal form is ∀p.∀q.((p, q) : R ⇒ P ost). It is essentially universally quantified. That means that it is possible to use select statements that use as many variables as one may want.

On the other hand, P re only occurs on the left and can thus be essentially existentially quantified and still yield an essentially universally quantified Corr while P ost only occurs on the left and can thus be essentially universally quantified. This allows to slightly extend the possibilities offered in the definition of the specifications but this can not be used very efficiently in transformations themselves.

Corr being essentially universally quantified is interesting as the problem that interests us at this point is whether or not Corr is valid. Instead one can look at the exact equivalent question of wether ¬Corr is satisfiable. But then ¬Corr is essentially existentially quantified. It is thus possible to skolemize it and replace all variables with constants. The condition on the logic is thus no longer that it contains a universal quantification on variables but that it can deal with constants.

This discussion seems to be fairly specific to the framework that we have chosen that uses an imperative programming language-like structure. As discussed in Section 1.3, this is far from the only possible approach possible. However, in Chapter 8, we will observe the case of rule-based transformations in details and see that the same kind of problems invariably appears as one has to find a way to express where transformations are to be applied. The problem would be solved if the transformation where to be applied at pre-chosen nodes and edges must it is usually mandatory to be able to use variables to consider when actions are applied in actual transformations.

Conclusion

In this chapter, we started to deal with the logic underlying the tranformations of graphs that we introduced and the verification of such transformations.

This chapter is key for several reasons. First and foremost, it introduces for the first time restrictions that one may want to enforce on the logics that one uses to express graph properties. This is the main task that has been defined as this work's aim. Some of these properties, namely that the logic is actually suited to talk about graphs, are rather intuitive and easily checked. Others are more involved and depend highly on numerous factors.

This chapter also introduces the Hoare-like calculus that is used to do the actual verification of graph transformations. As doing the verification is our ultimate goal and the Hoare-like calculus is the means that we have chosen to this goal, its importance must not be underestimated. The Hoare-like calculus presented in this chapter corresponds to the imperative language defined in Chapter 4. Another version is presented in Chapter 8 when another kind of structure for graph transformations is presented. It is important to note, even though it may seem obvious, that the calculus depends on the way transforma-tions are handled. Nonetheless, they have much in common and it is possible to come up, as we did, with general conditions on the logics that one uses to describe graphs that make sense in several different transformation systems.

One of the most noteworthy points about the Hoare-like calculus is that it makes use of substitutions. Substitutions are short-hands that allow to insert the transformations directly into the logic. They are the first source of trouble when one wants to do program verification as, a priori, there is no reason for a logic to be able to handle them. Moreover, as each substitution is linked to one atomic action, they actually depend on the choice of atomic actions that one makes.

The first condition on logics that we underline is thus that the logic should be able to deal with substitutions, that is that it should be closed under substitutions. If a logic is closed under substitutions, it is possible, albeit maybe at a cost in term of complexity, to decide whether a formula with substitutions is satisfiable, or valid, using, possibly pre-existing, tools designed for that logic. This condition is studied further in Chapter 6 as we examine a family of logics, namely Description Logics, and prove which are closed under substitutions.

The second condition that arises is that the logic is able to deal with the "select"-statement. It may seem at first sight to be a condition that actually only exists in the case of the imperative programming language and thus an arbitrary one. We introduce, in Chapter 8, another kind of transformation systems using rules and strategies that allows us to better illustrate what this condition is. Essentially, the condition states that the logic is able to deal with the variables that occur when one tries to apply transformations on elements that are not pre-determined.

One should note that failing these tests does not mean that the logic is not suited for graph transformation verification. Indeed, the goal is to be able to use existing tools instead of requiring the user to have to program new algorithms to deal with the modified version of the logic that one wants to use. Yet it is always possible to do so as we actually did for ALCQ, one of the logics presented in Chapter 6. Part of this implementation is shown in Chapter 10.

Chapter 6

Using Description Logics

In the previous chapters, an imperative programming language has been introduced to deal with graph transformations. After that, general requirements for logics have been introduced. Yet, until now, no logic has been formally introduced.

As the first requirements state that the logic must be tailored to speak about graphs, let us consider logics that are widely used to deal with graphs. Description Logics [START_REF]The Description Logic Handbook: Theory, Implementation, and Applications[END_REF] form one of the most widely used family of logics to describe graphs. They are the underlying logics that are used in the W3C [START_REF] W3c | Word wide web consortium[END_REF] defined OWL [START_REF] Halpin | The ORM foundation[END_REF] standard for representing data and SPARQL [START_REF]SPARQL query language[END_REF] standard for queries. Nonetheless, these standards are only meant to define static properties about graphs and query them and do not allow to modify them. Some DLs have been created with actions in mind though. DLs that are closely related to dynamic logics like D ALCO@ introduced in [START_REF] Chang | A dynamic description logic for representation and reasoning about actions[END_REF] and PDLC introduced in [START_REF] Wolter | Dynamic description logics[END_REF]] use a possible model approach. In that kind of logics, states, that in this case are graphs, are connected by actions that are described by their effects and their preconditions. On the other hand, the goal of this work is to define clear atomic actions that can be combined to produce more elaborate transformations.

Such an approach is not completely novel. Very expressive Description Logics, as ALHOIQbr [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF], have been introduced to model graph-structured data. This logic has two main advantages: the finite satisfiability of a formula is decidable and it contains constructors that allow to write every atomic action introduced as formulae of the logic. Nonetheless, the main objective of this work is not to introduce the perfect logic to deal with graph transformations but to look at what characteristics a logic should have to be considered as a candidate to reason about graph transformations.

A great variety of Description Logics have been described depending on what is to be their use. Some of them, DL-Lite [START_REF] Calvanese | Dl-lite: Tractable description logics for ontologies[END_REF] for instance, have been created to be tractable. These logics are meant to be used to describe large ontologies and thus their complexities have to be as low as possible. This tractability is obtained at the cost of expressiveness. On the other hand, some of the most expressive logics are undecidable. In particular allowing complex roles in number restrictions, for instance role composition and inverse [START_REF] Grandi | On expressive description logics with composition of roles in number restrictions[END_REF] or transitivity and intersection [START_REF] Grandi | On expressive number restrictions in description logics[END_REF], cyclic definitions of role inclusions [START_REF] Horrocks | Decidability of SHIQ with complex role inclusion axioms[END_REF] or role boxes [START_REF] Wessel | Obstacles on the way to qualitative spatial reasoning with description logics: Some undecidability results[END_REF] yields undecidable logics.

Testing all known Description Logics is unfeasible. Instead, the logic ALC is considered with some of its extensions. This is a more detailed version of the work presented in [START_REF] Haël Brenas | On the closure of description logics under substitutions[END_REF].

Syntax of Description Logics

In this chapter, we define the syntax of the description logics we consider. We start by the elementary logic ALC. ALC, and all of its extensions, are defined using a signature (C, R, I) where C is a set of concept names, R is a set of role names and I a set of individuals.

Let us first define the concepts, that is the node labels.

Definition 6.1.1 (ALC concepts). The set of concepts, C, is defined as:

φ ::= ⊥ (empty concept) | C (concept name) | ¬ φ (negation) | φ φ (conjunction) | φ φ (disjunction) | ∃R.φ (exists) | ∀R.φ
(for all) where c is a concept name (∈ C) and R is a role. As usual is defined as ⊥.

Les us now define the roles of edge labels. Definition 6.1.2 (ALC roles). The set of roles is R.

Very often, DL formulae are split into several parts: ABoxes, TBoxes and concepts. ABoxes are meant to store the information on particular nodes and edges: how are they labeled, which ones are known to be the same or different. Definition 6.1.3 (ABox). An individual assertion A is defined as:

A ::= i : φ (concept assertion) | i = j (equality) | i = j (inequality) | i R j (positive role assertion) |
i ¬R j (negative role assertion) where φ is a concept, R is a role and i and j are individuals. An ABox is a finite set of individual assertions.

TBoxes contain the hierarchy of concepts that is which concepts are included in which others. Definition 6.1.4 (TBox). A TBox is a finite set of concept inclusions of the form φ ⊆ ψ, where φ and ψ are concepts.

Other entities may be used, such as RBoxes. RBoxes are used to store the role hierarchy. They usually allow some role constructors (sequence, union) that are not supported in other parts of the logics. In these cases, if strong restrictions are not enforced, RBoxes can very easily lead to undecidable logics [START_REF] Horrocks | Decidability of SHIQ with complex role inclusion axioms[END_REF][START_REF] Wessel | Obstacles on the way to qualitative spatial reasoning with description logics: Some undecidability results[END_REF]. Most of the logics that will be studied henceforth do not use RBoxes for this reason. Definition 6.1.5 (RBox). A RBox is a finite set of role inclusions of the form R 0 ⊆ R 1 , where R 0 and R 1 are roles.

Each extension of ALC adds new concept or role constructors. Each constructor is associated to a letter added to the name of the logic1 . The most popular constructors that we consider in this chapter are Q, O, Self , I and U, defined as follows:

Q (≥ n R φ) (at least) O {a} (nominal) Self ∃S.Self (local reflexivity) I R - (inverse role) @ @ a φ (concept assertion) U U (universal role) where i is an individual, R is a role and φ is a concept. Example 6.1.1. For example, the concept C = ({ph 1 } (∃ works in.DE) (∀ ref phys -.¬ pa 1 )) ((< 3 treats ))
is the concept satisfied by ph 1 ({ph 1 }) if she works in a department ((∃ works in.DE)) and if all the patients whose referent physician she is are not pa 1 (∀ ref phys -.¬ pa 1 ) or by anyone treating strictly less than 3 patients ((< 3 treats )). Now that formula of the logics have been introduced, one has to know how to interpret them. Definition 6.1.6 (Interpretation). An interpretation I is a pair {∆, . I } where ∆ is the universe (set of elements) and . I , the valuation, is a function that maps each concept name to a subset of ∆, each role name to a subset of ∆ × ∆ and each individual to an element of ∆.

The way interpretations are used in the verification of graph transformations, ∆ is actually the N of the graphs, that is the set of nodes. Once more, one has to note that edges are not considered as separate entities but as couples of nodes.

Below, we define the valuation of roles and concepts:

⊥ I = ∅ (¬ φ) I = ∆\φ I (φ ψ) I = φ I ∩ ψ I (φ ψ) I = φ I ∪ ψ I (≥ n R φ) I = {δ ∈ ∆|#(R I φ (δ)}) ≥ n} (< n S φ) I = {δ ∈ ∆|#(R I φ (δ)) < n} (∃R.φ) I = {δ ∈ ∆|R I φ (δ) ≥ 1} (∀R.φ) I = {δ ∈ ∆|R I ¬φ (δ) < 1} {i} I = i I (∃R.Self ) I = {δ ∈ ∆|(δ, δ) ∈ R I } (@ i φ) I = ∆ if i ∈ φ I , ∅ otherwise (U) I = ∆ × ∆ (R -) I = {(δ, δ ) ∈ ∆ × ∆|(δ , δ) ∈ R I } where R I φ (δ) is {δ ∈ ∆|(δ, δ ) ∈ R I ∧ δ ∈ φ I } and #(V )
stands for the cardinal of V . Definition 6.1.7 (Model). We say that an interpretation I satisfies an assertion i : φ (resp. i = j, i = j, i R j, i ¬R j) if i I ∈ φ I (resp. i I = j I , i I = j I , (i I , j I ) ∈ R I , (i I , j I ) ∈ R I ). We say that an interpretation I is a model of an ABox A if I satisfies all the assertions of A. We say that an interpretation I satisfies a concept inclusion φ ⊆ ψ if φ I ⊆ ψ I . We say that an interpretation I is a model of a TBox T if I satisfies all the concept inclusions of T . We say that an interpretation I satisfies a concept φ if φ I = ∅.

Let us assume that, from now on, using the atomic actions defined in Section 3.1, substitutions are defined.

Substitutions define an additional concept constructor. We use σ in logic names to signify that substitutions are allowed as constructors. It is important to note that this constructor can only be used to build the concept part of the considered formulae and not in assertions nor in concept inclusions. We also identify edges e with the pair (s(e), t(e)) in order to be able to identify them uniquely. Thus actions like R := e become R := (i, j). σ φθ (explicit substitution) where φ is a concept and θ is a substitution.

For instance, φ[R := R +(i, j)] means that φ is satisfied after adding the pair (i, j) to the valuation of R. The interpretation is thus modified accordingly. Definition 6.1.8 (Valuation of explicit substitutions). Let C be a concept name, i and j be individuals, φ be a concept and R be a role name, the valuation of explicit substitutions is defined as follows:

• (φ ) I = φ I • (φ[C := C + i]) I = φ J where ∆ J = ∆ I , ∀D ∈ C, D = C, D J = D I , ∀R ∈ R, R J = R I and C J = C I ∪ {i I }. • (φ[C := C -i]) I = φ J where ∆ J = ∆ I , ∀D ∈ C, D = C, D J = D I , ∀R ∈ R, R J = R I and C J = C I \{i I } • (φ[R := R + (i, j)]) I = φ J where ∆ J = ∆ I , ∀C ∈ C, c J = c I , ∀P ∈ R, P = R, P J = P I and R J = R I ∪ {(i I , j I )} • (φ[R := R -(i, j)]) I = φ J where ∆ J = ∆ I , ∀C ∈ C, c J = c I , ∀P ∈ R, P = R, P J = P I and R J = R I \{(i I , j I )}
In this chapter, we are interested in how the addition of substitutions to concepts affects the expressive power of a given Description Logic. For now, explicit substitutions can only be used in the definition of a concept (and thus are forbidden in ABoxes and TBoxes). Definition 6.1.9 (Equivalence). Two concepts φ and ψ are said to be equivalent if, for every interpretation I, φ I = ψ I .

A logic L 1 is at most as expressive as a logic L 2 wrt. concepts written

L 1 ≤ φ L 2 if every concept in L 1 has an equivalent concept in L 2 . Two logics L 1 and L 2 are concept-equivalent if L 1 ≤ φ L 2 and L 2 ≤ φ L 1
Definition 6.1.10 (Closure under substitutions). A logic L is said to be closed under substitutions if L and Lσ are concept-equivalent.

Closed DLs

In this section, the focus is on the most expressive of the Description Logics considered. The DLs going from ALCU O to ALCQU IO@Self are proved to be closed under substitutions.

Let us notice first that in ALCQU IO@Self some constructs are rendundant. In particular, when a DL includes O (nominals), assertions can be rewritten as concept inclusions. Indeed, the individual assertion i : φ (resp. i = j, i = j, i R j, i ¬R j) is equivalent to the concept inclusion {i} ⊆ φ (resp. {i} ⊆ {j}, {i} ⊆ ¬{j}, {i} ⊆ ∃R.{j}, {i} ⊆ ∀R.¬{j}). When a DL includes U (universal role), concept inclusions can be rewritten as mere concepts. Actually, the concept inclusion φ ⊆ ψ is equivalent to the concept ∀U.(¬φ ψ).

As both O and U are part of ALCQU IO@Self , we consider for this chapter that the TBox and the ABox are empty. Additionally, concept definition, [C := i], can be rewritten in presence of nominals into a concept assignment [C := D] with D = {i}. This action will thus not be considered in the following. Theorem 6.2.1. ALCQU IO@Self is closed under substitutions.

The proof of Theorem 6.2.1 is done by providing a terminating rewriting system consisting of concepts rewrite rules which translates concepts of ALCQU IO@Self into concepts of ALCQU IOSelf (without substitutions). The rewrite system, we call T , is given below. It consists of 90 rules. The idea is to associate to each possible pair concept-substitution an equivalent substitution-free concept. In the following, these pairs are grouped mainly by concept constructors. The definitions of the rules need some variables: let C and C be different concept names, φ and ψ be concepts, R and R be role names such that R = R , θ be a substitution, i and j be individuals. For ease of reading, we define φ ⇒ ψ as ¬φ ψ. The notation stands for either < or ≥. As usual, in presence of I, R --is understood as R.

i j i j i j i j i j i j i j i j i j i j i j i j R R R R R R
Some intuition of why each rule is correct is given but the formal proof that the rewriting system both terminates and does not modify the interpretation is given afterwards. Some of the rules are unnecessary. For instance, rules are defined both for (∃R.φ)[C := C + i] and for (¬∀R.¬φ)[C := C + i] which are actually the same. Obviously, the interpretation of the results of both applications are the same and they were kept only for ease of understanding.

⊥ θ ⊥

The interpretation of ⊥ is empty even after performing any action.

{i} θ {i}

The interpretation of the nominals does not depend on the interpretation of any concept or role name.

3 C[R := R ± (i, j)] C 4 C[C := C ± i] C 5 C[R := Q] C 6 C[R := (i, j)] C 56 7 C[i in j] C 8 C[i out j] C
The interpretation of a concept name does not depend on the interpretation of any other concept or role name. Figure 6.1 shows several possible states before the action R := R + (i, j)] is performed and its result. It does not show the initial graphs where (i, j) : R already, in which case nothing happens, or where i = j.

9 C[C := C + i] C {i}
After one labeled node i with the concept name C, the nodes labeled C are those that were labeled C before (those satisfying C) plus the node i (that satisfies {i}).

10 C[C := C -i] C ¬{i}
After one removed the label C from node i , the nodes labeled C are those that were labeled C before (those satisfying C) minus the node i (that satisfies {i}).

11 C[C := ψ] C 12 C[C := ψ] ψ If C = C
, its valuation is left unmodified. Otherwise, after assigning to C the same valuation as ψ, the nodes that satisfy C are exactly those that satisfied ψ.

(¬φ) θ

¬(φ θ)

14 (φ ψ) θ φ θ ψ θ 15 (φ ψ) θ φ θ ψ θ 16 (@ a C) θ @ a (C θ)
Substitutions are propagated along boolean operators in the obvious way.

17 ∃R.Self [C := C ± i] ∃R.Self If R = R
, its valuation is left unmodified. Otherwise, as the valuation of R is now exactly the one of Q, th nodes where R is localy reflexive are thos where Q is. Additionally, as the only possible Q are either atomic roles or the inverse of atomic roles, these formula are well-formed.

31 ∃R.Self [R := (i, j)] ∃R.Self 32 ∃R -.Self [R := (i, j)] ∃R -.Self

33 ∃R.Self [R := (i, j)] {i} {j} 34 ∃R -.Self [R := (i, j)] {i} {j}
As the valuation of R is now exactly the couple {i I , j I }, the only possibility is that both i and j are the considered node. As previously, local reflexivity does not care for the direction of the edge.

∃R.Self [i in j]

(({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R.{i})

36 ∃R -.Self [i in j] (({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R.{i}) 37 ∃R.Self [i out j] (({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R -.{i})
38 ∃R -.Self [i out j] (({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R -.{i})

There are essentially three possibilities: either the current node is i and j or neither of them and thus it is not affected, or it is i but not j but then it is impossible to have an incoming (respectively an outgoing edge), or it is j and not i and then R is locally reflexive if it already was or there was an edge from j to i that now goes from j to j.

39 ( n R φ)[C := C ± i] ( n R φ[C := C ± i]) 40 ( n R -φ)[C := C ± i] ( n R -φ[C := C ± i]) 41 ( n R φ)[C := ψ] ( n R φ[C := ψ]) 42 ( n R -φ)[C := ψ] ( n R -φ[C := ψ]) 43 ( n R φ)[R := R ± (i, j)] ( n R φ[R := R ± (i, j)]) 44 ( n R -φ)[R := R ± (i, j)] ( n R -φ[R := R ± (i, j)]
)

Substitutions [C := C ± i], [R := R ± (i, j)
] and [C := ψ] do not modify the interpretation of R, hence the rules 39 -44. 

45 ( n R φ)[R := R + (i, j)] (({i} ∃U.({j} φ[R := R + (i, j)]) ∀R.¬{j}) ⇒ ( (n -1) R φ[R := R + (i, j)])) ((¬{i} ∀U.(¬{j} ¬φ[R := R + (i, j)]) ∃R.{j}) ⇒ ( n R φ[R := R + (i, j)])) 46 ( n R -φ)[R := R + (i, j)] (({j} ∃U.({i} φ[R := R + (i, j)]) ∀R -.¬{i}) ⇒ ( (n -1) R -φ[R := R + (i, j)])) ((¬{j} ∀U.(¬{i} ¬φ[R := R + (i, j)]) ∃R -.{i}) ⇒ ( n R -φ[R := R + (i, j)])) 47 ( n R φ)[R := R -(i, j)] (({i} ∃U.({j} φ[R := R -(i, j)]) ∃R.{j}) ⇒ ( (n + 1) R φ[R := R -(i, j)])) ((¬{i} ∀U.(¬{j} ¬φ[R := R -(i, j)]) ∀R.¬{j}) ⇒ ( n R φ[R := R -(i, j)])) 48 ( n R -φ)[R := R -(i, j)] (({j} ∃U.({i} φ[R := R -(i, j)]) ∃R -.{i}) ⇒ ( (n + 1) R -φ[R := R -(i, j)])) ((¬{j} ∀U.(¬{i} ¬φ[R := R -(i, j)]) ∀R -.¬{i})⇒ ( n R -φ[R := R -(i, j)]))
(≥ 2R.φ)[R := R -(i, j)] is true if (≥ 3R.φ[R := R -(i, j)]
) is. The top right graph (resp. bottom left, bottom right)shows that if {i} is false (resp. j doesn't satisfy φ[R := R -(i, j)], (i, j) is not an R-edge), then the modification does not affect the property.

In rules 45-48, we distinguish the cases where a substitution induces a change and those where it does not. The substitution changes the interpretation of the concept under consideration at element k if k = i (resp. k = j when the concept uses R -), the edge (i, j) does not already exist (resp. already exists) and j (resp. i) satisfies φ after the substitution. In that case, exactly one neighbour is added (resp. removed). Else, nothing has changed and thus the concept remains the same (see Figure 6.2). Let us consider rule 47, the interpretation of ( n R φ) will be modified by the action R := R -(i, j) if the current node is i, j is labeled with φ[R := R -(i, j)] and (i, j) : R. The condition of the first implication ({i} ∃U.({j} φ[R := R -(i, j)]) ∃R.{j}) is satisfied if and only if it is the case. In such a situation, the current node will lose a neighbor labeled with φ and thus it had to have at least n + 1 to have n afterwards. Otherwise, the case of the second implication, the number of neighbors is still the same.

49 ( n R φ)[R := Q] ( n R φ[R := Q]) 50 ( n R -φ)[R := Q] ( n R -φ[R := Q]) 51 ( n R φ)[R := Q] ( n Q φ[R := Q]) 52 ( n R -φ)[R := Q] ( n Q -φ[R := Q]) If R = R
, its valuation is left unmodified. Otherwise, if the valuation of R becomes equal to the one of Q, the number of R-neighbours is the one of Q-neighbours.

( n R φ)[R := (i, j)] ( n R φ[R := (i, j)]) For n = 1, (< n R φ)[R := (i, j)] ¬{i} ∀U.(¬{j} ¬φ[R := (i, j)]) For n ≥ 2, (< n R φ)[R := (i, j)] For n = 1, (≥ n R φ)[R := (i, j)] {i} ∃U.({j} φ[R := (i, j)]) For n ≥ 2, (≥ n R φ)[R := (i, j)] ⊥ For n = 1, (< n R -φ)[R := (i, j)] ¬{j} ∀U.(¬{i} ¬φ[R := (i, j)]) For n ≥ 2, (< n R -φ)[R := (i, j)] For n = 1, (≥ n R -φ)[R := (i, j)] {j} ∃U.({i} φ[R := (i, j)]) For n ≥ 2, (≥ n R -φ)[R := (i, j)] ⊥ If R = R
, its valuation is left unmodified. Otherwise, as the valuation of R becomes {(i I , j I )}, only i can have an R-neighbour (respectively j an R -neihbour) satisfying φ and it can be only j (respectively i).

( n R φ)[i in j] (∃U.({i} {j}) ⇒ ( n R φ[i in j])) (∃U.({i} ¬{j}) ⇒ (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j]) ⇒ ( (n + 1) R φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j]) ⇒ ( (n -1) R φ[i in j])) (∃R.({i} φ[i in j]) ∃R.{j} ⇒ ( (n + 1) R φ[i in j])) ((∀R.¬{i}) (∃R.({i} ¬φ[i in j]) ∃R.{j}) (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j])) ⇒ ( n R φ[i in j]))) (< n R -φ)[i in j] ({i} ¬{j}) (¬{i} {j} ⇒ k∈[0,n] (< k R -φ[i in j]) ∃U.({i} (< (n -k) R -(φ[i in j] ¬∃R -.{j})))) (({i} ⇔ {j}) ⇒ (< n R -φ[i in j])) (≥ n R -φ)[i in j] (¬{i} {j} ⇒ k∈[0,n] (≥ k R -φ[i in j]) ∃U.({i} (≥ (n -k) R -(φ[i in j] ∃R -.{j})))) (({i} ⇔ {j}) ⇒ (≥ n R -φ[i in j])) (< n R φ)[i out j] ({i} ¬{j}) (¬{i} {j} ⇒ k∈[0,n] (< k R φ[i out j]) ∃U.({i} (< (n -k) R (φ[i out j] ¬∃R.{j})))) (({i} ⇔ {j}) ⇒ (< n R φ[i out j])) 66 (≥ n R φ)[i out j] (¬{i} {j} ⇒ k∈[0,n] (≥ k R φ[i out j]) ∃U.({i} (≥ (n -k) R (φ[i out j] ∃R.{j})))) (({i} ⇔ {j}) ⇒ (≥ n R φ[i out j])) 67 ( n R -φ)[i out j] (∃U.({i} {j}) ⇒ ( n R -φ[i out j])) (∃U.({i} ¬{j}) ⇒ (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} ¬φ[i out j]) ⇒ ( (n + 1) R -φ[i out j])) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j]) ⇒ ( (n -1) R -φ[i out j])) (∃R -.({i} φ[i out j]) ∃R.{j} ⇒ ( (n + 1) R -φ[i out j])) ((∀R -.¬{i}) (∃R -.({i} ¬φ[i out j]) ∃R -.{j}) (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j])) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} ¬φ[i out j])) ⇒ ( n R -φ[i out j])))
These are the trickiest of the rules as those substitution affect multiple edges at the same time possibly changing massively the interpretations. In all cases, if i = j, the action actually does nothing.

Let us consider the other different possibilities for ( n R φ)[i in j] that are illustrated in Figure 6.3:

• There exists an R-edge toward i, i satisfies φ[i in j], there is no R-edge toward j and j does not satisfy φ[i in j]: in that case, the current node will have exactly one less R-neighbour satisfying φ[i in j].

• There exists an R-edge toward i, i does not satisfy φ[i in j], there is no R-edge toward j and j does not satisfy φ[i in j]: in that case, the current node will have exactly one more R-neighbour satisfying φ[i in j].

• There exists an R-edge toward i, i satisfies φ[i in j] and there is an R-edge toward j: in that case, the current node will gave exactly one less R-neighbour satisfying φ[i in j].

• In all other cases, the current node is left unaffected.

Let us now look at the rules 62 and 63:

• If the current node is i and not j, it now as no incoming R-edge and thus satisfies (< m P -ψ) and none of the (≥ m P -ψ) for any m > 0, P or ψ

• If the current node is j and not i, it now as all its previous incoming edges plus those of i. The sum of those must thus be compared to n with special care taken not to count twice those that were R-neighbours of both

• If the current node is both i and j or neither, it is not directly affected by the action.

68 (∃R.φ)[C := C ± i] ∃R.(φ[C := C ± i]) 69 (∃R -.φ)[C := C ± i] ∃R -.(φ[C := C ± i]) 70 (∃R.φ)[C := ψ] ∃R.(φ[C := ψ]) 71 (∃R -.φ)[C := ψ] ∃R -.(φ[C := ψ]) 72 (∃R.φ)[R := R ± (i, j)] ∃R.(φ[R := R ± (i, j)]) 73 (∃R -.φ)[R := R ± (i, j)] ∃R -.(φ[R := R ± (i, j)]
)

Substitutions [C := C ± i], [C := ψ] and [R := R ± (i, j)]
do not modify the interpretation of role name R, hence the rules 68 -73.

74 (∃R.φ)[R := R + (i, j)] ({i} ⇒ ∃U.({j} φ[R := R + (i, j)]) ∃R.φ[R := R + (i, j)]) (¬{i} ⇒ ∃R.(φ[R := R + (i, j)])) 75 (∃R -.φ)[R := R + (i, j)] ({j} ⇒ ∃U.({i} φ[R := R + (i, j)]) ∃R -.φ[R := R + (i, j)]) (¬{j} ⇒ ∃R -.(φ[R := R + (i, j)])) 76 (∃R.φ)[R := R -(i, j)] ({i} ⇒ ∃R.(φ[R := R -(i, j)] ¬{j})) (¬{i} ⇒ ∃R.(φ[R := R -(i, j)])) 77 (∃R -.φ)[R := R -(i, j)] ({j} ⇒ ∃R -.(φ[R := R -(i, j)] ¬{i})) (¬{j} ⇒ ∃R -.(φ[R := R -(i, j)]))
Rules 74-77 are quite similar to 49-53 where is replaced by ≥ and n = 1. Let us consider the rule 74. If the current node, say k is not i, the interpretation of ∃R.φ is only affected if the interpretation of φ is. This is the second implication. Otherwise, k = i and then either j is labeled with φ after the substitution and thus there exists one neighbor satisfying φ even if there was none before or there must exist a current neighbor that will satisfy φ. (

78 (∃R.φ)[R := Q] ∃R.(φ[R := Q]) 79 (∃R -.φ)[R := Q] ∃R -.(φ[R := Q]) 80 (∃R.φ)[R := Q] ∃Q.(φ[R := Q]) i j i j i j i j i j i j i j i j R R R R R R R
∃R -.φ)[R := Q] ∃Q -.(φ[R := Q]) If R = R
, its valuation is left unmodified. Otherwise, as the valuation of R becomes equal to the one of Q, there will be an R-neighbour satisfying φ if there is such a Q-neighbour.

(∃R.φ)[R := (i, j)] ∃R.(φ[R := (i, j)]) (∃R -.φ)[R := (i, j)] ∃R -.(φ[R := (i, j)]) (∃R.φ)[R := (i, j)] {i} ∃U.({j} φ[R := (i, j)]) (∃R -.φ)[R := (i, j)] {j} ∃U.({i} φ[R := (i, j)])
As the valuation of R becomes equal to {(i I , j I )}, the only node that can have an R-neighbour (resp. an R --neighbour) is i (resp. j) and this only in case j (resp. i) satisfies φ.

(∃R.φ)[i in j)] (∃U.({i} {j}) ⇒ ∃R.φ[i in j]) (∃U.({i} ¬{j}) ⇒ (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j]) ⇒ ∃R.(φ[i in j] ¬{i})) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) (∃R.({i} φ[i in j]) ∃R.{j} ⇒ ∃R.(φ[i in j] ¬{i})) ((∀R.¬{i}) (∃R.({i} ¬φ[i in j]) ∃R.{j}) (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j])) ⇒ ∃R.φ[i in j])) (∃R -.φ)[i in j] (¬{i} {j} ⇒ (∃R -.φ[i in j] ∃U.({i} ∃R -.φ[i in j]))) (({i} ⇔ {j}) ⇒ ∃R -.φ[i in j]) (∃R.φ)[i out j] (¬{i} {j} ⇒ ∃R.φ[i out j] ∃U.({i} ∃R.φ[i out j])) (({i} ⇔ {j}) ⇒ ∃R.φ[i out j]) (∃R -.φ)[i out j] (∃U.({i} {j}) ⇒ ∃R -.φ[i in j]) (∃U.({i} ¬{j}) ⇒ (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} ¬φ[i out j]) ⇒ ∃R -.(φ[i out j] ¬{j})) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j])) (∃R -.({i} φ[i out j]) ∃R.{j} ⇒ ∃R -.(φ[i out j] ¬{i})) ((∀R -.¬{i}) (∃R -.({i} ¬φ[i out j]) ∃R -.{j}) (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j])) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} ¬φ[i out j])) ⇒ ∃R -.φ[i out j]))
Rules 86-89 are quite similar to 62-67 where is replaced by ≥ and n = 1. One also has to replace the fact that there must exist 2 different R-or R -neighbours by the fact that there must be one that is not i.

90 (∀R.φ)[C := C ± i] ∀R.(φ[C := C ± i]) 91 (∀R -.φ)[C := C ± i] ∀R -.(φ[C := C ± i]) 92 (∀R.φ)[C := ψ] ∀R.(φ[C := D]) 93 (∀R -.φ)[C := ψ] ∀R -.(φ[C := D]) 94 (∀R.φ)[R := R ± (i, j)] ∀R.(φ[R := R ± (i, j)]) 95 (∀R -.φ)[R := R ± (i, j)] ∀R -.(φ[R := R ± (i, j)]
)

Substitutions [C := C ± i], [C := ψ] and [R := R ± (i, j)]
do not modify the interpretation of role name R, hence the rules 90 -95.

96 (∀R.φ)[R := R + (i, j)] ({i} ⇒ ∀R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)])) (¬{i} ⇒ ∀R.(φ[R := R + (i, j)])) 97 (∀R -.φ)[R := R + (i, j)] ({j} ⇒ ∀R -.(φ[R := R + (i, j)]) ∃U.({i} φ[R := R + (i, j)])) (¬{j} ⇒ ∀R -.(φ[R := R + (i, j)])) 98 (∀R.φ)[R := R -(i, j)] ({i} ⇒ ∀R.(φ[R := R -(i, j)] {j})) (¬{i} ⇒ ∀R.(φ[R := R -(i, j)])) 99 (∀R -.φ)[R := R -(i, j)] ({j} ⇒ ∀R -.(φ[R := R -(i, j)] {i})) (¬{j} ⇒ ∀R -.(φ[R := R -(i, j)]))
See Figure 6.4 for an illustration. Rules 96-99 are quite similar to 49-52 where is replaced by < and n = 1. Let us consider rule 98. Once more there are two possibilities: either the current node is i or it is not. In the former case, all the neighbors of the current state will be labeled with φ after performing R := R -(i, j) if and only if the only neighbor that existed before that would not satisfy φ after the transformation was j. In the later case, the neighbors are the same and thus one has to check that they will all be labeled with φ after the transformation.

