
HAL Id: tel-01680711
https://theses.hal.science/tel-01680711v2

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Difference Analysis in Big Data : Exploration,
Explanation, Evolution

Sofia Kleisarchaki

To cite this version:
Sofia Kleisarchaki. Difference Analysis in Big Data : Exploration, Explanation, Evolution. Data
Structures and Algorithms [cs.DS]. Université Grenoble Alpes; Panepistīmio Krītīs, 2016. English.
�NNT : 2016GREAM055�. �tel-01680711v2�

https://theses.hal.science/tel-01680711v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
préparée dans le cadre d’une cotutelle entre l’Université de Grenoble et
l’Université de Créte

Spécialité : Informatique

Arrêté ministérial : 7 aout 2006

Présentée par

Sofia Kleisarchaki

Thèse dirigée par Sihem Amer-Yahia et Vassilis Christophides

préparée au sein Laboratoire d’Informatique de Grenoble
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Analyse des Différences dans le
Big Data: Exploration, Explication,
Évolution

Thèse soutenue publiquement le 28 Novembre 2016,
devant le jury composé de :

Mme, Claudia Roncancio
Professor, Grenoble INP, Président

Mr, Albert Bifet
Associate Professor, Telecom ParisTech, Rapporteur

Mr, Ingmar Weber
Principal Scientist, Qatar Computing Research Institute, Rapporteur

Mme, Angela Bonifati
Professor, Lyon 1 University, Examinateur

Mme, Anne Laurent
Professor, Montpellier 2 University, Examinateur

Mr, Ioannis Tsamardinos
Professor, University of Crete, Examinatrice

Mme, Sihem Amer-Yahia
Research Director, CNRS delegation Alpes, Directeur de thèse

Mr, Vassilis Christophides
Professor, University of Crete, Directeur de thèse

Difference Analysis in Big Data:
Exploration, Explanation, Evolution

Sofia Kleisarchaki

University of Grenoble Alps & University of Crete

This dissertation is submitted for the degree of
Doctor of Philosophy

December 2016

I would like to dedicate this thesis to my precious treasures. . .
One given by life; my beloved Andreas and one given by my parents; my sister Foteini.

Résumé

La Variabilité dans le Big Data se réfère aux données dont la signification change de manière
continue. Par exemple, les données des plateformes sociales et les données des applications
de surveillance, présentent une grande variabilité. Cette variabilité est dûe aux différences
dans la distribution de données sous-jacente comme l’opinion de populations d’utilisateurs
ou les mesures des réseaux d’ordinateurs, etc. L’Analyse de Différences a comme objectif
l’étude de la variabilité des Données Massives. Afin de réaliser cet objectif, les data scientists
ont besoin (a) de mesures de comparaison de données pour différentes dimensions telles
que l’âge pour les utilisateurs et le sujet pour le traffic réseau, et (b) d’algorithmes efficaces
pour la détection de différences à grande échelle. Dans cette thèse, nous identifions et
étudions trois nouvelles tâches analytiques : L’Exploration des Différences, l’Explication des
Différences et l’Evolution des Différences.

L’Exploration des Différences s’attaque à l’extraction de l’opinion de différents segments
d’utilisateurs (ex., sur un site de films). Nous proposons des mesures adaptées à la com-
paraison de distributions de notes attribuées par les utilisateurs, et des algorithmes efficaces
qui permettent, à partir d’une opinion donnée, de trouver les segments qui sont d’accord ou
pas avec cette opinion. L’Explication des Différences s’intéresse à fournir une explication
succinte de la différence entre deux ensembles de données (ex., les habitudes d’achat de
deux ensembles de clients). Nous proposons des fonctions de scoring permettant d’ordonner
les explications, et des algorithmes qui guarantissent de fournir des explications à la fois
concises et informatives. Enfin, l’Evolution des Différences suit l’évolution d’un ensemble
de données dans le temps et résume cette évolution à différentes granularités de temps. Nous
proposons une approche basée sur le requêtage qui utilise des mesures de similarité pour
comparer des clusters consécutifs dans le temps. Nos index et algorithmes pour l’Evolution
des Différences sont capables de traiter des données qui arrivent à différentes vitesses et
des types de changements différents (ex., soudains, incrémentaux). L’utilité et le passage à
l’échelle de tous nos algorithmes reposent sur l’exploitation de la hiérarchie dans les données
(ex., temporelle, démographique).

Afin de valider l’utilité de nos tâches analytiques et le passage à l’échelle de nos algo-
rithmes, nous réalisons un grand nombre d’expériences aussi bien sur des données synthé-
tiques que réelles.

Nous montrons que l’Exploration des Différences guide les data scientists ainsi que
les novices à découvrir l’opinion de plusieurs segments d’internautes à grande échelle.
L’Explication des Différences révèle la nécessité de résumer les différences entre deux
ensembles de donnes, de manière parcimonieuse et montre que la parcimonie peut être
atteinte en exploitant les relations hiérarchiques dans les données. Enfin, notre étude sur
l’Evolution des Différences fournit des preuves solides qu’une approche basée sur les requêtes
est très adaptée à capturer des taux d’arrivée des données variés à plusieurs granularités de
temps. De même, nous montrons que les approches de clustering sont adaptées à différents
types de changement.

Abstract

Variability in Big Data refers to data whose meaning changes continuously. For instance, data
derived from social platforms and from monitoring applications, exhibits great variability.
This variability is essentially the result of changes in the underlying data distributions of
attributes of interest, such as user opinions/ratings, computer network measurements, etc.
Difference Analysis aims to study variability in Big Data. To achieve that goal, data scientists
need: (a) measures to compare data in various dimensions such as age for users or topic for
network traffic, and (b) efficient algorithms to detect changes in massive data. In this thesis,
we identify and study three novel analytical tasks to capture data variability: Difference
Exploration, Difference Explanation and Difference Evolution.

Difference Exploration is concerned with extracting the opinion of different user segments
(e.g., on a movie rating website). We propose appropriate measures for comparing user
opinions in the form of rating distributions, and efficient algorithms that, given an opinion
of interest in the form of a rating histogram, discover agreeing and disagreeing populations.
Difference Explanation tackles the question of providing a succinct explanation of differences
between two datasets of interest (e.g., buying habits of two sets of customers). We propose
scoring functions designed to rank explanations, and algorithms that guarantee explanation
conciseness and informativeness. Finally, Difference Evolution tracks change in an input
dataset over time and summarizes change at multiple time granularities. We propose a
query-based approach that uses similarity measures to compare consecutive clusters over
time. Our indexes and algorithms for Difference Evolution are designed to capture different
data arrival rates (e.g., low, high) and different types of change (e.g., sudden, incremental).
The utility and scalability of all our algorithms relies on hierarchies inherent in data (e.g.,
time, demographic).

We run extensive experiments on real and synthetic datasets to validate the usefulness
of the three analytical tasks and the scalability of our algorithms. We show that Difference
Exploration guides end-users and data scientists in uncovering the opinion of different user
segments in a scalable way. Difference Explanation reveals the need to parsimoniously
summarize differences between two datasets and shows that parsimony can be achieved by
exploiting hierarchy in data. Finally, our study on Difference Evolution provides strong

viii

evidence that a query-based approach is well-suited to tracking change in datasets with
varying arrival rates and at multiple time granularities. Similarly, we show that different
clustering approaches can be used to capture different types of change.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Context: Big Data . 1
1.2 Our Approach for Difference Analysis . 2

1.2.1 Difference Exploration . 3
1.2.2 Difference Explanation . 4
1.2.3 Difference Evolution . 5

1.3 Contributions & Thesis Organization . 6

2 Difference Exploration 9
2.1 Introduction . 9
2.2 Data Model and Problem . 12

2.2.1 Population Segments and Rating Maps 12
2.2.2 Difference Exploration Problem 13

2.3 Rating Comparison Measures . 15
2.3.1 EMD Calculation . 17

2.4 Building Rating Maps . 22
2.4.1 Problem Complexity . 22
2.4.2 Algorithms for Difference Exploration 23

2.5 Difference Exploration Experiments . 26
2.5.1 Experimental Setup . 27
2.5.2 Summary of Results . 27
2.5.3 Exploration Scenarios . 28
2.5.4 Detailed Evaluation . 32

2.6 Summary of Difference Exploration . 37

x Table of contents

3 Difference Explanation 39
3.1 Introduction . 39
3.2 Motivating Example . 40
3.3 Formal Model for Difference Explanation 44

3.3.1 Difference Explanation Problem 46
3.3.2 Sub-modularity and Monotonicity 46

3.4 Algorithms for Difference Explanation . 47
3.4.1 Greedy Algorithm . 48
3.4.2 Top-k Algorithm . 49

3.5 Difference Explanation Experiments . 49
3.5.1 Dataset Preparation . 50
3.5.2 Summary of Results . 51
3.5.3 Examples of Difference Explanation 51
3.5.4 Segment Difference Characterization 55
3.5.5 Difference Explanation Evaluation 59
3.5.6 Scalability Evaluation . 63

3.6 Summary of Difference Explanation . 64

4 Difference Evolution 67
4.1 Introduction . 67
4.2 Data Model and Queries . 69

4.2.1 Clustering and Drifts . 70
4.2.2 Drift Queries in Difference Evolution 71

4.3 Drift Index . 73
4.3.1 Full Index Materialization . 73
4.3.2 Partial Index Materialization . 77
4.3.3 Time & Space Complexity . 77
4.3.4 θ and ε Learning . 78

4.4 Query Evaluation Algorithms for Difference Evolution 79
4.5 Difference Evolution Experiments . 81

4.5.1 Dataset Preparation . 81
4.5.2 Summary of Results . 83
4.5.3 Accuracy of Drift Detection . 83
4.5.4 Scalability Study of All Indices 88

4.6 Summary of Difference Evolution . 90

Table of contents xi

5 Related Work on Difference Analysis 93
5.1 Difference Exploration . 93

5.1.1 Databases . 93
5.1.2 Data Mining . 94
5.1.3 Social Data Analysis . 94

5.2 Difference Explanation . 95
5.2.1 Online Analytical Processing . 95
5.2.2 Contrast Data Mining . 96
5.2.3 Parsimonious Explanations . 97

5.3 Difference Evolution . 98
5.3.1 Types of Drift . 98
5.3.2 Interval Policies . 99
5.3.3 Similarity Measures . 100

6 Conclusion 101
6.1 Research Summary . 101
6.2 Perspectives . 102

6.2.1 Difference Exploration . 102
6.2.2 Difference Explanation . 104
6.2.3 Difference Evolution . 105

References 107

Appendix A EMD Pruning Strategy 115

List of figures

1.1 Our approach for difference analysis: Exploration, Explanation, Evolution . 3

2.1 Pre-computed segments on IMDb . 10
2.2 Dataset Exploration with Rating Maps . 10
2.3 (a) Young artists’ distribution for Alien (1979) (b) Mary’s distribution for

Debbie Macomber . 13
2.4 (a) Hierarchy of attribute age (b) Categorical split, where each node is a

segment . 14
2.5 Flows for example in Table 2.2 . 19
2.6 Analyst’s exploration scenarios . 29
2.7 (a) Similar segments (ML), (b) Different segments (ML) 30
2.8 Similar and different segments (BC) . 31
2.9 Accuracy of algorithms Vs. Noise . 34
2.10 Evaluation of Rating Map quality for all RF heuristics 36
2.11 Response time Vs. Input size on ML . 37

3.1 Two dimensional space of data segments 41
3.2 Distance measure properties: (a) Identity of indiscernibles, (b) Asymmetry . 45
3.3 Summarizing (a) Ancestors, (b) Descendants 45
3.4 Average number of summarized segments of various datasets for (a) k-Greedy

(Ancestors), (b) k-Greedy (Descendants) 56
3.5 f (S) value of various datasets for (a) k-Greedy (Ancestors), (b) k-Greedy

(Descendants) . 57
3.6 (a) Average summarized segments (b) f (S) value of Top-k(Ancestors) for

various datasets . 58
3.7 (a) Average segment score of explanation S, (b) Average number of segments

summarized by S . 60
3.8 (a) f (S) for explanation S, (b) Average granularity level of segments in S . . 61

xiv List of figures

3.9 Values of f (S) for various p constraints 62
3.10 Response time for various (a) Segments, (b) k-values 63

4.1 Drift Index variants . 74
4.2 Different Data Distributions . 82
4.3 Unary Queries Accuracy. A tradeoff between precision and recall is observed

over different granularity levels. 85
4.4 Index Size . 89
4.5 Unary Query Response and Index Build Time 89
4.6 Query Time. Less nodes at higher levels of hierarchical index reduce the

corresponding query time response. 91

List of tables

2.1 Distance Measures Comparison . 16
2.2 Running example of EMD computation 19
2.3 Summary of datasets . 27
2.4 Effect of segment Description Length on Rating Map quality for RF-Cluster 34
2.5 Average Description Length (Top-10) . 35

3.1 Schema of datasets D1,D2 . 41
3.2 Aggregate values of various data segments 42
3.3 Summary of Datasets . 50
3.4 Difference summarization of k-Greedy when contrasting stores of high

difference in their overall sales . 53
3.5 Difference summarization of k-Greedy when contrasting stores of low dif-

ference in their overall sales . 55

4.1 F-Measure for refinement (lower matrix) and synthesis (upper matrix) queries
over IE, KDD Cup’99 . 87

4.2 F-Measure for refinement (lower matrix) and synthesis (upper matrix) queries
over CE, KDD Cup’99 . 87

Chapter 1

Introduction

1.1 Context: Big Data

While the concept of ”Big Data” has been around for many years, its term was first articulated
in the early 2000s. The term of Big Data refers to datasets that are so large or complex that
traditional applications are inadequate to deal with them and thus devising new scalable
structures and advanced methods is required. The emergence of social platforms decisively
contributed to the generation of Big Data that are dynamic in nature, in terms of their
volume, arrival rate and type. Beyond social platforms, several other means are automatically
generating such content. Sales transactions, network traffic and news feed subscriptions are
few examples of data deriving from real world monitoring applications.

The characteristics of big data are usually summarized by a 3-dimensional model, namely
the ”3Vs”: the increasing Volume (amount of data), the unpredicted Velocity (speed of data)
and the high Variety (range of data types and sources). Although the ”3Vs” give us an insight
into the scale of data, it is only scratching the surface of the depth and criticality of Big Data.
To this end, an augmented model has been proposed of four more “Vs”: Validity (correctness
and accuracy of data), Veracity (noise and abnormality of data), Volatility (duration of validity)
and Variability (continuously changing meaning of data).

In this thesis, we are particularly interested in variability of data. Variability refers to
data whose meaning is continuously changing. It is usually confused with variety, but an
intuitive example can easily distinguish them. Consider a coffee shop with five different
blends of coffee (i.e., that is variety) but the same blend tastes different every day (i.e., that is
variability). To express and summarize variability different dimensions (i.e., attributes) are
considered. For instance, time and space attributes, but also user demographics (e.g., age,
gender) or item attributes (e.g., movie title, actors) are used, depending on the context. In
order to perform variability analysis of data, we are interested in (a) exploring differences

2 Introduction

over different attributes, (b) explaining such differences according to some attributes of
interest and (c) tracking the evolution of data and summarizing differences over time. We
refer to those three analytical tasks as Difference Analysis.

There are several examples of analyzing the variability in data, which have attracted the
attention of both scientists and market analysts over time. In this thesis, we introduce and
focus on three analytical tasks derived from the aforementioned monitoring applications,
indicating their potential impact in science and marketing. Exploring the opinions in movies
of different rater populations can result in targeted population-oriented (e.g., geographic-, age-
oriented) or item-oriented (e.g., movies of an actor) campaigns. Explaining the differences in
consumption habits of various demographic groups across different stores can change the
marketing strategies of different stores. Monitoring the evolution of users’ preferences in
news subscriptions can improve recommendation systems, and monitoring intrusions can
improve network security.

Each one of the above tasks on analyzing differences pushes the borders of knowledge in
the wider area of Difference Analysis. For each one of the analytical tasks, we encounter
particular challenges and we envision novel algorithmic solutions.

1.2 Our Approach for Difference Analysis

In this thesis, we deal with three different analytical tasks studying the variability in data. Fig-
ure 1.1 depicts an abstract overview of the tasks, namely Difference Exploration, Difference
Explanation and Difference Evolution.

A common denominator of all three tasks is (a) the detection of differences and (b) the
exploitation of hierarchies (i.e., formed by attributes) inherent in data. First, difference
detection is performed by contrasting and comparing items of interest (shown as input in
Figure 1.1) in order to extract the attributes over which these items differ (shown as output in
Figure 1.1). For the purpose of performing such a comparison, three objectives are significant:
finding the attributes over which the two items will be contrasted (e.g., demographic), the
measure of interest that summarizes them (e.g., rating distribution, number of purchases)
and the extent of their difference given by a distance measure (e.g., difference in rating
distributions, absolute difference in number of purchases). Second, exploiting hierarchies is
performed by decomposing input data at different dimensions (i.e., attributes of hierarchy)
and detecting those dimensions over which they differ. For the purpose of decomposition,
time, demographic and item hierarchies are exploited, allowing multiple summarizations of
input data.

1.2 Our Approach for Difference Analysis 3

Fig. 1.1 Our approach for difference analysis: Exploration, Explanation, Evolution

In the following subsections, we give an overview of the three tasks, we summarize the
encountered challenges and we briefly discuss how related work deals with the aforemen-
tioned objectives. Although other analytical tasks, such as change prediction [ZCB08], user
recommendations based on dynamic changes [ACALAZ+15], would also be of interest they
are beyond the scope of this thesis.

1.2.1 Difference Exploration

Motivation. We define Difference Exploration as the act of exploring differences in opin-
ions of various population segments. Difference exploration admits as input a set of opinions
and a dataset of interest and extracts a set of population segments agreeing (or disagreeing)
with these opinions. It addresses questions such as Which social groups oppose Donald
Trump? Which user populations agree with the movies I like? The aforementioned ques-
tions are only few examples of how opinions for the same topic may vary across different
population segments and indicate the need for a further exploration.

Challenges. The problem of exploring the opinions of various population segments raises
two main challenges. The first is the choice of an appropriate distance measure for comparing
an input opinion with the opinions of various population segments. In this thesis, we define
an opinion as a rating distribution, i.e. a histogram summarizing the ratings of an item,
and thus a well-adapted measure should be able to compare such distributions. The second

4 Introduction

challenge concerns the design of efficient algorithms that dynamically detect population
segments among all available ones, which are in (dis-) agreement with the input opinions.
The space of possible segments is exponential in the number of possible attribute values
which renders this task challenging.

State-of-the-art. In the field of extracting meaningful demographic patterns some steps
have been taken in exploring different population segments. For instance, authors in
[DAyDY11] introduce a method for mining rated datasets in order to discover users with good,
bad or polarized opinions about a topic (e.g., movie). Similarly, subgroup detection [DGD12]
is concerned with finding agreeing or disagreeing groups by analyzing their discussions on
online forums. Although these works succeed in exploring hidden demographic patterns,
they exhibit two deficiencies. First, they lay their foundation on comparing rating average
values. However, the use of averages can be confounding as a group might not contain a
difference while its finer subgroups do. In that case, differences of finer groups are missed.
Second, the analysis is bounded in discovering a limited number of opinions; groups either
have a good (resp., agree), a bad (resp., disagree) or a polarized opinion.

1.2.2 Difference Explanation

Motivation. We define Difference Explanation as the act of constructing a parsimonious
set of explanations for a detected difference. Difference explanation admits as input two
datasets that we wish to contrast, and extracts a set of population segments that best explain
their differences. It serves to address questions such as Why does the number of sales of two
stores significantly differ, although they have the same number of customers? or Which demo-
graphic groups have different consumption habits in two different stores? These are common
questions from market analysts, indicating how preferences of the same demographic group
may vary across different stores.

Challenges. The problem of explaining differences encounters two main challenges. The
first is devising a scoring function which is able to sort the explanations, based on their
ability to parsimoniously summarize differences, while at the same time describe as many
differences as possible. The second is to design an algorithm utilizing the scoring function
which guarantees near-optimal explanations, in terms of conciseness in the number of
explanations and informativeness of the reported explanations.

State-of-the-art. In the spirit of providing explanations of differences some effort has
been done [ABG+07, JBL09]. However, these works still lack the ability of minimizing

1.2 Our Approach for Difference Analysis 5

the number of explanations (i.e., conciseness) while maximizing the reported differences
(i.e., informativeness). Either they restrict their work in providing explanations in a concise,
a-priori given hierarchical structure by sacrificing information not included in the hierarchy
[ABG+07] or they focus on being informative even if they produce some bits of redun-
dancy [JBL09]. Moreover, these approaches do not fully exploit the structural properties
of attributes, either because they are not capable of exploring multi-dimensional data seg-
ments [ABG+07] or because they ignore several inclusion relations existing in conjunctions
of data segments [JBL09].

1.2.3 Difference Evolution

Motivation. We define Difference Evolution as the act of tracking differences at multiple
time granularities (e.g., daily, weekly). Difference evolution admits as input a stream of data
and extracts a number of change points (i.e., moments in time) at different time granularities
where a difference is detected. It addresses questions such as When did the preferences of
users in news subscription change (week granularity)? When did an intrusion take place in a
network (hour granularity)? The previous questions investigate how a particular item (e.g.,
user preference, network traffic) evolves over time and for different time granularities.

Challenges. The problem of tracking the evolution of data exhibits two main challenges.
The first concerns the ability to detect differences, named drifts, arriving at an unpredicted
arrival rate. For this purpose, it is essential to explore different time granularities avoiding
to make any assumption on the underlying distribution. Exploring different granularities
is challenging as it requires an appropriate segmentation of the input stream in order not
to detect very subtle drifts (low precision) but also not miss them (low recall). The second
challenge deals with the ability to detect drifts of different types (e.g., sudden, incremental).

State-of-the-art. Several methods of drift detection have been proposed [BGP10, Ozo08,
JMG95, KBDG04, VB09] segmenting the input stream and processing it into fixed time
intervals. Although these approaches leverage the time dimension and use robust statistical
comparisons, they suffer from the problem of adaptability to drift detection: they cannot
dynamically adapt to different arrival rates (i.e., low or high) and types (i.e., sudden or
incremental) of drifts. Although some effort is made in [WK96, Bif10, GMCR04] to address
arrival rates and types, these works still exhibit the deficiency of querying differences over
historical data and analyzing their precision and recall at different time granularities.

6 Introduction

1.3 Contributions & Thesis Organization

1. Difference Exploration. In Chapter 2, we study difference exploration in the context
of collaborative rating systems, such as MovieLens for rating movies and BookCrossing
for rating books. Given a set of input opinions, in the form of a rating distribution, we
are interested in finding population segments with significantly converging or diverging
opinion from the input ones. 1 We make the following contributions:

(a) We formalize our problem as building rating maps on demand that, not only facil-
itate, but also guide the exploration of opinions among different sub-populations.
A rating map is a set of pairs of the form (population segment, rating distribution)
that are dynamically built given desired input distributions. We prove that finding
segments whose rating distribution is close to input ones is NP-Complete (Section
2.4.1), by a reduction from the Minimum Height Decision Tree Problem [T+07].

(b) We conduct a thorough study on several distance measures for comparing rating
distributions and we show that Earth’s Mover Distance (EMD) is well-adapted to
our problem (Section 2.3).

(c) We propose an efficient algorithm for building Partition Decision Trees (PDT)
that satisfy different quality criteria: coverage of input records, size and diversity
of resulting population segments. Moreover, we propose heuristics for combining
the resulting partitions of a PDT to further improve the quality criteria (Section
2.4).

(d) Our experimental evaluation (Section 2.5) on real and synthetic datasets validates
the utility of rating maps for both analysts and end-users.

2. Difference Explanation. In Chapter 3, we study difference explanation in the context
of monitoring applications, such as retail sales from Intermarché stores. Given a quan-
tity of interest (e.g., number of sales) which aggregates values in two different datasets
(e.g., sales of two stores), we are interested in finding a parsimonious explanation
set of data segments (e.g., demographic groups) for which the values of that quantity
significantly differ between the two datasets. 2 We make the following contributions:

(a) We formalize the problem of finding a parsimonious set of explanations as an
optimization problem of maximizing the overall strength of differences being
explained (i.e., informativeness) constrained by the number or description length
of data segments (i.e., conciseness). We show that finding a parsimonious set of

1 Work under review: [AYKKK+16]. 2 Work under review: [KCAY16].

1.3 Contributions & Thesis Organization 7

explanations is NP-hard, by a reduction from the maximum dispersion problem
[GoCBBRD77].

(b) We propose two scoring functions that decompose the differences in datasets
w.r.t. the quality criteria. We prove two interesting properties of those functions:
sub-modularity and monotonicity (Section 3.3.2).

(c) We design a greedy algorithm exploiting the scoring functions with provable
near-optimal approximation guarantees (Section 3.4).

(d) Our experiments (Section 3.5) on real retail sales data validate the utility of parsi-
monious explanations and their high quality w.r.t. a simple baseline explanation
containing the top-k differences.

3. Difference Evolution. In Chapter 4, we study difference evolution in the context
of monitoring applications, such as users’ subscriptions in news, and network traffic.
Given a stream of data, we are interested in finding moments of significant divergence in
data distributions between incoming data and historical data. 3 We make the following
contributions:

(a) We introduce and formalize drift queries that provide flexibility in analyzing
precision and recall of drift detection at different time granularities (Section 4.4).

(b) We propose a drift index, a structure that maintains clustering summaries of data
at multiple time granularities and enables flexible drift queries (Section 4.3).

(c) We propose learning algorithms for adapting our drift and clustering parameters
to the various rates and types of drifts (Section 4.3.4).

(d) We perform a thorough study of the performance of our algorithms on real-world
and synthetic datasets with varying rates of change (Section 4.5).

3 Relevant publications: [KCAYDC14, KAYDCC15].

Chapter 2

Difference Exploration

2.1 Introduction

Collaborative rating systems are routinely used by analysts to understand the preferences
of different rater populations, and by end-users to make daily choices such as joining a
book club or renting a movie. While many item-centric recommendation approaches have
been proposed [BGLB15], very little has been done to contrast and compare the ratings of
different population segments and enable the exploration of their opinions. In this work, we
propose rating maps, a collection of disjoint (population segment, rating distribution) pairs,
and study how to build them dynamically and their utility in the exploration of rated datasets.

Our input data is a set of rating records in the form of ⟨user, item, rating⟩ to which user
demographics and item attributes are associated [MOV73]. Population segments such as
middle-aged people in the USA who rated J. K. Rowling’s books or young artists who rated
Sci-Fi movies, can be constructed from those records. Figure 2.1 illustrates an example on
IMDb 1 for the movie The Social Network. One can see that these pre-computed segments
have similar average ratings and do not carry more information than the overall average.
Figure 2.2, on the other hand, shows how population segments are built on-demand from
rating records. For instance, the movie exploration scenario is a multi-step process where
an analyst requests a rating map containing segments of raters who like or dislike Sci-Fi
movies. The result of Step 1 is a rating map with four segments: two that like Sci-Fi movies
by directors Ridley Scott and Stanley Kubrick, and two that dislike movies by directors Sidney
J. Furie and Roger Christian. The analyst continues her exploration by selecting the rating
records of Ridley Scott. As a result, a rating map containing two segments is obtained. The
first segment contains the rating records of Alien (1979), and the second contains the rating

1 http://www.imdb.com

10 Difference Exploration

Fig. 2.1 Pre-computed segments on IMDb

records of movies starring Russel Crowe. Finally, Step 3 reveals that fans of Alien (1979) are
young artists and a group of people living in Washington.

Similarly, Mary, an American end-user is looking to find an online book club to discuss
author Debbie Macomber (Figure 2.2). Mary is shown a rating map containing two segments:
readers who agree with her, i.e., middle-aged reviewers who do not like the book 204
Rosswood Lane, and those who disagree with her, i.e., people who love the book Changing
Habits. These examples show the utility of building rating maps.

Fig. 2.2 Dataset Exploration with Rating Maps

As illustrated above, an analyst or an end-user, who are interested in exploring a rated
dataset would benefit from the ability to find rating maps containing population segments
whose rating distributions are close to some input distributions of interest. A number of
challenges arise when building rating maps. First, the choice of which segments to include in
the map must be flexible, i.e., determined by input rating distributions of interest. Second,
the segments forming a map must cover as many input rating records as possible. Third, to

2.1 Introduction 11

be informative, a segment should not contain too few records. Finally, segments descriptions
must be diverse to show different facets of the rater population.

Contributions. Our first contribution is the choice of a measure for comparing the ratings
of different populations (Section 2.3). We adopt the Earth Mover’s Distance (EMD) [RTG00],
a measure that captures the minimum amount of work required to transform one distribution
into another. We show that average as well most sophisticated distance measures fail to
discriminate between distributions that are intuitively quite different.

Our second contribution is to formalize building rating maps as a simple optimization
problem that encompasses the challenges we want to tackle (Section 2.2). We propose to
represent population segments using a decision tree [T+07] where nodes split an arbitrary
set of rating records along user and item attributes. We conjecture that segments with short
descriptions are more likely to be large enough and cover more input rating records. Hence,
our problem is formulated as finding a (partial) partition of a set of rating records into a
rating map such that each segment in the partition has the shortest description possible, and
enjoys a rating distribution that has a low EMD with respect to some input distribution.