100 (∀R.φ)[R := Q] ∀R.(φ[R := Q]) 101 (∀R -.φ)[R := Q] ∀R -.(φ[R := Q]) 102 (∀R.φ)[R := Q] ∀Q.(φ[R := Q]) 103 (∀R -.φ)[R := Q] ∀Q -.(φ[R := Q])
If R = R , its valuation is left unmodified. Otherwise, as the valuation of R becomes equal to the one of Q, all R-neighbours satisfy φ if all Q-neighbours do.

104 (∀R.φ)[R := (i, j)] ∀R.(φ[R := (i, j)]) 105 (∀R -.φ)[R := (i, j)] ∀R -.(φ[R := (i, j)]) 106 (∀R.φ)[R := (i, j)] ({i} ∃U.({j} φ[R := (i, j)])) ¬{i} 107 (∀R -.φ)[R := (i, j)] ({j} ∃U.({i} φ[R := (i, j)])) ¬{j}
As the valuation of R becomes equal to {(i I , j I )}, i (resp. j) is the only node that has an R-neighbour (resp. an R --neighbour). Thus the concepts are satisfied if and only if the current node is i (resp. j) and j (resp. i) satisfies φ or if the current node is not i (resp. j) .

((∀R -.¬{i})

(∃R -.({i} φ[i out j]) ∃R -.{j}) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j])) ⇒ ∀R -.φ[i out j]))
Rules 108-111 are quite similar to 62-67 where is replaced by ≥ and n = 1. One also has to replace the fact that there must be at most 1 R-or R --neighbours not satisfying φ by the fact that the only neighbour that could not satisfy φ is i.

Even though the previous intuitions may be helpful in understanding why the rules are that way, they do not constitute proofs that T is correct. In order to prove that it is, the following two lemmata are introduced. They state three properties of the system T , namely (1) that the interpretations are conserved, that is T does what one might expect it to do, (2) that it terminates, (3) that the result is substitution free. The proofs of these lemmata are not complicated. Those that want to skip them can go to Section 6.3. (∃R -.Self [C := ψ]) I = (∃R -.Self ) I as (∃R -.Self ) I is independent of the valuation of C.

(∃R.Self [R := R ± (i, j)]) I = (∃R.Self ) I as (∃R.Self ) I is independent of the valuation of R .

(∃R -.Self [R := R ± (i, j)]) I = (∃R -.Self ) I as (∃R -.Self ) I is independent of the valuation of R .

As (∃R.Self )

I = {x|(x, x) ∈ R I }, (∃R.Self [R := R + (i, j)]) I = {x|(x, x) ∈ R I ∪ {(i, j)}} = (∃R.Self ) I ∪ ({i} ∩ {j}) that is (∃R.Self [R := R + (i, j)]) I = (({i} {j}) ∃R.Self ) I .
As (∃R -.Self

) I = {x|(x, x) ∈ R I }, (∃R -.Self [R := R + (i, j)]) I = {x|(x, x) ∈ R I ∪ {(i, j)}} = (∃R -.Self ) I ∪ ({i} ∩ {j}) that is (∃R -.Self [R := R + (i, j)]) I = (({i} {j}) ∃R -.Self ) I .
As (∃R.Self )

I = {x|(x, x) ∈ R I }, (∃R.Self [R := R -(i, j)]) I = {x|(x, x) ∈ R I \{(i, j)}} = (∃R.Self ) I \({i} ∩ {j}) that is (∃R.Self [R := R -(i, j)]) I = ((¬{i} ¬{j}) ∃R.Self ) I .
As (∃R -.Self

) I = {x|(x, x) ∈ R I }, (∃R -.Self [R := R -(i, j)]) I = {x|(x, x) ∈ R I ∩ {(i, j)}} = (∃R -.Self ) I \({i} ∩ {j}) that is (∃R -.Self [R := R -(i, j)]) I = ((¬{i} ¬{j}) ∃R -.Self ) I .
As the valuation of R is left unmodified by

R := Q, (∃R.Self [R := Q]) I = (∃R.Self ) I .
As the valuation of R is left unmodified by

R := Q, (∃R -.Self [R := Q]) I = (∃R -.Self ) I . (∃R.Self ) I = {x|(x, x) ∈ R I }, (∃R.Self [R := Q]) I = {x|(x, x) ∈ Q I } = (∃Q.Self ) I . (∃R -.Self ) I = {x|(x, x) ∈ R I }, (∃R -.Self [R := Q]) I = {x|(x, x) ∈ Q I } = (∃Q -.Self ) I .
As the valuation of R is left unmodified by R := (i, j), (∃R.Self [R := (i, j)]) I = (∃R.Self ) I .

As the valuation of R is left unmodified by R := (i, j), (∃R -.Self As (∃R.Self )

I = {x|(x, x) ∈ R I }, (∃R.Self [i in j]) I = {x|(x, x) ∈ R I \{(y, i) ∈ R I }∪{(y, j)|(y, i) ∈ R I }}}. Thus (∃R.Self [i in j]) I = {i|(i, i) ∈ R I ∧i = j}∪{j|j = i∧((j, j) ∈ R I ∨(j, i) ∈ R I )}∪{x|x = i ∧ x = j ∧ (x, x) ∈ R I }. Thus (∃R.Self [i in j]) I = {x|((x = i ∧ x = j) ∨ (x = i∧x = j))∧(x, x) ∈ R I }∪{x|x = j∧x = i∧((x, x) ∈ R I ∨(x, i) ∈ R I }.
That is (∃R.Self [i in j]) I = ((({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R.{i})) I .

As (∃R -.Self

) I = {x|(x, x) ∈ R I }, (∃R -.Self [i in j]) I = {x|(x, x) ∈ R I \{(y, i) ∈ R I }∪{(y, j)|(y, i) ∈ R I }}}. Thus (∃R -.Self [i in j]) I = {i|(i, i) ∈ R I ∧i = j}∪{j|j = i∧((j, j) ∈ R I ∨(j, i) ∈ R I )}∪{x|x = i ∧ x = j ∧ (x, x) ∈ R I }. Thus (∃R -.Self [i in j]) I = {x|((x = i ∧ x = j) ∨ (x = i ∧ x = j)) ∧ (x, x) ∈ R I } ∪ {x|x = j ∧ x = i ∧ ((x, x) ∈ R I ∨ (x, i) ∈ R I }. That is (∃R -.Self [i in j]) I = ((({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R.{i})) I .
As (∃R.Self )

I = {x|(x, x) ∈ R I }, (∃R.Self [i out j]) I = {x|(x, x) ∈ R I \{(i, y) ∈ R I }∪{(j, y)|(i, y) ∈ R I }}}. Thus (∃R.Self [i out j]) I = {i|(i, i) ∈ R I ∧i = j}∪{j|j = i∧((j, j) ∈ R I ∨(i, j) ∈ R I )}∪{x|x = i ∧ x = j ∧ (x, x) ∈ R I }. Thus (∃R.Self [i in j]) I = {x|((x = i ∧ x = j) ∨ (x = i∧x = j))∧(x, x) ∈ R I }∪{x|x = j∧x = i∧((x, x) ∈ R I ∨(i, x) ∈ R I }.
That is (∃R.Self [i out j]) I = ((({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R -.{i})) I .

As (∃R -.Self

) I = {x|(x, x) ∈ R I }, (∃R -.Self [i out j]) I = {x|(x, x) ∈ R I \{(i, y) ∈ R I }∪{(j, y)|(i, y) ∈ R I }}}. Thus (∃R.Self [i out j]) I = {i|(i, i) ∈ R I ∧i = j}∪{j|j = i∧((j, j) ∈ R I ∨(i, j) ∈ R I )}∪{x|x = i ∧ x = j ∧ (x, x) ∈ R I }. Thus (∃R -.Self [i in j]) I = {x|((x = i ∧ x = j) ∨ (x = i ∧ x = j)) ∧ (x, x) ∈ R I } ∪ {x|x = j ∧ x = i ∧ ((x, x) ∈ R I ∨ (i, x) ∈ R I }. That is (∃R -.Self [i out j]) I = ((({i} ⇔ {j}) ⇒ ∃R.Self ) (¬{i} {j} ⇒ ∃R.Self ∃R -.{i})) I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, (( n R φ)[C := C ± i]) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ[C := C ± i] I } n} as R I is independent of the valuation of C. Thus (( n R φ)[C := C ± i]) I = ( n R φ[C := C ± i]) I . As ( n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } n}, (( n R -φ)[C := C ± i]) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ[C := C ± i] I } n} as R I is inde- pendent of the valuation of C. Thus (( n R -φ)[C := C ± i]) I = ( n R -φ[C := C ± i]) I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, (( n R φ)[C := ψ]) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ[C := ψ] I } n} as R I is independent of the valuation of C. Thus (( n R φ)[C := ψ]) I = ( n R φ[C := ψ]) I . As ( n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } n}, (( n R -φ)[C := ψ]) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ[C := ψ] I } n} as R I is independent of the valuation of C. Thus (( n R -φ)[C := ψ]) I = ( n R -φ[C := ψ]) I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, (( n R φ)[R := R ± (i, j)]) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ[R := R ± (i, j)] I } n} as R I is independent of the valuation of R . Thus (( n R φ)[R := R ± (i, j)]) I = ( n R φ[R := R ± (i, j)]) I . As ( n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } n}, (( n R -φ)[R := R ± (i, j)]) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ[R := R ± (i, j)] I } n} as R I is independent of the valuation of R . Thus (( n R -φ)[R := R ± (i, j)]) I = ( n R -φ[R := R ± (i, j)]) I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, (( n R φ)[R := R + (i, j)]) I = {x | card{y | (x, y) ∈ R[R := R + (i, j)] I ∧ y ∈ φ[R := R + (i, j)] I } n} = {x | card{y | (x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } n}. We consider {y | (x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I }
and try the possible sets:

• If x = i or j ∈ φ[R := R + (i, j)] I or (i, j) ∈ R I , then {y | (x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } = {y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I },
• else, x = i and j ∈ φ[R := R + (i, j)] I and (i, j) ∈ R I , and thus

{y | (x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } = {y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I } ∪ {(i, j)}. As {(i, j)} is disjoint from {y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I }, the cardinality of {y | (x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } is exactly the cardinality of {y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I } + 1. • Thus, {x | card{y | (x, y) ∈ R[R := R + (i, j)] I ∧ y ∈ φ[R := R + (i, j)] I } n} = {x | (x = i ∨ j ∈ φ[R := R + (i, j)] I ∨ (i, j) ∈ R I ⇒ card{y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I } n) ∧(x = i ∧ j ∈ φ[R := R + (i, j)] I ∧ (i, j) ∈ R I ⇒ card{y | (x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I } (n -1))} Thus, (( n R φ)[R := R + (i, j)]) I = ((({i} ∃U.({j} φ[R := R + (i, j)]) ∀R.¬{j}) ⇒ ( (n -1) R φ[R := R + (i, j)])) ((¬{i} ∀U.(¬{j} ¬φ[R := R + (i, j)]) ∃R.{j}) ⇒ ( n R φ[R := R + (i, j)]))) I One can see that ( n R -φ)[R := R + (i, j)] is similar to ( n R -φ)[R -:= R -+ (j, i)]
, that is replacing R by R -and swapping i and j in the previous case.

As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, (( n R φ)[R := R -(i, j)]) I = {x | card{y | (x, y) ∈ R[R := R-(i, j)] I ∧y ∈ φ[R := R-(i, j)] I } n} = {x | card{y | (x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R -(i, j)] I } n}. We consider {y | (x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I }
and try the possible sets:

• If x = i or j ∈ φ[R := R -(i, j)] I or (i, j) ∈ R I , then {y | (x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R -(i, j)] I } = {y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I },
• else, x = i and j ∈ φ[R := R -(i, j)] I and (i, j) ∈ R I , and thus

{y | (x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R -(i, j)] I } = {y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I } ∩ {i, j}. As {(i, j)} ⊆ {y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I }, the cardinality of {y | (x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } is exactly the cardinality of {y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I } -1. • Thus, {x | card{y | (x, y) ∈ R[R := R -(i, j)] I ∧ y ∈ φ[R := R -(i, j)] I } n} = {x | (x = i ∨ j ∈ φ[R := R -(i, j)] I ∨ (i, j) ∈ R I ⇒ card{y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I } n) ∧ (x = i ∧ j ∈ φ[R := R -(i, j)] I ∧ (i, j) ∈ R I ⇒ card{y | (x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I } (n + 1))} Thus, (( n R φ)[R := R -(i, j)]) I = ((({i} ∃U.({j} φ[R := R -(i, j)]) ∃R.{j}) ⇒ ( (n + 1) R φ[R := R -(i, j)])) ((¬{i} ∀U.(¬{j} ¬φ[R := R -(i, j)]) ∀R.¬{j}) ⇒ ( n R φ[R := R -(i, j)]))) I One can see that ( n R -φ)[R := R -(i, j)] is similar to ( n R -φ)[R -:= R --(j, i)],
that is replacing R by R -and swapping i and j in the previous case.

As the valuation of R is left unmodified by

R := Q, ( n R φ)[R := Q] I = ( n R φ[R := Q]) I .
As the valuation of R is left unmodified by

R := Q, ( n R -φ)[R := Q] I = ( n R -φ[R := Q]) I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, ( n R φ)[R := Q] I = {x | card{y | (x, y) ∈ Q I ∧ y ∈ φ[R := Q] I } n} = ( n Q φ[R := Q]) I . As ( n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } n}, ( n R φ)[R := Q] I = {x | card{y | (y, x) ∈ Q I ∧ y ∈ φ[R := Q] I } n} = ( n Q -φ[R := Q]) I . As the valuation of R is left unmodified by R := (i, j), ( n R φ)[R := (i, j)] I = ( n R φ[R := (i, j)]) I . As (< 1 R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } < 1}, (< 1 R φ)[R := (i, j)] I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } < 1}. That is, (< 1 R φ)[R := (i, j)] I = {x | x = i ∨ j ∈ φ[R := (i, j)] I }. Thus (< 1 R φ)[R := (i, j)] I = (¬{i} ∀U.(¬{j} ¬φ[R := (i, j)])) I . As (< n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } < n}, (< n R φ)[R := (i, j)] I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } < n}. But, as {y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ⊆ {j}, card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ≤ 1 and thus (< n R φ) I = I . As (≥ 1 R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } ≥ 1}, (≥ 1 R φ)[R := (i, j)] I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ≥ 1}. That is, (≥ 1 R φ)[R := (i, j)] I = {x | x = i ∧ j ∈ φ[R := (i, j)] I }. Thus (≥ 1 R φ)[R := (i, j)] I = ({i} ∃U.({j} φ[R := (i, j)])) I . As (≥ n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } ≥ n}, (≥ n R φ)[R := (i, j)] I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ≥ n}. But, as {y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ⊆ {j}, card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I } ≤ 1 and thus (≥ n R φ) I = ⊥ I . As (< 1 R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } < 1}, (< 1 R -φ)[R := (i, j)] I = {x | card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } < 1}. That is, (< 1 R -φ)[R := (i, j)] I = {x | x = j ∨ i ∈ φ[R := (i, j)] I }. Thus (< 1 R -φ)[R := (i, j)] I = (¬{j} ∀U.(¬{i} ¬φ[R := (i, j)])) I . As (< n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } < n}, (< n R -φ)[R := (i, j)] I = {x | card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } < n}. But, as {y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ⊆ {i}, card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ≤ 1 and thus (< n R -φ) I = I . As (≥ 1 R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } ≥ 1}, (≥ 1 R -φ)[R := (i, j)] I = {x | card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ≥ 1}. That is, (≥ 1 R -φ)[R := (i, j)] I = {x | x = j ∧ i ∈ φ[R := (i, j)] I }. Thus (≥ 1 R -φ)[R := (i, j)] I = ({j} ∃U.({i} φ[R := (i, j)])) I . As (≥ n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } ≥ n}, (≥ n R -φ)[R := (i, j)] I = {x | card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ≥ n}. But, as {y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ⊆ {i}, card{y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I } ≤ 1 and thus (≥ n R -φ) I = ⊥ I . As ( n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } n}, ( n R φ)[i in j] I = {x | card{y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )} n}. We consider {y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )
} and look at the various possibilities:

• If i = j, {y | ((x, y) ∈ R I ∧y = i∧y ∈ φ[i in j] I )∨((x, i) ∈ R I ∧j ∈ φ[i in j] I )} = {y | (x, y) ∈ R I ∧ y ∈ φ[i in j] I }
and thus there cardinalities are the same.

• otherwise, if (x, i) ∈ R I and i ∈ φ[i in j] I , (x, j) ∈ R I and j ∈ φ[R := R -(i, j)] I , then card{y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )} = card{y | ((x, y) ∈ R I ∧ y ∈ φ[i in j] I } -1. • if (x, i) ∈ R I and i ∈ φ[i in j] I , (x, j) ∈ R I and j ∈ φ[i in j] I , then card{y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )} = card{y | ((x, y) ∈ R I ∧ y ∈ φ[i in j] I } + 1. • if (x, i) ∈ R I and i ∈ φ[i in j] I and (x, j) ∈ R I , then card{y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )} = card{y | ((x, y) ∈ R I ∧ y ∈ φ[i in j] I } -1. • otherwise, that is if (x, i) ∈ R I , or if (x, i) ∈ R I , i ∈ φ[i in j] I and (x, j) ∈ R I , or if (x, i) ∈ R I , i ∈ φ[i in j] I , (x, j) ∈ R I and j ∈ φ[i in j] I , or if (x, i) ∈ R I , i ∈ φ[i in j] I , (x, j) ∈ R I and j ∈ φ[i in j] I then {y | ((x, y) ∈ R I ∧ y = i ∧ y ∈ φ[i in j] I ) ∨ ((x, i) ∈ R I ∧ j ∈ φ[i in j] I )} = {y | (x, y) ∈ R I ∧ y ∈ φ[i in j] I }
and thus there cardinalities are the same.

Thus, (

( n R φ)[i in j]) I = ((∃U.({i} {j}) ⇒ ( n R φ[i in j])) (∃U.({i} ¬{j}) ⇒ (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j]) ⇒ ( (n + 1) R φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j]) ⇒ ( (n- 1) R φ[i in j])) (∃R.({i} φ[i in j]) ∃R.{j} ⇒ ( (n+1) R φ[i in j])) ((∀R.¬{i}) (∃R.({i} ¬φ[i in j]) ∃R.{j}) (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j])) ⇒ ( n R φ[i in j])))) I 63 As (< n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } < n}, (< n R -φ)[i in j] I = {x | card{y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} < n}. We consider {y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )
} and look at the various possibilities:

• If x = i and x = j, {y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = ∅ and thus its cardinality is < n. • otherwise, if x = i and x = j, then card{y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = card({y|(y, j) ∈ R I ∧ y ∈ φ[i in j] I } ∪ {y|(y, i) ∈ R I ∧ y ∈ φ[i in j] I }) = card({y|(y, j) ∈ R I ∧ y ∈ φ[i in j] I }) + card({y|(y, i) ∈ R I ∧ (y, j) ∈ R I ∧ y ∈ φ[i in j] I }).
• otherwise, either x = i = j or x = i and x = j, and thus {y | ((y, x) ∈

R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = {y | (y, x) ∈ R I ∧ y ∈ φ[i in j] I }
and thus there cardinalities are the same.

Thus, ((

< n R -φ)[i in j]) I = (({i} ¬{j}) (¬{i} {j} ⇒ k∈[0,n] (< k R -φ[i in j]) ∃U.({i} (< (n-k) R -(φ[i in j] ¬∃R -.{j})))) (({i} ⇔ {j}) ⇒ (< n R -φ[i in j]))) I 64 As (≥ n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } ≥ n}, (≥ n R -φ)[i in j] I = {x | card{y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} ≥ n}. We consider {y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )
} and look at the various possibilities:

• If x = i and x = j, {y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = ∅ and thus its cardinality is < n. • otherwise, if x = i and x = j, then card{y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = card({y|(y, j) ∈ R I ∧ y ∈ φ[i in j] I } ∪ {y|(y, i) ∈ R I ∧ y ∈ φ[i in j] I }) = card({y|(y, j) ∈ R I ∧ y ∈ φ[i in j] I }) + card({y|(y, i) ∈ R I ∧ (y, j) ∈ R I ∧ y ∈ φ[i in j] I }).
• otherwise, either x = i = j or x = i and x = j, and thus {y | ((y, x) ∈

R I ∧ x = i ∧ y ∈ φ[i in j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i in j] I )} = {y | (y, x) ∈ R I ∧ y ∈ φ[i in j] I }
and thus there cardinalities are the same.

Thus, ((

≥ n R -φ)[i in j]) I = ((¬{i} {j} ⇒ k∈[0,n] (≥ k R -φ[i in j]) ∃U.({i} (≥ (n - k) R -(φ[i in j] ∃R -.{j})))) (({i} ⇔ {j}) ⇒ (≥ n R -φ[i in j]))) I 65 As (< n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } < n}, (< n R φ)[i out j] I = {x | card{y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} < n}. We consider {y | ((y, x) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((y, i) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )
} and look at the various possibilities:

• If x = i and x = j, {y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = ∅
and thus its cardinality is < n.

• otherwise, if x = i and x = j, then card{y | ((x, y) ∈

R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = card({y|(j, y) ∈ R I ∧y ∈ φ[i out j] I }∪{y|(i, y) ∈ R I ∧y ∈ φ[i out j] I }) = card({y|(j, y) ∈ R I ∧ y ∈ φ[i out j] I }) + card({y|(i, y) ∈ R I ∧ (j, y) ∈ R I ∧ y ∈ φ[i out j] I }).
• otherwise, either x = i = j or x = i and x = j, and thus {y | ((x, y) ∈

R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = {y | (x, y) ∈ R I ∧ y ∈ φ[i out j] I }
and thus there cardinalities are the same.

Thus, ((

< n R -φ)[i out j]) I = (({i} ¬{j}) (¬{i} {j} ⇒ k∈[0,n] (< k R φ[i out j]) ∃U.({i} (< (n -k) R (φ[i out j] ¬∃R.{j})))) (({i} ⇔ {j}) ⇒ (< n R φ[i out j]))) I 66 As (≥ n R φ) I = {x | card{y | (x, y) ∈ R I ∧ y ∈ φ I } ≥ n}, (≥ n R φ)[i out j] I = {x | card{y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} ≥ n}. We consider {y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )
} and look at the various possibilities:

• If x = i and x = j, {y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = ∅ and thus its cardinality is < n. • otherwise, if x = i and x = j, then card{y | ((x, y) ∈ R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = card({y|(j, y) ∈ R I ∧y ∈ φ[i out j] I }∪{y|(i, y) ∈ R I ∧y ∈ φ[i out j] I }) = card({y|(j, y) ∈ R I ∧ y ∈ φ[i out j] I }) + card({y|(i, y) ∈ R I ∧ (j, y) ∈ R I ∧ y ∈ φ[i out j] I }).
• otherwise, either x = i = j or x = i and x = j, and thus {y | ((x, y) ∈

R I ∧ x = i ∧ y ∈ φ[i out j] I ) ∨ ((i, y) ∈ R I ∧ x = j ∧ y ∈ φ[i out j] I )} = {y | (x, y) ∈ R I ∧ y ∈ φ[i out j] I }
and thus there cardinalities are the same.

Thus, ((

≥ n R φ)[i out j]) I = ((¬{i} {j} ⇒ k∈[0,n] (≥ k R φ[i out j]) ∃U.({i} (≥ (n - k) R -(φ[i out j] ∃R.{j})))) (({i} ⇔ {j}) ⇒ (≥ n R φ[i out j]))) I 67 As ( n R -φ) I = {x | card{y | (y, x) ∈ R I ∧ y ∈ φ I } n}, ( n R -φ)[i out j] I = {x | card{y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} n}. We consider {y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )
} and look at the various possibilities:

• If i = j, {y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} = {y | (y, x) ∈ R I ∧ y ∈ φ[i out j] I }
and thus there cardinalities are the same.

• otherwise, if (i, x) ∈ R I and i ∈ φ[i out j] I , (x, j) ∈ R I and j ∈ φ[i out j] I , then card{y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} = card{y | ((y, x) ∈ R I ∧ y ∈ φ[i out j] I } -1. • if (i, x) ∈ R I and i ∈ φ[i out j] I , (j, x) ∈ R I and j ∈ φ[i out j] I , then card{y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} = card{y | ((y, x) ∈ R I ∧ y ∈ φ[i out j] I } + 1. • if (i, x) ∈ R I and i ∈ φ[i out j] I and (j, x) ∈ R I , then card{y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} = card{y | ((y, x) ∈ R I ∧ y ∈ φ[i out j] I } -1. • otherwise, that is if (i, x) ∈ R I , or if (i, x) ∈ R I , i ∈ φ[i out j] I and (j, x) ∈ R I , or if (i, x) ∈ R I , i ∈ φ[i out j] I , (j, x) ∈ R I and j ∈ φ[i out j] I , or if (i, x) ∈ R I , i ∈ φ[i out j] I , (j, x) ∈ R I and j ∈ φ[i out j] I then {y | ((y, x) ∈ R I ∧ y = i ∧ y ∈ φ[i out j] I ) ∨ ((i, x) ∈ R I ∧ j ∈ φ[i out j] I )} = {y | (y, x) ∈ R I ∧ y ∈ φ[i out j] I }
and thus there cardinalities are the same.

Thus, (( n R -φ)[i out j]) I = ((∃U.({i} {j}) ⇒ ( n R -φ[i out j])) (∃U.({i} ¬{j}) ⇒ (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} ¬φ[i out j]) ⇒ ( (n+1) R -φ[i out j])) (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j]) ⇒ ( (n -1) R -φ[i out j])) (∃R -.({i} φ[i out j]) ∃R -.{j} ⇒ ( (n + 1) R -φ[i out j])) ((∀R -.¬{i}) (∃R -.({i} ¬φ[i out j]) ∃R -.{j}) (∃R -.({i} φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j])) (∃R -.({i} ¬φ[i out j]) ∀R.¬{j} ∃U.({j} ¬φ[i out j])) ⇒ ( n R -φ[i out j])))) I As (∃R.φ) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[C := C ± i]) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ[C := C ± i] I } as R I is independent of the valuation of C. Thus ((∃R.φ)[C := C ± i]) I = (∃R.(φ[C := C ± i])) I .
As (∃R -.φ)

I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[C := C ± i]) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ[C := C ± i] I } as R I is independent of the valuation of C. Thus ((∃R -.φ)[C := C ± i]) I = (∃R -.(φ[C := C ± i])) I .
As (∃R.φ) As (∃R.φ)

I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[C := ψ]) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ[C := ψ] I } as R I is independent of
I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := R ± (i, j)]) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R ± (i, j)] I } as R I is independent of the valuation of R . Thus ((∃R.φ)[R := R ± (i, j)]) I = (∃R.(φ[R := R ± (i, j)])) I As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[R := R ± (i, j)]) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ[R := R ± (i, j)] I } as R I is independent of the valuation of R . Thus ((∃R -.φ)[R := R ± (i, j)]) I = (∃R -.(φ[R := R ± (i, j)])) I As (∃R.φ) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := R + (i, j)]) I = {x | ∃y.(x, y) ∈ R[R := R + (i, j)] I ∧ y ∈ φ[R := R + (i, j)] I } that is ((∃R.φ)[R := R + (i, j)]) I = {x | ∃y.(x, y) ∈ R I ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)] I } = {x | (∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I ) ∨ (x = i ∧ j ∈ φ[R := R + (i, j)])} = {x | (x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R +(i, j)] I ∨j ∈ φ[R := R +(i, j)])∧(x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I )}. Moreover, (({i} ⇒ ∃R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)])) (¬{i} ⇒ ∃R.(φ[R := R + (i, j)]))) I = {x | (x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R + (i, j)] I ∨ j ∈ φ[R := R+(i, j)])∧(x = i ⇒ ∃y.(x, y) ∈ R I ∧y ∈ φ[R := R+(i, j)] I )}. Thus ((∃R.φ)[R := R + (i, j)]) I = (({i} ⇒ ∃R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)])) (¬{i} ⇒ ∃R.(φ[R := R + (i, j)]))) I One can see that (∃R -.φ)[R := R + (i, j)] is similar to (∃R -.φ)[R -:= R -+ (j, i)]
, that is replacing R by R -and swapping i and j in the previous case.

As (∃R.φ)

I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := R -(i, j)]) I = {x | ∃y.(x, y) ∈ R[R := R -(i, j)] I ∧ y ∈ φ[R := R -(i, j)] I } that is ((∃R.φ)[R := R -(i, j)]) I = {x | ∃y.(x, y) ∈ R I ∩ {(i, j)} ∧ y ∈ φ[R := R -(i, j)] I } = {x | ∃y.(x = i∨y = j)∧((x, y) ∈ R I ∧y ∈ φ[R := R-(i, j)] I )} = {x | (x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I ∧ y = j) ∧ (x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I )}. Moreover, (({i} ⇒ ∃R.(φ[R := R -(i, j)] ¬{j})) (¬{i} ⇒ ∃R.(φ[R := R - (i, j)]))) I = {x | (x = i ⇒ ∃y.(x, y) ∈ R I ∧y ∈ φ[R := R-(i, j)] I ∧y = j)∧ (x = i ⇒ ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := R -(i, j)] I )}. Thus ((∃R.φ)[R := R -(i, j)]) I = (({i} ⇒ ∃R.(φ[R := R-(i, j)] ¬{j})) (¬{i} ⇒ ∃R.(φ[R := R-(i, j)]))) I One can see that (∃R -.φ)[R := R -(i, j)] is similar to (∃R -.φ)[R -:= R --(j, i)]
, that is replacing R by R -and swapping i and j in the previous case.

As (∃R.φ) As ∃R.φ = (≥ 1 R φ), it is possible to reuse the proof for rule 62 where

I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := Q]) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := Q] I } as R I is independent of the valuation of R . Thus ((∃R.φ)[R := Q]) I = (∃R.(φ[R := Q])) I As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[R := Q]) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ[R := Q] I } as R I is independent of the valuation of R . Thus ((∃R -.φ)[R := Q]) I = (∃R -.(φ[R := Q])) I As (∃R.φ) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := Q]) I = {x | ∃y.(x, y) ∈ Q I ∧ y ∈ φ[R := Q] I }. Thus ((∃R.φ)[R := Q]) I = (∃Q.(φ[R := Q])) I As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[R := Q]) I = {x | ∃y.(y, x) ∈ Q I ∧ y ∈ φ[R := Q] I }. Thus ((∃R -.φ)[R := Q]) I = (∃Q -.(φ[R := Q])) I
(≥ 2 R φ[i in j]) is replaced with ∃R.(φ[i in j] ¬{i}) when it is known that (x, i) ∈ R I and i ∈ φ[i in j] I and (≥ 0 R φ[i in j]) is replaced with .
As ∃R -.φ = (≥ 1 R -φ), it is possible to reuse the proof for rule 64 where (≥ 1 R -(φ[i in j] ∃R.{j})) is replaced with ∃R -.φ[i in j] as, if there exists y such that (y, j) ∈ R I , (y, i) ∈ R and y ∈ φ[i in j], then ∃R -.φ[i in j] is satisfied in y.

As ∃R.φ = (≥ 1 R φ), it is possible to reuse the proof for rule 65 where (≥ 1 R (φ[i out j] ¬{j})) is replaced with ∃R.φ[i out j] as, if there exists y such that (j, y) ∈ R I , (i, y) ∈ R and y ∈ φ[i out j], then ∃R.φ[i out j] is satisfied in y.

As ∃R -.φ = (≥ 1 R -φ), it is possible to reuse the proof for rule 67 where

(≥ 2 R -φ[i out j]) is replaced with ∃R -.(φ[i out j] ¬{i}) when it is known that (x, i) ∈ R I and i ∈ φ[i out j] I and (≥ 0 R -φ[i out j]) is replaced with . As (∀R.φ) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ I }, ((∀R.φ)[C := C ± i]) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ[C := C ± i] I } as R I is independent of the valuation of C. Thus, ((∀R.φ)[C := C ± i]) I = (∀R.(φ[C := C ± i])) I As (∀R -.φ) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ I }, ((∀R -.φ)[C := C ± i]) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ[C := C ± i] I } as R I is independent of the valuation of C. Thus, ((∀R -.φ)[C := C ± i]) I = (∀R -.(φ[C := C ± i])) I One can see that (∀R -.φ)[R := R -(i, j)] is similar to (∀R -.φ)[R -:= R --(j, i)]
, that is replacing R by R -and swapping i and j in the previous case.

As (∀R.φ) As ∀R.φ = (< 1 R ¬φ), it is possible to reuse the proof for rule 62 where

I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ I }, ((∀R.φ)[R := Q]) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ[R := Q] I } as R I is independent of the valuation of R . Thus ((∀R.φ)[R := Q]) I = (∀R.(φ[R := Q])) I As (∀R -.φ) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ I }, ((∀R -.φ)[R := Q]) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ[R := Q] I } as R I is independent of the valuation of R . Thus ((∀R -.φ)[R := Q]) I = (∀R -.(φ[R := Q])) I As (∀R.φ) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ I }, ((∀R.φ)[R := Q]) I = {x | ∀y.(x, y) ∈ Q I ⇒ y ∈ φ[R := Q] I }. Thus ((∀R.φ)[R := Q]) I = (∀Q.(φ[R := Q])) I As (∀R -.φ) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ I }, ((∀R -.φ)[R := Q]) I = {x | ∀y.(y, x) ∈ Q I ⇒ y ∈ φ[R := Q] I }. Thus ((∀R -.φ)[R := Q]) I = (∀Q -.(φ[R := Q])) I As (∀R.φ) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ I }, ((∀R.φ)[R := (i, j)]) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ[R := (i, j)] I } as R I is
(< 2 R (¬φ)[i in j]) is replaced with ∀R.(φ[i in j] {i}) when it is known that (x, i) ∈ R I and i ∈ φ[i in j] I and (< 0 R φ[i in j]) is replaced with ⊥.
As ∀R -.φ = (< 1 R -¬φ), it is possible to reuse the proof for rule 63 where

(< 1 R -(φ[i in j] ∧ ¬∃R.{j})) is replaced with ∀R -.φ[i in j]
as, if there exists y such that (y, j) ∈ R I , (y, i) ∈ R and y ∈ φ[i in j], then ∀R -.φ[i in j] cannot be satisfied in y.

110 As ∀R.φ = (< 1 R ¬φ), it is possible to reuse the proof for rule 66 where (< 1 R (φ[i out j] ∧ ∃R.{j})) is replaced with ∀R.φ[i out j] as, if there exists y such that (j, y) ∈ R I , (i, y) ∈ R and y ∈ φ[i out j], then ∀R.φ[i out j] cannot be satisfied in y.

111 As ∀R -.φ = (< 1 R -¬φ), it is possible to reuse the proof for rule 67 where

(< 2 R -(¬φ[i out j])) is replaced with ∀R -.(φ[i out j] {i}) when it is known that (x, i) ∈ R I and i ∈ φ[i out j] I and (< 0 R -(¬φ)[i out j]) is replaced with ⊥.
Lemma 2. Let Σ be a signature, T is terminating.

Proof. To prove the termination, we introduce a pre-ordering (M, M ) defined as:

• M(⊥) = 0 • M(C) = 0 • M(¬ φ) = M(φ) • M(φ ψ) = max(M(φ), M(ψ)) • M(@ a φ) = M(φ) • M(φ ψ) = max(M(φ), M(ψ)) • M((≥ n R φ)) = M((≥ n R -φ)) = M(φ) • M((< n R φ)) = M((< n R -φ)) = M(φ) • M(∃R.φ) = M(∃R -.φ) = M(φ) • M(∀R.φ) = M(∀R -.φ) = M(φ) • M(o) = 0 • M(∃R.Self ) = M(∃R -.Self ) = 0 • M(φθ) = M(φ) + 1 • M (⊥) = 0 • M (C) = 0 • M ((¬ φ)) = M (φ) • M (φ ψ) = max(M (φ), M (ψ)) • M (φ ψ) = max(M (φ), M (ψ)) • M ((@ a φ)) = M(φ) • M ((≥ n R φ)) = M ((≥ n R -φ)) = M (φ) • M ((< n R φ)) = M ((< n R -φ)) = M (φ) • M ((∃R.φ)) = M ((∃R -.φ)) = M (φ) • M ((∀R.φ)) = M ((∀R -.φ)) = M (φ) • M (o) = 0 • M (∃R.Self ) = M (∃R -.Self ) = 0 • M (⊥θ) = 0 • M (cθ) = 0 • M ((¬ φ)θ) = M (φθ) + 1 • M ((φ ψ)θ) = max(M (φθ), M (ψθ)) + 1 • M ((φ ψ)θ) = max(M (φθ), M (ψθ)) + 1 • M ((@ a φ)θ) = M(φθ) + 1 • M ((≥ n R φ)θ) = M ((≥ n R -φ)θ) = M (φθ) + 1 • M ((< n R φ)θ) = M ((< n R -φ)θ) = M (φθ) + 1 • M ((∃R.φ)θ) = M ((∃ -R.φ)θ) = M (φθ) + 1 • M ((∀R.φ)θ) = M ((∀R -.φ)θ) = M (φθ) + 1 • M (oθ) = 0 • M ((∃R.Self )θ) = M ((∃R -.Self )θ) = 0
For every concept φ, M(φ) and M (φ) are positive. We now prove that the transformations either strictly decrease M or keep M constant and strictly decrease M . We compute the results of the functions for the left-and the right-hand side for each transformation.

1 M(⊥ θ) = M(⊥) + 1 = 1 M(⊥) = 0 2 M(o θ) = M(o) + 1 = 1 M(o) = 0 3 M(C[R := R ± (i, j)]) = M(C) + 1 = 1 M(C) = 0 M(C[C := C ± i]) = M(C) + 1 = 1 M(C) = 0 M(C[R := Q]) = M(C) + 1 = 1 M(C) = 0 M(C[R := (i, j)]) = M(C) + 1 = 1 M(C) = 0 M(C[i in j]) = M(C) + 1 = 1 M(C) = 0 M(C[i out j]) = M(C) + 1 = 1 M(C) = 0 M(C[C := C + i]) = M(C) + 1 = 1 M(C {i}) = max(M(C), M({i})) = 0 M(C[C := C -i]) = M(C) + 1 = 1 M(C ¬{i}) = max(M(C), M(¬{i})) = 0 M(C[C := ψ]) = M(C) + 1 = 1 M(C) = 0 M(C[C := ψ]) = M(C) + 1 = 1 M(ψ) = 0 2 M((¬φ) θ) = M(¬φ) + 1 = M(φ) + 1 M(¬(φ θ)) = M(φ θ) = M(φ) + 1 M ((¬φ) θ) = M (φθ) + 1 M (¬(φθ)) = M (φθ) M((φ ψ) θ) = max(M(φ), M(ψ)) + 1 M(φθ ψθ) = max(M(φ) + 1, M(ψ) + 1) M ((φ ψ) θ) = max(M (φθ), M (ψθ)) + 1 M (φθ ψθ) = max(M (φθ), M (ψθ)) M((φ ψ) θ) = max(M(φ), M(ψ)) + 1 M(φθ ψθ) = max(M(φ) + 1, M(ψ) + 1) M ((φ ψ) θ) = max(M (φθ), M (ψθ)) + 1 M (φθ ψθ) = max(M (φθ), M (ψθ)) M((@ a φ) θ) = M(@ a φ) + 1 M(φ) + 1 M(@ a (φθ)) = M(φ θ) M(φ) + 1 M ((@ a φ) θ) = M (φ θ) + 1 M (@ a (φθ)) = M(φ θ) M(∃R.Self [C := C ± i]) = M(∃R.Self ) + 1 = 1 M(∃R.Self ) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [C := ψ]) = M(∃R.Self ) + 1 = 1 M(∃R.Self ) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [R := R ± (i, j)]) = M(∃R.Self ) + 1 = 1 M(∃R.Self ) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one. M(∃R.Self [R := R + (i, j)]) = M(∃R.Self ) + 1 = 1 M(({i} {j}) ∃R.Self ) = 0

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

C ± iM(∃R.Self [R := R -(i, j)]) = M(∃R.Self ) + 1 = 1 M((¬{i} ¬{j}) ∃R.Self ) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [R := Q]) = M(∃R.Self ) + 1 = 1 M(∃R.Self ) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [R := Q]) = M(∃R.Self ) + 1 = 1 M(∃Q.Self ) = 0
As the definitions of M and M do not discriminate R and R -and Q and Q , this rule is identic to the previous one. M(∃R.Self [R := (i, j)]) = M(∃R.Self ) + 1 = 1 M(∃R.Self ) = 0

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [R := (i, j)]) = M(∃R.Self ) + 1 = 1 M({i} {j}) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(∃R.Self [i in j]) = M(∃R.Self ) + 1 = 1 M(RHS 35 ) = max(M({i}, M({j}), M(∃R.Self ), M(∃R.i)) = max(0, M({i})) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one. M(∃R.Self [i out j]) = M(∃R.Self ) + 1 = 1 M(RHS 37 )

= max(M({i}, M({j}), M(∃R.Self ), M(∃R -.i)) = max(0, M({i})) = 0

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[C := C ± i]) = M(( n R φ)) + 1 = M(φ) + 1 M(( n R φ[C := C ± i])) = M(φ[C := C ± i]) = M(φ) + 1 M (( n R φ)[C := C ± i]) = M (φ[C := C ± i]) + 1 M (( n R φ[C := C ± i])) = M (φ[C := C ± i])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[C := ψ]) = M(( n R φ)) + 1 = M(φ) M(( n R φ[C := ψ])) = M(φ[C := ψ]) = M(φ) + 1 M (( n R φ)[C := C ± i]) = M (φ[C := ψ]) + 1 M (( n R φ[C := C ± i])) = M (φ[C := ψ])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[R := R ± (i, j)]) = M(( n R φ)) + 1 = M(φ) + 2 M(( n R φ[R := R ± (i, j)]) = M(φ[R := R ± (i, j)]) + 1 = M(φ) + 2 M (( n R φ)[R := R ± (i, j)]) = M (φ[R := R ± (i, j)]) + 1 M (( n R φ[R := R ± (i, j)])) = M (φ[R := R ± (i, j)])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one. )

M(( n R φ)[R := R + (i, j)]) = M(( n R φ) + 1 = M(φ) + 2 M(c 1,16 ) = max(M({j}), M(φ[R := R + (i, j)])) = M(φ) + 1 M(c 2,16 ) = max(M(¬{j}), M(¬(φ[R := R + (i, j)]))) = M(φ) + 1 M(b 1,16 ) = M({i}) = 0 M(b 2,16 ) = M(∃U.c 1,16 ) = M(c 1,16 ) + 1 = M(φ) + 1 M(b 3,16 ) = M(∀R.¬{j}) = M(¬{j}) + 1 = 1 M(b 4,16 ) = M(( (n -1) R φ[R := R + (i, j)])) = M(φ[R := R + (i, j)]) + 1 = M(φ) + 2 M(b 11,16 ) = M(¬{i}) = 0 M(b 12,16 ) = M(∀U.c 2,16 ) = M(c 2,16 ) + 1 = M(φ) + 2 M(b 13,16 ) = M(∃R.{j}) = M({j}) + 1 = 1 M(b 14,16 ) = M(( n R φ[R := R + (i, j)])) = M(φ[R := R + (i, j)]) + 1 = M(φ) + 2 M(
) = M(φ) + 2 M (( n R φ)[R := R + (i, j)]) = M (φ[R := R + (i, j)]) + 1 M (c 1,16 ) = max(M ({j}), M (φ[R := R + (i, j)])) = M (φ[R := R + (i, j)]) M (c 2,16 ) = max(M (¬{j}), M (¬(φ[R := R + (i, j)]))) = M (φ[R := R + (i, j)]) M (b 1,16 ) = M({i}) = 0 M (b 2,16 ) = M(∃U.c 1,16 ) = M (c 1,16 ) = M (φ[R := R + (i, j)]) M(b 12,17 ) = M(∀U.c 2,17 ) = M(c 2,17 ) + 1 = M(φ) + 2 M(b 13,17 ) = M(∀R.¬{j}) = M({j}) + 1 = 1 M(b 14,17 ) = M(( n R φ[R := R + (i, j)])) = M(φ[R := R -(i, j)]) + 1 = M(φ) + 2 M(a 1,17 ) = max(M(b 1,17 ), M(b 2,17 ), M(b 3,17 ), M(b 4,17 ) = M(φ) + 2 M(a 2,17 ) = max(M(b 11,17 ), M(b 12,17 ), M(b 13,17 ), M(b 14,17 ) = M(φ) + 2 M(RHR 17 ) = max(M(a 1,17 ), M(a 2,17 )) = M(φ) + 2 M (( n R φ)[R := R -(i, j)]) = M (φ[R := R -(i, j)]) + 1 M (c 1,17 ) = max(M ({j}), M (φ[R := R -(i, j)])) = M (φ[R := R -(i, j)]) M (c 2,17 ) = max(M (¬{j}), M (¬(φ[R := R -(i, j)]))) = M (φ[R := R -(i, j)]) M (b 1,17 ) = M({i}) = 0 M (b 2,17 ) = M(∃U.c 1,17 ) = M (c 1,17 ) = M (φ[R := R -(i, j)]) M (b 3,17 ) = M(∀R.¬{j}) = M (¬{j}) = 0 M (b 4,17 ) = M(( (n + 1) R φ[R := R -(i, j)]) = M (φ[R := R -(i, j)]) M (b 11,17 ) = M (¬{i}) = 0 M (b 12,17 ) = M (∀U.c 2,17 ) = M (c 2,17 ) = M(φ[R := R -(i, j]) M (b 13,17 ) = M (∀R.¬{j}) = M ({j}) = 0 M (b 14,17 ) = M (( n R φ[R := R -(i, j)])) = M (φ[R := R -(i, j)]) M (a 1,17 ) = max(M (b 1,17 ), M (b 2,17 ), M (b 3,17 ), M (b 4,17 ) = M (φ[R := R -(i, j)]) M (a 2,17 ) = max(M (b 11,17 ), M (b 12,17 ), M (b 13,17 ), M (b 14,17 ) = M (φ[R := R -(i, j)]) M (RHR 17 ) = max(M (a 1,17 ), M (a 2,17 )) = M(φ[R := R -(i, j)])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[R := Q]) = M(( n R φ)) + 1 = M(φ) + 1 M(( n R φ[R := Q])) = M(φ[R := Q]) = M(φ) + 1 M (( n R φ)[R := Q]) = M (φ[R := Q]) + 1 M (( n R φ[R := Q])) = M (φ[R := Q])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[R := Q]) = M(( n R φ)) + 1 = M(φ) + 1 M(( n Q φ[R := Q])) = M(φ[R := Q]) = M(φ) + 1 M (( n R φ)[R := Q]) = M (φ[R := Q]) + 1 M (( n Q φ[R := Q])) = M (φ[R := Q])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M(( n R φ)[R := (i, j)]) = M(( n R φ)) + 1 = M(φ) + 1 M(( n R φ[R := (i, j)])) = M(φ[R := (i, j)]) = M(φ) + 1 M (( n R φ)[R := (i, j)]) = M (φ[R := (i, j)]) + 1 M (( n R φ[R := (i, j)])) = M (φ[R := (i, j)]) M((< n R φ)[R := (i, j)]) = M((< n R φ)) + 1 = M(φ) + 1 M(RHS 54 ) = max(M(¬{i}), M(a 1,54 )) = max(M({i}), max(M(¬{j}), M(¬φ[R := (i, j)]))) = max(0, max(0, M(φ) + 1)) = M(φ) + 1 M ((< n R φ)[R := (i, j)]) = M ((< n R φ[R := (i, j)])) + 1 = M (φ[R := (i, j)]) + 1 M (RHS 54 ) = max(M (¬{i}), M (a 1,54 )) = max(M ({i}), max(M (¬{j}), M (¬φ[R := (i, j)]))) = max(0, max(0, M (φ[R := (i, j)]))) = M (φ[R := (i, j)]) M((< n R φ)[R := (i, j)]) = M((< n R φ)) + 1 = M(φ) + 1 M( ) = 0 M((≥ n R φ)[R := (i, j)]) = M((≥ n R φ)) + 1 = M(φ) + 1 M(RHS 56 ) = max(M({i}), M(a 1,56 )) = max(0, max(M({j}), M(φ[R := (i, j)]))) = max(0, max(0, M(φ) + 1)) = M(φ) + 1 M ((≥ n R φ)[R := (i, j)]) = M ((≥ n R φ[R := (i, j)])) + 1 = M (φ[R := (i, j)]) + 1 M (RHS 56 ) = max(M ({i}), M (a 1,56 )) = max(0, max(M ({j}), M (φ[R := (i, j)]))) = max(0, max(0, M (φ[R := (i, j)]))) = M (φ[R := (i, j)]) M((≥ n R φ)[R := (i, j)]) = M((≥ n R φ)) + 1 = M(φ) + 1 M(⊥) = 0 93 M((< n R -φ)[R := (i, j)]) = M((< n R -φ)) + 1 = M(φ) + 1 M(RHS 58 ) = max(M(¬{j}), M(a 1,58 )) = max(M({j}), max(M(¬{i}), M(¬φ[R := (i, j)]))) = max(0, max(0, M(φ) + 1)) = M(φ) + 1 M ((< n R -φ)[R := (i, j)]) = M ((< n R -φ[R := (i, j)])) + 1 = M (φ[R := (i, j)]) + 1 M (RHS 58 ) = max(M (¬{j}), M (a 1,58 )) = max(M ({j}), max(M (¬{i}), M (¬φ[R := (i, j)]))) = max(0, max(0, M (φ[R := (i, j)]))) = M (φ[R := (i, j)]) M((< n R -φ)[R := (i, j)]) = M((< n R -φ)) + 1 = M(φ) + 1 M( ) = 0 M((≥ n R -φ)[R := (i, j)]) = M((≥ n R -φ)) + 1 = M(φ) + 1 M(RHS 60 ) = max(M({j}), M(a 1,60 )) = max(0, max(M({i}), M(φ[R := (i, j)]))) = max(0, max(0, M(φ) + 1)) = M(φ) + 1 M ((≥ n R -φ)[R := (i, j)]) = M ((≥ n R -φ[R := (i, j)])) + 1 = M (φ[R := (i, j)]) + 1 M (RHS 60 ) = max(M ({j}), M (a 1,60 )) = max(0, max(M ({i}), M (φ[R := (i, j)]))) = max(0, max(0, M (φ[R := (i, j)]))) = M (φ[R := (i, j)]) M((≥ n R -φ)[R := (i, j)]) = M((≥ n R -φ)) + 1 = M(φ) + 1 M(⊥) = 0
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M((∃R.φ)[R := (i, j)]) = M(∃R.φ) + 1 = M(φ) + 1 M(RHS 84 ) = max(M({i}, max(M({j}), M(φ[R := (i, j)]))) = M(φ) + 1 M ((∃R.φ)[R := (i, j)]) = M (φ[R := (i, j)]) + 1 M (RHS 84 ) = max(M({i}, max(M({j}), M(φ[R := (i, j)]))) = M(φ[R := (i, j)])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

-89 Rules 86 to 89 are translations of rules 62 to 67 with replaced by ≥ and n = 1

M((∀R.φ)[C := C ± i]) = M(∀R.φ) + 1 = M(φ) + 2 M(∀R.(φ[C := C ± i])) = M(φ[C := C ± i]) + 1 = M(φ) + 2 M ((∀R.φ)[C := C ± i]) = M (φ[C := C ± i]) + 1 M (∀R.(φ[C := C ± i])) = M (φ[C := C ± i])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M((∀R.φ)[R := R ± (i, j)]]) = M(∀R.φ) + 1 = M(φ) + 2 M(∀R.(φ[R := R ± (i, j)])) = M(φ[R := R ± (i, j)]) + 1 = M(φ) + 2 M ((∀R.φ)[R := R ± (i, j)]) = M (φ[R := R ± (i, j)]) + 1 M (∀R.(φ[R := R ± (i, j)])) = M (φ[R := R ± (i, j)])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

M((∀R.φ)[C := ψ]) = M(∀R.φ) + 1 = M(φ) + 1 M(∀R.(φ[C := ψ])) = M(φ[C := ψ]) = M(φ) + 1 M ((∀R.φ)[C := ψ]) = M (φ[C := ψ]) + 1 M (∀R.(φ[C := ψ])) = M(φ[C := ψ])
As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one. 

( n R φ[i in j])) (∃U.({i} ¬{j}) ⇒ (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j]) ⇒ ( (n + 1) R φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j]) ⇒ ( (n -1) R φ[i in j])) (∃R.({i} φ[i in j]) ∃R.{j} ⇒ ( (n + 1) R φ[i in j])) ((∀R.¬{i}) (∃R.({i} ¬φ[i in j]) ∃R.{j}) (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) (∃R.({i} ¬φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j])) ⇒ ( n R φ[i in j]))) RHS = ({i} ¬{j}) (¬{i} {j} ⇒ k∈[0,n] (< k R -φ[i in j]) ∃U.({i} (< (n -k) R -(φ[i in j] ¬∃R -.{j})))) (({i} ⇔ {j}) ⇒ (< n R -φ[i in j])) RHS = (¬{i} {j} ⇒ k∈[0,n] (≥ k R -φ[i in j]) ∃U.({i} (≥ (n -k) R -(φ[i in j] ∃R -.{j})))) (({i} ⇔ {j}) ⇒ (≥ n R -φ[i in j])) RHS = {i} ∃U.({j} φ[R := (i, j)]) RHS 106 = ({i} ∃U.({j} φ[R := (i, j)])) ¬{i} a 1,45 = ({i} ∃U.({j} φ[R := R + (i, j)]) ∀R.¬{j}) ⇒ ( (n -1) R φ[R := R + (i, j)]) a 2,45 = (¬{i} ∀U.(¬{j} ¬φ[R := R + (i, j)]) ∃R.{j}) ⇒ ( n R φ[R := R + (i, j)]) a 1,47 = ({i} ∃U.({j} φ[R := R -(i, j)]) ∃R.{j}) ⇒ ( (n + 1) R φ[R := R -(i, j)]) a 2,47 = (¬{i} ∀U.(¬{j} ¬φ[R := R -(i, j)]) ∀R.¬{j}) ⇒ ( n R φ[R := R -(i, j)]) a 1,54 = ∀U.(¬{j} ¬φ[R := (i, j)]) a 1,56 = ∃U.({j} φ[R := (i, j)]) a 1,58 = ∀U.(¬{i} ¬φ[R := (i, j)]) a 1,60 = ∃U.({i} φ[R := (i, j)]) a 1,
j])) ⇒ ( n R φ[i in j]))) a 1,63 = ({i} ¬{j}) a 2,63 = (¬{i} {j} a 3,k,63 = (< k R -φ[i in j]) a 4,k,63 = ∃U.({i} (< (n -k) R -(φ[i in j] ¬∃R -.{j})))) a 5,63 = (({i} ⇔ {j}) a 1,64 = ¬{i} {j} a 2,k,64 = (≥ k R -φ[i in j]) a 3,k,64 = ∃U.({i} (≥ (n -k) R -(φ[i in j] ∃R -.{j})))) a 4,64 = {i} ⇔ {j} b 1,45 = {i} b 2,45 = ∃U.({j} φ[R := R + (i, j)]) b 3,45 = ∀R.¬{j} b 4,45 = ( (n -1) R φ[R := R + (i, j)])) b 11,45 = ¬{i} b 12,45 = ∀U.(¬{j} ¬(φ[R := R + (i, j)])) b 13,45 = ∃R.{j} b 14,45 = ( n R φ[R := R + (i, j)])) b 1,47 = {i} 1b 2,
= ( n R φ[R := R -(i, j)])) c 1,45 = ({j} φ[R := R + (i, j)]) c 2,45 = (¬{j} ¬(φ[R := R + (i, j)])) c 1,47 = ({j} φ[R := R -(i, j)]) c 2,47 = (¬{j} ¬(φ[R := R -(i, j)])) d 1 = ({i} ⇒ ∃R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)])) (¬{i} ⇒ ∃R.(φ[R := R + (i, j)])) = (¬{i} ∃R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)])) ({i} ∃R.(φ[R := R + (i, j)])) d 1,1 = ∃R.(φ[R := R + (i, j)]) d 1,2 = ∃U.({j} φ[R := R + (i, j)]) d 1,3 = ∃R.(φ[R := R + (i, j)]) d 1,2,1 = {j} d 1,2,2 = φ[R := R + (i, j)] d 1,3,1 = φ[R := R + (i, j)] d 2 = ({i} ⇒ (∃R.(φ[R := R -(i, j)] ¬{j}))) (¬{i} ⇒ ∃R.(φ[R := R -(i, j)])) = (¬{i} (∃R.(φ[R := R -(i, j)] ¬{j}))) ({i} ∃R.(φ[R := R -(i, j)])) d 2,1 = ∃R.(φ[R := R -(i, j)] ¬{j}) d 2,2 = ∃R.(φ[R := R -(i, j)]) d 2,1,1 = φ[R := R -(i, j)] d 2,1,2 = ¬{j} d 2,2,1 = φ[R := R -(i, j)] d 3 = ({i} ⇒ (∀R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)]))) (¬{i} ⇒ ∀R.(φ[R := R + (i, j)])) = (¬{i} (∀R.(φ[R := R + (i, j)]) ∃U.({j} φ[R := R + (i, j)]))) ({i} ∀R.(φ[R := R + (i, j)])) d 3,1 = ∀R.(φ[R := R + (i, j)]) d 3,2 = ∃U.({j} φ[R := R + (i, j)]) d 3,3 = ∀R.(φ[R := R + (i, j)]) d 3,2,1 = φ[R := R + (i, j)] d 3,3,1 = φ[R := R + (i, j)] d 4 = ({i} ⇒ ∀R.(φ[R := R -(i, j)] {j})) (¬{i} ⇒ ∀R.(φ[R := R -(i, j)])) = (¬{i} ∀R.(φ[R := R -(i, j)] {j})) ({i} ∀R.(φ[R := R -(i, j)])) d 4,1 = ∀R.(φ[R := R -(i, j)] {j}) d 4,2 = ∀R.(φ[R := R -(i, j)]) d 4,1,1 = φ[R := R -(i, j)] d 4,2,1 = φ[R := R -(i, j)]
Now we show that, given an ALCQU IOSelf σ concept, applying the translation rules yields an ALCQU IOSelf concept. Lemma 3. Let Σ be a signature, φ an ALCQU IOSelf σ concept, ψ a normal form obtained from φ by using the system T , then ψ is an ALCQU IOSelf concept.

The proof of this lemma is done by contradiction. If we assume that ψ contains a substitution, then ψ can be rewritten by means of a rule in T . This contradicts the fact that ψ is in normal form. Therefore ψ is substitutionfree. ψ is a ALCQU IOSelf concept since concepts constructors used in T are ALCQU IOSelf σ concepts.

From the above three lemmas 1, 2 and 3, the proof of Theorem 6.2.1 is straightforward.

The same proof may be used to show that other DLs are closed under substitutions. This is summarized in the following corollary. ALCU IO@, ALCQU O@, ALCU IO@Self , ALCQU O@Self , ALCQU IO@ are closed under substitutions.

To prove this corollary, one just has to reuse the proof of Theorem 6.2.1. Indeed, with the exception of nominals and the universal role that are present in all logics of the corollary, all constructors that appear on the right-hand side of a rule also appear on the left-hand side. The restriction of M and M to the remaining rules ensures the termination of the system.

Those are not the only logics that are closed under substitutions. Indeed, it is possible to prove that in presence of @, U is no longer needed. Corollary 6.2.2. The logics ALCO@, ALCO@Self , ALCIO@, ALCQO@, ALCIO@Self , ALCQO@Self , ALCQIO@ are closed under substitutions.

Once more, to prove this corollary, T is used. Only the rules that actually use the universal role are changed and thus all others are not repeated. One can easily see that all occurrences of U are of the form ∃U.({i} C) or ∀U.(¬{i} C). Those can be replaced with @ i C. That both have the same interpretation and that it doesn't not impede the algorithm to terminate is easily checked. What one would like to express is whether or not i is the only node satisfying C. The only possible individual assertions deal with the individual i. ALC does not allow to say that i is the only node satisfying C that way. On the other hand, the only way to express that the only node that satisfies C is i would be to use nominals. Thus, there is no way to build an ABox nor a TBox that would provide an equivalent for

23 ( n R φ)[R := R + (i, j)] (({i} @ j (φ[R := R + (i, j)]) ∀R.¬{j}) ⇒ ( (n -1) R φ[R := R + (i, j)])) ((¬{i} @ j ¬(φ[R := R + (i, j)]) ∃R.{j}) ⇒ ( n R φ[R := R + (i, j)])) 24 ( n R -φ)[R := R + (i, j)] (({j} @ i (φ[R := R + (i, j)]) ∀R -.¬{i}) ⇒ ( (n -1) R -φ[R := R + (i, j)])) ((¬{j} @ i ¬(φ[R := R + (i, j)]) ∃R -.{i}) ⇒ ( n R -φ[R := R + (i, j)])) M 1 M 2 d 1 : i d 2 d 3 : i
C[C := C -i].
In [START_REF] Rezaei | On bisimulations for description logics[END_REF], one may find other definitions of bisimulations for various Description Logics used to show that DL-concepts are stable. Below, we recall briefly these definitions. The names of the axioms indicate which logic they apply to. For instance, if one wants to deal with ALCU I, one has to use axioms (ALC 1 ), (ALC 2 ), (ALC 3 ), (ALC 4 ), (U 1 ), (U 2 ), (I 1 ) and (I 2 ) to define bisimulations. Definition 6.3.2. The definition of bisimulation can be extended for more expressive logics by adding the following axioms:

(U 1 ) ∀d ∈ ∆ I , ∃d ∈ ∆ J .dZd (U 2 ) ∀d ∈ ∆ J , ∃d ∈ ∆ J .dZd (I 1 ) ∀R ∈ R, (d 1 Zd 2 ∧ d 1 R -I e 1 =⇒ ∃e 2 .d 2 R -J e 2 ∧ e 1 Ze 2 ) (I 2 ) ∀R ∈ R, (d 1 Zd 2 ∧ d 2 R -J e 2 =⇒ ∃e 1 .d 1 R -J e 1 ∧ e 1 Ze 2 ) (O) ∀i ∈ I, d 1 Zd 2 =⇒ (d 1 = i I ⇔ d 2 = i J ) (Q) ∀R ∈ R, (d 1 Zd 2 =⇒ Z is a bijection between the R-successors of d 1 and those of d 2 ). (IQ) ∀R ∈ R, (d 1 Zd 2 =⇒ Z is a bijection between the R --successors of d 1 and those of d 2 ). (Self ) ∀R ∈ R, d 1 Zd 2 =⇒ (d 1 R I d 1 ⇔ d 2 R J d 2 ).
One could see that there is no rule for @. Actually, it is easy to prove that (ALC 4 ) is enough for @. 

• (ALC 1 ) -d 1 Zd 4 (d 1 ∈ C I ⇔ d 4 ∈ C J ) -d 2 Zd 5 (d 2 ∈ C I ⇔ d 5 ∈ C J ) -d 3 Zd 5 (d 3 ∈ C I ⇔ d 5 ∈ C J ) • (ALC 2 ) -d 1 Zd 4 ∧ d 1 R I d 2 d 4 R J d 5 ∧ d 2 Zd 5 -d 1 Zd 4 ∧ d 1 R I d 3 d 4 R J d 5 ∧ d 3 Zd 5 • (ALC 3 ) -d 1 Zd 4 ∧ d 4 R J d 5 d 1 R I d 2 ∧ d 2 Zd 5 • (ALC 4 ) -i I Zi J -j I Zj J
This proves that there is no equivalent concept to (∃R.C)[R := R -(i, j)] is ALC. Yet, it doesn't prove that it is not possible to find a combination of ABoxes and TBoxes that would be equivalent to that concept. Intuitively, one has to test whether i has j as only neighbour labeled C or not. Once more, individual assertions can only add facts about i and j and not other elements and it is not possible to say that j is the only neighbor of i labeled with C without nominals or counting quantifiers. The same way, concept inclusions do not provide a way to express this property.

With the same example, we can prove that ALCU, ALCSelf , ALCI, ALCU I, ALCU Self , ALCISelf and ALCU ISelf are extended when substitutions are allowed.

• (U 1 ) -d 1 Zd 4 -d 2 Zd 5 -d 3 Zd 5 • (U 2 ) -d 1 Zd 4 -d 2 Zd 5 • (I 1 ) -d 2 Zd 5 ∧ d 2 R -I d 1 d 5 R -J d 4 ∧ d 1 Zd 4 -d 3 Zd 5 ∧ d 3 R -I d 1 d 5 R -J d 4 ∧ d 1 Zd 4 • (I 2 ) -d 2 Zd 5 ∧ d 5 R -J d 4 d 2 R -I d 1 ∧ d 1 Zd 4 • (Self ) -d 1 Zd 4 (d 1 R I d 1 ⇔ d 4 R J d 4 ) -d 2 Zd 5 (d 2 R I d 2 ⇔ d 5 R J d 5 ) -d 3 Zd 5 (d 3 R I d 3 ⇔ d 5 R J d 5 )
On the other hand, if Q was part of the logic, this would not be a bisimulation. Indeed, d 1 Zd 4 but Z is not a bijection between the R-neighbours of d 1 and those of d 4 .

The example of Figure 6.5 allows to prove that the DLs given in the following corollary are not closed under substitutions. The reader may verify that the axioms of bisimulations corresponding to these logics are satisfed by Z.

• (U 1 ) -d 1 Zd 3 -d 2 Zd 3 • (U 2 ) -d 1 Zd 3 • (I 1 ) -R = ∅ thus ∀R ∈ R.(dZd ∧ dR -I e ⇒ ∃e .d R -J e ∧ eZe • (I 2 ) -R = ∅ thus ∀R ∈ R.(dZd ∧ d R -J e ⇒ ∃e.dR -I e ∧ eZe • (Q) -R = ∅ thus ∀R ∈ R.(dZd ⇒ Z is a bijection between the R-
successors of d and those of d

• (IQ) -R = ∅ thus ∀R ∈ R.
(dZd ⇒ Z is a bijection between the R -successors of d and those of d

• (Self ) -R = ∅ thus ∀R ∈ R.dZd (dR I d ⇔ d R J d ) Corollary 6.3.1.
The logics ALCU, ALCSelf , ALCI, ALCQ, ALCU I, ALCU Self , ALCQU, ALCISelf , ALCQSelf , ALCQU I, ALCQISelf , ALCQU Self , ALCU ISelf and ALCQU ISelf are not closed under substitutions.

Another question is whether a limiting a logic to ABoxes and TBoxes make it closed under substitution. The answer is no. Let us consider the concept inclusion C ⊆ D where both C and D are concept names. Let us now consider

(C ⊆ D)[C := C -i]. Intuitively, it is satisfied if C ⊆ D or i is the only node ∈ C\D.
The only way to speak about i without using nominals is through individual assertions but they do not allow to express that it is the only one in a concept. Let us now consider (i : C)[C := C + j]. It is satisfied if i : C or i = j. But it is not possible to express it without using a disjunction of ABoxes and TBoxes which is not possible in standard ALC or its extensions lacking O.

If a DL contains O, the example of Figure 6.6 and Figure 6.5 no longer are counter-examples because Z is not a bisimulation anymore. Indeed, for instance in Figure 6.5, d 2 Zd 3 but d 3 = i J whereas d 2 = i I contradicting (O).

The grey area

The technique that was used in the previous section cannot be applied directly in the case of the logic ALCO. Indeed, we can show the following result. Theorem 6.4.1. ALCOσ concepts are stable under ALCO-bisimulations.

Proof. The idea is to work by induction on the concept constructors. We actually work with the more expressive ALCOIQSelf .

• The concepts of ALCOIQSelf are know to be invariant for ALCOIQSelfbisimulations.

• If the concept is either ⊥σ, {i}σ, cσ or (∃R.Self )σ, using the translations of Section 6.2, one can obtain an equivalent concept in ALCOIQSelf .