Population segments need to be dynamically discovered from an exponential search
space. Our third contribution (Section 2.4) is to show that our problem is NP-complete and
propose DTAlg, an elegant linear time algorithm. DTAlg extends the classic decision tree
algorithm [T+07]: whereas classic decision trees are driven by gain functions like entropy2

and Gini-index,3 DTAlg is based on the EMD (Section 2.3.1) whose properties it leverages to
speed up processing.

Splitting input records into segments does not guarantee that all records will belong to
the resulting rating map. Thus, to improve coverage, we draw inspiration from the work of
Breiman [Bre01] and propose RF, an approach based on Random Forests. RF runs several
iterations of DTAlg on a random subset of user and item attributes. Unlike the RF approach
used for classification or regression, we face the challenge of combining partitions obtained
by different runs of DTAlg and obtain high quality rating maps. We develop novel heuristics
tailored to address the challenges raised above, namely, coverage of input records, segment
size, and segment description diversity.

We run comprehensive experiments on real and synthetic datasets and demonstrate the
effectiveness of rating maps in exploring rated datasets (Section 2.5). In particular, we
develop scenarios for both analysts and end-users (Section 2.5.3). We confirm the efficiency
of DTAlg and identify the RF heuristic with the best compromise between the quality of
generated maps and response time (Section 2.5.4). Section 4.6 summarizes and concludes
the chapter.

2 http://en.wikipedia.org/wiki/Entropy 3 https://en.wikipedia.org/wiki/Gini_coefficient

12 Difference Exploration

2.2 Data Model and Problem

A rated dataset consists of a set of users with schema SU , items with schema SI and
rating records with schema SR . For example, SU = ⟨uid, age, gender, state, city⟩
and a user instance may be ⟨u1,young,male,NY,NYC⟩. Similarly, movies on IMDb4 can
be described with SI = ⟨item_id,title,genre,director⟩, and the movie Titanic as
⟨i2,Titanic,Romance,James Cameron⟩. The schema of rating records is SR =

⟨uid,item_id,rating⟩. The domain of rating depends on the dataset, e.g., {1, ...,5} in
MovieLens [MOV73], {1, ...,10} in BookCrossing.5 As an example, the record ⟨u1, i2,5⟩,
essentially says that a young male from NYC assigned 5 to the romance movie Titanic,
directed by James Cameron. An instance consists of relations U ,I , and R over their
respective schemas.

2.2.1 Population Segments and Rating Maps

Population Segments. We adopt the formalism of [DAyDY11] whereby a rated dataset R

is viewed as population segments that are structurally describable using a conjunction of
predicates on user and item attributes of the form Attr = val. For a population segment g, we
let g.idesc (resp., g.udesc) denote the set of item (resp., user) predicates associated with g. We
use g.desc to refer to g.idesc∧g.udesc. E.g., for g1.desc = {genre= Romance,gender=
male,state= NY}, g1.idesc refers to the first predicate and g1.udesc to the remaining ones.
We abuse the notation and write u ∈ g (resp., i ∈ g), to mean user u (resp., item i) satisfies all
user (resp., item) predicates in g.udesc (resp., g.idesc).

Rating Distributions. The set of all population segments that contributed ratings in
a dataset S ⊆R is denoted GS . Given a segment g ∈ GS , we define records(g,S) =

{⟨u, i,r⟩ ∈S | u ∈ g∧ i ∈ g} as the set of rating records of all users in g on items in g, in
the rated set S . The rating distribution of g in S is defined as a probability distribution,
dist(g,S)= [w1, . . . ,wM] where the rating scale is {1, . . . ,M} and w j =

|{⟨u,i,r⟩∈records(g,S)|r= j}|
|records(g,S)|

is the fraction of ratings with value j in records(g,S). We blur the distinction between g
and records(g,S) and speak of the records in g or the size |g| of g.

Figure 2.3 contains two example rating distributions including a high distribution of
young artists for Alien (1979) and Mary’s low distribution for books by Debbie Macomber.

Comparing Rating Distributions. We assume a generic function ratComp that com-
pares two rating distributions and returns a score to reflect how far apart they are. We will
explore the choices for ratComp in Section 2.3.

4 http://www.imdb.com 5 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/

2.2 Data Model and Problem 13

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) (b)

Fig. 2.3 (a) Young artists’ distribution for Alien (1979) (b) Mary’s distribution for Debbie
Macomber

Rating Maps. Given a dataset S and its population segments GS , a rating map as-
sociated with S is a set of pairs (g,dist(g,S)) where g ∈ GS . Multiple rating maps
could be built for S . The choice of which g ∈ GS will belong to a rating map depends
on the application. A rating map may contain population segments whose distributions
are similar (using the function ratComp) to unanimous distributions U1, . . . ,UM. Here, Ui

denotes the distribution where the mass is concentrated at rating value i: Ui(j) = 1, j = i and
Ui(j) = 0, j ̸= i. For example, U1 = [1,0,0,0,0] in a rating scale of 5. Another example
is a rating map containing polarized distributions U1,M where mass is concentrated on the
extreme ratings 1 and M: e.g., U1,M(1) =U1,M(M) = 0.5 and U1,M(j) = 0, j ̸= 1,M.

In a first example, S contains all rating records for Alien (1997). An analyst could be
interested in a rating map for S whose distributions are in the vicinity of U4,5, i.e., people
who liked Alien (1997). In that case, the young artists’ distribution in Figure 2.3a, could be
returned. In a second example, S is the set of all rating records for Debbie Macomber’s
books. Mary, whose distribution for those books is given in Figure 2.3b, is interested in
engaging in stimulating debates on books. She would find it useful to have a rating map
containing segments whose distributions are close to hers, and segments whose distributions
are far from hers.

2.2.2 Difference Exploration Problem

Since rating maps are for human consumption, be they analysts or end-users, the description
of each segment they contain should be as short as possible. Another desirable property

14 Difference Exploration

(a) (b)

Fig. 2.4 (a) Hierarchy of attribute age (b) Categorical split, where each node is a segment

of rating maps is diversity, i.e., with little or no overlap between its segments descriptions.
Finally, rating maps must cover as many records in S as possible. These goals form the
basis of our problem.

We call [g1, . . . ,gℓ] a partial partition of S if gi’s are pairwise disjoint and
⋃

i gi ⊆S .
One way to organize a partition is using a partition decision tree, defined as follows.

Partition Decision Tree (PDT). Given a rated set S , a partition decision tree (PDT) of
S is a rooted tree T such that: (i) the root of T contains the set S and every node x of T
contains a subset of S x ⊂S and every edge is labeled with a predicate Attr op val where
op is =; (ii) for a node x and its children y1, . . . ,yl , the collection {S y1, . . . ,S yl} forms a
disjoint partial partition of S x; (iii) for parent x and child y with the edge (x,y) labeled by
the predicate Attr op val, we have S y = {t ∈S x | t satisfies Attr op val}.

Attribute values can be organized in a hierarchy. Figure 2.4a shows a partial hierarchy
of attribute age from MovieLens. In order to generate PDTs, we use categorical splitting.
Given an attribute Attri and a value v j, this splitting results in n child segments, one for each
value v j ∈ V where V = {v1, . . . ,vn} is the active domain of Attri. Figure 2.4b shows an
example of categorical splitting of the rating records of the movie Titanic using attribute age.
This splitting results in four child segments each node containing the rating records of users
whose age is labeled by the node. Our PDTs can represent both categorical and numerical
attributes. We can bin numerical attributes. In MovieLens and BookCrossing, age and year
are already binned. The height of a PDT is the length of the longest root-to-leaf path. The
leaves of a PDT form a disjoint (partial) partition of the rated set S at the root, denoted
Part(T). Each block in Part(T) naturally corresponds to a segment and is describable by
definition: each of them is described by the conjunction of predicates labeling the edges on
the path from the root to the leaf containing the block. We henceforth use the terms block
and segment interchangeably.

2.3 Rating Comparison Measures 15

Building Rating Maps Problem. Building rating maps with short segment descriptions
corresponds to finding a PDT of small height. We can therefore state: Given a rated dataset
S ⊆R, a rating proximity threshold θ , and a set of input distributions {ρ1, . . . ,ρp}, find a
PDT T of S such that the objective function is minimized:

argmin
∀g∈T,∃ρ j:ratComp(dist(g,S),ρ j)≤θ

height(T)

PDT T admits a minimum height such that ratComp(dist(g,S),ρ j) ≤ θ for some
j ∈ [1, p]. A typical value for p is 3, indicating low, high and polarized input distributions.

The expression ratComp(dist(g,S),ρ j)≤ θ , finds population segments whose distribu-
tions are close to some input distribution. In order to find distributions that are far from input
distributions, ratComp(dist(g,S),ρ j)≥ θ can be used without affecting our algorithms.

2.3 Rating Comparison Measures

A key ingredient in the problem we study is the choice of the function ratComp that quantifies
the proximity between two rating distributions. In this section, we review the Earth Mover’s
Distance (EMD) and argue why it is the best choice among a variety of widely used comparison
measures. Then, we provide a linear time algorithm for computing the EMD distance between
two distributions.

EMD. Intuitively, EMD is the minimum amount of work done per unit mass in converting
one distribution to another, where the distributions are viewed as piles of earth at various
positions [RTG00]. The rating distributions we consider (Section 2.2.1) are normalized and
are therefore probability distributions. On discrete domains, EMD computation is similar to
the well-known transportation problem [RTG00].

Let ρ1 = [1 : p1, .., i : pi, ..,M : pM] , ρ2 = [1 : q1, .., i : qi, ..,M : qM] represent two proba-
bility distributions over a discrete domain D = {1,2,3, . . . ,M}. The amount of work required
to convert ρ1 to ρ2 is defined as:

min
F

Work(ρ1,ρ2,F) =
M

∑
i=1

M

∑
j=1

di j fi j

subject to the constraints: fi j ≥ 0 1 ≤ i, j ≤ M; ∑
M
j=1 fi j = pi 1 ≤ i ≤ M; and ∑

M
i=1 fi j =

q j 1 ≤ j ≤M, where fi j is the amount of mass moved from position i to j in the process
of converting ρ1 to ρ2. F = [fi j] is the matrix representing the flows and di j is the ground
distance from position i to j, which, for simplicity, is defined as the absolute difference in
positions, |i− j|.

16 Difference Exploration

Measure (ρ1,ρ2) (ρ1,ρ3)
Cosine 0.058 0.058

KL-Divergence 3.13 3.13
JS-Divergence 0.53 0.53

Euclidean distance 1.24 1.24
Hellinger Distance 0.791 0.791

Total Variation Distance 0.875 0.875
Renyi Entropy Distance (0.5 order) 1.962 1.962

Battacharya Distance 0.981 0.981
Distance correlation 0.2500 0.2500

Signal Noise Ratio 2.0372 4.221
Lukaszyk-Karmowski Metric 1.1625 3.525

EMD 0.875 3.5
Table 2.1 Distance Measures Comparison

A flow F is optimal if the work done in the flow is minimum among all flows that convert
ρ1 to ρ2. Therefore, the EMD is defined as:

EMD(ρ1,ρ2) =
minF Work(ρ1,ρ2,F)

∑
M
i=1 ∑

M
j=1 fi j

EMD work is done per unit mass in an optimal flow. In our setting, the region D over which EMD
is calculated is always the whole domain of the distribution, so the value of the denominator
in the above equation is 1. Thus, we can ignore the denominator and speak of EMD as the
work done itself.

EMD vs other measures. Table 2.1 shows various distance scores between two pairs of
distributions.6 We use:

ρ1 = [0.9,0.025,0.025,0.025,0.025],

ρ2 = [0.025,0.9,0.025,0.025,0.025],

ρ3 = [0.025,0.025,0.025,0.025,0.9]

corresponding to ratings on three books i1, i2, i3. Intuitively, distributions ρ1 and ρ2 are more
in agreement with each other than ρ1 and ρ3: users have similar opinions about books i1 and
i2 and different opinions about i1 and i3. KL-divergence, a well-known proximity measure

for probability distributions, defined as DKL(ρ1,ρ2) = ∑ j ρ
j

1 log(ρ
j

1
ρ

j
2
), and its symmetric

counterpart, JS-divergence, defined as DJS(ρ1,ρ2) =
1
2(DKL(ρ1,ρ3)+DKL(ρ2,ρ3)), where

6 http://en.wikipedia.org/wiki/Statistical_distance

2.3 Rating Comparison Measures 17

ρ3 = 1
2(ρ1 + ρ2), are two natural choices for us [KL51]. Or we could interpret rating

distributions as vectors and use cosine or Euclidean distance.
Table 2.1 shows that only Signal Noise Ratio (SNR), Lukaszyk-Karmowski metric, and

EMD distinguish between the two pairs. Lukaszyk-Karmowski has the undesirable property
that the distance between a distribution and itself is not zero. While SNR works for the above
example, consider:

ρ1 = [0.0125,0.0125,0.0125,0.0125,0.95],

ρ2 = [0.0025,0.0025,0.0025,0.0025,0.99],

ρ3 = [0.95,0.0125,0.0125,0.0125,0.0125],

SNR(ρ1,ρ2) = 10.11,SNR(ρ1,ρ3) = 6.25,SNR(ρ2,ρ3) = 16.37
This places ρ1 closer to ρ3 than to ρ2, which is counterintuitive. However, EMD(ρ1,ρ2) =

0.01, EMD(ρ1,ρ3) = 3.75, and EMD(ρ2,ρ3) = 3.85. So EMD finds ρ1,ρ2 closer to each other
than either of them to ρ3, with ρ1 being a little closer.

One important property that we exploit in our algorithms is the additive property of EMD:
dik = di j +d jk, for i < j < k ∈ [1,M]. Specifically, our algorithms and results hold for all
definitions of distance di j between ratings i and j that satisfy the additive property.

EMD with Differential Score Distances. Clearly, defining di j := |i− j| satisfies the
additive property. However, intuitively it can be argued that a change between 10 and 9 (top
ratings) is more significant than between 2 and 1 (bottom ratings). The EMD framework is
general enough to accommodate a differential treatment of score distances. As an example,
we could define the ground distance between rating scores i and j as di j = |eαi− eα j|, where
α ∈ (0,1] is a tuning parameter. E.g., for α = 0.25, d910 = 2.69 > d12 = 0.36. This function
satisfies the additive property used.

2.3.1 EMD Calculation

A key operation of our problem is computing the EMD between a segment and its closest input
distribution. In this section, we present a single-pass algorithm to do that.

In general, the calculation of EMD between two distributions is done using the Hungarian
algorithm and takes time O(M3logM) where M is the domain size of the distribution [Kuh55].
However, in our setting, the distributions are probabilities over the same domain (rating
scale), thus it is possible to compute their EMD in linear time. A similar observation was
also exploited by [LLV07]. The key insight is to use a stack to manipulate the flow that
corresponds to the amount of mass moved to transform one distribution to another. The stack

18 Difference Exploration

makes use of the additive property of EMD (defined in Section 2.3) and helps minimize the
work needed to find the closest distribution from among a set of input ones. We remark that
even when differential ground distance functions such as the ones illustrated in Section 2.3 are
used, our algorithms and results hold with minimal adaptation. For simplicity of exposition
below, we assume the distance between two positions is computed as di j = |i− j|.

Computing EMD of Two Distributions

For clarity, we explain our algorithm with an example. Suppose we want to measure the EMD
between two rating distributions ρ1 and ρ2. We make one pass over ρ1,ρ2 starting from the
left-most positions (1). A position i is an excess (resp., deficit, equal) position iff ρ1[i]> ρ2[i]
(resp., ρ1[i]< ρ2[i], ρ1[i] = ρ2[i]). We keep track of each position as we scan it. We move
mass such that ρ1 converts to ρ2, and keep track of the mass flow F [i, j] from position i to j.

When we encounter an excess position, we store it on a stack which becomes an excess
state. Future excess positions are pushed to the stack while deficit positions are processed by
flowing mass out of the top excess position on the stack. The stack may transition to deficit
state as deficit positions are seen. Thus the stack is always in a well-defined state – excess or
deficit. It reaches an equal state when it is empty. For each position type, we perform the
following actions.
Excess Position (ρ1[i]> ρ2[i]): Set the flow F [i, i] = ρ2[i]. If the stack is in equal or excess
state, push the entry (i,ρ1[i]−ρ2[i]) onto the stack. This is the excess mass available at i. If
the stack is in deficit state, pop the top element, say (j,δ), i.e., there is a deficit of δ at j. If
µ =de f ρ1[i]−ρ2[i]> δ , set F [i, j] = δ and decrement δ from µ . Repeat this for remaining
deficit positions on stack until excess mass is left in µ . If µ becomes < δ , set F [i, j] = µ ,
and set δ = δ −µ and µ = 0. In the end, the stack may remain in deficit state or move to
equal state (i.e., become empty). If position i remains an excess position push its entry on
stack and move the stack to excess state.
Deficit Position (ρ1[i] < ρ2[i]): It is the mirror analog of the above case and we omit the
obvious detail.
Equal Position (ρ1[i] = ρ2[i]): We set the flow F [i, i] = ρ1[i] and simply move to the next
position.

Example 1 Table 2.2 illustrates the algorithm on an example with ρ1 = [0.2,0,0.2,0.3,0.3]
and ρ2 = [0,0,0.5,0.5,0]. In Step 1, since there is excess mass of 0.2 at ρ1[1], it is pushed to
the stack and the stack state changes from equal to excess. In Step 2, since ρ1[2] is an equal
position, the algorithm simply moves to the next position. ρ1[3], is a deficit position, so we
use excess positions on the stack to flow mass to ρ1[3]. However, since there is not enough

2.3 Rating Comparison Measures 19

Step stack state work
0 { φ } equal 0
1 { (1,0.2) } excess 0
2 { (1,0.2) } excess 0
3 { (3,0.1) } deficit 0.4
4 { (3,0.1),(4,0.2) } deficit 0.4
5 { φ } equal 0.8

Table 2.2 Running example of EMD computation

mass, ρ1[3] is added to the stack with a deficit of 0.1 and the state of the stack is changed to
deficit. Since there is a mass flow of 0.2 from position 1 to 3, 0.4 work is added. In the next
Step, ρ1[4] is a deficit position and is pushed to the stack. Since ρ1[5] is an excess position,
mass is moved from it to previous deficit positions. Figure 2.5 shows the corresponding
flows. It is easy to see that EMD(ρ1,ρ2) is 0.8.

0.2

0.2

0.1

Fig. 2.5 Flows for example in Table 2.2

Algorithm 1 illustrates the steps of calculating the EMD between two distributions (ρ1,ρ2)

of the same rating scale [1,M]. At every Step it keeps track of excess, deficit positions and
moves the mass such that ρ1 converts to ρ2. Algorithm 2 illustrates the process of updating
the stack. The complexity of our proposed EMD algorithm is O(M).

Theorem 1 Work computed by the algorithm to convert ρ1 to ρ2 is optimal and is equal to
EMD(ρ1,ρ2).

The proof relies on the fact that the ground distance function di j between rating positions i
and j satisfies the additive property (see Section 3). For a distribution ρ , let ρ[1 : k], k ≤M,
denote the region of distribution ρ from positions 1 through k, where M is the length of
the rating scale. Call region ρ1[1 : k] excess (resp., deficit, or self-sufficient [SS for short]),

20 Difference Exploration

Algorithm 1 : EMD(ρ1[1,M],ρ2[1,M])

1: work = 0 // work done
2: Stack S = φ

3: state = equal
4: for i = 1→M do
5: if ρ1[i]> ρ2[i] then
6: if state = excess or equal then
7: S.push({i,(ρ1[i]−ρ2[i])})
8: else if state = de f icit then
9: work += updateStack(i)

10: end if
11: else if ρ1[i]< ρ2[i] then
12: if state = de f icit or equal then
13: S.push({i,(ρ2[i]−ρ1[i])})
14: else if state = excess then
15: work += updateStack(i)
16: end if
17: end if
18: end for
19: return work

Algorithm 2 : updateStack(i)
1: work = 0;
2: mass = |ρ1[i]−ρ2[i]|
3: while mass >0 and S.isEmpty = false do
4: {k,kmass} = S.pop()
5: work = work + (kmass)(|i− k|)
6: updateFlow(kmass,i,k,state)
7: if mass ≥ kmass then
8: mass -= kmass
9: else

10: mass = 0;
11: S.push({k,(kmass−mass)})
12: end if
13: end while
14: if mass >0 then
15: state = !state //invert
16: S.push({i,mass})
17: end if
18: if S.isEmpty = true then
19: state = equal
20: end if
21: return work

2.3 Rating Comparison Measures 21

whenever the sum of the mass in the corresponding positions in the two distributions is related
as follows: ∑

k
i=1 ρ1[i] > ∑

k
i=1 ρ2[i] (resp., ∑

k
i=1 ρ1[i] < ∑

k
i=1 ρ2[i],or ∑

k
i=1 ρ1[i] = ∑

k
i=1 ρ2[i]).

We can show that whenever a region ρ1[1 : k] is excess or SS, any optimal flow does not
involve an inflow into the region. Similarly, whenever ρ1[1 : k] is a deficit or SS region, any
optimal flow does not involve an outflow from this region. These facts can be proved by
direct contradiction, by showing that any flow which does involve such flows can be modified
into a flow involving no such flows and which does strictly less work.

Let ρ[1 : k] be a minimal SS region. That is, ∑
k
i=1 ρ1[i] = ∑

k
i=1 ρ2[i] and ∀ j < k: the

region ρ1[1 : j] is not SS. It follows from the observations in the preceding paragraph that in
an optimal flow, there is neither an inflow nor an outflow that involves the region ρ1[1 : k]. In
general, k can be any number in the range [1,M]. Let us consider a general case for k. Let Fopt

represent the matrix corresponding to the optimal flow and G denote the matrix corresponding
to the flow determined by our (greedy) EMD algorithm. We denote by Fopt [i : j][k : l] the
submatrix of Fopt corresponding to rows i– j and columns k–l of Fopt . These entries capture
the flows between corresponding pairs of positions in these ranges. It follows from the above
observations that Fopt [1 : k][k + 1 : M] = 0k×(M−k) and Fopt [k + 1 : M][1 : k] = 0(M−k)×k,
where 0i× j denotes an (i× j) matrix all of whose entries are zeros.

It is easy to show from the property of our stack-based greedy algorithm that G[1 :
k][k+1 : n] = 0k×(M−k) and G[k+1 : M][1 : k] = 0(M−k)×k as well. That is, the greedy flow
coincides with the optimal flow between the positions indicated. It thus suffices to show that
G[1 : k][1 : k] = Fopt [1 : k][1 : k] and G[k+1 : M][k+1 : M] = Fopt [k+1 : M][k+1 : M]. We
can show by induction on k that G[1 : k][1 : k] = Fopt [1 : k][1 : k]. The base case of k = 1 is
trivial. Assume w.l.o.g. that ρ1[1] is an excess or SS position. If it is a deficit position, simply
interchange ρ1 and ρ2, exploiting the fact that EMD is a symmetric measure. Now, move all
the excess mass, if any, from ρ1[1] to ρ1[2]. Create an instance of the EMD calculation problem
for ρ ′1 := ρ1[2 : k] and ρ ′2 := ρ2[2 : k]. By induction hypothesis, the greedy flow coincides
with the optimal flow on the instance (ρ ′1,ρ

′
2). This flow can be edited into an optimal flow

for the original instance (ρ1[1 : k],ρ2[1 : k]) by accounting for the move of excess mass
from ρ1[1] to ρ1[2]. It is easy to see that the total work done by this edited flow equals the
work done by the optimal flow on the instance (ρ1[1 : k],ρ2[1 : k]). We just showed that
G[1 : k][1 : k] =Fopt [1 : k][1 : k]. The claim G[k+1 : M][k+1 : M] =Fopt [k+1 : M][k+1 : M]

can be shown analogously.

22 Difference Exploration

2.4 Building Rating Maps

Our problem requires to develop algorithms for dynamically building rating maps driven by
desired input distributions. We first discuss the inherent complexity of the problem and then
we present our algorithms.

2.4.1 Problem Complexity

Theorem 2 Given a rated dataset S ⊆R, a set of input distributions, and an EMD threshold
θ , finding a minimum height partition decision tree for S , where each segment’s EMD is at
most θ from some input distribution, is NP-complete.

Proof of Theorem 1. We show that the decision version of our problem defined in Section
2.2 is NP-hard by reduction from the classic Minimum Height Decision Tree problem [T+07].
Given a set I of n m-bit vectors and a number k, the question is whether there is a binary de-
cision tree with height ≤ k such that, each of its leaves is a unique bit vector in I and internal
nodes are labeled by binary tests on some bit. We construct an instance J from I as follows. J
has m binary attributes Attr1, ...,Attrm and a categorical attribute Attr0. For each bit vector
si, J has two records t+i and t−i , i ∈ [1,n], with t+i [j] and t−i [j] set to the j-th bit of vector si,
j ∈ [1,m]. Assign t+i [Attr0] and t−i [Attr0] to two distinct constants appearing nowhere else.
Finally, the rating value for t+i (resp., t−i) is 5 (resp., 1). Set the EMD threshold θ = 0 and
let the input distributions be {U1,U5}. E.g., if I = {011,010,100} then J contains the records
(a1,0,1,1,5),(b1,0,1,1,1),(a2,0,1,0,5),(b2,0,1,0,1), (a3,1,0,0,5),(b3,1,0,0,1), the last
value being the rating.
Claim. I admits a decision tree of height ≤ k iff J admits a partition decision tree of height
≤ k+1 where each segment at its leaf is describable and exactly matches U1 or U5.
Only If: Given a decision tree T for I, by definition, it contains a unique bit vector si ∈ I at
each leaf. If we apply this tree to J, we will get a tree each of whose leaf corresponds to a
segment containing exactly the records {t+i , t−i }, i ∈ [1,m]. These segments do not match
either of U1,U5. Applying a split based on Attr0 = ai versus Attr= bi divides this segment
into two singleton segments {t+i } and {t−i } which match U5 and U1. The segments are
describable. This tree has height one more than that of T .
If: Let T be a partition decision tree of height ≤ k+1 for J. By definition, each leaf of T
contains a unique record of J. Notice that none of the segments at the leaves can contain more
than one record with the same rating value, as they are not describable (without disjunction
or negation). T must apply the predicates on attribute Attr0 to separate records t+i and t−i .
Suppose T applies these tests after all other tests. Then the node at which Attr0 = ai vs.

2.4 Building Rating Maps 23

Attr0 = bi is applied must contain exactly the segment {t+i , t−i }. By replacing that segment
with the corresponding bit vector si, we get a decision tree of height ≤ k for I. Suppose T
applies one or more tests on Attr0 before other attributes Attri, where i > 0, we can show
that we can “push down” those tests on Attr0 so they are applied at the parent of leaf nodes,
without increasing the tree height.

Membership in NP is trivial: given a height threshold h and a tree T , we can easily check
in polynomial time whether T is indeed a partition decision tree of S , each block has an
EMD distance at most δ from some input distribution, and whether the height of T is no more
than h.

2.4.2 Algorithms for Difference Exploration

We now describe our algorithms for minimizing description length via finding a minimum
height partition decision tree. Whereas classic decision trees [T+07] are driven by gain
functions like entropy7 and gini-index,8 a novelty in our case is that our decision trees are
designed to discover segments whose distributions are close to input ones. Thereto, we
leverage the properties of EMD as we will show in Section 2.3.1.

Minimizing Description Length with DTAlg

Our first algorithm, DTAlg, is based on partition decision trees. The classical decision tree
algorithm splits an input set using the attribute that offers the best normalized information
gain. It then adds the obtained segments as children and recurses. We use this idea in
Algorithm 3 that takes as input a rating set S and divides it in a breadth-first manner, to find
segments with short descriptions.

At each node, DTAlg checks if its segment has EMD ≤ θ to some input distribution (lines
3-4). If the segment’s EMD distance to the closest input distribution is > θ (line 5), DTAlg
uses a gain function to choose a splitting attribute (line 6), and the segment is split into child
segments which are retained (line 7); Finally, retained segments are checked and are either
added to the output (line 11) or recursively processed further (line 13).

Splitting using a Gain Function Algorithm 3 relies on a gain function for choosing the
attribute with maximum gain for splitting a segment (line 6). We use the minimum average
EMD as our gain function. Suppose splitting a segment g using an attribute Attri yields l
children yi

1 . . .y
i
l . The gain of Attri is defined as the reciprocal of the average EMD of its

7 http://en.wikipedia.org/wiki/Entropy 8 http://en.wikipedia.org/wiki/Gini_index

24 Difference Exploration

Algorithm 3 DTAlg(S ,{ρ1, . . . ,ρ j, . . . ,ρp},θ)
1: parent = S
2: Array children
3: if min j∈[p]EMD(parent,ρ j)≤ θ then
4: Add parent to Out put
5: else if min j∈[p]EMD(parent,ρ j)> θ then
6: Attribute Attr= findBestAttribute(parent)
7: children = split(parent,Attr)
8: end if
9: for i = 1→ No. o f children do

10: if min j∈[p]EMD(children[i],ρ j)≤ θ then
11: Add children[i] to Out put
12: else
13: DTAlg(children[i],{ρ1, . . . ,ρ j, . . . ,ρp},θ)
14: end if
15: end for

children. If child segments have a zero EMD then the gain is infinity. More formally:

Gain(Attri) =
l

∑
l
j=1 minρ∈{ρ1,··· ,ρp}EMD(y

i
j,ρ)

An attribute will not be useful for splitting a segment if all the rating records in the
segment have the same value for that attribute. For example, if a segment contains rating
records of one movie, Titanic, none of the movie attributes are useful for splitting the segment.
Such attributes are discarded and not considered for further splitting.