• If the concept is (¬φ)σ, (φ ψ)σ and (φ ψ)σ, this is proved by induction • The same can be done the other way and for ( nR

• If y ∈ (( nRφ)[C := C ± i]) I then,
-φ)[C := C ± i], ( nR -φ)[C := ψ], ( nRφ)[R := R ± (i, j)], ( nR -φ)[R := R ± (i, j)], ( nRφ)[R := Q], ( nR -φ)[R := Q], ( nRφ)[R := (i, j)] and ( nR -φ)[R := (i, j)]. • If y ∈ (( nRφ)[R := R + (i, j)]) I then y I ∈ ({z|{w|(z, w) ∈ R I w ∈ φ[R := R + (i, j)] I } ∪ {i|j I ∈ φ[R := R + (i, j)] I }) n}.
There are two cases:

-

If y = i I or j I ∈ (φ[R := R + (i, j)]) I or (i I , j I ) ∈ R I then {i|j I ∈ φ[R := R+(i, j)] I } is either empty or a subset of {w|(z, w) ∈ R I w ∈ φ[R := R + (i, j)] I }.
In that case, due to rule (Q) and the induction hypothesis, there is a bijection between the R-neighbors in I and J and the one satisfying φ[R := R + (i, j)] are thus the same number. Hence y ∈ (( nRφ)[R := R + (i, j)]) J

-If not, the reasoning can be applied to all the R-neighbors satisfying φ[R := R + (i, j)] of y and, due to rule (O) there is exactly one new neighbor added by the substitution on each side. Thus y ∈ (( nRφ)[R := R + (i, j)]) J .

• The same can be done the other way and for ( nR -φ)[R := R + (i, j)].

• If y ∈ (( nRφ)[R := R -(i, j)]) I then y ∈ ({z|{w|(z, w) ∈ R I w ∈ φ[R := R -(i, j)] I }\{i|j I ∈ φ[R := R -(i, j)] I }) n}.
There are two cases:

-If y = i I or j I ∈ (φ[R := R -(i, j)]) I or (i I , j ) ∈ R I then {i|j I ∈ φ[R := R -(i, j)] I } is either empty or disjoint from {w|(z, w) ∈ R I w ∈ φ[R := R -(i, j)] I }.
In that case, due to rule (Q) and the induction hypothesis, there is a bijection between the R-neighbors in • The same can be done the other way and for ( nR

I
-φ)[R := R -(i, j)]. • If y ∈ (( nRφ)[R := Q]) I then y ∈ ( nQφ[R := Q]) I .
Let w be such that yQw and w ∈ φ[R := Q] I then there exists w such that wZw and w ∈ φ[R := Q] J . As there is a bijection between the w's and the w 's, y ∈ (( nRφ)[R := Q]) I .

• The same can be done the other way round and for ((

nR -φ)[R := Q]) I
• If y ∈ (( nRφ)[R := (i, j)]) I then either:

y = i I and j I ∈ φ[R := (i, j)] I and then y = i J and j J ∈ φ[R := (i, j)] J and thus y ∈ (( nRφ)[R := (i, j)]) J or, y = i I or j I / ∈ φ[R := (i, j)] I and then y = i J or j J / ∈ φ[R := (i, j)] J and thus y ∈ (( nRφ)[R := (i, j)]) J

• The same can be done the other way round and for ((

nR -φ)[R := (i, j)]) I • If y ∈ (( nRφ)[i in j]) I then if y ∈ {z|{w|(z, w) ∈ (R I \{(z, i I )} ∪ {(z, j I )|(z, i I ) ∈ R I ) w ∈ φ[i in j] I } n}.
As there is a bijection between the R-neighbors of y satisfying φ[i in j] and those of y , if

i I ∈ φ[i in j] I then i J ∈ φ[i in j] J , and, if j I ∈ φ[i in j] I then j J ∈ φ[i in j] J
, there is a bijection between the elements of {w|(y, w)

∈ (R I \{(y, i I )}) w ∈ φ[i in j] I } and those of {w|(y, w) ∈ (R I \{(y, i I )}) w ∈ φ[i in j] I }. Thus y ∈ (( nRφ)[i in j]) J .
• The same can be done the other way round and for ( nRφ)[i out j],

( nR -φ)[i in j] and ( nR -φ)[i out j]

• ∃R.φ and ∀R.φ being special cases of ( nRφ), they can be treated as previously.

Theorem 6.4.1 could lead us to think that the addition of substitutions to ALCO does not increase the expressiveness of the logic. This is not true. We propose below another kind of binary relations that are able to distinguish between ALCO and ALCOσ. Definition 6.4.1. Given two interpretations I and J , a rooted-bisimulation between I and J rooted in (x,x ) is a binary relation Z ⊆ (∆ I × ∆ J ) such that:

(ALC 1 ) d 1 Zd 2 =⇒ ∀C ∈ C, (d 1 ∈ C I ⇔ d 2 ∈ C J ) (ALC 2 ) ∀R ∈ R, (d 1 Zd 2 ∧ d 1 R I e 1 =⇒ ∃e 2 .d 2 R J e 2 ∧ e 1 Ze 2 ) (ALC 3 ) ∀R ∈ R, (d 1 Zd 2 ∧ d 2 R J e 2 =⇒ ∃e 1 .d 1 R I e 1 ∧ e 1 Ze 2 ) (rALC 4 ) xZx
This definition is extended for logics containing ALC the same way as the definition of bisimulations.

The only difference with the definition of bisimulation is rule (ALC 4 ) that is replaced with rule (rALC 4 ). It is easy to see that rooted-bisimulation are more general than bisimulations. Indeed, any bisimulation is equivalent to the union of rooted-bisimulations rooted in the nominals. Definition 6.4.2. A concept C is stable under rooted-bisimulations if, for any interpretations I, J , any rooted-bisimulation Z between I, J rooted in (x,x ) and any y reachable from x, there exists y such that yZy and y ∈ C I ⇔ y ∈ C J . Theorem 6.4.2. ALCO-concepts are stable under rooted-bisimulations Before tackling Theorem 6.4.2, we show an useful property. Theorem 6.4.3. Given two interpretations I and J and a rooted-bisimulation between I and J rooted in (x,x ) Z, if y is reachable from x then there exists y reachable from x such that yZy and if z is reachable from x then there exists z reachable from x such that zZz .

Proof. This is shown by induction on the length of the path from x to y (resp. from x to z ).

From rule (rALC 4 ), xZx thus the property is valid for paths of length 0. Let's assume the property is valid for paths of length N. Let's pick y (resp. z ) reachable such that the shortest path between x and y (resp. x and z ) if of length N + 1, that is there exists w (resp. w ) such that there is a path of length N between x and w (resp. x and w ). Due to the induction hypothesis, there exists v (resp. v) reachable from x (resp. x) such that wZv (resp. vZw ). But, thanks to (ALC 2 ) (resp. (ALC 3 ) ), that means that there exists y (resp. z) such that v R J y (resp. vR I w) and yZy (resp. zZz ). Hence the property is valid for paths of length N + 1.

Let us now prove Theorem 6.4.2.

Proof. Theorem 6.4.3 proves the existence, for each y reachable from r of y reachable from r such that yZy .

We will do an induction on the constructors of ALCO-concepts.

⊥ As no element belongs to ⊥ I or ⊥ J , y ∈ ⊥ I ⇔ y ∈ ⊥ J c This is given by the rule (ALC 1 )

¬ C By induction, if y ∈ C I ⇔ y ∈ C J then y ∈ (¬C) I ⇔ y ∈ (¬C) J C D By induction, if y ∈ C I ⇔ y ∈ C J and y ∈ D I ⇔ y ∈ D J then y ∈ (C D) I ⇔ y ∈ (C D) J C D By induction, if y ∈ C I ⇔ y ∈ C J and y ∈ D I ⇔ y ∈ D J then y ∈ (C D) I ⇔ y ∈ (C D) J
∃R.C If y ∈ (∃R.C) I then there exists z such that y R I z and z ∈ C I . From (ALC 2 ), there exists z such that y R J z and zZz . Then, by induction, z ∈ C J and thus y ∈ (∃R.C) J . The same can be done the other way using (ALC 3 ).

∀R.C If y ∈ (∀R.C) I then for all z such that y R I z, z ∈ C I . From (ALC 2 ), there exists z such that y R J z and zZz . Then, by induction, z ∈ C J and thus y ∈ (∀R.C) J . The same can be done the other way using (ALC 3 ).

o This is given by the rule O ∃R.Self If y ∈ (∃R.Self ) I then yR I y. From rule (Self ), y R J y thus y ∈ (∃R.Self ) J ∃R -.C If y ∈ (∃R.C) I then there exists z such that z R I y and z ∈ C I . From rule (I 1 ), there exists z such that y R J z and zZz . Then, by induction, z ∈ C J and thus y ∈ (∃R.C) J . The same can be done the other way using (I 2 ).

∀R -.C If y ∈ (∀R.C) I then for all z such that z R I y, z ∈ C I . From (I 1 ), there exists z such that y R J z and zZz . Then, by induction, z ∈ C J and thus y ∈ (∀R.C) J . The same can be done the other way using (I 2 ).

( nRC) If y ∈ ( nRC) I then the cardinality of {z|yR I z z ∈ C I } n. From (Q), there exist exactly as many z such that y R J z and zZz . Then, by induction, z ∈ C J and thus y ∈ ( nRC) J . The same can be done the other way.

( nR -C) If y ∈ ( nR -C) I then the cardinality of {z|zR I y z ∈ C I } n.

From (IQ), there exist exactly as many z such that z R J y and zZz . Then, by induction, z ∈ C J and thus y ∈ ( nR -C) J . The same can be done the other way.

Theorem 6.4.4. ALCOσ-concepts are not stable under rooted-bisimulations. Let us prove that Z in this counter-example is indeed a rooted-bismulation rooted in (d 1 , d 3 ). -As R = {R} and

• (ALC 1 ) -d 1 Zd 3 =⇒ (d 1 ∈ C I1 ⇔ d 3 ∈ C I2 ) as C = {C}. • (ALC 2 ) -As R = {R} and R I1 = ∅, d 1 Zd 3 ∧ d 1 R I1 e =⇒ ∃e .d 3 R I2 e ∧ eZe • (ALC 3 ) M1 M2 d1 : i d2 : j d3 : i d4 : j
R I2 = ∅, d 1 Zd 3 ∧ d 3 R I2 e =⇒ ∃e.d 1 R I1 e ∧ eZe • (rALC 4 ) -d 1 Zd 3
This result can be extended to the logics ALCOI, ALCOQ, ALCOSelf , ALCOIQ, ALCOISelf and ALCOIQSelf by adding the exact same conditions from Definition 6.3.2. The exact same example of Figure 6.7 can be used to prove these logics version of Theorem 6.4.4

• (I 1 ) -As R = {R} and R I1 = ∅, d 1 Zd 3 ∧ d 1 R -I1 e =⇒ ∃e .d 3 R -I2 e ∧ eZe • (I 2 ) -As R = {R} and R I2 = ∅, d 1 Zd 3 ∧d 3 R -I2 e =⇒ ∃e.d 1 R I1 e∧eZe • (Q) -As R = {R} and R I1 = R I2 = ∅, d 1 Zd 3 =⇒ Z is a bijection between the R-successors of d 1 and those of d 3 • (IQ) -As R = {R} and R I1 = R I2 = ∅, d 1 Zd 3 =⇒ Z is a bijection between the R --successors of d 1 and those of d 3 • (Self ) -As R = {R} and R I1 = R I2 = ∅, d 1 Zd 3 ⇒ (d 1 R I1 d 1 ⇔ d 3 R I2 d 3 )

Application to the hospital

Let us now illustrate how a program is proven correct in one of the Description Logics presented so far. The logic ALCQU IO is chosen as it is one of the smallest of those that we have proven closed under substitutions that allows us to express the properties we need.

Let us first give a look at the properties that were stated in Section 3.3 and check that they can be expressed. The first property is that "each member of the medical staff is either a nurse or a physician but not both". This can be translated to ∀U.(MS ⇒ ((NU ¬ PH) (¬ NU PH))). The second property is that "all patients and all medical staffers are persons". This is equivalent to ∀U.(MS PA ⇒PE). The third property states that each person that can write in a folder can also read it. This property cannot be expressed in ALCQU IO or any other description logic without role inclusion. It is thus dropped for now. The fourth property has the same problem. It states that "each person that can read a folder about a patient treats that patient". The fifth property says that "Only medical staffers can treat persons and only patients can be treated". It can be translated as ∀U.(∃treats. ⇒MS) ∀U.(∃treats -. ⇒PA). Finally, the sixth property is "Every patient has exactly one referent physician" that can be written as ∀U.(PA ⇒ (= 1ref phys )).

In this example, illustrated in Figure 6.8, the fourth transformation that deletes a physician and re-affects all his patients to another physician in the same department is used. For the sake of simplicity none of the precondition, postcondition and invariant feature all the properties that are required in Section 3.3. The statement is the same as the one in Let us now check that the specification (P re,s,P ost) is correct. The correctness formula is (P re ⇒ wp(s, P ost)) vc(s, P ost). As s is of the form if c 0 then s 0 , wp(s, P ost) = c 0 ⇒ wp(s 0 , P ost) and vc(s, P ost) = vc(s 0 , P ost). Thus the correctness formula is (P re c 0 ⇒ wp(s 0 , P ost)) vc(s 0 , P ost). In turn, s 0 is of the form P H:= P Hph 1 ; s 1 and thus wp(s 0 , P ost) = wp(s 1 , P ost)[P H:= P H- One thus has to prove that vc(s 1 , P ost) is valid. As vc(s 1 , P ost) = (inv 1 c 1 ⇒ wp(s 10 , inv 1 )) (inv 1 ¬c 1 ⇒ wp(s 2 , P ost)) vc(s 10 , inv 1 ) vc(s 2 , P ost), let us split the study of the validity of vc(s 1 , P ost) in four parts.

Let us start with vc(s 10 , inv 1 ). As s 10 = s 11 ; s 12 ; s 13 , vc(s 10 , inv 1 ) = vc(s 11 , wp(s 12 ; s 13 , inv 1 )) vc(s 12 , wp(s 13 , inv 1 )) vc(s 13 , inv 1 ). But all of these vcs are equal to and thus vc(s 10 , inv 1 ) is trivially valid.

Let us now study inv 1 c 1 ⇒ wp(s 10 , inv 1 ). As s 10 = s 11 ; s 12 ; s 13 , wp(s 10 , inv 1 ) = wp(s 11 , wp(s 12 ; s 13 , inv 1 )) = ∀p.(∃U.({p} ∃treats -.{ph 1 }) ⇒ wp(s 12 ; s 13 , inv 1 ). Then, as both s 12 and s 13 are atomic transformations, wp(s 12 ; s 13 , inv 

(({ph 1 } ⇒ ∃treats.¬{p})∧(¬{ph 1 } ⇒ ∃treats. ))) (¬{ph 2 } ⇒ (({ph 1 } ⇒ ∃treats.¬{p}) ∧ (¬{ph 1 } ⇒ ∃treats. ))).
In order to prove that this is implied by inv 1 c 1 ∃U.({p} ∃treats -.{ph 1 }, one has to distinguish four cases:

• {ph 1 } {ph 2 } is satisfied: This is made impossible by ∃U.({ph 1 } ¬{ph 2 }). • {ph 1 } ¬{ph 2 } is satisfied: Then (∀U.∃treats. ⇒MS) ⇒ (∀U.∃treats.¬{p} ⇒MS)
is what has to be proved valid and it obviously is.

• {ph 2 } ¬{ph 1 } is satisfied: Then ∃U.({ph 2 } MS) ⇒ ({ph 2 } ¬{ph 1 } ⇒MS)
is what has to be proved valid and it obviously is.

• ¬{ph 1 } ¬{ph 2 } is satisfied: Then (∀U.∃treats. ⇒MS) ⇒ (∀U.∃treats. ⇒MS) is what has to be proved valid and it obviously is.

Thus inv 1 c 1 ⇒ wp(s 10 , inv 1 ) is valid.

Let us now study inv 1 ¬c 1 ⇒ wp(s 2 , P ost). As s 2 is of the form while c 2 do, wp(s 2 , P ost) = inv 2 . As inv 1 ⇒ inv 2 , this is valid.

One now focuses on vc(s 2 , P ost). It is equal to (inv 2 c 2 ⇒ wp(s 20 ; s 21 ; s 22 , inv 2 )) (inv 2 ¬c 2 ⇒ wp(s 3 , P ost)) vc(s 20 ; s 21 ; s 22 , P ost). As previously, as s 20 = select p with ∃U.({p} ∃ref phys. Finally, let us study inv 2 ¬c 2 ⇒ wp(s 3 , P ost). As s 3 =MS :=MSph 1 , wp(s 3 , P ost) = P ost[MS := MS-ph 1 ]. As does not occur in P ost, wp(s 3 , P ost) = P ost. Then, as inv 2 = P ost, inv 2 ¬c 2 ⇒ wp(s 3 , P ost) is obviously valid.

Conclusion

This chapter dealt with Description Logics and how one could use them in the graph tranformation framework that we have heretofore introduced. As Description Logics have several key arguments justifying their use, they were a prime candidate as a logic used to prove the correctness of graph transformations. Nevertheless, several of their shortcomings were pointed out.

The least expressive logics considered, ALC and its extensions without nominals and some way to express properties of remote nodes, despite having very low complexity are not closed under substitutions and thus require the definition of alternate algorithm to prove the correctness of graph transformation.

The most expressive logics, ALCOU, ALCO@ and their extensions are closed under substitutions but the rewriting system generates an exponential blow-up in the size of the formulae that is highly detrimental.

Nonetheless, there exists several Description Logics that we didn't consider. For instance, ALCOIQbr, defined in [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF], allows for more complex roles. Due to these, it is possible to get rid of substitutions without the exponential blow-up on the size of the formulae which makes it a better fit.
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Chapter 7

Using a logic with reachability: C2PDL

We previously introduced the description logics as a possible choice as logics used in order to transform graphs. Nevertheless, these logics have some shortcomings. In particular, one may want to use reachability conditions that are impossible to express in Description Logics or, for that matter, first-order logic. In order to tackle that kind of properties, we use a logic that is much closer to dynamic logics. This logic was used in [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF].

Using dynamic logics makes sense. Indeed, the models of dynamic logics are graphs and thinking about programs is usual in dynamic logics. To be more precise, in dynamic logics, models often represent executions where nodes are the various states of the data and edges represent the execution of programs. Nonetheless, we do not use dynamic logics that way but as a formal system to describe graphs. That is our edges are actual edges and programs are used to modify the models.

After formally introducing the syntax of the logic, we prove that it is closed under substitutions. We also prove that it is decidable. Finally, we introduce restrictions on the rules so that it is possible to express the applicability condition.

Syntax

In this chapter, we introduce C2PDL , a logic that we introduce to define pre-and postconditions and to compute the weakest precondition of a specification. It is a mix of Converse Propositional Dynamic Logic [27] and Combinatory Propositional Dynamic Logic [START_REF] Passy | An essay in combinatory dynamic logic[END_REF], both commonly known as CPDL. C2PDL contains elements of Propositional Dynamic Logic, that allows one to define complex role constructors, and Hybrid Logic, which allows one to use the power of nominals. C2PDL further extends the CPDLs in two ways: it splits the universe into elements that are part of the model notwithstanding the substitutions and elements that may be created by an action or that have been deleted; it also extends the notion of universal role to "total" roles over subsets of the universe in order to be able to deal with these modifications of the universe. Definition 7.1.1 (Syntax of C2PDL ). Given three countably infinite and pairwise disjoint alphabets Σ, the set of names, Φ 0 , the set of atomic propositions, Π 0 , the set of atomic programs, the language of C2PDL is composed of formulas and programs. We partition the set of names Σ into two countably infinite alphabets Σ 1 and Σ 2 such that Σ 1 ∪ Σ 2 = Σ and Σ 1 ∩ Σ 2 = ∅. Formulas φ and programs α are defined as:

φ := i | φ 0 | ¬φ | φ ∨ φ | α φ α := α 0 | ν S | α; α | α ∪ α | α * | α -| φ? where i ∈ Σ, φ 0 ∈ Φ 0 , α 0 ∈ Π 0 and S ⊆ Σ.
We denote by Π the set of programs and by Φ the set of formulas. As usual, φ∧ψ stands for ¬(¬φ∨¬ψ) and [α]φ stands for ¬( α ¬φ). We also write simply ν instead of ν Σ .

For now, the splitting of Σ seems artificial. It is actually grounded in the use we want to make of the logic. Roughly speaking, Σ 1 stands for the names that are used in "the" current model whereas Σ 2 stands for the names that may be used in the future (or have been used in the past but do not participate to the current model).

Definition 7.1.2 (Model). A model is a tuple M = (M, R, χ, V ) where M is a set called the universe, χ : Σ → M is a surjective mapping such that χ(Σ E ) ∩ χ(Σ O ) = ∅, R : Π → P(M 2
) and V : Φ → P(M ) are mappings such that:

• For each α 0 ∈ Π 0 , R(α 0 ) ∈ P(χ(Σ E ) 2 ) • For each i ∈ Σ, V (i) = {χ(i)} • R(ν S ) = χ(S) 2 for S ⊆ Σ • For each φ 0 ∈ Φ 0 , V (φ 0 ) ∈ P(χ(Σ E )) • R(α ∪ β) = R(α) ∪ R(β) • V (¬A) = M \V (A) • R(A?) = {(s, s)|s ∈ V (A)} • V (A ∨ B) = V (A) ∪ V (B) • R(α -) = {(s, t)|(t, s) ∈ R(α)} • V ( α A) = {s|∃t ∈ M.((s, t) ∈ R(α) ∧ t ∈ V (A))} • R(α * ) = k<ω R(α k ) where α k stands for the sequence α; . . . ; α of length k • R(α; β) = {(s, t)|∃v.((s, v) ∈ R(α) ∧ (v, t) ∈ R(β))}
In the following, we write sR α t for (s, t) ∈ R(α) Fig. 7.1 gives an example of models. C2PDL will be used in this work to label nodes and to express properties of attributed graphs.

From now on, we will only consider graphs over the alphabet (Φ,Π). Given a graph G = (N, E, φ N , φ E , s, t) and a formula φ, we say that G |= φ if there exists n ∈ N such that n |= φ where the universe M is the set of nodes N . R and V are defined as usual: for

φ 0 ∈ Φ 0 (resp. π 0 ∈ Π 0 ), V (φ 0 ) = {x ∈ N |φ 0 ∈ L N (x)} (resp. R(π 0 ) = {(x, y) ∈ N 2 |∃e ∈ E.s(e) = x ∧ t(e) = y ∧ L E (e) = π 0 }). R
and V are then extended to non-atomic propositions and programs following the same rules defined in the models. As usual, a formula φ is satisfiable if there exists a graph G such that G |= φ and unsatisfiable otherwise and it is valid if for all models G, G |= φ and invalid otherwise. We denote by S a subset of C which consists of names such that for each name s ∈ S there is at most one node n ∈ N such that n |= s. One may remark that all models can be considered as graphs. The converse is false.

Often, we will write i : C instead of i : {C} to say that node i is labelled with the formula C.

Attributed graphs where all nodes are named will be called named graphs. This notion of graphs will be used in the proofs. Definition 7.1.3 (Named Graph). A named graph G is an attributed graph such that the set of names S ⊆ C satisfies:

(a)∀s ∈ S.∃n ∈ N.s ∈ L N (n) (b)∀n ∈ N.L N (n) ∩ S = ∅ (c)∀n, n ∈ N, n = n , L N (n) ∩ L N (n ) ∩ S = ∅
Notation: From (a), (b) and (c), it is obvious that, as each name labels at least one node, each node is labeled by at least one name and each name labels at most one node, it is possible to define two functions θ and µ such that ∀s ∈ S, θ(s) is the node named s and ∀n ∈ N, µ(n) is a name of n. This allows to define χ and thus named graphs and models are equivalent structures. We will thus consider from now on that formulae are interpreted over named graphs. Figure 7.1 shows a model and a counter-model of the formula

[ν](1 ⇒ [R -][R - * ]¬1).
Example 7.1.1. Let us now come back to the running example of the Hospital, presented in Section 3, by illustrating some of the properties.

• "Each member of the medical staff is either a nurse or a physician but not both"

[ν](M S ⇒ (N U ∧ ¬P H) ∧ (¬M S ∧ P H).

• "All patients and all medical staffers are persons" 

[ν]((P A ∨ M S) ⇒P E) 123 i : 1 ¬1 ¬1 1 i : 1 ¬1 ¬1 1 R R R R R R
[ν](1 ⇒ [R -][R - * ]¬1
). This is not the case for the graph given on the right since i |= (1

⇒ [R -][R - * ]¬1).
• "Each person that can write in a folder can also read it" cannot be expressed as it needs to keep track of the person and the file

• "Each person that can read a folder about a patient treats that patien" cannot be expressed as it needs to keep track of the person and the patient

• "Only medical staffers can treat persons and only patients can be treated"

[ν](( treats P E ⇒ M S) ∧ ( treats - ⇒ P A))

• "Every patient has exactly one referent physician" cannot be expressed as it is not possible to count neighbours

• "Every file references, albeit maybe indirectly, the Hospital Policy file"

[ν](F I ⇒ reference * HP)

Closure under substitution

In this section, we start looking at whether C2PDL satisfies the requirements that have been outlined in Chapter 5. We first prove that C2PDL is closed under substitution. First, though, we define well-formed formulae. Indeed, some sequences of substitutions do not make sense. For instance, φ[new node(i)][C := C +i] would create a node i after modifying it and thus either the node i didn't exist when its label changed, which shouldn't be possible, or it existed and it doesn't make sense to create it anew. Definition 7.2.1 (Well-formed formula). A formula is said to be well-formed if it is possible to find a set E ⊆ Σ such that the following inference rules are respected:

φ E∪{i} i / ∈ E φ[add(i)] E φ E-{i} i ∈ E φ[del(i)] E φ E θ = add(i), θ = del(i) i, j ∈ E φ[θ] E i Σ1 φ Σ1 0 φ E (¬φ) E φ E 1 φ E 2 (φ 1 ∨ φ 2 ) E 124
We now work to prove that well-formed formulae are closed under substitutions.

Theorem 7.2.1. C2PDL is closed under substitutions.

To prove the theorem, we introduce a rewriting system RS. Its goal is to transform any formula where substitutions occur into a substitution-free formula. It is not always possible to do that in one step. The rewriting system thus contains rules that remove substitutions completely and other rules that moves the substitution inward. Each rule is such that the left-hand side and the right-hand side are equivalent.

Let

σ, σ ∈ Θ, σ ∈ {[α 0 := α], [α 0 := (i, j)], [α 0 := α 0 + (i, j)], [α 0 := α 0 -(i, j)],[new node(i)], [new edge(i, j)], [del edge(i, j)], [i in j], [i out j]}, φ 0 and φ 1 ∈ Φ 0 , φ 0 = φ 1 , φ and ψ ∈ Φ, i ∈ Σ and α ∈ Π then RS φ is: Rule φ 1 : σ Rule φ 2 : iσ i Rule φ 3 : φ 0 σ φ 0 Rule φ 4 : φ 0 [φ 1 := φ 0 ± i] φ 0 Rule φ 5 : φ 0 [φ 0 := φ 0 + i] φ 0 ∨ i Rule φ 6 : φ 0 [φ 0 := φ 0 -i] φ 0 ∧ ¬i Rule φ 7 : φ 0 [φ 1 := φ] φ 0 Rule φ 8 : φ 0 [φ 0 := φ] φ Rule φ 9 : φ 0 [φ 1 := i] φ 0 Rule φ 10 : φ 0 [φ 0 := i] i Rule φ 11 : φ 0 [del node(i)] φ 0 ∧ ¬i Rule φ 12 : (¬φ)σ ¬(φσ) Rule φ 13 : (φ ∨ ψ)σ (φσ) ∨ (ψσ) Rule φ 14: ( α φ)σ ασ (φσ) 
We now introduce rewriting rules allowing to get rid of the substitutions occurring in programs.

Let σ, σ , σ ∈ Θ, σ ∈ {[φ 0 := φ], [φ 0 := i], [φ 0 := φ 0 ± i], [new node(i)]}, σ / ∈ {[new node(i)], [del node(i)]}, S ⊆ Σ, φ 0 and φ 1 ∈ Φ 0 such that φ 0 = φ 1 , φ and ψ ∈ Φ, α 0 , α 1 ∈ Π 0 , α 0 = α 1
and α, and β ∈ Π and i, j ∈ Σ, then RS α is:

Rule α 1 : α 0 σ α 0 Rule α 2 : α 0 [α 1 := α 1 ± (i, j)] α 0 -or ∀m .(m, m ) ∈ R(α) or m ∈ V (¬A ∨ B).
Then either ∃m such that (m, m ) ∈ R(α) and m ∈ V (¬A) and thus m ∈ V (< α > ¬A),

-or ∀m .(m, m ) ∈ R(α) or m ∈ V (B) and then m ∈ V ([α]B). In all possible cases, m ∈ V (< α > (A ∧ ¬B)∨ < α > ¬A ∨ [α]B)). Thus m ∈ V ([α](A → B) → ([α]A → [α]B)).
• Let m be a node of the model M then:

-Either ∃m , m such that (m, m ) ∈ R(α) and (m , m ) ∈ R(β) and m ∈ V (A), that is m ∈ V (< α >< β > A), and thus ∃m such that (m, m ) ∈ R(α; β) and m ∈ V (A) that is m ∈ V (< α; β > A), -or ∀m , m , (m, m ) ∈ R(α) or (m , m ) ∈ R(β) or m ∈ V (A), that is m ∈ V ([α][β]¬A), and thus ∀m .(m, m ) ∈ R(α; β) or m ∈ V (A) that is m ∈ V ([α; β]¬A). In all possible cases, m ∈ V ((< α >< β > A∧ < α; β > A) ∨ ([α][β]¬A ∧ [α; β]¬A)). Thus m ∈ V (< α >< β > A ↔< α; β > A).
• Let m be a node of the model M then:

-Either ∃m such that (m, m ) ∈ R(α) and m ∈ V (A), that is m ∈ V (< α > A) and m ∈ V (< α > A∨ < β > A), and thus ∃m such that (m, m ) ∈ R(α∪β) and m ∈ V (A), that is m ∈ V (< α∪β > A), -or ∃m such that (m, m ) ∈ R(β) and m ∈ V (A), that is m ∈ V (< β > A) and m ∈ V (< α > A∨ < β > A), and thus ∃m such that (m, m ) ∈ R(α ∪ β) and m ∈ V (A), that is m ∈ V (< α ∪ β > A), -or ∀m , either (m, m ) ∈ R(α) and (m, m ) ∈ R(β) or m ∈ V (A), that is m ∈ V ([α]¬A ∧ [β]¬A), and thus ∀m , (m, m ) ∈ R(α ∪ β) or m ∈ V (A) that is m ∈ V ([α ∪ β]¬A).
In all possible cases, m ∈ V ((

(< α > A∨ < β > A)∧ < α ∪ β > A) ∨ ([α]¬A ∧ [β]¬A ∧ [α ∪ β]¬A)). Thus m ∈ V (< α ∪ β > A ↔< α > A∨ < β > A)
• Let m be a node of the model M then: 

-Either m ∈ V (A) and m ∈ V (B), that is ∃m = m such that (m, m ) ∈ R(A?) and m ∈ V (B) and thus m ∈ V (< A? > B), and then m ∈ V (A ∧ B), -or m ∈ V (A) or m ∈ V (B), that is ∀m .(m, m ) ∈ R(A?) or m ∈ V ( 
In all possible cases, m ∈ V ((< A? > B ∧ A ∧ B) ∨ ([A?]¬B ∧ (¬A ∨ ¬B))). Thus m ∈ V (< A? > B ↔ A ∧ B)
• Let m be a node of the model M then:

-Either existsk, m such that (m, m ) ∈ R(α k ) and m ∈ V (A), that is m ∈ V (< α * > A), and then either k = 0 thus m ∈ V (A) or k ≥ 1 and ∃m such that (m, m ) ∈ R(α) and (m , m ) ∈ R(α k-1 ) thus m ∈ V (< α >< α * > A), -or ∀k, ∀m , (m, m ) ∈ R(α k ) or m ∈ V (A), that is m ∈ V ([α * ]¬A).
In particular, m ∈ V (A) and ∀m , either (m, m ) ∈ R(α) or ∀k , ∀m (3) , (m , m (3) 

) ∈ R(α k ) or m (3) ∈ V (A), that is m ∈ V (¬A ∧ [α][α * ]¬A). In all possible cases, m ∈ V ((< α * > A ∧ (A∨ < α >< /alpha * > A) ∨ ([α * ]¬A ∧ ¬A ∧ [α][α * ]¬A)). Thus m ∈ V (< α * > A ↔ A∨ < α >< α * > A)
• Let m be a node of the model M then:

-Either ∃m such that (m, m ) ∈ R(α) and ∀m . ((m , m ) ∈ R(α -) or m ∈ V (A)). As (m, m ) ∈ R(α), (m , m) ∈ R(α -) and thus m ∈ V (A), -or ∀m . (m, m ) ∈ R(α) or ∃m . ((m , m ) ∈ R(α -) and m ∈ V (A)) that is m ∈ V ([α] < α -> ¬A). In all cases, m ∈ V ([α] < α -> ¬A ∨ A) thus m ∈ V (< α > [α -]A → A).
• Let m be a node of the model M, by definition of ν Σ , (

) ∈ R(ν Σ ) thus m ∈ V (< ν Σ > c) m, χ(c) 
• Let m be a node of the model M then:

-either χ(c) ∈ V (A) and thus m ∈ V (< ν Σ > (c ∧ ¬A)) but then ∀m . m ∈ V (c) = {χ(c)} or m ∈ V (A) thus m ∈ V ([ν Σ ](¬c ∨ ¬A). Thus m ∈ V ([ν Σ ](¬c ∨ ¬A)∧ < ν Σ > (c ∧ ¬A)), -or χ(c) ∈ V (A) and thus ∀m , m ∈ V (c) or m ∈ V (A) thus m ∈ V ([ν Sigma](¬c∨A). But then ∃m = χ(c) such that m ∈ V (c∧A) and thus m ∈ V (< ν Σ > (c ∧ A) thus m ∈ V ([ν Σ ](¬c ∨ A)∧ < ν Σ > (c ∧ A)). In all possible cases, m ∈ V (([ν Σ ](¬c ∨ ¬A)∧ < ν Σ > (c ∧ ¬A)) ∧ ([ν Σ ](¬c ∨ A)∧ < ν Σ > (c ∧ A))) that is m ∈ V (< ν Σ > (c ∧ A) ↔ [ν Σ ](c → A))
• Let m be a node of the model M, S be a subset of Σ and c, d be elements of S. Then:

-Either m ∈ V (c) = {χ(d)} and, as (χ(c), χ(d)) ∈ χ(S) 2 , (m, χ(d)) ∈ R(ν S ). Moreover as χ(d) ∈ V (d), m ∈ V (< ν S > d) and thus m ∈ V (¬c∨ < ν S > d), -or m ∈ V (c) and thus m ∈ V (¬c∨ < ν S > d).
In all possible cases, m ∈ V (¬c∨

< ν S > d) that is m ∈ V (c →< ν S > d)
• Let m be a node of the model M, S be a subset of Σ and c, d be such that {c, d} ⊆ S. Then:

-Either c ∈ S and then:

* Either m ∈ V (c) = {χ(c)} which, as ∀m (χ(c), m ) ∈ χ(S) 2 , means m ∈ V ([ν S ]¬d) thus m ∈ V (¬c ∨ [ν S ]¬d), * or m ∈ V (c) thus m ∈ V (¬c ∨ [ν S ]¬d),
or c ∈ S and d ∈ S and then:

* Either m ∈ V (c) = {χ(c)} which, as (χ(c), χ(d)) ∈ χ(S) 2 , ∀m .(m, m ) ∈ R(ν S ) or m ∈ V (d) thus m ∈ V (¬c ∨ [ν S ]¬d), * or m ∈ V (c) and thus m ∈ V (¬c ∨ [ν S ]¬d). In all possible cases, m ∈ V (¬c ∨ [ν S ]¬d) that is m ∈ V (c → [ν S ]¬d)
• Let m be a node of the model M then:

-Either ∃m , m such that (m, m ) ∈ R(ν S ), (m , m ) ∈ R(ν S ) and m ∈ V (A), that is m ∈ V (< ν S >< ν S > A, and then, as (m, m ) ∈ χ(S) 2 , (m, m ) ∈ R(ν S ) and thus m ∈ V (< ν S > A), -or ∀m , m . (m, m ) ∈ R(ν S ) or (m , m ) ∈ R(ν S ) or m ∈ V (A). But then, ∀m . (m, m ) ∈ R(ν S ) or ∀m . (m , m ) ∈ R(ν S ) or m ∈ V (A), that is m ∈ V ([ν S ][ν S ]¬A). In all possible cases, m ∈ V ([ν S ][ν S ]¬A∨ < ν S > A) that is m ∈ V (< ν S >< ν S > A →< ν S > A)
• Let m be a node of the model M then:

-Either m ∈ V (A) and then: * either m ∈ χ(S) and ∀m such that (m, m ) ∈ ν S then m ∈ χ(S) and thus (m

, m) ∈ R(ν S ) thus ∀m . (m, m ) ∈ R(ν S ) or ∃m = m such that (m , m ) ∈ R(ν S ) and m ∈ V (A), that is m ∈ V ([ν S ] < ν S > A), * or m ∈ χ(S) and then ∀m . (m, m ) ∈ R(ν S ), that is m ∈ V ([ν S ] < ν S > A) -or m ∈ V (A) and thus m ∈ V (¬A). In all possible cases, m ∈ V (¬A ∨ [ν S ] < ν S > A) that is m ∈ V (A → [ν S ] < ν S > A)
• Let m be a node of the model M then:

-Either m ∈ V (A) and then ∃m = m such that (m, m ) ∈ R(ν Σ ) and m ∈ V (A) thus m ∈ V (< ν Σ > A), -or m ∈ V (A) and then m ∈ V (¬A) In all possible cases, m ∈ V (¬A∨ < ν Σ > A) that is m ∈ V (A →< ν Σ > A) < α > A →< ν Σ > A
• Let m be a node of the model M then:

-Either m ∈ V (< α > A) and then ∃m such that (m, m ) ∈ R(α) and m ∈ V (A) but then (m, m ) ∈ R(ν Σ ) that is m ∈ V (< ν Σ > A), -or m ∈ V (< α > A) and then m ∈ V ([α]¬A) In all possible cases, m ∈ V ([α]¬A∨ < ν Σ > A) that is m ∈ V (< α > A →< ν Σ > A)
• Let m be a node of the model M, φ ∈ Φ 0 then:

-Either m ∈ V (c) = {χ(c)} and then as V (φ) ⊆ χ(Σ E ) and χ(Σ E ) ∩ χ(Σ O ) = ∅, m ∈ V (φ) and thus m ∈ V (¬φ), -or m ∈ V (c) and thus m ∈ V (¬c). In all possible cases, m ∈ V (¬c ∨ ¬φ) that is m ∈ V (c → ¬φ)
• Let m be a node of the model M, α ∈ P i 0 then:

-Either m ∈ V (c) and then as R(α) ⊆ χ(Σ E ) 2 and χ(Σ E )∩χ(Σ O ) = ∅, ∀m , (m, m ) ∈ R(α) and (m , m) ∈ R(α) thus m ∈ V ([α]⊥ ∧ [α -]⊥), -or m ∈ V (c) and thus m ∈ V (¬c). In all possible cases, m ∈ V (¬c ∨ [α]⊥ ∧ [α -]⊥) that is m ∈ V (c → [α]⊥ ∧ [α -]⊥) • Assume A and A → B, then ∀m, m ∈ V (A) and m ∈ V (¬A ∨ B) thus m ∈ V (B). That is B. • Assume [γ][α k ]A, for all k < ω, then ∀m, m ∈ V ([γ][α k ]A, for all k, that is ∀m such that (m, m ) ∈ R(γ), m ∈ V ([α k ]A) for all k. As ∀m , (m , m ) ∈ R(α k ) for some k or (m , m ) ∈ k R(α k ) = R(α * ), that is (m , m ) ∈ R(α * ) or m ∈ V (A). Thus m ∈ V ([α * ]A) and thus m ∈ V ([γ][α * ]A). That is [γ][α * ]A (Cov) Assume [γ]¬c, for all c ∈ Σ, then ∀m, m ∈ V ([γ]¬c). Thus f orallm , (m, m ) ∈ R(γ) or m ∈ V (c) for all c. But, as χ(Σ) = M , ∃c such that m = χ(c ) Thus ∀m , (m, m ) ∈ R(γ). Thus m ∈ V ([γ]⊥). That is [γ]⊥. (Nec) Assume A, then ∀m, m ∈ V (A), then ∀m , m , (m , m ) ∈ R(ν Σ ) or m ∈ V (A), thus m ∈ V ([ν Σ ]A). That is [ν Σ ]A Theorem 7.3.3 (Completeness). If A then A.
Once again, the proof is drawn from [START_REF] Passy | An essay in combinatory dynamic logic[END_REF].

• Assume C ∈ L T then [ν Σ ]C ∈ T . Assume < ν Σ > [ν Σ ]C ∈ T then as L ⊆ T and L contains (ν S 3) with S = Σ and A = ¬C, [ν Σ ]C → [ν Σ ][ν Σ ]C ∈ T . As T is closed under (M P ), [ν Σ ][ν Σ ]C ∈ T and thus [ν Σ ]C ∈ T . Thus L T is closed under (N ec).
• Let C be a closed formula. As T is maximal:

-either C ∈ T that is existsB. < ν Σ > B ∈ T . As L ⊆ T and L contains (ν S 4) for S = Σ and A =< ν Σ > B, < ν Σ > B → [ν Σ ] < ν Σ >< ν Σ > B ∈ T and then, by (M P ), [ν Σ ] < ν Σ >< ν Σ > B ∈ T . As L ⊆ T and L contains (ν S 3) for S = Σ and A = B and L is closed under (N ec), [ν Σ ] < ν Σ >< ν Σ > B → [ν Σ ] < ν Σ > B ∈ T and then, by (M P ), [ν Σ ] < ν Σ > B ∈ T and thus < ν Σ > B ∈ T that is C ∈ L T , -or ¬C ∈ T that is ∃B.[ν Σ ]¬B ∈ T and thus ¬B ∈ L T . But, as L T is closed under (N ec), [ν Σ ]¬B ∈ L T and thus ¬C ∈ L T .
That is L T is maximal.

• Let L be a logic such that L ⊆ T . Let A ∈ L . As L is closed under (N ec), [ν Σ ]A ∈ L and thus [ν Σ ]A ∈ T that is A ∈ L T . Thus ∀L ⊆ T, L ⊆ L T . • Let C ∈ L T then [ν Σ ]C ∈ T . As L ⊆ T and L contains (ν Σ 1) with A = ¬C, ¬C →< ν Σ > ¬C ∈ T or, written in another way, [ν Σ ]C → C ∈ T . As T is closed under (M P ), C ∈ T . Thus L T ⊆ T .
Thus L T is a maximal logic and it is the greatest included in T . Lemma 14 (Separation lemma for logics). Let L be a logic, A ∈ L. Then there exists a maximal logic L * such that L ⊆ L * and A ∈ L * . Proof. L is an L-theory thus, from Lemma 12, there exists a maximal theory T * such that L ⊆ T * and A ∈ T * . Then, from Lemma 13, L T * is a maximal logic such that L T * ⊆ T * . Assume A ∈ L T * then A ∈ T * which is not the case. Thus L T * is a maximal L-logic, that is L ⊆ L T * , and A ∈ L T * . Lemma 15 (Lindenbaum lemma). If L is a consistent logic (resp. T is a consistent theory) then there exists a maximal consistent logic L * (resp. a maximal consistent theory T * ) such that L ⊆ L * (resp. T ⊆ T * ).

Proof. It is a direct consequence of the Separation lemmata with A = ⊥. Lemma 16. If L is a consistent logic, then L has a model. Proof. From Lemma 15, there exists a maximal consistent logic

L * such that L ⊆ L * . Let's define c d =< ν Σ > (c ∧ d) ∈ L * . • As L contains (Σ1), so does L * and thus < ν Σ > (c ∧ c) ∈ L * . Thus c c that is is reflexive. • Assume c d. As ∧ is commutative, < ν Σ > (c ∧ d) ↔< ν Σ > (d ∧ c) ∈ L *
and thus, by (M P ), d c that is is symmetric.

• Assume c d and d e. Then, as L * contains (Σ2) and is closed under

(M P ), [ν Σ ](d → e) ∈ L * and [ν Σ ](c → d) ∈ L * . Then, as [ν Σ ](c → d) → ([ν Σ ](d → e) → ([ν Σ ](c → d) ∧ [ν Σ ](d → e))
) is a boolean tautology and thus in L * , by applying

(M P ) twice, [ν Σ ](c → d) ∧ [ν Σ ](d → e) ∈ L * . But, as ([ν Σ ](c → d) ∧ [ν Σ ](d → e)) → [ν Σ ]((c → d) ∧ (d → e)
) is a boolean tautology and thus in L * , by applying

(M P ), [ν Σ ]((c → d)∧(d → e)) ∈ L * and thus [ν Σ ](c → e) ∈ L * .
Then, from (Σ2) using (M P ), < ν Σ > (c∧e) ∈ L * and thus c e that is is transitive.

Thus is an equivalence relation.

Let [c] = {d|c d}, we construct M = Σ / , χ(c) = [c], V (A) = {[c]| < ν Σ > (c ∧ A) ∈ L * } and R * (α) = {([c], [d])| < ν Σ > (c∧ < α > d) ∈ L * }. Let's show that M = (M, χ, V, R) is a model. • χ is obviously onto. • Assume m ∈ χ(Σ O ) ∩ χ(Σ E ) that is ∃c O ∈ Σ O , c E ∈ Σ E such that [c O ] = [c E ] that is < ν Σ > c O ∧c E ∈ L * . As Σ 0 ∪Σ E = ∅, c 0 ∈ Σ E and thus, from (Σ S 2), c 0 → [ν Σ E ]¬c E . Meanwhile, from (Σ S 1), c E →< ν Σ > c E . Thus < ν Σ > (< ν Σ E > c E ∧ [ν Σ ]¬c E ) ∈ L * which is false. As L * is consistent, χ(Σ O ) ∩ χ(Σ E ) = ∅. • Let i ∈ Σ, then V (i) = {[c]| < ν Σ > (c ∧ i) ∈ L * } = {[i]} = {χ(i)}. • Let φ 0 ∈ Φ 0 , assume ∃c O ∈ Σ O such that [c O ] ∈ V (φ 0 ) then < ν Σ > (c O ∧ φ 0 ) ∈ L * . As Σ O 1 is in L * , c O → ¬φ 0 and thus < ν Σ > (¬φ 0 ∧ φ 0 ) ∈ L * which is impossible as L * is consistent. Thus V (φ 0 ) ∈ P(χ(Σ E )). • -Assume [c] ∈ M \V (A) then < ν Σ > (c ∧ A) ∈ L * . As L * is maximal, [ν Σ ](c → ¬A) ∈ L * . As (Σ2) is in L * so is < ν Σ > (c ∧ ¬A) ∈ L * and thus [c] ∈ V (¬A). Thus M \V (A) ⊆ V (¬A). -Otherwise [c] ∈ V (A) then < ν Σ > (c ∧ A) ∈ L * . If [c] ∈ V (¬A), then < ν Σ > (c ∧ ¬A) ∈ L * . As (Σ2) is in L * so is [ν Σ ](c → ¬A) ∈ L * and thus < ν Σ > (A ∧ ¬A) ∈ L * as L * is consistent, it is impossible and thus V (¬A) ⊆ M \V (A). Thus V (¬A) = M \V (A). • -Assume [c] ∈ V (A) ∪ V (B) then: * Either [c] ∈ V (A) and then < ν Σ > (c ∧ A) ∈ L * and thus < ν Σ > (c ∧ (A ∨ B)) ∈ L * . Thus [c] ∈ V (A ∨ B), * or [c] ∈ V (B) and then < ν Σ > (c ∧ B) ∈ L * and thus < ν Σ > (c ∧ (A ∨ B)) ∈ L * . Thus [c] ∈ V (A ∨ B). Thus V (A) ∪ V (B) ⊆ V (A ∨ B) -Otherwise, {c 0 , c 1 } ⊆ S and then, from (Σ S 2), < ν Σ > (c 0 ∧[ν S ]¬c 1 ) ∈ L * . Assume ([c 0 ], [c 1 ]) ∈ R(ν S ) then < ν Σ > (c 0 ∧ < ν S > c 1 ) ∈ L * and, from (Σ2), [ν Σ ](c 0 →< ν S > c 1 ) ∈ L * and thus < ν Σ > (< ν S > c 1 ∧ [ν S ]¬c 1 ) ∈ L * which is impossible as L * is consistent. Thus R(ν S ) ⊆ χ(S) 2 .
Thus χ(S) 2 = R(ν S ) The idea is similar to the one for CPDL, that is we prove that the ω-rules, (Ind) and (Cov), can be replaced so that the set of valid formulae is recursively enumerable. Then, we prove that if a formula is satisfiable then it is satisfied by a finite model. In this case, there is a procedure, that may not stop, deciding if the formula is valid and another one, that may not stop either, deciding if the formula is unsatisfiable. As the formula can't be both, one of them will reach a result eventually. Definition 7.3.8. Let FC2PDL be the logic obtained from C2PDL by dropping the rules (Ind) and (Cov) and adding the axiom (ind):

• -Let ([c], [d]) ∈ R(α) ∪ R(β) then: * either ([c], [d]) ∈ R(α) and thus < ν Σ > (c∧ < α > d) ∈ L * and then, from (∪); < ν Σ > (c∧ < α ∪ β > d) ∈ L * and thus ([c], [d]) ∈ R(α ∪ β), * or ([c], [d]) ∈ R(β) and thus < ν Σ > (c∧ < β > d) ∈ L * and then, from (∪); < ν Σ > (c∧ < α ∪ β > d) ∈ L * and thus ([c], [d]) ∈ R(α ∪ β) Thus R(α) ∪ R(β) ⊆ R(α ∪ β). -Let ([c], [d]) ∈ R(α ∪ β) then < ν Σ > (c∧ < α ∪ β > d) ∈ L * . Then, from (∪), < ν Σ > (c ∧ (< α > d∨ < β > d)) ∈ L * . Then: * either < ν Σ > (c∧ < α > d) ∈ L * and then ([c], [d]) ∈ R(α), * or < ν Σ > (c∧ < β > d) ∈ L * and then ([c], [d]) ∈ R(β), * or < ν Σ > (c ∧ [α]¬d ∧ [β]¬d) ∈ L * and thus, from (Σ2, [ν Σ ](c → ([α]¬d ∧ [β]¬d)) ∈ L * . Then < ν Σ > ((< α > d∨ < β > d) ∧ [α]¬d ∧ [β]¬d) ∈ L * which is impossible as L * is consistent. Thus R(α ∪ β) ⊆ R(α) ∪ R(β) Thus R(α ∪ β) = R(α) ∪ R(β) • -Let ([c
(< ν Σ > (c∧ < α > e) ∈ L * or < ν Σ > (e∧ < β > d) ∈ L * ). As L * is maximal, ∀e. ([ν Σ ](¬c ∨ [α]¬e) ∈ L * or [ν Σ ](¬e ∨ [β]¬d) ∈ L * ). Thus ∀e. ([ν Σ ](c → [α](< β > d → ¬e) ∈ L * or, from (ν Σ 2), [ν Σ ; c?; α](< β > d → ¬e) ∈ T hen * ). Thus ∀e. [ν Σ ; c?; α; (< β > d)?]¬e) ∈ L * . As L * is closed under (Cov), [ν Σ ; c?; α; (< β > d)?]⊥ ∈ L * that is, from (?) and (Σ2), [ν Σ ](c → [α](< β > d → ⊥)) ∈ L * . Assume ([c], [d]) ∈ R(α; β) then < ν Σ > (c∧ < α >< β > d) ∈ L * . Thus < ν Σ > ([α](< β > d → ⊥)∧ < α >< β > d) ∈ L * which is
• -Let ([c], [d]) ∈ {(s, t)|(t, s) ∈ R(α)} then < ν Σ > (d∧ < α > c) ∈ L * . From (Σ1), < ν Σ > c ∈ L * . Assume < ν Σ > (c ∧ [α -]¬d) ∈ L * then, from (Σ2), [ν Σ ](c → [α -]¬d) ∈ L * and thus < ν Σ > (d∧ < α > [α -]¬d) ∈ L * . But, from (-), < ν Σ > (d ∧ ¬d) ∈ L * which is impossible as L * is consistent. Thus, as L * is maximal, [ν Σ ](¬c∨ < α -> d) ∈ L * that is [ν Σ ](c →< α -> d) ∈ L * and thus ([c], [d]) ∈ R(α -). Thus {(s, t)|(t, s) ∈ R(α)} ⊆ R(α -). -Let ([c], [d]) ∈ {(s, t)|(t, s) ∈ R(α)}. If < ν Σ > (d∧ < α > c) ∈ L * , ([c], [d]) ∈ {(s, t)|(t, s) ∈ R(α)} which is not the case thus, by maximality of L * , [ν Σ ](¬d ∨ [α]¬c) ∈ L * . Assume ([c], [d]) ∈ R(α -), then < ν Σ > (c∧ < α -> d) ∈ L * that is, using (Σ2), [ν Σ ](c →< α -> d) ∈ L * and thus [ν Σ ](d → [α] < α -> d) ∈ L * . Then, from (-), [ν Σ ](d → ¬d) ∈ L * that is, from (Σ2), < ν Σ > (d ∧ ¬d) ∈ L * which is impossible as L * is consistent. Thus R(α -) ⊆ {(s, t)|(t, s) ∈ R(α)}. Thus R(α -) = {(s, t)|(t, s) ∈ R(α)}. • -Let ([c], [d]) ∈ R(α * ). Then, < ν Σ > (c∧ < α * > d) ∈ L * . Assume ∀k. < ν Σ > (c∧ < α k > d) ∈ L * then, as L * is maximal, ∀k. [ν Σ ](¬c ∧ [α k ]¬d) ∈ L * that is [ν Σ ; c?; ][α k ]¬d ∈ L * . But L * is closed under (Ind) and thus [ν Σ ; c?; ][α * ]¬d ∈ L * that is [ν Σ ](c → [α * ]¬d) ∈ L * and thus < ν Σ > ([α * ]¬d∧ < α * > d) ∈ L * which is impossible as L * is consistent. Thus R(α * ) ⊆ k<ω R(α k ) -Let's prove by induction that < α k > A →< α * > A ∈ L * : * From ( * ), A →< α * > A ∈ L * thus < α 0 > A →< α * > A ∈ L * * Assume < α k > A →< α * > A ∈ L * , then [α k+1 ]¬A∨ < α k+1 > A ∈ L * being a tautology, thus [α k+1 ]¬A∨ < α >< α k > A ∈ L * and then, from the induction hypothesis, [α k+1 ]¬A∨ < α >< α * > A ∈ L * . But, from ( * ), < α >< α * > A →< α * > A ∈ L * and thus < α k+1 > A →< α * > A ∈ L * . Then, assume ([c], [d]) ∈ k<ω R(α k ). There exists k such that ([c], [d]) ∈ R(α k ) and thus < ν Σ > (c∧ < α k > d) ∈ L * but then, as < α k > A →< α * > A ∈ L * , < ν Σ > (c∧ < α * > d) ∈ L * and thus ([c], [d]) ∈ R(α * ). Thus k<ω R(α k ) ⊆ R(α * ). Thus R(α * ) = k<ω R(α k ). • -Let ([c], [d]) ∈ R(A?) then < ν Σ > (c∧ < A? > d) ∈ L * . From (?), < ν Σ > (c ∧ A) ∈ L * and < ν Σ > (c ∧ d) ∈ L * . Thus [c] = [d] and [c] ∈ V (A) thus ([c], [d]) ∈ {(s, s)|s ∈ V (A)}. Thus R(A?) ⊆ {(s, s)|s ∈ V (A)} -Let ([c], [d]) ∈ {(s, s)|s ∈ V (A)} then [c] = [d] and [c] ∈ V (A) thus < ν Σ > (c∧A) ∈ L * and < ν Σ > (c∧d) ∈ L * thus < ν Σ > (c∧ < A? > d) ∈ L *
(A ∧ [α * ](A → [α]A)) → [α * ]A. Let F denote provability in FC2PDL .
The theorems of FC2PDL form a recursively enumerable set.

Lemma 17. If

F A then A Proof. It amounts to prove that ind. Let γ = (A ∧ [α * ](A → [α]A))?. Assume there exists k < ω such that < γ >< α k > ¬A that is A ∧ [α * ](A → [α]A)∧ < α k > ¬A. From ( * ), applied k times, one obtains A ∧ 0≤l<k [α l ](A → [α]A) ∧ [α k ](A → [α]A ∧ [α][α * ](A → [α]A))∧ < α k > ¬A. Then, A ∧ 0≤l<k [α l ](A → [α]A) yields 0≤l≤k [α l ]A and thus, adding < α k > ¬A an impossibility is reached. Thus ∀k < ω, [γ][α k ]A which, from (Ind), yields [γ][α * ]A that is (A ∧ [α * ](A → [α]A)) → [α * ]A. Thus (ind) is a theorem of C2PDL .
Definition 7.3.9. The Fischer-Ladner closure of a set of formulae Σ is the smallest set FL that satisfies: 

• Σ ⊆ FL • FL is closed under sub-formulae Fischer-Ladner conditions, [β][β * ]A ∈ x. But then there is z such that [x] Γ R † (β)[z] Γ and [z] Γ (R † (β)) n [y] Γ .
]A ∈ y. As M † is a model, [u] Γ R † (β * )[v] Γ implies that there is j such that [u] Γ (R † (β)) j [v] Γ and thus [β * ]A ∈ v and thus A ∈ v.
Lemma 28. Let Γ be a finite set closed under Fischer-Ladner conditions. Then M † is a filtration of M c under Γ.

Proof.

•

M Γ := {[s] Γ |s ∈ M c } by construction • for every program α ∈ Γ, if sR c (α)t, then [s] Γ R Γ (α)[t]
Γ by Lemma 26.

• for every program α ∈ Γ, if [s] Γ R Γ (α)[t] Γ , then all formulae A, [α]A ∈ s∩Γ only if A ∈ t by Lemma 27 • for every name in o ∈ Γ, if o ∈ s, [s] Γ ∈ χ Γ (o) by construction • for every atomic proposition φ 0 ∈ Γ, V Γ (φ 0 ) = {[s] Γ |s ∈ V c (φ 0 )}

by construction

Lemma 29. If F A then, for some finite model M, M A.

Proof. Assume F A then, from Lemma 20, there exists x such that A ∈ x. We call Γ the Fischer-Ladner closure of {A}. It is finite. We define accordingly M † . By Lemma 28, M † is a filtration and, by Lemma 24, M † , [x] Γ A and M † is a model.

C2PDL can be compared to other logics and it is possible to translate its formulae into formulae of another logic. This can be used to prove decidability of the logic in another way. For instance, Hybrid µ-Calculus [START_REF] Sattler | The hybrid µ-calculus[END_REF] is known to be decidable and can express most C2PDL formulae.

Hybrid µ-Calculus cannot express the separation between nodes in Σ 1 and Σ 2 , that is between nodes that currently exists and those that may be created in the future. It is possible to use the same method used in Chapter 4 to avoid creating and deleting nodes by having all nodes pre-exist and use a labeling indicating those that currently do not exist and adding to the pre and postcondition that nodes that do not exist do not satisfy atomic propositions and do not have incoming or outgoing edges.

Hybrid µ-Calculus contains almost the same constructors as C2PDL . It lacks the program closure but it allows for the µ and ν constructors. As α * φ is equivalent to µx.(φ ∨ α x), it is possible to rewrite the formulae of C2PDL into formulae of Hybrid µ-calculus.

To express formally NApp(s) in C2PDL , one needs to introduce some additional definitions first. Definition 7.4.1 (Explicitly Named Nodes, Non-Oriented Cycles). An explicitly named node is a node such that each disjunct of the disjunctive normal form of its label contains a name. A non-oriented cycle, c, is a finite list of nodes c = [n 0 , . . . , n k ] such that (i) n k = n 0 and (ii) ∀κ ∈ [0, k -1], ∃r ∈ Π 0 such that (n κ , n κ+1 ) ∈ R(r) or (n κ+1 , n κ ) ∈ R(r). Definition 7.4.2 (Grove and thicket). A grove is a disjoint union of thickets. A thicket is a connected graph such that it does not contain any non-oriented cycle composed only of non explicitely named nodes. We call a strategy S relative to a rewriting system R a grove-strategy if the left-hand sides of all the rules appearing under a closure are groves.

Let lhs be a left-hand side. Let us split N lhs into T E , the set of explicitly named nodes, and T I = N lhs \T E . For each maximally connected subgraph composed only of nodes in T I , a distinguished node r i is selected. If there is a maximally connected subgraph composed only of explicitly named nodes, an r i is also picked for it. Now, everything is ready to define NApp( s). Rule 2 is the most involved. NA(n, V ) is used to describe what as to be true for a node not to be n. V is used to track which nodes have already been visited. φ∈L N (n) ¬φ states that there is at least one of the formulae satisfied by n that is not satisfied while e∈E|s(e)=n|s(e)∈T E ∪(T I \V ) [L E (e)]NA(t(e), V ∪ {n}) means that for there is a neighbor of n using an outgoing edge that cannot find a match.

1 NApp(ρ) = ri [ν Σ1 ]NA(r i , ∅) 2 NA(n, V ) = ( φ∈L N (n) ¬φ) ∨ ( e∈E|s(e)=n|s(e)∈T E ∪(T I \V ) [L E (e)]NA(t(e), V ∪ {n})) ∨ ( e∈E|t(e)=n|t(e)∈T E ∪(T I \V ) [L E (e) -]NA(s(e), V ∪ {n})) if n ∈ V 3 NA(n, V ) = ¬µ(n) if n ∈ T E ∩ V 4 NApp( ) = 5 
e∈E|t(e)=n|t(e)∈T E ∪(T I \V ) [L E (e) -]NA(s(e), V ∪ {n}) has the same signification but for incoming edges. Rule 3 is used to recall the names of the explicitly named nodes that have already been visited without creating a cycle in the execution. Rules 4 to 7 are exactly the same as for NApp(s, G). Rule 1 says that for at least one r i , it is not possible to find a node that would be a match. It is noteworthy that there is no rule for N ∈ T I ∩ V . This is because no such would need it as the left-hand side has to be grove. 

Application to the hospital

We now illustrate how a graph rewriting system is proven correct in C2PDL . In this example, illustrated in Figure 7.3, the second transformation that creates a new patient. It also creates a folder to go with it and assigned to a physician. For the sake of simplicity none of the precondition, postcondition and invariant feature all the properties that are required in Section 3.3. The chosen precondition is ( ν Σ2 .pa 1 )∧( ν Σ2 fo 1 )∧( ν Σ1 ( ph 1 ∧P H))∧([ν Σ1 ](P A∨ M S) ⇒ P E) that can be read as ph 1 is an existing physician, pa 1 and fo 1 do not currently exist and all patients and medical staffers are persones. The chosen postcondition is ( ν Σ1 .(pa 1 ∧ is about -fo 1 ∧ ref phys ( ph 1 ∧P H)) ∧ ([ν Σ1 ](P A∨ M S) ⇒ P E) that means that fo 1 now exists and that it is about pa 1 that currently exists too and whose referent physicien is ph 1 . In addition, patients and medical staffers are still persons.

Let us now check that the specification (P re,s,P ost) is correct. The correctness formula is (P re ⇒ wp(s, P ost)) vc(s, P ost). As s is only one rule, wp(s, P ost) = App(tag(ρ)) ⇒ wp(tag(α ρ , P ost) and vc(s, P ost) = . Thus the correctness formula is P re App(tag(ρ)) ⇒ wp(tag(α ρ , P ost)). As we only use one rule, tag is the identity. Thus App(tag(ρ)) = ν Σ1 (i∧P H∧ ph 1 ∧ works in j.

Let us now focus on wp(tag(α ρ , P ost))] that is P ost[α ρ ]. We will now look at the actions performed and how P ost is modified.

• hospital in never occurs in P ost and thus P ost is left unaffected by [hospital in:= hospital in+(k, j)]

• P E occurs in [ν Σ1∪{l} (P A∨ M S) ⇒P E. It is replaced by [ν Σ1∪{l} (P A∨ M S) ⇒ (P E∨k).

• P A occurs in [ν Σ1∪{l} (P A∨ M S) ⇒ (P E∨k). It is replaced by [ν Σ1∪{l} ](P A∨k∨ M S) ⇒ (P E∨k).

• pa 1 occurs in ν Sigma1∪{l} pa 1 ∧φ. It is replaced with ν Sigma1∪{l} k ∧ φ.

• All occurrences of ν Σ1∪{l} in P ost are replaced by ν Σ1∪{k}∪{l} due to [new node(k)]

We thus now have to prove that P re ∧ App(tag(ρ)) ⇒ ((

ν Σ1∪{k}∪{l} k ∧ ( is about -l ∨ k?ν Σ1∪{l}∪{k} l) ∧ ref phys∪k?; ν Σ1∪{l}∪{k} ; i? (i∧ph 1 ))∧ [ν Σ1∪{l}∪{k} ](P A∨k∨ M S) ⇒ (P E∨k)).
Let us work with [ν Σ1∪{l}∪{k} ](P A∨k∨ M S) ⇒ (P E∨k)). As P re ⇒ [ν Σ1 ](P A∨k∨ M S) ⇒ (P E∨k)), only k and l actually interest us. k appears on both sides of the implication and l, not existing from P re, cannot be labeled with P A or M S.

Let us deal with the first part now. ν Σ1∪{k}∪{l} k is trivially true. So is, ν Σ1∪{k}∪{l} k ∧ k?ν Σ1∪{k}∪{l} l as k and l are in Σ 1 ∪ {k} ∪ {l}. Finally the same can be said for ν Σ1∪{k}∪{l} k ∧ k?ν Σ1∪{k}∪{l} ; i? (P H∧ ph 1 ) as it is known from App(tag(ρ)) that ν Σ1 i∧P H∧ ph 1 .

This transformation is thus correct.

Conclusion

In this chapter, we discussed another logic that can be used to describe graphs and their transformations. C2PDL is an extension of dynamic logic that allows the use of more complex programs (namely converse), the use of nominals to uniquely identify nodes and a mechanism to handle nodes that do not currently exist. C2PDL allowed us to present an alternative logic to Description Logics as a possible choice to express graph properties and prove programs correct. It also gave us a better insight on what the conditions that were introduced in Chapter 5 imply as we have shown additional condition that rules that appear in closure strategies have to satisfy. Finally, and most importantly, C2PDL allowed us to express reachability properties which are key in graph descriptions and transformations.

We proved that C2PDL satisfies the conditions that we introduced is Chapter 5. It can express graph properties, it is closed under substitutions, for the actions that were introduced, it can express the application conditions given that restrictions on the left-hand sides of rules are enforced and its validity problem is decidable. We also gave an example proof for the running example of how to prove, intuitively, that a specification is correct.

Chapter 8

Graph Rewriting Systems

As explained in Section 1.3, imperative programming languages are far from being the only option to create graph transformations. In this chapter, the notion of logically decorated rewriting systems, LDRS, is introduced. It is the same as the one introduced in [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF].

Simply told, a rewriting rule has two components: a left-hand side, sometimes called head of the rule, and a right-hand side, sometimes called body of the rule. The left-hand side of the rule is a graph that contains the nodes that the rule intends to modify while the right-hand side contains the actions are performed. In Section 8.1, the formal definition of a rule is given. Obviously, using just one rule does not provide much transforming power. LDRS's are sets of rules that are used to modify a graph. LDRS's are defined in Section 8.1 too.