Algorithm 3 takes time O(k2npM), where k is the number of distinct attribute-value pairs
that are present in the rating set S , n is the number of rating records in S and p is the
number of input distributions with length of rating scale equals to M.

Improving Coverage with Random Forests

As discussed in Section 2.2, segments with shorter descriptions are expected to contain more
records (and hence increase coverage of S). However, splitting S into segments whose
ratings are close to input distributions does not necessarily guarantee that all records in
S will belong to the resulting segments. In this section, we focus on obtaining partitions
with improved quality. In particular, we devise heuristics that are likely to increase coverage
of input records. At a high level, our approach, referred to as RF, runs multiple iterations
of DTAlg with different splitting attributes. It then uses one of RF-Cluster, RF-Desc,
RF-Random, RF-Size, and RF-EMD, to combine resulting partitions.

2.4 Building Rating Maps 25

We draw inspiration from the work of Breiman [Bre01] who proposed the approach of
Random Forests to improve the performance of decision tree-based classifiers. The idea is
that given d predictor attributes, a classical decision tree examines all d of them to pick the
best split attribute and split point at each stage. The RF approach consists of two main Steps.
In Step 1, the classical decision tree algorithm is run m times for some parameter m, where
each run examines a random subset of d̂ predictor attributes at each splitting node, a default
value for d̂ being

√
d. This generates m decision trees. In Step 2, those m trees are combined,

e.g., by voting, to yield an ensemble classifier.
In our adaptation, Step 1 of RF remains the same: we run the DTAlg algorithm on a

random subset of
√

d available user/item attributes m times. For us, Step 2 should produce a
partition, not a classifier.

It has been shown that using the McNemar test 9 to limit the number of trees generated in
Step 1 is effective [LDD01]. In our work, we examine our datasets and determine the best
value for m in each case based on improvemet in rating map quality (Section 2.5.1). Below,
we examine different strategies for combining the m partitions from Step 1 into a single
partition. Instead of improving classification accuracy, our goal is to improve coverage. It is
important to note that RF heuristics are designed to improve the quality of produced rating
maps. We will see in Section 2.5.4, that this improvement comes at a (computational) cost.

Combining Partitions. There are multiple ways of combining the m partitions p1, . . . , pm

produced in Step 1 of RF. We propose five heuristics that give precedence to different segment
quality dimensions, namely overlap, description, size, and EMD value.

1. RF-Cluster: Each partition pi intuitively captures a (possibly partial) clustering. For
each pair of rating records ri,r j ∈S , we can compute ki j, the number of partitions
to which they both belong. Then, we can define the similarity between ri and r j as
simi j =

ki j
m . Now, we can use any standard clustering algorithm to obtain a clustering

of S with this distance measure (e.g., hierarchical clustering). As the desired number
of clusters, we chose the average number of segments in the partitions p1, . . . , pm.
Only good segments are retained. The resulting segments do not necessarily have a
natural exact description. We hence adopt a pattern mining approach to solve this issue.
Viewing each record as a transaction and each user and item attribute as an “item”,
we obtain maximal frequent patterns, by setting the support threshold to 90%. Any
maximal frequent pattern serves as an approximate description of the segment, with
an accuracy of at least 90%. Algorithm RF-Cluster takes O(mk2npM+mn3) time

9 https://en.wikipedia.org/wiki/McNemar’s_test

26 Difference Exploration

where m is the number of decision trees built, n the number of rating records and k the
number of distinct attribute-value pairs in the dataset.

2. RF-Desc: A second strategy favors a partition containing segments with diverse
descriptions. We define the Jaccard distance between segment descriptions as
Jaccard(gi,g j) =

|gi.desc∩g j.desc|
|gi.desc∪g j.desc| . RF-Desc starts with an empty output partition and

successively adds a segment whose total distance to segments in the output is the
highest. The first segment is picked at random. This heuristic takes time O(mk2npM+

(ml)3), where l is the maximum number of blocks produced by any of the m runs of
DTAlg.

The remaining strategies explore different ways of ordering segments from the various
partitions p1, . . . , pm and adding them to the output one by one if they do not overlap with
existing segments in the output.

3. RF-Size: This heuristic favors larger segments, which may help with coverage of
input rating records. Its time complexity is O(mk2npM+m2nl).

4. RF-EMD: This heuristic favors segments with the lowest EMD to their closest input
distribution. Its time complexity is O(mk2npM+m2nl).

5. RF-Random: This heuristic orders segments at random. It takes O(mk2npM + nm)

time.

RF-Cluster is by far the most expensive algorithm used for combining partitions, since it
requires finding the distance between all pairs of records in S . Section 2.5.4 explores the
tradeoff between the quality of segments forming a rating map and the time taken to compute
them using these heuristics.

2.5 Difference Exploration Experiments

In this section, we design exploratory scenarios that show the utility of rating maps. That is
followed by an evaluation of their quality over synthetic and real datasets. In particular, we
study the robustness of our algorithms w.r.t. noisy datasets and demonstrate the quality of
rating maps. We then study the scalability of DTAlg and RF approaches.

2.5 Difference Exploration Experiments 27

2.5.1 Experimental Setup

We use two real datasets, MovieLens (ML) [MOV73] and BookCrossing 10 (BC), summa-
rized in Table 2.3, and a synthetic one, presented in Section 2.5.4. ML contains user attributes
gender, age, occupation and location. We join this data with IMDb (via movie ti-
tles) to obtain attributes title, actor, director, writer for each movie. BC provides
location, age for users and title, author, year, publisher for books. Some at-
tributes have a hierarchy (e.g, Country→ State→City for location). This information
is readily available for every user in BC. For ML, we queried Yahoo! Maps11 to get this
information. We manually created hierarchies for attributes age, year and occupation.
Other attributes like director, gender, author have trivial hierarchies (i.e., height = 1).

MovieLens (+IMDb) BookCrossing
#Users 6,040 38,511
#Items 3,900 260

#Ratings 1,000,209 (million) 196,842
Rating Scale 1 to 5 1 to 10

Table 2.3 Summary of datasets

While our framework is general enough to admit any input distribution, we will mostly
use 3 intuitive distributions low, high and polarized, to ease exposition. Particularly, for ML,
we use {U1,2,U4,5,U1,5} and for BC, {U1,2,3,U8,9,10,U1,2,9,10}. The quality of rating maps
is evaluated using several measures: average coverage of input records, average segment
description length, average segment size, and average EMD. We use maxEMD to denote the
maximum value that EMD can take (4 for ML and 9 for BC).

In order to avoid producing segments with too few rating records, we set 50 as a lower
bound threshold on segment size. One could also modify our problem statement in Section
4.2 to state a minimum segment size threshold without affecting the problem complexity. We
chose to keep our problem statement general since this restriction on size is data-dependent
and can be determined by examining the results of several runs of our algorithm.

Experiments were conducted on 2 GHz Intel Core i7, 8 GB RAM, MAC OS. Code is
written in Java, JDK/JRE 1.6.

2.5.2 Summary of Results

In order to examine the utility of rating maps, we design real-world exploration scenarios
for analysts and end-users. We give the analyst the ability to find population segments

10 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/ 11 https://maps.yahoo.com

28 Difference Exploration

of low, high and polarized opinions and the flexibility to further explore those segments
based on her interests. We enable an end-user to find the most similar/dissimilar population
segments to her and to further explore their demographics. The exploration scenarios in
Section 2.5.3 demonstrate the utility of rating maps in uncovering the opinion of different
raters and guiding users in their exploration.

Experiments on synthetic datasets, in Section 2.5.4, show that the accuracy of our
algorithms in finding segments close to input distributions, is sensitive to the amount of
noise in input records. However a proper tuning of the θ parameter on how close/far two
distributions can be, results in robust performance on noisy data. Moreover, we validate our
optimization objective by showing that minimizing description length has a positive impact
on the quality of resulting maps.

Experiments on real datasets, in Section 2.5.4, reveal that RF heuristics do improve
the quality of generated maps over DTAlg. They also verify that description length is a
good choice to optimize for when building rating maps, as it affects positively other quality
dimensions. RF-Cluster generates rating maps with the highest quality and RF-Desc
improves description diversity. However, neither of them scales with larger input datasets.
On the contrary, RF-Size and RF-EMD scale linearly. However, the quality of maps built by
RF-EMD is sometimes worse than RF-Random. At the end, we show that RF-Size is the best
option as it provides a good tradeoff between producing rating maps with good coverage and
scaling linearly with the number of input records.

2.5.3 Exploration Scenarios

In this section, we design scenarios for analysts interested in exploring different population
segments. We also study scenarios for end-users curious in discovering segments that share
their opinion and segments that differ. Rating maps are built using RF-Size, which achieves
a good compromise between the quality of resulting maps and response time, as it will be
demonstrated in Section 2.5.4.

Analysts’ Scenarios

We set θ , the EMD threshold to 10% of maxEMD i.e., 0.4 for ML and 0.9 for BC. For ML, we
tested the quality of rating maps produced by RF-Size with 2 to 32 trees and empirically
observed that generating 4 trees resulted in the best average EMD. We hence set that number
to 4 for all RF.

ML Dataset. Our analyst is interested in finding rating maps containing a mix of
low, high and polarized opinions about movies. Specifically, she wants to explore how

2.5 Difference Exploration Experiments 29

Fig. 2.6 Analyst’s exploration scenarios

people’s taste is related to the intrinsic characteristics of the movies (e.g., genre, actors,
directors) or by their demographics (e.g., age, gender, occupation).

Figure 2.6a shows a scenario where the analyst wishes to explore the ratings of Sci-Fi
movies. This exploration results in a first rating map containing high and low distributions
that characterize different directors. In Step 2, the analyst requests to have a deeper look at
director Ridley Scott and obtains a rating map containing two segments with a distribution
in the vicinity of high: one for the movie Alien (1979), and the other for movies where
actor Russel Crowe starred. A further exploration of Alien (1979), in Step 3, shows which
population segments loved it the most (Young artists and residents of Washington state).

In Figure 2.6b our analyst wants to discover differences between genders for Drama
movies. Step 1 shows that males and females agree that Steven Spielberg, Tom Hanks and
Kevin Spacey directed the best dramas. However, when considered alone, males show a
preference for directors Irvin Kershner, Quentin Tarantino and Mel Gibson. Particularly, a
group of Californian males working at a University or in science/technology show a high
preference for Tarantino’s Pulp Fiction (1994) (Step 3). Our analyst can hence conclude
that males’ taste in drama depends exclusively on movie attributes (e.g., director), while
females’ varies depending on age and occupation. For example, young women and women
in business administration love some movies by Quentin Tarantino, while women who are
young graduates or artists love Braveheart (1995) by Mel Gibson.

In the last scenario, the analyst is interested in exploring highly rated romantic movies.
The first map is shown in Figure 2.6c. Although the analyst was expecting the results of
directors Rob Reiner and John Madden, she is surprised that young raters liked a romantic
movie directed by Richard Marquand and that Alfred Hitchcock is also loved for his romantic
movies. Thus, she decides to further explore these two results. She finds (Step 2) that young

30 Difference Exploration

people who rated Star Wars: Return of the Jedi, also classified as romantic, are the ones who
love romantic movies by Richard Marquand. Furthermore, she discovers a group of female
fans of Alfred Hitchcock’s Suspicion (1941) and Notorious (1946).

BC Dataset. This time, our analyst repeats the same exploratory task for finding polarized
opinions on books. Figure 2.6d shows some of the segments that form the resulting maps.
One prominent observation is that people have polarized opinions on author J. K. Rowling.
A further exploration in Step 2 results in a demographics breakdown for that author. The
corresponding rating map helps the analyst understand who causes this polarization.

End-Users’ Scenarios

(a) (b)

Fig. 2.7 (a) Similar segments (ML), (b) Different segments (ML)

ML Dataset. John, a middle-aged Californian working in science/technology, is inter-
ested in finding users like him and users different from him on adventure movies. Our input
dataset consists of all rating records for adventure movies and our input distribution is John’s
computed from his 192 ratings for adventure movies, Figure 2.7a. The EMD threshold is≤ 0.1
for similar (resp., ≥ 1.2 for dissimilar) in order to impose very close (resp., not-so-close)
distributions to John’s. The number of trees generated by RF approaches is 4.

John is active in rating adventure movies and he is interested in discovering population
segments that share his passion. He decides to find segments with which he shares at least one
demographic attribute (e.g., gender, age). He discovers that young people with the same
occupation and people of the same age from California or Illinois “agree” with him on

2.5 Difference Exploration Experiments 31

adventure movies released in the period 1990-1995. Moreover, John shares the same opinion
with people of the same gender working in universities and with people of the same gender
and occupation on adventure movies released in 1990-2000. Finally, one intriguing finding
for John is another reviewer perfectly matching his distribution on adventure movies, a young
male artist living in Urbana and who rated 1970-1990 movies, 53 times. On the contrary,
John disagrees, see Figure 2.7b, with a segment of the same age, a set of self-occupied males
who rated Star Wars, Episode IV. Also, he disagrees with people with the same occupation
who rated movies directed by George Lucas during 1979-1990, and with young Californian
males on a movie written by Leigh Brackett and Lawrence Kasdan.

Fig. 2.8 Similar and different segments (BC)

BC Dataset. Mary, a 32 years old woman living in Bethlehem, Pennsylvania, USA,
dislikes books by Debbie Macomber. Mary is interested in finding population segments,
also located in the USA, that have similar or dissimilar opinions as hers. Our input dataset
consists of all ratings for books by Debbie Macomber and the input distribution is Mary’s
computed from her 12 ratings on books by Debbie Macomber, Figure 2.8. We set the EMD
threshold to ≤ 0.3 for similar users (≥ 3 for dissimilar), the number of trees generated by RF
to 4, and the minimum segment size to 5.

Figure 2.8 illustrates a group of 25 middle-aged people in the USA with a negative opinion
on the book 204 Rosewood Lane written by Debbie Macomber. On the contrary, a small
segment of 11 people living in the USA “disagree” with Mary as they highly rated the book
Changing Habits. Mary can get in touch with people in both segments to engage in online
debates on the author.

32 Difference Exploration

2.5.4 Detailed Evaluation

We present a quality evaluation of the rating maps built by our algorithms, DTAlg and RF.
Particularly, we use synthetic datasets to stress-test our algorithms over noisy data and show
their performance in terms of accuracy (ability to identify the right segments) and rating map
quality. We also explore scalability on the real datasets ML and BC.

Synthetic Data

We developed a synthetic data generator that provides the flexibility to produce datasets with
different distributions and having different percentages of noise. Noise is defined as the
mass distributed in different ratings than the ones where the largest mass is assigned. We
produce 5 datasets each one consisting of 5,000 rating records and a percentage of noise,
ranging from 10% to 50%. Particularly, our ground truth, GT , consists of rating records
where each record is associated to a virtual user. Each virtual user has 3 attributes: age with
values Teen, Young, Middle, Old, occupation with values Lawyer, Doctor, Farmer, Sports,
Student and location with values East, Central, and West. For each segment g, a random
distribution is assigned given a noise percentage. For example, for a segment described by
{age= Teen,occupation= Doctor,location= East} and for a 10% noise percentage, a
perturbed U1 distribution, denoted as U1, is formed by assigning a large chunk of mass (0.9)
to U1(1) and uniformly distributing the remaining mass (0.1) as noise over other positions
U1(i), i ̸= 1. The introduction of noise makes it more difficult for our algorithms to identify
segments close to input distributions. The EMD threshold θ is set as follows: 0.4 for 10%
noise, 0.5 for 20%, 0.6 for 30%, 0.7 for 40%, and 0.8 for 50%. We test our algorithms using
the input distributions {U1, ...,U5}.

Accuracy Evaluation. Since our algorithms generate a rating map by partitioning a rated
dataset S into segments in GS , we borrow standard supervised clustering evaluation
measures like Precision, Recall and F-Measure,12 adapted to our context, in order to
evaluate the quality of our partitions.

We refer to the ground truth as GT and to an output rating map as G. Precision captures
the fraction of pure segments in G, where the purity of a segment gi is defined as its similarity
to its closest segment g∈GT . More precisely, it is the product of its description purity (based
on Jaccard similarity) and its distribution purity (based on EMD distance). A similar remark
holds for Recall except for the difference in the denominator (i.e., |GT |). F-Measure is

12 https://en.wikipedia.org/wiki/Precision_and_recall

2.5 Difference Exploration Experiments 33

defined as the harmonic mean of Precision and Recall. The exact formulations are given
below. Recall that maxEMD is equal to 4 for ML and to 9 for BC.

Precision(G,GT) =
∑gi∈G maxg∈GTPurity(gi,g)

|G|

Recall(G,GT) =
∑gi∈G maxg∈GT Purity(gi,g)

|GT |

F−Measure(G,GT) =
2∗Precision(G,GT)∗Recall(G,GT)

Precision(G,GT)+Recall(G,GT)

Purity(gi,g) = DescPurity(gi,g)∗DistPurity(gi,g)

DescPurity(gi,g) =
|gi.desc∩g.desc|
|gi.desc∪g.desc|

DistPurity(gi,g) =
maxEMD−EMD(gi,g)

maxEMD

Robustness to Noise. We test the accuracy of all algorithms over the 5 synthetic datasets
described earlier. Figure 2.9 depicts that all algorithms are sensitive to noise and shows a
decrease in accuracy as noise increases. However, a proper tuning of θ , ranging from 0.4
to 0.8 results in increasing tolerance to noise. It is worth noting that all algorithms achieve
a similar accuracy, which is always higher than 70%. Moreover, RF-EMD outperforms all
other heuristics, as it is the only heuristic which maximizes, by its design, the distribution
purity factor (DistPurity). However, it produces lower quality maps on other dimensions
(Section 2.5.4).

We also studied the accuracy of our algorithms when noise is not uniformly distributed.
E.g., for half of input data, the largest mass is assigned to the highest rating value (U1,5(5) =
mass) and the remaining mass is assigned as noise to the lowest rating (U1,5(1) = noise). We
observed no significant difference in accuracy. Thus, our algorithms are not affected by how
the noise is distributed over rating values.

Description Length vs Rating Map Quality. We study how the description length of
population segments affects the quality of the rating map they belong to. The aim of this
experiment is to validate if our optimization objective, i.e., minimizing description length, is
a good choice. Coverage indicates the proportion of rating records of a dataset S included
in the resulting rating map G, and is defined as Coverage(G,S) =

∑gi∈G |records(gi,S)|
|S | . The

34 Difference Exploration

0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5
Noise

F-
M
ea
su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DTAlg
RF-Cluster
RF-Desc

RF-Size
RF-EMD

Fig. 2.9 Accuracy of algorithms Vs. Noise

diversity of a rating map G is defined as the average pairwise Jaccard distance between its

segments’ descriptions, Diversity(G) =
∑(gi,g j)∈G2,i ̸= j Jaccard(gi.desc,g j.desc)

|{(gi,g j)∈G2,i ̸= j}| .
In order to control the description length, we vary the EMD threshold θ and generate trees

of different heights. Table 2.4 summarizes the results of RF-Cluster over the first synthetic
dataset (3 attributes, 10% noise). The results of the other algorithms are similar and are
omitted. We notice that even a slight decrease of description length results in a relatively high
increase of coverage, description diversity and segment size. The value “0” of description
length is explained by an empty description with RF-Cluster since it is as generated by the
pattern mining algorithm of 90% support threshold (Section 4.2.2.1).

θ = 0.1, |S |= 9 θ = 0.5, |S |= 13 θ = 1, |S |= 9
Description Length 3 2.77 2.44

Coverage 14.34 61.74 96.64
Description Diversity 0 0.15 0.31

Segment Size 79.67 237.46 536.89
EMD 0.04 0.29 0.59

Table 2.4 Effect of segment Description Length on Rating Map quality for RF-Cluster

2.5 Difference Exploration Experiments 35

Real Data

We study the performance of our algorithms on ML and BC. Given the lack of ground truth,
we do not compute accuracy results, as in Section 2.5.4. Instead, we study the quality of
our rating maps, i.e., average coverage of input records, average segment description length,
average segment size, and average segment EMD. We find that RF-Cluster produces high
quality rating maps but is not scalable. Therefore, in order to compare our other heuristics to
RF-Cluster, we perform our quality experiments on a small sample containing about 1,000
rating records for both ML and BC. We set the EMD threshold to 0.2 for ML and 2 for BC.
The number of trees generated by RF approaches is set to 20.

Quality of Heuristics. Figure 2.10 illustrates quality results. Each rating map contains
the top-10 population segments, as ranked by the different heuristics. For DTAlg and
RF-Cluster, where there is no ranking criterion, we randomly pick 10 segments. Overall,
RF approaches achieve better results than DTAlg for all quality measures. This confirms the
weakness of a single tree to capture the various non-intersecting segments and the benefit
of using a forest of trees. We also show that RF-Cluster produces rating maps with the
highest quality overall. The results of RF-Size confirm the assumption that coverage of
input records, Figure 2.10b, is favored by large segments, shown in Figure 2.10c. RF-Desc
returns segments with high description diversity, Figure 2.10b. RF-EMD achieves the best
average EMD, Figure 2.10d, but it performs poorly on the other quality measures. We also
observe that it has lower quality than RF-Random. Finally, all heuristics, except RF-EMD,
appear to have similar average EMD values.

Table 2.5 shows that RF-Cluster produces population segments with the minimum
description length. It is worth mentioning that the resulting segments of RF-Cluster do
not have a natural exact description, but they are assigned a description as generated by the
pattern mining algorithm (Section 4.2.2.1). Thus, setting the support threshold of frequent
patterns to 90% can result in segments with an empty description and an average description
length lower than 1.

DTAlg RF-Cluster RF-Desc RF-Size RF-EMD
ML 2.9 0.9 2 2.3 2.9
BC 1 0.25 1.1 1.3 1.7

Table 2.5 Average Description Length (Top-10)

36 Difference Exploration

ML-BC ML-BC ML-BC ML-BC ML-BC

Coverage (Top-10)

HeuristicsA
ve

ra
ge

 C
ov

er
ag

e
(L

og
-S

ca
le

)
0

1
2

3
4

5

DTAlg
RF-Cluster
RF-Desc
RF-Size
RF-EMD

ML-BC ML-BC ML-BC ML-BC ML-BC

Description Diversity (Top-10)

Heuristics

A
ve

ra
ge

 D
es

cr
ip

tio
n

D
iv

er
si

ty
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DTAlg
RF-Cluster
RF-Desc
RF-Size
RF-EMD

(a) (b)

ML-BC ML-BC ML-BC ML-BC ML-BC

Segment Size (Top-10)

HeuristicsA
ve

ra
ge

 S
eg

m
en

t S
iz

e
(L

og
-S

ca
le

)
0

1
2

3
4

5

DTAlg
RF-Cluster
RF-Desc
RF-Size
RF-EMD

ML-BC ML-BC ML-BC ML-BC ML-BC

EMD (Top-10)

Heuristics

A
ve

ra
ge

 E
M

D
0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

DTAlg
RF-Cluster
RF-Desc
RF-Size
RF-EMD

(c) (d)

Fig. 2.10 Evaluation of Rating Map quality for all RF heuristics

2.6 Summary of Difference Exploration 37

Scalability Evaluation. In order to study scalability, we gradually increase the size of
input rating records S using the ML dataset. Figure 2.11 shows the running times of the
various algorithms as the size of S grows. While we only report results with 250K input
records, our experiments confirm the high scalability of DTAlg (around 4 minutes to process
1M records from ML). However, not all RF approaches scale as well. That is expected since
they were primarily designed to improve the quality of the resulting maps. In fact, the time
taken to create random trees is the same for all RF approaches and the difference between
them is due to different strategies to combine partitions. Although RF-Cluster produces
high quality maps (refer to Section 2.5.4, Quality of Heuristics), it scales poorly. On the
contrary, RF-Size and RF-EMD scale linearly with the size of S . However, RF-Desc does
not scale because finding segments whose descriptions are far apart is expensive. In summary,
RF-Size achieves a good compromise between the quality of rating maps and response time.

50000 100000 150000 200000 250000

0
50
0

10
00

15
00

20
00

25
00

30
00

Number of Input Rating Records

R
es

po
ns

e
Ti

m
e

(s
ec

)

DTAlg
RF-Cluster
RF-Desc
RF-Size
RF-EMD

Fig. 2.11 Response time Vs. Input size on ML

2.6 Summary of Difference Exploration

To facilitate online exploration of rated datasets by analysts and end-users, we proposed
rating maps consisting of sets of (population segment, rating distribution) pairs with segments
that cover a large number of input records, have diverse descriptions, and are close to one of
desired distributions. We formulated the problem of finding rating maps as finding partition

38 Difference Exploration

decision trees of minimum height and showed that the problem is NP-complete. We proposed
a linear time algorithm to the number of input rating records for finding a basic PDT and
heuristics based on random forests for improving their quality. Our extensive experiments
show that PDTs with short descriptions (small height) achieve high coverage and that among
our heuristics, the heuristic that selects the largest segments strikes the best balance between
quality of rating maps found and running time.

Chapter 3

Difference Explanation

3.1 Introduction

Many of the changes are hidden in the masses of data collected during daily operations. Such
changes may mirror, for instance, external influences such as customer and market trends,
but also internal influences such as supply shortages or shifts in product quality. Contrast
mining [DB12] quantifies and describes the difference between two datasets in terms of the
models they induce or the patterns they contain. It provides knowledge on what has changed
as well as the extent of it [Boe11].

Contrast mining is useful in several application contexts. For a retail manager, it is
paramount to detect whether customer segments have significantly changed since some
marketing and sales plans were decided. If he learns that, for instance, the largest customer
group used to be single in their early twenties are now married middle agers, he could
revise the original plans to match the characteristics of the latter customer group. Another
example is a marketing analyst akin to know which products (or product categories) can
better explain the difference in sales between two nearby stores. Such analysis can then be
used to decide whether different marketing strategies are needed for each store. Based on
the deviation between pairs of customer transactions, a set of stores can be grouped together
and earmarked for the same marketing strategy. In social media marketing (e.g., for tourist
or entertainment sectors), analysts would like to know which user demographic segment
better explains the difference in online ratings between two products or services. Besides the
business domain, several scientific applications benefit from contrast mining. For instance, if
a patient’s reactions to two competitive or related drugs are found to be statistically different,
biomedical researchers seek to understand the differences with respect to some factors, such
as blood pressure, age, etc.

40 Difference Explanation

A common denominator of these examples is the need to understand if two datasets differ
in some measure of interest (e.g., total sales, rating, etc) and explain how they differ (in
terms of the underlying demographic groups, product/service characteristics, etc). Given two
datasets, D1 and D2, that one wishes to contrast, contrast patterns [DB12] aim to recognize
patterns that best explain the differences between two datasets according to some dimensions
(i.e., attributes) of interest [WBN03, BP01a]. Such patterns essentially represent different
segments of the two datasets for which a significant difference in a measure of interest (e.g.,
an aggregated value) is observed. Although contrast mining techniques [ZW03] emphasize on
providing interpretable and expressive contrast patterns, they fail to parsimoniously describe
the set of differences between two datasets. An attempt to solve this problem by providing a
minimal number of meaningful contrast patterns is presented in [ABG+07, JBL09]. Both
works aim to minimize the number of contrast patterns existing in a hierarchical structure,
where the hierarchy is either domain specific [JBL09] (e.g., attribute location described by
the hierarchy of state/city/zip_code) or dynamically built [ABG+07]. The main deficiency
of these works is that they lack the ability of maximizing the overall strength of reported
differences, while constraining the number or granularity (i.e., description length) of data
segments.

In our work, we are interested in exploiting the structural relations among multi-dimensional
data segments to assess the utility of the contrast patterns included in a parsimonious ex-
planation. To the best of our knowledge this is the first work that formalizes parsimonious
explanations as an optimization problem of maximizing the overall strength of differences
being explained (i.e., informativeness) constrained by the number or granularity of data
segments (i.e., conciseness). By a reduction from the maximum dispersion problem, we
show that computing such summaries is an NP-hard problem and thus we propose a nearly
optimal greedy algorithm for solving it.

This chapter is organized as follows. Section 3.2 illustrates intuitive examples, motivating
the need for parsimonious explanations of differences. Section 3.3 gives background defini-
tions and formalizes our optimization problem. Section 3.3.2 provides proofs of properties
of our optimization problem, which guarantee near-optimal approximation solutions for our
greedy algorithm. Section 3.4 discusses a greedy approach, as well as a baseline algorithm.
Our experimental study and findings are given in Section 3.5. We conclude in Section 3.6.

3.2 Motivating Example

We are given two datasets, D1 and D2, that contain retail sales for the same time period of
stores s1 and s2 respectively. Both datasets are described by the same schema, as shown

3.2 Motivating Example 41

in Table 3.1. Each dataset consists of four entities: Sale, Store, Product and Customer.
Each entity is described by a set of attributes, shown in the second column of Table 3.1.

Entities Attributes, Attr
Sale ⟨storeid, productid,customerid, time⟩
Store ⟨storeid, latitude, longitude, postcode, location⟩

Product ⟨productid,name,category⟩
Customer ⟨customerid,date,name,age,gender, pro f ession,region,children,status⟩

Table 3.1 Schema of datasets D1,D2

Given D1 and D2, analysts are usually interested in detecting whether a significant
difference exists between a quantity of interest, e.g., sales, defined as aggregate values
in both datasets and understanding to which customer segments of the datasets this dif-
ference is mainly due. For example, the aggregated sales of a store s can be defined as
count(σstoreid=s(Sales)) while demographic attributes like Customer.age and Customer.status
can be used to describe customer segments that significantly diverge in sales when contrasting
the two stores. Each segment is essentially described by conjunctive predicates over the
attributes of the schema of the two datasets: e.g., the segment age=Young and status=Single
could result in significant differences between the aggregated sales of the two stores. Figure
3.1 illustrates the space of all possible segments, forming a (semi-)lattice (the root corre-
sponds to the trivial predicate true) in which edges represent inclusion relationships between
the data segments. For instance, segments (age=Young∧status=Single) and (age=Young),
connected with an edge, exhibit an inclusion relation as the former is a subset of the lat-
ter. Clearly the conjunction length determines the granularity of the underlying segments,
e.g., (age=Young∧status=Single) belongs to the finest granularity, while (age=Young)
determines a coarser one.

Fig. 3.1 Two dimensional space of data segments

42 Difference Explanation

Each segment contributes to the aggregated value of interest and is potentially responsible
for the differences observed between the two datasets. Table 3.2 illustrates examples of data
segments at various granularities (shown in columns) along with their aggregated values. For
the purpose of our example we use the count aggregate function, which counts the number
of sales in a particular segment and store (other additive aggregate functions such as sum
may be also used). To assess the divergence between the aggregated values computed for
each store we rely on a difference measure. It can be either absolute, quantifying the actual
difference in sales or relative, indicating their percentage difference1, PD(s1,s2), shown in
the last row of Table 3.2. Each segment in Figure 3.1 is annotated with the relative percentage
difference of its data.

Root ‘Young’ ‘Middle-Age’ ‘Middle-Age’∧‘Married’
s1 7,675,342 650,772 2,657,143 2,303,353
s2 2,803,984 396,701 878,017 727,092

PD(s1,s2) 92% 48% 100% 104%
Table 3.2 Aggregate values of various data segments

As we can observe in Table 3.2, the percentage difference of aggregated values at coarse
granularity levels is at least as much as the percentage difference at finer granularity levels.
For instance, the root segment exhibits a difference of 92%, but when its data are further
refined with (age=Middle-Age) segment the percentage difference increases to 100%. The
percentage difference is increased even more, reaching 104%, when exploring more fine-
grained data segments, e.g., (age=Middle-Age∧status=Married). It should be stressed
that descendant segments may exhibit a greater percentage difference than the children
of a segment (e.g., age=Middle-Age vs age=Middle-Age∧status=Married). However,
the exploration of more refined granularities does not always guarantee higher and more
significant differences. For instance, (age=Young) which also refines the data of root has a
lower difference, 48%. In essence, percentage difference is not monotonic with respect to the
granularity (i.e., description length) of data segments.

The question that naturally arises in this context is which and how many data seg-
ments exhibiting a significant percentage difference should be included in the parsimo-
nious summarisation given to an analyst. A simple approach consists in selecting the
top-k data segments with the greater percentage difference. However, this solution is
prone to producing verbose and redundant information. Consider for instance the top-5
data segments of Figure 3.1, i.e., S ={(age=Elderly∧status=Married), (age=Elderly),
(age=Middle-Age∧status=Married), (age=Middle-Age), (status=Married)}. This set

1 https://en.wikipedia.org/wiki/Relative_change_and_difference

3.2 Motivating Example 43

consists of overlapping segments where the percentage difference of a descendant (e.g.,
age=Middle-Age∧status=Married) is higher than the percentage difference of its ancestors
(e.g., age=Middle-Age, status=Married). Clearly, there is no need to consider ancestor
segments in the summarization, when their descendant already indicate a higher relative
difference. Similarly, differences can be summarized by considering only ancestors (e.g.,
status=Married) which exhibit a higher relative difference than their descendants (e.g.,
status=Married∧age=Young or status=Married∧age=Senior). Justifying if descendants
or ancestors provide a better summary is related to the distribution of differences among
segments at different granularities. In this paper, we are interested in summarizing data
segments which exhibit a significant relative difference w.r.t. to their ancestor or descendant
segments not included in the summary. Compared to related work [ABG+07, JBL09], this
is the first work that accounts for the structural relations among data segments in order to
maximize the overall strength of reported differences, while constraining the number or
granularity of data segments.

In a nutshell, we make the following contributions:

1. We formalize parsimonious explanations of differences between two datasets as an
optimization problem of maximizing the overall strength of differences being explained
(i.e., informativeness) constrained by the number or granularity of data segments (i.e.,
conciseness). By reduction from the maximum dispersion problem [GoCBBRD77],
we show that finding parsimonious explanations is NP-hard.

2. We propose two scoring functions that capture the overall strength of differences
of a parsimonious explanation and exploit the structural relations between the data
segments. Then we prove two interesting properties, namely sub-modularity and mono-
tonicity of scoring functions. These properties allow us to design a greedy algorithm
for computing parsimonious explanations with provable near-optimal approximation
guarantees.

3. We experimentally evaluate the performance of our algorithm with real datasets con-
taining retail sales of French stores and compare its utility with a baseline algorithm
returning only the top-k most differing data segments. We show that gender and
profession are those demographic attributes to which significant differences can
be attributed and that consumption habits are changing by region (e.g., urban or
agricultural area).

44 Difference Explanation

3.3 Formal Model for Difference Explanation

We are given two input datasets D1,D2 with the same schema S(a1, · · · ,an), where ai ∈A

and A is the set of all attributes.

Definition 1 (Segment) A segment s ∈S is described by a set of conjunctive predicates,
s.pred = (a1 = v1∧·· ·∧ai = v j), where ai ∈A . We refer to s.pred as the label of s and to
the length of s.pred as its number of predicates |s.pred|.

Definition 2 (Segment Score) A segment s ∈ S is assigned a pair of aggregate values,
s.N1, s.N2, corresponding to the number of sales for D1,D2 respectively. A segment score,
Score(s), is defined over the aggregate values, indicating their percentage difference.

Score(s) =
|s.N1− s.N2|

(s.N1 + s.N2)/2
∗100

Percentage difference equals the absolute value of the change in s.N1,s.N2, divided by the
average of these two numbers, all multiplied by 100. Given this definition, Score(s) ranges
in [0,200].

Definition 3 (Segment Relation) Two segments si, s j ∈S described by the conjunctive
predicates (ai1 = vi1 ∧ ·· · ∧aik = vik) and (a j1 = v j1 ∧ ·· · ∧a jk = v jm) respectively, exhibit
one of the following structural relations:

• Inclusion: si ⊆ s j, iff ∀(aik = vik)|∃(a jm = v jm) : aik = a jm and vik = v jm

• Disjointness: si∩ s j = /0, iff ∀(aik = vik)|∄(a jm = v jm) : aik = a jm and vik = v jm

• Overlap: si∩ s j ̸= /0, iff ∃(aik = vik)|∃(a jm = v jm) : aik = a jm and vik = v jm

Definition 4 (Segment Distance) Dist(si,s j) assigns a non-negative value between any pair
of segments (si,s j) ∈S .

Dist(si,s j) =

{
Score(s j)−Score(si), if s j ⊆ si,Score(s j)> Score(si)

0, otherwise

}

For two segments si,s j such that s j ⊆ si and Score(s j) > Score(si), their distance is
defined as the difference of their segment scores. Figure 3.2 illustrates two properties of
our distance measure. The first property states that Dist(si,s j) = 0 does not necessarily
mean that the two segments are identical. This property is referred to as the identity of
indiscernibles and states that no two distinct segments, e.g., si and s j, exactly resemble

3.3 Formal Model for Difference Explanation 45

Fig. 3.2 Distance measure properties: (a) Identity of indiscernibles, (b) Asymmetry

each other. The second property mentions that the distance measure is asymmetric, hence
Dist(si,s j) ̸= Dist(s j,si).

The underlying assumption of the above distance measure is to favor segments that
maximize their distance from their ancestors. The design of this measure is inspired by the
Simpson’s paradox [DF05]: a difference appears in descendant segments but disappears
or diminishes when these segments are combined to higher granularities of ancestors. In
Figure 3.3a the descendant (Young∧Single) summarizes two of its ancestors (Young, Single).
However, a different approach of detecting segments that maximizes their distance from
their descendants is also of interest. For this purpose, we simply change the direction of
subset relation in the first condition of Dist(si,s j), i.e., if s j ⊇ si,Score(s j)> Score(si). The
design of this measure is inspired by cases where differences appear at high granularities
of ancestors but decrease in their descendants. In Figure 3.3b the root summarizes all of its
descendants. Justifying which summary is preferred depends on how differences in data are
distributed at different granularities.

(a) (b)

Fig. 3.3 Summarizing (a) Ancestors, (b) Descendants

Definition 5 (Objective Function) The objective function f (S) assigns a value to a set
S ⊆S , indicating how far segments s ∈ S are, in terms of the percentage differences they
describe.

gs(S) = max
s′∈S

Dist(s,s′)

f (S) = ∑
s∈S

gs(S)

46 Difference Explanation

For s ∈S , the function gs(S) measures the distance of segment s to the selected set S, as
the maximum score of s from any node s′ ∈ S. Then, function f measures the distances of all
segments s ∈S to the set S, as the sum of their distances. Hereby, we set f (/0) = 0.

3.3.1 Difference Explanation Problem

Our problem admits a set of segments S for two datasets D1 and D2 and returns a subset
S ⊆S of segments such that the percentage difference described by segments in S is as
informative as the entire space of segments S . More formally, given a set S of segments
and the distance Dist(si,s j) among segments si,s j ∈S , our optimization problem consists
of finding a subset S of S , such that the objective function is maximized.

arg max
S⊆S

f (S) subject to some constraints on S

Our maximization problem is subject to some constraints on S. Two such constraints are:

1. Cardinality constraint where we require that |S| ≤ k, for some given k. Hence, we wish
to identify at most k segments that maximize f (S). Note that if k is high, all segments
of gs(S)> 0,s ∈S are included in S.

2. Granularity constraint where we require that |u.pred| ≤ p (resp., |u.pred| ≥ p). Hence,
we wish to identify segments with at most (resp., at least) p-length label. Note that the
highest value of p is the number of attributes |Attr|.

Such search problems are reduced from the general category of maximum cut problems.
In particular, they are referred to as dispersion problems [GoCBBRD77] and they are useful
in the context of multi-objective decision making [Osi89]. In multi-objective decision making
where the number of non-dominated solutions is high, the decision maker is interested in
selecting a smaller number of solutions which are as informative as possible with respect to
the values of an objective function.

3.3.2 Sub-modularity and Monotonicity

Sub-modularity has attained an important role in theoretical computer science, due to its
beneficial properties in the design of optimization algorithms. The sub-modularity property
of a set function can be intuitively interpreted as follows: additional items have less and
less value, as the set we possess grows. This property of diminishing returns is useful in
several real world problems where diminishing returns naturally arise, like feature selection
[LWK+13], facility location [KLG+08] etc. We define the sub-modularity and monotonicity
properties and prove them for our objective functions.

3.4 Algorithms for Difference Explanation 47

Definition 6 (Sub-modularity) A function f : 2S → R is submodular if for every A⊆ B⊆
S and n ∈S \B it holds that

f (B∪{n})− f (B)≤ f (A∪{n})− f (A)

Definition 7 (Monotonicity) A function f : 2S → R+ is monotone if for every A⊆ B⊆S ,
f (A)≤ f (B).

Proofs

We prove that our objective function (see Definition 5) is sub-modular and monotone.
For A⊆ B and n ∈S \B we have

max
v∈B∪{n}

Score(u,v)−max
v∈B

Score(u,v) =

max(0,Score(u,n)−max
v∈B

Score(u,v))≤ max(0,Score(u,n)−max
v∈A

Score(u,v)) =

max
v∈A∪{n}

Score(u,v)−max
v∈A

Score(u,v)

Summing over u we get:

f (B∪{n})− f (B)≤ f (A∪{n})− f (A)

which, by definition, states that function f is submodular. Moreover,

f (B∪{n})− f (B)≥ 0

which states that function f is monotone (non decreasing).

3.4 Algorithms for Difference Explanation

In this section we present our greedy algorithm for summarizing differences in data. We
provide the pseudo-code of our algorithm and discuss two different approaches for summariz-
ing either ancestors or descendants. Then, we present the Top-k algorithm, along with two
variations of it properly adapted to summarize ancestors or descendants. These variations
serve us as a baseline in the experimental section. For both algorithms we provide a time
complexity analysis.

48 Difference Explanation

3.4.1 Greedy Algorithm

The k-Greedy algorithm (see Algorithm 4) takes as input the set of segments S, the k
constraint and returns a subset S of k segments optimizing the objective function. It starts
with the empty set S0 (line 1), and in iteration j, adds the segment s ∈S \S j−1 maximizing
the marginal gain (or discrete derivative) f (Si−1∪{s})− f (Si−1) (line 3-4).

Algorithm 4 k-Greedy
Input: Set of all segments S , cardinality constraint k
Output: Difference summarization S

1: S0← /0
2: for j = 1 to k do
3: si← arg max

s∈S \S j−1
f (S j−1∪{s})− f (S j−1)

4: S j← S j−1∪{si}
5: end for
6: return S j

In order for our greedy approach to satisfy the granularity constraint p of our problem
statement, one more condition should be added when inserting a segment to the resulting set.
To this end, line 3 changes as follow:

si← arg max
s∈S \S j−1∧|s.pred|≤p

f (S j−1∪{s})− f (S j−1)

Furthermore, the objective function f can maximize any of the score functions, summariz-
ing either ancestors or descendants. According to which segments the algorithm summarizes
at each time, we call the algorithm k-Greedy(Ancestors) or k-Greedy(Descendants).

Finding efficient policies for this general class of optimization problems is hard. However,
when the objective function is monotone and sub-modular, a simple greedy policy attains a
(1− 1

e)-approximation ratio in terms of expected utility [KG12].

Complexity Analysis

At each step, the Greedy algorithm looks for the segment s that maximizes the objective
function (line 3). This step requires the comparison of all s ∈S \S j−1 with all s′ ∈ S j−1.
Given that the comparison has a constant complexity, this step requires O(|S | ∗ |S j−1|) time.
Since this step is performed k times for |S | number of segments and the size of each set
|S j−1| is at most k, the complexity of the Greedy algorithm is:

O(k2 ∗ |S |2)

3.5 Difference Explanation Experiments 49

3.4.2 Top-k Algorithm

Top-k is a well-known, practical and simple algorithm, able to obtain the k-most important
segments, as indicated by our score function. We use this algorithm as our baseline and
compare its results with k-Greedy.

As previously, we provide two variations of Top-k, namely Top-k(Ancestors) and
Top-k(Descendants). Both variations rank the results using the same scoring function and
thus they report the same set of k most important segments. However, for each variation we
provide a different interpretation of whether their their segments summarize ancestors or
descendants, respectively. Hence, we are able to detect whether Top-k approaches provide
explanations of finer (i.e., explaining ancestors) or broader (i.e., explaining descendants)
granularities. We measure the aforementioned ability using our objective function f (S)
(according to Definition 5).

Complexity Analysis

At each step, Top-k algorithm compares two segments in order to provide their between
ranking. The total number of comparisons for the entire ranking process is:

|S | ∗ log(|S |)

where |S | is the total number of segments in the search space.

3.5 Difference Explanation Experiments

In this section, we investigate the performance and effectiveness of our greedy algorithms,
k-Greedy(Ancestors) and k-Greedy(Descendants) in summarizing differences. On the
quality front, we perform a thorough evaluation of different datasets and get an insight of how
their intrinsic characteristics, such as dispersion or granularity level of differences, affect the
algorithms. Then, we perform a more in-depth analysis in order to test k-Greedy approaches,
by comparing them with Top-k approaches, in terms of average segments score, average
summarized segments, f (S) value and average explanation length. On the scalability front,
we study their time results as we increase the search space and the values of k-constraint.
Finally, we present real examples of summaries of differences, extracted from a real retail
sales dataset.

50 Difference Explanation

3.5.1 Dataset Preparation

Our data contains retail sales derived from the Intermarché French stores during the period
of May 2012 to September 2014. Each dataset, namely Dstoreid , corresponds to a particular
store described by a unique id storeid. Particularly, we are interested in contrasting datasets
which exhibit the following counter-intuitive property: although the sales of one store (e.g.,
D84803) are greater than the sales of an other (e.g., D5407), the number of distinct customers
is smaller between the former and the latter. Motivated by this observation, we are interested
in finding which data segments best explain the difference in sales.

Datasets Location Sales Distinct Customers
D58102 Chelles, France 10.174.746 17.563
D83906 Nogent-le-Rotrou, France 8.725.648 26.990
D83202 Bernay, France 8.676.482 27.809
D84803 Versailles, France 7.675.342 13.842
D49506 Champigny-sur-Marne, France 7.607.802 14.251
D18906 Crécy-la-Chapelle, France 7.413.875 13.395
D5407 Louviers, France 2.803.984 15.842

Table 3.3 Summary of Datasets

More precisely, we are interested in contrasting the aggregated value of sales of the
two stores and explain to which customer segment this difference is mainly due. In this
experiment, our analysis aims to identify the demographic attributes to which significant
differences on customer purchases can be attributed to the two stores.

Our input datasets are generated by joining Customer and Sale tables, shown in the
schema of Table 3.1, using store ids. Differences are explained based on five demographic
attributes in the Customer table, i.e., age, gender, profession, children and status.
Note that we exclude from our analysis the customer attributes, customerid, name in order
to ensure customers privacy. The five demographic attributes, participating in the analysis,
take between two to 21 different values. For instance, although status may be single or
in relationship, profession takes 21 different options (e.g., student, retired). All possible
combinations of (attribute, value) pairs form a search space of 16.170 demographic segments.
The size of the search space is common for any contrasting pair of datasets, as we consider
that all pairs are described by the same set of attributes and each attribute exhibits the same
domain for any dataset pair.

Experiments were conducted on 2 GHz Intel Core i7, 8 GB RAM, MAC OS.

3.5 Difference Explanation Experiments 51

3.5.2 Summary of Results

We validate the utility of our algorithms by explaining differences in real data. Our ex-
periments in Section 3.5.3, reveal that gender and profession are those demographic
attributes to which significant differences can be attributed. Particularly, women, unemployed
(e.g., homemakers, inactive, retired, students) and self-employed (e.g., entrepreneurs, liberal
profession) are those groups impacting the most store sales. Moreover, we show that the
consumption habits and purchases of customers are affected by the location of each store.
Indeed, urban areas are more likely to attract students and singles, while agricultural regions
have increased sales to farmers.

Our experimental study in Section 3.5.4 verifies our initial intuition that there is a need
to parsimoniously explain differences in real data. Particularly, our experiments reveal
that differences dispersed in the structural relations of data can result in qualitative sum-
maries when these relations are taken into consideration. Moreover, when the dispersion
in differences exists at fine (resp., coarse) granularities, k-Greedy(Ancestors) (resp.,
k-Greedy(Descendants)) is a good option for parsimoniously explaining those differences.
k-Greedy approaches achieve a good tradeoff between how much difference their demo-
graphic segments exhibit and how many other segments they are able to summarize. For
instance, k-Greedy(Descendants) has a coverage of at least 75% when compared to Top-k,
by sacrificing just a 25% of average segments score. Moreover, k-Greedy approaches, unlike
Top-k, can adapt to the characteristics of the contrasted data while they can be easily tuned
in providing short or long labels. k-Greedy approaches also achieve a tradeoff between the
quality of their summaries and the granularity (in terms of label length) of their segments.
(Section 3.5.5). Finally, the high quality results of k-Greedy(Descendants) comes with
a computational cost (Section 3.5.6). However, the execution cost remains reasonable (4
minutes) even for large spaces (16.170 segments).

3.5.3 Examples of Difference Explanation

In this section, we explore the utility of our k-Greedy algorithms by investigating some real
scenarios provided by Intermarché analysts. Particularly, we are interested in understanding
why stores with similar number of customers, such as stores in Louviers, France or Crécy-
la-Chapelle, France, have significant difference in their product sales. Moreover, we are
interested in going beyond this analysis and study whether stores, that overall have similar
number of sales, e.g., Versailles, France and Champygny-sur-Marne, France, do exhibit
differences in their sales when considering individual demographic groups.

52 Difference Explanation

In an attempt to address the aforementioned analytical questions and extract meaningful
summaries, we apply k-Greedy over different contrasting stores. Table 3.4 summarizes the
results of our greedy approach, when contrasting stores of high difference in their overall
sales (higher than 90%). Particularly, we present the results of k-Greedy(Ancestors)
and k-Greedy(Descendants), as well as the results of the latter for p=2. Each result
summarizes differences between the two stores, consisting of five demographic segments
(k=5). Similarly, Table 3.5 illustrates summaries of differences when contrasting datasets
with a similar number of overall sales, i.e., where their difference is lower than 16%.

Our experiments indicate that gender and profession are those demographic attributes
to which significant differences can be attributed. Even when considering long, short or
constrained length labels, these two attributes are very often involved in the parsimonious
explanations. Thus, in general we can state that the gender of a customer and what job she
does for a living affect her consumption habits and the volume of purchases. To this end, we
notice that product sales of stores are positively or negatively affected by the habits of these
demographic segments. In particular, the demographic segment, that most parsimoniously
explain differences in sales between the various pairs of stores, is the group of women.
This observation signifies that groups of women are those that cause the difference in sales
between the contrasted stores. Taking into consideration that grocery aisles are traditionally
considered the domain of women shoppers, observing women in our summary of explanations
may not be surprising. Even when the summary contains a demographic segment of men, it
is worth mentioning that these men are either old and retired, single or homemaker. These
groups of men are probably managing the house and do the necessary purchases. Moreover,
we notice that among the 21 available professions, unemployed people (e.g., homemakers,
inactive, retired, students) and self-employed (e.g., entrepreneurs, liberal profession) are
those impacting sales the most. Another significant factor that impacts the consumption
habits and purchases of customers is the location of each store. To this end, urban areas are
more likely to attract students and singles, while agricultural regions sell more to farmers.

Having a closer look at the first dataset pair, we notice that the store located in Louviers,
France (D5407) has an impressive difference in its number of sales compared with the store
located in Crécy-la-Chapelle, France (D18906). Although the former store has 15% more
registered customers than the latter, it shows a 3-fold decrease in sales. Thus, we expect that
most of the differences in sales between these two stores are due to the higher number of sales
in Crécy-la-Chapelle, France. Indeed, k-Greedy(Ancestors) confirms this assumption
as it discovers that young, single, women with one child being workers and young, married,
homemaker men with 3 children contribute to the sales of the second store. However, another
less expected explanation of differences is given by the same approach. Particularly, it states

3.5 Difference Explanation Experiments 53

Louviers VS
Crécy-la-Chapelle

k-Greedy(Ancestors)

<35 ∧Mme ∧Worker ∧ 1 child ∧ Single, 193%
<35 ∧Mr ∧ Homemaker ∧ 3 children ∧ In relationship, 200%
50-64 ∧Mme ∧ Inactive, Other ∧ 5 children ∧ Single, 200%

<35 ∧Mme ∧ Entrepreneur ∧ 2 children ∧ In relationship, 200%
>65 ∧Mr ∧Worker ∧ 2 children ∧ Single, 200%

k-Greedy
(Descendants)

Root Mme ∧ In relationship, 95%

p=
2

No children Mlle ∧ In relationship, 130%
Cadre >65 ∧ In relationship, 121%
Mlle Mr ∧ In relationship, 79%
>65 Mr ∧ Single, 81%

Louviers VS Versailles

k-Greedy(Ancestors)

<35 ∧Mr ∧ Homemaker ∧ 1 child ∧ Single, 200.0%
>65 ∧Mme ∧ Inactive, Other ∧ 3 children ∧ Single, 200.0%
50-64 ∧Mr ∧ Retired ∧ 5 children ∧ In relationship, 197%

35-49 ∧Mlle ∧ Entrepreneur ∧ 2 children ∧ In relationship, 195%
50-64 ∧Mme ∧Worker ∧ 4 children ∧ Single, 196%

k-Greedy
(Descendants)

Root, 92% Mr ∧ In relationship, 108%

p=
2

No children, 147% Mme ∧ In relationship, 94%
Cadre, 175% Mlle ∧ In relationship, 110%

Student, 152% <35 ∧ Single, 85%
35-49, 108% >65 ∧Mme, 99%

Table 3.4 Difference summarization of k-Greedy when contrasting stores of high difference
in their overall sales

that the last three demographic segments made the most of their purchases in the less popular
(i.e., in terms of sales) store of Louviers, France causing a difference of at least 190%.
Although this store has less registered customers, it is preferred by some demographic groups.
Particularly, we discovered that this store has 20% more registered parents and 57% more
entrepreneurs and the percentage of registered entrepreneurs reaches 67% when considering
only women.

Moving the scope of our analysis to broader granularities for the same dataset pair
(D5407, D18906), generated by k-Greedy(Descendants), provides us with an overview of
the most impacting segments while omitting details of very refined granularities. We notice
that for unconstrained length labels the root segment is included in the summary. This is
not surprising as we are contrasting stores with significant difference in their overall (i.e.,
root) sales. However, when a constraint is applied (p=2) we notice that the most impacting
demographic segments are women and senior (>65) people in relationship as well as men.

54 Difference Explanation

An interesting observation is that although the store in Crécy-la-Chapelle, France has 16%
less registered women in relationship, these women show a tendency to regularly visit the
store exhibiting a higher number of purchases than the same demographic group in Louviers,
France. Similar observations are drawn for registered men; although the store in Crécy-la-
Chapelle, France has 15% fewer registered men, these men make on average more purchases
per capita.

The second contrasting pair verifies some of our previous findings. For instance, the
first four segments generated by k-Greedy(Ancestors), indicates again that entrepreneurs
and parents prefer Louviers, France (D5407) store to the store in Versailles, France (D84803).
However, we make another interesting remark when examining also the results of
k-Greedy(Descendants). The store in Versailles, France has a high number of purchases
from students, middle-age (35-49), young (<35) singles and senior (>65) women, implying
the better services (e.g., university, employment, hospital) provided by urban areas to sensitive
social groups. Moreover, the purchasing and consumption habits are subject to the spending
capacity and lifestyle in urban areas. Thus, the increased income as well as the more intense
pace of life in Versailles, France explain the difference in sales between the two stores and
the tendency of some demographic segments, such as middle-age or young (<35) singles to
consume more.

Table 3.5 summarizes the differences when contrasting stores with a difference in their
sales less than 16%. Simply by looking at this aggregate value, which is always less than
16%, we can conclude that overall there is not a high difference in sales between these stores.
However, an in-depth exploration of their different demographic segments results in the
opposite conclusion. While there is not a high difference in sales between the stores located
in Chelles, France (D58102) and in Bernay, France (D83202) their sales to particular age or
profession groups are significantly different. In particular, the explanation generated by
k-Greedy(Descendants) shows that the percentage difference in sales of old (50-64) and
young (<35) people is 59% and 41% respectively. This percentage is increased to 63% when
considering old people in relationship and 66% for young ladies. Moreover, we notice that
store in Bernay, France, an area known for the diversity and abundance of its agricultural
products, has 82% more registered farmers than Chelles, France causing 131% more sales in
that store.

The second contrasting pair in Table 3.5 concerns stores located in Versailles, France
(D84803) and in Champigny-sur-Marne, France (D49506). The two stores exhibit a difference
in their sales which is just 4.7%. However, when more refined segments are explored,
such as parents or singles, the difference is always higher than 30%. Particularly, the store
in Versailles, France achieves 74% and 60% more sales to parents of 4 and 5 children

3.5 Difference Explanation Experiments 55

Chelles VS Bernay

k-Greedy(Ancestors)

<35 ∧Mme ∧ Entrepreneurs ∧ 1 child ∧ Single, 198%
35-49 ∧Mlle ∧ Cadre ∧ 3 children ∧ In relationship, 200.0%

>65 ∧Mr ∧ Liberal Profession ∧ No children ∧ Single, 200.0%
<35 ∧Mr ∧ Homemaker ∧ 4 children ∧ In relationship, 200.0%

35-49 ∧Mlle ∧ Employee ∧ 4 children ∧ Single, 200.0%

k-Greedy
(Descendants)

Intermédiaire, 88% Intermédiaire ∧ In relationship, 96%

p=
2

50-64, 59% 50-64 ∧ In relationship, 63%
Farmer, 131% Intermédiaire ∧ 1 child, 131%
Worker, 93% <35 ∧Mlle, 66%

<35, 41% Mme ∧ Intermédiaire, 91%
Versailles VS
Champigny-sur-Marne

k-Greedy(Ancestors)

<35 ∧Mme ∧ Intermédiaire ∧ No children ∧ Single, 200.0%
50-64 ∧Mr ∧ Entrepreneurs ∧ 2 children ∧ Single, 199%

<35 ∧Mr ∧ Liberal Profession ∧ 3 children ∧ In relationship, 200.0%
35-49 ∧Mlle ∧ Student ∧ No children ∧ In relationship, 200.0%

35-49 ∧Mr ∧ Employee ∧ 4 children ∧ Single, 200.0%

k-Greedy
(Descendants)

4 children, 74% 1 child ∧ Single, 70%

p=
2

Single, 34% 4 children ∧ In relationship, 80%
5 children, 60% >65 ∧ Single, 70%

1 child ∧ Single, 70% Inactive, Other ∧ Single, 113%
Student, 48% 35-49 ∧ Student, 90%

Table 3.5 Difference summarization of k-Greedy when contrasting stores of low difference
in their overall sales

respectively than store in Champigny-sur-Marne, France. The aforementioned observations
indicate that two stores exhibiting similar overall number of sales may differ in their sales
to particular segments. This phenomenon, where a difference appears in segments of data
but disappears or reverses when these segments are combined, is known as the Simpson’s
paradox [DF05]. Thus, instead of reporting differences at the highest granularity level that
might hide or obfuscate patterns in the underlying data segments, we show that there is a
need to further explore the segments in order to reveal those patterns.