The LDRS's that we use are extensions of graph rewriting systems as defined in [START_REF] Echahed | Inductively sequential term-graph rewrite systems[END_REF] where graphs are attributed with logic formulae. In Section 8.1, details are given why the ability to use formulae as attributes is important. Among other things, it allows to express much more clearly and concisely transformations. The left-hand sides of the rules are thus logically decorated graphs whereas the right-hand sides are defined as sequences of atomic actions. These actions constitute the set of elementary transformations used in graph transformation processes as defined in Section 1.3.

Obviously, the rules that are used cannot refer to the actual graph that is modified. In order to find the pattern of the left)hand side of a rule inside an actual graph, matches are used. A match is a pair of functions (f N , f E ) that associates to each node of the left-hand side a node of the actual graph and to each edge an edge of the actual graph. The match also checks that attributes of the elements of the left-hand side, both nodes and edges, correspond to the ones of the matched elements. The formal definition of a match is given in Section 8.2. Once each node and each edge of the left-hand side is matched to an element of the actual graph, the actions can be performed. Each action that should modify a node or an edge of the left-hand side modifies actually the image of that element by the match in the actual graph. Now that it is clearer how to apply a rule, one needs to understand how the Rules with atomic formulae are on the left. The rule with a non-atomic formula is on the right.

LDRS's modify graphs. An approach could be to choose to apply any rule for which a match can currently be found. This approach actually restricts drastically the power of the user as she is not able to tailor the application of the rules to its specific needs at a given point in the application of the transformation. A more suitable and adaptable approach is to define strategies that explain how the rules are to be applied. Strategies are formally introduced in Section 8.2 and examples are provided to help the reader grasp more easily how they work.

Graph Rewriting Systems

In this section, we introduce formally the notion of rewriting rule and of LDRS. A logically decorated rewriting system, LDRS, is a set of rules.

It is noteworthy that the left-hand side of a rule is an attributed graph, that is it can contain nodes labeled with formulae. Once more, let us consider any possible logic. The ability to label nodes in rules with formulae is not insignificant. Indeed, these formulae can express reachability expression (closure of a program), non-local properties (universal program), ... These node labelings allow to write more concise and simpler rewriting systems. For instance, Figure 8.1 provides an example in which one wants to remove all unreachable nodes from a start state from an automaton. Two LDRSs, GRS 0 and GRS 1 , for this problem are given. Without the closure constructor, one would point out that the start states are reachable (rule ρ 00 ), then say that every neighbor of a reachable node is reachable (rule ρ 01 ) and finally that all nodes that have not been reached by applying the first two rules as much as possible are to be removed (rule ρ 02 ). GRS 0 requires the explicit computation of the reachability making the algorithm more complex. On the other hand, GRS 1 only uses the one rule that says that all nodes that are not reachable from a start state are to be removed (rule ρ 10 ). It is worth noting that the impact of formulae in node labels is not limited to graph rewriting. Indeed, let us consider the term-rewriting system of integer arithmetic with multiplication. The classical way to deal with 0s in such a case is to have rules saying that 0×x 0 and x×0 0. A wrong heuristic could lead to considerable calls in the case of a term like a 0 ו • •×a k ×0×a k+1 ו • •×a n where the a i s are terms. Considering terms as trees, and thus as graphs, it is possible to improve on this set of rules by using the one rule i : × ∧ ((L ∪ R); ×?) * 0 i : 0 saying that a node i such that i : × ∧ ((L ∪ R); ×?) * 0, that is a node such that it is a multiplication (i : ×) and there is a path of left-or right-operands of multiplications that leads to a 0 (i : ((L ∪ R); ×?) * 0), rewrites to 0.

Example 8.1.1. Let us now give a small example of a slightly more involved rule in Figure 8.2. One possible interpretation would be that it is required to change the access policy in order to restrict acces to certain places. Once more, this can be done using several different rules instead of the one. For instance, a way to deal with that problem would be to label all nodes that access through paths composed only of edges labelled β a node labelled D in a first time. Then select those nodes labelled D that have an incoming edge labelled α and remove from all the outgoing edges of these nodes the label β and add the label γ.

Rules allow to define more involved actions than atomic ones. Their power is still limited, in order to produce more interesting transformations, strategies, introduced in Section 8.2, are used. Nonetheless, up to now, each example was made of one single rule. In general, rewriting systems contain many more rules that are correspond to different actions.

Example 8.1.2. As a more thorough example, let us provide a very simple graph rewriting system R that tries to produce a full and correct grid for sudoku. It contains 16 rules, that are summarized in Figure 8.3. The graph is defined such that all nodes correspond to one of the cells of the grid. The graph alphabet is ({P 1 , P 2 , P 3 , P 4 , 1, 2, 3, 4}, {R, C, SQ}). A node is labelled P i 's if i is considered a possible value for this cell of the grid. Meanwhile, a node is labelled i if i is known to be the value of this cell. Edges are never modified and define the relations between the cells. All cells on the same row are linked, from left to right, with edges labelled R, all cells on the same column are linked, from top to bottom, with edges labelled C and the top left cell of each square is linked to each other cell of the square via edges labelled SQ. The rules ρ R,J make sure that when a line (resp. a column or a square) contains a cell with value J (i : (r ∪ r -) * J), P J is no longer available for all the cells on the line (resp. column or square). The rules ρ J are used to pick one choice among those that i : P J ∧ (r ∪ r -) * J P J := P J -i i : P J J := J + i; P 1 := P 1 -i; P 2 := P 2 -i; P 3 := P 3 -i; P 4 := P 4 -i ρ r,J : Example 8.1.3. We will use C2PDL to state some properties of the Sudoku example. We are going to use a name for each cell of the grid (a ij with 0 ≤ i, j ≤ 3 where i is the row and j the column in which the cell can be found). We will also use three atomic programs R (resp. C and SQ) to state which cells are on the same row (resp. column and square). Finally, we will need eight atomic propositions 1 (resp. 2,3 and 4) and P 1 (resp. P 2 ,P 3 and P 4 ) to state that a cell is known to contain 1 (resp. 2, 3 or 4) and that a cell may contain 1 (resp. 2, 3 or 4). Thus we require that

ρ J :
{a ij |i, j ∈ [0, 3]} ⊂ Σ, {i|i ∈ [1, 4]} ∪ {P i |i ∈ [1, 4]} ⊂ Φ 0 and {R, C, SQ} ⊂ Π 0 .
As we do not create or delete nodes, we do not make use of the possibility to change the set of definition of the total program. For this example, ν stands for ν Σ1 . We define below a few relevant formulae.

• The atomic program C should describe columns : One can observe that the rules of Example 8.1.4 differ slightly in their definition from what has been introduced in Definition 8.1.1 in that the rules have parameters, for instance ph 1 and d 1 for New Phys. This is actually due to a difference in the purpose of the transformations. In Example 8.1.1, the transformation is purely structural: one wants to change not a specific location but all the accesses so that they are safer. Similarly, the goal of Example 8.1.2 is to globally affect the grid so that it becomes filled. On the other hand, in Example 8.1.4, the action are specific to a given set of individuals that are not chosen a priori by the programmer but will be selected depending on the use case. The definition of a rule is thus slightly modified. Definition 8.1.2 (Parametrized Rule). A parametrized rule ρ[ c] is a pair (LHS,α) where LHS, called the left-hand side, is an attributed graph with C2PDL formulae as attributes and α, called the right-hand side, is an action. c is a vector of atomic concepts that are used to identify individuals. They can occur in the left-hand side to select a given individual or in the right-hand side to be set to be satisfied by a new element.

c j = ν (a 0j ∧ C (a 1j ∧ C (a 2j ∧ C a 3j )))

The problem of the match

Now that it has been made clear what rules are, one should consider how to apply them. This is done through a match that scans the graph under study to check wether or not there exists a set of nodes that match with the left-hand side of a rule.

Definition 8.2.1 (Match).

A match h between a left-hand side LHS and a graph G is a pair of functions h

= (h N , h E ), with h N : N LHS → N G and h E : E LHS → E G such that: 1. ∀n ∈ N LHS , ∀c ∈ L N LHS (n), h N (n) |= c 2. ∀e ∈ E LHS , L E LHS (e) = L E G (e) 3. ∀e ∈ E LHS , s G (h E (e)) = h N (s LHS (e)) 4. ∀e ∈ E LHS , t G (h E (e)) = h N (t LHS (e))
The third and the fourth conditions are classical and say that the source and target functions and the match have to agree. The first condition says that for every node n of the left-hand side, the node to which it is associated, h(n), in G has to satisfy every concept that n satisfies. This condition clearly expresses additional negative and positive conditions which are added to the "structural" pattern matching. The second one ensures that the match respects edge labeling. Definition 8.2.2 (Rule application). A graph G rewrites to graph G using a rule ρ = (LHS, α) iff there exists a match h from LHS to G. G is obtained from G by performing actions in h(α) 1 of existential quantification so that the graph can be traversed to look for a match. Obviously, the ∃-quantifier of first-order logic is a prime candidate but some other mechanisms like individual assertions a : C in Description Logics [START_REF]The Description Logic Handbook: Theory, Implementation, and Applications[END_REF] or the @ operator of hybrid logic [START_REF] Areces | Hybrid logics[END_REF] can be used.

. Formally, G = G[h(α)]. We write G → ρ G or G → ρ,h G . G ⇒ G (Empty rule) App(ρ, G) G →ρ G G ⇒ρ G (Rule) G ⇒s 0 G G ⇒s 1 G G ⇒s 0 ;s 1 G (Strategy composition) G ⇒s 0 G G ⇒s 0 ⊕s 1 G (Choice left) G ⇒s 1 G G ⇒s 0 ⊕s 1 G (Choice right) NApp(s, G) G ⇒ s * G (Closure false) G ⇒s G G ⇒ s * G App(s, G) G ⇒ s * G (Closure true)
Requirement 5. L must be able to express App(ρ[ c]) for all rules ρ[ c] of the graph rewrite system under study.

Hoare calculus

As previously, in order to show the correctness of a specification, we follow a Hoare-calculus style and compute the weakest precondition wp(S, P ost). For that, we define the weakest preconditions of a formula P ost induced by a strategy, a rule, an action and an atomic action. The weakest precondition of an elementary action, say a, and a postcondition Q is once again defined as wp(a, Q) = Q[a] where Q[a] stands for the precondition consisting of Q to which is applied a substitution induced by the action a that we denote by [a]. The rules for atomic actions are the same as the ones in Figure 5.1. The weakest precondition calculus is presented in Figure 8.6 for actions and strategies. Apart from wp(ρ, Q), the weakest preconditions defined in here are the usual

wp( , Q) = Q wp(a; α, Q) = wp(a, wp(α, Q)) wp( , Q) = Q wp(s 0 ; s 1 , Q) = wp(s 0 , wp(s 1 , Q)) wp(s 0 ⊕ s 1 , Q) = wp(s 0 , Q) ∧ wp(s 1 , Q) wp(s * , Q) = inv s wp(ρ, Q) = App(tag(ρ)) ⇒ wp(tag(α ρ ), Q)
vc(ρ, Q) = vc(s 0 ; s 1 , Q) = vc(s 0 , wp(s 1 , Q)) ∧ vc(s 1 , Q) vc(s 0 ⊕ s 1 , Q) = vc(s 0 , Q) ∧ vc(s 1 , Q) vc(s * , Q) = (inv s ∧ NApp(s) ⇒ Q) ∧ (inv s ⇒ wp(s, inv s )) ∧ vc(s, inv s )
Figure 8.8: Verification conditions

Conclusion

In this chapter, we introduced a transformation framework using rewrite rules and strategies. This is an approach that looks closer to the rewrite systems used in category theory yet with a more algorithmic flavour. Among its most interesting features, this frameworks allows to introduce explicit conditions on edge and node labels. It allows more flexibility on the side of the user. As usual when using rewrite rules, the key to the transformations lies in the finding of a match. This introduces a new condition on the logic: in order to be able to prove the correctness of a rewrite system, a logic has to be able to express the existence of a match. This condition is the counterpart of the condition on the expressibility of the select that was introduced in Chapter 4.

Moreover, the user usually has a clear understanding of what transformations should be performed and simply applying any rule for which there is a match could yield many results that are unwanted. To tackle this problem, strategies are introduced to reduce the possible transformations to the ones that are intended.

Chapter 9

First-order logic and (some of ) its fragments Up to this chapter, several different logics have been featured that we deemed interesting to describe graphs and their transformations be them Description Logics, as in Chapter 6, or the logic we introduced in Chapter 7 that is closer to dynamic logics and thus allows more flexibility in term of edge description. For all these logics, we have observed that being able to express the applicability of the rules was the harshest condition that we would like to impose on them. This comes as no surprise as the definition of the match is a second-order formula with quantification on node and edge labels.

It is possible to express the existence or absence of a match in first-order logic though. In this chapter, we thus start by proving that first-order logic meets all the requirements that we have put forward. Except that it is not decidable.

In order to enquire a little further the condition on the expressibility of the existence or absence of match, we study in this chapter two well-known fragments of first-order logic that are known to be decidable yet close to the boundary with undecidable logics. The first logic we study is C 2 [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF], the twovariable fragment of first-order logic with counting. This logic has been proven decidable yet, even when dropping the counting quantifiers, equality and constants, adding a third variable yields an undecidable logic [START_REF] Surànyi | Zur reduktion des eitscheidungsproblem des logischen funktioskalküls[END_REF]. This is a logic that is particularly interesting in that it contains all the Description Logics we considered extended with much more expressiveness in terms of edge descriptions. Its main shortcoming is, obviously, that it allows only for two variables and thus limits the graphs that can be described. The second logic we consider is ∃ * ∀ * [START_REF] Börger | The classical decision problem[END_REF], that is the fragment of first-order logic that contains, when written in prenex normal form, only formulae with every existential quantifiers preceding every universal quantifiers. These logics have been used in [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF].

We prove that these logics are closed under substitutions, by proving that first-order logic is and showing that the translation used in that case can be applied to these sub-logics, but focus much more on the fact that they can express the applicability of a rule provided that, different, restrictions on the rules are enforced. This, in turn, gives more insight on whether or not they are suitable for any given system of rules whose correctness one is interested in.

None of these three logics comes with a mechanism to create or remove elements. In order to circumvent this limitation, we add to the signature of the logic, that is to the set of node and edge labels, an atomic formula Active.

Creating a new node becomes adding it to the Active nodes. This also requires to add that ∀x, y.¬Active(x) ⇒ ( ψ an atomic unary predicate ¬ψ(x) ∧ r an atomic binary predicate ¬r(x, y) ∧ ¬r(y, x)).

First-order logic

First-order logic, FO, is a natural choice when one needs to pick a logic and verification of graph transformations is not an exception. Yet, it is far from perfect. First, it is not decidable and it thus goes against our stated goal to be able to fully automatize the decision procedure. The other thing one has to remember is that first order logic does not allow for parametrized quantifiers and thus one has to use the trick presented in Chapter 4 to avoid creating and deleting nodes instead adding a label Active that identifies the nodes that do exist and stating that nodes that are not labeled as existing cannot be labeled and have neither incoming or outgoing edges. With this limitation, one can then prove that FO is a suitable logic for the verification of graph transformations. Proof. Let c, c be unary predicates, r be binary predicates, i, j be nominals, φ, ψ be formulae, σ an atomic action. We consider whether or not a formula is satisfiable at a node n,

• (∃x.φ)[σ]) ∃x.(φ[σ]
) as the substitutions do not modify the existence or not of a node.

• (φ ∧ ψ)[σ] φ[σ] ∧ ψ[σ]
as if φ ∧ ψ is satisfied after performing σ, so must be φ and ψ and the other way round.

• (¬φ)[σ]

¬(φ[σ]) as if φ is not satisfied after performing σ, it is not possible that φ be satisfied after performing σ.

• [σ]

as no matter what action is performed, is satisfied. • c(x)[r := r + (i, j)] c(x) as the valuation of c is left untouched.

• c (x)[c := φ] c ( 
• c(x)[r := r -(i, j)] c(x) as the valuation of c is left untouched.

• c(x)[new(i)] c(x) for c = Active as the valuation of c is left untouched.

• Active(x)[new(i)] Active(x) ∨ i(x) as the valuation of Active becomes c I ∪ i I . • c(x)[del(i)] c(x) ∧ ¬i(x) as c I = c I \i I . • c(x)[i in j] c(x)
as the valuation of c is left untouched.

• c(x)[i out j)] c(x) as the valuation of c is left untouched.

• r(x, y)[c := i] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := φ] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := c + i] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := c -i] r(x, y) as the valuation of r is left untouched.

• r (x, y)[r := (i, j)] r (x, y) as the valuation of r is left untouched.

• r(x, y)[r := (i, j)] i(x) ∧ j(y) as the valuation of r becomes {i I , j I }.

• r (x, y)[r := α] r (x, y) as the valuation of r is left untouched.

• r(x, y)[r := α] α(x, y) as the valuation of r becomes α I .

• r (x, y)[r := r + (i, j)] r (x, y) as the valuation of r is left untouched.

• r(x, y)[r := r + (i, j)] r(x, y) ∨ (i(x) ∧ j(y)) as r I is r I ∪ (i I , j I ).

• r (x, y)[r := r -(i, j)] r (x, y) as the valuation of r is left untouched.

• r(x, y)[r := r -(i, j)] r(x, y) ∧ (¬i(x) ∨ ¬j(y)) as r I is r I \(i I , j I ).

• r(x, y)[new(i)] r(x, y) as the valuation of r is left untouched.

• r(x, y)[del(i)] r(x, y)∧¬i(x)∧¬i(y) as r I = r I \{(a, b)|a ∈ i I or b ∈ i I }.

correct using two different decidable logics that are able to express part of P re and P ost. 

φ := | φ ∧ φ | ¬φ | ∃ <n v.φ v φ v := | φ v ∧ φ v | ¬φ v | u(v) | ∃ <n v.φ v | ∃ <n w.φ x,y where w = v φ x,y := | φ x,y ∧ φ x,y | ¬φ x,y | u(v) | b(v, w) | ∃ <n v.φ x,y
As usual, ⊥ means ¬ , φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ, ∃ ≥n v.φ means ¬∃ <n v.φ, ∃v.φ means ∃ ≥1 v.φ, ∀v.φ means ¬∃v.¬φ. Definition 9.2.2. Let G = (N, E, C, R, φ N , φ E , s, t) be a graph. We defined the valuation of formulae: The graph of Figure 9.1 cannot be expressed using only two variables and thus App for a rule which would have this graph as a left-hand side would not be expressible in C 2 .

I = N (φ ∧ ψ) I = φ I ∩ ψ I (¬φ) I = N \φ I (∃ <n v.φ v ) I = N if there does not exist n nodesv 1 , . . . , v n such that v i |= φ v ∅ otherwise Let us now focus on v |= φ v : v |= iff true v |= (φ v ∧ ψ v ) iff v |= φ v and v |= ψ v v |= ¬φ v iff v |= φ v v |= u(v) iff u ∈ φ N (v) v |= ∃ <n v.φ v iff there does not exist n nodes v 1 , . . . , v n such that v i |= φ v v |= ∃ <v w.φ x,
C 2 seems thus to be unfit for the verification of graph transformations. Actually, as was the case previously, it just means that one has to restrict the rules that one wants to verify to those that have left-hand sides that can be expressed in the logic. • App(N P a(pa 1 ,ph 1 ,fo 1 , X)) = ∃x, y.(ph 1 (x)∧PH(x) ∧ works in(x, y)) ∧ ∃x.(¬Active(x)∧pa 1 (x)) ∧ ∃x.(¬Active(x)∧fo 1 (x))

• App(D P a(pa 1 )) = ∃x, y.(pa 1 (x)∧PA(x) ∧ hospital in(x, y))

• App(D P h(ph 1 ,ph 2 )) = ∃x, y.(ph 1 (x)∧PH(x)∧works in(x, y)∧∃x.(ph 2 (x)∧ PH(x) ∧ works in(x, y)))

One could be interested in what are the class of graphs that can actually be expressed in C 2 . As shown in Figure 9.1, it is enough to have an undirected cycle of length at least three. If the biggest undirected cycle is of length at most two, it is possible to pick one node r as the "root" of the graph and state App(ρ) as: App(rho) = ∃x.App(r, x, ∅) where: These conditions are enough to be able to express the existence of the matches. Nonetheless, one could want to use C 2 with more complex rules. In order to tackle this problem, the same idea as was used in Chapter 7 is used. We rename rules using special unary concepts o i . These concepts are such that it is possible to uniquely identify elements inside the application of a rule so the condition that ∃ =1 x.o i (x) is added for each o i that is used this way. One could see that this condition states that the nodes where the actions will be performed are, so to speak, pre-selected that is the original model already contains nodes labeled with these concepts. This may seem wrong as one wants to prove that the post-condition will stand no matter where the match is found. The calculus actually solves the problem as it requires that the weakest precondition be valid. As these new concepts never occur outside of the scope of the match, given two graphs that differ only on which nodes satisfy these concepts, that is two graphs such that the nodes where the match are found are different, one can prove that the post-condition will stand.

• App(n, κ, S) = c∈L N (n) c(κ) ∧ e|s(e)=t ( 
As said in previously, C 2 is not able to keep track of all variables so one needs to use concepts to keep track of the modified nodes. The actual concepts used are those obtained from tag. The expressions of App become:

• App(N P h(ph 1 ,d 1 )) = ∃x.(d 1 (x)∧DE(x)∧i(x))∧∃x.(¬Active(x)∧ph 1 (x)∧ j(x)) • App(N P a(pa 1 ,ph 1 ,fo 1 )) = ∃x, y.(ph 1 (x)∧PH(x) ∧ i(x) ∧ works in(x, y) ∧ j(y)) ∧ ∃x.(¬Active(x)∧pa 1 (x) ∧ k(x)) ∧ ∃x.(¬Active(x)∧fo 1 (x) ∧ l(x))
• App(D P a(pa 1 )) = ∃x, y.(pa 1 (x)∧PA(x) ∧ i(x) ∧ hospital in(x, y) ∧ j(y))

• App(D P h(ph 1 ,ph 2 )) = ∃x, y.(ph 1 (x)∧PH(x) ∧ i(x) ∧ works in(x, y) ∧ j(y) ∧ ∃x.(ph 2 (x)∧PH(x) ∧ k(x) ∧ works in(x, y)))

The same problem occurs also that these are not actually App and thus such rules cannot be used under the Kleene star in a strategy.

Furthermore, C 2 is not able to express Property 4: read access• is about⊆ treats as one would need to keep track of three variables at a time. On the other hand, Property 6: ∀x.PA(x) ⇒ ∃ =1 ref phys. is a formula of C 2 .

∃ * ∀ *

The logic ∃ * ∀ * is the fragment of first-order logic such that its prefix in prenex normal form is composed of a sequence of existential quantifiers and then a sequence of universal quantifiers. Definition 9.3.1. Let U be a set of binary predicate, u ∈ U, B be a set of binary predicate, b ∈ B, x 1 , . . . , x k , a 1 , . . . , a l be variables, v, w be two of them. A formula φ of ∃ * ∀ * is defined as: φ := ∃x 0 , . . . , x k , ∀a 0 , . . . , a l .ψ(x 1 , . . . , x k , a 1 , . . . , a l )

ψ := | ψ ∧ ψ | ¬φ | u(v) | b(v, w) As usual, ⊥ means ¬ , φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ. Definition 9.3.2. Let G = (N, E, C, R, φ N , φ E , s , 
t) be a graph. We defined the valuation of formulae: (∃x 1 , . . . , x k , ∀a 1 , . . . , a l .ψ(x 0 , . . . , x k , a 0 , . . . , a l )) I = N iff there exist k nodes (x 1 , . . . , x k ) such that for all choices of l nodes (a 1 , . . . , a l ), ( This is a well-known result. One now wants to check all the requirements. ∃ * ∀ * contains unary predicate that are interpreted on nodes and binary predicates that are interpreted on edges.

Theorem 9.3.2. ∃ * ∀ * is closed under substitutions.

Proof. Once again, one just needs to reuse the proof for FO.

The handling of the definition of a match is much more complex. To be more precise, ∃ * ∀ * cannot always express N App(ρ) that is the absence of a match. x : ∀y.¬R(x, y) Proof. ∃ * ∀ * is obviously not closed under negation and thus let us assume the existence of a rule ρ such that App(ρ) = ∃x.∀y.φ(x, y) with φ(x, y) a quantifierfree formula using both x and y. Then N App(ρ) = ¬App(ρ) = ∀x.∃y.¬φ(x, y) is not a formula of ∃ * ∀ * .

One thus just has to prove that such a rule exists. A rule whose left-hand side is the one presented in Figure 9.3 is a rule whose absence of a match cannot be expressed in ∃ * ∀ * .

Once more, one could be interested in the class of graphs that can be expressed in ∃ * ∀ * . Let's assume none of the labels of the nodes contains quantifiers. Then, using the same construction as for FO, one gets an essentially existentially quantified formula, that is a formula of ∃ * ∀ * . On the other hand, ¬App is then essentially universally quantified and is thus also a formula of ∃ * ∀ * . It is possible to weaken this restriction by allowing nodes to be labeled with existential quantifiers but this does not increase the expressiveness as variables introduced that way could be replaced with additional nodes. • App(N P a(pa 1 ,ph 1 ,fo 1 )) = ∃x, y.(ph 1 (x)∧PH(x) ∧ works in(x, y))

∧ ∃x.(¬Active(x)∧pa 1 (x)) ∧ ∃x.(¬Active(x)∧fo 1 (x))

• App(D P a(pa 1 )) = ∃x, y.(pa 1 (x)∧PA(x) ∧ hospital in(x, y))

• App(D P h(ph 1 ,ph 2 )) = ∃x, y, z.(ph 1 (x)∧PH(x)∧works in(x, y)∧ph 2 (z)∧ PH(z) ∧ works in(z, y)))
It is worth noting that the definition of App(ρ) introduces new existential quantifiers as it checks for the existence of a match. This could seem to lead to a problem as the formula no longer is in ∃ * ∀ * . Actually, as the existentially quantified variables do not depend on the previously defined universally quantified variables, it is possible to move them at the beginning thus yielding a formula in ∃ * ∀ * .

Once again, one has to look at whether or not the properties of any given problem are expressible in the logic under study. As could be expected, there are properties that ∃ * ∀ * cannot express.

Example 9.3.2. ∃ * ∀ * is not able to express Property 6:P A⇒ ∃ =1 ref phys as it needs an existential quantifier after the universal ones to express the existence of an edge labeled with ref phys. On the other hand, Property 4:∀x, y, z.read access(x, y)∧ is about(y, z) ⇒ treats(x, z) is part of ∃ * ∀ * .

Conclusion

In this chapter, we explore the implications of the condition that the logic be able to express the existence of a match. We saw that this can result in either undecidability (as is the case for full first-order logic) or in the introduction of further restrictions on the rules in the case of sub-logics as C 2 or ∃ * ∀ * .

These logics are both closed under substitution and can express the applicability of a restricted family of rules in addition to being decidable. They allow to express different properties of the graphs and are thus complementary and can be used in conjunction with other logics to express complex properties of rewriting systems that are in the intersection of the family of rules that can be expressed by each.

Chapter 10

Implementation

In the previous chapters, several different logics and forms of graph transformation have been introduced. We also proved that they satisfied the requirements that we put forward and thus that the verification could be fully automated. In addition, we would like that, when a specification is incorrect, a counter-example be shown. Nevertheless, we didn't show any system that would implement such proofs.

The reasons for that are multiple. First and foremost, our goal was to be able to reuse existing provers for the logics that we used. Several of them do not actually have any. Indeed, a C2PDL formula, for instance, can be proven to be satisfiable using one of the two methods shown in Section 7.3 that is either concurrently trying to build a model for it and proving that its negation is valid or translating it to the Hybrid µ-calculus and using the algorithm for it. Neither, to the best of our knowledge, has been fully implemented. In a similar way, the fragments of first-order logic that have been studied in Chapter 9 are known to be decidable but there is no actual prover for them that uses the algorithm used to prove them. Indeed, similarly to C2PDL it is proven that they have finite models but give no way to build the correct one.

One could argue that such provers, as for instance Vampire1 Z3, E-Prover2 or Spass3 , exist for first-order logic itself. The most obvious problem is the undecidability of the logic that yields an algorithm that could fail even on a decidable problem and thus strongly hinders our aim at fully automated proofs. Even when the logic actually provides a prover for a decidable logic, as is the case for the Description Logics for instance, the problem studied is not always the one we are aiming at. Indeed, in most provers as Fact++ [START_REF] Tsarkov | Incremental and persistent reasoning in fact++[END_REF] or HermiT [START_REF] Glimm | Hermit: An OWL 2 reasoner[END_REF], the problem is to prove that a Knowledge Base is consistent. While we would like our proofs to output counter-examples, these provers are given an example and they want to prove that it makes sense. 10.1: The syntax of ALCQ concepts our needs as they are not able to produce graphs that would be incorrect input for our specifications.

In this chapter, we present an implementation that we have performed to try to solve this problem. It slightly diverges from our stated goals as it uses ALCQ which has been proven not to be closed under substitutions. It is used in conjonction with the imperative language defined in Chapter 4. This work comes from [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF] and [6].

Using Isabelle to prove soundness of the Hoare-like calculus

Our stated goal is to be able to prove that programs are correct. In such a situation, one expects that the proofs that are performed have some properties. Among those, we may expect that the automated generation of the proofs is actually sound itself, that is that you do not consider as theorems things that can be false. In order to achieve such a property, we used Isabelle [START_REF] Nipkow | Isabelle/HOL. A Proof Assistant for Higher-Order Logic[END_REF]. Isabelle is a proof assistant. We used it to define the syntax and semantics of ALCQ in addition to the substitutions associated to part of the actions introduced in Section 3.1.

One may remember that it was proven in Section 6.3 that ALCQ is not closed under substitutions. The same way, it lacks the expressivity needed to state the existence or absence of a match. It is thus needed to change our approach a little. In order to tackle this problem, the logic is extended with quantifiers that introduce new variables. We then make sure that we generate only essentially universally quantified formulae as was explained in Section 5.4.

To be more precise, instead of working at concept level as we did previously when working with Description Logics, we use facts and formulae. A fact, in the present situation, is what is usually called an ABox assertion in the Description Logic. Formulae in addition use quantifiers and substitutions. They also use an explicit constructor for equality which makes the calculus considerable more complex but is essential to deal with aliasing problems. • ¬f 1 that means that f 1 is false • f 0 ∧ f 1 that means that both f 0 and f 1 are true • f 0 ∨ f 1 that means that f 0 or f 1 is true Given that σ is a substitution, f is a fact, a is a node and F 0 and F 1 are formulae, a formula is one of:

• f that means that f is true • ∀a.F 1 that means that for all node n, F 1 is true when all occurrences of a are replaced by instances of n

• F 1 σ that means that F 1 is true after performing the atomic action associated to σ

• ¬F that means that F 1 is false

• F 0 ∧ F 1 that means that both F 0 and F 1 are true

• F 0 ∨ F 1 that means that F 0 or F 1 is true
The syntax of ALCQ is fairly simple yet there are already proofs that have to be made to prove that the syntax is coherent. Indeed, more than the minimal amount of needed constructors are defined for ALCQ. For instance, both φ ψ and ¬(φ ψ) are formulae that can be written using the defined constructors yet they should have the exact same interpretation. that the semantic is the same for both. In order to spare space, only part of this implementation is shown in the following but a more complete version can be found at https://www.irit.fr/Climt/Software/smalltalc.html.

The first thing to do in Isabelle is to define the syntax of the logic itself. It is shown in Figure 10.1. Three sets are defined with for the concepts ('nc), roles ('nr) and individuals (or nodes) ('ni). There is only one unary constructor NegC for the negation, a constructor for the binary operators for conjunction and disjunction, another one for counting quantifier that uses a natural, a role, a concept and another one for the substitutions. The only elementary actions that are considered are C := C +i, C := C -i, r := r+(i, j) and r := r-(i, j). It is worth noting that, for simplicity of writing, the definition of atomic concepts can be negative or positive. The actual syntax is more complex as the logic does not provide nominals to deal with individuals. Facts are added to state whether or not nodes are equal, whether or not they belong to a concept and whether or not they are linked by a role.

One then has to introduce the semantics of the logic and prove that it is coherent. Figure 10.2 shows the semantics while Figure 10.3 shows some proofs. The first thing to introduce in the models is that nodes are interpreted as the basic elements of data ('d), that concepts are interpreted as sets and roles are interpreted as sets of pairs. interp d returns the whole set of elements and is used to access the whole valuation. One can then introduce the valuation of lemma Bottom NumRestrC:

"interp concept Bottom i = interp concept (NumRestrC Lt 0 r c) i" by simp lemma Top NumRestrC:

"interp concept Top i = interp concept (NumRestrC Ge 0 r c) i" by simp any concept of the logic. It is then interesting to use Isabelle to prove that our definitions are coherent. In particular, Figure 10.3 shows the proof that non node can have strictly less than 0 r-neighbours satisfying c and that all nodes have at least 0 r-neighbours satisfying c. This is done using only the definitions of the semantics.

One now has to deal with substitutions. This is where formulae become necessary to be able to express the result of substitutions. The tableau procedure that proves that a specification is correct actually uses only facts as it is the structure generated by the substitution elimination process. A few rules on substitutions, namely the ones dealing with atomic concepts and addition or removal of elements, are shown in Figure 10.4. This figure states that if the concept that is modified (cr) is different from the one in the formula (a) then the formula is left unmodified. On the other hand, if they are equal, and the substitutions removed an element then the formula is modified by adding the fact that the element that is removed is not the one that is considered. Mutatis mutandis, when adding an element it is added that either the formula was already true or the current element is the one that is added.

Once the removal of substitutions is done, one has to prove that it is correct and that it terminates. Partial proofs for these two properties can be found in fun wp dl :: "('r, 'c, 'i) stmt ⇒ ('r, 'c, 'i) qform ⇒ ('r, 'c, 'i) qform" where "wp dl Skip Qd = Qd" Figure 10.5. The first part is done by simply checking for each rule that the formula on the left and the one on the right agree on models. To prove the termination, a height is introduced that is proven to be natural, positive and strictly decreasing and thus convergent toward 0. It is worth noting that the definition of height used here is not the same as the one in Section 6.2 because the problems are slightly different.