3.5.4 Segment Difference Characterization

Our first set of experiments aims to answer two questions; does the need to summarize
differences in real datasets exist? and how the intrinsic characteristics of contrasted datasets
(e.g., dispersion, granularity level of difference) impact the quality of summaries? To study
the first question, we perform an analysis on various contrasting datasets and study if the

56 Difference Explanation

policy of summarizing ancestors (resp., descendants) can be beneficial for parsimoniously
explaining differences in real data. To study the second question, we investigate how the
dispersion of differences in data segments at various granularity levels affects the produced
summaries. The relative differences are considered to be dispersed when the scores of the
corresponding data segments significantly differ as their structural relationships vary. We
measure the quality of our algorithms using f (S).

Segment Difference Explanation

Figure 3.4a depicts the average number of summarized segments (y-axis) generated by
k-Greedy(Ancestors) for various contrasting datasets described by at most k segments
(x-axis). The average number of summarized ancestor segments constantly remains greater
than 30 for any k value or pair of datasets. Thus, k-Greedy(Ancestors) summarizes 30 an-
cestors to only five segments, leading to 83% less reported differences. Similarly, Figure 3.4b
shows the average number of summarized segments generated by k-Greedy(Descendants).
Once more, the average number is significantly high. Less than 10 segments can summarize
more than 150 descendants, while in the case of (D5407, D18906), the number of summarized
segments reaches 400 descendants. Figure 3.4 verifies our initial intuition that there is a
need to summarize differences and this summarization can be achieved by exploiting the
structural relations in data.

10 20 30 40 50

28
29

30
31

32

k-Greedy (Ancestors)

k-Values

A
ve

ra
ge

 S
um

m
ar

iz
ed

 S
eg

m
en

ts

D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

10 20 30 40 50

10
0

20
0

30
0

40
0

k-Greedy (Descendants)

k-Values

A
ve

ra
ge

 S
um

m
ar

iz
ed

 S
eg

m
en

ts D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

(a) (b)

Fig. 3.4 Average number of summarized segments of various datasets for (a) k-Greedy
(Ancestors), (b) k-Greedy (Descendants)

3.5 Difference Explanation Experiments 57

Segment Difference Dispersion and Granularity

10 20 30 40 50

20
00
0

40
00
0

60
00
0

80
00
0

12
00
00

k-Greedy (Ancestors)

k-Values

f(S
) V

al
ue

D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

10 20 30 40 50
4e
+0
4

6e
+0
4

8e
+0
4

1e
+0
5

k-Greedy (Descendants)

k-Values

f(S
) V

al
ue

D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

(a) (b)

Fig. 3.5 f (S) value of various datasets for (a) k-Greedy (Ancestors), (b) k-Greedy
(Descendants)

Figure 3.5a shows the quality of a summary S in terms of f (S) values (y-axis) of
k-Greedy(Ancestors) for increasing k (x-axis). Overall, we notice that our algorithm’s
performance increases for any dataset when k increases. This trend is expected since our
objective function f (S) is non-negative and non-decreasing. Similar observations are drawn
from Figure 3.5b, illustrating the f (S) performance of k-Greedy(Descendants). It is worth
mentioning that f (S) increases until it reaches a maximum bound. The maximum bound
indicates that the addition of any other segment in S does not offer any further summarization,
as all differences have already been summarized by the segments in S (recall Property 1).
Finally, we notice that for both greedy algorithms, the higher the average number of sum-
marized segments (Figure 3.4) the better their performance (Figure 3.5). We conclude that,
differences dispersed in the structural relations of data can result in qualitative summaries
when these relations are taken into consideration.

In Figure 3.5a we notice that the last two pairs, (D58102, D83202) and (D58102, D83906),
exhibit at least 17% better performance. Their increased performance is explained by the
fact that the most informative segments (i.e., segments able to summarize other segments) of
these pairs exist at fine-grained granularities. k-Greedy(Ancestors) tends to prefer those
fine-grained segments, leading to a high performance. Similar observations are drawn from
Figure 3.5b. We observe that when descendants are used to summarize differences in (D58102,
D83906), the worst f (S) is achieved and this f (S) is decreased by 50% (compared with

58 Difference Explanation

10 20 30 40 50

0
5

10
15

20
25

30

Top-k (Ancestors)

k-Values

A
ve

ra
ge

 S
um

m
ar

iz
ed

 S
eg

m
en

ts

D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

10 20 30 40 50

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0 Top-k (Ancestors)

k-Values
f(S

) V
al

ue

D5407 vs D18906
D5407 vs D49506
D5407 vs D84803
D58102 vs D83202
D58102 vs D83906

(a) (b)

Fig. 3.6 (a) Average summarized segments (b) f (S) value of Top-k(Ancestors) for various
datasets

k-Greedy(Ancestors)) for k = 50. On the contrary, for the pair (D5407, D18906), where
the most informative differences are met in coarse granularities, k-Greedy(Descendants)
achieves at least 55% better f (S) than k-Greedy(Ancestors). Therefore we conclude
that, when informative segments exist at fine-grained (resp., coarse-grained) granularities,
k-Greedy(Ancestors) (resp., k-Greedy(Descendants)) is a good option for summariz-
ing their differences.

We perform the same analysis for Top-k approaches over the various dataset pairs. Both
approaches of Top-k result in the same set of top-k segments, as they both perform a ranking
based on segments’ score. It is worth noticing that in the case where there are several
segments sharing the same rank, Top-k picks a segment among them by chance. However,
the probability to pick a very fine-grained segment (e.g., leaf) is higher than the probability
of selecting a very coarse-grained one (e..g., root), since the available number of the former
is higher than the latter. To this end, since there are not many coarse-grained segments in
top-k set, Top-k(Descendants) fails to provide explanations and thus we present only the
results of Top-k(Ancestors).

Figure 3.6a shows the average number of summarized segments (y-axis) generated by
Top-k(Ancestors) for various contrasting datasets with different k constraints (x-axis).
The number of summarized segments is relatively high ranging within [10,25] for any pair of
datasets. It is evident that Top-k(Ancestors) is not designed to parsimoniously summarize
differences and thus it is not able to summarize more ancestors than k-Greedy(Ancestors).

3.5 Difference Explanation Experiments 59

Although its performance is lower than k-Greedy(Ancestors), the necessity to parsimo-
niously explain differences, by considering hierarchical relations, is again verified.

Figure 3.6b illustrates the f (S) (y-axis) of Top-k(Ancestors) for various contrast-
ing datasets of different k constraints (x-axis). We verify again that the various dataset
pairs have the same trend, when k increases. Moreover, for higher k the performance of
Top-k(Ancestors) improves. The addition of more segments (higher k) in the resulting
summary increases the chance of the algorithm to summarize more ancestors (higher f (S)),
regardless of the dataset pair. Finally, it is worth mentioning that differences in perfor-
mance between datasets cannot be observed. The difference in performance is caused by
dispersed segments existing at different granularities, summarizing either many ancestors
or descendants. Since Top-k algorithms do not summarize ancestors or descendants, these
differences cannot be observed and the corresponding f (S) value of all datasets is lower than
k-Greedy(Ancestors).

3.5.5 Difference Explanation Evaluation

The second set of our experiments aims to perform an in-depth investigation of a single pair
of datasets and attempts to answer the question regarding the quality of summaries w.r.t. a
simple summary containing the top-k contrasting data segments. In this respect we consider
two additional quality measures: (a) how significant differences (i.e., average segments score)
are summarized by the returned data segments and (b) what is the granularity (i.e., average
label length) of the returned segments. The first indicates the degree to which the segments
of a summary describe significant differences in data. The second captures the ability of
the returned segments to provide refined or broad summaries of the differences in data. We
perform our analysis by contrasting the pair (D5407, D18906). This pair achieves a relatively
good f (S) for all algorithms.

Impact of Segments’ Score

Figure 3.7a shows the average segment score (y-axis) of a summary S, as generated by
each approach, for different values of k (x-axis). Top-k gets the highest possible score
value (i.e, 200%) which remains stable for all k values, indicating the significance of all
segments in S. Similarly, k-Greedy(Ancestors) performs well, for any k, describing
significant differences which exhibit at least 196% average segment score. On the contrary,
k-Greedy(Descendants) has a slightly worse performance. It achieves an average segment
score of 146% for low k values and this percentage increases to 163% for k = 50. It is
worth mentioning that k-Greedy algorithms do not only aim to optimize the segment score

60 Difference Explanation

10 20 30 40 50

14
0

16
0

18
0

20
0

Average Segments Score for Various k
D5407 vs D18906

k-Values

A
ve

ra
ge

 S
eg

m
en

ts
 S

co
re

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)
Top-k (Descendants)

10 20 30 40 50

20
50

10
0

20
0

50
0

Average Summarized Segments for Various k
D5407 vs D18906

k-ValuesA
ve

ra
ge

 S
um

m
ar

iz
ed

 S
eg

m
en

ts
 (L

og
-S

ca
le

)

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)

(a) (b)

Fig. 3.7 (a) Average segment score of explanation S, (b) Average number of segments
summarized by S

(as Top-k does), but also the number of other segments being summarized by S. However,
k-Greedy algorithms perform relatively well, even when considering solely the segments
score objective.

Figure 3.7b illustrates the average number of segments being summarized by S (y-axis) for
different values of k (x-axis). Top-k results in segments with a poor ability in summarizing
other segments (Top-k(Descendants) cannot even provide any results). On the contrary,
k-Greedy(Descendants) achieves at least 65% better performance than the others. This
result is mainly due to the root segment, which is assigned to S in this particular dataset. The
root happens to have the desired property to describe a relatively high difference (90%) and at
the same time to summarize many descendants. In particular, since the root has all segments
as descendants, each descendant with lower segment score is being summarized by the root
and thus the average summarized segments increase. Finally, we notice that there is a tradeoff
between how much difference (i.e., average score) each segment exhibits (Figure 3.7a) and
how many other segments are being summarized (Figure 3.7b). k-Greedy(Descendants)
exhibits a good tradeoff, as it generates at least 75% more summarized segments than Top-k,
by sacrificing just a 25% of average segment score.

Impact of Segments’ Granularity

To enrich the quality analysis of our algorithms, we study two more aspects. First, we explore
the values of our objective function f (S), as well as the impact that different k-values have

3.5 Difference Explanation Experiments 61

10 20 30 40 50

2e
+0
4

4e
+0
4

6e
+0
4

8e
+0
4

1e
+0
5

f(S) for Various k
D5407 vs D18906

k-Values

f(S
) V

al
ue

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)

10 20 30 40 50

0
1

2
3

4
5

Average Segments' Granularity for Various k
D5407 vs D18906

k-Values
A

ve
ra

ge
 S

eg
m

en
ts

' G
ra

nu
la

rit
y

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)
Top-k (Descendants)

(a) (b)

Fig. 3.8 (a) f (S) for explanation S, (b) Average granularity level of segments in S

on f (S). Then, we study the average segment granularity (i.e., in terms of segment label
length) and how it is being affected by the different approaches.

Figure 3.8a depicts the f (S) value (y-axis) for all approaches, when increasing the value
of k (x-axis). Overall, we notice that k-Greedy approaches achieve a better performance
than Top-k, regardless of k. k-Greedy(Descendants) outperforms the others, since the
most informative segments of the pair (D5407, D18906) exist at fine-grained granularities (see
Section 3.5.4). It achieves 75% better performance than Top-k for k = 5, while at the same
time maintaining a high f (S) for any k. However, the difference in performance between the
various approaches decreases as k increases; since more and more segments are being added
to the summary, the different approaches tend to provide similar summaries and thus their
performance converges. Figure 3.8a can be used to devise a methodology for selecting the
best k, as the k where an elbow in line exists (e.g., k = 30 for k-Greedy(Ancestors)).

Figure 3.8b illustrates the granularity level of summaries w.r.t. their average label
length (y-axis) when varying the values of k (x-axis). Since our approaches are designed to
summarize ancestors or descendants, they tend to prefer long and short labels respectively. To
this end, k-Greedy(Ancestors) provides refined summaries (i.e., maximum label length
of five) while k-Greedy(Descendants) provides broad summaries (i.e., short label length)
for any k. On the contrary, Top-k approaches tend to prefer only refined summaries for any
k. As there might exist several segments with equal score in the first place, but with different
length, Top-k is more probable to select a long than a short label (i.e., refined segments of
long labels are more numerous than broad segments of short labels). In short, we can state

62 Difference Explanation

that k-Greedy approaches are flexible and can be easily tuned in providing short or long
labels. On the contrary, Top-k approaches are not flexible as they tend to prefer longest
labels for any k. Finally, Figure 3.8 highlights a tradeoff between the quality of summaries
(in terms of f (S)) and the granularity (in terms of label length) of their segments. The more
we increase the segments’ granularity, the lower the quality of the summary S becomes.

Impact of p Constraint

Figure 3.9 shows f (S) (y-axis) of our greedy approaches (k = 30) for various p values
(x-axis). We notice that increasing p has a negative impact on k-Greedy(Descendants), as
the summary becomes less informative; longer labels (at least p-length) summarize fewer
descendants. In the extreme case, where p = 5, this approach returns segments of maximum
label length summarizing no descendants and thus having a zero f (S). On the contrary, for
k-Greedy(Ancestors), the higher the value of p, the better its performance. It is obvious
that allowing the algorithm to reward segments of longer labels, ends up summarizing more
ancestors and thus achieving higher f (S). In the extreme case, where p = 1, the approach
returns segments of minimum label length summarizing no ancestors and thus having a zero
f (S). Note that the best performance of k-Greedy(Ancestors) (p = 5) is 26% lower than
the best performance of k-Greedy(Descendants) (p = 1). This difference is due to the
performance boost given by the root.

1 2 3 4 5

0e
+0
0

2e
+0
4

4e
+0
4

6e
+0
4

8e
+0
4

1e
+0
5

f(S) for Various p, k=30
D5407 vs D18906

p-Values

f(S
) V

al
ue

k-Greedy (Ancestors)
k-Greedy (Descendants)

Fig. 3.9 Values of f (S) for various p constraints

3.5 Difference Explanation Experiments 63

3.5.6 Scalability Evaluation

0 5000 10000 15000

1
10
0

10
00
0

Time for Various Number of Segments (k=5)
D5407 vs D18906

Number of Segments

Ti
m

e
(m

s)
, L

og
-S

ca
le

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)
Top-k (Descendants)

10 20 30 40 50
1e
+0
2

1e
+0
4

1e
+0
6

Time for Various k
D5407 vs D18906

k-Values

Ti
m

e
(m

s)
, L

og
-S

ca
le

k-Greedy (Ancestors)
k-Greedy (Descendants)
Top-k (Ancestors)
Top-k (Descendants)

(a) (b)

Fig. 3.10 Response time for various (a) Segments, (b) k-values

In order to study the scalability of our algorithms, we discuss all parameters that may
affect the execution time of producing parsimonious explanations. To this end, we show
how the size of the search space (i.e., number of data segments) and the values of k impact
scalability. Beyond the time to generate the resulting explanations, some time is required
to produce the search space. This time is common for all algorithms and increases as the
number of segments in the search space increase. We indicatively mention that the time for
creating the search space for pair (D5407, D18906) is less than 90 seconds. However, studying
or optimizing the time to build the search space is beyond the scope of this work.

An interesting remark is that the running time to generate explanations, required by any
algorithm, is not dependent on the input size of the contrasting datasets. All algorithms iterate
over the search space, where its building block is a data segment. Thus, all comparisons and
decisions of whether a segment belongs to a parsimonious explanation are made over data
segments and not over individual tuples.

Figure 3.10a illustrates the running time in logarithmic scale of milliseconds (y-axis)
of all approaches (for k=5) when varying the size of the search space (x-axis). We no-
tice that increasing the search space causes an increase of time, for any approach. As
more data segments are available and thus more comparisons are required, k-Greedy ap-
proaches become more time demanding. k-Greedy(Descendants) requires more time
than k-Greedy(Ancestors) to produce a parsimonious explanation. In order to explain the
difference in time between the two approaches, we need to make two remarks. First, a compar-

64 Difference Explanation

ison between two segments is performed only if they exhibit an inclusion relation. Thus, the
more relations segments in an explanation exhibit with segments in the search space, the more
costly an approach becomes. Second, we remind that k-Greedy(Descendants) includes
the root segment in the parsimonious explanation. The root exhibits the maximum possible
inclusion relations with segments in the search space. Thus k-Greedy(Descendants) needs
to perform many comparisons explaining its time requirements. On the contrary, Top-k
approaches are more efficient than k-Greedy, as they require time only for ranking segments.
The ranking process becomes more demanding as we increase the search space.

Figure 3.10b shows the running time in logarithmic scale of milliseconds (y-axis) of all
approaches for the largest search space when varying the k-constraint (y-axis). Increasing
the values of k has a negative impact on the scalability of k-Greedy approaches. For
instance, when k is lower than 30, our approaches require few minutes in order to provide
a parsimonious explanation. However, when k increases to more than 30, they require at
least two hours. On the contrary, Top-k approaches are more efficient exhibiting an almost
stable time requirement when k increases. We can understand this behavior if we consider
that Top-k needs time to perform two steps. At the first step it ranks the search space based
on segments score and at the second step it selects the k-segments with the highest score.
The time required for the first step is common for any k. The time required for the second
step slightly increases as k increases, explaining the general tendency of Top-k. Finally,
we notice that although k-Greedy(Descendants) has the best quality, in terms of f (S), it
requires at least three orders of magnitude more time to produce the results. Thus, there is a
tradeoff between obtaining segments of high score and the time required for building them.

3.6 Summary of Difference Explanation

In this work we propose a novel framework for summarizing differences between two multi-
dimensional datasets that exploits the structural relationships of the various data segments.
We formulate our problem as maximizing the overall strength of differences being explained
(i.e., informativeness) constrained by the number or granularity of data segments (i.e.,
conciseness). We propose a simple greedy algorithm for computing summaries of differences
with a theoretical guarantee of (1− 1

e)-approximation. We show that there is a tradeoff
between the low cost of obtaining the top-k differing segments and the analytical value of
summarizing differences by our greedy algorithm. Our experiments indicate that gender
and profession are those demographic attributes to which significant differences can be
attributed and that consumption habits are changing by region (e.g., urban or agricultural
area). Given the quadratic complexity of the algorithm in the number of segments (and thus

3.6 Summary of Difference Explanation 65

of the data dimensions), we are currently studying heuristics that effectively prune our search
space of segments (local search) without severely penalizing the approximation guarantees.

Chapter 4

Difference Evolution

4.1 Introduction

Monitoring streaming content is a challenging big data analytics problem, given that very
large datasets are rarely (if ever) stationary. In several real world monitoring applications
(e.g., newsgroup discussions, network connections) we need to detect significant change
points in the underlying data distribution (e.g., frequency of words, sessions) and track
the evolution of those changes over time. These change points, depending on the research
community, are referred to as temporal evolution, non stationarity, or concept drift and
provide valuable insights on real world events (e.g. a discussion topic, an intrusion) to take a
timely action. In this work, we adopt a query-based approach to drift detection and address
the question of processing drift queries over very large datasets. To the best of our knowledge,
our work is the first to formalize flexible drift queries on streaming datasets with varying
change rates.

In the problem of drift detection, given a number of m drifts ordered in time, we need no
less than m+1 intervals to detect them. Thus, without any assumption on the underlying
distribution, we are interested in exploring how to segment the input stream in order to
find a reasonable tradeoff between true positives and false negatives. Existing methods
rely on segmenting the input stream, mostly into smaller fixed length intervals [BGP10,
Ozo08, JMG95, KBDG04, VB09]. Although some works exist on partitioning the same
stream into intervals of different granularities [Bif10, GMCR04, WK96], they either adopt
an offline analysis or they lack the ability of querying historical drifts in streams at multiple
granularities.

A granularity in this case is an interval of time (e.g., every hour) or a number of observed
data points (e.g., every 200 points). A drift is then defined as a significant difference in data
distributions between two consecutive intervals at the same granularity. To detect drifts either

68 Difference Evolution

statistical tests are directly applied on the data of two intervals [DR09, KBDG04] or on their
summaries, as for instance provided by a clustering algorithm [AHWY03, BGP10, CEQZ].
To this end, two parameters impact the accuracy and efficiency of drift detection: the
granularity of the intervals at which the original data items are clustered and the drift
significance threshold used to assess whether or not there is a drift between two consecutive
clusterings. In fact, fine-grained intervals can be used to capture the evolution of frequently
changing streams. However, they may induce computation overhead for slowly changing
ones. In addition, they may cause false positives, i.e., detecting drifts that are too sudden
and noisy, hence hurting precision. While a coarser granularity will improve precision, since
more data is clustered in each interval, it may incur missing a drift that occurred at a finer
granularity. Those misses will negatively affect recall. Moreover, the rate of change of a given
dataset may vary over time thereby requiring to consider different clustering granularities
and drift thresholds for the same dataset.

Understanding the tradeoff between precision (at higher segmentation granularities)
and recall (at lower segmentation granularities), and the choice of thresholds to determine
what constitutes a drift between two consecutive intervals of the same granularity, are the
main objectives of this work. We adopt an analytics approach in which we formalize drift
queries over both fresh and historical data of arbitrary time granularities, in order to provide
flexibility in tracking and analyzing drifts in evolving datasets. For this reason, we propose
a flexible drift index to organize past data (or more precisely their summaries) at several
granularities. Furthermore. we explore different creation strategies for this index relying
on two common clustering approaches, namely independent [EKSX96, OMA+01, ZRL96]
and cumulative [AHWY03, CEQZ]. In independent clustering, data points belonging to a
given interval are considered equally important and clustered independently. In cumulative
clustering, data points in a given interval are clustered with all previously occurring points and
fresher data is more important than older data. Moreover, we propose different materialization
strategies in order to explore the tradeoff between index storage and query response time.

Unlike existing approaches [BGP10, Ozo08, JMG95, KBDG04, VB09] comparing only
the last most recent intervals, we exploit this index in order to identify drifts at different
granularities. In particular, we formalize three kinds of queries: unary, refinement and
synthesis aiming to detect drifts against historical data. A unary query is used to extract
all drifts detected at a given granularity. A refinement query explores drifts from a source
granularity (e.g., 5,000 points) to a finer target granularity (e.g., 500 points), iteratively. Such
a query is useful to provide a more detailed description of drifts that have been detected in a
high granularity, resulting in better recall. Synthesis queries, on the other hand, start from a
relatively low granularity and summarize them into coarser ones. In this case, some of the

4.2 Data Model and Queries 69

particular details might be missed (low recall) in order to get drifts with higher precision.
This flexibility in querying drifts allows us to explore, in a declarative fashion, precision
and recall tradeoffs at different granularities. Also, it addresses a long standing concern in
detecting and tracking drifts in streaming content, namely adaptability of drift detection to
different drift arrival rates and types.

The evaluation of declarative drift queries relies on traversing the index of historical data
summaries and, at each granularity, comparing its nodes pairwise to identify points where
clusterings dissimilarity exceeds a threshold θ . Rather than setting drift thresholds a-priori
[Ozo08, SG07], we learn a θ -value for each dataset and at each granularity level in the index.

In summary, this chapter makes the following contributions:

1. We introduce and formalize drift queries that provide high flexibility in analyzing
precision and recall of drift detection at different time granularities.

2. We propose a drift index, a graph structure that captures change at different granularities
and explore different materializations of the index that lead to the design of various
index maintenance and query evaluation algorithms.

3. We propose learning algorithms for learning drift and clustering thresholds adaptively
for different granularities and rates of change.

4. We perform a thorough study of proposed queries and indices using two real datasets,
KDD Cup’99 1 and Usenet [KTV06], and a synthetically generated dataset. On the
effectiveness front, our study confirms the need for our refinement and synthesis
queries, as demonstrated by the very good precision/recall results they attain. On the
scalability front, it validates the need for different materializations of the drift index in
order to achieve a tradeoff between storage and query response time for datasets of
varying change rates.

The chapter is organized as follows. Section 4.2 defines our data model and queries. Sec-
tion 4.3 describes the drift index, the online index maintenance algorithms and threshold
learning. Section 4.4 is dedicated to query evaluation algorithms. Section 4.5 contains a
description of our experiments and findings. We conclude in Section 4.6.

4.2 Data Model and Queries

We are given a stream of data points D = {d1, . . . ,di, . . .}, di = (tci, tsi) where tci is an
r-dimensional vector of attributes describing di and tsi is the timestamp at which tci arrived.
1 https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

70 Difference Evolution

For example, on Usenet each attribute represents a term appearing in news feeds, while on
KDD Cup’99 an attribute can be any feature (e.g., transmitted bytes, duration of connection)
describing a connection record.

4.2.1 Clustering and Drifts

In this section we give some basic concepts and definitions to be used in this work. We
discuss the differences between time-based and point-based granularities and intervals and
we use the notion of clustering granularity in order to define the clustering dissimilarity
measure.

Definition 8 Time-Based and Point-Based Granularities. A time-based granularity g is
an interval of time. For example, g could be hourly, daily, bi-daily, or weekly. A point-based
granularity g is an interval containing a fixed number of consecutive data points. For
example, g could be 500 points or 1000 points.

We assume a total order between granularities and use g≺≺ g′ to denote that g′ follows
g. We also say that g′ is coarser than g (and g is finer than g′). We write g≺ g′ to denote that
g′ immediately follows g when there does not exist a granularity between g and g′. In both
cases, g <> g′.

Definition 9 Time-Based and Point-Based Intervals. Granularities are used to segment
data points in D. A segmentation of a dataset D using a time-based or a point-based
granularity g, results in a list of consecutives intervals denoted Ig

1 , Ig
2 , . . . where Ig

i is the i−th
interval (time-based or point-based) of granularity g.

For a daily granularity g applied to segment a week starting on Sunday, Ig
1 corresponds to

the time interval of Sunday. Respectively, Ig
1 corresponds to the interval containing the first

500 data points when a point granularity g = 500 is used to segment incoming data.
The choice of point-based or time-based intervals to segment a dataset depends on the

rate of arrival of data points. The main advantage of point-based intervals is the processing of
data in fixed-size batches (in terms of number of points) although resulting intervals may have
different lengths (in terms of time). Time-based intervals on the other hand, give the ability
to tune the time granularity of the analysis (e.g., hour, day) resulting in fixed-length intervals
(in terms of time) and varying in size (in terms of number of data points). Consequently,
in order to generate intervals of comparable size, datasets that exhibit a high changing rate
should be segmented with point-based intervals while more stable datasets can be segmented
using time-based intervals.

4.2 Data Model and Queries 71

Definition 10 Granularity Clustering. A granularity clustering Cg(D) is a partitioning of
all data points di ∈ D into a set of clusterings {Cg

i ,C
g
i+1, . . .} corresponding to consecutive,

non-overlapping time intervals {Ig
i , I

g
i+1, . . .} at granularity g. A data point di = (tci, tsi) will

belong to one interval Ig
j s.t. tsi ∈ Ig

j . Here, tci is a vector of r-entries with the j-th entry
corresponding to the weight of the j-th attribute (e.g., word). Each cluster c ∈ Cg

i has a
centroid, center(c) which is itself an r-dimensional vector, where the j-th entry is the mean
over the j-th entries of all data points in the cluster.

Definition 11 Clustering Dissimilarity. Given two clusterings Cg
i and Cg

j , we define,
d2(c,c′), the dissimilarity between a cluster c ∈Cg

i and a cluster c′ ∈Cg
j as the Euclidean

distance between their centroids:

∥center(c)− center(c′)∥2 (4.1)

The dissimilarity between cluster c ∈Cg
i and a clustering Cg

j , cdis(c,Cg
j), is defined as

the closest cluster to c in Cg
j :

arg min
c′∈Cg

j

d2(c,c′) (4.2)

The dissimilarity between two clusterings, dis(Cg
i ,C

g
j), is defined as:

1
|Cg

i |
∑

c∈Cg
i

cdis(c,Cg
j)+

1
|Cg

j |
∑

c′∈Cg
j

cdis(c′,Cg
i) (4.3)

where |Cg
i | is the number of data points belonging to Cg

i .