The next step is proving that the weakest preconditions and verification conditions that were introduced in Section 5.2 are correct. This is done by first defining the functions that compute the weakest preconditions and the verification conditions. The weakest preconditions can be found in Figure 10.6. One then has to prove that the Hoare-like calculus is sound. This proof can be found in Figure 10.7. Actually, what is proven is that whenever vc(s, P ost) is valid, {wp(s, P ost)}s{P ost} is a correct specification. It is easy knowing this theorem to prove that if vc(s, P ost) ∧ (P re ⇒ wp(s, P ost)) then {P re}s{P ost} is a correct specification.

Tableau procedure in Isabelle

Now that it has been proven that the Hoare-like calculus that we want to use is sound, it becomes possible to designe a procedure that checks whether or not a specification is correct. The only part that has not been shown yet is the one that determines whether a formula is valid or not. This is done using a tableau procedure. As previously, one of the main difficulties is that ALCQ is not closed under substitutions and cannot express the existence or absence of a match and that we are therefore forced to use facts and formulae as the basic blocks of the The tableau procedure contains several rules that have been written in Isabelle. It starts from a set of formulae that contains only the formula whose satisfiability we are interested in and it generates a set of true formulae that can be deduced from that formula. Rules like the one for the disjunction of formulae, shown in Figure 10.8, create branches. To be more precise, this rule is applied when there is a fact of the form F 0 ∨ F 1 , but neither F 0 nor F 1 is present. A choice has thus to be made and two branches are created, one with F 0 and one with F 1 . Branches allow to track choices in order to explore all possible cases. When one looks at a branch, there are two possible cases either the branch is saturated, that is it is no longer possible to apply any of the rules of the tableau or it is possible to go on. If one branche is saturated, it closes and the formula is satisfiable. On the other hand, if all branches yield a clash, that is something that cannot be a model, the formula was unsatisfiable. The list of possible clashs can be found in Figure 10.9.

Most clashes are self-evident. contains bottom branch occurs when the set of formulae contains a : ⊥, contains contr concept branch occurs when the set of formulae contains both a : φ and a : ¬φ, contains contr role branch occurs when the set of formulae contains both a α b and a ¬α b, contains contre eq branch occurs when the set of formulae contains a = a and contains falsefm branch occurs when the set of formulae contains ⊥. Clashes linked to counting quantifiers are a little bit more tricky: contains numrestrc clash branch occurs when the set of formulae contains a : (< n α φ) and there is a set of cardinality at least n that contains only α-neighbors of a labeled with φ.

This tableau procedure is proven to be sound, as shown in Figure 10.10. Indeed, it proves that if a branch contains no clash, is finite and saturated then it is satisfiable. In addition, the tableau procedure is proven to terminate and to be complete, that is that all invalid formulae yield only branches with clashes. It is thus possible to decide whether a formula is valid or not. Applied to the definition "contains bottom branch br = (case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒ contains bottom list icl) "

definition "contains contr concept branch br = (case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒ contains contr concept list iac)"

definition "contains contr role branch br = (case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒ contains contr role list iar)"

definition "contains contr eq branch br = (case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒ contains contr eq list icl)"

definition "contains falsefm branch br = (case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒ contains falsefm list icl)"

definition "contains numrestrc clash branch br = (case br of (Branch(n, alf, asf, ap, ia)) ⇒ List.list ex (λ f. case f of FactFm(Inst x (NumRestrC Lt n r c)) ⇒ if n = 0 then True else exist outgoing r c distincts from branch br x n r c | ⇒ False) ap)" definition "contains clash branch br = (case br of (Branch([], , , , )) ⇒ (contains bottom branch br ∨ contains contr concept branch br ∨ contains contr role branch br ∨ contains contr eq branch br ∨ contains falsefm branch br ∨ contains numrestrc clash branch br) | ⇒ False)" Figure 10.9: Possible clashes lemma not contains clash sati: " ¬ contains clash (ab:: ('nr, 'nc, 'ni::new var set class) abox) =⇒ finite ab =⇒ is neg norm abox ab =⇒ saturated abox ab alc rule =⇒ satisfiable TYPE('ni) ab" apply (simp only: satisfiable def) apply(rule tac x = "canon interp (ab::('nr, 'nc, 'ni::new var set class) abox)" in exI) by (clarsimp simp add: canon interp satisfies form) Figure 10.10: Soundness of the tableau procedure correctness formula that was generated by the Hoare-like calculus, it allows to decide whether a specification is correct or not.

In addition, the tableau procedure creates the canonical interpretation associated with a saturated branch, that is a branch in which it is no longer possible to apply any rule. This canonical interpretation can then be translated toward a graph language in order to be displayed. As it is a model that satisfies the negation of the formula that we aimed to prove valid, this interpretation gives us a counter-model that can be used to understand why our specification was incorrect and try to correct it.

Conclusion

In this chapter, we introduced an implementation that aims at bridging the gap between the theoretical results that have been shown in the previous chapters and our stated goal of having a fully automated proof system.

It actually uses a logic that we have proven not expressive enough to satisfy the conditions that we set in term of closure under substitutions. Nonetheless, by modifying ALCQ so that it becomes more expressive and using a dedicated tableau method, we managed to produce an implementation that is able to decide whether a program with conditions written in that logic is correct or not.

In addition to providing an answer, this implementation produces countermodels in case the program is incorrect so that it is possible for the user to see what goes wrong and correct either a problem in the program or a case that should have been treated in the precondition or the postcondition. On bigger programs, this becomes much harder to find the source of the problem and we are thus currently working on using the trace of the Hoare-like calculus to find out what part of the program lead to the problem.

It is worth noting that this implementation does not correspond to our stated goal. Another implementation is being developed currently but is not mature enough to be featured in this work. As there exists a lot of SAT solvers for firstorder logic, we decided to implement a program that would take a specification for a set of rules and tries to prove them correct by generating the correctness formula and checking it using one of these solvers. This is still slightly outside of our objective as first-order logic is undecidable but it allows us to give a better coverage of the various solutions that we have shown in the previous chapters.

Chapter 11

Conclusion and future work 11.1 Results

In this work, we discussed the verification of graph transformation. Graph transformation is ubiquitous and its correctness is thus of particular interest. Nevertheless, a lot of graph properties require an expressivity that leads to undecidability of their satisfiability problem. Our goal being to be able to decide automatically whether or not a graph transformation specification is correct, we restricted ourselves to problems that we could prove to be decidable. To do so, we used mainly decidable logics and we only studied partial correctness of a specification.

In order to showcase the transformations, we introduced two ways to modify graphs that are closely linked. Both rely on a set of atomic actions that perform elementary actions as creation or deletion of edges and nodes, relabeling and so on. Some of the atomic actions, as global redirections, can be seen as being more elaborate. Yet defining them as a sequence of atomic edge deletions and creations would be at best cumbersome. We combine these atomic actions in two different ways: either by using an imperative language [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF] or using sets of rules and strategies [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF].

The imperative language contains, in addition to the atomic actions, some usual constructs of imperative languages, as sequencing, if-then-else statements and while loops, and more specific constructs as the non-deterministic select that effectively instantiates a set of variables so that they match a pattern.

The other approach is closer to term-rewriting systems in that it defines rules and strategies. This approach is also closer to the categorial approach to graph transformations in its use of rules. Nonetheless, our rewriting systems strongly differ from this approach in that the right-hand side is composed of a sequence of atomic actions instead of containing a graph. This allows us to have a more algorithmic view of the transformation instead of relying on the definition of a single, double or sesqui-pushouts. Another key departure from usual methods is the use of complex formulae as labels in the left-hand side of the rules. This allows for much more expressivity for the rules.

We defined a Hoare-like calculus for both approaches that introduces weakest preconditions to prove that a specification is correct. As both approaches contain loops, either under the form of while-loops in the imperative case or under the form of the closure strategy, the user is required to provide, in addition to the specification, invariants for them. They also force the introduction of verification conditions whose task is to prove that the invariants define correct specifications for the transformations inside the loops.

All in all, this Hoare-like calculus is not much more complex than the classical one. As usual, it introduces substitutions, that allow to forward the atomic actions to the underlying logic, that have to be accounted for. Its most complex feature is the need for the ability to express the existence of a match for the pattern defined by either a select-statement in the case of the imperative language or by the left-hand side of a rule in the graph rewriting system approach. Both substitutions and the existence of a match are unusual graph properties and thus need to be discussed when a logic is introduced to describe the graph properties [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF].

What is obvious throughout the definition of the transformations, no matter the format, and the introduction of the Hoare-like calculus is that everything is parametrized by the logic, or logics, that have been chosen to define the properties of graphs. In this work, we aimed at being able as much as possible to provide definitive answers to the question of whether or not a specification for a given transformation is correct and we thus focused on decidable logics and looked at what we were requiring in addition from them.

The first set of logics that we proposed was the Description Logics family [START_REF] Haël Brenas | On the closure of description logics under substitutions[END_REF]. It is one of the most widely used family of logics to build ontologies, that is describing graphs, and it offers a huge array of possibilities from the tractable but little expressive EL, DLP and DL -Lite to the very expressive SROIQ. We didn't consider all these logics but we focused on the central ones, that is the extensions of ALC that do not provide role axioms. These logics were instrumental in our endeavour to identify what are the required features for a logic to be able to deal with substitutions.

We also studied C2PDL, an extension of dynamic logics [START_REF] Haël Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF]. Our main goal in using this logic was to be able to express reachability properties that are key in the definition of a lot of structures, very interesting in conditions of graph transformations and outside of first-order logic. It was also helpful in looking more thoroughly at what where the implication of the requirement that the existence of a match be expressible in the logic.

Finally, several of the most expressive fragments of first-order logic, namely C 2 , the two-variable fragment with counting, and ∃ * ∀ * , the fragment that contains only formulae in which the prenex normal form is such that all existential quantifiers occur before every universal quantifiers were studied [START_REF] Haël Brenas | Ensuring correctness of model transformations while remaining decidable[END_REF]. Once more, we proved that these logics were closed under substitutions and that, provided some restrictions on the rules, they could express the existence or absence of a match.

In order to make our work more concrete, we have started implementing several different aspects of our systems. We wrote a tool that rewrites transformations written in our imperative language into Java code that can then be used more easily [START_REF] Baklanova | Provably correct graph transformations with small-talc[END_REF]. Closer to our goal of proving the correctness of graph transformation, we wrote a system for ALCQ using the imperative language that proves that a specification is correct and outputs a counter-example if it is not [START_REF] Haël Brenas | A Hoare-like calculus using the SROIQ σ logic on transformations of graphs[END_REF]. We also created a tool presented in [6] that combines the modification of graphs and the proof that it is correct.

Perspectives

This work is self-contained and gives an overview of a possible algorithmic approach to graph transformation, shows how to prove specifications for such transformation correct and provides keys, and possible choices, to determine the best logic or logics that one can use to express a given problem. Nonetheless, this is only the first step toward the original objective of proving correctness of graph transformation in all generality.

The main shortcoming of our results is that it does not allow for data. The most basic example of graph handling is list ordering that rewrites a list according to a given order notwithstanding any knowledge of the elements of the list. We do not allow for such comparisons either in the properties or the transformation itself as of today and it is a very important step that we need to be able to perform.

Another direction is the implementation. Heretofore, only a small part of the logics that we have presented are equipped with programs that actually prove whether or not a specification is correct. This is unsatisfactory as we would both like to be able to provides proofs no matter the choice of the -obviously decidable -logic but also because we would like to be able to give a tool that takes the specification and, using provers that it has been given, computes the proof without having to develop a different tool for each one. The main obstacle there is that even though the logic has to be closed under substitutions the provers for the logics do not remove them and thus it is mandatory to add a step, aware of the actual logic used, that removes the substitutions and this step can hardly be automated without knowledge of the logic.

It would be also interesting to try and extend the available atomic actions. Despite not being presented here, work has been started on the study of node cloning and its relation to the various logics we discussed in addition to considerations about how to handle edges in case of cloning. In particular, self-loops can be handled in several different manners that yield different atomic actions.

Other important directions are in the increase of the expressivity of the logic in order to be able to prove correct more interesting specifications and attempts at reducing the complexity of the proofs that are intractable in all cases considered thus far. This would go completely at reverse from what has been done here as the requirements that we introduced require expressiveness outside of the tractable logics but it would be particularly interesting to find a smaller set of actions such that specifications can be proven correct in low-

In computer science as well as multiple other fields, graphs have become ubiquitous. They are used to represent data in domains ranging from chemistry to architecture, as abstract structures or as models of the data or its evolution. In all these domains, graphs are expected to evolve over time due to chemical reactions, update of the knowledge or programs. Being able to deal with such transformations is an extremely important and difficult task. In this work, our aim is to study the verification of such graph transformation, that is how to prove that a graph transformation is correct. Correctness of a graph transformation is more precisely defines as correctness of a specification for the transformation containing additionally a precondition and a postcondition. We decided to use a Hoare-like calculus generating the weakest precondition for a postcondition and a transformation. If this weakest precondition is implied by the actual precondition, the specification is correct. We chose a more algorithmic approach to graph transformation by using atomic actions. We chose to define two ways to build graph transformations: using an imperative programming language and using rule-base rewriting systems. The main ingredient of the verification of graph transformation is the logic that is chosen to represent the precondition, the postcondition and the possible conditions internal to the transformation. So that the logic can interact with the calculus, we require that the decision problem be decidable, that the logic be closed under the substitutions introduced by the Hoare-like calculus and that it has to be able to express the existence and absence of a match for the transformation. The core result of this work is the identification and explanation of these conditions.

En informatique comme dans de multiples autres domaines, les graphes peuvent être trouvés partout. Ils sont utilisés pour représenter des données dans des domaines allant de la chimie à l'architecture, en tant que structures abstraites ou que modèles des données et de leurs évolutions. Dans tous ces domaines, il est prévisible que les graphes évoluent au cours du temps suite à des réactions chimiques, une mise à jour des connaissance ou l'exécution d'un programme. Être capable de traiter ces transformations est une tâche particulièrement importante et difficile. Dans ce travail, notre objectif est d'étudier la vérification de telles transformations de graphes, c'est à dire comment prouver qu'une transformation de graphes est correcte. La correction d'une transformation est plus précisément définie comme la correction d'une spécification pour cette transformation contenant en plus une précondition et une postcondition. Nous avons décidé d'utiliser un calcul à la Hoare générant une plus faible précondition pour une postcondition et une transformation. Si cette plus faible précondition est impliquée par la précondition, la spécification est correcte. Nous avons choisi une approche plus algorithmique pour les transformation de graphes utilisant des actions atomiques. Nous définissons deux moyens de construire des transformations de graphes: en utilisant un langage impératif ou en utilisant des systèmes de règles de réécriture. Le principal ingrédient est la logique qui est choisie pour représenter la précondition, la postcondition et les possibles conditions internes. Pour que la logique puisse interagir avec le calcul, nous demandons que le problème de décision soit décidable, qu'elle soit fermée par substitutions et qu'elle soit capable d'exprimer l'existence ou l'absence d'un sousgraphe affecté par la transformation. Le résultat central de ce travail est l'identification et l'explication de ces conditions.
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 11 Figure 1.1: An example graph representing a social network.
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 12 Figure 1.2: An example graph representing a computer network.
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 13 Figure 1.3: A sample of the map of the London subway network

Figure 1 Figure 1 . 7 :

 117 Figure 1.5: A simple automaton
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 18 Figure 1.8: An example of application of the graph transformation of Figure 1.7.
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 19 Figure 1.9: An example of transformation written as a program

Figure 2 . 1 :

 21 Figure 2.1: An example of graph used in GROOVE representing Transformation 1.
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 222 Figure 2.2: An example of epistemic model with indistinguishable states for Alice and Bob. The actual state is the rectangle.

Transformation 3 .

 3 The third transformation is Del Pa(pa 1 ). It removes patient pa 1 .
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 31 Figure 3.1: A sample UML model for the hospital example
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 41 Figure 4.1: Big-step semantics rules
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 4243 Figure 4.2: A statement simulating i in l0 j
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 44 Figure 4.4: An example of Java program for the fourth transformation

  def statement(Stmt s){ switch s{ Add_stmt: add(s.lvar,s.role,s.rvar) ... } } def add(String lvar,String role,String rvar)''' graph .insertEdge( lvar , role , rvar );''' Thus, a program fragment R := R + (a,b); is translated to a Java call g.insertEdge(a, R, b);, where the graph g is the current graph.
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 45 Figure 4.5: An example RDF file
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 51 Figure 5.1: Weakest preconditions for the actions defined in Section 3.1.
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 52 Figure 5.2: Weakest preconditions for statements.
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 53 Figure 5.3: Verification conditions for statements.

•

  Let us assume s = C := C -i. Then correct(S) = vc(C := C -i, P ost) ∧ (P re ⇒ wp(C := C -i, P ost). As vc(C := C -i, P ost) = and wp(C := C -i, P ost) = P ost[C := C -i], correct(S) = P re ⇒ P ost[C := C -i].
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 61 Figure 6.1: Example illustrating part of rule 3 (C[R := R + (i, j)] C). The nodes satisfying C are filled in red, the current node is a rectangle. The substitution occurs when going from left to right. The interpretation of C is left unmodified.

Figure 6 . 2 :

 62 Figure 6.2: Example illustrating rule 47. The nodes satisfying φ[R := R + (i, j)] are drawn in red, the current node is circled in black. The top left graph shows the case in which the first part of the first implication is true, that is(≥ 2R.φ)[R := R -(i, j)] is true if (≥ 3R.φ[R := R -(i, j)]) is. The top right graph (resp. bottom left, bottom right)shows that if {i} is false (resp. j doesn't satisfy φ[R := R -(i, j)], (i, j) is not an R-edge), then the modification does not affect the property.
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 63 Figure 6.3: Example illustrating rule 62 to 67. The nodes satisfying φ are filled in red, the current node is a rectangle. The substitution occurs when going from left to right. The first three transformation correspond to rule 62 and illustrate the cases when interpretations are altered. The last one correspond to the rules 63 and 64.

Lemma 1 .2

 1 Let Σ be a signature, I an interpretation over Σ, L R one of the rewrite rules of T , then L I = R I .Proof. 1 (⊥ θ) I = ∅ = ⊥ I as it does not depend on the valuation of any concept or role. As the valuation of a nominal is independent of the valuations of all roles and concepts, ({i} θ) I = i I . 3 (C[R := R ± (i, j)]) I = c I as c I does not depend on the valuation of R. 4 (C[C := C ± i]) I = C I as C I does not depend on the valuation of C . 5 (C[R := Q]) I = C I . By definition of the valuation of a substitution, (C[R := Q]) I = C I . 6 (C[R := (i, j)]) I = C I . By definition of the valuation of a substitution, (C[R := (i, j)]) I = C I . (C[C := ψ]) I =. By definition of the valuation of a substitution, (C[C := ψ]) I = ψ I . By definition, ((¬φ)[C := C+i]) I = (¬φ) I where C I is replaced by C I ∪{i }. As (¬φ) I = ∆\φ I , ((¬φ)[C := C + i]) I = ∆\φ I with φ I = φ I where C I is replaced by C I ∪{i}. This is exactly the definition of (¬(φ[C := C+i])) I . The same can be done with the other substitutions. By definition, ((φ ψ)[C := C + i]) I = (φ ψ) I where C I is replaced by C I ∪ {i}. That is (φ ψ ) I with φ I = φ I where C I is replaced by C I ∪ {i} and ψ I = ψ I where C I is replaced by C I ∪ {i}. This is exactly the definition of (φ[C := C + i] ψ[C := C + i]) I . The same can be done with the other substitutions. By definition, ((φ ψ)[C := C + i]) I = (φ ψ) I where C I is replaced by C I ∪ {i}. That is (φ ψ ) I with φ I = φ I where C I is replaced by C I ∪ {i} and ψ I = ψ I where C I is replaced by C I ∪ {i}. This is exactly the definition of (φ[C := C + i] ψ[C := C + i]) I . The same can be done with the other substitutions. By definition, ((@ a φ)[C := C + i]) I = (@ a φ) I where C I is replaced by C I ∪ {i}. This is exactly the definition of (@ i (φ[C := C + i])) I . The same can be done with the other substitutions. (∃R.Self [C := C ± i]) I = (∃R.Self ) I as (∃R.Self ) I is independent of the valuation of C. (∃R -.Self [C := C ± i]) I = (∃R -.Self ) I as (∃R -.Self ) I is independent of the valuation of C. (∃R.Self [C := ψ]) I = (∃R.Self ) I as (∃R.Self ) I is independent of the valuation of C.

  [R := (i, j)]) I = (∃R -.Self ) I . (∃R.Self ) I = {x|(x, x) ∈ R I }, (∃R.Self [R := (i, j)]) I = {x|x = i ∧ x = j} = ({i} {j}) I . (∃R -.Self ) I = {x|(x, x) ∈ R I }, (∃R -.Self [R := (i, j)]) I = {x|x = i ∧ x = j} = ({i} {j}) I .

  the valuation of C. Thus ((∃R.φ)[C := ψ]) I = (∃R.(φ[C := ψ])) I . As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[C := ψ]) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ[C := ψ] I } as R I is independent of the valuation of C. Thus ((∃R -.φ)[C := ψ]) I = (∃R -.(φ[C := ψ])) I .

  As (∃R.φ) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := (i, j)]) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ[R := (i, j)] I } as R I is independent of the valuation of R . Thus ((∃R.φ)[R := (i, j)]) I = (∃R.(φ[R := (i, j)])) I As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[R := (i, j)]) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ[R := (i, j)] I } as R I is independent of the valuation of R . Thus ((∃R -.φ)[R := (i, j)]) I = (∃R -.(φ[R := (i, j)])) I As (∃R.φ) I = {x | ∃y.(x, y) ∈ R I ∧ y ∈ φ I }, ((∃R.φ)[R := (i, j)]) I = {x | ∃y.x = i ∧ y = j ∧ y ∈ φ[R := (i, j)] I }. Thus ((∃R.φ)[R := (i, j)]) I = ({i} ∃U.({j} φ[R := (i, j)])) I As (∃R -.φ) I = {x | ∃y.(y, x) ∈ R I ∧ y ∈ φ I }, ((∃R -.φ)[R := (i, j)]) I = {x | ∃y.x = j ∧ y = i ∧ y ∈ φ[R := (i, j)] I }. Thus ((∃R -.φ)[R := (i, j)]) I = ({j} ∃U.({i} φ[R := (i, j)])) I

  independent of the valuation of R . Thus ((∀R.φ)[R := (i, j)]) I = (∀R.(φ[R := (i, j)])) I As (∀R -.φ) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ I }, ((∀R -.φ)[R := (i, j)]) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ[R := (i, j)] I } as R I is independent of the valuation of R . Thus ((∀R -.φ)[R := (i, j)]) I = (∀R -.(φ[R := (i, j)])) I As (∀R.φ) I = {x | ∀y.(x, y) ∈ R I ⇒ y ∈ φ I }, ((∀R.φ)[R := (i, j)]) I = {x | ∀y.(x = i ∧ y = j) ⇒ y ∈ φ[R := (i, j)] I }. Thus ((∀R.φ)[R := (i, j)]) I = (({i} ∃U.({j} φ[R := (i, j)])) ¬{i}) I As (∀R -.φ) I = {x | ∀y.(y, x) ∈ R I ⇒ y ∈ φ I }, ((∀R -.φ)[R := (i, j)]) I = {x | ∀y.(x = j ∧ y = i) ⇒ y ∈ φ[R := (i, j)] I }. Thus ((∀R -.φ)[R := (i, j)]) I = (({j} ∃U.({i} φ[R := (i, j)])) ¬{j}) I

  a 1,16 ) = max(M(b 1,16 ), M(b 2,16 ), M(b 3,16 ), M(b 4,16 ) = M(φ) + 2 M(a 2,16 ) = max(M(b 11,16 ), M(b 12,16 ), M(b 13,16 ), M(b 14,16 ) = M(φ) + 2 M(RHR 16 ) = max(M(a 1,16 ), M(a 2,16

  RHS = ¬{i} ∀U.(¬{j} ¬φ[R := (i, j)]) RHS = {i} ∃U.({j} φ[R := (i, j)]) RHS = ¬{j} ∀U.(¬{i} ¬φ[R := (i, j)]) RHS = {j} ∃U.({i} φ[R := (i, j)]) RHS = (∃U.({i} {j}) ⇒

  47 = ∃U.({j} φ[R := R -(i, j)]) b 3,47 = ∃R.{j} b 4,47 = ( (n + 1) R φ[R := R -(i, j)])) b 11,47 = ¬{i} b 12,47 = ∀U.(¬{j} ¬(φ[R := R -(i, j)])) b 13,47 = ∀R.¬{j} b 14,47

Corollary 6 . 2 . 1 .Figure 6 . 4 :

 62164 Figure 6.4: Example illustrating rule 38. The nodes satisfying φ[R := R + (i, j)] are drawn in red, the current node is circled in black. The leftmost graph shows the case in which {i} is true, and then (∀R.φ)[R := R + (i, j)] will be true if j satisfies φ[R := R + (i, j)]. The rightmost graph shows that if {i} is false, then the modification does not affect the property.
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 65 Figure 6.5: On the left, M 1 is a model of C[C := C -i]. On the right, M 2 is not. Nodes satisfying C are drawn in red. Plain arrows represent R, dashed arrows represent Z. The signature is ({C}, {R}, {i}).

Figure 6 . 6 :

 66 Figure 6.6: On the left, I 1 is a model of (∃R.φ)[R := R -(i, j)]. On the right, I 2 is not. Nodes satisfying φ are drawn in red.

  as the valuation of C does not affect the valuation of R, y I ∈ {z|{w|(z, w) ∈ R I w ∈ φ[C := C ± i] I } n}. By induction, for each w such that w ∈ φ[C := C ± i] I are there exists w such that w ∈ φ[C := C ± i] J and wZw . Due to (Q), there is a bijection between the w and the w and the w are R-neighbors of y . Thus y ∈ (( nRφ)[C := C ± i]) J .

-

  and J and the one satisfying φ[R := R -(i, j)] are thus the same number. Hence y ∈ (( nRφ)[R := R -(i, j)]) J If not, the reasoning can be applied to all the R-neighbors satisfying φ[R := R -(i, j)] of y and, due to rule (O) there is exactly one new neighbor deleted by the substitution on each side. Thus y ∈ (( nRφ)[R := R -(i, j)]) J .

Figure 6 .

 6 Figure 6.7 provides a counter-example illustrating Theorem 6.4.4. Let us prove that Z in this counter-example is indeed a rooted-bismulation rooted in (d 1 , d 3 ).

Figure 6 . 7 :

 67 Figure 6.7: On the left, I 1 is a model of (∀R.C)[R := R + (i, j)]. On the right, I 2 is not. Nodes satisfying C are drawn in red. Plain arrows represent R. Dashed arrows represent Z. The signature is {{C}, {R}, {i, j}}. M 1 and M 2 are (d 1 , d 3 )-rooted-bisimilar.

Figure 4 .

 4 3 but the precondition and postcondition are different. The chosen precondition is ∃U.({ph 1 } P H ¬{ph 2 }) ∃U.({ph 2 } MS) ∀U.(∃ treats. ⇒MS) that can be read as ph 1 is an existing physician, ph 2 is a member of the medical staff and only members of the medical staff can treat people. The chosen postcondition is ∃U.({ph 1 } ¬ P H) ∀U.(∃ treats. ⇒ M S) that means that ph 1 no longer is a physician and that only members of the medical staff can treat people. The invariants for the loops are inv 1 and inv 2 . inv 2 is set to be equal to the postcondition while inv 1 is ∃U.({ph 1 } ¬PH ¬{ph 2 }) ∃U.({ph 2 } MS) ∀U.(∃ treats. ⇒M S). One also has to translate the conditions into ALCQU IO. The condition of the "if" statement is ∃d.((ph 1 , d) :works in ∧(ph 2 , d) :works in). ALCQU IO does not allow variables. Using a quantifier, one can still express this condition as c 0 ≡ ∃U.(∃works in -.(ph 1 ) ∃works in -.(ph 2 )). Using the same inversion of the edge, the condition of the first loop ∃p.(ph 1 , p) : treats can be written as c 1 ≡ ∃U.(∃treats -.ph 1 ). Finally, the last condition ∃p.(p,ph 1 ) : ref phys becomes c 2 ≡ ∃U.(∃ref phys.ph 1 ).

ph 1 ]Figure 6 . 8 :

 168 Figure 6.8: An example using the fourth transformation

  1 ) = inv 1 [treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)]. Thus, one has to prove that ∀p.(inv 1 ∧ c 1 ∧ ∃U.({p} ∃treats -.{ph 1 }) ⇒ inv 1 [treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)]. Let us compute inv 1 [treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)]. Once more, it is straightforward that ∃U.({ph 1 } ¬PH ¬{ph 2 }) ∃U.({ph 2 } MS) is left unmodified by the substitutions. It is alos obviously implied by inv 1 . One thus focuses on ∀U.(∃T R. ⇒MS)[treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)]. It is easily proved that it is equivalent to ∀U.((∃T R. )[treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)] ⇒MS). By applying rule 31, and then rule 1, one gets that (∃T R. )[treats := treats + (ph 2 , p)][treats := treats -(ph 1 , p)] is equivalent to (({ph 2 } ⇒ ∃U.{p} ∃treats. ) (¬{ph 2 } ⇒ ∃treats. )[treats := treats -(ph 1 , p)]. Then, by applying rule 33, one can prove that it is equivalent to ({ph 2 } ⇒ ∃U.{p}

  {ph 1 }), s 21 = ref phys := ref phys -(p,ph 1 ) and s 22 = ref phys := ref phys + (p,ph 2 ), vc(s 20 ; s 21 ; s 22 , P ost) = . Let us focus first on the validity of inv 2 c 2 ⇒ wp(s 20 ; s 21 ; s 22 , inv 2 ). As s 20 = select p with ∃U.({p} ∃ref phys.{ph 1 }), s 21 = ref phys := ref phys -(p,ph 1 ) and s 22 = ref phys := ref phys + (p,ph 2 ), wp(s 20 ; s 21 ; s 22 , inv 2 ) = ∀p.∃U.({p} ∃ref phys.{ph 1 }) ⇒ inv 2 [ref phys := ref phys + (p,ph 1 )][ref phys := ref phys -(p,ph 2 )]. As ref phys never occurs in inv 2 , it is left unmodified by the substitutions. Thus, one has to prove that ∀p.(inv 2 c 2 ∃U.({p} ∃ref phys.{ph 1 } ⇒ inv 2 ) is valid. It is obviously the case as inv 2 ⇒ inv 2 .
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 71 Figure 7.1: Model and counter-model. All nodes of the left graph satisfy the formula [ν](1 ⇒ [R -][R - * ]¬1). This is not the case for the graph given on the right since i |= (1 ⇒ [R -][R - * ]¬1).

  B) and thus m ∈ [A?]¬B, and then m ∈ V (¬A ∨ ¬B)

  ], [d]) ∈ {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t)∈ R(β))} then < ν Σ > (c∧ < α > e) ∈ L * and < ν Σ > (e∧ < β > d) ∈ L * that is, from (Σ2), [ν Σ ](e →< β > d) ∈ L * . Then < ν Σ > (c∧ < α >< β > d) ∈ L * . Then, from (;), < ν Σ > (c∧ < α; β > d) ∈ L * and then ([c], [d]) ∈ R(α; β). Thus {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))} ⊆ R(α; β). -Let ([c], [d]) ∈ {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))} that is ∀e. (([c], [e]) ∈ R(α) or ([e], [d]) ∈ R(β)). Assume < ν Σ > (c∧ < α > e) ∈ L * and < ν Σ > (e∧ < β > d) ∈ L * then ([c], [e]) ∈ R(α)and ([e], [d]) ∈ R(β) which is not the case. Thus ∀e.

  impossible as L * is consistent. Thus R(α; β) ⊆ {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))}. Thus R(α; β) = {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))}.

  and thus ([c],[d]) ∈ R(A?). Thus {(s, s)|s ∈ V (A)} ⊆ R(A?).Thus R(A?) ⊆ {(s, s)|s ∈ V (A)}. Thus M is a model. Let A ∈ L then, as L is closed under (N ec), [ν Σ ]A ∈ L and as L contains (Σ1), < ν Σ > c ∈ L thus < ν Σ > (c ∧ A) ∈ L ⊆ L * . Thus M, [c] A which is the case for each c ∈ Σ. Thus M A. Thus M is a model of L.We can now prove the theorem itself:Proof. Assume A then A ∈ L and also [ν Σ ]A ∈ L thus log(L, < ν Σ > ¬A) is consistentand thus, from Lemma 16, has a model M. Thus M < ν Σ > ¬A i.e. M A and thus A. Theorem 7.3.4 (Decidability). The validity and satisfiability problems of C2PDL are decidable.

  By induction on the first hypothesis, [β * ]A ∈ z and, by induction on the second hypothesis, [β *

  NApp(s 0 ⊕ s 1 ) = NApp(s 0 ) ∧ NApp(s 1 ) 6 NApp(s * ) = ⊥ 7 NApp(s 0 ; s 1 ) = NApp(s 0 )

Figure 8 . 1 :

 81 Figure 8.1: Two LDRS dealing with the suppression of unreachable nodes.Rules with atomic formulae are on the left. The rule with a non-atomic formula is on the right.

Definition 8 . 1 . 1 (

 811 Rule, LDRS). A rule ρ is a pair (LHS,α) where LHS, called the left-hand side, is an attributed graph with C2PDL formulae as attributes and α, called the right-hand side, is an action. Rules are usually written LHS → α.

1 ;Figure 8 . 2 :

 182 Figure 8.2: An example of LDRS where the first β after an α on a path toward a C becomes a γ. The dashed line represent the program α and the plain line the program β.
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 83 Figure 8.3: A summary of the rules of R. In ρ r,J , r must be replaced by either R, C or SQ and J by 1, 2, 3 or 4. In ρ J , J must be replaced by 1, 2, 3 or 4

Example 8 . 1 . 4 .

 814 for j ∈ [0, 3]. c j describes the successive elements of a column.c j = ν (a 0j ∧ [C](a 1j ∧ [C](a 2j ∧ [C](a 3j ∧ [C]⊥)))) for j ∈ [0, 3]. c j says that there are no more elements in a column than those specified by c j . Thus a column is specified by c j ∧ c j .• A cell should contain, at most, one value: u I,J = [ν](I ⇒ ¬J) for I, J ∈[START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF][START_REF] Areces | Hybrid logics[END_REF], I = J and there is no doubt about it (e.g., Once a cell is assigned the value I, it is no longer a candidate for any future potential assignementP J ): u I,J = [ν](I ⇒ ¬P J ) for I, J ∈ [1, 4]• If a cell has a value J, J cannot be the value of any other cell on the same row, column or square v r,J =[ν](J ⇒ (([r][r * ]¬J) ∧ ([r -][r - * ]¬J))) for J ∈ [1, 4] and r ∈ {R, C, SQ}. Finally, let us come back to the running Hospital example. Figure8.4 contains one rule for each of the actions defined in Section 3.3.
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 85 Figure 8.5: Strategy application rules
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 86 Figure 8.6: Weakest preconditions for strategies. appears twice for the empty list of actions and the empty strategy.

Theorem 9 . 1 . 1 .

 911 FO is closed under substitutions.

  x) as the valuation of c is left untouched. • c(x)[c := φ] φ(x) as the c I after performing c := φ is φ I . • c (x)[c := i] c (x) as the valuation of c is left untouched. • c(x)[c := i] i(x) as the c I after performing c := i is i I . • c (x)[c := c + i] c (x) as the valuation of c is left untouched. • c(x)[c := c + i] c(x) ∨ i(x) as the c I after performing c := c + i is c I ∪ i I . • c (x)[c := c -i] c (x) as the valuation of c is left untouched. • c(x)[c := c -i] c(x) ∧ ¬i(x) as the c I after performing c := c -i is c I \i I . • c(x)[r := (i, j)] c(x) as the valuation of c is left untouched. • c(x)[r := α] c(x) as the valuation of c is left untouched.

Example 9 . 2 . 1 .

 921 C 2 can express all the App(ρ) for the problem under study. Proof. • App(N P h(ph 1 ,d 1 )) = ∃x.(d 1 (x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph 1 (x))

Example 9 . 2 . 2 .Figure 9 . 2 :

 92292 Figure 9.2: An example for the computation of App

  1 , . . . , x k , a 1 , . . . , a l ) |= ψ. Let us define (x 1 , . . . , x k , a 1 , . . . , a l ) |= ψ: (x 1 , . . . , a l ) |= iff true (x 1 , . . . , a l ) |= (φ ∧ ψ) iff (x 1 , . . . , a l ) |= φ and (x 1 , . . . , a l ) |= ψ (x 1 , . . . , a l ) |= (¬φ) iff (x 1 , . . . , a l ) |= φ (x 1 , . . . , a l ) |= u(v) iff u ∈ φ N (v) (x 1 , . . . , a l ) |= b(v, w) iff there exists e ∈ E. s(e) = v, t(e) = w and b ∈ φ E (e) Theorem 9.3.1. The validity problem of ∃ * ∀ * is decidable.

Theorem 9 . 3 . 3 .

 933 ∃ * ∀ * cannot express all the N App(ρ).

Figure 9 . 3 :

 93 Figure 9.3: An example of graph not expressible in ∃ * ∀ * .

Example 9 . 3 . 1 .

 931 ∃ * ∀ * can express all the App(ρ) for the hospital problem. Proof. • App(N P h(ph 1 ,d 1 )) = ∃x.(d 1 (x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph 1 (x))

Definition 10 . 1 . 1 .

 1011 Given that φ is a concept, α is a role, a, b are nodes and f 0 and f 1 are facts, a fact is one of:• a : φ that means that a is labeled with φ • a α b that means that the edge (a, b) is labeled with α • a ¬α b that means that the edge (a, b) is not labeled with α • a = b that means that a and b are equal • a = b that means that a and b are different

Figure 10 . 2 :

 102 Figure 10.2: The semantics of ALCQ concepts

Figure 10 . 3 :Figure 10 . 4 :

 103104 Figure 10.3: Short proofs about the semantics of ALCQ concepts

Figure 10 . 6 :

 106 Figure 10.6: Weakest preconditions in Isabelle

Figure 10 . 7 :Figure 10 . 8 :

 107108 Figure 10.7: Proof of the soundness of the Hoare-like calculus

  Java Code: For processing programs such as the one in Figure 4.3 and generating Java code, we use the Eclipse environment and, in partic-public void Trans4(N ph 1 ,ph

2 ) { N p; if ∃d .(ph 1 ,d ):works in∧ (ph 2 ,d ):works in{ g.deleteNodeph 1 ,P H; while ∃p. (ph 1 ,p):treats{ p = treats.selectSource(ph 1 ); g.deleteEdge(ph 1 ,treats,p); g.insertEdge(ph 2 ,treats,p); } while ∃p. (p,ph 1 ):ref phys{ p = ref phys.selectTarget(ph 1 ); g.deleteEdge(p,ref phys,ph 1 ); g.addEdge(p,ref phys,ph 2 ); } g.deleteNode(ph 1 ,M S); } }

  Theorem 7.4.2. G |= NApp ↔ there does not exist a match h between lhs ρ and G.Example 7.4.1. The rules of the sudoku example are really simple, having only one-node left-hand side, and thus not very interesting as far as NApp is concerned. We will thus consider the rule, say ρ, of Figure8.2. There is only one connected subgraph so one has to pick one distinguished node r 0 . Let us choose, randomly, the node j as r 0 . Then NApp(ρ) = [ν Σ1 ]NA(j, ∅). As j is not explicitly named, NA(j, ∅) = ¬B ∨ [β]NA(k, {j}) ∨ [α -]NA(i, {j}). As i is not explicitly named either, NA(i, {j}) = ¬A as the only neighbor of i is j. Finally, NA(k, {j}) = [β * ]¬C as the only neighbor of k is j. Thus NApp(ρ) = [ν Σ1 ](¬B ∨ [β][β * ]¬C ∨ [α -]¬A).

	A	B	A	B	A
	Figure 7.2: These two graphs are indistinguishable without names

  C 2 is the two-variable fragment of first-order logic with counting. Its formulae are those of first-order logic than can be expressed with only two variables and using the counting quantifier constructor ∃ <n r.C. This constructor is such that a node m satisfies ∃ <n r.C if there exist less than n different nodes m 0 , . . . , m n such that r(m, m i ) and C(m i ).

	9.2 C 2

Definition 9.2.1. Let U be a set of binary predicate, u ∈ U, B be a set of binary predicate, b ∈ B, v, w be either x or y, n an integer. A formula φ of C 2 is defined as:

  y iff there does not exist n nodes w 1 , . . . , w n such that(v, w i ) |= φ x,y if w i = y (w i , v) |= φ x,y if w i = x Let us now focus on (x, y) |= φ x,y : Figure 9.1: An example of graph that cannot be expressed in C 2 . |= (φ x,y ∧ ψ x,y ) iff (x, y) |= φ x,y and (x, y) |= ψ x,y (x, y) |= ¬φ x,y iff (x, y) |= φ x,y (x, y) |= u(v) iff u ∈ φ N (v) (x, y) |= b(v, w)iff there exists e ∈ E.s(e) = v, t(e) = w and b ∈ φ E (e) (x, y) |= ∃ <n x.φ x,y iff there does not exist n nodes x 1 , . . . , x n such that (x i , y) |= φ x,y (x, y) |= ∃ <n y.φ x,y iff there does not exist n nodes y 0 , . . . , yLey us now check the requirements. C 2 contains unary predicate that are interpreted on nodes and binary predicates that are interpreted on edges. P re and P ost are interpreted on graphs.One can simply reuse the proof for FO.

		a	b
		c
	(x, y) |=	iff true
	(x, y) Theorem 9.2.2. C 2 is closed under substitutions.
	Theorem 9.2.3. C 2 cannot express App(ρ)

n such that (x, y i ) |= φ x,y Theorem 9.2.1 (

[START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF]

). The validity problem of C 2 is decidable.

https://github.com/ontop/ontop/wiki/Example MovieOntology

http://www.eclipse.org/Xtext/

http://jena.apache.org/

see, e.g., http://www.cs.man.ac.uk/ ∼ ezolin/dl/

∃R -.Self [C := C ± i] ∃R -.Self

∃R.Self [C := ψ] ∃R.Self

∃R -.Self [C := ψ] ∃R -.Self

∃R.Self [R := R ± (i, j)] ∃R.Self

∃R -.Self [R := R ± (i, j)] ∃R -.Self

(∀R.φ)[i in j] (∃U.({i} {j}) ⇒ ∀R.φ[i in j]) (∃U.({i} ¬{j}) ⇒ (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} ¬φ[i in j]) ⇒ ∀R.(φ[i in j] {i})) (∃R.({i} φ[i in j]) ∃R.{j} ⇒ ∀R.(φ[i in j] {i})) ((∀R.¬{i}) (∃R.({i} ¬φ[i in j]) ∃R.{j}) (∃R.({i} φ[i in j]) ∀R.¬{j} ∃U.({j} φ[i in j])) ⇒ ∀R.φ[i in j]))

(∀R -.φ)[i in j] ({i} ¬{j}) (¬{i} {j} ⇒ ∀R -.φ[i in j] ∃U.({i} ∀R -.φ[i in j])) (({i} ⇔ {j}) ⇒ ∀R -.φ[i in j])

(∀R.φ)[i out j] ({i} ¬{j}) (¬{i} {j} ⇒ ∀R.φ[i out j] ∃U.({i} ∀R.φ[i out j])) (({i} ⇔ {j}) ⇒ ∀R.φ[i out j])

(∀R -.φ)[i out j] (∃U.({i} {j}) ⇒ ∀R -.φ[i out j]) (∃U.({i} ¬{j}) ⇒ (∃R -.({i} ¬φ[i out j]) ∀R -.¬{j} ∃U.({j} φ[i out j]) ⇒ ∀R -.(φ[i out j] {i})) (∃R -.({i} ¬φ[i out j]) ∃R.{j} ⇒ ∀R -.(φ[i out j] {i}))

(C[i in j]) I = C I . By definition of the valuation of a substitution, (C[i in j]) I = C I .

(C[i out j]) I = C I ) I . By definition of the valuation of a substitution, (C[i out j]) I = C I .

(C[C := C +i]) I = (C {i}) I . By definition of the valuation of a substitution, (C[C := C + i]) I = C I ∪ {i I } = (C {i}) I .

(C[C := C -i]) I = (C ¬{i}) I . By definition of the valuation of a substitution, (C[C := C -i]) I = C I \{i I } = (C ¬{i}) I .

11 (C[C := ψ]) I =. By definition of the valuation of a substitution, (C[C := ψ]) I = C I .

h(α) is obtained from α by replacing every node name,n, of LHS by h(n).

http://www.vprover.org/

http://www4.informatik.tu-muenchen.de/ ∼ schulz/E/E.html

http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/ spass-workbench/
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= max(M(a 1,62 ), ( n R φ[i in j]), M(a 2,62 ), M(a 3,62 ), ( (n + 1) R φ[i in j]), M(a 4,62 ), ( (n -1) R φ[i in j]), M(a 5,62 ), ( (n + 1) R φ[i in j]), M(a 6,62 ), M(a 7,62 ), M(a 8,62 ), M(a 9,62 ), ( n R φ[i in j]) = max(0, max(0, M(φ)

= max(M (a 1,62 ), ( n R φ[i in j]), M (a 2,62 ), M (a 3,62 ), ( (n + 1) R φ[i in j]), M (a 4,62 ), ( (n -1) R φ[i in j]), M (a 5,62 ), ( (n + 1) R φ[i in j]), M (a 6,62 ), M (a 7,62 ), M (a 8,62 ), M (a 9,62 ), ( n R φ[i in j]) = max(0, max(0, M (φ[R :

= max(M(a 1,63 ), M(a 2,63 ), M(a 3,k,63 ), M(a 4,k,63 ), M(a 5,63 ), (< n R -φ[i in j])) = max(0, max(0, M(φ)

= max(M (a 1,63 ), M (a 2,63 ), M (a 3,k,63 ), M (a 4,k,63 ),

-67 As i out j can be seen as i in j applied to the inverse of the edges, rules 65 to 67 can be obtained from rules 62 to 64.

M((∃R.φ)[C

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

102

103 As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

105 As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one.

107 As the definitions of M and M do not discriminate R and R -, this rule is identic to the previous one. 
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We have proven that the most expressive logics that we considered, namely those containing at least O and one of U or @, are closed under substitutions even though they may incur a blow-up in the size of the formulae during the translation phase.

Increased DLs

In this section, a family of Description Logics which are strictly less expressive than their extension with substitutions are introduced. In addition to the purely technical interest of sorting logics depending on whether or not they have the property of being closed under substitutions, studying less expressive logics is meaningful as the more expressive logics are known to have a greater complexity [START_REF] Tobies | The complexity of reasoning with cardinality restrictions and nominals in expressive description logics[END_REF]. Moreover, the translation removing substitutions is itself exponential which makes the problem clearly intractable.

The first Description Logic that is considered is ALC. ALC does not contain O nor U or @, thus ABoxes and TBoxes need to be used. Yet, we still require that no substitution appears in them. Theorem 6.3.1. ALC is not closed under substitutions.

Intuitively, ALC is not strong enough to express whether a node has several successors or only one, and consequently to predict whether the deletion of an arc will leave this node with a successor or not.

More formally, to prove that the addition of substitutions to ALC strictly increases its expressiveness, we use a result from [START_REF] Rezaei | On bisimulations for description logics[END_REF]. They prove that ALC concepts, as well as TBoxes and ABoxes, are stable under bisimilar interpretations Theorem 6.3.2. For every concept C of the logic ALC, for every two interpretations I 1 and I 2 , for every bisimulation relation Z between I 1 and I 2 , if an element x 1 of I 1 satisfies C and there is an element x 2 of I 2 such that x 1 Zx 2 , then x 2 satisfies C. The same can be said for the satisfiability of ABox and T Box assertions. Definition 6.3.1 (Bisimulation). Given a signature (C, R, I) and two interpretations I and J , a non-empty binary relation Z ⊆ (∆ I × ∆ J ) is a bisimulation if it satisfies:

The idea of the proof of Theorem 6.3.1 consists in building an interpretation I 1 such that an ALC-concept φ containing substitutions holds and I 2 bisimilar to M 1 where φ does not hold, thus proving that ALCσ is not as expressive as ALC. Let's check that M 1 and M 2 are bisimilar. As the only concept in C is A and R is empty, we verify the four axioms given in Definition 6.3.1:

So I 1 and I 2 are bisimilar. However, after the removal of the individual i from the concept C, the concept C still holds in d 2 and does not hold in d 3 . This shows that there is no equivalent concept to C[C := C -i] in ALC, which is enough to show that ALC is not closed under substitution.

One could wonder whether it is possible to find a way, using a TBox and an ABox to find something that would be equivalent to C[C := C -i] in ALC. As the signature is ({C}, ∅, {i}), there are only few choices available as individual assertions or concept inclusions. The rules α 15 and α 16 introduce substitutions that affect sets and thus forces the introduction of new rules. Let i ∈ Σ, S 1 , S 2 ⊆ Σ:

Rule S 8 : {i}σ {i}

We now prove that these rules are correct. We first prove that they are correct on atomic roles and concepts. Lemma 4. Let R be one of rules φ 1 -φ 11 , A r be the right-hand side and A l be the left-hand side of R.

Proof. The proof uses the model M = (M, R , χ, V ) obtained form M by using the definitions in Section 3.1.

Rule φ

Rule φ 2 : As nodes are never renamed, V (iσ) = V (i).

Rule φ 3 : As σ does not modify modifies

We now do the same thing with the atomic programs.

Lemma 5. Let R be one of rules α 1 -α 13 , A r be the right-hand side and A l be the left-hand side of R.

Proof. The proof uses the model M = (M, R , χ, V ) obtained form M by using the definitions in Section 3.1.

Rule α

Proof. The proof uses the model M = (M, R , χ, V ) obtained form M by using the definitions in Section 3.1.

Lemma 7. Let R be one of rules α 14 -α 21 , A r be the righthand side and A l be the lefthand side of R.

Proof. The proof uses the model M = (M, R , χ, V ) obtained form M by using the definitions in Section 3.1.

Rule α 14 : As σ" does not modify S, R(ν S σ") = R(ν S ).

Rule α 15 : R(ν

Rule α 19 : R((α

Rule α 20 : R((α

Rule α 21 : R((φ?)σ) = R (φ?) = {(s, s)|s ∈ V (φ)} = R((φσ)?).

Decidability

Theorem 7.3.1. Given a formula φ of C2PDL , the satisfiability and the validity of φ are decidable.

In order to take into account the new constructors, we propose the following axiom schemes and rules derived from the ones for CPDL that we prove sound and complete. We will also prove the decidability of the satisfiability (resp. validity) problem for C2PDL .

• PDL axioms:

We give 5 deductive rules:

Proof. This is a straightforward induction on :

• Every node of the model M satisfies the boolean tautology A. Hence, M A.

• Let m be a node of the model M then:

-Either ∃m such that (m, m ) ∈ R(α) and m ∈ V (A ∧ ¬B) and thus m ∈ V (< α > (A ∧ ¬B)), Definition 7.3.1. A simple extension of C2PDL , or logic (over C2PDL ) is any set of C2PDL formulae L such that:

• L contains all axioms of C2PDL

• L is closed under (M P ), (Ind), (Cov) and (N ec).

Definition 7.3.2. Let L be a logic, an L-theory is any set T ⊆ Φ such that:

• T is closed under (M P ), (Ind) and (Cov).

Definition 7.3.6. By log(Γ, A) (resp. th(Γ, A)), we denote the least logic (resp. theory) containing Γ ∪ A.

Lemma 8 (Deduction lemma for theories). Let T be an L-theory, A, B ∈ Φ,

Proof. ⇐ Assume B ∈ th(T, A) and let T 0 be {D|A → D ∈ T }. As A → A ∈ T , A ∈ T 0 . Let's prove that T 0 is an L-theory:

Thus T 0 is stable by (Ind).

Thus T 0 is an L-theory. As th(T, A) is the smallest theory containing

⇒ Assume A → B ∈ T then, as th(T, A) is stable by (M P ) and A ∈ th(T, A), B ∈ th(T, A).

Proof. As th(Γ, A) is a theory, L ⊆ th(Γ, A) and thus all axioms of C2PDL are contained in th(Γ, A) and th(Γ, A) is closed under (M P ), (Cov) and (Ind). Assume C ∈ th(Γ, A). We prove by induction that [ν Σ ]C ∈ th(Γ, A):

• 

Thus th(Γ, A) is stable under (N ec), thus th(Γ, A) is a logic.

Lemma 10. Let L be a logic and A be a closed formula, th(L, A) = log(L, A)

Then, as th(L, A) contains (ν S 4) with S = Σ and

⊇ By definition, a logic is a theory and log(L, A) contains L∪A thus th(L, A) ⊆ log(L, A).

Lemma 11 (Deduction lemma for logics). Let L be a logic and A be a closed formula.

Lemma 12 (Separation lemma for theories). Let T be a theory, A ∈ T . Then there exists a maximal theory T * such that T ⊆ T * and A ∈ T * .

Proof. Let T 0 = th(T, ¬A). As A ∈ T , ¬A =⇒ ⊥ ∈ T . Then, from Lemma 8, ⊥ ∈ T 0 and thus T 0 is consistent. Let B 0 , B 1 , . . . , be an enumeration of Φ. By induction on n, we construct a chain T 0 ⊆ T 1 ⊆ . . . of consistent theories. Their union will yield the required T * . The induction hypothesis is that T n is a consistent theory. It is the case for T 0 .

) and, from Lemma 8, B n =⇒ ⊥ ∈ T n and thus B n ∈ T n . Then:

, and ¬B n ∈ T n then T n is inconsistent which, due to the induction hypothesis, is not the case. Thus ∃c ∈ Σ such that B n,c ∈ T n . Then, from Lemma 8,

because T n is stable by (Ind), and ¬B n ∈ T n T n is inconsistent which, due to the induction hypothesis, is not the case. Thus ∃k < ω such that B n,k ∈ T n . Then, from Lemma 8, T n+1 = th(T n , ¬B n,k ) is consistent.

Let T * = {T n |n < ω}. We have:

) . As T max(k0,k1) is closed under (M P ), C 1 ∈ T max(k0,k1) and thus C 1 ∈ T * . Then T * is closed under (M P ).

• As ∀k, ¬A ∈ T 0 ⊆ T k and T k is consistent, A ∈ T *

• Assume ⊥ ∈ T * then, as ⊥ → A is a boolean tautology, both ⊥ ∈ T * and ⊥ → A ∈ T * . As T * is closed under (M P ), then A ∈ T * . As it is not the case, T * is consistent.

• Lemma 13. If T is a maximal L-theory, then L T is a maximal logic and L T is the greatest logic included in T .

Proof.

• Let A be an axiom of C2PDL then A ∈ L as L is a logic. As L is closed under

As L ⊆ T and L contains ( ) and T is closed under

-

The Fischer-Ladner closure of a finite set is finite.

Definition 7.3.10. We name canonical quasi-model the model

where:

• M c is the set of all maximal consistent sets of formulae

It is the template of the model we will create to prove the correctness though.

Lemma 19. For all u ∈ M c and all formulae

Proof. This is done by induction on the complexity of A.

• If A is an atomic proposition or a name, this is true by construction.

Proof. If

A, every maximal consistent set contains A and thus, from lem-maLemma 19, M c , u A for all u ∈ M c . Thus A is true in M c . Otherwise, {¬A} is consistent and, from Lemma 14, can thus be extended to a maximal consistent set x. As x ∈ M c and A ∈ x, M c , x A.

Assume neither uR c (α)v nor uR c (β)v. Then, there exists A and B such that

Assume uR c (α; β)v. Let C i be the formulae in v. We define a new set of formulae such that B 0 = C 0 and 

Definition 7.3.11. Let M = (M, R, χ, V ) be a model and let Γ be any set of formulae closed under sub-formulae. We define the equivalence relation ∼ Γ on M by: s ∼ Γ t iff ∀φ ∈ Γ, (M, s φ iff M, t φ).

We note [s]

Γ the equivalence class of s with respect to ∼ Γ . The structure

• for every atomic proposition

All nodes not named with names occurring in Γ can be unnamed and renamed so that χ Γ is onto.

Lemma 24. Let M Γ be the filtration of M c with respect to a Γ. Then for each formula A ∈ Γ and all

Proof. The proof is by induction on A.

• For atomic propositions and names, this is by construction.

-Assume M c , s A then, from Lemma 19, A ∈ s and thus, by construction, B ∈ t for all t such that sR c (α)t. Then, by induction,

Proof. There are at most 2 n equivalence classes for n formulae.

Definition 7.3.12. Let Γ be a set of formulae closed under sub-formulae. Let

There can actually be a lot of them as there are no conditions on programs π ∈ Γ.

Proof. This is done by induction on α.

• If α ∈ Π 0 , this true by construction.

• If α = β; δ. Assume uR c (α)v then, by Lemma 22, there exists x such that uR c (β)x and xR c (δ)v so, by induction,

Proof. This is done by induction on α.

Then, as Γ is closed under

Checking the applicability condition

The formula App(tag(ρ)) expresses the applicability of the rule tag(ρ). In other words, it expresses the existence of a match of the left-hand side of tag(ρ). More precisely App(tag(ρ)) is defined as follows:

(e) -tag(s(e)). φ nodes states that the first condition of the match is satisfied i.e., all formulae satisfied by a node of the left-hand side have to be satisfied by its image in the graph. φ edges does the same with edges: the image of an edge is labeled the same as the edge, the image of its source is the source of its image and the image of its target is the target of its image.

Tagging a rule may seem to reduce its applicability. Indeed, by choosing a new name for each node of the left-hand side, the rule can now be applied only at the nodes of the graph named accordingly. Let ρ be a rule such that LHS ρ = (N ρ = {i 0 , . . . i n }, E ρ , C ρ , R ρ , L Nρ , L Eρ , s ρ , t ρ ) is its left-hand side. In order to prove that the application of ρ on a graph

) is correct, one has to verify that for every match h = (h N , h E ), the postcondition is satisfied after the transformation associated with ρ is applied at the h N (i k )'s. Instead of showing that, the verification proves that for any graph, if the rule can be applied at the θ(u)'s, where θ is the function that associates to each name of Σ a node of G and u ∈ tag(ρ), the postcondition is satisfied after performing the transformation. As the u's are fresh names, they do not have any impact on the previous characterization of the graphs. Thus, the validity of wp(ρ, P ost) actually states that whatever the choice of θ, if the rule can be applied, then the postcondition will be satisfied after it is applied. Informally, the predicate NApp(s), used in the definition of the verification conditions function vc, says that the strategy s cannot be applied. To express NApp(s) one may wonder whether one can use the negation of App(s). The answer is negative since App has been defined using dedicated names, that is to say a rule is applied at a specific place defined by the added names introduced by the function tag. Intuitively, if one wants to express that there is no match for a rule whose left-hand side contains a cycle (say it is the second graph of Figure 7.2), one needs to use universal quantification. For instance, in that case it would be ∀i, j.

Alas, this cannot be expressed in C2PDL . The names only allow to express existential quantifiers. Indeed, to express universal quantifiers, one needs to extend the logic with the binder ↓ of hybrid logic which is enough to make the logic undecidable [START_REF] Areces | Hybrid logics[END_REF]. • read access never occurs in P ost and thus P ost is left unaffected by [read access:= read access+(i, l)]

• is about occurs in is about Confluence of graph rewriting systems is not easy to establish. For instance, orthogonal graph rewrite systems are not always confluent, see e.g., [START_REF] Echahed | Inductively sequential term-graph rewrite systems[END_REF]. That is why we use a notion rewrite strategies to control the use of possible rules. Informally, a strategy specifies the application order of different rules. It does not ensure confluence, however. It does not point to where the matches are to be found and it contains a choice constructor that is inherently non-confluent. This is not a problem as scores of interesting rewriting problems are non-confluent. Definition 8.2.3 (Strategy). Given a graph rewriting system R, a strategy is a word of the following language defined by s:

s * (Closure) where ρ is any rule in R.

We write G ⇒ S G when G rewrites to G following the rules given by the strategy S.

Informally, the strategy "ρ 1 ; ρ 2 " means that rule ρ 1 should be applied first, followed by the application of rule ρ 2 . The strategy "ρ * 0 ; (ρ 1 ⊕ ρ 2 )" means that rule ρ 0 is applied as far as possible, then followed either by ρ 1 or ρ 2 . It is worth noting that the closure is the standard "while" construct: if the strategy we use is s * , the strategy s is used as long as it is possible and not an undefined number of times.

Example 8.2.1. For the sudoku example introduced in Example 8.1.2, a possible strategy S 1 could be: "As long as one can eliminate possibilities, do it. Then, when it is no longer the case, make a choice in one of the blank cells and go back to the first step". S 1 may be defined as S 1 = (( r∈{R,C,SQ},J∈ [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF][START_REF] Areces | Hybrid logics[END_REF] ρ r,J ) + ; ( J∈ [START_REF] Ahmetaj | Managing change in graph-structured data using description logics[END_REF][START_REF] Areces | Hybrid logics[END_REF] ρ J )) * where s + stands for s; s * . In Figure 8.5, we provide the rules that specify how strategies are used to rewrite a graph. For that we use the following two litterals: App(s, G) which holds whenever graph G can be rewritten by the strategy s whereas NApp(s, G) holds whenever graph G cannot be rewritten by strategy s. These litterals are defined below App(ρ, G) = iff there exists a match h from the left-hand side of ρ to

It is worth noting that App(s, G) is not meant to denote that the whole strategy can be applied to G, just that the next step can be applied. Indeed, let's assume the strategy s = (s 0 ; s 1 ) * ; s 2 where s 0 can be applied but may yield a state where s 1 cannot. App(s) says that the strategy can be applied which is what we want as the fact that s 0 may yield a state where s 1 cannot be applied indicates a shortcoming of the programmation (such should not be the case) and the program will be considered incorrect. NApp is defined as ¬App.

In addition, App(ρ[ c]) must be defined in L. Obviously, this depends immensely on the rules one wants to use. It is thus possible, for a given problem, to use a logic that may not be powerful enough for other problems. Nonetheless, one of the requirements this entails on L is that it must allow some kind i : {i a , P J } add C (ia, J); del C (ia, P1); del C (ia, P2); del C (ia, P3); del C (ia, P4) tag(ρ J ) : Figure 8.7: The rule ρ J is modified into tag(ρ J ) with tag(i) = i a ones. As in any other framework using Hoare logic, it requires the definition of an invariant for each loop that has to be provided by the user.

The weakest precondition of a rule ρ = (lhs ρ , α ρ ) and a postcondition Q is given by wp(ρ, Q) = App(tag(ρ)) ⇒ wp(tag(α ρ ), Q) where tag : N lhsρ → Σ is a function which associates to every node, n, of the left-hand side of rule ρ, a fresh name in Σ. These new names are used to keep track of the matching locations within potential graphs rewritten by different instances of ρ during the execution of a strategy. tag(ρ) = (tag(lhs ρ ), tag(α ρ )) where tag(lhs ρ ) is a named graph which consists of the graph lhs ρ where the node labeling function is augmented by tag, i.e., for all nodes, n, of lhs ρ , L N tag(lhsρ

is obtained from α ρ by substituting every node (in N lhsρ ), say i, by tag(i). The formula App(tag(ρ)) expresses the applicability of the rule tag(ρ). In other words, it expresses the existence of a match of the left-hand side of tag(ρ).

Tagging a rule may seem to reduce its applicability. Indeed, by choosing a new name for each node of the left-hand side, the rule can now be applied only at the nodes of the graph named accordingly. Let ρ be a rule such that LHS ρ = (N ρ = {i 0 , . . . i n }, E ρ , C ρ , R ρ , L Nρ , L Eρ , s ρ , t ρ ) is its left-hand side. In order to prove that the application of ρ on a graph

) is correct, one has to verify that for every match h = (h N , h E ) (as defined in Definition 8.2.1), the postcondition is satisfied after the transformation associated with ρ is applied at the h N (i k )'s. Instead of showing that, the verification procedure proves that for any graph, if the rule can be applied at the θ(u)'s, where θ is the function that associates to each name of Σ a node of G and u ∈ tag(ρ), the postcondition is satisfied after performing the transformation. As the u's are fresh names, they do not have any impact on the previous characterization of the graphs. Thus, the validity of wp(ρ, P ost) actually states that whatever the choice of θ is, if the rule can be applied, then the postcondition will be satisfied after it is fired.

The weakest precondition associated to the closure of a strategy, say s * , and a postcondition Q is defined as wp(s * , Q) = inv s where inv s is an invariant associated to the strategy s. Roughly speaking s * could be seen as a while-loop which needs invariants associated with additional proof obligations defined by means of the function vc (verification conditions) given in Figure 8.8.

These definitions allow us to generate once more the formula Corr which we have to prove valid.

• r(x, y)[i in j] (r(x, y)∧¬i(y))∨(r(x, i)∧j(y)) as r I = r I ∪{(a, j)|(a, i) ∈ r I }\{(a, i) ∈ r I }. Additionally, FO is enough to express the existence or absence of a match. Let App(ρ) = ∃ n∈Lρ x n . c∈L N (n) c(x n ) ∧ e∈Lρ L E (e)(x s(e) , s t(e) ). App(ρ) is equivalent to the existence of a match as c∈L N (n) c(x n ) makes sure that the first condition of Definition 8.2.1 is satisfied and e∈Lρ L E (e)(x s(e) , s t(e) ) takes care of the other three. First-order logic is not decidable though, and thus one may want to use a different logic in order to be able to decide the correctness of the considered properties. In the following, we use the 2-variable fragment of first-order logic with counting (C 2 ) [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF] and ∃ * ∀ * , the fragment of first-order logic whose formula in prenex form are of the form ∃i 0 , . . . , i k .∀j 0 , . . . , j l .A(i 0 , . . . , i k , j 0 , . . . , j l ).

Let S be the specification (P re, s, P ost) associated to the hospital example. Assume the strategy is s = N ew P h[nph,neonat]; Del P a[opa] while R is the one from Figure 8.4. This program P creates a new physician nph and lets the patient opa leave the hospital. Let inv denote the conjunction of the expected properties. Let the precondition P re be inv ∧ ∃x.(neonat(x)∧DE(x)) ∧ ∃x.(opa(x)∧PA(x))∧∀x.¬nph(x). Let the postcondition P ost be inv∧∃x, y.(nph(x) ∧PH(x)∧works in(x, y)∧neonat(y)∧DE(y)). Proving the correctness of SP H amounts to proving that P re ⇒ wp(S, P ost) is valid. This is a formula in firstorder logic. In the following two sections, this specification is proven to be lemma interp form SubstFm FactFm Rel AtomR SDiff: "interp fact (AtomR sign r x y) (interp subst (RSubst r SDiff (v1, v2)) i) = interp form (subst AtomR SDiff sign r x y v1 v2) i" by (simp add: subst AtomR SDiff def interp r modif def) fast fun subst height concept :: "('nr, 'nc, 'ni) concept ⇒ nat" where "subst height concept Bottom = 0" | "subst height concept Top = 0" | "subst height concept (AtomC sign a) = 0" | "subst height concept (BinopC bop c1 c2) = max (subst height concept c1) (subst height concept c2)" | "subst height concept (NegC c) = subst height concept c" | "subst height concept (NumRestrC nro n r c) =subst height concept c"

| "subst height concept (SubstC c sb) = height concept c + subst height concept c" lemma height concept positive [simp]: "0 < height concept c" by (induct c) auto lemma push subst fact decr: "extract subst fct = None =⇒ subst height form (push subst fact fct sb) sbsts' < subst height fact fct (sb # sbsts')" apply (case tac sb) apply (rule push subst fact decr rsubst) apply assumption+ apply (rule push subst fact decr csubst) apply assumption+ done