Definition 12 Drift. For a dataset D, a granularity g, a threshold θ , we say that there is
a drift between two consecutive intervals Ig

i and Ig
i+1, iff their associated clusterings Cg

i

and Cg
i+1, satisfy dis(Cg

i ,C
g
i+1)≥ θ . We use xg

i = (Ig
i , I

g
i+1) to denote the pair of consecutive

intervals for which there exists a drift and Xg = {xg
1,x

g
2, . . .} for the set of all drifts detected

at granularity g.

4.2.2 Drift Queries in Difference Evolution

The goal of drift queries is to compare drifts at different granularities and provide analysts
with the ability to explore drift precison and recall across granularities. We study two kinds
of queries, refinement and synthesis. Both kinds rely on a simpler unary query defined as
follows.

72 Difference Evolution

Definition 13 Unary Query. A unary query UQ(D,g) returns the set of all drifts Xg de-
tected at granularity g for a dataset D.

Definition 14 Refinement Query. A refinement query RQ(D,gs,gt) admits a source granu-
larity gs and a target one gt s.t. gt ≺≺ gs, and returns a set of pairs (xgs

i ,xg
j) where each drift

xgs
i ∈ Xgs at gs is associated to the finest corresponding drift xg

j ∈ Xg at a granularity g no
finer than gt as follows:

{xg
j ∈ Xg,gt ≺≺ g≺≺ gs∨g = gt |

∃xgs
i ∈ Xgs, Ig

j ⊆ (Igs
i ∪ Igs

i+1),

∄xg′
k ∈ Xg′,gt ≺≺ g′ ≺≺ g∨g′ = gt , I

g′
k ⊆ (Igs

i ∪ Igs
i+1)}

where Igs
i ∪ Igs

i+1 = [min
ts j∈Igs

i

(ts j), max
tsk∈Igs

i+1

(tsk)] and

Ig
j ⊆ (Igs

i ∪ Igs
i+1) if min

ts j∈(Igs
i ∪Igs

i+1)
(ts j)≤ min

tsk∈Igs
i

(tsk) and max
tsk∈Igs

i

(tsk)≤ max
ts j∈(Igs

i ∪Igs
i+1)

(ts j)

Refinement queries provide a detailed analysis of drifts iteratively. For instance, for a
source granularity gs = 1000 connections on KDD Cup’99, selecting a granularity gt = 500
might result in missing a more insightful analysis occurring at granularity gt = 100. On the
other hand, selecting gt = 100 may result in retrieving false positives which could be avoided
at gt = 500. Therefore, the analyst will use the refinement query RQ(D,1000,100) to obtain
details of each drift at gs = 1000 with a tradeoff between false negatives and false positives.

Definition 15 Synthesis Query. A synthesis query SQ(D,gs,gt) admits a source granularity
gs and a target one gt s.t. gs ≺≺ gt , and returns a set of pairs (xgs

i ,xg
j) where each drift

xgs
i ∈ Xgs at granularity gs is associated to the coarsest corresponding drift xg

j ∈ Xg at a
granularity g no coarser than gt as follows:

{xg
j ∈ Xg,gs ≺≺ g≺≺ gt ∨g = gs |

∃xgs
i ∈ Xgs, Igs

i ⊆ (Ig
j ∪ Ig

j+1),

∄xg′
k ∈ Xg′ ,g≺≺ g′ ≺≺ gt ∨g′ = gt , I

gs
i ⊆ (Ig′

k ∪ Ig′
k+1)}

Synthesis queries provide a summary analysis of drifts iteratively. For instance, for a
source granularity gs = 100 connections on KDD Cup’99, selecting a granularity gt = 1000
might result in missing a more precise synthesis occurring at gt = 2000. On the other hand,
selecting gt = 2000 can result in missing a summary of a drift, which could be obtained at
gt = 1000. Therefore, the analyst can use the synthesis query SQ(D,100,2000) to obtain a
summary of each drift at gs = 100 with a tradeoff between false negatives and false positives.

4.3 Drift Index 73

4.3 Drift Index

The flexibility of querying drifts at different granularities requires the design of appropriate
data structures able to capture clusterings at different granularities in such a way that queries
are evaluated efficiently. In this section, we describe the drift index, an efficient graph
data structure that is used to store and compute clusterings at different granularities. We
first formalize the index and then study several materializations and develop algorithms for
incremental index maintenance as data points continue to arrive.

Definition 16 Drift Index. The drift index is an undirected graph G = (V,E) where each
node contains a clustering Cg

i of points in D during interval Ig
i of granularity g. Given two

different granularities g and g′ s.t. g≺ g′, and two intervals Ig
i of granularity g and Ig′

j of

granularity g′, there exists an edge in G between nodes Cg
i and Cg′

j if Ig
i ⊆ Ig′

j .

Definition 16 does not necessarily impose an edge between nodes Cg
i and Cg′

j every time

Ig
i ⊆ Ig′

j is satisfied. Indeed, different materializations of the index may be explored. The
choice of which nodes to materialize affects three parameters: (i) the index size and hence the
time it takes to build and maintain it as new data points arrive, (ii) the query response time,
and (iii) the accuracy of query results. Since our approach is to serve queries for any time
period, and not only the latest period at which data points arrived, the index continuously
grows in size. Therefore, the key question we address in designing the index is: what
are possible index materialization strategies, how much space they consume and how do
they affect query evaluation (response time and accuracy)? In this section, we study index
materialization alternatives. The impact of each index on query evaluation will be discussed
in Section 4.4. In all our indices, the smallest granularity, gmin, is used to generate leaf-level
nodes. In Section 4.5, we experiment with different values of gmin.

4.3.1 Full Index Materialization

When fully materialized, the drift index is a hierarchical structure where each level contains
clusterings of data points inside intervals of the same granularity. Nodes corresponding to
the finest granularity are leaves in the graph and each node, except nodes at the coarsest
granularity, has one or two parents. For example, a node containing a clustering of data points
for a 1-day granularity, e.g., Monday, will have two parent nodes each of which corresponds
to a two-day granularity, in this case, Sun-Mon and Mon-Tue. Similarly, a node containing
1000 data points will have two parents, one containing it with the previous 1000 points and
another containing it with the following 1000 points. More formally, given two granularities

74 Difference Evolution

14 15 13 12

9 7 8 10 11

1 3 2 4 5 6

(a) IE steps

1

2 5

4

7

8

11

6 3

10

14 15

9 13

12

(b) CE steps

1 3 2 4 5 6

(c) IL steps

1

2

3

4

5

6

(d) CP steps

Fig. 4.1 Drift Index variants

g and g′ s.t. g≺ g′, and two intervals Ig
i and Ig′

j , there exists an edge from node Cg
i to node

Cg′
j iff Ig

i ⊆ Ig′
j .

Each node of the index contains a clustering of data points of a given granularity. Thus,
an important aspect of index materialization is the selection of a clustering strategy and
algorithm to generate the nodes. According to the clustering literature, timestamped datasets
can be clustered in one of two ways. The first one, referred to as the independent strategy,
encompasses a family of algorithms built upon the idea of visiting consecutive batches of
data points by considering them as independent (e.g., one batch for Mon and another for
Tue) and equally important in terms of arrival time (e.g., older data points are not penalized
against fresher ones) [OMA+01, EKSX96, ZRL96]. The second approach, referred to as
the cumulative strategy, parses data in a cumulative, single-pass fashion (e.g., data of Tue
are clustered with those of Mon), aging older data points in a such a way that fresher data
points are given more importance [AHWY03, CEQZ]. Our exhaustive index is designed to
work with any of the two clustering strategies which gives rise to two indices: Independent-
Exhaustive (IE) and Cumulative-Exhaustive (CE).

Independent Exhaustive Index

IE is generated using the independent strategy where nodes of the same granularity, e.g., Sun,
Mon, Tue, are produced using data points of consecutive, non-overlapping intervals. Nodes
at the finest granularity level are produced by clustering the arriving data points, while nodes
at coarser granularities are produced by summarizing the centroids of clusterings associated
with lower granularities.

4.3 Drift Index 75

Figure 4.1a illustrates an instance of IE with nodes numbered in the order they are
created. Algorithm 5 summarizes the different steps for building and maintaining the index.
The algorithm takes as input the drift index G (empty at the beginning, non-empty in the
case of index maintenance), a data stream D, a maximum granularity gmax, and an interval
Igmin of minimum granularity gmin. For each batch of data point inside Igmin , a clustering is
produced (lines 3-6) using an independent clustering algorithm (e.g., DBScan [EKSX96] or
k-means [HW79]). Nodes 1 to 6 of Figure 4.1a are produced by this step. Then, nodes at
coarser granularities (e.g., nodes 7-15) are generated by applying the same algorithm over
the centroids of clusters at lower granularity (lines 7-12).

Algorithm 5 IE Creation & Maintenance
Input: Drift index G, Stream of data points D, Max granularity gmax, Interval Igmin of min

granularity gmin
Output: Updated drift index G′

1: G′← G
2: {Igmin

1 , Igmin
2 , ...}← consecutive intervals at gmin

3: for all Igmin
i do

4: Cgmin
i ← clustering in Igmin

i (e.g., DBScan, k-means)
5: Store Cgmin

i in G′ at granularity gmin
6: end for
7: for all gmin ≺ g≺≺ gmax do
8: for all Cg

i ∈Cg do
9: C← clustering of the centroids of Cg

i and Cg
i+1

10: Store C in G′ as the right parent of Cg
i

11: end for
12: end for
13: return G′

Cumulative Exhaustive Index

CE is generated using the cumulative strategy where nodes of the same granularity, e.g.,
Sun-Mon and Mon-Tue, are produced using data points from overlapping intervals. As a
result, data points belonging to a given interval are clustered with previously occurring data
points.

Figure 4.1b shows an instance of CE with its nodes numbered in the order they appear.
Algorithm 6 summarizes steps of building and maintaining CE. The algorithm takes as input
a drift index G (empty at the beginning, non-empty in the case of index maintenance), a data
stream D, as well as the maximum granularity gmax, and the minimum granularity interval
Igmin at gmin. After the initialization steps (lines 2-5), each data point is assigned to a cluster

76 Difference Evolution

Algorithm 6 CE Creation & Maintenance
Input: Drift index G, Stream of data points D, Max granularity gmax, Interval Igmin of min

granularity gmin
Output: Updated drift index G′

1: G′← G
2: if G′ is empty then
3: C← clustering of D (e.g., DBScan, k-means)
4: store C in G′

5: end if
6: g← gmin
7: for all di ∈ D do
8: C← clustering of di (e.g., CluStream)
9: if (tsi− ts1) % Igmin== 0 then

10: if g≺≺ gmax then
11: store C in G′ at g-th granularity
12: if ∪i=1,2..I

g
i > gmax then

13: Build inverse triangle at g, by merging each node’s left child with right-most
child at gmin

14: end if
15: Move g to immediately following granularity
16: else
17: C′←C−Cgmax

j %Initializes path by subtracting the last stored Cgmax
j from current

clustering C
18: Store C′ in G′ at granularity gmin
19: Move g to granularity immediately following gmin
20: end if
21: Create right sub-path of node C
22: end if
23: end for
24: return G′

(line 7-8). Then every Igmin number of points (line 9), a corresponding clustering is generated
and its centroid is stored in the index (line 11) at granularity g, which is incremented until
gmax. Nodes 1, 2 and 4 of Figure 4.1b are generated by this step. When the maximum
granularity gmax is reached a new path is initialized starting from the smallest granularity
(line 16-21) and the process is repeated. Node 7 initializes this new path. In addition, for every
node added in the index, its right sub-path to gmin is also produced (line 21). For instance,
after the addition of node 4 in Figure 4.1b, its right sub-path consisting of nodes 5 and 6
is also added. These nodes are produced by applying the subtractive property [AHWY03]
of clusters (i.e., subtracting clusters centroids). Finally, there is a set of nodes that do not
belong to any right sub-path (e.g., nodes 10, 14, 15), forming the inverse triangle of Figure

4.3 Drift Index 77

4.1b. Each one of these nodes is generated after the addition of its right sibling and its
sibling’s sub-path. Lines 12-14 of Algorithm 6 illustrate this process using the additive
property [AHWY03] of clusters (i.e., adding clusters centroids).

To handle infinite streams, several deletion strategies can be provided. A naive approach
is to remove x intervals every X data points, including all corresponding nodes. However,
this approach misses valuable historical data. For this reason, we consider an alternative
deletion policy in which for every X data points, the oldest x intervals are deleted and only
their highest available node in the index is kept.

4.3.2 Partial Index Materialization

Since fully materialized versions of the drift index are expected to consume a lot of space, we
propose Independent-Leaf (IL) and Cumulative-Path (CP) two partial index materializations,
where fewer nodes are materialized thereby resulting in indices that are smaller in size.

The main idea in IL is to build nodes at the lowest granularity only (black nodes in Fig-
ure 4.1c), corresponding to lines 3-6 of Algorithm 5. All other nodes of higher granularities
can be extracted from the leaf nodes at query time, if necessary. Respectively, the main idea
in CP is to build paths containing all the nodes at higher granularities that include a given
leaf node (black nodes in Figure 4.1d). The algorithm that builds and maintains CP is a
modification of Algorithm 6, by ignoring lines 12-14 that build nodes of the inverse triangle
and line 21 that builds the right sub-paths. From these nodes, built in partial materialization,
all the remaining nodes (gray nodes in Figure 4.1d) may be generated at query time, if
necessary (more details in Section 4.4).

4.3.3 Time & Space Complexity

The worst-case time complexity of IE and IL is dictated by DBScan, which needs O(logn)
time to find the neighbors for each of the n data points within an interval. Thus, the time
complexity is O(m∗n∗ logn), where m is the number of nodes in the index. Furthermore, each
cluster is represented by the statistics (CF1;CF2;n) where CF1 and CF2 are r-dimensional
vectors. Particularly, CF1 (resp, CF2) maintains, for each dimension, the sum of data values
(resp, sum of the squares of data values). Thus, each cluster maintains 2r+1 values and the
space complexity is O(K ∗ (2r+1)), where K is the number of clusters for all nodes.

The worst-case time complexity of CE and CP is specified by k-means, O(n∗ k ∗ r ∗ i),
where n is the number of r-dimensional data points forming k clusters at each interval and i
the number of iterations. Furthermore, the space complexity is O(m∗ k ∗ (2∗ r+3)), where
2r+3 values are maintained for each of the k-clusters of all m clustering nodes. These values

78 Difference Evolution

contain the statistics described for IE and two extra values (details in [AHWY03]); the sum
and the sum of the squares of the timestamps of input data.

Finally, the total number of nodes maintained in IE and CE is m = 1
2 ∗L∗ (2∗ |Cgmin|−

L+1), where |Cgmin| is the number of clustering nodes at gmin and L is the number of index
levels. The total number of nodes maintained in IL and CP is m = N

gmin
, where N the total

number of points.

4.3.4 θ and ε Learning

According to Definition 12, when the dissimilarity between two clusterings exceeds a
threshold θ , a drift is detected. Since fixed threshold values are not always appropriate for
data with varying drift rates, we are interested in learning θ experimentally and do so for
each granularity of our index.

During the learning phase, a training dataset is used in order to estimate the drift parameter,
θ . The training region is independent from the testing dataset over which queries are to be
evaluated. Furthermore, the estimation of θ is automated and without any a-priori knowledge
of the arrival rates of drifts. However, in order to be well-estimated, it should be learned on a
long-enough time period to ensure capturing the occurrence of several drifts.

Algorithm 7 summarizes the learning process of θg values per granularity level g. The
algorithm takes as input a drift index G, as well as minimum gmin and maximum gmax

granularities for which θg values need to be estimated. For each granularity g within gmin

and gmax, it extracts the distribution of dissimilarities X , based on Definition 11, between
each pair of consecutive clusterings at g (line 3). Then, it performs DBScan (i.e., any other
algorithm could be used, like k-means) over X , given as ε the average pairwise similarity
of the 3-nearest neighbors in X . DBScan is performed 10 times, in order to select the
clustering C that optimizes the DunnIndex criterion. The Dunn index aims to identify dense
and well-separated clusters. It is defined as the ratio between the minimal inter-cluster to
maximal intra-cluster distance. The inter-cluster distance is defined as the average distance
between the centroids of the clusters. Similarly, the intra-cluster distance is defined as the
average distance of any pair of points inside each cluster. Finally, the value of θg is extracted
by calculating the average Euclidean distances between clusters in C (line 10).

The precision of θ estimation could be challenged when the similarity between two
consecutive clusterings (line 3) varies significantly (i.e., bimodal distribution). This is due
to the fact that the clustering distance is estimated (line 10) by using the mean of clusters
distribution and assuming a low and constant standard deviation over time. Applying a
Z-Score statistical test over all training and testing intervals we observed that the variation of

4.4 Query Evaluation Algorithms for Difference Evolution 79

Algorithm 7 Learning of θ -parameter
Input: Drift index G, Minimum granularity gmin, Maximum granularity gmax
Output: Parameter θg for each gmin ≺≺ g≺≺ gmax

1: minPts← number of data dimensions
2: for all gmin ≺≺ g≺≺ gmax do
3: X ← dissimilarities distribution between consecutive clusterings of g
4: ε ← avg pairwise similarity of 3 NN in X
5: for all i ∈ [1,10] do
6: C← DBScan(X ,ε,minPts)
7: dunnIndex← DunnIndex(C)
8: Pick C that maximizes dunnIndex
9: end for

10: θg← average between clusters similarity of C
11: end for

the majority of intervals (at least 95%) are less than two times the standard deviation from
the mean for all granularities and real datasets.

We also propose a training phase to learn the ε parameter used by DBScan for building
IE. Parameter ε defines a maximum ε-neighborhood for each cluster. In literature, a common
way to choose its value is by plotting all distances to the nearest neighbors and selecting the
value where the plot shows a strong bend. A similar approach is followed by our learning
process, adapted to each granularity level. The ε parameter can be estimated without any
condition on the period’s length. Thus, we propose to estimate both parameters (θ , ε) within
the same wide-enough period.

It is worth noticing that the estimation of clustering parameters can quickly become
outdated, particularly when dealing with rapidly evolving data distributions. In such cases,
parameters re-estimation (e.g., every X intervals) may be useful to periodically adapt their
values to data changes.

4.4 Query Evaluation Algorithms for Difference Evolution

This section presents our query evaluation algorithms using our proposed indices. Refinement
and synthesis queries rely on unary queries that return a set of drifts Xg for any g. This is done
by comparing the statistics between each pair of consecutive, non-overlapping clusterings at
g using threshold θg. When a partial index is used (IL or CP), some index nodes (depicted in
gray in Figures 4.1c, 4.1d) need to be generated on the fly possibly incurring computation
overhead. The unary query algorithm is straightforward and is omitted for brevity. The
performance of unary queries will be studied in detail in Section 4.5.

80 Difference Evolution

Algorithm 8 illustrates the steps for evaluating a refinement query. It takes as input any of
the four materialized drift indices G and a range of granularities between gs and gt . Initially,
it applies a unary query to detect all drifts xgs

i ∈ Xgs at gs (line 2). Then, for each of these
drifts, it detects all corresponding drifts xg

j ∈ Xg at finer granularities g, that are no finer than
gt (lines 3-11) using the condition Ig

j ⊆ (Igs
i ∪ Igs

i+1) (line 8) for all drifts at g.

Algorithm 8 RefinementQuery

Input: Drift index G, Granularity range [gs,gt] (gt ≺≺ gs)
Output: A set S of drift pairs (xgs

i ,xg
j), g≺≺ gs

1: S, prev,curr← /0
2: Xgs ←UQ(D,gs)
3: for all xgs

i ∈ Xgs do
4: for all gs ≺≺ g≺≺ gt do
5: prev← curr; curr← /0
6: Xg←UQ(D,g)
7: for all xg

j ∈ Xg do
8: if Ig

j ⊆ (Igs
i ∪ Igs

i+1)∧ Ig
j+1 ⊆ (Igs

i ∪ Igs
i+1) then

9: curr+= xg
j

10: end if
11: end for
12: if curr == /0 then
13: S+= (xgs

i , prev)
14: break
15: end if
16: if g == gt then
17: S+= (xgs

i ,curr)
18: end if
19: end for
20: end for
21: return S

A synthesis query is evaluated over a drift index G and a granularity range between gs

and gt , where gs ≺≺ gt . The steps of the algorithm are equivalent to Algorithm 8, by simply
replacing the condition in line 8 with Igs

i ⊆ (Ig
j ∪ Ig

j+1). Thus, for any observed drift xgs
i at gs,

a corresponding drift xg
j at a coarser granularity g, no coarser than gt is returned. The time

interval Ig
j ∪ Ig

j+1 of the corresponding drift xg
j should take place during Igs

i where xgs
i was

observed.

4.5 Difference Evolution Experiments 81

4.5 Difference Evolution Experiments

In this section, we provide a thorough investigation of our queries, both from the accuracy
and the scalability perspectives. All experiments were conducted on a 2 GHz Intel Core
i7 processor with 8 GB memory, which runs MAC operating system. Our accuracy results
are the average of 5 consecutive runs. We learn ε and θ on a training dataset covering
approximately 30% of the input data. Also, unless mentioned otherwise, we set the k
parameter of CE to the average number of clusters produced by IE. Finally, we refer to each
granularity level using incremental numbers (e.g., level 1 for the lowest granularity, then 2
etc). For both clustering algorithms (Clustream [AHWY03] and DBScan [EKSX96]), the
implementations provided in MOA [BHKP10] are used. Some necessary extensions are
applied in the implementation of CluStream, in order to provide additive and subtractive
properties [AHWY03].

4.5.1 Dataset Preparation

Synthetic Datasets

We developed a synthetic data generator that provides the flexibility to produce datasets
deriving from different distributions (i.e., well-separated, overlapping) and rates of change
(i.e., sudden, incremental). Furthermore, the parameters of clustering are also tuned, including
the number and size of clusters, as well as their density.

Specifically, synthetic datasets are produced with data points deriving from two distribu-
tions in a low and a high region. Each distribution consists of a number of close clusterings,
that derive from the same region (i.e., low, high). Furthermore, each distribution contains a
given number of data points and each clustering is described by k clusters. The total size of
synthetic data is generated randomly and the number of drifts is also parameterized.

Three data sets are generated, in order to simulate different types of drifts. Figure 4.2
illustrates two examples. Specifically, Figure 4.2a depicts sudden drifts, marked with vertical
lines, that occur each time the distribution of data oscillates between low and high region.
The distribution of data in low region has values within [2, 4], while the distribution of
high within [10, 12] forming well-separated regions. On the contrary, Figure 4.2b illustrates
incremental drifts, occurring between low [2,4] and high [3, 5] regions of overlapping values.
Finally, a third dataset is generated containing incremental drifts of consecutive regions, with
values of low region within [2,4] and high within [4, 6].

82 Difference Evolution

0 500 1000 1500 2000

2
4

6
8

10
12

Sequence of Data Points

D
at

a
R

eg
io

n

(a) Well-separated regions

0 500 1000 1500 2000

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Sequence of Data Points
D

at
a

R
eg

io
n

(b) Overlapping regions

Fig. 4.2 Different Data Distributions

For the purpose of building the index, the dataset is split into intervals of 200 data points
each forming a leaf node at gmin. The next granularity consists of 400 points, the third of 600
and the 10th contains intervals of 2000 data points.

Real Datasets

Query accuracy was evaluated over two datasets derived from two different application
domains. The first collection consists of 5,931 Usenet articles from the 20 Newsgroup
collection where each article belongs to one of 6 news feeds (e.g., sports, science). A user
can subscribe to any of these feeds, showing his interest in receiving relevant articles, or
unsubscribe at any time. Each article is represented with a binary vector of 658 attributes,
where each attribute indicates the absence or presence of a word. Another attribute indicates
whether the user is interested in an article or not. Thus, the clustering procedure will result
in clusters containing articles that are likely to derive from the same feed (e.g., sports) and
interest the user. A drift is the moment where a user decides to unsubscribe from some feeds
and subscribe to others and can be computed on the whole data. The ground truth hence is
known and encompasses five drifts. Experiments on Usenet are performed using a small
point-based interval of 100 data points, a maximum index depth of 6 and the number of
clusters for CE is k = 3. The training set consists of 2,400 data points, containing 2 drifts.

The second dataset of KDD Cup’99 is a Network Intrusion detection stream of 494,020
normal TCP connections and cyber attacks. It contains a variety of intrusions that fall into
4 categories: DOS, R2L, U2R and PROBING. Most of the connections in the dataset are

4.5 Difference Evolution Experiments 83

normal but occasionally bursts of attacks appear. Thus, we are interested in detecting drifts
where realtime attacks occur. Each connection is described by 42 categorical (e.g., type of
protocol) or continuous (e.g., bytes transmitted) attributes. For our analysis, we use the 34
continuous attributes. In order to create a ground truth for evaluating query accuracy, we
consider as drifts the time moments where at least minAttacks = 30 consecutive malicious
connections appear. The ground truth hence encompasses 45 drifts on the whole dataset. We
set the smallest granularity to 500 points, the index depth to 10, corresponding to an interval
length of 5,000 points and k = 4. The training dataset contains 20,500 points.

The smallest granularity is a critical parameter, indicated by the magnitude and arrival rate
of drifts. To this end, the parameter settings used in [KTV06] are applied for our experiments
in Usenet, where 5 drifts exist within 5,931 points. On the contrary, wider intervals are
selected for KDD Cup’99 of lower arrival rate with 45 drifts within 494,020 points.

4.5.2 Summary of Results

Our experiments show that unary queries can reach a 79% accuracy on real datasets. They
also show that independent clustering attains a significantly better accuracy than cumulative
for incremental changes of overlapping data distributions. They also confirm the usefulness
of refinement and synthesis queries, by demonstrating their ability to explore the tradeoff
between precision/recall. For instance, using CE, while UQ(KDD,1) and UQ(KDD,10)
attain 52% and 13% accuracy respectively, SQ(KDD,1,10) attains 74%. Moreover, the
scalability evaluation of our indices show a tradeoff between full and partial materializations,
in terms of index size and query response time. Fully materialized indices are at least an order
of magnitude faster in query response time than partial. On the contrary, fully materialized
indices require at least 4 times more space than partial.

4.5.3 Accuracy of Drift Detection

Query accuracy varies between full and partial index materializations. This variation is caused
by the random partitioning of data points during DBScan and k-means clustering. However,
this variation is minimized with multiple executions and is not statistically significant. Hence
we provide accuracy results for exhaustive indices only (IE, CE), assuming a not significantly
different performance of partial indices (IL, CP). The accuracy is evaluated by using the
traditional F-measure, which is the harmonic mean of precision and recall. A detected drift
is considered a true positive if the corresponding real drift is within the compared intervals in
the ground truth. This evaluation strategy is also used in [KBDG04]. For instance, a detected
drift at point 800 extracted by comparing the point-based intervals [400, 800) and [800, 1200)

84 Difference Evolution

will correspond to a real drift within the region [400, 1200). This drift can, for example, take
place at point 1000. However, a drift at point 1000 might also be detected by comparing
intervals [800, 1200) and [1200, 1600). Thus, in case of multiple detections of the same drift
at a given granularity, we ignore its subsequent detections.

Unary Queries

Synthetic Data. The goal of synthetic data evaluation is to understand how different time
granularities, as well as clustering strategies (independent, cumulative) affect query accuracy.
To this end, we perform unary queries over different granularity levels for both CE and IE.

Figure 4.3a illustrates the accuracy (y-axis) of unary queries for different granularities (x-
axis) over the synthetic dataset with sudden drifts (Figure 4.2a). It shows that accuracy is very
good for low granularities. However, recall worsens at higher granularities. Consequently,
increasing the resolution of analysis decreases the ability of the algorithm to observe drifts
occurring at finer granularities. However, precision remains greater than 0.9 at all levels.

Figure 4.3b depicts the unary queries behavior when applied on incremental drifts of
consecutive data regions. We observe that the algorithm performs badly for very small or
very large intervals. Very small intervals are sensitive to subtle changes causing a large
number of false positives. Thus, those granularities suffer from low precision but exhibit
high recall. Similarly, very wide intervals are susceptible to false negatives as they may miss
drifts existing within them. On the contrary, intermediate granularities provide intervals that
fit data better and improve accuracy.

The last dataset containing incremental drifts of overlapping regions (Figure 4.2b) reveals
a statistically significant difference in accuracy (Figure 4.3c) between IE and CE for all levels
greater than 2. The observed difference is due to the design of each index. For instance,
CE tends to add input data into existing clusters. This addition causes cluster centroids
to shift over time and absorb any change, considering it as non-significant. To alleviate
that, we ran an experiment varying the number of clusters, k. Although not shown here,
we observed no significant improvement in performance. Thus, the online and one-pass
design of the algorithm causes the absorption of incremental changes. On the contrary, IE
forms clusters by independently visiting data points in different intervals. The algorithm
detects data regions of high density and is independent from previously computed clusters.
Therefore, IE outperforms CE for overlapping data regions.

Although accuracy tends to decrease at higher index levels, there are some oscillations
between levels. These fluctuations can be explained if we consider the statistical error
introduced by adding and subtracting clusters’ statistics as in [AHWY03]. A typical example
of this error is illustrated in Figures 4.3a to 4.3c regarding the accuracy of CE at levels 9 and

4.5 Difference Evolution Experiments 85

1 2 3 4 5 6 7 8 9

IE
CE

Accuracy per Level (Well-Separated)

Index Level

F-
M
ea
su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Sudden drifts

1 2 3 4 5 6 7 8 9

IE
CE

Accuracy per Level (Consecutive)

Index Level

F-
M
ea
su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Incremental (Consecutive)

1 2 3 4 5 6 7 8 9

IE
CE

Accuracy per Level (Overlapping)

Index Level

F-
M
ea
su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Incremental (Overlapping)

1 2 3 4 5 6

IE
CE

Accuracy per Level (Usenet)

Index Level

F-
M
ea
su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Usenet dataset

Fig. 4.3 Unary Queries Accuracy. A tradeoff between precision and recall is observed over
different granularity levels.

86 Difference Evolution

10. Several nodes at level 9 are produced by the additive and subtractive property. On the
contrary, none of the nodes at level 10 are generated by these properties. Thus, level 10 has a
lower statistical error than level 9 and shows better accuracy despite its wider intervals.

Finally, we provide a comparison of our drift index accuracy with a state-of-the-art drift
detection algorithm, named CUSUM [Pag54]. CUSUM calculates the cumulative sum which
detects a drift when the mean of the input data is significantly different from zero. Results
show that our drift index outperforms CUSUM for each granularity and dataset. Specifically,
CUSUM reaches a 98% of accuracy for the dataset of sudden drifts, while the accuracy drops
in 24% and 16% for consecutive and overlapping datasets respectively.

Real Data. Figure 4.3d shows the F-Measure results of unary queries (y-axis) on Usenet
for each level in the index (x-axis). The main trend observed is an increase in accuracy as the
granularity increases. This is not surprising, as the frequency of drifts in this dataset occurs at
least every 700 data points. Thus, when the interval length increases (especially to 600 points
at gmax) the algorithm performs very well, as there are enough available points to detect
the drift. In fact, the unary query at gmax reports three different drifts. A user who initially
subscribed to electronics and crypt news changed her interests into hockey and sales and then
subscribed to motorcycles and space news. It is worth mentioning that the inappropriateness
of interval length at the leaf level induces CE to report no drifts.

Tables 4.1 and 4.2 illustrate the accuracy (last line) of unary queries for KDD Cup’99 for
each granularity level of IE and CE respectively. Similarly to synthetic data, we observe that
the finest and coarsest granularities cause a decrease in accuracy for both indices. Indeed, a
low precision and a high recall characterize the leaf level and the inverse is observed at the
coarsest granularity.

Refinement & Synthesis Queries

We designed refinement and synthesis queries to explore precision and recall tradeoffs.
Tables 4.1 and 4.2 present the accuracy results for KDD Cup’99. Each row (resp. column)
corresponds to gs (resp. gt) which are given as input to the queries. The tables contain every
possible combination of levels in an attempt to discuss the impact of each query on accuracy.
For example, a refinement query is evaluated over a small range of levels (e.g., RQ(D,2,1)),
as well as on the entire index (e.g., RQ(D,10,1)). The upper-half of the tables contains the
F-Measure of synthesis queries and the lower-half concerns refinement queries. The best
accuracy results for each table are mentioned in circles, along with the corresponding unary
queries results.

The question we attempt to answer is whether refinement and synthesis queries can
attain a tradeoff between accuracy of unary queries at gs or gt . All values mentioned in bold

4.5 Difference Evolution Experiments 87

gt

g s

Unary 1 2 3 4 5 6 7 8 9 10
1 0.50 - 0.65 0.76 0.75 0.79 0.79 0.77 0.80 0.80 0.78
2 0.62 0.49 - 0.74 0.74 0.78 0.76 0.76 0.78 0.78 0.75
3 0.73 0.48 0.60 - 0.73 0.78 0.76 0.75 0.77 0.76 0.73
4 0.73 0.49 0.61 0.73 - 0.79 0.77 0.75 0.77 0.76 0.73
5 0.79 0.50 0.62 0.74 0.73 - 0.77 0.75 0.76 0.75 0.70
6 0.77 0.49 0.62 0.73 0.73 0.79 - 0.75 0.77 0.76 0.71
7 0.75 0.50 0.63 0.74 0.74 0.79 0.77 - 0.76 0.75 0.72
8 0.76 0.50 0.63 0.74 0.74 0.79 0.77 0.75 - 0.75 0.68
9 0.75 0.51 0.63 0.74 0.74 0.79 0.77 0.75 0.76 - 0.66

10 0.44 0.36 0.41 0.44 0.46 0.49 0.47 0.48 0.52 0.51 -
Unary 0.50 0.62 0.73 0.73 0.79 0.77 0.75 0.76 0.75 0.44

Table 4.1 F-Measure for refinement (lower matrix) and synthesis (upper matrix) queries over
IE, KDD Cup’99

gt

g s

Unary 1 2 3 4 5 6 7 8 9 10
1 0.52 - 0.63 0.72 0.73 0.69 0.68 0.68 0.68 0.71 0.74
2 0.61 0.50 - 0.73 0.72 0.70 0.71 0.70 0.74 0.75 0.78
3 0.73 0.52 0.61 - 0.73 0.71 0.73 0.74 0.72 0.73 0.77
4 0.70 0.50 0.60 0.70 - 0.68 0.68 0.68 0.72 0.72 0.75
5 0.69 0.51 0.60 0.71 0.72 - 0.66 0.68 0.66 0.68 0.76
6 0.62 0.50 0.57 0.68 0.67 0.63 - 0.57 0.63 0.58 0.65
7 0.61 0.49 0.53 0.65 0.62 0.64 0.58 - 0.56 0.58 0.67
8 0.56 0.48 0.54 0.65 0.64 0.62 0.56 0.55 - 0.48 0.56
9 0.39 0.44 0.48 0.55 0.49 0.48 0.45 0.43 0.36 - 0.37

10 0.13 0.25 0.20 0.25 0.19 0.22 0.12 0.12 0.16 0.09 -
Unary 0.52 0.61 0.73 0.70 0.69 0.62 0.61 0.56 0.39 0.13

Table 4.2 F-Measure for refinement (lower matrix) and synthesis (upper matrix) queries over
CE, KDD Cup’99

88 Difference Evolution

indicate those cases. Thus, in the majority of the queries, the analyst will get a summary of
drifts that exploits the tradeoff of precision and recall between gs and gt . However, note that
there are few cases where the F-Measure is worse than any of the two levels. These cases are
observed especially when refining queries at very low granularities (i.e., first two columns of
tables). Low levels have a high rate of false positives, which negatively affects accuracy even
when refining only the most precise drifts of higher levels.

4.5.4 Scalability Study of All Indices

We perform an index scalability experiment to study index size and build time and query
response time. For this purpose, synthetic datasets of different sizes are produced.

Index Size

Index size depends exclusively on the number and size of maintained nodes. Therefore,
increasing the number of index nodes, for instance by increasing the index depth or the
volume of input data or by decreasing the interval length, will inevitably lead to an increase
of the index size. Moreover, increasing the size of each node, for instance by increasing the
number of clusters (k), will negatively impact index size. We fix the depth to 5 and we test
the impact of the other parameters on the scalability of our indices.

Varying Dataset Size. Figure 4.4a illustrates the drift index size calculated in MBs
(y-axis) as a function of input data size calculated in number of points (x-axis). We set the
minimum interval size at gmin to 100 points for all datasets. The chart is in a log-log scale
and we observe a linear trend of all indices as data size increases. We also observe that the
lines of cumulative indices have a steeper slope. This is explained by the extra overhead
paid for maintaining information about a cluster’s origin. This information describes if a
cluster is derived from others and is more likely to increase as the dataset increases. Finally,
as expected, partially materialized indices consume at least 5 times less space.

Varying Interval Length. The interval length selected for each granularity has also a
critical impact on index scalability. Figure 4.4b shows the result of varying the interval
length within [100,1000] for a fixed dataset size of 225,000 points. Figure 4.4b reports a
decreasing index size trend for all indices with wider intervals. When the size of an interval
increases, the size of the clustering inside that interval is not affected. That is because the
same clustering statistics are maintained. Thus, wider intervals reduce the number of nodes
maintained by the index without affecting the size of each node. This explains the decreasing
trend observed.

4.5 Difference Evolution Experiments 89

Index Vs Dataset Size, Log-Log Scale

Dataset Size (x10^3)

D
rif

t I
nd

ex
 S

iz
e

(M
B

s)

2 5 10 20 50 100 200 500

10
−3

10
−1

10
10

3

CE
CP

IE
IL

(a) Index size Vs dataset size

Index Size Vs Interval Length, Log-Log Scale, |D|=225,000

Interval Length

D
rif

t I
nd

ex
 S

iz
e

(M
B

s)

100 200 400 600 800

10
20

40
70

CE
CP

IE
IL

(b) Index size Vs interval length

Fig. 4.4 Index Size

Unary Query Time Vs Dataset Size, Log-Log Scale

Dataset Size (x10^3)

U
na

ry
 Q

ue
ry

 T
im

e
(m

s)

2 5 10 20 50 100 200 500

10
−1

1
10

2
10

4
10

5

CE
CP

IE
IL

(a) Unary time Vs dataset size

Index Build Time Vs Dataset Size, Log-Log Scale

Dataset Size (x10^3)

B
ui

ld
 T

im
e

(s
ec

)

2 5 10 20 50 100 200 500

1
10

2
10

4
10

5

CE
CP

IE
IL

(b) Index build time

Fig. 4.5 Unary Query Response and Index Build Time

90 Difference Evolution

Time Results

The most frequent and time consuming operation of drift detection is the computation of
clustering dissimilarities for every pair of nodes at each granularity. The cost of this operation
naturally increases with the number of index nodes as shown in Figure 4.5a. Figure 4.5a
illustrates the response time of all unary queries applied at each granularity for different
dataset sizes. It is evident that IL and CP need at least an order of magnitude more time to
detect drifts, as they produce missing nodes at query time.

Figure 4.5b illustrates the build time of each index, providing evidence for the trade-off
between index building time and query response time. Figures 4.5a and 4.5b indeed show that
the more time we spend building the index, the less time we need during query evaluation.
Furthermore, Figure 4.5b illustrates that both independent indices, IE and IL, need more
build time than cumulative ones, CE and CP. Despite the fact that IL is a partial index, it
needs a higher build time than CE. This could be explained by the fact that IL iteratively
visits data points in order to form clusters.

Figure 4.6a depicts unary query response time (y-axis) per granularity (x-axis) for a
synthetic dataset of almost 225K data points. IL shows a sharp increase in drift detection as
levels increase, due to generating missing nodes on the fly. On the contrary, IE’s response
time decreases at higher levels, due to fewer nodes. Thanks to the hierarchical structure of
our indices less nodes exist at higher granularities, explaining the almost constant response
time after level one for both indices. That also explains the sudden drop in response time for
CP.

The performance of refinement queries is measured starting from level gs = 5 until all
finer levels of gt , shown in the x-axis of Figure 4.6b. We notice that the longer the path from
gs to gt , the more time it takes for the query to respond (for all indices). The same behavior
is observed on synthesis queries, as shown in Figure 4.6c, where gs = 1.

4.6 Summary of Difference Evolution

Our work introduces a novel form of analytical queries for detecting drifts in streaming
content. Their evaluation relies on drift indices allowing us to explore, in a declarative fashion,
precision and recall tradeoffs introduced by data segmentation at different granularities. We
believe that our work lays the foundation for a series of new contributions addressing a
long standing concern, namely adaptability of drift detection to different drift arrival rates
and types. For fast arrival rates of drifts the detection accuracy could be excelled utilizing
fine-grained intervals maintained in the index. On the contrary, for slow rates, coarse-grained
intervals are preferred, compromising the computation overhead. Furthermore, sudden drifts

4.6 Summary of Difference Evolution 91

Unary Query Time per Level, Log Scale, |D|=225,000

Index Level

U
na

ry
 Q

ue
ry

 T
im

e
(m

s)

1 2 3 4 5

1
10

10
0

10
00

10
00
0

CE
CP

IE
IL

(a) Unary query time response

Refinement Query Time per Level, Log Scale, |D|=225,000

Index Level

R
ef

in
em

en
t Q

ue
ry

 T
im

e
(m

s)

1 2 3 4

1
10

10
0

10
00

10
00
0

CE
CP

IE
IL

(b) Refinement query time response

Synthesis Query Time per Level, Log Scale, |D|=225,000

Index Level

S
yn

th
es

is
 Q

ue
ry

 T
im

e
(m

s)

2 3 4 5

5e
-0
1

5e
+0
0

5e
+0
1

5e
+0
2

CE
CP

IE
IL

(c) Synthesis query time response

Fig. 4.6 Query Time. Less nodes at higher levels of hierarchical index reduce the correspond-
ing query time response.

92 Difference Evolution

can be easily detected by several state-of-the-art clustering techniques, while incremental
drift detection is favoured by independent clustering.

Chapter 5

Related Work on Difference Analysis

5.1 Difference Exploration

Exploring users’ preferences became an essential analytical task since the arising of social
platforms. The plurality of users’ opinions gave birth to the curiosity of further exploring
them and gained the attention of scientists and market analysts [TP12]. While we are
not aware of work that solves our problem, i.e., detecting user segments with an opinion
close to input opinions, there are several bodies of work related to ours. For instance,
researchers in Databases propose structures that capture the variety of user segments and
criteria for meaningfully interpreting their opinion. In Data Mining, some work has addressed
the high dimensionality of the search space, while in the field of Social Data Analysis,
opinion convergence in the blogosphere has been studied. This section reviews the closest
contributions to ours in three areas: Databases, Data Mining and Social Data Analysis.

5.1.1 Databases

In the database community, [DAyDY11] introduced mining rated datasets (i.e., datasets
derived by social platforms) with the goal of extracting meaningful demographic patterns.
Each demographic pattern describes users with distributions of the form U1, . . . ,UM or with
polarized opinions. The proposed problem statements maximize coverage of input rating
records, as a way to detect users’ segments with meaningful descriptions. Since their problem
is shown to be NP-hard, they propose hill climbing algorithms for solving it, performed
over a lattice structure that represents multiple users’ segments. Although this work makes
some effort in exploring the opinions of various users’ segments, it exhibits two limitations.
First, it restricts the number of input opinions to a limited set (e.g., low, high, polarized).
Second, the opinion of each population is computed as the average of all its rating records.

94 Related Work on Difference Analysis

However, comparing rating averages is less accurate than comparing based on the entire
rating distribution.

In our work, we aim to explore the opinions of different users’ segments by minimizing
description length, which is shown to produce segments with high coverage. Our input
distributions could have any shape including the ones handled in [DAyDY11], thereby
generalizing them. Moreover, the comparison of opinions between population segments is
performed over distributions (and not over averages) using EMD.

5.1.2 Data Mining

In data mining, subgroup discovery has been concerned with finding data regions where
the distribution of a given target variable is substantially different from its distribution in
the whole database [Klo02, FF99]. Subgroup detection [DGD12] is a related area that is
concerned with finding agreeing or disagreeing groups by analyzing their discussions on
online forums. Clustering is used to identify such groups based on characterizing each user
with a feature vector extracted from discussions. Exceptional model mining [DFK16] is an
extension of traditional subgroup discovery where the goal is to find regions of the input
space that are substantially different from the entire database. In most cases, a subgroup
discovery algorithm performs a top-down traversal of a search lattice. Our approach is more
flexible since it can find user groups close to some input distribution and it leverages the
additive property of EMD for efficient processing.

Subspace clustering has been used extensively for data exploration [KKZ09, PHL04].
CLIQUE [AGGR05] relies on a global notion of density, i.e., the percentage of the overall
dataset that falls within a particular subspace. ENCLUS [CFZ99] uses information entropy
as the clustering objective. CLTree [LXY00] uses a decision-tree approach to identify
high-density regions, while Cell-Based Clustering [CJ02] improves scalability with data
partitioning. The ability to take into account input distributions to find relevant population
segments would require substantial modifications to subspace clustering.

5.1.3 Social Data Analysis

In social media, authors of [DCSJS08] examined opinion biases in the blogosphere, using
entropy as an indicator of diversity in opinions. Alternatively, authors of [VVP08] proposed
clustering accuracy as an indicator of the blogosphere opinion convergence. A different
perspective where user segments are extracted from opinions, instead of the opposite, has
also been studied. In particular, demographic characteristics of users have been extracted

5.2 Difference Explanation 95

in different contexts, by studying authored documents [AKFS03], blog pages [SKAP06] or
online search behavior [WC10].

In our work, we propose a framework which is quite general, as it handles different input
distributions. However, it does not directly support the online detection of diverging opinions
or the extraction of demographics based on the expressed opinions of users.

5.2 Difference Explanation

The problem of comparing and explaining differences in data is a fundamental data mining
problem, met early in literature. The first approaches in comparing multiple datasets were
often very simple so that they could be performed only by observation of the underlying
distributions. Online Analytical Processing (OLAP) tools gave a great boost to the analysis,
enabling users to easily and selectively view and compare data from different points of
view. However, the query-based nature of those approaches poses some limitations, as it is
difficult to automatically discover specific patterns of interest. Thus, valuable insight may
be missed either because patterns may be hidden in data or because their identification is
dependent on the analyst’s ability to make targeted explorations. Contrast data mining is a
focused area of data mining that contributes with concepts and algorithms in overcoming
those limitations. Although this area has gained a significant attention over time, fewer works
can be found on identifying a minimal set of contrast patterns that best explain differences
between datasets. The focused field of reporting parsimonious explanations is ubiquitously
important for a variety of analytical queries and applications. This section summarizes related
work focusing on the following three areas: Online Analytical Processing, Contrast Data
Mining and Parsimonious Explanations.

5.2.1 Online Analytical Processing

Online Analytical Processing (OLAP) [CCS93] is a design paradigm, a way to seek informa-
tion out of the physical data store. OLAP systems are aggregating information from multiple
sources and store them in multi-dimensional databases [AGS97], where each data attribute
(e.g., product, region, time period) is considered as a separate dimension. OLAP tools 1

can locate the intersection of dimensions (e.g., products sold in France during summer)
and summarize them. To this end, they enable users to apply analytical operations and
navigate through data either by rolling-up to aggregated views of data or drilling-down in
their details. As a positive effect of this flexible exploration, analysts acquire the ability to

1 https://en.wikipedia.org/wiki/Online_analytical_processing

96 Related Work on Difference Analysis

explain differences in data by comparing different aggregates. However, explanation needs
to be manually guided by the analyst through the huge space of all possible aggregations.
Thus, the detection of particular patterns or patterns that are hidden in different granularity
levels can be either inefficient or impossible. OLAP systems focus on providing flexible
exploratory operations, rather than a dynamic detection of the most significant differences in
data along with their explanations.

An attempt to solve the problem of looking a large number of values to spot a difference
is done in [SAM98]. In this work, the authors bridge the gab between a hypothesis-driven
exploration, where analysts navigate unaided through the search space, to a discovery-driven
exploration. Their approach mines data containing differences (i.e., namely anomalies) and
summarizes them in advance at an appropriate granularity level. In that way, analysts are
guided by precomputed indicators of differences increasing their chance to identify abnormal
patterns.

In our work, we suggest an approach which helps analysts in understanding differences
in data. Thus, instead of navigating through the multi-dimensional search space a summary
of explanations is provided.

5.2.2 Contrast Data Mining

Contrast data mining is the first effort to dynamically discover contrast patterns that describe
significant differences between two datasets. These differences are described by combining
various contrasting attributes, such as time, location, or demographics.

Most of the works in contrast mining focus on providing interpretable and expressive
representations of contrasts, while at the same time they try to reduce the number of patterns
being contrasted. For instance, [BP01b] introduces a search algorithm for mining contrast
patterns among demographic groups with drastically pruning the search space to gain com-
putational efficiency. In [WJ11], a large query log from a U.S. search engine is analyzed
in order to explain differences in users search behavior. Users with similar search behavior
are clustered together and differences are explained in terms of their demographic attributes.
Some works take a further step than simply detecting patterns; they also summarize them
in order to limit the number of patterns presented to a user. For this purpose, they select
an interesting subset to present. While the definition of interesting is subjective, several
approaches have been proposed [KMR+94, NLHP98]. Subjective measures of interesting-
ness can mainly be categorized into unexpectedness, actionability and novelty. Patterns are
defined as unexpected if they diverge when compared with an explicit list of beliefs that the
user already knows [PT98, ST96] or with a list of what the user has already seen [BP01b].
Patterns are defined as actionable [HXD05], if their knowledge permit users to do an action to

5.2 Difference Explanation 97

their advantage (e.g., maximize profit). Finally, patterns are considered novel [AHBK04], if
they contribute to new knowledge, with respect to the previous discovered patterns. Although
these works perform an effective pruning of discovered contrast patterns, their filtering
criteria have a subjective nature and their usefulness depends on user’s interest.

In our work, we are interested in objective filtering criteria such as data-driven informa-
tiveness and conciseness of detected patterns rather than users’ preferences.

5.2.3 Parsimonious Explanations

Although contrast mining techniques focus on an interpretable and expressive representation
of contrasts, only few works seek to provide a minimal number of explanations that describe
the differences between datasets. Thus, they might result in a great number of patterns
representing local differences, particularly when the underlying data distributions are highly
distinctive. Related work [ABG+07, JBL09] is in the spirit of reducing the number of
identified differences. These works focus on providing parsimonious explanations of the
most significant differences in data.

The authors of [ABG+07] are interested in contrasting two datasets over a measured
value of interest (e.g., total number of sales) and extract data segments with significant
divergences. Those segments are described according to a known attribute of interest with a
hierarchical domain (e.g., location attribute is described by a hierarchy: state/city/zip_code).
Then, a parsimonious explanation is constructed by including those data segments that exhibit
significant differences in the measured value for a specific aggregation level in that hierarchy.
The main limitation of this work lies in the uni-dimensional data segments included in the
different explanations. In many applications, differences in a measured value of interest may
due to several attributes of data segments that are not known in advance and not necessarily
dispose a hierarchical domain. In this respect, this method is not capable of exploring
the structural relations among multi-dimensional data segments when summarizing their
differences.

[JBL09] addresses parsimonious explanation of the differences between two datasets
based on a hierarchical structure that is dynamically built over several non-hierarchical
attributes. A greedy algorithm is proposed to minimize the number of data segments included
in the difference explanation using an appropriate two-sample statistical test. Each node of
the hierarchical explanation captures the local difference of the data segments it represents,
as well as the differences of all nodes across the path to the root. However, the data segments
included in such hierarchy provide redundant information to their ancestors in the same path
to the root, while no formal properties are defined for the finally constructed hierarchy.

98 Related Work on Difference Analysis

In our work, we formalize the quality of hierarchical explanations via objective interest-
ingness criteria, such as conciseness in the number or description length of explanations and
informativeness of the reported differences.

5.3 Difference Evolution

Drift Detection, the task of detecting and monitoring evolution of differences, became a core
analytical task of data mining research with the rise of emerging applications, such as net-
works traffic monitoring, sensor data analysis, social networking sites. A main characteristic
of such temporal data is that the generated distribution changes over time, producing signifi-
cant evolutionary moments in the application level. The detection of network intrusions or
users’ shift of interest are indicative examples of different applications detecting changes over
time. These changes are referred to as temporal evolution, covariate shift, non stationarity
or concept drift. The aforementioned terms are used to describe unforeseen changes of the
stream’s underlying data distribution occurring over time.

Detecting different types of drifts (e.g., sudden, incremental) fundamentally relies on
splitting the input data into proper intervals in time, enabling the comparison of the past data
with the present. Specifically, when dealing with large-scale streaming data the segmentation
of the input into temporal intervals is a common approach, providing solution to compu-
tational and memory restrictions. A drift is then detected under the hypothesis that there
exists an evolving distribution and thus those two intervals appear significantly different. The
significance is measured by the use of similarity metrics, applied either on the data points or
on the models induced by the data points of each interval. Several interval policies have been
proposed, in order to capture the drifts of the underlying distributions and different similarity
metrics have been applied.

This section provides a brief summary of the different types of drifts, interval policies
and similarity functions used in literature.

5.3.1 Types of Drift

Several categorizations of drifts have been proposed [Brz10, GMCR04, Tsy04] based on
their intrinsic characteristics, varying in the described level of abstraction. However, a
consolidated distinction is the abrupt/sudden and incremental drifts. The first type of drift
describes the state where the distribution variables instantly and irreversible change from
one class to another. A real life example of such a drift is a traffic light switching from
the state of pass to the state of stop. The second category includes drifts where variables

5.3 Difference Evolution 99

are increasing (or decreasing) their values slowly and continuously over time. The exact
start of an incremental drift is difficult to be specified. The progressively increasing prices
of an economy due to inflation is considered a typical example of this category. A more
fine-grained distinction of incremental and gradual drifts can be found in [Brz10] with the
former drift to occur in the variables space and the latter to involve the class labels.

Several works have been proposed detecting sudden changes in the underlying data
distributions. The field of anomaly or outlier detection boasts works [CBK09] on the task of
finding patterns that do not conform to the expected behavior. However, these works lack the
ability to detect changes that appear slowly and incrementally in data. An attempt to solve
this problem has been made in [KBDG04, Brz10]. However, these works fail to provide
some insights on the long-lasting question of what methods are appropriate for each type of
drift.

In our work, we study the two types of drift by using real and synthetic datasets and
suggest different clustering approaches for detecting them.

5.3.2 Interval Policies

For the task of segmenting the input data, two main perspectives are met, considering either
fixed or variable-length intervals. However, a detailed study on formalizing the different
interval types can be found in [Adä13], where the starting position and interval length are
further discussed. Intervals provide a way to control the size of processed data and thus give
memory guarantees. Moreover, eliminating the data points arriving from old concepts can
reveal the underlying drifts.

Most of the existing drift detection methods rely on segmenting the input stream into
smaller fixed length intervals [BGP10, Ozo08, JMG95, KBDG04, VB09]. However, seg-
menting input into equal, fixed length intervals induces a potential loss of drifts. For instance,
a large interval is susceptible to miss a drift (low recall) as it absorbs the statistical changes
inside its interval, while a small interval may cause false alarms (low precision) for frequently
changing data. Thus, the selection of a proper interval length is critical for the effectiveness
of drift detection. However, fixed length intervals do not detect varying rates of drifts (e.g.,
hourly, daily). Hence, the interval length needs to change dynamically as data evolves in
order to capture drifts in different time granularities (e.g., hour, day, week). To this end, it
becomes clear that a main drawback of the aforementioned works derive from the lack of
dynamically adapting to the varying change rates. Furthermore, they suffer from the problem
of single granularity, due to fixed length intervals, resulting in low precision/recall.

An attempt to solve the problem of single granularity is made in [MKT09] by providing
multi-partition techniques, but it also remains in an offline context. On the contrary, an

100 Related Work on Difference Analysis

online drift detection approach that aims to detect the most recent drifts, by comparing the
last two intervals, is presented by FLORA2 [WK96]. FLORA2 dynamically learns interval
length. A heuristic method shrinks the interval, by forgetting old data points, each time a drift
occurs; otherwise, the interval grows. Also, some other approaches exist [Bif10, GMCR04]
calculating statistics over sliding and growing intervals in order to detect a drift. However,
all these works lack the flexibility of querying historical and fresh data for detecting drifts at
different granularities.

In our work, we take a step towards the detection of drifts at multiple time granularities
of varying interval length. Moreover, we propose a query-based approach for analyzing the
precision and recall in drift detection when contrasting historical and fresh data.

5.3.3 Similarity Measures

A straight forward approach for comparing time intervals is by directly measuring the
similarity of their data points. Although this approach achieves the best accuracy, it has
a high computational and memory cost. On the other hand, more compact models can be
learned from the intervals (past or present), applying the similarity comparisons of their
underlying distributions. These comparisons are mainly performed using two techniques
[GŽB+13]. The first concerns statistical tests [KKTC13, KBDG04, GFR06] under the null
hypothesis of equal distributions. Rejecting the hypothesis reveals a significant statistical
difference of the two distributions and thus the existence of a drift. The second explores
similarity or probabilistic measures that quantify the (probability) distribution inequality
between two different intervals. For instance, the Kullback-Leibler divergence [Kul87] is
utilized for this concept [Ozo08, SG07]. Moreover, an entropy based metric [VB09] can be
exploited, reporting the drifts in distributions as the value of entropy decreases. Then, the
change is detected based on a user defined threshold. If the similarity of the two intervals is
below the given threshold, a drift is detected. A drawback of these works derive from the
lack of dynamically learning and adapting thresholds to the peculiarities of input data (e.g.,
type of drifts).

In our work, we propose learning algorithms for adapting our thresholds to the various
rates and types of drifts. Moreover, it is worth noticing that related work is simplifying
the problem into one dimensional data. In our work, we deal with the problem of multi-
dimensional drift detection, by applying appropriate clustering techniques and suggesting
suitable clustering similarity measures.

Chapter 6

Conclusion

6.1 Research Summary

Data produced by social platforms and monitoring applications are rarely stationary. They
exhibit significant variations in the underlying data distributions across multiple data dimen-
sions of interest that are not always known in advance. In this thesis, we are address the
challenging problem of Difference Analysis and study three analytical tasks for serving a
wide range of applications: Difference Exploration, Difference Explanation and Difference
Evolution.

We defined Difference Exploration as the act of exploring differences over multiple
dimensions. Within the context of social platforms, we explored differences in users’ opinions
over various demographic (e.g., age) and item (e.g., movie’s attributes) dimensions. Our
proposed framework employs an appropriate distance measure for contrasting opinions,
where each opinion is in the form of a rating distribution. Moreover, it encompasses an
efficient algorithm and heuristics for solving the NP-Complete problem of finding population
segments whose opinion is close to an input one.

We defined Difference Explanation as the act of explaining differences according to
some dimensions of interest. Within the context of monitoring applications, we provided a
parsimonious set of explanations for a difference in sales of two stores over various demo-
graphic dimensions. Our proposed scoring function ranks the potential sets of explanations,
according to their conciseness and informativeness ability. Our proposed greedy algorithm
solves the NP-hard problem of finding a parsimonious set of explanations by attaining
(1− 1

e)-approximation guarantees.
We defined Difference Evolution as the act of monitoring the evolution of data and summa-

rizing differences over the time dimension. Within the context of monitoring applications, we
summarized differences in network traffic and differences in users’ subscriptions at different

102 Conclusion

time granularities. Our proposed dissimilarity measure is applied over clustering summaries
of varying time intervals and detects significant differences of the underlying summaries’
distributions. Our query-based algorithms provide high flexibility in analyzing precision and
recall of differences at multiple time granularities. Those algorithms are evaluated over a
scalable index that maintains clustering summaries of varying time intervals.

Our main contribution through this thesis is the formulation of three analytical tasks for
Difference Analysis and the definition of novel measures, scalable structures and efficient
algorithms for addressing them. Our experiments, conducted over synthetic and a wide variety
of real data, validate the usefulness of our analytical tasks, the scalability of our proposed data
structures and the efficiency of our algorithmic solutions. Difference Exploration uncovers
the opinion of different user segments and provides guidance to end-users and analysts in
exploring them. Difference Explanation exploits the hierarchical relations that exist among
multi-dimensional data segments to construct a concise and informative summary of the
differences between two datasets. Finally, Difference Evolution provides a query-based
approach for analyzing differences in datasets with varying arrival rates and at multiple time
granularities. Similarly, we provide different clustering approaches to capture different types
of change.

6.2 Perspectives

In this section, we identify potentials for improvement for each analytical task. Then, we
discuss new perspectives along with their challenges for achieving that improvement.

6.2.1 Difference Exploration

In our work on difference exploration we have proposed an algorithm that is linear in
the number of input records. Our algorithm finds a basic Partition Decision Tree (PDT)
maintaining population segments close to some input opinion and heuristics for improving
the quality of the PDT. However, in Section 2.5 we noticed that some of our heuristics, i.e.
RF-Cluster and RF-Desc, do not scale. The scalability of these heuristics depends on the
size of the dimensional space (i.e., number of attribute-value pairs in the dataset), the number
of input rating records and the number of decision trees being generated. To this end, an
interesting perspective would be to study ways for improving our algorithms’ complexity.

The exploration scenarios that we developed in our user study in Section 2.5.3 taught us
several lessons. An analyst often needs multiple exploration steps to discover user segments
of interest. Indeed, since analysts are not aware of the full extent of their data, they need

6.2 Perspectives 103

to start seeing some examples to determine what else they want to explore. This calls for a
multi-step data-driven exploration where each step is guided by the discoveries made in the
previous step. The second lesson is related to the expressivity provided to the analyst at each
step. The ability of an analyst to select a group, a rating distribution, or a set of groups or
rating distributions, will change the whole experience of exploration, as well as the efficiency
of the underlying group discovery algorithms. To this end, an interesting perspective would
be to broaden the interaction actions of an analyst in order to enable higher flexibility in
Difference Exploration.

Perspective. We discuss one perspective for scalability improvement that can benefit all
of our algorithms. Our algorithms for finding partitions, DTAlg and (the first Step of) RF,
involve multiple evaluations of the following request: given a distribution ρ (corresponding
to a segment) and a set of input distributions {ρ1, . . . ,ρp}, what is the EMD of ρ to its closest
input distribution? We anticipate the application of our algorithm for any rated dataset
where the rating scale may be large (e.g., Yahoo!Music has a rating scale of 1–100) and
where the number of input distributions p may be large (e.g., the user may have seen several
distributions while exploring items and may want to know which segments exhibit similar
distributions on a given class of items). To make this possible, it is essential to provide
efficient support for the above request. A naïve approach is to evaluate EMD(ρ,ρi), i ∈ [1, p]
and pick the smallest EMD. But this is inefficient. Thus, we suggest to investigate a pruning
strategy that relies on maintaining a lower-bound ℓi and an upper-bound upi on the possible
values of EMD(ρ,ρi),∀i. Then whenever ℓi > min{up j | j ∈ [1, p]}, we can safely discard
ρi as a candidate for being the closest input distribution to ρ . We provide more details on
this pruning strategy in the Appendix, as a first step towards improving the efficiency of our
algorithms.

The second perspective is to provide a higher expressivity in the interaction actions
[OTAYT15] that an analyst can make at each exploration step. For instance, merging
distributions of different segments or digging into the opinions of sub-populations of a given
segment, would provide a greater understanding of how opinions are formed. Other actions
such as clustering together users of similar preferences (i.e., in movies or books) can enhance
the expressivity of analysts. This new perspective would lead to a more interactive and
efficient Difference Exploration.

Challenge. To show the usefulness of the aforementioned pruning strategy, theoretical
and experimental results are essential. While we have taken the first step of showing
theoretically the computational benefit of the pruning strategy, we leave as future work the
implementation and further experimentation of the strategy.

104 Conclusion

The first challenge in providing higher expressivity in Difference Exploration is to define
data-driven and task-specific actions and design efficient algorithms that allow an interactive
exploration of users’ opinion. Another challenge derives from the need for a principled
methodology to evaluate (a) the expressivity of exploration actions and (b) the need for an
interactive multi-step exploration.

6.2.2 Difference Explanation

In our work on difference explanation we have proposed a greedy algorithm for finding
parsimonious sets of explanations. However, the complexity of this algorithm is quadratic
in the number of segments in the search space (Section 3.4) raising scalability concerns.
The higher the number of dimensions and their values in the search space, the more time
consuming the algorithm becomes. Thus, the need for efficient heuristics becomes imperative.
Moreover, other approaches from the field of statistical modeling can be promising in
Difference Explanation.

Perspective. A perspective in designing efficient heuristics is given by the following key
observation. Instead of iterating over the entire search space in order to find segments with
the best score, more relaxed iterations can be performed exploring fewer segments in order
to detect segments close to, but not necessarily with, the best score. This relaxation will
enhance the performance of the algorithm, but will inevitably sacrifice some of the quality of
the resulting explanation set. For the sacrificed quality to be minimized, the relaxed iterations
should once more exploit the hierarchical relations inherent in data. To this end, starting
from a randomly selected set of segments S two alternatives can be explored: (a) a top-down
approach, where each iteration explores only descendants of segments in S and finds the one
with the highest score to add in S, (b) a bottom-up approach, where each iteration explores
only ancestors of segments in S and finds the one with the highest score to add in S. Both
approaches should minimize the number of comparisons per iteration and thus the total
complexity of the algorithm.

Another perspective in explaining differences can be given by adopting a statistical model.
Particularly, regression analysis can be promising in explaining differences w.r.t. different
dimensions. Regression analysis can be used to understand which among the independent
variables (e.g., age, gender) are related to the dependent variable (e.g., total number of
sales) and to explore the forms of these relationships (i.e., causation or correlation). Many
techniques for carrying out regression analysis have been developed and nonparametric1 may
be of interest for Difference Explanation.

1 https://en.wikipedia.org/wiki/Nonparametric_regression

6.2 Perspectives 105

Challenge. The aforementioned two approaches require the design of an appropriate
index, which improves the speed of segment retrieval operation. For instance, a potential
option for the bottom-up approach would be to permit indexing of most refined segments, i.e.
segments of the longest conjunctive description, while all other ancestors are retrieved by
decomposing the descriptions of indexed segments. A benefit of this solution is that it does
not require the a-priori knowledge of all space dimensions.

6.2.3 Difference Evolution

In our work on difference evolution we have considered queries that summarize differences
at various time granularities. In practice, however, most differences occur not merely
over time but also over other dimensions. For instance, users exhibit different opinions at
different geographic locations. To this end, querying differences over different time and
space granularities becomes a non trivial problem.

Perspective. Spatio-temporal queries raise new perspectives in analyzing difference
evolution. Particularly, they are interested in (a) querying the time dimension: How the
opinion of a given geographic population changes over time? (b) querying the space
dimension: How the opinion of different geographic populations varies for a particular time
period? (c) querying both dimensions: How the opinion of different geographic populations
evolves over time?

Challenge. To address such spatio-temporal queries, particularly when referring to multi-
ple time (e.g., hourly, daily) and space (e.g., city, country) granularities, three challenges need
to be solved. First, a spatio-temporal index needs to be designed, able to accommodate and in-
crementally maintain incoming data. In addition, the index should support distributed/parallel
implementations in order to allow efficient evaluation of Big spatio-temporal queries. Sec-
ond, an appropriate measure that captures the dissimilarity between two spatio-temporal
clusterings should be defined. While our current measure quantifies the difference between
two clusterings of consecutive time intervals, it ignores their proximity over the spatial
dimension. Finally, a new design of unary, refinement and synthesis queries, capable of
analyzing the precision and recall of spatio-temporal drifts, is needed. While our query
evaluation algorithms provide a way to refine and synthesize the temporal space, they lack
the ability of iterating over different geographic resolutions efficiently.

References

[ABG+07] Deepak Agarwal, Dhiman Barman, Dimitrios Gunopulos, Neal E. Young,
Flip Korn, and Divesh Srivastava. Efficient and effective explanation of
change in hierarchical summaries. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’07, pages 6–15, New York, NY, USA, 2007. ACM.

[ACALAZ+15] Jiujun A Cheng, Yingbo A Liu, Huiting A Zhang, Xiao A Wu, and Fuzhen
A Chen. A new recommendation algorithm based on user’s dynamic infor-
mation in complex social network. In Journal Mathematical Problems in
Engineering, 2015.

[Adä13] Iris Adä, Michael R. Berthold. Eve: a framework for event detection.
Evolving Systems, 4:61–70, March 2013.

[AGGR05] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data. Data
Mining and Knowledge Discovery, 11(1):5–33, 2005.

[AGS97] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling multi-
dimensional databases. In Proceedings of the Thirteenth International
Conference on Data Engineering, ICDE ’97, pages 232–243, Washington,
DC, USA, 1997. IEEE Computer Society.

[AHBK04] Ahmed Sultan Al-Hegami, Vasudha Bhatnagar, and Naveen Kumar. Novelty
Framework for Knowledge Discovery in Databases, pages 48–57. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A
framework for clustering evolving data streams. In Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, VLDB
’03, pages 81–92. VLDB Endowment, 2003.

[AKFS03] Shlomo Argamon, Moshe Koppel, Jonathan Fine, and Anat Rachel Shimoni.
Gender, genre, and writing style in formal written texts. TEXT, 23:321–346,
2003.

[AYKKK+16] Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks
V.S. Laskhmanan, and Ruben H. Zamar. Exploring Rated Datasets with
Rating Maps. Paper under review, September 2016.

108 References

[BGLB15] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-
paper recommender systems: a literature survey. International Journal on
Digital Libraries, pages 1–34, 2015.

[BGP10] Alexis Bondu, Benoît Grossin, and Marie-Luce Picard. Density estimation
on data streams : an application to change detection. In EGC’10, pages
229–240, 2010.

[BHKP10] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer.
MOA: massive online analysis. Journal of Machine Learning Research,
11:1601–1604, 2010.

[Bif10] Albert Bifet. Adaptive stream mining: Pattern learning and mining from
evolving data streams. In Proceedings of the 2010 Conference on Adaptive
Stream Mining: Pattern Learning and Mining from Evolving Data Streams,
pages 1–212, Amsterdam, The Netherlands„ 2010. IOS Press.

[Boe11] Mirko Boettcher. Contrast and change mining. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1(3):215–230, 2011.

[BP01a] Stephen D. Bay and Michael J. Pazzani. Detecting group differences:
Mining contrast sets. Data Min. Knowl. Discov., 5(3):213–246, July 2001.

[BP01b] Stephen D. Bay and Michael J. Pazzani. Detecting group differences:
Mining contrast sets. Data Mining and Knowledge Discovery, 5(3):213–
246, 2001.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.
10.1023/A:1010933404324.

[Brz10] Dariusz Brzezinski. Mining data streams with concept drift. Master’s thesis,
2010.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[CCS93] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-line Analytical
Processing) to User-analysts: An IT Mandate. Codd & Associates, 1993.

[CEQZ] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In SIAM CDM’06, pages
328–339.

[CFZ99] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based sub-
space clustering for mining numerical data. In Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’99, pages 84–93, New York, NY, USA, 1999. ACM.

[CJ02] Jae-Woo Chang and Du-Seok Jin. A new cell-based clustering method for
large, high-dimensional data in data mining applications. In Proceedings of
the 2002 ACM Symposium on Applied Computing, SAC ’02, pages 503–507,
New York, NY, USA, 2002. ACM.

References 109

[DAyDY11] Mahashweta Das, Sihem Amer-yahia, Gautam Das, and Cong Yu. Mri:
Meaningful interpretations of collaborative ratings. PVLDB, 4(11):1063–
1074, 2011.

[DB12] Guozhu Dong and James Bailey. Contrast Data Mining: Concepts, Algo-
rithms, and Applications. Chapman & Hall/CRC, 1st edition, 2012.

[DCSJS08] Munmun De Choudhury, Hari Sundaram, Ajita John, and Dorée Duncan
Seligmann. Multi-scale characterization of social network dynamics in the
blogosphere. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management, CIKM ’08, pages 1515–1516, New York, NY,
USA, 2008. ACM.

[DF05] Roger Purves David Freedman, Robert Pisani. Statistics, 4th Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[DFK16] Wouter Duivesteijn, Ad J. Feelders, and Arno Knobbe. Exceptional model
mining. Data Mining and Knowledge Discovery, 30(1):47–98, 2016.

[DGD12] Pradeep Dasigi, Weiwei Guo, and Mona Diab. Genre independent subgroup
detection in online discussion threads: A pilot study of implicit attitude
using latent textual semantics. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Short Papers - Volume
2, ACL ’12, pages 65–69, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[DR09] Anton Dries and Ulrich Rückert. Adaptive concept drift detection. Statisti-
cal Analysis and Data Mining, 2(5-6):311–327, 2009.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg S, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise.
pages 226–231. AAAI Press, 1996.

[F+03] Ronald Fagin et al. Optimal aggregation algorithms for middleware. J.
Comp. Syst. Sci., 66(4):614–656, 2003.

[FF99] Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-
dimensional data. Statistics and Computing, 9(2):123–143, 1999.

[GFR06] João Gama, Ricardo Fernandes, and Ricardo Rocha. Decision trees for
mining data streams. Intell. Data Anal., 10(1):23–45, January 2006.

[GMCR04] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning
with drift detection. In Advances in AI – SBIA’04, volume 3171 of Lecture
Notes in Computer Science, pages 286–295. Springer Berlin Heidelberg,
2004.

[GoCBBRD77] F. Glover and University of Colorado Boulder. Business Research Division.
Selecting Subsets of Maximum Diversity. Management science/information
science report series. Business Research Division, Graduate School of
Business Administration, University of Colorado, 1977.

110 References

[GŽB+13] Joao Gama, Indre Žliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM Computing
Surveys, in press, 2013.

[HW79] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied
Statistics, 28:100–108, 1979.

[HXD05] Zengyou He, Xiaofei Xu, and Shengchun Deng. Data mining for actionable
knowledge: A survey. CoRR, abs/cs/0501079, 2005.

[JBL09] R. Jin, Y. Breitbart, and R. Li. A tree-based framework for difference
summarization. In 2009 Ninth IEEE International Conference on Data
Mining, pages 209–218, Dec 2009.

[JMG95] N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to
classification. In Proc. of AI, pages 518–523, 1995.

[KAYDCC15] Sofia Kleisarchaki, Sihem Amer-Yahia, Ahlame Douzal-Chouakria, and
Vassilis Christophides. Querying temporal drifts at multiple granularities. In
Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, CIKM ’15, pages 1531–1540, New York, NY,
USA, 2015. ACM.

[KBDG04] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in
data streams. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, pages 180–191. VLDB
Endowment, 2004.

[KCAY16] Sofia Kleisarchaki, Vassilis Christophides, and Sihem Amer-Yahia. Sum-
marizing Differences in Multidimensional Datasets. Paper under review,
September 2016.

[KCAYDC14] Sofia Kleisarchaki, Vassilis Christophides, Sihem Amer-Yahia, and Ahlame
Douzal-Chouakria. Online Detection of Topic Change in Social Posts. In
Big’2014, pages 1–4, Seoul, Corée, North Korea, April 2014.

[KG12] Andreas Krause and Daniel Golovin. Submodular function maximization,
2012.

[KKTC13] Sophia Kleisarchaki, Dimitris Kotzinos, Ioannis Tsamardinos, and Vassilis
Christophides. A methodological framework for statistical analysis of social
text streams. In Yuzuru Tanaka, Nicolas Spyratos, Tetsuya Yoshida, and
Carlo Meghini, editors, Information Search, Integration and Personaliza-
tion, volume 146 of Communications in Computer and Information Science,
pages 101–110. Springer Berlin Heidelberg, 2013.

[KKZ09] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clustering,
and correlation clustering. ACM Trans. Knowl. Discov. Data, 3(1):1:1–1:58,
March 2009.

References 111

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 03 1951.

[KLG+08] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and
Christos Faloutsos. Efficient sensor placement optimization for securing
large water distribution networks. Journal of Water Resources Planning
and Management, 134(6):516–526, November 2008. (Draft; full version
available here).

[Klo02] W. Klosgen. Handbook of Data Min. Knowl. Discov, ch. 16.3: Subgroup
Discovery. Oxford Univ., NY, 2002.

[KMR+94] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and
A. Inkeri Verkamo. Finding interesting rules from large sets of discovered
association rules. In Proceedings of the Third International Conference on
Information and Knowledge Management, CIKM ’94, pages 401–407, New
York, NY, USA, 1994. ACM.

[KTV06] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Dynamic
feature space and incremental feature selection for the classification of
textual data streams. In in ECML/PKDD-2006, page 107. Springer Verlag,
2006.

[Kuh55] Harold W. Kuhn. The hungarian method for the assignment problem. NRL
Quarterly, 2:83–97, 1955.

[Kul87] S Kullback. The kullback-leibler distance. Am Stat, 41:340–341, 1987.

[LDD01] Patrice Latinne, Olivier Debeir, and Christine Decaestecker. Limiting the
number of trees in random forests. In MCS’01 Cambridge, UK, July 2-4,
Proc., pages 178–187, 2001.

[LLV07] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In 2007 IEEE 23rd International Conference
on Data Engineering, pages 106–115, April 2007.

[LWK+13] Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes. Submodular feature
selection for high-dimensional acoustic score spaces. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pages
7184–7188, May 2013.

[LXY00] Bing Liu, Yiyuan Xia, and Philip S. Yu. Clustering through decision tree
construction. In Proceedings of the Ninth International Conference on
Information and Knowledge Management, CIKM ’00, pages 20–29, New
York, NY, USA, 2000. ACM.

[MKT09] Mohammad M. Masud, Latifur Khan, and Bhavani Thuraisingham. A
multi-partition multi-chunk ensemble technique to classify concept-drifting
data streams, ser. In Advances in Knowledge Discovery and Data Mining.
Springer, 2009.

112 References

[MOV73] MovieLens, as of 2003, www.grouplens.org/node/73.

[NLHP98] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang.
Exploratory mining and pruning optimizations of constrained associations
rules. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’98, pages 13–24, New York, NY, USA,
1998. ACM.

[OMA+01] L. O’Callaghan, N. Mishra, Meyerson A., S. Guha, and R. Motwani.
Streaming-data algorithms for high-quality clustering, 2001.

[Osi89] Andrzej J. Osiadacz. Multiple criteria optimization; theory, computation,
and application, ralph e. steuer, wiley series in probability and mathemat-
ical statistics - applied, wiley, 1986, no. of pages 546. Optimal Control
Applications and Methods, 10(1):89–90, 1989.

[OTAYT15] Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and Alexandre Termier. In-
teractive user group analysis. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, CIKM ’15,
pages 403–412, New York, NY, USA, 2015. ACM.

[Ozo08] K. Ozonat. An information-theoretic approach to detecting performance
anomalies and changes for large-scale distributed web services. In 2008
IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN), pages 522–531, June 2008.

[Pag54] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):pp. 100–
115, 1954.

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for
high dimensional data: A review. SIGKDD Explor. Newsl., 6(1):90–105,
June 2004.

[PT98] Balaji Padmanabhan and Alexander Tuzhilin. A belief-driven method for
discovering unexpected patterns. pages 94–100. AAAI Press, 1998.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s
distance as a metric for image retrieval. International Journal of Computer
Vision, 40(2):99–121, 2000.

[SAM98] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven
exploration of OLAP data cubes, pages 168–182. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1998.

[SG07] Raquel Sebastião and João Gama. Change Detection in Learning His-
tograms from Data Streams, pages 112–123. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[SKAP06] J. Schler, M. Koppel, S. Argamon, and J. Pennebaker. Effects of Age and
Gender on Blogging. In Proc. of AAAI Spring Symposium on Computational
Approaches for Analyzing Weblogs, March 2006.

References 113

[ST96] Avi Silberschatz and Alexander Tuzhilin. What makes patterns interesting
in knowledge discovery systems. IEEE Trans. on Knowl. and Data Eng.,
8(6):970–974, December 1996.

[T+07] Pang-Ning Tan et al. Introduction to Data Mining, (First Edition). W. W.
Norton & Company, 2007.

[TP12] Mikalai Tsytsarau and Themis Palpanas. Survey on mining subjective data
on the web. Data Min. Knowl. Discov., 24(3):478–514, May 2012.

[Tsy04] Alexey Tsymbal. The problem of concept drift: Definitions and related
work. Technical report, 2004.

[VB09] Peter Vorburger and Abraham Bernstein. Entropy-based concept shift
detection. In ICDM’06, pages 1113–1118. IEEE Computer Society, 2007-
01-09.

[VVP08] I. Varlamis, V. Vassalos, and A. Palaios. Monitoring the evolution of
interests in the blogosphere. In Data Engineering Workshop, 2008. ICDEW
2008. IEEE 24th International Conference on, pages 513–518, April 2008.

[WBN03] Geoffrey I. Webb, Shane M. Butler, and Douglas Newlands. On detecting
differences between groups, 2003.

[WC10] Ingmar Weber and Carlos Castillo. The demographics of web search. In
Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’10, pages 523–530, New
York, NY, USA, 2010. ACM.

[WJ11] Ingmar Weber and Alejandro Jaimes. Who uses web search for what: And
how. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM ’11, pages 15–24, New York, NY, USA,
2011. ACM.

[WK96] Gerhard Widmer and M. Kubat. Learning in the presence of concept drift
and hidden contexts. In ML, pages 69–101, 1996.

[ZCB08] Jun Zhou, Li Cheng, and Walter F. Bischof. Prediction and change detection
in sequential data for interactive applications. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2, AAAI’08, pages
805–810. AAAI Press, 2008.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient
data clustering method for very large databases. SIGMOD Rec., 25:103–114,
1996.

[ZW03] Mohammed J. Zaki and Limsoon Wong. Data mining techniques, 2003.

Appendix A

EMD Pruning Strategy

In this section, we develop a pruning strategy that relies on maintaining a lower-bound ℓi and
an upper-bound upi on the possible values of EMD(ρ,ρi),∀i. Then whenever ℓi > min{up j |
j ∈ [1,k]}, we can safely discard ρi as a candidate for being the closest input distribution
to ρ . Our bounds are used in the spirit of the well-known NRA algorithm in top-k query
processing [F+03]. Our algorithm maintains a list L of promising candidates to be the closest
EMD-neighbors of the given distribution ρ (equiv., segment). Similar to our earlier algorithm
(Algorithm 2) for calculating the EMD for a pair of distributions, this algorithm makes one
concurrent pass over ρ and all the input distributions ρi. It maintains excess/deficit positions
on a stack as before. We assume there are M rating values in the rating scale.

Our strategy for finding the closest input distribution to that of a given segment is based on
maintaining lower and upper bounds on possible EMD to various input distributions, allowing
us to prone the processing of certain distributions. The following lemma characterizes those
bounds.

Lemma 1 Let ρ be the distribution of a given segment, after the algorithm has examined the
first i positions, let δ be the total mass on the stack, j,k be positions on the top and bottom
of the stack. Let γ = ∑

i
t=1 ρp[t] be the cumulative mass of distribution ρp ∈ Q. Let ∆ be the

work done so far for converting ρ into ρp. Then ℓp = ∆+δ × (i+1− j)≤ EMD(ρ,ρp)≤
upp = ∆+δ × (M− k)+(1−δ − γ)× (M− i−1).

Proof Sketch of Lemma 1: The key intuition is that after examining i positions, in the
best scenario, all the mass (say excess) on the stack just needs to move to the next ((i+1)-th)
position. Thus, the EMD cannot be smaller than the current work done plus this amount.
The upper bound corresponds to the worst case where all the mass on stack (say excess)
has to move the furthest, i.e., from the bottom position to the very last (M-th) position.
Additionally, it is possible that there is excess mass left over at the last position M, which

116 EMD Pruning Strategy

needs to move to position i+1. The maximum possible value of this excess mass is 1−δ−γ .

We illustrate the pruning algorithm with a simple example. Consider a given distri-
bution ρ = [0.8,0.2,0,0,0] and the distributions {ρ1 = [1,0,0,0,0],ρ2 = [0,1,0,0,0],ρ3 =

[0,0,1,0,0],ρ4 = [0,0,0,1,0],ρ5 = [0,0,0,0,1]}. After examining the first two positions,
the current work done for the various distributions is 0.2, 0.8, 0, 0, 0. The bounds are:
ℓ1 = up1 = 0.2; ℓ2 = up2 = 0.8; ℓ3 = ℓ4 = ℓ5 = 1; up3 = up4 = up5 = 4. At this point, the
lower bounds for ρ2, . . . ,ρ5 exceed the upper bound for ρ1 and we can drop ρ2, . . . ,ρ5 from
further consideration.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Context: Big Data
	1.2 Our Approach for Difference Analysis
	1.2.1 Difference Exploration
	1.2.2 Difference Explanation
	1.2.3 Difference Evolution

	1.3 Contributions & Thesis Organization

	2 Difference Exploration
	2.1 Introduction
	2.2 Data Model and Problem
	2.2.1 Population Segments and Rating Maps
	2.2.2 Difference Exploration Problem

	2.3 Rating Comparison Measures
	2.3.1 EMD Calculation

	2.4 Building Rating Maps
	2.4.1 Problem Complexity
	2.4.2 Algorithms for Difference Exploration

	2.5 Difference Exploration Experiments
	2.5.1 Experimental Setup
	2.5.2 Summary of Results
	2.5.3 Exploration Scenarios
	2.5.4 Detailed Evaluation

	2.6 Summary of Difference Exploration

	3 Difference Explanation
	3.1 Introduction
	3.2 Motivating Example
	3.3 Formal Model for Difference Explanation
	3.3.1 Difference Explanation Problem
	3.3.2 Sub-modularity and Monotonicity

	3.4 Algorithms for Difference Explanation
	3.4.1 Greedy Algorithm
	3.4.2 Top-k Algorithm

	3.5 Difference Explanation Experiments
	3.5.1 Dataset Preparation
	3.5.2 Summary of Results
	3.5.3 Examples of Difference Explanation
	3.5.4 Segment Difference Characterization
	3.5.5 Difference Explanation Evaluation
	3.5.6 Scalability Evaluation

	3.6 Summary of Difference Explanation

	4 Difference Evolution
	4.1 Introduction
	4.2 Data Model and Queries
	4.2.1 Clustering and Drifts
	4.2.2 Drift Queries in Difference Evolution

	4.3 Drift Index
	4.3.1 Full Index Materialization
	4.3.2 Partial Index Materialization
	4.3.3 Time & Space Complexity
	4.3.4 and Learning

	4.4 Query Evaluation Algorithms for Difference Evolution
	4.5 Difference Evolution Experiments
	4.5.1 Dataset Preparation
	4.5.2 Summary of Results
	4.5.3 Accuracy of Drift Detection
	4.5.4 Scalability Study of All Indices

	4.6 Summary of Difference Evolution

	5 Related Work on Difference Analysis
	5.1 Difference Exploration
	5.1.1 Databases
	5.1.2 Data Mining
	5.1.3 Social Data Analysis

	5.2 Difference Explanation
	5.2.1 Online Analytical Processing
	5.2.2 Contrast Data Mining
	5.2.3 Parsimonious Explanations

	5.3 Difference Evolution
	5.3.1 Types of Drift
	5.3.2 Interval Policies
	5.3.3 Similarity Measures

	6 Conclusion
	6.1 Research Summary
	6.2 Perspectives
	6.2.1 Difference Exploration
	6.2.2 Difference Explanation
	6.2.3 Difference Evolution

	References
	Appendix A EMD Pruning Strategy

